
Ding-Zhu Du · Lian Li ·
Xiaoming Sun · Jialin Zhang (Eds.)

LN
CS

 1
16

40

13th International Conference, AAIM 2019
Beijing, China, August 6–8, 2019
Proceedings

Algorithmic Aspects
in Information
and Management

Lecture Notes in Computer Science 11640

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Ding-Zhu Du • Lian Li •

Xiaoming Sun • Jialin Zhang (Eds.)

Algorithmic Aspects
in Information
and Management
13th International Conference, AAIM 2019
Beijing, China, August 6–8, 2019
Proceedings

123

Editors
Ding-Zhu Du
The University of Texas at Dallas
Richardson, TX, USA

Lian Li
Hefei University of Technology
Hefei, China

Xiaoming Sun
Institute of Computing Technology,
Chinese Academy of Sciences
Beijing, China

Jialin Zhang
Institute of Computing Technology,
Chinese Academy of Sciences
Beijing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-27194-7 ISBN 978-3-030-27195-4 (eBook)
https://doi.org/10.1007/978-3-030-27195-4

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-27195-4

Preface

The 13th International Conference on Algorithmic Aspects in Information and
Management (AAIM 2019), was held in Beijing, China, during August 6–8, 2019.
The AAIM conference series, which started in 2005 in Xi’an, China, aims to stimulate
the various fields for which algorithmics has become a crucial enabler, and to
strengthen the ties between the Eastern and Western research communities of algo-
rithmics and applications.

The topics cover most aspects of theoretical computer science and their applications.
Both theoretical and experimental/applied works of general algorithmic interest were
sought. Special considerations were given to algorithmic research that was motivated
by real-world applications. Experimental and applied papers were expected to show
convincingly the usefulness and efficiency of the target algorithms in practical settings.

We would like to thank the two eminent keynote speakers, Xiaotie Deng from
Peking University, and David Woodruff from Carnegie Mellon University, for their
contribution to the conference.

We would like to express our appreciation to all members of the Program Com-
mittee and the external referees whose efforts enabled us to achieve a high scientific
standard for the proceedings. We would like to thank all members of the Organizing
Committee for their assistance and contribution which attributed to the success of the
conference. We would like to thank Alfred Hofmann, Anna Kramer, and their col-
leagues at Springer for meticulously supporting us in the timely production of this
volume. Last but not least, our special thanks go to all the authors who submitted
papers and all the participants for their contributions to the success of this event.

June 2019 Ding-Zhu Du
Lian Li

Xiaoming Sun
Jialin Zhang

Organization

Program Committee

Zhipeng Cai Georgia State University, USA
Lichao Chen Google, USA
Yongxi Cheng Xi’an Jiaotong University, China
Ding-Zhu Du The University of Texas at Dallas, USA
Andras Farago The University of Texas at Dallas, USA
Xiaofeng Gao Shanghai Jiao Tong University, China
Donghyun Kim Kennesaw State University, USA
Lian Li Hefei University of Technology, China
Minming Li City University of Hong Kong, SAR China
Xiaoming Sun Institute of Computing Technology,

Chinese Academy of Sciences, China
Cong Tian Xidian University, China
Guochuan Zhang Zhejiang University, China
Jialin Zhang Institute of Computing Technology,

Chinese Academy of Sciences, China
Peng Zhang School of Computer Science and Technology,

Shandong University, China
Zhao Zhang Zhejiang Normal University, China

Additional Reviewers

Chen, Hua
Cheng, Yukun
Gan, Jinxiang
Hao, Jie
Khan, Fanid
Li, Minming
Liu, Bei
Mei, Lili
Shan, Xiaohan
Tao, Liangde

Wang, Changjun
Wu, Chenchen
Xu, Chenyang
Xu, Yicheng
Yao, Yuhao
Zhang, Jia
Zhang, Ruilong
Zhao, Yingchao
Zhu, Shenglong

Contents

One-Dimensional r-Gathering Under Uncertainty . 1
Shareef Ahmed, Shin-ichi Nakano, and Md. Saidur Rahman

Improved Algorithms for Ranking and Unranking (k, m)-Ary Trees. 16
Yu-Hsuan Chang, Ro-Yu Wu, Ruay-Shiung Chang, and Jou-Ming Chang

A Probabilistic Algorithm for Verification of Geometric Theorems 29
Mingyan Chen and Zhenbing Zeng

Approximating Closest Vector Problem in ‘1 Norm Revisited 42
Wenbin Chen and Jianer Chen

Low-Dimensional Vectors with Density Bounded by 5/6 Are
Pinwheel Schedulable . 51

Wei Ding

Constant-Factor Greedy Algorithms for the Asymmetric p-Center
Problem in Parameterized Complete Digraphs. 62

Wei Ding and Ke Qiu

Updating Matrix Polynomials . 72
Wei Ding and Ke Qiu

On the Structure of Discrete Metric Spaces Isometric to Circles 83
Andreas W. M. Dress, Hiroshi Maehara, Sabrina Xing Mei Pang,
and Zhenbing Zeng

A 2.57-Approximation Algorithm for Contig-Based Genomic
Scaffold Filling. 95

Qilong Feng, Xiangzhong Meng, Guanlan Tan, and Jianxin Wang

Profit Parameterizations of DOMINATING SET . 108
Henning Fernau and Ulrike Stege

Exponential Time Approximation Scheme for TSP 121
Zhixiang Chen, Qilong Feng, Bin Fu, Mugang Lin, and Jianxin Wang

Interaction-Aware Influence Maximization and Iterated Sandwich Method . . . 129
Chuangen Gao, Shuyang Gu, Ruiqi Yang, Jiguo Yu, Weili Wu,
and Dachuan Xu

On Approximation Algorithm for the Edge Metric Dimension Problem 142
Yufei Huang, Bo Hou, Wen Liu, Lidong Wu, Stephen Rainwater,
and Suogang Gao

The Seeding Algorithm for Spherical k-Means Clustering with Penalties 149
Sai Ji, Dachuan Xu, Longkun Guo, Min Li, and Dongmei Zhang

Approximation Algorithm for the Correlation Clustering Problem
with Non-uniform Hard Constrained Cluster Sizes. 159

Sai Ji, Dachuan Xu, Min Li, and Yishui Wang

Two-Way Currency Trading Algorithms in the Discrete Setting 169
Fei Li

Approximation Algorithms for the Minimum Power Partial
Cover Problem . 179

Menghong Li, Yingli Ran, and Zhao Zhang

On Approximations for Constructing Required Subgraphs Using Stock
Pieces of Fixed Length . 192

Junran Lichen, Jianping Li, Ko-Wei Lih, and Xingxing Yu

A Primal Dual Approximation Algorithm for the Multicut Problem
in Trees with Submodular Penalties . 203

Xiaofei Liu and Weidong Li

Algorithmic Aspect on the Minimum (Weighted) Doubly Resolving Set
Problem of Graphs . 212

Changhong Lu, Qingjie Ye, and Chengru Zhu

Trajectory Optimization of UAV for Efficient Data Collection
from Wireless Sensor Networks . 223

Chuanwen Luo, Lidong Wu, Wenping Chen, Yongcai Wang, Deying Li,
and Weili Wu

Locality Sensitive Algotrithms for Data Mule Routing Problem 236
Pablo L. A. Munhoz, Felipe P. do Carmo, Uéverton S. Souza,
Lúcia M. A. Drummond, Pedro Henrique González, Luiz S. Ochi,
and Philippe Michelon

Maximize a Monotone Function with a Generic Submodularity Ratio 249
Qingqin Nong, Tao Sun, Suning Gong, Qizhi Fang, Dingzhu Du,
and Xiaoyu Shao

Approximation Algorithm for Stochastic Prize-Collecting Steiner
Tree Problem . 261

Jian Sun, Haiyun Sheng, Yuefang Sun, and Xiaoyan Zhang

viii Contents

A General Framework for Path Convexities . 272
João Vinicius C. Thompson, Loana T. Nogueira, Fábio Protti,
Raquel S. F. Bravo, Mitre C. Dourado, and Uéverton S. Souza

An Approximation Algorithm for the Dynamic k-level Facility
Location Problem . 284

Limin Wang, Zhao Zhang, Dachuan Xu, and Xiaoyan Zhang

Weighted Two-Dimensional Finite Automata . 292
Qichao Wang, Yongming Li, and Wei Zhou

Improved Parameterized Algorithms for Mixed Domination 304
Mingyu Xiao and Zimo Sheng

New Results on the Zero-Visibility Cops and Robber Game 316
Yuan Xue, Boting Yang, and Sandra Zilles

A Two-Stage Constrained Submodular Maximization 329
Ruiqi Yang, Shuyang Gu, Chuangen Gao, Weili Wu, Hua Wang,
and Dachuan Xu

Local Search Approximation Algorithms for the Spherical
k-Means Problem . 341

Dongmei Zhang, Yukun Cheng, Min Li, Yishui Wang, and Dachuan Xu

Author Index . 353

Contents ix

One-Dimensional r-Gathering
Under Uncertainty

Shareef Ahmed1(B), Shin-ichi Nakano2, and Md. Saidur Rahman1

1 Graph Drawing and Information Visualization Laboratory,
Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
{shareefahmed,saidurrahman}@cse.buet.ac.bd

2 Gunma University, Kiryu 376-8515, Japan
nakano@cs.gunma-u.ac.jp

Abstract. Let C be a set of n customers and F be a set of m facilities.
An r-gathering of C is an assignment of each customer c ∈ C to a
facility f ∈ F such that each facility has zero or at least r customers.
The r-gathering problem asks to find an r-gathering that minimizes the
maximum distance between a customer and its facility. In this paper we
study the r-gathering problem when the customers and the facilities are
on a line, and each customer location is uncertain. We show that, the
r-gathering problem can be solved in O(nk + mn log n + (m + n log k +
n log n+nr

n
r) logmn) and O(mn logn+(n log n+m) logmn) time when

the customers and the facilities are on a line, and the customer locations
are given by piecewise uniform functions of at most k + 1 pieces and
“well-separated” uniform distribution functions, respectively.

Keywords: r-Gathering · Facility location problem

1 Introduction

The facility location problem and many of its variants are well studied [7]. In
this paper we study a relatively new variant of the facility location problem,
called the r-gathering problem [6].

Let C be a set of n customers and F be a set of m facilities, d(c, f) be the
distance between c ∈ C and f ∈ F . An r-gathering of C to F is an assignment
A of C to F such that each facility has at least r or zero customers assigned
to it. The cost of an r-gathering is maxc∈C{d(c,A(c))} which is the maximum
distance between a customer and its facility. The r-gathering problem asks to
find an assignment of C to F having the minimum cost [6]. This problem is also
known as the min-max r-gathering problem. The other version of the problem
is known as the min-sum r-gathering problem which asks to find an assignment
which minimizes

∑
c∈C d(c,A(c)) [8,11]. In this paper we consider the min-max

r-gathering problem and we use the term r-gathering problem to refer the min-
max version.
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 1–15, 2019.
https://doi.org/10.1007/978-3-030-27195-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_1

2 S. Ahmed et al.

Assume we wish to set up emergency shelters for residents C living on a
locality so that each shelter can accommodate at least r residents. We also wish
to locate the shelters so that evacuation time span can be minimized. A set F of
possible locations for shelters is also given. This scenario can be modeled by the
r-gathering problem. In this case, an r-gathering corresponds to an assignment
of residents to shelters so that each “open” shelter serves at least r residents and
the r-gathering problem finds the r-gathering minimizing the evacuation time.

For the r-gathering problem a 3-approximation algorithm is known and it is
proved that the problem cannot be approximated within a factor less than 3 for
r > 3 unless P = NP [6]. Recently, the problem is considered in a setting where
all the customers and facilities are lying on a line. An O((n+m) log(n+m)) time
algorithm [5], an O(n + m log2 r + m logm) time algorithm [9], an O(n + r2m)
time algorithm [12], and an O(n+m) time algorithm [13] are known when all the
customers and facilities are on a line. Ahmed et al. gave an O(n+m+ d2r2(d+
logm) + (r + 1)d2d(r + d)d) time algorithm for the r-gathering problem when
the customers and facilities are on a star [4].

In this paper, we consider the r-gathering problem when the customer and
the facilities are on a line, and the customer locations are uncertain. Study
of different problems under uncertain settings become much popular recently.
Uncertainty in data usually occurs because of noise in measured data, sam-
pling inaccuracy, limitation of resources, etc. Hence uncertainty is ubiquitous in
practice and managing the uncertain data has gained much attention [1–3,15].
Different variants of the facility location problem have also been investigated
under uncertain settings. Setting up a facility is costly and each facility is sup-
posed to serve for a long period of time. On the other hand existence, location
and demand of a client can change over time. Thus it is important to set up
facilities by keeping the uncertainty in mind. For the detailed state of the art
of uncertain facility location problem, we refer the survey of Snyder [14]. There
are two models for uncertainty: one is existential model [10,18] and the other is
locational model [1,2,16]. In the existential model, the existence of each point
is uncertain. Thus each point has a specific location and there is a probability
for the existence of each point. In the locational model each point is certain to
exist, but its position is uncertain and defined by a probability density function.
In this paper we consider the locational model of uncertainty. For customer loca-
tions, we consider two probability density functions: piecewise uniform function
(histogram) and “well-separated” uniform distribution function.

When the customer and facility locations are deterministic and on a line,
there is an optimal r-gathering where the customers assigned to each facility are
consecutive on the line [12]. However, when the customer locations are uncertain,
finding a suitable ordering of the customers is difficult. In this paper we give an
O(nk + mn log n + (m + n log k + n log n + nr

n
r) logmn) time algorithm for the

one-dimensional r-gathering problem when the customer locations are given by
piecewise uniform functions of at most k+1 pieces, and an O(mn log n+(n log n+
m) logmn) time algorithm for the one-dimensional r-gathering problem when the
customer locations are given by well-separated uniform distributions.

One-Dimensional r-Gathering Under Uncertainty 3

The rest of the paper is organized as follows. In Sect. 2, we define the
uncertain r-gathering problem and provide definitions of basic terminologies.
In Sect. 3, we give algorithms for uncertain r-gathering problem when customer
locations are specified by piecewise uniform functions and “well-separated” uni-
form distribution functions. Finally we conclude in Sect. 4.

2 Preliminaries

In this section we define the uncertain r-gathering problem and relevant termi-
nologies.

Let F = {f1, f2, · · · , fm} be a set of m facilities, and C = {C1, C2, · · · , Cn}
be a set of n customers where each Ci is a random variable. The probability
density function (PDF) associated with customer Ci is denoted by gi(x). The
expected distance between a facility fj and an uncertain customer Ci, denoted by
E[d(Ci, fj)], is

∫ ∞
−∞ d(x, fj)gi(x)dx. An r-gathering A of C to F is an assignment

A : C → F such that each facility serves zero or at least r customers. A facility
having one or more customers is called an open facility. A(C) denotes the facility
to which a customer C is assigned in an assignment A. The cost of a facility is
the maximum expected distance between the facility and its customers if the
facility is open, and zero otherwise. The cost of an r-gathering is the maximum
cost among all the facilities. The uncertain r-gathering problem asks to find an
r-gathering with minimum cost. Note that, the uncertain r-gathering problem
is NP-Hard, since it contains the deterministic version as a special case.

3 One-Dimensional Uncertain r-Gathering Problem

In this section we give two algorithms for the uncertain r-gathering problem on
a line.

Let C = {C1, C2, · · · , Cn} be a set of n uncertain customer on a horizontal
line where each customer Ci is specified by its PDF gi : IR → IR+ ∪ {0}, and
F = {f1, f2, · · · , fm} be a set of m facilities on the horizontal line. We consider
the facilities are ordered from left to right. An r-gathering of C to F is an
assignment A : C → F such that each facility serves zero or at least r customers.
The uncertain r-gathering problem asks to find an r-gathering such that the
maximum among the expected distances between a customer to the assigned
facility is minimum.

3.1 Histogram

In this section we give an algorithm for the uncertain r-gathering problem when
each customer location is specified by a piecewise uniform function, i.e., a his-
togram.

We consider the PDF of each customer Ci is defined as a piecewise uniform
function gi, i.e., a histogram. The PDF of each uncertain customer is inde-
pendent. We consider histogram model since it can be used to approximate

4 S. Ahmed et al.

Fig. 1. (a) Illustration of a histogram and (b) corresponding function of expected
distance

any PDF [1]. The histogram model is considered by Wang and Zhang [17] for
the uncertain k-center problem on a line. Each gi consists of at most k + 1
pieces where each piece is a uniform function. Each customer Ci has k + 2
points xi0, xi1, · · · , xi(k+1), where xi0 < xi1 < · · · < xi(k+1), and k + 1 val-
ues yi0, yi1, · · · , yik such that gi(x) = yij if xij ≤ x < xi(j+1). We consider
xi0 = −∞, xi(k+1) = ∞, y0 = 0, and yk = 0. Figure 1(a) illustrates a histogram
of 6 pieces. The expected distance E[d(p,Ci)] from a point p to Ci is defined as
follows.

E[d(p,Ci)] =
∫ ∞

−∞
gi(x)|x − p|dx

A function h : IR → IR is called a unimodal function if there is a point p such
that h(x) is monotonically decreasing in (−∞, p] and monotonically increasing
in [p,∞). Wang and Zhang gave the following lemma [17].

Lemma 1 ([17]). Let Ci be an uncertain point on a line which is specified by a
histogram of k+1 pieces. Then the function E[d(p,Ci)] for p ∈ IR is a unimodal
function consisting of a parabola in each interval [xij , xi(j+1)). Furthermore the
function E[d(p,Ci)] can be explicitly computed in O(k) time.

Outline of the Proof. Without loss of generality, assume that xit ≤ p ≤ xi(t+1).
Then the function E[d(p,Ci)] can be written as follows [17].

E[d(p, Ci)] = yitp
2
+

⎡
⎣

t−1∑
j=0

yij

(
xi(j+1) − xij

) −
k∑

j=t+1

yij

(
xi(j+1) − xij

) − yit(xit + xi(t+1))

⎤
⎦ p

+
1

2

⎡
⎣

k∑
j=t+1

yij

(
x
2
i(j+1) − x

2
ij

)
−

t−1∑
j=0

yij

(
x
2
i(j+1) − x

2
ij

)
+ yit(x

2
it + x

2
i(t+1))

⎤
⎦ (1)

Thus we can write E[d(p,Ci)] as ai1(t)p2 + ai2(t)p + ai3 where each of
ai1(t), ai2(t), ai3(t) depends on t satisfying xit ≤ p ≤ xi(t+1). Note that if yit = 0
then the function E[d(p,Ci)] is a straight line in the interval [xit, xi(t+1)) which
we consider as a special parabola. Figure 1(b) illustrates the E[d(p,Ci)] function
for the histogram in Fig. 1(a). We can compute the co-efficients ai1(j) for all j in
O(k) time. Moreover, the summation terms in ai2(j) and ai3(j) for all j can be

One-Dimensional r-Gathering Under Uncertainty 5

computed in O(k) time in total. Thus for all j, we can compute the ai2(j) and
ai3(j) in O(k) time. Hence the function E[d(p,Ci)] can be computed explicitly
in O(k) time. ��

We now give the following lemma.

Lemma 2. Let Ci be an uncertain point on a line which is specified by a his-
togram of k + 1 pieces, and F = {f1, f2, · · · , fm} be a set of m facilities on
the line. We can compute the expected distances between all facilities and the
uncertain point in O(m + k) time. Furthermore the expected distances between
the facilities and the uncertain point can be sorted in O(m) time.

Proof. We first precompute the co-efficients ai1(j), ai2(j), ai3(j) of function
E[d(p,Ci)] for all j in O(k) time by Lemma 1. With the precomputed function
E[d(p,Ci)], the expected distance between the uncertain point and a facility fu
can be computed in O(log(k)) time using binary search to find the [xit, xi(t+1))
where fu is located. Thus the expected distance between all facilities and the
uncertain point can be computed in O(m log k) time. However, we can improve
the running time to O(m + k) performing a plane sweep from left to right.
We take the facilities from left to right, determine the corresponding interval
[xij , xi(j+1)), and compute the expected distance. Since both the facilities and
the xi1, xi2, · · · , xik are ordered from left to right, the search for the interval in
which fu is located can start from the interval in which fu−1 is located. Hence
each xij will be considered once. Thus the total running time is O(m + k). We
now show that the sorted list of the expected distances between the facilities and
the uncertain point can be constructed in O(m + k) time. Since E[d(p,Ci)] is a
unimodal function, there is a facility fu such that E[d(fv−1, Ci)] ≥ E[d(fv, Ci)]
for any 1 < v ≤ u, and E[d(fv, Ci)] ≤ E[d(fv+1, Ci)] for any u ≤ v < m. Thus
we have a descending list of expected distances for f1, f2, · · · , fu and ascending
list of expected distances for fu+1, fu+2, · · · , fm. We can merge these two lists
into an ascending list of expected distances in O(m) time. ��
Corollary 1. Let C = {C1, C2, · · · , Cn} be set of n uncertain customers on
a line each of which is specified by a histogram of k + 1 pieces, and F =
{f1, f2, · · · , fm} be a set of m facilities on the line. The expected distances
between all pair of uncertain customers and facilities can be computed and sorted
in O(nk + mn log n) time.

Proof. By Lemma 2, we can compute n sorted list of expected distances between
customers and facilities in O(nk + mn) time. The n sorted lists can be merged
into a single list using min-heap in O(mn log n) time. ��

We first consider the decision version of the uncertain r-gathering problem
on a line. Given a set of uncertain customers C, a set of facilities F on a line,
and a number b, the decision uncertain r-gathering problem asks to determine
whether there is an r-gathering A of C to F such that E[d(C,A(C))] ≤ b for
each C ∈ C. The following lemma is known [17].

6 S. Ahmed et al.

Lemma 3 ([17]). Let C be an uncertain point on a line which is specified by
a histogram of k + 1 pieces, and b is a number. Then the points p for which
E[d(C, p)] ≤ b holds form an interval on the line.

We call the interval which admits E[d(C, p)] ≤ b for customer C a (C, b)-
interval and denote the interval by [sb(C), tb(C)]. Furthermore in any r-gathering
A with cost at most b, A(C) is in [sb(C), tb(C)]. Thus to find whether there is an
r-gathering satisfying E[d(C, p)] ≤ b for each customer C, it is sufficient to solve
the following problem. Given a set of facilities F on a line and a set of customers
C where each customer C ∈ C has an interval [s(C), t(C)] on the line, the interval
r-gathering problem asks to determine whether there is an r-gathering A such
that each facility f ∈ F serves zero or at least r customers and for each customer
C ∈ C, s(C) ≤ A(C) ≤ t(C) holds.

We now give an algorithm for the interval r-gathering problem. Let F =
{f1, f2, · · · , fm} be a set of facilities and C = {C1, C2, · · · , Cn} be a set of cus-
tomers on a line where each customer Ci has an interval Ii = [s(Ci), t(Ci)]. An
interval Ii is called the leftmost interval if for each Cj
= Ci, t(Ci) ≤ t(Cj) holds,
and the customer Ci is called the leftmost customer. A facility fu is called the
preceding facility of Ci if s(Ci) ≤ fu ≤ t(Ci) and there is no facility fv such that
fu < fv ≤ t(Ci). Similarly a facility fu is called the following facility of Ci if
s(Ci) ≤ fu ≤ t(Ci) and there is no facility fv such that s(Ci) ≤ fv < fu. We
call a customer Cj a right neighbor of Ci if t(Cj) ≥ t(Ci) and s(Cj) ≤ t(Ci).

Let F = {f1, f2, · · · , fm} be a set of facilities and C = {C1, C2, · · · , Cn} be
a set of customers on a line where each customer Ci has an interval Ii. Let Ci

be the leftmost customer, fu be the preceding facility of Ci, and Cu be the set
of customers containing fu in their intervals. We now have the following two
lemmas.

Lemma 4. If there is an interval r-gathering of C to F , then there is an inter-
val r-gathering with the leftmost open facility fu. Furthermore, the customers
assigned to fu have consecutive right end-points in Cu including Ci.

Proof. We first prove that there is an interval r-gathering with the leftmost
open facility fu. Assume for a contradiction that there is no interval r-gathering
with the leftmost open facility fu. Let A be an interval r-gathering with the
leftmost open facility fv
= fu. We can observe that fv ≤ fu, since in each
interval r-gathering Ci is assigned to a facility within the interval Ii and fu is
the preceding facility of Ci. Let C′

v be the set of customers assigned to fv in A.
For any customer Cj in C′

v, we have s(Cj) ≤ fv ≤ fu ≤ t(Ci) ≤ t(Cj), since Ii is
the leftmost interval. We now derive a new interval r-gathering by reassigning
the customers C′

v to fu. A contradiction.
We now prove that the customers assigned to fu have consecutive right end-

points in Cu. We call a pair Cj , Ck ∈ Cu a reverse pair if t(Cj) < t(Ck), Ck

assigned to fu, and Cj assigned to fv > fu. Assume for a contradiction that there
is no interval r-gathering where the customers assigned to fu have consecutive
right end-points in Cu. Let A′ be an interval r-gathering with minimum number
of reverse pairs but the number is not zero. Let Cj , Ck be a reverse pair in A′

One-Dimensional r-Gathering Under Uncertainty 7

where t(Cj) < t(Ck), and Cj is assigned to facility fw, and Ck is assigned to fu.
Since t(Ck) > t(Cj) and fw ≥ fu, we get s(Ck) ≤ fw ≤ t(Ck). We now derive a
new interval r-gathering with less reverse pairs by reassigning Cj to fu and Ck

to fw, a contradiction. ��
Lemma 5. Let Cj be the leftmost customer in C \ Cu, and C′

u ⊆ Cu be the
customers such that for each C ∈ C′

u, t(C) < t(Cj). If there is an interval
r-gathering, then there is an interval r-gathering satisfying one of the following.

(a) If |C′
u| < r, then the customers assigned to fu are the r leftmost customers

in Cu.
(b) If |C′

u| ≥ r, then max{|C′
u| − r + 1, r} leftmost customers of C′

u are assigned
to fu (possibly with more customers).

Proof. (a) By Lemma 4, the customers assigned to fu are consecutive in Cu.
Thus the leftmost r customers Cl

u in Cu are assigned to fu. We now prove that
there is an interval r-gathering where no customer in Cu \ Cl

u is assigned to fu.
Assume for a contradiction that in every interval r-gathering there are some
customers in Cu \ Cl

u which are assigned to fu. Let A be an interval r-gathering
where the number of customers in Cu\Cl

u assigned to fu is minimum, and Ck be a
customer in Cu \Cl

u which is assigned to fu. Since |C′
u| < r, we get t(Ck) > t(Cj).

Let Cj is assigned to fv in A. We now derive a new r-gathering by reassigning
Ck to fv, a contradiction.
(b) We first consider r ≤ |C′

u| < 2r. In this case max{|C′
u| − r + 1, r} = r. Hence

by Lemma 4 the leftmost r customers in Cu are assigned to fu.
We now consider |C′

u| ≥ 2r. In this case, max{|C′
u|−r+1, r} = |C′

u|−r+1. Let
C′′
u be the leftmost |C′

u| − r+ 1 customers in C′
u. Assume for a contradiction that

there is no interval r-gathering where C′′
u are assigned to fu. Let A′ be an interval

r-gathering with maximum number of customers Du ⊂ C′′
u assigned to fu. Let

Cs ∈ C′′
u be the customer with smallest t(Cs) which is not assigned to fu. Let Cs

is assigned to fv ≥ fu. By Lemma 4, any customer Ct ∈ C′′
u with t(Ct) ≥ t(Cs)

is not assigned to fu. We first claim that the number of customers assigned to
fv is exactly r. Otherwise we can reassign Cs to fu and thus contradicting our
assumption. Let C′

v be the customers assigned to fv. We now claim that there is
an interval r-gathering where C′

v consists of r customers having consecutive right
end-points in Cu. Assume otherwise for a contradiction. Let A′′ be an interval r-
gathering with minimum number of reverse pairs where a reverse pair is a pair of
customer Cx, Cy with t(Cx) ≤ t(Cy), Cy assigned to fv, Cx assigned to fw > fv.
Since t(Cx) ≤ t(Cy) and fv ≤ fw, we get s(Cy) ≤ fw ≤ t(Cy). We now derive a
new interval r-gathering by reassigning Cx to fv and Cy to fw, a contradiction.
Now since |Du| < |C′

u| − r + 1, we get |C′
u \ Du| ≥ r. Thus C′

v ⊂ C′
u. We now

derive a new interval r-gathering by assigning C′
v to fu. A contradiction. ��

We now give an algorithm Interval-r-gather for the interval r-gathering
problem.

We now have the following theorem.

8 S. Ahmed et al.

Algorithm 1. Interval-r-gather(C, F)
Input : A set C of customers each having an interval and a set F of facilities

on a line

Output: An interval r-gathering if exists

if |C| < r or F = ∅ then

return ∅;

endif

Ci ← leftmost customer in C;

fu ← preceding facility of C;

Cu ← the set of customers containing fu in their intervals;

Cj ← leftmost customer in C \ Cu;

C′
u ← the set of customers in Cu having smaller right end-point than t(Cj);

F ′ ← the set of facilities right to f ;

if |Cu| < r then

return ∅;

endif

if |C′
u| < r then
Du ← the set of r leftmost customers in Cu;/* Lemma 5(a) */

A ← Assignment of Du to fu;

Ans ← Interval-r-gather(C \ Du, F
′);

if Ans �= ∅ then

return Ans ∪ A;

endif

return ∅;

endif

Du ← the set of max{r, |C′
u|−r+1} leftmost customers in Cu; /* Lemma 5(b) */

A ← Assignment of Du to fu;

C′′
u ← C′

u \ Du;

while C′′
u is not empty do

Ans ← Interval-r-gather(C \ Du, F
′);

if Ans �= ∅ then

return Ans ∪ A;

endif

Ck ← leftmost customer in C′′
u ; /* (possibly with more customers) */

A′ ← Assignment of Ck to fu;

A ← A ∪ A′;
Du ← Du ∪ {Ck};

C′′
u ← C′′

u \ {Ck};

end

return ∅ ;

One-Dimensional r-Gathering Under Uncertainty 9

Theorem 1. The algorithm Interval-r-gather decides whether there is an
interval r-gathering of C to F , and constructs one if exists in O(m+n log n+nr

n
r)

time.

Proof. The correctness of Algorithm Interval-r-gather is immediate from Lem-
mas 4 and 5.

We now estimate the running time of the algorithm. We can sort the cus-
tomers based on their right end-points in O(n log n) time. For each customer we
can precompute the preceding facility fu in O(n+m) time. For each facility fu
we can precompute the sets of customers Cu containing each facility and the
leftmost customer Cj having left end-point on right of fu in O(n + m) time.
In each call to Interval-r-gather, we need O(|Cu|) time and at most r recursive
calls to Interval-r-gather. Let T (n) be the running time of the algorithm for n
customers. We have T (n) ≤ O(|Cu|) +

∑r
i=1 T (n − r + 1) ≤ O(nr

n
r). Thus the

running time of the algorithm is O(m + n log n + nr
n
r). ��

We now have the following theorem.

Theorem 2. Let C = {C1, C2, · · · , Cn} be a set of uncertain customers on a
line each of which is specified by a piece-wise uniform function consisting of
k + 1 pieces, and F = {f1, f2, · · · , fm} be a set of m facilities on the line. Then
the optimal r-gathering can be constructed in O(nk + mn log n + (m + n log k +
n log n + nr

n
r) logmn) time.

Proof. We give outline of an algorithm to compute optimal r-gathering. We
first compute the E[d(p,Ci)] function for each Ci ∈ C. This takes O(nk) time
in total. By Corollary 1, we compute the sorted list of all expected distances
between customers and facilities in O(nk +mn log n) time. We find the optimal
r-gathering by binary search, using the O(m + n log n + nr

n
r) time algorithm

for interval r-gathering logmn times. For each r-interval gathering problem, we
compute the (Ci, b)-intervals in O(n log k) time. Thus finding optimal r-gathering
by binary search requires O(nk+mn log n+(m+n log k+n log n+nr

n
r) logmn)

time. ��

3.2 Uniform Distribution

In this section we give an algorithm for the uncertain r-gathering problem when
each customer location is specified by a well-separated uniform distribution.

In the uniform distribution model, location of each customer Ci is specified
by a function gi : IR → IR+ ∪ {0} where gi(p) = 1/(ti − si) if si ≤ p ≤ ti
and gi(p) = 0 otherwise. We denote the uniform distribution between [si, ti] by
U(si, ti). The customer Ci having a uniform distribution U(si, ti) is denoted by
Ci ∼ U(si, ti). Figure 2(a) illustrates a uniform distribution where si = 0 and
ti = 3. The range of U(si, ti), denoted by li, is the value of ti − si, and the mean
of U(si, ti), denoted by µi, is the value of si+ti

2 . The uniform distribution model
is a special case of the histogram model described in Sect. 3.1. We now have the
following lemma.

10 S. Ahmed et al.

-2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a)

-2 -1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(b)

Fig. 2. (a) Illustration of a uniform distribution and (b) corresponding function of
expected distance

Lemma 6. Let C ∼ U(s, t) be an uncertain point. Then the function E[d(p,C)]
consists of a parabola in the interval [s, t] and two straight lines of slope +1 and
-1 in interval (t,∞) and (−∞, s), respectively. Furthermore the minimum value
of E[d(p,C)] is l

4 and the value of E[d(p,C)] at s, t is l
2 .

Proof. We use the Eq. 1 to compute the function E[d(p,C)].

E[d(p,C)] =

⎧
⎪⎨

⎪⎩

µ − p if p < s
1
l (p − µ)2 + l

4 if s ≤ p ≤ t

−µ + p if p > t

(2)

At p = s we get E[d(s, C)] = 1
t−s

(
s − s+t

2

)2 + t−s
4 = t−s

2 = l
2 . Similarly,

E[d(t, C)] = l
2 . Now for p < s and p > t, E[d(p,C)] ≥ t−s

2 . The minimum value
of the parabola 1

t−s

(
p − s+t

2

)2 + t−s
4 is l

4 at p = s+t
2 . ��

We have the following lemma.

Lemma 7. Let C ∼ U(s, t) be an uncertain point and b be a number. Then the
(C, b)-interval can be computed in O(1) time.

Proof. To find the (C, b)-interval, we first compute the inverse of the Eq. 2. For
E[d(p,C)] = b > l

2 , we have p < s or p > t. Thus we get, p = µ ± b. For
l
4 ≤ E[d(p,C)] = b ≤ l

2 , we have s ≤ p ≤ t. Thus we get p = µ ±
√

l(b − l
4).

Finally there is no p for which E[d(p,C)] < l
4 . Hence the (C, b)-interval for b < l

4
is empty. Thus the (C, b)-interval I can be written as following.

I =

⎧
⎪⎪⎨

⎪⎪⎩

[µ − b, µ + b] if b > l
2

[µ −
√

l(b − l
4), µ +

√
l(b − l

4)] if l
4 ≤ b ≤ l

2

∅ if b < l
4

(3)

By Eq. 3 we can compute (C, b)-interval in O(1) time. ��

One-Dimensional r-Gathering Under Uncertainty 11

Let Ci ∼ U(si, ti), Cj ∼ U(sj , tj) be two uncertain points. Let lmax =
max{li, lj} and lmin = min{li, lj}. We call Ci, Cj well-separated if none of
the intervals [si, ti] and [sj , tj] is contained within the other and |µi − µj | ≥
1
2

√
lmin(lmax − lmin).

Lemma 8. Let Ci ∼ U(si, ti), Cj ∼ U(sj , tj) be two uncertain well-separated
points and b be a number. Let Ii, Ij be the (Ci, b)-interval and (Cj , b)-interval
respectively. Then none of Ii and Ij is contained in the other.

Proof. Omitted. ��
If the customer locations are specified by well-separated uniform distribu-

tions, we can solve the decision version of uncertain r-gathering problem by
dynamic programming as follows. A subproblem asks to determine whether there
is an r-gathering with cost at most b for the set of customers C1, C2, · · · , Ci. Thus
we have at most n distinct subproblems, and to solve a subproblem we need to
check n smaller subproblems, so we can design an O(m + n2) time algorithm.

We can improve the running time as follows. A subproblem P (i) asks to
find a set of customers Ci and an interval r-gathering A of customers Ci ⊆ C to
Fi = {f1, f2, · · · , fi} such that (1) Ci contains every customer Ci with t(Ci) ≤
fi (possibly with more customers), (2) fi serves at least r customers, and (3)
maxC∈Ci

{t(C)} is minimum. Let Cz(i) be the customer with maxC∈Ci
{t(C)}. We

can observe that there is a proper interval r-gathering of C to F if and only if
some P (i) with fi ≥ s(Cn) has a solution.

Lemma 9. If P (i) has a solution, then there is an interval r-gathering where
customers assigned to each open facility have consecutive right end-points.

Proof. Omitted. ��
We now have the following lemma.

Lemma 10. If P (i) and P (j) have solutions and i < j, then t(Cz(i)) ≤ t(Cz(j)).

Proof. For a contradiction assume t(Cz(i)) > t(Cz(j)). Let Aj be an interval
r-gathering corresponding to P (j). Since all the intervals are proper, we have
s(Cz(i)) > s(Cz(j)), and s(Cz(j)) ≤ fi. Let C′

j be the set of customers assigned to
any facility between fi to fj (including fi, fj) in Aj . For any customer Ck ∈ C′

j ,
we have s(Ck) ≤ fi and t(Ck) ≥ fi. We now derive a new interval r-gathering
A′

j by reassigning the leftmost r customers C′
j to fi. Clearly, maxC∈C′

j
{t(C)} <

t(Cz(i)) and thus A′
j is a solution of P (i), a contradiction. ��

Using Lemmas 9 and 10, we can determine whether P (i) has solution or not.
We have two cases. If fi ≤ t(C1), then P (i) may have a solution with exactly one
open facility fi, and the solution exists if and only if fi is contained within at
least r intervals. Otherwise fi > t(C1), then P (i) may have a solution with two
or more open facilities. In this case P (i) has a solution if and only if for some
j < i P (j) has a solution, there is no customer C with fj < s(C) ≤ t(C) < fi,

12 S. Ahmed et al.

and there are at least r customers in C \ Cj containing fi. Intuitively fj is a
possible second rightmost open facility in a solution of P (i).

We fix the P (j) with minimum j, if P (i) has a solution, and we say fj the
mate of fi, and denoted as mate(fi). We have the following lemma.

Lemma 11. If P (i) and P (i + 1) have solutions, then mate(fi) ≤ mate(fi+1).

Proof. For a contradiction assume mate(fi) > mate(fi+1). Let fj = mate(fi)
and fj′ = mate(fi+1). By Lemma 10 we have t(Cz(j)) ≥ t(Cz(j′)). Since fj′ is
mate of fi+1, there is no customer C such that fj′ < s(C) ≤ t(C) < fi+1. If
t(Cz(j)) < fi, then fj′ is also a mate of fj , a contradiction. Now if t(Cz(j)) ≥ fj ,
then fj′ is a mate of fj since t(Cz(j′)) ≤ t(Cz(j)), a contradiction. ��

We now have the following lemma.

Lemma 12. Let fi be a facility with fi > t(C1) and for some j < i, P (j) has a
solution, and C \ Cj contains no customer C with fj < s(C) and t(C) < fi. Fix
the P (j) with minimum j. Then the following holds.

(a) If C \ Cj has less than r customers containing fi, then no facility fj′ with
fj′ ≥ fj is a mate of fi, and P (i) has no solution.

(b) If P (i + 1) has a solution, then mate(fi+1) ≥ fj.

Proof. (a) By Lemma 10 for any facility fj′ ≥ fj , if P (j′) has a solution, then
t(Cz(j′)) ≥ t(Cz(j)). Thus the number of customers in C \ Cj′ containing fi in
their interval is less than r.
(b) Assume for a contradiction that mate(fi+1) ≤ fj . Let fi′ = mate(fi+1). Thus
there is no customer C with fi′ < s(C) and t(C) < fi+1. Since fi′ ≤ fi ≤ fi+1,
there is no customer C such that fi′ < s(C) and t(C) < fi. Hence, fi′ is the
leftmost facility such that P (i′) has a solution and there is no customer C with
fi′ < s(C) and t(C) < fi, a contradiction. ��

By Lemmas 11 and 12, we observe that we can search for mate(fi+1) from
where the search for mate of mate(fi) ends. We now give the following Algorithm
called Proper-interval-r-gather.

If the intervals are sorted according to their right end-points and the facilities
are ordered from left to right, then we can preprocess the set of customers
containing each facility in linear time. Each customer and each facility have
to be processed for a constant number of times. Hence the algorithm runs in
O(n + m) time. We thus have the following theorem.

Theorem 3. Let F = {f1, f2, · · · , fm} be a set of facilities on a line and C =
{C1, C2, · · · , Cn} be a set of customers where each customer Ci has an interval
Ii = [s(Ci), t(Ci)] and no interval is contained within any other interval. The
algorithm Proper-interval-r-gather decides whether there is an interval r-
gathering of C to F , and constructs one if exists in O(n + m) time.

One-Dimensional r-Gathering Under Uncertainty 13

Algorithm 2. Proper-interval-r-gather(C, F)
Input : A set C of customers each having an interval where no interval is

contained within other, a set of F of facilities on the line
Output: An interval r-gathering if exists
if |C| < r or F = ∅ then

return ∅;
endif
i ← 1;
/* One open facility */
while fi ≤ t(C1) do

if fi ≥ s(Cr) then
z(i) ← r;

endif
i ← i + 1;

end
j ← 1;
/* Two or more open facilities */
while i ≤ m do

Ci ← {C1, C2, · · · , Cz(i)};
while j ≤ i do

if C \ Cj has at least r customers containing fi and C \ Cj has no
customer C with fj < s(C) and t(C) < fi then

z(i) ← index of the r-th customer in C \ Cj containing fi; /* P (i)
has a solution */
mate(i) ← j;
break;

endif
if There is no customer between fj and fi, and C \ Cj has less than r
customers containing fi then

break; /* P (i) has no solution, Lemma 12(a) */
endif
j ← j + 1;

end
i ← i + 1;

end
if Some P (i) with fi ≥ s(Cn) has a solution then

Compute an interval r-gathering A of C to F ;
return A;

endif
return ∅;

We now give outline of the algorithm to solve uncertain r-gathering problem
on a line where the customer locations are specified by well-separated uniform
distributions. Computing the function E[d(p,Ci)] for all the customers takes
O(n) time. We can compute the expected distances between customer Ci and
all the facilities in O(m) time. Since the function E[d(p,Ci)] is unimodal, the
expected distances between Ci and all the facilities can be sorted in O(m) time.

14 S. Ahmed et al.

Computing the expected distances between each pair of customers and facilities
takes O(mn) time and we can merge the of n sorted list of expected distances
in O(mn log n) time using heap. We do binary search on the ordered list of
expected distances to find the optimal r-gathering. Given b we can compute the
(C, b)-intervals for all customers in O(n) time. The (C, b)-intervals can be sorted
in O(n log n) time. Solving each decision instance takes O(m+n) time. Thus to
find the optimal solution by binary search we need to solve the decision instances
logmn times, so O((n log n+m+n) logmn) in total. Hence the running time is
O(mn log n + (n log n + m) logmn). Thus we have the following theorem.

Theorem 4. Let F = {f1, f2, · · · , fm} be a set of facilities on a line and
C = {C1, C2, · · · , Cn} be a set of customers where each customer Ci has a well-
separated uniform distribution. Then an optimal r-gathering of C to F can be
constructed in O(mn log n + (n log n + m) logmn) time.

4 Conclusion

In this paper we presented an O(nk + mn log n + (m + n log k + n log n +
nr

n
r) logmn) time algorithm for the one-dimensional uncertain r-gathering prob-

lem when the customers are given by piecewise uniform functions. We also gave
an O(mn log n + (n log n + m) logmn) time algorithm when the customers are
given by well-separated uniform distributions.

References

1. Agarwal, P.K., Cheng, S., Tao, Y., Yi, K.: Indexing uncertain data. In: Proceedings
of the Twenty-Eighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2009, pp. 137–146 (2009)

2. Agarwal, P.K., Efrat, A., Sankararaman, S., Zhang, W.: Nearest-neighbor searching
under uncertainty I. Discrete Comput. Geom. 58(3), 705–745 (2017)

3. Agarwal, P.K., Har-Peled, S., Suri, S., Yildiz, H., Zhang, W.: Convex hulls under
uncertainty. Algorithmica 79(2), 340–367 (2017)

4. Ahmed, S., Nakano, S., Rahman, M.S.: r -gatherings on a star. In: Das, G.K.,
Mandal, P.S., Mukhopadhyaya, K., Nakano, S. (eds.) WALCOM 2019. LNCS,
vol. 11355, pp. 31–42. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
10564-8 3

5. Akagi, T., Nakano, S.: On r-gatherings on the line. In: Wang, J., Yap, C. (eds.)
FAW 2015. LNCS, vol. 9130, pp. 25–32. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-19647-3 3

6. Armon, A.: On min-max r-gatherings. Theoret. Comput. Sci. 412(7), 573–582
(2011)

7. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory.
Springer, New York (2004)

8. Guha, S., Meyerson, A., Munagala, K.: Hierarchical placement and network design
problems. In: Proceedings 41st Annual Symposium on Foundations of Computer
Science, pp. 603–612 (2000)

https://doi.org/10.1007/978-3-030-10564-8_3
https://doi.org/10.1007/978-3-030-10564-8_3
https://doi.org/10.1007/978-3-319-19647-3_3
https://doi.org/10.1007/978-3-319-19647-3_3

One-Dimensional r-Gathering Under Uncertainty 15

9. Han, Y., Nakano, S.: On r-gatherings on the line. In: Proceedings of FCS 2016,
pp. 99–104 (2016)

10. Kamousi, P., Chan, T.M., Suri, S.: Closest pair and the post office problem for
stochastic points. Comput. Geom. 47(2), 214–223 (2014)

11. Karget, D.R., Minkoff, M.: Building steiner trees with incomplete global knowledge.
In: Proceedings 41st Annual Symposium on Foundations of Computer Science, pp.
613–623 (2000)

12. Nakano, S.: A simple algorithm for r-gatherings on the line. In: Rahman, M.S.,
Sung, W.-K., Uehara, R. (eds.) WALCOM 2018. LNCS, vol. 10755, pp. 1–7.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75172-6 1

13. Sarker, A., Sung, W., Rahman, M.S.: A linear time algorithm for the r -gathering
problem on the line (extended abstract). In: Das, G.K., Mandal, P.S., Mukhopad-
hyaya, K., Nakano, S. (eds.) WALCOM 2019. LNCS, vol. 11355, pp. 56–66.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10564-8 5

14. Snyder, L.V.: Facility location under uncertainty: a review. IIE Trans. 38(7), 547–
564 (2006)

15. Suri, S., Verbeek, K.: On the most likely voronoi diagram and nearest neighbor
searching. Int. J. Comput. Geom. Appl. 26(3–4), 151–166 (2016)

16. Tao, Y., Xiao, X., Cheng, R.: Range search on multidimensional uncertain data.
ACM Trans. Database Syst. 32(3), 15 (2007)

17. Wang, H., Zhang, J.: One-dimensional k-center on uncertain data. Theoret. Com-
put. Sci. 602, 114–124 (2015)

18. Yiu, M.L., Mamoulis, N., Dai, X., Tao, Y., Vaitis, M.: Efficient evaluation of prob-
abilistic advanced spatial queries on existentially uncertain data. IEEE Trans.
Knowl. Data Eng. 21(1), 108–122 (2009)

https://doi.org/10.1007/978-3-319-75172-6_1
https://doi.org/10.1007/978-3-030-10564-8_5

Improved Algorithms for Ranking
and Unranking (k,m)-Ary Trees

Yu-Hsuan Chang1, Ro-Yu Wu2, Ruay-Shiung Chang1,
and Jou-Ming Chang1(B)

1 Institute of Information and Decision Sciences,
National Taipei University of Business, Taipei, Taiwan

{10766004,rschang,spade}@ntub.edu.tw
2 Department of Industrial Management,

Lunghwa University of Science and Technology, Taoyuan, Taiwan
eric@mail.lhu.edu.tw

Abstract. Du and Liu (2007) introduced (k,m)-ary trees as a general-
ization of k-ary trees. In a (k,m)-ary tree, every node on even level has
degree k (i.e., has k children), and every node on odd level has degree m
(which is called a crucial node) or is a leaf. In particular, a (k,m)-ary tree
of order n has exactly n crucial nodes. Recently, Amani and Nowzari-
Dalini (2019) presented a generation algorithm to produce all (k,m)-ary
trees of order n in B-order using Zaks’ encoding, and show that the gener-
ated ordering of this encoding results in a reverse-lexicographical order-
ing. They also proposed the corresponding ranking and unranking algo-
rithms for (k,m)-ary trees according to such a generated ordering. These
algorithms take O(kmn2) time and space for building a precomputed
table in which (k,m)-Catalan numbers (i.e., a kind of generalized Cata-
lan numbers) are stored in advance. In this paper, we revisit the ranking
and unranking problems. With the help of an encoding scheme called
“right-distance” introduced by Wu et al. (2011), we propose new rank-
ing and unranking algorithms for (k,m)-ary trees of order n in B-order
using Zaks’ encoding. We show that both algorithms can be improved in
O(kmn) time and O(n) space without building the precomputed table.

Keywords: (k,m)-ary trees · Ranking/Unranking algorithms ·
Zaks’ sequences · RD-sequences ·
Lexicographic/Reverse-lexicographic order · Amortized cost

1 Introduction

In computer science, many practical applications dealing with a huge amount
of combinatorial objects require the help of generation, ranking and unranking
algorithms to accomplish. In general, combinatorial objects in a certain family
are encoded by using integer sequences so that all objects (or their corresponding
sequences) are generated in a particular order. For a specific order of objects, a
ranking algorithm is a function that determines the rank of a given object in the
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 16–28, 2019.
https://doi.org/10.1007/978-3-030-27195-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_2

Improved Algorithms for Ranking and Unranking (k,m)-Ary Trees 17

generated list, and an unranking algorithm is one that produces the object (or
sequence) corresponding to a given rank. Efficient ranking and unranking are
important and useful for storing and retrieving elements in a class of combina-
torial objects.

Trees are one of the most fundamental combinatorial objects and the problem
of generating trees and related works have been widely studied in the literature.
For example, many generation, ranking and unranking algorithms have been
developed for binary trees [8,12,15], k-ary trees [14,17,18], AVL trees [7], non-
regular trees [13,16], trees with n nodes and m leaves [9,10], ordered trees with
bounded degree [4], neuronal trees [3,5], Fibonacci-isomorphic trees [1], and
(k,m)-ary trees [2].

As to the (k,m)-ary trees, the family of trees is first introduced by Du and
Liu [6] when they studied hook length polynomials for plane trees. A (k,m)-ary
tree is a generalization of k-ary tree such that the degree of each internal node
is determined based on the level of the node resided (formally defined later in
Sect. 2.2). After that, it seems to be no literature addressing on the discussion of
(k,m)-ary trees until recently, Amani and Nowzari-Dalini [2] presented a gener-
ation algorithm to produce all (k,m)-ary trees of order n in B-order (see Defini-
tion 3). To design this generation algorithm, they adopted Z-sequences defined by
Zaks [18] to encode the trees. As a result, all Z-sequences corresponding to trees
are generated in reverse-lexicographical ordering. In particular, each sequence
can be generated in a constant amortized time and O(n) time complexity in the
worst case. Moreover, based on this generated ordering, they proposed ranking
and unranking algorithms. The main technique of these two algorithms is to use
a pre-computation that builds a table for storing a kind of generalized Cata-
lan numbers called (k,m)-Catalan numbers in advance. The pre-computation
requires a total of O(kmn2) time and space. Then, each ranking and unranking
algorithm can be performed by accessing the table in O(n) and O(n log n) time
to accomplish, respectively.

In this paper, we are interested in making more explorations on the study
of (k,m)-ary trees. We first try to encode a (k,m)-ary tree T by using another
coding scheme called “right-distance” introduced by Wu et al. [17] for measuring
the distance between nodes and the right arm (i.e., a path from the root to its
rightmost leaf) of T . A sequence obtained by using the above measure for inter-
nal nodes on odd levels is called a right-distance sequence (or RD-sequence) of T .
Then, we are easy to derive a complementary relation between Z-sequences and
RD-sequences so that the transformation between the two kinds of sequences
can be done in O(n) time. According to this relation and four extending formu-
lae obtained from (k,m)-Catalan numbers, we redesign ranking and unranking
algorithms for (k,m)-ary trees of order n in B-order using Z-sequences. As a
consequence, we show that algorithms we proposed are more efficient and can
be run in O(kmn) time and O(n) space without building the precomputed table.

The rest of this paper is organized as follows. In Sect. 2, we establish all
necessary background knowledge. In Sects. 3 and 4, we present our ranking

18 Y.-H. Chang et al.

and unranking algorithms, respectively, and show the correctness and efficiency.
Finally, concluding remarks are given in the last section.

2 Preliminaries

A rooted tree is a k-ary tree if it is an ordered k-regular tree (i.e., every internal
node has exactly k-ordered children). A k-ary tree of order n is a k-ary tree with
exactly n internal nodes. Let T be a tree rooted at r. A node v in T is said to
be on the level � if the unique path from r to v has length �, and the root r
is on the level 0. For notational convenience, we write i ∈ T to mean that i is
an internal node of T . Let Tk(n) denote the set of k-ary trees of order n. It is
well known that the number of k-ary trees of order n is counted by generalized
Catalan number [11], i.e., |Tk(n)| = Ck(n) = 1/(kn + 1)

(
kn+1

n

)
.

2.1 Zaks’ Sequences vs. Right-Distance Sequences

In most generation algorithms, trees are encoded as integer sequences and these
sequences are generated in specific order. In the following, we will introduce two
types of integer sequences for representing k-ary trees of order n.

Zaks [18] gave the following representation of k-ary trees. Let T be a k-ary
tree of order n in which all internal nodes are numbered from 1 to n in preorder
(i.e., visit the root and then recursively the subtrees of T from left to right).
Henceforth, we will not distinguish the terms between an internal node and its
preorder number. For each internal node i ∈ T , we denote by zi the visited order
of node i when both internal nodes and leaves of T are traversed in preorder.
Then, the resulting sequence z(T) = (z1, z2, . . . , zn) is called the Zaks’ sequence
(or Z-sequence for short) of T .

Wu et al. [17] used another measure called “right-distance” to represent k-
ary trees. Let T be a k-ary tree defined as above. A right-distance sequence (or
RD-sequence for short) of T , denoted by d(T) = (d1, d2, . . . , dn), is an integer
sequence in which the term di for each internal node i ∈ T is recursively defined
as follows:

di =

{
0 if i is the root of T (i.e., i = 1);
dp(i) + k − h otherwise,

(2.1)

where p(i) stands for the parent of node i in T , and h is the order in which
the node i occurs among all sons of p(i) from left to right. A fact has been
pointed out in [17] that the use of RD-sequences is more concise than that of Z-
sequences when we consider the range of integers to be used for encoding. Also,
it has shown in [17] the following complementary relation between Z-sequences
and RD-sequences.

Theorem 1 ([17]). Let T be a k-ary tree of order n encoded by Z-sequence
(z1, z2, . . . , zn) and RD-sequence (d1, d2, . . . , dn), respectively. Then, for each i =
1, 2, . . . , n,

zi + di = k(i − 1) + 1.

Improved Algorithms for Ranking and Unranking (k,m)-Ary Trees 19

2.2 (k,m)-Ary Trees and (k,m)-Catalan Number

As we have mentioned earlier, a (k,m)-ary tree is a generalization of k-ary tree
such that there are two different degrees of nodes in the tree. The following is
the formal definition.

[6]). For k,m � 1 and n � 0, a (k,m)-ary tree of order n is an
ordered tree, such that

(1) All nodes on even levels have degree k (where the root is on the level 0).
(2) All node on odd levels have degree m or 0, and there are exactly n nodes of

degree m in all odd levels.

Let Tk,m(n) denote the set of (k,m)-ary trees of order n. Note that there are
a total of (mn + 1)(k + 1) nodes for each tree T ∈ Tk,m(n), with mn + 1 nodes
on even levels and (mn + 1)k nodes on odd levels (in which there are n internal
nodes and (mn+1)k−n leaves). In particular, the n internal nodes on odd levels
are called crucial nodes in [6].

Du and Liu [6] also defined (k,m)-Catalan number of order n as Ck,m(n),
and proved that (k,m)-ary trees can be counted by (k,m)-Catalan numbers as
follows.

Theorem 2 ([6]). The number of (k,m)-ary trees of order n is equal to

|Tk,m(n)| = Ck,m(n) =
1

mn + 1

(
(mn + 1)k

n

)
. (2.2)

According to Eq. (2.2), the number of (2, 3)-ary trees of order 4 is equal to
1
13

(
26
4

)
= 1150.

Amani and Nowzari-Dalini [2] adopted Z-sequences to encode (k,m)-ary trees
in the following way. For any (k,m)-ary tree of order n, nodes on even levels
(including the root) are ignored, and nodes on odd levels are labeled by 1 if they
are crucial nodes and labeled by 0 otherwise. Then, by a preorder traversal of
T , we can obtain a binary string called codeword of T , denoted by x(T). The
Z-sequence of T is z(T) = (z1, z2, . . . , zn) such that the term zi for each crucial
node i ∈ T is the position of the ith “1” in x(T). For example, Fig. 1(a) shows
a (2, 3)-ary tree of order 4, where white nodes on even levels are internal nodes
with degree 2 and the shaded nodes on odd levels indicate crucial nodes with
degree 3.

Inspired by the above encoding, we now show how to encode (k,m)-ary trees
by using RD-sequences. Let T be a given (k,m)-ary tree of order n. We first
imagine that T is extended by adding a dummy node numbered by 0 as the root
of the extended tree and let d0 = 0. Also, we assume that T is the rightmost
subtree of the dummy root. With a notion similar to Eq. (2.1), the term di for
each crucial node i ∈ T is defined as follows:

di = dg(i) + km − h. (2.3)

Definition 1 (

20 Y.-H. Chang et al.

Fig. 1. A (2, 3)-ary tree of order 4 encoded by (a) Z-sequence and (b) RD-sequence.

where g(i) stands for the grandparent of node i in the extended tree, and h is
the order in which the node i occurs among all grandchildren of g(i) from left
to right. For example, if we consider the (2, 3)-ary tree shown in Fig. 1(a), then
the corresponding extended tree is shown in Fig. 1(b). Clearly, for nodes 1 and
2 in T , since they are the fifth and sixth grandchild (from left to right) of the
dummy root 0, we have d1 = d0 + 6 − 5 = 1 and d2 = d0 + 6 − 6 = 0. Also, as
node 3 is the third grandchild of node 2, we have d3 = d2 + 6 − 3 = 3. Similarly,
as node 4 is the first grandchild of node 3, we have d4 = d3 + 6 − 1 = 8. Thus,
d(Tj) = (1, 0, 3, 8).

By using the same proof technique of Theorem 1, we can acquire the following
property (here we omit the proof for the sake of brevity).

Theorem 3. Let T be a (k,m)-ary tree encoded by Z-sequence (z1, z2, . . . , zn)
and RD-sequence (d1, d2, . . . , dn), respectively. Then, for each i = 1, 2, . . . , n,

zi + di = (i − 1)km + k. (2.4)

Corollary 1. For a (k,m)-ary tree T of order n, transformations between the
Z-sequence and RD-sequence of T can be done in O(n) time.

2.3 B-order and Reverse-Lexicographical Ordering

In what follows, we establish the related background of the ordering on the
family of (k,m)-ary trees generated in [2]. We first give the definitions of two
orderings, one is for sequences and the other is for trees.

Two sequences x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym) are
in lexicographical order (denote as x ≺lex y) if there exists i ∈ [1,min{n,m}]
such that (i) xj = yj for all j = 1, 2, . . . , i − 1, and (ii) xi < yi.

[18]). Let T and T ′ be two trees and k = max{deg(T),deg(T ′)}.
We say that T is less than T ′ in B-order (denote as T ≺B T ′) if (i) deg(T) <
deg(T ′), or (ii) deg(T) = deg(T ′) and there exists i ∈ [1, k] such that Ti ≺B T ′

i

Definition 2.

Definition 3 (

Improved Algorithms for Ranking and Unranking (k,m)-Ary Trees 21

and Tj =B T ′
j for all j = 1, 2, . . . , i − 1, where deg(T) denote the degree (i.e.,

the number of children) of the root of T , and Ti (resp. T ′
i) is the ith subtree of

T (resp. T ′).

For instance, Fig. 2 shows a list of (2, 3)-ary trees of order 2 in B-order. To
generate (k,m)-ary trees of order n in B-order, Amani and Nowzari-Dalini [2]
proved that the corresponding Z-sequences of such trees should be generated
in reverse-lexicographical ordering. Because k and m are treated as two fixed
values in the generation algorithm, by the complementary relation stated in
Theorem 3, the generated ordering corresponding to RD-sequences results in a
lexicographical ordering.

z(T8) = (1, 7) z(T9) = (1, 6) z(T10) = (1, 5) z(T11) = (1, 4) z(T12) = (1, 3) z(T13) = (1, 2)
d(T13) = (1, 6)d(T12) = (1, 5)d(T11) = (1, 4)d(T10) = (1, 3)d(T9) = (1, 2)d(T8) = (1, 1)

z(T1) = (2, 8) z(T2) = (2, 7) z(T3) = (2, 6) z(T4) = (2, 5) z(T5) = (2, 4) z(T7) = (1, 8)
d(T7) = (1, 0)d(T6) = (0, 5)

z(T6) = (2, 3)
d(T1) = (0, 0) d(T2) = (0, 1) d(T3) = (0, 2) d(T4) = (0, 3) d(T5) = (0, 4)

Fig. 2. A list of (2, 3)-ary trees of order 2 in B-order.

3 An Improved Ranking Algorithm

In this section, we first introduce the ranking algorithm proposed in [2], and then
present our improvement. To calculate the number of (k,m)-ary trees, Amani
and Nowzari-Dalini accomplished this by counting the number of extended-
(k,m, d)-ary trees of order n, where such a tree is defined by preserving the
root and nodes on odd levels (and ignoring nodes on even levels) in a (k,m)-ary
tree and changing the degree of each non-leaf node with d. Let Bk,m

n,d be the
number of extended-(k,m, d)-ary trees of order n. Since k and m are fixed as
constant values in designing ranking and unranking algorithms, for the sake of
simplicity, they used Bn,d instead of Bk,m

n,d and provided the following recursive
formula of Bn,d.

Bn,d =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 ifn = 0
d ifn = 1
Bn−1,km if d = 1
Bn,d−1 + Bn−1,km+d−1 ifn, d > 1.

(3.1)

22 Y.-H. Chang et al.

In fact, it needs an amendment to the above formula by adding Bn,0 = 0, oth-
erwise, we will find a flaw (see Example 1). Also, we note that Bn,k = Ck,m(n).
Amani and Nowzari-Dalini [2] presented a function namely ZseqBorderRank to
compute the rank of a given (k,m)-ary tree T with Z-sequence encoding (see
Fig. 3). In this function, we observe that the term Bn+1−i,k+km(i−1)−zi

can be
simplify to write as Bn+1−i,di

by Eq. (2.4). Thus, the variable NegR is used to
store the number of trees whose corresponding Z-sequences have rank preced-
ing that of T in lexicographic ordering. Since the equivalence between the rank
of a tree in B-order and the rank of the corresponding Z-sequence in reverse-
lexicographical ordering, we can obtain the result by subtracting NegR from the
total number of trees in Tk,m(n).

Function ZseqBorderRank(z1, z2, . . . zn: integer sequence): integer;
begin

NegR ← 0;
for i ← 1 to n do

NegR ← NegR+Bn+1−i,k+km(i−1)−zi
;

Rank ← Bn,k − NegR;
return Rank;

Fig. 3. The ranking function proposed in [2].

Example 1. Consider a (2, 3)-tree Tj with z(Tj) = (1, 8, 11, 12) shown in Fig. 1.
Since n = 4 and (n − 1)km + k = 20, the algorithm first builds the table B�,d

where � ∈ [0, 4] and d ∈ [0, 20] by Eq. (3.1). Note that an amendment is needed
for B�,0 = 0. For the sake of saving space, Fig. 4 only shows part of the table.
From the function ZseqBorderRank, we can easily check that the value of NegR
is computed as follows:

NegR =
4∑

i=1

B5−i,2+6(i−1)−zi
= B4,1 + B3,0 + B2,3 + B1,8 = 506 + 0 + 21 + 8 = 535.

Thus, the rank of Tj is equal to Bn,k − NegR = 1150 − 535 = 615. ��

0

2
1

3
4

1 2 3 4 5 6 7 8 9 100
0
0
0
0
0

1
1
6

51
506

1
2

13
114

1150

1
3

21
190

1950

1
4

30
280

2925

1
5

40
385

4095

1
6
51

506
5481

1
7

63
644

7105

1
8

76
800

8729

1
9

90
975

10353

1
10
105
1170
11977

Fig. 4. An illustration of Example 1.

According to Eq. (3.1), the following theorem is easily proved by induction.

Improved Algorithms for Ranking and Unranking (k,m)-Ary Trees 23

Theorem 4. B�,d can also be computed by the following closed form:

B�,d =
d

km� + d

(
km� + d

�

)
, (3.2)

where 0 � � � n and 0 � d < (n − 1)km + k.

For convenience, we called a table built by Eq. (3.2) as a precomputed table.
From this equation, we can also obtain the following four formulae. Indeed, if
any entry in the precomputed table is given, we can immediately compute the
four related entries in a constant time, which are useful for designing efficient
ranking and unranking algorithms.

B�,d+1 = B�,d · (d + 1)(km� + d)
d(�(km − 1) + d + 1)

(3.3)

B�,d−1 = B�,d · (d − 1)(�(km − 1) + d)
d(km� + d − 1)

(3.4)

B�+1,d−(km−1) = B�,d · (d − km + 1)(km� + d)
d(� + 1)

(3.5)

B�−1,d+(km−1) = B�,d · �(d + km − 1)
d(km� + d − 1)

(3.6)

We now describe how to design an efficient ranking algorithm. We may visu-
alize that there is a built precomputed table, but indeed it is unnecessary to
build such a table. Also, to facilitate the description of the entire process of
calculation, we assume that the table is upside down when we compare with
the table in Fig. 4. Conceptually, for calculating the rank of a tree, we imagine
that the precomputed table is a chess board and only elements along a certain
path where a chess B moves on the chess board are accumulated in the rank.
Technically, we do not employ Eq. (3.2) to extract elements in the chess board,
and alternatively, the movement of B can be done by using Eqs. (3.3) and (3.5).
The details of the ranking function are shown in Fig. 5.

In the first step, the input Z-sequence of a (k,m)-ary tree is converted into
the corresponding RD-sequence. For convenience, we assume that there exists
at least one nonzero item in the sequence d1, d2, . . . , dn (otherwise, the rank of
the tree equals to 0). Let dg and ds be the largest nonzero item and the smallest
nonzero item, respectively. Step 2 determines the initial location of the chess B
corresponding to dg. Step 3 is the main loop of the function for calculating the
rank by a sequence of nonzero entries B�,d�

for s � � � g. For each iteration, we
first calculate the index of the next nonzero item dw in Step 3.1. According to
dw and df where f = n + 1 − �, we can determine the number of steps, say h,
of the right movement in Step 3.2. Then, in Step 3.3, we move B to the right
h cells in the current row by repeatedly updating B using Eq. (3.3). Further,
in Step 3.4, we move B to an upper-left cell (the cell is precisely located in the
upper row and to the left km−1 cells) by using Eq. (3.5) and acquire a candidate
term B�,d�

. Note that this step may be repeated if d� = 0. After this step, we

24 Y.-H. Chang et al.

Function Ranking(z1, z2, . . . zn: integer sequence): integer;
begin

Step 1 // Convert Z-sequence to RD-sequence

for i ← 1 to n do di ← (i − 1)km + k − zi;
Step 2 // Find the initial term of B

g ← max{i : di = 0 and 1 � i � n};
s ← min{i : di = 0 and 1 � i � n};
� ← 1; B ← d ← dg;
for i ← 1 to n − g do

for r ← 1 to km − 1 do

B ← B · (d+1)(km�+d)
d(�(km−1)+d+1)

; // Refer to Eq.(3.3), move right

d ← d + 1;

B ← B · (d−km+1)(km�+d)
d(�+1)

; // Refer to Eq.(3.5), move upper-left

� ← � + 1; d ← d − (km − 1);

Rank ← B
Step 3 // The main loop for accumulating nonzero terms B�,d�

while g > s do
3.1 w ← max{i : di = 0 and s � i < g};

f ← n + 1 − �;
3.2 h ← (n − (w − 1) − �) · (km − 1) + dw − df ;
3.3 for d ← df to df + h − 1 do

B ← B · (d+1)(km�+d)
d(�(km−1)+d+1)

; // Refer to Eq.(3.3), move right

d ← df + h;
3.4 for i ← 1 to n − (w − 1) − � do

B ← B · (d+1)(km�+d)
d(�(km−1)+d+1)

; // Refer to Eq.(3.5), move upper-left

d ← d − (km − 1)

3.5 � ← n − (w − 1); Rank ← Rank + B; g ← w;
return Rank;

Fig. 5. An improved ranking function.

obtain the desired term in which the current B resides and then add the term
into the rank in Step 3.5. We repeat the loop until all subsequent nonzero terms
are added into the rank.

Example 2. Consider a (2, 3)-ary tree with Z-sequence (1, 5, 14, 17, 25, 30) as the
input. Clearly, km−1 = 5. In Step 1, we convert the input into the corresponding
RD-sequence (1, 3, 0, 3, 1, 2). In Step 2, we determine g = 6, s = 1 and � = 1.
Initially, we have B = 2 which is located in B1,2 and is added into the rank.
Figure 6 shows the track of the chess B moving on the chess board when the
function Ranking() is performed, where an entry B�,d�

marked by a circle means
the term which will be added into the rank. Also, since B6,2 = C2,3(6) = 145299,
we only provide the entries no more than B6,2 in the table. In particular, entries
with bold face number are cells on which B moves. There are four rounds in
Step 3 as follows: In the first round, we have w = 5, f = 6, and h = (6 − 4 − 1) ·
5 + dw − df = 5 + 1 − 2 = 4. After B moves from B1,2 to B1,6, it then moves to
B1+1,6−5 = B2,1. Set � = 2, g = 5, and add the term B2,1 = 6 into the rank. In
the second round, we have w = 4, f = 5, and h = (6 − 3 − 2) · 5 + dw − df =
5+3−1 = 7. After B moves from B2,1 to B2,8, it then moves to B2+1,8−5 = B3,3.
Set � = 3, g = 4, and add the term B3,3 = 190 into the rank. In the third round,
we have w = 2, f = 4, and h = (6−1−3) ·5+dw −df = 10+3−3 = 10. After B
moves from B3,3 to B3,13, since d3 = 0, it then moves to B3+1,13−5 = B4,8 and
to B4+1,8−5 = B5,3. Set � = 5, g = 2, and add the term B5,3 = 21576 into the

Improved Algorithms for Ranking and Unranking (k,m)-Ary Trees 25

6

4

5

3

2

1 2 3 4 5 6 7 8 9 100
0

0

0

0

0

32736

2925

280

30

46376

4095

385

40

62832

5481

506

51

82467

7150

644

63

8990

800

76

11160

975

90

13640

1170

105

0 4 5 6 7 8 9 10

0

62832

5481

506

51

6

1

1

145299

12586

1150

114

13

2

1

21576

1950

190

21

3

1 1 1 1 1 1 1

16456

1386

121

11

1

19635

1624

138

12

1

1885

156

13

1

1

0

11 12 13

1

Fig. 6. An illustration of Example 2.

rank. In the last round, we have w = 1, f = 2, and h = (6−0−5) ·5+dw −df =
5+1−3 = 3. After B moves from B5,3 to B5,6, it then moves to B5+1,6−5 = B6,1.
Set � = 6, g = 1, and add the term B6,1 = 62832 into the rank.

Now, since � = s = 1, the loop terminates. As consequence, we have the rank
B1,2 + B2,1 + B3,3 + B5,3 + B6,1 = 2 + 6 + 190 + 21576 + 62832 = 84606. ��

We are now ready to give our main result for ranking algorithm.

Theorem 5. The Function Ranking() can correctly determine the rank of a
(k,m)-ary tree of order n in B-order using Z-sequence encoding in O(kmn) time
and O(n) space.

4 An Improved Unranking Algorithm

In what follows, we provide a reverse procedure, called Unranking(), to con-
vert a positive integer N to its corresponding Z-sequence of a (k,m)-ary tree
of order n in B-order. As before, the corresponding RD-sequence has been cho-
sen purposely to assist the conversion. The basic ideal inside the function is to
decompose N into a sequence of fragment values. From these fragmentations, the
corresponding RD-sequence can be determined and then be converted into the
desired Z-sequence. The details of the unranking function are shown in Fig. 7.

Initially, we assume that di = 0 for all i = 1, 2, . . . , n. In Step 1, we begin
to put B on the initial location by using Eq. (3.2). For example, if we take a
(2, 3)-ary tree of order 6 as an instance, the initial location of B is at the cell
B6,2 = 145299. In Step 2, we first set i = 1, � = n and d = k, where i is the index
for which the current item di in the RD-sequence will be set up, and � and d
indicate the row and column in which the current B resides, respectively. Then,
we carry out the main loop till the condition that N has been decreased to 0.
For each round in the outer loop, we first search for a possible fragmentation
from right to left in a row by the inner loop, where the percolation is made by
Eq. (3.4). After this step, we test the condition B � N to determine if there
exists a fragmentation that can be subtracted from N . If it is so in this case,
then we update N by subtracting B from N . In the meanwhile, the term di is
determined. Otherwise, we set di = 0. Finally, we move B to a bottom-right cell

26 Y.-H. Chang et al.

Function Unranking(N : integer): integer sequence;
begin

Step 1 // Calculate the number of (k, m)-ary trees

B ← Bn,k;
Step 2 // Decompose N into a sequence of fragment values

i ← 1; d ← k; � ← n;
while N > 0 do

while B > N and d > 1 do

B ← B · (d−1)(�(km−1)+d)
d(km�+d−1)

; // Refer to Eq.(3.4), move left

d ← d − 1;
if B � N then

N ← N − B; di ← d;
else

di ← 0;
i ← i + 1;
B ← B · �(d+km−1)

d(km�+d−1)
; // Refer to Eq.(3.6), move bottom-right

� ← � − 1; d ← d + (km − 1);

Step 3 // Convert RD-sequence to Z-sequence

for i ← 1 to n do zi ← (i − 1)km + k − di;
return z1, z2, . . . zn;

Fig. 7. An improved unranking function.

(the cell is precisely located in the lower row and to the right km − 1 cells) by
using Eq. (3.6) to finish the round. We repeat the loop until all fragmentations
are decomposed from N , and thus obtain the resulting RD-sequence. In the final
step, the RD-sequence is converted into the corresponding Z-sequence.

Suppose that we are given an integer N = 84606. Figure 8 shows the track of
performing Unranking(N) for (2, 3)-ary trees of order 6. Similarly, a cell marked
by a circle means a fragmentation which is decomposed from N . Then, the
corresponding RD-sequence can be obtained from the column indices of these
cells with fragmentations, i.e., (1, 3, 0, 3, 1, 2) in this case. As a result, referring
to Example 2, we have the desired Z-sequence (1, 5, 14, 17, 25, 30).

6

4

5

3

2

1 2 3 4 5 6 7 8 9 100
0

0

0

0

0

32736

2925

280

30

46376

4095

385

40

62832

5481

506

51

82467

7150

644

63

8990

800

76

11160

975

90

13640

1170

105

0 4 5 6 7 8 9 10

0

62832

5481

506

51

6

1

1

145299

12586

1150

114

13

2

1

21576

1950

190

21

3

1 1 1 1 1 1 1 1

16456

1386

121

11

1

19635

1624

138

12

1

1885

156

13

1

1

0

11 12 13

Fig. 8. An illustration of Example 2.

Since Unranking is the reverse procedure of Ranking, the correctness directly
follows from Theorem 5. Also, an argument similar to the above one that uses
aggregation method can analyze the time complexity and space requirement,
and thus we have the following theorem.

Improved Algorithms for Ranking and Unranking (k,m)-Ary Trees 27

Theorem 6. Given a positive integer N , the function Unranking() can correctly
determine the Z-sequence (z1, z2, . . . , zn) of a (k,m)-ary tree of order n such that
Ranking(z1, z2, . . . , zn) = N in O(kmn) time and O(n) space.

5 Concluding Remarks

In this paper, we propose improved algorithms of ranking and unranking a
(k,m)-ary tree of order n in B-order using Zak’s encoding. With the help of the
RD-sequence representation and four expedient formulae derived from a closed
form related to (k,m)-Catalan numbers, we show that the newly proposed algo-
rithms can be run with time complexity of O(kmn) and space requirement of
O(n). This improves a previous result that requires O(kmn2) time and space for
building a precomputed table. As aforementioned, so far little results are known
for (k,m)-ary trees. As future research, we expect to find more structural prop-
erties of (k,m)-ary trees and applications that can be dealt with by this kind of
trees.

References

1. Amani, M.: Gap terminology and related combinatorial properties for AVL trees
and Fibonacci-isomorphic trees. AKCE Int. J. Graphs Comb. 15, 14–21 (2018)

2. Amani, M., Nowzari-Dalini, A.: Efficient generation, ranking, and unranking of
(k,m)-ary trees in B-order. Bull. Iranian Math. Soc. (2019). https://doi.org/10.
1007/s41980-018-0190-y

3. Amani, M., Nowzari-Dalini, A.: Ranking and unranking algorithm for neuronal
trees in B-order. J. Phys. Sci. 20, 19–34 (2015)

4. Amani, M., Nowzari-Dalini, A.: Generation, ranking and unranking of ordered
trees with degree bounds. In: Proceedings of DCM 2015. Electronic Proceedings
in Theoretical Computer Science, vol. 204, pp. 31–45 (2015)

5. Amani, M., Nowzari-Dalini, A., Ahrabian, H.: Generation of neuronal trees by a
new three letters encoding. Comput. Inform. J. 33, 1428–1450 (2014)

6. Du, R.R.X., Liu, F.: (k,m)-Catalan numbers and hook length polynomials for
plane trees. Euro. J. Combin. 28, 1312–1321 (2007)

7. Li, L.: Ranking and unranking AVL trees. SIAM J. Comput. 15, 1025–1035 (1986)
8. Pai, K.-J., Chang, J.-M., Wu, R.-Y., Chang, S.-C.: Amortized efficiency of gener-

ation, ranking and unranking left-child sequences in lexicographic order. Discrete
Appl. Math. (2018). https://doi.org/10.1016/j.dam.2018.09.035

9. Pallo, J.: Generating trees with n nodes and m leaves. Int. J. Comput. Math. 21,
133–144 (1987)

10. Seyedi-Tabari, E., Ahrabian, H., Nowzari-Dalini, A.: A new algorithm for genera-
tion of different types of RNA. Int. J. Comput. Math. 87, 1197–1207 (2010)

11. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press,
Cambridge (1999)

12. Wu, R.-Y., Chang, J.-M., Chan, H.-C., Pai, K.-J.: A loopless algorithm for gen-
erating multiple binary tree sequences simultaneously. Theor. Comput. Sci. 556,
25–33 (2014)

https://doi.org/10.1007/s41980-018-0190-y
https://doi.org/10.1007/s41980-018-0190-y
https://doi.org/10.1016/j.dam.2018.09.035

28 Y.-H. Chang et al.

13. Wu, R.-Y., Chang, J.-M., Chang, C.-H.: Ranking and unranking of non-regular
trees with a prescribed branching sequence. Math. Comput. Model. 53, 1331–1335
(2011)

14. Wu, R.-Y., Chang, J.-M., Chen, A.-H., Liu, C.-L.: Ranking and unranking t-ary
trees in a Gray-code order. Comput. J. 56, 1388–1395 (2013)

15. Wu, R.-Y., Chang, J.-M., Wang, Y.-L.: A linear time algorithm for binary tree
sequences transformation using left-arm and right-arm rotations. Theor. Comput.
Sci. 355, 303–314 (2006)

16. Wu, R.-Y., Chang, J.-M., Wang, Y.-L.: Loopless generation of non-regular trees
with a prescribed branching sequence. Comput. J. 53, 661–666 (2010)

17. Wu, R.-Y., Chang, J.-M., Wang, Y.-L.: Ranking and unranking of t-ary trees using
RD-sequences. IEICE Trans. Inform. Syst. E94–D, 226–232 (2011)

18. Zaks, S.: Lexicographic generation of ordered trees. Theor. Comput. Sci. 10, 63–82
(1980)

A Probabilistic Algorithm for Verification
of Geometric Theorems

Mingyan Chen and Zhenbing Zeng(B)

Department of Mathematics, Shanghai University, Shanghai 200444, China
yetibetan@sina.com, zbzeng@shu.edu.cn

Abstract. In this paper we combine the Schwartz-Zippel theorem with
statistical inference theory and develop a new probabilistic algorithm
instead of deterministic algorithms for geometry theorem proving. Our
work includes an improved algorithm for estimating the upper bounds
in the pseudo-remainder, and three selection criteria for statistical
populations.

Keywords: Geometric theorems proving · Probabilistic algorithm ·
Selection criterion for statistical population · Statistical inference

1 Introduction

The common approaches of automated geometric theorem proving can be divided
into three categories: algebraic methods, vector methods and search methods
based on deductive database. Algebraic methods can be classified into two types,
symbolic computation type which includes Wu’s method [1,2], Gröbner bases
method [3,4], resultant elimination method [5], etc.), and numerical computation
type which includes the single-instance numerical verification method [6], and
parallel numerical verification method [7,8,21,22]. All methods mentioned above
belong to deterministic algorithms which will always get deterministic results if
calculated by correct steps. However, when it comes to complicated problems,
the complexity of deterministic algorithms can be very high which will seriously
affect the efficiency of problem-solving. Thus, “probabilistic” algorithms (also
called “non-deterministic” algorithms) are proposed which perform efficiently
within a short time. Probabilistic algorithms have a wide range of applications
in the field of computer algebra, such as prime number judgment and solving
the largest invariant factor, etc. Probabilistic algorithms have two significant
features: the algorithms are executed within the specified time and returning
the computational results; the computational results may be incorrect but can
control them within a small scope of 0. So the key question is that can we adopt
a fast probabilistic algorithm instead of deterministic algorithms to improve the
efficiency of geometric theorem proving?

This work is supported by the Project 11471209 of the National Natural Science Foun-
dation of China.

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 29–41, 2019.
https://doi.org/10.1007/978-3-030-27195-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_3

30 M. Chen and Z. Zeng

The answer is affirmative. In 1997, Carrá et al. [10] developed a probabilistic
algorithm based on Schwartz-Zippel theorem [9] and Wu’s method to prove con-
structive geometric theorems (see [1,2] for the definition) by verifying a num-
ber of random instances, the probability of incorrect result is also provided.
They combined the bounds of the exponent of a polynomial in the radical of
an ideal given by Brownawell and Kollar [11,12] with the bounds of the degree
of Wu-Ritt’s characteristic sets given by Gallo and Mishra [13,14] to estimate
the upper bound about the total degree of the pseudo-remainder. The follow-
ing is their research result. If a constructive geometric theorem (see Sect. 2) is
constructed by C points and P circles or straight lines, then the bound calcu-
lated by their algorithm is D = c · 2C

3
3C

3
CC2

where c is a constant. Select N
instances randomly from J where the J is a set of 2D different real number,
then the probability that the result is correct is larger than 1 − 2−N if the N
instances all satisfy the geometric theorem. Unfortunately, this enormous bound
D led Carrá et al. to fail to implement their algorithm on a computer. Besides,
the extended characteristic sets and the pseudo-remainder are needed to be cal-
culated if instance meets the degenerative conditions, which will increase the
complexity of their algorithm inevitably.

Tulone et al. [15] proposed a probabilistic test for the vanishing of radical
expression, and soon they developed the Core Library which was designed as
a general C++ package and support the Exact Geometric Computation app-
roach to robust algorithms. In 2001, they developed a geometry theorem prover
based on probabilistic algorithm and the Core Library [16]. Their result can be
summarized as follows.

Theorem 1. Suppose g(u, x) is the polynomial about the conclusion of a con-
structive geometric theorem with deg(g) = d, and G(u) be any of the 2r radical
expressions derived from g(u, x) after eliminating dependent variables. If the the-
orem is constructed by k steps of ruler and compass constructions and g(u, x)
contains t terms, then r degu(G) ≤ td2r85k holds. Select the independent vari-
ables from J randomly, where J is a set formed by td2c+2r85k(c ≥ 1) real num-
bers, if the geometric theorem is false, then the probability that and the instance
satisfies the theorem is at most 2−c. �

The above bound is much better, but when it comes to the class of non-linear
constructive geometric theorems, the efficiency is still not satisfied. To refine the
probabilistic algorithm of geometric theorems proving, we have improved the
algorithm in this paper for estimating the upper bounds about the degrees of the
pseudo-remainder in each independent variable, proposed three selection criteria
for statistical population and apply two checking methods to verify instances,
and designed a combined probabilistic checking model for mechanical geometry
theorem proving on the basis of statistical error analysis and significance test.

This paper is organized as follows. In Sect. 2 we introduce the methods for
representation of geometric theorems and related concepts of irreducible ascend-
ing sets. In Sect. 3 we give an improved algorithm to estimate the upper bounds of
the pseudo-remainder. In Sect. 4 we introduce two checking methods for instances

A Probabilistic Algorithm for Verification of Geometric Theorems 31

verification and propose a new probabilistic algorithm for geometry theorem
proving based on Schwartz-Zippel Theorem with three selection criteria for sta-
tistical population. In Sect. 5 we discuss the statistical error analysis and signif-
icance test.

2 Algebraic Representation of Geometry Theorems

It is well known that geometric theorems can be expressed as certain relations of
algebraic equations using coordinates. For a large class of elementary geometric
theorems, we can translate them into simple quadratic algebraic equations by
adopting an appropriate coordinate system. A theorem is called a constructive
geometric theorem if it is constructed according to some construction rules (e.g.
ruler and compass constructions).

For a constructive geometric theorem, we can translate its hypotheses into a
set of multivariate polynomial equations H : {fi(u1, u2, . . . , um, x1, x2, . . . , xn) =
0, i = 1, 2, . . . , n} and its conclusion is also a multivariate polynomial equation G:
g(u1, u2, . . . , um, x1, x2, . . . , xn) = 0 where u1, u2, . . . , um are independent vari-
ables (or parameters) and x1, x2, . . . , xn are dependent variables, f1, f2, . . . , fn
and g are quadratic equations (i.e., the degree of each variable in each polynomial
is not bigger than 2) in Q(u1, u2, . . . , um)[x1, x2, ..., xn].

In what follows we use abbreviation u = u1, u2, . . . , um, x = x1, x2, . . . , xn,
Q[u] denotes Q[u1, u2, . . . , um] and Q(u)[x] the polynomial ring of x1, x2, . . . , xn

over the field of rational expressions Q(u1, u2, . . . , um).
A Maple package (EPSILON) developed by Wang in [17] can be used to

translate a geometric theorem into algebraic form automatically by invoking the
commands of Load and Algebraic in its submodule GEOTHER. The prepara-
tory work is to formalize a geometric theorem as Theorem (H,G,X) where H
is the hypotheses, G is the conclusion, and X is the set of dependent variables.

In general, the hypotheses H can be simplified into an equivalent ascending
set (triangular form) by applying Wu-Ritt’s algorithm, see [18–20]. Furthermore,
based on the ascending set, following we will give the definition of irreducible
ascending set as it plays an important role in this paper.

Definition 1. If each polynomial fi in an ascending set is irreducible in the ring
Q(u)[x1, x2, . . . , xi]/(f1, f2, . . . , fi−1), then we’ll call it an irreducible ascending
set (IAS):

IAS

⎧
⎪⎪⎨

⎪⎪⎩

f1(u, x1) = 0;
f2(u, x1, x2) = 0;
...

fn(u, x1, x2, . . . , xn) = 0.

(1)

In order to describe the algebraic feature of the class of constructive geometric
theorems as well as the linear class clearly, here we use the i-th element D i

f in
the n + m-length array Df to denote the degree of f in the i-th variable where
f ∈ Qn(u)[x], and mf = max{D i

f , 1 ≤ i ≤ m + n}. Define Qj(D) as a set of

32 M. Chen and Z. Zeng

specific polynomials and Di denotes the i-th element in the n+m-length array
D, for any f ∈ Qj(u)[x1, x2, . . . , xj], if f satisfies formula (2), then f ∈ Qj(D).

Qj(D) = {f ∈ Qj |D i
f ≤ Di, j = 1, 2, . . . ,m + j} (2)

For any constructive geometric theorem, each fi in formula (1) satisfies either
Dm+i

fi
= 1,mfi ≤ 2 (suppose that there are l polynomials satisfy this condition,

then n
2 ≤ l ≤ n will always hold) or Dm+i

fi
= 2,mfi ≤ 4. If every polynomial fi

satisfies Dm+i
fi

= 1, then we call it a constructive geometric theorem of linear
class.

3 Estimating the Degree Bounds
for the Pseudo-remainder

Our goal in this section is to establish an algorithm of estimating the upper
bounds of the degrees of the pseudo-remainder. We need the following result.

Theorem 2. Let the i-th element Di
gj in the (m+j)-length array Dgj denote the

degree of gj(u)[x1, x2, . . . , xj], in the i-th variable, then for any j-stage irreducible
branch �j of formula (1), there exists a non-zero polynomial I on �j and

gj−1(u)[x1, x2, . . . , xj−1] ∈ Qj−1(D
m+j
fj

Dgj + Dm+j
fj

Dm+j
gj Dfj),

such that

I(u)[x1, x2, . . . , xj] · gj(u)[x1, x2, . . . , xj] = gj−1(u)[x1, x2, . . . , xj−1] (3)

holds on �j, and gj ≡ 0 on �j if and only if gj−1 ≡ 0. ��
We refer the reader to the original paper [5] for the proof of this theorem.

According to Theorem 2 and the n triangular polynomials in (1), we adopt
inductive reasoning to deduce the following theorem.

Theorem 3. Let the i-th element Di
g in the (m+n)-length array Dg denote the

degree of the i-th variable in the conclusion of a geometric theorem g(u)[x], then
for any n-stage irreducible branch � of IAS (i.e., formula (1)) derived from its
hypotheses, there exists a non-zero polynomial I on � and R ∈ Q0(D0), such
that

I(u)[x] · g(u)[x] = R[u] (4)

holds on �, and g ≡ 0 on � if and only if R ≡ 0.

Proof. According to Theorem 2, for any n-stage irreducible branch �n of IAS
(hypotheses) and conclusion g(u)[x] of a given constructive geometric theo-
rem, there exist a non-zero polynomial In on �n and gn−1(u)[x1, x2, ..., xn−1] ∈
Qn−1(Dm+n

fn
Dg + Dm+n

fn
Dm+n

g Dfn), such that

In(u)[x] · · · g(u)[x] = gn−1(u)[x1, x2, . . . , xn−1]

A Probabilistic Algorithm for Verification of Geometric Theorems 33

holds on �n, and g ≡ 0 on �n if and only if gn−1 ≡ 0. Similarly, repeat applying
Theorem 2 to eliminate the last i dependent variables, for any (n − i + 1)-stage
irreducible branch �n−i+1 of IAS, there exists In−i and

gn−i(u)[x1, . . . , xn−i] ∈ Qn−i(D
m+n−i+1
fn−i+1

Dgn−i+1 + Dm+n−i+1
fn−i+1

Dm+n−i+1
gn−i+1 Dfn−i+1),

such that

gn−i = In−ign−i+1 = In−iIn−i+1gn−i+1 = . . .

= In−iIn−i+1 · · · In−1gn−1 = In−iIn−i+1 · · · Ing

holds on �n−i+1, and gn−i+1 ≡ 0 on �n−i+1 if and only if gn−i ≡ 0. Let i = n,
i.e., have finished eliminating all the dependent variables, then for any 1-stage
irreducible branch �1 of IAS, there exists a non-zero polynomial I1 and

g0[u] ∈ Q0(Dm+1
f1

Dg1 + Dm+1
f1

Dm+1
g1 Df1) = Q0(D0),

such that

g0 = I1g1 = I1I2g2 = . . . = I1I2 · · · Ing

holds on �1, and g1 ≡ 0 on �1 if and only if g0 ≡ 0. Set R = g0 and I =
I1I2 · · · In, then Ig = R holds. According to Theorem 2 and the recursive process
of I and R, g ≡ 0 on � if and only if R ≡ 0 holds. ��

By Theorem 3 and the whole process of its proof, we can design the following
algorithm to estimate the degrees of the polynomial R in every independent
variables.

Algorithm 1. Estimate the upper bounds of the degrees of R in every inde-
pendent variables.

Input: g, IAS, ux = [u1, u2, . . . , um, x1, x2, . . . , xn].
Output: An array D where the first m elements are the upper bounds of the

degrees of R in every independent variables.

degreebounds:=proc(g, IAS, ux)
n:=nops(IAS): m:=nops(ux)-n:
D:=[seq(degree(G, op(i, ux)), i=1.. m+n)]:
for i from n to 1 by -1 do
FI:= IAS[i]: dFI:=[seq(degree(FI,op(j, ux)), j=1...m+n)]:
D:=dFI[m+i]*D + dFI[m+i]*D[m+i]*dFI:

end do:
return D:

end proc:

34 M. Chen and Z. Zeng

By Theorem 3 and Algorithm 1, we have the following corollary.

Corollary 1. If there are l(n2 ≤ l ≤ n) polynomials in the irreducible ascending
set IAS of a constructive geometric theorem satisfy deg(fi, xi) = 1, mfi ≤ 2 and
n−l polynomials satisfy deg(fi, xi) = 2, mfi ≤ 4, then deg(R, ui) ≤ 2 ·3l10n−l ≤
2 · 30n/2(i = 1, 2, ...,m) and T deg(R) ≤ 2m · 3l · 10n−l ≤ 2m · 30n/2 hold, i.e.,
the upper bound of the degree of R in each independent variable is not bigger
than 2 · 30n/2 and the upper bound of the total degree of R is not bigger than
2m · 30n/2. Furthermore, if limited to the linear class, then the bounds can still
be improved to T deg(R) ≤ 2m · 3n and deg(R, ui) ≤ 2 · 3n(i = 1, 2, . . . ,m).

Proof. We first prove the conclusion that deg(gn−t, ui) ≤ 2 · 3l
′
10t−l′ (i =

1, 2, . . . ,m) holds for 1 ≤ t ∧ t ≤ n where gn−t is derived by eliminating the
last t dependent variables in g and l′ denotes the number of polynomials that
satisfy Dm+i

fi
= 1 in the last t polynomials of IAS. We use mathematical induc-

tion to prove the above conclusion.
When h = 1, i.e., we can eliminate the last independent variable xn with fn,

then gn−1 ∈ Qn−1(Dm+n
fn

Dg + Dm+n
fn

Dm+n
g Dfn) holds according to Theorem 2.

If Dm+n
fn

= 1, then l′ = 1, Dj
fn

≤ 2(j = 1, 2, . . . , m+n) holds. Since Dm
g ≤ 2, then

Di
gn−1

≤ Dm+n
fn

· max
1≤j≤m

(Dj
g)+Dm+n

fn
· max
1≤j≤m

(Dj
g) · max

1≤j≤m
(Dj

f1
) = 1 · 2+1 · 2 · 2 =

2 · 3l
′ · 101−l′ holds where 1 ≤ i ≤ m, i.e., the conclusion holds. On the other

hand, if Dm+n
fn

= 2, then l′ = 0,Dj
fn

≤ 4(j = 1, 2, . . . ,m) holds. Similarly, the
conclusion holds. Suppose that when h = t(1 ≤ t < n) the conclusion holds,
following we will prove when h = t + 1 the conclusion also holds. According to
Theorem 3, after eliminating xn−t with fn−t, gn−t−1 ∈ Qn−t−1(Dm+n−t

fn−t
Dgn−t

+

Dm+n−t
fn−t

Dm+n−t
gn−t

Dfn−t
) holds obviously. If Dm+n−t

fn−t
= 1, then l′ = l′+1,Dj

fn−t
≤

2(j = 1, 2, ·,m) holds. Since h = t the conclusion holds, then we have Di
gn−t

≤
2 · 3l

′−110t−l′−1(i = 1, 2, ·,m) holds, now we can derive the upper bound of
gn−t−1 as follows, D i

gn−t−1
≤ Dm+n−t

fn−t
· max
1≤j≤m

(Dj
gn−t

)+Dm+n−t
fn−t

· max
1≤j≤m

(D j
gn−t

) ·
max

1≤j≤m
(D j

fn−t
) = 1 ·2 ·3l′−110t−l′−1+1 ·3l′−110t−l′−1 ·2 = 2 ·3l′ ·10t+1−l′ , by this

the conclusion holds obviously. If deg(fn−t, xn−t) = 2, then l′ = l′,Dm+n−t
fn−t

=

2,D j
fn−t

≤ 4(j = 1, 2, ·,m) holds, similarly, the conclusion also holds. That
is, we have proven that the conclusion will also hold for h = t + 1 if h = t
the conclusion holds. By mathematical induction, the above conclusion holds for
1 ≤ t ∧ t ≤ n. By Theorem 3, after eliminating all the dependent variables we will
obtain a polynomial g0 where g0 = R. If there are l polynomials in IAS satisfy
deg(fi, xi) = 1, then claims that deg(R, ui) ≤ 2 · 3l10n−l(i = 1, 2, ·,m) holds
obviously by the above conclusion. Since there are m independent variables in
R and their degrees are not bigger than 2 · 3l10n−l, so T deg(R) ≤ 2m · 3l10n−l

holds. Moreover, if limited to the linear class, i.e., every polynomials in IAS
satisfy deg(fi, xi) = 1, so l = n. Substitute l = n into deg(R, ui) ≤ 2·3l10n−l(i =
1, 2, . . . ,m), the conclusion deg(R, ui) ≤ 2 ·3n(i = 1, 2, ...,m) holds immediately,
similarly, T deg(R) ≤ 2m · 3n also holds, i.e., Corollary 1 holds. ��

A Probabilistic Algorithm for Verification of Geometric Theorems 35

Corollary 1 shows that, if the IAS of a constructive geometric theorem con-
tains n polynomials, then the upper bound of the degree of R in each independent
variable is at most B = 2 · 3l10n−l. The bound can be improved to 2 · 3n if lim-
ited to the linear class. For constructive geometric theorems, l always satisfies
n
2 ≤ l ≤ n, so the bound can generalized as deg(R, ui) ≤ 2 · 30n/2. That is, for
a constrictive geometric theorem, its bounds B1 satisfy B1 ≤ 2 · 30n/2, and for
the linear class, the bounds B2 can be improved to B2 ≤ 2 · 3n.

4 Probabilistic Estimates of Truth and Selection Criteria
For statistical Population

Many geometric theorems can be transformed into the following form of conjunct
logic relationship:

(∀u, x)[(f1 = 0 ∧ f2 = 0 ∧ . . . ∧ fn = 0) ⇒ (g = 0)] (5)

Thus, if a geometric theorem is true, then we can claim that remainder R
(obtained in Theorem 3) is identically zero. It is certain that we can prove a
theorem by calculating R from IAS and g according to Theorem 3 and then
checking whether R ≡ 0 holds. We can also avoid calculating R directly via esti-
mating the degrees of R by using Corollary 1. Then the key question is how to
judge whether an instance satisfies the geometric theorem. Two kinds of checking
methods are given in [6].

Checking Method 1: Numerical checking method, which uses a specific numer-
ical instance to check whether R ≡ 0 holds. By Theorem 3, g ≡ 0 on � if and
only if R ≡ 0, i.e., for any ũ = ũ1, ũ2, . . . , ũm and x̃ = x̃1, x̃2, . . . , x̃n satisfy for-
mula (1), if I(ũ)[x̃] �= 0, then g(ũ)[x̃] = 0 holds generically. The following steps
show the checking process: (1)Select a numerical instance ũ = ũ1, ũ2, . . . , ũm

randomly from the statistical population; (2) Substitute ũ into the IAS, solve
all the numerical solutions of the dependent variables x̃ = x̃1, x̃2, . . . , x̃n; (3)
Substitute ũ and x̃ into the conclusion polynomial g, if g(ũ)[x̃] = 0, then claims
R[ũ] = 0, i.e., this instance satisfies the geometric theorem; if the dependent vari-
ables cannot be determined, which indicates that I(ũ)[x̃] = 0 holds, according to
formula (4), R[ũ] = 0 still holds. (4) If the instance does not satisfy g(ũ)[x̃] = 0,
i.e., g(ũ)[x̃] = 0 does not hold, then claims that R is not identically zero, i.e.,
the geometric theorem is not true absolutely.

Checking Method 2: Successive pseudo division checking method which means
that do not solve the numerical solutions about the dependent variables after
substituting ũ into the IAS but calculates R according to the instantiated IAS
and g by formula (4) by using successive pseudo division algorithm. If R = 0,
then claims that this instance satisfies the geometric theorem and the geomet-
ric theorem is true generically, else claims that the geometric theorem is false
absolutely.

36 M. Chen and Z. Zeng

Remark. More rigorously, a geometric theorem may be expressed as the fol-
lowing conjunct logic relationship with non-degenerate conditions.

(∀u, x)[(f1 = 0 ∧ f2 = 0 ∧ . . . ∧ fn = 0,Δ1,Δ2, . . . ,Δk) ⇒ (g = 0)], (6)

where Δ1,Δ2, . . . ,Δk denote the algebraic form of non-degenerate cases. Non-
degenerate cases can be divided into two kinds: Δ �= 0 and Δ > 0. Almost
all prover now available can only deal with the first kind non-degenerate cases,
following we also discuss the first kind of non-degenerate cases only.

As the results obtained by probabilistic algorithms are not always true, it is
very essential to make probabilistic algorithms more reliable by providing the
probability that the result is true (or false).

Randomization procedure is an essential part of our probabilistic algorithm,
which means that instances should be randomly selected from the statistical pop-
ulation while checking. If a random instance does not match with the theorem,
then the program will terminate and return the running result that the theorem
is false, and the probability that the result is incorrect is 0. If N instances all
match with the theorem, then the program will return a running result that the
theorem is true. If R is not identically zero and all the N random instances are
the zeros of R, then the running result will be incorrect. Can we control and
obtain the upper bound of the probability that the result is incorrect? To solve
this problem, we first introduce the famous Schwartz-Zippel Theorem proposed
by Schwartz in 1980 [9] by which the upper bound of the number of the zeros of
a nonzero polynomial in a specific sets can be determined.

Theorem 4. Suppose that G ∈ F [x1, x2, ..., xn] and G is not identically zero.
Let G1 be the standard simplified form of G and d1 be the degree of G1 in x1, G2

be the coefficient of xd
1 in G1. Then, inductively, let di be the degree of Gi in xi

and Gi+1 be the coefficient of xdi
i in Gi where 1 ≤ i ≤ n.For any xi(1 ≤ i ≤ n),

if xi ∈ Ii (here, Ii ⊂ F and |Ii| < di), then in the set I1 × I2 × . . . × In, G has
at most

|I1 × I2 × . . . × In|
(

d1
|I1| +

d2
|I2| + . . . +

dn
|In|

)

(7)

zeros. ��
The following corollary is obtained immediately from Schwartz-Zippel Theorem.

Corollary 2. Suppose that G ∈ Q[x1, x2, . . . , xn] and G is not identically zero.
If x1, x2, . . . , xn are picked randomly from I where I ⊂ Q, then the probability
that G is not identically zero in at most d

|I| , here d denotes the total degree of G

and |I| < d. ��
Together with Algorithm 1, Schwartz-Zippel Theorem enables us to estimate

the upper bound of the probability that the result is incorrect. In the rest of
this section, we will propose three selection criteria for statistical population
according to the Schwartz-Zippel Theorem and Corollary 2.

A Probabilistic Algorithm for Verification of Geometric Theorems 37

The First Selection Criterion. Select c × m × di distinct positive integers to
form a finite set Ui, e.g., Ui = (1, 2, . . . , cmdi) where c is a positive integer and
i = 1, 2, . . . , m. Then an instance (called individual in statistical terminology)
is formed by selecting an element from each Ui. Statistical population S1 is
made up of all the instances, i.e., S1 = U1 × U2 × . . . × Um, then the statistical
population size # S1 equal to the number of instances (individuals), i.e., # S1 =
cmmm

∏m
i=1 di. If R is not identically zero, then according to Theorem4 we have:

|U1 × U2 × . . . × Um|
(

d1
|U1| +

d2
|U2| + . . . +

dm
|Um|

)

= (cm)m
m∏

i=1

di ·
(

d1
cmd1

+
d2

cmd2
+ . . . +

dm
cmdm

)

= cm−1mm
m∏

i=1

di (8)

By formula (8), we can claim that the number of instances in S1 that are zeros
of R is at most cm−1mm

∏m
i=1 di. Therefore, the probability that the instance

ũ = ũ1, ũ2, . . . , ũm selected randomly from S1 satisfies R[ũ] = 0 can be deduced
as follows:

Prob1(R[ũ] = 0|R �= 0) ≤ cm−1mm
∏m

i=1 di
S1

=
cm−1mm

∏m
i=1 di

cmmm
∏m

i=1 di
= c−1 (9)

That is, if a geometric theorem is not true, then the probability that R[ũ] = 0
is at most c−1, where ũ = ũ1, ũ2, . . . , ũm is an instance selected randomly from
the statistical population S1.

The Second Selection Criterion. Let D =
m∑

i=1

di where d1, d2, . . . , dm are

calculated by Algorithm, it is easy to see that the total degree of R in all the
independent variables is at most D. Select cD distinct positive integers to form
a finite set U , e.g., U = (1, 2, . . . , cD) where c is also a positive integer. Similarly,
we obtain the statistical population: S2 = U × U × . . . × U

︸ ︷︷ ︸
the number of U is m

, and its size # S2

as following:

S2 = cmDm = cm(
m∑

i=1

di)
m = cmmm(

m∑

i=1

di / m)m = cmmm(d)m (10)

Repeat m times that select an element from U randomly can form an random
instance ũ = ũ1, ũ2, . . . , ũm, if R is not identically zero, then the probability that
R[ũ] = 0 satisfies the following formula:

Prob2(R[ũ] = 0|R �= 0) ≤ D

U
=

D

cD
= c−1 (11)

according to Corollary 2, which implies that, if a geometric theorem is not true,
then the probability that R[ũ] = 0 is at most c−1, where ũ is an instance selected
randomly from the statistical population S2.

38 M. Chen and Z. Zeng

The Third Selection Criterion. As indicated in Corollary 1, if the IAS of
a geometric theorem contains n polynomials, then the upper bounds satisfy
deg(R, ui) ≤ 2 · 3l10n−l ≤ 2 · 30n/2(i = 1, 2, . . . ,m). In other words, if the IAS is
too difficult to calculate, then the upper bounds can still be estimated quickly in

accordance with Corollary 1. Let di = 2 ·30n/2 and D =
m∑

i=1

di = 2m ·30n/2, then

the statistical population S3 can be obtained in accordance with Corollary 2
and its size as following:

S3 = cmDm = cm(2m · 30n/2)m = 2mcmmm30nm/2 (12)

Similarly, the probability that R[ũ] = 0 is at most c−1 if the geometric
theorem is false and ũ is selected randomly from S3, i.e.,

Prob3(R[ũ] = 0|R �= 0) ≤ c−1.

5 Statistical Error Analysis and Significance Test

In this section, we compare the three selection criteria for statistical population,
and then discuss statistical error analysis and significance test of our method. We
have seen that all three selection criteria satisfy Prob(R[ũ] = 0|R �= 0) ≤ c−1,
which means that, if a geometric theorem is false, then the probability of the
checking result that theorem is true is at most c−1. Their main differences lie in
the value ranges of the instances and the statistical populations sizes.

If the statistical population is collected by the first selection criterion, then
the statistical population size is # S1 = cm · mm

∏m
i=1 di. The second selection

criterion can determine S2 and # S2 = cmmm(d)m. And therefore,

P =
S1
S2

=
cmmm

∏m
i=1 di

cmmm(d)m
=

d1d2 . . . dm

(
m∑

i=1

di / m)m
≤ 1 (13)

where m, c, di(1 ≤ i ≤ m) are all positive integers. By formula (13)shows that
adopting the first selection criterion to collect statistical population will more
precise than the second one. Moreover, the complexity of the algorithm will
decrease with the refined statistical population and more compact value ranges
of instances, thus to avoid data-overrun error caused by the limited precision
of computation and achieve our goal that to prove geometric theorems fast and
accurately.

After simplifying H into IAS, the upper bounds of the degrees of R in the
independent variables can be estimated by Algorithm 1. However, for some high-
complexity geometric theorems, such as the Five-Circles Theorem and Miquel’s
Theorem, H will be very complicated which will inevitably lead to wasting lots
of time and consuming large amounts of memory in the process of simplifying
H into IAS, and this will contrary to our original intention that design a proba-
bilistic algorithm with high efficiency to prove geometric theorems. Can we avoid

A Probabilistic Algorithm for Verification of Geometric Theorems 39

calculating the IAS before instantiation if the geometric theorem is very compli-
cated? To achieve this is easy by the Corollary 1 and it is also the reason why we
propose the third selection criterion to collect the statistical population. That
is, for some high-complexity geometric theorems, in the circumstance that data-
overrun error will not occur during the whole actual operation, we can avoid
calculating the irreducible ascending set before instantiation, and estimate the
upper bounds crudely by Corollary 1 instead of Algorithm 1, thus to avoid failing
to get the running result within the specified time or program interruption for
out of memory.

The core content of mathematical statistics is the study of the relationship
between statistical population and sample, and statistical inference is to infer
statistical population in accordance with sample. In general, statistical inference
can be divided into two categories: parameter estimation and significance test.
The main researched in this paper belongs to inferring statistical population by
sample which involves significance test only. We refer the reader to [23] for the
general concept and terminology of significant test.

Statistical significance test is a common method of statistical inference whose
principle judge whether there exists significant difference between the statistical
population and the null hypothesis H0 by the sample information. Its essence
is the “small probability theory” and logic approach of the “reductio ad absur-
dum”. First of all, define the null hypothesis H0, and then calculate the probabil-
ity that H0 holds base on the sample information by the corresponding statistical
methods. If the probability is small enough (i.e., less than the significance level
a = 0.01), then judge that H0 does not hold and reject the null hypothesis.
Otherwise, accept the null hypothesis.

Statistical significance test involves two types of errors: Type I error and
type II error. Type I error is the incorrect rejection of a true null hypothesis and
type II error is the failure to reject a false null hypothesis. Unlike many statistical
problem, the major research problem in this paper involves Type I error only
and Type II error will not exist. If a geometric theorem is false and a counter
example is found successfully, then the program will terminate and return the
running result that the theorem is false absolutely, and the probability that the
result is incorrect is 0. If N random instances all match the theorem, then the
program will reject the null hypothesis and return the running result that the
theorem is true. In this case, Type I error will occur unluckily. In view of this, we
use the statistical significance test which has no relationship with type II error
to control the probability that the occurrence of Type I error.

6 Conclusions

In this paper we presented a new probabilistic algorithm for automated geometry
theorem proving which combined the Schwartz-Zippel theorem with statistical
inference theory. Our main work includes an improved algorithm for estimating
the upper bounds of the pseudo-remainder and three selection criteria for sta-
tistical populations. We have implemented the prover with Maple and verified

40 M. Chen and Z. Zeng

the performance with experiments. Due to the page limit of this paper, more
results on the experiment results and the prover implementation detail will be
published in forthcoming papers.

References

1. Chou, S.C.: Proving elementary geometry theorem using Wu’s Algorithm. Depart-
ment of Mathematics, University of Texas at Austin, Ph.D. thesis (1985)

2. Wu, W.T.: Basic principles of mechanical theorem proving in elementary geome-
tries. J. Symb. Comput. 2(4), 221–25 (1986)

3. Kapur, D.: Using Grobner bases to reason about geometry problems. J. Symb.
Comput. 2, 399–408 (1986)

4. Kutzler, B., Stifter, S.: Automated geometry theorem proving using Buchberger’s
algorithm. In: On Symbolic and Algebraic Computation, pp. 209–214. ACM Press
(1986)

5. Kapur, D., Saxena, T., Yang, L.: Algebraic and geometric reasoning using Dixon
resultant. In: Proceedings of ISSAC 1994, vol. 7, pp. 97–107 (1994)

6. Hong, J.W.: Can we prove geometry theorem by computing an example? Sci. China
Math. (Ser. A) 16(3), 234–243 (1986)

7. Zhang, J.Z., Yang, L., Deng, M.K.: The parallel numerival methods in mechanical
theorem proving. Theoret. Comput. Sci. 74, 253–271 (1990)

8. Bellman, R.E.: On Proving Theorems in Plane Geometry via Digital Computer.
RAND Corporation, Santa Monica (1965)

9. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomical iden-
tities. J. ACM 27, 701–717 (1980)

10. Carrá Ferro, G., Gallo, G., Gennaro, R.: Probabilistic verification of elementary
geometry statements. In: Wang, D. (ed.) ADG 1996. LNCS, vol. 1360, pp. 87–101.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0022721

11. Brownawell, W.D.: Bounds for the degrees in the Nullstellensatz. Ann. Math. 126,
577–591 (1987)

12. Kollar, J.: Sharp effective Nullstellensatz. J. Am. Math. Soc. 1, 963–975 (1988)
13. Gallo, G., Mishra, B.: Efficient algorithm and bounds for Wu-Ritt characteristic

sets. In: Mora, T., Traverso, C. (eds.) Effective Methods in Algebraic Geometry.
Progress in Mathematics, vol. 94, pp. 119–142. Birkhauser, Boston (1990). https://
doi.org/10.1007/978-1-4612-0441-1 8

14. Gallo, G., Mishra, B.: Wu-Ritt characteristic sets and their complexity. DIMACS
Ser. 6, 111–136 (1991)

15. Tulone, D., Yap, C., Li, C.: Randomized xero testing of radical expressions and ele-
mentary geometry theorem proving. In: Richter-Gebert, J., Wang, D. (eds.) ADG
2000. LNCS (LNAI), vol. 2061, pp. 58–82. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-45410-1 5

16. Tulone, D., Yap, C., Li, C.: Core Library. http://cs.nye.edu/exact/cpre/
17. Wang, D.M.: EPSILON. http://www-calfor.lip6.fr/wang/epsilon/
18. Chou, S.C.: An introduction to Wu’s method for mechanical theorem proving in

geometry. J. Autom. Reason. 4, 237–267 (1988)
19. Wang, D.M.: A new theorem discovered by computer prover. J. Geom. 36, 173–182

(1989)
20. Gao, X.-S., Lin, Q.: MMP/Geometer – a software package for automated geometric

reasoning. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 44–66.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24616-9 4

https://doi.org/10.1007/BFb0022721
https://doi.org/10.1007/978-1-4612-0441-1_8
https://doi.org/10.1007/978-1-4612-0441-1_8
https://doi.org/10.1007/3-540-45410-1_5
https://doi.org/10.1007/3-540-45410-1_5
http://cs.nye.edu/exact/cpre/
http://www-calfor.lip6.fr/wang/epsilon/
https://doi.org/10.1007/978-3-540-24616-9_4

A Probabilistic Algorithm for Verification of Geometric Theorems 41

21. Deng, M.K.: The parallel numerical method of proving the construction geometric
theorem. Chin. Sci. 34, 1066–1070 (1989)

22. Yang, L., Zhang, J.Z., Li, C.Z.: A prover for papallel numerical verification to a
class of constructive geometirc theorem. J. Guangzhou Univ. (Nat. Sci. Ed.) 1(3),
29–34 (2002)

23. Casella, G., Berger, R.L.: Statistical Inference, 2nd edn. Duxbury Press, Duxbury
(2001)

Approximating Closest Vector Problem
in �∞ Norm Revisited

Wenbin Chen1(B) and Jianer Chen1,2

1 School of Computer Science and Cyber Engineering, Guangzhou University,
Guangzhou, People’s Republic of China

cwb2011@gzhu.edu.cn
2 Department of Computer Science and Engineering, Texas A&M University,

College Station, TX 77843, USA

Abstract. The security of most lattice-based cryptography schemes are
based on two computational hard problems which are the Short Integer
Solution (SIS) and Learning With Errors (LWE) problems. The com-
putational complexity of SIS and LWE problems are related to approxi-
mating Shortest Vector Problem (SVP) and Bounded Distance Decoding
Problem (BDD). Approximating BDD is a special case of approximating
Closest Vector Problem (CVP).

In this paper, we revisit the study for approximating Closest Vector
Problem. We give one proof that approximating the Closest Vector Prob-
lem over �∞ norm (CVP∞) within any constant factor is NP-hard. The
result is obtained by the gap-preserving reduction from Min Total Label
Cover problem in �1 norm to CVP∞. This proof is simpler than known
proofs.

Keywords: Closest vector problem · Computational complexity ·
NP-hardness · Min total label cover problem ·
Probabilistically checkable proofs

1 Introduction

Let B = {v1, . . . ,vn} be a set of linearly independent vectors in Rm. The n-
dimensional lattice L generated by B is the set of vectors {∑n

i=1 aivi|ai ∈ Z}
where B is called the basis for the lattice L. The lattice L is also an additive
group. The same lattice could be generated by many different bases. Given a
basis for an n-dimensional lattice L and an arbitrary vector t, the Closest Vector
Problem (CVP) is to find a vector in L closest to t in a certain norm. The
Shortest Vector Problem (SVP) is a homogeneous analog of CVP, and is defined
to be the problem of finding the shortest non-zero vector in L. These lattice
problems have a long history and we present some of the results below. The
more comprehensive list of references can be found in [18] and [25].

These lattice problems have been studied since they were introduced in the
19th century. Gauss gave an algorithm that works for 2-dimensional lattices
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 42–50, 2019.
https://doi.org/10.1007/978-3-030-27195-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_4

Approximating Closest Vector Problem in �∞ Norm Revisited 43

([11], 1801). In 1842, Dirichlet formulated the general problem for arbitrary
dimensions. The existence of short non-zero vectors in lattices was dealt with by
Minkowski in a field called Geometry of Numbers [26]. It was much later that
Lenstra, Lenstra, Lovász [22] presented a polynomial time algorithm approxi-
mating the Shortest Lattice Vector to within the exponential factor 2n/2, where n
is the dimension of the lattice. The LLL algorithm can be applied to many other
important optimization and combinatorial problems, such as factoring rational
polynomials [22], low density subset-sum [19], solvability of radicals [20], inte-
ger programming [13,21,22]. Applying LLL’s method, Babai gave an algorithm
that approximates CVP to within a similar factor [6]. Schnorr [28] improved the
factor of approximation to 2O(n(log log n)2/ log n) for both CVP and SVP. These
approximation results are quite weak, achieving only large exponential factors.
It is an important open problem whether there exists a polynomial time algo-
rithm for approximating SVP within polynomial factor. The exponential time
algorithms to compute SVP were also presented in [2,14].

The first intractability results for lattice problems date back to 1981. In [29],
van Emde Boas proved that CVP in any �p norm and SVP in �∞ norm are NP-
hard. He also conjured that SVP in any �p norm is NP-hard. However proving
the conjured NP-hard was an open problem for a long time. Until 1998, Ajtai
[1] finally proved that SVP is NP-hard under randomized reductions. In the
same paper it was also shown that approximating SVP within a factor 1 + 1

2nc

is NP-hard for some constant c. The non-approximability factor is improved to
1+ 1

nε by Cai and Nerurkar [8]. An breakthrough was made by Micciancio in [24]
where he proved that approximating SVP in any �p norm within any constant
less than 21/p. Khot [16] improved the non-approximation factor to p1−ε for high
�p norms. Khot also made another great breakthrough in [17] where he showed
that it is hard to approximate SVP within any constant factor and 2(log n)1/2−ε

factor for any �p(p > 1) norm.
CVP was proved to be NP-hard by van Emde Boas [29]. Arora et al. [4] used

the PCP characterization of NP to show that approximating CVP within factor
2(log n)1−ε

is NP-hard unless NP ⊆ DTIME(2poly(log n)) and approximating
CVP in lp norm within any constant factor is NP-hard unless P = NP . Assuming
P �= NP , Dinur et al. [10] proved that it is hard to approximate CVP within
factor nc/ log log n for some constant c > 0. All above results for CVP work in all
�p norms. It was showed by Dinur et al. that both CVP in �∞ norm and SVP
in �∞ norm are hard to approximate within factor nc/ log log n for some constant
c > 0 [9].

Our Result
In this paper, we give one proof that assuming P �= NP , it is NP-hard to
approximate CV P∞ within any constant factor. This proof is simpler than that
of [9].

Technique
In order to prove our result, we give a reduction from the Min Total Label Cover
problem in �1 norm to CVP∞.

44 W. Chen and J. Chen

Structure of the Paper
In Sect. 2, we introduce some definitions. In Sect. 3 we prove that it is NP-hard
to approximate CVP∞ within any constant factor by reducing Min Total Label
Cover problem to it. Finally, in Sect. 4 we present some conclusions and some
open problems.

2 Preliminaries

In this section we present formal description of the problems which are used in
our reductions.

In the following G = (V1, V2, E) denotes a bipartite graph, B a set of labels
for the vertices in V1 ∪ V2, and for every e ∈ E there exists a partial function
ρe : B → B describing the admissible pairs of labels. We adapts the notations of
[4,5].

Definition 1. A labelling of G = (V1, V2, E) is a pair (P1,P2) of functions
Pi : Vi → 2B, i = 1, 2, which assign to each vertex in V1 ∪ V2 a possibly empty
set of labels.

Definition 2. Let (P1,P2) be a labelling of G = (V1, V2, E) and let e =
(v1, v2), v1 ∈ V1, v2 ∈ V2, be an edge of G. We call e = (v1, v2) covered iff
P1(v1) �= ∅,P2(v2) �= ∅ and for all labels b2 ∈ P2(v2) there exists a label
b1 ∈ P1(v1) such that ρe(b1) = b2. A labelling (P1,P2) of G = (V1, V2, E) is
called a total-cover of G iff every edge of G is covered by the labelling (P1,P2).

Definition 3. The �1-cost of a labelling of (P1,P2) for a graph G = (V1, V2, E)
is defined as cost(P1,P2) =

∑
vj∈Vi,i=1,2 |Pi(vj)|.

Definition 4. Min Total Label Cover in �1-norm (MinTLC1)

INSTANCE: A d-regular bipartite graph G = (V1, V2, E), a set of labels B =
{1, . . . ,N},N ∈ N+, and for every edge of e ∈ E a partial function ρe : B → B
such that ρ−1

e (1) �= ∅ for the distinguished label 1 ∈ B
SOLUTION: A total-cover (P1,P2) of G

MEASURE: The �1-cost cost(P1,P2) of the total cover (P1,P2)

Remark 1. We can always ensure the existence of a total-cover with �1-cost at
most (|V1| + 1)N ; we simply let P1(v1) = B for all v1 ∈ V1 and P2(v2) = {1} for
all v2 ∈ V2.

The Min Label Cover in �1-norm is explicitly due to Khanna, Sudan and
Trevisan [15] and a similar form of the following Lemma is implicitly proved in
Lund and Yannakakis [23].

Lemma 1. For every constant g ≥ 1 there exists a polynomial time transfor-
mation τ from 3-SAT to Min Total Label Cover such that, for all instances I:

I ∈ 3-SAT⇒ ∃total-cover (P1,P2) of τ(I): cost(P1,P2) = 1 · (V1 + V2)
I �∈ 3-SAT⇒ ∀total-cover (P1,P2) of τ(I): cost(P1,P2) > g · (V1 + V2)

Approximating Closest Vector Problem in �∞ Norm Revisited 45

For studying the hardness of approximation problems we introduce the fol-
lowing reduction due to Arora [3].

Definition 5. Let Π and Π ′ be two minimization optimization problems
and ρ, ρ′ ≥ 1. A gap-preserving reduction from Π to Π ′ with parameters
((c, ρ), (c′, ρ′)) is a polynomial transformation τ mapping every instance I of Π
to an instance I ′ = τ(I) of Π ′ such that for the optima optΠ(I) and optΠ′(I ′)
of I and I ′, respectively, the following hold:

optΠ(I) ≤ c =⇒ optΠ′(I ′) ≤ c′

optΠ(I) ≥ c · ρ =⇒ optΠ′(I ′) ≥ c′ · ρ′,

where c, ρ and c′, ρ′ depend on the instance sizes I and I ′, respectively.
In the following, we give the definition of CVP∞.

Definition 6. The Closest Vector Problem over �∞ norm (CV P∞) is the prob-
lem in which one is given a lattice basis B and a target vector y and must find a
lattice vector Bx (x ∈ Zn) such that ‖Bx− y‖∞ is minimum. In the decisional
version of CV P∞ one is also given a real number t, and must decide whether
there exist an integer vector x such that ‖Bx − y‖∞ ≤ t.

Approximating CVP∞ to within factor g = g(n) means finding a lattice vector
Bx (x ∈ Zn) such that ‖Bx−y‖∞ is no more than g times the minimum of all
‖Bx − y‖∞. The gap version of CVP∞ is a decision problem as follows,
g-CVP∞. Given (B,y, d) for a lattice B, a vector y and a number d, distinguish
between the following two cases:

Yes: There exists a lattice vector Bx for which ‖Bx − y‖∞ ≤ d.
No: For every lattice vector Bx, ‖Bx − y‖∞ > g · d.

Proving that g-CVP∞ is NP-hard means that having an approximation algo-
rithm to within factor g would imply P = NP .

3 Hardness of Approximating CVP∞

In the section, we shall prove that approximating CVP∞ is NP-hard within any
constant factor by reducing MinTLC1 to it. This reduction follows the same lines
of the reduction from MinLC∞ to MinLS∞ in [27] and [12].

Let g(≥ 1) be a constant. From a given Minimum Total Label Cover instance
I = (V1, V2, E, ρ,B,N), we (efficiently) construct an instance τ(I) of CVP∞,
(A,b) with A an m×n matrix of entries {−1, 0, 1, g}, b an m-dimensional vector
of entries {0, g}, m = |E|(N + 1) + |V1|N + |V2|N and n = (|V1|N + |V2|N). We
then show that the ‘yes’ instances of MinTLC1 are mapped to ‘yes’ instances of
CVP∞ and ‘no’ instances to ‘no’ instances.

For every pair (v, b) with v ∈ V1 ∪ V2 and b ∈ B we define a column vector
av,b ∈ {−1, 0, 1, g}m of A as follows. The first |E|(N + 1) coordinates of av,b

46 W. Chen and J. Chen

are split into |E| blocks of e-projections ue(av,b)− one (N + 1)-length block for
every edge e ∈ E. In particular, we define for every (v2, b2) ∈ V2 × B

ue(av2,b2) =
{

g · eb2 iff e incident to v2
0 otherwise

and for every (v1, b1) ∈ V1 × B

ue(av1,b1) =
{

g · (1 − eρe(b1)) iff e incident to v1 and ρe(b1) �= ∅
0 otherwise

where ej , j = 1, . . . ,N denotes the jth-unit vector and 0,1 the all-zero, all-one
vector in RN+1, respectively.

The definition of the remaining |V1|N + |V2|N coordinates of av,b uses the
properties of Hadamard matrices. A Hadamard matrix of order �, denoted by H�,
is an �×� matrix with ±1 entries such that H�H�

� = �I�. The 1√
�
H� is clearly an

orthonormal matrix. So ‖ 1√
�
H�z‖2 = ‖z‖2 for every z ∈ Z�. Because for every

z ∈ Rn, ‖z‖∞ ≥ ‖z‖2/
√

n, we obtain ‖H�z‖∞ ≥ ‖H�z‖2√
�

= ‖ 1√
�
H�z‖2 = ‖z‖2.

Hadamard matrices can be constructed in time linear in the size of matrix if � is
a power of 2 ([7], p. 74)). Otherwise we use the matrix H� consisting in the first
� columns of the Hadamard matrix of order 2	log �
. Clearly, ‖H�z‖∞ ≥ ‖z‖2
remains valid.

We may assume that for � = N there exists a Hadamard matrix [H�] =
[h1, . . . ,h�] with column vectors hb of H�, each of them uniquely identified
with a label b ∈ B. We now split the last (|V1| + |V2|)N coordinates of av,b into
|V1|+|V2| blocks of v′-projections uv′(av,b)− one N -length block for every vertex
v′ ∈ V1 ∪ V2− where the v′-projections for every vertex v′ ∈ V1 ∪ V2− and b ∈ B
are defined as follows

uv′(av,b) =
{
hb iff v = v′

0 otherwise

and 0 denotes the all-zero vector in RN .
Eventually, we define the right side hand of our linear system− the vector

b− as the vector having g in each of the first |E|(N + 1) coordinates and 0 in
the remaining ones. Thus the instance of CVP∞ is (A,b), which are showed in
the Fig. 1.

Proving Correctness. Let us now show that ‘yes’ instances of the MinTLC1

map to ‘yes’ instances of the CVP∞.

Proposition 1 (Completeness). If there is a total label cover with cost (|V1|+
|V2|) to I(i.e. optMinTLC1(I) = (|V1| + |V2|), then there is a vector x such that
‖Ax − b‖∞ = 1(i.e. optCV P∞(τ(I)) = 1).

Proof. Let (P1,P2) be a total cover with cost (|V1| + |V2|). So it assigns a label
to exactly one vertex. We define the (|V1|N + |V2|N)-length vector x as follows:

xvj ,Pi(vj) = 1 ∀vj ∈ Vi, i = 1, 2
xvj ,b = 0 ∀vj ∈ Vi,∀b ∈ B\Pi(vj), i = 1, 2

Approximating Closest Vector Problem in �∞ Norm Revisited 47

ue(av2,b2) =

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...
0
g
0
...
0

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

bth2 − entry, ue(av1,b1) =

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g
...
g
0
g
...
g

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ρe(b1)th − entry,

|V1|N columns |V2|N columns

A =

[ue(av,b1), . . . ,ue(av,bN)]e∈E,v∈V1 [ue(av,b1), . . . ,ue(av,bN)]e∈E,v∈V2

[uv1(av,b1), . . . ,uv1(av,bN)]v1∈V1,v∈V1 [uv2(av,b1), . . . ,uv2(av,bN)]v2∈V2,v∈V2

b =

⎜
⎜
⎜
⎜
⎜
⎜
⎜

g
...
g
0
...
0

⎟
⎟
⎟
⎟
⎟
⎟
⎟

, |E|(N + 1) rows are g, (|V1|+ |V2|)N rows are 0.

Fig. 1. Lattice A and the target vector b

Restricting Ax to an arbitrary row of the first |E|(N +1) rows, gives g, because
Let (P1,P2) be a total cover and assigns a label to exactly one vertex. Subtract-
ing this from b gives zero in these rows.

In the remaining |V1|N + |V2|N rows, since every vertex is assigned one label
by (P1,P2), Ax-b restricted to these rows equals some column of the Hadamard
matrix which is a ±1 matrix. Thus ‖Ax − b‖∞ = 1.

We will now show that ‘no’ instances of the MinTLC1 map to ‘no’ instances
of the CVP∞.

Proposition 2 (Soundness). If optMinTLC1(I) > g·(|V1|+|V2|), then optCV P∞
(τ(I)) >

√
g.

Proof. Given a vector y ∈ R|E|(N+1)+(V1+V2)N , let uE(y) denote the vector y
restricted to its first |E|(N + 1) coordinates. Given a matrix A ∈ Rm×n where
m = |E|(N + 1) + |V1|N + |V2|N and n = (|V1|N + |V2|N), let uE(A) denote
the matrix A restricted to its first |E|(N + 1) rows. Let x =

∑
xv,buE(av,b)

be an integral linear combination of the ‘restricted’ column vectors uE(av,b).
Then, assigning every vertex v a label b iff xv,b �= 0 defines a labelling (Px

1 ,Px
2)

induced by the vector x. From corollary 12 in [4], it follows that any such x with
x = uE(b), induces a total-cover of (V1, V2, E).

48 W. Chen and J. Chen

Suppose x ∈ Z(|V1|N+|V2|N) is any one vector. If uE(A)x − uE(b) �= 0, then
‖uE(A)x − uE(b)‖∞ > g ≥ √

g. So ‖Ax − b‖∞ ≥ ‖uE(A)x − uE(b)‖∞ >
√

g.
If uE(A)x−uE(b) = 0, then uE(b) induces a total cover (Px

1 ,Px
2) of (V1, V2, E).

Thus ‖x‖1 ≥ cost(Px
1 ,Px

2) ≥ optMinTLC1(I) > g · (|V1| + |V2|).
Since x is a (|V1|N + |V2|N)-length vector, we can split it to (V1+V2) vectors

with N -length. For every vertex v ∈ V1 ∪ V2, we have a N -length vector xv =
(xv,1, . . . , xv,N). Thus there is some v′ such that ‖xv′‖1 = Maxv∈V1∪V2‖xv‖1.
So ‖xv′‖1 · (V1+V2) ≥ ∑

v∈V1∪V2
‖xv‖1 = ‖uE(x)‖1 > g · (|V1|+ |V2|). Therefore,

‖xv′‖1 > g. Thus ‖H�xv′‖∞ ≥ ‖xv′‖2 ≥ √‖xv′‖1 >
√

g.
Hence, ‖Ax − b‖∞ ≥ ‖H�xv′‖∞ >

√
g. Since x is any one vector,

optCV P∞(τ(I)) >
√

g.
By Lemma 1, we come to the following conclusion:

Theorem 3. Approximating CVP∞ is NP-hard within any constant factor.

4 Conclusion

In this paper, we give one proof that it is NP-hard to approximate CVP∞ within
any constant factor. This proof is simpler than known proofs. The result is
obtained via the reduction from the Min Total Label Cover problem in �1 norm.

One open problem is to achieve hardness of approximation polynomial factors
for CVP∞, i.e. the factor nε for some ε > 0. Current techniques seems unlikely to
attack on the problem. Such a result is not known even for CVPp(1 ≤ p < ∞).
It seems to require new techniques in order to attack on the open problem.

Acknowledgments. We would like to thank the anonymous referees for their careful
readings of the manuscripts and many useful suggestions.

Wenbin Chen’s research has been supported by the National Natural Science Foun-
dation of China (NSFC) under Grant No. 11271097., and by the Program for Inno-
vative Research Team in Education Department of Guangdong Province Under No.
2016KCXTD017. Jianer Chen has been supported by the National Natural Science
Foundation of China (NSFC) under Grant No. 61872097.

References

1. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions.
In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing,
pp. 10–19 (1998)

2. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proceedings of the 33rd Annual ACM Symposium on Theory
of Computing, pp. 601–610 (2001)

3. Arora, S.: Probabilistic checking of proofs and the hardness of approximation prob-
lems. Ph.D. thesis, UC Berkeley (1994)

4. Arora, S., Babai, L., Stern, J., Sweedyk, E.Z.: The hardness of approximate optima
in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci. 54, 317–
331 (1997)

Approximating Closest Vector Problem in �∞ Norm Revisited 49

5. Arora, S., Lund, C.: Hardness of approximations. In: Approximation Algorithms
for NP-Hard Problems. PWS Publishing (1996)

6. Babai, L.: On Lovász’s lattice reduction and the nearest lattice point problem.
Combinatorica 6, 1–14 (1986)

7. Bollobás, B.: Combinatorics. Cambridge University Press, Cambridge (1986)
8. Cai, J.Y., Nerurkar, A.: Approxiamting the SVP to within a factor (1+1/dimε) is

NP-hard under randomizied reductions. In: Proceedings of the 13th Annual IEEE
Conference on Computational Complexity, pp. 151–158 (1998)

9. Dinur, I.: Approximating SVP∞ to within almost-polynomial factors is NP-hard.
In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767,
pp. 263–276. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46521-
9 22

10. Dinur, I., Kindler, G., Safra, S.: Approximating CVP to within almost-polynomial
factors is NP-hard. In: Proceedings of the 39th IEEE Symposium on Foundations
of Computer Science (1998)

11. Gauss, C.F.: Disquisitiones arithmeticae. (leipzig 1801), art. 171. Yale University
Press. English Translation by A.A. Clarke (1966)

12. Havas, G., Seifert, J.-P.: The complexity of the extended GCD problem. In:
Kuty�lowski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 103–113. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48340-
3 10

13. Kannan, R.: Improved algorithm for integer programming and related lattice prob-
lems. In: Proceedings of the 15 Annual ACM Symposium on Theory of Computing,
pp. 193–206 (1983)

14. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12, 415–440 (1987)

15. Kannan, R., Sudun, M., Trevisan, L.: Constraint satisfaction: the approximability
of minimization problems. In: Proceedings of the 12th IEEE Conference of Com-
putational Complexity, pp. 282–296 (1997)

16. Khot, S.: Hardness of approximating the shortest vector problem in high Lp norms.
In: Proceedings of the 44th IEEE Symposium on Foundations of Computer Science
(2003)

17. Khot, S.: Hardness of approximating the shortest vector problem in lattices. In:
Proceedings of the 45th IEEE Symposium on Foundations of Computer Science
(2004)

18. Kumar, R., Sivakumar, D.: Complexity of SVP-A reader’s digest. SIGACT News
32(3), 40–52 (2001). Complexity Theory Column (ed. L.Hemaspaandra)

19. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J. ACM
32(1), 229–246 (1985)

20. Landau, S., Miller, G.L.: Solvability of radicals in polynomial time. J. Comput.
Syst. Sci. 30(2), 179–208 (1985)

21. Lenstra, H.W.: Integer programming with a fixed number of variables. Technical
report 81-03, University of Amsterdam, Amsterdam (1981)

22. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 513–534 (1982)

23. Lund, C., Yannakakis, M.: On the hardness of minimizaiton problems. J. ACM 41,
960–981 (1994)

24. Micciancio, D.: The shortest vector problem is NP-hard to approximate to within
some constant. In: Proceedings of the 39th IEEE Symposium on Foundations of
Computer Science (1998)

https://doi.org/10.1007/3-540-46521-9_22
https://doi.org/10.1007/3-540-46521-9_22
https://doi.org/10.1007/3-540-48340-3_10
https://doi.org/10.1007/3-540-48340-3_10

50 W. Chen and J. Chen

25. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems, A Cryptographic
Perspective. Klumer Academic Publishers (2002)

26. Minkowski, H.: Geometrie der zahlen. Leizpig, Tuebner (1910)
27. Rössner, C., Seifert, J.-P.: The complexity of approximate optima for greatest

common divisor computations. In: Cohen, H. (ed.) ANTS 1996. LNCS, vol. 1122,
pp. 307–322. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61581-
4 64

28. Schnorr, C.P.: A hierarchy of polynomial-time basis reduction algorithms. In: Pro-
ceedings of Conference on Algorithms, Péecs (Hungary), pp. 375–386 (1985)

29. van Emde Boas, P.: Another NP-complete problem and the complexity of com-
puting short vectors in a lattice. Technical report 81-04, Mathematische Instiut,
University of Amsterdam (1981)

https://doi.org/10.1007/3-540-61581-4_64
https://doi.org/10.1007/3-540-61581-4_64

Low-Dimensional Vectors with Density
Bounded by 5/6 Are Pinwheel

Schedulable

Wei Ding(B)

Zhejiang University of Water Resources and Electric Power,
Hangzhou 310018, Zhejiang, China

dingweicumt@163.com

Abstract. Given an n-dimensional integer vector v = (v1, v2, . . . , vn)
with 2 ≤ v1 ≤ v2 ≤ · · · ≤ vn, a pinwheel schedule for v is referred
to as an infinite symbol sequence S1S2S3 · · · , which satisfies that Sj ∈
{1, 2, . . . , n},∀j ∈ Z and every i ∈ {1, 2, . . . , n} occurs at least once in
every vi consecutive symbols Sj+1Sj+2 · · ·Sj+vi , ∀j ∈ Z. If v has a pin-
wheel schedule then v is called (pinwheel) schedulable. The density of v
is defined as d(v) =

∑n
i=1

1
vi
. Chan and Chin [4] made a conjecture that

every vector v with d(v) ≤ 5
6
is schedulable.

In this paper, we examine the conjecture from the point of view of
low-dimensional vectors, including 3-, 4- and 5-dimensional ones. We
first discover some simple but important properties of schedulable vec-
tors, and then apply these properties to test whether or not a vector is
schedulable. As a result, we prove that the maximum density guarantee
for low-dimensional vectors is 5

6
, which partially support this conjecture.

Keywords: Pinwheel schedule · Low-dimensional · Density guarantee

1 Introduction

Let v = (v1, v2, . . . , vn), vi ∈ Z
+, 1 ≤ i ≤ n be an n-dimensional positive inte-

ger vector. W.l.o.g, we always suppose that v1 ≤ v2 ≤ · · · ≤ vn. If an infi-
nite symbol sequence, S1S2S3 · · · , satisfies that Sj ∈ {1, 2, . . . , n},∀j ∈ Z and
each i ∈ {1, 2, . . . , n} appears at least once in every vi consecutive symbols
Sj+1Sj+2 · · · Sj+vi

,∀j ∈ Z, it is called a pinwheel schedule. Furthermore, if v has
a pinwheel schedule then it is called (pinwheel) schedulable. For example, (2, 3)
is schedulable as both · · · |12| · · · and · · · |121| · · · are a pinwheel schedule for it.
However, any (2, 3, v3), v3 ≥ 3 is unschedulable since it has no pinwheel schedule.
The density of v is defined as

d(v) =
n∑

i=1

1
vi

. (1)

The pinwheel scheduling problem asks to find a pinwheel schedule of v if
it is schedulable and answers “NO” otherwise, for a given positive integer vector
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 51–61, 2019.
https://doi.org/10.1007/978-3-030-27195-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_5

52 W. Ding

v. This problem is a special case of real-time scheduling problems [1,7,10], and
has important applications in the scheduling of satellite communication with
a ground station [7]. Refer readers to [2,5,11] for more related problems and
applications.

Given a vector set V , if each v ∈ V with d(v) ≤ D is schedulable, then D
is called the density guarantee for V . In [8], Holte et al. pointed out that 1 is
a density guarantee for the vectors with at most two distinct integers. Later,
Lin and Lin [9] considered the vectors with at most three distinct integers, and
proved that 5

6 is the maximum density guarantee for such vectors.
As we know, all (2, 3, v3) with v3 ≥ 3 are unschedulable [6]. Therefore, the

density guarantee for all vectors can not be greater than 5
6 . In [3], Chan and Chin

proved that 7
10 is a density guarantee. In [4], furthermore, they presented a vari-

ety of pinwheel scheduling algorithms with different density guarantees, and con-
jectured that 5

6 is the maximum density guarantee for all vectors. Later, Fishburn
and Lagarias [6] proved that each v with v1 = 2 and d(v) ≤ 5

6 is schedulable, and
each v with d(v) ≤ 3

4 is surely schedulable. Moreover, they also considered the m-
pinwheel scheduling problem, where each i ∈ {1, 2, · · · , n} occurs at least m
times in every mvi consecutive symbols Sj+1Sj+2 · · · Sj+mvi

,∀j ∈ Z, and proved
that there always exist unschedulable vectors v with d(v) = 1 − 1

(m+1)(m+2) + ε,
for any ε > 0. In fact, Chan and Chin’s conjecture was partially supported by
Lin and Lin’s theorem [9] and Fishburn and Lagarias’s theorem [6].

In past nearly two decades, however, almost no new theoretical results came
out after Fishburn and Lagarias [6]. This paper revisits the pinwheel scheduling
problem and studies it from the prospective of low-dimensional vectors (i.e.,
3-, 4- and 5-dimensional vectors). We first discover some simple but important
properties of schedulable vectors and then use these properties to test whether or
not a vector is schedulable. By testing every vector v with dimension at most five
and d(v) ≤ 5

6 , we claim that 5
6 is the maximum density guarantee for all these

low-dimensional vectors. In others words, our results partially support Chan and
Chin’s conjecture. It is noted that our results impose no additional requirement
on the values of integers in vectors and the number of distinct integers appearing
in vectors reaches up to five.

The rest of this paper is organized as follows. In Sect. 2, we define some
notations and show several fundamental properties. In Sect. 3, we prove that
the 3-, 4- and 5-dimensional vectors with density bounded by 5

6 are pinwheel
schedulable. In Sect. 4, we conclude this paper.

2 Preliminaries

2.1 Notations

Let v(c) = (v1, v2, . . . , vc) denote a c-dimensional positive integer vector with
v1 ≤ v2 ≤ · · · ≤ vc, for any c ≥ 2, and let V (c) be the set of all c-dimensional
vectors. Furthermore, we let v(c)(f) = (f, v2, . . . , vc) denote a c-dimensional
vector with v1 = f and f ≤ v2 ≤ · · · ≤ vc, and let V (c)(f) be the set of all

Pinwheel Schedule of Low-Dimensional Vectors 53

such c-dimensional vectors with v1 = f . Besides, any c-dimensional vector that
satisfies vi ∈ Z

+ and a ≤ vi ≤ b, for any 1 ≤ i ≤ c, is collectively denoted by

(v1, . . . , vi−1, [a, b], vi+1, . . . , vc), ∀1 ≤ i ≤ c. (2)

Similarly, we let v(c)([a, b]) denote any c-dimensional vector with v1 ∈ Z
+ and

a ≤ v1 ≤ b, and let V (c)([a, b]) be the set of all such c-dimensional vectors. Also,
v(c)([a,+∞)) contains v1 ≥ a.

Example. Both (2, 5, 5, 8, 9, 9) and (5, 5, 6, 9, 10, 10) are 6-dimensional vectors,
and both (3, 3, 5, 6) and (3, 4, 5, 5) are 4-dimensional vectors with v1 = 3. Also,
(3, 5, 5, 8, 9) ∈ V (5)([2, 4]) while (5, 5, 6, 6, 9) /∈ V (5)([2, 4]), and (6, 6, 6, 8, 8) ∈
V (5)([5,+∞)) while (3, 4, 5, 6, 8) /∈ V (5)([5,+∞)). In addition, (3, 3, [5, 7], 7, 9)
includes

(3, 3, 5, 7, 9), (3, 3, 6, 7, 9), (3, 3, 7, 7, 9).

Every v(1) = (v1), v1 ≥ 1 is schedulable since it has a pinwheel schedule
· · · |1| · · · . Clearly, every v(c)(1) = (1, v2, . . . , vc) is unschedulable, for any c ≥ 2.
In the rest of this paper, therefore, we focus on n-dimensional vectors, v =
(v1, v2, . . . , vn), n ≥ 2, with 2 ≤ v1 ≤ v2 ≤ · · · ≤ vn.

2.2 Fundamental Properties

In this section, we show several simple but important properties of schedula-
ble vectors, which will play an important role in testing whether a vector is
schedulable.

Lemma 1. Let v(c) and u(c), c ≥ 2 be two c-dimensional vectors satisfying that
ui∗ ≥ vi∗ and ui = vi, i �= i∗, for any given 1 ≤ i∗ ≤ c. If v(c) is schedulable and
d(v(c)) = D, then u(c) is schedulable and has d(u(c)) ≤ D.

Proof. If v(c) = (v1, v2, · · · , vc) is schedulable, then there exists a pinwheel sched-
ule S0 of v(c) where every vi, 1 ≤ i ≤ c consecutive symbols contain at least one i.
If u(c) = (u1, u2, · · · , uc) satisfies that ui∗ ≥ vi∗ ,∀1 ≤ i∗ ≤ c and ui = vi, i �= i∗,
then S0 surely satisfies that every ui, 1 ≤ i ≤ c consecutive symbols of S0 also
contain at least one i. This implies that S0 is also a pinwheel schedule of u(c).
We have

d(u(c)) =
∑c

i=1
1
ui

= 1
ui∗

+
∑

i�=i∗
1
vi

≤ 1
vi∗

+
∑

i�=i∗
1
vi

= d(v(c))
= D.

�	
Furthermore, we extend Lemma 1 to the following more general and funda-

mental lemma.

54 W. Ding

Lemma 2. Let v(c) and u(c), c ≥ 2 be two c-dimensional vectors satisfying that
ui ≥ vi, i

∗ ≤ i ≤ j∗ and ui = vi, 1 ≤ i < i∗, j∗ < i ≤ n, for any given
1 ≤ i∗ < j∗ ≤ c. If v(c) is schedulable and has d(v(c)) = D then u(c) is schedulable
and has d(u(c)) ≤ D, as well as if u(c) is unschedulable and has d(u(c)) = D′

then v(c) is unschedulable and has d(v(c)) ≥ D′.

Lemma 3. For any v(c), c ≥ 2, if there are at least one index 1 ≤ i∗ ≤ c such
that vi∗ < i∗, then it is unschedulable.

Lemma 4. Let v(c) = (f, f, . . . , f)1×c be a c-dimensional vector where c ≥ 2
and f ≥ 1. If f ≥ c then (f, f, · · · , f)1×c is schedulable, and if f < c then it is
unschedulable.

Proof. Since · · · |123 · · · c| · · · is a pinwheel schedule for (c, c, . . . , c)1×c, we claim
that (c, c, · · · , c)1×c is schedulable. If f ≥ c, we conclude by Lemma 2 that
(f, f, · · · , f)1×c is schedulable. If f < c, we have vc = f < c and then claim by
Lemma 3 that (f, f, · · · , f)1×c is unschedulable. �	
Lemma 5. Every v(c)([c,+∞)), c ≥ 2 is schedulable.

Proof. Let v(c) = (v1, v2, . . . , vc). From v1 ≥ c, it follows that vc ≥ vc−1 ≥ · · · ≥
v1 ≥ c. Lemma 4 implies that (c, c, · · · , c)1×c is schedulable. By Lemma 2, we
claim that every v(c)([c,+∞)) is schedulable. �	

3 Main Results

In this section, we prove that the maximum density guarantee for 3-, 4-, 5-
dimensional vectors is 5

6 , respectively.

Theorem 1. Every v(2) ∈ V (2) is schedulable, and v(3) ∈ V (3) with d(v(3)) ≤ 1
except (2, 3,m) is schedulable.

Theorem 1 and its proof imply that every v(�), � = 2, 3 with d(v(�)) ≤ 5
6 is

schedulable. In fact, any v(2) has at most two distinct integers and any v(3) has at
most three distinct integers. So, Theorem 1 accords with the theorems in [8,9].
Furthermore, it extends the density guarantee from 5

6 to 1 for 3-dimensional
vectors except (2, 3,m).

Obviously, any v(4) has up to four distinct integers and any v(5) has up to five
distinct integers. Although it remains as an open problem whether the maximum
density guarantee for all vectors is 5

6 , we show in Theorem 2 that any v(4) with
d(v(4)) ≤ 5

6 is schedulable and in Theorem 3 that any v(5) with d(v(5)) ≤ 5
6 is

schedulable.

Theorem 2. Every v(4) ∈ V (4) with d(v(4)) ≤ 5
6 is schedulable.

Pinwheel Schedule of Low-Dimensional Vectors 55

Proof. In the following, we discuss the cases of v1 = 2, 3 and v1 ≥ 4.
Case 1 : v1 = 2. In [6], Fishburn et al. point out that every v with v1 = 2

and d(v) ≤ 5
6 is schedulable. So, it follows immediately that every v(4)(2) with

d(v(4)(2)) ≤ 5
6 is schedulable.

Case 2 : v1 = 3. We need to discuss the subcases of v2 = 3, v2 = 4 and v2 ≥ 5,
respectively.

Subcase 2.1 : v2 = 3. Clearly, v3 ≥ 3. It is well-known that every v with
d(v) > 1 is unschedulable. We have

1 =
1
3

× 3 < d((3, 3, 3, v4)) ≤ 1
3

× 4 =
4
3
.

Thus, (3, 3, 3, v4) is unschedulable. Since (3, 3, 6, 6) has a pinwheel schedule
· · · |123124| · · · , we claim that it is schedulable. Further, we conclude by Lemma 2
that every (3, 3, [6,+∞), v4) is schedulable. We have

2
3

=
1
3

× 2 < d((3, 3, [6,+∞), v4)) ≤ 1
3

× 2 +
1
6

× 2 = 1.

The subcases of (3, 3, 4, v4) and (3, 3, 5, v4) will be analyzed at the end of the
proof.

Subcase 2.2 : v2 = 4. Clearly, v3 ≥ 4. By using the Chan and Chin’s algo-
rithm [3], we get a pinwheel schedule · · · |21312314| · · · for (3, 4, 5, 8). So, we
claim that (3, 4, 5, 8) is schedulable. Furthermore, we conclude from Lemma 2
that every (3, 4, 5, [8,+∞)) is schedulable. We have

47
60

=
1
3

+
1
4

+
1
5

< d((3, 4, 5, [8,+∞))) ≤ 1
3

+
1
4

+
1
5

+
1
8

=
109
120

.

Since (3, 4, 6, 6) has a pinwheel schedule · · · |123124| · · · , we claim that it is
schedulable. By Lemma 2, we conclude that every (3, 4, [6,+∞), v4) is schedula-
ble. We have

7
12

=
1
3

+
1
4

< d((3, 4, [6,+∞), v4)) ≤ 1
3

+
1
4

+
1
6

+
1
6

=
11
12

.

The analysis on the subcases of (3, 4, 4, v4) and (3, 4, 5, [5, 7]) are left at the
end of the proof. Then, we claim that every (3, 4, v3, v4) except (3, 4, 4, v4) and
(3, 4, 5, [5, 7]) is schedulable and its density is at most min{109

120 , 11
12} = 109

120 .
Subcase 2.3 : v2 ≥ 5. We claim that (3, 5, 5, 5) is schedulable since it has

a pinwheel schedule · · · |12134| · · · . By Lemma 2, we conclude that every
(3, [5,+∞), v3, v4) is schedulable. We have

d((3, [5,+∞), v3, v4)) ≤ 1
3

+
1
5

× 3 =
14
15

.

Case 3 : v1 ≥ 4. It follows from Lemma 5 that every v(4) with v1 ≥ 4 is
schedulable. We have

d(([4,+∞), v2, v3, v4)) ≤ 1
4

× 4 = 1.

56 W. Ding

Fig. 1. Illustration for the proof of Theorem 2.

By Case 1, we claim that every v(4)(2) with d(v(4)(2)) ≤ 5
6 is schedulable.

By Case 2, we claim every v(4)(3), except the subcases left, with d(v(4)(3)) ≤
min{1, 109

120 , 14
15} = 109

120 is schedulable. By Case 3, we claim each v(4)([4,+∞))
with d(v(4)([4,+∞))) ≤ 1 is schedulable. So, we conclude each v(4), except the
subcases left, with d(v(4)) ≤ min{ 5

6 , 109
120 , 1} = 5

6 is schedulable (Fig. 1).
Now, we consider the subcases left. We obtain

11
12 = 1

3 + 1
3 + 1

4 < d((3, 3, 4, v4)) ≤ 1
3 + 1

3 + 1
4 × 2 = 7

6 ,
13
15 = 1

3 + 1
3 + 1

5 < d((3, 3, 5, v4)) ≤ 1
3 + 1

3 + 1
5 × 2 = 16

15 ,
5
6 = 1

3 + 1
4 + 1

4 < d((3, 4, 4, v4)) ≤ 1
3 + 1

4 × 3 = 13
12 ,

d((3, 4, 5, 5)) = 1
3 + 1

4 + 1
5 + 1

5 = 59
60 ,

d((3, 4, 5, 6)) = 1
3 + 1

4 + 1
5 + 1

6 = 19
20 ,

d((3, 4, 5, 7)) = 1
3 + 1

4 + 1
5 + 1

7 = 389
420 .

Since

(
11
12

,
7
6
] ∪ (

13
15

,
16
15

] ∪ (
5
6
,
13
12

] ∪ {59
60

,
19
20

,
389
420

} ∩ (0,
5
6
] = ∅ ,

we claim that every v(4) with d(v(4)) ≤ 5
6 is schedulable no matter whether the

subcases left are schedulable or not. The proof is completed. �	
Lemma 6. Every v(5)(3) ∈ V (5)(3) with d(v(5)(3)) ≤ 5

6 is schedulable.

Proof. In the following, we discuss the subcases of v2 = 3, 4, 5 and v2 ≥ 6,
respectively.

Case 1 : v2 = 3. Clearly, v3 ≥ 3. As (3, 3, 9, 9, 9) has a pinwheel sched-
ule · · · |123124125| · · · , we claim that it is schedulable. Then, we conclude by
Lemma 2 that each (3, 3, [9,+∞), v4, v5) is schedulable. Hence, we only need to
consider the subcases of v3 = 3, 4, 5, 6, 7, 8. We have

1 = 1
3 × 3 < d((3, 3, 3, v4, v5)) ≤ 1

3 × 5 = 5
3 ,

11
12 = 1

3 × 2 + 1
4 < d((3, 3, 4, v4, v5)) ≤ 1

3 × 2 + 1
4 × 3 = 17

12 ,
13
15 = 1

3 × 2 + 1
5 < d((3, 3, 5, v4, v5)) ≤ 1

3 × 2 + 1
5 × 3 = 19

15 ,
5
6 = 1

3 × 2 + 1
6 < d((3, 3, 6, v4, v5)) ≤ 1

3 × 2 + 1
6 × 3 = 7

6 .

Pinwheel Schedule of Low-Dimensional Vectors 57

Since

(1,
5
3
] ∪ (

11
12

,
17
12

] ∪ (
13
15

,
19
15

] ∪ (
5
6
,
7
6
] ∩ (0,

5
6
] = ∅ ,

we need no considering the subcases of v3 = 3, 4, 5, 6. So, the work left is to
analyze the subcases of v3 = 7, 8.

Subcase 1.1 : v3 = 7. So, v4 ≥ 7. Since (3, 3, 7, 12, 12) has a pinwheel schedule
· · · |124123125123| · · · , we claim that it is schedulable. Furthermore, we conclude
by Lemma 2 that any (3, 3, 7, [12,+∞), v5) is schedulable. Therefore, we only
need to consider the subcases of v4 = 7, 8, 9, 10, 11. We have

20
21 = 1

3 × 2 + 1
7 × 2 < d((3, 3, 7, 7, v5)) ≤ 1

3 × 2 + 1
7 × 3 = 23

21 ,
157
168 = 1

3 × 2 + 1
7 + 1

8 < d((3, 3, 7, 8, v5)) ≤ 1
3 × 2 + 1

7 + 1
8 × 2 = 89

84 ,
58
63 = 1

3 × 2 + 1
7 + 1

9 < d((3, 3, 7, 9, v5)) ≤ 1
3 × 2 + 1

7 + 1
9 × 2 = 65

63 ,
191
210 = 1

3 × 2 + 1
7 + 1

10 < d((3, 3, 7, 10, v5)) ≤ 1
3 × 2 + 1

7 + 1
10 × 2 = 106

105 ,
208
231 = 1

3 × 2 + 1
7 + 1

11 < d((3, 3, 7, 11, v5)) ≤ 1
3 × 2 + 1

7 + 1
11 × 2 = 229

231 .

Since

(
20
21

,
23
21

] ∪ (
157
168

,
89
84

] ∪ (
58
63

,
65
63

] ∪ (
191
210

,
106
105

] ∪ (
208
231

,
229
231

] ∩ (0,
5
6
] = ∅ ,

we need no considering the subcases of v4 = 7, 8, 9, 10, 11. So, we conclude that
every (3, 3, 7, v4, v5) with d((3, 3, 7, v4, v5)) ≤ 5

6 is schedulable.
Subcase 1.2 : v3 = 8. Clearly, v4 ≥ 8. Recall that (3, 3, 7, 12, 12) given in Sub-

case 1.1 is schedulable. By Lemma 1, we claim that (3, 3, 8, 12, 12) is also schedu-
lable. Hence, we only need to consider the subcases of v4 = 8, 9, 10, 11. We have

11
12 = 1

3 × 2 + 1
8 × 2 < d((3, 3, 8, 8, v5)) ≤ 1

3 × 2 + 1
8 × 3 = 25

24 ,
65
72 = 1

3 × 2 + 1
8 + 1

9 < d((3, 3, 8, 9, v5)) ≤ 1
3 × 2 + 1

8 + 1
9 × 2 = 73

72 ,
107
120 = 1

3 × 2 + 1
8 + 1

10 < d((3, 3, 8, 10, v5)) ≤ 1
3 × 2 + 1

8 + 1
10 × 2 = 119

120 ,
233
264 = 1

3 × 2 + 1
8 + 1

11 < d((3, 3, 8, 11, v5)) ≤ 1
3 × 2 + 1

8 + 1
11 × 2 = 257

264 .

Since

(
11
12

,
25
24

] ∪ (
65
72

,
73
72

] ∪ (
107
120

,
119
120

] ∪ (
233
264

,
257
264

] ∩ (0,
5
6
] = ∅ ,

we need no considering the subcases of v4 = 8, 9, 10, 11. So, we conclude that
every (3, 3, 8, v4, v5) with d((3, 3, 8, v4, v5)) ≤ 5

6 is schedulable.
Case 2 : v2 = 4. Clearly, v3 ≥ 4. As (3, 4, 8, 8, 8) has a pinwheel schedule

· · · |14213125| · · · , we claim that it is schedulable. Then, we conclude by Lemma 2
that each (3, 4, [8,+∞), v4, v5) is schedulable. We have

d((3, 4, 4, v4, v5)) > 1
3 + 1

4 + 1
4 = 5

6 ,

d((3, 4, 4, v4, v5)) ≤ 1
3 + 1

4 × 4 = 4
3 .

Since (56 , 4
3] ∩ (0, 5

6] = ∅, we only need to analyze the subcases of v3 = 5, 6, 7 in
the following.

58 W. Ding

Subcase 2.1 : v3 = 5. Clearly, v4 ≥ 5. As (3, 4, 5, 16, 16) has a pinwheel sched-
ule · · · |1231421312513213| · · · , we claim that it is schedulable. Then, we conclude
by Lemma 2 that each (3, 4, 5, [16,+∞), v5) is schedulable. We have

d((3, 4, 5, [5, 15], v5)) > 1
3 + 1

4 + 1
5 + 1

15 = 17
20 > 5

6 ,

d((3, 4, 5, [5, 15], v5)) ≤ 1
3 + 1

4 + 1
5 × 3 = 71

60 .

Since (1720 , 71
60]∩(0, 5

6] = ∅, we need no discussing the subcases of v4 = 5, 6, . . . , 15.
So, we conclude every (3, 4, 5, v4, v5) with d((3, 4, 5, v4, v5)) ≤ 5

6 is schedulable.
Subcase 2.2 : v3 = 6. So, v4 ≥ 6. Since (3, 4, 6, 12, 12) has a pinwheel schedule

· · · |124132152132| · · · , we claim that it is schedulable. By Lemma 2, we conclude
each (3, 4, 6, [12,+∞), v5) is schedulable. We have

d((3, 4, 6, [6, 11], v5)) > 1
3 + 1

4 + 1
6 + 1

11 = 37
44 ,

d((3, 4, 6, [6, 11], v5)) ≤ 1
3 + 1

4 + 1
6 × 3 = 13

12 .

Because of (3744 , 13
12] ∩ (0, 5

6] = ∅, we need no analyzing the subcases of v4 =
6, 7, 8, 9, 10, 11. Therefore, every (3, 4, 6, v4, v5) with d((3, 4, 6, v4, v5)) ≤ 5

6 is
schedulable.

Subcase 2.3 : v3 = 7. Clearly, v4 ≥ 7. As (3, 4, 7, 11, 11) has a pinwheel sched-
ule · · · |14213125132| · · · , we claim that it is schedulable. Further, we conclude
by Lemma 2 that each (3, 4, 7, [11,+∞), v5) is schedulable. So, we only need to
consider the subcases of v4 = 7, 8, 9, 10. We have

73
84 = 1

3 + 1
4 + 1

7 × 2 < d((3, 4, 7, 7, v5)) ≤ 1
3 + 1

4 + 1
7 × 3 = 85

84 ,
143
168 = 1

3 + 1
4 + 1

7 + 1
8 < d((3, 4, 7, 8, v5)) ≤ 1

3 + 1
4 + 1

7 + 1
8 × 2 = 41

42 ,
211
252 = 1

3 + 1
4 + 1

7 + 1
9 < d((3, 4, 7, 9, v5)) ≤ 1

3 + 1
4 + 1

7 + 1
9 × 2 = 239

252 .

Since

(
73
84

,
85
84

] ∪ (
143
168

,
41
42

] ∪ (
211
252

,
239
252

] ∩ (0,
5
6
] = ∅ ,

we need no considering the subcases of v4 = 7, 8, 9. Hence, we only need to
analyze the subcase of v4 = 10.

As (3, 4, 7, 10, 16) has a pinwheel schedule · · · |1231421312413215| · · · , we
claim that it is schedulable, and then conclude by Lemma 1 that every
(3, 4, 7, 10, [16,+∞)) is schedulable. We have

d((3, 4, 7, 10, [10, 15])) ≥ 1
3 + 1

4 + 1
7 + 1

10 + 1
15 = 25

28 ,

d((3, 4, 7, 10, [10, 15])) ≤ 1
3 + 1

4 + 1
7 + 1

10 × 2 = 389
420 .

Since [2528 , 389
420] ∩ (0, 5

6] = ∅, we need no discussing the subcases of v5 =
10, 11, 12, 13, 14, 15. So, each (3, 4, 7, 10, v5) with d((3, 4, 7, 10, v5)) ≤ 5

6 is schedu-
lable.

Case 3 : v2 = 5. Clearly, v3 ≥ 5. Since (3, 3, 9, 9, 9) is schedulable, we claim
by Lemma 1 that (3, 5, 9, 9, 9) is also schedulable. Furthermore, we conclude

Pinwheel Schedule of Low-Dimensional Vectors 59

from Lemma 2 that each (3, 5, [9,+∞), v4, v5) is schedulable. Next, we analyze
the subcases of v3 = 5, 6, 7, 8.

Subcase 3.1 : v3 = 5. Clearly, v4 ≥ 5. As (3, 5, 5, 10, 10) has a pinwheel sched-
ule · · · |1231412315| · · · , we claim that it is schedulable. Furthermore, we con-
clude by Lemma 2 that each (3, 5, 5, [10,+∞), v5) is schedulable. We have

d((3, 5, 5, [5, 9], v5)) > 1
3 + 1

5 + 1
5 + 1

9 = 38
45 ,

d((3, 5, 5, [5, 9], v5)) ≤ 1
3 + 1

5 × 4 = 17
15 .

Since (3845 , 17
15]∩ (0, 5

6] = ∅, we need no discussing the subcases of v4 = 5, 6, 7, 8, 9.
Therefore, every (3, 5, 5, v4, v5) with d((3, 5, 5, v4, v5)) ≤ 5

6 is schedulable.
Subcase 3.2 : v3 = 6. Clearly, v4 ≥ 6. As (3, 5, 5, 10, 10) given in Subcase 3.1

is schedulable, we claim by Lemma 1 that (3, 5, 6, 10, 10) is also schedulable. So,
we conclude by Lemma 2 that each (3, 5, 6, [10,+∞), v5) is schedulable. We have

d((3, 5, 6, [6, 7], v5)) > 1
3 + 1

5 + 1
6 + 1

7 = 59
70 ,

d((3, 5, 6, [6, 7], v5)) ≤ 1
3 + 1

5 + 1
6 × 3 = 31

30 .

Since (5970 , 31
30] ∩ (0, 5

6] = ∅, we only need to consider the subcase of v4 = 8, 9.
As (3, 5, 6, 8, 12) has a pinwheel schedule · · · |123142153124| · · · , we claim that

it is schedulable and then conclude by Lemma 1 that every (3, 5, 6, 8, [12,+∞))
is schedulable. We have

d((3, 5, 6, 8, [8, 11])) ≥ 1
3 + 1

5 + 1
6 + 1

8 + 1
11 = 403

440 ,

d((3, 5, 6, 8, [8, 11])) ≤ 1
3 + 1

5 + 1
6 + 1

8 × 2 = 19
20 .

Since [403440 , 19
20] ∩ (0, 5

6] = ∅, we do not need to consider the subcases of
(3, 5, 6, 8, v5) with v5 = 8, 9, 10, 11. So, we conclude that every (3, 5, 6, 8, v5) with
d((3, 5, 6, 8, v5)) ≤ 5

6 is schedulable. As (3, 5, 6, 8, 12) is schedulable, we claim by
Lemma 1 that (3, 5, 6, 9, 12) is also schedulable. Further, we conclude that every
(3, 5, 6, 9, [12,+∞)) is schedulable. We have

d((3, 5, 6, 9, [9, 11])) ≥ 1
3 + 1

5 + 1
6 + 1

9 + 1
11 = 893

990 ,

d((3, 5, 6, 9, [9, 11])) ≤ 1
3 + 1

5 + 1
6 + 1

9 × 2 = 83
90 .

Since [893990 , 83
90] ∩ (0, 5

6] = ∅, we do not need to consider the subcases of
(3, 5, 6, 9, v5) with v5 = 9, 10, 11. So, we conclude that every (3, 5, 6, 9, v5) with
d((3, 5, 6, 9, v5)) ≤ 5

6 is schedulable.
Subcase 3.3 : v3 = 7. Clearly, v4 ≥ 7. As (3, 5, 7, 9, 9) has a pinwheel schedule

· · · |123142153| · · · , we claim that it is schedulable. Furthermore, we conclude by
Lemma 2 that every (3, 5, 7, [9,+∞), v5) is schedulable. Next, we only need to
analyze the subcases of v4 = 7, 8.

Since (3, 5, 7, 7, 12) has a pinwheel schedule · · · |123142153124| · · · , we
claim that it is schedulable. Then, we conclude by Lemma 1 that every
(3, 5, 7, 7, [12,+∞)) is schedulable. We have

d((3, 5, 7, 7, [7, 11])) ≥ 1
3 + 1

5 + 1
7 + 1

7 + 1
11 = 1051

1155 ,

d((3, 5, 7, 7, [7, 11])) ≤ 1
3 + 1

5 + 1
7 × 3 = 101

105 .

60 W. Ding

Since [10511155 , 101
105] ∩ (0, 5

6] = ∅, we do not need to consider the subcases of
(3, 5, 7, 7, v5) with v5 = 7, 8, 9, 10, 11. Thus, we conclude each (3, 5, 7, 7, v5) with
d((3, 5, 7, 7, v5)) ≤ 5

6 is schedulable. As (3, 5, 7, 7, 12) is schedulable, we claim
by Lemma 1 that (3, 5, 7, 8, 12) is also schedulable. So, we conclude that every
(3, 5, 7, 8, [12,+∞)) is schedulable. We have

d((3, 5, 7, 8, [8, 11])) ≥ 1
3 + 1

5 + 1
7 + 1

8 + 1
11 = 8243

9240 ,

d((3, 5, 7, 8, [8, 11])) ≤ 1
3 + 1

5 + 1
7 + 1

8 × 2 = 389
420 .

Since [82439240 , 389
420] ∩ (0, 5

6] = ∅, we do not need to consider the subcases
of (3, 5, 7, 8, v5) with v5 = 8, 9, 10, 11. Therefore, every (3, 5, 7, 8, v5) with
d((3, 5, 7, 8, v5)) ≤ 5

6 is schedulable.
Subcase 3.4 : v3 = 8. Clearly, v4 ≥ 8. Since (3, 5, 8, 8, 8) has a pinwheel sched-

ule . . . |12314125| · · · , we claim that it is schedulable. Further, we conclude by
Lemma 2 that every (3, 5, 8, v4, v5) with d((3, 5, 8, v4, v5)) ≤ 5

6 is schedulable.
Case 4 : v2 ≥ 6. We claim (3, 6, 6, 6, 6) is schedulable since it has a

pinwheel schedule · · · |123145| · · · . By Lemma 2, we conclude that every
(3, [6,+∞), v3, v4, v5) is schedulable.

Based on above discussions, we conclude that every (3, v2, v3, v4, v5) with
d((3, v2, v3, v4, v5)) ≤ 5

6 is schedulable. �	

Lemma 7. Every v(5)(4) ∈ V (5)(4) with d(v(5)(4)) ≤ 5
6 is schedulable.

Theorem 3. Every v(5) ∈ V (5) with d(v(5)) ≤ 5
6 is schedulable.

Since all (2, 3, v3) with v3 ≥ 3 are unschedulable [6], we claim that the maxi-
mum density guarantee for all low-dimensional vectors can not be greater than 5

6 .
Combining Theorems 1, 2 and 3, we immediately obtain the following corollary.

Corollary 1. The maximum density guarantee for all low-dimensional (i.e., 3-,
4-, 5-dimensional) vectors is 5

6 .

4 Concluding Remarks

In this paper, we examine Chan and Chin’s conjecture [4] from the angle of
low-dimensional (i.e., 3-, 4- and 5-dimensional) vectors. We first show several
fundamental properties of schedulable vectors, and then use these properties to
test whether or not a vector is schedulable. By testing all the low-dimensional
vectors, we prove that the maximum density guarantee for low-dimensional vec-
tors is 5

6 , which partially supports this conjecture.
It is also of great interest to prove this conjecture for general vectors.

Although the way used in this paper can not be directly applied to general
vectors (with arbitrary dimension), it indeed points out a potential technical
line to prove the conjecture.

Pinwheel Schedule of Low-Dimensional Vectors 61

References

1. Baruah, S., Bestavros, A.: Pinwheel scheduling for fault-tolerant broadcast disks
in real-time database systems. In: Proceedings of ICDE 1997, pp. 543–551 (1997)

2. Baruah, S.K., Lin, S.S.: Pfair scheduling of generalized pinwheel task systems.
IEEE Trans. Comput. 47(7), 812–816 (1998)

3. Chan, M.Y., Chin, F.: General schedulers for the pinwheel problem based on
double-integer reduction. IEEE Trans. Comput. 41(6), 755–768 (1992)

4. Chan, M.Y., Chin, F.: Schedulers for larger classes of pinwheel instances. Algorith-
mica 9(5), 425–462 (1993)

5. Dhall, S.K., Liu, C.L.: On a real-time scheduling problem. Oper. Res. 26(1), 127–
140 (1978)

6. Fishburn, P.C., Lagarias, J.C.: Pinwheel scheduling: achievable densities. Algorith-
mica 34(1), 14–38 (2002)

7. Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-time
scheduling problem. In: Proceedings of the 22nd Hawaii International Conference
on System Science, pp. 693–702 (1989)

8. Holte, R., Rosier, L., Tulchinsky, I., Varvel, D.: Pinwheel scheduling with two
distinct numbers. Theor. Comput. Sci. 100(1), 105–135 (1992)

9. Lin, S.S., Lin, K.J.: A pinwheel scheduler for three distinct numbers with a tight
schedulability bound. Algorithmica 19(4), 411–426 (1997)

10. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard
real-time environment. J. ACM 20(1), 46–61 (1973)

11. Romer, T.H., Rosier, L.E.: An algorithm reminiscent of euclidean-gcd for comput-
ing a function related to pinwheel scheduling. Algorithmica 17, 1–10 (1997)

Constant-Factor Greedy Algorithms for
the Asymmetric p-Center Problem

in Parameterized Complete Digraphs

Wei Ding1(B) and Ke Qiu2

1 Zhejiang University of Water Resources and Electric Power,
Hangzhou 310018, Zhejiang, China

dingweicumt@163.com
2 Department of Computer Science, Brock University,

St. Catharines, Canada
kqiu@brocku.ca

Abstract. This paper studies the asymmetric p-center problem
(ApCP) and the vertex-weighted asymmetric p-center problem
(WApCP) in complete digraphs (CD) satisfying the triangle inequality.
First, we propose two classes of parameterized complete digraphs, α-CD
and 〈α, β〉-CD from the angle of the parameterized upper bound on the
ratio of two asymmetric edge-weights between two different vertices and
on the ratio of two vertex-weights, respectively. Using the greedy method,
we design a (1 + α)-approximation algorithm for the ApCP in α-CD’s
and a (1 + αβ)-approximation algorithm for the WApCP in 〈α, β〉-CD’s,
respectively.

Keywords: Asymmetric p-center · Greedy Algorithm ·
Parameterized graph

1 Introduction

Let G = (V,E,w) be an undirected graph, where V is the set of n vertices, E
is the set of m edges, and w : E → R

+ is an edge-weight function. Given a
subset X ⊂ V and a vertex v ∈ V , the distance from X to v, w(X, v), is the
distance from the closest vertex in X to v. The discrete (vertex) p-center
problem (DpCP) asks for a subset X ⊂ V with |X| ≤ p such that the maxi-
mum distance from X to all vertices is minimized. The vertices in X are called
the facilities. Furthermore, if the facilities can be on the edges, the DpCP is
generalized to the continuous p-center problem (CpCP). Both of them were
proposed by Hakimi [9,10], and were proved to be NP-hard [15]. Without the
triangle inequality, they are both NP-hard to approximate within any factor.
They have many applications in real-world problems, e.g., establishing p emer-
gency facilities (hospitals or fire stations), and have been extensively studied
[1,2,4,7,8,11–15,17–19].

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 62–71, 2019.
https://doi.org/10.1007/978-3-030-27195-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_6

Asymmetric p-Center Problem in PCD’s 63

1.1 Exact Algorithms

The DpCP admits an O(np+1/(p−1)!)-time exhaustive algorithm. For the CpCP
in vertex-weighted and vertex-unweighted graphs, Kariv and Hakimi [15] gave an
O(mpn2p−1 log n/(p − 1)!)- and an O(mpn2p−1/(p − 1)!)-time exact algorithm,
respectively. For p = 1, they gave an O(mn log n)- and an O(mn + n2 log n)-
time algorithm, respectively, when the distance matrix is available. In [5], they
considered a variant of the C1CP with a subset S ⊂ V of s terminals in
vertex-unweighted graphs and obtained an O(s(n − s)2 + s2(n − s))-time exact
algorithm. For the CpCP in vertex-weighted graphs, Tamir [19] presented an
O(mpnpα(n) log n)-time exact algorithm, where α(n) is the inverse Ackermann
function. Recently, Bhattacharya and Shi [2] developed a significantly improved
algorithm with time complexity of O(mpnp/22log

∗ n log n), where log∗ n denotes
the iterated logarithm of n, based on the observation that the CpCP can be
transformed to the well-known Klee’s measure problem [3]. Specifically, its time
complexity is O(m2n log2 n) when p = 2.

1.2 Approximation Algorithms

It is known that the DpCP in a connected undirected graph is equivalent to
that in the corresponding complete graph, Gc = (V,Ec, d), where Ec is the
set of 1

2n(n − 1) edges and the edge-weight function d : V × V → R
+ ∪ {0}

satisfies the triangle inequality. For the DpCP in vertex-unweighted Gc, Hsu and
Nemhauser [14] proved that it is NP-hard to find (2−o(1))-approximation unless
P = NP. In [12], Hochbaum and Shmoys gave a (best possible) 2-approximation
algorithm with time complexity of O(m log m). They also studied the weighted
version of DpCP [13], where each vertex has a weight representing the opening
cost and an upper bound on the total budget for opening facilities is given, and
designed a 3-approximation algorithm, which was shown to be tight [4]. In [16],
Liang considered the restricted version of DpCP, where only one part of vertices
admit facilities, and devised a 2-approximation algorithm. For the DpCP in
vertex-weighted Gc, Dyer and Frieze [7] presented an O(np)-time approximation
algorithm with a factor of min{3, 1+α}, where α is the maximum ratio between
vertex weights. In [18], Plesńık designed an O(n2 log n)-time 2-approximation
algorithm.

For the CpCP in vertex-unweighted undirected graphs, it is proved by Hsu
and Nemhauser [14] to be NP-hard to find a (32 − ε)-approximation, for any
ε > 0, unless P = NP. In [18], Plesńık questioned whether or not it is NP-
hard to find a (2 − ε)-approximation. More recently, Ding and Qiu [6] con-
sidered the restricted version of CpCP with only a subset of p terminals, and
presented an O(mp2 log m)-time 2-approximation algorithm. For the CpCP in
vertex-weighted undirected graphs, Plesńık [18] showed that the O(n2 log n)-
time 2-approximation algorithm for DpCP is also a 4-approximation algorithm
for CpCP, and further developed an O(mn2 log n)-time 2-approximation algo-
rithm.

64 W. Ding and K. Qiu

If a complete digraph allows the two edge-weights between two vertices to be
different, it is called asymmetric. The asymmetric p-center problem (ApCP)
is actually the DpCP in asymmetric complete digraphs satisfying the (directed)
triangle inequality. For the ApCP, Panigrahy and Vishwanathan [17] gave the
first approximation algorithm with a factor of O(log∗ n). In [1], Archer designed
two elegant O(log∗ p)-approximation algorithms using many ideas in [17]. The
ApCP was proved to be NP-hard to approximate within a factor of log∗ n−Θ(1)
unless NP ⊆ DTIME(nlog log n) in [4,11]. Later, Gørtz and Wirth [8] considered
the weighted version of ApCP with the total budget of opening facilities bounded,
and designed an O(log∗ n)-approximation algorithm.

1.3 Our Works

In this paper, we propose two classes of parameterized complete digraphs. If a
complete digraph satisfies that the ratio of two asymmetric edge-weights between
two different vertices is always bounded by a parameter α ≥ 1, it is called an
α-complete digraph (α-CD). For the ApCP in α-CD’s, we design a greedy approx-
imation algorithm with a factor of 1+α. If a vertex-weighted complete digraph is
an α-CD and satisfies that the ratio of two vertex-weights is always bounded by a
parameter β ≥ 1, it is called an 〈α, β〉-complete digraph (〈α, β〉-CD). This paper
also studies the vertex-weighted asymmetric p-center problem (WApCP)
in 〈α, β〉-CD’s, and develops a (1+αβ)-approximation greedy algorithm. Both of
them are constant-factor approximation algorithms when α and β are constants,
which break the barrier log∗ n on the approximability of the ApCP in complete
digraphs satisfying the triangle inequality [4].

Organization. The rest of this paper is organized as follows. In Sect. 2, we
define the ApCP and WApCP formally, provide some observations and define
parameterized complete digraphs. In Sect. 3, we present a greedy approximation
algorithm for the ApCP in α-CD’s. In Sect. 4, we develop a greedy approximation
algorithm for the WApCP in 〈α, β〉-CD’s. In Sect. 5, we conclude this paper.

2 Preliminaries

2.1 Definitions and Notations

Let Dc = (V,Ac, d) be a complete digraph, where V = {v1, v2, . . . , vn} is the set
of n vertices, Ac is the set of n(n − 1) directed edges, and the edge-weight func-
tion d : V ×V → R

+∪{0} must be metric (satisfying the triangle inequality), i.e.,
d(vi, vj) ≤ d(vi, vk) + d(vk, vj),∀i, j, k, and d(vi, vi) = 0. Let Dρ

c = (V,Ac, d, ρ)
be a vertex-weighted complete digraph, where ρ : V → R

+ ∪ {0} is a vertex-
weight function. Unless otherwise specified, Dc and Dρ

c always denote such com-
plete digraphs, respectively, in the rest of this paper.

A set of cardinality of q is called a q-set. Let C = {c1, c2, . . . , cq} ⊂ V be
a q-set of V with no duplicate. The distance from C to vi, d(C, vi), is referred
to as the shortest distance from one vertex in C to vi, for any 1 ≤ i ≤ n.

Asymmetric p-Center Problem in PCD’s 65

So, d(C, vi) = min1≤j≤q d(cj , vi). The maximum distance from C to V is called
the radius of C, denoted by r(C). Given a complete digraph, Dc = (V,Ac, d), the
asymmetric p-center problem (ApCP) asks for a subset of V with cardinality
at most p such that the radius is minimized. Let C∗ be an optimal solution to
ApCP in Dc. We have

r(C) = max
1≤i≤n

d(C, vi), (1)

and

r(C∗) = min
C⊆V, |C|≤p

r(C). (2)

The weighted distance from C to vi is defined as ρ(vi)d(C, vi), and the max-
imum weight distance from C to V is called weighted radius of C, denoted
by wr(C). Given a vertex-weighted complete digraph, Dρ

c = (V,Ac, d, ρ), the
weighted asymmetric p-center problem (WApCP) asks for a subset of V
such that the weighted radius is minimized. Let C∗

ρ be an optimum to WApCP
in Dρ

c . We have

wr(C) = max
1≤i≤n

ρ(vi)d(C, vi), (3)

and

wr(C∗
ρ) = min

C⊆V, |C|≤p
wr(C). (4)

Obviously, the classic ApCP is just a special case of WApCP where all the
vertices have a uniform weight. The focus of this paper is to study the WApCP
in a vertex-weighted complete digraph.

2.2 Observations

Let D = (V,A,w) be a digraph, where V = {v1, v2, . . . , vn} is the set of n
vertices, A is the set of m directed edges, and each directed edge (v, u) ∈ A has
a nonnegative weight w(a) ≥ 0. Let d(vi, vj) denote the vi-to-vj shortest path
distance (SPD) in D, for any pair of vertices, vi and vj . In general, d(vi, vj) �=
d(vj , vi). Therefore, the shortest path graph (SPG) induced by D is in general an
asymmetric complete digraph. In rare cases where d(vi, vj) = d(vj , vi),∀i, j, the
corresponding SPG is called symmetric and is essentially an undirected complete
graph. Of course, the SPG induced by an undirected graph is also an undirected
complete graph. Furthermore, we let the weight of directed edge (v, u) in SPG
be ∞ if v is not connected to u when D is not strongly connected.

The following two observations point out a way of solving the DpCP in general
(vertex-weighted) digraphs.

Observation 1. Let D = (V,A,w) be a digraph and Dc = (V,Ac, d) be the
corresponding SPG induced by D. If Dc is asymmetric then the DpCP in D is
equivalent to the ApCP in Dc, and the DpCP in Gc otherwise. Here, Gc is the
corresponding undirected complete graph.

66 W. Ding and K. Qiu

Observation 2. Let Dρ = (V,A,w, ρ) be a vertex-weighted digraph and Dρ
c =

(V,Ac, d, ρ) be the corresponding SPG induced by Dρ. If Dρ
c is asymmetric then

the vertex-weighted version of DpCP in Dρ is equivalent to the WApCP in Dρ
c .

2.3 Parameterized Complete Digraphs

In Sect. 2.2, it is shown in observations that the DpCP in a general digraph can
be reduced to ApCP in the corresponding complete digraph in general. In this
section, we consider several classes of parameterized complete digraphs, both of
which arise from the real-world problems.

In a general strongly connected digraph, there are cases where the ratio
between the v-to-u distance and the u-to-v distance is bounded by a param-
eter, for any pair of vertices, v and u. This inspires us to consider a single-
parameterized complete digraph as follows.

Definition 1. Given a complete digraph Dc = (V,Ac, d) and a real number α ≥
1, if d : V ×V → R

+∪{0} is metric and satisfies that d(vi, vj) ≤ α·d(vj , vi),∀i, j,
then Dc is called an α-complete digraph, abbreviated as α-CD and denoted by
Dα.

Furthermore, when the ratio between the weight of vertex v and the weight
of vertex u is also bounded by a parameter, we propose the following double-
parameterized complete digraph based on Definition 1.

Definition 2. Given a vertex-weighted complete digraph Dρ
c = (V,Ac, d, ρ) and

two real numbers, α ≥ 1 and β ≥ 1, if Dρ
c is an α-CD and satisfies that ρ(vi)

ρ(vj)
≤

β,∀i, j, then Dρ
c is called an 〈α, β〉-complete digraph, abbreviated as 〈α, β〉-CD

and denoted by Dβ
α.

3 A (1 + α)-Approximation to ApCP in α-CD

In this section, we study ApCP in α-CD’s with α ≥ 1, and design a (1 + α)-
approximation greedy algorithm, called ApCP-CDA, based on the framework in
[12,18]. Let C∗

1 be an optimal solution to ApCP, and opt1 be the optimal value.
Also, we let CA

1 be an algorithm solution of ApCP-CDA.

3.1 A Test Procedure Using Greedy Method

In this subsection, we use greedy method to design a test procedure, called
TEST1, which will play an important role in ApCP-CDA. The input of TEST1

consists of an α-CD with α ≥ 1, Dα = (V,Ac, d), and a real number λ > 0.
So, TEST1 has two input parameters, α ≥ 1 and λ > 0. TEST1(α, λ) picks out
unlabelled vertices successively to obtain a solution, denoted by C1(λ). During
the process of obtaining C1(λ), we let U denote the set of unlabelled vertices.
Initially, set C1(λ) = ∅ and U = V . TEST1 uses greedy method to select an
unlabelled vertex into C1(λ) and then label vertices. Specifically, every time an

Asymmetric p-Center Problem in PCD’s 67

unlabelled vertex û ∈ U is selected arbitrarily into C1(λ), each unlabelled vertex
u ∈ U satisfying that d(û, u) ≤ (1 + α)λ is labelled. Repeat above operation
until U = ∅ or |C1(λ)| = p. If TEST1 terminates with U = ∅, then TEST1 finds a
subset C1(λ) ⊂ V with cardinality at most p, satisfying that r(C1(λ)) ≤ (1+α)λ,
and so returns YES. Otherwise, TEST1 fails and returns NO.

Theorem 1. Given Dα = (V,Ac, d) with α ≥ 1, TEST1(α, λ) can find a subset
C1(λ) ⊂ V with |C1(λ)| ≤ p satisfying that r(C1(λ)) ≤ (1 + α)λ in O(pn) time
for the ApCP in Dα if there is a subset F1 ⊂ V with |F1| ≤ p satisfying that
r(F1) ≤ λ, for any real number λ > 0.

TEST1(α, λ): Test Procedure.

Input: Dα = (V, Ac, d) with α ≥ 1, and λ ∈ R
+.

Output: NO or YES with C1(λ) ⊂ V .

01: C1(λ) ← ∅; U ← V ;
02: while U 	= ∅ and |C1(λ)| < p do
03: Select a vertex û ∈ U arbitrarily;
04: C1(λ) ← C1(λ) ∪ {û};
05: N(û; (1 + α)λ) ← {u ∈ U|d(û, u) ≤ (1 + α)λ};
06: U ← U \ N(û; (1 + α)λ);
07: end
08: if U 	= ∅ then Return NO;
09: else Return YES and C1(λ); endif

By letting F1 = C∗
1 and λ = opt1 in Theorem 1, we conclude from r(C∗

1) ≤
opt1 that TEST1(α, opt1) can find a subset C′

1 ⊂ V with |C′
1| ≤ p satisfying

that r(C′
1) ≤ (1+α)opt1. Immediately, we obtain the following corollary. TEST1

surely can find a (1 + α)-approximation to the ApCP in α-CD’s.

Corollary 1. Given Dα = (V,Ac, d) with α ≥ 1, TEST1(α, opt1) can produce a
(1 + α)-approximation to the ApCP in Dα.

3.2 A (1 + α)-Approximation Algorithm

Based on the test procedure, we design a constant-factor approximation algo-
rithm, called ApCP-CDA, for the ApCP in α-CD’s. Given an α-CD with n ver-
tices, there are n(n − 1) possible values of radius, i.e., d(vi, vj),∀i, j, i �= j. We
delete the duplicates in all these values and arrange the remaining s values into
an increasing sequence, g1 < g2 < · · · < gs. Clearly, s ≤ n(n − 1).

In Step 1 of ApCP-CDA, the above sequence is obtained by sorting all the
remaining values. Let α′ be the tight upper bound on the ratio of two asymmetric
edge-weights between two different vertices in the given α-CD, i.e.,

α′ = max
1≤i,j≤n,i �=j

d(vi, vj)
d(vj , vi)

. (5)

68 W. Ding and K. Qiu

Clearly, α′ ≤ α. In Step 2, the value of α′ is determined. The key task is to
find the smallest one, gk∗ , in g1, g2, . . . , gs, which makes TEST1(α′, gk) return
YES. Of course, we can use a straightforward sequential search to find gk∗ . Every
search calls TEST1 once and as a result the whole search calls TEST1 O(s) times.
Technically, we can apply a binary search to g1, g2, . . . , gs to find gk∗ , as described
in Step 3 of ApCP-CDA. It is sufficient to apply TEST1 O(log s) times, which
reduces O(s) times greatly.

The binary search is described as follows. If TEST1(α′, g1) returns YES, then
we know that gk∗ = g1 and the output is C1(g1), i.e., CA

1 = C1(g1). Otherwise, we
use a binary search to find gk∗ . Let LB and UB be the lower bound and upper
bound on k∗, respectively. Initially, set LB = 1 and UB = s. Let B = �LB+UB

2 �.
If TEST1(α′, gB) returns YES, then B becomes a new upper bound and LB
remains the lower bound. If TEST1(α′, gB) returns NO, then B becomes a new
lower bound and UB remains the upper bound. Repeat above operation until UB
and LB become two consecutive integers. In the whole operation, TEST1(α′, gUB)
always returns YES while TEST1(α′, gLB) always returns NO. Hence, the final
UB is just k∗, and the output is C1(gUB), i.e., CA

1 = C1(gUB).

ApCP-CDA: Algorithm for ApCP in Dα with α ≥ 1.

Input: Dα = (V, Ac, d) with α ≥ 1.
Output: CA

1 ⊂ V with |CA
1 | ≤ p.

Step 1: Delete the duplicates in d(vi, vj), 1 ≤ i, j ≤ n, i 	= j,
and arrange the remaining values into an increasing
sequence, g1 < g2 < · · · < gs.

Step 2: α′ ← max1≤i,j≤n,i�=j
d(vi,vj)

d(vj ,vi)
;

Step 3: if TEST1(α
′, g1) = YES then

Return C1(g1);
else

LB ← 1; UB ← s;
while UB − LB > 1 do

B ← �LB+UB
2

;
if TEST1(α

′, gB) = NO then LB ← B;
else TEST1(α

′, gB) = YES then UB ← B;
endif

end
Return C1(gUB);

endif

Theorem 2. Given Dα = (V,Ac, d), α ≥ 1 with n vertices, ApCP-CDA can
produce a (1 + α)-approximation to the ApCP in Dα within O(n2 log n) time.

Moreover, we can obtain that the performance factor of ApCP-CDA is actually
1 + α′ for the ApCP in the given α-CD.

Asymmetric p-Center Problem in PCD’s 69

4 WApCP in 〈α, β〉-CD

In this section, we study the WApCP in 〈α, β〉-CD’s with α ≥ 1 and β ≥ 1. Let
opt2 and C∗

2 be the optimal value and the optimum, respectively. By adjusting
ApCP-CDA to the WApCP in 〈α, β〉-CD’s, we derive a constant-factor approxi-
mation algorithm, called ApCP-CAG. Let CA

2 be an algorithm solution of ApCP-
CAG.

The framework of ApCP-CAG is the same as ApCP-CDA. Let TEST2 denote
the test procedure of ApCP-CAG. The key difference between TEST2 and TEST1

is that every unlabelled vertex u ∈ U satisfying that ρ(u)d(û, u) ≤ (1 + αβ)λ
is labelled when û ∈ U is selected as a facility. Let N(û; (1 + αβ)λ) be the
subset of such vertices to be labelled. By replacing N(û; (1+α)λ) in TEST1 with
N(û; (1+αβ)λ), we obtain TEST2. Obviously, TEST2 has three parameters (real
numbers), α ≥ 1, β ≥ 1 and λ > 0. Let C2(λ) be the output of TEST2(α, β, λ).
Accordingly, Theorem 1 is adjusted to the following one.

Theorem 3. Given Dβ
α = (V,Ac, d, ρ) with α ≥ 1, β ≥ 1, TEST2(α, β, λ) can

find a subset C2(λ) ⊂ V with |C2(λ)| ≤ p satisfying that wr(C2(λ)) ≤ (1 + αβ)λ
in O(pn) time for the WApCP in Dβ

α if there is a subset F2 ⊂ V with |F2| ≤ p
satisfying that wr(F2) ≤ λ, for any real number λ > 0.

Let β′ be the tight upper bound on the ratio between any two difference
vertex-weights in the given 〈α, β〉-CD, i.e.,

β′ = max
1≤i,j≤n,i �=j

ρ(vi)
ρ(vj)

. (6)

Clearly, β′ ≤ β. In Step 2 of ApCP-CAG, the value of β′ is computed, additionally,
which requires O(n2) time.

Given an 〈α, β〉-CD with n vertices, there are n(n − 1) possible values of
weighted radius, i.e., ρ(vj)d(vi, vj),∀i, j, i �= j. We delete the duplicates in all the
possible values and arrange the remaining t values into an increasing sequence,
h1 < h2 < · · · < ht. Clearly, t ≤ n(n − 1). Step 1 of ApCP-CAG computes this
sequence instead of g1, g2, . . . , gs. Let hk� be the smallest value in h1, h2, . . . , ht

such that TEST2(α′, β′, hk) returns YES. Similarly, we can prove that hk� ≤
opt2. Combining with Theorem 3, we conclude that

wr(CA
2) = wr(C2(hk�)) ≤ (1 + α′β′)hk� ≤ (1 + α′β′)opt2 ≤ (1 + αβ)opt2. (7)

Theorem 4. Given Dβ
α = (V,Ac, d, ρ) with α ≥ 1 and β ≥ 1, ApCP-CAG can

produce a (1+αβ)-approximation to the WApCP in Dβ
α within O(n2 log n) time.

Furthermore, we can obtain that the performance factor of ApCP-CAG is
actually 1 + α′β′ for the WApCP in the given 〈α, β〉-CD.

70 W. Ding and K. Qiu

5 Conclusions

This paper studied the classic ApCP and the vertex-weighted version of ApCP
(WApCP). First, we proposed two classes of parameterized complete digraphs,
α-CD and 〈α, β〉-CD, from the prospective of the parameterized upper bound
on the ratio of two asymmetric edge-weights between two different vertices and
on the ratio of two vertex-weights, respectively. For the classic ApCP in α-CD’s,
we present a (1+α)-approximation greedy algorithm. For the WApCP in 〈α, β〉-
CD’s, we develop a (1 + αβ)-approximation greedy algorithm.

In [4], the ApCP in general complete digraphs satisfying the triangle inequal-
ity is proved to be NP-hard to approximate within a factor of log∗ n − Θ(1). It
is also of great interest to study the inapproximability of the WApCP in general
vertex-weighted complete digraphs satisfying the triangle inequality.

References

1. Archer, A.: Two O(log*k)-approximation algorithms for the asymmetric k -center
problem. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 1–14.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45535-3 1

2. Bhattacharya, B., Shi, Q.S.: Improved algorithms to network p-center location
problems. Comput. Geom. 47, 307–315 (2014)

3. Chan, T.M.: A (slightly) faster algorithm for Klees measure problem. In: Proceed-
ings of the 24th ACM SoCG, pp. 94–100 (2008)

4. Chuzhoy, J., Guha, S., Halperin, E., Kortsarz, G., Khanna, S., Naor, S.: Asym-
metric k-center is log∗ n-hard to approximate. In: Proceedings of the 36th STOC,
pp. 21–27 (2004)

5. Ding, W., Qiu, K.: Algorithms for the minimum diameter terminal steiner tree
problem. J. Comb. Optim. 28(4), 837–853 (2014)

6. Ding, W., Qiu, K.: Minimum diameter k-steiner forest. In: Proceedings of the 12th
AAIM, pp. 1–11 (2018)

7. Dyer, M.E., Frieze, A.M.: A simple heuristic for the p-centre problem. Oper. Res.
Lett. 3, 285–288 (1985)

8. Gørtz, I.L., Wirth, A.: Asymmetry in k-center variants. Theor. Comput. Sci. 361,
188–199 (2006)

9. Hakimi, S.L.: Optimum locations of switching centers and the absolute centers and
medians of a graph. Oper. Res. 12(3), 450–459 (1964)

10. Hakimi, S.L.: Optimal distribution of switching centers in a communications net-
work and some related graph-theoretic problems. Oper. Res. 13, 462–475 (1965)

11. Halperin, E., Kortsarz, G., Krauthgamer, R.: Tight lower bounds for the asym-
metric k-center problem. Technical report, 03-035, Electronic Colloquium on Com-
putational Complexity (2003)

12. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
Math. Oper. Res. 10(2), 180–184 (1985)

13. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms
for bottleneck problems. J. ACM 33, 533–550 (1986)

14. Hsu, W.L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete
Appl. Math. 1, 209–215 (1979)

https://doi.org/10.1007/3-540-45535-3_1

Asymmetric p-Center Problem in PCD’s 71

15. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems.
I: the p-centers. SIAM J. Appl. Math. 37(3), 513–538 (1979)

16. Liang, H.Y.: The hardness and approximation of the star p-hub center problem.
Oper. Res. Lett. 41, 138–141 (2013)

17. Panigrahy, R., Vishwanathan, S.: An O(log∗ n) approximation algorithm for the
asymmetric p-center problem. J. Algorithms 27, 259–268 (1998)

18. Plesńık, J.: A heuristic for the p-center problem in graphs. Discrete Appl. Math.
17, 263–268 (1987)

19. Tamir, A.: Improved complexity bounds for center location problems on networks
by using dynamic data structures. SIAM J. Discrete Math. 1(3), 377–396 (1988)

Updating Matrix Polynomials

Wei Ding1(B) and Ke Qiu2

1 Zhejiang University of Water Resources and Electric Power,
Hangzhou 310018, Zhejiang, China

dingweicumt@163.com
2 Department of Computer Science, Brock University, St. Catharines, Canada

kqiu@brocku.ca

Abstract. Given a square matrix M = (uij)n×n and an m-order matrix
polynomial fm(M) =

∑m
k=0 akMk = a0I + a1M + a2M

2 + · · · + amMm,
if M is a dense matrix and is perturbed to become M ′ at a single
entry, say upq, a straightforward re-calculation of fm(M ′) would require
O(nω · α(m)) arithmetic operations, where ω < 2.3728639 and α(m)
depends on the strategy of computing M ′k, 1 ≤ k ≤ m appearing in
fm(M ′), using the fastest square matrix multiplication algorithm by
François Le Gall (ISSAC’14). In this paper, we assume that M is a dense
matrix and that fm(M) is known while no other additional information
is available. From the perspective of the naive (a.k.a., standard row-by-
column) matrix multiplication, we discuss the update of matrix polyno-
mials. First, we present O(n)-, O(n2)- and O(n2)-operations update algo-
rithms for 2-order, 3-order and 4-order matrix polynomials, respectively.
Furthermore, we discuss the update of high-order matrix polynomials
with a sparse coefficient vector and as a result, propose a combinatorial
heuristic updating method based on directed Steiner tree in a directed
acyclic graph.

Keywords: Matrix polynomials · Update · Directed Steiner tree

1 Introduction

1.1 Motivation

A frequently occurring problem in control theory and some other application
areas is that of computing a function f(M) of an n by n matrix M [7]. A rich
class of such natural matrix functions includes polynomial functions of a matrix
[9]. Let fm(x) =

∑m
k=0 akxk = a0 + a1x + a2x

2 + · · · + amxm be an m-order
polynomial, where m ≥ 0, and M = (uij)n×n be an n by n square matrix, the
matrix polynomial [1,7,9] is defined as

fm(M) =
m∑

k=0

akMk = a0I + a1M + a2M
2 + · · · + amMm.

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 72–82, 2019.
https://doi.org/10.1007/978-3-030-27195-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_7

Updating Matrix Polynomials 73

The minimal and characteristic polynomials are examples of matrix polyno-
mials. Also, the approximation of transcendental matrix functions often involves
the evaluation of matrix polynomials [7]. Due to many applications of matrix
polynomials, it is important to compute matrix polynomials efficiently. A special
case of matrix polynomials is power of matrices. It is also important to compute
power of matrices as matrices can be used to represent (weighted) graphs and
the power of matrices (and their closures) are related to weights of all walks of
certain lengths [9] and lengths of shortest paths between two vertices using at
most a certain number of edges [8].

Suppose, for a square matrix M and a polynomial f(x), we have evalu-
ated f(M). If M is changed to M ′, it is necessary to evaluate f(M ′). One
could certainly re-compute the matrix polynomial at M ′ from scratch (static
re-evaluation). However, when there exist only a bit of perturbations from M
to M ′, it is costly to re-evaluate f at M ′. So, it becomes very important to
develop a dynamic algorithm for updating f(M) to f(M ′) which runs faster
than re-evaluation. The problem of updating f(M) to f(M ′) is named updat-
ing matrix polynomials problem (UMPP).

For instance, when one system involves the computation of a collection of
polynomials with high-order square matrices as input and the matrices are per-
turbed regularly, the dynamic update of matrix polynomials will reduce the time
cost greatly than static re-evaluation. In the rest of this paper, M is always a
dense matrix without otherwise specified, and f(M) is known while no other
additional information is available.

1.2 Related Works

For matrix computations, a good example is the Sherman-Morrison formula with
one of its main applications being to compute the inverse of a matrix A (assuming
that A−1 exists and is known) when A is corrected (perturbed) to A+uvT , where
u and v are column vectors, cheaply, without having to compute (A + uvT)−1

from scratch. In [13], Sankowski studied many dynamic matrix problems. Reif
and Tate considered the problem of incrementally evaluating algebraic functions
which include discrete Fourier transform, multipoint polynomial evaluation, and
matrix-matrix product, among many others [12]. The incremental algorithm is
to quickly process on-line requests such as “change the input value x to x′”.
General methods are developed which result in many incremental algorithms for
solving a host of problems. In addition, they also gave lower bounds on time
costs of incremental algorithms for the problems studied there. Specifically, for
the matrix-matrix product problem, their general methods imply a time cost
of O(

√
M(n)) where M(n) is the best matrix multiplication time, which now

stands at O(nω) where ω < 2.3728639 [11], as well a lower bound for the problem.
This lower bound has been subsequently improved to Ω(n) [5]. We refer readers
to [3–6] for more other dynamic matrix or algebraic problems.

74 W. Ding and K. Qiu

1.3 Our Results

The focus of this paper is to deal with the case of UMPP where a single entry of
a given matrix changes while all the other entries stay unchanged. Let M be an
n by n dense matrix and fm(x) be an m-order polynomial. When M is changed
to M ′ at a single entry, say upq, a straightforward re-evaluation of fm(M ′) would
require O(nω ·α(m)) operations, where ω < 2.3728639 and α(m) depends on the
strategy of computing M ′k, 1 ≤ k ≤ m appearing in fm(M ′), using the fastest
square matrix multiplication algorithm by François Le Gall [11]. In this paper,
we discuss how to update fm(M) to fm(M ′) from the perspective of standard
row-by-column matrix multiplication.

For the update of low-order matrix polynomials, we establish update formulas
and as a result present seemingly direct but nontrivial update algorithms, i.e.,
O(n)-, O(n2)- and O(n2)-operations algorithms for 2-order, 3-order and 4-order
matrix polynomials, respectively. Our algorithms utilize only fm(M) and need no
other additional information. It is shown by computational results that update
algorithms run substantially faster than the static re-evaluation. For the update
of high-order matrix polynomials with a sparse coefficient vector, we propose a
heuristic updating method based on directed Steiner tree in a directed acyclic
graph.

Organization. The rest of this paper is organized as follows. We show some
preliminary works in Sect. 2, and present updating algorithms for 2-, 3- and 4-
order matrix polynomials in Sects. 3, 4 and 5, respectively. In Sect. 6, we offer
some concluding remarks. Due to page limit, the updating method for high-order
matrix polynomials and the experimental results are omitted in this paper.

2 Preliminaries

Let fm(x) be an m-order polynomial,

fm(x) =
m∑

k=0

akxk = a0 + a1x + a2x
2 + · · · + amxm, m ≥ 0, (1)

and M = (uij)n×n be an n by n dense matrix,

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

u11 · · · u1j · · · u1n

...
. . .

...
. . .

...
ui1 · · · uij · · · uin

...
. . .

...
. . .

...
un1 · · · unj · · · unn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2)

where uij is the element at the intersection of the i-th row and the j-th column.
By taking M into Eq. (1), we get a matrix polynomial as follows,

fm(M) =
m∑

k=0

akMk = a0In + a1M + a2M
2 + · · · + amMm, m ≥ 0, (3)

Updating Matrix Polynomials 75

where In is an n-order identity matrix.
Let M ′ be a new matrix derived from replacing upq with u′

pq and all the other
elements staying unchanged. Set δ = u′

pq − upq. Let En(p, q) = (eij)n×n be an
n × n matrix with epq = 1 and all the other elements equal to zero. We have

M ′ = M + δEn(p, q). (4)

Let ∇pqfk, 1 ≤ k ≤ m be a function in M and δ based on fk(x),

∇pqfk(M, δ) = fk(M + δEn(p, q)) − fk(M), 1 ≤ p, q ≤ n. (5)

Specifically, ∇pqf0(M, δ) = 0n, where 0n is an n × n zero matrix. Lemma 1
shows the recursive equation of ∇pqfk(M, δ), 1 ≤ k ≤ m.

Lemma 1. Given an n×n matrix M and 1 ≤ p, q ≤ n, for any real number δ,

∇pqfk(M, δ) = ∇pqfk−1(M, δ) + ak(M + δEn(p, q))k − akMk, 1 ≤ k ≤ m. (6)

3 Update of 2-Order Matrix Polynomials

In this section, we discuss the update of 2-order matrix polynomials. We consider
2-order polynomials as follows and let A2 = (a0, a1, a2),

f2(x) = a0 + a1x + a2x
2.

Lemma 2. Given an n×n matrix M and 1 ≤ p, q ≤ n, for any real number δ,

∇pqf2(M, δ) = a1δEn(p, q) + a2δ[MEn(p, q) + En(p, q)M + δE2
n(p, q)]. (7)

Lemma 3. For any n × n matrix M and 1 ≤ p, q ≤ n, we have

1. MEn(p, q) = (α(1)
ij)n×n =

q-th⎛

⎜
⎝

0 · · · u1p · · · 0
...
. . .

...
. . .

...
0 · · · unp · · · 0

⎞

⎟
⎠

;

2. En(p, q)M = (α(2)
ij)n×n =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · 0
...

. . .
...

uq1 · · · uqn

...
. . .

...
0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

p-th ;

3. E2
n(p, q) = (εij)n×n =

{
0n if p �= q,

En(p, p) if p = q.

76 W. Ding and K. Qiu

Theorem 1. Let ∇pqf2(M, δ) = (bij)n×n. We have

bij =

⎧
⎪⎨

⎪⎩

0, if i �= p, j �= q,

δa2uqj , if i = p, j �= q,

δa2uip, if i �= p, j = q,

(8)

and

bpq =

{
δ(a1 + a2(upp + uqq)), if p �= q,

δ(a1 + 2a2upp) + δ2a2, if p = q.
(9)

Combining Eqs. (8), (9) and (5), we obtain our update algorithm, called
Update-2OMP. Its output is the desired matrix polynomial f2(M ′).

Theorem 2. Given an n×n matrix M and a real number δ, when M changes to
M ′ by upq of M increasing by δ and all the other elements remaining unchanged,
Update-2OMP updates f2(M) to f2(M ′) in O(n) arithmetic operations.

4 Update of 3-Order Matrix Polynomials

In this section, we discuss the update of 3-order matrix polynomials. We consider
3-order polynomials as follows and let A3 = (a0, a1, a2, a3),

f3(x) = a0 + a1x + a2x
2 + a3x

3.

Update-2OMP(M, f2(M), A2, (p, q), δ):

Let f2(M) = (fij)n×n;
if p = q then fpq ← fpq + δ(a1 + 2a2upp) + δ2a2;
else fpq ← fpq + δ(a1 + a2(upp + uqq)); endif
for j := 1 to n do

if j �= q then fpj ← fpj + δa2uqj ; endif
endfor
for i := 1 to n do

if i �= p then fiq ← fiq + δa2uip; endif
endfor
Return f2(M);

Lemma 4. Given an n×n matrix M and 1 ≤ p, q ≤ n, for any real number δ,

∇pqf3(M, δ) = ∇pqf2(M, δ) + a3δ[M2En(p, q) + MEn(p, q)M

+En(p, q)M2 + δ(ME2
n(p, q) + En(p, q)MEn(p, q)

+E2
n(p, q)M) + δ2E3

n(p, q)].

(10)

Updating Matrix Polynomials 77

Lemma 5. For any n × n matrix M and 1 ≤ p, q ≤ n, we have

1. M2En(p, q) = (β(1)
ij)n×n =

q-th
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · ·
n∑

s=1

u1susp · · · 0

...
. . .

...
. . .

...

0 · · ·
n∑

s=1

upsusp · · · 0

...
. . .

...
. . .

...

0 · · ·
n∑

s=1

unsusp · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

p-th ;

2. MEn(p, q)M = (β(2)
ij)n×n =

q-th⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

u1puq1 · · · u1puqq · · · u1puqn

...
. . .

...
. . .

...
uppuq1 · · · uppuqq · · · uppuqn

...
. . .

...
. . .

...
unpuq1 · · · unpuqq · · · unpuqn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

p-th ;

3. En(p, q)M2 = (β(3)
ij)n×n =

q-th⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · 0 · · · 0
...

. . .
...

. . .
...

n∑

s=1

uqsus1 · · ·
n∑

s=1

uqsusq · · ·
n∑

s=1

uqsusn

...
. . .

...
. . .

...
0 · · · 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

p-th ;

4. ME2
n(p, q) =

{
0n if p �= q,

MEn(p, p) if p = q.

5. En(p, q)MEn(p, q) = (β(4)
ij)n×n =

q-th⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · 0 · · · 0
...
. . .

...
. . .

...
0 · · · uqp · · · 0
...
. . .

...
. . .

...
0 · · · 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

p-th ;

6. E2
n(p, q)M =

{
0n if p �= q,

En(p, p)M if p = q.

7. E3
n(p, q) =

{
0n if p �= q,

En(p, p) if p = q.

78 W. Ding and K. Qiu

Theorem 3. Let ∇pqf3(M, δ) = (cij)n×n. We have

cij =

⎧
⎪⎨

⎪⎩

δa3uipuqj , if i �= p, j �= q,

δ(a2uqj + a3(uppuqj +
∑n

s=1 uqsusj)), if i = p, j �= q,

δ(a2uip + a3(uipuqq +
∑n

s=1 uisusp)), if i �= p, j = q,

(11)

and

cpq =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ(a1 + a2(upp + uqq) + a3(uppuqq if p �= q.

+
∑n

s=1(upsusp + uqsusq))) + δ2a3uqp,

δ(a1 + 2a2upp + a3(u2
pp + 2

∑n
s=1 upsusp)) if p = q.

+ δ2(a2 + 3a3upp) + δ3a3.

(12)

Based on Eqs. (11), (12) and (5), we design our update algorithm, called
Update-3OMP. For simplicity, we use c

(1)
ij , c

(2)
pj , c

(3)
iq to represent the three items

in Eq. (11), and c
(1)
pq and c

(2)
pq to represent the two items in Eq. (12), respectively.

Update-3OMP(M, f3(M), A3, (p, q), δ):

Let f3(M) = (gij)n×n;

if p = q then gpq ← gpq + c
(2)
pq ;

else gpq ← gpq + c
(1)
pq ; endif

for {i := 1 to n; j := 1 to n} do

if {i �= p, j �= q} then gij ← gij + c
(1)
ij ;

if {i = p, j �= q} then gpj ← gpj + c
(2)
pj ;

if {i �= p, j = q} then giq ← giq + c
(3)
iq ;

endfor
Return f3(M);

Theorem 4. Given an n×n matrix M and a real number δ, when M changes to
M ′ by upq of M increasing by δ and all the other elements remaining unchanged,
Update-3OMP updates f3(M) to f3(M ′) in O(n2) arithmetic operations.

5 Update of 4-Order Matrix Polynomials

In this section, we discuss the update of 4-order matrix polynomials. We consider
4-order polynomials as follows and let A4 = (a0, a1, a2, a3, a4),

f4(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4.

Updating Matrix Polynomials 79

Lemma 6. Given an n×n matrix M and 1 ≤ p, q ≤ n, for any real number δ,

∇pqf4(M, δ)

= ∇pqf3(M, δ) + a4δ[M3En(p, q) + M2En(p, q)M + MEn(p, q)M2

+En(p, q)M3 + δ(M2E2
n(p, q) + MEn(p, q)MEn(p, q)

+ME2
n(p, q)M + En(p, q)M2En(p, q) + En(p, q)MEn(p, q)M

+E2
n(p, q)M2) + δ2(ME3

n(p, q) + En(p, q)ME2
n(p, q)

+E2
n(p, q)MEn(p, q) + E3

n(p, q)M) + δ3E4
n(p, q)].

(13)

Lemma 7. For any n × n matrix M and 1 ≤ p, q ≤ n, we have

1. M3En(p, q) = (θ(1)ij)n×n =

q-th
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · ·
n∑

s=1

u1sβ
(1)
sq · · · 0

...
. . .

...
. . .

...

0 · · ·
n∑

s=1

upsβ
(1)
sq · · · 0

...
. . .

...
. . .

...

0 · · ·
n∑

s=1

unsβ
(1)
sq · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

p-th ;

2. M2En(p, q)M = (θ(2)ij)n×n =

q-th
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β
(1)
1q uq1 · · · β

(1)
1q uqq · · · β

(1)
1q uqn

...
. . .

...
. . .

...
β
(1)
pq uq1 · · · β

(1)
pq uqq · · · β

(1)
pq uqn

...
. . .

...
. . .

...
β
(1)
nq uq1 · · · β

(1)
nq uqq · · · β

(1)
nq uqn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

p-th ;

3. MEn(p, q)M2 = (θ(3)ij)n×n =

q-th
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u1pβ
(3)
p1 · · · u1pβ

(3)
pq · · · u1pβ

(3)
pn

...
. . .

...
. . .

...
uppβ

(3)
p1 · · · uppβ

(3)
pq · · · uppβ

(3)
pn

...
. . .

...
. . .

...
unpβ

(3)
p1 · · · unpβ

(3)
pq · · · unpβ

(3)
pn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

p-th ;

4. En(p, q)M3 = (θ(4)ij)n×n =

q-th⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 · · · 0
..
.

. . .
..
.

. . .
..
.

n∑
s=1

β
(3)
ps us1 · · ·

n∑
s=1

β
(3)
ps usq · · ·

n∑
s=1

β
(3)
ps usn

.

..
. . .

.

..
. . .

.

..
0 · · · 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p-th
.

80 W. Ding and K. Qiu

Lemma 8. For any n × n matrix M and 1 ≤ p, q ≤ n, we have

1. M2E2
n(p, q) =

{
0n if p �= q,

M2En(p, p) if p = q.

2. MEn(p, q)MEn(p, q) = (λ(1)
ij)n×n =

q-th
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · β
(2)
1p · · · 0

...
. . .

...
. . .

...
0 · · · β

(2)
pp · · · 0

...
. . .

...
. . .

...
0 · · · β

(2)
np · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

p-th ;

3. ME2
n(p, q)M =

{
0n if p �= q,

MEn(p, p)M if p = q.

4. En(p, q)M2En(p, q) = (λ(2)
ij)n×n =

q-th
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · 0 · · · 0
...
. . .

...
. . .

...
0 · · · β

(1)
qq · · · 0

...
. . .

...
. . .

...
0 · · · 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

p-th ;

5. En(p, q)MEn(p, q)M = (λ(3)
ij)n×n =

q-th
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 · · · 0 · · · 0
...

. . .
...

. . .
...

β
(2)
q1 · · · β

(2)
qq · · · β

(2)
qn

...
. . .

...
. . .

...
0 · · · 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

p-th ;

6. E2
n(p, q)M2 =

{
0n if p �= q,

En(p, p)M2 if p = q.

Lemma 9. For any n × n matrix M and 1 ≤ p, q ≤ n, we have

1. ME3
n(p, q) =

{
0n if p �= q,

MEn(p, p) if p = q.

2. En(p, q)ME2
n(p, q) =

{
0n if p �= q,

En(p, p)MEn(p, p) if p = q.

3. E2
n(p, q)MEn(p, q) =

{
0n if p �= q,

En(p, p)MEn(p, p) if p = q.

4. E3
n(p, q)M =

{
0n if p �= q,

En(p, p)M if p = q.

5. E4
n(p, q) =

{
0n if p �= q,

En(p, p) if p = q.

Updating Matrix Polynomials 81

Theorem 5. Let ∇pqf4(M, δ) = (dij)n×n. If p �= q then

dij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

cij + a4δ(β
(1)
iq uqj + uipβ

(3)
pj), if i �= p, j �= q,

cpj + a4δ(β
(1)
pq uqj + uppβ

(3)
pj +

∑n
s=1 β

(3)
ps usj) + a4δ

2β
(2)
qj , if i = p, j �= q,

ciq + a4δ(β
(1)
iq uqq + uipβ

(3)
pq +

∑n
s=1 uisβ

(1)
sq) + a4δ

2β
(2)
ip , if i �= p, j = q,

cpq + a4δ(β
(1)
pq uqq + uppβ

(3)
pq +

∑n
s=1(upsβ

(1)
sq + β

(3)
ps usq)) if i = p, j = q.

+ a4δ
2(β

(2)
pp + β

(2)
qq + β

(1)
qq),

(14)

and if p = q then

dij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cij + a4δ(β
(1)
ip upj + uipβ

(3)
pj) + a4δ

2β
(2)
ij , if i �= p, j �= p,

cpj + a4δ(β
(1)
pp upj + uppβ

(3)
pj +

∑n
s=1 β

(3)
ps usj) if i = p, j �= p,

+ a4δ
2(2β

(2)
pj + β

(3)
pj) + a4δ

3upj ,

cip + a4δ(β
(1)
ip upp + uipβ

(3)
pp +

∑n
s=1 uisβ

(1)
sp) if i �= p, j = p,

+ a4δ
2(β

(1)
ip + 2β

(2)
ip) + a4δ

3uip,

cpp + a4δ(β
(1)
pp upp + uppβ

(3)
pp +

∑n
s=1(upsβ

(1)
sp + β

(3)
ps usp)) if i = j = p.

+ a4δ
2(2β

(1)
pp + 3β

(2)
pp + β

(3)
pp) + 4a4δ

3upp,

(15)

Combining Eqs. (14), (15) and (5), we obtain our update algorithm, called
Update-4OMP. For simplicity, we let d

(0,1)
ij , d

(0,2)
pj , d

(0,3)
iq , d

(0,4)
pq represent the four

items in Eq. (14), and d
(1,1)
ij , d

(1,2)
pj , d

(1,3)
iq , d

(1,4)
pq represent the four items in Eq.

(15), respectively.

Update-4OMP(M, f4(M), A4, (p, q), δ):

Let f4(M) = (hij)n×n;
for {i := 1 to n; j := 1 to n} do

if {p �= q, i �= p, j �= q} then hij ← hij + d
(0,1)
ij ;

if {p = q, i �= p, j �= q} then hij ← hij + d
(1,1)
ij ;

if {p �= q, i = p, j �= q} then hpj ← hpj + d
(0,2)
pj ;

if {p = q, i = p, j �= q} then hpj ← hpj + d
(1,2)
pj ;

if {p �= q, i �= p, j = q} then hiq ← hiq + d
(0,3)
iq ;

if {p = q, i �= p, j = q} then hiq ← hiq + d
(1,3)
iq ;

if {p �= q, i = p, j = q} then hpq ← hpq + d
(0,4)
pq ;

if {p = q, i = p, j = q} then hpq ← hpq + d
(1,4)
pq ;

endfor
Return f4(M);

Theorem 6. Given an n×n matrix M and a real number δ, when M changes to
M ′ by upq of M increasing by δ and all the other elements remaining unchanged,
Update-4OMP updates f4(M) to f4(M ′) in O(n2) arithmetic operations.

82 W. Ding and K. Qiu

6 Conclusions

In this paper, we studied the update of low-order matrix polynomials, and
designed O(n)-, O(n2)-, and O(n2)-operations update algorithms for 2-, 3- and
4-order matrix polynomials, respectively, based on the naive matrix multipli-
cation. For high-order matrix polynomials with a sparse coefficient vector, we
proposed a combinatorial heuristic updating method.

It is of great interest to obtain faster algorithms for the update of high-
order matrix polynomials. Although it seems very hard to design update algo-
rithms based on faster square matrix multiplication algorithms [2,10,11,14], it
also remains as a future research topic.

References

1. Brualdi, R.A., Cvetković, D.: A Combinatorial Approach to Matrix Theory and
Its Applications. CRC Press, Boca Raton (2009)

2. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symb. Comput. 9, 251–280 (1990)

3. Frandsen, G.S.: Dynamic matrix algorithms, manuscript, BRICS, University of
Aarhus, Denmark, 11 April 2011

4. Frandsen, G.S., Frandsen, P.F.: Dynamic matrix rank. Theor. Comput. Sci. 410,
4085–4093 (2009)

5. Frandsen, G.S., Hansen, J.P., Miltersen, P.B.: Lower bounds for dynamic algebraic
problems. Inf. Comput. 171, 333–349 (2001)

6. Frandsen, G.S., Sankowski, P.: Dynamic normal forms and dynamic characteristic
polynomial. Theor. Comput. Sci. 412, 1470–1483 (2011)

7. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins
University Press, Baltimore and London (1996)

8. Goodrich, M.T., Tamassia, R.: Algorithm Design, Foundations, Analysis, and
Internet Examples. Wiley, Hoboken (2001)

9. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press,
Cambridge (2012)

10. Le Gall, F.: Faster algorithms for rectangular matrix multiplication. In: Proceed-
ings of 53rd FOCS, pp. 514–523 (2012)

11. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
39th ISSAC, pp. 296–303 (2014)

12. Reif, J.H., Tate, S.R.: On dynamic algorithms for algebraic problems. J. Algorithms
22, 347–371 (1997)

13. Sankowski, P.: Dynamic transitive closure via dynamic matrix inverse. In: Pro-
ceedings of 45th FOCS, pp. 509–517 (2004)

14. Vassilevska Williams, V.: Multiplying matrices faster than coppersmith-winograd.
In: Proceedings of 44th STOC, pp. 887–898 (2012)

On the Structure of Discrete Metric
Spaces Isometric to Circles

Andreas W. M. Dress1,2, Hiroshi Maehara3, Sabrina Xing Mei Pang4,
and Zhenbing Zeng1,5(B)

1 CAS-MPG Partner Institute for Computational Biology,
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences,

320 Yue Yang Road, Shanghai 200031, People’s Republic of China
{andreas,zbzeng}@picb.ac.cn

2 MPI for Mathematics in the Sciences, 04103 Leipzig, Germany
3 College of Education, Ryukyu University, Nishihara, Okinawa 903-0213, Japan

hmaehara@edu.u-ryukyu.ac.jp
4 Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, China

pangxingmei@mail.nankai.edu.cn
5 Department of Mathematics, Shanghai University, Shanghai 200444, China

zbzeng@shu.edu.cn

Abstract. A metric space (X,D) is called circular if it is isometric
to a subspace of a metric circle, that is, a circle in which distances are
measured by the length of the shorter arc connecting them. We show that
the following three conditions are equivalent: (1) X is circular, (2) every
4-point subset of X can be labeled as a, b, c, d so that D(a, b)+D(b, c) =
D(a, c), D(b, c) + D(c, d) = D(b, d) holds, and (3) every 4-point subset
of X is circular.

Keywords: Metric space · Circular metrics · Distance

1 Introduction

A metric space X = (X,D) with point space X and metric D : X × X→R is
called Euclidean if it is isometric to a subspace of a Euclidean space R

n, and
linear if it is isometric to a subspace of the real line R. In this note, a circle Γ
is always meant to be a metric circle, that is, a metric space (Γ, δ) whose point
set Γ is a circle of some positive radius ρ contained in R

2 in which, however,
the circle distance δ(u, v) = δΓ (u, v) between any two points u, v ∈ Γ is the arc
length between u and v in Γ , i.e., it is the minimum of the lengths of the two
arcs in Γ with endpoints u, v. In other words, δΓ it is the canonical geodesic
(or shortest path or intrinsic) metric induced on Γ by the standard Euclidean
metric of R2.

This paper was supported in part by the National Natural Science Foundation of China
under Grant No. 11471209.

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 83–94, 2019.
https://doi.org/10.1007/978-3-030-27195-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_8&domain=pdf
http://orcid.org/0000-0002-9728-1114
https://doi.org/10.1007/978-3-030-27195-4_8

84 A. W. M. Dress et al.

A circle of circumference ρ is denoted by Γρ in which case we also write δρ

rather than δ or δΓ for the metric on Γρ. Note that the following holds for all
u, v, w ∈ Γρ:

(ρ 1) ρ ≥ δρ(u, v) + δρ(v, w) + δρ(w, u) ≥ 2δρ(u, v).
(ρ 2) One has δρ(u,w) = δρ(u, v) + δρ(v, w) if and only if v is contained in an

arc of minimal length with endpoints u,w.
(ρ 3) At least one of the following assertions v ∈ [u,w], u ∈ [w, v], w ∈ [v, u], or

ρ = δρ(u, v) + δρ(v, w) + δρ(w, u) always holds1.
(ρ 4) Denoting more specifically, for every x ∈ Γρ, the unique antipodal point of

x in Γρ (i.e., the unique point in Γρ with δρ-distance ρ/2 to x) by x∗, we
have

w ∈ [u, v] ⇐⇒ u ∈ [w, v∗] ⇐⇒ v ∈ [w, u∗] ⇐⇒ w∗ ∈ [u∗, v∗],

and we have δρ(x, y) + δρ(y, x∗) = δρ(x, x∗) = ρ/2 and

Γρ = [x, y] ∪ [y, x∗] ∪ [x∗, y∗] ∪ [y∗, x]

for all x, y ∈ Γρ.
(ρ 5) In particular, the four alternatives mentioned in (ρ 3) correspond exactly

to the four alternatives w ∈ [v, u∗], w ∈ [v∗, u], w ∈ [v, u], and w ∈ [u∗, v∗],
i.e., we have w ∈ [v, u∗] ⇐⇒ δρ(v, u∗) = δρ(v, w) + δρ(w, u∗) ⇐⇒
ρ/2 − δρ(v, u) = δρ(v, w) + ρ/2 − δρ(w, u) ⇐⇒ v∈ [u,w], and so on.

(ρ 6) If ρ = δρ(u, v) + δρ(v, w) + δρ(w, u) holds, one has

δρ(x,w) = min
(
δρ(x, u) + δρ(u,w), δρ(x, v) + δρ(v, w)

)

for all x ∈ [u, v].
(ρ 7) If v ∈ [u, x] ∩ [u, y] holds for some x, y ∈ Γρ, either x ∈ [v, y] or y ∈ [v, x]

holds.
(ρ 8) If δρ(u, v) < ρ/2 holds, the map Γρ→R

2 : x 	→ (
δρ(x, v), δρ(x, u)

)
is

injective: Indeed, we can infer from the distances δρ(x, v) and δρ(x, u)
whether x is contained in [u, v], [v, u∗], [u∗, v∗] or in [v∗, u] in which
case the same must hold for any y ∈ Γρ with δρ(x, v) = δρ(y, v) and
δρ(x, u) = δρ(y, u). So, it suffices to note that a, b ∈ Γρ, δρ(a, b) < ρ/2,
x, y ∈ [a, b], δρ(x, a) = δρ(y, a), and δρ(x, a) = δρ(y, b) together implies
x = y (as the interval [a, b] is obviously a linear metric space).

A metric space X is called circular (resp. ρ-circular) if it is isometric to a sub-
space of a circle Γ (resp. Γρ). For convenience, we regard a linear metric space
as a circular metric space with infinitely large circumference. Thus, linear metric
spaces are special circular spaces.

1 As always, given any metric space X = (X,D) and any two points x, y ∈ X, we
denote by [x, y] the interval [x, y] = [x, y]D := {z ∈ X : D(x, y) = D(x, z)+D(z, y)}
spanned by x and y relative to D. Recall that x, y, z, u ∈ X, y ∈ [x, z], and z ∈ [x, u]
always implies y ∈ [x, u] and z ∈ [y, u].

Circular Metrics 85

A metric space is called strictly circular if it is circular and not linear. And
it is called strictly ρ-circular for some real number ρ > 0 if it is ρ-circular, but
neither linear nor ρ′-circular for any ρ′
= ρ.

Apparently, the following holds

Lemma 1. (i) Given a positive real number ρ, a metric space is strictly ρ-
circular for some ρ > 0 if and only if it is strictly circular and ρ-circular.

(ii) In particular, every strictly circular space is strictly ρ-circular for that num-
ber ρ for which it is ρ-circular.

(iii) A linear metric space (X,D) is ρ-circular for some positive real number ρ
if and only if diam(X) ≤ ρ/2 holds for its diameter

diam(X) := sup(D(x, y) : x, y ∈ X).

In particular, a linear metric space (X,D) is not ‘properly circular’ (i.e., it
is not ρ-circular for any positive real number ρ) if and only if diam(X) = ∞
holds.

(iv) Every circular space that contains a strictly circular (strictly ρ-circular)
subspace must, of course, be strictly circular (strictly ρ-circular), too.

In this note, we present some results on linear, and circular metric spaces
derived by perfectly elementary and direct arguments. Note that this problem
can also be investigated from the point of view of isometric embedding of finite
metric spaces into particular metric spaces like Euclidean spaces, spherical caps
and hyperspheres, as initially done by Blumenthal in [3]. Many work of this kind
can be found in Blumenthal’s book [4], Tóth [9], Robinson [8], and the book [7]
of Deza and Laurent. The motivation of our paper is to exhibit our investigation
focusing on circular metrics from a rather elementary and intrinsic point of view,
without considering the embedding into other types of “symmetric spaces”, as
the results we will show are quite useful in analysis of real distance data, in
particular data coming from biology representing similarities between species or
genes.

Let x, y, z be any three points in a metric space (X,D). Then, the largest
one of the three terms D(x, y),D(y, z),D(x, z) of X is equal to the sum of the
other two if and only if the subspace {x, y, z} is linear and, hence, circular.

Otherwise, each of the three terms D(x, y),D(y, z),D(z, x) is smaller than
the sum of the other two, and we can find three points x̂, ŷ, ẑ on a circle Γ with
circumference D(x, y) + D(y, z) + D(z, x), so that δ(x̂, ŷ) = D(x, y), δ(ŷ, ẑ) =
D(y, z), δ(ẑ, x̂) = D(z, x) holds. Hence, {x, y, z} is strictly circular. Thus, all
3-point subspaces of any metric space are circular, but not necessarily linear.

A metric space (X,D) is called 3-point linear (3PL) if every 3-point sub-
space of X is linear, and (X,D) is called 4-point circular (4PC) if every 4-point
subspace is circular.

It is well known (cf. Blumenthal [4] or Section 5 below) that a 3PL metric
space (X,D) is linear if the cardinality |X| of X is not equal to 4, and circular
(possibly linear) if |X| = 4.

We prove that, given a metric space (X,D), the following three assertions
are equivalent: (1) (X,D) is circular. (2) Every 4-point subset of (X,D) can be

86 A. W. M. Dress et al.

labeled as x1, x2, x3, x4 so that D(xi−1, xi+1) = D(xi−1, xi) + D(xi, xi+1) holds
for i = 2, 3. (3) (X,D) is 4PC. We also prove that if (X,D) is strictly circular,
then (X,D) is never Euclidean. In the final section, we consider metric spaces
that are isometric to a subspace of a sphere (with intrinsic metric). We show
that every open subset of a (2-dimensional) sphere contains a 4-point subset that
is not isometrically embeddable into any other sphere of different radius.

2 Some Basic Definitions and Facts

For a metric space (X,D) and two points a, b ∈ X, we define [a, b] by

[a, b] := {x ∈ X | D(a, x) + D(x, b) = D(a, b)}.

Note that v ∈ [u,w] holds for some u, v, w ∈ Γρ if and only if v is contained
in an arc of minimal length with endpoints u,w while Γρ = [u, v] ∪ [v, w] ∪ [w, u]
holds for all u, v, w ∈ Γρ for which ρ = δρ(u, v) + δρ(v, w) + δρ(w, u) holds.

An ordered sequence (x1, x2, . . . , xk) of k points, k ≥ 3, in (X,D) is called a
(discrete) geodesic if xi ∈ [xi−1, xi+1] holds for all i = 2, 3, . . . , k−1 in which case
we will also say that [x1 − x2 − · · · − xk] holds. And if, in addition, D(x1, xk) =
D(x1, x2)+D(x2, x3)+ · · ·+D(xk−1, xk) holds, the sequence is called a shortest
(discrete) geodesic in which case we will also say that [x1 = x2 = · · · = xk] holds.
In particular, we have

[a − b − c] ⇐⇒ [a = b = c] ⇐⇒ D(a, b) + D(b, c) = D(a, c)

for all a, b, c ∈ X. And our footnote on Page 2 can now be rephrased as saying
that [x − y − z] and [x − z − w] holds for some points x, y, z, w in the point set
X of some metric space (X,D) if and only if [x = y = z = w] holds.

The following lemma follows easily from repeated applications of the triangle
inequality:

Lemma 2. (i) Any shortest geodesic (x1, x2, . . . , xk) is, in particular, a geodesic.
(ii) A finite subspace Y of (X,D) is linear if and only if its points can be labeled
so as to form a shortest geodesic.

The next lemma is more interesting (see also Theorem 1 and its corollary for
a more general assertion):

Lemma 3. A 4-point space (X,D) is circular if and only if the four points of
X can be labeled so as to form a geodesic.

Proof. First, suppose that X is ρ-circular. We may regard X as a 4-point sub-
space of some circle Γ = Γρ. Suppose that the four points of X appear on Γρ in
cyclic order as a, b, c, d. Then,

δρ(a, c) = min{δρ(a, b) + δρ(b, c), δρ(a, d) + δρ(d, c)}

Circular Metrics 87

must hold because one of the two arcs connecting a and c must contain b and
the other one d, and (at least) one of those two arcs must have minimum length.
And

δρ(b, d) = min{δρ(b, c) + δρ(c, d), δρ(b, a) + δρ(a, d)}
must hold for similar reasons. So, without loss of generality, we may suppose
that δρ(a, c) = δρ(a, b) + δρ(b, c) holds. If also δρ(b, d) = δρ(b, c) + δρ(c, d) holds,
then (a, b, c, d) is a geodesic. Otherwise, δρ(b, d) = δρ(b, a) + (a, d) holds and
(d, a, b, c) is a geodesic.

Conversely, suppose that the four points in X are indexed as x1, x2, x3, x4 so
that (x1, x2, x3, x4) forms a geodesic and put

ρ := D(x1, x2) + D(x2, x3) + D(x3, x4) + D(x4, x1).

Then, by applying the triangle inequality, we can deduce that D(xi, xj) ≤ ρ/2
holds for all i, j ∈ {1, 2, 3, 4}.

Take four points x̂i, i = 1, 2, 3, 4 on Γρ in cyclic order relative to some
fixed orientation of Γρ so that, in that orientation, the arcs from x̂i to
x̂i+1have length D(xi, xi+1) ≤ ρ/2 for every i = 1, 2, 3 implying that also
δ(x̂i, x̂i+1) = D(xi, xi+1) must hold for i = 1, 2, 3 and that, in view of
D(x1, x2) + D(x2, x3) + D(x3, x4) ≤ ρ, the arc from x̂1 to x̂4 has length
D(x1, x2) + D(x2, x3) + D(x3, x4). Then, since

ρ/2 ≤ D(x1, x2) + D(x2, x3) + D(x3, x4) = δρ(x̂1, x̂2) + δρ(x̂2, x̂3) + δρ(x̂3, x̂4),

we have δρ(x̂4, x̂1) = ρ−δρ(x̂1, x̂2)−δρ(x̂2, x̂3)−δρ(x̂3, x̂4) = D(x1, x4). Further,
since D(x1, x2)+D(x2, x3) = D(x1, x3) ≤ ρ/2, we have δρ(x̂1, x̂2)+ δρ(x̂2, x̂3) ≤
ρ/2 and, hence, δρ(x̂1, x̂3) = δρ(x̂1, x̂2) + δρ(x̂2, x̂3) = D(x1, x2) + D(x2, x3) =
D(x1, x3). Similarly, we have δρ(x̂2, x̂4) = D(x2, x4). Therefore,

X → Γρ : xi 	→ x̂i (i = 1, 2, 3, 4)

is an isometric embedding, and X is circular. �
A space (X,D) of cardinality |X| = 4 is called antipodally circular if we can

label the four points of X as a, b, c, d so that (d, a, b, c, d, a) is a geodesic.
Notice that every 3-point subspace of an antipodally circular 4-point space

X is linear, but X itself is strictly circular. Note also that the diameter of X
must coincide with D(a, c) as well as with D(b, d) as

D(a, c) = D(a, b) + D(b, c) = D(c, d) + D(d, a)

and

D(b, d) = D(b, c) + D(c, d) = D(d, a) + D(a, b)

and, hence, also

2D(a, c) = D(a, b) + D(b, c) + D(c, d) + D(d, a) = 2D(b, d)

must hold.

88 A. W. M. Dress et al.

In particular, if X ′ and X ′′ are two antipodally circular 4-point subspaces of
a metric space (X,D) with |X ′ ∩ X ′′| = 3, we must D(x, y′) = D(x, y′′) for all
x ∈ X ∩ X ′ and the two unique elements y′ ∈ X ′ − X ′′ and y′′ ∈ X ′′ − X ′.

Recall also that, more generally, a metric space (X,D) is called antipodal if
there exists an involutory map τD :X→X :x 	→ x̄ from X onto itself such that
X = [x, x̄] holds for every x ∈ X in which case this map must be an isometry
in view of the above discussion of antipodally circular spaces of cardinality 4,
and note that a metric space (X,D) with |X| = 4 is antipodal if and only if it
is antipodally circular.

The first four assertions in the following lemma are obvious.

Lemma 4.(1) Let X be a ρ-circular metric space, and x, y ∈ X be two distinct
points such that D(x, y) < ρ/2. Then every isometric embedding f : {x, y} →
Γρ can be uniquely extended to an isometric embedding f̂ : X → Γρ.

(2) If the 4-point space {a, b, c, d} is linear with diameter at most ρ/2, then
{a, b, c, d} is isometrically embeddable in Γρ.

(3) A 3-point space {a, b, c} is strictly circular if and only if the sum of any two
of the three terms D(a, b),D(b, c),D(a, c) is greater than the third one, and it
is strictly ρ-circular if and only if, in addition, D(a, b)+D(b, c)+D(c, a) = ρ
holds.

(4) If the 3-point space {a, b, c} as well as its one-point extension X = {a, b, c, x}
are strictly circular and x ∈ [a, b] holds, we have ρ − D(c, a) − D(a, x) =
D(a, b) + D(b, c) − D(a, x) = D(c, b) + D(b, x) and, therefore, also

D(c, x) = min{D(c, a) + D(a, x),D(c, b) + D(b, x)})
= min{D(c, a) + D(a, x), ρ − D(c, a) − D(a, x)}.

(5) If the 4-point space X = {a, b, c, d} is strictly, but not antipodally circular,
then it contains a strictly circular 3-point subspace.

Proof. To establish (5), suppose that {a, b, c, d} is strictly ρ-circular, but not
antipodally circular. We may suppose that (a, b, c, d), but not (a, b, c, d, a) is a
geodesic. Then, D(c, a) < D(c, d)+D(d, a) must hold. Further, we must also have
D(a, d) < D(a, c)+D(c, d) as D(a, d) = D(a, c)+D(c, d) would imply D(a, d) =
D(a, c) + D(c, d) = D(a, b) + D(b, c) + D(c, d) and, hence, that (a, b, c, d) would
be a shortest geodesic and {a, b, c, d}, therefore, linear (cf. Lemma 2). Finally, we
must also have D(c, d) < D(c, a)+D(a, d) in view of D(c, a)+D(a, d) = D(c, b)+
D(b, a) + D(a, d) ≥ D(c, b) + D(b, d) = D(c, b) + D(b, c) + D(c, d) > D(c, d). So,
{a, c, d} is strictly circular by (3). �

3 4-point Circularity

Lemma 5. Let (X,D) be a 4PC metric space and suppose that {a, b, c} ⊂ X is
strictly ρ-circular. Then, every embedding {a, b, c} → Γρ can be uniquely extended
to an embedding X → Γρ. In particular, X is strictly ρ-circular.

Circular Metrics 89

Remark 1. It is interesting that the 4PC condition eventually restricts the car-
dinality of X so that it is less than, or at most equal to, the cardinality of
continuum.

Proof. Let us first note that

(i) X = [a, b] ∪ [b, c] ∪ [c, a] must hold,
(ii) x ∈ [a, b] implies D(c, x) = min{D(c, a)+D(a, x),D(c, b)+D(b, x)} and

D(a, x) + D(x, b) + D(b, c) + D(c, a) = ρ,
(iii) x ∈ [a, b] and D(c, a) + D(a, x) ≤ D(c, b) + D(b, x) implies

• D(c, x)=D(c, a)+D(a, x)≤D(c, b)+D(b, x)=ρ−D(c, a)−D(a, x),
• D(b, c) + D(c, x) + D(x, b) = D(b, c) + D(c, a) + D(a, x) + D(x, b) =

D(b, c) + D(c, a) + D(a, b) = ρ,
• D(x, b) < D(b, c) + D(c, x)

(
in view of D(x, b) ≤ D(b, a) + D(a, x) <

D(b, c) + D(c, a) + D(a, x) = D(b, c) + D(c, x)
)
,

• and D(b, c) < D(c, x) + D(x, b)
(

in view of D(b, c) < D(c, a) + D(a, b) =
D(c, a) + D(a, x) + D(x, b) = D(c, x) + D(x, b)

)
.

So, either {b, c, x} is strictly ρ-circular in this case
(
that is, it is strictly ρ-

circular if D(x, b)+D(b, c) > D(c, x) holds
)
, or D(x, b)+D(b, c) = D(c, x) =

D(c, a) + D(a, x) holds and, therefore, also D(c, x) = ρ/2.

Now, fix an isometric embedding f : {a, b, c} → Γρ; a, b, c 	→ â, b̂, ĉ ∈ Γρ. For
each x ∈ X − {a, b, c}, since {a, b, c, x} is ρ-circular, this embedding f can be
uniquely extended to an embedding f̃x : {a, b, c, x} → Γρ. Together, this yields
an extension

f̂ : X → Γρ : x 	→
{

f(x) if x ∈ {a, b, c}
x̂ := f̃x(x) else .

It suffices to show that D(x, y) = δρ(x̂, ŷ) holds for all x, y ∈ X − {a, b, c}. To
this end, we may further suppose that

x ∈ [a, b],D(c, a) + D(a, x) ≤ D(c, b) + D(b, x), and y ∈ [a, b] ∪ [b, c]

holds. If {b, c, x} is strictly ρ-circular, {b, c, x, y} must be strictly ρ-circular, too,
as it is circular. Furthermore, our assumption that D(b, c) < ρ/2 holds, implies
that the embedding f |{b,c} : {b, c}→Γρ can be uniquely extended to an embed-
ding {b, c, x, y}→Γρ, i.e., we can find points x̄, ȳ ∈ Γρ with D(x, y) = δρ(x̄, ȳ) so
that also

D(b, x) = δρ(b̂, x̄), D(c, x) = δρ(ĉ, x̄), D(b, y) = δρ(b̂, ȳ), and D(c, y) = δρ(ĉ, ȳ)

holds. Since also

D(b, x) = δρ(b̂, x̂), D(c, x) = δρ(ĉ, x̂), D(b, y) = δρ(b̂, ŷ), andD(c, y) = δρ(ĉ, ŷ)

holds, we must have

δρ(b̂, x̄) = δρ(b̂, x̂), δρ(ĉ, x̄) = δρ(ĉ, x̂), δρ(b̂, ȳ) = δρ(b̂, ŷ), and δρ(ĉ, ȳ) = δρ(ĉ, ŷ).

90 A. W. M. Dress et al.

So, D(b, c) = δρ(b̂, ĉ) < ρ/2 together with (ρ 8) above implies x̄ = x̂ and ȳ = ŷ
and, therefore, also D(x, y) = δρ(x̄, ȳ) = δρ(x̂, ŷ) as claimed.

The same argument can be applied in case y ∈ [a, b] holds and {b, c, y} is
strictly ρ-circular.

Otherwise, however,

D(x, b) + D(b, c) = D(c, x) = D(c, a) + D(a, x) = ρ/2

and either y ∈ [a, b] and

D(y, b) + D(b, c) = D(c, y) = D(c, a) + D(a, y) = ρ/2

or y ∈ [b, c] must hold.
In the first case, we get D(x, u) = D(y, u) for all u ∈ {a, b, c} and x̂ = ŷ = ĉ∗

and while b ∈ [c, x] ∩ [c, y] and therefore, as {b, c, x, y} is circular, also x ∈ [b, y]
or y ∈ [b, x] implies that D(x, y) = |D(b, x) − D(b, y)| must hold. So, we get
D(x, y) = 0 = δρ(x̂, ŷ), as claimed.

In the second case, we get b ∈ [c, x] and y ∈ [c, b] and, therefore, also b̂ ∈ [ĉ, x̂]
and ŷ ∈ [ĉ, b̂] (as f̂ is an isometry on {a, b, c, x} and on {a, b, c, y}). So, we must
have b ∈ [y, x] as well as b̂ ∈ [ŷ, x̂] and therefore D(x, y) = D(x, b) + D(b, y) =
δρ(x̂, b̂) + δρ(x̂, b̂) = δρ(x̂, ŷ), once again as claimed. �
Lemma 6. Let X be a metric space with |X| ≥ 4, and suppose that every 4-point
subspace of X is linear. Then X is linear.

Proof. First note that every 3-point subspace of X is linear. Let a, b ∈ X be
two distinct points, and let f : {a, b} → R be an isometric embedding. For every
x ∈ X, since {a, b, x} is linear, there is a unique element x̂ for which D(a, x) =
|f(a)− x̂|, D(b, x) = |f(b)− x̂| holds, giving rise to a map f̂ : X → R : x→x̂. For
any x, y ∈ X − {a, b}, since {a, b, x, y} is linear, there is an isometric embedding
g : {a, b, x, y} → R. Since |g(a) − g(b)| = D(a, b) = |f̂(a) − f̂(b)|, there is an
isometry σ : R → R such that σ

(
g(a)

)
= â, σ

(
g(b)

)
= b̂. Let h = σ ◦ g. Since

h : {a, b, x, y} → R is an isometric embedding, we have automatically h(x) = x̂

and h(y) = ŷ and D(x, y) = |h(x) − h(y)| = |x̂ − ŷ|. Therefore, f̂ : X → R is an
isometric embedding, and X is linear. �

Notice that Lemma 6 is a special case of Menger’s Theorem, here we have
shown that it also follows in a straightforward way from some rather simple
observations.

4 Circular Metric Spaces

Lemma 7. Let |X| ≥ 5 and suppose that X is 4PC. If X is not linear, then X
has a strictly circular 3-point subspace.

Circular Metrics 91

Proof. Since X is not linear and |X| ≥ 5, X contains a strictly circular 4-point
subspace Y = {a, b, c, d} by Lemma 6. Then (cf. Lemma 4), Y either contains a
strictly circular 3-point subspace and we are done, or it is antipodally circular
in which case (see the discussion of antipodally circular 4-point spaces preceding
Lemma 4) we may assume that

D(a, c) = D(a, b) + D(b, c) = D(c, d) + D(d, a)

and

D(b, d) = D(b, c) + D(c, d) = D(d, a) + D(a, b)

and, hence, also

2D(a, c) = D(a, b) + D(b, c) + D(c, d) + D(d, a) = 2D(b, d)

holds. So, assume that Y is antipodally circular, choose an arbitrary element
x ∈ X − Y and put Yy := {x} ∪ Y − {y} for every y ∈ Y . If they were all
antipodally circular, we would get D(x, y) = D(y′, y) for all y′ ∈ Y and y ∈
Y − {y′} (also in view of that discussion) which, however, is impossible. And
if one of these subspaces , say Yd, were linear, we have either a, b ∈ [x, c] or
x ∈ [a, b] or x ∈ [b, c] or b, c ∈ [a, x]. In the first and the second case, {x, b, c, d}
is neither linear nor antipodally circular. And in the other two cases, {x, a, b, d}
is neither linear nor antipodally circular.

So, in any case, one of the four spaces Yy (y ∈ Y) must be neither linear nor
antipodally circular and, thus, must contain a strictly circular 3-point subspace,
as required. �
Theorem 1. For a metric space (X,D), the following four conditions are
equivalent:

(1) (X,D) is circular.
(2) Every finite subset of (X,D) forms a geodesic in some order.
(3) Every four points of (X,D) form a geodesic in some order.
(4) (X,D) is 4PC.

Remark 2. Theorem 39.2 in Blumenthal [4], p. 97 implies, as a special case, that
if every 4-point subspace of a metric space (X,D) is ρ-circular for a prescribed
ρ, then (X,D) is ρ-circular. Our condition (4) is slightly, but also significantly
weaker, since it uses “circular” instead of “ρ-circular”, and that’s it what makes
establishing it quite a bit more complicated.

Proof. It is enough to consider the case |X| ≥ 5.
The implications (1)⇒(2)⇒(3)⇒(4) are either obvious or have been estab-

lished already above. And (4)⇒(1) holds because, if X is linear, then it is cer-
tainly circular, and if X is not linear, then it contains, according Lemma 5,
a strictly circular 3-point subspace and is, therefore, circular in view of by
Lemma 5. �

92 A. W. M. Dress et al.

Ptolemy’s theorem asserts that, for every four points x, y, z, w ∈ R
2,

‖x − y‖ · ‖z − w‖ + ‖y − z‖ · ‖w − x‖ ≥ ‖x − z‖ · ‖y − w‖
holds, with equality only if x, y, z, w lie on a circle or line in this cyclic order,
see e.g. Berger [2], p. 308. Apostol [1] pointed out that this inequality can be
extended to R

3, and hence to R
n.

A metric space (X,D) is called a Ptolemaic (see Deza and Deza [6]) if every
four points x, y, z, w ∈ X satisfy the inequality

D(x, y) · D(z, w) + D(y, z) · D(w, x) ≥ D(x, z) · D(y, w).

Thus, R2 with its Euclidean metric is Ptolemaic by Ptolemy’s theorem.

Theorem 2. If (X,D) is strictly circular, and |X| ≥ 4, then (X,D) is not
Ptolemaic and, hence, not Euclidean.

Proof. Since X is not linear, X contains a strictly circular 4-point subspace
Y = {a, b, c, d}. We may suppose that (a, b, c, d) is a geodesic. Put ρ := D(a, b)+
D(b, c) + D(c, d) + D(d, a). Then

D(a, c) · D(b, d) = (D(a, b) + D(b, c)) · (D(b, c) + D(c, d))
= D(a, b) · D(c, d) + D(b, c) · (D(a, b) + D(b, c) + D(c, d))
≥ D(a, b) · D(c, d) + D(b, c) · D(a, d),

and the equality holds only when D(a, d) = D(a, b) + D(b, c) + D(c, d), that is,
only when (a, b, c, d) is a shortest geodesic, i.e., {a, b, c, d} is linear which is not
our case. Therefore, (X,D) is not a Ptolemaic metric space. �

5 The 3PL Condition

We continue to considering an arbitrary metric space (X,D), and we will estab-
lish a special case of a beautiful, much more general theorem of Menger’s (see
Blumenthal [4]):

Theorem 3. Every 3PL metric space (X,D) is linear for |X|
= 4, and antipo-
dally circular or linear for |X| = 4.

Proof. First, we show that (X,D) is 4-point circular. Let a, b, c, d be four distinct
points in X. Since {a, b, c} is linear, we may suppose that [a− b− c] holds. Since
{a, b, d} and {a, c, d} are linear, we have either [d−a−b] or [a−d−b] or [a−b−d]
as well as either [a − c − d] or [a − d − c] or [d − a − c].

If [d − a − b] holds, we have [d − a − b − c] by definition. And if [a − d − b]
holds, we even have [a = d = b = c] in view [a − b − c]. So, we may suppose that
[a − b − d] holds.

Further, we have [a = b = c = d] in case [a − c − d] holds. And we have
[a = b = d = c] in case [a−d−c] in view of our assumption that [a−b−d] holds.
And if [d − a − c] holds, we have [d = a = b = c], again in view of [a − b − c].

Circular Metrics 93

Thus, (X,D) is 4-point circular and, hence, circular. If |X| ≥ 5 and X is not
linear, then X has a strictly circular 3-point subspace by Lemma, contradicting
that (X,D) is 3-point linear. Hence, if |X| ≥ 5 or |X| ≤ 3, then X is linear. And
if |X| = 4, then X is linear or antipodally circular by Lemma 4. �

6 Finite Circular Metrics Are Kalmanson Metrics

In this section, we consider a finite metric space (X,D). Recall that the metric
D is called a Kalmanson metric if there exists a 2-regular connected graph
G = GD with vertex set X and edge set E = ED ⊆ (

X
2

)
and a map w = wD :(

ED

2

)→R≥0 such that D(x, y) =
∑

{e,f}∈Sep(x,y) w({e, f}) holds for all x, y ∈ X

where Sep(x, y) denotes the set of all 2-subsets {e, f} ∈ (
E
2

)
for which x and y are

contained in distinct connected components of the (necessarily not connected)
graph G{e,f} = (X,E−{e, f}) (cf., e.g., Chepoi and Fichet [5] and the literature
quoted there).

Note that, given a 2-regular connected graph G with vertex set X and edge
set E ⊆ (

X
2

)
, there exists always, for every metric D defined on X, a unique

map wD :
(
E
2

)→R for which D(x, y) =
∑

{e,f}∈Sep(x,y) w({e, f}) holds for all
x, y ∈ X, as observed by Chepoi and Fichet in [5]. So, the point of this definition
is that it requires the map w to have non-negative values, only. We claim:

Theorem 4. The metric D of any finite circular metric space (X,D) is a
Kalmanson metric.

Remark 3. Michel Deza suggested that this should hold, and we are happy to
supply here the simple proof.

Proof. This is a simple consequence of the following four observations: �
Lemma 8. (i) The restriction D′∣∣

X×X
of any Kalmanson metric D′ defined on

a finite set X ′ to a subset X of X ′ is a Kalmanson metric.
(ii) Given a finite circular metric space (X,D), there exists a finite circular

antipodal metric space (X ′,D′) with X ⊆ X ′ and D = D′
X×X , i.e., any

finite circular metric space (X,D) has a finite circular antipodal extension.
(iii) A metric space (X,D) with a finite point set X is circular if and only if

the degree

degD = degGD
(x) := #{y ∈ X : #[x, y] = 2}

of every vertex x in the associated simple (and necessarily connected) vicin-
ity graph GD of D (i.e., the graph GD = (X,ED) with vertex set X and
edge set ED :=

{{x, y} ⊆ X : #[x, y] = 2
}
) never exceeds 2 (and is exactly

2 for every x ∈ X unless (X,D) is linear), i.e., one has

#{y ∈ X : #[x, y] = 2} ≤ 2

for every x ∈ X.

94 A. W. M. Dress et al.

(iv) If (X,D) is a finite circular antipodal metric space, one has

D(x, y) =
∑

{e,f}∈Sep(x,y)

w({e, f})

for the map

w = wD :
(

E

2

)
→R≥0

that maps a 2-subset {e, f} of E onto 0 unless the antipodal involution
τD : X→X : x 	→ x̄ maps e onto f in which case wD({e, f}) is defined
to be the distance between the two vertices in e (or, equivalently, between
those in f).

Proof. (i) We leave the rather straight-forward and elementary verification of
the first two assertions to the reader.

(ii) Since the restrict 12-page limit is too narrow to contain the proof of Asser-
tion (iii), we have included it in an Appendix for the review process.

(iii) And we note that Assertion (iv) follows easily from the fact that
(a) the shortest-path metric induced on the point set X of a finite metric
space (X,D) by the associated vicinity graph GD = (X,ED coincides with
D provided we assign the length �(e) := D(x, y) to any edge e = {x, y} ∈
ED in that graph and that
(b) Sep(x, y) coincides, for all x, y ∈ X with the set consisting of all pairs
of the form {e, τD(e)} ∈ (

ED

2

)
for which e is contained in a shortest path

from x to y (if there are two such path, it apparently doesn’t matter which
one you choose).

�

Acknowledgment. We wish to thank Michel Deza for various interesting and helpful
discussions of the topic of this paper.

References

1. Apostol, T.M.: Ptolemy’s inequality and the chordal metric. Math. Mag. 40, 233–
235 (1967)

2. Berger, M.: Geometry I. Springer, Heidelberg (1967). 1977. MAA
3. Blumenthal, L.: A new concept in distance geometry with applications to spherical

subsets. Bull. Am. Math. Soc. 47(6), 435–443 (1941)
4. Blumenthal, L.: Theory and Applications of Distance Geometry, 2nd edn. Chelsce

Pub. Co., Bronx (1970)
5. Chepoi, V., Fichet, B.: A note on circular decomposable metrics. Geom. Ded. 69,

237–240 (1998)
6. Deza, E., Deza, M.M.: Dictionary of Distances. Elsevier, Tokyo (2006)
7. Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Algorithms and Combi-

natorics, vol. 15. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-
04295-9

8. Robinson, P.L.: The sphere is not flat. Am. Math. Monthly 113, 171–172 (2006)
9. Tóth, L.F.: Langerungen in der Ebene auf Kugel unt im Raum. Springer, Heidelberg

(1972). https://doi.org/10.1007/978-3-642-65234-9

https://doi.org/10.1007/978-3-642-04295-9
https://doi.org/10.1007/978-3-642-04295-9
https://doi.org/10.1007/978-3-642-65234-9

A 2.57-Approximation Algorithm
for Contig-Based Genomic Scaffold Filling

Qilong Feng(B), Xiangzhong Meng, Guanlan Tan, and Jianxin Wang

School of Information Science and Engineering, Central South University,
Changsha 410083, People’s Republic of China

{csufeng,jxwang}@mail.csu.edu.cn

Abstract. Genomic Scaffold Filling problem forms an important class
of problems, and has been paid lots of attention in the literature. In this
paper, we study one of the Genomic Scaffold Filling problem, called One-
sided-GSF-max-BC problem. The previous approximation ratio for the
problem is 2. However, as we pointed out in the introduction part, the
ratio 2 algorithm in the literature can only deal with special instances
of the problem, not really solve the One-sided-GSF-max-BC problem. In
this paper, we give an approximation algorithm of ratio 2.57 for the One-
sided-GSF-max-BC problem. Our method is based on auxiliary graphs
constructed and two applications of finding maximum matching in aux-
iliary graphs.

Keywords: Approximation algorithm · Genomic Scaffold Filling

1 Introduction

With the development of Next Generation Sequencing, it is no longer a difficult
problem to produce the genomes quickly and cheaply. However, it is common
that the genomes obtained are draft, called scaffolds for short, which means that
they are incomplete with the losses of some genes. Because most of the current
studies of biological sciences are based on the assumption that the genomes can
provide the complete information, the draft genomes cannot directly be applied
in biological scientific researches because of the unpredictable errors. Thus, lots
of attention has been paid on, based on a given reference genome, how to fill
the draft genome with the missing genes to make it complete, and as close as
possible to the reference genome.

Given a set Σ of symbols and a string S = s1s2 . . . sn on Σ, we use c(S) to
represent the set of all symbols in S. We now give the definition of the problem.

This work is supported by the National Natural Science Foundation of China under
Grants (61672536, 61420106009, 61872450, 61828205), Hunan Provincial Science and
Technology Program (2018WK4001).

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 95–107, 2019.
https://doi.org/10.1007/978-3-030-27195-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_9

96 Q. Feng et al.

One-sided-GSF-max-BC problem:
Given a complete string G and a scaffold S = 〈C1C2 . . . Cm〉 based on a
same set Σ of symbols with c(S) \ c(G) = ∅, construct a new string S′

by inserting the symbols in c(G) \ c(S) into the slots in S such that the
number of matched-pairs between G and S′ is maximized.

Genomic Scaffold Filling problem was first introduced by Muñoz et al. [13].
It was initially defined as following: given a complete genome G(without gene
repetition), and a scaffold S, the goal is to insert all the genes, which are missed
in S corresponding to G, into S to obtain a complete genome S′, so that the
DCJ distance [14] between G and S′ is minimum. The problem was showed to
be solvable in polynomial time in [13]. When measured by maximizing common
adjacency distance or minimizing breakpoint distance, the problem can also be
solved in polynomial time [6].

The Genomic Scaffold Filling problem becomes harder when considering the
repeatability of genes. The computations of most similarity measures between
two complete genomes are NP-complete, for instance, the exemplar breakpoint
distance [4], the exemplar adjacency distance [3], etc. Jiang et al. [7] showed that
the problem is NP-hard by maximizing common adjacency distance, and gave
an approximation algorithm with ratio 1.33. Subsequently, several approxima-
tion results were presented [8,11]. The best approximation ratio for this problem
is 1.2 [11]. If one input of the Genomic Scaffold Filling problem is a complete
genome, and the other is a scaffold, the problem is called One-sided Genomic
Scaffold Filling problem. If the two given genomes are both scaffolds, the prob-
lem is called Two-sided Genomic Scaffold Filling problem. For the Two-sided
Genomic Scaffold Filling problem, an approximation algorithm with ratio 2 was
given in [7]. After that, several improvements were obtained [9,12]. The cur-
rent best approximation ratio is 1.4 [12]. By considering the number of common
adjacencies as parameter, Bulteau et al. [1] gave FPT algorithms for the two
problems, respectively.

In many applications, a scaffold is usually defined as a series of sequential
contigs C1C2 . . . Cm, in which any contig Ci cannot be modified, and the insertion
of missing genes can only be executed at the both ends of the contig. Under this
constraint, when there is no duplicate gene, the One-sided Genomic Scaffold
Filling problem can be solved in polynomial time [10]. When there exist duplicate
genes, Jiang et al. [5] proved that the problem is NP-complete by maximizing the
number of common adjacencies. An approximation algorithm with ratio 2 and an
FPT algorithm with two parameters (k, the number of the common adjacencies,
and d, the number of the most duplications of a gene) were proposed [5]. Bulteau
et al. [2] gave a polynomial kernel for this problem, and presented an FPT
algorithm by using the number of k-Mer as parameter and two FPT algorithms
with breakpoint distance as parameter. Zhu [15] gave a comprehensive survey of
the related results.

For the approximation algorithm with ratio 2 given in [5], we point out
that it can only cope with special instances. There exist many cases that the
algorithm in [5] cannot deal with. For example, assume that there exists an

A 2.57-Approximation Algorithm for Contig-Based Genomic Scaffold Filling 97

instance including 4 symbols needed to insert, {a, a, b, b}, and 3 2-strings to be
matched, {aa, ab, bb}. The optimal solution is aabb with 3 matched 2-strings.
However, for the algorithm in [5], matching {ab, ab} may be obtained. It is easy
to see that for this case, the ratio is 3. The occurrence of this case is caused by
the fact that the appearing number of a 2-string to be matched is less than the
appearing number of both symbols of the 2-string. The algorithm can deal with
the instances without the above fact.

In this paper, we study One-sided-GSF-max-BC problem. Based on special
construction of auxiliary graphs and maximum matching algorithm, an approx-
imation algorithm with ratio 2.57 is given.

2 Preliminaries

Given a set Σ of symbols and a string S = s1s2 . . . sn on Σ, since set c(S)
is possibly a multi-set, for simplicity, let c(S) = {s′

1 : i1, . . . , s
′
r : ir}, where

1 ≤ r ≤ n, s′
1, . . . , s

′
r are contained in S, i1 + . . . + ir = n, and 1 ≤ ih ≤ n, for

h = 1, . . . , r. For any two symbols x, y in Σ, if S contains at least one substring
from {xy, yx}, then it is called that x, y are adjacent in S, and we also call
that symbols x, y form a block in S. For the string S, let p(S) be the set of
all blocks in the string S. Similarly, set p(S) is also possibly a multi-set, and
let p(S) = {s′′

1s′′
2 : j1, . . . , s

′′
t−1s

′′
t : jt−1}, where 2 ≤ t ≤ n, s′′

1s′′
2 , . . . , s′′

t−1s
′′
t are

contained in S, j1 + . . . + jt−1 = n − 1, and 1 ≤ jh ≤ n − 1, for h = 1, . . . , t − 1.
Note that for any two symbols x, y in Σ, if xy, yx are contained in S, and the
number of appearances of xy, yx are a, b, respectively, then, either xy : a + b
or yx : a + b is contained in p(S). For a set T , we use s(T, x) to represent the
number of appearances of element x in set T .

Given two strings A = a1a2 . . . an and B = b1b2 . . . bm on Σ, for a block
aiai+1 in p(A) and a block bjbj+1(or bj+1bj) in p(B), if aiai+1 = bjbj+1 (or
aiai+1 = bj+1bj), then we say that the block aiai+1 is matched with the block
bjbj+1 (or bj+1bj), and (aiai+1, bjbj+1) (or (aiai+1, bj+1bj)) is called a pair. For
the blocks in p(A) and p(B), let H be a set of pairs between p(A) and p(B)
with maximum size, in which each block from p(A) or p(B) can be matched
at most one time, then each block in H is called a matched-block, and each
pair in H is called a matched-pair. It is obvious that set H is unique. Assume
that H = {(α1, β1), . . . , (αh, βh)}, where αi is a matched-block in p(A), βi is
a matched-block in p(B), and (αi, βi) is a matched-pair, for i = 1, . . . , h. Let
W (A) =

⋃{αi}, and W (B) =
⋃{βi}, i.e., W (A) is the set of matched-blocks

in p(A), and W (B) is the set of matched-blocks in p(B). Obviously, W (A) is
equal to W (B). If p(A) \ W (A) is not empty, then each block in p(A) \ W (A)
is called a breakpoint. Similarly, if p(B) \ W (B) is not empty, then each block
in p(B) \ W (B) is also called a breakpoint. Let W (A) = p(A) \ W (A), and
W (B) = p(B) \ W (B), i.e., W (A) is the set of breakpoints in p(A), and W (B)
is the set of breakpoints in p(B).

Given a complete string G, and an incomplete scaffold S, the Genomic Scaf-
fold Filling problem is to insert the symbols in c(G)\c(S) into S to obtain a new

98 Q. Feng et al.

string with certain constraints. In scaffold S, there are several contigs contained,
which is a string of length at least 1. For a contig C in S, no symbol can be
inserted into the position between any two consecutive symbols in C. Assume
that scaffold S contains contigs C1, C2, . . . , Cm, and let S = 〈C1C2 . . . Cm〉. Since
no symbol can be inserted into each contig in S, symbols in c(G) \ c(S) can only
be inserted into the positions between Ci and Ci+1 (i = 1, . . . ,m − 1), position
before C1, and position after Cm. For simplicity, each position in S that symbols
in c(G)\ c(S) can be inserted into is called a slot, and it is easy to see that there
are exactly m+1 slots in S. We can also get that c(S) = c(C1)∪c(C2)∪. . .∪c(Cm),
p(S) = p(C1) ∪ p(C2) ∪ . . . ∪ p(Cm).

In this paper, we will use string and symbol instead of genome and gene
for simplicity. We define an operation

⊕
, where

⊕
is the symmetric difference

defined by A
⊕

B = (A \B)∪ (B \A). Let K ′,K ′′ be two matchings in a graph,
and K = K ′ ⊕ K ′′, then we can get that each component in K is either a simple
path, or a simple cycle.

3 An Approximation Algorithm for One-sided-GSF-max-
BC

Given an instance (G,S) of the One-sided-GSF-max-BC problem, and for each
contig Ci in S, let fi and li be the first symbol and the last one of Ci, respectively.
Assume that F (S) is the set of all first and last symbols of the contigs in S, i.e.,
F (S) = {f1, l1, . . . , fm, lm}. For two contigs Ci, Ci+1 in S, the slot between Ci

and Ci+1 is denoted as (li, fi+1), i = 1, . . . , m−1. For consistency, we define the
left-most slot of S as (�, f1), and the right-most slot as (lm, �).

Breakpoint-Calculation(G, S)
Input: a complete string, G, a scaffold, S
Output: the multi-set of breakpoints in G, W (G)
1. calculate set p(G), p(S); construct a graph Φ;
2. for each block α in p(G) or β in p(S) do

add a corresponding vertex in Φ;
3. for each block α in p(G) do

for each block β in p(S) do
if α and β form a pair then add an edge between the two corresponding
vertices;

4. calculate a maximum matching M in Φ; based on M , the set H can be
obtained; get W (G), W (S), W (G), W (S);

5. return W (G).

Fig. 1. Algorithm for calculating the set of breakpoint W (G)

For an instance (G,S) of the One-sided-GSF-max-BC problem, based on
Algorithm BC(G, S) in Fig. 1, the set of breakpoints W (G) can be obtained.

A 2.57-Approximation Algorithm for Contig-Based Genomic Scaffold Filling 99

Let X = c(G) \ c(S). Based on X, F (S), and W (G), the remaining task
of the One-sided-GSF-max-BC problem is to find a set Q of blocks satisfying
the following properties: (1) the blocks in Q are constructed by the symbols in
X ∪ F (S) with constraints that each symbol from X can be used at most two
times and each symbol from F (S) can be only used one time; (2) for each block α
in Q, there exists a breakpoint β in W (G) such that (α, β) can form a matched-
pair; (3) the size of Q is maximum. Due to the hardness of finding the set Q,
we expect to obtain an approximation solution for the One-sided-GSF-max-BC
problem.

The general idea of our approximation algorithm for the One-sided-GSF-
max-BC problem is as follows. Firstly, an auxiliary graph Γ1 is constructed in
the following way. Each symbol in X ∪ F (S) is viewed as a vertex in Γ1. For
two symbols x, y, x ∈ X, either y ∈ X or y ∈ F (S), if there exists a breakpoint
β in W (G) such that β and the block constructed by x, y form a pair, then
add an edge xy into Γ1. For two symbols x, y ∈ F (S), assume that contig C1

contains symbol x, and contig C2 contains symbol y, C1 is before C2 and C1 is
neighboring to C2 in S. If x is the last symbol of C1, y is the first symbol of C2,
and there exists a breakpoint β in W (G) such that β and the block constructed
by x, y form a pair, then add an edge xy into Γ1.

A maximum matching M1 in Γ1 can be found in polynomial time. For each
edge xy in M1, it is easy to see that xy is a block constructed by the symbols
x, y. Thus, for each block xy in M1, the number of appearances of block xy in M1

is called the indicator-number of block xy. By the construction process of graph
Γ1, for each block xy in M1, there must exist a breakpoint β in W (G) such that
xy and β can form a matched-pair. For each matched-pair (α, β) constructed
by the edges in M1 and breakpoints in W (G), the indicator-number of α in
M1 may be larger than the number of β in W (G). Moreover, if the indicator-
number of α in M1 is larger than the number of β in W (G), we call that block
α are redundant. Let {α1, . . . , αr} be the set of blocks in M1 after deleting the
redundant ones, and let {t1, . . . , tr} be the corresponding indicator-number of
the blocks in {α1, . . . , αr}. Thus, let H ′ be the set of matched-pairs constructed
by the blocks in {α1, . . . , αr} and breakpoints in W (G), and the size of H ′ is
t1 + . . . + tr.

Based on H ′, we update S to get S1. For each block xy in H ′ constructed by
the symbols in X ∪ F (S), we update S by the following cases.
(1) x, y are both from X. We skip the block.
(2) One of x, y is from X, and the other one is from F (S). Without loss of
generality, assume that x is from X, and y is from F (S). For vertex y, assume
that contig C contains y as the last symbol of C. Since xy forms a block in H ′,
symbol x can be inserted at the right of y in contig C. After the insertion of x
into S, denote the new contig obtained by C ′. It is easy to see that x becomes
the last symbol of contig C ′. Then, update S and F (S) based on C ′ and C.
Delete the block xy from H ′.
(3) Both x, y are from F (S). Assume that C1 and C2 are two contigs containing
x, y, respectively. Without loss of generality, assume that the position of C2 is

100 Q. Feng et al.

after the one of C1 in S. Then, C1 and C2 must be the neighboring contigs in S.
We can also get that x must be the last symbol of C1, and y must be the first
symbol of C2. Based on C1, C2 and block xy, a new contig C ′ formed by C1 and
C2 can be obtained. Then, update S and F (S) based on C ′. Delete the block xy
from H ′.

Then, we obtain the new scaffold S1, the set F (S1) and the remaining set
H ′. Let X ′ = c(G) \ c(S1) and use Algorithm BC(G, S1) to get the new W (G).
Based on X ′, F (S1), H ′ and W (G), graph Γ2 can be constructed as the same
process of constructing graph Γ1. In Γ2, if there exists an edge between two
vertices whose corresponding symbols form a block in H ′, we delete the edge. In
graph Γ2, a maximum matching M2 can be found. Our approximation solution
of the One-sided-GSF-max-BC problem is constructed based on M1 and M2.

Before giving the detailed process of the approximation algorithm for the
One-sided-GSF-max-BC problem, we remark that the redundant blocks in M
may have impact on the approximation ratio for the problem. Figure 2 gives an
example to illustrate this. For the multi-set of symbols X = {a : 2, b : 2} and
multi-set of breakpoints B = {aa : 1, ab : 1, bb : 1} in Fig. 2, the optimal solution
is aabb with three matched-pairs. For the graph in the Fig. 2, {ab, ab} can form
a maximum matching. It is easy to see that there has only one matched-pair
and a redundant block ab in the maximum matching {ab, ab}, which results
in a ratio 3. If the maximum matching of the graph in Fig. 2 is {aa, bb}, then
two matched-pairs can be found by the maximum matching {aa, bb}, and an
approximation result with ration 1.5 can be obtained. By the example, we can get
that redundant blocks have impact on the approximation ratio of the algorithm
solving the One-sided-GSF-max-BC problem.

Based on the above discussion, our approximation algorithm solving the One-
sided-GSF-max-BC problem has the following obstacles. (1) How to construct
an auxiliary graph Γ such that no maximum matching in Γ has redundant
blocks. (2) How to get the approximation solution of the One-sided-GSF-max-
BC problem based on M1 and M2, where M1 is the maximum matching in Γ1,
and M2 is the maximum matching in Γ2.

a b

ba

Fig. 2. Impact of redundant blocks on approximation ratio. The graph is constructed
based on a multi-set of symbols X = {a : 2, b : 2} that should be inserted into S, and
a multi-set of breakpoints B = {aa : 1, ab : 1, bb : 1}.

A 2.57-Approximation Algorithm for Contig-Based Genomic Scaffold Filling 101

3.1 Constructing Auxiliary Graphs Γ Without Redundant Blocks

For a given instance (G,S), we figure out X = c(G) \ c(S), F (S), and use
Algorithm BC(G, S) to get W (G). Let D = X ∪ F (S), B = W (G), and we
divide the breakpoints in B into the following two types.
(1) fallible breakpoints set B1 ⊆ B. A breakpoint xy ∈ B belongs to B1 if and
only if the following conditions are satisfied: if x 	= y, s(D,x) > s(B, xy) and
s(D, y) > s(B, xy). Otherwise, s(D,x) ≥ 2s(B, xx) + 2.
(2) infallible breakpoints set B2 = B \ B1.

It is easy to see that B1 is the set of breakpoints in B that are possibly used
to construct redundant blocks.

We now give the general idea of constructing auxiliary graph Γ based on
B1, B2, and D. For each kind of symbols x in D, we calculate TD(x), which
represents the number of blocks containing x, and TB(x), which represents the
number of breakpoints containing x in B1, and TS(x) = TB(x) − TD(x). For
each kind of symbols x in D, we construct an ordering of s(D,x) new symbols
x1, . . . , xs(D,x). Let D′ be the set of new symbols obtained from the symbols
in D. Let LD(x) be an indicator denoting which symbol in {x1, . . . , xs(D,x)} is
handling, and let LDS(x) be an indicator denoting which breakpoint of TB(x)
breakpoints is handling, and initialize them to 1. Assume that Θ is the set of
each kind of symbols x in D sorted by ascendant order according to the value
of TS(x). A list B′

1 of breakpoints in B1 can be obtained in the following way.
Initially, B′

1 = ∅. For each breakpoint xy in B1, construct two breakpoints xy,
yx in B′

1, and a common shared indicator LB(x, y) = 1. Sort the breakpoints in
B′

1 according to Θ. Based on B′
1 and B2, the auxiliary graph Γ = (V,E) can be

constructed as follows. Let V = D, i.e., each symbol in D is viewed as a vertex
in Γ .

For each symbol x in Θ in order, there are two steps:
(1) For each breakpoint xy in B′

1 in order with LB(x, y) = 1, the following
operations are taken:
(1.1) y is before x in Θ, LD(x) ≤ s(D,x), LDS(x) ≤ TD(x) and LDS(y) ≤
TD(y). We add edges between xLD(x) and yi (1 ≤ i ≤ s(D, y)) into E, and
let LD(x) = LD(x) + 1, LDS(x) = LDS(x) + 1, LDS(y) = LDS(y) + 1,
LB(x, y) = 0;
(1.2) y = x, LD(x) ≤ s(D,x) and LDS(x) ≤ TD(x)− 1. We add edges between
xLD(x) and xi (1 ≤ i ≤ s(D,x), i 	= LD(x)) into E, and let LD(x) = LD(x)+1,
LDS(x) = LDS(x) + 2, LB(x, y) = 0;
(2) For each breakpoint xy in B′

1 in reserve order with LB(x, y) = 1, the following
operation is taken:
(2.1) LD(x) ≤ s(D,x), LDS(x) ≤ TD(x), LDS(y) ≤ TD(y). We add edges
between xLD(x) and yi (1 ≤ i ≤ s(D, y)) into E, and let LD(x) = LD(x) + 1,
LDS(x) = LDS(x) + 1, LDS(y) = LDS(y) + 1, LB(x, y) = 0;

For each breakpoint xy in B2, the edges in Γ are constructed by the following
way:
(3) x 	= y. We add edges between xi and yj (1 ≤ i ≤ s(D,x), 1 ≤ j ≤ s(D, y));

102 Q. Feng et al.

Auxiliary-Graph-Construction(X, F (S), B)
Input: a multi-set of symbols, X, a set of the ends of contigs, F (S), and a

multi-setof breakpoints, B
Output: an auxiliary graph Γ
1. let D = X ∪ F (S), and get subsets B1, B2, respectively;
2. D′ = B′

1 = V = E = ∅;
3. for each symbol x in D do

construct s(D, x) new symbols {x1, . . . , xs(D,x)}, and D′ = D′ ∪
{x1, . . . , xs(D,x)}; LD(x) = LDS(x) = 1, TD(x) = TB(x) = 0;

4. for each symbol x in D do
if x ∈ X then TD(x) = TD(x) + 2; else TD(x) = TD(x) + 1;

5. for each symbol x in D do
for each breakpoint α in B1 containing x do

if α contains one x then TB(x) = TB(x)+1; else TB(x) = TB(x)+2;
TS(x) = TB(x) − TD(x);

6. let Θ be the set of symbols in D sorted by ascending order according to
the value of TS(x) of each kind symbol x in D;

7. for each breakpoint xy in B1 do
construct two breakpoints xy, yx, add them into B′

1, and they share a
common indicator LB(x, y) = 1;

8. sort the breakpoints in B′
1 according to Θ order;

9. V = D′;
10. for each symbol x in Θ in order do

for each breakpoint xy in B′
1 in order with LB(x, y) = 1 do

if y is before of x in Θ, LD(x) ≤ s(D, x), LDS(x) ≤ TD(x)
and LDS(y) ≤ TD(y) then add edges between xLD(x) and yi

(1 ≤ i ≤ s(D, y)) into E, LD(x) = LD(x)+1, LDS(x) = LDS(x)+1,
LDS(y) = LDS(y) + 1, LB(x, y) = 0;
else if y = x, LD(x) ≤ s(D, x) and LDS(x) ≤ TD(x) − 1 then
add edges between xLD(x) and xi (1 ≤ i ≤ s(D, x), i �= LD(x)) into
E, LD(x) = LD(x) + 1, LDS(x) = LDS(x) + 2, LB(x, y) = 0;

for each breakpoint xy in B′
1 in reserve order with LB(x, y) = 1 do

if LD(x) ≤ s(D, x), LDS(x) ≤ TD(x) and LDS(y) ≤ TD(y)
then add edges between xLD(x) and yi (1 ≤ i ≤ s(D, y)) into
E, LD(x) = LD(x) + 1, LDS(x) = LDS(x) + 1, LDS(y) =
LDS(y) + 1, LB(x, y) = 0;

11. for each breakpoint xy in B2 do
if x �= y then add edges between xi and yj into E (1 ≤ i ≤
s(D, x), 1 ≤ j ≤ s(D, y)); else add edges between xi and xj into
E (1 ≤ i ≤ s(D, x), 1 ≤ j ≤ s(D, x), i �= j);

12. for each edge xy in E do
if x, y ∈ F (S) and x, y are not in a same slot then delete the edge xy;

13. delete all isolated vertices;
14. return graph Γ .

Fig. 3. Algorithm for constructing auxiliary graph Γ

A 2.57-Approximation Algorithm for Contig-Based Genomic Scaffold Filling 103

(4) x = y. We add edges between xi and xj (1 ≤ i ≤ s(D,x), 1 ≤ j ≤ s(D,x),
i 	= j);

The specific process of constructing auxiliary graph Γ is given in Fig. 3.

3.2 The Approximation Algorithm Based on Maximum Matching

Based on auxiliary graph constructed in the above subsection, our approximation
algorithm for the One-sided-GSF-max-BC problem contains the following two
processes. For a given instance (G,S) of the One-sided-GSF-max-BC problem,
by calling algorithm AGC(X, F (S), W (G)), a graph Γ1 can be obtained. The
first process is to find a maximum matching M1 on graph Γ1, and we will analyze
the relation between the edges in M1 and the optimal solution of the One-sided-
GSF-max-BC problem. Based on M1, our second process is to construct a new
auxiliary graph Γ2 by calling algorithm AGC, and find a maximum matching
M2 in the new auxiliary graph. By studying the relations of M1,M2 with the
optimal solution, we analyze that the approximation ratio of our algorithm is
2.57.

The first process is given in Fig. 4, by which we can obtain a partially filled
scaffold, S1, and a set of matched-blocks, T . In this process, an auxiliary graph Γ1

can be constructed by the algorithm in Fig. 3 AGC. Then, a maximum matching
M1 is obtained in Γ1. For each edge xy in M1, the scaffold S can be updated as
follows:
(1) x, y are the two end symbols of a same slot. We combine the two contigs of
the slot to make a new contig and remove the edge from M1;
(2) x (or y) ∈ F (S). We insert y (or x) into the contig containing x (or y) with
x, y adjacent, and remove the edge from M1.

The second process is given in Fig. 5, by which we can obtain a partially filled
scaffold S2. The inputs of the algorithm in Fig. 5 contain a complete string G,
a partially scaffold S, and a matching T . In this process, an auxiliary graph Γ2

can be constructed by Algorithm AGC. We remove all the edges in T from Γ2.
Then, a maximum matching M2 can be found in Γ2. For each component κ in
T

⊕
M2, the scaffold S can be updated as follows:

(1) κ is a simple path. Let κ = p1p2 . . . pt−1pt. Do the following operations:
(1.1) p1, pt ∈ F (S) and p1, pt are not in a same slot. We insert p2 . . . pt−1 into

the contig containing p1 with p1, p2 adjacent;
(1.2) p1, pt ∈ F (S) and p1, pt are in a same slot. We insert p2 . . . pt−1 to combine
the two contigs of the slot to get a new contig with p1, p2 adjacent and pt−1, pt
adjacent;
(1.3) p1 (or pt) ∈ F (S). We insert p2 . . . pt−1pt (or p1p2 . . . pt−1) into the contig
containing p1 (or pt) with p1, p2 (or pt−1, pt) adjacent;
(1.4) For other cases, we insert p1p2 . . . pt−1pt into the rightmost of S;
(2) κ is a simple cycle. We delete an arbitrary edge in κ to get a path
p1p2 . . . pt−1pt, and insert p1p2 . . . pt−1pt to the rightmost of S.

Finally, by the algorithm in Fig. 6, we combine the two processes and insert
the remaining symbols to get the fully filled S′.

104 Q. Feng et al.

First-Round(G, S)
Input: a complete string G, and a scaffold S
Output: a scaffold S1, and a subset of matchings, T
1. let X = c(G) \ c(S);
2. call algorithm BC(G, S) to get set B of breakpoints;
3. let F (S) be the set of first symbol and last symbol of each contig in S;
4. call algorithm AGC(X, F (S), B) to get a graph Γ1;
5. find a maximum matching M1 in Γ1;
6. T = ∅, S1 = S;
7. for each edge xy in M1 do

if x, y are the two end symbols of a same slot then combine the two
contigs of the slot to make a new contig in S1; else if x (or y) ∈ F (S)
then insert y (or x) into the contig containing x (or y) with x, y adjacent
in S1; else T = T ∪ {xy};

8. return S1 and T .

Fig. 4. Algorithm FR

Second-Round(G, S, T)
Input: a complete string G, a scaffold S, and a matching T
Output: a scaffold S2

1. let X = c(G) \ c(S);
2. call algorithm BC(G, S) to get set B of breakpoints;
3. let F (S) be the set of first symbol and last symbol of each contig in S;
4. for each edge in T do

delete the corresponding breakpoint in B;
5. call algorithm AGC(X, F (S), B) to get a graph Γ2;
6. for each edge xy in T do

if xy is an edge in Γ2 then delete the edge xy in Γ2;
7. find a maximum matching M2 in Γ2;
8. S2 = S, Λ = T

⊕
M2;

9. for each component κ in Λ do
if κ is a simple path, let κ = p1p2 . . . pt−1pt then
if p1, pt ∈ F (S) then
if p1, pt are not in a same slot then insert p2 . . . pt−1 into the contig
containing p1 with p1, p2 adjacent in S2; else insert path p2 . . . pt−1

to combine the two contigs of the slot to get a new contig with p1, p2

adjacent and pt−1, pt adjacent in S2;
else if p1 (or pt) ∈ F (S) then insert p2 . . . pt−1pt (or p1p2 . . . pt−1)
into the contig containing p1 (or pt) with p1, p2 (or pt−1, pt) adjacent
in S2; else insert p1p2 . . . pt−1pt to the rightmost of S2;

else delete an arbitrary edge in κ to get a path p1p2 . . . pt−1pt, insert
p1p2 . . . pt−1pt to the rightmost of S2;

10. return S2.

Fig. 5. Algorithm SR

A 2.57-Approximation Algorithm for Contig-Based Genomic Scaffold Filling 105

Ratio-2.57 Approximation Algorithm
Input: a complete string, G, a scaffold, S
Output: a filled scaffold, S′

1. call FR(G, S) to get S1 and T ;
2. call SR(G, S1, T) to get S2;
3. S′ = S2;
4. insert all symbols in c(G) \ c(S2) to the rightmost in S′;
5. return S′.

Fig. 6. Ratio-2.57 approximation algorithm

Lemma 1. Each block which is corresponding to an edge in the maximum
matching obtained from the graph Γ is not redundant.

Given a complete string G and a scaffold S, assume that OPT is the opti-
mal solution, APP is the approximation solution, Z is the set of matched-pairs
between G and S, k is the number of matched-pairs between G and OPT , and
k′ is the number of matched-pairs between G and APP . We can get that k −|Z|
is the number of matched-pairs contained in OPT and not in Z, and k′ − |Z| is
the number of matched-pairs in APP and not in Z. Let r1 = (k − k0)/(k′ − k0).
Let r2 = k/k′. It is easy to see that r1 ≥ r2. Therefore, in the following, we only
analyze the value of r1.

Observation 1. In the graph Γ returned by algorithm AGC(X,F (S), B), for
each vertex x and a breakpoint xy, the adjacent edges can be constructed by the
one of the following two ways:
(i) For a xi, construct edges between xi and yj, 1 ≤ j ≤ s(X ∪F (S), y) (for case
x 	= y), or construct edges between xi and yj, 1 ≤ j ≤ s(X ∪F (S), y), j 	= i (for
case x = y);
(ii) For a yj, construct edges between xi and yj, 1 ≤ i ≤ s(X ∪ F (S), x).

For a vertex x, if the adjacent edges of x are all constructed by the ways
in (ii), then vertex x is called a type-2 vertex. Otherwise, vertex x is called a
type-1 vertex. A type-1 vertex x must have a unique corresponding breakpoint
from B, called type-1 breakpoint, which is used in (i) to construct some edges,
denoted by Ex. The neighbors of the type-1 vertex x, which are adjacent to the
edges in Ex, are called type-1 breakpoint neighbors.

Lemma 2. For a given instance (G,S) of the One-sided-GSF-max-BC problem,
let OPT be an optimal solution. For the algorithm in Fig. 4, let A1 be the set of
matched-blocks obtained by the maximum matching M1. Then, the size of A1 is
at least |OPT |

3 .

Lemma 3. For a given instance (G,S) of the One-sided-GSF-max-BC problem,
let OPT be an optimal solution. For the algorithm in Fig. 5, let A2 be the set
of matched-blocks obtained by the maximum matching M2. Then, the number of
matched-blocks in A2 is at least |OPT |

18 .

106 Q. Feng et al.

Theorem 1. The ratio of our approximation algorithm is 2.57.

Proof. Let A be the approximation solution of our algorithm. Based on Lemmas
2 and 3, there is no redundant matched-block in A1 ∪ A2. Thus, |A| = |A1| +
|A2| ≥ |OPT |

3 + |OPT |
18 = 7

18 |OPT |. Therefore, the ratio of our approximation
algorithm is 2.57. ��

References

1. Bulteau, L., Carrieri, A.P., Dondi, R.: Fixed-parameter algorithms for scaffold
filling. Theoret. Comput. Sci. 568, 72–83 (2015)

2. Bulteau, L., Fertin, G., Komusiewicz, C.: Beyond adjacency maximization: Scaffold
filling for new string distances. In: LIPIcs-Leibniz International Proceedings in
Informatics, vol. 78. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

3. Chen, Z., Fu, B., Xu, J., Yang, B., Zhao, Z., Zhu, B.: Non-breaking similarity of
genomes with gene repetitions. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS,
vol. 4580, pp. 119–130. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73437-6 14

4. Chen, Z., Fu, B., Zhu, B.: The approximability of the exemplar breakpoint distance
problem. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp.
291–302. Springer, Heidelberg (2006). https://doi.org/10.1007/11775096 27

5. Jiang, H., Fan, C., Yang, B., Zhong, F., Zhu, D., Zhu, B.: Genomic scaffold fill-
ing revisited. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 54.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

6. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint and
related distances. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(4), 1220–1229
(2012)

7. Jiang, H., Zhong, F., Zhu, B.: Filling scaffolds with gene repetitions: maximizing
the number of adjacencies. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS,
vol. 6661, pp. 55–64. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21458-5 7

8. Liu, N., Jiang, H., Zhu, D., Zhu, B.: An improved approximation algorithm for
scaffold filling to maximize the common adjacencies. IEEE/ACM Trans. Comput.
Biol. Bioinform. 10(4), 905–913 (2013)

9. Liu, N., Zhu, D., Jiang, H., Zhu, B.: A 1.5-approximation algorithm for two-sided
scaffold filling. Algorithmica 74(1), 91–116 (2016)

10. Liu, N., Zou, P., Zhu, B.: A polynomial time solution for permutation scaffold fill-
ing. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp.
782–789. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6 60

11. Ma, J., Jiang, H.: Notes on the 6
5
-approximation algorithm for one-sided scaffold

filling. In: Zhu, D., Bereg, S. (eds.) FAW 2016. LNCS, pp. 145–157. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-319-39817-4 15

12. Ma, J., Jiang, H., Zhu, D., Zhang, S.: A 1.4-approximation algorithm for two-sided
scaffold filling. In: Xiao, M., Rosamond, F. (eds.) FAW 2017. LNCS, vol. 10336, pp.
196–208. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59605-1 18

13. Muñoz, A., Zheng, C., Zhu, Q., Albert, V.A., Rounsley, S., Sankoff, D.: Scaffold
filling, contig fusion and comparative gene order inference. BMC Bioinform. 11(1),
304 (2010)

https://doi.org/10.1007/978-3-540-73437-6_14
https://doi.org/10.1007/978-3-540-73437-6_14
https://doi.org/10.1007/11775096_27
https://doi.org/10.1007/978-3-642-21458-5_7
https://doi.org/10.1007/978-3-642-21458-5_7
https://doi.org/10.1007/978-3-319-48749-6_60
https://doi.org/10.1007/978-3-319-39817-4_15
https://doi.org/10.1007/978-3-319-59605-1_18

A 2.57-Approximation Algorithm for Contig-Based Genomic Scaffold Filling 107

14. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–
3346 (2005)

15. Zhu, B.: Genomic scaffold filling: a progress report. In: Zhu, D., Bereg, S. (eds.)
FAW 2016. LNCS, vol. 9711, pp. 8–16. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-319-39817-4 2

https://doi.org/10.1007/978-3-319-39817-4_2
https://doi.org/10.1007/978-3-319-39817-4_2

Profit Parameterizations
of Dominating Set

Henning Fernau1 and Ulrike Stege2(B)

1 Fachbereich 4 – Abteilung Informatikwissenschaften, CIRT,
Universität Trier, 54286 Trier, Germany

fernau@uni-trier.de
2 Department of Computer Science, University of Victoria, Victoria, Canada

ustege@uvic.ca

Abstract. Dominating Set is one of the most classical NP-complete
combinatorial graph problems. Unfortunately, the natural parameteriza-
tion (by solution size) does not make this problem feasible in the sense
of Parameterized Complexity. We propose two new views to consider
Dominating Set, and a new parameterization of this problem (by the
profit parameter) and give algorithms for these parameterizations that
show the problems to be in FPT. More precisely, we give a linear-size
kernel and a search-tree procedure.

Keywords: Profit problems · Parameterized Complexity · Domination

1 Introduction

The concept of domination in graphs is one of the central topics in graph theory;
see [12], with a large number of applications. Recall that a set S of vertices in
an undirected graph G = (V,E) is called dominating set (for G) if for each
x ∈ V \ S, x has a neighbor in S. This leads to the following decision problem.
k-Dominating Set

Input: G = (V,E), integer k ≥ 0
Question: Does there exist S ⊆ V such that S is a dominating set for G and

|S| ≤ k?

As decision problem, k-Dominating Set is shown to be NP-complete by Karp
in his classical paper [13]. The natural parameterization by k is not helpful in
terms of Parameterized Complexity, as k-Dominating Set is W[2]-complete—
a standard example in any textbook even in Parameterized Algorithmics [8,
16]. Also its corresponding optimization problem Minimum Dominating Set
is hard to approximate and can be approximated up to a logarithmic factor
only [10].

In the spirit of the Art of Problem Parameterization (see Chapter 5 in [16]),
it appears attractive to look for parameterizations different from the natural one

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 108–120, 2019.
https://doi.org/10.1007/978-3-030-27195-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_10&domain=pdf
http://orcid.org/0000-0002-4444-3220
http://orcid.org/0000-0001-9466-7196
https://doi.org/10.1007/978-3-030-27195-4_10

Profit Parameterizations of Dominating Set 109

such that computing a good (or optimal) solution for an instance of Dominat-
ing Set becomes viable. A now classical trick is to consider the so-called dual
parameter. The dual problem of Dominating Set, also called Nonblocker
(see, e.g., [9]), is defined as follows.

Input: G = (V,E), integer kd ≥ 0
Question: Does there exist N ⊆ V such that S = V \ N is a dominating set

for G and |N | ≥ kd?

Its natural parameterization kd-Nonblocker is in FPT [9]. As Maximum
Spanning Star Forest, the corresponding optimization problem was consid-
ered in [2,7,15], in particular proving APX membership. An optimum solution
S∗ to a Dominating Set instance G = (V,E) translates into an optimum solu-
tion N∗ to Nonblocker by complementation as N∗ = V \ S∗. Slater already
observed this in [19] where nonblocker sets are called enclaveless sets.

In this paper, we propose a new re-parameterization for Dominating Set,
formalizing the following idea: whenever we include a vertex x into a set S (that
might become a dominating set), we conquer (or buy) a certain number of new
vertices (or edges), and pay for them with vertex x. Hence, the profit gained by
this transaction is (in a simplified computation) the number of conquered objects
minus one. Depending on whether we conquer vertices or edges, we obtain the
following two problem variants where the goal is to identify subgraphs that
permit the purchase of vertex set S resulting in a profit of at least p:
Profit Dominating Set, Edge Variant (EV)
Input: G = (V,E), integer p ≥ 0
Question: Does there exist W ⊆ V with the following edge profit property?

The subgraph G′ = (W,E′) of G induced by W has edge profit at least p,
that is, there exists a dominating set S ⊆ W for G′ with |E′| − |S| ≥ p.

Profit Dominating Set, Vertex Variant (VV)
Input: G = (V,E), integer p ≥ 0
Question: Does there exist W ⊆ V with the following vertex profit property?

The subgraph G′ = (W,E′) of G induced by W has vertex profit at least p,
that is, there exists a dominating set S ⊆ W for G′ with |W | − |S| ≥ p.

Remark 1. Consider the following reformulation of Profit Dominating Set,
VV: Given G = (V,E) and p ≥ 0, find S ⊆ V such that NB(S) := |⋃v∈D N [v]|−
|S| ≥ p. Notably, if G is isolate-free and S a dominating set, then NB(S) = V \S.
Moreover, if S is not a dominating set for G, then S′ = S ∪ (V \ ⋃

v∈S N [v]) is a
dominating set with NB(S′) = NB(S). Hence, there is a vertex set of profit ≥ p in
G if and only if G has a dominating set of size ≤ |V |−p. Thus Nonblocker and
Profit Dominating Set, VV are the same problem for isolate-free graphs.

This motivates us to mainly focus on the edge variant, also because kd-Non-
blocker was well-studied before. A similar re-parameterization was considered
for Vertex Cover [17,20]. Here, the goal was to define a variant that considers
as gain the solution’s closeness to being a vertex cover (i.e., the more edges are

110 H. Fernau and U. Stege

covered by solution C, the better). In [20], Profit Vertex Cover, EV was
introduced and studied as Profit Cover: we ask for a subgraph G′ = (V ′, E′)
and a vertex cover C ⊆ V ′ for G′ with profit |E′| − |C| ≥ p. Profit Vertex
Cover, EV is solvable in time O∗(cp) for some quite small constant c: c ≈ 1.15.
For Profit Dominating Set, EV, we show a linear kernel and a branching
algorithm running in time O∗(1.47p).

2 Preliminaries

Throughout this paper we deal with undirected simple graphs. For a vertex x,
N(x) is the open neighborhood of x, i.e., the set of all vertices adjacent to x.
Likewise, N [x] = N(x) ∪ {x} is the closed neighborhood of x. If N(x) = ∅, x is
called an isolate. To avoid confusion, we might add as subscript the graph for
which we consider neighborhoods. For X ⊆ V , G[X] is the subgraph induced
by X in G. Given graph G = (V,E) and S ⊆ V , we refer to a vertex v ∈ V as
conquered by S if v /∈ S, x ∈ S, and xv ∈ E. Likewise, we refer to edge vx ∈ E
as conquered by S if vertex v, x ∈ S ∪ ⋃

s∈S

N [s].

2.1 Simple Observations

Remark 2. When defining our problem variants, determine a subgraph instead
of an induced subgraph is not advantageous: if S is a dominating set for H ′ =
(V,E′), then S is also a dominating set for any supergraph H = (V,E), E ⊇ E′.

Remark 1 proves that the vertex profit parameter is a valid alternative param-
eterization for Dominating Set: (1) for isolate-free graphs, S∗ is a minimum
dominating set for G = (V,E) if and only if S∗ is a set with maximum vertex
profit |V \ S∗|; (2) if S is a vertex set with maximum vertex profit, say p, then
there is a minimum dominating set S∗ ⊇ S with profit p. From an algorithmic
perspective, this means that known algorithms for Minimum Dominating Set
can be applied to solve the vertex profit maximization problem, because isolates
can always be treated beforehand. We will make use this in the next subsection.

Considering the edge profit case, for isolate-free graph G = (V,E) a dom-
inating set S has edge profit |E| − |S|; hence, when conquering all edges, a
minimum dominating set has maximum profit. Conversely, consider vertex set
S with maximum edge profit. If there is an edge xy not conquered by S, we can
add x to S without changing the edge profit (by profit maximality of S). Doing
this repeatedly, we obtain a superset S∗ ⊇ S with maximum edge profit, which
is also a dominating set. That is, for isolate free graphs, a vertex set conquers all
edges if and only if it is a dominating set. This proves that also the edge profit
parameter is a valid alternative parameterization for Dominating Set.

Profit Parameterizations of Dominating Set 111

2.2 Vertex Variant

We inherit the following results as corollaries from [9].

Corollary 1. kd-Nonblocker admits a kernel with at most 1.67kd vertices
and hence can be solved in time O∗(d1.67kd), where d < 1.5 is the basis of the
running time of the best exact algorithm for solving Dominating Set.

Currently, d < 1.497 appears the record holder for exact exponential-time algo-
rithms for Minimum Dominating Set [18]. Thus kd-Dual Dominating Set,
VV can be solved in time O∗(1.96kd). Using Remark 1 we deduce:

Corollary 2. p-Profit Dominating Set, VV admits a kernel with at most
1.67p vertices and can hence be solved in time O∗(1.96p).

3 Main Results

We consider the far more involved edge variant. We present a kernelization and a
search-tree algorithm for p-Profit Dominating Set, EV, proving that this is
indeed a good approach to make use of standard FPT techniques for domination.

3.1 A Linear Kernel

We first describe briefly how to obtain a linear vertex kernel. This also shows
FPT membership.

Proposition 1. p-Profit Dominating Set, EV has a kernel with at most 5p
vertices.

Proof. As discusses earlier, neither isolated vertices nor isolated edges contribute
to obtaining a profit of p. Therefore, we remove all isolated vertices and isolated
edges from the graph. Profit parameter p remains unchanged.

Now consider a graph where none of these two reduction rules applies. Let
(G, p) be the resultant (irreducible) instance. We perform the following greedy
procedure that determines a (profit) set S for G. For this, initialize G′ = (V ′, E′)
with V ′ = V and E′ = E, and let S = ∅. As long as there exists a vertex of
degree at least two in G′ and |S| < p, select a vertex x of highest degree and
include it into S. Remove x from G′, together with all � conquered edges (from
G[N [x]]). This adds value |N(x)| − (� − 1) to the obtained profit for S in G,
which is subtracted from the current profit parameter. The procedure stops if
|S| ≥ p (in this case we have a proof that (G, p) is a YES-instance) or if the
remaining graph has maximum degree one.

Consider the case where |S| < p and the procedure stopped for the second
reason. Then, there exist less than 2p neighbors of S-vertices that are in V \ S.
Let D denote the set of these (by S dominated) neighbors. Next, consider X =
V \ (S ∪ D). By its definition, each vertex in X has only neighbors in D ∪ X. A
vertex in D ∪ X cannot have more than one neighbor since otherwise it would

112 H. Fernau and U. Stege

have been promoted to S during our greedy procedure (since including such
a vertex into S would increase the profit). Thus, each vertex in X has degree
at most one, and exactly one neighbor in D, as otherwise the isolated edge
rule would have applied to two vertices in X connected by an edge. Also, the
isolated vertex rule prohibits any isolated vertices to appear in X. Likewise, each
vertex in D has at most one neighbor in X (since otherwise it would be included
into S). Also, X contains no isolates. Hence, |X| ≤ |D| ≤ 2|S| < 2p, showing
|V | < 5p.
�
It is not immediately clear if this kernelization idea can be used to obtain good
approximation algorithms for Maximum Profit Dominating Set, EV, as
ventured for other problems similar to Nonblocker in [1].

By the observations in Subsect. 2.1, we can use the currently best exact algo-
rithm for Minimum Dominating Set to solve p-Profit Dominating Set, EV
in time O∗(7.5211p). Below, we improve on the algorithm implicitly presented
in Proposition 1 considerably.

3.2 A Search-Tree Algorithm

We describe a branching algorithm that deals with annotated instances of p-
Profit Dominating Set, EV, defined as follows: vertex set V of input graph
G = (V,E) is partitioned into N ∪ D ∪ B, i.e., N ∩ D = ∅, N ∩ B = ∅, and
D ∩ B = ∅, using the following semantics:

– x ∈ N means that during branching, vertex x was determined not to belong
to the solution that is being constructed.

– x ∈ D means that x has already been dominated (by another vertex that has
in fact been deleted in the branching).

– x ∈ B is a blank vertex; no decision has been made about this vertex so far.

Then, given G = (N ∪ D ∪ B,E) and integer p, the task of this annotated
version of p-Profit Dominating Set, EV is to select S ⊆ B ∪ N such that
|E(G[N [S]])| − |S| ≥ p.

We describe a number of reduction rules that allows us to analyze the sketch
listed in Algorithm 1 using some specific measure. These reduction rules either
provide a new (annotated) problem instance or they answer directly YES or NO.
Also, the branching step itself will be described in more detail below. However,
due to space restrictions, several parts of the proof have been omitted. We are
going to show the following result:

Theorem 1. p-Profit Dominating Set, EV is solvable in time O∗(1.47p).

We begin with a non-annotated instance, i.e., V = B and N = D = ∅. From this
non-annotated instance, we delete all vertices I of degree zero, as these isolates
are not part of any small solution (Proposition 1). The resulting instance contains
no blank vertices that are isolates. We will maintain this invariant in the course of
our algorithm, i.e., we ensure none of the reduction and branching rules that we
introduce from now on produces blank isolates. Call PDS with these arguments.

Profit Parameterizations of Dominating Set 113

Algorithm 1. Branching algorithm PDS for p-Profit Dominating Set, EV
Require: G = (V, E), where V is partitioned into N ∪ D ∪ B, integer p
Ensure: YES if there is S ⊆ B ∪ N such that |E(G[N [S]])| − |S| ≥ p, NO otherwise

if any of the reduction rules is applicable then
Apply first applicable rule
if rule answers YES or NO then

Return this answer.
else

Let G′ = (V ′, E′) with V ′ = N ′ ∪ D′ ∪ B′ and p′ be this answer.
Return PDS(G′ = (V ′, E′), V ′ = N ′ ∪ D′ ∪ B′, p′).

end if
else if there is a vertex x of degree at least three in B ∪ N then

if possible then
Pick x with a neighbor in N .

else if possible then
Pick x from D.

else
Pick x from B.

end if
Branch by either including or excluding x.
Return YES if one of the two recursive branches returns YES.

else
Solve remaining 2-regular instance and return the answer.

end if

Due to the observations from Subsect. 2.1, we henceforth assume that any
solution V ′ ⊆ V for the isolate-free non-annotated instance is in fact a dominat-
ing set of the (whole) graph. In the following analysis we make use this property
repeatedly. During the algorithm, we keep track of a measure μ defined as

μ(G, p) := p − ω|N | − |E(G[N])| − |E(G[D])| where G = (N ∪ D ∪ B,E).

Note that weight ω is not chosen yet. We, however, assume that 0 ≤ ω ≤ 1.1
Clearly, for a non-annotated instance (G, p) we obtain μ(G, p) = p. We ensure
that whenever value μ(G, p) drops below zero, we know whether this branch
yields a YES- or a NO-answer. Then, we (can and will) measure the progress
of our recursive algorithm in terms of μ instead of p. This is reminiscent of the
measure-and-conquer approach that is well established for exact exponential-
time algorithms but rarely observed for parameterized algorithms; see [6] and [11]
for the overall methodology. Intuitively, the choice of μ can be justified as follows.

– Edges between dominated vertices (i.e., xy ∈ E, x, y ∈ D) can be removed
as they already belong to the edge set (of the graph) induced by the closed
neighborhood of the solution built so far.

1 Note that below we also discuss the possibility replacing term ω|N | by some function
ω : N → [0, 1] that assigns weights to vertices from N .

114 H. Fernau and U. Stege

– Edges between vertices x, y in N are conquered eventually, because some
neighbor of x and some neighbor of y must eventually be included into the
solution (irrespective of presence of absence of edge xy).

– Vertices x ∈ N show the potential of producing profit, which we simply
deduct as early as possible. We demonstrate how to do this using the following
reduction rules, dealing mostly with vertices of degree one.

Given G = (N ∪ D ∪ B,E) and p, we describe the effect of two operations that
form the basic steps of our algorithm. The resulting instance is described by
G∗ = (N∗ ∪ D∗ ∪ B∗, E∗) with V ∗ = N∗ ∪ D∗ ∪ B∗, p∗ as arguments of PDS.

– x ∈ B is included into the solution. Then, B∗ := B \ NG[x], D∗ := D ∪
(NG(x) \ N), N∗ := N \ NG(x), G∗ := G[V ∗], p∗ := p − |E \ E∗| + 1.

– x ∈ D is included into the solution. Then, B∗ := B \ NG(x), D∗ := (D \
{x}) ∪ (NG(x) \ N), N∗ := N \ NG(x), G∗ := G[V ∗], p∗ := p − |E \ E∗| + 1.

– x ∈ B is excluded from the solution. Then, B∗ := B \ {x}, D∗ := D, N∗ :=
N ∪ {x}, G∗ := G[V ∗], p∗ := p.

– x ∈ D is excluded from the solution. Then, B∗ := B, D∗ := D\{x}, N∗ := N ,
G∗ := G[V ∗], p∗ := p − |E \ E∗|.

We explain the first case; the other operations can be explained similarly. If x
is included into the solution, then x and all neighbors of x are dominated by x,
explaining B∗ and D∗. We can delete vertices in D∗ ∩N as well as their incident
edges from G since, by definition, vertices in N no longer serve to dominate any
vertex in G. We, however, ensure that they are (eventually) dominated. Once
this is achieved, they can be deleted. To understand why at this time we can
already count and remove edges incident to conquered vertices in N , recall that
we build a solution dominating the entire graph. Thus, while these incident edges
are not yet conquered, they will be conquered eventually, as the other endpoint
of each such edge must be dominated by our final solution. This justifies why
edges not present in G[V ∗] can be deleted to obtain G∗, even if they are not (yet)
incident to two dominated vertices, and why the profit is updated accordingly.

We next analyze how μ is affected when executing the four operations
described above. Consider instance G = (N ∪ D ∪ B,E) with profit parame-
ter p. We begin by considering what happens if x ∈ B is excluded from the
solution.

μ(G, p) − μ(G∗, p∗) = p − ω|N | − |E(G[N])| − |E(G[D])|
− (p∗ − ω|N∗| − |E(G∗[N∗])| − |E(G∗[D∗])|)
= |NG(x) ∩ N | + ω ≥ 0, (1)

because B∗ = B\{x}, N∗ = N ∪{x}, D∗ = D, p∗ = p, i.e., only x is moved from
B to N . Next we discuss the case where x ∈ D is excluded from the solution.

μ(G, p) − μ(G∗, p∗) = p − ω|N | − |E(G[N])| − |E(G[D])|
− (p∗ − ωN |N∗| − |E(G∗[N∗])| − |E(G∗[D∗])|)
= |E \ E∗| − |NG(x) ∩ D|
= |NG(x) ∩ (B ∪ N)| ≥ 0, (2)

Profit Parameterizations of Dominating Set 115

because B∗ = B, N∗ = N , D∗ = D \ {x}, and p∗ = p−|E \E∗|. In other words,
x as well as its incident edges are (completely) removed.

Next we consider the (more complicated) situations where vertex x is included
into the solution. Let β = |B ∩ NG(x)|, δ = |D ∩ NG(x)|, and ν = |N ∩ NG(x)|.

First, assume x ∈ B. Thus, from above we obtain B∗ = B \ NG[x], D∗ =
D ∪ (NG(x) \ N), N∗ = N \ NG(x). Hence, |B∗| = |B| − β − 1, |D∗| = |D|+ β −
|N ∩ NG(x)|, |N∗| = |N | − ν. Therefore,

μ(G, p) − μ(G∗, p∗) = p − ω|N | − |E(G[D])| − (p∗ − ω(|N | − ν) − |E(G∗[D∗])|),
as D and N are independent in G, which also holds true for N∗ in G∗. Moreover,

E(G∗[D∗]) \ E(G[D]) =

⎛

⎝
∑

y∈NG(x)∩B

|NG(y) ∩ D|
⎞

⎠ + |E(G[NG(x) ∩ B])|. (3)

Comparing E∗ with E, we observe that only edges incident to x, and those
incident to N ∩ NG(x) are removed. Hence

p∗ = p − |NG(x)| −
⎛

⎝
∑

y∈N∩NG(x)

(|NG(y)| − 1)

⎞

⎠ + 1. (4)

As |N∗| = |N | − ν, the measure difference μ(G, p) − μ(G∗, p∗) equals

|NG(x)| − 1 +

⎛

⎝
∑

y∈N∩NG(x)

(|NG(y)| − 1 − ω)

⎞

⎠ + |E(G∗[D∗]) \ E(G[D])|. (5)

Finally, we assume x ∈ D. Consider the case where x is included into the solution.
Then Eq. (3) becomes

E(G∗[D∗]) \ E(G[D]) =

⎛

⎝
∑

y∈NG(x)∩B

(|NG(y) ∩ D| − 1)

⎞

⎠ + |E(G[NG(x) ∩ B])|.

Interestingly, the updated profit is computed by the same formula as Eq. (4),
and the measure difference as in Eq. (5).

We next describe several reduction rules, to be applied in the given order. We
only describe steps in detail that actually change the instance. Our (recursive)
algorithm makes use of one peculiarity: it may return NO for two reasons. (a)
there is no solution on this branch at all; (b) the algorithm detected that another
branch of the algorithm might deliver a solution that is no worse and possibly
better. This latter decision, formalized as the concept of reference search trees
in [5], turns out to be helpful for our purposes. The main idea of a reference
search tree is that the search space can be traversed using a directed acyclic
graph that is not necessarily a directed tree. In our case, this is conceptually
achieved by cutting branches where we find a previous decision to be wrong
when x was included into N , and pointing instead to the branch where x is
included into the solution. A positive termination is signaled by YES. We give
further justification for rules where the justification is less straightforward.

116 H. Fernau and U. Stege

Few edges abort If |E| < p then NO.
High-degree 1 If there is some x ∈ D ∪ B of degree larger than p, then YES.
Delete N-edges If x, y ∈ N and xy ∈ E, then delete xy and decrement p.
High-degree 2 If there is some x ∈ N of degree larger than p, then YES.
Delete D-edges If x, y ∈ D and xy ∈ E, then delete xy and decrement p.
Isolate N If x ∈ N is an isolate, then NO.
Isolate D If x ∈ D is an isolate, then exclude x from the solution.

Observe that reduction rules that return a conclusive YES or NO do not change
our measure. More precisely, for the edge deletion rules, both profit and count on
the number of edges between N -vertices or D-vertices, respectively, are decre-
mented. For the exclusion of isolates from D, confer Eq. (2). After executing
these reduction rules exhaustively, N and D form independent sets in graph
instance G. Hence, the measure simplifies to

μ(G, p) = p − ω|N |.

Next, we describe how to deal with vertices of degree one, and graphs consisting
of several connected components. One special case of degree-1 vertices concerns
isolated edges, i.e., a neighbored pair of vertices of degree one each.

Support vertex abort Let N(x) = {y}. If y ∈ N and x ∈ B then NO.
Pendant non-dominated vertex Let N(x) = {y}. If x ∈ N ∪ B then include

y into the solution.
Pendant dominated vertex Let N(x) = {y}. If x ∈ D then delete x from G.
Many components If G has at least p components then YES.
N -Encycled blank vertex If there is some x ∈ B such that NG(x) ⊆ N , then

include x into the solution.
Pendant induced cycle C3 : If x1 − x2 − x3 − x1, is an induced cycle in G

and x1 is the only vertex of degree larger than two on this cycle, meaning
that |NG(x1)| > 2 but |NG(xi)| = 2 for all i > 1, then do the following: (i) If
x1 ∈ N , then NO. (ii) Otherwise, include x1 into the solution.
C4 : If x1 − x2 − x3 − x4 − x1 is an induced cycle in G and x1 is the only

vertex of degree larger than two on this cycle, meaning that |NG(x1)| > 2 but
|NG(xi)| = 2 for all i > 1, then do the following: (i) If x1 ∈ N and x2, x4 ∈ B,
then NO. (ii) If x1 ∈ N and x4 ∈ D, then include x2 into the solution. (The
case “x2 ∈ D” is symmetric.) (iii) If x1 ∈ B, x2 /∈ N and x4 ∈ D, then include
x2 into the solution. (The case “x2 ∈ D” is symmetric.) (iv) If x1 ∈ D∧x3 ∈ B,
or if x1 ∈ B ∧ {x2, x4} ∩ N �= ∅, or if {x1, x2, x3, x4} ⊆ B, then include x3.
(v) Otherwise, include x1 into the solution.

We can argue correctness of these rules and explain why the measure never
increases. Returning NO in these rules is justified by reference search tree argu-
ments. Hence, it is crucial that these rules are applied within the branching.

From now on, in particular we can assume that our instance is of minimum
degree two. Next, we consider a reduction rule that is most crucial for the cor-
rectness of our approach; hence we provide a detailed proof.

Profit Parameterizations of Dominating Set 117

Measure Below Zero. If μ(G, p) ≤ 0 then YES.

Proposition 2. If μ(G, p) ≤ 0, then (G, p) is a YES-instance.

Although above we set ω ≤ 0.5, our proof is valid for any ω ≤ 1. In fact we
assume ω = 1 as the worst case scenario in our reasoning.

Proof. By our reduction rules, we have an irreducible instance (G, p) with G =
(B ∪ D ∪ N,E) such that μ(G, p) = p − |N | ≤ 0. Moreover, we know that each
vertex is of degree at least two. We show that in such a situation, (G, p) is a YES-
instance. We prove this by showing that S = D ∪ B always provides sufficient
profit. By rule Isolate N , S forms a dominating set of G.

First we assume that G[D∪B] contains no edges. In that case, G is bipartite,
because G[N] contains no edges by reduction. We then claim that S = D ∪ B is
a solution that provides sufficient profit p(S). By construction

p(S) =
∑

v∈D∪B

(|NG(v)| − 1) =

(
∑

v∈D∪B

|NG(v)|
)

− |D ∪ B|.

As every vertex v is of degree at least two, p(S) ≥ |B∪D|. Hence, if |B∪D| ≥ |N |,
the claim is proved. Assume that |B∪D| < |N |. By double counting of the edges
and by making use once more of the minimum degree condition, we see that

p(S) =

(
∑

v∈D∪B

|NG(v)|
)

− |D ∪ B|

=

(
∑

v∈N

|NG(v)|
)

− |D ∪ B|

≥ 2|N | − |D ∪ B| > |N |.

Hence, the claim is shown for the case that G[D ∪ B] contains no edges.
We next show how to reduce the general case to this bipartite one. Namely,

we subdivide all edges e in G[D∪B] by inserting new vertices [e], collected in N ′.
This results in a new graph G∗ = (V ∗, E∗), with B∗ = B, D∗ = D, N∗ = N ∪N ′

and E∗ = (E \ E(G[D ∪ B])) ∪ {u[e] | u ∈ D ∪ B, e ∈ E(G[D ∪ B]), u ∈ e}.
Moreover, for instance (G∗, p∗), with p∗ = p+|N ′|, we get μ(G∗, p∗) = p∗−|N∗| =
(p+ |N ′|)− (|N |+ |N ′|) ≤ 0, and every vertex in G∗ has degree at least two. As
G∗[D ∪ B] contains no edges, we know that (G∗, p∗) is a YES-instance. We also
know that solution S = D ∪ B obtained for (G∗, p∗) is a dominating set (even a
vertex cover) of G∗. Hence, profit p∗(S) can be written as p∗(S) = |E∗| − |S| ≥
p∗ = p+|N ′|. By construction, |E∗| = (|E|−|E(G[D∪B])|)+2(|E(G[D∪B])|) =
|E|+ |E(G[D∪B])| = |E|+ |N ′|, because each edge in E(G[D∪B]) is subdivided
by a vertex from N ′. Therefore, |E∗| − |S| = |E| + |N ′| − |S| ≥ p + |N ′| implies
p(S) = |E| − |S| ≥ p, i.e., S is a solution to (G, p) that provides sufficient profit
to show that (G, p) is a YES-instance.
�

118 H. Fernau and U. Stege

Branching Analysis. A first branching analysis (omitted due to space restric-
tions) shows that for ω = 0.5 p-Profit Dominating Set, EV can be solved
in time O∗(2p), resulting from a branching vector of [2, .5] in two situations.

In this analysis it becomes apparent that branching vectors improve if we had
not chosen ω = 0.5. The reason for this choice resulted from the case when finding
N -vertices of degree one (Pendant non-dominated vertex). This motivates
us to no longer consider ω to be a fixed constant, but rather let its value depend
on the degree of the vertex. In the following setting, x ∈ N is assumed.

ω(x) =
{
0.5, if |NG(x)| = 1;
1, if |NG(x)| > 1.

Note that there is no need to define ω on vertices of degree zero, as NO is
returned. There is one problem with this new definition, namely Rule Delete
N-edges. When executing this rule, the measure will now increase, which should
not be the case. However: when is this rule executed? Not in the beginning, or
after executing reduction rules only, because N -vertices are not introduced by
reduction rules. Rather, N -vertices and hence N -edges are only created when
excluding a blank vertex from the solution. If this would create an N -edge, we
would immediately delete it and include this in our considerations concerning the
change of the measure. Also, we have to be a bit more careful when creating N -
vertices of degree one, as this could also affect the measure, because the function
value of ω would change. This could influence the case when vertices and hence
edges are deleted, e.g., when a dominated vertex is excluded from the solution.
Notice that in the case when a vertex is included into the solution, it is deleted,
but its neighbors will not belong to N (anymore).

A detailed branching analysis is omitted due to space restrictions. Note that
Proposition 2 remains valid for this modified measure. The worst case, leading
to a branching vector of [3, 1] shows up when branching on blank vertices of
degree four.

4 Conclusions and Prospects

We presented two approaches to prove that p-Profit Dominating Set, EV
belongs to FPT. The branching algorithm has two features rarely observed with
parameterized algorithms: (a) it uses a non-standard measure on the running
time, (b) it employs techniques borrowed from reference search trees. Both fea-
tures are more prominent in exact exponential-time algorithms. This might point
into a direction of FPT branching-algorithm design for similar problems.

We propose to study a scaled version of the profit of an edge set, i.e., a vertex
set S has a profit of |E′| − σ|S|, where E′ refers to the set of conquered edges.
In this paper, we studied the case σ = 1. In general, scaling factor σ indicates
our investment value for vertices in order to conquer edges (our return value).
Similar problems have been studied in the literature. Let us spell out (p, σ)-
Profit Dominating Set, VV for σ = 2. Given G = (V,E) and p ≥ 0, find
D ⊆ V such that ∂(D) := |⋃v∈D(N(v) \ D)| − |D| ≥ p. The abbreviation ∂(D)

Profit Parameterizations of Dominating Set 119

is also known as the differential of D [14]. Hence, ∂(G) := maxD⊆V ∂(D) ≥ p
iff (G, p) is a YES instance to (p, 2)-Profit Dominating Set, VV. By results
from [1,3], this problem is in FPT, allowing for some O∗(cp) algorithm. Interest-
ingly, (p, 2)-Profit Dominating Set, VV can be also viewed as the parame-
terized dual of Roman Dominating Set; see [4].

Finally, we did not address the natural and interesting question of approx-
imability of profit problems in their natural form as maximization problems.

Acknowledgements. Part of this work resulted from the 16th Bellairs Workshop
on Comp. Geometry (Feb. 2017). The 1st-author’s research visit at the 2nd-author’s
institution in late 2018 was financed by DFG project overhead money. The 2nd-author
is supported by an NSERC DG. We are grateful for discussions with Iris van Rooij.

References

1. Abu-Khzam, F.N., Bazgan, C., Chopin, M., Fernau, H.: Data reductions and com-
binatorial bounds for improved approximation algorithms. J. Comput. Syst. Sci.
82(3), 503–520 (2016)

2. Athanassopoulos, S., Caragiannis, I., Kaklamanis, C., Kyropoulou, M.: An
improved approximation bound for spanning star forest and color saving. In:
Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 90–101.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03816-7_9

3. Bermudo, S., Fernau, H.: Computing the differential of a graph: hardness, approx-
imability and exact algorithms. Discrete Appl. Math. 165, 69–82 (2014)

4. Bermudo, S., Fernau, H., Sigarreta, J.M.: The differential and the Roman domi-
nation number of a graph. Applicable Anal. Discrete Math. 8, 155–171 (2014)

5. Binkele-Raible, D., Fernau, H.: An exact exponential time algorithm for Power
Dominating Set. Algorithmica 63, 323–346 (2012)

6. Binkele-Raible, D., Fernau, H.: Parameterized measure & conquer for problems
with no small kernels. Algorithmica 64, 189–212 (2012)

7. Chen, N., Engelberg, R., Nguyen, C.T., Raghavendra, P., Rudra, A., Singh, G.:
Improved approximation algorithms for the spanning star forest problem. Algo-
rithmica 65(3), 498–516 (2013)

8. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-319-21275-3

9. Dehne, F., Fellows, M., Fernau, H., Prieto, E., Rosamond, F.: nonblocker:
parameterized algorithmics for minimum dominating set. In: Wiedermann, J.,
Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS,
vol. 3831, pp. 237–245. Springer, Heidelberg (2006). https://doi.org/10.1007/
11611257_21

10. Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45, 634–652
(1998)

11. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical
Computer Science. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16533-7

12. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Monographs and Textbooks in Pure and Applied Mathematics, vol. 208.
Marcel Dekker, New York (1998)

https://doi.org/10.1007/978-3-642-03816-7_9
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/11611257_21
https://doi.org/10.1007/11611257_21
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/978-3-642-16533-7

120 H. Fernau and U. Stege

13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, New York (1972)

14. Mashburn, J.L., Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Slater, P.J.:
Differentials in graphs. Utilitas Mathematica 69, 43–54 (2006)

15. Nguyen, C.T., Shen, J., Hou, M., Sheng, L., Miller, W., Zhang, L.: Approximating
the spanning star forest problem and its application to genomic sequence align-
ment. SIAM J. Comput. 38(3), 946–962 (2008)

16. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

17. van Rooij, I.: Tractable cognition: complexity theory in cognitive psychology. Ph.D.
thesis, University of Victoria, Canada (2003)

18. van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for dominating set. Discrete
Appl. Math. 159(17), 2147–2164 (2011)

19. Slater, P.J.: Enclaveless sets and MK-systems. J. Res. Natl. Bureau Standards
82(3), 197–202 (1977)

20. Stege, U., van Rooij, I., Hertel, A., Hertel, P.: An O(pn + 1.151p)-algorithm for
p-profit cover and its practical implications for vertex cover. In: Bose, P., Morin,
P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 249–261. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36136-7_23

https://doi.org/10.1007/3-540-36136-7_23

Exponential Time Approximation Scheme
for TSP

Zhixiang Chen1, Qilong Feng2, Bin Fu1(B), Mugang Lin3, and Jianxin Wang2

1 Department of Computer Science, University of Texas Rio Grande Valley,
Edinburg, TX 78539, USA

bin.fu@utrgv.edu
2 School of Information, Central Southern University, Changsha, China

3 School of Computer Science and Technology, Hengyang Normal University,
Hengyang, China

Abstract. In this paper, we develop an exponential time approximation
scheme for the traveling salesman problem (TSP) on undirected graphs.
If the weight of each edge is a nonnegative real number, then there is
an algorithm to give an (1 + ε) approximation for the TSP problem in
O(1

ε
· 1.66n) and a polynomial space. It is in contrast to Golovnen’s

approximation scheme for TSP on directed graphs with O(1
ε
· 2n) time.

We also show that there is no 2o(n) time constant factor approximation
for the TSP problem under Exponential Time Hypothesis in complexity
theory.

1 Introduction

The traveling salesman problem (TSP) is one of the classical NP-hard problems
in the field of computer science. This problem is a generalization of the Hamil-
tonian path problem. TSP has been widely studied in the computer science. In
this paper, we develop an approximation scheme for the TSP problem.

Bellman [1], Held and Karp [2] developed O(2n) time exact algorithm for
TSP. Their algorithm is still the fastest after more than half century has passed.

Another related problem is Hamiltonian path problem, which has a param-
eterized problem called k-path problem for finding a simple path of length
k. An algebraic approach for the two problems are developed in [3,13–15,17].
Björklund [3] showed an algorithm with time complexity O(1.66n) for the Hamil-
tonian path problem. A O(1.66n) time algorithm for the k-path problem was
derived by Bjorklund, Husfeldt, Kaski, and Koivisto [13]. Their algorithm was
simplified by Abasi and Bshouty [14].

The general TSP cannot be approximated by any polynomial time algorithm
unless P=NP (Sahni and Gonzalez [16]). There are reports about approxima-
tion algorithm for the metric TSP problems. A special case is that each edge
has weight either 1 or 2, which is called (1,2)-TSP. The (1,2)-TSP problem is
MAX-SNP hard (see Papadimitriou, Yannakakis [8]). There is a 2-approximation
algorithm for Metric TSP by Rosenkrantz, Stearns and Lewis [5]. A 1.5 factor

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 121–128, 2019.
https://doi.org/10.1007/978-3-030-27195-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_11

122 Z. Chen et al.

approximation was achieved by Christofides’ algorithm [6]. Berman and Karpin-
ski [9] designed a 8

7 -approximation algorithm for (1,2)-TSP. Karpinski, Lampis,
and Schmied [7] showed that undirected metric TSP cannot be approximated in
polynomial time with a ratio better than 123

122 , unless P=NP.
It has been an open problem if there exists a O(2npoly(n)) time and polyno-

mial space algorithm for TSP (see [10]). Golovnen [4] showed a simple approxi-
mation scheme for TSP on directed graphs with O(1ε ·2n) time, and a polynomial
1
ε · poly(n, log M) space if the weights are integers in [0,M]. In this paper we
study approximation algorithm for TSP problem, which allows the weight of
each edge to be a nonnegative real number. We show that there is an algorithm
to give an (1 + ε) approximation for the TSP problem on undirected graphs in
O(1ε ·1.66n). Our algorithm calls Björklund [3]’s algorithm polynomial times and
uses polynomial space based on the polynomial space property of his algorithm.
The TSP problem does not need to satisfy metric conditions in our algorithm.
We also show that there is no 2o(n) time constant factor approximation for the
TSP problem under the exponential time hypothesis [11].

2 Definitions

For an undirected graph G(V,E), let w(.) be the weighted function for its edges.
We always assume w(e) ≥ 0 throughout the paper. We use (V,E,w(.)) to repre-
sent the weighted graph G with weight function for its edges. For a set of edges
X in G, define w(X) =

∑
e∈X w(e) to be the sum of weights of edges in X.

A Hamiltonian path in graph G is a path that visits every vertex of G exactly
once. The Traveling Salesman Problem (TSP) is, given a graph G = (V,E) with
nonnegative real edge weights given by a function w(.) : E → [0,+∞), to find a
Hamiltonian path C of minimal weight w(C). Metric TSP is TSP restricted to
graphs with edge costs satisfying the triangle inequality.

3 Outline of the Algorithm

The input graph G(V,E) has weight function w(.) : E → [0,+∞). Our algorithm
works at the subgraph (V,E0) for the set of edges E0 ⊆ E with small weight
edges in the first phase 0, and find a temporary TSP path. Additional edges Su+1

are added to Eu+1 from E in Phase u + 1. The weights of edges in Su+1 have a
difference by a factor at most g(n), where g(n) is a fixed function. The weights
of edges are transformed into integers by losing a small accuracy. When edges
with large weights are added, the edges of small weight will have zero weight.
This will let the TSP path lose a small accuracy.

4 Algorithm and Its Analysis

Let G be a complete undirected graph with n vertices and integer edge weights
in range [0,M]. Theorem 1 shows the existence of an algorithm that can handle
TSP with integer weights in the range [0,M] (See [3,4]).

Exponential Time Approximation Scheme for TSP 123

Theorem 1. [3] Let G be a complete undirected graph with n vertices and integer
edge weights in range [0,M]. Then there is an algorithm to solve the TSP problem
in O(1.66nM).

Proof (Sketch). Use the dynamic programming method to deal with the integer
weights. Define a polynomial Fk,h(.) such that it has multilinear monomial if
and only if there exists a path of k-edges with sum of weights equal to h. The
total number of cases for h is 2o(n). Transform it into the case of Hamiltonian
path problem.

Our algorithm transforms an TSP algorithm for small integer range weights
graph to an approximation TSP algorithm for graph with arbitrary nonnegative
real weights. The time complexity of our approximate algorithm for TSP does
not depend on the range of edge weights, but the algorithm given in Theorem 1
has a time depending on the weight range and requires that the edges weight to
be integer.

Theorem 2. Assume that there is a t(n,m, z) time exact algorithm for TSP on
undirected graphs that allows edge weights to be integers in the range [0, z] for
every integer parameter z. Then there is a O(mt(n,m,

(
2n
ε

)4+1)) time algorithm
such that given a graph with nonnegative real edge weights, it gives an (1 + ε)-
approximation the TSP for any fixed ε > 0, where n and m are the number of
vertices and edges of an input graph, respectively.

Proof. The algorithm has multiple stages. Part of the edges are added to the
graph according to the nondecreasing order at each phase. At Phase i, their
weights are scaled into integers with weight function wi(.) from their original
weight function w(.).

Algorithm
Input: parameter ε > 0, and an undirected graph G(V,E,w(.)), where w(.) is
the weight function for the edges in G.

– Initialization: Select function g(n) = 2n
ε .

Sort the edges by increasing order of their weights.
– Phase 0: Let S0 contain all the edges of weight 0. Let weight function w0(.)

be zero for each edge in S0.
Find a TSP P0 in the graph (V,E0, w0(.)) with E0 = S0. Let T0 = E − S0.
Enter final step if T0 = ∅. Otherwise, enter Phase 1.

– Phase 1: let edge e1 ∈ E have the least positive weight w(e1) = min{w(e) :
e ∈ E and w(e) > 0}. Let S1 contain all edges of weight at most w(e1)g(n).
Let z1 be the largest weight in S1.
Define w1(.) be the weight function such that w1(e) =

⌈
w(e)g(n)

w(e1)

⌉
for each

edge e in S1, and w1(e) = 0 for each e ∈ E0.
Find a TSP P1 with edges in the graph (V,E1, w1(.)) with E1 = E0 ∪ S1. Let
T1 = T0 − S1. Enter final step if T1 = ∅. Otherwise, enter Phase u + 1 with
u = 1.

124 Z. Chen et al.

– Phase u + 1: (1 ≤ u < |E|), find an edge eu+1 ∈ E − Eu with the least
w(eu+1). Let Su+1 contain all edges e with w(eu+1) ≤ w(e) ≤ w(eu+1)g(n).
We discuss two cases:
Case 1. w(eu+1) ≤ w(eu)g(n)2. Define wu+1(.) be the weight function such
that wu+1(e) =

⌈
w(e)g(n)

w(eu)

⌉
for the edges in Su ∪ Su+1, and wu+1(e) = 0 for

each e ∈ Eu−1.
Case 2. w(eu+1) > w(eu)g(n)2. Define wu+1(.) be the weight function such
that wu+1(e) =

⌈
w(e)g(n)
w(eu+1)

⌉
for the edges in Su+1, and wu+1(e) = 0 for each

e ∈ Eu.
Find a TSP Pu+1 in the graph (V,Eu+1, wu+1(.)) with Eu+1 = Eu ∪ Su+1.
Let Tu+1 = Tu − Su+1. Enter final step if Tu+1 = ∅. Otherwise, enter Phase
u + 2.

– Final step: Output the TSP Pi among P0, P1, · · · , Pk such that w(Pi) is the
least.

End of Algorithm

The correctness of this algorithm is based on the following Lemmas. Lemma 1
gives some basic properties about the algorithm.

Lemma 1. We have the following properties about the algorithm:

1. If there are k phases that have been executed in the algorithm, we have Ek =
E.

2. For each e ∈ Si, w(ei) ≤ w(e).
3. For each e ∈ Si, w(e) ≤ w(ei)g(n).

Proof. The algorithm keeps adding edges by increasing order of their weights to
Ei. At the end of the algorithm, Ek contains all the edges in E. The other parts
follow from the construction of Si in each phase of the algorithm.

Lemma 2. For each wi(.), we have wi(e) ∈ [0, g(n)4 + 1] for each edge in Ei.

Proof. We discuss two different cases. It is easy to verify for both w0(.) and
w1(.).

For Case 1 of Phase i = u + 1 with u ≥ 1, the function wu+1(.) is defined to
be wi(e) =

⌈
w(e)g(n)

w(eu)

⌉
≤ w(e)g(n)

w(eu)
+ 1 ≤ w(eu+1)g(n)

2

w(eu)
+ 1 ≤ g(n)4 + 1.

For Case 2 of Phase i = u + 1, the function wi(.) is defined to be wi(e) = 0
for each e ∈ Eu, and wi(e) =

⌈
w(e)g(n)
w(eu+1)

⌉
≤ w(e)g(n)

w(eu+1)
+ 1 ≤ g(n)2 + 1 for each

e ∈ Eu+1 − Eu.
Lemma 3 gives the accuracy of the algorithm. It shows it gives an (1 + ε)-

approximate TSP path if it exists in G.

Lemma 3. Assume that the algorithm is executed with k phases in total,
and Pi is the TSP path found by the algorithm at Phase i with w(Pi) =
min(w(P1), · · · , w(Pk)). Then Pi is a (1 + ε)-approximation to an optimal TSP
path in G(V,E).

Exponential Time Approximation Scheme for TSP 125

Proof. It is trivial for i = 0 since S0 contains all edges of weight zero. Assume
that it is true for i ≤ u. Consider Phase u + 1. No TSP path has been found
among phases i with i ≤ u. Therefore, there is no TSP path in the graph (V,Eu).

Assume that P ∗ is an optimal TSP path for the input graph G(V,E). Let i
be the least number such that all edges in P ∗ are in Ei, which is constructed in
Phase i. Let Pi be the TSP path found by Phase i. Since i is the least number
that all edges of P ∗ are in Ei, P ∗ contains at least one edge e∗ in Si = Ei −Ei−1.

Let H1 = S1. For i > 1, let Hi = Si−1 ∪ Si if case 1 is used in phase i, and
Hi = Si if case 2 is used in phase i. Let e′

1 = e1, e′
i = ei−1 if case 1 is used in

phase i, and e′
i = ei if case 2 is used in phase i.

For i = 1, we have
∑

e∈Ei−Hi
w(e) = 0 since w(e) = 0 for every e ∈ E0,

H1 = S1, and E1 − H1 = E0.
In the case 1 of phase i, we have Hi = Si−1 ∪ Si. Thus, Ei − Hi = Ei−2, and

w(e) ≤ w(ei−1) for each e ∈ Ei−Hi. As e∗ ∈ Si, we have w(ei−1) ≤ w(ei)
g(n) ≤ w(e∗)

g(n) .

Therefore, we have
∑

e∈Pi∩(Ei−Hi)
w(e) ≤ nw(ei−1) ≤ nw(e∗)

g(n) .
In the case 2 of phase i, we have Hi = Si. Thus, Ei − Hi = Ei−1. Since

w(ei−1)g(n)2 < w(ei), and w(e) ≤ w(ei−1)g(n) for each e ∈ Si−1, we have
w(e) < w(ei)

g(n) for each e ∈ Si−1. We have w(e) < w(ei)
g(n) for each e ∈ Ei − Hi

as w(e) ≤ w(ei−1) for each e ∈ Ei−2. Since e∗ ∈ Si, we have w(ei) ≤ w(e∗).
Therefore, we have

∑
e∈Pi∩(Ei−Hi)

w(e) ≤ nw(ei−1)g(n) ≤ nw(ei)
g(n) ≤ nw(e∗)

g(n) .
Since Pi is the least TSP path found in Phase i with graph (V,Ei, wi(.)), we

have wi(Pi) ≤ wi(P ∗). We have
∑

e∈Pi
wi(e) ≤ ∑

e∈P ∗ wi(e).
Thus,

∑

e∈Pi∩Hi

w(e)g(n)
w(e′

i)
≤

∑

e∈Pi∩Hi

⌈
w(e)g(n)

w(e′
i)

⌉

≤
∑

e∈P ∗

⌈
w(e)g(n)

w(e′
i)

⌉

(1)

≤
∑

e∈P ∗

w(e)g(n)
w(e′

i)
+ 1. (2)

By inequality (2), we have the inequality
∑

e∈Pi∩Hi

w(e) (3)

≤
∑

e∈P ∗

(

w(e) +
w(e′

i)
g(n)

)

≤
(

∑

e∈P ∗
w(e)

)

+
nw(e′

i)
g(n)

(4)

≤
(

∑

e∈P ∗
w(e)

)

+
nw(e∗

i)
g(n)

. (5)

126 Z. Chen et al.

Therefore,
∑

e∈Pi

w(e) =
∑

e∈Pi∩Hi

w(e) +
∑

e∈Pi∩(Ei−Hi)

w(e) (6)

≤
(

∑

e∈P ∗
w(e)

)

+
nw(e∗)
g(n)

+
nw(e∗)
g(n)

(7)

≤
(

∑

e∈P ∗
w(e)

)

+
2n

g(n)
·
(

∑

e∈P ∗
w(e)

)

(8)

≤ (1 + ε)

(
∑

e∈P ∗
w(e)

)

. (9)

.

Lemma 4. The time complexity is at most |E|t(|V |, |E|, f(|V |)), where t(., ., .)
is the time function for TSP with integer weigths in the range from 0 to f(n) =
g(n)4 + 1.

Proof. In each phase i with i ≥ 1, at least one new edge is added into Ei. The
main loop of the algorithm iterates at most |E| times. It is easy to see from the
algorithm. The definition of function f(.) is based on Lemma 2.

The theorem is proved by Lemmas 3, and 4.

Corollary 1. There is a O(1ε · 1.66n) time randomized (1 + ε)-approximation
algorithm for TSP in graphs with nonnegative real edge weights.

Proof. It follows from Theorems 2 and 1.

We note that our algorithm uses polynomial space since Björklund [3] with
time complexity O(1.66n) runs in polynomial space.

5 Lower Bound

In this section, we show a lower bound for the TSP approximation under the well
known exponential time hypothesis. The hypothesis states that 3-SAT cannot
be solved in subexponential time in the worst case [11]. Many problems can be
reduced to each other while preserving the their computational time complexity.
A subexponential time algorithm for any one of them implies subexponential
time algorithms for all the others.

Theorem 3. For any c > 0, if there is a f(n, c) time c-approximation algorithm
for the TSP problem that has edge weights to be integers in the range [0, (c+1)n],
then there is a O(f(n, c)) time algorithm for the Hamiltonian path problem.

Exponential Time Approximation Scheme for TSP 127

Proof. Let G(V,E) be graph. Build a weighted complete graph G′(V,E′), where
E′ = E ∪ {{u, v}
∈ E}, w(e) = 1 for every e ∈ E, and w(e) = (c + 1)n for every
e ∈ E′ − E. A c-approximation algorithm gives an path of sum of weights at
most cn if and only if there exists a Hamiltonian path.

Corollary 2. For any c > 0, there is no 2o(n) time c-approximation for the TSP
problem under the assumption of exponential time hypothesis.

Proof. It is well known that there is no 2o(n) time algorithm for the Hamilto-
nian path problem under the exponential time hypothesis [12]. It follows from
Theorem 3.

6 Conclusions

We developed an exponential time approximation scheme for the TSP problem.
Our lower bound shows it is impossible for the existence of subexponential time
approximation unless the exponential hypothesis fails. It will be interesting if
the time complexity can be further improved. There might be some chance to
get a less time complexity approximation scheme for TSP without improving
the exact algorithm for the Hamiltonian path problem. A long standing open
problem for TSP is to find a (2 − ε)n-time exact algorithm.

Acknowledgments. The authors would like to thank the reviewers whose suggestions
improve the presentation of this paper. This research is supported by NSFC 61772179,
NSFC 61872450 and Hunan Provincial Natural Science Foundation 2019JJ40005.

References

1. Bellman, R.: Dynamic programming treatment of the travelling salesman problem.
J. ACM 9, 61–63 (1962)

2. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962)

3. Björklund, A.: Determinant sums for undirected hamiltonicity. In: Proceedings
of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
FOCS 2010, pp. 173–182. IEEE Computer Society, Washington, DC (2010)

4. Golovnev, A.: Approximating asymmetric TSP in exponential time. Int. J. Found.
Comput. Sci.£. 25(01), 89–99 (2014)

5. Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M.: An analysis of several heuristics for
the traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)

6. Christofides, N.: Worst-case analysis of a new heuristic for the traveling sales-
man problem. Technical report 338, Graduate School of Industrial Administration,
CMU (1976)

7. Karpinski, M., Lampis, M., Schmied, R.: New inapproximability bounds for TSP.
CoRR abs/1303.6437 (2013)

8. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with dis-
tances one and two. Math. Oper. Res. 18, 1–11 (1993)

128 Z. Chen et al.

9. Berman, P., Karpinski, M.: 8
7
-approximation algorithm for (1,2)- TSP. In: Proceed-

ings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm,
SODA 2006, pp. 641–648. ACM, New York (2006)

10. Woeginger, G.J.: Open problems around exact algorithms. Discrete Appl. Math.
156, 397–405 (2008)

11. Impagliazzo, R., Paturi, R.: The complexity of k-SAT. In: Proceedings of the 14th
IEEE Conference on Computational Complexity, pp. 237–240 (1999). 1999.766282.
https://doi.org/10.1109/CCC

12. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

13. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameter-
ized paths and packings. arXiv:1007.1161v1 (2010)

14. Abasi, H., Bshouty, N.H.: A simple algorithm for undirected hamiltonicity. Elec-
tronic Colloquium on Computational Complexity, Report No. 12 (2013)

15. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto,
L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70575-8 47

16. Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM 23, 555–565
(1976)

17. Williams, R.: Finding paths of length k in O∗(2k). Inform. Process Lett. 109(6),
301–338 (2009)

https://doi.org/10.1109/CCC
http://arxiv.org/abs/1007.1161v1
https://doi.org/10.1007/978-3-540-70575-8_47

Interaction-Aware Influence
Maximization and Iterated

Sandwich Method

Chuangen Gao1, Shuyang Gu2, Ruiqi Yang3, Jiguo Yu1,4(B), Weili Wu2,
and Dachuan Xu3

1 School of Computer Science and Technology,
Qilu University of Technology (Shandong Academy of Sciences),

Jinan 250353, Shandong, People’s Republic of China
gaochuangen@gmail.com, jiguoyu@sina.com

2 Department of Computer Science, University of Texas at Dallas, Dallas, USA
{Shuyang.Gu,weiliwu}@utdallas.edu

3 Department of Information and Operations Research,
Beijing University of Technology, Beijing 100124, People’s Republic of China

yangruiqi@emails.bjut.edu.cn, xudc@bjut.edu.cn
4 Shandong Computer Science Center (National Supercomputer Center in Jinan),

Jinan 250014, Shandong, People’s Republic of China

Abstract. Influence maximization problem has been studied exten-
sively with the development of online social networks. Most of the exist-
ing works focus on the maximization of influence spread under the
assumption that the number of influenced users determines the success
of a product promotion. However, the profit of some products such as
online game depends on the interactions among users besides the num-
ber of users. In this paper, we take both the number of active users and
the user-to-user interactions into account and propose the interaction-
aware influence maximization problem. To address this practical issue,
we analyze its complexity and modularity, propose the sandwich theory
which is based on decomposing the non-submodular objective function
into the difference of two submodular functions and design iterated sand-
wich algorithm which is guaranteed to get data dependent approximation
solution.

Keywords: Social networks · Influence maximization · Submodular ·
DS decomposition · Iterated sandwich algorithm

1 Introduction

Viral marketing has long been acknowledged as an effective marketing strategy.
The development of online social networks such as Facebook and Twitter provide
opportunities for large-scale online viral marketing in social networks. Under
this circumstance, influence maximization [8] becomes a very popular research
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 129–141, 2019.
https://doi.org/10.1007/978-3-030-27195-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_12

130 C. Gao et al.

direction in the past decade, which could be described as the problem of finding a
small set of most influential nodes so that the spread of influence in the network
is maximized.

Most of the works focus on maximization of the spread of influence, which
considers the number of users influenced by “word-of-mouth” effect in online
social networks. These works are based on the assumption that the number
of influenced users determines the profit of product. However, some types of
products earn profit in a continuous way besides the sales of product itself. The
online game is a good example. The game company’s revenue usually comes from
two parts, one is the revenue from selling the game product itself, and the other
is from the proceeds of advertising and virtual item products. For the first part of
revenue, the value of a single game product itself is fixed. The more game players
buy game products, the more they earn. For the second part of the revenue is
related to the interaction of the game player. When multiple people enter the
same game scene online, the advertisement will be displayed and browsed. The
more frequent the interaction between players, the more times an advertisement
is presented and viewed, which will lead to more advertising revenue. In addition,
when players participate in the game, they will use some props to complete the
task. These items are virtual equipment, which can increase the experience and
fun of the game players. These virtual products will also bring certain benefits [4].

We analyze such revenue model and define the interaction-aware influence
maximization problem selecting a seed set to maximize the revenue dependent
on the number of influenced users and the interaction between activated nodes.
The interaction-aware influence maximization problem is not submodular, thus
the greedy strategy can’t be directly applied to our problem to get a guaranteed
approximate solution. To solve this problem, we propose sandwich theory which
is based on the decomposition strategy that represents objective function as a
difference of two submodular functions. And based on sandwich theory and the
decomposition we design two iterated sandwich algorithms.

The contributions of this paper are summarized as follows.

– We propose a new problem named interaction-aware influence maximization
and we prove it is NP-hard and non-submodular.

– To solve this non-submodular problem, we propose the sandwich theory that
for any set function there are a modular upper bound and a modular lower
bound respectively. The sanwich theory is mainly based on the fact that
any set function can be expressed as a difference between two submodular
functions. And we successfully decompose our objective function into the
difference of two submodular functions which are monotone nondecreasing.

– Based on the sandwich theory and the decomposed submodular functions
mentioned above, we design an iterated sandwich algorithm to solve the
interaction-aware influence maximization problem, which can get a data
dependent approximate solution.

Interaction-Aware Influence Maximization and Iterated Sandwich Method 131

2 Related Works

Influence maximization was first described as an algorithm problem by Domin-
gos and Richardson [3,12], they model the problem using Markov random fields
and propose heuristic solutions. Kempe et al. [8] formulated the influence maxi-
mization problem from the view of combinatorial optimization and showed that
the problem is NP-hard under both the IC and LT models, they propose a
simple greedy algorithm with an approximation ratio of (1 − 1/e). However a
drawback of their work is the scalability of the greedy algorithm. Since then
a number of efficient heuristic algorithms haven been proposed in many works
[1,2,5,7,10,13]. In [9], Leskovec et al. present a “lazy-forward” optimization in
selecting new seeds, in which submodularity is exploited.

Most of the works only consider the number of activated users, and the
activities between users is first processed by [14]. However, their work does not
maximize the influence spread in the meantime and only count activity strength
of the directly connected users. In this paper, we propose the interaction-aware
influence maximization problem which take both parts into consideration.

3 Problem Formulation

In this section, we formulate interaction-aware influence maximization problem
in IC model formally and prove it is neither submodular nor supermodular by
counter examples. For complexity we prove it is NP-hard by a special case of
the problem.

3.1 Interaction-Aware Influence Maximization

In this paper, we use the directed graph G = (V,E) to represent a social network,
where V is the set of users and E is the set of social relations between users. Each
edge (u, v) ∈ E is assigned with a probability puv so that when u is active, v is
activated by u with probability puv. And the benefit related to the interaction
between nodes is represented by a nonnegative function b : V × V → R≥0, in
which b(u, v) = b(v, u) for the unordered pair {u, v} of node u and v. Our goal is
to find a set of initial users to maximize total profit related to both the number
of the influenced nodes and the interaction between influenced nodes.

Since the randomness of propagation process in IC model, consider a point
in the cascade process when node u has just become active, and it attempts
to activate its neighbor v, succeeding with probability pu,v. We can view the
outcome of this random event as being determined by flipping a coin of bias
pu,v. With all the coins flipped in advance, the edges in G for which the coin
flip indicated a successful activation are declared to be live; the remaining edges
are declared to be blocked [8]. We use g to represent the outcome of this process
which is called a live graph of G since it consists of all edges declared to be live.
We denote as g ∼ D, where D is the distribution of g. For any seed set S, denote
by Ig(S) the set of all active nodes at end of the cascade process in live graph
g. It’s cardinality is represented by |Ig(S)|.

132 C. Gao et al.

Definition 1. The total expected benefit would be defined as

f(S) = Eg∼D[α · |Ig(S)| + β ·
∑

{u,v}⊆Ig(S)

b(u, v)]

=
∑

g

Prob[g] · (α · |Ig(S)| + β ·
∑

{u,v}⊆Ig(S)

b(u, v)) (1)

The benefit consists of two parts, the first part denoted as α · Ig(S) is
related to the number of nodes that are finally activated, and the second part
β ·∑{u,v}⊆Ig(S) b(u, v) is related to the strength of interaction between the active
nodes. The parameters α, β are used to balance the weight of two parts of the
profits, and {u, v} ⊆ I(S) denotes the all unordered pair in the set I(S). Note
that for each unordered pair {u, v}, since b(u, v) = b(v, u), we only compute once
the benefit between them. The expectation is respected to g.

In this paper, we study the following problem.

Definition 2 (Interaction-aware Influence Maximization Problem,
IAIM). Given a social network G = (V,E), a propagation probability puv for
each edge (u, v) under the IC model, a benefit function b : V × V → R≥0, and a
positive integer k, find a set S of k seeds to maximize the expected profit through
influence propagation:

max f(S) (2)
s.t.|S| ≤ k (3)

3.2 Modularity of Objective Function

We say that g(·) is submodular if it satisfies a natural “diminishing returns”
property: the marginal gain from adding an element to a set X is at least as
high as the marginal gain from adding the same element to a superset of X.
Formally, for every set X,Y such that X ⊆ Y ⊆ V and every e ∈ V \ Y , it
follows that

g(X ∪ {e}) − g(X) ≥ g(Y ∪ {e}) − g(Y)

And it is monotone if g(X) ≤ g(Y) whenever X ⊆ Y .

Theorem 1. f(S) is neither submodular nor supermodular under IC model.

Proof. We prove by the counter example shown in Fig. 1. The first element in the
tuple tied on each edge represents the propagation probability, and the second
one denote the benefit between its two end nodes. For pairs {u, v} between
which there is no edge set b(u, v) = 0 except pair {b, d}. In Fig. 1, (0, 1) on
edge (a, b) means propogation probability pab = 0 and b(a, b) = 1, then we
have f({a}) = 1 + 0 = 1, f({a, b}) = 2 + 1 = 3, f({a, d}) = 2 + 0 = 2 and
f({a, b, d}) = 3 + 3 = 6. Thus, f({a, d}) − f({a}) < f({a, b, d}) − f({a, b}),
which implies f(S) is not submodular. Also, we have f({c}) = 2 + 2 = 4,
f({d, c}) = 2 + 2 = 4, f({d}) = 1. Thus, f({c}) − f(∅) > f({d, c}) − f({c})
which implies f(S) is not supermodular.
�

Interaction-Aware Influence Maximization and Iterated Sandwich Method 133

a

c d

(0, 2)

b
(0, 1)

(1, 2)

(-, 2)

Fig. 1. Counter example

3.3 Hardness Result

Theorem 2. Interaction-aware influence maximization problem is NP-hard.

Proof. We prove by showing a special case of Interaction-aware influence max-
imization problem is NP-hard, where β = 0, then it become the traditional
influence maximization problem which is NP − hard. Note that a problem is
NP-hard in a special case implies NP-hardness in general case.
�

4 Sandwich Theory

Since interaction-aware influence maximization problem is not submodular, the
greedy strategy can’t be directly applied to our problem to get a guaranteed
approximate solution. To solve this non-submodular problem, we propose the
sandwich theory that for any set function there are a modular upper bound and
a modular lower bound respectively [15]. The sandwich theory is mainly based
on the fact that any set function can be expressed as a difference between two
submodular functions [11].

4.1 Preliminary

Before proposing our sandwich theory, let’s first introduce a few important con-
clusions about the submodular function and the set function [6,11].

Lemma 1. For any submodular set function g(·) on ground set V , we have the
following two tight modular upper bounds that are tight at a given set Y [6]:

Ug
Y,1(X) � g(Y) −

∑

j∈Y \X

g(j | Y \ j) +
∑

j∈X\Y

g(j | ∅) (4)

Ug
Y,2(X) � g(Y) −

∑

j∈Y \X

g(j | V \ j) +
∑

j∈X\Y

g(j | Y) (5)

Lemma 2. For any submodular set function g(·), a modular lower bound of g(·)
is tight at a given set Y can be obtained as follows [6]. Let σ be a permutation
of V and define P σ

i = {σ(1), σ(2), . . . , σ(i)} as σ’s chain containing Y , in which
P σ
0 = ∅ and P σ

|Y | = Y. Define

134 C. Gao et al.

Lg
Y,σ(σ(i)) = g(P σ

i) − g(P σ
i−1). (6)

Then

Lg
Y,σ(X) �

∑

v∈X

Lg
Y,σ(v) (7)

is a tight lower bound of g(X), i.e., Lg
Y,σ(X) ≤ g(X), ∀X ⊆ V, and Lg

Y,σ(Y) =
g(Y).

Lemma 3. Every set function f : 2X → R can be expressed as the difference of
two monotone nondecreasing submodular functions f1 and f2, i.e f = f1 − f2,
where X is a finite set [11].

4.2 Sandwich Theory

Theorem 3. For any set function f : 2X → R and any set Y ⊂ X, there are
two modular functions mu

f : 2X → R and ml
f : 2X → R such that mu

f (X) ≥
f(X) ≥ ml

f (X) and mu
f (Y) = f(Y) = ml

f (Y).

Proof. This theorem means that for any set function we can find a modular
upper bound and modular lower bound which are exact at some given point. By
Lemma 3, there exist submodular function f1 and f2 such that f = f1 − f2. By
Lemmas 1 and 2, there exist modular functions Uf1

Y , Lf1
Y such that Uf1

Y (X) ≥
f1(X) ≥ Lf1

Y (X), and Uf1
Y (Y) = f1(Y) = Lf1

Y (Y) for submodular function f1.
By the same reason, there exist modular functions Uf2

Y , Lf2
Y such that Uf2

Y (X) ≥
f2(X) ≥ Lf2

Y (X), and Uf2
Y (Y) = f2(Y) = Lf2

Y (Y) for submodular function f2.
We set mu

f = Uf1
Y − Lf2

Y , and ml
f = Lf1

Y − Uf2
Y , then mu

f (X) ≥ f(X) ≥ ml
f (X)

and mu
f (Y) = ml

f (Y) = f(Y) = f1(Y) − f2(Y). Note that both mu
f and ml

f are
modular, since the linear combination of modular functions is still modular.
�

4.3 DS Decomposition

Since our sandwich theorem is based on the DS decomposition of a set function
that expressing it as a Difference between two Submodular functions. Thus the
key point is find such a decomposition. However, it is unknown whether there
exists a polynomial-time algorithm for finding such a pair of monotone nonde-
creasing submodular functions for every given set function. Moreover, the DS
decomposition in this paper is nontrivial and two constructed monotone nonde-
creasing submodular functions are easily computable.

Give a seed set S and a live graph g, we define the B1(S) as benefit between
activated users Ig(S) and all users V , and define B2(S) as the benefit among all
activated users Ig(S) plus the benefit between the activated users Ig(S) and the
non-activated users V \ I(S), which are formulated as follows:

Interaction-Aware Influence Maximization and Iterated Sandwich Method 135

B1(S) =
∑

u∈Ig(S)

∑

v∈V

b(u, v) (8)

B2(S) =
∑

{u,v}⊆Ig(S)

b(u, v) +
∑

u∈Ig(S)

∑

v∈V \Ig(S)

b(u, v) (9)

And given a seed set S, we define the following functions

f1(S) = Eg∼D[α · |Ig(S)| + β · B1(S)] (10)
f2(S) = Eg∼D[β · B2(S)] (11)

Then we have

f(S) = Eg∼D[α · |Ig(S)| + β ·
∑

{u,v}⊆I(S)

b(u, v)]

= Eg∼D[α · |Ig(S)| + β · (B1(S) − B2(S))]
= Eg∼D[α · |Ig(S)| + β · B1(S)] − Eg∼D[β · B2(S)]
= f1(S) − f2(S) (12)

Actually f(S) is decomposed as a difference between function f1 and f2, now we
prove both of them are submodular.

Lemma 4. B1(S) is submodular and monotone under the IC model.

Proof. According the definition of B1(S) shown in Eq. 8, we have

B1(S) =
∑

u∈Ig(S)

∑

v∈V

b(u, v)

=
∑

{u,v}⊆Ig(S)

2 · b(u, v) +
∑

u∈I(S)

∑

v∈V \Ig(S)

b(u, v) (13)

=
∑

v∈Ig(S)

w(v) (14)

where Ig(S) denotes the set of all active nodes in a live graph g, and w(v) is the
weight of the node v which is defined as follows

w(v) =
∑

u∈V

b(v, u) (15)

It is actually the sum of benefit between v and the remaining nodes in V . Thus,
we can see that the B1(S) is essentially a weighted version of influence spread.
And the submodularity follows immediately [8].
�

Since the profit function b : V × V → R≥0 is nonnegative which means
the profit of each pair of nodes is non-negative. Thus the weight of every node
is non-negative and the monotonicity of B1(S) follows immediately. For the
submodularity, we need prove B1(M ∪ {v}) − B1(M) ≥ B1(N ∪ {v}) − B1(N),

136 C. Gao et al.

such that M ⊆ N ⊆ V and v ∈ V \ N . The left side of inequality is the weight
of nodes which can be activated by v but can not by M . The right side is
the weight of nodes which can be activated by v but can not by N . We have
Ig(v) − Ig(M) ⊇ Ig(v) − Ig(N), since M ⊆ N and Ig(M) ⊆ Ig(N). And the
submodularity follows immediately.
�
Theorem 4. f1(S) is submodular and monotone under the IC model.

Proof. According the definition of f1(S) shown in Eq. 10, we have

f1(S) = Eg∼D[α · |Ig(S)| + β · B1(S)]

=
∑

g

Prob[g] · (α · |Ig(S)| + β · B1(S)) (16)

The first part |Ig(S)| of the f1(S) is the traditional influence maximization prob-
lem which is submodular [8]. Given α ≥ 0, β ≥ 0, Prob[g] ≥ 0 and B2(S) is
submodular prove and monotone proved by Lemma 4, f1(S) is submodular and
monotone follows immediately since the fact that a non-negative linear combi-
nation of submodular functions is also submodular.
�
Lemma 5. B2(S) is submodular and monotone under the IC model.

Proof. Let M,N to be any two seed sets such that M ⊆ N ⊆ V and x to be any
element such that x ∈ V \ N . According the definition of B2(S) shown in Eq. 9,
we have Then we have

B2(M ∪ {x}) − B2(M)

=
∑

{u,v}⊆Ig(x)\Ig(M)

b(u, v) +
∑

u∈Ig(x)\Ig(M)

∑

v∈V \Ig(M)∪Ig(x)

b(u, v) (17)

Through the same analysis process, we can get

B2(N ∪ {x}) − B2(N)

=
∑

{u,v}⊆Ig(x)\Ig(N)

b(u, v) +
∑

u∈Ig(x)\Ig(N)

∑

v∈V \Ig(N)∪Ig(x)

b(u, v) (18)

Comparing all terms on the right-hand sides of 17 and 18, since M ⊆ N ,we have
Ig(M) ⊆ Ig(N). So Ig(x) \ Ig(M) ⊇ Ig(x) \ Ig(N) and V \ Ig(M) ∪ Ig(x) ⊇
V \ Ig(N) ∪ Ig(x) follows. Thus both the first item and second item of 17 are
greater than the first item and second item of 18 respectively. Through above
analysis, we obtain B2(M ∪ {x}) − B2(M) ≥ B1(N ∪ {x}) − B2(N). Therefore,
B2(S) is submodular.

Interaction-Aware Influence Maximization and Iterated Sandwich Method 137

For monotonicity, we need prove B2(M) ≤ B2(N), which is non-decreasing.
According to Eq. 9, we have

B2(M)

=
∑

{u,v}⊆Ig(M)

b(u, v) +
∑

u∈Ig(M)

∑

v∈V \Ig(M)

b(u, v)

=
∑

{u,v}⊆Ig(M)

b(u, v) +
∑

u∈Ig(M)

∑

v∈Ig(N)\Ig(M)

b(u, v)

+
∑

u∈Ig(M)

∑

v∈V \Ig(N)

b(u, v) (19)

B2(N)

=
∑

{u,v}⊆Ig(N)

b(u, v) +
∑

u∈Ig(N)

∑

v∈V \Ig(N)

b(u, v) (20)

Since Ig(M) ⊆ Ig(N), we have ∀(i, j) ∈ {(u, v) | u ∈ Ig(M), v ∈ Ig(N) \ Ig(M)},
i ∈ Ig(N), j ∈ Ig(N). Thus the sum of first two items of B2(M) is less than the
first item of B1(N). By the same reason, we have the third item of B2(M) is
less than the second item of B2(N). Through above analysis, the monotonicity
of B2(S) follows immediately.
�
Theorem 5. f2(S) is submodular and monotone under the IC model.

Proof. According the definition of f2(S) shown in Eq. 11, we have

f2(S) = Eg∼D[β · B2(S)]

= β ·
∑

g

Prob[g] · B2(S) (21)

Given β ≥ 0, Prob[g] ≥ 0 and B2(S) is submodular and monotone proved by
Lemma 5, f2(S) is submodular and monotone follows immediately since the
fact that a non-negative linear combination of submodular functions is also
submodular.
�

5 Algorithms

According to the sandwich theorem and our DS decomposition, we designed a
iterated sandwich algorithm. The algorithm named iterated modular sandwich
algorithm is based on the modular upper and lower bounds of our objective
function. Our algorithm are guaranteed to gain data dependent approximation
solutions.

138 C. Gao et al.

5.1 Iterated Sandwich Algorithm

Algorithm 1. Iterated Modular Sandwich Algorithm
1: initialize ε > 0, an integer k, t ← 0, St ← a random seeds of size k, Smax = S0

2: repeat
3: choose a permutation σt whose chain contains St

4: construct a modular upper bound Uf1
St (X) (and, Uf2

St (X)) and a modular lower

bound Lf1
St,σt(X) (and, Lf2

St,σt(X)) for f1 (and, f2)

5: St
u ← argmaxXmu

t (X) = Uf1
St (X) − Lf2

St,σt(X);

6: St
l ← argmaxXml

t(X) = Lf1
St,σt(X) − Uf2

St (X);

7: So ← argmaxXf(X);
8: Let St+1 ← argmaxX(f(St

u), f(St
l), f(So))

9: if f(St+1) ≥ (1 + ε)f(Smax) then
10: Smax ← St+1

11: t ← t + 1
12: end if
13: until converged, i.e., f(St+1) < (1 + ε)f(Smax)
14: return Smax

For Algorithm 1 named Iterated Modular Sandwich Algorithm, we iteratively
find the optimal solutions for three functions: the modular upper bound function
mu

t (X), the modular lower bound function ml
t(X) and the original objective

function f(X), and then choose the best solution from f(X) as the input of
next iteration.

5.2 Analysis

We say a set S is local optimum solution of a submodular function f , if for
any T ⊆ S or T ⊇ S, we have f(S) ≥ f(T). Similarly, we say set S is a
(1 + ε)-approximate local optimum solution of a submodular function f , if for
any e ∈ V , we have (1 + ε)f(S) ≥ f(S ∪ {e}) and (1 + ε)f(S) ≥ f(S \ {e}).
Consider iteration t, let Ft(X) = Uf1

St (X) − Lf2
St,σt(X) for any X ⊆ V , we firstly

give a notation approximation coefficient ηt = maxX⊆V
Ft(X)
f(X) , which is denoted

as how the approximate extent of the replace function Ft(X) to the original
function f(X). Let η = maxt ηt. Now we can bound the value of set returned by
the Iterative Modular Sandwich algorithm by the following theorem.

Theorem 6. Let Smax be the returned set by Algorithm1, then we have Smax

either is a (1 + ε)-approximate local maximum solution by justly checking O(n)
permutations, or is 1

η(1+ε) -approximation solution for the interaction-aware
influence maximization problem.

Interaction-Aware Influence Maximization and Iterated Sandwich Method 139

Proof. For the case that the return set Smax is derived by the modular lower
bound and set t as the terminal iteration of Algorithm 1, then we have

(1 + ε)f(St) ≥ f(St+1) = f1(St+1) − f2(St+1)

≥ 1
η

· (Uf1
St (St+1) − Lf2

St,σt(St+1))

≥ 1
η

· (Uf1
St (OPT) − Lf2

St+1,σt(OPT))

≥ 1
η

· (f1(OPT) − f2(OPT))

=
1
η

· f(OPT)

The first inequality is derived by the line 9 of Algorithm1, the second inequality
follows the definition of approximation coefficient, the third inequality is derived
by the optimality of St+1 according to F (·) at iteration t+1, and last inequality
is obtained by the construction of the upper and lower bounds. Thus we have

f(St) ≥ 1
η(1 + ε)

f(OPT).

The rest of our proof is to show that the set Smax is obtained from the lower
bound is a ε-approximate local maximum solution. We follow the ideas presented
by Iyer and Bilmes [6], who consider a general DS-decomposition minimization
by a iterative modular approximation algorithm. For one subcase, we need to
show under the terminate iteration t, if we add a element j, our local solution St

will not increase a enough amount. By the construction of bounds, and optimality
condition, we have

(1 + ε)f(St) ≥ f(St+1) = f1(St+1) − f2(St+1)

≥ Lf1
St,σt(St+1) − Uf2

St (St+1)

≥ Lf1
St,σt(St ∪ {j}) − Uf2

St (St ∪ {j})

= f1(St ∪ {j}) − f2(St ∪ {j})

= f(St ∪ {j}).

Similarly, we can lower bound (1+ ε)f(St) ≥ f(St \ {j}) under the subcase that
of deleting a element j. By the definition of ε-approximate local maximum, we
know St is the ε-approximate local maximum solution.

Theorem 7. The Algorithm1 terminates at most O(1/ε log(OPT/f(S0))) steps
and the total time complexity is bounded by O(C/ε log(OPT/f(S0))), where C
is the upper bound of time of computing optimal solution of modular function.

Proof. Follows from the repeat process of Algorithm 1, we have f(Si+1) ≥ (1 +
ε)f(Si) for any iteration i(< t). It is easy to check out that the number of steps of

140 C. Gao et al.

repeat process is at most log1+ε
f(St)
f(S0) (≤ O(1/ε log(OPT/f(S0)))). Assume the

time of computing the optimal solution of modular function is at most C, with
a multiplicative factor C, we can bound the total complexity of Algorithm 1.

6 Conclusion

In this paper, we propose an influence maximization problem that takes the
interaction among users into consideration. To solve our non-submodular prob-
lem, we propose sandwich theory based on decomposing the original function
into the difference between two submodular functions and design an iterated
sandwich algorithm.

Acknowledgements. The work is supported by Natural Science Foundation of China
(No. 61672321, 61771289, 61832012, 61373027).

References

1. Chen, W., et al.: Influence maximization in social networks when negative opin-
ions may emerge and propagate. In: Proceedings of the 2011 SIAM International
Conference on Data Mining, pp. 379–390. SIAM (2011)

2. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 199–208. ACM (2009)

3. Domingos, P., Richardson, M.: Mining the network value of customers. In: Pro-
ceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2001, pp. 57–66. ACM (2001)

4. Fox, J., Gilbert, M., Tang, W.Y.: Player experiences in a massively multiplayer
online game: a diary study of performance, motivation, and social interaction.
New Media Soc. (2018). https://doi.org/10.1177/1461444818767102

5. Han, M., Li, J., Cai, Z., Han, Q.: Privacy reserved influence maximization in GPS-
enabled cyber-physical and online social networks. In: 2016 IEEE International
Conferences on Big Data and Cloud Computing (BDCloud), pp. 284–292. IEEE
(2016)

6. Iyer, R., Bilmes, J.: Algorithms for approximate minimization of the difference
between submodular functions, with applications. In: Proceedings of the Twenty-
Eighth Conference on Uncertainty in Artificial Intelligence, UAI 2012, pp. 407–417.
AUAI Press, Arlington (2012)

7. Jung, K., Heo, W., Chen, W.: IRIE: scalable and robust influence maximization
in social networks. In: 2012 IEEE 12th International Conference on Data Mining
(ICDM), pp. 918–923. IEEE (2012)

8. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: International Conference on Knowledge Discovery and Data
Mining, KDD 2003, pp. 137–146. ACM (2003)

9. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
420–429. ACM (2007)

https://doi.org/10.1177/1461444818767102

Interaction-Aware Influence Maximization and Iterated Sandwich Method 141

10. Li, Y., Zhang, D., Tan, K.-L.: Real-time targeted influence maximization for online
advertisements. Proc. VLDB Endow. 8(10), 1070–1081 (2015)

11. Narasimhan, M., Bilmes, J.: A submodular-supermodular procedure with appli-
cations to discriminative structure learning. In: Proceedings of the Twenty-First
Conference on Uncertainty in Artificial Intelligence, UAI 2005, pp. 404–412. AUAI
Press, Arlington (2005)

12. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral market-
ing. In: Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2002, pp. 61–70. ACM (2002)

13. Rodriguez, M.G., Schölkopf, B.: Influence maximization in continuous time diffu-
sion networks. arXiv preprint arXiv:1205.1682 (2012)

14. Wang, Z., Yang, Y., Pei, J., Chu, L., Chen, E.: Activity maximization by effective
information diffusion in social networks. IEEE Trans. Knowl. Data Eng. 29(11),
2374–2387 (2017)

15. Wu, W.-L., Zhang, Z., Du, D.-Z.: Set function optimization. J. Oper. Res. Soc.
China 7, 1–11 (2018)

http://arxiv.org/abs/1205.1682

On Approximation Algorithm
for the Edge Metric Dimension Problem

Yufei Huang1, Bo Hou1, Wen Liu1, Lidong Wu2, Stephen Rainwater2,
and Suogang Gao1(B)

1 College of Mathematics and Information Science, Hebei Normal University,
Shijiazhuang 050024, People’s Republic of China

sggao@mail.hebtu.edu.cn
2 Department of Computer Science, Unibersity of Texas at Tyler, Tyler, USA

{lwu,srainwater}@uttyler.edu

Abstract. In this paper, we study the edge metric dimension problem
(EMDP). We establish a potential function and give a corresponding
greedy algorithm with approximation ratio 1+ lnn+ln(log2 n), where n
is the number of vertices in the graph G.

Keywords: Edge metric generator · Edge metric dimension ·
Approximation algorithms · Submodular function

1 Introduction

The concepts of metric generators (originally called locating sets) and the con-
cepts of metric dimension (originally called the location number) were intro-
duced by Slater in [17] in connection with uniquely determining the position of
an intruder in a network. Harary and Melter [11] discovered the same concepts
independently.

We now recall the definition of the metric dimension. Let G = (V,E) be
a simple connected undirected graph. A vertex v ∈ V is called to resolve or
distinguish a pair of vertices u,w ∈ V if d(v, u) �= d(v, w), where d(·, ·) denotes
the distance between two vertices in G. A metric generator of G is a subset
V ′ ⊆ V such that for each pair u,w ∈ V there exists some vertex v ∈ V ′ that
distinguishes u and w. The minimum cardinality of a metric generator is called
the metric dimension of G, denoted by dim(G).

The metric dimension problem (MDP) has been widely investigated from the
graph theoretical point of view. Cáceres et al. [3] studied the metric dimension
of cartesian products G�H, and proved that the metric dimension of G�G was
tied in a strong sense to the minimum order of a so-called doubly resolving set in
G. They established bounds on G�H for many examples of G and H. Chartrand
et al. [7] studied resolvability in graphs and the metric dimension of a graph. It
was shown that dim(H) ≤ dim(H�K2) ≤ dim(H)+1 for every connected graph
H. Moreover, it was shown that for every positive real number ε, there exists a

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 142–148, 2019.
https://doi.org/10.1007/978-3-030-27195-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_13

On Approximation Algorithm for the Edge Metric Dimension Problem 143

connected graph G and a connected induced subgraph H of G such that dim(G)
dim(H) ≤

ε. Saputro et al. [16] studied the metric dimension of regular bipartite graphs,
and determined the metric dimension of k-regular bipartite graphs G(n, n) where
k = n − 1 or k = n − 2. Chappell et al. [6] studied relationships between
metric dimension, partition dimension, diameter, and other graph parameters.
They constructed “universal examples” of graphs with given partition dimension,
and they used these to provide bounds on various graph parameters based on
metric and partition dimensions. They formed a construction showing that for
all integers α and β with 3 ≤ α ≤ β + 1 there exists a graph G with partition
dimension α and β. Cáceres et al. [5] studied the metric dimension of infinite
locally finite graphs, i.e. those infinite graphs such that all its vertices have finite
degree. They gave some necessary conditions for an infinite graph to have finite
metric dimension and characterized infinite trees with finite metric dimension.

So far only a few papers have discussed the computational complexity issues
of the MDP. The NP-hardness of the MDP was mentioned by Garey and John-
son [10]. An explicit reduction from the 3-SAT problem was given by Khuller et
al. [14]. They also obtained for the Metric Dimension problem a (2 ln(n)+Θ(1))-
approximation algorithm based on the well-known greedy algorithm for the Set
Cover problem and showed that the MDP is polynomial-time solvable for trees.
Beerliova et al. [1] showed that the MDP (which they call the Network Veri-
fication problem) cannot be approximated within a factor of O(log(n)) unless
P = NP . Hauptmann et al. [12] gave a (1+ln(|V |)+ln(log2(|V |)))-approximation
algorithm for the MDP in graphs.

The concept of a doubly resolving set of a graph G was introduced by Caceres
et al. [4]. We say vertices u, v of the graph G doubly resolve vertices x, y of G, if
d(u, x)−d(u, y) �= d(v, x)−d(v, y). A vertex set S is called a doubly resolving set
of G if every two distinct vertices of G are doubly resolved by some two vertices
of S.

Kratica et al. [15] proved that the minimal doubly resolving sets problem is
NP-hard. Chen et al. [8] designed an (1+ o(1)) ln n-approximation algorithm for
the weighted minimum doubly resolving set problem.

The edge metric dimension is a variant of the metric dimension. We now recall
the definition of the edge metric dimension. For any v ∈ V and e = uw ∈ E, we
use d(e, v) = min{d(u, v), d(w, v)} to denote the distance between the vertex v
and the edge e. We say that two distinct edges e1, e2 ∈ E are distinguished by
the vertex v ∈ V if d(v, e1) �= d(v, e2). A subset S ⊆ V is said to be an edge
metric generator of G if every two distinct edges of G can be distinguished by
some vertex in S. An edge metric basis of G is an edge metric generator of G of
the minimum cardinality and its cardinality is called the edge metric dimension,
denoted by dime(G).

Kelenc et al. [13] proved that computing the edge metric dimension of con-
nected graphs is NP-hard. As a response to an open problem presented in
[13], Zhu et al. [18] considered the maximum edge metric dimension prob-
lem on graphs. Zubrilina [19] classified the graphs on n vertices for which
dime(G) = n − 1 and showed that dime(G)

dim(G) is not bounded from above (here

144 Y. Huang et al.

dim(G) is the standard metric dimension of G). They computed dime(G�Pm)
and dime(G + K1). Zubrilina [20] discussed the edge metric dimension of the
random graph G(n, p) and obtained dime(G(n, p)) = (1 + o(1))4 log(n)

log(1
q)

, where

q = 1 − 2p(1 − p)2(2 − p). In this paper, we discuss the edge metric dimension
problem.

The paper is organized as follows: In Sect. 2, we construct a normalized,
monotone increasing and submodular potential function and give a greedy algo-
rithm for the edge metric dimension problem. In Sect. 3, we show that the algo-
rithm presented in this paper has approximation ratio 1+lnn+ln(log2 n), where
n is the number of vertices in the graph G.

2 Approximation Algorithm

Throughout this paper we assume that the graph G = (V,E) is simple connected
and undirected. In this section, we first construct a potential function and study
the properties of the potential function. Then we give a greedy algorithm for the
edge metric dimension of G.

Definition 2.1. Let Γ be a subset of V . We define the equivalence relation ≡Γ

for E as follows: for edges e1, e2 ∈ E,

e1 ≡Γ e2 ⇐⇒ d(e1, w) = d(e2, w) ∀w ∈ Γ.

Definition 2.2. Let Γ be a subset of V and {E1, E2, . . . , Ek} be the set of
equivalence classes of ≡Γ for E. We call the value H(Γ) = log2(

∏k
i=1 |Ei|!) the

entropy of Γ.

For any v ∈ V , let

ΔvH(Γ) := H(Γ) − H(Γ ∪ {v}).

It is direct to see that any equivalence class of ≡Γ is either an equivalent
class of ≡Γ∪{v} or a union of several equivalence classes of ≡Γ∪{v}.

Lemma 2.3. Let Γ be a subset of V and v ∈ V . Then ΔvH(Γ) = 0 if each
equivalence class of ≡Γ is one of ≡(Γ∪{v}); and ΔvH(Γ) > 0 otherwise.

Lemma 2.4. Let Γ be a subset of V . Then Γ is an edge metric generator of G
if and only if H(Γ) = 0.

Proof. Observe that each of the two assertions is equivalent with the assertion
that every equivalent class of ≡Γ is a singleton. The result follows. ��
Lemma 2.5. For any two sets Γ0 ⊆ Γ1 ⊆ V and any vertex v ∈ V \Γ1, we have

ΔvH(Γ0) ≥ ΔvH(Γ1). (1)

On Approximation Algorithm for the Edge Metric Dimension Problem 145

Proof. If Γ0 = Γ1, then the lemma holds. If Γ0 ⊂ Γ1, we divide the proof into
two cases: case 1, the vertex v partitions each equivalence class of ≡Γ0 into at
most two equivalence classes; case 2, the vertex v partitions some equivalence
class of ≡Γ0 into at least three equivalence classes.

Case 1. Since ΔvH(Γ0) = H(Γ0) − H(Γ0 ∪ {v} = log2

| ∏
Γ0

|
| ∏

Γ0∪{v} | , it suffices
to show |∏Γ0

|
|∏Γ0∪{v} | ≥ |∏Γ1

|
|∏Γ1∪{v} | . (2)

Write S = Γ1 \ Γ0. Let {E1, E2, · · · , Ek} be the equivalence classes of ≡Γ0 ,
{A1, A2, · · · , An} the equivalence classes of ≡Γ0∪{v} and {B1, B2, · · · , Bt} the
equivalence classes of ≡Γ1 . By the comments above Lemma 2.3 and the assump-
tion, for each i, Ei = Ai1 ∪ Ai2 and Ei is a union of some Bi1 , · · · , Bit . With-
out loss of generality, assume t = 2. Let Fi = Ai1 ∩ Bi1 , Hi = Ai2 ∩ Bi1 ,
Ci = (Ei ∩ Ai1)\Fi, Di = (Ei ∩ Ai2)\Hi. Let |Fi| = fi, |Hi| = hi, |Ci| = ci,
|Di| = di. Then |Ei| = fi + hi + ci + di. Since

(
fi+ci

fi+hi+ci+di

) ≥ (
fi

hi+fi

)(
ci

ci+di

)
, we

have

k∏

i=0

(
fi + ci

fi + hi + ci + di

)

≥
k∏

i=0

(
fi

fi + hi

)(
ci

ci + di

)

,

i.e.

k∏

i=0

(
(fi + hi + ci + di)!
(fi + ci)!(hi + di)!

≥
k∏

i=0

(
(fi + hi)!(ci + di)!
(fi)!(hi)!(ci)!(di)!

).

Thus

|∏Γ0
|

|∏Γ0∪{v} | ≥ |∏Γ1
|

|∏Γ1∪{v} | .

Case 2. Assume that the vertex v partitions each Ej into kj equivalence
classes, where j = 1, 2, . . . ,m. Let k = maxj{kj}. Then by assumption, k ≥ 3.
For 1 ≤ j ≤ m, there exist the vertices x1, x2,. . . , xk such that x1 divides Ej

into Ej1 and Ej \ Ej1 , vertex x2 divides Ej \ Ej1 into Ej2 and Ej \ (Ej1 ∪ Ej2),
. . . , vertex xk divides Ej \ (Ej1 ∪ Ej2 ∪ . . . ∪ Ejkj−1) into Ejkj

and ∅. Then by
the argument in Case 1, we have

ΔvH(Γ0) =H(Γ0) − H(Γ0 ∪ {v})

=(H(Γ0) − H(Γ0 ∪ {x1}) + (H(Γ0 ∪ {x1}) − H(Γ0 ∪ {x1} ∪ {x2}))

+ . . . + (H(Γ0 ∪ {x1} ∪ {x2} + . . . ∪ {xk−1}) − H(Γ0 ∪ {x1} ∪ {x2} ∪ . . . ∪ {xk}))

≥(H(Γ1) − H(Γ1 ∪ {x1})) + (H(Γ1 ∪ {x1}) − H(Γ1 ∪ {x1} ∪ {x2}))

+ . . . + (H(Γ1 ∪ {x1} ∪ {x2} ∪ . . . ∪ {xk−1}) − H(Γ1 ∪ {x1} ∪ {x2} ∪ . . . ∪ {xk}))

=H(Γ1) − H(Γ1 ∪ {v})

=ΔvH(Γ1).

��

146 Y. Huang et al.

Let R be the real number field. We define a function f : 2V → R by

f(Γ) = −H(Γ) + H(∅) for Γ ∈ 2V .

Lemma 2.6. The function f defined above is normalized, monotone increasing
and submodular.

Proof. It is easy to know that f(∅) = 0, that is to say, the function f is
normalized. By Lemma 2.3, f is monotone increasing. By Lemma 2.5 f is
submodular. ��

Based on the above lemmas, we give a greedy approximation algorithm for
the EMDP.

Algorithm 1
Input: a simple connected undirected graph G = (V,E).
Output: an edge metric generator of G.
1: Set Γ ← ∅.
2: while there exists a vertex v ∈ V \ Γ such that Δvf(Γ) > 0 do
3: select a vertex v ∈ V \ Γ, that maximizes Δvf(Γ).
4: Γ ← Γ ∪ {v}.
5: return Γg ← Γ

3 Theoretical Analysis

To obtain the ratio of Algorithm1. We first prove the following lemma.

Lemma 3.1. Let v1, v2, · · · , vk be the elements in Γg in the order of their selec-
tion into the set Γg. Denote Γ0 = ∅ and Γi = {v1, v2, · · · , vi}, for i = 1, · · · , k.
Then for i = 2, · · · , k, we have

Δvi
f(Γi−1) ≥ 1.

Proof. By [2, Lemma 6], it is sufficient to prove Δvi
f(Γi−1) > 0. Assume

Δvi
f(Γi−1) = 0 for some i (2 ≤ i ≤ k), for a contradiction. Then H(Γi−1 ∪

{vi}) = H(Γi−1). By the greedy strategy, the vertex vi can not be chosen in Γg.
A contradiction. ��
Theorem 3.2. Algorithm1 produces an approximate solution within a ratio 1+
ln n + ln(log2 n).

On Approximation Algorithm for the Edge Metric Dimension Problem 147

Proof. Let Γ∗ denote an optimal solution to the edge metric dimension problem.
By Lemmas 2.6 and 3.1 and [9, Theorem 3.7], and since f(Γ∗) = f(V) = log2(n!),
the approximation ratio of Algorithm1 is

1 + ln(
f(Γ∗)
|Γ∗|)

=1 + ln(
log2(n!)

|Γ∗|)

≤1 + ln(n log2 n) − ln(|Γ∗|)
≤1 + ln(log2 n) + lnn.

��

Acknowledgement. The authors would like to thank Professor Ding-Zhu Du for
his many valuable advices during their study of approximation algorithm. This work
was supported by the NSF of China (No. 11471097), Hebei Province Foundation for
Returnees (CL201714) and Overseas Expertise Introduction Program of Hebei Auspices
(25305008).

References

1. Beerliova, Z., et al.: Network discovery and verification. IEEE J. Sel. Area Com-
mun. 24, 2168–2181 (2006)

2. Berman, P., DasGupta, B., Kao, M.: Tight approximability results for test set
problems in bioinformatics. J. Comput. Syst. Sci. 71(2), 145–162 (2005)

3. Cáceres, J., et al.: On the metric dimension of Cartesian products of graphs. SIAM
J. Discret. Math. 21, 423–441 (2007)

4. Cáceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.l., Seara, C., et al.:
On the metric dimension of Cartesian products of graphs. SIAM J. Discret. Math.
21(2), 423–441 (2007)

5. Cáceres, J., Hernando, C., Mora, M., Pelayo, I., Puertas, M.: On the metric dimen-
sion of infinite graphs. Electron. Notes Discret. Math. 35, 15–20 (2009)

6. Chappell, G., Gimbel, J., Hartman, C.: Bounds on the metric and partition dimen-
sions of a graph. Ars Combin. 88, 349–366 (2008)

7. Chartrand, G., Eroh, L., Johnson, M., Oellermann, O.: Resolvability in graphs and
the metric dimension of a graph. Discret. Appl. Math. 105, 99–133 (2000)

8. Chen, X.J., Hu, X.D., Wang, C.J.: Approximation for the minimum cost doubly
resolving set problem. Theor. Comput. Sci. 609, 526–543 (2016)

9. Du, D.Z., Ko, K.I., Hu, X.D.: Design and Analysis of Approximation Algorithms,
vol. 62. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-1701-9

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

11. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin. 2,
191–195 (1976)

12. Hauptmann, M., Schmied, R., Viehmann, C.: Approximation complexity of metric
dimension problem. J. Discret. Algorithms 14, 214–222 (2012)

13. Kelenc, A., Tratnik, N., Yero, I.G.: Uniquely identifying the edges of a graph: the
edge metric dimension. Discret. Appl. Math. 251, 204–220 (2018)

https://doi.org/10.1007/978-1-4614-1701-9

148 Y. Huang et al.

14. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discret. Appl.
Math. 70, 217–229 (1996)

15. Kratica, J., C̈angalović, M., Kovac̈ević-Vujc̈ić, V.: Computing minimal doubly
resolving sets of graphs. Comput. Oper. Res. 36, 2149–2159 (2009)

16. Baca, M., Baskoro, E.T., Salman, A.N.M., Saputro, S.W., Suprijanto, D.: The
metric dimension of regular bipartite graphs. Bull. Math. Soc. Sci. Math. Roumanie
54(1), 15–28 (2011)

17. Slater, P.J.: Leaves of trees. In: Southeastern Conference on Combinatorics, Graph
Theory, and Computing, Congressus Numerantium, vol. 14, pp. 549–559 (1975)

18. Zhu, E.Q., Taranenko, A., Shao, Z.H., Xu, J.: On graphs with the maximum edge
metric dimension. Discret. Appl. Math. 257, 317–324 (2019)

19. Zubrilina, N.: On edge dimension of a graph. Discret. Math. 341, 2083–2088 (2018)
20. N. Zubrilina. On the edge metric dimension for the random graph (2016).

arXiv:1612.06936 [math.CO]

http://arxiv.org/abs/1612.06936

The Seeding Algorithm for Spherical
k-Means Clustering with Penalties

Sai Ji1, Dachuan Xu1, Longkun Guo2(B), Min Li3, and Dongmei Zhang4

1 Department of Operations Research and Scientific Computing,
Beijing University of Technology, Beijing 100124, People’s Republic of China

2 College of Mathematics and Computer Science, Fuzhou University,
Fuzhou 350116, Fujian, People’s Republic of China

longkun.guo@gmail.com
3 School of Mathematics and Statistics, Shandong Normal University,

Jinan 250014, People’s Republic of China
4 School of Computer Science and Technology, Shandong Jianzhu University,

Jinan 250101, People’s Republic of China

Abstract. Spherical k-means clustering is a generalization of k-means
problem which is NP-hard and has widely applications in data mining.
It aims to partition a collection of given data with unit length into k sets
so as to minimize the within-cluster sum of cosine dissimilarity. In this
paper, we introduce the spherical k-means clustering with penalties and
give a 2max{2, M}(1 + M)(ln k + 2)-approximate algorithm, where M
is the ratio of the maximal and the minimal penalty values of the given
data set.

Keywords: Approximation algorithm · Spherical k-means clustering ·
Penalty

1 Introduction

Clustering problems arise in many applications such as data mining, data com-
pression, machine learning and computer vision. These problems have been
widely studied in the literature. For partial surveys, see e.g. [5,7,11,18,19]. The
k-means problem is one of the most fundamental clustering tasks in combina-
torial optimization and data mining. In this problem, we are given an n-point
data set X ∈ Rd and a positive integer k, the goal is to partition X into k dis-
joint subsets so as to minimize the total squared distances between each point
and its closest center. This problem is NP-hard [2,8], one can not obtain the
optimal solution in polynomial time unless P = NP . There are many research
about k-means problem [1,6,13,20]. Lloyd [14] provides a local search heuristic
for this problem which performs very well in practical and is still widely used
today. Arthur and Vassilvitskii [4] further provide an O(log k)-approximation
algorithm called k-means++, which improve Lloyd’s algorithm by choosing ran-
dom initially centers with specific probabilities. The first constant approximation
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 149–158, 2019.
https://doi.org/10.1007/978-3-030-27195-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_14

150 S. Ji et al.

for k-means problem in general dimension is a (9+ε)-approximation provided by
Kanungo et al. [13] based on local search technique. Ahmadian et al. [3] improve
the ratio to 6.357 by presenting a new primal-dual approach.

Spherical k-means clustering is a generalization of k-means problem which
is NP-hard and widely used in data mining [17,18]. It aims to partition the
given data with unit length into k sets so as to minimize the within-cluster sum
of cosine dissimilarity. Hornik et al. [12] present a spherical k-means algorithm
(SKM) based on primitive spherical k-means [9]. Endo et al. [10] provide a spher-
ical k-means++ algorithm (SKM++) with theoretically guaranteed. Endo and
Miyamoto [10] study the α-spherical k-means clustering, where the cosine dis-
similarity is a little different from the one in spherical k-means clustering, and
obtain an O(log2 k)-approximate algorithm. Li et al. [16] present an approxi-
mate algorithm with a constant factor for the spherical k-means clustering with
separable sets. Moreover, they prove that their algorithm can be generalized to
solve α-spherical k-means clustering with separable sets.

In this paper, we consider the spherical k-means clustering with penalties. In
this problem, we are given a data set and a penalty cost for each data. All the
data are on a unit sphere, that is the norm of each data is normalized to one.
Each data is clustered to a cluster or be un-clustered by paying the corresponding
penalty cost. The object of this problem is to partition the clustered data into k
sets so as to minimize the total cost including the within-cluster sum of cosine
dissimilarity and the sum of penalty cost. The main contribution is that we give a
2max{2,M}(1+M)(ln k+2)-approximation seeding algorithm for the spherical
k-means clustering with penalties based on [10,15], where M is the ratio of the
maximal penalty value and the minimal one of the given data set.

The rest of this paper is organized as follows. In Sect. 2, the problems we stud-
ied and some notations are introduced. In Sect. 3, we give a detailed description
of our seeding algorithm as well as our main results. The corresponding theoret-
ical analysis of the algorithm is provided in Sect. 4. Some discussions are stated
in Sect. 5.

2 Preliminaries

In this section, we will give a detailed description about spherical k-means clus-
tering, spherical k-means clustering with penalties, as well as some symbols and
notations used in this paper. For any two data x, v ∈ Rd, we use

d(x, v) = 1 − 〈x, v〉
to denote the cosine dissimilarity of x and v, where 〈·, ·〉 means the inner product.
Furthermore, for any data x and a set C, d(x,C) = minc∈C d(x, c). For each
integer n, denote [n] = {1, 2, . . . , n}. For any cluster C, denote mean(C) :=∑

x∈C x

|| ∑
x∈C x|| as the mean or center of mass of C.

Definition 1. Spherical k-means clustering: Given a data set X in Rd with
n points and an integer k. All the data are on a unit sphere, that is the norm

The Seeding Algorithm for Spherical k-Means Clustering with Penalties 151

of each data is normalized to one. The object is to find a k points center set C
with unit norm so as to minimize the following objective function:

∑

x∈X
d(x,C).

Definition 2. Spherical k-means clustering with penalties: Given an
integer k and a data set X in Rd with n points, each data x ∈ X is associ-
ated with a penalty cost p(x). All the data are on a unit sphere, that is the norm
of each data is normalized to one. The object is to find a k points center set C
with unit form so as to minimize the following objective function:

φk(X , C) :=
∑

x∈X
min{d(x,C), p(x)}.

We use COPT := {c∗
i , c

∗
2, . . . , c

∗
k} to denote the optimal solution of spherical

k-means clustering, then we can simplify φk(X , COPT) as φ∗
k(X).

3 The Seeding Algorithm and Our Results

In this section, we will give our seeding algorithm for the spherical k-means
clustering with penalties and our main result.

This algorithm is based on SKM++ algorithm [10] for spherical k-means
clustering. This algorithm contains two main phase. In the first phase, we first
choose a center uniformly at random from the given data set, then we choose k−1
centers one by one by specific probabilities. In the second phase, we partition
the given data set into k + 1 sets. One of the k + 1 set is a penalty set that is all
the data in this set are penalized. Next we update the centers of other k clusters
and re-cluster all the data in the given set. We repeat the second phase until the
center set no longer change.

Theorem 1. For any instance X of spherical k-means clustering with penalties,
let C ′ be the center set returned by Algorithm1. We have

φk(X , C ′) ≤ 2max{2,M}(1 + M)(ln k + 2)φ∗
k(X),

where M is the ratio of the maximal penalty value and the minimal one of the
given data set X .

4 Proof of Theorem1

In this section, we will give a detailed proof of Theorem1. From Lemma 3, we
have that φk(X , C ′) ≤ φk(X , C). Therefore, if we have

φk(X , C) ≤ 2max{2,M}(1 + M)(ln k + 2)φ∗
k(X),

Theorem 1 is proved.
Here, we introduce two lemmas about the relaxed triangle inequalities in

both spherical k-means clustering and k-means problem with penalties, which
have been presented in [15,16].

152 S. Ji et al.

Algorithm 1
Input: A data set X ∈Rd with n points, a penalty cost p(x) for each data, a integer k.
Output: Data sets C, C′ ∈ Rd with k points and a penalty subset P .
1: Initialize C := ∅, C′ := ∅, i = 1.
2: Choose the first center vi uniformly at random from X .
3: Update C := C ∪ {ci}, i := i + 1.
4: while i ≤ k do
5: Choose the center ci from X with probability min{d(ci,C), p(ci)}∑

x∈X min{d(x,C), p(x)} .

6: Update C := C ∪ {ci}, i := i + 1.
7: end while
8: Update C′ := C.
9: Set P := {x ∈ X : p(x) < d(x, C)}.
10: for i from 1 to k do
11: Set Xi := {x ∈ X\P : d(x, ci) ≤ d(x, cj), j ∈ [k], i �= j}. If there exists a set

C1 ⊆ C which satisfies that d(x, ci) = d(x, cj) < d(x, cw), ∀i, j ∈ C1, w ∈ C\C1.
Then, we randomly cluster the data x to one of Xi, i ∈ C1.

12: end for
13: for i from 1 to k do
14: Update set C′ by setting ci :=

∑
x∈Xi

x

|| ∑
x∈Xi

x|| ,

15: end for
16: Repeat Step 10 to Step 15 until C′ no longer changes.
17: return Data sets C, C′, P .

Lemma 1. [16] For any data x, y, z ∈ X , we have

d(x, y) ≤ 2(d(x, z) + d(z, y)).

Lemma 2. [15] For any data x, y ∈ X , and any set Z, we have

min{d(x,Z), p(x)} ≤ max{2,M} [min{d(x, y), p(y)} + min{d(y, Z), p(y)}] ,

where

M :=
maxx∈X p(x)
minx∈X p(x)

.

Lemma 3. For any cluster C and data z ∈ C, we have
∑

x∈C

d(x, z) −
∑

x∈C

d(x,mean(C)) ≤ ||
∑

x∈C

x||d(z,mean(C)).

The Seeding Algorithm for Spherical k-Means Clustering with Penalties 153

Proof.
∑

x∈C

d(x, z) −
∑

x∈C

d(x,mean(C))

= <
∑

x∈C

x,mean(C) > − <
∑

x∈C

x, z >

= ||
∑

x∈C

|| < mean(C),mean(C) > −||
∑

x∈C

|| < mean(C), z >

= ||
∑

x∈C

x||d(z,mean(C)).

��
From step 10 of Algorithm 1, we can obtain a partition X1,X2, . . . ,Xk, P of

set X . Next, we construct a new partition of X . First, we partition the penalty
set P into k disjoint sets P1, P2, . . . , Pk. Then the new partition can be described
as follows:

X p
i := Xi ∪ Pi, i ∈ [k].

Let X ∗
1 ,X ∗

2 , . . . ,X ∗
k , P ∗ be the corresponding cluster in the optimal solu-

tion COPT . From Lemma 3, we have that c∗
i = mean(X ∗

i), i ∈ [k]. Similar to
solution C, we can obtain a new partition X p∗

1 ,X p∗
2 , . . . ,X p∗

k of X based on
X ∗

1 ,X ∗
2 , . . . ,X ∗

k , P ∗.

Lemma 4. Let X p∗
i be an arbitrary cluster in optimal solution, and z be an data

selected uniformly at random from X p∗
i , then the following inequality hold:

E(φk(X p∗
i , z)) ≤ 2φk(X ∗

i , c∗
i) + (1 + M)φ(P ∗

i , c∗
i).

Proof. Recall the probability that z is selected. We have

E(φk(X p∗
i , z)) =

1
|X p∗

i |
∑

z∈Xp∗
i

φk(X p∗
i , z)

=
1

|X p∗
i |

∑

z∈X ∗
i

φk(X p∗
i , z) +

1
|X p∗

i |
∑

z∈P∗
i

φk(X p∗
i , z)

=
1

|X p∗
i |

∑

z∈X ∗
i

∑

x∈Xp∗
i

min{d(x, z), p(x)} (1)

+
1

|X p∗
i |

∑

z∈P∗
i

∑

x∈Xp∗
i

min{d(x, z), p(x)} (2)

154 S. Ji et al.

From Lemma 3 and ||∑x∈X ∗
i

x|| ≤ |X ∗
i |, one can know that

(1) ≤ 1
|X p∗

i |
∑

z∈X ∗
i

∑

x∈X ∗
i

d(x, z) +
1

|X p∗
i |

∑

z∈X ∗
i

∑

x∈P∗
i

p(x)

≤ 1
|X p∗

i |
∑

z∈X ∗
i

⎛

⎝
∑

x∈X ∗
i

d(x,mean(X ∗
i)) + ||

∑

x∈X ∗
i

x||d(z,mean(X ∗
i))

⎞

⎠

+
|X ∗

i |
|X p∗

i |
∑

x∈P∗
i

p(x)

≤ (1 +
||∑x∈X ∗

i
x||

|X p∗
i |)φk(X ∗

i , c∗
i) +

|X ∗
i |

|X p∗
i |

∑

x∈P∗
i

p(x)

≤ 2φk(X ∗
i , c∗

i) + φk(P ∗
i , c∗

i).

By the definition of M , we have

(2) ≤ 1
|X p∗

i |
∑

z∈P∗
i

∑

x∈Xp∗
i

p(x)

≤ 1
|X p∗

i |
∑

z∈P∗
i

∑

x∈Xp∗
i

Mp(z)

= M
∑

z∈P∗
i

p(z)

= Mφk(P ∗
i , c∗

i).

Therefore

E(φk(X p∗
i , z)) ≤ 2φk(X ∗

i , c∗
i) + (1 + M)φk(P ∗

i , c∗
i).

��
Lemma 5. Assume that the t-th (1 ≤ t < k) iteration has finished in the first
phase and let Ct be the center set selected by Algorithm1, and ct+1 ∈ X p∗

i be
the next selected center, X p∗

i be an arbitrary cluster in optimal solution. That is
Ct+1 := Ct ∪ {ct+1}, then we have

E(φk(X p∗
i , Ct+1)|Ct, ct+1 ∈ X p∗

i) ≤ 2max{2, M}[2φk(X ∗
i , c∗

i) + (1 + M)φk(P
∗
i , c∗

i)].

Proof. Recall the probability that ct+1 is selected and z ∈ X p∗
i , we have

E(φk(X p∗
i , Ct+1)|Ct, ct+1 ∈ X p∗

i)

=
∑

ct+1∈Xp∗
i

min{d(ct+1, C
t), p(ct+1)}∑

x∈Xp∗
i

min{d(x,Ct), p(x)}
∑

x∈Xp∗
i

min{d(x,Ct), d(x, ct+1), p(x)}

The Seeding Algorithm for Spherical k-Means Clustering with Penalties 155

From Lemma 2, we have

min{d(ct+1, C
t), p(ct+1)} ≤ max{2,M}

|X p∗
i | φ(X p∗

i , ct+1)

+
max{2,M}

|X p∗
i | φ(X p∗

i , Ct). (3)

Combined (3) and Lemma 4, we have

E(φk(X p∗
i , Ct+1)|Ct, ct+1 ∈ X p∗

i)

≤
∑

ct+1∈Xp∗
i

max{2,M}
|Xp∗

i | φk(X p∗
i , ct+1)

∑
x∈Xp∗

i
min{d(x,Ct), p(x)}

∑

x∈Xp∗
i

min{d(x,Ct), d(x, ct+1), p(x)}

+
∑

ct+1∈Xp∗
i

max{2,M}
|Xp∗

i | φk(X p∗
i , Ct)

∑
x∈Xp∗

i
min{d(x,Ct), p(x)}

∑

x∈Xp∗
i

min{d(x,Ct), d(x, ct+1), p(x)}

≤ 2max{2,M}
|X p∗

i |
∑

ct+1∈Xp∗
i

φk(X p∗
i , ct+1)

= 4max{2,M}φk(X ∗
i , c∗

i) + 2max{2,M}(1 + M)φk(P ∗
i , c∗

i).

��
For 1 ≤ i ≤ k, denote Ht, U t and W t as the set of covered clusters, uncovered

set and wasted set at the end of t-th iteration respectively [10].

Ht := {i|1 ≤ i ≤ k,X p∗
i ∩ Ct
= ∅},

U t := {i|1 ≤ i ≤ k,X p∗
i ∩ Ct = ∅},

W t := t − |Ht|.

First, we can analyze the cost of covered sets by the following lemma.

Lemma 6. For any 1 ≤ t ≤ k, we have

E

(
∑

i∈Ht

φk(X p∗
i , Ct)

)
≤ 2max{2,M}(1 + M)φ∗

k(X).

Proof. Let X p∗
t be the cluster in optimal solution selected at t-th iteration and

ct be the center selected by Algorithm 1. Suppose W t = 0, then by Lemma 5 the
following inequality holds:

156 S. Ji et al.

E

(
∑

i∈Ht

φk(X p∗
i , Ct)

)
= E(φk(X p∗

1 , C1)|C0, {c1 ∈ X p∗
1 }) + . . .

+E(φk(X p∗
t , Ct)|Ct−1, {ct ∈ X p∗

t })

≤ 2max{2,M}(1 + M)
t∑

i=1

φk(X p∗
i , c∗

i)

≤ 2max{2,M}(1 + M)φ∗
k(X).

If W t
= 0, the proof is similar, we omit the proof. ��
Next, we consider the cost of the uncovered sets by Lemmas 7–9.
Assume that the t-th iteration has been finished and the center set selected

by the algorithm is Ct. For each 1 ≤ t ≤ k, denote

αt :=
W t

∑
i∈Ut φk(X p∗

i , Ct)
|U t| .

Then we consider the following two cases for the (t + 1)-th iteration:

– The center is selected from U t.
– The center is selected from Ht.

Lemma 7. [10] Let Ct be the center set selected by the algorithm at the end of
the t-th iteration and assume that the next center cj is selected from an uncovered
cluster X p∗

j . Then we have

E(αt+1 − αt|Ct, j ∈ U t) ≤ 0.

Lemma 8. [10] Let Ct be the center set selected by the algorithm at the end
of the t-th iteration. Assume that the next center cj is selected from a covered
cluster X p∗

j . Then we have

αt+1 − αt ≤
∑

i∈Ut φk(X p∗
i , Ct)

|U t| .

Combined Lemmas 7 and 8, we have the following lemma.

Lemma 9. [10] For any 0 ≤ t ≤ k − 1, we have

E(αt+1 − αt|Ct) ≤
∑

i∈Ht φk(X p∗
i , Ct)

k − t
.

Now, we can finish the proof of Theorem1 by the following two cases.

– Uk = ∅: From Lemma 6 we have

E(φk(X , Ck)) = E

⎛

⎝
∑

i∈Hk

φk(X p∗
i , Ck)

⎞

⎠ ≤ 2max{2,M}(1 + M)φ∗
k(X).

The Seeding Algorithm for Spherical k-Means Clustering with Penalties 157

– Uk
= ∅: Combining the definition of αk, Lemmas 6 and 9, we have

E(φk(X , Ck)) = E

⎛

⎝
∑

i∈Hk

φk(X p∗
i , Ck)

⎞

⎠ + E

⎛

⎝
∑

i∈Uk

φk(X p∗
i , Ck)

⎞

⎠

≤ 2max{2,M}(1 + M)φ∗
k(X) + E(αk|Ck−1)

= 2max{2,M}(1 + M)φ∗
k(X)

+E(αk − αk−1|Ck−1 + . . . + α2 − α1|C1 + α1|C0)

≤ 2max{2,M}(1 + M)φ∗
k(X) +

∑
i∈Hk−1 φk(X p∗

i , Ck−1)
1

+ . . . +
∑

i∈H1 φk(X p∗
i , C1)

k − 1
≤ 2max{2,M}(1 + M)(ln k + 2)φ∗

k(X).

Above all, we have

E(φk(X , Ck)) = E(φk(X , C)) ≤ 2max{2,M}(1 + M)(ln k + 2)φ∗
k(X).

The Theorem 1 is proved.

5 Discussion

In this paper, we have studied the seeding algorithm for spherical k-means clus-
tering with penalties and give a 2max{2,M}(1+M)(ln k+2)-approximate algo-
rithm for M being the ratio of the maximal and the minimal penalty values of
the given object set. We are currently focusing on two tasks alongside the prob-
lem: One is to improve the ratio 2max{2,M}(1 + M)(ln k + 2) for spherical
k-means clustering with penalties; The other is to study other variants of spher-
ical k-means clustering.

Acknowledgements. The first and second authors are supported by National Nat-
ural Science Foundation of China (No. 11531014). The third author is supported
by National Natural Science Foundation of China (No. 61772005) and Natural Sci-
ence Foundation of Fujian Province (No. 2017J01753). The forth author is supported
by Higher Educational Science and Technology Program of Shandong Province (No.
J17KA171). The fifth author is supported by National Natural Science Foundation of
China (No. 11871081).

References

1. Awasthi, P., Charikar, M., Krishnaswamy, R., Sinop, A.: The hardness of approx-
imation of Euclidean k-means, arXiv preprint arXiv:1502.03316 (2015)

2. Aloise, D., Deshpande, A., Hansen, P.: NP-hardness of Euclidean sum-of-squares
clustering. Mach. Learn. 75(2), 245–248 (2009)

http://arxiv.org/abs/1502.03316

158 S. Ji et al.

3. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k-
means and Euclidean k-median by primal-dual algorithms. In: Proceedings of the
58th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.
61–72 (2017)

4. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1027–1035 (2007)

5. Blömer, J., Brauer, S., Bujna, K.: A theoretical analysis of the fuzzy k-means prob-
lem. In: Proceedings of the 16th IEEE International Conference on Data Mining
(ICDM), pp. 805–810 (2017)

6. Blömer, J., Lammersen, C., Schmidt, M., Sohler, C.: Theoretical analysis of the
k -means algorithm – a survey. In: Kliemann, L., Sanders, P. (eds.) Algorithm
Engineering. LNCS, vol. 9220, pp. 81–116. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49487-6 3

7. Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation
schemes for k-means and k-median in Euclidean and minor-free metrics. SIAM J.
Comput. 48(2), 644–667 (2019)

8. Drineas, P., Frieze, A., Kannan, R., Vempala, V.: Clustering large graphs via the
singular value decomposition. Mach. Learn. 56(1–3), 9–33 (2004)

9. Dhillon, I., Modha, D.: Concept decompositions for large sparse text data using
clustering. Mach. Learn. 42(1–2), 143–175 (2001)

10. Endo, Y., Miyamoto, S.: Spherical k -means++ clustering. In: Torra, V., Narukawa,
Y. (eds.) MDAI 2015. LNCS (LNAI), vol. 9321, pp. 103–114. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23240-9 9

11. Gupta, S., Kumar, R., Lu, K., Moseley, B., Vassilvitskii, S.: Local search methods
for k-means with outliers. Proc. VLDB Endow. 10(7), 757–768 (2017)

12. Hornik, K., Feinerer, I., Kober, M., Buchata, M.: Spherical k-means clustering. J.
Stat. Softw. 50(10), 1–22 (2015)

13. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverma, R.: A local search
approximation algorithm for k-means clustering. Comput. Geom. 28(2–3), 89–112
(2004)

14. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. 28(2), 129–137 (1982)
15. Li, M., Xu, D., Yue, J., Zhang, D., Zhang, P.: The seeding algorithm for k-means

with penalties. J. Comb. Optim. (under review)
16. Li, M., Xu, D., Zhang, D., Zou, J.: The seeding algorithms for spherical k-means

clustering. J. Global Optim. 1–14 (2019)
17. Moriya, T., Roth, H., Nakamura, S., Oda, H., Kai, N., Oda, M.: Unsupervised

pathology image segmentation using representation learning with spherical k-
means. In: Digital Pathology, p. 36 (2018)

18. Tunali, V., Bilgin, T., Camurcu, A.: An improved clustering algorithm for text
mining: multi-cluster spherical k-means. Int. Arab J. Inf. Technol. 13(1), 12–19
(2016)

19. Xu, J., Han, J., Xiong, K., Nie F.: Robust and sparse fuzzy k-means clustering. In:
Proceedings 25th International Joint Conference on Artificial Intelligence (IJCAI),
pp. 2224–2230 (2016)

20. Xu, D., Xu, Y., Zhang, D.: A survey on algorithm for k-means and its variants.
Oper. Res. Trans. 21, 101–109 (2017)

https://doi.org/10.1007/978-3-319-49487-6_3
https://doi.org/10.1007/978-3-319-49487-6_3
https://doi.org/10.1007/978-3-319-23240-9_9

Approximation Algorithm
for the Correlation Clustering Problem
with Non-uniform Hard Constrained

Cluster Sizes

Sai Ji1, Dachuan Xu1(B), Min Li2, and Yishui Wang3

1 Department of Operations Research and Scientific Computing,
Beijing University of Technology, Beijing 100124, People’s Republic of China

xudc@bjut.edu.cn
2 School of Mathematics and Statistics, Shandong Normal University,

Jinan, People’s Republic of China
liminemily@sdnu.edu.cn

3 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen 518055, People’s Republic of China

Abstract. This paper considers the correlation clustering problem with
non-uniform hard constrained cluster sizes, which is a generalization of
correlation clustering problem. In this problem, we are given a positive
integer Uv for each vertex v, and require |C| ≤ minv∈C Uv for any cluster
C. We provide a (2, 4)-bicriteria approximation algorithm for this prob-
lem. Namely, the solution returned by the algorithm has the cost that is
at most 4 times the optimum, and for each cluster C in the solution, we
have |C| ≤ 2minv∈C Uv.

Keywords: Correlation clustering ·
Non-uniform hard constrained cluster sizes · Approximation algorithm

1 Introduction

Clustering problems arise in many applications such as data mining, data com-
pression, machine learning and computer vision. These problems have been
widely studied in the literature. For partial surveys, see e.g. [6,7,10,11,18,19].

In this paper, we study the correlation clustering problem which can be used
in protein interaction networks, cross-lingual link detection, communication net-
works, and so on. The correlation clustering problem is introduced by Bansal
et al. [9], motivated by both document clustering and agnostic learning. This
problem can solve problems where we have conflicting measures among objects
and the aim is to provide a consistent clustering. In this problem, we are given a
complete graph G = (V,E), each edge (u, v) ∈ E is labeled by + or − depending
on whether vertex u and vertex v have been deemed to be similar or different.
There are two versions of this problem: minimizing disagreement and maximiz-
ing agreement. In the problem minimizing disagreement, we need to partition
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 159–168, 2019.
https://doi.org/10.1007/978-3-030-27195-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_15

160 S. Ji et al.

the vertices into some clusters so as to minimize the number of positive edges
whose endpoints lie in different clusters plus the number of negative edges whose
endpoints lie in the same cluster. In the problem of maximizing agreement, we
need to partition the vertices into some clusters so as to maximize the total num-
ber of negative edges whose endpoints places in different clusters and positive
edges whose endpoints places within the same cluster. The number of clusters in
both versions is not limited. Bansal et al. [9] prove that the problem is NP-hard,
one cannot obtain the optimal solution in polynomial time unless P = NP .
There are many existing works on approximation algorithms for this problem
[3,8,14,17,20]. Bansal et al. [9] give the first constant-factor approximation
algorithm for the minimizing disagreement. For maximizing agreements, they
give a polynomial time approximation scheme. Demaine et al. [14] provide an
O(log n)-approximation algorithm for general graphs. Charikar et al. [12] prove
that the minimizing disagreement is APX-hard. They provide an LP-rounding
4-approximation algorithm for minimization disagreement on complete graphs as
well as an O(log n)-approximation algorithm for general graphs. Furthermore,
they give a 0.766-approximation algorithm for the maximizing agreement by
rounding a semidefinite programming relaxation. In the same year, Swamy [24]
gives a 0.75-approximation algorithm for the weighted maximizing agreement
based on the technique of [16], the number of clusters returned by this algo-
rithm is at most 4. Then, he improves 0.75 to 0.766 by the technique of [15],
the maximum number of clusters returned by the latter algorithm is 6. Ailon
et al. [5] give a randomized 3-approximation algorithm and further improve the
ratio to 2. Chawla et al. [13] provide the best deterministic LP-rounding 2.06-
approximation algorithm. In particular, the graph is a complete bipartite graph,
there is an LP-rounding 11-approximation algorithm provided by Amit [1]. Ailon
et al. [2] give a deterministic LP-rounding 4-approximation algorithm as well as
a randomized LP-rounding 4-approximation algorithm based on [5].

There are many variants of the correlation clustering problem [4,17,20,21,
23]. In this paper, we are particularly interested in the correlation clustering
problem with constrained cluster sizes which is introduced by Puleo et al. [22].
Puleo et al. [22] study the correlation clustering problem with soft constrained
cluster sizes. In this problem, each vertex v has a penalty parameter μv. They
provide a max {μ∗, 2/α}-approximation algorithm for this problem, where μ∗ is
the maximum penalty cost of all vertices and a ∈ (0, 1/2] is a given parameter. In
this paper, we consider the minimizing version of correlation clustering problem
with non-uniform hard constrained cluster sizes. In this problem, we are given
a positive integer Uv for each vertex v, we need to partition the vertices into
some clusters so as to minimize the number of positive edges whose endpoints
lie in different clusters plus the number of negative edges whose endpoints lie in
the same cluster. Furthermore, each cluster C should satisfies |C| ≤ minv∈C Uv.
Given a parameter α ∈ (1/2, 1), we provide an LP-rounding (2, 4)-bicriteria
approximation algorithm for the problem based on [12]. Namely, the solution
returned by the algorithm has the cost that is at most 4 times the optimum
solution, and for each cluster C in the solution, we have |C| ≤ 2minv∈C Uv.

Correlation Clustering Problem with Constrained Cluster Size 161

The rest of this paper is organized as follows. In Sect. 2, we describe the
formulation for minimizing version of correlation clustering problem with non-
uniform hard constrained cluster sizes and the corresponding LP relaxation. In
Sect. 3, we give our algorithm as well as the analysis of approximation ratio.
Some discussions are given in Sect. 4.

2 The Correlation Clustering Problem with Non-uniform
Hard Constrained Cluster Sizes

In the correlation clustering problem with non-uniform hard constrained cluster
sizes, we are given a labeled complete graph G = (V,E) together with a positive
integer upper bound Uv for each vertex v ∈ V . We use E+ and E− to denote
the set of positive edges and the set of negative edges, respectively. For each
edge (u, v) ∈ E, we introduce a binary decision variable xuv to denote whether
the vertices u and v are in the same cluster. Then the minimizing version of
correlation clustering problem with non-uniform hard constrained cluster sizes
can be formulated as follows:

min
∑

(u,v)∈E+

xuv +
∑

(u,v)∈E−
(1 − xuv)

s. t. xuv + xvw ≥ xuw, ∀u, v, w ∈ V,∑

v∈V

(1 − xuv) ≤ Uu, ∀u ∈ V,

xuu = 0, ∀u ∈ V,

xuv ∈ {0, 1}, ∀u, v ∈ V. (1)

The first constraint ensures that if the vertices u, v ∈ V are in the same
cluster and v, w ∈ V are also in the same cluster, then the vertices u and w
must be in the same cluster. The second constraint ensures that the number of
vertices in each cluster is no more than the corresponding upper bound. The
third constraint is natural since any vertex in a cluster should be counted. The
LP relaxation of (1) is given as follows:

min
∑

(u,v)∈E+

xuv +
∑

(u,v)∈E−
(1 − xuv)

s. t. xuv + xvw ≥ xuw, ∀u, v, w ∈ V,∑

v∈V

(1 − xuv) ≤ Uu, ∀u ∈ V,

xuu = 0, ∀u ∈ V,

0 ≤ xuv ≤ 1, ∀u, v ∈ V. (2)

3 Algorithm

In this section, we present our (2, 4)-bicriteria approximation algorithm for the
minimizing version of correlation clustering problem with non-uniform hard con-

162 S. Ji et al.

strained cluster sizes. The detailed algorithm is shown in Subsect. 3.1 and theo-
retical analysis of the algorithm are provided in Subsect. 3.2.

3.1 Algorithm

In this subsection, we provide our algorithm for the correlation clustering prob-
lem with non-uniform hard constrained cluster sizes. First, we give a high level
of our algorithm. Let α ∈ (1/2, 1) be a parameter which will be specified later,
the algorithm consists of two main steps. In the first step, we solve (2) to obtain
the fractional optimal solution x∗. We can see the value of xuv as the distance
between the vertices u and v. The second step is an iterative clustering process.
We initialize the un-clustered set S := V . In each iteration, we choose a vertex u
with the minimum upper bound from the un-clustered set S as a center vertex.
Let Tu be the set of vertices from the un-clustered set whose distance from u
is no greater than the parameter α. We let Cu = {u} or Cu = Tu according to
the distances between the vertices in Tu and u. We repeat the iterative cluster-
ing process until all the vertices have been clustered. The detailed algorithm is
shown as follows:

Algorithm 1
Input: A labeled complete graph G = (V, E), positive integer Uv for each vertex v,

and parameter α ∈ (
1
2
, 1

)
.

Output: A partition of vertices.
1: Solve the LP relaxation of (1) to obtain the optimal solution x∗.
2: Let S = V .
3: while S �= ∅ do
4: Select a vertex u with the minimum upper bound from S, i. e. u = argminv∈S Uv.
5: Let Tu := {v ∈ S : x∗

uv ≤ 1
2
}.

6: if

∑
v∈Tu

x∗
uv

|Tu| > 1 − α, then

7: Let Cu = {u}. (Type 1 of cluster)
8: Let S := S − {u}.
9: else
10: Let Cu = Tu. (Type 2 of cluster)
11: Let S := S − Cu.
12: end if
13: end while
14: return the partition {Cu}

3.2 Analysis

In this subsection, we give the theoretical analysis of Algorithm 1. For the con-
veniens of statement, we call a positive edge whose endpoints lie in different
clusters or a negative edge whose endpoints lie in the same cluster as an “error”.

Correlation Clustering Problem with Constrained Cluster Size 163

Algorithm 1 is an iterative processes. In each iteration, we choose a center ver-
tex u and construct a cluster Cu from the set of un-clustered vertices. Thus the
errors are contained in the set of the negative edges whose endpoints lie in Cu

and the positive cut edges between cluster Cu and set S − Cu. Each error only
needs to be counted once, that is, we don’t need to consider the errors later.
The total number of errors is the total number of new errors produced by each
iteration. The analysis of our algorithm contains three parts. In the first part, we
analyze the upper bound of the size of each cluster (cf. Lemma 1). In the second
part, we give the upper bound of the number of errors in type 1 of cluster (cf.
Lemmas 2 and 3). In the last part, we give the upper bound of the number of
errors in type 2 of cluster (cf. Lemmas 4 and 7).

Lemma 1. For each cluster C associated with center vertex u, we have

|C| ≤ 2min
v∈C

Uv.

Proof. From the second constraint of (2), for each center vertex u we have
∑

v∈V

(1 − x∗
uv) ≤ Uv.

Recall the definition of Tu and step 4 of Algorithm1. We have

|C| ≤ |Tu| ≤ 2
∑

v∈Tu

(1 − x∗
uv) ≤ 2

∑

v∈V

(1 − x∗
uv) ≤ 2Uu ≤ 2min

v∈C
Uv.

The lemma is concluded.

Type 1 of Cluster. In this case, we have
∑

v∈Tu
x∗
uv/|Tu| > 1−α and we make

Cu = {u} a singleton cluster. The errors are shown in Fig. 1.

Fig. 1. Errors in type 1 of cluster

There are two kinds of errors in this type of cluster. One is the positive edge
(u,w) with w ∈ Tu − {u}. Another is the positive edge (u, v) with v ∈ S − Tu.
Lemmas 2 and 3 show the upper bounds of the numbers of these two kinds of
errors, respectively.

164 S. Ji et al.

Lemma 2. For each positive edge (u, v) ∈ E+, v ∈ S −Tu, the number of errors
can be bounded by 2x∗

uv.

Lemma 3. The total number of errors associated with (u,w) ∈ E+ and w ∈ Tu

can be bounded by

1
1 − α

⎡

⎣
∑

(u,v)∈E+,v∈Tu

x∗
uv +

∑

(u,v)∈E−,v∈Tu

(1 − x∗
uv)

⎤

⎦ .

Proof. From Algorithm 1, we have
∑

w∈Tu
x∗
uw

|Tu| > 1 − α.

Furthermore, for each negative edge (u, v) with v ∈ Tu, we have 1−x∗
uv ≥ x∗

uv.
Thus,

the number of errors ≤ |Tu| <
1

1 − α

∑

v∈Tu

x∗
uv

≤ 1
1 − α

⎡

⎣
∑

(u,v)∈E+,v∈Tu

x∗
uv +

∑

(u,v)∈E−,v∈Tu

(1 − x∗
uv)

⎤

⎦ .

The lemma is concluded.

Type 2 of Cluster. Recall Algorithm 1, there are two kinds of errors. One is
the negative edge whose endpoints both lie in Tu. Another is the positive edge
whose endpoints lie in Tu and S − Tu, respectively. The specific errors refer to
Fig. 2.

Fig. 2. Errors in type 2 of cluster

Correlation Clustering Problem with Constrained Cluster Size 165

Lemma 4. For each negative edge (w, p) with w, p ∈ Tu, if x∗
uw, x∗

up ≤ 1 − α,
then the number of errors can be bounded by

1
2α − 1

(
1 − x∗

wp

)
.

For other negative edges, we relabel the vertices (other than u) so that p < w
if x∗

up < x∗
uw, breaking ties arbitrarily. Then, we have

Lemma 5. For each vertex p ∈ Tu, if x∗
up > 1 − α, then the total number of

errors produced by all the negative edges (w, p) with w < p can be bounded by the

2
2α − 1

⎡

⎣
∑

(w,p)∈E+,w<p

x∗
wp +

∑

(w,p)∈E−,w<p

(1 − x∗
wp)

⎤

⎦ .

Proof. The proof is similar to that of [12]. Denote by Pp the number of positive
edges (w, p) ∈ E+ with w < p, and Np the number of negative edges (w, p) ∈
E−, w < p. Furthermore, the average distance of the vertices w with w < p from
u is less than the average distance of the vertices in Tu from u. Then, we have

∑

(w,p)∈E+,w<p

x∗
wp +

∑

(w,p)∈E−,w<p

(1 − x∗
wp)

≥
∑

(w,p)∈E+,w<p

(x∗
up − x∗

uw) +
∑

(w,p)∈E−,w<p

(1 − x∗
uw − x∗

up)

≥ Ppx
∗
up + Np(1 − x∗

up) −
∑

w<p

x∗
uw

≥ Ppx
∗
up + Np(1 − x∗

up) − (1 − α)(Pp + Np)

> (1 − α) Pp +
1
2
Np − (1 − α)(Pp + Np)

≥
[
1
2

− (1 − α)
]

Np

=
2α − 1

2
Np.

Therefore,

the number of errors = |Np|

<
2

2α − 1

⎡

⎣
∑

(w,p)∈E+,w<p

x∗
wp +

∑

(w,p)∈E−,w<p

(1 − x∗
wp)

⎤

⎦ .

The lemma is concluded.

Next, we analyze the number of errors produced by positive edges in this
type of cluster.

166 S. Ji et al.

Lemma 6. For a vertex v ∈ S − Tu, if (q, v) ∈ E+, q ∈ Tu and x∗
uv ≥ α, then

the number of errors can be bounded by

2
2α − 1

x∗
qv.

Lemma 7. For a vertex v ∈ S − Tu, if 1
2 < x∗

uv < α, then number of errors
associated with v can be bounded by

2
2α − 1

⎡

⎣
∑

(q,v)∈E+,q∈Tu

x∗
qv +

∑

(q,v)∈E−,q∈Tu

(1 − x∗
qv)

⎤

⎦ .

Proof. Similar to that of Lemma 5. Denote by Pv the number of positive edges
(q, v) ∈ E+ with q ∈ Tu, and Nv the number of negative edges (q, v) ∈ E− with
q ∈ Tu. For each vertex v ∈ S − Tu, we have

∑

(q,v)∈E+,q∈Tu

x∗
qv +

∑

(q,v)∈E−,q∈Tu

(1 − x∗
qv)

≥
∑

(q,v)∈E+,q∈Tu

(x∗
uv − x∗

uq) +
∑

(q,v)∈E−,q∈Tu

(1 − x∗
uv − x∗

uq)

≥ Pvx
∗
uv + Nv(1 − x∗

uv) −
∑

q∈Tu

x∗
uq

≥ Pvx
∗
uv + Nv(1 − x∗

uv) − (1 − α)(Pv + Nv)

>
1
2
Pv + (1 − α) Nv − (1 − α)(Pv + Nv)

=
2α − 1

2
Pv.

Therefore,

the number of errors = |Pv|

<
2

2α − 1

⎡

⎣
∑

(q,v)∈E+,q∈Tu

x∗
qv +

∑

(q,v)∈E−,q∈Tu

(
1 − x∗

qv

)
⎤

⎦ .

The lemma is concluded.

Combining Lemmas 2–7, we can obtain the following lemma which is an upper
bound of the total number of errors.

Lemma 8. Given a labeled complete graph G = (V,E) together with a positive
integer Uv for each vertex v. The total number of errors produced by Algorithm1
can be bounded by

max
{

2,
1

1 − α
,

2
2α − 1

}⎡

⎣
∑

(u,v)∈E+

x∗
uv +

∑

(u,v)∈E−
(1 − x∗

uv)

⎤

⎦ ,

where E+,E− and x∗ denote the set of positive edges, the set of negative edges
and the optimal fractional solution of (2), respectively.

Correlation Clustering Problem with Constrained Cluster Size 167

Combining Lemmas 1, 8, we can easily obtain the following theorem.

Theorem 1. Setting α = 3/4, Algorithm1 is a (2, 4)-bicriteria approximation
algorithm for the minimizing version of correlation clustering problem with non-
uniform hard constrained cluster sizes.

4 Discussions

In this paper, we present a bicriteria approximation algorithm for the minimiz-
ing version of correlation clustering problem with non-uniform hard constrained
cluster sizes. There are two possible future research questions to pursue. One
is to study the maximizing version of correlation clustering problem with con-
strained cluster sizes. Another is to design an algorithm whose solution satisfies
the constraint of cluster sizes.

Acknowledgements. The second author is supported by National Natural Science
Foundation of China (No. 11531014). The third author is supported by Higher Educa-
tional Science and Technology Program of Shandong Province (No. J17KA171). The
forth author is supported by Natural Science Foundation of China (No. 61433012),
Shenzhen Research Grant (KQJSCX2018033017 0311901, JCYJ20180305180840138
and GGFW201707311403 1767), and Shenzhen Discipline Construction Project for
Urban Computing and Data Intelligence.

References

1. Amit, N.: The bicluster graph editing problem. Diss, Tel Aviv University (2004)
2. Ailon, N., Avigdor-Elgrabli, N., Liberty, E., Zuylen, A.V.: Improved approximation

algorithms for bipartite correlation clustering. SIAM J. Comput. 41(5), 1110–1121
(2012)

3. Achtert, E., Böhm, C., David, J., Kröger, P., Zimek, A.: Global correlation clus-
tering based on the hough transform. Stat. Anal. Data Min. 1(3), 111–127 (2010)

4. Ahn, K.J., Cormode, G., Guha, S., Mcgregor, A., Wirth, A.: Correlation clus-
tering in data streams. In: Proceedings of the 32th International Conference on
International Conference on Machine Learning (ICML), pp. 2237–2246 (2015)

5. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: rank-
ing and clustering. J. ACM, 55(5), Article No. 23 (2008)

6. Arthur, D., Vassilvitskii, S.: k-Means++: the advantages of careful seeding. In:
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1027–1035 (2007)

7. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for k-
means and Euclidean k-median by primal-dual algorithms. In: Proceedings of the
58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 61–72
(2017)

8. Bonchi, F.: Overlapping correlation clustering. Knowl. Inf. Syst. 35(1), 1–32 (2013)
9. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3),

89–113 (2004)

168 S. Ji et al.

10. Byrka, J., Fleszar, K., Rybicki, B., Spoerhase, J.: Bi-factor approximation algo-
rithms for hard capacitated k-median problems. In: Proceedings of the 26th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 722–736 (2015)

11. Braverman, V., Lang, H., Levin, K., Monemizadeh, M.: Clustering problems on
sliding windows. In: Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 1374–1390 (2016)

12. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
J. Comput. Syst. Sci. 71(3), 360–383 (2005)

13. Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP
rounding algorithm for correlationclustering on complete and complete k-partite
graphs. In: Proceedings of the 47th Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 219–228 (2015)

14. Demaine, E., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in gen-
eral weighted graphs. Theoret. Comput. Sci. 361(2), 172–187 (2006)

15. Frieze, A., Jerrum, M.: Improved approximation algorithms for maxk-cut and max
bisection. Algorithmica 18(1), 67–81 (1997)

16. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
42(6), 1115–1145 (1995)

17. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. In:
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1167–1176 (2006)

18. Li, S.: On uniform capacitated k-median beyond the natural LP relaxation. ACM
Trans. Algorithms, 13(2), Article No. 22 (2017)

19. Li, M., Xu, D., Zhang, D., Zhang, T.: A streaming algorithm for k-means with
approximate coreset. Asia Pac. J. Oper. Res. 36, 1–18 (2019)

20. Mathieu, C., Schudy, W.: Correlation clustering with noisy input. In: Proceedings
of the 21th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
712–728 (2010)

21. Mathieu, C., Sankur, O., Schudy, W.: Online correlation clustering. Comput. Stat.
21(2), 211–229 (2010)

22. Puleo, G.J., Milenkovic, O.: Correlation clustering with constrained cluster sizes
and extended weights bounds. SIAM J. Optim. 25(3), 1857–1872 (2015)

23. Puleo, G.J., Milenkovic, O.: Correlation clustering and biclustering with locally
bounded errors. IEEE Trans. Inf. Theory 64(6), 4105–4119 (2018)

24. Swamy, C.: Correlation clustering: maximizing agreements via semidefinite pro-
gramming. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 526–527 (2004)

Two-Way Currency Trading Algorithms
in the Discrete Setting

Fei Li(B)

Department of Computer Science, George Mason University, Fairfax, VA 22030, USA
lifei@cs.gmu.edu

Abstract. In an one-way currency trading model, a player trades all his
dollars to yen with the objective of maximizing the total amount of yen
got at the end of this game. Exchange rates from dollar to yen vary over
time. An optimal offline algorithm trades all dollars using the highest
trading rate. In the online setting, any traded yen cannot be converted
back to dollars before this game terminates. Under the assumption of
knowing the lower bound and the upper bound of exchange rates, as
well as the trading duration beforehand, a threat-based online algorithm
proposed in [5] has been proved optimal. In an two-way currency trad-
ing model, the player is allowed to trade dollars and yen back and forth
over time before this game ends. In this paper, we focus on the two-way
currency trading model. We re-study an optimal offline algorithm and
present a one-step look-ahead optimal algorithm for this model. We fur-
ther study a setting in which the number of trades cannot exceed a given
number k. We provide a few optimal algorithms, analyze their running
time, and show output-sensitive time bounds under this restriction for
the two-way currency trading problem.

Keywords: Currency trading problem · Exact algorithm ·
Output-sensitive time bound

1 Introduction

Currency trading problems (also called, conversion problems) have been studied
extensively in the past decade. Such problems are mainly on how to trade one
asset into another, for example, dollar for yen. The objective is to optimize the
amount of the converted wealth under various constraints. Paper [6] surveys the
recent results on online conversion algorithms. In this paper, we consider the
currency trading problems in the discrete setting, that is, time is discrete (for
example, in terms of days) so that an exchange rate is given at the beginning of
each day and this rate does not change until the next day starts. The duration
of trading currencies is defined as the total number of days.

One-Way Currency Trading Problem. The one-way currency trading problem
was initially introduced in [5]. In this problem, there are two currencies, say
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 169–178, 2019.
https://doi.org/10.1007/978-3-030-27195-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_16

170 F. Li

dollar and yen. A player has an initial asset in dollars. On one day t, a currency
exchange rate (from dollar to yen) rt is known to the player. An online player
is allowed to make currency trade at day t, to determine how many, from the
remaining dollars if any, are to be traded into yen using the exchange rate rt.
At the end of this trading duration, any left dollars will be traded using the
last exchange rate before the game ends. During this process, any traded yen
cannot be converted back to dollars. The upper bound M and the lower bound
m of currency exchange rates, as well as the trading duration n, are a priori
information known to online players. The player’s objective is to maximize the
total amount of yen traded at the end of this game.

Both the offline and the online versions of this problem have been studied
in [5]. An optimal offline algorithm is to trade all initial asset at the highest
exchange rate, that is, at the rate max1≤t≤n rt. A threat-based online algorithm
proposed in [5] has been proved optimal with a competitive ratio cn, where cn
is the root of

n

⎛
⎝1 −

(
cn − 1
M
m − 1

) 1
n

⎞
⎠ − cn = 0 (1)

Two-Way Currency Trading Problem. A related problem to the one-way cur-
rency trading problem is the two-way currency trading problem. In this problem,
there are two currencies, say dollar and yen. A player has an initial asset in dol-
lars. On one day t, two currency exchange rates are known, rt and r−1

t —the rate
rt (respectively, r−1

t) denotes the number of yen (respectively, dollars) that can
be purchased using one dollar (respectively, yen)1. The online player is allowed
to make currency trading at time t, to determine how much amount of dollar or
yen is to be traded into the other currency. At the end of this trading duration,
any left dollars will be traded into yen using the last dollar-to-yen exchange rate
before this game ends. The upper bound M (1/m, respectively) and the lower
bounds m (1/M , respectively) of currency exchange rates rt (r−1

t , respectively),
as well as the trading duration n, are priori information known to online players.
The player’s objective is to maximize the total amount of yen got at the end of
this game.

For the offline version of this problem, the authors of [5] claimed briefly
that “The optimal algorithm for the offline player is to convert all his dollars
to yen at the end of each upward run, and all his yen to dollars at the end of
each downward run.” However, no rigorous proof has been provided in [5]. The

1 A remark on the exchange rates rt and r−1
t is as below. On one hand, if at some

time t, the exchange rate r from dollars to yen and the exchange rate r′ from yen
to dollars satisfy r × r′ > 1, then we can iteratively run many rounds of exchanging
all dollars to yen and all yen to dollars back and forth to increase the amount of
dollars that we can have. In each round, we increase the total amount of dollars by
r × r′ times. On the other hand, if r × r′ < 1, then it is unnecessary to exchange
any dollars to yen at time t unless t is the last step of the game. So, in the two-way
currency trading problem, assuming r × r′ �= 1 does not lead to a reasonable and
non-trivial different problem from the one with r × r′ = 1.

Two-Way Currency Trading Algorithms in the Discrete Setting 171

online version of this problem has been studied in [3] [5]. For the continuous
setting (in which the exchange rates are allowed to vary at any time during a
day) of this two-way currency trading problem, the best known lower bound
of competitive ratio is c̄g [3] and the best known upper bound of competitive
ratio is c̃g [3], where c̄ is the root of c̄ (1 + (c̄ − 1)ec̄)2 − M

m = 0 and c̃ is the

root of ln
M

c̃·m−1−1

c̃−1 − c̃ = 0, the number of local exchange rate maxima is g/2,
and the number of local exchange rate minima is g/2 in the input instance. For
the discrete setting, the lower bound of competitive ratio is (cn)

g
2 [5] where g is

the number of maxima and minima in the input instance, and cn is the value
as the one in Eq. (1). The authors [3] improved the lower bound of competitive
ratios for the continuous setting but unfortunately this improved bound cannot
be held in the discrete setting. The upper bound of competitive ratios for the
discrete setting is the same as the one for the continuous setting [3].

Our Contributions. In this paper, we focus on the two-way currency trading
problem in the discrete setting. We re-study an optimal offline algorithm for
this problem and provide a detailed proof in Sect. 2. Based on the properties
of the offline algorithm, we design a one-step look-ahead optimal algorithm. In
Sect. 3, we consider the two-way currency trading problem in a setting in which
the number of trades is restricted no more than a number k. We provide a few
algorithms and provide running time analysis as well as instance optimality.

2 An One-Step Look-Ahead Algorithm for the Two-Way
Currency Trading Problem

In this section, we provide a proof of an optimal offline algorithm for the two-way
currency trading problem. From this offline algorithm we derive an intuition of
designing online algorithms with look-ahead.

An Optimal Offline Algorithm. Let i = 1, 2, . . . , n, denote the n time points at
the beginning of the n trading days in an increasing time order at which the cur-
rency exchange rates may be updated. The currency exchange rates r1, r2, . . . , rn
at time 1, 2, . . . , n respectively consist of an input instance. Without loss of gener-
ality, we assume that any two neighboring exchange rates are distinct. (If some
consecutive days have the same currency exchange rate, then we merge these
days together as one ‘super-day’ with only one exchange rate.) Without loss of
generality, we assume that a player has an initial normalized asset of 1 dollar.
Let ri and r−1

i denote the currency exchange rates (dollar to yen and yen to
dollar respectively) at time i. We employ two variables, di (≥ 0) and yi (≥ 0)
respectively, to denote the total amount of dollars and the total amount of yen
that a player has just before the time point i. Let xi (≥ 0) and zi (≥ 0) denote
the amount of dollars and yen to be traded at time i respectively. We have the
following key observations.

172 F. Li

Theorem 1. There exists an optimal offline algorithm having the following 6
properties.

P1 : xi �= 0 ⇒ zi = 0, ∀i = 1, . . . , n
P2 : zi �= 0 ⇒ xi = 0, ∀i = 1, . . . , n
P3 : xi−1 �= 0 ⇒ xi = 0, ∀i = 2, . . . , n
P4 : zi−1 �= 0 ⇒ zi = 0, ∀i = 2, . . . , n
P5 : di �= 0 ⇒ yi = 0, ∀i = 1, . . . , n
P6 : yi �= 0 ⇒ di = 0, ∀i = 1, . . . , n

The above properties uniquely define an algorithm and therefore, an algorithm
satisfying these properties is an optimal offline algorithm.

Theorem 1 indicates that in an optimal offline algorithm, the following prop-
erties hold.

1. Property P1 and Property P2 imply that the player trades at most one type
of currency at any time point.

2. Property P3 and Property P4 imply that the player trades dollars and yen in
an alternative manner in increasing time order. Note that trading currency
may not happen at all the time points, that is, it is possible that the algorithm
does nothing at a time.

3. Property P5 and Property P6 imply that the player only needs to keep one
type of currency on hand at any time.

Proof (Proof of Theorem 1). We use a contradiction method and a mathematical
induction method to prove Theorem1.

On P1 and P2. Assume that time i is the first time point such that in an optimal
offline algorithm we have xi �= 0 and zi �= 0. At time i, zi/ri units of dollars are
generated by trading zi units of yen.

– Assume xi ≥ zi
ri

.
We reset x′

i ← xi − zi
ri

and z′
i ← 0. These new x-values and z-values at time

i satisfy the property P1 of Theorem 1 but do not hurt the optimality.
– Assume xi <

zi
ri

.
We reset x′

i ← 0 and z′
i ← zi −xi · ri. Again, these new x-values and z-values

satisfy the property P2 of Theorem 1 but do not hurt the optimality.

We can repeat doing the above procedures in increasing time order to make
sure that at all the time i, Property P1 and Property P2 hold.

On P3 and P4. Now, assume that in an optimal offline algorithm, two neighboring
time points i and i+1 are the first two time points such that xi �= 0 and xi+1 �= 0.

– Assume ri ≤ ri+1.
We reset x′

i ← 0 and x′
i+1 ← xi + xi+1. The above change does not decrease

the amount of yen traded using xi + xi+1 units of dollars at time i + 1.

Two-Way Currency Trading Algorithms in the Discrete Setting 173

– Assume ri > ri+1.
Property P1 implies that only dollars are traded into yen at these two time
points. It is safe to reset x′

i ← xi +xi+1 and x′
i+1 ← 0. So, Property P3 holds.

Similarly, we conclude that Property P4 holds by replacing the x-values using
z-values in the above expressions.

On P5 and P6. Now, we prove Property P5 and Property P6. Recall that we
already proved Properties P1, P2, P3, and P4 such that at any time, the player
trades at most one type of currency and he trades dollars into/from yen in an
alternative manner in increasing time order.

Without loss of generality, we assume that trades happen at each time point
1′, 2′, . . . ,m′, where 1 ≤ 1′ < 2′ < . . . < m′ ≤ n. Based on Properties P3 and
P4, we know that m′ is an odd number. Trades from dollars to yen should be
made at time points 1′, 3′, 5′, . . . ,m′. Trades from yen to dollars should be made
at time points 2′, 4′, . . . ,m′ − 1. Let fi denote the fraction that the amount of
currency is traded at time i. We need to show

fi = 1, ∀i = 1′, 2′, . . . ,m′. (2)

We are using a mathematical induction method. Instead of showing that
Properties P5 and P6 hold in an increasing time order, we prove Eq. (2) in a
backward manner (in decreasing time order). This way of induction will ease the
presentation of our proof significantly.

Let the last trade time be m′ and all the dollars are traded into yen. So,
Property P6 holds at time m′. We now trace back to the prior time slot (m−1)′ in
which a trade of yen to dollars is made (based on Property P4). At time (m−1)′,
only yen is traded into dollars (based on Property P2). Now, we examine the
objective, the total number of yen Y got at the end of time point m. We have

Y = dm′ × rm′ + ym′ (3)

=
(
f(m−1)′ × y(m−1)′

r(m−1)′

)
rm′ + ym′ (4)

=
(
f(m−1)′ × y(m−1)′

r(m−1)′

)
rm′ +

(
1 − f(m−1)′

)
y(m−1)′

= y(m−1)′

(
1 + f(m−1)′

(
rm′

r(m−1)′
− 1

))
(5)

Note that Eq. (4) holds due to Property P2 and Property P4. We also remark
here that rm′ > r(m−1)′ . (If rm′ < r(m−1)′ , then the offline algorithm does not
need to make any trades at time (m− 1)′ and time m′ since any amount of yen
traded into dollars at time (m − 1)′ and then traded into yen at time m′ will
become rm′/r(m−1)′ times less.) We trade dollars to yen at higher exchange rates
and yen to dollars at lower exchange rates. In order to maximize Y in Eq. (5),
we need to set f(m−1)′ = 1 and to maximize y(m−1)′ . Thus, Property P5 holds
at time m′ and Property P6 holds at time (m − 1)′. Now, we shall maximize

174 F. Li

y(m−1)′ . Maximizing y(m−1)′ (without considering optimizing d(m−1)′) is similar
to maximizing Y in Eq. (3). We can repeat the above procedure in a backward
manner and thus inductively prove that Property P5 holds. Similarly, Property
P6 can be proved.

In the following, we describe an optimal offline algorithm. We have the initial
setting, d1 = 1 and y1 = 0. Based on Theorem 1, the following recurrence allows
us to use a dynamic programming approach to solve the offline version of the
two-way trading problem:

di+1 = max
{
di,

yi
ri

}
(6)

yi+1 = max {yi, di × ri} (7)

The optimal solution should be yn+1, the y-value at the end of the last time
point n. This dynamic programming based optimal offline algorithm has its
running time of O(n) and space requirement of O(n). For this offline algorithm,
it does not need to know the currency exchange duration or the upper/lower
bounds of exchange rates. Recall that {di|i = 1, . . . , n} and {yi|i = 1, . . . , n} are
two sets of variables that are used in our algorithm. The actual amounts of dollars
and yen kept in hand by an offline optimal algorithm can be traced back from
the d-values and y-values generated by the above recursive Equalities (6) and
(7). We trace back from the last time point n+ 1. If di+1 = yi

ri
, then an optimal

offline algorithm trades yi yen into di+1 dollars at time i: If yi+1 = di × ri, then
an optimal offline algorithm trades di dollars to yi+1 yen at time i. Otherwise,
the algorithm does nothing.

An Optimal Algorithm with the Power of Look-Ahead. How to trade currencies
is essentially an online decision-making problem. In this following, we present an
online algorithm which is equipped with the look-ahead power for the two-way
currency trading problem. Employing the power of s-step look-ahead for online
algorithms has been used to offer online algorithms a little power of “seeing”
the future s input. The larger value s is, the more powerful an algorithm is.
This approach has been used to analyze traditional online problems such as the
paging problem [2] and the packet scheduling problem [1]. It is clearly that in the
setting s = n, such algorithms are offline ones with a complete set of n exchange
rates. More examples and applications can be found in [4].

Note that for the one-way currency trading problem, an optimal offline algo-
rithm trades all the dollars using the global maximum exchange rate. Looking-
ahead does not improve online algorithms’ competitiveness for the one-way trad-
ing problem. (For example, an instance with setting n = s + 1 shows that with
s-step look-ahead, an online algorithm cannot be benefited at all in terms of
competitive ratios.)

We study 1-step look-ahead online algorithms. At time i, in additional to
knowing the exchange rates (ri from dollar to yen and 1/ri from yen to dollar),
an one-step look-ahead online player knows the next time step’s exchange rate.

Two-Way Currency Trading Algorithms in the Discrete Setting 175

Theorem 2. With the power of 1-step look-ahead, an algorithm achieves the
optimal amount of traded currency for the two-way currency trading problem.

Proof. We study the following 1-step look-ahead online algorithm. At time i,
look at the next exchange rate.

– Assume the next exchange rate is the same as the current exchange rate that
we just experienced.
Then the algorithm does nothing and we postpone the decision of trading
currency till the next time point.

– Assume the next exchange rate is larger than the current one.
Then we trade all the current currency (if in yen) from yen to dollars or (if
in dollars) we keep the total amount of dollars and plan to trade them into
yen at a future time point.

– Assume the next exchange rate is smaller than the current one.
Then we trade all the current currency (if in dollars) from dollars to yen or (if
in yen) we keep the total amount of yen and plan to trade them into dollars
in a future time point.

We can assume ri+1 = 1 if there is no exchange rate update from time i till
the end of this game so that we can always get yen at the end of this game. It
is clear that this algorithm satisfies all the properties described in Theorem 1.
Note that Properties P1 to P6 uniquely define an algorithm. Based on the optimal
offline algorithm described this section, Theorem2 holds.

We remark here that this 1-competitive algorithm with one-step look-ahead
is the same as the one described in [5]. It takes the advantages of postponing
decisions to make. Therefore, the type of currency to be traded as well as the
amount of currency to be traded can be determined later. These decisions are
made at local maximum and local minimum exchange rates; such exchange rates
are known to an algorithm with one-step look-ahead. We hope our observations
can help improve the competitiveness of online algorithms without look-ahead.

3 Optimal Algorithms for a Setting in Which
the Number of Currency Trades Is Bounded

In this section, we consider the setting in which an algorithm has its number
of currency trades bounded by a number k. Initially, an user has dollars only
and let this amount be a. Let the number of currency trading days be n and let
ri denote the exchange rate from dollar to yen (respectively, 1/ri from yen to
dollar) on the i-th day, ∀i = 1, 2, . . . , n. Note that the algorithm outputs yen so
that the total number of trades must be an odd number. The objective is the
maximize the total amount of yen, with the number of currency trades bounded
by k. If k = 1, then we trade all dollars using the highest exchange rate only
once. The highest trading rate maxn

i=1 ri can be searched in a linear time. If
k = 1, then the algorithm’s running time is O(n). In the following, we consider
the general case in which k > 1.

176 F. Li

3.1 k Is a Constant

We provide a dynamic programming approach to solve the problem with a con-
stant k bound of the number of currency trades. Here we assume k = o(log n).

Algorithm. This algorithm generalizes the optimal offline algorithm (where k =
n) described in Sect. 2. Using the same analysis as in Sect. 2, we conclude that
even if the player is allowed to trade at most k times, for the optimal algorithm
which maximizes the amount of traded yen, we still have

1. the player trades at most one type of currency at any time point;
2. that the player trades dollars and yen in an alternative manner in increasing

time order; and
3. the player only needs to keep one type of currency on hand at any time.

For each currency exchange rate ri given at time i, we associate it with two
values to indicate the best amount of dollars and yen that we can get at the
end of time i respectively, if there are no more currency trades after this rate
ri and if the number of exchange rates up to time i is bounded by ki, where
ki ≤ k. Let OPT d(i, ki) denote the highest amount of dollars that one can
get and OPT y(i, ki) the highest amount of yen that one can get. Note that
OPT y(n, k) is the optimal amount of yen traded. Let r∗

i denote the highest
exchange rate among {r1, . . . , ri}. Scanning the array of all the values of ri, we
can get all the values r∗

i (∀i = 1, 2, . . . , n) in linear time O(n). Also, the values
r∗
i are non-decreasing with the value i increasing. We have the following base

cases:

OPT d(1, ki) = a, ∀ki = 1, 2, . . . , k (8)
OPT y(1, ki) = r∗

1 , ∀ki = 1, 2, . . . , k (9)

OPT d(i, 1) = a, ∀i = 1, . . . , n (10)
OPT y(i, 1) = r∗

i , ∀i = 1, . . . , n (11)

Similar to the algorithms shown in Sect. 2, we consider the recursion to cal-
culate OPT d(i, ki) and OPT y(i, ki) and have

OPT d(i, ki) = max
(
OPT y(i − 1, ki − 1)

ri
, OPT d(i − 1, ki)

)
(12)

OPT y(i, ki) = max
(
OPT d(i − 1, ki − 1) × ri, OPT y(i − 1, ki)

)
(13)

The dynamic programming based algorithm has the initial step covering
Eq. (8) to Eq. (11). Here this algorithm has two for loops. For the first for
loop, i goes from 2 to n. For the second for loop, ki goes from 1 to k. Within
the second for loop, we have Eqs. 12 and 13.

Analysis. The analysis of the running time of this algorithm is straightforward.
We have n×k values OPT d(i, ki) and n×k values OPT y(i, ki). In total, we have
2n× k values. For each value, it takes a constant time to calculate and thus, the
total running time is O(n × k). Note that k is a constant, so, the running time
of this algorithm is O(n), which is asymptotically optimal.

Two-Way Currency Trading Algorithms in the Discrete Setting 177

3.2 k Is Not a Constant

If k is not a constant, then the dynamic programming algorithm described in
Sect. 3.1 has its running-time bounded by O(n·k), which is O(n2). In this section,
we design a new algorithm using a different idea from the one used when k is a
constant and analyze the output-sensitive time bound.

Algorithm. Note that we have described an optimal offline algorithm without
the constraints of having at most k trades in Sect. 2. We run this algorithm once
and get an optimal trading strategy. If the total number of trades is no more
than k in this strategy, then we get an optimal algorithm under the constraint of
k trades and its running time is O(n). In the following, we focus on the case in
which the optimal offline algorithm got from the algorithm in Sect. 2 has more
than k trades. We use a greedy algorithm (to be described below) to reduce the
number of trades till we get at most k currency exchanges.

Based on the properties that we have for the optimal algorithm without the
constraint of number of trades, we have a series of exchange rates and name
them in increasing time order as r′

1, r
′
2, . . . , r

′
l. In this trading strategy, we trade

all dollars to yen using rates r′
2i−1, and all yen to dollars using rates r′

2i, where
i = 1, 2, . . . , l+1

2 . Let a denote the initial asset that the player has. Thus, this
player’s amount of yen is maximized as the following value

a

(
r′
1

r′
2

r′
3

r′
4

· · · r
′
l−2

r′
l−1

r′
l

1

)
= a

l−1
2∏

i=1

r′
2i−1

r′
2i

r′
l (14)

To reduce the number of trades from l to k, we remove two neighboring cur-
rency exchange rates, either r′

i and r′
i+1 or r′

i and r′
i−1. This pair of trading rates

are removed from the trading strategy in increasing order the ratios in the set⋃
i

{
ri

ri−1
, ri
ri+1

}
. After removing each pair of rates, the remaining currency trades

consist of a new trading strategy and we update the union
⋃

i

{
ri

ri−1
, ri
ri+1

}
cor-

respondingly. We repeat removing exchange rates until we have only k currency
trades in the schedule.

Correctness Analysis. Let OPT denote an optimal algorithm with the number of
currency exchanges bounded by k. We first argue that (c1) this greedy algorithm
does not drop any time points that OPT has traded at. We then argue that (c2)
the more number of exchange rates are allowed, the more (no less-than) amount
of yen that OPT can get.

First, we assume OPT and the greedy algorithm start with the same strategy
with the number of trades l. OPT follows a strategy to remove the trading times
and using an exchange argument, OPT can remove the same pair of trading
times as what our algorithm does. Thus, we repeatedly apply this operation and
c1 is proved. Second, we know that the strategy alternatives trades dollars and
yen and either ri/ri−1 > 1 or ri/ri+1 > 1 in the optimal strategy. So, removing

178 F. Li

a pair ri/ri−1 > 1 or ri/ri+1 > 1 from the trading strategy results in a total
amount yen reduced by ri/ri−1 > 1 or ri/ri+1 > 1 times. Thus, c2 is proved.

O(n log n) running-time analysis. Recall that k < n. We build a min-heap of n
exchange rates in the trading strategy. We remove the min-value in each round
and update the neighboring values. We remove at most n − k pairs of trading
time points and the total running time of this algorithm is bounded by O((n −
k) log n) = O(n log n).

A tighter O(n log k) running-time analysis. We further improve the algorithm’s
running time as O(n log k) using a different implementation. In this modified
implementation version, we do not remove the min-ratio exchange rates after we
get a complete trading strategy. Instead, we construct a schedule with a bounded
exchange number k and implement the step of removing the smallest ratio at
the time when the number of trading currencies in the current trading strategy
is over k. We maintain a min-heap with the size of k. Following the increasing
order of the currency trade times in the optimal offline algorithm described in
Sect. 2, at any time when the number of trades is over than k, we remove the
min-value in this heap and update the heap correspondingly. With the same
argument, this modified greedy algorithm is also optimal under the constraint
of k currency exchanges. However, this algorithm maintains a min-heap with
size ≤ k at any time and therefore, its total output-sensitive time bound2 is
O(n log k).

References

1. Bohm, M., Chrobak, M., Jez, L., Li, F., Sgall, J., Vesely, P.: Online packet scheduling
with bounded delay and lookahead. Theor. Comput. Sci. (TCS), (2019, to appear)

2. Breslauer, D.: On competitive on-line paging with lookahead. Theor. Comput. Sci.
(TCS) 209(1–2), 365–375 (1998)

3. Dannoura, E., Sakurai, K.: An improvement on El-Yaniv-Fiat-Karp-Turpin’s
money-making bi-directional trading strategy. Inf. Process. Lett. (IPL) 66(1), 27–33
(1998)

4. Dunke, F., Nickel, S.: A general modeling approach to online optimization with
lookahead. Omega 63, 134–153 (2015)

5. El-Yaniv, R., Fiat, A., Karp, R.M., Turpin, G.: Optimal search and one-way trading
online algorithms. Algorithmica 30(1), 101–139 (2001)

6. Mohr, E., Ahmad, I., Schmidt, G.: Online algorithms for conversion problems: a
survey. Surv. Oper. Res. Manag. Sci. 19, 87–104 (2014)

7. Nielsen, F.: Grouping and querying: a paradigm to get output-sensitive algorithms.
In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 250–
257. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46515-7 21

8. Sharir, M., Overmars, M.H.: A simple output-sensitive algorithm for hidden surface
removal. ACM Trans. Graph. (TOG) 11(1), 1–11 (1992)

2 An output-sensitive algorithm is an algorithm whose running time depends on the
size of the output in addition to the size of the input, for example [7,8].

https://doi.org/10.1007/978-3-540-46515-7_21

Approximation Algorithms for the
Minimum Power Partial Cover Problem

Menghong Li, Yingli Ran, and Zhao Zhang(B)

College of Mathematics and Computer Science, Zhejiang Normal University,
Jinhua 321004, Zhejiang, China

hxhzz@sina.com

Abstract. In this paper, we study the minimum power partial cover
problem (MinPowerPartCov). Suppose X is a set of points and S is a set
of sensors on the plane, each sensor can adjust its power, the covering
range of a sensor s with power p(s) is a disk centered at s which has
radius r(s) satisfying p(s) = c ·r(s)α. Given an integer k ≤ |X|, the Min-
PowerPartCov problem is to determine the power assignment on each
sensor such that at least k points are covered and the total power con-
sumption is the minimum. We present an approximation algorithm with
approximation ratio 3α, using a local ratio method, which coincides with
the best known ratio for the minimum power (full) cover problem. Com-
pared with the paper [9] which studies the MinPowerPartCov problem
for α = 2, our ratio improves their ratio from 12 + ε to 9.

Keywords: Power · Partial cover · Approximation algorithm ·
Local ratio

1 Introduction

With the rapid development of wireless sensor networks (WSNs), intensive stud-
ies on WSNs have emerged, especially on the coverage problem. In a coverage
problem, the most basic requirement is to keep all points under monitoring. In a
typical WSN, the service area of a sensor is a disk centered at the sensor whose
radius is determined by the power of the sensor. A typical relation between the
power p(s) of sensor s and the radius r(s) of its service area is

p(s) = c · r(s)α, (1)

where c and α ≥ 1 are some constants (α is usually called the attenuation facor).
So, the greater power a sensor possesses, the larger service it can provide. In other
words, the consumption of energy and the quality of service are two conflicting
factors. The question is how to balance these two conflicting factors by adjusting
power at the sensors so that the desired service can be accomplished using the
minimum total power. This question is motivated by the intention to extend the
lifetime of WSN under limited energy supply, and we call it the minimum power
coverage problem (MinPowerCov).
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 179–191, 2019.
https://doi.org/10.1007/978-3-030-27195-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_17

180 M. Li et al.

In the real world, it is often too costly to satisfy the covering requirement
of every point. So, it is beneficial to study the minimum power partial coverage
problem (MinPowerPartCov), in which it is sufficient to cover at least k (instead
of all) points. The problem is motivated by the purpose of further saving energy
while keeping an acceptable quality of service.

The MinPowerPartCov problem can be viewed as a special case of the min-
imum weight partial set cover problem (MinWPSC). Given a set E of elements,
a collection of sets S, a weight function w : S �→ IR+, and an integer k ≤ |E|,
the MinWPSC problem is to find the minimum weight sub-collection of sets
F ⊆ S such that at least k elements are covered by F , i.e., |⋃S∈F S| ≥ k and
w(F) =

∑
S∈F w(S) is minimum. Notice that in a MinPowerParCov problem,

the power at a sensor can be discretized by assuming that there is a point on
the boundary of the disk supported by the assigned power. We call such a disk
as a canonical disk. So, if we associate with each sensor |X| canonical disks,
where X is the set of points, each disk corresponds to the set of points contained
in it, and the weight of the disk equals the power supporting the disk which
is determined by Eq. (1), then the MinPowerParCov problem is reduced to the
MinWPSC problem.

It is known that the MinWPSC problem has an f -approximation [2], where
f is the maximum frequency of an element, that is, the maximum number of
sets containing a common element. For the MinWPSC problem obtained by
the above reduction from a MinPowerParCov problem, f equals the number of
sensors, which is too large to be a good approximation factor. So, the main
purpose of this paper is to explore geometric properties of the MinPowerParCov
problem to obtain a better approximation.

1.1 Related Works

The minimum weight set cover problem (MinWSC) is a classic combinatorial
problem. It is well-known that MinSC admits approximation ratio H(Δ) [7,14],
where H(Δ) = 1+ 1

2 + ...+ 1
Δ is the Harmonic number and Δ denotes the size of

the largest set. It is also known that a simple LP-rounding algorithm can achieve
an approximation ratio of f , where f is the maximum number of sets containing
a common element (see for example Chapter 12 of the book [23]).

For the minimum weight partial set cover problem (MinWPSC), Slav́ık [21]
obtained an H(min{�k�,Δ})-approximation using a greedy strategy, Bar-Yehuda
[2] obtained an f -approximation using local ratio method, Gandhi [10] also
obtained f approximation using a primal-dual method. Very recently, Inamdar
et al. [13] designed an LP-rounding algorithm, obtaining approximation ratio
2β + 2, where β is the integrality gap for the natural linear program of the
minimum weight (full) set cover problem.

For the geometric minimum weight set cover problem, much better approx-
imation factors can be achieved. Using a partition and shifting method,
Hochbaum et al. [12] obtained a PTAS for the minimum unit disk cover problem
in which the disks are uniform and there are no prefixed locations for the disks.
For the minimum disk cover problem in which disks may have different sizes,

Approximation Algorithms for the Minimum Power Partial Cover Problem 181

Mustafa et al. [15] designed a PTAS using a local search method. This PTAS
was generalized by Roy et al. [20] to non-piercing regions including pseudo-disks.
These are results for the cardinality version of the geometric set cover problem.
Considering weight, Varadarajan [22] presented a clever quasi-uniform sampling
technique, which was improved by Chan et al. [8], yielding a constant approxima-
tion for the minimum weight disk cover problem. This constant approximation
was generalized by Bansal et al. [4] for the minimum weight disk multi-cover
problem in which every point has to be covered multiple times. Using a sepa-
rator framework, Mustafa et al. [16] obtained a quasi-PTAS for the minimum
weight disk cover problem.

To our knowledge, there are two papers studying the geometric minimum
partial set cover problem. The first paper is [10], in which Gandhi et al. pre-
sented a PTAS for the minimum (cardinality) partial unit disk cover problem
using a partition and shifting method. Notice that this result only works for
the case when the centers of the disks are not prefixed. Another paper is due
to Inamdar et al. [13], in which a (2β + 2)-approximation was obtained for the
general minimum weight partial set cover problem, where β is the integrality gap
of the natural linear program for the minimum weight (full) set cover problem.
As a consequence, for those geometric set cover problems (including the disk
cover problem) in which β is a constant, the approximation ratio for the partial
version is also a constant (but the constant is large).

Recently, there are a lot of works studying the minimum power multi-cover
problem (MinPowerMC), in which every point p is associated with a covering
requirement crp, and the goal is to find a power assignment with the minimum
total power such that every point p is covered by at least crp disks. Let crmax be
the maximum number of times that a point requires to be covered. Using a local
ratio method, Bar-Yehuda et al. [3] presented a 3α · crmax-approximation algo-
rithm. The dependence on crmax was removed by Bhowmick et al. [5], achieving
an approximation ratio of 4 · (27

√
2)α. This result was further generalized to any

metric space in [6], the approximation ratio is at most 2 · (16 · 9)α. For the mini-
mum power (single) cover problem, the best known ratio is 3α (as a consequence
of [3] and the fact crmax = 1 in this case).

There is only one paper [9] studying the minimum power partial (single)
cover problem (MinPowerPartCov), and the study is on the special case when
α = 2. The approximation ratio obtained in [9] is (12+ε), where ε is an arbitrary
constant greater than zero, by a reduction to a prize-collecting coverage problem.

1.2 Contribution

In this paper, we show that the MinPowerPartCov problem can be approximated
within factor 3α, which coincides with the best known ratio for the MinPower-
Cov problem (the full version of the minimum power coverage problem). When
applied to the case when α = 2, our ratio is 9, which is better than 12 + ε
obtained in [9].

Our algorithm is inspired by the local ratio method used in [3] to study the
MinPowerCov problem. New ideas have to be explored to surmount the difficulty.

182 M. Li et al.

2 The Problem and a Preprocessing

The problem studied in this paper is formally defined as follows.

Definition 1 (Minimum Power Partial Cover (MinPowerPartCov)).
Suppose X is a set of n points and S is a set of m sensors on the plane, k is an
integer satisfying 0 ≤ k ≤ n. A point x ∈ X is covered by a sensor s ∈ S with
power p(s) if x belongs to the disk supported by p(s), that is x ∈ Disk(s, r(s)),
where Disk(s, r(s)) is the disk centered at s whose radius r(s) is determined by
p(s) through equation p(s) = c · r(s)α. A point is covered by a power assignment
p : S �→ IR+ if it is covered by some disk supported by p. The goal of MinPower-
PartCov is to find a power assignment p covering at least k points such that the
total power

∑
s∈S p(s) is as small as possible.

In an optimal solution, we may assume that for any sensor s, there is at
least one point that is on the boundary of the disk Disk(s, p(s)), since otherwise
we may reduce p(s) to cover the same set of points, resulting in a lower power.
Therefore, at most mn disks need to be considered. We denote the set of such
disks by D. In the following, denote by (X,D, k) an instance of the MinPow-
erPartCov problem, and use opt(X,D, k) to denote the optimal power for the
instance (X,D, k). To simplify the notation, we use D to represent both a disk
in D and the set of points covered by D, and use r(D) and p(D) to denote the
radius and the power of disk D, where p(D) = c · r(D)α. For a set of disks D,
we shall use C(D) =

⋃
D∈D D to denote the set of points covered by D.

In order to control the approximation factor of our algorithm, we need a
preprocessing step: guessing the maximum power of a sensor (or equivalently,
the radius of a maximum disk) in an optimal solution. Suppose Dmax ∈ D is
the guessed disk. Denote by D≤r(Dmax) the subset of disks of D whose radii
are no greater than the radius of Dmax (excluding Dmax), and denote by (X \
Dmax,D≤r(Dmax), k − |Dmax|) the residual instance after guessing Dmax. The
following lemma is obvious.

Lemma 1. Suppose Dmax is the correctly guessed disk with the maximum power
in an optimal solution of instance (X,D, k). Then

opt(X,D, k) = opt(X \ Dmax,D≤r(Dmax), k − |Dmax|) + p(Dmax).

3 A Local Ratio Algorithm

In this section, we first present an algorithm for the MinPowerPartCov problem
on the instance (X \ Dmax,D≤r(Dmax), k − |Dmax|). And then show how to make
use of it to find a power assignment for the original MinPowerPartCov problem.

Approximation Algorithms for the Minimum Power Partial Cover Problem 183

3.1 Algorithm After the Preprocessing

For simplicity of notation in this section, we still use (X,D, k) to denote the
residual instance, assuming that every disk in D has radius at most r(Dmax).

The algorithm consists of three steps.
(i) In the first step, a local ratio method is employed to find a minimal partial

cover D̄, that is, D̄ covers at least k points, while for any disk D ∈ D̄, the number
of points covered by D̄ − {D} is strictly less than k.

(ii) Before going into the second step, remove a disk Drmv from D̄ which is
chosen in the last call of the local ratio method in the first step. Then, in the
second step, a maximal independent set of disks I ⊆ D̄ \ {Drmv} is computed
in a greedy manner, that is, disks in I are mutually disjoint, while any disk
D ∈ D̄ \ {Drmv} which is not picked into I intersects some disk in I.

(iii) In the third step, every disk in I has its radius enlarged three times.
Such set of disks together with {Dmax,Drmv} are the output of the algorithm.

The first step is accomplished by Algorithm 1, in which the MinPowerPartCov
instance (X,D, k) is viewed as an instance of the minimum weight partial set
cover problem, where X serves as the set of elements to be covered, D serves
as the collection of sets, and the weight of each D ∈ D is p(D). The local
ratio method was first proposed by Bar-Yehuda and Even in [1]. The idea is
to recursively peel off a special weight from the original weight. If the problem
with the special weight admits an α-approximation, then one can assemble an
α-approximate solution for the problem with respect to the original weight. In
this paper, the special weight peeled off in each iteration (denoted by p̄) is
proportional to the number of uncovered points of a disk, and then the disks of
residual weight zero are put into D̄.

Algorithm 1. LR(X,D, p, k).
Input: A set of points X, a set of disks D, a weight function p : D �→ IR+, a covering
requirement k.
Output: A minimal subset of disks D̄ covering at least k points.

1: If k = 0, then return D̄ ← ∅
2: γ ← minD∈D p(D)/|X ∩ D|
3: p̄(D) ← γ · |X ∩ D| for each D ∈ D
4: p(D) ← p(D) − p̄(D) for each D ∈ D
5: D=0 ← {D ∈ D : p(D) = 0}
6: X ← X \ C(D=0), D ← D \ D=0, k ← max{0, k − |C(D=0)|}
7: D̄′ ← LR(X, D, p, k)
8: Let D̄=0 be a minimal subset of D=0 such that D̄′ ∪ D̄=0 covers at least k points.
9: Return D̄ ← D̄′ ∪ D̄=0

Algorithm 1 is in fact a function which will be recursively called. In the
algorithm, after peeling off a special weight p̄, we use D=0 to denote the set of
disks with residual weight p− p̄ being zero. Since taking disks of zero cost seems
to be a free meal, we take all of them temporarily and consider the residual

184 M. Li et al.

instance, the goal of which is to satisfy the residual covering requirement using
the residual disks. Line 6 of the algorithm is to construct the residual instance.
Having found a minimal solution D̄′ to the residual instance, the algorithm adds
a minimal subset of disks of D=0, denoted as D̄=0, into D̄′ to cover at least k
points. This step is to guarantee that the resulting set of disks D̄ is minimal,
which is very crucial to the control of the approximation factor.

Suppose the function LR is called t + 1 times. Denote by D̄(i), p(i), p̄(i) etc.
those objects at the end of the i-th calling of function LR. Then we have the
following relations.

(i) X(0) = X, D(0) = D, p(0) = p, and k(0) = k.
(ii) For i = 1, . . . , t,

γ(i) = min{p(i−1)(D)/|X(i−1) ∩ D|} for each D ∈ D(i−1)

p̄(i)(D) = γ(i) · |X(i−1) ∩ D| for each D ∈ D(i−1) (2)

p(i)(D) = p(i−1)(D) − p̄(i)(D) for each D ∈ D(i−1) (3)

D(i)
=0 = {D ∈ D(i−1) : p(i)(D) = 0}

X(i) = X(i−1) \ C(D(i)
=0)

D(i) = D(i−1) \ D(i)
=0

k(i) = max{0, k(i−1) − |C(i−1)(D(i)
=0)|} (4)

Here C(i−1)(D(i)
=0) = C(D(i)

=0) ∩ X(i−1). As a consequence of the above relations,

k(i) = max{0, k − |C(
i⋃

j=1

D(j)
=0)|}. (5)

It should be noticed that in expressions (4) and (5), except for i = t, the value
of k(i) equals the second term.

(iii) k(t) = 0, D̄(t+1) = ∅. And for i = t, t − 1, . . . , 1,

D̄(i) = D̄(i+1) ∪ D̄(i)
=0.

As a consequence

D̄(i) =
t⋃

j=i

D̄(j)
=0 ⊆

t⋃

j=i

D(j)
=0. (6)

The above relation can be illustrated by the following figure.

Remark 1. If a disk D has its weight reduced to zero in the i-th call of LR, that
is, if p(i−1)(D) > 0 and p(i)(D) = 0, then D does not play roles in the deeper
calls of LR. In this case, we may view p(j)(D) = p̄(j)(D) = 0 for any j with
i + 1 ≤ j ≤ t. By such a point of view, for any 0 ≤ i ≤ t, we may extend the
definition of functions p(i) and p̄(i) on any disk D ∈ D.

Approximation Algorithms for the Minimum Power Partial Cover Problem 185

Fig. 1. Illustration for the structure of D̄(i).

Lemma 2. For any i = 1, . . . , t + 1, the set D̄(i) is a minimal set of disks
covering k(i−1) points of X(i−1).

Proof. We prove the lemma by a backward induction on i. The base step when
i = t + 1 is obvious, since k(t) = 0 and D̄(t+1) = ∅.

For the induction step, suppose i ≤ t and D̄(i+1) is a minimal set of disks
covering k(i) points of X(i). By expression (4) and the remark below it, we have

k(i−1) = k(i) + |C(i−1)(D(i)
=0)|. (7)

So D̄(i+1)∪D(i)
=0 can cover k(i−1) elements of X(i−1), which implies that a minimal

subset D̄(i)
=0 ⊆ D(i)

=0 exists such that D̄(i+1) ∪ D̄(i)
=0 can cover k(i−1) elements of

X(i−1) (Fig. 1).
What remains to show is that D̄(i+1) ∪ D̄(i)

=0 is minimal. By line 8 of Algo-
rithm1, no disk in D̄(i)

=0 can be removed without violating the covering require-
ment k(i−1). For any disk D ∈ D̄(i+1), by the minimality of D̄(i+1), we have
|C(i)(D̄(i+1)\{D})| < k(i). Then by (7), we have |C(i−1)

(
(D̄(i+1)\{D})∪D̄(i)

=0

)| <

k(i−1). The minimality of D̄(i) is proved. �

The second step is realized by Algorithm 2. Given a set of disks D, Algo-
rithm2 finds a maximal independent set of disks by recursively choosing the
disk with the maximum radius and deleting those disks intersecting it.

Algorithm 2. IS(D).
Input: A set of disks D.
Output: A maximal independent set of disks I.
1: I ← ∅
2: while D
= ∅ do
3: D′ ← argmaxD∈D r(D)
4: I ← I ∪ {D′}
5: N ← the set of disks of D that intersect D′

6: D ← D \ N
7: end while
8: Return I

186 M. Li et al.

Algorithm 3 combines the above two algorithms to compute a feasible solution
M to the residual instance. We use c(D) and r(D) to denote the center and
the radius of disk D, respectively. So, Disk(c(D), 3r(D)) represents the disk
with center c(D) and radius 3r(D) (which a disk obtained from D by enlarging
its radius by three times). Notice that M is not a subset of D. Before calling
Algorithm 2, a disk Drmv is deleted from D̄, where Drmv belongs to the set of
disks added in the deepest call of LR. This is to control the approximation ratio
which will be clear in the latter proofs.

Algorithm 3. Cov(X,D, k)
Input: A residual instance (X, D, k).
Output: a set of disks M covering at least k points.

1: D̄ ← LR(X, D, k)

2: Drmv ← an arbitrary disk in D̄(t)
=0 where t is the last call of LR

3: I ← IS(D̄ \ {Drmv})
4: M ← {Disk(c(D), 3r(D)) : D ∈ I} ∪ {Drmv}
5: Return M

The next theorem shows that Algorithm 3 computes a feasible solution to the
residual instance.

Theorem 1. The set of disks M computed by Algorithm3 covers at least k
points.

Proof. The set of disks in D̄ computed in line 1 of the algorithm cover at least
k points. For any point x which is covered by D̄, if x is covered by Drmv or any
disk in I, then it is also covered by M. Otherwise, x is covered by a disk D which
is removed in line 6 of Algorithm2. This disk D is removed because it intersects
a disk D′ ∈ I. Because of the greedy choice of disk D′ in line 3 of Algorithm 2,
we have r(D) ≤ r(D′). Hence d(x, c(D′)) ≤ d(x, c(D))+d(c(D), c(D′)) ≤ r(D)+
(r(D) + r(D′)) ≤ 3r(D′), where d(·, ·) denotes the Euclidean distance. So, x is
covered by disk(c(D′), 3r(D′)) ∈ M. �

The following lemma is a key lemma towards the analysis of the approxima-
tion ratio.

Lemma 3. Suppose D∗ is an optimal solution for (X,D, k). Then the indepen-
dent set of disks I output by Algorithm2 satisfies p(I) ≤ p(D∗).

Proof. We prove
p(i)(I) ≤ p(i)(D∗) (8)

by a backward induction on i = t, t − 1, . . . , 0. Since p(0) = p, what is required
by the lemma is exactly p(0)(I) ≤ p(0)(D∗).

For the base step, we have p(t)(I) = 0 because every disk D ∈ I ⊆ D̄(1)

belongs to some D̄(j)
=0 (by (6)) and thus p(t)(D) = 0. So (8) holds for i = t.

Approximation Algorithms for the Minimum Power Partial Cover Problem 187

For the induction step, suppose (8) is true for some i ≤ t. We are going to
prove

p(i−1)(I) ≤ p(i−1)(D∗). (9)

By (3), inequality (9) is equivalent with

p(i)(I) + p̄(i)(I) ≤ p(i)(D∗) + p̄(i)(D∗).

Combining this with the induction hypothesis, it suffices to prove

p̄(i)(I) ≤ p̄(i)(D∗). (10)

By (6) and Remark 1,

for any disk D ∈ D̄(1) \ D̄(i),we have p̄(i)(D) = 0. (11)

Combining this with (2) and the fact I ⊆ D̄(1), we have

p̄(i)(I) =
∑

D∈I
p̄(i)(D) =

∑

D∈I∩D̄(i)

γ(i) · |X(i−1) ∩ D|

=
∑

x∈X(i−1)

γ(i) · |{D ∈ I ∩ D̄(i) : x ∈ D}|.

Since no disks in I can intersect, we have
∑

x∈X(i−1)

|{D ∈ I ∩ D̄(i) : x ∈ D}| = |X(i−1) ∩ C(I ∩ D̄(i))|.

Since Drmv �∈ I, we have I∩D̄(i) ⊆ D̄(i)\{Drmv}. Combining this with Lemma2
and the observation that Drmv ∈ D̄(t)

=0 ⊆ D̄(i), we have

|X(i−1) ∩ C(I ∩ D̄(i))| < k(i−1).

Hence,
p̄(i)(I) ≤ γ(i)k(i−1) (12)

On the other hand, because of (11),

p̄(i)(D∗) =
∑

D∈D∗
p̄(i)(D) =

∑

D∈D∗\
(
D̄(1)\D̄(i)

)
γ(i) · |X(i−1) ∩ D|.

Combining the facts

|C(D∗)| ≥ k

D̄(1) \ D̄(i) ⊆
i−1⋃

j=1

D(j)
=0 by (6), and

k(i−1) = max{0, k − |C(
i−1⋃

j=1

D(j)
=0)|} by (5),

188 M. Li et al.

we have
∑

D∈D∗\
(
D̄(1)\D̄(i)

)
|X(i−1) ∩ D| ≥ |X(i−1) ∩ C(D∗ \ (D̄(1) \ D̄(i)

)
)|

≥
∣
∣
∣
∣
∣
∣
X(i−1) ∩ C

⎛

⎝D∗ \
i−1⋃

j=1

D(j)
=0

⎞

⎠

∣
∣
∣
∣
∣
∣
≥ k(i−1).

Hence,
p̄(i)(D∗) ≥ γ(i)k(i−1). (13)

Then inequality (10) follows from (12) and (13), and the lemma is proved. �

The next theorem estimates the approximation effect of Algorithm 3.

Theorem 2. Suppose C∗ is an optimal solution on instance (X,D, p, k), and M
is the output of Algorithm3. Then

p(M) ≤ 3αp(C∗) + p(Drmv).

Proof. For each disk D ∈ M \ {Drmv}, it comes from a disk D′ ∈ I by
expanding the radius by three times. Hence by (1), p(D) = 3αp(D′). So
p(M) ≤ 3αp(I) + p(Drmv), and the theorem follows from Lemma 3. �

By Theorem 2, the approximate effect is related with p(Drmv). The reason
why we should guess a disk Dmax with the largest radius in an optimal solution
is now clear: to control the term p(Drmv) to be not too large. The algorithm
combining the guessing technique is presented as follows.

3.2 The Whole Algorithm

Algorithm 4 is the whole algorithm for the MinPowerPartCov problem. It first
guesses a disk Dmax with the maximum radius in an optimal solution, takes it,
and then uses Algorithm 3 on the residual instance. For a guessed disk D, the
residual instance consists of all those disks D≤r(D) whose radii are no larger
than r(D) (excluding D itself), and the goal is to cover the remaining elements
X \ D beyond the remaining covering requirement max{0, k − |D|}. The weight
function, denoted as pD, is determined by (1). If for a guessed disk D, Algorithm 3
does not return a feasible solution, then we regard the solution to have cost ∞.
Algorithm 4 returns the best solution among all the guesses.

Approximation Algorithms for the Minimum Power Partial Cover Problem 189

Algorithm 4. MinPowerPartCov(X,D, k, p)
Input: A set of points X, a set of sensors S, a covering requirement k.
Output: A power assignment p to cover at least k points.

1: Construct the set D of canonical disks, determine the weight of each disk by (1).
2: for D ∈ D do
3: MD ← Cov(X \ D, D≤r(D), pD,max{0, k − |D|})
4: FD ← MD ∪ {D}
5: end for
6: ˜D ← argminD∈D{p(FD)}
7: Return the power assignment corresponding to F

˜D

Theorem 3. Algorithm4 is an 3α-approximation algorithm for the MinPower-
PartCov problem.

Proof. Suppose Dmax is the disk with the maximum radius in an optimal solu-
tion. By Theorem 2 and the fact p(Dmax,rmv) ≤ p(Dmax), we have

p(FDmax) = p(MDmax) + p(Dmax) ≤ 3αp(C∗
Dmax

) + 2p(Dmax)

≤ 3α
(
p(C∗

Dmax
) + p(Dmax)

)
= 3αopt,

where opt is the optimal power. Since the set F
˜D computed by Algorithm 4

satisfies p(F
˜D) ≤ p(FDmax), the theorem is proved. �

4 Conclusion

In this paper, we presented an approximation algorithm for the minimum power
partial cover problem achieving approximation ratio 3α, using a local ratio
method. This ratio improves the ratio of (12 + ε) in [9], and matches the best
known ratio for the minimum power (full) cover problem in [3].

Recently, there are a lot of studies on the minimum power multi-cover prob-
lem [5,6]. A problem which deserves to be explored is the minimum power partial
multi-cover problem (adding partial covering requirement). According to current
studies on the minimum partial set multi-cover problem [17–19], it seems that
studying the combination of multi-cover and partial cover in a general setting is
very difficult. An interesting question is whether geometry can make the situa-
tion better?

Acknowledgment. This research is supported in part by NSFC (11771013, 61751303,
11531011) and the Zhejiang Provincial Natural Science Foundation of China
(LD19A010001, LY19A010018).

190 M. Li et al.

References

1. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted
vertex cover problem. Ann. Discret. Math. 25, 27–46 (1985)

2. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover
problem. J. Algorithms 39(2), 137–144 (2001)

3. Bar-Yehuda, R., Rawitz, D.: A note on multicovering with disk. Comput. Geom.
46(3), 394–399 (2013)

4. Bansal, N., Pruhs, K.: Weighted geometric set multi-cover via quasi-uniform sam-
pling. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 145–156.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-2 14

5. Bhowmick, S., Varadarajan, K., Xue, S.-K.: A constant-factor approximation for
multi-covering with disks. Comput. Geom. 6(1), 220–24 (2015)

6. Bhowmick, S., Inamdar, T., Varadarajan, K.: On metric multi-covering problems.
Computational Geometry, arxiv:1602.04152 (2017)

7. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

8. Chan, T.M., Granty, E., Konemanny, J., Sharpe, M.: Weighted capacitated, prior-
ity, and geometric set cover via improved quasi-uniform sampling. In: SODA, pp.
1576–1585 (2012)

9. Freund, A., Rawitz, D.: Combinatorial interpretations of dual fitting and primal
fitting. CiteSeer (2011). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.585.9484

10. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial cov-
ering problems. J. Algorithms 53(1), 55–84 (2004)

11. Gibson, M., Pirwani, I.A.: Algorithms for dominating set in disk graphs: breaking
the logn barrier. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp.
243–254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-
2 21

12. Hochbaum, D.S., Maas, W.: Approximation schemes for covering and packing prob-
lems in image processing and VLSI. J. ACM 32, 130–136 (1985)

13. Inamdar, T., Varadarajan, K.: On partial covering for geometric set system. Com-
put. Geom. 47, 1–14 (2018)

14. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9, 256–278 (1974)

15. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discret.
Comput. Geom. 44, 883–895 (2010)

16. Mustafa, N.H., Raman, R., Ray, S.: Quasi-polynomial time approximation scheme
for weighted geometric set cover on pseudodisks. SIAM J. Comput. 44(6), 1650–
1669 (2015)

17. Ran, Y., Zhang, Z., Du, H., Zhu, Y.: Approximation algorithm for partial positive
influence problem in social network. J. Comb. Optim. 33, 791–802 (2017)

18. Ran, Y., Shi, Y., Zhang, Z.: Local ratio method on partial set multi-cover. J. Comb.
Optim. 34(1), 1–12 (2017)

19. Ran, Y., Shi, Y., Zhang, Z.: Primal dual algorithm for partial set multi-cover. In:
Kim, D., Uma, R.N., Zelikovsky, A. (eds.) COCOA 2018. LNCS, vol. 11346, pp.
372–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04651-4 25

20. Roy, A.B., Govindarajan, S., Raman, R., Ray, S.: Packing and covering with non-
piercing regions. Discret. Comput. Geom. 60, 471–492 (2018)

https://doi.org/10.1007/978-3-642-33090-2_14
http://arxiv.org/abs/1602.04152
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.585.9484
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.585.9484
https://doi.org/10.1007/978-3-642-15775-2_21
https://doi.org/10.1007/978-3-642-15775-2_21
https://doi.org/10.1007/978-3-030-04651-4_25

Approximation Algorithms for the Minimum Power Partial Cover Problem 191

21. Slav́ık, P.: Improved performance of the greedy algorithm for partial cover. Inf.
Process. Lett. 64(5), 251–254 (1997)

22. Varadarajan, K.: Weighted geometric set cover via quasi-uniform sampling. In:
STOC 2010, pp. 641–648 (2010)

23. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001). https://
doi.org/10.1007/978-3-662-04565-7

https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

On Approximations for Constructing
Required Subgraphs Using Stock Pieces

of Fixed Length

Junran Lichen1, Jianping Li1(B), Ko-Wei Lih2, and Xingxing Yu3

1 Department of Mathematics, Yunnan University,
Kunming 650504, People’s Republic of China

junranlichen@hotmail.com, jianping@ynu.edu.cn
2 Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan

makwlih@sinica.edu.tw
3 School of Mathematics, Georgia Institute of Technology, Atlanta, USA

yu@math.gatech.edu

Abstract. In this paper, we consider the problem of constructing
required subgraphs using stock pieces of fixed length (CRS-SPFL, for
short), which is a variant of the problem of minimum-cost edge-weighted
subgraph constructions (MCEWSC, for short). This new problem has
many important applications in our reality life, and it is defined as fol-
lows. In the MCEWSC problem Q, the objective is to choose a minimum-
cost subset of edges from a graph such that these edges form a required
subgraph (e.g., a spanning tree). In the CRS-SPFL problem Q′, these
edges are further required to be constructed by some stock pieces of fixed
length L, the new objective is to minimize the total cost to construct such
a required subgraph G′, where the total cost is sum of the cost to buy
necessary these stock pieces and the cost to construct all edges in such
a subgraph G′.

We obtain the following three main results. (1) Whenever the
MCEWSC problem Q can be approximated by an α-approximation
algorithm (for the case α = 1, the MCEWSC problem Q is solved
optimally by a polynomial-time exact algorithm), we can design a 2α-
approximation algorithm to solve the CRS-SPFL problem Q′; (2) In
addition, when the MCEWSC problem Q is to find a minimum span-
ning tree, we provide a 3

2
-approximation algorithm and an AFPTAS

to solve the CRS-SPFL problem Q′, respectively; (3) Finally, when the
MCEWSC problem Q is to find a single-source shortest paths tree, we
present a 3

2
-approximation algorithm and an AFPTAS to solve the CRS-

SPFL problem Q′, respectively.

Keywords: Subgraph constructions · Stock pieces of fixed length L ·
Bin packing · Approximation algorithms · AFPTAS

Supported by the National Natural Science Foundation of China [No. 11861075],
IRTSTYN, and Key Joint Project of Yunnan Provincial Science and Technology
Department and Yunnan University [No. 2018FY001(-014)], Innovation Team Fostering
Project of Yunnan Province.

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 192–202, 2019.
https://doi.org/10.1007/978-3-030-27195-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_18

On Approximations for Constructing Required Subgraphs Using Stock Pieces 193

1 Introduction

Many graph optimization problems, especially the minimum-cost edge-weighted
subgraph construction problems, are motivated from our reality life applications,
e.g., the minimum spanning tree problem, the shortest path problem, and the
minimum Steiner tree problem [6]. The objective in each of such problems is to
choose a minimum-cost subset of edges from a weighted graph so that these edges
form a required subgraph or structure (for example, a spanning tree structure
or a Steiner tree structure). In addition, there exist some optimization problems
that can be regarded as some combinations of other well-known graph optimiza-
tion problems. For example, the single-source shortest paths tree problem can
be regarded as a combination of the shortest path problem and the minimum
arborescence problem. These optimization problems have a number of interesting
applications in electronic power transportation networks, fiber optic networks,
Quality of Service (QoS) routing in high-speed networks, and there exist many
polynomial-time exact or approximation algorithms to solve these problems [6].

The Euclidean Steiner tree problem (EST, for short) is to find a tree with
minimum Euclidean length that spans a set of points fixed in the Euclidean
plane while allowing the addition of some so-called Steiner points. The EST
problem [3] is one of the well-known NP-hard problems, and it is widely used
to design real-world structures like highways and oil pipelines. There are many
approximation algorithms to solve the EST problem [6].

Lin and Xue [5] addressed a variant of the EST problem that is called the
Steiner tree problem with minimum number of Steiner points and bounded
edge-length (STP-MSPBEL, for short). The STP-MSPBEL problem is to find a
Steiner tree interconnecting all pre-assigned terminals with the minimum number
of Steiner points such that each edge in this Steiner tree has Euclidean length no
more than a given constant d. They showed that the STP-MSPBEL problem is
NP-hard, and they presented a 4-approximation algorithm. Furthermore, Chen
et al. [1] designed a 3-approximation algorithms to resolve the STP-MSPBEL
problem.

In our reality life, stock materials to be used to construct all edges in such a
Steiner tree are sold with length constraints, i.e., each stock piece has a bounded
length L (d ≤ L). When we assume that the selling price of each stock piece of
length L is a constant, we should consider the minimum cost of necessary stock
pieces to construct all edges in a Steiner tree, rather than the minimum sum of
lengths of all edges in the same Steiner tree. In general, the sum of lengths of
necessary stock pieces to be used to construct all edges in a Steiner tree is at
least the sum of lengths of all edges in the same Steiner tree, by the reason that
some unused parts of stock pieces are “wasted”.

Furthermore, a more general problem arises naturally when some edges in a
Steiner tree may have lengths greater than the length L of stock piece. When
we plan to construct an edge e of length w(e) > L in a Steiner tree, we may use
i(e) = �w(e)

L � − 1 whole stock pieces of length L and a part of length w′(e) =
w(e)−i(e)·L from a stock piece of length L to construct that edge e. In addition,
we may consider the cost to assemble these i(e) + 1 parts together to construct

194 J. R. Lichen et al.

that edge e. Finally, we should also consider the construction cost of all edges in
the whole Steiner tree desired. To sum up, we should consider the total cost of
such a Steiner tree that includes three components: (1) the cost of purchasing
necessary stock pieces of length L, (2) for each edge e in such a Steiner tree, the
cost of assembling all parts to construct the edge e (if any), and (3) the cost of
constructing all edges in such a Steiner tree.

Motivated by the previous problems, especially the STP-MSPBEL problem
and the length constraint on stock pieces, we are interested in the following useful
variant of the problem of minimum-cost edge-weighted subgraph constructions,
where this new problem has many important applications in our reality life. This
new variant problem is posed as follows. For a minimum-cost edge-weighted
subgraph construction problem Q (MCEWSC, for short), the objective is to
choose a minimum-cost subset of edges such that these edges form a required
subgraph or structure. We now consider the new variant problem Q′ of Q such
that these edges are further required to be constructed by some stock pieces of
length L, where such each stock piece of length L is sold at the price c0. The new
objective, however, is to minimize the total cost of such a subgraph or structure
G′, i.e., minG′{∑

e∈G′ c(e) + k(G′) · c0}, where c(e) is the construction cost of
edge e and k(G′) · c0 is the cost to buy necessary stock pieces of length L to
construct all edges in such same subgraph or structure G′.

For convenience, we refer to the new variant problem Q′ of Q as the problem
of constructing required subgraphs using stock pieces of fixed length (CRS-SPFL,
for short), and simply denote it as the CRS-SPFL problem Q′. We also emphasize
the following process in this paper how to construct an edge in a specific subgraph
or structure. When we plan to construct an edge e of length w(e) > L in such
a required subgraph or structure, we may always use i(e) = �w(e)

L � − 1 whole
stock pieces of length L and then a part of length w′(e) = w(e) − i(e) · L from a
stock piece of length L together to construct that edge e. Using this process, we
should permit at most one piece of length less than L in any edge in our edge-
construction process, i.e., we should not permit at least two pieces of length less
than L in some edge in our edge-construction process.

Our new problem can be roughly treated as a combination of the MCEWSC
problem and a generalization of the bin-packing problem. In the description of
our problem, it seems that we have ignored the cost of assembling all parts to
construct each edge in a specific subgraph or structure (if needed). We shall
show in the next section that the assembling cost of each edge e may become
a part of construction cost of that edge e by using a polynomial reduction.
(Proposition 1 will provide the details.) So it is sufficient for us to consider the
total cost of a specific subgraph or structure so that the cost can be split into
two components: (1) the cost to buy necessary stock pieces of length L, and (2)
the cost to construct all edges in such same subgraph or structure.

Now, there are three special cases to be noted. (1) If the sale price of each
stock piece is not taken into consideration, i.e., c0 = 0, our new problem becomes
the MCEWSC problem Q in [6]. (2) If the length L of each stock piece is large,
for example, L ≥ ∑

e∈G w(e), i.e., k(G′) = 1, our new problem also becomes the

On Approximations for Constructing Required Subgraphs Using Stock Pieces 195

MCEWSC problem Q. (3) If the construction cost of each edge is not taken into
consideration, i.e., c(e) = 0 for each edge e in G, we treat this new problem as
the problem of constructing specific subgraph with minimum number of stock
pieces of fixed length (CSS-MSP, for short), which is similarly defined as the
STP-MSPBEL problem addressed by Lin and Xue [5].

As far as what we have known, these CRS-SPFL problems have not appeared
in our reality life, and there are no known polynomial-time exact or approxima-
tion algorithms to solve these new optimization problems.

Our paper is organized as follows. In Sect. 2, we present terminology for
describing our algorithms and provide key lemmas to ensure the correctness of
approximation algorithms. In Sect. 3, whenever the MCEWSC problem Q can be
approximated by an α-approximation algorithm, we design a 2α-approximation
algorithm to solve the CRS-SPFL problem Q′; In Sect. 4, we provide a 3

2 -
approximation algorithm and an fully asymptotic polynomial-time approxima-
tion scheme (AFPTAS) to solve the problem Q′ of constructing a minimum-cost
spanning tree using stock pieces of fixed length, respectively; In Sect. 5, we fur-
ther present a 3

2 -approximation algorithm and an AFPTAS to solve the problem
Q′ of constructing a minimum-cost single-source shortest paths tree using stock
pieces of fixed length, respectively. In Sect. 6, we state our conclusion and further
research.

2 Terminology, Reduction and Key Lemmas

The notations and terminology to be used to describe our algorithms are similar
to solve a generalization of the bin-packing problem [2,7]. We treat each stock
piece of length L as a “bin” with capacity L. Let e be an edge of a graph
G = (V,E;w, c) equipped with length function w : E → R+ and cost function
c : E → R+

0 . We treat this edge e as an “item” of size w(e). For each edge e of
length w(e), let i(e) = �w(e)

L � − 1 and w′(e) = w(e) − i(e) · L. To construct edge
e, we may use i(e) whole stock pieces of length L and a part of length w′(e) from
such a stock piece. The construction cost of an edge e is set to be c(e). Note that
the value c(e) does not include the cost to buy some stock piece(s) to construct
that edge e. Using a similar terminology to describe the process to pack items
into bins for the bin-packing problem, we describe such a process as “packing an
edge e of length w(e) or an item of size w(e) into some bin(s) with capacity L”.

For convenience, denote G = (V,E;w; c;L) as an instance of the CRS-SPFL
problem Q′, i.e., a graph G = (V,E;w; c) equipped with length function w : E →
R+ and cost function c : E → R+

0 together with some stock pieces of length L.
Similarly, denote H = (V,E; f) as an instance of the MCEWSC problem Q
equipped with cost function f : E → R+.

For a specific subgraph G′ = (V ′, E′;w; c) of a weighted graph G =
(V,E;w; c) for the CRS-SPFL problem Q′, let w(E′) =

∑
e∈E′ w(e) and c(E′)

=
∑

e∈E′ c(e). Similarly, for a specific subgraph H ′ = (V ′, E′; f) of an instance
H = (V,E; f) for the MCEWSC problem Q, let f(E′) =

∑
e∈E′ f(e). Other

notations and terminology can be found in the reference [6].

196 J. R. Lichen et al.

When we consider the CRS-SPFL problem Q′, if an edge e chosen in the
specific subgraph G′ has w(e) > L, using the process mentioned-above, we have
to use i(e) = �w(e)

L � − 1 stock pieces of length L and then a part of length
w′(e) = w(e) − i(e) · L together to construct an edge e. At the same time, we
should pay a cost i(e)p(e) to patch these i(e)+1 parts together to construct that
edge e, where p(e) is an unit cost of assembling together two any parts in such
an edge e (if any). The value i(e)p(e) is called as patching cost of that edge e.
We shall show by a polynomial reduction that this patching cost of each edge e
may become a part of construction cost of the same edge e in a weighted graph
G = (V,E;w; c;L) equipped with patching cost function p : E → R+

0 .
Let Q′′ denote the general version of the CRS-SPFL problem Q′, where the

construction of each edge e needs a patching cost (if any). For convenience, given
the MCEWSC problem Q, we refer to new general problem as the general CRS-
SPFL problem Q′′ of Q. More precisely, if G = (V,E;w; c;L) is an instance of the
CRS-SPFL problem Q′, let H = (V,E;w; c; p;L) be an instance of the general
CRS-SPFL problem Q′′ with the same functions w(·) and c(·) and patching cost
function p : E → R+

0 . Then, we can obtain the following important proposition.

Proposition 1. The general CRS-SPFL problem Q′′ is polynomially equivalent
to the CRS-SPFL problem Q′.

In the view of Proposition 1, we will consider the CRS-SPFL problem Q′

rather than the general CRS-SPFL problem Q′′ in the remainder of this paper.
For any instance G = (V,E;w; c;L; c0) of the CRS-SPFL problem Q′, where
c0 is the price of each stock piece of length L, we always assume patching cost
p(e) = 0 for each edge e in the instance G. In the construction of edges of specific
subgraph G′ of G, “the necessary number of stock pieces of bounded length L”
is rephrased as “the necessary number of bins with capacity L”, or simply “the
number of bins used”.

We need the following two key lemmas when we design better approximation
algorithms to solve two special versions of the CRS-SPFL problem.

Lemma 1. [6] Let G = (V,E; l) be a weighted graph equipped with weight func-
tion l : E → R+ and T = (V,ET) a minimum spanning tree of G with edge-
set ET = {ei1 , ei2 , . . . , ein−1} satisfying l(ei1) ≤ l(ei2) ≤ · · · ≤ l(ein−1). If T ∗

is any spanning tree of G with edge-set ET ∗ = {ej1 , ej2 , . . . , ejn−1} satisfying
l(ej1) ≤ l(ej2) ≤ · · · ≤ l(ejn−1), then the inequality l(eik) ≤ l(ejk) holds for each
k = 1, 2, . . . , n − 1.

Lemma 2. [4] For any real number ε > 0 and an instance of the bin-packing
problem involving m items a1, a2, . . . , am having sizes s(a1), s(a2), . . . , s(am),
where 0 < s(ai) ≤ L for each i = 1, 2, . . . ,m, there is a polynomial-time algo-
rithm Aε in time O(T (ε−2,m)) to find a packing using at most (1 + ε)OPT +
O(ε−2) bins with capacity L, where OPT is the minimum number of bins used
for the same instance and T (x, y) = O(x8 log x log2 y + x4y log x log y), i.e., the
algorithm Aε is an AFPTAS to solve the bin-packing problem.

On Approximations for Constructing Required Subgraphs Using Stock Pieces 197

3 Approximation Algorithm for the CRS-SPFL Problem

In this section, we consider the problem Q′ of constructing required sub-
graph using stock pieces of fixed length (CRS-SPFL, for short), meanwhile the
minimum-cost edge-weighted subgraph construction problem Q (MCEWSC, for
short) can be approximated by an α-approximation algorithm Aα (for the case
α = 1, the MCEWSC problem Q is solved optimally by a polynomial-time exact
algorithm), where the objective in Q is to choose a minimum-cost subset of edges
such that the edges form a specific subgraph.

We use the following strategy to design an approximation algorithm to solve
the CRS-SPFL problem Q′. (1) For any instance G = (V,E;w; c;L) of the CRS-
SPFL problem Q′, define a new cost c′(e) on each edge e of the instance H =
(V,E; c′) of the MCEWSC problem Q, then use an α-approximation algorithm
Aα on the instance H = (V,E; c′) to find a specific subgraph G′ = (V ′, E′) of
H having minimum total cost c′(E′); (2) Use the First-Fit algorithm (FF) [2] to
pack the items w(e) of all edges e in E′ into bins with capacity L.

Our first approximation algorithm to solve the CRS-SPFL problem Q′ is
described as follows.

Algorithm:3.1

Input: a weighted graph G = (V,E;w; c;L) equipped with w : E → R+

and c : E → R+
0 .

Output:a subgraph G′ = (V ′, E′;w; c;L) of G such that the total con-
struction cost of G′ is as small as possible.

Begin
Step 1 From an instance G = (V,E;w; c;L) of the CRS-SPFL problem

Q′, construct the instance H = (V,E; c′) of the MCEWSC prob-
lem Q, where c′(e) = c(e) + c0 · w(e)

L for each edge e in E.
Step 2 For the instance H = (V,E; c′) of the MCEWSC problem Q, use

the α-approximation algorithm Aα to find a specific subgraph
G′ = (V ′, E′; c′) of H = (V,E; c′), having cost c′(E′) as small as
possible. Denote E′ = {ei1 , ei2 , . . ., eim}.

Step 3 For each edge e in E′, first use i(e) stock pieces of length L to
construct the part of edge e having length i(e) · L, where i(e) =
�w(e)

L � − 1 and w′(e) = w(e) − i(e) · L as before. And let k1 =∑
e∈E′ i(e) denote the number of stock pieces used at this step.

Step 4 Use the FF algorithm [2] to pack the items w′(ei1), w′(ei2), . . .
, w′(eim) into k2 bins with capacity L, i.e., k2 stock pieces of
bounded length L.

Step 5 Output the subgraph G′ = (V ′, E′;w; c;L) produced in Step 2
and the total construction cost OUT =

∑
e∈E′ c(e)+(k1 +k2) ·c0.

End

Theorem 1. Algorithm 3.1 is an 2α-approximation algorithm to solve the CRS-
SPFL problem Q′, and the complexity of Algorithm 3.1 is O(max{f(n), n2}),
where f(n) is the complexity of an α-approximation algorithm Aα to solve the
MCEWSC problem Q.

198 J. R. Lichen et al.

Proof. For the instance G = (V,E;w; c;L) of the CRS-SPFL problem Q′, sup-
pose that the specific subgraph G′ = (V ′, E′;w; c;L) is a feasible solution pro-
duced by Algorithm 3.1 with the output value OUT =

∑
e∈E′ c(e)+(k1 +k2) ·c0

and a specific subgraph G∗ = (V ∗, E∗;w; c;L) is an optimal solution with the
optimal value OPT =

∑
e∈E∗ c(e) + k∗ · c0. Let k = k1 + k2 be the number of

bins used in Algorithm 3.1 and k∗ the minimum number of stock pieces used
for the instance G = (V,E;w; c;L). We may also assume that a specific sub-
graph G∗∗ = (V ∗∗, E∗∗; c′) is an optimal solution to the instance H = (V,E; c′)
of the MCEWSC problem Q with the optimal value c′(E∗∗). We are going to
show OUT ≤ 2α · OPT . Since Algorithm 3.1 executes the α-approximation
algorithm Aα to find a specific subgraph G′ = (V ′, E′; c′) to the instance
H = (V,E; c′) of the MCEWSC problem Q, we obtain c′(E′) ≤ α ·c′(E∗∗). Since
G∗ is an optimal solution to the instance G = (V,E; c;L) of the CRS-SPFL
problem Q′, the specific subgraph G∗ is also a feasible solution to the instance
H = (V,E; c′) of the MCEWSC problem Q. We thus obtain c′(E∗∗) ≤ c′(E∗),
implying c′(E′) ≤ α · c′(E∗).

We have k1 =
∑

e∈E′ i(e) at Step 3. When we pack the items {w′(e) | e ∈ E′}
into k2 bins with capacity L at Step 4, there are k2 − 1 bins with total size at
least L

2 . (Otherwise the number k2 may be reduced.) In addition, Step 4 in
Algorithm 3.1 implies

∑
e∈E′ w′(e) > L + L

2 · (k2 − 2) = L·k2
2 . Hence, we obtain

the following

α · OPT = α · (
∑

e∈E∗
c(e) + k∗ · c0)

≥ α · (
∑

e∈E∗
c(e) +

∑
e∈E∗ w(e)

L
· c0)

= α ·
∑

e∈E∗
(c(e) + c0 · w(e)

L
)

≥
∑

e∈E′
(c(e) + c0 · w(e)

L
)

=
∑

e∈E′
c(e) +

c0
L

·
∑

e∈E′
(i(e) · L + w′(e))

=
∑

e∈E′
c(e) + c0 ·

∑

e∈E′
i(e) +

c0
L

·
∑

e∈E′
w′(e)

≥
∑

e∈E′
c(e) + c0 · k1 +

c0
L

· L · k2
2

≥ 1
2

· (
∑

e∈E′
c(e) + (k1 + k2) · c0)

=
1
2

· OUT

implying OUT ≤ 2α · OPT .

On Approximations for Constructing Required Subgraphs Using Stock Pieces 199

The complexity of Algorithm 3.1 can be determined as follows. (1) Step 1
needs at most time O(n2) to define the new function c′(·); (2) Step 2 executes
the algorithm Aα to find a specific subgraph G′ = (V ′, E′; c′) in time f(n); (3)
For each edge e ∈ E′, treating one step to use i(e) stock pieces of length L to
construct the part of edge e having length i(e) · L, Step 3 needs at most time
O(|E′|) to obtain k1 stock pieces of bounded length L; (4) The FF algorithm [2]
in Step 4 needs at most time O(|E′|) to pack the items w′(eit) into k2 bins.
Hence, the complexity of Algorithm 3.1 is O(max{f(n), n2}).

This establishes the theorem.

4 Approximation Algorithms for the MCST-LBSP
Problem

In this section, we consider the problem Q′ of constructing a spanning tree using
stock pieces of fixed length (MCST-LBSP, for short). It is easy to show that the
MCST-LBSP problem cannot be approximated within performance ratio 3

2 − ε
for any smaller number ε > 0, unless P = NP.

In addition, we may assume that c(e) ≤ c(e′) always holds whenever w(e) ≤
w(e′) for any two edges e and e′ in an instance G = (V,E;w, c;L) of the MCST-
LBSP problem. Using this property, we shall provide a better approximation
algorithm and an AFPTAS to solve the MCST-LBSP problem.

The strategy to solve the MCST-LBSP problem is described as follows. (1)
With respect to the weight function w : E → R+, we use a polynomial-time exact
algorithm [6] (referred as the MST algorithm) to find a minimum spanning tree
T = (V,ET ;w); (2) Use the First-Fit-Decreasing algorithm (FFD) [7] to pack
the sizes of all edges in T into bins with capacity L.

Our approximation algorithm to solve the MCST-LBSP problem is described
as follows.

Algorithm:4.1

Input: a weighted graph G = (V, E; w, c; L).
Output: a spanning tree T = (V, ET) and the total cost OUT =

∑
e∈ET

c(e) +
k · c0.

Begin
Step 1 With respect to the weight function w : E → R+, use the MST

algorithm [6] to find a minimum spanning tree T = (V, ET ; c′). Let
ET = {ei1 , ei2 , . . . , ein−1}.

Step 2 For each edge eir in ET , first use i(eir) stock pieces of bounded length
L to construct the part of edge eir having length i(eir) · L. Recall

i(eir) = �w(eir)

L
� − 1 and w′(eir) = w(eir) − i(eir) · L. And let k1 =∑

eir ∈ET
i(eir) denote the number of stock pieces used at this step.

Step 3 Use the FFD algorithm [7] to pack the items w′(ei1), w′(ei2), . . .,
w′(ein−1) into k2 bins with capacity L.

Step 4 Output the spanning tree T = (V, ET) and the total cost OUT =∑
e∈ET

c(e) + k · c0, where k = k1 + k2.

End

200 J. R. Lichen et al.

Theorem 2. Algorithm 4.1 is a 3
2 -approximation algorithm to solve the MCST-

LBSP problem, and its complexity is O(n2).

Proof. Suppose that T = (V,ET) is a spanning tree produced by Algorithm 4.1
with the output value OUT =

∑
e∈T c(e) + (k1 + k2) · c0. Let T ∗ be an optimal

spanning tree with the value OPT =
∑

e∈T ∗ c(e) + k∗ · c0 to the instance G =
(V,E;w, c;L) for the MCST-LBSP problem. Note that k1 and k2 are determined
at Steps 2–3 of Algorithm 4.1 and k∗ is the minimum number of stock pieces
used. We are going to show that OUT ≤ 3

2 · OPT .
Since Algorithm 4.1 uses the MST algorithm [6] to find a minimum spanning

tree T = (V,ET) of G, we may assume that the edge set ET = {ei1 , ei2 , . . . , ein−1}
of T = (V,ET) satisfies w(ei1) ≤ w(ei2) ≤ · · · ≤ w(ein−1).

For any optimal spanning tree T ∗ with the value OPT for the MCST-LBSP
problem, we may assume that the edge set ET ∗ = {e∗

j1
, e∗

j2
, . . . , e∗

jn−1
} of T ∗ =

(V,ET ∗) satisfies w(e∗
j1

) ≤ w(e∗
j2

) ≤ · · · ≤ w(e∗
jn−1

). Then Lemma 1 implies
that the inequality w(eir) ≤ w(e∗

jr
) holds for each r = 1, 2, . . . , n − 1. Using our

general assumption that c(e) ≤ c(e′) always holds whenever w(e) ≤ w(e′) for any
two edges e and e′ in G = (V,E;w, c;L), we have the fact that c(eir) ≤ c(e∗

jr
)

holds for each r = 1, 2, . . . , n − 1.
Let k(ET) be the minimum number of bins with length L for the items w(ei1),

w(ei2), . . . , w(ein−1). We are going to show k(ET) ≤ k∗.
For each edge eir in ET , we know that i(eir) = �w(eir)

L �−1, w′(eir) = w(eir)−
i(eir) · L and k1 =

∑
e∈ET

i(e). For each edge e∗
jr

in ET ∗ = {e∗
j1

, e∗
j2

, . . . , e∗
jn−1

},
let w∗(e∗

jr
) = w(e∗

jr
) − i(eir) · L. Then we still have w′(eir) ≤ w∗(e∗

jr
) for each

r = 1, 2, . . . , n − 1.
Since k1 =

∑
eir∈ET

i(eir), w′(eir) ≤ w∗(e∗
jr

) (r = 1, 2, . . . , n − 1) and the
items w(e∗

j1
), w(e∗

j2
), . . . , w(e∗

jn−1
) are packed into k∗ bins B1, B2, . . ., Bk∗

with capacity L, we may assume that these n − 1 items w∗(e∗
j1

), w∗(e∗
j2

), . . .,
w∗(e∗

jn−1
) can be packed into the first k∗ − k1 bins B1, B2, . . ., Bk∗−k1 with

capacity L, and the others i(eir) · L (r = 1, 2, . . . , n − 1) can be packed into the
last k1 bins Bk∗−k1+1, Bk∗−k1+2, . . ., Bk∗ with capacity L. Then we can pack
the items w(ei1), w(ei2), . . ., w(ein−1) into these k∗ bins in the following way.
For each item w′(eir), 1 ≤ r ≤ n−1, if the item w∗(e∗

jr
) is packed into Bt, where

t ∈ {1, 2, . . . , k∗ −k1}, then we pack the item w′(eir) into Bt. We finally pack the
other items of sizes i(eir) · L (r = 1, 2, . . . , n − 1) into the last k1 bins Bk∗−k1+1,
Bk∗−k1+2, . . ., Bk∗ . This shows that the items w(ei1), w(ei2), . . ., w(ein−1) can
be packed into these k∗ bins, in which the items w(e∗

j1
), w(e∗

j2
), . . ., w(e∗

jn−1
) are

packed. Hence, k(ET) ≤ k∗.
For the items w′(ei1), w

′(ei2), . . . , w
′(ein−1) of all edges in ET produced at

Step 2, since the FFD algorithm [7] is a 3
2 -approximation algorithm for the bin-

packing problem, the FFD algorithm can produce a feasible packing with the
output value k2 to satisfy k2 ≤ 3

2 (k(ET) − k1). By the fact k(ET) ≤ k∗, we
obtain k1 + k2 ≤ k1 + 3

2 (k(ET) − k1) ≤ 3
2k(ET) ≤ 3

2k∗. Hence, we obtain the

On Approximations for Constructing Required Subgraphs Using Stock Pieces 201

following

OUT =
n−1∑

r=1

c(eir) + (k1 + k2) · c0 ≤
n−1∑

r=1

c(e∗
jr) +

3
2
k∗ · c0 ≤ 3

2
· OPT

The complexity of Algorithm 4.1 can be determined as follows. (1) Step 1
executes the MST algorithm [6] in time O(n2) to find a minimum spanning tree
T = (V,ET ;w); (2) For each edge eir ∈ ET , treating one step to use i(eir)
stock pieces of length L to construct the part of edge eir having length i(eir) ·L,
Step 2 needs at most running time O(|ET |) to obtain k1 stock pieces of length
L; (3) Step 3 uses the FFD algorithm [7] in at most O(n log2 n) time to pack
the items w′(eir) (r = 1, 2, . . . , n − 1) into k2 bins with capacity L. Hence, the
total running time of Algorithm 4.1 is O(n2).

This establishes the theorem.

Using an AFPTAS, saying Aε, due to Karmarkar and Karp [4] to solve the
bin-packing problem, we are going to design an AFPTAS, denoted as Algo-
rithm 4.2, to solve the MCST-LBSP problem.

The pseudo-code description of Algorithm 4.2 is modified from Algorithm 4.1
by replacing “Step 3. Use the FFD algorithm [7] to pack the items w′(ei1),
w′(ei2), . . ., w′(ein−1) into k2 bins with capacity L” with “Step 3. Use the
Karmarkar-Karp’s AFPTAS [4], saying Aε, to pack the items w′(ei1), w′(ei2),
. . ., w′(ein−1) into k2 bins with capacity L”. We omit the explicit description of
Algorithms 4.2.

Theorem 3. For any real number ε > 0 and any instance G = (V,E;w; c;L)
of the MCST-LBSP problem, Algorithm 4.2 can produce a feasible solution with
value at most (1 + ε)OPT + O(ε−2). The running time is O(T (ε−2,m)), where
T (x, y) = O(x8 log x log2 y + x4y log x log y), i.e., Algorithm 4.2 is an AFPTAS
to solve the MCST-LBSP problem.

5 Approximation Algorithms for the MCSSSPT-LBSP
Problem

In this section, we consider the problem Q′ of minimum-cost single-source short-
est paths tree using length-bounded stock pieces (MCSSSPT-LBSP, for short).

The strategy to solve the MCSSSPT-LBSP problem is described as follows.
(1) For the fixed vertex v1 in D, use the Dijkstra algorithm [6] to construct an
auxiliary acyclic digraph Dv1 = (V,Av1 ;w, c; v1) that consists of the union of all
shortest (v1, vr)-paths in D for all vertices vr in V − {v1}; (2) For each vertex
vr ∈ V , choose an arc entering vr in Dv1 with minimum length, such that we can
construct a minimum arborescence T at v1 in Dv1 ; (3) Use FFD algorithm [7]
to pack the items of lengths of all arcs in T into bins with capacity L.

Our two approximation algorithms to solve the MCSSSPT-LBSP problem
are similar to Algorithms 4.1 and 4.2, denoted as Algorithms 5.1 and 5.2, and
we omit their details here. We can only state the main results to solve the
MCSSSPT-LBSP problem as follows.

202 J. R. Lichen et al.

Theorem 4. Algorithm 5.1 is a 3
2 -approximation algorithm to solve the

MCSSSPT-LBSP problem and its complexity is O(n2).

Theorem 5. For any real number ε > 0 and any instance D = (V,A;w; c;L)
of the MCSSSPT-LBSP problem, Algorithm 5.2 can produce a feasible solution
with value at most (1 + ε)OPT + O(ε−2). The running time of Algorithm 5.2 is
O(T (ε−2,m)), where T (x, y) = O(x8 log x log2 y + x4y log x log y). Hence, Algo-
rithm 5.2 is an AFPTAS to solve the MCSSSPT-LBSP problem.

6 Conclusion and Further Research

In this paper, we consider the problem of constructing required subgraph con-
structions using stock pieces of fixed length (CRS-SPFL) and then obtain three
results.

1. Whenever there exists an α-approximation algorithm to solve the MCEWSC
problem Q, we can design a 2α-approximation algorithm to solve the CRS-
SPFL problem Q′;

2. When the problem Q is to find a minimum spanning tree, we provide a 3
2 -

approximation algorithm and an AFPTAS to solve the problem Q′ of con-
structing a spanning tree using stock pieces of fixed length;

3. When the problem Q is to find a single-source shortest paths tree, we also
give a 3

2 -approximation algorithm and an AFPTAS to solve the problem Q′

of constructing a single-source shortest paths tree using stock pieces of fixed
length.

A challenging task for further research is to design a 3α
2 -approximation algo-

rithm to solve the CRS-SPFL problem Q′, for which the MCEWSC problem Q
is solved by an α-approximation algorithm.

References

1. Chen, D.H., Du, D.Z., Hu, X.D., Lin, G.H., Wang, L.S., Xue, G.: Approximation for
Steiner trees with minimum number of Steiner points. J. Global Optim. 18, 17–33
(2000)

2. Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin pack-
ing: a survey. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-Hard Prob-
lems, pp. 46–93. PWS Publishing, Boston (1996)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H Freeman, San Francisco (1979)

4. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: Proceedings of 23rd Annual IEEE Symposium
on Foundations of Computer Science, 3–5 November 1982, pp. 312–320 (1982)

5. Lin, G.H., Xue, G.L.: Steiner tree problem with minimum number of Steiner points
and bounded edge-length. Inform. Process. Lett. 69, 53–57 (1999)

6. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, The
Netherlands (2003)

7. Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval Res.
Logist. 41, 579–585 (1994)

A Primal Dual Approximation Algorithm
for the Multicut Problem in Trees

with Submodular Penalties

Xiaofei Liu1 and Weidong Li2,3(B)

1 School of Electronic Engineering and Computer Science, Peking University,
Beijing 100871, People’s Republic of China

2 School of Mathematics and Statistics, Yunnan University,
Kunming 650504, People’s Republic of China

weidongmath@126.com
3 Dianchi College of Yunnan University,

Kunming 650000, People’s Republic of China

Abstract. In this paper, we introduce the multicut problem in trees
with submodular penalties, which generalizes the prize-collecting mul-
ticut problem in trees and vertex cover with submodular penalties. We
present a combinatorial 3-approximation algorithm, based on the primal-
dual scheme for the multicut problem in trees.

Keywords: Multicut · Submodular functions ·
Approximation algorithm

1 Introduction

The multicut problem proposed by Hu [7] is one of the most classical and active
topics in combinatorial optimization and approximation algorithms for a long
time. It has been found a lot of applications in many areas such as telecommuni-
cation, routing, transportation and VLSI design [17]. Given an undirected graph
with weight edges and a list of vertex pairs, the multicut problem is to find a
minimum weight set of edges separating each pair of vertices in the list. Obvi-
ously, the multicut problem is a generalization of the classical s-t minimum cut
problem. Also, the multicut problem is a generalization of the multiway cut prob-
lem [1], which is to find a minimum weight set of edges whose removal separates
every pair of a given set of vertices. For the general graphs, the multicut prob-
lem admits a polynomial-time O(log k)-approximation algorithm based on the
region growing scheme [4], where k is the number of given pairs. For the trees, the
multicut problem admits a polynomial-time 2-approximation algorithm which is
based on the primal-dual method [5]. In the same paper, the authors proved that
the multicut problem in trees is at least as hard to approximate as vertex cover
which can not be approximated within 2 − ε for any ε > 0 under the unique
game conjecture [12], implying that the algorithm in [5] maybe the best possible
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 203–211, 2019.
https://doi.org/10.1007/978-3-030-27195-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_19

204 X. Liu and W. Li

approximation algorithm. Zhang et al. [17] introduced the generalized multicut
problem in trees and presented an approximation algorithm. Liu and Zhang [15]
introduced the generalized multiway cut problem in trees and showed that it is
fixed parameter tractable according to the optimal value, which is improved by
Kanj et al. [11].

Levin and Segev [13] proposed the prize-collecting multicut problem in trees,
which is a generalization of the multicut problem in trees. In this variant we
are not required to separate all pairs. However, if the set of edges we pick does
not separate a pair (si, ti), we incur a penalty of πi. The objective is to find a
subset M of edges that minimizes the cost of M plus the penalties of unseparated
pairs. If πi = ∞ for every pair i, the prize-collecting multicut problem in trees is
exactly the multicut problem in trees [5]. Levin and Segev [13] proved that the
prize-collecting multicut problem in trees is equivalent to the multicut problem
in trees by modifying the original tree and collection of pairs. Thus, the prize-
collecting multicut problem admits a 2-approximation algorithm.

In combinatorial optimization, submodular functions play a key role some-
what similar to that played by convex/concave functions in continuous optimiza-
tion. Submodular function has the property of decreasing marginal return and
occur in many mathematical models in operations research, economics, engi-
neering, computer science, and management science [3]. Hayrapetyan et al. [6]
introduced the facility location problem with submodular penalties and pre-
sented a non-combinatorial 2.50-approximation algorithm. Du et al. [2] designed
a combinatorial 3-approximation algorithm for the same problem. More related
results can be found in [14].

Recently, Xu et al. [16] introduced the submodular vertex cover problem with
submodular penalties, which is to find a vertex subset to cover some edges and
penalize the uncovered edges such that the total cost including covering and
penalty is minimized. They presented a non-combinatorial 2.54-approximation
algorithm by using the ellipsoid method and the techniques proposed in [14], and
a combinatorial 4-approximation algorithm by relaxing the dual programs of the
linear program relaxations for the primal problem to a slightly weaker version.
Subsequently, Kamiyama [10] presented a combinatorial 3-approximation algo-
rithm based on the approximation algorithm of Iwata and Nagano [9] for the
submodular cost set cover problem.

Since the multicut in trees is a generalization of the vertex cover problem, it is
natural to consider the multicut in trees with submodular penalties (MCTSP, for
short), which is to find a subset M of edges that minimizes the cost of M plus the
penalty of the set of unseparated pairs which is defined by a submodular function.
Clearly, MCTSP is a generalization of the prize-collecting multicut problem in
trees proposed in [13]. However, it is not clear whether MCTSP is equivalent
to the multicut problem in trees. In this paper, we present a combinatorial 3-
approximation algorithm for MCTSP based on the primal-dual scheme in [5].

The remainder of this paper is organized as follows. In Sect. 2, we describe
the definition of MCTSP and some preliminaries. In Sect. 3, we give a primal-
dual 3-approximation algorithm for MCTSP. We present some conclusions and
possible directions for future research in the last section.

The Multicut Problem in Trees with Submodular Penalties 205

2 Preliminaries

We are given a tree T = (V,E), a cost function c : E → Z+, a set P = {(s1, t1),
(s2, t2), . . ., (sk, tk)} of k source-sink pairs of vertices where si, ti ∈ V , and a
monotone increasing submodular function π(·) : 2P → R+. Here, the set function
π(·) is submodular implying that

π(X ∪ Y) + π(X ∩ Y) ≤ π(X) + π(Y),∀X,Y ⊆ P.

The set function π(·) is monotone increasing implying that

π(X) ≤ π(Y),∀X ⊆ Y ⊆ P.

Without loss of generality, assume that π(∅) = 0. The multicut in trees with
submodular penalties (MCTSP, for short) is to find a partial multicut M ⊆ E
whose removal disconnects some source-sink pairs. Let R be the set of rejected
source-sink pairs, which are still connected after removing the edges in M . The
objective is to minimize the cost c(M) =

∑
e∈M c(e) of the partial multicut M

plus the submodular penalty cost π(R). Clearly, if π(R) > c(E) for arbitrary
R �= ∅ which implies that any pair cannot be rejected, the MCTSP problem is
exactly the multicut problem in trees considered in [5]. If π(R) =

∑
i:(si,ti)∈R πi

where πi is the penalty cost of rejecting the pair (si, ti) ∈ P , the MCTSP problem
is exactly the prize-collecting multicut problem in trees studied in [13].

Let Pi denote the unique path from si to ti in the tree. We introduce a binary
variable xe for each e ∈ E, where

xe =

{
1, if e ∈ M,

0, otherwise.

It implies that

c(M) =
∑

e:e∈M

c(e) =
∑

e:e∈E

c(e)xe.

The MCTSP problem can be formulated as the following program:

min
∑

e:e∈E

c(e)xe +
∑

R:R⊂P

π(R)zR

s.t.
∑

e∈E:e∈Pi

xe +
∑

R⊆P :(si,ti)∈R

zR ≥ 1,∀(si, ti) ∈ P, (1)

xe, zR ∈ {0, 1},∀e ∈ E,R ⊆ P.

The first set of constraints of (1) guarantees that each pair (si, ti) ∈ P is either
disconnected after removing the edges in M = {e ∈ E | xe = 1} or rejected. Due
to the submodularity of π(·), there must exist exactly one subset R ⊆ P such
that zR = 1 in the optimal solution of (1). Relaxing the integer constraints, we
obtain

206 X. Liu and W. Li

min
∑

e:e∈E

c(e)xe +
∑

R:R⊂P

π(R)zR

s.t.
∑

e∈E:e∈Pi

xe +
∑

R⊆P :(si,ti)∈R

zR ≥ 1, for i = 1, 2, . . . , k, (2)

xe, zR ≥ 0,∀e ∈ E,R ⊆ P.

The corresponding dual program is

max
k∑

i=1

yi

s.t.
∑

i:e∈Pi

yi ≤ c(e), ∀e ∈ E.

∑

i:(si,ti)∈R

yi ≤ π(R), ∀R ⊆ P. (3)

yi ≥ 0, for i = 1, 2, . . . , k.

For an instance of the MCTSP, let OPT be the optimal value of (1). Similarly,
let OPTR be the optimal value of (2) and OPTD be the optimal value of (3),
respectively. By the famous strong duality theorem, we have

Lemma 1. OPTD = OPTR ≤ OPT .

3 The Prima-Dual Approximation Algorithm

Following the primal-dual scheme designed in [5], we begin by rooting the tree
at an arbitrary vertex, say r. The level of a vertex is its distance from the root
r. The level of root r is 0. The level of an edge e = (u, v) with u, v ∈ V is the
minimum level of u and v. A source-sink pair (si, ti) ∈ P is contained in the
subtree Tv rooted at v if the corresponding path Pi lies completely within this
subtree. A pair (si, ti) is contained in level l if it is contained in a subtree rooted
at some vertex in level l. Let lmax be the maximum level which contains at least
a pair in P .

An edge e1 is an ancestor of an edge e2 if e1 lies on the path from e2 to the
root. For each v ∈ V , let Pv be the set of pairs which are contained in the subtree
Tv rooted at v. For an edge e ∈ E, it is called tight if it satisfies

∑
i:e∈Pi

yi = c(e).
Similarly, a set R ⊂ P is called tight if it satisfies

∑
i:(si,ti)∈R yi = π(R).

Initially, set M = R = ∅, yi = 0 for i = 1, 2, . . . , k, P disc = ∅ and Rtemp = ∅,
where P disc denotes the set of pairs which are disconnected after removing the
edges in M , and Rtemp denotes the set of pairs which are rejected temporarily.
The algorithm makes two phases over the tree.

Phase 1. We move up the tree from level lmax to level 0, one level at a
time, picking some edges (a subset of these edges will be retained as the partial
multicut). At each level l = lmax, lmax − 1, . . . , 0, for every vertex v in level l
such that Tv contains at least one pair in P \ (P disc ∪ Rtemp), let Pv contain all

The Multicut Problem in Trees with Submodular Penalties 207

the pair of P \ (P disc ∪ Rtemp) in the subtree Tv. For each pair (si, ti) ∈ Pv, we
increase the dual variable yi as much as possible. According the constraints of
(3), we distinguish the following two cases in this process.

Case 1. There is an edge e ∈ Pi becomes tight. Add (si, ti) to the set P disc.
If there are two “new” tight edges such that one is an ancestor of the other, then
one of these edges is redundant for disconnecting (si, ti). We add the edge that
is the ancestor to the set of frontier(v), which the frontier of vertex v. Else,
add all the “new” tight edges (at most two edges) to frontier(v). If there are
two edges in frontier(v) such that one is an ancestor of the other, then we only
need the ancestor in the set of frontier(v).

Case 2. There is a subset R ⊆ P becomes tight. Add all the pairs in these
“new” tight subsets to the temporary set Rtemp.

Phase 2. We move down the tree one level from level 0 to level lmax, one
level at a time, and build the partial multicut M . At each level l = 0, 1, . . . , lmax,
for every vertex v in level l such that frontier(v)�= ∅, consider the edges in
frontier(v). For each edge e ∈ frontier(v), if no edge along the path from e to
v is already included in the partial multicut M , add e to M . Finally, for each
pair (si, ti) ∈ Rtemp, if there is no edge e ∈ M ∩ Pi, then add (si, ti) to R.

Lemma 2. The above algorithm can be implemented in polynomial time.

Proof. Consider the process in Phase 1. When we compute the value of yi
corresponding to the pair (si, ti) ∈ Pv, to ensure the first set of constraints of
(3), the value of yi is at most

Δi,e = min
e:e∈Pi

(c(e) −
∑

j:e∈Pj ,j �=i

yj).

Clearly, the value of Δi,e can be found in polynomial time by computing c(e) −∑
j:e∈Pj ,j �=i yj for every edge e ∈ Pi.
For any subset R ⊆ P , we define y(R) =

∑
i:(si,ti)∈R(−yi). Clearly, y(·) is a

modular function. To ensure the second set of constraints of (3), the value of yi
is at most

Δi,R = min
R⊆P :(si,ti)∈R

(π(R) −
∑

j:(sj ,tj)∈R,j �=i

yj) = min
R⊆P :(si,ti)∈R

(π(R) + y(R)),

where the last equality follows the fact yi = 0 before increasing the value of yi.
Since π(·) is a submodular function and y(·) is a modular function, π(·) + y(·)
is a submodular function, which is easy to verify. Therefore, the value of Δi,R

can be found in polynomial time by using the combinatorial algorithm for the
submodular minimization problem [8].

This implies that

yi = min{Δi,e,Δi,R}
can be computed in polynomial time. It is easy to verify other processes can be
implemented in polynomial time. Thus, the lemma holds.

208 X. Liu and W. Li

Lemma 3. The temporary set Rtemp of rejected pairs satisfies

π(Rtemp) =
∑

i:(si,ti)∈Rtemp

yi. (4)

Proof. Let S be the set of tight subsets of Rtemp such that for any S ∈ S ,
we have S ⊆ Rtemp and π(S) =

∑
i:(si,ti)∈S yi. Consider any two different tight

subsets S1 and S2 in S . By the definition, we have

π(S1) =
∑

i:(si,ti)∈S1

yi, and π(S2) =
∑

i:(si,ti)∈S2

yi.

Therefore,
∑

i:(si,ti)∈S1∪S2

yi +
∑

i:(si,ti)∈S1∩S2

yi =
∑

i:(si,ti)∈S1

yi +
∑

i:(si,ti)∈S2

yi

= π(S1) + π(S2)
≥ π(S1 ∪ S2) + π(S1 ∩ S2)

≥ π(S1 ∪ S2) +
∑

i:(si,ti)∈S1∩S2

yi,

where the first inequality follows from the submodularity of π(·), and the second
inequality follows from the second set of constraints of (3). It implies that

∑

i:(si,ti)∈S1∪S2

yi ≥ π(S1 ∪ S2).

Moveover,
∑

i:(si,ti)∈S1∪S2
yi = π(S1 ∪ S2), following from the second set of

constraints of (3). It means that S1 ∪ S2 is a tight subset. Repeating merging
the tight subsets, we obtain that ∪S∈S S is a tight subset. As every pair in
must be in a tight subset S ∈ S , Rtemp = ∪S∈S S is a tight subset, i.e.,
π(Rtemp) =

∑
i:(si,ti)∈Rtemp yi.

Lemma 4. For any pair (si, ti) ∈ P , either |M ∩ Pi| ≥ 1 or (si, ti) ∈ R.

Proof. If not, we need to increase the dual variable yi corresponding to (si, ti)
until Case 1 or Case 2 in Phase 1 occurs. Thus, the lemma holds according to
the process in two phases.

Lemma 4 implies that (M,R) is a feasible solution for the MCTSP problem.

Lemma 5. For any pair (si, ti) ∈ P , the partial multicut M satisfies |M ∩
Pi| ≤ 2.

Proof. Similar to the proof of the Lemma 5.1 in [5].

Theorem 6. (M,R) is a 3-approximation solution for the MCTSP problem.

The Multicut Problem in Trees with Submodular Penalties 209

Proof. For an instance of the MCTSP, the objective value of (M,R) is

OUT =
∑

e:e∈M

c(e) + π(R) =
∑

e:e∈M

∑

i:e∈Pi

yi + π(R)

=
k∑

i=1

∑

e:e∈M∩Pi

yi + π(R) =
k∑

i=1

yi|M ∩ Pi| + π(R)

≤ 2
k∑

i=1

yi + π(R) ≤ 2
k∑

i=1

yi + π(Rtemp)

= 2
k∑

i=1

yi +
∑

i:(si,ti)∈Rtemp

yi ≤ 3
k∑

i=1

yi

≤ 3OPTD ≤ 3OPT,

where the first inequality follows from Lemma 5, the second inequality follows
from the fact R ⊆ Rtemp, the last equality follows from Lemma3, and the last
inequality follows from Lemma 1.

4 Conclusion

We introduce the multicut in trees with submodular penalties, which generalizes
the vertex cover problem with submodular penalties, the multicut in trees, and
the prize-collecting multicut problem in trees. By extending the primal-dual
scheme in [5], we obtain a combinatorial 3-approximation algorithm.

Noting that the recent papers [10,16] studied the submodular vertex cover
problem with submodular penalties, it is interesting to consider the submodular
multicut in trees with submodular penalties, which can be formulated as

min
∑

M :M⊂E

c(M)xM +
∑

R:R⊂P

π(R)zR

s.t.
∑

M⊆E:Pi∩M �=∅

xM +
∑

R⊆P :(si,ti)∈R

zR ≥ 1, for i = 1, 2, . . . , k,

xM , zR ∈ {0, 1},∀M ⊆ E,R ⊆ P.

Here, both c(·) and π(·) are submodular functions. Relaxing the integer con-
straints, we obtain

min
∑

M :M⊂E

c(M)xM +
∑

R:R⊂P

π(R)zR

s.t.
∑

M⊆E:Pi∩M �=∅
xM +

∑

R⊆P :(si,ti)∈R

zR ≥ 1, for i = 1, 2, . . . , k,

xM , zR ≥ 0,∀M ⊆ E,R ⊆ P.

210 X. Liu and W. Li

The corresponding dual program is

max
k∑

i=1

yi

s.t.
∑

i:Pi∩M �=∅
yi ≤ c(M), ∀M ⊆ E.

∑

i:(si,ti)∈R

yi ≤ π(R), ∀R ⊆ P.

yi ≥ 0, for i = 1, 2, . . . , k.

The combinatorial 3-approximation algorithm for the submodular vertex cover
problem with submodular penalties [10] can not be extended to the submodular
multicut in trees with submodular penalties directly. It is challenging to design
a novel combinatorial 3-approximation algorithm.

Acknowledgements. The work is supported in part by the National Natural Science
Foundation of China [No. 61662088], Program for Excellent Young Talents of Yunnan
University, Training Program of National Science Fund for Distinguished Young Schol-
ars, IRTSTYN, and Key Joint Project of the Science and Technology Department of
Yunnan Province and Yunnan University [No. 2018FY001(-014)].

References

1. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

2. Du, D., Lu, R., Xu, D.: A primal-dual approximation algorithm for the facility
location problem with submodular penalties. Algorithmica 63, 191–200 (2012)

3. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Elsevier, Amster-
dam (2005)

4. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi) cut
theorems and their applications. SIAM J. Comput. 25(2), 235–251 (2006)

5. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

6. Hayrapetyan, A., Swamy, C., Tardos, E.: Network design for information networks.
In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 933–942 (2005)

7. Hu, T.C.: Integer Programming and Network Flows. Addison-Wesley, Reading
(1969)

8. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions. J. ACM 48(4), 761–777 (2001)

9. Iwata, S., Nagano, K.: Submodular function minimization under covering con-
straints. In: The 50th Annual Symposium on Foundations of Computer Science,
FOCS, pp. 671–680 (2009)

10. Kamiyama, N.: A note on the submodular vertex cover problem withsubmodular
penalties. Theor. Comput. Sci. 659, 95–97 (2017)

11. Kanj, I., et al.: Improved parameterized and exact algorithms for cut problems on
trees. Theor. Comput. Sci. 607, 455–470 (2015)

The Multicut Problem in Trees with Submodular Penalties 211

12. Khot, S., Regev, O.: Vertex cover might be hard to approximateto with 2 − ε. J.
Comput. Syst. Sci. 74(3), 335–349 (2008)

13. Levin, A., Segev, D.: Partial multicuts in trees. Theor. Comput. Sci. 369(1–3),
384–395 (2006)

14. Li, Y., Du, D., Xiu, N., Xu, D.: Improved approximation algorithms for the facility
location problems with linear/submodular penalties. Algorithmica 73(2), 460–482
(2015)

15. Liu, H., Zhang, P.: On the generalized multiway cut in trees problem. J. Comb.
Optim. 27(1), 65–77 (2014)

16. Xu, D., Wang, F., Du, D., Wu, C.: Approximation algorithms for submodular ver-
tex cover problems with linear/submodular penalties using primal-dual technique.
Theor. Comput. Sci. 630, 117–125 (2016)

17. Zhang, P., Zhu, D., Luan, J.: An approximation algorithm for the generalized k-
multicut problem. Discrete Appl. Math. 160(7–8), 1240–1247 (2012)

Algorithmic Aspect on the Minimum
(Weighted) Doubly Resolving Set

Problem of Graphs

Changhong Lu(B), Qingjie Ye, and Chengru Zhu

School of Mathematical Sciences, Shanghai Key Laboratory of PMMP,
East China Normal University, Shanghai 200241, People’s Republic of China

chlu@math.ecnu.edu.cn, mathqjye@qq.com

Abstract. Let G be a simple graph, where each vertex has a nonneg-
ative weight. A vertex subset S of G is a doubly resolving set (DRS)
of G if for every pair of vertices u, v in G, there exist x, y ∈ S such
that d(x, u) − d(x, v) �= d(y, u) − d(y, v). The minimum weighted dou-
bly resolving set (MWDRS) problem is finding a doubly resolving set
with minimum total weight. We establish a linear time algorithm for the
MWDRS problem of all graphs in which each block is complete graph or
cycle. Hence, the MWDRS problems for block graphs and cactus graphs
can be solved in linear time. We also prove that k-edge-augmented tree
(a tree with additional k edges) with minimum degree δ(G) ≥ 2 admits
a doubly resolving set of size at most 2k + 1. This implies that the DRS
problem on k-edge-augmented tree can be solved in O(n2k+3) time.

Keywords: Doubly resolving set · Block graph · Cactus graph ·
k-edge-augmented trees

1 Introduction

Let G be a finite, connected, simple and undirected graph with vertex set V =
V (G) and edge set E = E(G). The distance between vertices u and v is denoted
by d(u, v). The minimum degree of G is denoted by δ(G).

A set of vertices S resolves a graph G if every vertex is uniquely determined
by its vector of distances to the vertices in S. Resolving sets were independently
defined in the 1970s by Slater [16], Harary and Melter [9]. Resolving sets have
since been widely investigated, see [1,3,6,7,10].

Locating the source of a diffusion in complex networks is an intriguing chal-
lenge [8,14,15]. Placing an observer at vertex v incurs a cost, and the observer
with a clock can record the time at which the state of v is changed. Typically, the
time when the single source originates an information is unknown. The observers

Supported in part by National Natural Science Foundation of China (Nos. 11371008,
11871222) and Science and Technology Commission of Shanghai Municipality (No.
18dz2271000).

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 212–222, 2019.
https://doi.org/10.1007/978-3-030-27195-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_20

Algorithmic Aspect on the Minimum (Weighted) DRS Problem of Graphs 213

can only report the times they receive the information. The information is dif-
fused from the source to any vertex through shortest paths in the network. Our
goal is to select a subset S of vertices with minimum total cost such that the
source can be uniquely located by the “infected” times of vertices in S. This
problem is equivalent to finding a minimum weighted doubly resolving set in
networks [4].

Doubly resolving sets were introduced by Cáceres et al. [2] as a tool for
researching resolving sets. Let G be a graph of order n ≥ 2, and each vertex
v ∈ V has a nonnegative weight w(v). We say that {x, y} doubly resolves {u, v},
if

d(x, u) − d(x, v) �= d(y, u) − d(y, v).

For any S ⊆ V , we define w(S) =
∑

s∈S w(s). A vertex subset S of G is a doubly
resolving set (DRS) of G if every pair of vertices in G is doubly resolved by some
pair of vertices in S. The minimum weighted doubly resolving set (MWDRS)
problem is finding a doubly resolving set with minimum total weight. In the
special case where all vertex weights are equal to 1, the problem is referred to
as the minimum doubly resolving set (MDRS) problem.

As far as general graphs are concerned, the MDRS problem has been proved
to be NP-hard [11]. A polynomial time algorithm was given by Chen et al. [5]
to find the MWDRS of given trees, cycles, wheels and k-edge-augmented tree (a
tree with additional k edges).

Other researchers have contributed to the other special graphs, such as Ham-
ming graphs [12], prism graphs [17] and convex polytopes [13].

A cut-vertex is a vertex whose removal increases the number of connected
components. A graph G is 2-connected if |V | > 2 and G is a connected graph
that has no cut-vertex. A block of a graph G is a maximal connected subgraph
of G that has no cut-vertex. If each block of G is a clique, then G is a block
graph. If each block of G is either an edge or a cycle, then G is a cactus graph.
Note that a tree is a block graph and also is a cactus graph since each block of
a tree is K2.

In Sect. 2, we give a main theorem (Theorem 2) concerning on the MDRS
problem for graphs with cut-vertices. From Theorem 2, we can establish a linear
time algorithm for the MWDRS problem of G if each block of G is complete
graph or cycle. This implies that the MWDRS problem for block graphs and
cactus graphs can be solved in linear time. In Sect. 3, We prove that k-edge-
augmented tree with minimum degree δ(G) ≥ 2 admits a doubly resolving set of
size at most 2k + 1 by using an algorithmic proof. This result implies that the
DRS problem on k-edge-augmented tree can be solved in O(n2k+3) time.

2 Algorithm for Graphs with Cut-Vertices

In this section, we research the graph with cut-vertices. If G has a cut-vertex r,
then G can divide into two graphs G1 and G2.

Lemma 1. Let G1 = (V1, E1), G2 = (V2, E2), G = (V1 ∪ V2, E1 ∪ E2), where
V1 ∩ V2 = {r}.

214 C. Lu et al.

(a) If Si is a DRS of Gi(i = 1, 2), then S = S1 ∪ S2\{r} is a DRS of G.
(b) If S is a DRS of G, then (S ∩ Vi) ∪ {r} is a DRS of Gi(i = 1, 2).
(c) If S is a DRS of G, then S\{r} is also a DRS of G.

Proof.(a) First observe that if x ∈ V1, y ∈ V2, then d(x, y) = d(x, r) + d(r, y).
If x, y belong to the same Vi, say x, y ∈ V1. Since S1 is a DRS of G1, there
exist u, v ∈ S1, such that d(u, x)−d(u, y) �= d(v, x)−d(v, y). If u, v �= r, then
u, v ∈ S and we are done. Otherwise, without loss of generality, we assume
that u = r. Choose z ∈ S2\{r}, then

d(z, x) − d(z, y) = d(z, u) + d(u, x) − (d(z, u) + d(u, y)) = d(u, x) − d(u, y),

saying {x, y} is doubly resolved by {z, v}.
If x, y belong to the different Vi, say x ∈ V1, y ∈ V2. Since S1 is a DRS of
G1, there exist u, v ∈ S1, such that d(u, x) − d(v, x) �= d(u, r) − d(v, r). If
u, v �= r, then u, v ∈ S and

d(u, y) − d(v, y) = d(u, r) + d(r, y) − (d(v, r) + d(r, y)) = d(u, r) − d(v, r),

saying {x, y} is doubly resolved by {u, v}. Otherwise, without loss of gen-
erality, we assume that u = r. We have d(v, x) − d(r, x) �= d(v, r). Choose
z ∈ S2\{r}, then

d(v, x) − d(z, x) < d(v, r) + d(r, x) − (d(z, r) + d(r, x)) = d(v, r) − d(z, r),

d(v, y) − d(z, y) ≥ d(v, r) + d(r, y) − (d(z, r) − d(r, y)) = d(v, r) − d(z, r),

saying {x, y} is doubly resolved by {z, v}.
(b) For each x, y ∈ V1, there exist u, v ∈ S, such that d(u, x)−d(u, y) �= d(v, x)−

d(v, y). If u, v ∈ S1, we have finished. If u, v ∈ S2, then

d(u, x) − d(u, y) = d(u, r) + d(r, x) − (d(u, r) + d(r, y)) = d(r, x) − d(r, y),

d(v, x) − d(v, y) = d(v, r) + d(r, x) − (d(v, r) + d(r, y)) = d(r, x) − d(r, y),

a contradiction. If u ∈ S1, v ∈ S2, then

d(v, x) − d(v, y) = d(v, r) + d(r, x) − (d(v, r) + d(r, y)) = d(r, x) − d(r, y),

saying {x, y} is doubly resolved by {u, r}.
(c) If r /∈ S, we have done. If r ∈ S, then Si = S ∩ Vi is a DRS of Gi by (b).

Thus, S\{r} = S1 ∪ S2\{r} is a DRS of G by (a).
�	

According to Lemma 1, when we consider the doubly resolving set problem
in each block of G, we can assume that cut-vertices are belong to S. Thus, we
have to introduce the following definition.

Given D ⊆ V , we define S to be a D-doubly resolving set (D-DRS) of G
if D ⊆ S and S is a DRS of G. If S is a D-DRS of G with minimum total
weight, then S is a D-minimum weighted doubly resolving set (D-MWDRS). In
particular, if D = ∅, then D-DRS is equivalent to DRS.

Algorithmic Aspect on the Minimum (Weighted) DRS Problem of Graphs 215

Theorem 1. Let G1 = (V1, E1), G2 = (V2, E2), G = (V1 ∪ V2, E1 ∪ E2), where
V1 ∩ V2 = {r}. Let D be a vertex subset of G and Di = D ∩ Vi(i = 1, 2).

(a) If r /∈ D and Si is a Di ∪ {r}-MWDRS of Gi (i = 1, 2), then S1 ∪ S2\{r} is
a D-MWDRS of G.

(b) If r ∈ D and Si is a Di-MWDRS of Gi (i = 1, 2), then S1 ∪ S2 is a D-
MWDRS of G.

Proof. If T is a D-DRS of G, then (T ∩ Vi) ∪ {r} is a Di ∪ {r}-DRS of Gi by
Lemma 1(b). Since Si is a Di ∪ {r}-MWDRS of Gi, we have

w(T\{r}) =
2∑

i=1

[w((T ∩Vi)∪{r})−w(r)] ≥
2∑

i=1

[w(Si)−w(r)] = w(S1∪S2\{r}).

Lemma 1(a) shows that S1 ∪ S2\{r} is a D\{r}-DRS of G. Therefore, when
r /∈ D, S1 ∪ S2\{r} is a D-MWDRS of G. If r ∈ D, then r ∈ T and T\{r} is a
D\{r}-DRS of G. In this case, we have

w(T) = w(r) + w(T\{r}) ≥ w(r) + w(S1 ∪ S2\{r}) = w(S1 ∪ S2).

Thus, S1 ∪ S2 is a D-MWDRS of G when r ∈ D. �	
If G is not 2-connected, then there are at least two end-blocks that each

contains exactly one cut-vertex of G. Finding all blocks of G can be finished by
Breadth First Search algorithm in linear time.

Theorem 2. Let G = (V,E) be a graph which is not 2-connected. Let V =⋃p
i=1 Vi such that Gi = G[Vi] is a block of G and E(Gi) ∩ E(Gj) = ∅(i �= j).

Let R be the set of all cut-vertices of G and Ri = R ∩ Vi (i = 1, . . . , p). Let D
be a vertex subset of G and Di = D ∩ Vi(i = 1, . . . , p). Let U = R ∩ D and Si

be a (Di ∪ Ri)-MWDRS of Gi(i = 1, . . . , p). Then S =
⋃p

i=1(Si\Ri) ∪ U is a
D-MWDRS of G.

Proof. We use induction on p. For p = 1, it is trivial. For p > 1, without
loss of generality, we assume that Gp is an end-block which means |Rp| = 1. Let

Rp = {r}, H = G
[⋃p−1

i=1 Vi

]
. Let DH = (D∩V (H))∪{r} and UH = DH ∩U . By

induction, S′ =
⋃p−1

i=1 (Si\Ri)∪UH is a DH -MWDRS of H. Applying Theorem 1
for H and Gp, we have finished the proof. �	

From Theorem 2, we can establish a linear time algorithm for the MWDRS
problem of G if the D-MWDRS problem for each block of G can be computed in
linear time. Now we focus on the graph in which each block is a complete graph
or a cycle.

Lemma 2. Let Kn be a complete graph of order n ≥ 2. Let D be a vertex
subset of Kn and u be the vertex with minimum weight in V \D. Then S is a
D-MWDRS of Kn, where

S =

{
V if n = 2 or D = V,

V \{u} if n > 2 and D �= V.

216 C. Lu et al.

Proof. It is trivial if n = 2 or D = V . Now we assume that n ≥ 3 and D �= V .
Let x, y be the two distinct vertices of S. Then {x, y} can doubly resolves {x, y},
since d(x, x) − d(x, y) = −1 and d(y, x) − d(y, y) = 1. Besides, {x, y} doubly
resolves {u, x} since d(u, x) − d(u, y) = 0 and d(x, x) − d(x, y) = −1. Thus S is
a D-DRS of Kn. Let T be a D-DRS of G. If |T | ≤ n − 2, then for any u, v /∈ T
and x, y ∈ T , we have d(u, x) − d(u, y) = d(v, x) − d(v, y) = 0, a contradiction.
By the definition of u, we have w(T) ≥ w(S). Thus S is a D-MWDRS of Kn. �	
Recall that the block is a graph in which each block is a complete graph. By
Theorem 2 and Lemma 2, we get the following theorem.

Theorem 3. The MWDRS problem on block graphs can be solved in O(|V |+|E|)
time. �	

Now we consider the D-MWDRS problem for cycles. Chen et al. [5] proved
the following lemma and corollary.

Lemma 3 ([5]). Let Cn be a cycle of order n and S be a subset of V with at least
two vertices. Let PS be a set of edge-disjoint paths such that they are internally
disjoint from S and their union is Cn. Then S is a DRS of Cn if and only if
no path PS has length longer than �n/2 and at least one path in PS has length
shorter than n/2.

Corollary 1 ([5]). If an MWDRS of Cn has cardinality 3, then there exists an
MWDRS that contains the minimum weight vertex in Cn.

We design the Algorithm 1 to solve the D-MWDRS problem of cycle Cn.
Now we prove the correctness of our algorithm.

Lemma 4. Algorithm 1 finds a D-MWDRS of Cn in O(n) time.

Proof. It is easy to check the algorithm runs in O(n) time by Lemma 3. We need
to prove the correctness of the algorithm.

If |D| ≤ 1, then |S| ∈ {2, 3} by Lemma 3. If |S| = 2, the only situation is that
n is odd and |D| ≤ 1. This situation is dealt in lines 4–5 and 8–9. If n is even, then
for each u ∈ V −{v1, v1+n/2}, S = {u, v1, v1+n/2} is a DRS of Cn. This situation
is dealt in lines 10–11. If |S| = 3 and |D| ≤ 1, then v1 ∈ S by Corollary 1 and
the definition. Assume S = {v1, vj , vi} with j < i. Then 2 ≤ j ≤ �n/2� and
2+ �n/2 ≤ i ≤ j + �n/2 since j = 1+ �n/2� or i = 1+ �n/2 has been consider
before. This situation is dealt in lines 12–17. Note that our algorithm confirms
that vi is the minimum weight vertex in {v2+�n/2�, . . . , vj+�n/2�}.

If |D| ≥ 2, then |S| ∈ {|D|, |D| + 1, |D| + 2} by Lemma 3. If |S| = |D|, then
D is a D-MWDRS. Algorithm would stop in line 21. We deal the situation if
|S| = |D|+1 in lines 23–26 and deal the situation if |S| = |D|+2 in lines 27–32.
Note that if |S| = |D| + 2 then l ≥ 3 + �n/2. �	

Recall that if each block of G is either an edge or a cycle, then G is a cactus
graph. By Theorem 2 and Lemma 4, we get the following theorem.

Algorithmic Aspect on the Minimum (Weighted) DRS Problem of Graphs 217

Algorithm 1. Finding a D-MWDRS in cycle Cn.
Input: A cycle Cn = (V, E, w) and a vertex set D ⊆ V .
Output: The D-MWDRS S.

1 if |D| ≤ 1 then
2 if |D| = 0 then
3 let G := v1v2 . . . vnv1 with w(v1) := min{w(v)|v ∈ V };
4 if n is odd then
5 S := arg min w({vi, vi+(n−1)/2}), W := w(S);

6 else if |D| = 1 then
7 let G := v1v2 . . . vnv1, where v1 is the vertex in D;
8 if n is odd then
9 S := arg min{w({v1, v(n+1)/2}), w({v1, v(n+3)/2})}, W := w(S);

10 if n is even then
11 u := arg min{w(v)|v ∈ G − {v1, v1+n/2}}, S := {u, v1, v1+n/2}, W :=

w(S);

12 i := 2 + �n/2�;
13 for j := 2 to 	n/2
 do
14 if w(vj+�n/2�) < w(vi) then
15 i := j + �n/2�;
16 if w(vj) + w(vi) + w(v1) < W then
17 S := {v1, vj , vi}, W := w(S);

18 else
19 if D is a DRS of Cn then
20 S := D;
21 return;

22 let G := v1v2 . . . vnv1 with v1, vl are endpoints of the longest path in PD;
23 if n is even and D = {v1, v1+n/2} then
24 u := arg min{w(v)|v ∈ V − D}, S := {u, v1, v1+n/2}, W := w(S);
25 else
26 u := arg min{w(v)|v ∈ {vl−�n/2�, . . . , v1+�n/2�}}, S := {u} ∪ D, W :=

w(S);
27 i := 2 + �n/2�;
28 for j := 2 to l − 1 − �n/2� do
29 if w(vj+�n/2�) < w(vi) then
30 i := j + �n/2�;
31 if w(vj) + w(vi) + w(D) < W then
32 S := {vj , vi} ∪ D, W := w(S);

Theorem 4. The MWDRS problem on cactus graphs can be solved in O(|V | +
|E|) time. �	
In fact, by Theorem 2 and Lemmas 2, 4, the MWDRS problem can be solved in
linear time when each block of G is cycle or complete graph. Here is an example.

Example 1. Consider the graph of Fig. 1 which all vertex weights is 1. A solid
black circle means cut-vertex. It is easy to see that the set of all hollow circle is
an MWDRS of G.

218 C. Lu et al.

Fig. 1. A graph G with five blocks.

3 k-Edge-Augmented Trees

Recall that a connected graph is called a k-edge-augmented tree if the removal
of at most k edges from the graph leaves a spanning tree. In [5], the following
theorem is proved.

Theorem 5 ([5]). For k ≥ 2, let G be a k-edge-augmented tree with δ(G) ≥ 2.
If S is an MWDRS of G, then |S| ≤ 12k − 12.

In order to get a better upper bound when G is an unweighted graph, we
design the Algorithm 2.

Theorem 6. For k ≥ 1, let G be a k-edge-augmented tree with δ(G) ≥ 2. Then
we can get a doubly resolving set S of G such that |S| ≤ 2k + 1 by Algorithm 2
in O(|V | + |E|) time.

Proof. Our algorithm use the technique of breadth-first search(BFS) except lines
18–26. Because each vertex change the key value at most once and lines 18–26
run k times, the total time spent in lines 18–26 is O(k + |V |) = O(|V | + |E|).
Since the breadth-first search takes O(|V | + |E|) time, the total running time is
O(|V | + |E|).

Since line 18 runs k times and line 8 runs once, the cardinality of S is at
most 1 + 2k.

Claim. For each vertex v, d(u, v.key) = d(u, v) + d(v, v.key).

Proof. Since each edge belongs to a cycle by δ(G) ≥ 2, v.key �= NIL. Let
v0 = v, vi+1 = vi.π and Pv,u = v0v1 . . . vd(u,v). According to the property of
BFS, Pv,u is a shortest path from v to u. Because v belongs to Pv.key,u, we have
d(u, v.key) = d(u, v) + d(v, v.key). (�)

Let v, w be the two distinct vertices of V . Suppose without loss of general-
ity that d(u, v) ≤ d(u,w). If {u,w.key} doubly resolves {v, w}, we have done.
Otherwise, we have

d(v, w.key) − d(v, u) = d(w,w.key) − d(w, u).

Algorithmic Aspect on the Minimum (Weighted) DRS Problem of Graphs 219

Algorithm 2. Finding a DRS in the k-edge-augmented tree G with
δ(G) ≥ 2.
Input: A k-edge-augmented tree G = (V, E) with δ(G) ≥ 2 and a vertex u.
Output: A doubly resolving set S.

1 for each vertex v ∈ V do
2 v.visit := false;
3 v.π := NIL;
4 v.key := NIL;

5 u.visit := true;
6 u.key := u;
7 put u in a queue;
8 S := {u};
9 while the queue is not empty do

10 remove the first vertex v from queue;
11 for all unmarked edge (v, w) do
12 mark (v, w);
13 if w.visit = false then
14 w.visit := true;
15 w.π := v;
16 put w in a queue;

17 else
18 S := S ∪ {v, w};
19 x := v;
20 while x.key = NIL do
21 x.key := v;
22 x := x.π;

23 x := w;
24 while x.key = NIL do
25 x.key := w;
26 x := x.π;

Since

d(u, v) + d(v, w.key)
≥d(u,w.key)
=d(u,w) + d(w,w.key)
=d(u, v) + d(v, w.key) + (d(u,w) − d(u, v)) + (d(w,w.key) − d(v, w.key))
=d(u, v) + d(v, w.key) + 2(d(u,w) − d(u, v))
≥d(u, v) + d(v, w.key),

we have d(u,w) = d(u, v) and d(v, w.key) = d(w,w.key). Let x be the vertex
such that d(v, w.key) = d(v, x) + d(x,w.key) and x.key = w.key with d(v, x)
minimal. Let y be the vertex such that d(v, x) = d(v, y)+d(y, x) and (x, y) ∈ E.
By definition, y �= x.π. Thus, when (x, y) visits, it leads to x, y ∈ S. If x �= w.key,
then d(u, x) < d(u,w.key), a contradiction. If x = w.key and d(w, y) = d(v, y),
then since d(u, y) < d(u,w.key), it leads to a contradiction. Thus, y ∈ S and
d(w, y) �= d(v, y). We have

220 C. Lu et al.

d(v, w.key) − d(v, y) = d(w,w.key) − d(v, y) �= d(w,w.key) − d(w, y).

It implies that {w.key, y} doubly resolves {v, w}. �	
Theorem 6 implies that the DRS problem on k-edge-augmented tree can be

solved in O(n2k+3) time. Firstly, we can compute S by Algorithm 2 in O(n + k)
time. Secondly, if S isn’t an MDRS, then the MDRS must belongs to U = {T ⊆
V |2 ≤ |T | < |S|}|. Finally, since we can verify whether T ∈ U is a DRS in O(n3)
time and |U | ≤ n2k, we can solve it in O(n2k+3) time.

Corollary 2. Let G be a k-edge-augmented tree with δ(G) ≥ 2 and k ≥ 2. If G
has a cut-vertex u, then there exists a doubly resolving set S with |S| ≤ 2k.

Proof. By Theorem 6, we can get a doubly resolving set S with u ∈ S and
|S| ≤ 1 + 2l. By Lemma 1(c), T = S\{u} is also a doubly resolving set of G and
|T | ≤ 2k. �	
The Corollary 2 is tight. To see this, let Tk be the graph arises from k C4 by
pasting these graphs together along a vertex. The graph of T4 is shown in Fig. 2.
It is easy to check that dr(Tk) = 2k by Theorem 4.

In fact, we can prove that Theorem 6 is not tight when k = 2.

Theorem 7. If G be a 2-edge-augmented tree with δ(G) ≥ 2, then there exists
a doubly resolving set S with |S| ≤ 4.

Proof. If G is a cut-vertex, we have done by Corollary 2. Thus we assume that
G is a 2-connected graph. By ear decomposition theorem, G can be decom-
posed three paths P1, P2, P3 with same end vertices s, t. Suppose without loss
of generality that |P1| ≤ |P2| ≤ |P3|. Let P1 = su1 . . . uat, P2 = sv1 . . . vbt, P3 =
sw1 . . . wct. Figure 3 is shown the graph when a = 1, b = 3, c = 5.

Let S = {s, t, v�b/2�, w�c/2�}, then we prove that S is a DRS of G. Firstly,
since C1 = sv1 . . . vbtua . . . u1s, C2 = sw1 . . . wctua . . . u1s satisfying dG(x, y) =

Fig. 2. The graph T4

u1

s

t

v1

v2

v3

w1

w2

w3

w4

w5

Fig. 3. A 2-connected 2-edge-augmented
tree

Algorithmic Aspect on the Minimum (Weighted) DRS Problem of Graphs 221

dCi
(x, y) when x, y ∈ Ci. According to Lemma 3, S can doubly resolving {x, y}.

Therefore, we just need to prove that {vi, wj} can be doubly resolved.
Since d(vi, w�c/2�) > �c/2 ≥ d(wj , w�c/2�) and d(vi, v�b/2�) ≤ �b/2 <

d(wj , v�b/2�), we have

d(vi, v�b/2�) − d(vi, w�b/2�) < �b/2 − �c/2 < d(wj , v�c/2�) − d(wj , w�c/2�).

That implies that {vi, wj} can be doubly resolved by {v�b/2�, w�c/2�}. �	

4 Open Problem

We pose the following conjecture that we have yet to settle.

Conjecture 1. For k ≥ 2, if G be a k-edge-augmented tree with δ(G) ≥ 2, then
there exists a doubly resolving set S with |S| ≤ 2k.

We remark that if k = 2 in the statement of Conjecture 1, then the conjecture
is true by Theorem 7. When k ≥ 3, we have yet to settle the conjecture when G
is a 2-connected graph by Corollary 2.

References

1. Bailey, R.F., Cameron, P.J.: Base size, metric dimension and other invariants of
groups and graphs. Bull. Lond. Math. Soc. 43(2), 209–242 (2011)

2. Cáceres, J., et al.: On the metric dimension of Cartesian products of graphs. SIAM
J. Discrete Math. 21(2), 423–441 (2007)

3. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs
and the metric dimension of a graph. Discrete Appl. Math. 105(1–3), 99–113 (2000)

4. Chen, L., Lu, C., Zeng, Z.: Labelling algorithms for paired-domination problems
in block and interval graphs. J. Comb. Optim. 19(4), 457–470 (2010)

5. Chen, X., Wang, C.: Approximability of the minimum weighted doubly resolving
set problem. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS,
vol. 8591, pp. 357–368. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08783-2 31

6. Dı́az, J., Pottonen, O., Serna, M., van Leeuwen, E.J.: On the complexity of metric
dimension. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp.
419–430. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-
2 37

7. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs:
hard and easy cases. Algorithmica 72(4), 1130–1171 (2015)

8. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and
influence. ACM Trans. Knowl. Discov. Data (TKDD) 5(4), 21 (2012)

9. Harary, F., Melter, R.: On the metric dimension of a graph. Ars Comb. 2(191–195),
1 (1976)

10. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl.
Math. 70(3), 217–229 (1996)

11. Kratica, J., Čangalović, M., Kovačević-Vujčić, V.: Computing minimal doubly
resolving sets of graphs. Comput. Oper. Res. 36(7), 2149–2159 (2009)

https://doi.org/10.1007/978-3-319-08783-2_31
https://doi.org/10.1007/978-3-319-08783-2_31
https://doi.org/10.1007/978-3-642-33090-2_37
https://doi.org/10.1007/978-3-642-33090-2_37

222 C. Lu et al.

12. Kratica, J., Kovačević-Vujčić, V., Čangalović, M., Stojanović, M.: Minimal doubly
resolving sets and the strong metric dimension of Hamming graphs. Appl. Anal.
Discrete Math. 6(1), 63–71 (2012)

13. Kratica, J., Kovačević-Vujčić, V., Čangalović, M., Stojanović, M.: Minimal doubly
resolving sets and the strong metric dimension of some convex polytopes. Appl.
Math. Comput. 218(19), 9790–9801 (2012)

14. Pinto, P.C., Thiran, P., Vetterli, M.: Locating the source of diffusion in large-scale
networks. Phys. Rev. Lett. 109(6), 068702 (2012)

15. Shah, D., Zaman, T.: Rumors in a network: who’s the culprit? IEEE Trans. Inform.
Theory 57(8), 5163–5181 (2011)

16. Slater, P.J.: Leaves of trees. Congr. Numer. 14(549–559), 37 (1975)
17. Čangalović, M., Kratica, J., Kovačević-Vujčić, V., Stojanović, M.: Minimal doubly

resolving sets of prism graphs. Optimization 62(8), 1037–1043 (2013)

Trajectory Optimization of UAV
for Efficient Data Collection

from Wireless Sensor Networks

Chuanwen Luo1, Lidong Wu2, Wenping Chen1, Yongcai Wang1, Deying Li1(B),
and Weili Wu3

1 School of Information, Renmin University of China,
Beijing 100872, People’s Republic of China

chuanwen luo@163.com, {chenwenping,ycw,deyingli}@ruc.edu.cn
2 Department of Computer Science, University of Texas at Tyler,

Tyler, TX 75799, USA
lwu@uttyler.edu

3 Department of Computer Science, University of Texas at Dallas,
Richardson, TX 75080, USA

weiliwu@utdallas.edu

Abstract. Unmanned Aerial Vehicles (UAVs) are expected to be an
important component in the upcoming wireless communication field,
which are increasingly used as data collectors to gather sensing data from
Wireless Sensor Networks (WSNs) due to their high mobility. Since the
storage capacity and lifetime of sensors are increasing with the develop-
ment of science and technology, sensors can store more and more sensing
data about the monitoring area. However, due to the energy limitation of
UAVs, we can not collect all data from WSN in limited time. Therefore,
in this paper, we investigate the Maximizing Data Collection Propor-
tion (MDCP) problem: given the limited budget of UAV, the objective
is to find the trajectory of UAV such that the minimum data collection
proportion of collected data to the stored data among all sensors is max-
imized. We first prove that the MDCP problem is NP-hard. Then we
propose two approximation algorithms to design the trajectory of UAV,
and give the theoretical analysis for the algorithms. Finally, we present
numerical results in different scenarios to evaluate the effectiveness of
the proposed algorithms.

Keywords: Wireless Sensor Network · Data collection ·
Unmanned Aerial Vehicle · Mobile collector · Trajectory optimization

1 Introduction

In Wireless Sensor Networks (WSNs), sensors are mainly powered by batteries
and each sensor has a limited energy source, which restricts the lifetime of the

This work was supported in part by the National Natural Science Foundation of China
under Grants (11671400, 61672524).

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 223–235, 2019.
https://doi.org/10.1007/978-3-030-27195-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_21

224 C. Luo et al.

network, such as [1,2]. The WSN adopts multi-hop communication for forward-
ing packets, which can make sensors around base station deplete much faster
than other sensors, and shorten the lifetime of the network, such as [3]. More-
over, some sensors that are deployed in the detection area may be disconnected
to the network and cannot forward data to the base station. To solve these prob-
lems, many data gathering strategies with ground mobile collectors are proposed
to extend the network lifetime of WSNs, such as [4,5]. However, in many cases,
sensors are deployed in complex ground environments, especially in rugged and
hilly terrain where obstacles could inhibit ground mobile collectors to complete
a mission. Moreover, due to the slow speed of movement, ground mobile collec-
tors need more time to collect sensing data, which increases the communication
latency and restricts the time-real applications of WSNs.

To overcome these problems, Unmanned aerial vehicle (UAV) has gained a
lot of attention as a mobile collector in WSNs, such as [6,7]. Compared with
the ground data collectors, UAV is not restricted by roadway and can be used
in specific monitoring areas, which has a higher speed of movement and enables
users to interact with the networking environment more quickly and accurately.
In this paper, we focus on the Maximizing Data Collection Proportion (MDCP)
problem. The MDCP problem is to find the optimal trajectory of UAV while
maximizing the minimum proportion of collected data to the carried data among
all sensors with limited energy of UAV. The contributions of this paper can be
summarized as follows:

(1) We identify the problem as Maximizing Data Collection Proportion
(MDCP) and prove that it is a new NP-hard problem.

(2) For the MDCP problem, we propose two approximation algorithms to opti-
mize the trajectory of UAV. And we give the theoretical analysis for the
proposed algorithms.

(3) Numerical simulation results under different scenarios are presented to verify
the validity of the proposed algorithms.
The remainder of this paper is organized as follows. Section 2 introduces
related works. Section 3 introduces network models and the definition of the
problem. Section 4 proposes two approximation algorithms for the MDCP
problem. Simulations are shown in Sect. 5. Section 6 concludes this paper.

2 Related Works

Recently, there has been a growing interest in employing UAVs as mobile collec-
tors for data collection in WSNs, such as [8–10].

In [8], Gong et al. investigated the time minimization problem of UAV by
considering both traveling and communication of UAV, in which the UAV collects
data from a set of energy constrained sensors. But they only considered the
scenario where a UAV collects data from a set of sensors on a straight line.
In [9], Zhan et al. studied the joint optimization of sensors’ wake-up schedule
and UAV’s trajectory to achieve reliable and energy efficient data collection in
WSNs such that the maximum energy consumption of all sensors is minimized. In
[10], Yang et al. investigated the Ground-to-UAV (G2U) communication system,

Trajectory Optimization of UAV for Efficient Data Collection from WSNs 225

where a UAV is to collect a given amount of data from a ground terminal at
a fixed location. They proposed two practical UAV trajectories to balance the
energy consumption of ground terminals and UAV.

3 Models and Definition

In this section, we introduce the models and the definition of the MDCP problem.

3.1 Network Model

Assume that all sensors in WSN are randomly deployed in the two-dimensional
plane and that they have the same three-dimensional transmission range R. The
network is denoted by the set V = {v1, v2, · · · , vn} in which each sensor vi has
Si units of data. Let a UAV with fixed flight speed s and the height H (H ≤ R)
be the mobile collector to collect data from sensors. For any sensor vi ∈ V , let
SN(vi) represent the hemispheric region above the ground which centers at vi

and whose radius is normalized to R. The UAV can collect data from sensor vi

only when it hovers in SN(vi).

Fig. 1. The grey shaded area N(v′
i) is the data collection area for the sensor vi, which

centers at v′
i and whose radius is r.

We build a three-dimensional coordinate system, XY Z, to represent the
three-dimensional space. Without loss of generality, we assume that the sensors
are deployed in the first quadrant of the coordinate system and the Z coordi-
nates of them are zero. Therefore, for each sensor vi ∈ V , the cross section of
SN(vi) cut by the plane Z = H is a circular area, denoted N(v′

i) which centers
at v′

i and whose radius is r =
√

R2 − H2, where v′
i is the projection of vi, and

the X and Y coordinates of v′
i are the same as vi and its Z coordinate is H, as

shown in Fig. 1. Since the flight height of UAV is H and the UAV can collect
data from sensor vi only when it hovers in SN(vi), the circular area N(v′

i) is
called the data collection area of vi, i.e., the data of vi can only be collected by
UAV within the region N(v′

i). Let D = {N(v′
1), N(v′

2), · · · , N(v′
n)}.

Since clustering algorithm could enable basic data gathering work in WSNs,
and the UAV could focus on gathering sensing data from cluster-head sensors
[7], in this paper, we assume that the sensors are sparsely distributed in the
detection area, and that any two circular areas N(v′

i) ∈ D and N(v′
j) ∈ D are

disjoint with each other. If U is the flight trajectory of UAV, then let Len(U)
be the length of U .

226 C. Luo et al.

3.2 Data Transmission Model

The UAV collects data from vi when it hovers in N(v′
i). As the transmission

distance changes during flying, the transmission power and the data transmission
rate of vi should also adapt to the varying path loss. The LOS ground-to-air
channel model between the UAV and sensors with path loss exponent is adopted
[8,11]. Since the sensors in the network have the same transmission power, the
data transmission rate from sensor vi to UAV can be expressed as

Ci =
1
2
B log2(1 +

β

dα
i

),

where di is the Euclidean distance between vi and UAV, B denotes the wireless
channel bandwidth, β represents the reference signal-to-noise ratio (SNR) at the
reference distance di = 1 m and α ≥ 2 is the path loss exponent.

3.3 Definition for the Problem

In this section, we give the detailed definition of the Maximizing Data Collection
Proportion (MDCP) problem.

In the MDCP problem, given the limited active time T for the UAV, we aim
to find a closed continuous curve U and a hovering set P of UAV on U such
that each hovering point Pvi

∈ P is located in N(v′
i) and all or part of the data

carried by each sensor vi ∈ V is collected by UAV and transported to the base
station. The objective of the MDCP problem is to maximize the proportion of
data μ = min{S′

i

Si
|vi ∈ V } for all sensors in V , where S′

i is the amount of data
collected by UAV from sensor vi and Si is the amount of data carried by vi. We
formulate the problem as the Definition 1 shown.

Definition 1 (MDCP). Given a set V = {v1, v2, ..., vn} of n sensors in which
each sensor vi has Si units of sensing data, a set of data collection areas D =
{N(v′

1), N(v′
2), · · · , N(v′

n)} and a UAV with the corresponding speed s, the flight
height H, the initial active time T and the initial location L, the Maximizing
Data Collection Proportion (MDCP) problem is to find a tour U and a hovering
set P of UAV such that

(1) the tour U starts from and ends at L and for each vi ∈ V , U passes through
N(v′

i),
(2) UAV collects data during hovering in N(v′

i),
(3) the sum of the traveling time and hovering time of UAV is less than or equal

to T ,
(4) for each vi ∈ V , there exists a hovering point Pvi

∈ P on U and the UAV
collects S′

i units of data from vi on Pvi
with hovering time tvi

h , and
(5) μ = min{S′

i

Si
|vi ∈ V } is maximum, where S′

i is the amount of data collected
by UAV from sensor vi.

Trajectory Optimization of UAV for Efficient Data Collection from WSNs 227

Theorem 1. The MDCP problem is NP-hard.

Proof. Let Si = 0 for each sensor vi ∈ V and T = ∞ for the UAV. Then
the MDCP problem can be reduced to the Travelling Salesman Problem with
Neighbors (TSPN), which is proved to be NP-hard by [12]. Since a special case
is NP-hard, the MDCP problem is NP-hard.

4 Algorithms for the MDCP Problem

In this section, we put forward two approximation algorithms, called MDCP-A1
and MDCP-A2 to solve the MDCP problem.

Algorithm 1. MDCP-A1
Data: D = {N(v′

1), N(v′
2), ..., N(v′

n)}, V = {v1, v2, · · · , vn} and Si for
each vi ∈ V , the speed s, flight height H and the initial active T of
UAV;

Result: U , P and μ;
1 Using the (1 + ε)-approximation algorithm for the TSPN problem to

compute the flight trajectory U of UAV for D [12];
2 For each N(v′

i) ∈ D, select the intersection point of N(v′
i) and U as the

hovering point Pvi
of UAV;

3 Tr = T − Len(U)
s ;

4 if Tr < λ then
5 There is no solution for the problem;
6 else
7 μ = 1, μ1 = μ2 = 0;
8 while Tr ≥ λ do
9 for each vi ∈ V , compute tvi

h = 2μSi

B log2(1+
β

Rα)
, and

Th
total =

∑
vi∈V tvi

h ;
10 if Th

total > Tr then
11 μ1 = μ, μ = μ1+μ2

2 ;
12 else
13 if Tr − Th

total ≥ λ then
14 μ2 = μ, μ = μ1+μ2

2 ;
15 else
16 Tr = Tr − Th

total, return μ;
17 end
18 end
19 end
20 end
21 for each vi ∈ V do
22 tvi

h = 2μSi

B log2(1+
β

Rα)
, P = P ∪ {(Pvi

, tvi

h)};

23 end

228 C. Luo et al.

4.1 The MDCP-A1 Algorithm

The MDCP-A1 algorithm consists of three steps. In the first step, we apply
the (1 + ε)-approximation algorithm for the TSPN problem proposed by [12]
to compute the flight trajectory U of UAV. Afterwards, for each N(v′

i) ∈ D,
we compute an intersection point of N(v′

i) and U as the hovering point Pvi
of

UAV. Then we obtain the remaining active time of UAV is Tr = T − Len(U)/s.
In the second step, we use the bisection method to compute the proportion of
data μ = min{S′

i

Si
|vi ∈ V } based on the remaining active time of UAV. We

establish two variables μ1 and μ2 representing the upper and lower bounds of
μ, respectively. Initially, we set μ = 1 and μ1 = μ2 = 0. We use the very small
constant λ to control the end of the while loop. If Tr < λ, then there is no
solution for the MDCP problem. Otherwise, the algorithm repeats the following
two steps until Tr < λ: (1) Compute the total hovering time of UAV for all
sensors in V , Th

total =
∑

vi∈V tvi

h , where tvi

h = 2μSi

B log2(1+
β

Rα)
; (2) If Tr < Th

total,

then we set μ1 = μ and μ = μ1+μ2
2 . Otherwise, if Tr − Th

total ≥ λ, then we set
μ2 = μ and μ = μ1+μ2

2 , or else we set Tr = Tr − Th
total and return μ. Finally, for

each vi ∈ V , we compute the hovering time tvi

h of UAV on the point Pvi
based

on the value of returned μ, and P = P ∪ {(Pvi
, tvi

h)}. The detailed description is
given by the Algorithm1.

Now we analyze the performance ratio of the MDCP-A1 algorithm. Suppose
U∗ and P ∗ = {P ∗

v1
, P ∗

v2
, · · · , P ∗

vn
} are the optimal trajectory and hovering set

of UAV, respectively and μ∗ = min{S∗
i

Si
|vi ∈ V } is the optimal solution for the

MDCP problem, where S∗
i is the optimal amount of data collected from vi by

UAV and C∗
i is the data transmission rate from vi to UAV when it hovers on

P ∗
vi

. For each vi ∈ V , let μ∗
i = S∗

i

Si
.

Lemma 1. μ∗ = μ∗
1 = μ∗

2, · · · ,= μ∗
n.

Proof. We prove the lemma by contradiction. For simplicity, we assume that
μ∗

i = μ∗ and there exist a sensor vj ∈ V such that μ∗
i < μ∗

j . Since μ∗
i = S∗

i

Si
=

t
vi
h ·C∗

i

Si
and μ∗

j = S∗
j

Sj
= t

vj
h ·C∗

j

Sj
, we can obtain t

vi
h ·C∗

i

Si
<

t
vj
h ·C∗

j

Sj
. When U∗ and

P ∗ are fixed, the data transmission rates C∗
i and C∗

j are fixed. Therefore, we
can increase μ∗ by increasing the hovering time tvi

h of vi while decreasing the
hovering time t

vj

h of vj , which is contradict to the assumption. Therefore, we can
obtain μ∗ = μ∗

1 = μ∗
2, · · · ,= μ∗

n.

Lemma 2. μ∗ ≤ B log2(1+
β

Hα)(T− Len(U∗)
s)

2
∑n

i=1 Si
.

Proof. Based on Lemma 1, we have
∑n

i=1
μ∗Si

C∗
i

+ Len(U∗)
s ≤ T . For each sensor

vi ∈ V , since the distance di between vi and UAV is greater than or equal to H,
we have C∗

i = 1
2B log(1 + β

dα
i
) ≤ 1

2B log(1 + β
Hα). Therefore, we can derive

μ∗ ≤ T − Len(U∗)
s∑n

i=1
Si

C∗
i

≤ T − Len(U∗)
s∑n

i=1
2Si

B log2(1+
β

Hα)

=
B log2(1 + β

Hα)(T − Len(U∗)
s)

2
∑n

i=1 Si
.

Trajectory Optimization of UAV for Efficient Data Collection from WSNs 229

Lemma 3. Len(U) ≤ (1 + ε) · Len(U∗), where U is got by MDCP-A1.

Proof. Suppose U∗
T is the optimal trajectory for the TSPN problem on D.

According to the MDCP-A1 algorithm, we can get Len(U) ≤ (1 + ε) · Len(U∗
T).

Since U∗ is a feasible solution for the TSPN problem, we have Len(U∗
T) ≤

Len(U∗). Therefore, we can obtain Len(U) ≤ (1 + ε) · Len(U∗).

Theorem 2. μ ≥ log2(1+
β

Rα)

log2(1+
β

Hα)
· μ∗, where μ is got by the MDCP-A1 algorithm.

Proof. According to the MDCP-A1 algorithm, we can obtain

∑n

i=1

2μSi

B log2(1 + β
Rα)

+
Len(U)

s
≥ T − λ.

Therefore, based on Lemmas 1, 2 and 3, we have

μ ≥ B log2(1 + β
Rα)(T − Len(U)

s − λ)
2
∑n

i=1 Si
≥ B log2(1 + β

Rα)(T − (1 + ε)Len(U∗)
s − λ)

2
∑n

i=1 Si

=
log2(1 + β

Rα)

log2(1 + β
Hα)

· B log2(1 + β
Hα)(T − (1 + ε)Len(U∗)

s − λ)
2
∑n

i=1 Si

≥ log2(1 + β
Rα)

log2(1 + β
Hα)

· μ∗ − B log2(1 + β
Rα)(ε·Len(U∗)

s + λ)
2
∑n

i=1 Si

≥ log2(1 + β
Rα)

log2(1 + β
Hα)

· μ∗ − B log2(1 + β
Rα)(ε · T + λ)

2
∑n

i=1 Si
.

Since λ and ε are very small constants, the approximation ratio is

log2(1 + β
Rα)

log2(1 + β
Hα)

· μ∗ − B log2(1 + β
Rα)(ε · T + λ)

2
∑n

i=1 Si
≈ log2(1 + β

Rα)

log2(1 + β
Hα)

· μ∗.

The theorem has been proved.

4.2 The MDCP-A2 Algorithm

We next present an approximation algorithm MDCP-A2 for the MDCP problem.
The algorithm is composed of five steps. In the first step, we employ the

(1 + ε)-approximation algorithm for the TSPN problem proposed by [12] to
compute the flight trajectory U ′ of UAV. Afterwards, for each N(v′

i) ∈ D, we
compute the first intersection point P c

vi
between N(v′

i) and U ′. Then, we connect
two points v′

i and P c
vi

and obtain the line segment (P c
vi

, v′
i). In the second step,

we change the line segment (P c
vi

, v′
i) to two (parallel) edges between the same

pair of vertices. And let Uvi denote the trajectory of UAV that is composed of
the two parallel edges. In the third step, we compute the trajectory U of UAV
by combining U ′ with Uvi for each vi ∈ V and let v′

i be the hovering point Pvi
of

230 C. Luo et al.

vi. Then we can obtain the remaining active time of UAV is Tr = T −Len(U)/s.
In the fourth step, we employ the bisection method to compute the proportion
of data μ based on the remaining active time of UAV. We establish two variables
μ1 and μ2 representing the upper and lower bounds of μ and let the very small
constant λ dominate the end of the while loop. Initially, we set μ = 1 and μ1 =
μ2 = 0. If Tr < λ, then there is no solution for the MDCP problem. Otherwise,
the algorithm repeats the following two steps until Tr < λ: (1) Compute the
total hovering time of UAV for all sensors in V , Th

total =
∑

vi∈V tvi

h , where
tvi

h = 2μSi

B log2(1+
β

Hα)
; (2) If Tr < Th

total, then we set μ1 = μ and μ = μ1+μ2
2 .

Otherwise, if Tr − Th
total ≥ λ, then we set μ2 = μ and μ = μ1+μ2

2 , or else we set
Tr = Tr − Th

total and return μ. Finally, for each sensor vi ∈ V , we compute the
hovering time tvi

h of UAV on the point Pvi
based on the value of returned μ, and

P = P ∪ {Pvi
, tvi

h }.
The detailed description of the algorithm is given by the Algorithm 2.

Lemma 4. Len(U) ≤ (1+ ε+ 8
π) ·Len(U∗)+ 8r, where U is got by MDCP-A2.

Proof. According to the MDCP-A2 algorithm, we can obtain U is composed of
U ′ and Uvi for each vi ∈ V . Similar to Lemma 3, we can obtain Len(U ′) ≤
(1 + ε) · Len(U∗). Let AU∗ be the area scanned by a disk of radius 2r whose
center moves along U∗. Since U∗ visits all disks, AU∗ can covers all disks in D.
Since when n = 1, Len(U∗) = 0 and AU∗ = 4πr2. This area is bounded as

nπr2 ≤ AU∗ ≤ 4r · Len(U∗) + 4πr2.

Thus, n ≤ 4
πr · Len(U∗) + 4. The length of tour U at most

Len(U) = Len(U ′) +
∑

vi∈V

Len(Uvi) ≤ (1 + ε) · Len(U∗) + 2nr

≤ (1 + ε +
8
π

) · Len(U∗) + 8r.

The Lemma has been proved.

Theorem 3. μ ≥ (1−(1+ 8
π) ·η∗ − sλ+8r

sT−Len(U∗))μ
∗, where μ is got by MDCP-A2

and η∗ is the ratio of the optimal flight time to the remaining time of UAV.

Proof. According to the MDCP-A2 algorithm, we can obtain

∑n

i=1

2μSi

B log2(1 + β
Hα)

+
Len(U)

s
≥ T − λ.

Therefore, based on Lemmas 1 and 4, we have

∑n

i=1

2μSi

B log(1 + β
Hα)

+ (1 + ε +
8
π

)
Len(U∗)

s
+

8r

s
≥ T − λ.

Trajectory Optimization of UAV for Efficient Data Collection from WSNs 231

Algorithm 2. MDCP-A2
Data: D = {N(v′

1), N(v′
2), ..., N(v′

n)}, V = {v1, v2, · · · , vn} and Si for each
vi ∈ V , the speed s, flight height H and the initial active T of UAV;

Result: U , P and μ;
1 Using the (1 + ε)-approximation algorithm for the TSPN problem to compute

the traveling trajectory U ′ of UAV for D [12];
2 For each N(v′

i) ∈ D, compute the first intersection point P c
vi

between N(v′
i) and

U ′;
3 Change the line segment (P c

vi
, v′

i) to two line segments between the same pair of
points and Uvi = (P c

vi
, v′

i) + (v′
i, P

c
vi

);
4 Compute the traveling trajectory U of UAV by combining U ′ and Uvi for each

N(v′
i) ∈ D, and let v′

i be the hovering point Pvi of vi;

5 Tr = T − Len(U)
s

;
6 if Tr < λ then
7 There is no solution for the problem;
8 else
9 μ = 1, μ1 = μ2 = 0;

10 while Tr ≥ λ do

11 for each vi ∈ V , compute tvi
h = 2μSi

B log2(1+
β

Hα)
, and T h

total =
∑

vi∈V tvi
h ;

12 if T h
total > Tr then

13 μ1 = μ, μ = μ1+μ2
2

;
14 else

15 if T − T h
total ≥ λ then

16 μ2 = μ, μ = μ1+μ2
2

;
17 else

18 Tr = Tr − T h
total, return μ;

19 end

20 end

21 end

22 end
23 for each vi ∈ V do

24 tvi
h = 2μSi

B log2(1+
β

Hα)
, P = P ∪ {(Pvi , t

vi
h)};

25 end

Consequently, according to Lemma 2, we can get

μ ≥ (T − λ − (1 + ε + 8
π
) · Len(U∗)
s

− 8r

s
) · B log2(1 + β

Hα)

2
∑n

i=1 Si

≥ (T − λ − (1 + ε + 8
π
) · Len(U∗)
s

− 8r

s
) · 1

T − Len(U∗)
s

· μ∗

= (1 − (ε + 8
π
)Len(U∗)

s

T − Len(U∗)
s

− λ + 8r
s

T − Len(U∗)
s

)μ∗ ≥ (1 − (1 +
8

π
)η∗ − sλ + 8r

sT − Len(U∗)
)μ∗.

The theorem has been proved.

232 C. Luo et al.

Fig. 2. Two flight trajectories of UAV got by MDCP-A1 and MDCP-A2, respectively.

4.3 Discussion

Note that the MDCP-A2 algorithm is different from the MDCP-A1 algorithm.
Although the trajectory of UAV got by MDCP-A1 is less than MDCP-A2, the
data transmission rate from sensors to UAV got by MDCP-A1 is less than
MDCP-A2. Therefore, the proposed two algorithms can deal with certain cases
well. To illustrate the differences between the two algorithms, we give an exam-
ple as follows. Assume that the network consists of five sensors and a UAV
and let V = {v1, v2, v3, v4, v5} in which each sensor has Si units of data and
D = {N(v′

1), N(v′
2), N(v′

3), N(v′
4), N(v′

5)}, as shown in Fig. 2(a).
We assume the hovering set and trajectory of UAV got by MDCP-A1 are

P = {Pv1 , Pv2 , Pv3 , Pv4 , Pv5} and U respectively, as the blue solid line shown
in Fig. 2(b), and the hovering set and trajectory of UAV got by MDCP-A2
are P ′ = {P ′

v1
, P ′

v2
, P ′

v3
, P ′

v4
, P ′

v5
} and U ′ respectively, as the black dotted line

shown in Fig. 2(b), where the position of P ′
vi

is the same as v′
i. Therefore, we have

Len(U ′) = Len(U)+10·r. The data transmission rates on Pvi
and P ′

vi
from vi to

UAV are Ci = 1
2B log(1+ β

Rα) and C ′
i = 1

2B log(1+ β
Hα), respectively. Since H ≤

R, we have Ci ≤ C ′
i. Therefore, based on different network configurations, we can

obtain that if T− Len(U)
s

2
∑5

i=1 Si
·B log2(1+ β

Rα) ≥ T− Len(U′)
s

2
∑5

i=1 Si
·B log2(1+ β

Hα), the MDCP-
A1 algorithm performs better than MDCP-A2, otherwise, the performance of
MDCP-A1 algorithm is worse than MDCP-A2.

5 Simulation Setup and Results

In this section, we construct extensive simulations to validate the proposed algo-
rithms. In the simulations, we assume that sensors are randomly deployed in
the 2000 m × 2000 m square area. For simplicity, we assume that all sensors have
the same amount of data S. We verify the values of the μ = min{S′

i

Si
|vi ∈ V }

got by algorithms MDCP-A1 and MDCP-A2 under different network configura-
tions. Each subgraph in Fig. 3 illustrates the simulation results of the algorithms

Trajectory Optimization of UAV for Efficient Data Collection from WSNs 233

MDCP-A1 and MDCP-A2. Each experimental result is the average of 100 runs.
The version of MATLAB R2013a for all simulations is used.

In Fig. 3(a), when we set N = 100, S = 2000 KB, R = 100 m, β = 150 dB,
B = 2 kHz, H = 80 m, s = 5 m/s and change T from 7000 to 12000 s, the results
show that if T ≤ 9000 s, then the MDCP-A1 algorithm outperforms MDCP-A2,
otherwise, the MDCP-A2 algorithm outperforms MDCP-A1, which show that
each of them can deal with certain cases.

In Fig. 3(b) when we set T = 8000 s, S = 2000 KB, R = 100 m, β = 150 dB,
B = 2 kHz, H = 80 m, s = 5 m/s and change N from 60 to 110, the results show
that when N ≤ 83, the MDCP-A2 outperforms MDCP-A1 and when N > 83,
the MDCP-A1 algorithm is better than MDCP-A2.

In Fig. 3(c), when we set T = 10000 s, N = 100, R = 100 m, β = 150 dB,
B = 2 kHz, H = 80 m, s = 5 m/s and change S from 1000 to 6000 KB, the results
show that the algorithm MDCP-A2 outperforms MDCP-A1. This is because
when other configurations are fixed, the flight trajectory and the amount of the
collected data by either of the two algorithms are determined. Therefore, if the
performance of one algorithm is better than another initially, then it’s going to
be fine all the time as S grows.

In Fig. 3(d), when we set T = 5500 s, N = 60, S = 2000 KB, β = 150 dB,
B = 2 kHz, H = 30 m, s = 5 m/s and change R from 40 to 80 m, the results show
that the algorithm MDCP-A1 outperforms MDCP-A2. And we can observe that
both the proportions of data decrease as R increases. This is because the data
transmission rate from sensors to UAV decreases with R increasing.

In Fig. 3(e), when we set T = 10000 s, N = 100, S = 2000 KB, R = 100 m,
B = 2 kHz, H = 80 m, s = 5 m/s and change β from 100 to 600 dB, the results
show that the performance of MDCP-A1 is slightly better than MDCP-A2. We
also find that both proportions of data increase logarithmic with β increasing
since the data transmission rate from sensors to UAV grows logarithmic with β
increasing.

In Fig. 3(f), when we set T = 12000 s, N = 100, S = 6000 KB, β = 150 dB,
R = 100 m, H = 80 m, s = 5 m/s and change B from 1 to 6 kHz, we can find that
the performance of MDCP-A2 is better than MDCP-A1. And we also find that
μ increases linearly as B grows. This is because the data transmission rate from
sensors to UAV grows linearly with B increasing.

In Fig. 3(g), when we set T = 6000 s, N = 60, S = 2000 KB, R = 100 m,
β = 150 dB, B = 2 kHz, s = 5 m/s and change H from 40 to 90 m, the results
show that if H ≤ 67 m, the performance of MDCP-A1 is better than MDCP-A2,
otherwise, the MDCP-A1 outperforms worse than MDCP-A2, which show that
each of the proposed algorithms can deal with certain cases.

In Fig. 3(h), when we set T = 8000 s, N = 100, S = 2000 KB, R = 100 m,
β = 150 dB, B = 2 kHz, H = 80 m and change s from 5 to 10 m/s, we can observe
that if s ≤ 5.8 m/s, the MDCP-A1 algorithm outperforms MDCP-A2, otherwise,
the MDCP-A1 is worse than MDCP-A2, which show that each of the proposed
algorithms can deal with certain cases.

234 C. Luo et al.

Fig. 3. Comparison the performance of MDCP-A1 with MDCP-A2.

6 Conclusion

In this paper, we identify the problem Maximizing Data Collection Proportion
(MDCP). The MDCP problem is to find the trajectory of UAV such that the
minimum data collection proportion of collected data to the stored data among
all sensors is maximized with the limited energy of UAV. We first prove that the
MDCP problem is NP-hard. Then we propose two approximation algorithms to
solve the problem, and each of which can deal with certain cases. Finally, we give
the theoretical analysis and simulations for the proposed algorithms to verify the
effectiveness.

References

1. Li, J., Cheng, S., Cai, Z., Yu, J., Wang, C., Li, Y.: Approximate holistic aggregation
in wireless sensor networks. ACM Trans. Sens. Netw. (TOSN) 13(2), 11 (2017)

2. Cheng, S., Cai, Z., Li, J., Gao, H.: Extracting kernel dataset from big sensory data
in wireless sensor networks. IEEE Trans. Knowl. Data Eng. 29(4), 813–827 (2016)

3. Luo, C., Chen, W., Yu, J., Wang, Y., Li, D.: A novel centralized algorithm for
constructing virtual backbones in wireless sensor networks. EURASIP J. Wirel.
Commun. Netw. 2018(1), 55 (2018)

4. Mehrabi, A., Kim, K.: Maximizing data collection throughput on a path in energy
harvesting sensor networks using a mobile sink. IEEE Trans. Mob. Comput. 15(3),
690–704 (2015)

5. Xia, N., Wang, C., Yu, Y., Du, H., Xu, C., Zheng, J.: A path forming method for
water surface mobile sink using Voronoi diagram and dominating set. IEEE Trans.
Veh. Technol. 67(8), 7608–7619 (2018)

Trajectory Optimization of UAV for Efficient Data Collection from WSNs 235

6. Kim, D., Xue, L., Li, D., Zhu, Y., Wang, W., Tokuta, A.O.: On theoretical trajec-
tory planning of multiple drones to minimize latency in search-and-reconnaissance
operations. IEEE Trans. Mob. Comput. 16(11), 3156–3166 (2017)

7. Wu, T., Yang, P., Yan, Y., Rao, X., Li, P., Xu, W.: ORSCA: optimal route selection
and communication association for drones in WSNs. In: 2017 Fifth International
Conference on Advanced Cloud and Big Data (CBD), pp. 420–424. IEEE (2017)

8. Gong, J., Chang, T.-H., Shen, C., Chen, X.: Flight time minimization of UAV for
data collection over wireless sensor networks. IEEE J. Sel. Areas Commun. 36(9),
1942–1954 (2018)

9. Zhan, C., Zeng, Y., Zhang, R.: Energy-efficient data collection in UAV enabled
wireless sensor network. IEEE Wirel. Commun. Lett. 7(3), 328–331 (2017)

10. Yang, D., Wu, Q., Zeng, Y., Zhang, R.: Energy tradeoff in ground-to-UAV com-
munication via trajectory design. IEEE Trans. Veh. Technol. 67(7), 6721–6726
(2018)

11. Ahmed, N., Kanhere, S.S., Jha, S.: On the importance of link characterization for
aerial wireless sensor networks. IEEE Commun. Mag. 54(5), 52–57 (2016)

12. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neigh-
borhoods in the plane. J. Algorithms 48(1), 135–159 (2003)

Locality Sensitive Algotrithms for Data
Mule Routing Problem

Pablo L. A. Munhoz1, Felipe P. do Carmo2, Uéverton S. Souza2(B),
Lúcia M. A. Drummond2, Pedro Henrique González3, Luiz S. Ochi2,

and Philippe Michelon4

1 Instituto de Ciências Exatas e Tecnológicas,
Universidade Federal de Viçosa, Viçosa, Brazil

pablo.munhoz@ufv.br
2 Instituto de Computação,

Universidade Federal Fluminense, Niterói, Brazil
fpcarmo@id.uff.br, {ueverton,lucia,satoru}@ic.uff.br

3 Departamento de Informática,
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca,

Rio de Janeiro, Brazil
pegonzalez@eic.cefet-rj.br

4 Laboratoire de Mathématiques d’Avignon,
Université d’Avignon et des Pays de Vaucluse, Avignon, France

philippe.michelon@univ-avignon.fr

Abstract. A usual way to collect data in a Wireless Sensor Network
(WSN) is by the support of a special agent, called data mule, that moves
between sensor nodes and performs all communication between them. In
this work, the focus is on the construction of the route that the data
mule must follow to serve all nodes in the WSN. This paper deals with
the case when the data mule does not have a global view of the network,
i.e., a prior knowledge of the network as a whole. Thus, at each node, the
data mule makes a decision about the next node to be visited based only
on a limited local knowledge of the WSN. Considering this realist sce-
nario, two locality sensitive algorithms are proposed. These algorithms
differ by the criterion of choice of the next visited node, while the first
one uses a simpler greedy choice, the second one uses the geometric con-
cept of convex hull. They were executed in instances of the literature and
their results were compared both in terms of route length and in num-
ber of sent messages as well. Some theoretical results, a mathematical
formulation, and some lower bounds for the global view scenario are also
proposed, in order to provide some parameters to evaluate the quality
of the solutions given by the proposed algorithms. The obtained results
show that the proposed algorithms give good solutions in a reasonable
time when compared with the optimal solutions and lower bounds.

Keywords: Data mule · Routing Problem · Locality sensitive ·
Convex hull

The authors acknowledges the support from CAPES, CNPq and FAPERJ.
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 236–248, 2019.
https://doi.org/10.1007/978-3-030-27195-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_22

Locality Sensitive Algotrithms for Data Mule Routing Problem 237

1 Introduction

Wireless Sensor Networks, WSN, have received much attention in last decades
due to its flexibility and its easy and fast deployment capability. In addition,
there are many practical applications where WSN can be used, as, for example,
environmental monitoring and military applications [4,7]. In this kind of net-
work, communication is exclusively wireless and information exchange is accom-
plished when there is intersection between sensors spatial coverages. The infor-
mation routing is one of the main problems of WSN [6,8]. In some cases, a
mobile agent, called date mule, is responsible for performing the network com-
munication. Data mule is a mobile agent that has greater processing, memory
capacities and energy availability than regular sensors of the WSN. It is responsi-
ble for collecting data from all sensors and take them to a base station, reducing
the number of exchanged messages in the network and, consequently, the spent
energy for data transmission.

This work considers that sensors are distributed in a bi-dimensional space
and have communication range equal to r. In that scenario, the data mule has to
serve each node of the WSN, by sending or receiving data to/from each of them.
In the first service, the data mule has no knowledge about the global network and
should visit a minimum number of nodes necessary to serve all nodes demands.
After that, the mule could storage the position of the nodes and execute a global
view algorithm. Thus, with no knowledge, at each node, it has to decide the next
one to be visited, aiming at the minimization of the total route. The goal of using
a data mule and minimizing its route is to minimize the energy consumption of
the WSN. Note that the visited nodes form a connected dominant set. Remark
also that at each node, the data mule covers only a limited set of other sensor
nodes, and having that limited knowledge about the nodes, it has to choose the
best one to be visited next.

Thus, our problem follows the next basic assumptions. Let G = (V,E) be a
graph representing a network and the geographical position of a node is given
by euclidean coordinates, i.e., V (G) is a set of points placed in an Euclidean
plan, and each edge (i, j) ∈ E(G) between two vertexes i and j exists if the cor-
responding sensors, that they represent, are within their communication range.
The set N(i) contains the neighbour nodes of vertex i, and the corresponding
sensor only knows the other sensors in the neighbourhood and their correspond-
ing euclidean coordinates. Edges have no weights. Let s ∈ V be a vertex, from
where the data mule initiates and finishes the route, called here, base station.
The data mule moves between nodes, and only serves a node i when located in
some node j ∈ N(i). The data mule can serve every node that is in the neigh-
borhood, and not only the node where it is. When a mule moves to a node from
another one, the corresponding edge is included in the route. An edge can be
used by the data mule more than once. Each time the edge is used, it is included
in the route.

The objective of the problem treated in this work is minimizing the route
length traversed by the data mule, that visits a subset of nodes D ⊆ V form-
ing a connected dominant set of G. The remaining of this work is organized as

238 P. L. A. Munhoz et al.

follows. Related works are presented in Sect. 2. Section 3 presents some theo-
retical remarks on Data Mule Routing problem (DMRP) and a mathematical
formulation for the global view case is also presented in this section. In Sect. 4,
we present two algorithms to work on the realistic scenario where the data mule
has only a local view of the network. Results and analyses are shown in Sect. 5.
Due to space constraints, some proofs are omitted.

2 Related Work

The communication in WSNs can be performed basically either by using virtual
backbones and its own network infra-structure, or by using a mobile agent, called
data mule. The problem of constructing virtual backbones for communication
can be modeled as a Minimum Connected Dominating Set Problem, MCDS, as
can be seen in [3,9].

Papers from related literature of WSN that aim at solving the MCDS, usu-
ally present distributed algorithms and consider simultaneous communication
among sensor nodes, and local processing at each node. When the communi-
cation is performed through a data mule, most works focus on the Data Mule
Routing Problem, an NP-hard problem [11]. Usually, those related papers con-
sider that the data mule has the complete knowledge of the WSN. Considering
that approximate heuristics were proposed to solve the problem [1,10,12].

3 Theoretical Remarks

In order to demonstrate how difficult it is to find a route for a data mule, we will
first perform an analysis of the problem when the data mule has a global view of
the network, that is, the data mule knows the underlying graph G representing
the network. Some proofs are omitted and presented in the appendices.

In such a scenario, the data mule’s aim is to solve the following problem.
Data Mule with Global View

Input: A graph G, and a base station node v ∈ V (G).
Goal: Determine a minimum closed walk W of G such that v ∈ V (W),

and for all node x ∈ V (G), N [x] ∩ V (W) �= ∅. That is, either
x ∈ V (W) or some neighbor y of x belongs to V (W).

Next result shows that if it is assumed that G is a general graph then it is
very unlikely to exist an algorithm to find in polynomial time some routes for a
data mule with cost near to the optimal solution.

Theorem 1. Data Mule with Global View on general graphs cannot be
approximated in polynomial time to within a factor of (1 − o(1)) lnn, where
n = |V (G)|, unless NP ⊆ DTIME(nO(log log n)).

The above result illustrates the hardness of approximate data mule problems
on general graphs. Next result shows that the realistic instances of our problem
belongs to a very special graph class.

Locality Sensitive Algotrithms for Data Mule Routing Problem 239

Definition 1. A unit disk graph is the intersection graph of a family of disks
of unit size in the Euclidean plane.

Lemma 1. Any realistic instance G of Data Mule with Global View is a
unit disk graph.

The next result illustrates an interesting property of our problem in practical
instances.

Lemma 2. Data Mule with Global View on Unit Disk Graphs admits a
(2 + ε)-approximation algorithm, ε > 0.

3.1 Lower Bounds

Now, we are interested to recognize some lower bounds for a solution of Data
Mule with Global View that can be found by efficient algorithms.

Given G be a simple graph, and a base station v ∈ V (G). We denote d(v, w)
as the distance between v and w in G, and dv = maxw∈V (G) d(v, w).

Lemma 3. Let OPT (G, v) be an optimal solution value for Data Mule with
Global View on G with base station v. It holds that OPT (G, v) ≥ 2(dv − 1).

And such lower bound can be found in O(m) time.

Proof. Let w be a vertex of V (G) such that dv = d(v, w) (w and dv can be found
by a breadth-first search). Clearly the data mule needs to travel through at least
dv − 1 edges in order to attend w. After that, the data mule will travel through
some edges, and will return to base station which spend at least more dv − 1
steps.

Now we present a hierarchy of lower bounds for the problem, whose values
and performance to be found depends of an input integer k.

Lemma 4. Given G, v and an integer k ≥ 1. Let S be a set composed by the
k most distant vertices of v, and Tk be a steiner tree to connect {v} ∪ S. Let
LBk = |Tk| − k +minw∈S d(v, w) − 1. For all k ≥ 1, it holds that

OPT (G, v) ≥ LBk.

Proof. Note that LB1 = 2(dv − 1). As previously, the data mule needs to travel
through some edges in order to attend all vertices in S, which walks at least
|TK | − k edges. As the data mule must return to base station then at least more
minw∈S d(v, w) − 1 steps must be done.

To compute LBk, k > 1, we have to solve a Steiner instance as subroutine.
As Steiner Tree is NP-hard then such strategy is viable only for very small values
of k. However even k = 2 is already able to improve our previous lower bound.
In special, LB2 can also be quickly found as described below.

240 P. L. A. Munhoz et al.

Lemma 5. LBk=2 can be computed in O(m.n) time.

Proof. As k = 2 then the Steiner subroutine must connect only three terminals.
Thus, at most one vertex, say u, of such Steiner tree has degree greater than two
(equal to 3). Hence finding all shortest path between all pair of vertices, which
can be done in O(n.m) time, such Steiner tree can be constructed. Note that,
given u, if any, the path from a terminal to u is a shortest path, and there exists
only O(n) possibilities for u.

3.2 Mathematical Formulation

A mathematical formulation, that considers all the characteristics of the problem
is proposed in this subsection. Although the use of mathematical formulation is
not the most appropriate approach for the Data Mule Routing Problem, it is a
key technique for obtaining bounds. It is important to notice that in the prob-
lem solved using the formulation all information about the network is available,
allowing to obtain a better path and consequently a reduction in the number of
mule movements used to serve all sensor nodes.

Let G′(V,A) be a bidirected graph formed by bidirectiong the edges of orig-
inal graph G(V,E). The set of vertices V (G) are maintained as points in an
Euclidean plane as the original graph. The set of arcs (i, j) ∈ A, represents the
possible paths that the mule can choose. Two sets of variables are defined, xij

and yi. The variables xij are 1 if the data mule uses the arc (i, j) in his path,
and 0 otherwise. The other binary variables yi are set to 1 if the vertex i ∈ V
are visited by the mule, and 0 if it is attended by another node.

min
∑

(i,j)∈A

xij (1)

s.t.
∑

j∈N(i)∪{i}
yj ≥ 1 ∀i ∈ V (2)

∑

j∈δ+(i)

xij ≥ yi ∀i ∈ V (3)

∑

j∈δ−(i)

xji ≥ yi ∀i ∈ V (4)

∑

j∈δ+(i)

xij =
∑

j∈δ−(i)

xji ∀i ∈ V (5)

∑

j∈δ+(i)

xij ≤ |N(i)|yi ∀i ∈ V (6)

∑

j∈δ−(i)

xji ≤ |N(i)|yi ∀i ∈ V (7)

y0 = 1 (8)
∑

i∈S̄

∑

j∈S

xij ≥ ys ∀S ⊆ V \ {0} , s ∈ S (9)

Locality Sensitive Algotrithms for Data Mule Routing Problem 241

xij ∈ {0, 1} ∀(i, j) ∈ A (10)
yi ∈ {0, 1} ∀i ∈ V (11)

The objective function (1) aims to minimize the number of moves used by the
mule to serve all nodes. Constraints (2) ensures that all nodes will be attended
either by the mule’s or by a neighbor in the mule’s path. Constraints (3) and
(4) guarantee that if one node is in the mule’s path, at least one edge must
enter and at least one edge must leave this node. The set of constraints (5)
ensures that the number of edges entering and leaving one node must be the
same. Constraints (6) and (7) imposes the limits of edges entering and leaving a
node i by the number of their neighbours (N(i)). The constraint (8) ensures that
the Base Station belongs in the mule’s path. The set of constraints (9) eliminate
sub-cycles. Finally, constraints (10) and (11) define the domain of the variables.

4 Algorithms for Data Mule with Local View

Now, we present two strategies to deal with the Data Mule Routing Problem,
when the data mule does not have a global view, i.e, a prior knowledge of the
network as a whole. In the first one, the mule decides his path based on the num-
ber of uncovered nodes nearby the current sensor node. In the second, the mule
decision is based on the computation of convex-hulls of the current sensor [3].

4.1 Algorithms Based on Number of Uncovered Neighbours

The data mule begins its path in the sensor node that represents the base station
s and decides which will be the next sensor to be visited by using a greedy method
that will be next explained. The edges traversed by the data mule forms a tree,
where the nodes of the tree represent the sensors visited by the data mule.

We consider here that a sensor node can be in one of the following states:
(i) dominator, when the data mule is or was located in the same position of this
sensor node, (ii) covered, when the sensor is or was within the communication
range of a dominator, indicating that it has already been served by the data
mule, and (iii) uncovered, when it is not in any of the previous described states.
Initially, except for the Base Station, all nodes are in the uncovered state. In the
end of the algorithm, every node will be in either a dominator or a covered state.

The proposed algorithms, one for the data mule and the other for the reg-
ular sensor nodes are described in Algorithms 1 and 2. They use the following
types of messages to decide about the data mule moving: msg_request, con-
tains a request for number of uncovered neighbours, sent from data mule to a
regular sensor node; msg_numernodes, contains the number of uncovered neigh-
bours, sent from regular sensor node to data mule; msg_serve, informs that the
node can already be served, sent from data mule to regular sensor node; and
msg_served, informs that the node has been served, sent among regular sensor
nodes.

242 P. L. A. Munhoz et al.

Algorithm 1. AlgNUM – Data Mule Algorithm
1 Variables:
2 parent ← ∅
3 states ← ∅
4 Upon reaching node u coming from node v
5 if u is not in dominator state then
6 states ← states \ {< u, covered >}
7 states ← states ∪ {< u, dominator >}
8 parent ← parent ∪ {< u, v >}
9 foreach v ∈ N(u) do

10 states ← states ∪ {< v, covered >}
11 Send msg_serve to v
12 Send msg_request to v

13
14 Upon receiving all msg_numbernodes of N(u)
15 if ∃ v ∈ N(u) | numbernodes(v) �= 0 then
16 Data Mule moves to sensor node t ∈ N(u) with the greatest numbernodes
17 else
18 if u is the Base Station then
19 Data Mule stop moving
20 else
21 v ← get_parent(parent, u)
22 Data Mule moves to v

The data mule starts and finishes in a Base Station. Initially and upon
reaching a sensor node u, the data mule sends the message msg_serve to all
neighbours N(u), indicating the node can be already served, updating their
states to covered (lines 10–11 Algorithm1). After that, the data mule also sends
msg_request to them (line 12 Algorithm1). Upon receiving that message (line 6
of Algorithm2), a sensor node replies with the message msg_numernodes con-
taining the number of neighbours in uncovered state (line 7 of Algorithm2). The
data mule, then, moves to the sensor node with the greatest number of uncov-
ered neighbours (line 16 of Algorithm 1). When the mule arrives at a node u
from a node v, if u is not in dominator state, it updates its state with dominator
and the variable parent(u) with v (lines 5–8 Algorithm 1). In this way, the data
mule movement tree is being formed. When the data mule receives messages
msg_numernodes containing only zeros, indicating that there is no neighbours
in uncovered state, it moves to the parent of the current node. When this occurs
in the Base Station, the data mule stops moving.

Regarding the regular sensor node, when it receives the msg_serve from data
mule, it sends the message msg_served to all neighbours (lines 4–5 Algorithm2).
A sensor node when receives msg_served, decreases its variable containing the
number of uncovered neighbours (lines 8–9 Algorithm 2). These steps allow for
each sensor to keep the number of uncovered neighbours updated.

Locality Sensitive Algotrithms for Data Mule Routing Problem 243

Algorithm 2. Regular Sensor Node u Algorithm
1 Variables:
2 uncoveredNodes ← |N(u)|
3 Upon receiving a message M
4 case M = msg_serve
5 Send msg_served to all N(u)

6 case M = msg_request
7 Send msg_numbernodes(uncoveredNodes) to mule

8 case M = msg_served
9 uncoveredNodes– –

4.2 Algorithms Based on Convex-Hull

The second proposed approach, AlgCH, follows the same steps of AlgNUM.
However the criterion used to decide the data mule’s movement is based on the
notion of convex-hull.

The convex hull of a set Q of points, called CH(Q), is the smallest convex
polygon P for which each point in Q is either on the boundary of P or in its
interior. It is assumed that all points in Q are unique and that Q contains at least
three no co-linear points [2]. An example of Q and the corresponding CH(Q)
are shown in Fig. 1.

Fig. 1. Q = {p0, p1, . . . , p8} and the corresponding CH(Q) in dashed line

In this work, Graham’s scan algorithm was used to calculate the convex-hull.
Its running time is O(n lg n), where n is the total number of points [2].

Data Mule Algorithm. In AlgCH approach, regular sensor nodes execute also
Algorithm2, described in Subsect. 4.1. Messages exchanged among the data mule
and sensor nodes are the same previously used in AlgNUM. Only the data mule
algorithm is modified, as presented in Algorithm3. In both data mule algorithms,
upon reaching a sensor node u, the date mule sends the message msg_serve
to all nodes in N(u), updating their status to covered (lines 10–12). However,

244 P. L. A. Munhoz et al.

in AlgCH before sending the next messages msg_request, the mule calculates
the convex-hull of N(u) ∪ {u} (line 13 Algorithm3), by using Graham’s scan
algorithm [2]. Here, the mule only sends msg_request to the regular sensors of
the convex-hull (lines 14–15 Algorithm3), which, in turn, reply with the number
of uncovered neighbors. The mule, as in the previous algorithm, will move to the
sensor that replied with the larger number of uncovered neighbours.

That approach aims at reducing the number of exchanged message between
the data mule and sensor nodes. That happens because nodes inside the convex-
hull do not receive msg_request. Another desired effect is the reduction in the
number of data mule movements. The idea is that the data mule could cover
more sensor nodes, with less movements, if it moved on the boundary of the
convex-hull.
Algorithm 3. AlgCH – Data Mule Algorithm
1 Variables:
2 parent ← ∅
3 states ← ∅
4 CHnodes ← ∅
5 Upon reaching node u coming from node v
6 if u is not in dominator state then
7 states ← states \ {< u, covered >}
8 states ← states ∪ {< u, dominator >}
9 parent ← parent ∪ {< u, v >}

10 foreach v ∈ N(u) do
11 states ← states ∪ {< v, covered >}
12 Send msg_serve to v

13 CHnodes ← Graham′s Scan(N(u) ∪ {u})
14 foreach v ∈ CHnodes do
15 Send msg_request to v

16 Upon receiving all msg_numbernodes of CHnodes
17 if ∃ v ∈ CHnodes | numbernodes(v) �= 0 then
18 Data Mule moves to sensor node t ∈ CHnodes with the greatest

numbernodes
19 else
20 if u is the Base Station then
21 Data Mule stop moving
22 else
23 v ← get_parent(parent, u)
24 Data Mule moves to v

5 Computational Experiments and Analysis

In order to evaluate the proposed algorithms, we used instances generated for
the Close-enough Traveling Salesman Problem [5]. We selected ten instances
that respect our problem assumptions: (i) nodes are located in an Euclidean

Locality Sensitive Algotrithms for Data Mule Routing Problem 245

plan, (ii) nodes have the same acting range, in our case, communication range,
and (iii) the instances are connected graphs. The number of nodes of the selected
instances varies from 100 to 1000.

We implemented the heuristics in two scenarios. In the first one, the data
mule waits for an acknowledgment, from each sensor node to which it sent a
msg_serve, before sending msg_request. In its turn, the sensor node waits for
acknowledgements, from all sensors to which it sent msg_served, to send the
corresponding acknowledgments to the data mule. Note that, in this scenario, all
sent messages msg_serve and msg_served are delivered and processed, and,
consequently, every sensor knows the correct number of covered nodes, when it
receives a msg_request. The second scenario is the same described in Sects. 4.1
and 4.2, and no acknowledgment message is employed.

We also implemented the mathematical formulation and the algorithm for
calculating a lower bound, as presented in Sects. 3.2 and 3.1. Those results are
used as baseline to evaluate the quality of results and execution times of the
proposed algorithms.

The algorithms were implemented in the programming language C++, and
used MPI for message-passing. The mathematical formulation was implemented
in the programming language C++ and used IBM ILOG CPLEX Optimizer
v12.5.1 as mixed integer programming solver. The algorithm to calculate the
lower bound (LB3) calculation was implemented in C++ and used a graph
library, LEMON1. Our tests were executed in a Intel Core i7 3.6Ghz computer,
with 16GB of RAM and Linux Mint 18 as its operating system.

Table 1 presents the results obtained by the methods that have the global
view of the network. It shows instance names in column Inst.; the lower bounds,
in column SolLB3 , found by using the Steiner Tree with k = 3, as presented in
Lemma 4; the results obtained by the mathematical formulation are presented
in columns, LR, linear relaxation on root node, TLR(s), time to obtain this
linear relaxation, SolM at , solution of entire formulation presented in Sect. 3.2,
and the corresponding time, T(s).

It was not possible to prove the optimality of solution found for instance
bonus1000, so only the feasible solution found was presented in the table. Note
that the results showed that very good lower bounds were generated, matching
with the optimal solutions in 5 of 10 instances and presenting better results
concerning the linear relaxation of the mathematical formulation. Those results
indicate that the lower bound algorithm gives good solutions, that can be also
used as a baseline to our analyse.

Table 2 summarizes the results obtained by the proposed algorithms. Column
Inst. also presents instance names and the other columns present the obtained
results by AlgNum and AlgCH and the corresponding number of exchanged
messages, msgs. Note that in Case 2 – Without ACK, the results are averages
of 10 executions, because, as the algorithms do not use messages of acknowledg-
ments, different solutions can be found at each execution.

1 LEMON – Library for Efficient Modeling and Optimization in Networks, available
on https://lemon.cs.elte.hu.

https://lemon.cs.elte.hu

246 P. L. A. Munhoz et al.

Table 1. Computational results – global view

Inst. LB3 Mathematical Formulation
SolLB3 T(s) LR TLR (s) SolM ath T(s)

kro100 4 0.01 3 0.01 4 1.31
rat195 4 0.07 3 0.02 4 4.27
team2_200 4 0.06 4 0.03 5 14.35
team3_300 32 0.09 19 0.07 74 17996.7
lin318 4 0.18 3.67 0.27 5 6012.51
rd400 6 0.28 5 0.97 6 7336.95
pcb442 6 0.38 4.14 0.88 6 37180.6
team6_500 3 0.66 3 2.20 3 225.29
dsj1000 6 3.00 4 2.50 8 24842.1
bonus1000 8 2.12 7.86 38.46 22∗ 86400
* an optimal solution was not found in a limit of 24 h

Remark that the mathematical formulation has complete knowledge of the
network while the heuristics are locality sensitive and have incomplete knowl-
edge. Then, it was already expected that the results given by the algorithms are
worse than the ones given by the mathematical formulation.

Table 2. Computational results – locality sensitive heuristics

Inst. Case 1 – With ACK Case 2 – Without ACK
SolN U M msgs SolCH msgs SolN U M msgs SolCH msgs

kro100 6 11108 6 10538 10.0 6664.7 15.3 5852.4

rat195 4 43006 4 42108 6.4 23040.8 10.4 21795.9

team2_200 10 30562 12 29016 14.6 17515.6 18.4 15212.2

team3_300 74 21742 74 19556 94.2 13586.5 88.6 10876.1

lin318 8 94250 10 91874 13.2 51019.1 13.4 46772.0

rd400 14 112694 14 108482 22.8 62300.5 17.2 54981.5

pcb442 12 169950 12 165778 17.4 90869.9 17.8 85027.3

team6_500 6 312252 6 307818 12.0 164828.5 9.8 154971.2

dsj1000 8 837514 10 828926 17.8 431716.1 19.9 418260.2

bonus1000 22 450712 26 441438 36.4 238016.4 35.4 222859.8

Results presented in Table 2 show that the scenario With ACK produces
better results, concerning the number of edges of the data mule path, than its
counterpart. This occurs because in this scenario the data mule makes deci-
sions based on a consistent state of the network. On the other hand, the num-
ber of exchanged messages increases thanks to ACK messages. In the scenario
With ACK, AlgNum outperforms AlgCH in four instances and gives the same

Locality Sensitive Algotrithms for Data Mule Routing Problem 247

results in the other six, using, however, a greater number of messages. In the
scenario Without ACK, AlgNum outperforms AlgCH in seven instances. How-
ever, AlgCH finds better solutions in three instances. Here, AlgCH also employs
less messages than AlgNum. The proposed algorithms gave the optimal solutions
in six cases (4 in AlgNUM and 2 in AlgCH) and they presented an average wors-
ening percentage of 61.10% and 164.87% in With ACK and Without ACK
cases, respectively, when compared with the mathematical formulation results.
The results obtained by the proposed locality sensitive heuristics are good, since
the mathematical formulation results were obtained in an unrealistic scenario
where the data mule had the complete knowledge of the network.

References

1. Bin Tariq, M.M., Ammar, M., Zegura, E.: Message ferry route design for sparse
ad hoc networks with mobile nodes. In: Proceedings of the 7th ACM International
Symposium on Mobile Ad Hoc Networking and Computing. MobiHoc 2006, pp.
37–48. ACM, New York (2006)

2. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, New York (2001)

3. Islam, K., Akl, S.G., Meijer, H.: A constant factor localized algorithm for comput-
ing connected dominating sets in wireless sensor networks. In: 14th IEEE Interna-
tional Conference on Parallel and Distributed Systems. ICPADS 2008, pp. 559–566.
IEEE (2008)

4. Jang, H.C., Lien, Y.N., Tsai, T.C.: Rescue information system for earthquake dis-
asters based on MANET emergency communication platform. In: Proceedings of
the 2009 International Conference on Wireless Communications and Mobile Com-
puting: Connecting the World Wirelessly, IWCMC 2009, pp. 623–627. ACM, New
York (2009)

5. Mennell, W.K.: Heuristics for solving three routing problems: close-enough travel-
ing salesman problem, close-enough vehicle routing problem, sequence-dependent
team orienteering problem. Ph.D. thesis, University of Maryland (College Park,
Md.), College Park, Maryland, USA (2009)

6. Puccinelli, D., Haenggi, M.: Wireless sensor networks: applications and challenges
of ubiquitous sensing. IEEE Circuits Syst. Mag. 5, 2005 (2005)

7. Sahin, C.S., et al.: Uniform distribution of mobile agents using genetic algorithms
for military applications in MANETs. In: 2008 Military Communications Confer-
ence. MILCOM 2008, pp. 1–7. IEEE (2008)

8. Sharma, S., Bansal, R.K., Bansal, S.: Issues and challenges in wireless sensor net-
works. In: 2013 International Conference on Machine Intelligence and Research
Advancement (ICMIRA), pp. 58–62. IEEE (2013)

9. Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating sets and neighbor elimination-
based broadcasting algorithms in wireless networks. IEEE Trans. Parallel Distrib.
Syst. 13(1), 14–25 (2002)

10. Sugihara, R., Gupta, R.K.: Path planning of data mules in sensor networks. ACM
Trans. Sens. Netw. 8(1), 1:1–1:27 (2011)

248 P. L. A. Munhoz et al.

11. Zhao, W., Ammar, M.: Message ferrying: proactive routing in highly-partitioned
wireless ad hoc networks. In: 2003 Proceedings of the Ninth IEEE Workshop
on Future Trends of Distributed Computing Systems. FTDCS 2003, pp. 308–314
(2003)

12. Zhao, W., Ammar, M., Zegura, E.: Controlling the mobility of multiple data trans-
port ferries in a delay-tolerant network. In: Proceedings IEEE 24th Annual Joint
Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1407–
1418. IEEE (2005)

Maximize a Monotone Function
with a Generic Submodularity Ratio

Qingqin Nong1(B) , Tao Sun1, Suning Gong1, Qizhi Fang1, Dingzhu Du2 ,
and Xiaoyu Shao1

1 School of Mathematical Science, Ocean University of China,
Qingdao 266100, Shandong, People’s Republic of China

qqnong@ouc.edu.cn
2 Department of Computer Science, University of Texas, Dallas 75083, USA

Abstract. Generic submodularity ratio γ is a general measurement to
characterize how close a nonnegative monotone set function is to be sub-
modular. In this paper, we make a systematic analysis of greedy algo-
rithms for maximizing a monotone and normalized set function with a
generic submodularity ratio γ under Cardinality constraints, Knapsack
constraints, Matroid constraints and K-intersection constraints.

Keywords: Non-submodular · Greedy · Independent system

1 Introduction

Many combinatorial optimization problems may be formulated as the maximiza-
tion of a set-function f defined on a ground set N . For any pair of S, T ⊆ N ,
denote by fS(T) = f(S ∪ T) − f(S) the marginal gain of set T in S. Specially,
denote by fS(j) = f(S + j) − f(S) the marginal gain of singleton set {j} in S.
The function f(·) is called submodular, if fS(j) ≥ fT (j) for any S ⊆ T and any
j ∈ N \ T . Many set functions that occur in practical problems turn out to be
submodular functions or slight modifications thereof. Thus, submodular maxi-
mization applies in many areas of computer science and applied mathematics,
such as machine learning [1], computer vision [10], operations research [9].

Extensive work has been conducted in the area of optimizing submodular
maximization problems. The greedy approach is a basic method for the prob-
lems: start from an empty set; iteratively add to the current solution set one
element that results in the largest marginal gain of the objective function while
satisfying the constraints. Historically, one of the very first problems examined
was maximizing a monotone (f(S) ≤ f(T) whenever S ⊆ T) and normalized

This research was supported in part by the National Natural Science Foundation
of China under grant numbers 11201439 and 11871442, and was also supported in
part by the Natural Science Foundation of Shandong Province under grant number
ZR2019MA052 and the Fundamental Research Funds for the Central Universities.

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 249–260, 2019.
https://doi.org/10.1007/978-3-030-27195-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_23&domain=pdf
http://orcid.org/0000-0002-0895-7793
http://orcid.org/0000-0002-7345-2185
https://doi.org/10.1007/978-3-030-27195-4_23

250 Q. Nong et al.

(f(∅) = 0) submodular function under various constraints. We mention here the
most relevant results.

For Cardinality constraints, Fisher et al. [7] and Nemhauser et al. [16] proved
that for submodular maximization, if f is nonnegative, monotone, greedy app-
roach yields a (1 − 1

e)-approximation. Feige [6] proved that unless P = NP ,
no polynomial time algorithm can achieve an approximation ratio better than
(1 − 1

e) for the cardinality constrained maximization of set cover functions.
For Knapsack constraints, Wolsey [18] presented a modified greedy algorithm,

with performance guarantee 1 − 1
eβ ≈ 0.35, where β is a unique root of equation

ex = 2 − x. Khuller et al. [12] were the first to obtain an approximation ratio of
(1 − 1

e) using partial enumeration in the case of a set cover function. The result
extended to any submodular function by Sviridenko [19].

For Matroid constraints, Fisher et al. [7] proved that greedy approach yields
a 1/2-approximation. This result was improved to (1 − 1

e) by Calinescu et al.
[4] using continuous optimization. A combinatorial algorithm was later con-
structed by Filmus and Ward [8]. A matching lower bound was due to [16,17]. By
introducing the total curvature c = 1 − min

S,j /∈S

fS(e)
f∅(j)

, Conforti and Cornuéjols [3]

proved that, when f additionally has total curvature c, greedy approches yield a
(1− e−c)/c-approximation for a uniform matroid and a 1/(1+ c)-approximation
for a general matroid.

For K-intersection constraints, Fisher et al. [7] showed that a greedy algo-
rithm has an approximation factor of 1

K+1 . This result was improved by Lee
et al. [15] to 1

K+δ , for any constant δ > 0, using a local search approach that
exploits exchange properties of the underlying combinatorial structure. Some
more general classes like K-systems, K-extendible set systems and etc. were
also considered [7,11].

Submodular maximization plays an important role in combinatorial opti-
mization. However, for many applications, including experimental design and
sparse Gaussian processes [14], f(·) is in general not submodular [13]. Based
on one of equivalent definitions of submodular functions, Das and Kempe [5]

proposed the submodularity ratio, γ̃ = min
Ω,S⊆N

∑
j∈Ω\S fS(j)

fS(Ω) . It is a quantity char-

acterizing how close a set function is to being submodular. Bian et al. [2] com-
bined and generalized the ideas of curvature and submodularity ratio and gave a
(1 − e−cγ̃)/c-approximation for maximization problem of nonsubmodular func-
tion f with curvature c and submodularity ratio γ̃ under Cardinality constraints.

We say that a set function f(·) is strictly monotone if it is monotone and
f(S) < f(T) whenever S ⊂ T . Generic submodularity ratio γ is another quan-
tity characterizing how close a nonnegative nondecreasing set function is to be
submodular. It is derived from a different equivalent definition of submodular
functions. In this paper we make a systematic analysis of greedy algorithms for
maximizing a strictly monotone and normalized set function with a generic sub-
modularity ratio γ under Cardinality constraints, Knapsack constraints, Matroid
constraints and K-intersection constraints.

Maximize a Monotone Function with a Generic Submodularity Ratio 251

2 Preliminaries

Generic submodularity ratio measures how many times the marginal gains of
joining an element to a set than that of a superset.

Definition 1 (Generic Submodularity Ratio). Given a ground set N and
a nondecreasing set function f : 2N → R+, the generic submodularity ratio of f
is the largest scalar γ such that for any S ⊆ T ⊆ N and any j ∈ N \ T ,

fS(j) ≥ γ · fT (j).

Remarks:

– (a) γ ∈ [0, 1]. Due to nonnegative and nondecreasing properties of f(·),
fA(B) = f(A ∪ B) − f(A) ≥ 0 for any A,B ⊆ N . This implies γ ≥ 0.
Observe that the equality fS(j) = fT (j) holds when S = T , we have γ can
not be larger than 1.

– (b) f(·) is submodular iff γ = 1. f is a submodular set function if and only
if the inequality fA(j) ≥ fB(j) holds for any pair of A,B with A ⊆ B and
j ∈ N \ B.

Thus γ ≥ 1. Combining with γ ≤ 1, we obtain the result.
For Convenience, henceforth we say that a function f(·) is γ-submodular if

its generic submodularity ratio is γ. We say that a function f(·) is γ-subadditive
if for any pair subsets of N , A and B, satisfying

f(A) + f(B) ≥ γf(A ∪ B).

We have the following results.

Proposition 1. If f(·) is γ-submodular, for all S ⊆ N , fS(·) is γ-submodular.

Proof. Consider A and B two subsets of N . Assume that A ⊆ B. The marginal
contribution of an element j to A under function fS(·) is

fS,A(j) = fS(A + j) − fS(A)
= [f(A + j ∪ S) − f(S)] − [f(A ∪ S) − f(S)]
= f(A + j ∪ S) − f(A ∪ S)
= fA∪S(j).

Similarly, the marginal contribution of an element j to B under function fS(·)
is fS,B(j) = fB∪S(j). Since f(·) is γ-submodular and A∪S is a subset of B ∪S,
we have

fS,A(j) = fA∪S(j) ≥ γfB∪S(j) = γfS,B(j).

Proposition 2. If f(∅) = 0 and f(·) is γ-submodular, for all S ⊆ N , fS(·) is
γ-subadditive.

252 Q. Nong et al.

Proof. Consider A and B two subsets of N . Write B = {e1, . . . , eb}, Bi =
{e1, . . . , ei} (1 ≤ i ≤ b) and B0 = ∅.

f(A ∪ B) = f(A) +
b

∑

i=1

fA∪Bi−1(ei)

≤ f(A) +
b

∑

i=1

1
γ fBi−1(ei)

= f(A) + 1
γ f(B)

≤ 1
γ (f(A) + f(B)),

where the first inequality holds from the assumption that f(·) is γ-submodular
and the last one holds from the fact that γ ≤ 1.

Corollary 1. Let f(·) be a γ-submodular function, then:

∀S ⊆ T ⊆ N, f(T) ≤ f(S) +
1
γ

∑

j∈T\S

fS(j)

Proof. Since fS(∅) = 0 and f(·) is γ-submodular implying that fS(·) is γ-
subadditive, we have

f(T) = f(S) + fS(T \ S) ≤ f(S) +
1
γ

∑

j∈T\S

fS(j).

Clearly, the generic submodularity ratio of a strictly monotone function is
greater than 0. In the sequel, we consider the problem of maximizing a non-
negative strictly monotone and normalized set function f(·) under Cardinality
constraints, Knapsack constraints, Matroid constraints and K-intersection con-
straints respectively.

3 Cardinality Constraint

Let f(·) be a strictly monotone γ−submodular function and assume that it is
normalized, that is, f(∅) = 0. Consider the maximization problem max

|S|≤k
f(S)

and a greedy algorithm for it. Let S∗ be the optimal solution of the problem.

Theorem 1. Let SG be the set returned by Algorithm1. Then

f(SG) ≥ (1 − e−γ)f(S∗).

Proof. Denote by St = {ẽ1, ẽ2, · · · , ẽt} the value of SG after the tth time line 4
of Algorithm 1 is executed, where ẽt is the tth element chosen in SG. Let S0 = ∅.
Then

f(S∗) ≤ f(St−1 ∪ S∗)
≤ f(St−1) + 1

γ · ∑

e∈S∗\St−1

fSt−1(e)

≤ f(St−1) + 1
γ · ∑

e∈S∗\St−1

fSt−1(ẽt)

= f(St−1) + 1
γ · ∑

e∈S∗\St−1

(f(St) − f(St−1))

≤ f(St−1) + k
γ · (f(St) − f(St−1)),

Maximize a Monotone Function with a Generic Submodularity Ratio 253

Algorithm 1. Greedy Algorithm (Cardinality Constraint)
Input: A ground set N , value query oracle for a strictly monotone γ−submodular set

function f : 2N → R+, k
Output: A solution of Problem max

|S|≤k
f(S)

1: Initialize: SG ← ∅
2: while |SG| < k do
3: ẽ ← arg maxe∈N fSG(e)
4: SG ← SG + ẽ
5: N ← N − ẽ
6: end while
7: return SG

where the first inequality follows from the monotonicity of f , the second inequal-
ity follows from Corollary 1, the third inequality follows from the greediness of
Algorithm 1 and the last inequality follows from |S∗| ≤ k. Rearrange the terms
of the above inequality, we have

f(St) − f(S∗) ≥ (1 − γ

k
)[f(St−1) − f(S∗)],

implying
f(St) − f(S∗) ≥ (1 − γ

k
)t[f(S0) − f(S∗)].

Together with the fact that S0 = ∅ and f(∅) = 0, the above inequality implies

f(St) ≥ (1 − (1 − γ

k
)t)f(S∗).

Let t = k and using (1 − γ
k)k ≤ e−γ , we have f(SG) ≥ (1 − e−γ)f(S∗).

4 Knapsack Constraint

There is a cost function c : N → R+ and a budget B ∈ R+. For any S ⊆ N ,
let c(S) =

∑

e∈S

c(e). Consider the optimization problem max
c(S)≤B

f(S). A natural

greedy way is, without violating the budget, in each iteration picking the element
with maximum marginal contribution divided by the cost.

If S∗ \ SG = ∅, we have f(SG) ≥ f(S∗). Thus assume that S∗ \ SG �= ∅. List
the elements of N in the order that is deleted from N in Algorithm 2. Suppose
that ë is the first element that is in S∗ \ SG. We have the following theorem.

Lemma 1. Let ė be an arbitrary element that is scheduled not later than ë and
line 4 of Algorithm2 evaluates false. Then

f(SG + ė) ≥ (1 − e−γ)f(S∗).

254 Q. Nong et al.

Algorithm 2. Greedy Algorithm (Knapsack Constraint)
Input: A ground set N , value query oracle for a monotone γ−submodular set function

f : 2N → R+, cost function c : N → R+ and a budget B
Output: A solution of Problem max

c(S)≤B
f(S)

1: Initialize: SG ← ∅
2: while N �= ∅ do

3: ẽ ← arg maxe∈N
fSG

(e)

c(e)

4: if c(SG) + c(ẽ) ≤ B then
5: SG ← SG + ẽ
6: end if
7: N ← N − ẽ
8: end while
9: return SG

Proof. Suppose that the value of SG is St (t elements have been selected) exactly
before ė is deleted from N in the algorithm. From the definitions of ė and ë
respectively, one can see that each element in either SG\St or S∗\SG is schedule
after ė. This means that each element in S∗ \ St is scheduled after ė. Note that,
for each element e scheduled after ė, fSt (e)

c(e) ≤ fSt (ė)

c(ė) . We have

f(S∗) ≤ f(St ∪ S∗)
≤ f(St) + 1

γ · ∑

e∈S∗\St

fSt
(e)

= f(St) + 1
γ · ∑

e∈S∗\St

c(e) fSt (e)

c(e)

≤ f(St) + 1
γ · ∑

e∈S∗\St

c(e) fSt (ė)

c(ė)

≤ f(St) + B
γc(ė) · [f(St + ė) − f(St)],

where the first inequality holds from the monotonicity of f , the second inequality
holds from Corollary 1, the third inequality holds from the greediness of Algo-
rithm2 and the fact the each element in S∗ \ St is deleted from N later than ė,
the last inequality holds from the fact that c(S∗) ≤ B. Rearrange the terms of
the above inequality, we have

f(St + ė) − f(S∗) ≥ (1 − γc(ė)
B

)[f(St) − f(S∗)]. (1)

Similarly, consider the induction relation between St and St−1. As the proof of
Theorem 1, let ẽt be the tth element chosen in SG.

f(S∗) ≤ f(St−1 ∪ S∗)
≤ f(St−1) + 1

γ · ∑

e∈S∗\St−1

fSt−1(e)

= f(St−1) + 1
γ · ∑

e∈S∗\St−1

c(e)
fSt−1 (e)

c(e)

Maximize a Monotone Function with a Generic Submodularity Ratio 255

≤ f(St−1) + 1
γ · ∑

e∈S∗\St−1

c(e)
fSt−1 (ẽt)

c(ẽt)

≤ f(St−1) + B
γc(ẽt)

· [f(St) − f(St−1)]

where the third inequality follows from the fact that S∗ \ St−1 ⊆ (S∗ \ St) + ẽt

and thus each element in S∗ \ St−1 is deleted from N not earlier than ẽt. Thus

f(St) − f(S∗) ≥ (1 − γc(ẽt)
B

)[f(St−1) − f(S∗)], (2)

From inequalities (1) and (2), we have

f(St + ė) − f(S∗) ≥ (1 − γc(ė)
B

)
t

∏

i=1

(1 − γc(ẽi)
B

)[f(S0) − f(S∗)].

Using that 1 − x ≤ e−x,

f(St + ė) − f(S∗) ≥ exp(−γc(ė)
B)

t
∏

i=1

exp(−γc(ẽi)
B))[f(S0) − f(S∗)].

= exp(−γc(St+ė)
B)[f(S0) − f(S∗)]

Since f(S0) = 0 and c(St + ė) > B, we have f(St + ė) ≥ (1 − e−γ)f(S∗). Since
f is monotone, f(SG + ė) ≥ f(St + ė) and concludes the proof.

Algorithm 3. Greedy Algorithm (Knapsack Constraint, simple fix)
Input: A ground set N , value query oracle for a monotone γ−submodular set function

f : 2N → R+, cost function c : N → R+ and a budget B
Output: A solution of Problem max

c(S)≤B
f(S)

1: e∗ ← arg maxe∈N,c(e)≤B f({e})
2: SG ← result of Algorithm 2
3: return arg max{f(SG), f(e∗)}

Theorem 2. Let S be the set returned by Algorithm3. Then

f(S) ≥ γ(1 − e−γ)
2

f(S∗).

Proof. As before, let ė be an arbitrary element that is scheduled not later than
ë and line 4 of Algorithm 2 evaluates false. Then by Lemma 1

(1 − e−γ)f(S∗) ≤ f(SG + ė) = f(SG) + fSG
(ė) ≤ f(SG) + 1

γ f(ė)
≤ 1

γ (f(SG) + f(ė)) ≤ 1
γ (f(SG) + f(e∗)) ≤ 2

γ f(S).

The result follows.

256 Q. Nong et al.

Algorithm 4. Greedy Algorithm 4 (Knapsack Constraint, Partial Enumeration)
Input: A ground set N with n elements, value query oracle for a monotone

γ−submodular set function f : 2N → R+, cost function c : N → R+, budget
B

Output: A solution of Problem max
c(S)≤B

f(S)

1: S̃ ← arg max
S⊆N,c(S)≤B,|S|<d

f(S)

2: S̄ ← ∅
3: for all S ⊆ N, |S| = d, c(S) ≤ B do
4: N ′ ← N \ S
5: SG ← Algorithm 2 for N ′ with initialization SG ← S, f ← fS and B ← B − c(S)
6: if f(SG) > f(S̄) then
7: S̄ ← SG

8: end if
9: end for

10: return arg max{f(S̃), f(S̄)}

Theorem 3. For d ≥ eγ

γ2 , Algorithm4 returns a set T with f(T) ≥ (1 −
e−γ)f(S∗).

Proof. If |S∗| ≤ d, Algorithm 4 finds the optimal solution. Consider the case that
|S∗| > d. Order the elements in S∗ = {e∗

1, . . . , e
∗
l } such that

e∗
i ∈ arg max

e∈S∗\S∗
i−1

fS∗
i−1

(e),

where S∗
i−1 = {e∗

1, . . . , e
∗
i−1} and S∗

0 = ∅. Consider the iteration of Algorithm4
where the initialization is f ← fS∗

d
, SG ← S∗

d and B ← B − c(S∗
d). Then the

optimal solution of problem max
c(S)≤B−c(S∗

d)
fS∗

d
(S) is S∗ \ S∗

d . Let us consider the

moment that Algorithm 2 evaluated to false for the element ë, the first element
that is in S∗ \ SG. By Lemma 1

fS∗
d
((SG \ S∗

d) + ë) ≥ (1 − e−γ)fS∗
d
(S∗ \ S∗

d),

equivalently,

f(SG + ë) − f(S∗
d) ≥ (1 − e−γ)[f(S∗) − f(S∗

d)].

Thus f(SG) + fSG
(ë) ≥ (1 − e−γ)f(S∗) + 1

eγ f(S∗
d), implying

f(SG) ≥ (1 − e−γ)f(S∗) + 1
eγ f(S∗

d) − fSG
(ë)

≥ (1 − e−γ)f(S∗) + 1
eγ f(S∗

d) − 1
γ fS∗

d
(ë), (3)

where the last inequality holds from S∗
d ⊆ SG and thus fS∗

d
(ë) ≥ γfSG

(ë). Since
fS∗

d
(ë) ≤ 1

γ fS∗
j−1

(ë) ≤ 1
γ fS∗

j−1
(e∗

j) for each j ∈ {1, . . . , d},

fS∗
d
(ë) ≤ 1

γ
min

1≤j≤d
fS∗

j−1
(e∗

j).

Maximize a Monotone Function with a Generic Submodularity Ratio 257

Together with f(S∗
d) =

d
∑

j=1

fS∗
j−1

(e∗
j), we have

fS∗
d
(ë) ≤ 1

γd
f(S∗

d).

This means that if d ≥ eγ

γ2 , Algorithm 4 returns a set, denoted by T , with

f(T) ≥ f(SG)
≥ (1 − e−γ)f(S∗) + 1

eγ f(S∗
d) − 1

γ fS∗
d
(ë) [By Inequality (3)]

≥ (1 − e−γ)f(S∗) + 1
eγ f(S∗

d) − 1
γ2df(S∗

d)
≥ (1 − e−γ)f(S∗).

The result follows.

5 K-Intersection Constraint

Given a ground set N , a pair (N, I) is called an independent system if I ⊆ 2N

is hereditary (that is, for every set S ∈ (N, I), every set S′ ⊆ S is also in I.)
Independent systems are further divided into a few known classes. The following
classes of independent systems are probably most highly researched

Definition 2 (Matroid). An independent system is a matroid if for every two
sets S, T ∈ I such that |T | > |S|, there exists an element x ∈ T \ S, such that
S ∪ {x} ∈ I. This property is called the augmentation property of matroid.

Definition 3 (K-intersection). An independent system M = (N, I) is K −
intersection if there exist K matroids Mi = (N, Ii)(1 ≤ i ≤ K) such that a set
S ⊆ N is in I if and only if S ∈ ⋂K

i=1 Ii.

Let M = (N, I) be an independent system. A base of set V (V ⊆ N) is a
maximal independent subset of V .

Definition 4 (K-system). An independent system M = (N, I) is a K−system
if for every set V ⊆ N the ratio of the sizes of the largest base of V to the smallest
base of V is at most K.

Here is the known hierarchy of set systems:

matroid ⊆ K − intersection ⊆ K − system.

Clearly, matroid is a special case of K-intersection with K = 1. In this
section we first consider the maximization of strictly monotone γ−submodular
set function f : 2N → R+ under K-intersection constraints. We will obtain a
byproduct of the optimization problem under matroid constraints. We assume
that each matroid in the K-intersection is given by an independence oracle that
answers whether or not S ∈ Ii. We first describe the greedy heuristic and then
analyze the approximate ratio of this approach.

258 Q. Nong et al.

Algorithm 5. Greedy Algorithm 5 (K-Intersection Constraint)
Input: A ground set N , value query oracle for strictly monotone γ−submodular set

function f : 2N → R+, a K-intersection M = (N, I)
Output: A solution of Problem max

S∈I
f(S)

1: Initialization: S0 ← ∅ and t ← 1
2: while N �= ∅ do
3: ẽ ← max

e∈N
fSt−1(e)

4: if St−1 + ẽ ∈ I then
5: ẽt ← ẽ, St ← St−1 + ẽt and t ← t + 1
6: end if
7: N ← N − ẽ
8: end while
9: return St

Suppose that t = g when the algorithm terminates. Let Sg = {ẽ1, ẽ2, · · · , ẽg}
be the set returned by the greedy algorithm, where ẽt is the element chosen in
Iteration t. Denote St = {ẽ1, ẽ2, · · · , ẽt}. Let U[t,t+1) (t = 1, 2, · · · , g − 1) be the
set of the elements including ẽt and those considered in the t+1 iteration of the
greedy approach before the addition of ẽt+1. Let U[g,g+1) = V \ ⋃g−1

k=1 U[k,k+1).

Proposition 3. (i) for each e ∈ U[t−1,t)\{ẽt−1}, fSt−1(e) ≥ fSt−1(ẽt) but St−1∪
{e} /∈ I; (ii) fSt−1(e) ≤ fSt−1(ẽt) for each e ∈ ⋃g

k=t U[k,k+1).

Note that St is a maximal independent set and thus a base of
⋃t

k=1 U[k,k+1)

and S∗ ∩ (
⋃t

k=1 U[k,k+1)) is an independent set of
⋃t

k=1 U[k,k+1). Let ak = |S∗ ∩
U[k,k+1)| (k = 1, 2, · · · , g). Since a K− intersection system is a K-system, we
have the following result.

Lemma 2.
∑t

k=1 ak ≤ Kt for t = 1, 2, · · · , g.

Theorem 4. Let Sg be the set returned by Algorithm5. Then

f(Sg)
f(S∗)

≥ γ

K + γ
.

Proof. Index the elements of the optimal solution S∗ in the order that is deleted
in the greedy algorithm. Suppose S∗ = {e∗

1, . . . , e
∗
l }. Let b = � l

K �. From
Lemma 2, we have b ≤ g. Define

S∗
1 = {e∗

1, . . . , e
∗
K};

S∗
2 = {e∗

K+1, . . . , e
∗
2K};

...
S∗

b−1 = {e∗
(b−2)K+1, . . . , e

∗
(b−1)K};

S∗
b = S∗ \ ⋃b−1

i=1 S∗
i

From Lemma 2, one can see that S∗
i ⊆ ⋃g

k=i U[k,k+1). By Proposition 3, this
means that for each e ∈ S∗

i , the inequality

fSi−1(e) ≤ fSi−1(ẽi) (4)

Maximize a Monotone Function with a Generic Submodularity Ratio 259

holds. From the monotonicity of f , we have

f(S∗) ≤ f(S∗ ∪ Sg)
= f(Sg ∪ (

⋃b
i=1 S∗

i))
= f(Sg) +

∑b
i=1

∑

e∗
j ∈S∗

i
[f(Sg ∪ {e∗

1, . . . , e
∗
j}) − f(Sg ∪ {e∗

1, . . . , e
∗
j−1})]

≤ f(Sg) + 1
γ · ∑b

i=1

∑

e∗
j ∈S∗

i
fSi−1(e

∗
j)

≤ f(Sg) + K
γ · ∑b

i=1 fSi−1(e
∗
j)

≤ f(Sg) + K
γ · ∑g

i=1 fSi−1(ẽj)
= (1 + K

γ)f(Sg),

where the first inequality holds from the monotonicity of f , the second inequality
holds from the fact that f is a γ−submodular function, the third and fourth
inequalities follow by inequality (4) and the fact that b ≤ g respectively. This
completes the proof of the theorem.

Corollary 2. Apply Algorithm5 to maximize a nonnegative strictly monotone
set γ−submodular functions under matroid constraint. Let Sg be the set returned.
Then

f(Sg)
f(S∗)

≥ γ

1 + γ
.

6 Conclusion

The objective functions for many applications in practice are in general not sub-
modular. To solve these optimization problems, an important research method
is to introduce some parameters to describe the characteristics of the non-
submodular functions, such as submodularity ratio, curvature, supermodular
degree, etc., and then design algorithms for the problems and analyze the per-
formances of the algorithms with these parameters.

References

1. Balcan, M.F., Harvey, N.J.A.: Learning submodular functions. In: Proceedings of
the 43rd ACM Symposium on Theory of Computing, pp. 793–802. ACM, San Jose
(2011)

2. Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy
maximization of non-submodular functions with applications. In: International
Conference on Machine Learning, pp. 498–507 (2017)

3. Conforti, M., Cornuéjols, G.: Submodular set functions, matroids and the greedy
algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds
theorem. Discret. Appl. Math. 7(3), 251–274 (1984)

4. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set
function subject to a matroid constraint (extended abstract). In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-72792-7 15

https://doi.org/10.1007/978-3-540-72792-7_15

260 Q. Nong et al.

5. Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset
selection, sparse approximation and dictionary selection. In: Proceedings of the
28th International Conference on International Conference on Machine Learning,
pp. 1057–1064, Omni press, Bellevue (2011)

6. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

7. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for
maximizing submodular set functions II. Math. Program. Study 8, 73–87 (1978)

8. Filmus, Y., Ward, J.: A tight combinatorial algorithm for submodular maximiza-
tion subject to a matroid constraint. In: the 53rd Annual Symposium on Founda-
tions of Computer Science Foundations of Computer Science (FOCS), pp. 659–668,
IEEE, New Brunswick (2012)

9. Hochbaum, D.S., Hong, S.P.: About strongly polynomial time algorithms for
quadratic optimization over submodular constraints. Math. Program. 69(1), 269–
309 (1995)

10. Hochbaum, D.S.: An efficient algorithm for image segmentation, Markov random
fields and related problems. J. ACM 48(4), 686–701 (2001)

11. Jenkyns, T.: The efficacy of the greedy algorithm. Cong. Num. 17, 341–350 (1976)
12. Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Inf.

Process. Lett. 70(1), 39–45 (1999)
13. Krause, A., Singh, A., Guestrin, C.: Nearoptimal sensor placements in gaussian

processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res.
9, 235–284 (2008)

14. Lawrence, N., Seeger, M., Herbrich, R.: Fast sparse Gaussian process methods:
the informative vector machine. In: Advances in Neural Information Processing
Systems, vol. 15, pp. 625–632 (2003)

15. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple
matroids via generalized exchange properties. Math. Oper. Res. 35(4), 795–806
(2010)

16. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions I. Math. Program. 14(1), 265–294 (1978)

17. Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum
of a submodular set function. Math. Oper. Res. 3(3), 177–188 (1978)

18. Wolsey, L.A.: Maximising real-valued submodular functions: primal and dual
heuristics for location problems. Math. Oper. Res. 7, 410–425 (1982)

19. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

Approximation Algorithm for Stochastic
Prize-Collecting Steiner Tree Problem

Jian Sun1,2, Haiyun Sheng1, Yuefang Sun3, and Xiaoyan Zhang1(B)

1 School of Mathematical Science and Institute of Mathematics,
Nanjing Normal University, Nanjing 210023, Jiangsu, People’s Republic of China

zhangxiaoyannjnu@126.com
2 Department of Operations Research and Scientific Computing,

Beijing University of Technology, Beijing 100124, People’s Republic of China
3 School of Mathematical Information, Shaoxing University,

Shaoxing 312000, Zhejiang, People’s Republic of China

Abstract. Steiner tree problem is a typical NP -hard problems in
combinatorial optimization, which has comprehensive application back-
ground and is a hot topic in recent years. In this paper, we study
the stochastic prize-collecting Steiner tree problem. Before the actual
requirements materialize, we can choose (purchase) some edges in the
first stage. When actual requirements are revealed, drawn from a prespec-
ified probability distribution, then there are more edges may be chosen
(purchased) for the actual requirements. The goal is to minimize the sum
of the first stage cost, the expected second stage cost and the expected
penalty cost. We propose a primal-dual 3-approximation algorithm for
the stochastic prize-collecting Steiner tree problem.

Keywords: Combinatorial optimization ·
Stochastic prize-collecting Steiner tree · Approximation algoritorithm

1 Introduction

The Steiner tree problem (STP) is a classical network design problem. For an
undirected graph G = (V,E) with edge costs ce ∈ R≥0, ∀e ∈ E, and a set of
terminals ∅ �= T ⊆ V . It asks for a minimum cost edge set E′ ⊆ E such that
G[E′] connects T . The decision problem of the STP is NP -complete [13], even
in the case of edge weights 1 and 2 [1]. Moreover, the STP is approximable with
a constant factor and the currently best ratio is ln 4 + ε < 1.39 [2]. In addition,
integer linear programmings and their polytopes have been studied intensively
in the 1990’s, see [3–5].

In this paper, we consider the prize-collecting Steiner tree problem and the
two stage stochastic Steiner tree problem. Firstly, the prize-collecting Steiner
tree problem is an extension of the Steiner tree problem where each vertex left
out of the tree pays a penalty. The goal is to find a tree that minimizes the sum of
its edge costs and the penalties for the vertices left out of the tree. The problem
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 261–271, 2019.
https://doi.org/10.1007/978-3-030-27195-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_24

262 J. Sun et al.

has many applications in network design and has been used to approximate
many other problems. Secondly, the two stage stochastic Steiner tree problem
is also a natural extension of the STP to a two stage stochastic combinatorial
optimization problem.

It is well known that the primal-dual scheme has been used to provide
approximation algorithms for many problems. Goemans and Williamson gave
a (2 − 1

n−1)-approximation for the prize-collecting Steiner tree [8]. The best
approximation algorithms known for the prize-collecting Steiner tree problem
are based on the primal-dual scheme [7]. It is well known that the different lin-
ear programming formulations of the problem may lead to different algorithms.
Gupta and Pál [9] have given a 4-approximation algorithm by boosted sampling
technique for the two stage stochastic Steiner tree problem.

Formally, we define a two stage stochastic optimization problem with recourse
as follows [15]. When only the partial information is available, let vector x0 be
the set of decision variables in the first stage, which have to be fixed. Later, we
choose some second stage (or recourse) variables x1 to augment the first stage
solution x0 when the full information is available. ξ denotes the random vector
and it defines the constraint matrix T , cost vector q and requirement vector h
when the full information is available. Let A, c, and b denote the same for the
first stage. Given a vector (or matrix) a, we use a′ to denote the transpose of
a. Let P represent additional constraints such as nonnegativity or integrality,
the components of x0 and x1 need to satisfy the additional constraints. The
stochastic program can be written according to [15] as follows:

min c′x0 + EξQ(x0, ξ)
s.t. Ax0 = b,

x0 ∈ P,

where

Q(x0, ξ) = min q′x1

s.t. T (x0, x1) = h,

x1 ∈ P.

Here Q(x0, ξ) denotes the optimal cost of the second stage, which is condi-
tioned on scenario ξ = (q, T, h) having been realized and a first stage setting of
the variables x0. It’s easy to see that the expectation is taken with respect to ξ.

Subsequently, we consider the two stage stochastic optimization problem with
recourse and an additional restriction: finitely many scenarios. This means that
the future will be one of a finite set of possibilities (scenarios), and the parame-
ters and probability of occurrence of each scenario are known in advance. Specif-
ically, the two stage model has a restriction which is characterized by a finite
set of m scenarios in the second stage. The constraint matrix, cost vector and
requirement vector take on values Tk, qk and hk in the scenario k respectively,
and the probability of the scenario k occurring is pk. In the circumstances, the

Approximation Algorithm for Stochastic Prize-Collecting STP 263

mathematical formulation of this model is given below, where xk represents our
choice if scenario k materializes as follows [15]:

min c′x0+
m∑

k=1

pk(qk)′xk

s.t. Ax0 = b,

Tk(x0, xk) = hk, ∀k = 1, 2, ...,m,

(x0, xk) ∈ P, ∀k = 1, 2, ...,m.

For the two stage stochastic optimization problem, many researchers made an
important contribution. Schultz et al. [16] provided an excellent survey of the two
stage stochastic integer programming. According to the recent work on scenario
reduction by Heitsch and Römisch [10], the relevance of the finite scenario model
becomes more pronounced. In order to get a more complete description of models
of stochastic optimization and their uses, we advise the interested readers may
consult any of the texts cited above or others.

2 Related Work

The Steiner tree problem has also attracted significant attention, and many
relevant variants of the Steiner tree problem have been extensively studied.
Goemans and Williamson [8,11] used the primal-dual scheme to derive a
(2 − 1

n−1)-approximation for the rooted prize-collecting Steiner tree (PCSP),
where n = |V |. Trying all possible choices for the root, they obtained a (2− 1

n−1)-
approximation for the unrooted PCST. The resulting algorithm, which we call
GW, runs in time O(n3logn). Johnson, Minkoff and Phillips [12] proposed a
variant of the algorithm that runs the primal-dual scheme only once, resulting
in a O(n2logn) time bound. They claimed that their variant, which we refer to
as JMP, and it achieves the same approximation ratio as algorithm GW. Cole et
al. [6] proposed a faster implementation of the GW algorithm, which also runs
the primal-dual scheme only once and produces a (2+ 1

ploy(n))-approximation for
the PCST. For the two stage stochastic Steiner tree problem, Gupta and Pál [9]
gave a 4-approximation algorithm by boosted sampling technique; Kurz, Mutzel
and Zey [14] showed this problem is in the class of fixed-parameter tractable
problems (FPT), parameterized by the number of terminals.

The remainder of our paper is organized as follows. In Sect. 3, we introduce
the stochastic prize-collecting Steiner tree problem. Furthermore, applying the
primal-dual method, we propose a approximation algorithm for the problem and
prove that the ratio is 3.

3 Stochastic Prize-Collecting Steiner Tree Problem

In this section, we will introduce the stochastic prize-collecting Steiner tree prob-
lem (SPCSTP) and present the relevant programs specifically. The SPCSTP can

264 J. Sun et al.

be described as follows. In the problem, there are two stages. We are given a
potential edge set E in the first stage. In this stage, we can choose some edges
for serving any client (terminal vertex) later. The purchasing cost of the edge
e in the first stage is c0e. Until the second stage, all possible scenarios and the
associated probabilities become known. In this paper, we consider the case of
polynomial scenarios, that is to say, the number m of the scenarios is polynomial
with respect to the input of the problem.

For a scenario k ∈ {1, 2, ...,m} in the second stage, the probability of this
scenario is pk, the client (terminal vertex) set is denoted as Dk, the penalty
cost for the unserved client set Tk ⊆ Dk \ r is hk(Tk), which is a monotone
linear function, and the purchasing cost of edge e in this scenario is ck

e . The
client (terminal vertex) in scenario k of the second stage can be served by an
edge purchased in the first stage or the corresponding scenario; otherwise, the
client (terminal vertex) is unserved. For ease of notation, we call (e, k) (for
e ∈ E, k = 0, 1, 2, ...,m) an edge-scenario pair and denote the edge-scenario pair
set as E .

Similarly, each (S, k) (for k = 0, 1, 2, ...,m, S ⊆ Dk) represents a vertex
subset-scenario pair, which is active in the k-th scenario. Note that the scenario
is in the first stage when k = 0, and the scenario is in the second stage when
k = 1, 2...,m. We denote the vertex subset-scenario pair set as C. In scenario
k, the set of the vertex subset-scenario pair (S, k) (S ⊆ Dk) is denoted as Ck.

Obviously,
m⋃

k=1

Ck = C.

We want to determine the set of edge-vertex subset pairs Ê0 and Êk to be
purchased respectively in the first stage and in the k-th scenario of the second
stage (k = 1, 2, ...,m), the set of client-scenario pairs T̂k (k = 1, 2, ...,m) that

will incur penalties, and the expected edge purchasing cost
∑

e∈ ̂E0

c0e +
m∑

k=1

∑

e∈ ̂Ek

ck
e ,

the expected penalty cost
m∑

k=1

pkhk(T̂k), and the goal is to minimize the sum of

expected edge purchasing cost and expected penalty cost.

If we set p0 = 1 and
m∑

k=1

pk = 1, the SPCSTP can be formulated as the

following linear integer program.

min
∑

(e,k)∈E

pkck
exk

e +
m∑

k=1

∑

Tk⊆Dk\r

pkhk(Tk)zTk

(IP) s.t.
∑

e∈δ(S)

x0
e +

∑

e∈δ(S)

xk
e +

∑

Tk:S⊆Tk

zTk
≥ 1,∀(S, k) ∈ C, r /∈ S,

∑

Tk:Tk⊆Dk\r

zTk
≤ 1,

x0
e, x

k
e , zTk

∈ {0, 1},∀e ∈ E, Tk ⊆ Dk \ r.

Approximation Algorithm for Stochastic Prize-Collecting STP 265

In the above formulation, all the variables are binary. Note that hk(Tk) =∑
i∈Tk

hk(i). x0
e represents whether edge e is purchased in the first stage or not.

If x0
e = 1, edge e ∈ E is purchased in the first stage (i.e. edge-scenario pair

(e, 0) is purchased); otherwise, x0
e = 0. Similarly, xk

e represents whether edge e is
purchased in the k-th scenario of the second stage. If xk

e = 1, edge e ∈ E is pur-
chased in the second stage for the k-th scenario (i.e. edge-scenario pair (e, k) is
purchased); otherwise, xk

e = 0. zTk
indicates whether a set of clients Tk ⊆ Dk \ r

incurs penalties or not. The first constraint models that either there is an edge
in δ(S), or S is a part of a vertex set that pays penalty (a vertex set Tk with
zTk

= 1) for each client-scenario pair (S, k).
A linear programming relaxation of the integer program can be created by

replacing the integrality constraints with the constraints x0
e ≥ 0, xk

e ≥ 0 and
zTk

≥ 0 and dropping the constraints
∑

Tk:Tk⊆Dk\r

zTk
≤ 1 (in fact, including this

constraint does not affect the optimal solution). So we obtain the LP relaxation
and the corresponding dual linear program as follows.

min
∑

(e,k)∈E

pkck
exk

e +
m∑

k=1

∑

Tk⊆Dk\r

pkhk(Tk)zTk

(LP) s.t.
∑

e∈δ(S)

x0
e +

∑

e∈δ(S)

xk
e +

∑

Tk:S⊆Tk

≥ 1,∀(S, k) ∈ C, r /∈ S,

x0
e, x

k
e , zTk

≥ 0,∀e ∈ E, Tk ⊆ Dk \ r.

max
∑

(S,k)∈C:r/∈S

yk
S

(DP) s.t.
∑

(S,k)∈C:r/∈S

yk
S ≤ c0e, ∀e ∈ E,

∑

S⊆Dk\r

yk
S ≤ pkck

e , ∀e ∈ E, k = 1, 2, ...,m,

∑

S⊆Tk

yk
S ≤ pkhk(Tk), ∀Tk ⊆ Dk \ r, k = 1, 2, ...,m,

yk
S ≥ 0, ∀(S, k) ∈ C.

In the above dual formulation, the variable yk
S can be interpreted as the

budget of client-scenario pair (S, k).

3.1 The Primal-Dual Algorithm

In this section, we propose a primal-dual algorithm for the SPCSTP. In fact, our
algorithm is motivated by a procedure of dual ascent of the standard primal-dual
algorithm for the deterministic prize-collecting Steiner tree problem [8].

266 J. Sun et al.

For ease of notation, we define the following notations: T̂k (k = 1, ...,m)
represents the penalty client (terminal vertex) set in the k-th scenario.

E0 denotes the temporarily purchased edge in the first stage.
Ek denotes the temporarily purchased edge in the second stage with respect

to k-th scenario.
Initially, all the dual variables are zero. All the clients (terminal vertices) are

not punished. All the edges are not purchased.
In order to have a better understanding of the algorithm, we give some intu-

itively interpretation for Step 1 as follows. In Step 1.1, we define the property of
components including active and inactive. Step 1.2 corresponds to three cases.
Case 1 corresponds to purchasing a new edge in the first stage. Case 2 corre-
sponds to purchasing a new edge in the second stage. Case 3 corresponds to the
client subset which is punished.

It is worth noting that the corresponding penalty constraint must be tight
for any Tk ⊆ Dk \ r which is not connected by the resulting graph.

3.2 The Analysis of the Algorithm

From Algorithm 1, we obtain a feasible solution of the SPCSTP, which is denoted
by SOL. Let cost(SOL) denote the total cost of SOL.

cost(SOL) =
∑

e∈ ̂E0

c0e +
m∑

k=1

∑

e∈ ̂Ek

pkck
e +

m∑

k=1

pkhk(T̂k).

We use OPT to denote the optimal value of the SPCSTP. In this section, we
will prove the following two inequalities:

m∑

k=1

pkhk(T̂k) ≤ OPT, (1)

∑

e∈ ̂E0

c0e +
m∑

k=1

∑

e∈ ̂Ek

pkck
e ≤ 2OPT. (2)

These two inequalities together imply the main result as follows.

Theorem 1. Algorithm1 is a 3-approximation algorithm for the SPCSTP.

Let yk
S denote the dual solution obtained from Algorithm1. From our algorithm,

the penalty constraint is tight for any Tk, where k = 1, 2, ...,m. It can be obtained
by the following lemmas.

Lemma 1. For each T̂k, we have
∑

S⊆ ̂Tk

yk
S = pkhk(T̂k), where k = 1, 2, ...,m.

Proof. By the construction of Ê0 and Êk, each vertex not spanned by Ê0 and
Êk (i.e. the vertices in some T̂k for k = 1, 2, ...,m) lies in some component
deactivated at some point in the algorithm. Moreover, if the vertex was in some

Approximation Algorithm for Stochastic Prize-Collecting STP 267

Algorithm 1. Primal-dual algorithm
1: Initialization

yk
S := 0, ̂Tk := ∅ (k = 1, 2..., m), E0 := ∅, Ek := ∅ (k = 1, 2..., m), Co :=

{{v, k}|∀(v, k) ∈ C}, where Co denotes all component sets.
2: Step 1 Constructing a dual feasible solution:
3: Step 1.1. For each component C ∈ Co, let us define λ(C) = 1 if ∃ k ∈ {1, 2, ...m}

s.t. C ⊆ Tk ⊆ Dk \ r and
∑

S⊆Tk

yk
S < Pkhk(Tk); otherwise, λ(C) = 0. If λ(C) = 1,

we let C active; if λ(C) = 0, we let C inactive.
4: Step 1.2. Increase these yk

S uniformly until one of the following three events
happens:

Case 1. There exists Cp, Cq ∈ Co such that the first cost constraint of an edge
e = (i, j) becomes tight where i ∈ Cp and j ∈ Cq.

Case 2. There exist Cp′ , Cq′ ∈ Co such that the second cost constraint of an
edge e = (i, j) becomes tight where i ∈ Cp′ and j ∈ Cq′ .

Case 3. There exists k ∈ {1, 2, ..., m} such that the third penalty constraint of
a vertex set Tk becomes tight.

5: if Case 1 happens then
6: update E0 = E0

⋃{e} and Co = Co

⋃{Cp

⋃

Cq} − {Cp} − {Cq} and if r ∈
{Cp

⋃

Cq} then λ(Cp

⋃

Cq) ← 0 else λ(Cp

⋃

Cq) ← 1, go to Step 1.3.
7: else
8: if Case 2 happens then
9: update Ek = Ek

⋃{e} and Co = Co

⋃{Cp′
⋃

Cq′} − {Cp′} − {Cq′} and if
r ∈ {Cp′

⋃

Cq′} then λ(Cp′
⋃

Cq′)← 0 else λ(Cp′
⋃

Cq′) ← 1, go to Step 1.3.
10: else
11: if Case 3 happens then
12: there exists k ∈ {1, 2, ..., m} such that the penalty constraint of a vertex

set Tk ⊆ Dk \ r becomes tight and go to Step 1.3.
13: end if
14: end if
15: end if
16: if multiple cases happen simultaneously then
17: execute one of three cases arbitrarily.
18: end if
19: Step 1.3. Update λ(C) for all C ∈ Co as in Step 1.1. If there exists C ∈ Co such

that λ(C) = 1, go to Step 1.2; otherwise, stop Step 1.
20: Step 2. (Constructing a primal integral feasible solution.)
21: for all e ∈ E0

⋃

Ek do
22: if removing e does not impact the connectivity of the resulting graph then
23: remove e from the resulting graph and update E0 and Ek for each k =

0, 1, 2, ..., m.
24: end if
25: end for
26: We choose edge set ̂E0 from E0 to purchase in the first stage. Then choose edge

̂Ek from Ek to purchase for each k = 1, 2, ..., m in the second stage.
27: Let ̂Tk be the set of unserved clients in scenario k for each k = 1, 2, ..., m.

268 J. Sun et al.

deactivated component C, then none of the vertices of C are spanned by Ê0

and Êk. Using the observations, we can partition the vertices of T̂k into disjoint
deactivated components Ck1, Ck2, ..., Ckl for some k. These are the maximal
vertex sets in T̂k. Since each Ckj is a deactivated component, then

∑
S∈Ckj

yk
S =

pkhk(Ckj), and thus
m∑

k=1

pkhk(T̂k) =
m∑

k=1

l∑
j=1

pkhk(Ckj) =
m∑

k=1

l∑
j=1

∑
S⊆Ckj

yk
S ≤

m∑
k=1

∑

S⊆ ̂Tk

yk
S ≤

m∑
k=1

∑
S⊆Dk\r

yk
S ≤ OPT , which concludes the proof of inequality (1).

Next, we will prove inequality (2).
Recall that the incurred cost constraint is tight for each e ∈ Ê0. We have

c0e =
∑

(S,k)

yk
S ,

∑

e∈ ̂E0

c0e =
∑

e∈ ̂E0

∑

(S,k)

yk
S =

∑

(S,k)

|Ê0

⋂
δ(S)|yk

S .

Analogously, recall that the incurred cost constraint is tight for each e ∈ Êk. We
have

pkck
e =

∑

S⊆Dk\r

yk
S ,

∑

e∈ ̂Ek

pkck
e =

∑

e∈ ̂Ek

∑

S⊆Dk\r

yk
S =

∑

S⊆Dk\r

|Êk

⋂
δ(S)|yk

S .

Therefore, we have the above inequality (2) is equivalent to the following lemma.

Lemma 2. The dual feasible solution yk
S satisfies the following inequality

∑

(S,k)

|Ê0

⋂
δ(S)|yk

S +
m∑

k=1

∑

S⊆Dk\r

|Êk

⋂
δ(S)|yk

S ≤ 2
∑

(S,k)∈C
yk

S . (3)

This lemma can be proved by induction on the main loop. At the beginning
of Algorithm 1, yk

S = 0 for any (S, k) (for k = 0, 1, 2, ...,m), inequality (3) of
this lemma holds. In order to prove this lemma, it suffices to show that the
incremental cost of the left side is bounded by the incremental cost of the right
side in every iteration.

Let Co denote all the components at the beginning of some iteration. We use
Cactive

o and Cinactive
o to denote the active components and inactive components

in Co, respectively. In each iteration, we only increase the dual variables of all
the active components. For every active component C belonging to Cactive

o , the

Approximation Algorithm for Stochastic Prize-Collecting STP 269

algorithm will raise the corresponding dual variable yk
S . Assume the incremental

cost of any active set is ε. The left side of inequality (3) will increase by

∑

C∈Cactive
o

|Ê0

⋂
δ(C)|ε +

m∑

k=1

∑

C∈Cactive
o

|Êk

⋂
δ(C)|ε,

and the right side of inequality (3) will increase by

2|Cactive
o |ε.

Below we prove that

∑

C∈Cactive
o

|Ê0

⋂
δ(C)| +

m∑

k=1

∑

C∈Cactive
o

|Êk

⋂
δ(C)| ≤ 2|Cactive

o |. (4)

Now, we construct a new graph H as follows. Every component in Co is a vertex
in H. Every edge e ∈ Ê0

⋂
δ(C) or e ∈ Êk

⋂
δ(C) for some C ∈ Co is an

edge in H. We use d(v) to denote the degree of vertex v in H. Let A denote
the vertices in H which contract from Cactive

o and let B denote the vertices in
H which contract from Cinactive

o with nonzero degree. That is, we discard all
isolated inactive vertices in H.

The left side of inequality (4) is
∑

v∈A

d(v)+
m∑

k=1

∑
v∈A

dk(v), and the right side of

inequality (4) is 2 · |A|. Rewriting inequality (4) in terms of the degree of vertices
in H, we have

∑

v∈A

d(v) +
m∑

k=1

∑

v∈A

dk(v) ≤ 2 · |A|. (5)

In order to prove inequality (5), we present the following lemmas.

Lemma 3. The graph H is a forest.

Proof. According to Algorithm 1, every edge is added between two components.
Thus, the resulting graph is a forest. Recall that we obtain H by contracting
components in the resulting graph. Hence, H is a forest.

Lemma 4. There can be at most one inactive leaf in H, which must correspond
to the component containing r.

Proof. Suppose that v is an inactive leaf of H, adjacent to edge e, and suppose
that Cv is the inactive component corresponding to v and Cv does not contain
the root r, then Cv is deactivated by Algorithm 1. By the construction of the
resulting graph, then e is not in the resulting graph, which is a contraction. So,
the conclusion is right. That is, there can be at most one inactive leaf in H,
which must correspond to the component containing r.

270 J. Sun et al.

Lemma 5. For every vertex v ∈ B except one inactive leaf in H (if the leaf
exists), we have d(v) ≥ 2.

Proof. It can be obtained by the above lemmas.
From Lemma 3, H has at most |A| + |B| − 1 edges. Thus, the degree of H is at
most 2 · (|A| + |B| − 1). Therefore, we have

∑

A
⋃

B

d(v) ≤ 2(|A| + |B| − 1).

From Lemmas 4, we have
∑

v∈B

d(v) ≥ 2|B| − 1.

Obviously, we have

∑

v∈A

d(v) +
m∑

k=1

∑

v∈A

dk(v) =
∑

v∈A
⋃

B

d(v) −
∑

v∈B

d(v)

≤ 2 · (|A| + |B| − 1) − (2 · |B| − 1)
≤ 2 · |A|.

Now we complete the proof.

4 Conclusions

Considering the stochastic prize-collecting Steiner tree problem, we present a
primal-dual 3-approximation algorithm. Many researchers made substantial con-
tribution in stochastic problems by considering the use of sampling, cost sharing
function, and primal-dual, etc. In the future, we believe that there will be more
substantial progress in approximation algorithms for the stochastic optimization
problems, and it will be interesting to improve the approximation ratios of these
problems.

Acknowledgements. The authors are supported by Natural Science Foundation of
China (Nos.11871280, 11471003).

References

1. Bern, M., Plassmann, P.: The Steiner problem with edge lengths 1 and 2. Inf.
Process. Lett. 32, 171–176 (1989)

2. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via
iterative randomized rounding. J. ACM 60(1), 1–33 (2013)

3. Chopra, S., Rao, M.R.: The Steiner tree problem I: formulations, compositions and
extension of facets. Math. Program. 64, 20–229 (1994)

Approximation Algorithm for Stochastic Prize-Collecting STP 271

4. Chopra, S., Rao, M.R.: Properties and classes of facets: the Steiner tree problem
II. Math. Program. 64, 231–246 (1994)

5. Chopra, S., Tsai, C.Y.: Polyhedral approaches for the Steiner tree problem on
graphs. In: Steiner Trees in Industry, pp. 175–202. Kluwer Academic Publishers
(2001)

6. Cole, R., Hariharan, R., Lewenstein, M., Porat, E.: A faster implementation of
the Goemans-Williamson clustering algorithm. In: Proceedings of the 12th annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 17–25 (2001)

7. Feofiloff, P., Fernandes, C.G., Ferreira, C.E., Pina, J.C.D.: Primal-dual approxi-
mation algorithms for the prize-collecting Steiner tree problem. Inf. Process. Lett.
103(5), 195–202 (2007)

8. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)

9. Gupta, A., Pál, M., Ravi, R., Sinha A.: Boosted sampling: approximation algo-
rithms for stochastic optimization problems. In: Proceedings of the 36th Annual
ACM Symposium on Theory of Computing, pp. 417–426 (2004)

10. Heitsch, H., Römisch, W.: Scenario reduction algorithm in stochastic programming.
Comput. Optim. Appl. 24, 187–206 (2003)

11. Hochbaum, D.S.: Approximation Algorithms for NP-hard Problems. PWS Pub-
lishing Company, Boston (1997)

12. Johnson, D.S., Minkoff, M., Phillips, S.: The prize collecting Steiner tree problem:
theory and practice. In: Proceedings of the 11th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 760–769 (2000)

13. Karp, R.M.: Reducibility among Combinatorial Problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp.
85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

14. Kurz, D., Mutzel, P., Zey, B.: Parameterized algorithms for stochastic Steiner
tree problems. In: Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D.
(eds.) MEMICS 2012. LNCS, vol. 7721, pp. 143–154. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36046-6 14

15. Ravi, R., Sinha, A.: Hedging uncertainty: approximation algorithms for stochastic
optimization problems. 108(1), 97–114 (2006)

16. Schultz, R., Stougie, L., van der Vlerk, M.H.: Two stage stochastic integer pro-
gramming: a survey. Statistica Neerlandica 50(3), 404–416 (1996)

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-642-36046-6_14

A General Framework for Path
Convexities

João Vinicius C. Thompson1,2, Loana T. Nogueira2, Fábio Protti2,
Raquel S. F. Bravo2, Mitre C. Dourado3, and Uéverton S. Souza2(B)

1 Centro Federal de Educação Tecnológica Celso Suckow da Fonseca,
Rio de Janeiro, Brazil

joao.thompson@cefet-rj.br
2 Universidade Federal Fluminense, Niterói, Brazil

{loana,fabio,raquel,ueverton}@ic.uff.br
3 Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

mitre@nce.ufrj.br

Abstract. In this work we deal with the so-called path convexities,
defined over special collections of paths. For example, the collection of
the shortest paths in a graph is associated with the well-known geodesic
convexity, while the collection of the induced paths is associated with
the monophonic convexity; and there are many other examples. Besides
reviewing the path convexities in the literature, we propose a general
path convexity framework, of which most existing path convexities can
be viewed as particular cases. Some benefits of the proposed framework
are the systematization of the algorithmic study of related problems and
the possibility of defining new convexities not yet investigated.

Keywords: Algorithmic complexity · Graph convexity ·
Path convexity

1 Introduction

A finite convexity space is a pair (V, C) consisting of a finite set V and a family
C of subsets of V such that ∅ ∈ C, V ∈ C, and C is closed under intersection.
Members of C are called convex sets.

Let P be a collection of paths of a graph G, and let IP : 2V (G) → 2V (G) be
a function (called interval function) such that

IP (S) = S ∪ {z �∈ S | ∃ u, v ∈ S such that z lies in an uv-path P ∈ P}.

Distinct choices of P lead to interval functions of quite different behavior.
Such functions, in turn, are naturally associated with special convexity spaces
(the so-called path convexities). For instance, if P contains precisely all the short-
est paths in a graph then the corresponding interval function is naturally asso-
ciated with the well-known geodesic convexity; if P is the collection of induced

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 272–283, 2019.
https://doi.org/10.1007/978-3-030-27195-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_25&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_25

A General Framework for Path Convexities 273

paths then the corresponding interval function is associated with the monophonic
convexity; and there are many other examples in the literature.

In this work we propose a general path convexity framework, of which most
path convexities in the literature can be viewed as particular cases. Some benefits
of the proposed framework are the systematization of the algorithmic study of
related problems and the possibility of defining new path convexities not yet
investigated.

Our contributions are concentrated mainly in Sect. 3, where we describe in
detail our framework. The idea is to control the length of the paths in P, as
well as the types of chords allowed to exist in such paths. Such control can be
done by means of four matrices that specify, for each pair (u, v) of vertices,
the minimum/maximum length and minimum/maximum chord length in all uv-
paths of P. We prove hardness results for the more general approach, where
the matrices are part of the input of the related computational problems. We
also describe some polynomial cases by restricting the usage of such matrices,
including linear-time methods for bounded treewidth graphs. In addition, we
show how to define most existing path convexities in the literature within the
proposed framework. Due to space constraints, some proofs are omitted.

2 Preliminaries

In this section we first provide all the necessary background. Next, we briefly
review the main path convexities in the literature and list six fundamental com-
putational problems in graph convexity that will be considered in this work.
Finally, we prove two useful propositions.

All graphs are finite, simple, nonempty, and connected. Let G denote a graph
with n vertices and m edges. The length of a path P in G, denoted by |P |, is
its number of edges. A path P in G with endpoints u and v is an uv-path. An
uv-path P in G is shortest if there is no uv-path P ′ in G such that |P ′| < |P |. If
an uv-path P is shortest then |P | is the distance between u and v in G, and we
write |P | = distG(u, v). A chord of length l ≥ 2 in a path P = (v1, v2, . . . , v|P |)
is an edge vivj ∈ E(G) such that i, j ∈ {1, . . . , |P |} and |i − j| = l ≥ 2.

Let P be a collection of paths of a graph G, and let IP : 2V (G) → 2V (G) be
the interval function associated with P, i.e.,

IP (S) = S ∪ {z �∈ S | ∃ u, v ∈ S such that z lies in an uv-path P ∈ P}. (1)

Define CP as the family of subsets of V (G) such that S ∈ CP if and only if
IP (S) = S. Then it is easy to see that (V (G), CP) is a finite convexity space,
whose convex sets are precisely the fixed points of IP .

Proposition 1. [48] (V (G), CP) is a finite convexity space.

In order to ease the notation, we omit the subscript P whenever it is clear
from the context.

274 J. V. C. Thompson et al.

2.1 Path Convexities in the Literature

By varying the choice of the collection P, interval functions of different behavior
can be defined using Eq. (1). The convexity spaces associated with such functions
are called path convexities.

In Table 1 we list the main path convexities that appear in the literature. In
the table, each convexity is defined by the collection of paths P considered.

Table 1. Some path convexities studied in the literature.

Convexity name Collection of paths P considered

Geodesic [36,37,40] Shortest paths

Monophonic [11,30,31] Induced paths

g3 [41] Shortest paths of length at least three

m3 [6,29] Induced paths of length at least three

gk [32] Shortest paths of length at most k

P3 [7,27,42] Paths of length two

P ∗
3 [1] Induced paths of length two

Triangle-path [10,13,14] Paths allowing only chords of length two

Total [18] Paths allowing only chords of length at least three

Detour [15–17] Longest paths

All-path [12,34,46] All paths

2.2 Computational Problems

In this work we focus on six computational problems that are usually studied in
the field of convexity in graphs. The list, of course, is not complete and other
important problems could also be considered.

We need some additional definitions. Let S ⊆ V (G). If I(S) = V (G) then S is
an interval set. The convex hull H(S) of S is the smallest convex set containing S.
Write I0(S) = S and define Ii+1(S) = I(Ii(S)) for i ≥ 0. Note that I(S) = I1(S)
and there exists an index i for which H(S) = Ii(S). If H(S) = V (G) then S is
a hull set. The convexity number c(G) of G is the size of a maximum convex set
S �= V (G). The interval number i(G) of G is the size of a smallest interval set
of G. The hull number h(G) of G is the size of a smallest hull set of G. Now we
are in position to state the six problems dealt with in this work:

Convex Set - CS
Input: A graph G and a set S ⊆ V (G).
Question: Is S convex?

A General Framework for Path Convexities 275

Interval Determination - ID
Input: A graph G, a set S ⊆ V (G), and a vertex z ∈ V (G).
Question: Does z belong to I(S)?

Convex Hull Determination - CHD
Input: A graph G, a set S ⊆ V (G), and a vertex z ∈ V (G).
Question: Does z belong to H(S)?

Convexity Number - CN
Input: A graph G and a positive integer r.
Question: Is c(G) ≥ r?

Interval Number - IN
Input: A graph G and a positive integer r.
Question: Is i(G) ≤ r?

Hull Number - HN
Input: A graph G and a positive integer r.
Question: Is h(G) ≤ r?

The table below shows the complexity of the six problems listed in the preceding
subsection for some convexity spaces. All the entries of the table correspond to
results found in the literature, or to trivial results (indicated by ‘[t]’).

Table 2. Problems vs convexities: complexity results.

Geodesic Monophonic P3 P ∗
3 Triangle-path

cs P [t] P [26] P [t] P [1] P [28]

id P [t] NPc [26] P [t] P [1] NPc [28]

chd P [t] P [26] P [t] P [1] P [28]

cn NPc [33] NPc [26] NPc [9] NPc [1] P [28]

in NPc [3] NPc [26] NPc [8] NPc [1] NPc [28]

hn NPc [25] P [26] NPc [9] NPc [1] P [28]

2.3 Two Useful Facts

The next two propositions are useful. They say that if Interval Determi-
nation or Convex Set can be solved in polynomial time for some convexity
space then some other problems listed in Sect. 2.2 can also be solved in polyno-
mial time, for the same convexity space.

Proposition 2. Let (V (G), C) be any convexity space. If Interval Deter-
mination can be solved in polynomial time for (V (G), C) then Convex Set
and Convex Hull Determination can also be solved in polynomial time for
(V (G), C).

276 J. V. C. Thompson et al.

Let S ⊆ V (G). If S is not convex then an augmenting set of S is any set S′

such that S ⊂ S′ ⊆ H(S) (where the symbol ⊂ stands for proper inclusion).

Proposition 3. Let (V (G), C) be a convexity space. If there is a polynomial-
time certification algorithm to solve Convex Set for (V (G), C) that outputs an
augmenting set when the problem has a negative answer then Convex Hull
Determination can also be solved in polynomial time for (V (G), C).

Note that Propositions 2 and 3 can be used to fill some entries of Table 2. For
example, since Interval Determination is in P for the geodesic convexity, by
Proposition 2 the problems Convex Set and Convex Hull Determination
are also in P for such convexity. The same applies to the P3- and P ∗

3 - convexities.
On the other hand, Proposition 3 implies that Convex Hull Determination
is in P for the monophonic convexity.

3 A General Framework for Path Convexities

In this section, we propose a general framework for the study of path convexities.
From now on, we assume that every n-vertex graph G has vertices labeled

1, 2, . . . , n. A length matrix is a symmetric n × n matrix M such that each entry
M(i, j), for i, j ∈ V (G), is a natural number; in addition, all diagonal entries of
M are zero.

Let A,B,C,D be four n × n length matrices. Suppose that P is the family
of paths of G such that an ij-path P of G is a member of P if and only if:

(1) |P | ≥ A(i, j);
(2) |P | ≤ B(i, j);
(3) all the chords in P are of length at least C(i, j);
(4) all the chords in P are of length at most D(i, j).

Let IP : 2V (G) → 2V (G) be the interval function associated with P, and let
CP be the family of subsets of V (G) such that S ∈ CP if and only if IP (S) = S.
Since P is a particular collection of paths of G, by Proposition 1, we have that
(V (G), CP) is a finite convexity space, equipped with interval function IP . Let
us say that such a convexity space defines a matrix path convexity.

Again, we omit the subscript P when it is clear from the context.
Say that an ij-path P satisfies matrices A,B,C,D if all the conditions (1)

to (4) above are satisfied by P .

3.1 Putting the Matrices as Part of the Input

In the six problems listed in Sect. 2.2, the graph G is always part of the input;
however, the rule that determines which collection of paths of G must be consid-
ered is not part of the input. More general versions of such problems are possible
when the desired convexity space, expressed as a graph G together with a set
of four length matrices, is part of the input. For example, consider the following
version of Convex Set:

A General Framework for Path Convexities 277

Matrix Convex Set
Input: A graph G, four n × n length matrices A,B,C,D, and S ⊆ V (G).
Question: Is S convex under the matrix path convexity ruled by A,B,C,D?

All the remaining problems listed in Sect. 2.2 can be restated analogously.
The next theorems say that such “matrix problems” are all hard. However,

we shall see that restrictions on the matrices A,B,C,D lead to interesting cases.
In this regard, some types of length matrices are of special interest. For a graph
G, the distance matrix of G is the length matrix Mdist with entries Mdist(i, j) =
distG(i, j), for i, j ∈ V (G). For a positive integer constant k, the (n − k)-matrix
and the k-matrix are the length matrices Mn−k and Mk with off-diagonal entries
all equal to, respectively, n − k and k.

Theorem 1. Matrix Convex Set is co-NP-complete.

Proof. A certificate for a negative answer to Matrix Convex Set is a triple
i, j, z (with i, j ∈ S and z �∈ S) and an ij-path P in G containing z such that
P satisfies A to D. Such a certificate can be clearly checked in polynomial time.
Therefore, Matrix Convex Set is in coNP.

To prove that Matrix Convex Set is co-NP-complete, we show a reduction
from the following NP-complete problem [38]: given three distinct vertices i, j, z
in a graph H, decide whether there is a chordless ij-path passing through z.

Let G be the graph obtained from H by replacing each edge (s, z) incident to z
by an sz-path containing n−1 internal vertices of degree two, where n = |V (H)|.
In other words, G is a subdivision of H obtained by subdividing each edge
incident to z using n − 1 vertices. Set A and B as the length matrices with off-
diagonal entries all equal to, respectively, 2n and 3n − 3. Also, set C = D = M1

(the k-matrix for k = 1). Finally, set S = {i, j}. Note that the collection of
paths P defined by A,B,C,D contains the chordless paths with length at least
2n and at most 3n − 3.

Suppose that there is a chordless ij-path PH in H passing through z. Write
PH = (s0 = i, s1, . . . , sh−1, sh = z, sh+1, . . . , sl = j). Then there is a chordless
ij-path PG in G obtained from PH by subdividing edges (sh−1, z) and (z, sh+1)
using n − 1 vertices of degree two for each edge. Note that |PG| = (l − 2) + 2n.
Since 2 ≤ l ≤ n − 1, we have 2n ≤ |PG| ≤ 3n − 3. Therefore, PG satisfies
A,B,C,D, and its existence implies that S is not convex.

Conversely, suppose that S is not convex. Then there is a chordless ij-path
PG of length at least 2n passing through some vertex of G lying outside S. But,
by the construction of G, all the ij-paths of length at least 2n must necessarily
pass through z. Let Phz be the subpath of PG with length n that starts at a
vertex h and ends at z. Similarly, let Pzh′ be the subpath of PG with length n
that starts at z and ends at a vertex h′. By replacing Phz and Pzh′ by edges
(h, z) and (z, h′), we obtain a chordless ij-path in H passing through z. This
completes the proof. �
Theorem 2. Matrix Interval Determination is NP-complete.

278 J. V. C. Thompson et al.

Theorem 3. Matrix Convex Hull Determination is NP-complete.

Theorem 4. 1. Matrix Convexity Number is NP-hard.
2. Matrix Interval Number is NP-complete.
3. Matrix Hull Number is NP-complete.

3.2 Constant Matrices: The (a, b, c, d)-path Convexity

In this section, we study the case in which there are constants a, b, c, d such that
A = Ma, B = Mb, C = Mc, and D = Md. In this scenario we can assume that
the matrices are not part of the input, because length restrictions are known in
advance. This gives rise to “constant matrix versions” of the problems studied
in the preceding subsection. For example, consider the following problems:

(a, b, c, d)-Convex Set
Input: A graph G, a set S ⊆ V (G).
Question: Is S convex under the matrix path convexity ruled by A,B,C,D?
Equivalently: Is S convex under the path convexity defined by the collection

P(a, b, c, d) of paths of G whose length is at least a and at most b, and whose
chords have length at least c and at most d?

(a, b, c, d)-Interval Determination
Input: A graph G, a set S ⊆ V (G), and a vertex z ∈ V (G).
Question: Does z belong to I(S), where I is the interval function associated with

the collection P(a, b, c, d) of paths of G?

The remaining matrix problems can be restated analogously.
The path convexity for which the path/chord length restrictions are ruled by

four constants a, b, c, d as explained above is called (a, b, c, d)-path convexity.

Theorem 5. (a, b, c, d)-Interval Determination is in P.

By Proposition 2, we have:

Corollary 1. (a, b, c, d)-Convex Set and (a, b, c, d)-Convex Hull Deter-
mination are in P.

As for the other three problems, (a, b, c, d)-Convexity/Interval/Hull Num-
ber, we remark that the special cases

(a = 2, b = 2, c = 1, d = 2) and (a = 2, b = 2, c = 1, d = 1)

correspond precisely to the P3- and P ∗
3 - convexities, as indicated in Table 1. For

both convexities, all the three problems are NP-complete (see Table 2).

A General Framework for Path Convexities 279

3.3 (a, b, c, d)-path Convexity and Bounded Treewidth Graphs

In this section, we investigate the complexity of the six (a, b, c, d)-path convexity
problems in Sect. 3.2 when applied to bounded treewidth graphs. As we shall
see, linear-time methods will be possible in this case.

Let G be a graph, T a tree, and V = (Vt)t∈T a family of vertex sets Vt ⊆ V (G)
indexed by the vertices t of T . The pair (T, V) is called a tree-decomposition of
G if it satisfies the following three conditions [24]:

(T1) V (G) =
⋃

t∈T Vt;
(T2) for every edge e ∈ G there exists t ∈ T such that both ends of e lie in Vt;
(T3) if Vti and Vtj both contain a vertex v then v ∈ Vtk for all vertices tk in the

path between ti and tj .

The width of (T, V) is the number max{|Vt| − 1 | t ∈ T}, and the treewidth
tw(G) of G is the minimum width of any tree-decomposition of G.

Graphs of treewidth at most k are called partial k-trees. Some graph classes
with bounded treewidth include: forests (treewidth 1); pseudoforests, cacti,
series-parallel graphs, and outerplanar graphs (treewidth at most 2); Halin
graphs and Apollonian networks (treewidth at most 3) [4,5]. Control flow graphs
arising in the compilation of structured programs also have bounded treewidth
(at most 6) [47].

In 1990, Courcelle [19] stated that for any graph G with treewidth bounded
by a constant k and for any graph property Π that can be formulated in CMSOL2

(Counting Monadic Second-Order Logic where quantification over sets of vertices
or edges and predicates testing the size of sets modulo constants are allowed),
there is a linear-time algorithm that decides if G satisfies Π [19,21–23]. This
result has been extended a number of times. In particular, Arnborg and Lager-
gren [2] study optimization problems over sets definable in Counting Monadic
Second-Order Logic.

By meta-theorems based on CMSOL2 [19,21,22], obtaining linear-time meth-
ods to solve the six problems of Sect. 3.2 on bounded treewidth graphs amounts
to showing that the related properties are expressible in CMSOL2.

Theorem 6. (a, b, c, d)-Interval Determination is solvable in linear time
on bounded treewidth graphs.

Proof. It is enough to show that the property “z ∈ I(S)” is CMSOL2-expressible.
Given G, S, and z, we construct ϕ(G,S, z, a, b, c, d) such that z ∈ I(S) ⇔
ϕ(G,S, z, a, b, c, d) as follows:

280 J. V. C. Thompson et al.

(z ∈ S) ∨
(∃ u, v, P (u, v ∈ S ∧

P is an uv-path ∧
z ∈ P ∧
Card(P) ≥ a ∧
Card(P) ≤ b ∧
∀P ′ ((P ′ ⊆ P ∧

Card(P ′) ≥ 2 ∧
∃ u′, v′(P ′ is an u′v′-path ∧ adj(u′, v′)))
⇒ (Card(P ′) ≥ c ∧ Card(P ′) ≤ d))

))

(2)

In the above formula, paths are regarded as subsets of edges. Using this app-
roach, the subformula “P is an uv-path” can be expressed in CMSOL2 (see [22]).
Note that a chord is expressed as an u′v′-subpath P ′ of P with length at least
c and at most d such that u′ is adjacent to v′. �
Corollary 2. (a, b, c, d)-Convex Set can be solved in linear time on bounded
treewidth graphs.

Proof. The property “S is convex” is equivalent to “there is no z such that
z �∈ S and z ∈ I(S)”. By Theorem 6, “z ∈ I(S)” is CMSOL2-expressible. Thus
the result easily follows. �
Corollary 3. (a, b, c, d)-Convex Hull Determination can be solved in lin-
ear time on bounded treewidth graphs.

Proof. The property “z ∈ H(S)” is equivalent to “there exists S1 such that: (a)
S1 is convex, (b) S ⊆ S1, (c) z ∈ S1, and (d) there is no S2 such that S2 is
convex, S ⊆ S2, and S2 is properly contained in S1”. By Corollary 2, we can use
CMSOL2 to say that the sets S1 and S2 are convex. Thus the result follows. �

For the remaining three problems ((a, b, c, d)-Convexity, (a, b, c, d)-
Interval and (a, b, c, d)-Hull Number), we consider their optimization ver-
sions (maximization in the case of Convexity Number, and minimization in
the case of Interval/Hull Number). Note that the properties “S is a convex
set distinct from V (G)”, “S is an interval set”, and “S is a hull set” can be
expressed in CMSOL2. Therefore the optimization versions (“find an optimal
set satisfying the required property”) are LinCMSOL2 problems [2,20].

Theorem 7. [2,20] Let k be a positive constant, and Π be a LinCMSOL2 prob-
lem. Then Π can be solved in linear time on graphs of treewidth bounded by k
(if the tree-decomposition is given with the input graph).

Therefore:

A General Framework for Path Convexities 281

Corollary 4. The optimization versions of (a, b, c, d)-Convexity Number,
(a, b, c, d)-Interval Number, and (a, b, c, d)-Hull Number can be solved in
linear time on bounded treewidth graphs.

3.4 Particular Cases of the (a, b, c, d)-path Convexity

In this section we show that, by extending the meaning of the parameters
a, b, c, d, most path convexities in the literature can be viewed as particular
cases of the (a, b, c, d)-path convexity. In Table 3 below, the symbol ‘σ’ (resp.,‘�’)
means that the length of the shortest (resp., longest) path between each pair
of distinct vertices must be considered. The symbol ‘∞’ stands for no length
restriction. For a constant k, the symbol ‘k | σ’ means that, for each pair (i, j)
of distinct vertices, the minimum value between k and the length of the shortest
ij-path must be considered.

Table 3. Path convexities as particular cases of the (a, b, c, d)-path convexity. Note
that putting c = d = 1 implies that all the paths of the considered collection P are
chordless.

Convexity a b c d

Geodesic σ σ 1 1

Monophonic 2 ∞ 1 1

g3 3 σ 1 1

gk σ k | σ 1 1

m3 3 ∞ 1 1

P3 2 2 1 2

P ∗
3 2 2 1 1

Triangle-path 2 ∞ 1 2

Total 2 ∞ 3 ∞
Detour � � 1 ∞
All-path 2 ∞ 1 ∞

References

1. Araujo, R.T., Sampaio, R.M., Szwarcfiter, J.L.: The convexity of induced paths of
order three. Discrete Math. 44, 109–114 (2013)

2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12(2), 308–340 (1991)

3. Atici, M.: Computational complexity of geodetic set. Int. J. Comput. Math. 79,
587–591 (2002)

4. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oret. Comput. Sci. 209(1–2), 1–45 (1998)

282 J. V. C. Thompson et al.

5. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, vol. 3. SIAM,
Philadelphia (1999)

6. Cáceres, J., Oellermann, O.R., Puertas, M.L.: Minimal trees and monophonic con-
vexity. Discuss. Math. Graph Theory 32(4), 685–704 (2012)

7. Centeno, C.C., Dantas, S., Dourado, M.C., Rautenbach, D., Szwarcfiter, J.L.: Con-
vex partitions of graphs induced by paths of order three. Discrete Math. 12(5),
175–184 (2010)

8. Centeno, C.C., Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L.:
Irreversible interval of graphs. Theoret. Comput. Sci. 412, 3693–3700 (2011)

9. Centeno, C.C., Dourado, M.C., Szwarcfiter, J.L.: On the convexity of paths of
length two in undirected graphs. Electron. Notes Discrete Math. 32, 11–18 (2009)

10. Changat, M., Mathew, J.: On triangle path convexity in graphs. Discrete Math.
206, 91–95 (1999)

11. Changat, M., Mathew, J.: Induced path transit function, monotone and Peano
axioms. Discrete Math. 286(3), 185–194 (2004)

12. Changat, M., Klavzar, S., Mulder, H.M.: The all-paths transit function of a graph.
Czechoslovak Mathematic J. 51(2), 439–448 (2001)

13. Changat, M., Mulder, H.M., Sierksma, G.: Convexities related to path properties
on graphs. Discrete Math. 290(2–3), 117–131 (2005)

14. Changat, M., Narasimha-Shenoi, P.G., Mathews, J.: Triangle path transit func-
tions, betweenness and pseudo-modular graphs. Discrete Math. 309(6), 1575–1583
(2009)

15. Changat, M., Narasimha-Shenoi, P.G., Pelayo, I.: The longest path transit function
of a graph and betweenness. Utilitas Mathematica 82, 111–127 (2010)

16. Chartrand, G., Garry, L., Zhang, P.: The detour number of a graph. Utilitas Math-
ematica 64, 97–113 (2003)

17. Chartrand, G., Escuadro, H., Zhang, P.: Detour distance in graphs. J. Combin.
Math. Combin. Comput. 52, 75–94 (2005)

18. Chepoi, V.: Peakless functions on graphs. Discrete Appl. Math. 73(2), 175–189
(1997)

19. Courcelle, B.: The monadic second-order logic of graphs I. Recognizable sets of
finite graphs. Inf. Comput. 25(1), 12–75 (1990)

20. Courcelle, B.: The monadic second-order logic of graphs III: tree-decompositions,
minor and complexity issues. Informatique Théorique et Appl. 26, 257–286 (1992)

21. Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-
decomposable graphs. Theoret. Comput. Sci. 109(1), 49–82 (1993)

22. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In: Handbook of Graph Grammars and Computing by
Graph Transformations, vol. 1, pp. 313–400 (1997)

23. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic.
Cambridge University Press, Cambridge (2011)

24. Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)
25. Dourado, M.C., Gimbel, J.G., Kratochvil, J., Protti, F., Szwarcfiter, J.L.: On the

computation of the hull number of a graph. Discrete Math. 309, 5668–5674 (2009)
26. Dourado, M.C., Protti, F., Szwarcfiter, J.L.: Complexity results related to mono-

phonic convexity. Discrete Math. 158, 1268–1274 (2010)
27. Dourado, M.C., Rautenbach, D., dos Santos, V.F., Schäfer, P.M., Szwarcfiter, J.L.,

Toman, A.: An upper bound on the P3-radon number. Discrete Math. 312(16),
2433–2437 (2012)

28. Dourado, M.C., Sampaio, R.M.: Complexity aspects of the triangle path convexity.
Discrete Appl. Math. 206, 39–47 (2016)

A General Framework for Path Convexities 283

29. Dragan, F.F., Nicolai, F., Brandstädt, A.: Convexity and HHD-free graphs. SIAM
J. Discrete Math. 12, 119–135 (1999)

30. Duchet, P.: Convex sets in graphs, II. Minimal path convexity. J. Comb. Theory
Ser. B 44, 307–316 (1988)

31. Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Alg.
Disc. Math. 7(3), 433–444 (1986)

32. Farber, M., Jamison, R.E.: On local convexity in graphs. Discrete Math. 66, 231–
247 (1987)

33. Gimbel, J.G.: Some remarks on the convexity number of a graph. Graphs Comb.
19, 357–361 (2003)

34. Gutin, G., Yeo, A.: On the number of connected convex subgraphs of a connected
acyclic digraph. Discrete Appl. Math. 157(7), 1660–1662 (2009)

35. Harary, F.: Convexity in graphs: achievement and avoidance games. Ann. Discrete
Math. 20, 323 (1984)

36. Harary, F., Nieminen, J.: Convexity in graphs. J. Differ. Geom. 16, 185–190 (1981)
37. Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math.

Comput. Model. 17(11), 89–95 (1993)
38. Haas, R., Hoffmann, M.: Chordless path through three vertices. Theoret. Comput.

Sci. 351, 360–371 (2006)
39. Kanté, M.M., Nourine, L.: Polynomial time algorithms for computing a minimum

hull set in distance-hereditary and chordal graphs. In: van Emde Boas, P., Groen,
F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol.
7741, pp. 268–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-35843-2 24

40. Nebeský, L.: A characterization of the interval function of a connected graph.
Czechoslovak Math. J. 44(1), 173–178 (1994)

41. Nielsen, M.H., Oellermann, O.R.: Steiner trees and convex geometries. SIAM J.
Discrete Math. 23(2), 680–693 (2011)

42. Parker, D.B., Westhoff, R.F., Wolf, M.J.: Two-path convexity in clone-free regular
multipartite tournaments. Australas. J. Combin. 36, 177–196 (2006)

43. Pelayo, I.M.: Geodesic Convexity in Graphs. Springer, New York (2013). https://
doi.org/10.1007/978-1-4614-8699-2

44. Parvathy, K.S.: Studies on convex structures with emphasis on convexity in graphs.
Ph.D. thesis, Cochin University, Kochi (1995)

45. Peterin, I.: The pre-hull number and lexicographic product. Discrete Appl. Math.
312, 2153–2157 (2012)

46. Sampathkumar, E.: Convex sets in a graph. Indian J. Pure Appl. Math. 15(10),
1065–1071 (1984)

47. Thorup, M.: All structured programs have small tree width and good register
allocation. Inf. Comput. 142(2), 159–181 (1998)

48. van de Vel, M.L.J.: Theory of Convex Structures. North Holland, Amsterdam
(1993)

https://doi.org/10.1007/978-3-642-35843-2_24
https://doi.org/10.1007/978-3-642-35843-2_24
https://doi.org/10.1007/978-1-4614-8699-2
https://doi.org/10.1007/978-1-4614-8699-2

An Approximation Algorithm
for the Dynamic k-level Facility

Location Problem

Limin Wang1, Zhao Zhang2, Dachuan Xu3, and Xiaoyan Zhang4(B)

1 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, Jiangsu, People’s Republic of China

2 College of Mathematics and Computer Science, Zhejiang Normal University,
Jinhua 321004, Zhejiang, People’s Republic of China

3 Beijing Institute for Scientific and Engineering Computing,
Beijing University of Technology, Beijing 100124, People’s Republic of China

4 School of Mathematical Science and Institute of Mathematics,
Nanjing Normal University, Nanjing 210023, Jiangsu, People’s Republic of China

zhangxiaoyan@njnu.edu.cn

Abstract. In this paper, we consider the dynamic k-level facility loca-
tion problem, which is a generalization of the uncapacitated k-level facil-
ity location problem when considering time factor. We present a com-
binatorial primal-dual approximation algorithm for the problem which
finds a solution within 6 times the optimum. This approximation ratio
under a dynamic setting coincides with that of the simple dual ascent
6-approximation algorithm for the (static) multilevel facility location
problem (Bumb, 2001) with a weak triangle inequality property.

Keywords: Approximation algorithm · Primal-dual · Dynamic ·
Facility location

1 Introduction

Facility location has a wide range of important applications in many fields
of modernization such as manufacturing, transportation, network, information,
resource allocation, etc. It is a kind of problem with important research value.
An important problem in facility location is to choose a set of facilities, such
as plants, warehouses or wireless antenna towers, in order to minimize the total
cost of opening facilities and meet the demands for some commodity [4].

The dynamic facility location problem (DFLP) [10] is a generalization of
the uncapacitated facility location problem (UFLP). In each time period, the
demand of a client is served by facilities which should be opened at this time

Supported by National Natural Science Foundation of China (Grant Nos. 61425024,
11531011, 11771013, 11871081, 11871280, 11471003), and National Thousand Young
Talents Program, and Qing Lan Project.

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 284–291, 2019.
https://doi.org/10.1007/978-3-030-27195-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_26&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_26

Approximation Algorithm for the Dynamic k-level Facility Location Problem 285

period or earlier. For a potential facility, the opening cost varies in different time
periods. For a client and a potential facility, the connection cost between them
also varies in different time periods. The goal is to select a subset of facilities
to open at each time period to minimize the total cost in all time periods such
that the demand of each client is satisfied in each time period. Based on primal-
dual scheme, a 3-approximation algorithm was proposed for DFLP in [13]. Then
combining the techniques from [5,7], they further proposed a 1.86-approximation
algorithm, which is so far the best approximate algorithm for DFLP.

In the k-level facility location problem (k-FLP), each client must be served
by a path of k level sets of open facilities. The uncapacitated k-level facility
location problem is a static problem; it concerns how many facilities to build
and where to locate them. The first approximation algorithm for the multilevel
FLP was developed in [1,9], they were based on rounding an LP solution to
an integer one. The performance guarantees of these algorithms were 3.16 and
3, respectively. The first combinatorial algorithm for the multilevel FLP was
developed in [8], and it finds a solution within O(log |D|) the optimum, where
D is the set of demand points. Based on extending the primal-dual algorithm,
Bumb [3] proposed a 6-approximation algorithm for the k-FLP. An improved
combinatorial approximation algorithm for k-FLP was presented in [2], and the
performance guarantee of their algorithm is 3.27.

In practical applications, the k-FLP problem is often applied to the supply
chains. Due to the cost of facilities, service cost and the demand of each client
will change with time, we consider the k-FLP problem in a dynamic settings.
In this paper, we investigative the dynamic k-level facility location problem,
which is a generalization of the uncapacitated k-level facility location problem
when considering time factor. Being an extension of the uncapacitated facility
location problem, which is known to be Max SNP-hard [5], this problem is Max
SNP-hard as well. Motivated by the idea from [3,6,11,12], we present a simple
dual ascent method for the k-DFLP that finds a solution within 6 times the
optimum. This approximation ratio under a dynamic setting coincides with that
of the simple dual ascent 6-approximation algorithm for the (static) multilevel
facility location problem [3] with a weak triangle inequality property.

The paper is organized as follows. In Sect. 2, we present the formal definition
of the k-DFLP problem and give its linear programming relaxation. In Sect. 3,
we present our primal-dual algorithm for k-DFLP. The algorithm is analyzed in
Sect. 4. Finally, we conclude the paper in Sect. 5.

2 k-DFLP

The k-DFLP problem also addresses the issue of when to build a facility. More
precisely, in the k-DFLP problem, we are given a set of clients D, and the time
periods numbered from 1 to T . Let F =

⋃k
l=1 F l be the set of all facilities, where

each F l is the set of sites where facilities on level l (1 ≤ l ≤ k) are located
and the sets F 1, . . . , F l are pairwise disjoint. In the following, unless otherwise
specified, we use i to represent the facility and j to represent the client. We refer

286 L. Wang et al.

p = (i1, . . . , ik)(il ∈ F l, l = 1, . . . , k) to be a path of facilities. The set of all
possible paths is denoted by P . At each time period t, a client j ∈ D is specified
by a demand dtj that can be served by facilities open at the beginning of the time
period t, i.e., at time period t or earlier. A cost f t

i is incurred when the facility
i ∈ F needs to be open at time period t, where f t

i is ∞ if facility i is not available
at time period t. A cost ctij is incurred for supplying one unit demand of client
j in time period t from facility i. The connection cost between facilities in two
adjacent levels is ctilil+1

(1 ≤ l ≤ k − 1) in time period t. If client j is connected
to a path p at time period t, we may say that client j is assigned to the path p
or is served by the path p at time period t. The cost incurred by assigning client

j to the path p = (i1, . . . , ik) is equal to ctjp = ctji1 +
k−1∑

l=1

ctilil+1
. The objective

is to choose a subset of facilities F to open at each time period and assign each
client j to a path p, such that all demands of the clients are satisfied and the
total cost is minimized. Similar to the assumption in [13], we assume that the
weak triangle inequality property holds, namely cti1j1 ≤ cti2j1 + ct

′
i2j2

+ ct
′
i1j2

for
any i1, i2 ∈ F , j1, j2 ∈ D and time periods 1 ≤ t, t

′ ≤ T . It is clear that when
T = 1, k-DFLP becomes k-FLP.

More precisely, the k-DFLP can be formulated as an integer program as
follows:

minimize
T∑

t=1

∑

p∈P

∑

j∈D

dtjc
t
jpx

t
jp +

T∑

s=1

∑

i∈F

fs
i ys

i

s.t.
∑

p∈P

xt
jp = 1 ∀j ∈ D, 1 ≤ t ≤ T

∑

p:i∈p

xt
jp ≤

t∑

s=1

ys
i ∀i ∈ F, j ∈ D, 1 ≤ t ≤ T

xt
jp, y

s
i ∈ {0, 1} ∀i ∈ F, j ∈ D, p ∈ P, 1 ≤ s, t ≤ T

where ys
i = 1 if facility i is open at time period s, ys

i = 0 otherwise; xt
jp = 1 if the

demand of client j is supplied from path p at time period t. The first constraint
indicates that the demand of each client j must be served by one path p at any
period t. The second constraint indicates that if path p at time period t supplies
the demand of a client, then i ∈ p must be open at time period t.

Approximation Algorithm for the Dynamic k-level Facility Location Problem 287

Consider the linear programming relaxation of the above integer program:

minimize
T∑

t=1

∑

p∈P

∑

j∈D

dtjc
t
jpx

t
jp +

T∑

s=1

∑

i∈F

fs
i ys

i

s.t.
∑

p∈P

xt
jp = 1 ∀j ∈ D, 1 ≤ t ≤ T

∑

p:i∈p

xt
jp ≤

t∑

s=1

ys
i ∀i ∈ F, j ∈ D, 1 ≤ t ≤ T

xt
jp, y

s
i ≥ 0 ∀i ∈ F, j ∈ D, p ∈ P, 1 ≤ s, t ≤ T

The dual of this linear programming relaxation is

maximize
T∑

t=1

∑

j∈D

αt
j

s.t. αt
j − dtjc

t
jp ≤

∑

i∈p

βt
ij ∀j ∈ D, p ∈ P, 1 ≤ t ≤ T

T∑

t=s

∑

j∈D

βt
ij ≤ fs

i ∀i ∈ F, 1 ≤ s ≤ T

βt
ij ≥ 0 ∀i ∈ F, j ∈ D, 1 ≤ t ≤ T

It is straightforward to show that the above dual is equivalent to the following
linear program.

maximize
T∑

t=1

∑

j∈D

dtjα
t
j

s.t. αt
j − ctjp ≤

∑

i∈p

βt
ij ∀j ∈ D, p ∈ P, 1 ≤ t ≤ T

T∑

t=s

∑

j∈D

dtjβ
t
ij ≤ fs

i ∀i ∈ F, 1 ≤ s ≤ T

βt
ij ≥ 0 ∀i ∈ F, j ∈ D, 1 ≤ t ≤ T

Intuitively, the dual variable αt
j can be interpreted as a budget that client j is

willing to spend to get one unit of its demand served in time period t, and the
dual variable βt

ij can be interpreted as the part of αt
j that is contributed to pay

for opening facility i in time period t.

3 Primal-Dual Algorithm

We present a dual ascent algorithm by integrating the techniques in [3,6,13].
The algorithm first constructs a feasible dual solution and then finds a feasible
integer primal solution based on the dual solution.

288 L. Wang et al.

We define the following three concepts before constructing a feasible dual
solution.

(1) A facility il ∈ F l is temporarily open when
T∑

t=s

∑

j∈D

dtjβ
t
ij = fs

i . Denote by

Til the time when facility il ∈ F l becomes temporarily open.
(2) A client j ∈ D at time period t reaches il ∈ F l if for some path p =

(i1, i2, . . . , il) from i1 to il, all facilities i1, i2, . . . , il−1 are open and αt
j =

ctjp +
l∑

l′=1

βt
il′ j

(3) If, in addition, also il is temporarily open, we say that j leaves il at time
period t or, in case l = k, that j gets connected along p to ik ∈ F k at time
period t.

Phase 1. Construction of a dual feasible solution
We introduce a notion of time θ in the algorithm. Initially θ = 0, all dual

variables are set to be 0, all facilities i are closed, and all demand-period pairs
(j, t) are said to be unfrozen. We start increasing dual variables αt

j for all demand-
period pairs (j, t) at the same rate as long as they are unfrozen, i.e., at time θ,
αt
j = θ for all unfrozen demand-period pairs. When the demand-period pair

(j, t) ∈ D reaches some closed facility il ∈ F l, the dual variable βt
ilj

will be
increased at the same rate as αt

j . When il is open, then freeze all the dual
variables βt

ilj
, (j, t) ∈ D. Keep increasing time θ until there is no unfrozen

demand-period pairs.
For each temporarily open facility il ∈ F l (l ≥ 2) in time period t, the

predecessor of il will be the facility in the level l − 1 via which was for the first
time reached by a demand-period pair, i.e.,

Pred(il, t) := argmini∈F l−1{Ti + ctiil}

The predecessor of a temporarily open i1 ∈ F 1 will be its closest client and we
define the time TPred(i1,t) = 0. As time increases, the following two cases may
occur:

– Facility ik ∈ F k is temporarily open. In this case, freeze those unfrozen
demand-period pairs (j, t) ∈ D with βt

jik
> 0 and connect them to facil-

ity ik, which is called the connecting witness for (j, t). In addition, denote
p(ik, t) = (i1, . . . , ik; t) as the associated central path at time period t such
that

il = Pred(il+1, t),∀1 ≤ l ≤ k − 1

and (j, t)ik as the predecessor of i1. We call the neighborhood of ik the set of
clients contributing to p(ik, t), i.e.,

N(ik) = {(j, t) ∈ D|βt
jil

≥ 0 for some il ∈ p(ik, t)}

Approximation Algorithm for the Dynamic k-level Facility Location Problem 289

– If an unfrozen demand-period pair (j, t) reaches a temporarily open facility-
period pair ik, then freeze (j, t) and connect (j, t) to ik, which is also called
the connecting witness for (j, t).

When all demand-period pairs are frozen, the first phase terminates. If two
events occur simultaneously, the algorithm executes them in an arbitrary
order.

Phase 2. Construction of primal feasible solution
In this phase, we specify which facilities to open in each period, and how the

demands should be served. Let F̃ k ⊆ F k be the set of tentatively open facility
in the first phase. We say that facilities ik and i′k (ik, i′k ∈ F̃ k) are dependent if
there exists some demand-period pair (j, t) ∈ D such that (j, t) ∈ N(ik)∩N(i′k).
We pick a maximal independent set of facility-period pairs F̄ k ⊆ F̃ k such that for
any ik ∈ F̃ k\F̄ k, there exists i′k ∈ F̄ k where Ti′k ≤ Tik , ik and i′k are dependent.
Then we open the facility in F̄ k, and also open the associated central path
p(ik, t), ik ∈ F̄ k.

Assign demand-period pair (j, t) ∈ D to an open facility ik ∈ F̄ k at time
period t by the following rule. If there is ik such that (j, t) ∈ N(ik), then (j, t)
is connected to ik along the associated central path p(ik, t). Otherwise, (j, t) is
connected to the closest open facility-period pair ik along path p(ik, t).

4 Analysis of Algorithm

Firstly, we introduce a crucial lemmas for proving the approximation ratio of
our algorithm.

Lemma 1. Let ik ∈ F̄ k be a temporarily open facility and its associated path
p(ik, t) = (i1, i2, . . . , ik; t). For all (j, t) ∈ D and il ∈ p(ik, t) with βt

ilj
> 0, there

exists a path p from F 1 to il such that

ctjp +
k−1∑

l′=l

ctil′ il′+1
≤ Tik

Proof. Due to the definition of a predecessor, it implies that for each temporarily
open facility i ∈ F̄ k

ctPred(i,t)i + TPred(i,t) ≤ Ti

By adding the above inequalities for il+1, . . . , ik, one can obtain

k−1∑

l′=l

ctil′ il′+1
+ Til ≤ Tik

Since βt
ilj

> 0, there exists a path p along which j reached il before Til . Clearly,
ctjp ≤ Til . Hence, we prove that the conclusion is correct.

290 L. Wang et al.

Then, we consider the facility cost.

Lemma 2.
T∑

t=1

∑

ik∈F̄k

∑

il∈p(ik)

f t
il

≤
∑

(j,t)∈D

dtjα
t
j

Finally, we consider the connection cost of client (j, t) ∈ D.

Lemma 3. If (j, t) ∈ D is assigned to p(ik, t) in Phase 2 of Algorithm 1, then
we have ctjp(ik,t) ≤ 5αt

j.

Finally, we are ready to present the approximation ratio of Algorithm 1.

Theorem 1. Algorithm 1 is a primal-dual 6-approximation combinatorial algo-
rithm for the k-DFLP.

Proof. Denote SOL as the solution of Algorithm 1, and let FSOL be the facility
cost of the solution, CSOL be the connection cost of the solution. It follows from
Lemmas 2 and 3 that the total cost of SOL is at most

cost(SOL) = FSOL + CSOL

≤
∑

(j,t)∈D

dtjα
t
j + 5

∑

(j,t)∈D

dtjα
t
j

≤ 6
∑

(j,t)∈D

dtjα
t
j

5 Discussions

In this paper, we consider the dynamic k-level facility location problem, which
is a generalization of the uncapacitated k-level facility location problem when
considering time factor. We present a simple dual ascent method for the problem
under a dynamic setting which finds a solution within 6 times the optimum. More
challenging research directions are in solving dynamic facility location problems
with capacity constraints and nonmetric service costs.

References

1. Aardal, K., Chudak, F.A., Shmoys, D.B.: A 3-approximation algorithm for the k-
level uncapacitated facility location problem. Inf. Process. Lett. 72(5–6), 161–167
(1999)

2. Ageev, A., Ye, Y., Zhang, J.: Improved combinatorial approximation algorithms
for the k-level facility location problem. SIAM J. Discrete Math. 18(1), 207–217
(2004)

3. Bumb, A., Kern, W.: A simple dual ascent algorithm for the multilevel facility
location problem. In: Goemans, M., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.)
APPROX/RANDOM -2001. LNCS, vol. 2129, pp. 55–63. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44666-4 10

https://doi.org/10.1007/3-540-44666-4_10

Approximation Algorithm for the Dynamic k-level Facility Location Problem 291

4. Cornuejols, G., Nemhauser, G.L., Wolsey, L.A.: The uncapacitated facility location
problem. In: Mirchandani, P., Francis, R. (eds.) Discrete Location Theory, pp. 119–
171. Wiley, New York (1990)

5. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms.
J. Algorithms 31(1), 228–248 (1999)

6. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. J.
ACM (JACM) 48(2), 274–296 (2001)

7. Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for met-
ric facility location problems. In: Jansen, K., Leonardi, S., Vazirani, V. (eds.)
APPROX 2002. LNCS, vol. 2462, pp. 229–242. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45753-4 20

8. Meyerson, A., Munagala, K., Plotkin, S.: Cost-distance: two metric network design.
In: Proceedings 41st Annual Symposium on Foundations of Computer Science, pp.
624–630. IEEE (2000)

9. Shmoys, D.B., Aardal, K.I.: Approximation algorithms for facility location prob-
lems, vol. 1997. Utrecht University: Information and Computing Sciences (1997)

10. Van Roy, T.J., Erlenkotter, D.: A dual-based procedure for dynamic facility loca-
tion. Manag. Sci. 28(10), 1091–1105 (1982)

11. Wang, Z., Du, D., Xu, D.: A primal-dual approximation algorithm for the k-level
stochastic facility location problem. In: Chen, B. (ed.) AAIM 2010. LNCS, pp.
253–260. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14355-
7 26

12. Xu, D., Du, D.: The k-level facility location game. Oper. Res. Lett. 34(4), 421–426
(2006)

13. Ye, Y., Zhang, J.: An approximation algorithm for the dynamic facility location
problem. In: Cheng, M.X., Li, Y., Du, D.Z. (eds.) Combinatorial Optimization in
Communication Networks, vol. 18, pp. 623–637. Springer, Boston (2006). https://
doi.org/10.1007/0-387-29026-5 22

https://doi.org/10.1007/3-540-45753-4_20
https://doi.org/10.1007/978-3-642-14355-7_26
https://doi.org/10.1007/978-3-642-14355-7_26
https://doi.org/10.1007/0-387-29026-5_22
https://doi.org/10.1007/0-387-29026-5_22

Weighted Two-Dimensional Finite
Automata

Qichao Wang1(B), Yongming Li1, and Wei Zhou2

1 College of Computer Science, Shaanxi Normal University, Xi’an 710119, China
{wangqc,liyongm}@snnu.edu.cn

2 HANA Platform Core, SAP SE, 69190 Walldorf, Germany
wei.zhou01@sap.com

Abstract. Two-dimensional finite automata (2D-FA) are a natural gen-
eralization of finite automata to two-dimension and used to recognize
picture languages. In order to study quantitative aspects of computa-
tions of 2D-FA, we introduce weighted two-dimensional finite automata
(W2D-FA), which can represent functions from some input alphabet into
a semiring. In this work, we investigate some basic properties of these
functions like upper bounds and closure properties. First, we prove that

the value of such a function is bounded by 2O(n2). Then, we will see that
this upper bound is actually sharp, and a deterministic W2D-FA of a
restricted type already can compute a function that reaches this bound.
Finally, we study the closure properties of the classes of functions that
are computed by W2D-FA of various types under some rational opera-
tions, e.g., sum, Hadamard product, vertical (horizontal) multiplication,
and scalar multiplication.

Keywords: Picture language · Weighted automaton · Semiring ·
Upper bound · Closure property

1 Introduction

Picture languages are two-dimensional formal languages over some alphabet,
and their applications can be found in many areas such as pattern recogni-
tion and image processing [5,12]. In order to recognize a picture languages,
various automata models and two-dimensional grammars have been introduced
[10,13,15]. Two-dimensional finite automata (2D-FA for short) are a natural
generalization of finite automata to two-dimension, which is one of the simplest
two-dimensional automaton models, and some restricted types have been stud-
ied in [1,6,7,9]. Just like one-dimensional finite automata, a 2D-FA can only
accept or reject the input, that is, such an automaton can be viewed as comput-
ing a Boolean function. However, we are often interested in quantitative aspects
of computations of 2D-FA, e.g., the number of accepting computations, and the

This work is supported by the Fundamental Research Funds for the Central Universities
under Grant GK201903094.

c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 292–303, 2019.
https://doi.org/10.1007/978-3-030-27195-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_27

Weighted Two-Dimensional Finite Automata 293

minimal number of steps in an accepting computation. To do this, here we intro-
duce weighted two-dimensional finite automata (W2D-FA for short). A W2D-FA
A = (A,ω) consists of a 2D-FA A with an input alphabet Σ and a weight func-
tion ω that assigns a quantitative value from a semiring S as a weight to each
transition of A. For an input picture p ∈ Σ∗∗, by forming the product of the
weights of all the transitions during a computation C on p, a weight ω(C) can
be assigned to the computation C, and by summing the weights of all accepting
computations, an element of S is associated with the input p. Therefore, the
W2D-FA A can represent a function fA

ω from pictures over Σ into a semiring. By
using different semirings S, various quantitative aspects of a two-dimensional
finite automaton can be expressed, e.g., the number of movement steps in a
given direction, and even some special properties for picture languages can also
be represented, e.g., the two-dimensional coordinate of a symbol.

This paper is structured as follows. In Sect. 2 we recall some basic notions
concerning picture languages and two-dimensional finite automata, and here we
also define the weighted two-dimensional finite automata and give some exam-
ples. In Sect. 3 we investigate the upper bounds of the functions that are com-
puted by W2D-FA of various types, and in Sect. 4 we consider the closure prop-
erties of these function classes under some rational operations, such as sum,
Hadamard product, vertical (horizontal) multiplication, and scalar multiplica-
tion. The paper closes with a short summary and some problems for future
work.

2 Definitions and Examples

We assume that the reader is familiar with the standard notions and concepts of
theoretical computer science, such as monoids, finite automata, and semirings.
Throughout the paper we will use N to denote the set of all natural numbers,
and Z to denote the set of all integers. Further, let S be a semiring. For s ∈ S
and k ∈ N, we will use the notation sk to denote the k-fold product s · s · . . . · s.
In addition, k · s is used to denote the k-fold sum s + s + . . . + s.

In this section we will give the formal definitions of picture languages and
two-dimensional finite automata, and for them we mainly refer to Handbook of
Formal Languages [4] as well as [3,7].

Definition 1. A picture over some alphabet Σ is a two-dimensional rectangular
array of elements of Σ. The set of all pictures over Σ is denoted by Σ∗∗. A
picture language over Σ is a subset of Σ∗∗.

For a picture p ∈ Σ∗∗, we use row(p) to denote the number of rows of p and
col(p) to denote the number of columns of p. The size of a picture is denoted by
row(p) × col(p). Let Σm×n denote the set of all pictures over Σ of size m × n
(m,n > 0). Further, the symbol with the coordinate (i, j) in p is denoted by
p(i, j) or pi,j . Finally, we denote the number of a-symbols in picture p by |p|a.
Now we give some simple examples of picture languages.

Example 1. Let Σ = {0, 1} be an alphabet. The set of pictures over Σ that
contain at least one 1-symbol can be formally defined as L1 = {p ∈ Σ∗∗ |
|p|1 ≥ 1}.

294 Q. Wang et al.

For example, the following picture belongs to L1.

0 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
1 0 1 0 0 0

Example 2. Let Σ = {0, 1} be an alphabet, and let L2 be a set of pictures over Σ
that contain as many 0-symbols as 1-symbols. Then, L2 can be formally defined
as L2 = {p ∈ Σ∗∗ | |p|0 = |p|1}.

For example, the following picture belongs to L2.

0 0 1 1 1 0
1 0 0 0 0 1
1 0 1 1 1 0
0 1 0 1 0 1
0 1 0 0 0 1
0 1 1 1 0 1

We continue with some concatenation operations for picture languages.

Definition 2. For picture p of size m×n and picture q of size m×k, the column
concatenation of p and q is defined as

Further, for picture p of size m × n and picture q of size k × n, the row
concatenation of p and q is defined as

p � q =

p1,1 · · · p1,n
...

. . .
...

pm,1 · · · pm,n

q1,1 · · · q1,n
...

. . .
...

qk,1 · · · qk,n

Finally, the empty picture λ is the neutral element for column and row concate-
nation.

Weighted Two-Dimensional Finite Automata 295

Now we introduce some different types of 2D-FA. The general type of 2D-FA is
two-dimensional four-way finite automaton (4NFA for short), which is extended
from one-dimensional two-way finite automata [2].

Definition 3. A 4NFA A is formally defined by a 7-tuple A = (Σ,
Q,Δ, q0, qa, qr, δ), where Σ is an input alphabet, Q is a finite set of states,
Δ = {R,L,U,D} is a set of directions of movement of a 4NFA, q0 ∈ Q
is the initial state, qa is the accepting state, qr is the rejecting state, δ ⊆
(Q � {qa, qr} × Σ) × (Q × Δ) is a transition relation.

In order to recognize picture, starting from the position (1, 1) in the initial
state, the finite control of a 4NFA can move in four directions: Right, Left, Up,
and Down. Note that the finite control is not allowed to be out of the input
picture. In order to avoid this, we identify the boundary of a picture by using a
mapping π : Σ∗∗ → Γ∗∗, where

Γ = Σ ∪ {[a]X | a ∈ Σ,X ⊆ {R,L,U,D}},

that is, the boundary symbols are labelled with some directions. For a picture
p ∈ Σ∗∗ and a symbol p(i, j) in p, if one or more of i = 1, i = row(p), j = 1, and
j = col(p) hold, then the direction U ,D,L and R will be added to the label set
of the symbol p(i, j), respectively. For a symbol of the form [a]X , if the direction
d ∈ X, then from this symbol a 4NFA is not allowed to move in the direction d.
For a picture of size m × n (m,n > 1), π(p) is presented as follows.

A computation of a 4NFA is finished in an accepting state or a rejecting state,
and also finished if there is no applicable instruction. Note that a 4NFA does not
need to read all the symbols in the input picture. If a four-way finite automaton
can have at most one computation for each input picture, it is called deterministic
(4DFA for short), that is, in this case the transition relation δ is a partial function.
Unlike in the one-dimensional case, the class of languages accepted by 4DFA
is a proper subset of the class of languages accepted by 4NFA [2]. There are
some restricted types of 4NFA that have been introduced in [1,6,7,9]. A two-
dimensional three-way finite automaton (3NFA for short) is not allowed to move
up, and a two-dimensional two-way finite automaton (2NFA for short) is not
allowed to move up and left, and the deterministic versions of them are denoted
by 3DFA and 2DFA, respectively. By L(X) we denote the class of languages that
are accepted by 2D-FA of type X. Now we present a simple example of 2D-FA.

296 Q. Wang et al.

Example 3. The picture language L1 given in Example 1 can be accepted by a
3DFA A1. For a picture p of size m × n (m,n > 1), starting from the position
(1, 1) A1 moves to the right end of the first row. On seeing the boundary symbol
[p1,n]{U,R}, it moves down and then moves to the left end of the second row. In
this way, A1 can read all the symbols in p. If a b-symbol appears in the finite
control, then A1 enters the accepting state and halts.

Note that a 2NFA cannot read all the symbols in a picture of the size m × n,
if m,n > 1. Obviously, the language L2 given in Example 2 cannot be accepted
by a 4NFA, as it is not able to store the number of a- or b-symbols by using
finitely many states. In order to study the quantitative aspects of a 2D-FA, here
we introduce weighted two-dimensional finite automata (W2D-FA for short).

Definition 4. Let A = (Q,Σ,Δ, q0, qa, qr, δ) be a 2D-FA, and let ω be a weight
function that assigns an element of a semiring S = (S,+, ·, 0, 1) as a weight to
each transition of δ. The weight of a transition t is denoted by ω(t). A W2D-FA
A is defined as a pair A = (A,ω). The weight of a computation C of A on an
input picture p ∈ Σ∗∗ is the product of the weights of all the transitions during
the computation C, i.e., ω(C) = ω(t1) ·ω(t2) · · · · ·ω(tn) for t1, t2, · · · , tn ∈ C. By
summing the weights of all the accepting computations, we can define a function

fA
ω (p) =

⎛
⎝ ∑

C∈A(p)

ω(C)

⎞
⎠ ∈ S,

where A(p) is the set of accepting computations of A on the input picture p. Let
F(X,Σ, S) denote the set of all functions of the form fA

ω that are computed by
2D-FA of type X.

We continue with some examples of W2D-FA.

Example 4. Let N = (N,+, ·, 0, 1) be the semiring of natural numbers with addi-
tion and multiplication, and let A1 = (A2, ω1) be a W2D-FA over the semiring
N. Further, let ω1(t) = 1 for each transition t of A2. In this way, the weight asso-
ciated to each accepting computation is 1, and for each input picture p ∈ Σ∗∗,
fA2

ω1
(p) represent the number of accepting computations of A2 on p.

By using the direct product of semirings [16], we can describe some special
quantitative properties for picture languages.

Example 5. Let Z = (Z ∪ {∞},min,+,∞, 0) be the tropical semiring. For the
3DFA A1 given in Example 3, we define the weight function ω2 that assigns the
weight (0, 1), (0,−1), and (1, 0) to each move-right, move-left, and move-down
step of A1, respectively. Therefore, A2 = (A1, ω2) is a weighted 3DFA over Z×Z,
and for an input picture p, by using the function fA1

ω2
(p) we can determine the

coordinate of the b-symbol of the first discovery in p.

Weighted Two-Dimensional Finite Automata 297

3 Upper Bounds

In this section, we study the upper bounds of the functions that are computed by
W2D-FA of various types. For this purpose we need to introduce some definitions
that are actually given in [14].

Definition 5. The semiring S = (S,+, ·, 0, 1) is called linearly ordered with
respect to an order ≤, if (S,+, 0) is a linearly ordered monoid with respect to ≤,
and if (s · a) ≤ (s · b) and (a · s) ≤ (b · s) for s ≥ 0 and a ≤ b.

It is easily seen that (N,+, ·, 0, 1), (Z,+, ·, 0, 1), and ({0, 1},∨,∧, 0, 1) are
commutative semirings that are linearly ordered with respect to the natural
order. If S is a linearly ordered semiring that is ordered with respect to a linear
order ≤, and if T ⊆ S is a finite non-empty subset, then the maximum and the
minimum of T can be determined, that is, there are an element a ∈ T such that
a ≤ t for all t ∈ T , and an element b ∈ T such that b ≥ t for all t ∈ T . In order
to study the upper bounds of the functions of the form fA

ω , we abstract these
functions to a function from N into S.

Definition 6. Let S be a linearly ordered semiring, let A be a 2D-FA of type X
with input alphabet Σ, and let ω be a weight function that maps the transitions
of A into S. We define the functions

(1) f̂A
ω (x, y) = max{fA

ω (p) | p ∈ Σx×y},

(2) f̂A
ω (x) = max{fA

ω (p) | p ∈ Σx×x}.

Let F̂(X,Σ, S) and F̂sq(X,Σ, S) denote the set of all functions of the forms f̂A
ω :

N × N → S and f̂A
ω : N → S, respectively, where A is a 2D-FA of type X with

input alphabet Σ.

The function f̂A
ω represents the relation between the size of an input picture

p and the value of the function fA
ω (p). Note that a computation of a 2D-FA can

be infinite, that is, the finite control may move between two positions without
halting. As in the infinite case the input is not accepted, here we only consider
finite computations.

Theorem 1. Let S = (S,+, ·, 0, 1) be a semiring that is ordered with respect
to a linear order ≤, let A = (Σ, Q,Δ, q0, qa, qr, δ) be a 2NFA, and let ω be a
weight function that assigns each transition of A an element from the subset
T = { s ∈ S | s ≥ 0 } of S. Then there exist some constants c1, c2 ∈ N and an
element s ∈ T such that

(1) f̂A
ω (x, y) ≤ cx+y

1 · sx+y,

(2) f̂A
ω (x) ≤ cx

1 · sc2·x

hold for all x, y ≥ 1.

298 Q. Wang et al.

Proof. First, we prove the inequality (1). As a 2NFA is only able to move right
and down, for an input picture p ∈ Σx×y the automaton A can perform at most
y−1 steps of horizontal movement and at most x−1 steps of vertical movement.
It follows that a computation of A on p ∈ Σx×y consists of at most x + y − 2
steps. Further, let s = max{ω(t) | t is a transition of A }. Therefore, the upper
bound of the weight that is associated with a computation of A is sx+y−2.

Now, we turn to the maximal number of accepting computations of A on
an input picture of size x × y. Let t : (p, a, q,m) be a transition of A, where
p ∈ Q � {qa, qr}, a ∈ Σ, q ∈ Q, and m ∈ Δ � {U,L}. It is easily seen that any
configuration of A has at most 2|Q| many immediate successor configurations,
and thus there are at most 2|Q|x+y−2 accepting computations.

From the arguments above, it follows that

f̂A
ω (x, y) ≤ 2|Q|x+y−2 · sx+y−2 ≤ 2|Q|x+y · sx+y

for all x, y ≥ 1. Hence, the inequality (1) holds with the constants c1 = 2|Q|.
Along the same line,

f̂A
ω (x) ≤ 2|Q|2x−2 · s2x−2 = (2|Q|2)x−1 · s2x−2 ≤ (2|Q|2)x · s2x

for all x ≥ 1, and the inequality (2) can be obtained by taking c1 = 2|Q|2 and
c2 = 2. �

In the following we restrict our attention to the upper bound of the functions
that are computed by weighted 4NFA. In a quite similar way, the following result
can be derived.

Theorem 2. Let S = (S,+, ·, 0, 1) be a semiring that is ordered with respect
to a linear order ≤, let A = (Σ, Q,Δ, q0, qa, qr, δ) be a 4NFA, and let ω be a
weight function that assigns each transition of A an element from the subset
T = { s ∈ S | s ≥ 0 } of S. Then there exist some constants c1, c2 ∈ N and an
element s ∈ T such that

(1) f̂A
ω (x, y) ≤ cxy

1 · sc2·xy,

(2) f̂A
ω (x) ≤ cx2

1 · sc2·x2

hold for all x, y ≥ 1.

Proof. A 4NFA is able to move around in a picture, and thus it can scan a row
or a column repeatedly. It is easily seen that during a finite computation the
maximal number of times that a 4NFA scans a row or a column is bounded k · |Q|
for some k ∈ N. It follows that for an input picture p ∈ Σx×y, A can perform at
most (y −1)k|Q| steps of horizontal movement on a row and at most (x−1)k|Q|
steps of vertical movement on a column. Therefore, a finite computation of A
contains at most (y−1)k|Q|x steps of horizontal movement and (x−1)k|Q|y steps
of vertical movement. If s = max{ω(t) | t is a transition of A }, then ω(C) ≤
s(y−1)k|Q|x+(x−1)k|Q|y for a computation C of A. Further, it is clear that there
are at most 4|Q| immediate successor configurations for any configuration of A,

Weighted Two-Dimensional Finite Automata 299

and thus for an input picture p ∈ Σx×y A has at most 4|Q|(y−1)k|Q|x+(x−1)k|Q|y

many accepting computations. From the arguments above, it follows that

f̂A
ω (x, y) ≤ 4|Q|(y−1)k|Q|x+(x−1)k|Q|y · s(y−1)k|Q|x+(x−1)k|Q|y

= 4|Q|2k|Q|xy−k|Q|(x+y) · s2k|Q|xy−k|Q|(x+y)

≤ 4|Q|2k|Q|xy · s2k|Q|xy

= (4|Q|2k|Q|)xy · s2k|Q|xy

for all x, y ≥ 1. Hence, the inequality (1) holds by taking c1 = 4|Q|2k|Q| and
c2 = 2k|Q|. Analogously, the inequality (2) can be also derived. �

Actually, the upper bound given in the above theorem is sharp.

Theorem 3. Let S = (S,+, ·, 0, 1) be a linearly ordered semiring, let s ∈ S such
that s ≥ 0, let Σ be a finite alphabet, and let c1, c2 ∈ N+. Then there exist a
3DFA A over alphabet Σ and a weight function ω for A such that

(1) f̂A
ω (x, y) = cxy

1 · sc2·xy,

(2) f̂A
ω (x) = cx2

1 · sc2·x2

hold for all x, y > 1.

Proof. Let A be a 3DFA that proceeds as follows. For an input picture p ∈ Σx×y,
A starts from the position (1, 1), and moves to the right end of the row 1. On
seeing the boundary symbol in the position (1, y) it moves down to the position
(2, y) and then moves to the left end of the row 2. In this way, A scans each
symbol of p exactly once, and finally it enters the accepting state on the bottom-
left or bottom-right corner. Obviously, such a computation consists of xy − 1
steps. Further, let ω be the weight function that is defined by taking

ω(t) =
{

(c1 · sc2)2, if t is a transition to the accepting state,
c1 · sc2 , otherwise.

It follows that

fA
ω (p) = (c1 · sc2)xy−2 · (c1 · sc2)2 = cxy

1 · sc2·xy

for all p ∈ Σ∗∗. Hence, the equality (1) holds, and in an analogous way the
equality (2) can also be derived. �

We have seen that a weighted 3DFA already can reach the upper bounds
given in Theorem 2.

4 Closure Properties

The closure properties of the classes of languages accepted by 2D-FA have been
studied in [7,8]. In this section we extend these results to the function classes
F(X,Σ, S) for some rational operations that are introduced in [11]. We begin
with the operation of sum ⊕ that is defined as

(f ⊕ g)(p) = f(p) + g(p)

for all p ∈ Σ++ and f, g : Σ∗∗ → S.

300 Q. Wang et al.

Theorem 4. For all alphabets Σ and semirings S, the classes of functions
F(2NFA,Σ, S), F(3NFA,Σ, S) and F(4NFA,Σ, S) are closed under the operation
of sum ⊕.

Proof. Let A1 and A2 be 2NFAs with input alphabet Σ, and let ω1 and ω2

be weight functions that map the transitions of A1 and of A2 to the semiring
S = (S, 0, 1,+, ·). Now we construct a 2NFA A with input alphabet Σ and a
weight function ω. For an input picture p, A non-deterministically simulates
each computation of A1 and A2. Further, let ω be a weight function that is
defined by taking

ω(t) =
{

ω1(t), if t is a transition of A1,
ω2(t), if t is a transition of A2.

It follows that for all p ∈ Σ∗∗

fA
ω (p) =

∑
C∈A1(p)

ω1(C) +
∑

C∈A2(p)

ω2(C)

= fA1
ω1

(p) + fA2
ω2

(p),

where A1(p) and A2(p) are the sets of computations of A1 and A2 on p, respec-
tively. In the same way, the intended closure property can also be obtained for
the types 3NFA and 4NFA. �

We continue with the closure property under the operation of Hadamard
product � that is defined as

(f � g)(p) = f(p) · g(p)

for all p ∈ Σ++ and f, g : Σ∗∗ → S.

Theorem 5. For all alphabets Σ and semirings S, the classes of functions
F(4DFA,Σ, S) and F(4NFA,Σ, S) are closed under the operation of Hadamard
product �.

Proof. Let A1 and A2 be 4DFAs with input alphabet Σ, and let ω1 and ω2 be
weight functions that map the transitions of A1 and of A2 to S. Now we construct
a 4DFA A with input alphabet Σ and a weight function ω. For an input picture
p A simulates the computations of A1. Each transition of A during this phase
is assigned the same weight as the corresponding transition of A1. When A1

accepts, A moves to the start position and these steps of movement have the
weight 1. Then, A simulates the computation of A2 starting from the position
(1, 1). When A2 accepts, A halts in accepting state. During this simulation phase
each transition is assigned the same weight as the corresponding transition of
A2. It is easily seen that A accepts if and only if both of A1 and A2 accept, and

fA
ω (p) =

∑
C∈A1(p)

ω1(C) · ∑
C∈A2(p)

ω2(C)

= fA1
ω1

(p) · fA2
ω2

(p),

where A1(p) and A2(p) are the set of computations of A1 and A2 on p, respec-
tively. Obviously, the intended closure property for 4NFA can be obtained in a
similar way. �

Weighted Two-Dimensional Finite Automata 301

Horizontal multiplication and vertical multiplication are natural generaliza-
tion of Cauchy product to two-dimension, and they are defined as

and
(f � g)(p) =

∑
p1�p2=p

f(p1) · g(p2)

for all p ∈ Σ++ and f, g : Σ∗∗ → S.

Theorem 6. For all alphabets Σ and semirings S, the class F(3NFA,Σ, S) is
closed under the operation of vertical multiplication �.

Proof. Let A1 and A2 be 3NFAs with input alphabet Σ, and let ω1 and ω2

be weight functions that map the transitions of A1 and of A2 to the semiring
S = (S, 0, 1,+, ·). Now we construct a 3NFA A with input alphabet Σ and a
weight function ω. For an input picture p ∈ Σx×y, A simulates a computation
of A1 starting from the position (1, 1), and ω assigns each transition during this
phase the same weight as the corresponding transition of A1. When A1 accepts,
A has to determine the factorization p = p1 � p2. Note that during the picture
recognition process a 2D-FA does not need to read all the symbols of the input
picture. Therefore, there may be some unread rows in the picture p1. Let (i, j)
(0 ≤ i ≤ x and 0 ≤ j ≤ y) be the position where A1 enters accepting state. In
order to guess the possible factorizations p = p1 � p2, A moves to the left end
of the rows below the row i. During this guessing phase all the transitions of A
have the weight 1. Then, A non-deterministically simulates the computations of
A2 starting from the position (m, 1) for all i + 1 ≤ m ≤ x, and each transition
during this simulation phase is assigned the same weight as the corresponding
transition of A2. It follows that for all p ∈ Σ∗∗

fA
ω (p) =

∑
p1�p2=p

fA1
ω1

(p1) · fA2
ω2

(p2),

which completes this proof. �
It is easily seen that if a three-way finite automaton can move up, down

and right, then F(3NFA,Σ, S) is also closed under the operation of horizontal
multiplication By using the above simulation technique, we can also prove the
closure property of the language class L(3NFA) under column concatenation.
Note that the language classes L(4DFA) and L(4NFA) are not closed under the
operations of row and column concatenation [4], as a two-dimensional four-way
finite automaton is not able to determine the lowest position that it scanned.
Obviously, the above simulation technique is also not applicable for 2DFAs and
2NFAs, since these automata cannot move left to the start point of p2.

In the following we consider the closure properties under the operation of
scalar multiplication · that is defined as

(s · f)(p) = s · f(p),

where p ∈ Σ++, f, g : Σ∗∗ → S, and s is an element of a semiring S.

302 Q. Wang et al.

Theorem 7. For all alphabets Σ, all commutative semirings S, and all X ∈
{2DFA, 2NFA, 3DFA, 3NFA, 4DFA, 4NFA}, the function class F(X,Σ, S) is closed
under the operation of scalar multiplication ·.
Proof. Let A1 be a 2D-FA with an input alphabet Σ, and let ω1 be a weight
functions that maps the transitions of A1 to the semiring S. Let A be a 2D-FA
that works exactly as A1. Further, let ω be a weight function that is defined as

ω(t) =
{

s · ω1(t), if t is a transition to the accepting state,
ω1(t), otherwise.

As during an accepting computation there can be at most one transition to the
accepting state, and the semiring S is commutative, it follows that for all p ∈ Σ∗∗

fA
ω (p) = s ·

∑
C∈A1(p)

ω1(C) = s · fA1
ω1

(p),

where A1(p) is the set of accepting computations of A1 on p. �
We close this section with a summary of above closure properties that is

given in Table 1.

Table 1. Summary of closure properties of classes of functions computed by above
two-dimensional finite automata for all input alphabets Σ and semirings S.

⊕ � � ·
F(2DFA,Σ, S) ? ? ?

√

F(2NFA,Σ, S)
√

? ?
√

F(3DFA,Σ, S) ? ? ?
√

F(3NFA,Σ, S)
√

?
√ √

F(4DFA,Σ, S) ?
√

?
√

F(4NFA,Σ, S)
√ √

?
√

5 Conclusion

We have introduced the notion of weighted two-dimensional finite automata
in order to study quantitative properties of a given picture p and quantitative
aspects of a computation of a two-dimensional finite automata on the picture
p. Such an automaton is defined as a pair (A,ω), where A is a 2D-FA, and ω
is a weight function that assigns an element of a semiring to each transition of
A. Therefore, a W2D-FA can represent a function fA

ω : Σ∗∗ → S. We proved
that the value of a function that is computed by a weighted 4NFA is bounded
by 2O(n2). Further, we have seen that the above upper bound is actually sharp,
and a weighted 3DFA already can compute a function that reaches this upper
bound. Finally, we investigated the closure properties of these functions under

Weighted Two-Dimensional Finite Automata 303

some operations including sum, Hadamard product, vertical multiplication, and
scalar multiplication, and summarized them in Table 1. However, some problems
remain open. For example, the closure properties under Hadamard product and
vertical multiplication are still unknown for many types of W2D-FA.

Actually, if S is a semiring of formal languages over some alphabet Γ, then a
W2D-FA transforms a picture p ∈ Σ∗∗ into the string languages over Γ. Further,
if S is a semiring of picture languages over some alphabet Γ, then the function
fA

ω is essentially a transformation from Σ∗∗ into Γ∗∗, that is, a W2D-FA realizes
a picture transducer. To do this, further study is called for.

References

1. Anselmo, M., Giammarresi, D., Madonia, M.: New operations and regular expres-
sions for two-dimensional languages over one-letter alphabet. Theor. Comput. Sci.
340(1), 408–431 (2005)

2. Blum, M., Hewitt, C.: Automata on a two-dimensional tape. In: IEEE Symposium
on Switching and Automata Theory, pp. 155–160 (1967)

3. Giammarresi, D., Restivo, A.: Two-dimensional finite state recognizability. Fun-
dam. Inform. 25(3), 399–422 (1996)

4. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-3-642-59126-6 4

5. Han, Y.-S., Pr̊uša, D.: Template-based pattern matching in two-dimensional arrays.
In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 79–92.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7 7

6. Hirakawa, H., Inoue, K., Ito, A.: Three-way two-dimensional deterministic finite
automata with rotated inputs. IEICE Trans. Inf. Syst. 88-D(1), 31–38 (2005)

7. Inoue, K., Takanami, I.: A survey of two-dimensional automata theory. Inf. Sci.
55(1–3), 99–121 (1991)

8. Inoue, K., Takanami, I., Nakamura, A.: A note on two-dimensional finite automata.
Inf. Process. Lett. 7(1), 49–52 (1978)

9. Inoue, K., Takanami, I., Vollmar, R.: Three-way two-dimensional finite automata
with rotated inputs. Inf. Sci. 38(3), 271–282 (1986)

10. Krtek, L., Mráz, F.: Two-dimensional limited context restarting automata. Fun-
dam. Inform. 148(3–4), 309–340 (2016)

11. Mäurer, I.: Recognizable and rational picture series. In: Conference on Algebraic
Informatics, pp. 141–155. Aristotle University of Thessaloniki Press (2005)

12. Messerschmidt, H., Stommel, M.: Church-rosser picture languages and their appli-
cations in picture recognition. J. Automata Lang. Comb. 16(2–4), 165–194 (2011)

13. Otto, F., Mráz, F.: Deterministic ordered restarting automata for picture lan-
guages. Acta Inf. 52(7–8), 593–623 (2015)

14. Otto, F., Wang, Q.: Weighted restarting automata. Soft Comput. 22(4), 1067–1083
(2018)

15. Pr̊uša, D.: Non-recursive trade-offs between two-dimensional automata and gram-
mars. Theor. Comput. Sci. 610, 121–132 (2016)

16. Wang, Q.: On the expressive power of weighted restarting automata. In: Freund, R.,
Mráz, F., Pr̊uša, D. (eds.) Ninth Workshop on Non-Classical Models of Automata
and Applications. books@ocg.at, vol. 329, pp. 227–241. Österreichische Computer
Gesellschaft (2017)

https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1007/978-3-319-59108-7_7

Improved Parameterized Algorithms
for Mixed Domination

Mingyu Xiao(B) and Zimo Sheng

University of Electronic Science and Technology of China, Chengdu, China
myxiao@gmail.com, 1491858607@qq.com

Abstract. A mixed domination of a graph G = (V,E) is a mixed set
D of vertices and edges such that for every edge or vertex, if it is not
in D, then it is adjacent or incident to at least one vertex or edge in D.
The Mixed Domination problem is to check whether there is a mixed
domination of size at most k in a graph. Mixed domination is a mix-
ture concept of vertex domination and edge domination, and the mixed
domination problem has been studied from the view of approximation
algorithms, parameterized algorithms, and so on. In this paper, we give
a branch-and-search algorithm with running time bound of O∗(4.172k),
which improves the previous bound of O∗(7.465k). For kernelization, it is
known that the problem parameterized by k in general graphs is unlikely
to have a polynomial kernel. We show the problem in planar graphs
allows linear kernels by giving a kernel of 11k vertices.

Keywords: Parameterized algorithms · Mixed Domination ·
Graph algorithms · Kernelization · Branch-and-search

1 Introduction

Domination is an important concept in graph theory. There are some well-known
NP-hard problems that are related to domination, such as Vertex Domina-
tion and Edge Domination. These problems have many applications in the
real world and been studied extensively in exact algorithms and parameter-
ized algorithms. As for parameterized algorithms with the parameter being the
solution size k, Vertex Domination is W [2]-hard and not likely to have a
polynomial kernel [4], while Edge Domination is fixed parameter tractable [2]
and allows polynomial kernels [12].

In this paper we study a mixed variant of Vertex Domination and Edge
Domination, called Mixed Domination, that is to dominate all vertices and
edges in a graph by using a minimum number of vertices and edges. In a graph,
a vertex dominates itself, all of its neighbors, and all of edges incident to it.
An edge dominates itself, its two endpoints and all edges sharing one endpoint
with it. A subset of vertices and edges in a graph is called a mixed domination
if it dominates all vertices and edges in the graph. In other words, for a graph
G = (V,E), a mixed domination D is a union of a vertex subset VD and an edge
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 304–315, 2019.
https://doi.org/10.1007/978-3-030-27195-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_28&domain=pdf
http://orcid.org/0000-0002-1012-2373
https://doi.org/10.1007/978-3-030-27195-4_28

Improved Parameterized Algorithms for Mixed Domination 305

subset ED such that any vertex not appearing in D is adjacent to a vertex in
VD and any edge not in ED is incident to at least one vertex or one edge in D.
The optimization version of Mixed Domination is to find a mixed domination
of minimum size in a given graph. In this paper, we consider the parameterized
version of Mixed Domination that is to check whether a graph has a mixed
domination of size at most k in a given graph, where the parameter is k. So we
formally define our problem as follows.

Mixed Domination (MD) Parameter: k
Input: An undirected graph G = (V,E), and a positive integer k.
Question: Does there exist a mixed domination of size at most k in G?

Based on some specific application scenarios, Mixed Domination was first
introduced with the name Total Covering in 1977 by Alavi et al. [1]. Another
direct application of Mixed Domination in system control was introduced by
Zhao et al. [13]. Mixed Domination is a rich problem in algorithms and com-
putational complexity. It is known that Mixed Domination is NP-complete
on even split graphs [13], bipartite graphs, chordal graphs and planar bipartite
graphs of maximum degree 4 [6,9]. It is easy to see that it can be solved in poly-
nomial time in trees. Lan and Chang [8] gave a linear time algorithm for MD
on cacti. On the aspect of approximation algorithms, Hatami [5] showed that
there is a 2-approximation algorithm for MD in general graphs. Approximation
upper and lower bounds for a weighted version of MD were studied in [11]. As
for parameterized algorithms, the parameter of the treewidth tw(G) has been
studied. The problem can be solved in O∗(6tw(G)) time [7,10]. For the parameter
being the solution size k, Jain et al. [7] proved that the problem does not admit a
polynomial kernel unless coNP ⊆ NP/poly and gave an algorithm with running
time bound O∗(7.456k). This is the best known parameterized algorithm for the
problem in general graphs.

In this paper, we further study Mixed Domination with the parameter
being k. We will improve the running time bound to O∗(4.172k) and show that
the problem in planar graphs allows linear kernels by giving a kernel of 11k
vertices. Our parameterized algorithm is a branch-and-search algorithm based
on deep analysis of the graph structures. The main idea is to enumerate the
possible candidates of the vertex set VD in the mixed domination D and the
set of vertices V (ED) appearing in the edge set ED of D. If we find the correct
candidates, we construct an edge set E′

D from V (ED) by finding a maximum
matching in V (ED) and for each unmatched vertex adding an arbitrary edge
incident on it. The set VD ∪ E′

D will be a satisfying mixed domination. For the
linear kernel in planar graphs, we will use the Euler formula for planar graphs
to bound the number of vertices in the graph.

The following parts of the paper are organized as follows. Section 2 introduces
some basic notions and basic properties. Sections 3 to 6 give the parameterized
algorithm for Mixed Domination in general graphs. Section 7 designs the linear

306 M. Xiao and Z. Sheng

kernel for Mixed Domination in planar graphs. Finally, Sect. 8 makes some
concluding remarks. Some proofs are omitted due to the space limitation, which
can be found in the full version of this paper.

2 Preliminaries

Let G = (V,E) be an undirected graph with |V | = n vertices and |E| = m
edges. For a vertex v ∈ V , we let NG(v) denote the set of neighbors of v,
dG(v) = |NG(v)| and NG[v] = NG(v) ∪ {v}. When the graph G is clear from the
context, we may omit the subscript and simply use N(v), d(v) and N [v]. For a
graph or an edge set G′, we use V (G′) to denote the set of vertices appearing in
G′ and use E(G′) to denote the set of edges appearing in G′. For a vertex subset
V ′ ⊆ V , we use G[V ′] to denote the subgraph of G induced by V ′. In a graph,
contracting an edge vu into a new vertex v∗ is to first introduce a new vertex v∗

that is adjacent to all vertices in NG(v) ∪ NG(u) and then delete vertices v and
u (and all edges incident on them) from the graph. A connected component of a
graph is called an edge component if this connected component contains exactly
one edge.

For a mixed set D of vertices and edges, we may always use VD to denote
the set of vertex elements in D and VE to denote the set of edge elements in D.
Recall that a mixed set D = VD ∪ ED of vertices and edges is called a mixed
domination if any vertex not in V (D) is adjacent to at least one vertex in VD

and any edge not in ED is incident to at least one vertex in V (D).
In our branch-and-search algorithm, we will guess some vertices as part of

the solution. So in most steps, we are going to solve a constrained problem that
is to find a mixed domination containing a given set of vertices. The problem is
formally defined as follows.

Constrained Mixed Domination(CMD) parameter k
Input: An undirected graph G = (V,E), two disjoint vertex subsets Vv, Ve ∈ V ,
and a positive integer k.
Question: Does there exist a mixed domination D = VD ∪ ED of size
|VD| + |ED| ≤ k such that Vv ⊆ VD and Ve ⊆ V (ED)?

Since Mixed Domination is a special case of Constrained Mixed Dom-
ination with Vv = Ve = ∅, for parameterized algorithms we will consider
Constrained Mixed Domination directly. For an instance of Constrained
Mixed Domination (G,Vv, Ve, k), we will always use Vr to denote V \(Vv ∪Ve),
Gr to denote G[Vr], Nr(v) to denote NG[Vr](v) for a vertex v ∈ Vr. We also let
dr(v) = |Nr(v)|. For a vertex v ∈ Vr, we say v is dominated if v is adjacent to
some vertices in Vv and undominated otherwise.

By the definition of mixed domination, it is easy to see the following property.

Improved Parameterized Algorithms for Mixed Domination 307

Proposition 1. A mixed set D = VD ∪ ED of vertices and edges is a mixed
domination of the graph G = (V,E) if and only if the remaining vertex set
V \ V (D) is an independent set and each vertex in V \ V (D) is adjacent to at
least one vertex in VD.

3 Branch-and-Search Paradigms

As mentioned above, our algorithm is a branch-and-search algorithm, which
may branch on the current instance into several smaller instances to search for
a solution. For branch-and-search algorithms, one important step is to evaluate
the running time bound. In order to do this, we usually need to analyze the size
of the “search tree” generated by the algorithm.

Assume that we use a parameter p as the measure to evaluate the instances.
Then we use T (p) to denote the maximum number of leaves in the search tree
generated by the algorithm for any instance with the parameter being at most p.
When the parameter becomes zero or less than zero, the instance can be solved
directly. The parameter can be chosen as the number of vertices (or edges) of
the graph, the size of the solution and so on.

In a branching operation, the algorithm branches on the current instance
with parameter p into l branches. If in the i-th branch the parameter of the
subinstance decreases by at least ai, i.e., the i-th subinstance has the parameter
pi = p − ai, then we obtain a recurrence

T (p) ≤ T (p − a1) + T (p − a2) + · · · + T (p − al).

The largest root of the function f(x) = 1 − ∑l
i=1 x−ai is called the branching

factor of the recurrence. The above recurrence can also be represented by the
branching vector [a1, a2, . . . , al]. Let γ be the maximum branching factor among
all branching factors in the algorithm. The size of the search tree that represents
the branching process of the algorithm applied to an instance with parameter p
is given by O(γp). More details about the analysis and how to solve recurrences
can be found in the monograph [3].

For two branching vectors [a1, a2, . . . , al] and [b1, b2, . . . , bl], if ai ≥ bi holds
for all (i = 1, 2, . . . , l), then the branching factor of the first one is not greater
than this of the second one. This property will be used in the analysis.

3.1 Applied to Constrained Mixed Domination

For an instance of Constrained Mixed Domination (G,Vv, Ve, k), our idea
is to iteratively branch on vertices in Vr = V \ (Vv ∪ Ve) by including them to
Vv or including them to Ve or keeping them in Vr. To analyze the running time
bound, we need to set a measure. In this paper, we will let the measure be

p := k − |Vv| − 0.5|Ve|.
Note that it always holds that p ≤ k, and when the parameter p < 0, the instance
has no constrained mixed domination of size at most k. During the algorithm, the

308 M. Xiao and Z. Sheng

measure p will never increase and in each subbranch of a branching operation,
the measure p will decrease. Thus, we can get a bounded search tree for the
algorithm.

Next, we give a simple branch-and-search algorithm. Our branching rule is
designed based on the following observation. For each edge vu in the induced
graph G[Vr] and any mixed set D = VD ∪ ED of the graph that dominates the
edge vu, one of the following four cases must hold: v ∈ VD, u ∈ VD, v ∈ V (ED)
and u ∈ V (ED). So for each edge vu in G[Vr], we branch into four branches by
including v to Vv, including u to Vv, including v to Ve, or including u to Ve. Note
that the parameter p decreases by 1, 1, 0.5 and 0.5 in the four subbranches,
respectively. This branching operation leads to a recurrence with a branching
vector

[1, 1, 0.5, 0.5],

the corresponding branching factor is 7.465. The algorithm can iteratively apply
the above branching operation until p ≤ 0 or the induced graph G[Vr] has no
edge. For the latter case, the instance can be solved in polynomial time (we
will show this in Theorem 2 later). The size of the search tree representing the
branching process of the algorithm is O(7.465p), where p ≤ k. So this algorithm
runs in O∗(7.465k) time, which has the same running time as that of the previous
algorithm in [7].

The above algorithm is simple. We refine the algorithm by using more careful
analysis and branching rules.

4 A Polynomial-Time Solvable Case

In the above simple algorithm, we need to use a property that the instance can
be solved in polynomial time when the induced graph G[Vr] has no edge, where
Vr = V \ (Vv ∪ Ve). In this section, we will prove a stronger result that the
instance is polynomially solvable when then induced graph G[Vr] has a degree
at most 1. To prove this result, we first give some structural properties of this
problem.

Lemma 1 (�). Let (G = (V,E), Vv, Ve, k) be a Constrained Mixed Domi-
nation instance and v be an undominated degree-0 vertex in G[Vr].

(i) If v is of degree 0 in G, then instance(G,Vv, Ve, k) is a yes-instance if and
only if I ′ = (G,Vv ∪ {v}, Ve, k) is a yes-instance;

(ii) If v is of degree at least 1 in G, than instance (G = (V,E), Vv, Ve, k) is a
yes-instance if and only if I ′ = (G,Vv, Ve ∪ {v}, k) is a yes-instance.

The proofs of lemmas marked with (�) can be found in the full version.
Recall that an edge component is a connected component of one edge. The

following lemma shows that we can deal with edge components in G[Vr] by
moving (part of) them to Ve.

Lemma 2 (�). Let I = (G = (V,E), Vv, Ve, k) be a Constrained Mixed
Domination instance and vu be an edge component in G[Vr].

Improved Parameterized Algorithms for Mixed Domination 309

(i) If both of v and u are undominated, then I = (G,Vv, Ve, k) is a yes-instance
if and only if I ′ = (G,Vv, Ve ∪ {v, u}, k) is a yes-instance;

(ii) If exactly one of v and u, say v is undominated, then I = (G,Vv, Ve, k) is
a yes-instance if and only if I ′ = (G,Vv, Ve ∪ {v}, k) is a yes-instance;

(iii) If both of v and u are dominated, then I = (G,Vv, Ve, k) is a yes-instance if
and only if I ′ = (G∗, Vv, Ve∪{v∗}, k) is a yes-instance, where G∗ is obtained
from G by contracting edge vu into a new vertex v∗.

Lemma 3 (�). For a Constrained Mixed Domination instance (G =
(V,E), Vv, Ve, k), if any vertex in Vr is dominated and Vr is an independent
set in G[Vr], then it can be solved in polynomial time.

Based on the above lemmas, we get the following result.

Theorem 2. Given a Constrained Mixed Domination instance (G =
(V,E), Vv, Ve, k) with Vr = V \ (Vv ∪ Ve). If the induced graph G[Vr] has degree
at most 1, then the problem can be solved in polynomial time.

5 Some Branching Rules

Our algorithm is a branch-and-search algorithm. The branching operations will
play an important role in the algorithm and the running time analysis. Before
introducing our algorithm, we first introduce some general branching rules, which
are based on the structures of the graph and will be used in several steps of the
algorithm.

The simplest branching rule in our algorithm is that

Branching Rule (B1): Branch on a vertex v ∈ Vr to generate 2dr(v) + 2
sub instances by either (i) including v to Vv or (ii) including v to Ve or (iii)
including V ′ to Vv and including Nr(v) \ V ′ to Ve for all subsets V ′ ⊆ Nr(v).

This branching rule will not lose an optimal solution. We can observe this
based on the following observation. For any domination set D = VD ∪ ED, if
v �∈ VD ∪ V (ED), then any neighbor of v must be in one of VD and V (ED).

The branching factor of (B1) is related to the degree of the vertex v. The
branching factor of (B1) is 7.465 when dr(v) = 1, while the branching factor of
(B1) is 5.367 when dr(v) = 2. The branching factor of (B1) will decrease when the
value of dr(v) increases. By Theorem 2, we only need to deal with vertices with a
degree at least 2 in G[Vr] with branching operation (B1) and solve the remaining
instance in polynomial time. Thus, we can solve the problem in O∗(5.367k) time.
This is already an improvement over the previous result of O∗(7.465k) [7]. We
are not satisfied with this result. In order to get further improvements, we will
use more branching rules.

The next two branching rules are designed to deal with special cases of (B1),
where we can ignore one subbranch to increase the running time bound. We have
the following lemma.

310 M. Xiao and Z. Sheng

Lemma 4. Given a Constrained Mixed Domination instance (G =
(V,E), Vv, Ve, k) and an undominated vertex v ∈ Vr. There is a minimum mixed
domination D = VD ∪ ED such that if v �∈ VD ∪ V (ED) then

Nr(v) ⊆ VD ∪ V (ED) and Nr(v) ∩ VD �= ∅.

Note that if we remove the condition “Nr(v) ∩ VD �= ∅” from the above
lemma, then the lemma clearly holds by the above observation for (B1). We can
add this new condition in this lemma because v is an undominated vertex and
v must be dominated in any mixed domination. Based on Lemma 4, we get the
following branching rule.

Branching Rule (B2): Branch on an undominated vertex v ∈ Vr to gener-
ate 2dr(v) + 1 sub instances by either (i) including v to Vv or (ii) including v to
Ve or (iii) including V ′ to Vv and including Nr(v) \ V ′ to Ve for all nonempty
subsets V ′ ⊆ Nr(v).

We consider undominated degree-1 vertices.

Lemma 5 (�). Given a Constrained Mixed Domination instance (G =
(V,E), Vv, Ve, k) and an undominated vertex v ∈ Vr with dr(v) = 1. There is a
minimum mixed domination D = VD ∪ ED such that either

v ∈ V (ED) or u ∈ VD,

where u is the unique neighbor of v.

Based on Lemma 5, we have a branching rule below

Branching Rule (B3): Branch on an undominated degree-1 vertex v ∈ Vr

to generate 2 sub instances by either (i) including v to Ve or (ii) including u to
Vv, where u is the unique neighbor of v.

Lemma 6 (�). Given a Constrained Mixed Domination instance (G =
(V,E), Vv, Ve, k). Assume that v ∈ Vr is a vertex with at least dr(v)−1 dominated
neighbors in Nr(v). There is a minimum mixed domination D = VD ∪ ED such
that either v ∈ V (ED) or Nr(v) ⊆ VD ∪ V (ED).

Instead of using Lemma 6 directly to get a branching rule, our algorithm will
use the following branching rule obtained by combining Lemma 6 and Lemma 4.

Branching Rule (B4): Let v ∈ Vr be an undominated vertex with at least
dr(v)−1 dominated neighbors in Nr(v). Branch on v ∈ Vr to generate 2dr(v) sub
instances by either (i) including v to Ve or (ii) including V ′ to Vv and including
Nr(v) \ V ′ to Ve for all nonempty subsets V ′ ⊆ Nr(v).

The fifth branching rule is to deal with the graph G[Vr] where all vertices
are dominated vertices.

Lemma 7 (�). Given a Constrained Mixed Domination instance (G =
(V,E), Vv, Ve, k). If the graph G[Vr] has no undominated vertex, then there is a
minimum mixed domination D = VD ∪ ED such that VD ∩ Vr = ∅.

Improved Parameterized Algorithms for Mixed Domination 311

Branching Rule (B5): If G[Vr] has no undominated vertex, we branch on an
vertex v ∈ Vr to generate two sub instances by either (i) including v to Ve or
(ii) including Nr(v) to Ve.

6 A Refined Parameterized Algorithm

Now we describe the whole parameterized algorithm, which is denoted by
mds(G,Vv, Ve, k). The algorithm contains serval reduction rules and branching
rules. The main idea of our algorithm is to deal the vertices in Vr by moving
them to either Vv or Ve. The algorithm will first deal with vertices of degree at
least 5, then deal with undominated vertices of degree 1, 2, 3 and 4, and last
deal with the graph having no undominated vertices. Below, when we introduce
a step of the algorithm, we assume that all previous steps can not be applied to
the current instance anymore.

Step 3. If p < 0, return “no”.

Step 4. If G[Vr] has maximum degree at most 1, then apply the polynomial-
time algorithm in Theorem 2 to find a minimum solution D, and return “no” if
|D| > k and return “yes” otherwise.

Step 5 (Vertices of Degree ≥ 5). If there is a vertex v with dr(v) ≥ 5 in
G[Vr], we branch on v with Branching Rule (B1) by returning one of the follows
with the maximum value

mds(G,Vv ∪ {v}, Ve, k), mds(G,Vv, Ve ∪ {v}, k) and

mds(G,Vv ∪ V ′, Ve ∪ (Nr(v) \ V ′), k) for all V ′ ⊆ Nr(v).

We will get a recurrence relation

T (p) ≤ T (p − 1) + T (p − 0.5) +
d∑

i=0

(
d

i

)

T (p − i

2
− (d − i)),

where d = dr(v) ≥ 5. The branching factor of the above recurrence relation
will decrease when the value of d increases. For the worst case that d = 5, the
branching factor is 3.962.

Next, we assume that the maximum degree of G[Vr] is at most 4.

Step 6 (Undominated Vertices of Degree 3 or 4). If there is an undomi-
nated vertex v with dr(v) = {3, 4} in G[Vr], we branch on v with Branching Rule
(B2) by returning one of the follows with the maximum value

mds(G,Vv ∪ {v}, Ve, k), mds(G,Vv, Ve ∪ {v}, k) and

mds(G,Vv ∪ V ′, Ve ∪ (Nr(v) \ V ′), k) for all ∅ �= V ′ ⊆ Nr(v).

312 M. Xiao and Z. Sheng

We analyze the branching factor according to the degree of V . When dr(v) =
3, the recurrence relation is

T (p) ≤ T (p − 1) + T (p − 0.5) + 3T (p − 2) + 3T (p − 2.5) + T (p − 3),

and the branching factor is 4.172.
When dr(v) = 4, the recurrence relation is

T (p) ≤ T (p − 1) + T (p − 0.5) + 4T (p − 2.5) + 6T (p − 3) + 4T (p − 3.5) + T (p − 4),

and the branching factor is 4.013.

Step 7 (Undominated Vertices of Degree 1). If there is an undominated
vertex v with dr(v) = 1 in G[Vr], where u is the unique neighbor of v, we branch
on v with Branching Rule (B3) by returning one of the follows with the maximum
value

mds(G,Vv, Ve ∪ {v}, k) and mds(G,Vv ∪ {u}, Ve, k).

We get a recurrence relation

T (p) ≤ T (p − 0.5) + T (p − 1),

the branching factor of which is 2.619.
After this step, in the graph G[Vr] all undominated vertices must be degree-2

vertices.

Step 8 (Undominated Vertices of Degree 2 With At Most One
Undominated Neighbor). If there is an undominated vertex v ∈ Vr with
dr(v) = 2 and at most one undominated neighbor, we branch on v with Branch-
ing Rule (B4) by returning one of the follows with the maximum value

mds(G,Vv, Ve ∪ {v}, k) and

mds(G,Vv ∪ V ′, Ve ∪ (Nr(v) \ V ′), k) for all ∅ �= V ′ ⊆ Nr(v).

We get
T (p) ≤ T (p − 0.5) + 2T (p − 1.5) + T (p − 2),

the branching factor of which is 3.220.

Step 9 (Undominated Vertices of Degree 2 With Two Undominated
Neighbors). If there is an undominated vertex v ∈ Vr with dr(v) = 2, where the
two neighbors u1 and u2 are also undominated, we branch on u1 with Branching
Rule (B2), and in the sub branch where u1 is included to Ve, we get an undomi-
nated degree-1 vertex v and further branch on v with Branching Rule (B3). We
will return one of the follows with the maximum value

mds(G,Vv ∪ {u1}, Ve, k), mds(G, Vv , Ve ∪ {u1, v}, k), mds(G, Vv ∪ {u2}, Ve ∪ {u1}, k),

and mds(G, Vv ∪ V ′, Ve ∪ (Nr(u1) \ V ′), k) for all ∅ �= V ′ ⊆ Nr(u1).

Improved Parameterized Algorithms for Mixed Domination 313

Note that u1 is an undominated vertex and now it must hold that dr(u1) = 2.
Therefore, we have the following recurrence relation

T (p) ≤ T (p − 0.5 − 0.5) + T (p − 0.5 − 1) + T (p − 1) + 2T (p − 1.5) + T (p − 2),

the branching factor of which is 3.802.
After Step 9, the induced graph G[Vr] has no undominated vertex.

Step 10 (Graph G[Vr] Containing Only Dominated Vertices). Pick a
vertex v of maximum degree in G[Vr] and branch on v with Branching Rule
(B5). We will return one of the follows with the maximum value

mds(G,Vv, Ve ∪ {v}, k) and mds(G,Vv, Ve ∪ {Nr(v)}, k).

This step will lead to recurrence relation

T (p) ≤ T (p − 0.5) + T (p − 0.5dr(v)),

where dr(v) ≥ 2, because Step 2 cannot be applied now. For worst case dr(v) = 2,
the branching factor of the recurrence is 2.619.

Among all the branching factors in the algorithm, the largest one is 4.172.
So the algorithm runs in O∗(4.172p) time, where p ≤ k.

Theorem 11. Mixed Domination and Constrained Mixed Domination
can be solved in O∗(4.172k) time.

7 Kernels in Planar Graphs

In this section, we consider kernelization of our problems. In terms of kernel-
ization, Mixed Domination and Constrained Mixed Domination may be
different. We need to reduce an instance of a problem to an instance of the same
problem. For an instance of Mixed Domination, we can not claim a kernel by
reducing it to an instance of Constrained Mixed Domination. It is already
known that Mixed Domination with the solution size k being the parameter
does not allow polynomial kernels unless coNP ⊆ NP/poly [7]. We will show
that when the graph is restricted to planar graphs, Mixed Domination allows
a kernel of at most 11k vertices.

For planar graphs, we will use the following important property to bound
the size of the graph, which can be derived from the famous Euler’s formula for
planar graphs.

Proposition 12. For a single planar graph G = (V,E), it always holds that

|E| ≤ 3|V | − 6 (1)

and, for a single bipartite planar graph G′ = (V ′, E′), it always holds that

|E′| ≤ 2|V ′| − 4. (2)

314 M. Xiao and Z. Sheng

7.1 Planar Mixed Domination

The kernelization algorithm for Mixed Domination in planar graphs contains
three reduction rules to reduce degree-1 and degree-2 vertices and one reduction
rule to reduce the whole size.

Reduction Rule 1: (Degree-1 Vertices) If there are more than two degree-1
vertices sharing a common neighbor, delete one of the degree-1 vertices from the
graph.

Reduction Rule 2: (Degree-2 Vertices Between Two Vertices) If there
are more than three degree-2 vertices sharing two common neighbors, delete one
of the degree-2 vertices from the graph.

Reduction Rule 3: (Degree-2 Vertices Between A Vertex and An Edge)
If there are a vertex v and an edge uw such that v and u have at least one common
degree-2 neighbor, v and w have at least two common degree-2 neighbors, delete
one degree-2 vertex adjacent to v and w from the graph.

The proofs of the correctness of the three reduction rules can be found in the
full version.

Reduction Rule 4: (Size Bound) If the graph has more than 11k − 16
vertices, return ‘⊥’ to indicate the instance is a ‘no’-instance; else return the
current graph.

Note that we only apply Reduction Rule 4 when none of the first three
reduction rules can be applied anymore. The correctness of Reduction Rule 4 is
based on the following lemma.

Lemma 8 (�). For a planar graph G having a mixed domination of size at most
k, if none of the conditions in the first three reduction rules holds, then G has
at most 11k − 16 vertices.

Our algorithm is to iteratively apply the first three reduction rules unless
none of them can be applied anymore and then apply the last reduction rule.
Since each application of the first three reduction rules will delete one vertex from
the graph, we know that the algorithm will run at most n times of these reduction
operations, each of them can be executed in linear time. So the algorithm will
stop in O(n2) time. Reduction Rule 4 guarantees a bound of 11k − 16 on the
number of vertices.

Theorem 13. Mixed Domination in planar graphs allows a linear kernel of
11k − 16 vertices.

8 Conclusion

In this paper, we study Mixed Domination and Constrained Mixed Dom-
ination from the viewpoint of parameterized algorithms with the parameter k
being the solution size. By developing deep structural properties, we show that
Mixed Domination and Constrained Mixed Domination can be solved

Improved Parameterized Algorithms for Mixed Domination 315

in O∗(4.172k) time, improving the previous result of O∗(7.465k). Furthermore,
we show that Mixed Domination in planar graphs allows a linear kernel of at
most 11k − 16 vertices.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China, under grants 61772115 and 61370071.

References

1. Alavi, Y., Behzad, M., Lesniak-Foster, L.M., Nordhaus, E.: Total matchings and
total coverings of graphs. J. Graph Theory 1(2), 135–140 (1977)

2. Fernau, H.: edge dominating set: efficient enumeration-based exact algorithms.
In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp.
142–153. Springer, Heidelberg (2006). https://doi.org/10.1007/11847250 13

3. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16533-7

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

5. Hatami, P.: An approximation algorithm for the total covering problem. Discus-
siones Mathematicae Graph Theory 27(3), 553–558 (2007)

6. Hedetniemi, S.M., Hedetniemi, S.T., Laskar, R., McRae, A., Majumdar, A.: Dom-
ination, independence and irredundance in total graphs: a brief survey. In: Graph
Theory, Combinatorics and Applications: Proceedings of the 7th Quadrennial
International Conference on the Theory and Applications of Graphs, vol. 2, pp.
671–683. Wiley, New York (1995)

7. Jain, P., Jayakrishnan, M., Panolan, F., Sahu, A.: Mixed Dominating Set: a
parameterized perspective. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017.
LNCS, vol. 10520, pp. 330–343. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68705-6 25

8. Lan, J.K., Chang, G.J.: On the mixed domination problem in graphs. Theoret.
Comput. Sci. 476, 84–93 (2013)

9. Manlove, D.F.: On the algorithmic complexity of twelve covering and independence
parameters of graphs. Discrete Appl. Math. 91(1–3), 155–175 (1999)

10. Rajaati, M., Hooshmandasl, M.R., Dinneen, M.J., Shakiba, A.: On fixed-parameter
tractability of the mixed domination problem for graphs with bounded tree-width.
Discrete Math. Theoret. Comput. Sci. 20(2), 1–25 (2018)

11. Xiao, M.: Upper and lower bounds on approximating weighted mixed domination.
In: COCOON 2019 (2019, to appear)

12. Xiao, M., Kloks, T., Poon, S.H.: New parameterized algorithms for the edge dom-
inating set problem. Theoret. Comput. Sci. 511, 147–158 (2013)

13. Zhao, Y., Kang, L., Sohn, M.Y.: The algorithmic complexity of mixed domination
in graphs. Theoret. Comput. Sci. 412(22), 2387–2392 (2011)

https://doi.org/10.1007/11847250_13
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/978-3-319-68705-6_25
https://doi.org/10.1007/978-3-319-68705-6_25

New Results on the Zero-Visibility Cops
and Robber Game

Yuan Xue(B), Boting Yang, and Sandra Zilles

Department of Computer Science, University of Regina, Regina, Canada
{xue228,boting,zilles}@cs.uregina.ca

Abstract. We study the zero-visibility cops and robber game, a variant
of the cops and robber game in which the robber is invisible. We give
a method for proving lower bounds on the zero-visibility cop number.
Using this method, we investigate graph joins, lexicographic products of
graphs, complete multipartite graphs and split graphs. Lower bounds and
upper bounds, along with rigorous proofs, are given for the zero-visibility
cop number of each of these types of graphs.

1 Introduction

Pursuit evasion games on graphs typically model situations in which a set of
searchers is trying to capture a fugitive moving in a given graph. An example
of such a game is the cops and robber game [12,14], in which a robber and cops
are located in vertices of the given graph and can move along the edges of the
graph. The zero-visibility cops and robber game was introduced by Tošić [16].
As a variant of the classic cops and robber game, the only difference in the game
setting is that the cops have “zero” information about the robber throughout the
game, i.e., the robber is invisible to the cops. As a consequence of limiting the
information presented to the cops, more cops are needed to ensure the capture
of the robber. Already for trees, the zero-visibility cop number can exceed the
cop number in the classic cops and robber game, and in general the difference
between these two parameters can be arbitrarily large.

The cops and robber game has been widely studied. Nowakowski and Winkler
[12] and Quilliot [14] introduced the game and they gave a characterization of
those graphs for which a single cop is sufficient for capturing the robber. Aigner
and Fromme [1] introduced the cop number, which is the smallest number of
cops required for capturing the robber on a graph. More results on the cops and
robber game can be found in [2–5,8,10,11,13].

However, there are not many results on the zero-visibility cops and rob-
ber game. Tošić [16] characterized the graphs for which one cop is sufficient.
Jeliazkova [9] gave several constructions of the graphs on which two cops are
sufficient in the game. Dereniowski et al. [7] proved that the zero-visibility cop
number of a graph is bounded above by its pathwidth. They also defined a mono-
tonic version of the zero-visibility cops and robber model, and proved an upper
bound and a lower bound on the monotonic zero-visibility cop number. Tang
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 316–328, 2019.
https://doi.org/10.1007/978-3-030-27195-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_29&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_29

New Results on the Zero-Visibility Cops and Robber Game 317

[15] gave a quadratic time algorithm for computing the zero-visibility cop num-
ber of a tree, which was later improved by Dereniowski et al. [6] by presenting a
linear-time algorithm. Dereniowski et al. also considered the computational com-
plexity of the zero-visibility cops and robber game, and proved that the problem
of determining the zero-visibility cop number of a graph is NP-complete.

In this paper, we concentrate on the zero-visibility cops and robber game. By
establishing specific conditions on strategies, we introduce a method for finding
lower bounds on the zero-visibility cop number. Using this method, we consider
the zero-visibility cops and robber game on the graph join of two arbitrary
graphs. Then we investigate a few extensions and special cases of graph joins
including lexicographic products of graphs, complete multipartite graphs and
split graphs. Lower bounds and upper bounds, along with rigorous proofs, are
given for the zero-visibility cop number of each of the types of graphs mentioned
above.

2 Preliminaries

Let G = (V,E) denote a graph with vertex set V and edge set E. We also use
V (G) and E(G) to refer to V and E, respectively. For a subset V ′ ⊆ V , we use
G[V ′] to denote the subgraph induced by V ′, which consists of all vertices of
V ′ and all the edges of G between vertices in V ′. We use G − V ′ to denote the
induced subgraph G[V \ V ′]. Let pw(G) denote the pathwidth of a graph G.

A matching in G is a set of edges of G that share no common vertices. A
perfect matching in G is a matching that includes all vertices of G. A maximum
matching in G is a matching in G which contains the largest possible number
of edges among all the matchings in G. We use M(G) to denote a maximum
matching in G. The number of vertices of G that are not matched by edges
in M(G) is equal to |V (G) \ V (M(G))|. Thus, |V (G)| = 2|M(G)| + |V (G) \
V (M(G))|. Let μ(G) = |M(G)| + |V (G) \ V (M(G))| = |V (G)| − |M(G)|.

We now give a formal definition of the zero-visibility cops and robber game.
There are two players involved in the game on graph G: the cop player and the
robber player. The cop player controls a set of cop pieces while the robber player
controls a single robber piece. The game is played in a sequence of rounds. At
each round i, where i ≥ 0, the cop player plays first, followed by the robber
player. At round 0, both players place their pieces on some vertices of G. More
than one piece may occupy the same vertex. All the cop pieces are visible to
the robber player, while the robber piece is invisible to the cop player. In the
following rounds, each cop piece either moves from the vertex currently occupied
to one of its neighbors or stays still, then the robber piece does the same. The
cops win if a cop piece and the robber piece occupy the same vertex after a
finite number of rounds. The robber wins if such situation never happens. A
cop strategy is a sequence of actions for the cop player; a cop-win strategy is a
cop strategy that leads the cop player to win irrespective of the robber player’s
sequence of actions. The cop number of G, denoted by c0(G), is the minimum
number of cops required in a cop-win strategy for G. A cop-win strategy for G

318 Y. Xue et al.

is optimal if it uses c0(G) cops to capture the robber on G. We say a cop visits
a vertex v ∈ V at round i, if the cop occupies v at the beginning or at the end
of round i. We call a vertex contaminated if it may contain the robber, and we
call a vertex cleared if the cop player can be certain that it does not contain
the robber. We refer to any step that turns an unoccupied cleared vertex into
a contaminated vertex as recontamination. For simplicity, we use the cops to
denote the cop pieces and the robber to denote the robber piece.

Note that, for space constraints, several proofs of formal results in this paper
are omitted.

3 Lower Bounds

Let u and v be two vertices of G. We use dG(u, v) to denote the distance between
u and v, which is the number of edges in a shortest path connecting u and v
on G. Let H be a subgraph of G. We say H is an isometric subgraph of G if
dH(u, v) = dG(u, v), for any two vertices u, v ∈ V (H). Lemma 1 appears in [15].

Lemma 1. If H is an isometric subgraph of G, then c0(H) ≤ c0(G).

Corollary 1. If G contains a clique with m vertices, then c0(G) ≥ ⌈
m
2

⌉
.

Lemma 2. In the zero-visibility cops and robber game on G, for any cop strat-
egy, the number of cops that can visit all vertices of G within a single round of
the game is at least μ(G).

Proof. Consider a round of the game on G in which all vertices in V (G) are
visited by cops. Let m1 be the number of cops that visit two vertices of G and
let m2 be the number of cops that visit exactly one vertex of G. It is easy
to see that |V (G)| = 2m1 + m2. Since M(G) is a maximum matching in G,
hence, m1 ≤ |M(G)|. Note that μ(G) = |V (G)| − |M(G)|. Hence, we have
μ(G) ≤ |V (G)| − m1 = (2m1 + m2) − m1 = m1 + m2. ��

In the following, we establish specific conditions on strategies, and show that
these conditions must be met in every round of a strategy when insufficient cops
are used for capturing the robber. This method is later used for finding lower
bounds on the cop number of several types of graphs.

Definition 1. For a strategy S of a graph G, let PG,S(i) be a propositional
function such that at the end of round i, every cleared vertex is occupied by at
least one cop and the number of cleared vertices is less than |V (G)|. When G
and S are clear from the context, we drop the subscript and simply use P(i).

The following proposition is straightforward.

Proposition 1. For a cop-win strategy for G, there must exist a round satisfying
that:

1. all vertices of G are occupied by cops after the cop’s turn, or
2. at least one unoccupied vertex of G is cleared after the robber’s turn.

New Results on the Zero-Visibility Cops and Robber Game 319

3.1 Graph Joins

Let G and H be two graphs. The graph join, denoted as G + H, is the graph
whose vertex set is V (G)∪V (H), and two vertices u and v are adjacent in G+H
if and only if uv ∈ E(G), or uv ∈ E(H), or u ∈ V (G) and v ∈ V (H).

Theorem 1. c0(G + H) ≥ min{μ(G), μ(H)}.
Proof. Suppose that μ(G) ≤ μ(H). We will use Definition 1 to show that μ(G)−1
cops are insufficient for clearing G+H. Assume that c0(G+H) < μ(G). Consider
a strategy for G + H that uses at most μ(G) − 1 cops. We will show that at the
end of each round, only occupied vertices are cleared.

At round 0, since cops are placed on vertices in V (G + H), we know cleared
vertices are those occupied ones. Hence, P(0) holds. Suppose that P(i) holds
for some i ≥ 0. From Lemma 2, we know that μ(G) cops are insufficient for
visiting all the vertices in V (G), not to speak of all vertices in V (H). It is very
easy to see that both G and H contain contaminated vertices when the cop’s
turn is finished at round i + 1. Hence, all unoccupied cleared vertices will get
recontaminated during the robber’s turn at round i+1. We know P(i+1) holds.
Thus, from Proposition 1, we have c0(G + H) ≥ μ(G). ��

The lower bound in Theorem 1 is tight. For example, if G and H are both
independent vertex sets, then G + H is a complete bipartite graph. It is easy to
see that c0(G + H) = min{|V (G)|, |V (H)|}. Since μ(G) = |V (G)| and μ(H) =
|V (H)|, we have c0(G + H) = min{μ(G), μ(H)}.

Let Kn denote a complete graph of n vertices, and let Kn denote an inde-
pendent vertex set of n vertices.

Corollary 2. If |V (G)| ≤ n, then c0(G + Kn) ≥ μ(G).

Theorem 2. Let G and H be two graphs such that 2 ≤ |V (G)| ≤ |V (H)|. If G
has a perfect matching, then c0(G + H) ≥ μ(G) + 1.

Proof. Since G has a perfect matching, we have μ(G) = |V (G)|
2 . We will use

Definition 1 to show that μ(G) cops are insufficient. Suppose that μ(G) cops can
clear G + H. At the end of round 0, it is easy to see that the cleared vertices
are those occupied ones. Hence, P(0) holds. Suppose that P(i) holds for some
i ≥ 0. Obviously, there are at most 2μ(G) = |V (G)| cleared vertices after the
cops’ turn in round i + 1. Consider the beginning moment of round i + 1.

Case 1. All cleared vertices are contained either in V (G) or in V (H). Without
loss of generality, assume that all cops stay on G at the beginning moment of
round i + 1.

Case 1.1. If all cops are still on G at the end of round i + 1, then all vertices
in V (H) must be contaminated throughout round i + 1. Hence, all unoccupied
vertices in V (G) must be contaminated at the end of round i+1. Thus, P(i+1)
holds.

Case 1.2. If there is any cop sliding from G to H in round i + 1, then both
G and H must contain a vertex that remains contaminated throughout round

320 Y. Xue et al.

i + 1. Hence, all unoccupied vertices in V (G) and V (H) must be contaminated
at the end of round i + 1. Thus, P(i + 1) holds.

Case 2. Both G and H contain cleared vertices. It is easy to see that both
G and H contain a vertex that remains contaminated throughout round i + 1.
Hence, all cleared vertices at the end of round i+1 are those occupied ones. We
know P(i + 1) also holds.

Therefore, all cleared vertices in V (G+H) at the end of each round are those
occupied ones. From Proposition 1, we know that μ(G) cops are insufficient for
clearing G + H. This completes the proof. ��

Cone graph is the graph join of a cycle Cm and an independent vertex set Kn,
where m ≥ 3 and n ≥ 1. Let V (Cm) = {u1, . . . , um} and V (Kn) = {v1, . . . , vn}.

Theorem 3. If n ≤ 2, then c0(Cm + Kn) ≥ min{⌈
m+1
2

⌉
, n + 1}. If n ≥ 3, then

c0(Cm + Kn) ≥ min{⌈
m+1
2

⌉
, n}.

Proof. If n = 1 or n = 2 and m = 3, then min{⌈
m+1
2

⌉
, n+1} = 2. Since Cm+Kn

contains a cycle of length 3, it follows from Lemma 1 that c0(Cm + Kn) ≥ 2.
If n = 2 and m ≥ 4, then min{⌈

m+1
2

⌉
, n + 1} = 3. We will use Definition 1

to show that 2 cops are insufficient for clearing Cm + Kn. Assume that c0(Cm +
K2) ≤ 2. Consider a strategy for Cm + K2 that uses at most 2 cops. Note that
c0(Cm + K2) ≤ 2 < m+2

2 . Obviously, P(0) holds. Suppose that P(i) holds for
some i ≥ 0. Note that there are at most 2 cleared vertices at the beginning of
round i+1. After the cops’ turn at round i+1, we know there are at most 4 cleared
vertices. It is easy to see that all those cleared vertices must have a contaminated
neighbor. Thus, after the robber’s turn at round i + 1, all unoccupied cleared
vertices become recontaminated. Hence, P(i+1) also holds. From Proposition 1,
we know that 2 cops are insufficient for clearing Cm + K2. Therefore, c0(Cm +
K2) ≥ 3.

If n ≥ 3, it follows from Theorem 1 that c0(Cm + Kn) ≥ min{⌈
m+1
2

⌉
, n}. ��

Theorem 4. For the graph join of Cm and Cn, where m ≤ n, if m is odd, then
c0(Cm + Cn) ≥ m+1

2 + 1; if m is even, then c0(Cm + Cn) ≥ m
2 + 2.

Proof. We first consider the case when m is odd. We will use Definition 1 to show
that m+1

2 cops are insufficient for clearing Cm+Cn. Assume that c0(Cm+Cn) ≤
m+1
2 . Consider a strategy for Cm + Cn that uses at most m+1

2 cops. Note that
c0(Cm + Cn) ≤ m+1

2 < m+n
2 . So P(0) holds. Suppose that P(i) holds for some

i ≥ 0. Consider the moment when the cops’ turn is finished at round i + 1.
It is easy to see that all cleared vertices have a contaminated neighbor. After
the robber’s turn at round i + 1, all unoccupied cleared vertices will become
recontaminated. Thus, P(i+1) also holds. Hence, c0(Cm +Cn) ≥ m+1

2 +1 when
m is odd.

Similarly, we can prove that c0(Cm + Cn) ≥ m
2 + 2 when m is even. This

completes the proof. ��

New Results on the Zero-Visibility Cops and Robber Game 321

3.2 Lexicographic Products of Graphs

Let G and H be two connected graphs. The lexicographic product of G and
H, denoted as G · H, is the graph whose vertex set is the cartesian product
V (G) × V (H), and two vertices (a, a′) and (b, b′) are adjacent in G · H if and
only if either ab ∈ E(G) or a = b and a′b′ ∈ E(H). Note that the lexicographic
products are not commutative.

Lemma 3. Let Pm be a path with m vertices. For m ≥ 4, c0(Pm · G) ≥ |V (G)|.
Proof. For convenience, we use G1, G2, . . . , Gm to denote the m copies of G in
Pm · G. Assume that c0(Pm · G) < |V (G)|. Consider a strategy for Pm · G that
uses at most |V (G)| − 1 cops. Let i be the index of the round satisfying the
following two conditions: (i) when the cops’ turn is finished at round i, there are
at most two copies of G that are free of the robber; (ii) when the cops’ turn is
finished at round i + 1, there are at least three copies of G that are free of the
robber.

Consider the moment when the cops’ turn is done at round i. If there is only
one copy of G that is free of the robber, say Gk, then we know each vertex in
Pm ·G must be adjacent to at least one contaminated vertex. Hence, at the end of
round i, all unoccupied vertices are contaminated. Note that c0(G) ≤ |V (G)|−1.
We know there are at most 2|V (G)| − 2 cleared vertices after the cop’s turn at
round i + 1. Since 2|V (G)| − 2 < 3|V (G)|, there do not exist three copies of G
that are free of the robber after the cop’s turn at round i + 1. This contradicts
condition (ii). If there are exactly two copies of G that are free of the robber,
then there are two cases:

Case 1. The two copies of G are not consecutive. Obviously, each vertex in
V (Pm · G) must be adjacent to at least one contaminated vertex. Hence, only
occupied vertices are cleared at the end of round i. Thus, the total number
of cleared vertices when the cops’ turn is finished at round i + 1 is at most
2|V (G)| − 2. This contradicts condition (ii).

Case 2. The two copies of G are consecutive. Let Gk and Gk+1, where k ≥ 0,
denote the two consecutive copies of G. There are two subcases.

Case 2.1. k = 1 or k = m − 1. We consider the case when k = 1 in the next,
and the case when k = m − 1 can be proved in a similar way. Note that Gj

contains at least one vertex that is contaminated after the cops’ turn at round
i, for every j in {3, . . . , m}. All unoccupied vertices in V (Pm · G) \ V (G1) are
contaminated at the end of round i. Since there are at most 2|V (G)| − 1 cleared
vertices at the end of round i, we know the total number of cleared vertices in
Pm ·G is at most 3|V (G)|−2 < 3|V (G)| when the cop’s turn is finished at round
i + 1. This contradicts condition (ii).

Case 2.2. 2 ≤ k ≤ m − 2. It is easy to see that each vertex in V (Pm · G) is
adjacent to at least one contaminated vertex. Hence, all unoccupied vertices are
contaminated at the end of round i. Further, the total number of cleared vertices
when the cop’s turn is finished at round i + 1 is at most 2|V (G)| − 2 and this
contradicts condition (ii).

322 Y. Xue et al.

Hence, round i does not exist and this contradicts that |V (G)| − 1 cops are
sufficient for clearing Pm · G. This completes the proof. ��

Consider P2 · G. If G is a cycle of n vertices where n is even, then we can
clear P2 · G with at most n

2 + 2 cops. Let G1 and G2 denote the two copies of G
in P2 · G. The following briefly describes a strategy that clears P2 · G utilizing
n
2 + 2 cops: (1) let n

2 cops vibrate on all vertices of G1 such that every vertex of
G1 is visited by a cop in each round; (2) let two additional cops clear all vertices
of G2. Consider P3 · G. If G is a cycle of n vertices where n is even, we can also
clear P3 · G with at most n

2 + 2 cops. Let G1, G2 and G3 denote the three copies
of G in P3 · G. Similar to the above, let n

2 cops vibrate on all vertices of G2,
and let two additional cops clear all vertices of G1 and G2 respectively. Hence,
Lemma 3 is not always held when m = 2 or 3.

Corollary 3. Let Wm be a graph obtained from Pm·G (m ≥ 4) by replacing each
copy of G by an arbitrary graph with |V (G)| vertices. Then c0(Wm) ≥ |V (G)|.
Lemma 4. Let Pm be a path with m vertices. For m ≥ 4, c0(P2 ·Pm) ≥ ⌈

m
2

⌉
+1.

Proof. We will use Definition 1 to show that
⌈
m
2

⌉
cannot clear P2 ·Pm. Without

loss of generality, suppose m is odd. The other case when m is even can be proved
in a similar way. Assume that c0(P2 ·Pm) ≤ ⌈

m
2

⌉
. Consider a strategy that clears

P2 ·Pm using at most
⌈
m
2

⌉
cops. Note that c0(P2 ·Pm) ≤ m+1

2 < 2m. Obviously,
P(0) holds. Suppose that P(i) holds for some i ≥ 0. Consider the moment when
the cops’ turn is finished at round i + 1. Since c0(P2 · Pm) ≤ m+1

2 , there are at
most m + 1 cleared vertices in V (P2 · Pm). Further, if there exists a copy of Pm

that is free of the robber, then the other copy of Pm contains at most one cleared
vertex. Hence, every cleared vertex must be adjacent to a contaminated vertex.
Thus, all unoccupied cleared vertices become recontaminated immediately after
the robber’s turn at round i + 1. Hence, P(i + 1) holds. From Proposition 1,
we know that

⌈
m
2

⌉
cops are insufficient for clearing P2 · Pm. This completes the

proof. ��

3.3 Complete Multipartite Graphs

Let Kn1,...,nk
= (V1, . . . , Vk, E) denote a complete k-partite graph, where n1 ≤

· · · ≤ nk. Clearly, complete multipartite graphs can be defined recursively using
graph join operations. For example, Kn1,...,nk

can also be defined as Kn1,...,nk−1 +
Knk

. Since the problem of determining the cop number of complete bipartite
graphs has been solved, we only consider complete k-partite graphs with k ≥ 3 in
this paper. Let Hj = Kn1,...,nk

−Vj , where 1 ≤ j ≤ k. Let μmin = min{μ(Hj)|1 ≤
j ≤ k}. The next corollary is from Lemma 2.

Corollary 4. For 1 ≤ i ≤ k, the minimum number of cops that can visit all
vertices of Hi in a round is μ(Hi).

From Corollary 4, we know that all vertices of Hx − V (M(Hx)) must be
contained in some vertex set Vi of Kn1,...,nk

, where 1 ≤ i 	= x ≤ k.

New Results on the Zero-Visibility Cops and Robber Game 323

Lemma 5. 1
2

∑k−1
i=1 ni ≤ μmin ≤ 1

2

∑k
i=1 ni, and both upper bound and lower

bound are tight.

Proof. We first consider the lower bound. Note that ni ≤ ni+1 for all 1 ≤ i ≤
k − 1. We have

∑k−1
i=1 ni ≤ ∑k

i=1 ni − nx = |V (Hx)|, where 1 ≤ x ≤ k. Let j
be the index such that μmin = μ(Hj). Hence, it follows from Corollary 4 that
2μmin ≥ |V (Hj)| ≥ ∑k−1

i=1 |Vi|. Further, the equality holds if there is a perfect
matching in Hk.

We now consider the upper bound. Since nk ≥ ni for all 1 ≤ i ≤ k, we know
nk ≥ |V (Hk) \V (M(Hk))|. Hence, 2μ(Hk) = |V (Hk)|+ |V (Hk) \V (M(Hk))| ≤
|V (Hk)|+nk =

∑k
i=1 ni. Therefore, we have μmin ≤ μ(Hk) ≤ 1

2

∑k
i=1 ni. Further,

if |Vk| = 1 and k is even, then μmin = 1
2

∑k
i=1 ni. ��

Lemma 6. c0(Kn1,...,nk
) ≥ μmin.

Proof. We will use Definition 1 to show that μmin−1 cops cannot clear Kn1,...,nk
.

Assume that c0(Kn1,...,nk
) ≤ μmin − 1. Consider a strategy for Kn1,...,nk

that
uses at most μmin − 1 cops. From Lemma 5, we have c0(Kn1,...,nk

) < 1
2

∑k
i=1 ni.

It is easy to see that P(0) holds. Suppose that P(i) holds for some i ≥ 0.
Consider round i + 1. Since c0(Kn1,...,nk

) < μmin, it follows from Lemma 2 that
μmin − 1 cops are insufficient for visiting all vertices of any k − 1 vertex sets
of Kn1,...,nk

within one round. Hence, there must exist two vertex sets Vp and
Vq, where 1 ≤ p 	= q ≤ k, such that both of which contain vertices that remain
contaminated throughout round i + 1. In the robber’s turn at round i + 1, all
unoccupied cleared vertices thus become recontaminated. Hence, P(i+1) holds.
From Proposition 1, we know that μmin − 1 cops are insufficient for clearing
Kn1,...,nk

. Hence, c0(Kn1,...,nk
) ≥ μmin. ��

Lemma 7. If there is a perfect matching in Hk, then c0(Kn1,...,nk
) ≥

1
2

∑k−1
i=1 ni + 1.

Proof. Since there is a perfect matching in Hk, then |V (Hk)| is even and
μ(Hk) = 1

2

∑k−1
i=1 ni. From Lemma 5, we know μ(Hk) = 1

2

∑k−1
i=1 ni = μmin.

From Lemma 6, we have c0(Kn1,...,nk
) ≥ μmin = 1

2

∑k−1
i=1 ni.

We will use Definition 1 to show that 1
2

∑k−1
i=1 ni cops cannot clear Kn1,...,nk

.
Assume that c0(Kn1,...,nk

) ≤ 1
2

∑k−1
i=1 ni. Consider a strategy for Kn1,...,nk

that
uses at most 1

2

∑k−1
i=1 ni cops. Note that c0(Kn1,...,nk

) ≤ 1
2

∑k−1
i=1 ni < 1

2

∑k
i=1 ni.

Obviously, P(0) holds. Suppose that P(i) holds for some i ≥ 0. Consider round
i+1. Note that there are at least nk contaminated vertices that remain unoccu-
pied throughout round i + 1. Hence, there exist at least nk vertices that remain
contaminated throughout round i+1. These contaminated vertices must be con-
tained in at least one vertex set of Kn1,...,nk

. Note that nk ≥ ni for 1 ≤ i ≤ k. If
these contaminated vertices are contained in one vertex set, then the vertex set
must contain nk vertices.

Case 1. There exists a vertex set Vp, where np = nk, which contains all the
vertices that remain contaminated throughout round i + 1. Then all cops are on

324 Y. Xue et al.

V (Kn1,...,nk
)\Vp throughout round i+1. It is easy to see that after the robber’s

turn at round i + 1, all unoccupied cleared vertices get recontaminated. Hence,
P(i + 1) holds.

Case 2. There exist two or more vertex sets containing vertices that remain
contaminated throughout round i+1. Then we can also show that all unoccupied
cleared vertices get recontaminated in the robber’s turn at round i + 1. Hence,
P(i + 1) holds.

Note that P(i + 1) holds for both cases. From Proposition 1, we know that
1
2

∑k−1
i=1 ni cops are insufficient. Thus, c0(Kn1,...,nk

) ≥ 1
2

∑k−1
i=1 ni + 1. ��

Lemma 8. |M(Hi)| ≤ |M(Hk)| + nk − ni, where 1 ≤ i ≤ k − 1.

Lemma 9. If there is no perfect matching in Hk, then c0(Kn1,...,nk
) ≥ μ(Hk).

Proof. We first prove that μ(Hk) = μmin. Consider a maximum matching in Hk.
Since there is no perfect matching in Hk, we have μ(Hk) > |M(Hk)|. Note that
μ(Hk) = |M(Hk)| +

∑k−1
i=1 ni − 2|M(Hk)| and μ(Hi) = |M(Hi)| +

∑k
j=1 nj −

ni − 2|M(Hi)|. Then, μ(Hk)−μ(Hi) = |M(Hi)|−nk +ni −|M(Hk)|. It follows
from Lemma 8 that μ(Hk) − μ(Hi) ≤ 0 for all 1 ≤ i ≤ k. Hence, μ(Hk) =
min{μ(Hi)|1 ≤ i ≤ k}. It follows from Lemma 6 that c0(Kn1,...,nk

) ≥ μmin =
μ(Hk). ��

By combining Lemmas 1 and 9, we obtain the next Theorem.

Theorem 5. Let G be a graph such that Kn1,...,nk
is an induced subgraph of G,

where k ≥ 3. We have c0(G) ≥ μ(Hk).

3.4 Split Graphs

A graph is a split graph if its vertex set can be partitioned into a clique and an
independent set. Let Sm,n = (C, I) denote a split graph, where C is a clique of
m vertices and I is an independent vertex set of n vertices.

Theorem 6. Let Sm,n = (C, I) be a split graph with |V (C)| = m and |V (I)| =
n. If m is odd or V (C) has a pair of vertices that share no common neighbor
in V (I), then c0(Sm,n) ≥ ⌈

m
2

⌉
. If m is even and every pair of vertices in V (C)

have a common neighbor in V (I), then c0(Sm,n) ≥ m
2 + 1.

Proof. (i) Since Sm,n has a clique of size m, it follows from Corollary 1 that
c0(Sm,n) ≥ ⌈

m
2

⌉
.

(ii) Assume that c0(Sm,n) ≤ m
2 . Consider a strategy for Sm,n that uses at most m

2
cops. Let P ′(i) be the proposition that there exists a contaminated vertex in
V (C) whose unoccupied neighbors are all contaminated at the end of round
i. We will use induction to show that the proposition holds for one of any
two consecutive rounds.
Base case: P ′(0) obviously holds.
Induction step: Suppose that P ′(i) holds for some i ≥ 0. Consider the begin-

ning moment of round i + 1. There are two cases.

New Results on the Zero-Visibility Cops and Robber Game 325

Case 1. Some cops stay on vertices in V2. Note that c0(Sm,n) ≤ m
2 . Clearly,

there must be a vertex u ∈ V (C) that remains contaminated throughout round
i+1. After the robber’s turn at round i+1, it is easy to see that all unoccupied
neighbors of u become contaminated. Therefore, P ′(i + 1) holds.

Case 2. All cops stay on vertices in V1. Let u ∈ V (C) be a contaminated
vertex whose unoccupied neighbors are all contaminated. If some cop slides to
V (I) at round i+1, similar to Case 1, we can show that P ′(i+1) holds. Assume
that all cops are on vertices in V (C) throughout round i+1. Then all neighbors
of u in V (I) remain contaminated throughout round i+1. Note that every pair of
vertices in V (C) have a common neighbor in V (I). Hence, all unoccupied cleared
vertices in V (C) get recontaminated at the end of round i+1. If u is unoccupied
after the cops’ turn at round i + 1, then P ′(i + 1) holds; if u is occupied by a
cop after the cops’ turn at round i + 1, then we consider the moment when the
cops’ turn is finished at round i + 2.

Case 2.1. All the cops are still on vertices in V (C). If u is unoccupied after the
cops’ turn at round i + 2, then u gets recontaminated in the following robber’s
turn and P ′(i+2) holds. If u is occupied by a cop, then there must exist a vertex
in V (C) which remains contaminated throughout round i + 2. Similar to Case
1, we can show that P ′(i + 2) holds.

Case 2.2. Some cops slide to V (I) at round i + 2. Similar to Case 1, we can
show that P ′(i + 2) holds.

Above all, we have shown that the proposition holds for one of any two
consecutive rounds. This contradicts the assumption that m

2 cops are sufficient
for clearing Sm,n. Therefore, c0(Sm,n) ≥ m

2 + 1. ��

4 Matching Upper Bounds

Using the lower bounds presented in Sect. 3, we now investigate the cop number
of graph joins, lexicographic products of graphs, complete multipartite graphs
and split graphs in the following subsections.

4.1 Graph Joins

Let G and H be two graphs. Recall that G + H is the graph join of G and H.
Let G1, . . . , Gm be the maximal connected components of G and let H1, . . . , Hn

be the maximal connected components of H. Let γ1 = max{max{pw(Hi)|1 ≤
i ≤ n} + 1 − (μ(G) − |M(G)|), 0} and let γ2 = max{max{pw(Gi)|1 ≤ i ≤
m} + 1 − (μ(H) − |M(H)|), 0}.

Lemma 10. c0(G + H) ≤ min{μ(G) + γ1, μ(H) + γ2}.
In combination of Theorem 1 and Lemma 10, we give the next theorem.

Theorem 7. min{μ(G), μ(H)} ≤ c0(G + H) ≤ min{μ(G) + γ1, μ(H) + γ2}.
Theorem 8. If n ≤ 2, then c0(Cm + Kn) = min{⌈

m+1
2

⌉
, n + 1}; if n ≥ 3, then

c0(Cm + Kn) = min{⌈
m+1
2

⌉
, n}.

326 Y. Xue et al.

Proof. Let Cm = {u1, . . . , um} and Kn = {v1, . . . , vn}. We first show that
c0(Cm + Kn) ≤ ⌈

m+1
2

⌉
. Consider the case when m is odd. To clear Cm + Kn,

place cop λi on u2i−1, where 1 ≤ i ≤ m+1
2 . Hence, we use m+1

2 cops in total. Let
cop λi, where 1 ≤ i ≤ m−1

2 , vibrate on u2i−1 and u2i throughout the strategy
until all vertices are cleared. Let cop λm+1

2
vibrate on um and each vertex of Kn

to clear all the vertices of Kn . When m is even, we can use m
2 + 1 cops to clear

Cm + Kn in a similar way. Therefore, c0(Cm + Kn) ≤ ⌈
m+1
2

⌉
.

We then show that c0(Cm + Kn) ≤ n + 1 if n ≤ 2. If n = 1, then we place
two cops on u1 initially. Let one cop vibrate on u1 and v1 until all vertices are
cleared. Let the second cop slide around Cm to clear all its vertices. If n = 2,
then we place cop λi on ui, where 1 ≤ i ≤ 3. Let cop λi, where 1 ≤ i ≤ 2, vibrate
on ui and vi until all vertices are cleared. Let cop λ3 slide around Cm to clear
all its vertices.

In the last, we show that c0(Cm + Kn) ≤ n if n ≥ 3. Place cop λi on vi,
where 1 ≤ i ≤ n. Let cop λ1 vibrate on v1 and u1 until all vertices are cleared.
Slide λn−1 to u2 and slide λn to u3. If m ≤ 3, then all vertices are cleared. If
m ≥ 4, then (1) slide λn−1 back to vn−1 and λn back to vn, and (2) slide λn−1

to u3 and slide λn to u4. All vertices of Cm can be cleared in a similar way.
In combination of the above and Theorem 3, we have: (1) if n ≤ 2, then

c0(Cm + Kn) = min{⌈
m+1
2

⌉
, n + 1}, and (2) if n ≥ 3, then c0(Cm + Kn) =

min{⌈
m+1
2

⌉
, n}.

��
Theorem 9. For 3 ≤ m ≤ n, if m is odd, then c0(Cm + Cn) = m+1

2 + 1; if m
is even, then c0(Cm + Cn) = m

2 + 2.

Theorem 10. If n = 1, then c0(Km + Pn) =
⌈
m+1
2

⌉
; if n ≥ 2, then c0(Km +

Pn) =
⌈
m
2

⌉
+ 1.

4.2 Lexicographic Products of Graphs

Theorem 11. For m ≥ 4, c0(Pm · G) = |V (G)|.
Lemma 11. For m ≥ 4, c0(P2 · Pm) =

⌈
m
2

⌉
+ 1.

Proof. From Lemma 4, we have c0(P2 ·Pm) ≥ ⌈
m
2

⌉
+1. So we only need to give a

strategy that clears P2 ·Pm with
⌈
m
2

⌉
+1 cops. Let P 1

m and P 2
m be the two copies

of Pm in P2 · Pm. To clear P2 · Pm, we can use
⌈
m
2

⌉
cops and let them vibrate

on vertices in V (P 1
m) to ensure that every vertex in V (P 1

m) remains cleared in
at least one of any two consecutive rounds. Then we can use one additional cop
to clear all vertices in V (P 2

m). ��

4.3 Complete Multipartite Graphs

Theorem 12. If there is a perfect matching in Kn1,...,nk
− Vk, then

c0(Kn1,...,nk
) = 1

2

∑k−1
i=1 |Vi| + 1.

New Results on the Zero-Visibility Cops and Robber Game 327

Proof. From Lemma 7, we have c0(Kn1,...,nk
) ≥ 1

2

∑k−1
i=1 |Vi| + 1. To complete

the proof, we describe a cop-win strategy for Kn1,...,nk
that uses 1

2

∑k−1
i=1 |Vi|+1

cops.

1. For each edge in M(Hk), place a cop on one endpoint of the edge, and let it
vibrate between two endpoints of the edge until all vertices in V (Kn1,...,nk

)
are cleared.

2. Select a vertex v ∈ V1 and place a cop λ on it. Then, slide λ between v and
Vk to clear all vertices in Vk.

��
Theorem 13. If there is no perfect matching in Kn1,...,nk

− Vk, then
c0(Kn1,...,nk

) = μ(Hk).

4.4 Split Graphs

Lemma 12. For a split graph Sm,n = (C, I), if m is odd, or there is a pair
of vertices in V (C) which share no common neighbor in V (I), then c0(Sm,n) ≤⌈
m
2

⌉
.

Lemma 13. For a split graph Sm,n, if m is even and every pair of vertices in
V1 have a common neighbor in V2, then c0(Sm,n) ≤ m

2 + 1.

Proof. To clear Sm,n, we place cop λi on ui, where 1 ≤ i ≤ m
2 , and let the cop

vibrate on ui and ui+m
2

until the end of the strategy; then we place another cop
λ′ on u1, and use it to clear all u1’s neighbors in V2; in the next, we slide λ′ to
ui, for i = 2, . . . , m, to clear all its contaminated neighbors in V2. Obviously, we
clear Sm,n using a total of m

2 + 1 cops. ��
By combining Theorem 6, Lemmas 12 and 13, we give the cop number of

split graph in the next theorem.

Theorem 14. Let Sm,n = (C, I) be a split graph with |V (C)| = m and |V (I)| =
n. (i) c0(Sm,n) =

⌈
m
2

⌉
, if m is odd or V (C) has a pair of vertices that share no

common neighbor in V (I); (ii) c0(Sm,n) = m
2 + 1, if m is even and every pair

of vertices in V (C) have a common neighbor in V (I).

5 Conclusions

In this paper, we considered the zero-visibility cops and robber game on graph
joins, as well as a few other types of graphs and graph products. We gave a
method for finding lower bounds on the zero-visibility cop number by establishing
conditions on search strategies. The challenge in establishing lower bounds on
various graph search parameters typically lie in finding non-trivial lower bounds
that apply to more than just a few special graphs. The method that we have
used in this paper can be seen as a general approach to find lower bounds on
the zero-visibility cop number of a large class of graphs. We believe that this
technique can inspire more lower bound results for other classes of graphs, and
potentially also for other graph search parameters.

328 Y. Xue et al.

References

1. Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8(1),
1–12 (1984)

2. Bonato, A.: Conjectures on cops and robbers. In: Gera, R., Hedetniemi, S., Larson,
C. (eds.) Graph Theory. PBM, pp. 31–42. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-31940-7 3

3. Bonato, A., Gordinowicz, P., Hahn, G.: Cops and robbers ordinals of cop-win trees.
Discrete Math. 340(5), 951–956 (2017)

4. Bonato, A., MacGillivray, G.: Characterizations and algorithms for generalized
cops and robbers games. Contrib. Discrete Math. 12(1), 110–122 (2017)

5. Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs. American
Mathematical Society, Providence (2011)

6. Dereniowski, D., Dyer, D., Tifenbach, R.M., Yang, B.: The complexity of zero-
visibility cops and robber. Theoret. Comput. Sci. 607, 135–148 (2015)

7. Dereniowski, D., Dyer, D., Tifenbach, R.M., Yang, B.: Zero-visibility cops and
robber and the pathwidth of a graph. J. Comb. Optim. 29(3), 541–564 (2015)

8. Fitzpatrick, S.L., Larkin, J.P.: The game of cops and robber on circulant graphs.
Discrete Appl. Math. 225, 64–73 (2017)

9. Jeliazkova, D.: Aspects of the cops and robber game played with incomplete infor-
mation. Master’s thesis, Acadia University (2006)

10. Kinnersley, W.B.: Cops and robbers is exptime-complete. J. Comb. Theory Ser. B
111, 201–220 (2015)

11. Mamino, M.: On the computational complexity of a game of cops and robbers.
Theoret. Comput. Sci. 477, 48–56 (2013)

12. Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math.
43(2–3), 235–239 (1983)

13. Offner, D., Ojakian, K.: Variations of cops and robber on the hypercube. Australas.
J. Comb. 59(2), 229–250 (2014)

14. Quilliot, A.: Jeux et pointes fixes sur les graphes. Ph.D. thesis, Université de Paris
VI (1978)

15. Tang, A.: Cops and robber with bounded visibility. Master’s thesis, Dalhousie
University (2004)

16. Tošić, R.: Vertex-to-vertex search in a graph. Graph Theory (Dubrovnik 1985), pp.
233–237 (1985)

https://doi.org/10.1007/978-3-319-31940-7_3
https://doi.org/10.1007/978-3-319-31940-7_3

A Two-Stage Constrained Submodular
Maximization

Ruiqi Yang1, Shuyang Gu2, Chuangen Gao3, Weili Wu2, Hua Wang3,
and Dachuan Xu1(B)

1 Department of Operations Research and Scientific Computing,
Beijing University of Technology, Beijing 100124, People’s Republic of China

yangruiqi@emails.bjut.edu.cn, xudc@bjut.edu.cn
2 Department of Computer Science, University of Texas at Dallas,

Richardson, TX 75080, USA
{Shuyang.Gu,weiliwu}@utdallas.edu

3 School of Computer Science and Technology, Shandong University,
Jinan 250101, People’s Republic of China

gaochuangen@gmail.com, wanghua@sdu.edu.cn

Abstract. We consider a two-stage submodular maximization under p-
matroid (or p-extendible) constraints. In the model, we are given a collec-
tion of submodular functions and some p-matroid (or extendible) system
constraints for each of these functions, one need to choose a representa-
tive set with a cardinality constraint and simultaneously select a series
of subsets that are restricted to the representative set for all functions,
the aim is to maximize the average of the summarization of these func-
tion values. We extend the two-stage submodular maximization under
single matroid to handle p-matroid (or p-extendible) constraints, and
derive constant approximation ratio algorithms for the two problems,
respectively. In the end, we empirically demonstrate the efficiency of our
method on some datasets.

Keywords: Submodular maximization · Approximation algorithms ·
Independence system constraints

1 Introduction

The submodular maximization has many applications, such as document summa-
rization [5,11], recommender systems [13,14,17], and other applications [9,19],
etc. Formally, it can be modeled as maxS⊆Ω:S∈I f(S), where f is a submodular
function defined on ground set Ω and I is some specific constraint. In the text,
we will give a brief summary of the submodular maximization.

For the submodular maximization under a cardinality constraint, [15] pro-
vided a (1 − 1/e)-approximation. Under more general p-matroid constraint, [7]
got a deterministic 1/(p+1)-approximation algorithm. In particular, if p = 1, it
reduced to a 1/2-approximation algorithm for monotone submodular maximiza-
tion under a single matroid constraint (SMMC). [10] improved the ratio from
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 329–340, 2019.
https://doi.org/10.1007/978-3-030-27195-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_30&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_30

330 R. Yang et al.

1/(p + 1) to 1/(p + ε) for monotone submodular maximization under p-matroid
constraints (SMMC-p). Combining continuous greedy process and pipage round-
ing technique, [4] obtained a random (1 − 1/e)-approximation algorithm for the
monotone SMMC. As the hardness of approximation ratio of the above models
is (1− 1/e+ ε), it is still a long history of closing the gap of approximation ratio
for the monotone SMMC by a deterministic algorithm. The breakthrough result
was presented by [3], who gave the first deterministic 0.5008-approximation algo-
rithm for the monotone SMMC-p. [12] introduced a more general p-extendible
system constraints, which captures a class of constraints, such as p-matroid
constraints, b-matching, maximum profit scheduling and maximum asymmet-
ric traveling salesman problem. He presented a 1/p-approximation algorithm
based on greedy for a monotone submodular maximization under p-extendible
constraint. For a non-monotone submodular maximization under p-extendible
system constraint, [6] presented a p/(p + 1)2-approximation algorithm.

Motivated by the tasks of multi-objective summarization, [2] introduced
the two-stage submodular maximization problem. In the model, we are given
a ground set Ω of size n, integers �, k, and multiple submodular functions
f1, ..., fm, the goal is to choose a subset S of |S| ≤ � such that the sum of
maxTi⊆S,|Ti|≤k fi(Ti) is maximum. Obviously, this problem reduces to classical
cardinality submodular maximization problem if m = 1, or if � = k. Combin-
ing the techniques of continuous greedy and dependent rounding, they firstly
presented an approximation arbitrary close to 1 − 1/e as k → ∞. Secondly,
under the case of that each fi, i ∈ [m] is a coverage function, they obtained
a 1/2(1 − 1/e)-approximation by a local search, while the query complexity is
bounded by O(km�n2 log n). [17] considered a the two-stage submodular maxi-
mization with general matroid constraint, that is,

∑m
i=1 maxTi∈I(S) fi(Ti), where

(S, I(S)) is a matroid. They derived a 1/2(1 − 1/e2)-approximation algorithm,
and its query complexity is at most O(rm�n), where r is the matroid rank.
[14] first studied this problem under streaming and distributed settings, respec-
tively. In the streaming setting, they derived a one pass, 1/7-approximation
algorithm, while its memory complexity is bounded by O(� log(�)/ε) and the
query complexity is at most O(kmn log(�)/ε). In the distributed setting, they
got two 1/4(1 − 1/e2) and 0.107-approximation algorithms, respectively. The
query complexities of the above two distributed algorithms are bounded by
O(kmn�/M + Mkm�2) and O(kmn log �/M + Mkm�2 log �), respectively, where
M is the number of the machines. We first consider the two-stage submodular
maximization under more general constraints. Specifically, we aim to maximize∑m

i=1 maxTi∈Ii(S) fi(Ti), where (S, Ii(S)) is a p-matriod (or p-extendible) for
any i. For the two-stage submodular maximization under p-matroid system con-
straint, we propose a 1/(p+1)(1−1/e2)-approximation algorithm, while its query
complexity is bounded by O(�mnrp), where r is the maximum independence set
size. Under more general p-extendible constraints, we yield a 1/(r+1)(1−1/e2)-
approximation algorithm with the same query complexity. Finally, we demon-
strate the efficiency of our algorithm on some datasets.

A Two-Stage Constrained Submodular Maximization 331

The rest of our paper is organized as follows. We present some necessary
preliminaries in Sect. 2. In Sect. 3, we introduce the two-stage submodular max-
imization under p-matroid system constraints and provide a 1/(p + 1)(1 −
1/e2)-approximation algorithm. In addition, we present a 1/(r + 1)(1 − 1/e2)-
approximation algorithm for two-stage submodular maximization under p-
extendible system constraints in Sect. 4. In Sect. 5, we show the results of some
numerical experiments of our algorithm. Finally, we give a conclusion in Sect. 6.

2 Preliminaries

In our setting, we are given an element ground set Ω of size n, and a collec-
tion F = {f1, ..., fm} of non-negative monotone submodular functions that are
defined on the ground set Ω. For any i ∈ [m] = {1, ...,m}, fi : 2Ω → R+ is a
submoduar function, i.e.,

fi(A) + fi(B) ≥ fi(A ∪ B) + fi(A ∩ B),∀A,B ⊆ Ω.

For any i ∈ [m], there exists a constraint Ii, the objective is to find a rep-
resentative set S ⊆ Ω with |S| ≤ �(� n), such that the average of the sum-
marization of the optimum of fi, i ∈ [m] restricted to S is maximum. Let
Gm(S) = 1

m

∑m
i=1 maxTi∈Ii(S) fi(Ti). Then our model can be defined as

max
S⊆Ω,|S|≤�

Gm(S) = max
S⊆Ω,|S|≤�

1
m

m∑

i=1

max
Ti∈Ii(S)

fi(Ti), (1)

where Ii(S) denotes the constraint Ii restricted to S for any i ∈ [m].
In order to have a better understand of our model and constraints, we restate

some necessary notations and definitions as follows. Given a finite element set
Ω, and a collection I of subsets of Ω. A two-tuples M = (Ω, I) is defined as an
independent system, if it has for any subset T ∈ I, then any subset S ⊆ T such
that S ∈ I. Each subset of I is named as independence set. The independent
system M = (Ω, I) is a matroid if it also satisfies that if for any independence
sets S, T ∈ I with |S| > |T |, then there exists an element e ∈ S \ T such that
T ∪ {e} ∈ I. A maximal independent subset A ∈ I is called a base of the
independent system M = (Ω, I). Given an integer p, Let Mj = (Ω, Ij) be a
matroid according to j ∈ [p], then we call the intersection of these p matroids
(Ω,∩p

j=1Ij) as p-matroid. Given any subsets S, T ∈ I, we say T is an extension
of S if S ⊆ T . We restate the definition of p-extendible system as follows.

Definition 1 [6,12]. An independence system M = (Ω, I) is p-extendible sys-
tem if for every independent set S ∈ I, an extension T of S and an element
e /∈ S obeying S ∪{e} ∈ I there must exist a subset Y ⊆ T \S with |Y | ≤ p such
that T \ Y ∪ {e} ∈ I. Specially, if the independent set S is maximal i.e., T = S,
then we can reduce the definition by setting Y = ∅.

332 R. Yang et al.

In our p-matroid constraints model, for i ∈ [m] and S ⊆ Ω, any subset Ti ⊆ S
is feasible if Ti ∈ Ii = ∩p

j=1Ii
j , where M i = (S,∩p

j=1Ii
j(S)) is a p-matroid system

restricted to S. Similarly, for the p-extendible system constraint, M i = (S, Ii)
is defined as p-extendible system. We say subset Ti is feasible if Ti ∈ Ii. We also
assume there are value and independence oracles, i.e., for any i ∈ [m] and subset
A, we can obtain the value of fi(A) and know if A ∈ Ii or not.

3 P -Matroid System Constraints

In this section, we extend the ReplacementGreedy algorithm introduced by [17]
(for comparison, we say their algorithm as One-to-One ReplacementGreedy) for
a single matroid constraint to address the two-stage submodular maximization
under p-matroid system constraints.

Algorithm 1. One-to-Many ReplacementGreedy
1: S ← ∅, Ti ← ∅ for all i ∈ [m]
2: for t ∈ [�] do

3: x∗ ← arg max
x∈Ω

1
m

m∑

i=1

∇′
i(x, Ti)

4: S ← S ∪ x∗

5: for all i ∈ [m] do
6: if ∇′

i(x, Ti) > 0 then
7: Ti ← Ti ∪ {x∗} \ Rep′

i(x
∗, Ti)

8: end if
9: end for

10: t ← t + 1
11: end for
12: Return S and {Ti}i∈[m]

3.1 Algorithm

In order to have a better understand of our One-to-Many ReplacementGreedy,
we investigate the One-to-One ReplacementGreedy in the first. The replacement
gain is denoted as ∇i(x,A), who characterizes how much they can increase the
value of fi(A) by either adding x to A or replacing x with one element of A while
preserving the independence of A. We restate the related notations as follows.
Set Δi(x,A) = fi(A ∪ {x}) − fi(A) as the marginal gain of adding x to A for
any i ∈ [m]. We restate the replace gain of deleting an element y ∈ A and
replacing it with x as ∇i(x, y,A) = fi(A∪{x}\{y})−fi(A). As maintaining the
independence of solution in each iteration is a very important point in One-to-
One ReplacementGreedy algorithm, let I(x,A) be the set of feasible candidate
y ∈ A, i.e., I(x,A) = {y ∈ A : A ∪ {x} \ {y} ∈ I}. Finally, we formally redefine
the replacement gain as

A Two-Stage Constrained Submodular Maximization 333

∇i(x,A) =

{
Δi(x,A), if A ∪ {x} ∈ I
max{0,maxy∈I(x,A) ∇i(x, y,A)}, o.w.

To specific say the element with the maximum replacement gain due to x, they
define

Repi(x,A) =

{
∅, if A ∪ {x} ∈ I
arg maxy∈I(x,A) ∇i(x, y,A), o.w.

In our p-matroid system constraint setting, we define ∇i(x, Y,A) = fi(A ∪ {x} \
Y)−fi(A) as the new replacement gain. To keep the independence in each loop,
we set I ′,i(x,A) = {Y ⊆ A : |Y | ≤ p,A ∪ {x} \ Y ∈ Ii(= ∩p

j=1Ii
j)} as the new

collection of candidate subsets. Let

∇′
i(x,A) =

{
Δi(x,A), if A ∪ {x} ∈ Ii

max{0,maxY ⊆I′,i(x,A) ∇i(x, Y,A)}, o.w.

Similarly, we set

Rep′
i(x,A) =

{
∅, if A ∪ {x} ∈ I
arg maxY ⊆I′,i(x,A) ∇i(x, Y,A), o.w.

In the One-to-Many ReplacementGreedy, we greedily choose an element x∗

with the maximum average new replacement gain in each iteration until the size
of S increases to �. In each iteration, for any current substitute solution set Ti,
i ∈ [m], if the new replacement gain ∇′

i(x,A) > 0, we will update Ti by removing
Rep′

i(x
∗, Ti). The main pseudo codes are presented by Algorithm 1.

3.2 Theoretical Analysis

In this section, we will analyze the performance ratio of One-to-Many Replace-
mentGreedy. For clarity, we adopt the notations provided by [2,14,16]. Let

Sm,� = arg max
S⊆Ω,|S|≤�

{
1
m

m∑

i=1

max
Ti⊆S,Ti∈Ii(S)

fi(Ti)

}

be any optimal solution, and set Sm,�
i = arg maxT∈Ii(Sm,�) fi(T) to be the inde-

pendent subset of Sm,� with maximum fi value for i ∈ [m]. Let T t
i be the solution

at the end of iteration t. Then our main result can be summarized as following
theorem.

Theorem 1. For any fixed p ≥ 1, the One-to-Many ReplacementGreedy is a
1/(p+1)(1−1/e2)-approximation algorithm for the two-stage submodular maxi-
mization with a p-matroid system constraint M i = (Ω,∩p

j=1Ii
j) for each i ∈ [m].

334 R. Yang et al.

Proof. Let Xt be the total value 1
m

m∑

i=1

fi(T t
i) in the end of t iteration, then the

increment of value during t iteration can be lower bounded by as follows.

Xt+1 − Xt ≥ Gm(Sm,�)
�

− (p + 1)Xt

�
. (2)

From inequality (2), we could complete the main proof by induction. We assume

Xt ≥ 1
p + 1

(

1 − (1 − 1
�
)2t

)

Gm(Sm,�).

In basis step, if t = 1, we have X1 ≥ 1
� Gm(Sm,�) ≥ 2

(p+1)�Gm(Sm,�), where the
first inequality follows from the line 3 in Algorithm 1. In the reduction step, as

Xt+1 ≥ 1
�
Gm(Sm,�) +

(

1 − p + 1
�

)

Xt

≥ 1
�
Gm(Sm,�) +

(

1 − p + 1
�

)

·
[

1
p + 1

(

1 − (1 − 1
�
)2t

)

Gm(Sm,�)
]

=
1

p + 1
·
[

1 − (1 − 1
�
)2t(1 − p + 1

�
)
]

· Gm(Sm,�)

≥ 1
p + 1

(

1 − (1 − 1
�
)2t+2

)

· Gm(Sm,�).

By the above reduction process, we complete the assumption. At the end of �
iteration, we have

1
m

m∑

i=1

fi(T �
i) = X� ≥ 1

p + 1
(1 − (1 − 1

�
)2�) · Gm(Sm,�)

≥ 1
p + 1

(1 − 1
e2

) · Gm(Sm,�),

where the second inequality is derived by the inequality of e−x ≥ 1 − x.

In order to prove the inequality (2), we provide two technical lemmas as
follows.

Lemma 1. For any i ∈ [m], given any two independent sets A,B ∈ Ii =
∩p

j=1Ij, there exists a mapping of elements in B \ A to [A \ B]≤p (namely,
a collection of subsets included into A \ B of size at most p), such that each
element u ∈ A \ B appears in at most p subsets.

Proof. Refer to the full version of this paper.

Lemma 2. For any i ∈ [m], t ∈ [�], let πi
t : Sm,�

i \ T t
i → [T t

i \ Sm,�
i]≤p be the

mapping derived by Lemma 1, then we have
∑

x∈Sm,�
i \T t

i

Δi(πi
t(x), T t

i \ πi
t(x)) ≤ p · fi(T t

i).

A Two-Stage Constrained Submodular Maximization 335

Proof. Refer to the full version of this paper.

To prove the increment of value during t iteration we have the following

m∑

i=1

∇′
i(x

∗, T t
i) ≥ 1

�

∑

x∈Sm,�

m∑

i=1

∇′
i(x, T t

i) (3)

≥ 1
�

m∑

i=1

∑

x∈Sm,�
i \T t

i

∇′
i(x, T t

i) (4)

≥ 1
�

m∑

i=1

∑

x∈Sm,�
i \T t

i

fi(T t
i ∪ {x} \ πi

t(x)) − fi(T t
i) (5)

=
1
�

m∑

i=1

∑

x∈Sm,�
i \T t

i

Δi(x, T t
i) − Δi(πi

t(x), T t
i ∪ {x} \ πi

t(x))

≥ 1
�

m∑

i=1

∑

x∈Sm,�
i \T t

i

Δi(x, T t
i) − Δi(πi

t(x), T t
i \ πi

t(x)) (6)

≥ 1
�

m∑

i=1

fi(S
m,�
i) − (p + 1)fi(T t

i). (7)

The inequality (3) is obtained by the selection of x∗ from the ground set Ω
in each iteration. The inequality (4) follows from the fact of on-negativity of
∇′

i(x, Ti) for all i ∈ [m]. The inequality (5) is derived by

1
�

m∑

i=1

∑

x∈Sm,�
i

∇′
i(x, T t

i) =
1
�

m∑

i=1

∑

x∈Sm,�
i

fi(T t
i ∪ {x} \ Rep′

i(x, T t
i)) − fi(T t

i)

≥ 1
�

m∑

i=1

∑

x∈Sm,�
i

fi(T t
i ∪ {x} \ πi

t(x)) − fi(T t
i),

where the inequality holds because the Rep′
i(x, Ti) is the maximum subset and

the πi
t(x) is an feasible subset of Ii(x, T t

i). The inequality (6) is implied by the
submodularity. By the additivity of submodularity of any fi, i ∈ [m], we have

∑

x∈Sm,�
i \T t

i

Δi(x, T t
i) ≥ fi(S

m,�
i) − fi(T t

i). (8)

Combining Lemma 2 and inequality (8), we obtain the inequality (7). The
inequality (2) can be directly obtained by the above process.

The main result can be described as the following theorem.

Theorem 2. For any fixed p ≥ 1, the query complexity of the One-to-Many
ReplacementGreedy algorithm is upper bounded by O(�mnrp).

336 R. Yang et al.

Proof. It concludes that the main time computation is the greedy chosen of line 3
in Algorithm 1. Given any iteration t ∈ [�] and i ∈ [m], it needs to check at most
O(n) elements to find the element x∗ while it also needs at most O(rp) function
evaluations by enumerating all candidate subsets, where r is the maximum size
of feasible subsets belong to p-matroid. Then the total query complexity (i.e.,
the number of function evaluations) of Algorithm 1 is bounded by O(�mnrp).

4 P -Extendible System Constraints

In this section, we extend our algorithm for p-matroid system constraints to
dealing with p-extendible system constraints. As discussed in the work of [6,
12], the p-extendible system constraint is a generalization of p-matroid system
constraint. In our model, we choose a set S of size at most �, while we also
select a set Ti ⊆ S such that Ti ∈ Ii for each i ∈ [m], where M i = (S, Ii) is
a p-extendible system. The aim is to maximize the average of summarization of
their function values.

Algorithm 2. Generalized One-to-Many ReplacementGreedy
1: S, Ti, E(Ti) ← ∅ for all i ∈ [m]
2: for t ∈ [�] do

3: x∗ ← arg max
x∈Ω

1
m

m∑

i=1

∇̃i(x, Ti)

4: S ← S ∪ x∗

5: for all i ∈ [m] do
6: if ∇̃i(x, Ti) > 0 then
7: Ti ← E(Ti) ∪ {x∗} \ R̃epi(x

∗, Ti)
8: end if
9: end for

10: compute an extension E(Ti) of Ti

11: t ← t + 1
12: end for
13: Return S and {E(Ti)}i∈[m]

4.1 Algorithm

Following from the definition of p-extendible system, we have if A ⊆ B ∈ I
and A ∪ {x} ∈ I, then there exists a subset Y ⊆ B \ A with |Y | ≤ p such
that B \ A ∪ {x} ∈ I. Given a p-extendible system M i = (Ω, Ii) for each
i ∈ [m]. The goal is to select a set S of size at most �, such that the average of
the summary of the optimum of fi restricted to S according to a p-extendible
system M i = (Ω, Ii) for all i ∈ [m] is maximum.

In our setting, to keep the independence of Ti, i ∈ [m] in each iteration under
p-extendible system constraint, we modify the One-to-Many ReplacementGreedy

A Two-Stage Constrained Submodular Maximization 337

to a Generalized One-to-Many ReplacementGreedy, the main pseudo codes are
presented in Algorithm 2.

For each i ∈ [m], we define ∇̃i(x,A) as the new replacement gain, in specific,
∇̃i(x, Y,A) = fi(E(A) ∪ {x} \ Y) − fi(E(A)), where E(A) is an extension of A.
Let Ĩi(x,A) = {Y ⊆ E(A) \ A : |Y | ≤ p,A ∪ {x} ∈ Ii, E(A) ∪ {x} \ Y ∈ Ii} be
the candidate set. Let

∇̃i(x,A) =

{
Δi(x,A), if A ∪ {x} ∈ Ii

max{0,maxY ∈Ĩi(x,A) ∇̃i(x, Y,A)}, o.w.

Simultaneously, let

R̃epi(x,A) =

{
∅, if A ∪ {x} ∈ I
arg maxY ∈Ĩi(x,A) ∇̃i(x,A), o.w.

4.2 Theoretical Analysis

In this section, we present the analyses of the Generalized One-to-Many Replace-
mentGreedy. The setting under p-extendible system constraints differ from the
p-matroid constraints, that is, there is not such similar mapping presented by
Lemma 2. We notice that there is interesting property provided by the following
lemma.

Lemma 3. For any i ∈ [m], let {Y i
j }q

j=1 be a collection of E(Ti) \ Ti such that
each element of E(Ti) \ Ti appears in at most r of these subsets, where r is the
size of maximal independence set in p-extendible system. Then we have

q∑

j=1

(f(E(Ti)) − fi(E(Ti) \ Y i
j)) ≤ r · (f(E(Ti)) − f(Ti)).

Proof. Refer to the full version of this paper.

Theorem 3. For any fixed p ≥ 1, the Generalized One-to-Many Replacement-
Greedy is a 1/(r+1)(1−1/e2)-approximation algorithm, while the query complex-
ity is upper bounded by O(�mnrp), for the two-stage submodular maximization
with p-extendible system constraints M i = (Ω, Ii) for each i ∈ [m], where r is
the size of the maximum independence set in Ii.

Proof. Refer to the full version of this paper.

5 Experiments

In this section, we run Algorithm 2, generalized one-to-many ReplaceGreedy
(say, G-REPLACEGREEDY), on the application exemplar-based clustering
with two dataset and consider the following benchmarks:

338 R. Yang et al.

– Random selection (i.e., Random): the output is randomly k elements chosen
for each function fi, i ∈ [m].

– Greedy-Sum (i.e., Greedy-SUM): the output is greedily k elements selected
for each function fi, i ∈ [m], and return the union as S.

Fig. 1. Performances of Algorithm 2 comparing with Random and Geedy-Sum on
Census.

We consider the application of exemplar-based clustering on Census 1990 [1],
which has 24, 581 elements with 68 attributes. Let the first 10 attributes as our
classified genres, such as, age, ancestry, citizen etc. In the experiment, we first
choose a dataset Ω of 500 different people by reservoir sampling [18]. We denote
Ωi as the set of people containing genre i ∈ [m]. All people are expressed by
their features vector, the distance of any two vectors is calculated by Euclidean
distance and d(v, S) = minu∈S d(u, v) denotes the distance of element v to set
S. The goal is to choose a subset S ⊆ Ω of size at most �, such that each genre
i ∈ [m] has a good expression of size limit k. For each genre i ∈ [m], the utility
function fi(S) is defined by Exemplar Based Clustering [1,17]. We restate as
follows

fi(S) = Li({e0}) − Li(S ∪ {e0}),

where e0 is an auxiliary vector (w.l.o.g., e0 = 0), Si = S ∩ Ωi is the set of
people with genre i, and Li(S) = 1

|Ωi|
∑

x∈Ωi
d(x, Si). As the submodularity

and non-negativity of utility function have been discussed by [1,8], we omit the
proof here. The left of Fig. 1 shows the performance of Algorithm 2 on census
application, when k is fixed as 5 and the right figure shows that the performance
of Algorithm 2 with fixing � = 20. We observe that if k is fixed, then the function
value goes to some assured values with the increasing of � and our Algorithm 2
performs similarly to Greedy-Sum.

We also consider a classification application that feature vectors are gener-
ated from a random distribution. Specifically, we generate a 500 × 10 feature
matrix which each component is randomly chosen from the range [0, 3]. Figure 2
shows the performance of Algorithm 2 on the classification, when k and � are
fixed, respectively. We observe that our Algorithm 2 still matches the Greedy-

A Two-Stage Constrained Submodular Maximization 339

Fig. 2. Performances of Algorithm 2 comparing with Random and Geedy-Sum on
Classification.

Sum algorithm, and performs better than Random algorithm. As the generation
process of data, we also observe that the three algorithms perform similarly as
� increases.

6 Conclusion

We consider the two-stage submodular maximization under p-matroid and p-
extendible system constraints for each sub-functions, respectively. Specifically,
for the front model, we derive a 1/(p + 1)(1 − 1/e2)-approximation algorithm,
which needs O(�mnrp) function evaluations. For the second setting, we obtain
a 1/(r + 1)(1 − 1/e2)-approximation algorithm with the same query complexity.
In the end, we show the performance of our generalized One-to-Many algorithm
on some datasets.

Acknowledgements. The first and sixth authors are supported by Natural Science
Foundation of China (Nos. 11531014, 11871081). The second and fourth authors are
supported by Natural Science Foundation (No. 1747818).

References

1. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming sub-
modular maximization: massive data summarization on the fly. In: Proceedings of
SIGKDD, pp. 671–680 (2014)

2. Balkanski, E., Mirzasoleiman, B., Krause, A., Singer, Y.: Learning sparse combi-
natorial representations via two-stage submodular maximization. In: Proceedings
of ICML, pp. 2207–2216 (2016)

3. Buchbinder, N., Feldman, M., Garg, M.: Deterministic (1/2+ ε)-approximation for
submodular maximization over a matroid. In: Proceedings of SODA, pp. 241–254
(2019)

4. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766
(2011)

340 R. Yang et al.

5. Dasgupta, A., Kumar, R., Ravi, S.: Summarization through submodularity and
dispersion. In: Proceedings of ACL, pp. 1014–1022 (2013)

6. Feldman, M., Harshaw, C., Karbasi, A.: Greed is good: near-optimal submodular
maximization via greedy optimization. arXiv: 1704.01652 (2017)

7. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for
maximizing submodular set functions-II. In: Balinski, M.L., Hoffman, A.J. (eds.)
Polyhedral Combinatorics, pp. 73–87. Springer, Heidelberg (1978). https://doi.
org/10.1007/BFb0121195

8. Gomes, R., Krause, A.: Budgeted nonparametric learning from data streams. In:
Proceedings of ICML, pp. 391–398 (2010)

9. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of SIGKDD, pp. 137–146 (2003)

10. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple
matroids via generalized exchange properties. Math. Oper. Res. 35(4), 795–806
(2010)

11. Lin, H., Bilmes, J.: A class of submodular functions for document summarization.
In: Proceedings of ACL, pp. 510–520 (2011)

12. Mestre, J.: Greedy in approximation algorithms. In: Proceedings of ESA, pp. 528–
539 (2006)

13. Mitrovic, S., Bogunovic, I., Norouzi-Fard, A., Tarnawski, J.M., Cevher, V.: Stream-
ing robust submodular maximization: a partitioned thresholding approach. In: Pro-
ceedings of NIPS, pp. 4557–4566 (2017)

14. Mitrovic, M., Kazemi, E., Zadimoghaddam, M., Karbasi, A.: Data summarization
at scale: a two-stage submodular approach. arXiv preprint arXiv:1806.02815 (2018)

15. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular setfunctions-I. Math. Program. 14(1), 265–294 (1978)

16. Sarpatwar, K.K., Schieber, B., Shachnai, H.: Constrained submodular maximiza-
tion via greedy local search. Oper. Res. Lett. 47(1), 1–6 (2019)

17. Stan, S., Zadimoghaddam, M., Krause, A., Karbasi, A.: Probabilistic submodular
maximization in sub-linear time. In: Proceedings of ICML, pp. 3241–3250 (2017)

18. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1),
37–57 (1985)

19. Wu, W.L., Zhang, Z., Du, D.Z.: Set function optimization. J. Oper. Res. Soc. China
(2018). https://doi.org/10.1007/s40305018-0233-3

http://arxiv.org/abs/1704.01652
https://doi.org/10.1007/BFb0121195
https://doi.org/10.1007/BFb0121195
http://arxiv.org/abs/1806.02815
https://doi.org/10.1007/s40305018-0233-3

Local Search Approximation Algorithms
for the Spherical k-Means Problem

Dongmei Zhang1, Yukun Cheng2(B), Min Li3, Yishui Wang4, and Dachuan Xu5

1 School of Computer Science and Technology, Shandong Jianzhu University,
Jinan 250101, People’s Republic of China

zhangdongmei@sdjzu.edu.cn
2 Suzhou Key Laboratory for Big Data and Information Service, School of Business,

Suzhou University of Science and Technology,
Suzhou 215009, People’s Republic of China

ykcheng@amss.ac.cn
3 School of Mathematics and Statistics, Shandong Normal University,

Jinan 250014, People’s Republic of China
liminEmily@sdnu.edu.cn

4 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
1068 Xueyuan Avenue, Shenzhen University Town,

Shenzhen 518055, People’s Republic of China
ys.wang1@siat.ac.cn

5 Department of Operations Research and Scientific Computing,
Beijing University of Technology, Beijing 100124, People’s Republic of China

xudc@bjut.edu.cn

Abstract. In this paper, we study the spherical k-means problem
(SKMP) which is one of the most well-studied clustering problems. In
the SKMP, we are given an n-client set D in d-dimensional unit sphere
S
d, and an integer k ≤ n. The goal is to open a center subset F ⊂ S

d

with |F | ≤ k that minimizes the sum of cosine dissimilarity measure for
each client in D to the nearest open center. We give a (2(4 +

√
7) + ε)-

approximation algorithm for this problem using local search scheme.

Keywords: Spherical k-means · Local search ·
Approximation algorithm

1 Introduction

In modern data analysis, it is a very important task to cluster text documents.
The spherical k-means clustering is one of the most representative data mining
tools to obtain useful information. Dhillon and Modha [12] present the primitive
spherical k-means clustering with cosine similarities based on k-means clustering
by [21,22]. Honik et al. [16] introduce the standard spherical k-means clustering
with the so-called cosine dissimilarities.

In the spherical k-means problem (SKMP), we are given an n-point set D in
d-dimensional unit sphere S

d, and an integer k ≤ n. We select at most k points
c© Springer Nature Switzerland AG 2019
D.-Z. Du et al. (Eds.): AAIM 2019, LNCS 11640, pp. 341–351, 2019.
https://doi.org/10.1007/978-3-030-27195-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27195-4_31&domain=pdf
https://doi.org/10.1007/978-3-030-27195-4_31

342 D. Zhang et al.

in S
d to be cluster centers and then assign each input point j ∈ D to the nearest

selected center. If point j is assigned to a center i, it incurs a cost of the so-called
cosine dissimilarity measure between i and j. The goal is to select the k centers
so as to minimize the sum of the assignment costs.

Endo and Miyamoto [13] adapt the famous k-means++ algorithm of [3] with
O(log k)-approximation for the SKMP with a slight different cosine dissimilarity
measure. Li et al. [19] prove that the above algorithm is O(log k)-approximation
for the SKMP itself and constant approximation for the SKMP with separable
sets.

Since the SKMP is closely related to the k-means and k-median problems,
we briefly review the corresponding literatures for the k-means and k-median
problems. Aloise et al. [2] and Dasgupta [11] have shown that the k-means
problem is NP-hard. Moreover, Mahajan et al. [23] find that even the planar
k-means problem is also NP-hard. The first constant 108-approximation algo-
rithm is given by Jain and Vazirani [17]. By using the approximate centroid set
of Matoušek [25], Kanungo et al. [18] obtain a local search (9+ε)-approximation
algorithm. Recently, Ahmadian et al. [1] present the currently best (6.357 + ε)-
approximation algorithm using primal-dual technique. Moreover, the bi-criteria
approximation algorithm for k-means is also given by Makarychev et al. [24].
The literatures for the k-median problem are summarized as follows. Charikar
et al. [7] present the first constant 62

3 -approximation algorithm based on LP
rounding technique. Jain and Vazirani [17] obtain a 6-approximation using the
primal-dual schema and Lagrangian relaxation. Charikar and Guha [6] improve
the above ratio to 4. Arya et al. [4] give a local search (3+ε)-approximation algo-
rithm. Li and Svensson [20] offer a bipoint rounding (1+

√
3+ ε)-approximation

algorithm. Byrka et al. [5] further improve the above ratio to 2.675 + ε which
is the currently best ratio. The 6-approximation of Jain and Vazirani [17] also
holds for the k-facility location problem which is a generalization of the k-median
problem. Zhang [26] improves the above ratio 6 to (2+

√
3+ε) using local search

technique. Local search is widely used in the approximation algorithm area and
understanding the properties of local optima is an important topic itself. For
more results on k-means and k-median problems based on local search schema,
we refer to [8–10,14,15] and references therein.

It is easy to verify that any γ-approximation algorithm for k-means prob-
lem can be adapted to a 2γ-approximation algorithm for the SKMP. Therefore,
the currently best ratio for the SKMP is 12.714 + ε based on the (6.357 + ε)-
approximation of [1] for k-means problem using the involved primal-dual and
Lagrangian relaxation techniques. If we focus on the local search technique, the
local search (9 + ε)-approximation of [18] for k-means problem can be adapted
to a (18 + ε)-approximation for the SKMP. In this paper, we give a local search
(8(2+

√
3)+ε)-approximation algorithm with single-swap operation along with a

local search (2(4+
√

7)+ε)-approximation algorithm with multi-swap operation
for the SKMP by exploring the spherical structure. The ratio (2(4 +

√
7) + ε)

improves the simple (18 + ε)-approximation adaption. This direct local search
algorithm and its analysis can help us to understand deeply the properties of
local optima for the SKMP.

Local Search Approximation Algorithms for Spherical k-Means Problem 343

The organization of this paper is as follows. We introduce some basic nota-
tions in Sect. 2. In Sect. 3, we offer a local search (8(2 +

√
3) + ε)-approximation

algorithm for the SKMP by using single-swap operation. We further improve
the above approximation ratio to 2(4 +

√
7) + ε by using multi-swap operation

in Sect. 4. In Sect. 5, we show the result of some numerical experiments for the
local search algorithm. Some discussions are given in Sect. 6.

All the proofs are deferred to the journal version.

2 Preliminaries

In this paper, we always consider the points with the unit length in R
d, which

can be denoted by

S
d = {s ∈ R

d| ‖s‖ = 1}.

Given any two points a, b ∈ S
d, the cosine dissimilarity measure between them

is denoted by

Δ(a, b) := 1 − cos(a, b) =
1
2
||a − b||2.

Given a set U ⊆ S
d and a point c ∈ S

d, we define the total sum of cosine
dissimilarity measure of U with respect to c and the spherical centroid of U as
follows,

Δ(c, U) :=
∑

j∈U

Δ(c, j) =
∑

j∈U

(1 − cT j),

sc(U) :=

∑
j∈U j

∥∥∥
∑

j∈U j
∥∥∥

.

With the above notations, Endo and Miyamoto [13] give an important property
of spherical centroidal solution in the following lemma.

Lemma 1 ([13]). For any subset U ⊆ S
d and a point c ∈ S

d, we have

Δ(c, U) = Δ(sc(U), U) +

∥∥∥∥∥∥

∑

j∈U

j

∥∥∥∥∥∥
Δ(sc(U), c). (1)

Since each solution of the SKMP is determined by the corresponding center
subset, we use this center subset to denote the solution. Let S be a feasible
solution and O be a global optimal solution of the SKMP. Without loss of gen-
erality, suppose that |S| = |O|. For each client j ∈ D, we introduce the following
notations,

Δj(S) := min
s∈S

Δ(j, s), sj := arg min
s∈S

Δ(j, s),

Δj(O) := min
o∈O

Δ(j, o), oj := arg min
o∈O

Δ(j, o).

344 D. Zhang et al.

For each center o ∈ O, if
so := arg min

s∈S
Δ(o, s),

we say that so captures o. For any s in S, if there exists a center point o ∈ O
captured by s, we also call s as bad center. Otherwise, we call s as good center.
All the bad centers constitute a subset Bad(S). Denote m := |Bad(S)|. All
elements of Bad(S) are listed as

Bad(S) = {s1, ..., sm}.

For each i ∈ {1, ...,m}, let
Si := {si},

Oi := {o ∈ O|o is captured by si},

and
mi = |Oi|.

For each i, arbitrarily add mi − 1 good centers {s2i , ..., s
mi
i } in S\ ∪i=1,...,m Si

to Si. Thus, we partition S and O into two sets of groups S1, S2, ..., Sm and
O1, O2, ..., Om with |Si| = |Oi| for each i ∈ {1, 2, ...,m}. Then, We construct
(s, o) pairs as follows (cf. Fig. 1).

Fig. 1. Partition S and O.

Procedure 1.

(1) For each i with mi = 1, the pair (si, oi) is defined with Si = {si} and
Oi = {oi}.

(2) For each i with mi ≥ 2, denote Si := {si, s
2
i , ..., s

mi
i } and Oi :=

{o1i , o
2
i , ..., o

mi
i }. The pairs (s2i , o

1
i), (s

2
i , o

2
i), (s

3
i , o

3
i), ..., (smi

i , omi
i) are con-

structed.

Local Search Approximation Algorithms for Spherical k-Means Problem 345

Furthermore, for each s ∈ S (or o ∈ O), we give the following notations, which
can imply different partitions of the clients set D.

DS(s) := {j ∈ D|sj = s} (or DO(o) := {j ∈ D|oj = o}).

The total cost of Δj(S) (or Δj(O)) over D is denoted as

cost(S) :=
∑

j∈D
Δj(S) =

∑

s∈S

Δ(s,DS(s))

(or cost(O) :=
∑

j∈D
Δj(O) =

∑

o∈O

Δ(o,DO(o))).

It follows from the optimality of O and the definition of spherical centroid that
o = sc(DO(o)) for each o ∈ O.

3 A Local Search ((8(2 +
√
3) + ε)-Approximation

Algorithm

There are exponential potential spherical centroid points which correspond to
all the subsets of D. To guarantee the polynomial running time for each swap
operation, we impose that all candidate centers are chosen from D. For any
feasible solution S, the single-swap operation swap(a, b) with a ∈ S and b ∈ D\S
is defined to delete a from S and add b to S. The neighborhood of S associated
with the swap(a, b) is defined as

Ngh1(S) := {S \ {a} ∪ {b}|a ∈ S, b ∈ D \ S}.

Now we are ready to present our single-swap local search algorithm in
Algorithm 1.

Algorithm 1 . The single-swap local search algorithm for spherical k-means
problem

Step 0. (Initialization) Arbitrarily choose a feasible solution S from D.
Step 1. (Local search) Compute

Smin := arg min
S′∈Ngh1(S)

cost(S′).

Step 2. (Stop criterion) If cost(Smin) ≥ cost(S), output S. Otherwise, set S := Smin

and go to Step 1.

To proceed the analysis, we need the following technical lemma.

346 D. Zhang et al.

Lemma 2. Let S and O be a local optimal solution and a global optimal solution
to the SKMP, respectively. We have,

∑

j∈D

√
Δj(S)Δj(O) ≤

√∑

j∈D
Δj(S) ·

√∑

j∈D
Δj(O), (2)

and
∑

j∈D
Δ(soj , j) ≤

∑

j∈D
Δj(S) + 2

∑

j∈D
Δj(O) + 2

∑

j∈D

√
Δj(S)Δj(O). (3)

We give some high level illustration for our analysis. The analysis for local
search type algorithm is usually proceeded as follows. Since the algorithm out-
puts a local optimal solution S, we bound the cost of S by using the local
optimality. Each solution in the neighbour of S corresponds to a swap operation
which can not improve the currently solution S. In fact, there is an inequality
implied in each swap operation mentioned above. We carefully choose these swap
operations to bound the cost of S by means of the cost of O. Usually, we need
to consider the swap(s, o) for each s ∈ S and o ∈ O. The difficulty is that o may
be not in D and we can not perform the swap(s, o) in the local search algorithm.
To overcome this difficulty, we carefully choose a point ô ∈ D to approximate o.
We consider the swap(ô, s) instead of swap(o, s).

We introduce a center ô ∈ D associated with each o ∈ O. For each o ∈ O, let
us define

ô := arg min
j∈DO(o)

Δ(o, j). (4)

It follows from the triangle inequality for
√

Δ(·, ·) and (4), one can easily get
the following results.

Δ(ô,DO(o)) =
∑

j∈DO(o)

Δ(ô, j)

≤
∑

j∈DO(o)

(√
Δ(o, j) +

√
Δ(o, ô)

)2

≤ 2
∑

j∈DO(o)

(Δ(o, j) + Δ(o, ô))

≤ 4
∑

j∈DO(o)

Δ(o, j)

= 4Δ(o,DO(o)). (5)

Then, we consider the constructed pair (s, o) and obtain the following result.
One can see the proof in the supplementary material.
Lemma 3. Assume S and O be a feasible and a global optimal solution of the
SKMP, then for each pair (s, o) constructed in Procedure 1, the following result
is satisfied.

∑

j∈DS(s)

(
Δ(soj , j) − Δj(S)

)
+

∑

j∈DO(o)

(4Δj(O) − Δj(S)) ≥ 0. (6)

Local Search Approximation Algorithms for Spherical k-Means Problem 347

Thus, we can estimate the cost of S in the following theorem.

Theorem 1. Algorithm 1 produces a local optimal solution S satisfying

cost(S) ≤ 8
(
2 +

√
3
)

cost(O).

By applying the standard technique of [4,6], one can similarly get a local
search algorithm in polynomial time, which should sacrifice any given ε′ > 0 in
the approximation ratio.

4 Improved Local Search (2(4 +
√
7) + ε)-Approximation

Algorithm

For any feasible solution S, we define the so-called multi-swap operation swap(A,
B) as follows. In the operation, we are given two subsets A ⊆ S and B ⊆ D \ S
with |A| = |B| ≤ p, where p is a fixed integer. All centers in A are deleted from
S. Meanwhile, all centers in B are added to S.

We define the neighborhood of S with respect to the above multi-swap oper-
ation as follows,

Nghp(S) := {S \ A ∪ B|A ⊆ S,B ⊆ D \ S, |A| = |B| ≤ p} .

For any given ε > 0, we present our multi-swap local search algorithm in
Algorithm 2.

Algorithm 2 . The multi-swap local search algorithm for spherical k-means
problem

Step 0. (Initialization) Set

p :=

⌈
18

ε

⌉
.

Arbitrarily choose a feasible solution S from D.
Step 1. (Local search) Compute

Smin := arg min
S′∈Nghp(S)

cost(S′).

Step 2. (Stop criterion) If cost(Smin) ≥ cost(S), output S. Otherwise, set S := Smin

and go to Step 1.

Theorem 2. For any given ε > 0, Algorithm 2 produces a local optimal solution
S satisfying

cost(S) ≤
(
2
(
4 +

√
7
)

+ ε
)

cost(O).

348 D. Zhang et al.

5 Numerical Tests

We test our local search algorithm on some real document-term datasets from the
CLUTO website (http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.
tar.gz). Note that our algorithm outputs a local optimal solution of the dis-
crete spherical k-means problem (that is, the set of centers is contained in D).
The discrete spherical k-means problem can be formulated as the following 0-1
integer programming,

min
∑

i,j∈D
Δ(i, j)xij

s.t.
∑

i∈F
xij = 1, ∀j ∈ D,

xij ≤ yi, ∀i, j ∈ D,
∑

i∈D
yi = k,

xij , yi ∈ {0, 1} ∀i, j ∈ D,

where the variable yi indicates whether the point i is selected as a center, and
xij indicates whether the point j is belong to the cluster with the center i. The
corresponding LP relaxation is

min
∑

i,j∈D
Δ(i, j)xij

s.t.
∑

i∈F
xij = 1, ∀j ∈ D,

xij ≤ yi, ∀i, j ∈ D,
∑

i∈D
yi = k,

xij , yi ≥ 0 ∀i, j ∈ D.

We first do some numerical experiments to compare the local optimal value
produce by the single-swap local search algorithm and the optimal value of the
LP relaxation.

Since the computational skill is limited, we select randomly 50 and 100 points
in the original data and do the experiment on these points. The initial solution of
the local search algorithm is set as k points drawn uniformly from D. Because of
the randomness of the algorithm, we test 10 instances for each size and dataset,
and show the average ratio of the local optimal value and global optimal value
in Table 1. The result shows that the local optimal solution is very near to the
global optimal solution of the discrete spherical k-means problem, implying that
single-swap is better than multi-swap for these datasets since single-swap can
produce a solution which is close to multi-swap in less time.

http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz
http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz

Local Search Approximation Algorithms for Spherical k-Means Problem 349

Table 1. Compare to the LP relaxation

Data name 50 points 100 points

k ratio k ratio

cacmcisi 2 1.0000 2 1.0000

classic 4 1.0000 4 1.0000

cranmed 2 1.0000 2 1.0000

fbis 15 1.0015 15 1.0016

hitech 6 1.0000 6 1.0000

k1a 16 1.0012 19 1.0002

k1b 6 1.0005 6 1.0003

la1 6 1.0000 6 1.0000

la2 6 1.0000 6 1.0000

la12 6 1.0000 6 1.0004

mm 2 1.0000 2 1.0000

new3 25 1.0018 34 1.0016

ohscal 10 1.0005 10 1.0002

re0 11 1.0004 12 1.0006

re1 15 1.0004 22 1.0026

reviews 5 1.0000 5 1.0000

tr11 8 1.0000 9 1.0007

tr12 7 1.0000 8 1.0000

tr23 5 1.0012 6 1.0000

tr31 6 1.0000 6 1.0013

tr41 10 1.0000 10 1.0000

tr45 10 1.0006 9 1.0000

wap 13 1.0000 17 1.0002

6 Discussions

In this paper, we study the SKMP and present (8(2+
√

3)+ε)- and (2(4+
√

7)+ε)-
approximation algorithms using single-swap and multi-swap respectively. Since
there is a primal-dual 6.357-approximation algorithm of Ahmadian et al. [1],
which improves the previous local search (9 + ε)-approximation algorithm given
by Kanungo et al. [18] for the classic k-means problem, it is natural to ask
whether our local search (2(4+

√
7)+ε)-approximation can be further improved

by using primal-dual technique.

350 D. Zhang et al.

Acknowledgements. The first author is supported by Natural Science Foundation
of China (No. 11871081). The second author is supported by Natural Science Foun-
dation of China (No. 11871366). The third author is the Higher Educational Sci-
ence and Technology Program of Shandong Province (No. J17KA171). The fourth
author is supported by Natural Science Foundation of China (No. 61433012), Shen-
zhen Research Grant (KQJSCX2018033017 0311901, JCYJ20180305180840138 and
GFW2017073114031767), and Hong Kong GRF 17210017. The fifth author is sup-
ported by Natural Science Foundation of China (No. 11531014).

References

1. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for
k-means and Euclidean k-median by primal-dual algorithms. In: Proceedings of
FOCS, pp. 61–72 (2017)

2. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-
of-squares clustering. Mach. Learn. 75, 245–249 (2009)

3. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
Proceedings of SODA, pp. 1027–1035 (2007)

4. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. SIAM J. Comput.
33, 544–562 (2004)

5. Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approx-
imation for k-median, and positive correlation in budgeted optimization. ACM
Trans. Algorithms 13(2) (2017). Article No. 23

6. Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location
and k-median problems. In: Proceedings of FOCS, pp. 378–388 (1999)

7. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation
algorithm for the k-median problem. J. Comput. Syst. Sci. 65, 129–149 (2002)

8. Cohen-Addad, V., Mathieu, C.: Effectiveness of local search for geometric opti-
mization. In: Proceedings of SoCG, pp. 329–343 (2015)

9. Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation
schemes for k-means and k-median in Euclidean and minor-free metrics. In: Pro-
ceedings of FOCS, pp. 353–364 (2016)

10. Cohen-Addad, V., Schwiegelshohn, C.: On the local structure of stable clustering
instances. In: Proceedings of FOCS, pp. 49–60 (2017)

11. Dasgupta, S.: The hardness of k-means clustering. Technical report CS2007-0890,
University of California, San Diego (2007)

12. Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using
clustering. Mach. Learn. 42, 143–175 (2001)

13. Endo, Y., Miyamoto, S.: Spherical k-means++ clustering. In: Proceedings of
MDAI, pp. 103–114 (2015)

14. Friggstad, Z., Rezapour, M., Salavatipour, M.R.: Local search yields a PTAS for
k-means in doubling metrics. In: Proceedings of FOCS, pp. 365–374 (2016)

15. Friggstad, Z., Zhang, Y.: Tight analysis of a multiple-swap heurstic for budgeted
red-blue median. In: Proceedings of ICALP, pp. 75:1–75:13 (2016)

16. Hornik, K., Feinerer, I., Kober, M., Buchta, C.: Spherical k-means clustering. J.
Stat. Softw. 50(10), 1–22 (2012)

17. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. J.
ACM 48, 274–296 (2001)

Local Search Approximation Algorithms for Spherical k-Means Problem 351

18. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: A local search approximation algorithm for k-means clustering. Comput.
Geom. Theory Appl. 28, 89–112 (2004)

19. Li, M., Xu, D., Zhang, D., Zou, J.: The seeding algorithms for spherical k-
means clustering. J. Glob. Optim. 1–14 (2019). https://doi.org/10.1007/s10898-
019-00779-w

20. Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. SIAM J.
Comput. 45, 530–547 (2016)

21. Lloyd, S.: Least squares quantization in PCM. Technical report, Bell Laboratories
(1957)

22. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–
137 (1982)

23. Mahajan, M., Nimbhorkar, P., Varadarajan K.: The planar k-means problem is
NP-hard. In: Proceedings of WALCOM, pp. 274–285 (2009)

24. Makarychev, K., Makarychev, Y., Sviridenko, M., Ward, J.: A bi-criteria approxi-
mation algorithm for k-means. In: Proceedings of APPROX/RONDOM, pp. 14:1–
14:20 (2016). Article No. 14

25. Matoušek, J.: On approximate geometric k-clustering. Discrete Comput. Geom.
24, 61–84 (2000)

26. Zhang, P.: A new approximation algorithm for the k-facility location problem.
Theor. Comput. Sci. 384, 126–135 (2007)

https://doi.org/10.1007/s10898-019-00779-w
https://doi.org/10.1007/s10898-019-00779-w

Author Index

Ahmed, Shareef 1

Bravo, Raquel S. F. 272

Chang, Jou-Ming 16
Chang, Ruay-Shiung 16
Chang, Yu-Hsuan 16
Chen, Jianer 42
Chen, Mingyan 29
Chen, Wenbin 42
Chen, Wenping 223
Chen, Zhixiang 121
Cheng, Yukun 341

Ding, Wei 51, 62, 72
do Carmo, Felipe P. 236
Dourado, Mitre C. 272
Dress, Andreas W. M. 83
Drummond, Lúcia M. A. 236
Du, Dingzhu 249

Fang, Qizhi 249
Feng, Qilong 95, 121
Fernau, Henning 108
Fu, Bin 121

Gao, Chuangen 129, 329
Gao, Suogang 142
Gong, Suning 249
González, Pedro Henrique 236
Gu, Shuyang 129, 329
Guo, Longkun 149

Hou, Bo 142
Huang, Yufei 142

Ji, Sai 149, 159

Li, Deying 223
Li, Fei 169
Li, Jianping 192
Li, Menghong 179

Li, Min 149, 159, 341
Li, Weidong 203
Li, Yongming 292
Lichen, Junran 192
Lih, Ko-Wei 192
Lin, Mugang 121
Liu, Wen 142
Liu, Xiaofei 203
Lu, Changhong 212
Luo, Chuanwen 223

Maehara, Hiroshi 83
Meng, Xiangzhong 95
Michelon, Philippe 236
Munhoz, Pablo L. A. 236

Nakano, Shin-ichi 1
Nogueira, Loana T. 272
Nong, Qingqin 249

Ochi, Luiz S. 236

Pang, Sabrina Xing Mei 83
Protti, Fábio 272

Qiu, Ke 62, 72

Rahman, Md. Saidur 1
Rainwater, Stephen 142
Ran, Yingli 179

Shao, Xiaoyu 249
Sheng, Haiyun 261
Sheng, Zimo 304
Souza, Uéverton S. 236, 272
Stege, Ulrike 108
Sun, Jian 261
Sun, Tao 249
Sun, Yuefang 261

Tan, Guanlan 95
Thompson, João Vinicius C. 272

Wang, Hua 329
Wang, Jianxin 95, 121
Wang, Limin 284
Wang, Qichao 292
Wang, Yishui 159, 341
Wang, Yongcai 223
Wu, Lidong 142, 223
Wu, Ro-Yu 16
Wu, Weili 129, 223, 329

Xiao, Mingyu 304
Xu, Dachuan 129, 149, 159, 284, 329, 341
Xue, Yuan 316

Yang, Boting 316
Yang, Ruiqi 129, 329
Ye, Qingjie 212
Yu, Jiguo 129
Yu, Xingxing 192

Zeng, Zhenbing 29, 83
Zhang, Dongmei 149, 341
Zhang, Xiaoyan 261, 284
Zhang, Zhao 179, 284
Zhou, Wei 292
Zhu, Chengru 212
Zilles, Sandra 316

354 Author Index

	Preface
	Organization
	Contents
	One-Dimensional r-Gathering Under Uncertainty
	1 Introduction
	2 Preliminaries
	3 One-Dimensional Uncertain r-Gathering Problem
	3.1 Histogram
	3.2 Uniform Distribution

	4 Conclusion
	References

	Improved Algorithms for Ranking and Unranking (k,m)-Ary Trees
	1 Introduction
	2 Preliminaries
	2.1 Zaks' Sequences vs. Right-Distance Sequences
	2.2 (k,m)-Ary Trees and (k,m)-Catalan Number
	2.3 B-order and Reverse-Lexicographical Ordering

	3 An Improved Ranking Algorithm
	4 An Improved Unranking Algorithm
	5 Concluding Remarks
	References

	A Probabilistic Algorithm for Verification of Geometric Theorems
	1 Introduction
	2 Algebraic Representation of Geometry Theorems
	3 Estimating the Degree Bounds for the Pseudo-remainder
	4 Probabilistic Estimates of Truth and Selection Criteria For statistical Population
	5 Statistical Error Analysis and Significance Test
	6 Conclusions
	References

	Approximating Closest Vector Problem in Norm Revisited
	1 Introduction
	2 Preliminaries
	3 Hardness of Approximating CVP
	4 Conclusion
	References

	Low-Dimensional Vectors with Density Bounded by 5/6 Are Pinwheel Schedulable
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Fundamental Properties

	3 Main Results
	4 Concluding Remarks
	References

	Constant-Factor Greedy Algorithms for the Asymmetric p-Center Problem in Parameterized Complete Digraphs
	1 Introduction
	1.1 Exact Algorithms
	1.2 Approximation Algorithms
	1.3 Our Works

	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Observations
	2.3 Parameterized Complete Digraphs

	3 A (1 +)-Approximation to ApCP in -CD
	3.1 A Test Procedure Using Greedy Method
	3.2 A (1 +)-Approximation Algorithm

	4 WApCP in "426830A , "526930B -CD
	5 Conclusions
	References

	Updating Matrix Polynomials
	1 Introduction
	1.1 Motivation
	1.2 Related Works
	1.3 Our Results

	2 Preliminaries
	3 Update of 2-Order Matrix Polynomials
	4 Update of 3-Order Matrix Polynomials
	5 Update of 4-Order Matrix Polynomials
	6 Conclusions
	References

	On the Structure of Discrete Metric Spaces Isometric to Circles
	1 Introduction
	2 Some Basic Definitions and Facts
	3 4-point Circularity
	4 Circular Metric Spaces
	5 The 3PL Condition
	6 Finite Circular Metrics Are Kalmanson Metrics
	References

	A 2.57-Approximation Algorithm for Contig-Based Genomic Scaffold Filling
	1 Introduction
	2 Preliminaries
	3 An Approximation Algorithm for One-sided-GSF-max-BC
	3.1 Constructing Auxiliary Graphs Without Redundant Blocks
	3.2 The Approximation Algorithm Based on Maximum Matching

	References

	Profit Parameterizations of Dominating Set
	1 Introduction
	2 Preliminaries
	2.1 Simple Observations
	2.2 Vertex Variant

	3 Main Results
	3.1 A Linear Kernel
	3.2 A Search-Tree Algorithm

	4 Conclusions and Prospects
	References

	Exponential Time Approximation Scheme for TSP
	1 Introduction
	2 Definitions
	3 Outline of the Algorithm
	4 Algorithm and Its Analysis
	5 Lower Bound
	6 Conclusions
	References

	Interaction-Aware Influence Maximization and Iterated Sandwich Method
	1 Introduction
	2 Related Works
	3 Problem Formulation
	3.1 Interaction-Aware Influence Maximization
	3.2 Modularity of Objective Function
	3.3 Hardness Result

	4 Sandwich Theory
	4.1 Preliminary
	4.2 Sandwich Theory
	4.3 DS Decomposition

	5 Algorithms
	5.1 Iterated Sandwich Algorithm
	5.2 Analysis

	6 Conclusion
	References

	On Approximation Algorithm for the Edge Metric Dimension Problem
	1 Introduction
	2 Approximation Algorithm
	3 Theoretical Analysis
	References

	The Seeding Algorithm for Spherical k-Means Clustering with Penalties
	1 Introduction
	2 Preliminaries
	3 The Seeding Algorithm and Our Results
	4 Proof of Theorem1
	5 Discussion
	References

	Approximation Algorithm for the Correlation Clustering Problem with Non-uniform Hard Constrained Cluster Sizes
	1 Introduction
	2 The Correlation Clustering Problem with Non-uniform Hard Constrained Cluster Sizes
	3 Algorithm
	3.1 Algorithm
	3.2 Analysis

	4 Discussions
	References

	Two-Way Currency Trading Algorithms in the Discrete Setting
	1 Introduction
	2 An One-Step Look-Ahead Algorithm for the Two-Way Currency Trading Problem
	3 Optimal Algorithms for a Setting in Which the Number of Currency Trades Is Bounded
	3.1 k Is a Constant
	3.2 k Is Not a Constant

	References

	Approximation Algorithms for the Minimum Power Partial Cover Problem
	1 Introduction
	1.1 Related Works
	1.2 Contribution

	2 The Problem and a Preprocessing
	3 A Local Ratio Algorithm
	3.1 Algorithm After the Preprocessing
	3.2 The Whole Algorithm

	4 Conclusion
	References

	On Approximations for Constructing Required Subgraphs Using Stock Pieces of Fixed Length
	1 Introduction
	2 Terminology, Reduction and Key Lemmas
	3 Approximation Algorithm for the CRS-SPFL Problem
	4 Approximation Algorithms for the MCST-LBSP Problem
	5 Approximation Algorithms for the MCSSSPT-LBSP Problem
	6 Conclusion and Further Research
	References

	A Primal Dual Approximation Algorithm for the Multicut Problem in Trees with Submodular Penalties
	1 Introduction
	2 Preliminaries
	3 The Prima-Dual Approximation Algorithm
	4 Conclusion
	References

	Algorithmic Aspect on the Minimum (Weighted) Doubly Resolving Set Problem of Graphs
	1 Introduction
	2 Algorithm for Graphs with Cut-Vertices
	3 k-Edge-Augmented Trees
	4 Open Problem
	References

	Trajectory Optimization of UAV for Efficient Data Collection from Wireless Sensor Networks
	1 Introduction
	2 Related Works
	3 Models and Definition
	3.1 Network Model
	3.2 Data Transmission Model
	3.3 Definition for the Problem

	4 Algorithms for the MDCP Problem
	4.1 The MDCP-A1 Algorithm
	4.2 The MDCP-A2 Algorithm
	4.3 Discussion

	5 Simulation Setup and Results
	6 Conclusion
	References

	Locality Sensitive Algotrithms for Data Mule Routing Problem
	1 Introduction
	2 Related Work
	3 Theoretical Remarks
	3.1 Lower Bounds
	3.2 Mathematical Formulation

	4 Algorithms for Data Mule with Local View
	4.1 Algorithms Based on Number of Uncovered Neighbours
	4.2 Algorithms Based on Convex-Hull

	5 Computational Experiments and Analysis
	References

	Maximize a Monotone Function with a Generic Submodularity Ratio
	1 Introduction
	2 Preliminaries
	3 Cardinality Constraint
	4 Knapsack Constraint
	5 K-Intersection Constraint
	6 Conclusion
	References

	Approximation Algorithm for Stochastic Prize-Collecting Steiner Tree Problem
	1 Introduction
	2 Related Work
	3 Stochastic Prize-Collecting Steiner Tree Problem
	3.1 The Primal-Dual Algorithm
	3.2 The Analysis of the Algorithm

	4 Conclusions
	References

	A General Framework for Path Convexities
	1 Introduction
	2 Preliminaries
	2.1 Path Convexities in the Literature
	2.2 Computational Problems
	2.3 Two Useful Facts

	3 A General Framework for Path Convexities
	3.1 Putting the Matrices as Part of the Input
	3.2 Constant Matrices: The (a,b,c,d)-path Convexity
	3.3 (a,b,c,d)-path Convexity and Bounded Treewidth Graphs
	3.4 Particular Cases of the (a,b,c,d)-path Convexity

	References

	An Approximation Algorithm for the Dynamic k-level Facility Location Problem
	1 Introduction
	2 k-DFLP
	3 Primal-Dual Algorithm
	4 Analysis of Algorithm
	5 Discussions
	References

	Weighted Two-Dimensional Finite Automata
	1 Introduction
	2 Definitions and Examples
	3 Upper Bounds
	4 Closure Properties
	5 Conclusion
	References

	Improved Parameterized Algorithms for Mixed Domination
	1 Introduction
	2 Preliminaries
	3 Branch-and-Search Paradigms
	3.1 Applied to Constrained Mixed Domination

	4 A Polynomial-Time Solvable Case
	5 Some Branching Rules
	6 A Refined Parameterized Algorithm
	7 Kernels in Planar Graphs
	7.1 Planar Mixed Domination

	8 Conclusion
	References

	New Results on the Zero-Visibility Cops and Robber Game
	1 Introduction
	2 Preliminaries
	3 Lower Bounds
	3.1 Graph Joins
	3.2 Lexicographic Products of Graphs
	3.3 Complete Multipartite Graphs
	3.4 Split Graphs

	4 Matching Upper Bounds
	4.1 Graph Joins
	4.2 Lexicographic Products of Graphs
	4.3 Complete Multipartite Graphs
	4.4 Split Graphs

	5 Conclusions
	References

	A Two-Stage Constrained Submodular Maximization
	1 Introduction
	2 Preliminaries
	3 P-Matroid System Constraints
	3.1 Algorithm
	3.2 Theoretical Analysis

	4 P-Extendible System Constraints
	4.1 Algorithm
	4.2 Theoretical Analysis

	5 Experiments
	6 Conclusion
	References

	Local Search Approximation Algorithms for the Spherical k-Means Problem
	1 Introduction
	2 Preliminaries
	3 A Local Search ((8 (2+ 3) +)-Approximation Algorithm
	4 Improved Local Search (2 (4+7) +)-Approximation Algorithm
	5 Numerical Tests
	6 Discussions
	References

	Author Index

