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Abstract. In this paper, we study the edge metric dimension problem
(EMDP). We establish a potential function and give a corresponding
greedy algorithm with approximation ratio 1+ lnn+ln(log2 n), where n
is the number of vertices in the graph G.
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1 Introduction

The concepts of metric generators (originally called locating sets) and the con-
cepts of metric dimension (originally called the location number) were intro-
duced by Slater in [17] in connection with uniquely determining the position of
an intruder in a network. Harary and Melter [11] discovered the same concepts
independently.

We now recall the definition of the metric dimension. Let G = (V,E) be
a simple connected undirected graph. A vertex v ∈ V is called to resolve or
distinguish a pair of vertices u,w ∈ V if d(v, u) �= d(v, w), where d(·, ·) denotes
the distance between two vertices in G. A metric generator of G is a subset
V ′ ⊆ V such that for each pair u,w ∈ V there exists some vertex v ∈ V ′ that
distinguishes u and w. The minimum cardinality of a metric generator is called
the metric dimension of G, denoted by dim(G).

The metric dimension problem (MDP) has been widely investigated from the
graph theoretical point of view. Cáceres et al. [3] studied the metric dimension
of cartesian products G�H, and proved that the metric dimension of G�G was
tied in a strong sense to the minimum order of a so-called doubly resolving set in
G. They established bounds on G�H for many examples of G and H. Chartrand
et al. [7] studied resolvability in graphs and the metric dimension of a graph. It
was shown that dim(H) ≤ dim(H�K2) ≤ dim(H)+1 for every connected graph
H. Moreover, it was shown that for every positive real number ε, there exists a
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connected graph G and a connected induced subgraph H of G such that dim(G)
dim(H) ≤

ε. Saputro et al. [16] studied the metric dimension of regular bipartite graphs,
and determined the metric dimension of k-regular bipartite graphs G(n, n) where
k = n − 1 or k = n − 2. Chappell et al. [6] studied relationships between
metric dimension, partition dimension, diameter, and other graph parameters.
They constructed “universal examples” of graphs with given partition dimension,
and they used these to provide bounds on various graph parameters based on
metric and partition dimensions. They formed a construction showing that for
all integers α and β with 3 ≤ α ≤ β + 1 there exists a graph G with partition
dimension α and β. Cáceres et al. [5] studied the metric dimension of infinite
locally finite graphs, i.e. those infinite graphs such that all its vertices have finite
degree. They gave some necessary conditions for an infinite graph to have finite
metric dimension and characterized infinite trees with finite metric dimension.

So far only a few papers have discussed the computational complexity issues
of the MDP. The NP-hardness of the MDP was mentioned by Garey and John-
son [10]. An explicit reduction from the 3-SAT problem was given by Khuller et
al. [14]. They also obtained for the Metric Dimension problem a (2 ln(n)+Θ(1))-
approximation algorithm based on the well-known greedy algorithm for the Set
Cover problem and showed that the MDP is polynomial-time solvable for trees.
Beerliova et al. [1] showed that the MDP (which they call the Network Veri-
fication problem) cannot be approximated within a factor of O(log(n)) unless
P = NP . Hauptmann et al. [12] gave a (1+ln(|V |)+ln(log2(|V |)))-approximation
algorithm for the MDP in graphs.

The concept of a doubly resolving set of a graph G was introduced by Caceres
et al. [4]. We say vertices u, v of the graph G doubly resolve vertices x, y of G, if
d(u, x)−d(u, y) �= d(v, x)−d(v, y). A vertex set S is called a doubly resolving set
of G if every two distinct vertices of G are doubly resolved by some two vertices
of S.

Kratica et al. [15] proved that the minimal doubly resolving sets problem is
NP-hard. Chen et al. [8] designed an (1+ o(1)) ln n-approximation algorithm for
the weighted minimum doubly resolving set problem.

The edge metric dimension is a variant of the metric dimension. We now recall
the definition of the edge metric dimension. For any v ∈ V and e = uw ∈ E, we
use d(e, v) = min{d(u, v), d(w, v)} to denote the distance between the vertex v
and the edge e. We say that two distinct edges e1, e2 ∈ E are distinguished by
the vertex v ∈ V if d(v, e1) �= d(v, e2). A subset S ⊆ V is said to be an edge
metric generator of G if every two distinct edges of G can be distinguished by
some vertex in S. An edge metric basis of G is an edge metric generator of G of
the minimum cardinality and its cardinality is called the edge metric dimension,
denoted by dime(G).

Kelenc et al. [13] proved that computing the edge metric dimension of con-
nected graphs is NP-hard. As a response to an open problem presented in
[13], Zhu et al. [18] considered the maximum edge metric dimension prob-
lem on graphs. Zubrilina [19] classified the graphs on n vertices for which
dime(G) = n − 1 and showed that dime(G)

dim(G) is not bounded from above (here
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dim(G) is the standard metric dimension of G). They computed dime(G�Pm)
and dime(G + K1). Zubrilina [20] discussed the edge metric dimension of the
random graph G(n, p) and obtained dime(G(n, p)) = (1 + o(1))4 log(n)

log( 1
q )

, where

q = 1 − 2p(1 − p)2(2 − p). In this paper, we discuss the edge metric dimension
problem.

The paper is organized as follows: In Sect. 2, we construct a normalized,
monotone increasing and submodular potential function and give a greedy algo-
rithm for the edge metric dimension problem. In Sect. 3, we show that the algo-
rithm presented in this paper has approximation ratio 1+lnn+ln(log2 n), where
n is the number of vertices in the graph G.

2 Approximation Algorithm

Throughout this paper we assume that the graph G = (V,E) is simple connected
and undirected. In this section, we first construct a potential function and study
the properties of the potential function. Then we give a greedy algorithm for the
edge metric dimension of G.

Definition 2.1. Let Γ be a subset of V . We define the equivalence relation ≡Γ

for E as follows: for edges e1, e2 ∈ E,

e1 ≡Γ e2 ⇐⇒ d(e1, w) = d(e2, w) ∀w ∈ Γ.

Definition 2.2. Let Γ be a subset of V and {E1, E2, . . . , Ek} be the set of
equivalence classes of ≡Γ for E. We call the value H(Γ) = log2(

∏k
i=1 |Ei|!) the

entropy of Γ.

For any v ∈ V , let

ΔvH(Γ) := H(Γ) − H(Γ ∪ {v}).

It is direct to see that any equivalence class of ≡Γ is either an equivalent
class of ≡Γ∪{v} or a union of several equivalence classes of ≡Γ∪{v}.

Lemma 2.3. Let Γ be a subset of V and v ∈ V . Then ΔvH(Γ) = 0 if each
equivalence class of ≡Γ is one of ≡(Γ∪{v}); and ΔvH(Γ) > 0 otherwise.

Lemma 2.4. Let Γ be a subset of V . Then Γ is an edge metric generator of G
if and only if H(Γ) = 0.

Proof. Observe that each of the two assertions is equivalent with the assertion
that every equivalent class of ≡Γ is a singleton. The result follows. ��
Lemma 2.5. For any two sets Γ0 ⊆ Γ1 ⊆ V and any vertex v ∈ V \Γ1, we have

ΔvH(Γ0) ≥ ΔvH(Γ1). (1)
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Proof. If Γ0 = Γ1, then the lemma holds. If Γ0 ⊂ Γ1, we divide the proof into
two cases: case 1, the vertex v partitions each equivalence class of ≡Γ0 into at
most two equivalence classes; case 2, the vertex v partitions some equivalence
class of ≡Γ0 into at least three equivalence classes.

Case 1. Since ΔvH(Γ0) = H(Γ0) − H(Γ0 ∪ {v} = log2

| ∏
Γ0

|
| ∏

Γ0∪{v} | , it suffices
to show |∏Γ0

|
|∏Γ0∪{v} | ≥ |∏Γ1

|
|∏Γ1∪{v} | . (2)

Write S = Γ1 \ Γ0. Let {E1, E2, · · · , Ek} be the equivalence classes of ≡Γ0 ,
{A1, A2, · · · , An} the equivalence classes of ≡Γ0∪{v} and {B1, B2, · · · , Bt} the
equivalence classes of ≡Γ1 . By the comments above Lemma 2.3 and the assump-
tion, for each i, Ei = Ai1 ∪ Ai2 and Ei is a union of some Bi1 , · · · , Bit . With-
out loss of generality, assume t = 2. Let Fi = Ai1 ∩ Bi1 , Hi = Ai2 ∩ Bi1 ,
Ci = (Ei ∩ Ai1)\Fi, Di = (Ei ∩ Ai2)\Hi. Let |Fi| = fi, |Hi| = hi, |Ci| = ci,
|Di| = di. Then |Ei| = fi + hi + ci + di. Since

(
fi+ci

fi+hi+ci+di

) ≥ (
fi

hi+fi

)(
ci

ci+di

)
, we

have

k∏

i=0

(
fi + ci

fi + hi + ci + di

)

≥
k∏

i=0

(
fi

fi + hi

)(
ci

ci + di

)

,

i.e.

k∏

i=0

(
(fi + hi + ci + di)!
(fi + ci)!(hi + di)!

≥
k∏

i=0

(
(fi + hi)!(ci + di)!
(fi)!(hi)!(ci)!(di)!

).

Thus

|∏Γ0
|

|∏Γ0∪{v} | ≥ |∏Γ1
|

|∏Γ1∪{v} | .

Case 2. Assume that the vertex v partitions each Ej into kj equivalence
classes, where j = 1, 2, . . . ,m. Let k = maxj{kj}. Then by assumption, k ≥ 3.
For 1 ≤ j ≤ m, there exist the vertices x1, x2,. . . , xk such that x1 divides Ej

into Ej1 and Ej \ Ej1 , vertex x2 divides Ej \ Ej1 into Ej2 and Ej \ (Ej1 ∪ Ej2),
. . . , vertex xk divides Ej \ (Ej1 ∪ Ej2 ∪ . . . ∪ Ejkj−1) into Ejkj

and ∅. Then by
the argument in Case 1, we have

ΔvH(Γ0) =H(Γ0) − H(Γ0 ∪ {v})

=(H(Γ0) − H(Γ0 ∪ {x1}) + (H(Γ0 ∪ {x1}) − H(Γ0 ∪ {x1} ∪ {x2}))

+ . . . + (H(Γ0 ∪ {x1} ∪ {x2} + . . . ∪ {xk−1}) − H(Γ0 ∪ {x1} ∪ {x2} ∪ . . . ∪ {xk}))

≥(H(Γ1) − H(Γ1 ∪ {x1})) + (H(Γ1 ∪ {x1}) − H(Γ1 ∪ {x1} ∪ {x2}))

+ . . . + (H(Γ1 ∪ {x1} ∪ {x2} ∪ . . . ∪ {xk−1}) − H(Γ1 ∪ {x1} ∪ {x2} ∪ . . . ∪ {xk}))

=H(Γ1) − H(Γ1 ∪ {v})

=ΔvH(Γ1).

��
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Let R be the real number field. We define a function f : 2V → R by

f(Γ) = −H(Γ) + H(∅) for Γ ∈ 2V .

Lemma 2.6. The function f defined above is normalized, monotone increasing
and submodular.

Proof. It is easy to know that f(∅) = 0, that is to say, the function f is
normalized. By Lemma 2.3, f is monotone increasing. By Lemma 2.5 f is
submodular. ��

Based on the above lemmas, we give a greedy approximation algorithm for
the EMDP.

Algorithm 1
Input: a simple connected undirected graph G = (V,E).
Output: an edge metric generator of G.
1: Set Γ ← ∅.
2: while there exists a vertex v ∈ V \ Γ such that Δvf(Γ) > 0 do
3: select a vertex v ∈ V \ Γ, that maximizes Δvf(Γ).
4: Γ ← Γ ∪ {v}.
5: return Γg ← Γ

3 Theoretical Analysis

To obtain the ratio of Algorithm1. We first prove the following lemma.

Lemma 3.1. Let v1, v2, · · · , vk be the elements in Γg in the order of their selec-
tion into the set Γg. Denote Γ0 = ∅ and Γi = {v1, v2, · · · , vi}, for i = 1, · · · , k.
Then for i = 2, · · · , k, we have

Δvi
f(Γi−1) ≥ 1.

Proof. By [2, Lemma 6], it is sufficient to prove Δvi
f(Γi−1) > 0. Assume

Δvi
f(Γi−1) = 0 for some i (2 ≤ i ≤ k), for a contradiction. Then H(Γi−1 ∪

{vi}) = H(Γi−1). By the greedy strategy, the vertex vi can not be chosen in Γg.
A contradiction. ��
Theorem 3.2. Algorithm1 produces an approximate solution within a ratio 1+
ln n + ln(log2 n).
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Proof. Let Γ∗ denote an optimal solution to the edge metric dimension problem.
By Lemmas 2.6 and 3.1 and [9, Theorem 3.7], and since f(Γ∗) = f(V ) = log2(n!),
the approximation ratio of Algorithm1 is

1 + ln(
f(Γ∗)
|Γ∗| )

=1 + ln(
log2(n!)

|Γ∗| )

≤1 + ln(n log2 n) − ln(|Γ∗|)
≤1 + ln(log2 n) + lnn.

��
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