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Abstract. We consider a service system with a single server, exponen-
tially distributed service time, and two types of service rates – high and
low. A customer chooses to obtain a high rate or a low rate service,
and then the customer is active for an exponentially distributed period
of time with a given high or low rate, respectively, and returns to the
queue to be served again. Customers strategically choose a service type
in order to maximize their long-run activity time.

We investigate which strategies of the customers are socially optimal
and explore conditions for Nash equilibria. We examine symmetric and
asymmetric strategies, as well as behavioral strategies. We focus on the
game with two customers.

We prove an equivalence of the conditions for the existence of pure
and mixed equilibria to those in the behavioral model, though the value
of the mixed equilibrium strategy differs from the value of the behavioral
equilibrium strategy for the same parameters. We show that a pure asym-
metric equilibrium does not exist, a pure asymmetric strategy cannot be
socially optimal, and a pure symmetric equilibrium always exists.

Keywords: Strategic queueing · Networks · Nash equilibria ·
Social optimization

1 Introduction

We consider a system with a single server and N customers. The server supplies
two service types - short or long. A served customer is active for a shorter or
a longer period corresponding to the type of service he obtained, and when
the activity period ends, returns to the queue to be served again. Consider, for
example, a closed system of batteries with one charger. A battery can get a long
or a short charging time, and will perform accordingly for a longer or a shorter
time before recharging.

The motivation for our model is an application server shared by computer
processes, described by Courcoubetis and Varaiya [3] and by Cheng and Kohler
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[1]. Gallay and Hongler [4] consider a variation with electric vehicles with various
charging facilities. The same model is described by Xu, Dai, Sykara and Lewis,
[8] for a multi-robot control operator in a disaster area. The referred articles
search for system optimization while we assume strategic customers and analyse
equilibrium strategies.

We focus on the case with two customers and investigate equilibria and opti-
mal solutions for maximum probability to be active. The main technical diffi-
culty in the analysis is that in the closed queueing system there is a dependence
between successive service and waiting times.

Our main results: The socially optimal strategy is the pure symmetric strat-
egy with the smaller utilization factor (Theorem 1). When the low-rate service
has the smaller utilization factor (activity rate/service rate), choosing the low-
rate service is optimal and the unique equilibrium (Theorem 5). We conjecture
that there always exists a pure symmetric equilibrium strategy (Conjecture 16).
We show that a pure asymmetric strategy cannot be an equilibrium (Corollary
17). We prove that a set of parameters (ρl, ρh, λl, λh) induces the same num-
ber and types of equilibria in the mixed-strategy model and in the behavioral-
strategy model. We supply examples of the different cases.

Courcoubetis and Varaiya [3] describe two customers (processes) served by
a single resource. The queueing network is similar to our model, but in their
model the ratio between service time and activity time is fixed and they look for
maximal utilization of the server.

Cheng and Kohler [1] deal with programs as customers too. They describe
web-enabled application services. The customers are programs. A program sends
a transaction to be processed by an ASP - Application Service Provider. Process
time of a transaction is an exponential random variable, and so is the period of
time between transactions. The paper compares the purchase of software for use
in-house, with using the ASP’s services, and analyzes the ASP’s pricing scheme.
This is a variation of the machine interference model described in [5]. Xu, Dai,
Sykara and Lewis [8] describe a multi-robot control operator. There are N robots
operated by a single server. The operator interacts with the robot for a period of
time (IT - Interaction Time) raising its performance above an upper threshold,
after which the robot is neglected for a period of time (NT - Neglect Time)
until its performance deteriorates below a lower threshold, when the operator
must again interact with the server. Both IT and NT are exponential random
variables. In their paper the operator is free to choose between high quality or
low quality interaction, or a mixed strategy, i.e. provide high quality interaction
with a certain probability. They look for the probability p that maximizes the
value of the utility function per cycle, whereas in our paper we look for the
maximal utility per unit time.

Chu, Wan and Zhan [2] consider a ride-hailing platform where idle taxi drivers
accept or ignore a rider’s request depending on profitability considerations. There
are two types of riders with a different profitability (price) but the same service
rate. If instead of discriminating between riders by price, the more profitable
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rider would have a higher service rate, and the utility function would be the
proportion of time the taxi is busy, the model will be similar to ours.

Strategic queueing is introduced and surveyed by Hassin and Haviv [7] and
Hassin [6]. Hassin [6] §4.7 and §6.3.2 survey the literature on expert systems with
duration-dependent service value. In our model customers return to service and
are interested in maximizing their long-run utility. Customers act strategically
choosing their service rate.

Section 2 formally defines the model and summarises our results. Section 3
analyses the model when each customer sticks to the same service type repeat-
edly, and Sect. 4 analyses the model when each customer draws a service type
with the same probability in each cycle. Section 5 shows that the conditions for
equilibria are equivalent in both models, and in Sect. 6 we show that there always
exists a pure equilibrium in the first model, and use the equivalence to prove that
there always exists a pure equilibrium in the second model. Section 7 elaborates
on research continuation of the subject.

2 The Model

We study a closed queueing network with a single server and two customers.
A customer who enters service chooses either a low-rate or a high-rate service.
After the end of the service the customer leaves for a low-rate or a high-rate
activity period, respectively, and then returns to the queue. See Fig. 1.

high-rate

low-rate

SERVER

high-rate activity low-rate activityQUEUE

Fig. 1. The model.

Service time is exponentially distributed. The service rate is μl or μh, cor-
responding to low and high service rate, μh > μl. Activity time is exponen-
tially distributed with rate λl or λh corresponding to low and high activity rate,
λh > λl. The service discipline is FCFS. When both customers choose the same
service rate the model behaves as the Machine Interference Model (e.g. Gross
and Harris [5] Section 2.7).

The utility of a customer is equal to the steady-state probability to be active.
The social utility is the average utility of the customers. We denote the utility
factor ρθ = λθ

μθ
, θ ∈ {l, h}.
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2.1 Model Variations

Let customer i draw low service rate with probability pi, i = 1, 2. We analyse
social optima and existence of equilibria using the following strategies:

– pure strategy - customer i draws once a service rate (low service rate with
probability pi, pi ∈ {0, 1}) and sticks to it.

– mixed strategy - customer i draws once a service rate (low service rate with
probability pi, pi ∈ [0, 1]) and sticks to it.

– behavioral strategy - customer i independently draws low service rate with
probability pi, pi ∈ (0, 1) each time he enters service. The customer sticks to
the same probability throughout the game.

The utility function for a single customer is the expected fraction of time in
activity, or, in other words, the probability to find the customer in the active
period. U(p1, p2) is the value of the utility function for customer 1, when each
customer 2 draws low service rate with probability p2. The social utility is the
average utility of the customers.

We discuss pure symmetric strategies separately as they yield the same util-
ities for the mixed game and for the behavioral game.

3 Mixed Strategies

In the mixed strategy version customer i sticks to low service rate with probabil-
ity pi, otherwise he sticks to the high service rate. We consider three scenarios:

– The pure symmetric solution where p1 = p2, pi ∈ {0, 1} - the machine
interference model.

– The pure asymmetric solution where p1 �= p2, pi ∈ {0, 1}.
– The mixed solution where pi ∈ [0, 1].

3.1 Steady-State Solution - Pure Strategies

Suppose the customers choose different service types. Let (k,m) define a state
of the system, where k,m ∈ {a, s, w} are the states of the first and the second
customers, respectively. a - active, s - in service, w - waiting for service.

ws

μh

sa

μl

λh

aaλl

λh

sw
μl

as

λl

μh

Fig. 2. Transition diagram for the asymmetric strategy, p1 = 1, p2 = 0.
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Let U(p1, p2) denote the utility of customer 1, under the strategy profile
(p1, p2). Let πkm denote the steady-state probability for state (k,m) under the
asymmetric pure strategy case. We compute U(1, 0) = πaa+πas - the probability
that customer 1 is active, and U(0, 1) = πaa+πsa - the probability that customer
2 is active, using Fig. 2.

U(1, 0) =
(

1 + ρl +
λlρh

2(λl + λhρl + λlρl)
(λl + λhρl)(λh + λhρh + λlρh)

)−1

(1a)

U(0, 1) =
(

1 + ρh +
λhρ2l (λh + λlρh + λhρh)

(λh + λlρh)(λl + λlρl + λhρl)

)−1

(1b)

We compute U(1, 1) and U(0, 0) when both customers choose the same service
rate, using (1a) and (1b) respectively: with ρl = ρh, λl = λh:

U(1, 1)) =
(

1 + ρl +
ρl

2

1 + ρl

)−1

(2a)

U(0, 0) =
(

1 + ρh +
ρh

2

1 + ρh

)−1

(2b)

3.2 Optimal Strategy

There are cases (see Subsect. 3.4 for examples), where the pure symmetric strat-
egy with the larger ρ is an equilibrium, but we now show that the socially optimal
strategy is always the pure symmetric strategy with the smaller utilization fac-
tor ρ.

Theorem 1. The pure symmetric strategy with the smaller ρ is optimal.

Proof. We first note that the function 1+ρ
1+2ρ+2ρ2 is monotone decreasing in ρ and

therefore among pure symmetric strategies, choosing the service with the smaller
ρ is optimal.

We now proceed to show that the optimal pure symmetric strategy is better
than the asymmetric pure strategy. When the customers draw different pure
strategies, the social utility is the average utility of the customers, i.e. SU(0, 1) =
U(0,1)+U(1,0)

2 . By (1):

SU(0, 1) =

(
1+ρl+

λlρh
2(λl+λhρl+λlρl)

(λl+λhρl)(λh+λhρh+λlρh)

)−1

2 (3)

+

(
1+ρh+

λhρ2
l (λh+λlρh+λhρh)

(λh+λlρh)(λl+λlρl+λhρl)

)−1

2

Lemma 2. When ρl = ρh, the socially-optimal pure strategy is symmetric.

Proof. Given ρ, the value U(0, 0) of the pure symmetric equilibrium is indepen-
dent of λh and λl. We show that for any λh and λl, SU(0, 1) ≤ U(0, 0). We first
find the parameters that maximize SU(0, 1) by computing ∂SU(0,1)

∂λl
and ∂SU(0,1)

∂λh
,

when ρl = ρh:
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∂SU(0, 1)
∂λl

= λh(λ2
h − λ2

l )D

∂SU(0, 1)
∂λh

= λl(λ2
l − λ2

h)D

where D = ρ2
h(2ρh+1)

2(λ2
l ρh(ρh+1)2+λlλh(2ρh(ρ2

h+ρh+1)+1)+λ2
hρh(ρh+1)2)2

> 0.

By equating both derivatives to zero we see that SU(0,1) is extreme when
λl = λh. The second derivatives are negative when we assign λl = λh, hence
SU(0, 1) ≤ U(0, 0) is maximized when λl = λh in which case it is equal to
U(0, 0). ��
Lemma 3. A pure asymmetric strategy is never strictly better than the best pure
symmetric strategy.

Proof. For ρl = ρh the claim follows from Lemma 2. Assume first that ρl > ρh.
By (3):

∂SU(0,1)
∂ρl

=

− (ρh(λl+λh)+λh)
(

λ3
l ρh(ρh+1)+λ2

l λh((ρl(ρl+4)+1)ρh+1)+λlλ2
hρl(2(ρl+1)ρh+ρl+4)+λ3

hρ2
l (ρh+2)

)

2
(

λlρ2
h
(ρl(λl+λh)+λl)+(ρl+1)ρh(λl+λh)(λl+λhρl)+λh(ρl+1)(λl+λhρl)

)2 < 0,

Given ρh, SU(0, 1) is decreasing in ρl and the maximum in the interval ρl ∈
[ρh,∞] is achieved when ρl = ρh.

Assume now ρl < ρh, By (3):

∂SU(0,1)
∂ρh

=

−
(ρl(λl+λh)+λl)

(
λl

3(ρl+2)ρh
2+λl

2λhρh(2ρl(ρh+1)+ρh+4)+λlλh
2(ρlρh(ρh+4)+ρl+1)+λh

3ρl(ρl+1)
)

2
(

λlρh
2(ρl(λl+λh)+λl)+(ρl+1)ρh(λl+λh)(λl+λhρl)+λh(ρl+1)(λl+λhρl)

)2 < 0,

Given ρl, SU(0, 1) is decreasing in ρh and the maximum in the interval ρh ∈
[ρl,∞] is achieved when ρl = ρh.

We showed in Lemma 2 that when ρl = ρh the maximum is achieved when
λl = λh. ��
Lemma 4. A mixed asymmetric strategy is never optimal

Proof. A mixed strategy is a weighted average of the pure strategies
U(0, 0), U(1, 1), U(0, 1), U(1, 0), therefore it cannot be strictly better than all
of them. ��

3.3 Equilibria

We use Fig. 3, where λh = 1.5, ρh = 0.1, λl = 1. We draw the utilities on the
range ρl ∈ [0.100, 0.110].

W.l.o.g. suppose λl, ρh and λh stay fixed. We start with ρl = ρh (In the
example in Fig. 3 ρh = 0.100) and analyse the change in equilibria as ρl increases.
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1901.03401.0301.0 ρl

U

801.0601.0201.0001.0
0.892

0.894

0.896

0.898

0.900

0.902

0.904

U(0, 0)

U(1, 0)

U(1, 1)

U(0, 1)

Fig. 3. λh = 1.5, ρh = 0.1, λl = 1, ρl > ρh

Theorem 5. When ρl ≤ ρh, p1 = p2 = 1 is the only pure-strategy equilibrium.

Proof. We prove the claim by showing that U(0, 1) < U(1, 1), and U(0, 0) <
U(1, 0).

By definition λh > λl. By (1b) and (2a), U(0, 1) < U(1, 1) is equivalent to

1 + ρh +
λhρ2l (λh + λlρh + λhρh

(λh + λlρh)(λl + λlρh + λhρl)
> 1 + ρl +

ρ2l
1 + ρl

⇔

λh(1 + ρl)(λh + λlρh + λhρh) > (λh + λlρh)(λl + λlρh + λhρl) ⇔
λ2

h + λ2
hρh + λ2

hρlρh > λhλl + λ2
l ρh + λ2

l ρhρl

λ2
h > λhλl, λ2

hρh > λ2
l ρh and λ2

hρlρh > λ2
l ρhρl prove the claim.

In the same way, U(1, 0) > U(0, 0) is equal to

1 + ρl +
λlρh

2(λl + λhρl + λlρl)
(λl + λhρl)(λh + λhρh + λlρh)

< 1 + ρh +
ρh

2

1 + ρh
⇔

λl(λl + λhρl + λlρl)
(λl + λhρl)(λh + λhρh + λlρh)

<
1

1 + ρh
⇔

λl(ρh + 1)(λlρl + λl + λhρl) < λl(ρh + 1)(λlρl + λl + λhρl) ⇔
λ2

l + λ2
l ρl + λlλhρl + λ2

l ρh + λ2
l ρlρh + λlλhρlρh <

λ2
h + λlλhρl + λ2

hρl + λlλhρh + λ2
l ρlρh + λlλhρlρh ⇔

λ2
l + λ2

l ρl + λ2
l ρh < λ2

h + λ2
hρl + λlλhρh.

��

3.4 Examples

In Table 1 we show examples of pure and mixed strategies. In all three examples
p1 = p2 = 0 is socially optimal among pure symmetric and asymmetric strate-
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Table 1. Examples of mixed strategies.

Name λl μl λh μh ρl ρh U(1, 1) U(0, 0) U(1, 0) U(0, 1) U(0,1)+U(1,0)
2

Ex1 1 1 1.1 1.2 1 0.9167 0.4 0.4246 0.4149 0.4083 0.4116

Ex2 1 1 4 5 1 0.8 0.4 0.4639 0.4771 0.3435 .4103

Ex3 1 1 3 4 1 0.75 0.4 0.4828 0.4723 0.369 .4207

gies, but in the first example, Ex1, U(1, 0) < U(0, 0), hence p1 = p2 = 0 is an
equilibrium. In the second example, Ex2, U(0, 1) < U(1, 1), hence p1 = p2 = 1
is an equilibrium. In the third example, Ex3, both p1 = p2 = 0 and p1 = p2 = 1
are equilibria, as U(0, 1) < U(1, 1) and U(1, 0) < U(0, 0).

Theorem 6. A unique mixed equilibrium q = U(0,0)−U(1,0)
U(0,0)−U(1,0)+U(1,1)−U(0,1) exists

iff there exist two pure equilibria, either both symmetric or both asymmetric.

Proof. Suppose both p1 = p2 = 0 and p1 = p2 = 1 are equilibria, then q is
the probability that enforces, for a given customer, indifference between the
strategies, when the other customer sticks to it. It is the solution of the equation
qU(1, 1) + (1 − q)U(1, 0) = qU(0, 1) + (1 − q)U(0, 0).

If both pure strategies are equilibria then U(0, 1) < U(1, 1) and U(1, 0) <
U(0, 0) and therefore 0 < q < 1.

Similarly, if the asymmetric strategies are equilibria then U(0, 1) > U(1, 1)
and U(1, 0) > U(0, 0) so that again 0 < q < 1.

If q is a valid mixed strategy, i.e. 0 < q < 1, then the numerator and the
denominator both have the same sign and either U(0, 0) > U(1, 0) and U(1, 1) >
U(1, 0) and both pure symmetric strategies are equilibria, or U(0, 0) < U(1, 0)
and U(1, 1) < U(1, 0) and then both pure asymmetric strategies are equilibria. ��
In example Ex3, q = 0.4828−0.4723

0.4828−0.4723+0.4−0.369 = 0.2530.

4 Behavioral Strategies

We now consider symmetric behavioral strategies, where all customers indepen-
dently draw low service rate with probability p, every time they enter service.

4.1 Social Optimum of the Behavioral-Strategy Game

We are looking for p that maximizes the probability to be active when all cus-
tomers follow the same strategy p.

Let (k,m) define a state of the system, where, k,m ∈ {al, ah, sl, sh, w} are
the states of the customers without ordering (as customers are homogeneous).
al, ah - low-rate or high-rate activity, sl, sh - low-rate or high-rate service, w -
waiting for service.

There are nine possible states. The vector π provides the stationary proba-
bilities for each state:
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π = (πw,sl
, πw,sh

, πsl,al
, πsh,al

, πsl,ah
, πsh,ah

, πal,al
, πal,ah

, πah,ah
).

We compute π from the transition-rate diagram of the queueing system (see
Fig. 4), and derive the probabilities Pi, i = 0, 1, 2, for i active customers. U(p, p)
is the utility of a customer when both customers select low-service rate with
probability p.

U(p, p) =
P1

2
+ P2.

P1 = πsl,al
+ πsh,al

+ πsl,ah
+ πsh,ah

.

P2 = πal,al
+ πal,ah

+ πah,ah
.

In the resulting formula of U(p, p), p appears always as a divisor of 1 − p,
hence we simplify the presentation by searching for r = 1−p

p that maximizes
V (r) = U(p, p), and then p = 1

r+1 .

V (r) =
a + br + cr2

1+2ρl+2ρ2
l

1+ρl
a + er + 1+2ρh+2ρ2

h

1+ρh
cr2

(4)

where

a = (λl + λlρl + λhρl)(λh + ρh)λ2
h,

b = λlλh(λ2
l ρh(2 + ρl) + λ2

hρl(2 + ρh) + λlλh(2 + ρl + ρh + 2ρlρh)),

c = (λhρl + λl)(λh + λlρh + λhρh),

d = 2λlλh((λ2
hρl + λ2

l ρh)(ρl + 1)(ρh + 1) + λlλh(ρl(ρh(ρl + ρh + 2) + 1) + ρh + 1)).

In particular, when p1 = p2 = 1, U(1, 1) = 1+ρl

1+2ρl+2ρ2
l

which is equal to the
utility computed in (2a). Similarly, for p = 0, using L’Hôpital’s rule, we obtain
U(0, 0) = 1+ρh

1+2ρh+2ρ2
h
, as in (2b).

πal,al 2pλl

2qλl

πsl,al

μl λl

πw,slpμl

qμl

πsh,al

μh

λl

πal,ah

pλl

qλh

pλh

qλl

πsl,ah

λh

μl

πw,sh

qμh

pμh

πah,ah

2qλh

2pλh

πsh,ah
μh

λh

Fig. 4. Steady-state transition diagram for U(p, p), q = 1 − p.
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Theorem 7. If ρl = ρh then U(p, p) has two maximum points, namely p∗ = 0
and p∗ = 1.

Proof. By (4), for every 0 ≤ p ≤ 1,
U(p, p) = V (r) = a+br+cr2

a
U(1,1)+dr+ c

U(1,1) r2 = U(1, 1) a+br+cr2

a+U(1,1)dr+cr2 .

U(1, 1)d > b as 1+ρ
1+2ρ+2ρ2 d − b = λlλh(λl−λh)

2ρ2

1+2ρ+2ρ2 > 0,
hence U(p, p) < U(1, 1) = U(0, 0). ��

We now deal with any ρl and ρh, not necessarily ρl = ρh. Figure 5 shows a
graphical representation of U(p, p) with two numeric examples. U(p, p) is uni-
modal with one minimum point in [0, 1].

p

U(p, p)

0 0.2 0.4 0.6 0.8 1
0.390

0.392

0.394

0.396

0.398

0.4

(a) ρl = ρh = 1,λl = 1, λh = 10.

p

U(p, p)

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

0.85

(b) ρl = 0.2, ρh = 0.5, λl = 1, λh = 2.

Fig. 5. Examples of U(p, p).

Extensive numerical analysis, for virtually all possible parameter values,
shows that social optimum cannot be achieved by a behavioral strategy with
0 < p < 1.

Conjecture 8. arg max U(p, p) ∈ {0, 1}.

4.2 Equilibria of Behavioral Strategies

The mixed behavioral strategy 0 < p < 1 is an equilibrium if

U(1, p) = U(0, p). (5)

This means that if the other customer follows strategy p, the first customer
is indifferent between the two pure selections, therefore p is also a best response.
We first compute U(1, p) - the utility of a customer that always takes the low-rate
service while the other customer - denoted p chooser- draws the low-rate service
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with probability p. We build the steady-state transition diagram (see Fig. 6).
Let (k,m) define a state of the system, where, k,m ∈ {al, ah, sl, sh, w} are the
states of the first and the second customer, respectively. al, ah - low-rate or high-
rate activity, sl, sh - low-rate or high-rate service, w - waiting for service. The
vector π gives the stationary probabilities for each state. The utility U(1, p) =
πal,sl

+ πal,al
+ πal,sh

+ πal,ah
. In the same way we build the corresponding

transition diagram for U(0, p), and compute the utilities:

U(1, p) = (1 + ρl)
ap + b

c1p + d1
(6a)

U(0, p) = (1 + ρh)
ap + b

c0p + d0
(6b)

U(p, 1) = (1 + ρl)
ap + b − k(1 − p)λl

c1p + d1
= U(1, p) − (1 + ρl)λl

(1 − p)k
c1p + d1

(6c)

U(p, 0) = (1 + ρh)
ap + b + kpλh

c0p + d0
= U(0, p) + (1 + ρh)λh

pk

c0p + d0
(6d)

πw,sl

μl

πsl,al

λl

μl

πal,alλl

pλl

(1−p)λl

πal,sl

μl

λl

πsl,w

(1−p)μl

pμl

πal,sh

λl

μh

πal,ah

λl

pλh

(1−p)λh

πw,sh

μh

πsl,ah
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Fig. 6. Steady-state transition diagram for U(1, p).

where

a = λ3
hρl − λ3

l ρh + λlλ
2
h − λ2

l λh

b = λl(λhρl + λl)((λl + λh)ρh + λh)
c1 = λ3

hρl

(
2ρ2l + 2ρl + 1

)
+ λlλ

2
h

(
ρ3l (ρh + 1) + 2ρ2l + 2ρl + 1

)
+ λ2

l λh(ρl + 1)
(
ρ2l ρh − ρl

(
ρ2h + 1

) − 1
) − λ3

l (ρl + 1)2ρh(ρh + 1)

d1 = λl(ρl + 1)(λ2
hρl(ρl + 1)(ρh + 1) + λlλh(ρl(ρh(ρl + ρh + 2) + 1) + ρh + 1)

+ λ2
l (ρl + 1)ρh(ρh + 1))
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c0 = λ3
hρl(ρl + 1)(ρh + 1)2 − λlλ

2
h(ρh + 1)

(− (
ρ2l + 1

)
ρh + ρlρ

2
h − 1

)
− λ2

l λh

(
(ρl + 1)ρ3h + 2ρ2h + 2ρh + 1

) − λ3
l ρh

(
2ρ2h + 2ρh + 1

)
d0 = λl(2ρh(ρh + 1) + 1)(λhρl + λl)(λhρh + λh + λlρh))
k = (λ2

h − λ2
l )ρlρh + λlλh(ρh − ρl)

Theorem 9. A unique mixed behavioral equilibrium p = (1+ρh)d1−(1+ρl)d0
(1+ρl)c0−(1+ρh)c1

exists
iff there exist two pure equilibria, either both symmetric or both asymmetric.

Proof. According to Theorem 5 more than one pure equilibrium is possible only
if ρl > ρh. Recall that we defined λh > λl, it is easy to see that in that case all
the coefficients in the following equations are positive. By (6)

U(1, 0) = (1 + ρl)
b

d1
.

U(0, 1) = (1 + ρh)
a + b

c0 + d0
.

U(1, 1) = (1 + ρl)
a + b

c1 + d1
.

U(0, 0) = (1 + ρh)
b

d0
.

U(0, 0) − U(1, 0) =
b

d0d1
((1 + ρh)d1 − (1 + ρl)d0).

U(1, 1) − U(0, 1) =
a + b

(c0 + d0)(c1 + d1)
(1 + ρl)(c0 + d0) − (1 + ρh)(c1 + d1).

p is a mixed behavioral equilibrium when U(1, p) = U(0, p), which implies, by
(6a, 6b) that (1 + ρl) ap+b

c1p+d1
= (1 + ρh) ap+b

c0p+d0
. All the coefficients are positive

hence p = (1+ρh)d1−(1+ρl)d0
(1+ρl)c0−(1+ρh)c1

=
d0d1

b (U(0,0)−U(1,0))
d0d1

b (U(0,0)−U(1,0))+
(c0+d0)(c1+d1)

a+b (U(1,1)−U(0,1))
. In

other words, 0 < p < 1 is a valid probability value iff either both pure symmetric
strategies are equilibria or both pure asymmetric strategies are equilibria. ��

For example, when λl = 1, ρl = 1, λl = 2, ρl = 1, p1 = p2 = 1 is the only
behavioral equilibrium and p < 0. Suppose λl = 1, ρl = 1, λl = 3, ρl = 0.75,
p = 41

482 . In this case, p1 = p2 = 0, p1 = p2 = 1 and p1 = p2 = 41
482 are equilibria.

In Fig. 7 we show the functions U(1, p) and U(0, p) intersecting at p = 41
482 . The

best-response function BR is FTC - Follow the Crowd, i.e. BR = 0 for p < 41
482 ,

BR=1 for p > 41
482 , and indifference exists when p = 41

482 .
Note that there is a mixed equilibrium (see Example Ex3 in Subsect. 3.1)

for the same parameters, but the value is different - p = 0.2530. These are two
different strategies but the conditions for the strategies to be equilibria are equal,
as we prove in the next section.
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5 Equilibrium Equivalence

In this section we prove that an equilibrium in the mixed strategy game exists iff
there exists an equilibrium in the behavioral game for exactly the same param-
eters, though the value may be different.

Lemma 10. In the behavioral model the functions U(p, 1), U(p, 0), U(1, p) and
U(0, p) are monotone in the interval 0 ≤ p ≤ 1.

41
482

p

U

0 0.2 0.4 0.6 0.8 1

0.38
0.40
0.42
0.44
0.46
0.48

U(0, p)

U(1, p)

p
41
482

BR

0 0.2 0.4 0.6 0.8 1

0.20

0.40

0.60

0.80

1

q = p

Fig. 7. Best response - follow the crowd.

Proof. From (6) all these functions have the form

U(p) =
Ap + B

Cp + D

∂U(p)
∂p

=
AD − BC

(Cp + D)2

where A,B,C,D are constants depending on the parameters ρl, ρh, λl, λh alone.
The numerator of the derivative does not contain p hence U(p) is a monotone
function of p. If AD = BC then U(p) is constant. Note that the denominator
of U(p) cannot be zero in the interval [0, 1] as U(p) is bounded by 1, being a
probability value. ��
Theorem 11. A set of parameters (ρl, ρh, λl, λh) induces the same number and
types of equilibria in the mixed-strategy model and in the behavioral-strategy
model.
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Proof. We prove for pure symmetric equilibria, for asymmetric pure equilibria
and then for a mixed equilibrium.

A pure equilibrium in the behavioral-strategy model is a pure equilibrium in
the mixed-strategy model as the condition for behavioral-strategy equilibrium
is needed for a repeated draw in every cycle hence stronger than the condi-
tion needed for mixed-strategy equilibrium. So it is enough to prove that a
pure mixed-strategy equilibrium is also an equilibrium in the behavioral-strategy
model.

There are two pure symmetric strategies - p1 = p2 = 0 and p1 = p2 = 1. We
prove for p1 = p2 = 1 and the proof for p1 = p2 = 0 is similar. p1 = p2 = 1 is an
equilibrium in the mixed-strategy model if U(1, 1) ≥ U(0, 1). p1 = p2 = 1 is an
equilibrium in the behavioral-strategy model if U(1, 1) ≥ U(p, 1) ∀0 ≤ p ≤ 1.
By Lemma 10 U(p, 1) is monotone. When p1 = p2 = 1 is an equilibrium in
the mixed-strategy model U(1, 1) ≥ U(0, 1), hence U(p, 1) is monotone non-
decreasing and U(1, 1) ≥ U(p, 1) ∀0 ≤ p ≤ 1.

There are two pure asymmetric strategies - p1 = 1, p2 = 0 and p1 = 0, p2 = 1.
Either both are equilibria or neither is an equilibrium, as customers are homo-
geneous. When both pure asymmetric strategies are equilibria, U(0, 1) > U(1, 1)
and U(1, 0) > U(0, 0) and therefore neither pure symmetric strategy is an equi-
librium in either model. We showed in Theorems 6 and 9 that in either model a
mixed strategy exists iff there are two pure strategy equilibria, i.e. the formulae
that compute q - the mixed equilibrium, and p - the behavioral equilibrium, will
yield valid probability values for exactly the same set of parameters, although
in general q �= p. ��
Corollary 12. If no pure symmetric strategy is an equilibrium then both asym-
metric pure strategies are equilibria.

Proof. If no pure symmetric strategy is an equilibrium then U(0, 1) ≥ U(1, 1)
and U(1, 0) ≥ U(0, 0) which defines both asymmetric pure equilibria.

6 Graphical Analysis of Equilibria

In Theorem 11 we showed the equivalence of equilibria in the mixed and the
behavioral models, and the following discussion refers to both. We illustrate the
region of each equilibrium type by a graph in the (ρl, ρh) plane, for λl = 1 and
various λh. The points (ρl, ρh) on the boundary of the region where p1 = p2 = 1 is
an equilibrium satisfy U(0, 1) = U(1, 1)), and the points (ρl, ρh) on the boundary
of the region where p1 = p2 = 0 is an equilibrium satisfy U(1, 0) = U(0, 0)). By
(6) we get the two equations that define the relation between (ρl, ρh) on the
boundaries:

(1 + ρh)(c1 + d1) = (1 + ρl)(c0 + d0). (7)

(1 + ρh)d1 = (1 + ρl)d0. (8)
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Suppose λh is fixed. For every given ρl we define

ρ
h
(ρl) = min{ρh|p0 = p1 = 1 is an equilibrium}.

ρ̄h(ρl) = max{ρh|p0 = p1 = 0 is an equilibrium}.

Figure 8 shows the region of each equilibrium for (ρl, ρh) ∈ [0, 1.5]. Subfigures
8a, b, c and d show that as λh increases, the region where both pure strategies
are equilibria increases as well. We observe in these figures that ρ̄h(ρl) > ρ

h
(ρl),

implying the existence of a region with both p1 = p2 = 1 and p1 = p2 = 0
equilibria, and by Theorem 9 a mixed equilibrium exists as well, for every ρl > 0.

ρl

ρh

0 0.5 1.0 1.5
0

0.5

1.0

1.5 ρh = ρl

(a) λh = 1.
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ρh

0 0.5 1.0 1.5
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1.5 ρh = ρl

ρ̄h(ρl)
ρh(ρl)

(b) λh = 2.

ρl

ρh

0 0.5 1.0 1.5
0

0.5

1.0

1.5 ρh = ρl

ρ̄h(ρl)

ρh(ρl)

(c) λh = 8.

ρl

ρh

0 0.5 1.0 1.5
0

0.5

1.0

1.5 ρh = ρl

ρ̄h(ρl)

ρh(ρl)

(d) λh = 1000.

Fig. 8. p1 = p2 = 1 is equilibrium in the region marked by vertical lines, p1 = p2 = 0
is equilibrium in the region marked by horizontal lines.

The next lemma proves the extreme cases. When λh = λl = 1 the region
where both equilibria exist reduces to the line ρh = ρl, and when λh → ∞ the
region where both symmetric pure strategies are equilibria increases gradually
with λh and the boundaries converge, as we show in Fig. 8.

Lemma 13. Suppose λh = λl = 1. Then p1 = p2 = 1 is an equilibrium when
ρh ≥ ρl, and p1 = p2 = 0 is an equilibrium when ρh ≤ ρl. (See Fig. 8a).
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Proof. When λh = λl = 1 choosing the larger μ (smaller ρ) is a dominant
strategy as it achieves the same activity time for a smaller service time.

Lemma 14. When λh → ∞, ρ̄h(ρl) = 1
4 (ρl − 1 +

√
1 + 6ρl + ρ2l ) and ρ

h
(ρl) =

ρ2
l

(1+ρl)2
(See Figs. 8b, c and d).

Proof. For specific ρl, ρh and λh → ∞, let μh grow accordingly to keep ρh

fixed and note that the service time of the customer with p2 = 0 is negligible.
U(1, 0) = 1

1+ρl
as there is no waiting time for the first customer with p1 = 1.

U(0, 0) = 1+ρh

1+2ρh+2ρ2
h

does not change as it depends on ρh alone. The upper
boundary of the equilibrium region p1 = p0 = 0 satisfies U(1, 0) = U(0, 0), i.e.,

ρ̄h(ρl) =
1
4
(ρl − 1 +

√
1 + 6ρl + ρ2l ) (9)

In the same way, U(0, 1) = 1
1+ρh

1
1+ρl

. U(1, 1) = 1+ρl

1+2ρl+2ρ2
l

does not change as it
depends on ρl alone. The lower boundary of the region of p1 = p0 = 1 satisfies
U(0, 1) = U(1, 1) i.e.,

ρ
h
(ρl) =

ρ2l
(1 + ρl)2

. (10)

��
Lemma 15. When λh → ∞, ρ̄h(ρl) > ρ

h
(ρl).

Proof. For a given ρh, the inverse function of (9) - ρ̄l(ρh) = ρh(1 + ρh

1+ρh
), gives

the value of ρl on the boundary of the region where U(1, 0) = U(0, 0). Then we
use (10) to compute ρ

h
(ρ̄l(ρh)), which corresponds to ρ̄l(ρh) on the boundary

of the region where U(1, 0) = U(1, 1). The claim follows from the following
inequality:

ρ
h
(ρ̄l(ρh)) =

(ρh + 2ρ2h)2

(1 + 2ρh + 2ρ2h)2
< ρh. (11)

��
We use Lemmas 13 and 15 to suggest Conjecture 16.

Conjecture 16. Every (ρl, ρh) is covered either by a region where there is one
pure equilibrium or a region where there are two pure equilibria and one mixed
equilibrium.

We proved the conjecture for when λh = λl in Lemma 13. Our numerical results
indicate that when λh increases the equilibrium curves move downwards as shown
in Fig. 8, and when λh → ∞ we proved the conjecture in Lemma 15.

Corollary 17. Assuming Conjecture 16 is correct, the pure asymmetric strate-
gies p1 = 0, p0 = 1 and p1 = 1, p0 = 0 cannot be equilibria.

Proof. In each point (ρl, ρh) there is at least one pure equilibrium. If each cus-
tomer draws a different pure strategy than at least one of them can improve his
result by changing to the equilibrium pure strategy. Hence there is no asymmetric
equilibrium. ��
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7 Concluding Remarks

We propose future research in the following directions: Generalize the model with
more service types and more customers. Complete conjectures in this paper.

In the current analysis the decision is taken at the entry, and at that point in
time the other customer is always active. If the decision is taken at the entry to
the activity period there are two possible states of the other customer - either
in service or in activity. We want to determine the conditions for optima and
equilibria, and the difference compared to the model discussed in this paper.
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