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Preface

The International Conference on Queueing Theory and Network Applications aims to
promote the knowledge and the development of high-quality research on queueing
theory and its applications in networks and other related fields covering performance
issues on computer and communication systems, job scheduling, blockchain technol-
ogy, etc. It brings together researchers, scientists, and practitioners from all over the
world and offers an open forum to share the latest important research accomplishments
and challenging problems in the area of queueing theory and network applications.

This volume contains papers selected and presented at the 14th International
Conference on Queueing Theory and Network Applications (QTNA 2019) held during
August 27–29, 2019, in Ghent, Belgium.

QTNA 2019 was a continuation of the series of successful QTNA conferences:
QTNA 2006 (Seoul, South Korea), QTNA 2007 (Kobe, Japan), QTNA 2008 (Taipei,
Taiwan), QTNA 2009 (Singapore), QTNA 2010 (Beijing, China), QTNA 2011 (Seoul,
South Korea), QTNA 2012 (Kyoto, Japan), QTNA 2013 (Taichung, Taiwan), QTNA
2014 (Bellingham, USA), QTNA 2015 (Hanoi, Vietnam), QTNA 2016 (Wellington,
New Zealand), QTNA 2017 (Qinhuangdao, China), and QTNA 2018 (Tsukuba, Japan).

The conference this year was the first to be held in Europe. We received 49 sub-
missions from 23 countries and areas in five continents: Algeria, Austria, Azerbaijan,
Belgium, Brazil, Canada, China, Egypt, Greece, Hong Kong, India, Israel, Italy, Japan,
The Netherlands, Poland, Russia, Singapore, South Korea, Sri Lanka, Taiwan, Turkey,
and USA. Each submitted paper was peer reviewed by at least three reviewers, and
evaluated on the quality, originality, soundness, and significance of its contribution by
the members of the Technical Program Committee (TPC) of QTNA 2019 and external
reviewers invited by the TPC. After a careful selection, 23 full papers (11+ pages) were
accepted for inclusion in this volume of Lecture Notes in Computer Science (LNCS)
published by Springer.

Furthermore, a number of short papers (6 pages) were selected for presentation at
the conference and for inclusion in an electronic version of the conference brochure
distributed to all the participants of the conference QTNA 2019.

It was our privilege to invite Professor Mor Harchol-Balter and Professor Johan van
Leeuwaarden to give keynote talks at QTNA 2019.

We would like to thank the authors of all the papers appearing in this proceedings
for their excellent contribution. Special thanks go to the co-chairs and members of the
Program Committee of QTNA 2019 for their time and effort in assuring the quality
of the selected papers. We also would like to express our gratitude to the members
of the Local Organizing Committee for their hard work throughout the process from



planning to holding the conference. Finally, we cordially thank the EasyChair team and
Springer for their support in publishing this volume. Thank you all for your contri-
butions to QTNA 2019.

August 2019 Sabine Wittevrongel
Tuan Phung-Duc
Shoji Kasahara

vi Preface



Organization

General Chairs

Sabine Wittevrongel Ghent University, Belgium
Yutaka Takahashi Kyoto University, Japan

Program Committee Chairs

Tuan Phung-Duc University of Tsukuba, Japan
Shoji Kasahara Nara Institute of Science and Technology, Japan

Program Committee

Herwig Bruneel Ghent University, Belgium
Wai-Ki Ching The University of Hong Kong, SAR China
Wanyang Dai Nanjing University, China
Koen De Turck CentraleSupélec, France
Ioannis Dimitriou University of Patras, Greece
Tien Van Do Budapest University of Technology and Economics,

Hungary
Alexander Dudin Belarusian State University, Belarus
Antonis Economou University of Athens, Greece
Marco Gribaudo Politecnico di Milano, Italy
Irina Gudkova Peoples’ Friendship University of Russia, Russia
Qi-Ming He University of Waterloo, Canada
Ganguk Hwang Korea Advanced Institute of Science and Technology,

South Korea
Yoshiaki Inoue Osaka University, Japan
Shunfu Jin Yanshan University, China
Stella Kapodistria Eindhoven University of Technology, The Netherlands
Shoji Kasahara Nara Institute of Science and Technology, Japan
Ken’ichi Kawanishi Gunma University, Japan
Konosuke Kawashima Tokyo University of Agriculture and Technology,

Japan
Jau-Chuan Ke National Taichung University of Science

and Technology, Taiwan
Wojciech Kempa Silesian University of Technology, Poland
Bara Kim Korea University, South Korea
Tatsuaki Kimura Osaka University, Japan
Masahiro Kobayashi Tokai University, Japan
Achyutha Krishnamoorthy Cochin University of Science and Technology, India
Ho Woo Lee Sungkyunkwan University, South Korea



Se Won Lee Pukyong National University, South Korea
Tony T. Lee The Chinese University of Hong Kong, SAR China
Bin Liu Anhui Jianzhu University, China
Zhanyou Ma Yanshan University, China
Andrea Marin University of Venice, Italy
Hiroyuki Masuyama Kyoto University, Japan
Agassi Melikov Azerbaijan National Academy of Sciences, Azerbaijan
Rein Nobel Vrije Universiteit Amsterdam, The Netherlands
Toshihisa Ozawa Komazawa University, Japan
Tuan Phung-Duc University of Tsukuba, Japan
Wouter Rogiest Ghent University, Belgium
Poompat Saengudomlert Bangkok University, Thailand
Zsolt Saffer Vienna University of Technology, Austria
Yutaka Sakuma National Defense Academy of Japan, Japan
Yang Woo Shin Changwon National University, South Korea
Ahmed Tarabia Damietta University, Egypt
Y. C. Tay National University of Singapore, Singapore
Miklós Telek Budapest University of Technology and Economics,

Hungary
Nigel Thomas Newcastle University, UK
Joris Walraevens Ghent University, Belgium
Jinting Wang Beijing Jiaotong University, China
Sabine Wittevrongel Ghent University, Belgium
Hengqing Ye The Hong Kong Polytechnic University, SAR China
Xue-Ming Yuan Agency for Science, Research and Technology,

Singapore
Dequan Yue Yanshan University, China
Wuyi Yue Konan University, Japan
Alexander Zeifman Vologda State University, Russia
Zhe George Zhang Western Washington University, USA
Yiqiang Q. Zhao Carleton University, Canada

Steering Committee

Co-chairs

Bong Dae Choi Korea University, South Korea
Yutaka Takahashi Kyoto University, Japan
Wuyi Yue Konan University, Japan

Members

Hsing Paul Luh National Chengchi University, Taiwan
Winston Seah Victoria University of Wellington, New Zealand
Hideaki Takagi University of Tsukuba, Japan
Y. C. Tay National University of Singapore, Singapore
Kuo-Hsiung Wang National Taiwan University, Taiwan

viii Organization



Jinting Wang Beijing Jiaotong University, China
Dequan Yue Yanshan University, China
Zhe George Zhang Western Washington University, USA

Local Organizing Committee

Michiel De Muynck Ghent University, Belgium
Arnaud Devos Ghent University, Belgium
Freek Verdonck Ghent University, Belgium
Sabine Wittevrongel Ghent University, Belgium

Organization ix



Contents

Retrial Queues

Retrial Queueing System MMPP/M/1 with Impatient Calls Under Heavy
Load Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Ekaterina Fedorova, Elena Danilyuk, Anatoly Nazarov,
and Agassi Melikov

Matrix Analytic Solutions for M/M/S Retrial Queues with
Impatient Customers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Hsing Paul Luh and Pei-Chun Song

A Coupling-Based Analysis of a Multiclass Retrial System
with State-Dependent Retrial Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Evsey Morozov and Taisia Morozova

Stability Conditions of a Multiclass System with NBU Retrials. . . . . . . . . . . 51
Evsey Morozov and Ruslana Nekrasova

Controlled M/M/1-RQ System with Randomized Acceptance
from the Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Andrei V. Zorine

Analysis of Retrial Queues for Cognitive Wireless Networks with Sensing
Time of Secondary Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Kohei Akutsu and Tuan Phung-Duc

Controllable Queues

M/M/1 Queue with Controllable Service Rate . . . . . . . . . . . . . . . . . . . . . . . 95
Zsolt Saffer, Karl Grill, and Wuyi Yue

A Single Server Queue with Workload-Dependent Service Speed
and Vacations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Yutaka Sakuma, Onno Boxma, and Tuan Phung-Duc

Delay Analysis of a Two-Server Discrete-Time Queue Where One Server
Is Only Intermittently Available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Freek Verdonck, Herwig Bruneel, and Sabine Wittevrongel



Strategic Queues

A Closed Queueing Network with Strategic Service Differentiation . . . . . . . . 149
Michal Benelli and Refael Hassin

On Rational Behavior in a Loss System with One Observable Queue
and One Unobservable Queue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Refael Hassin and Jonathan H. P. Milo

Strategic Joining in a Single-Server Retrial Queue with Batch Service . . . . . . 183
Ke Sun, Jinting Wang, and George Zhang

Queueing Networks

A Linear Programming Approach to Markov Reward Error Bounds
for Queueing Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Xinwei Bai and Jasper Goseling

Class Aggregation for Multi-class Queueing Networks with FCFS
Multi-server Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Pasquale Legato and Rina Mary Mazza

Stationary Analysis of a Tandem Queue with Coupled Processors Subject
to Global Breakdowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Ioannis Dimitriou

Scheduling Policies

Diffusion Limits for SRPT and LRPT Queues via EDF Approximations . . . . 263
Łukasz Kruk

Revisiting SRPT for Job Scheduling in Computing Clusters . . . . . . . . . . . . . 276
Huanle Xu, Huangting Wu, and Wing Cheong Lau

Multidimensional Systems

Sojourn Time Distribution in Fluid Queues . . . . . . . . . . . . . . . . . . . . . . . . 295
Eleonora Deiana, Guy Latouche, and Marie-Ange Remiche

An Approximate Analysis of a Bernoulli Alternating Service Model . . . . . . . 314
Arnaud Devos, Dieter Fiems, Joris Walraevens, and Herwig Bruneel

A Discrete-Time Queueing Model in a Random Environment . . . . . . . . . . . . 330
Rein Nobel and Annette Rondaij

xii Contents



Queueing Models in Applications

Queueing Analysis of Home Delivery Services with Parcel Lockers . . . . . . . 351
Shinto Hideyama, Tuan Phung-Duc, and Yukihiko Okada

A MAP-Based Performance Analysis on an Energy-Saving Mechanism
in Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Xuena Yan, Shunfu Jin, Wuyi Yue, and Yutaka Takahashi

Analysis of the Average Confirmation Time of Transactions
in a Blockchain System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Wenjuan Zhao, Shunfu Jin, and Wuyi Yue

Correction to: Class Aggregation for Multi-class Queueing Networks
with FCFS Multi-server Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1

Pasquale Legato and Rina Mary Mazza

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Contents xiii



Retrial Queues



Retrial Queueing System MMPP/M/1
with Impatient Calls Under Heavy Load

Condition

Ekaterina Fedorova1 , Elena Danilyuk1(B) , Anatoly Nazarov1 ,
and Agassi Melikov2

1 National Research Tomsk State University, Lenina Avenue, 36, Tomsk, Russia
moiskate@mail.ru, daniluc.elena.yu@gmail.com, nazarov.tsu@gmail.com

2 Institute of Control Systems, Azerbaijan National Academy of Sciences,
B. Vahabzadeh Street, 9, Baku, Azerbaijan

agassi.melikov@gmail.com

Abstract. In this paper, a single server retrial queue MMPP/M/1 with
impatient calls is analysed under the heavy load condition. The retrial
queue has a dynamical rate of the calls patience depending on the number
of calls in the orbit. It is proved that under the heavy load condition the
asymptotic characteristic function of the number of calls in the orbit
has the gamma distribution with obtained parameters. Also the formula
for the system throughput is obtained. Some numerical examples are
presented.

Keywords: Retrial queue · Impatient call · Heavy load ·
Asymptotic analysis

1 Introduction

The classical queueing theory distinguishes two classes of mathematical models:
queueing systems with queue and loss systems. But the last decades, a new
model appeared – retrial queueing system (or system with repeated calls). Retrial
queues are characterized by the feature that an arriving call finding a server busy
does not join a queue and does not leave the system immediately, but goes to
some virtual place (orbit), then it tries to get service again after some random
time.

Retrial queues are widely used for many practical problems in telecommu-
nication networks, mobile networks, computer systems and various daily life
situations [1–9]. Retrial queueing systems with impatient customers are mainly
applied for analysis of call centers [8–10] where a customer, who cannot connect
with an operator, tries later. Obviously, a research of retrial models [6,7,11] is
more difficult than a corresponding one without retrial because retrial makes
the arrival process more complex. The comprehensive description, the compari-
son of classical queueing systems and retrial queues and detailed overviews are
c© Springer Nature Switzerland AG 2019
T. Phung-Duc et al. (Eds.): QTNA 2019, LNCS 11688, pp. 3–15, 2019.
https://doi.org/10.1007/978-3-030-27181-7_1
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4 E. Fedorova et al.

contained in books of Artalejo and Gómez-Corral [12], Artalejo and Falin [13],
Falin and Templeton [14].

The first retrial model with impatience was considered by Cohen [2]. The
M/M/1 retrial queue with impatient calls was studied by Falin and Templeton
[14]. Also, Yang et al. [15] and Krishnamoorthy et al. [16] performed analysis
of the M/G/1 model. Retrial queues with Poisson arrivals and the impatience
phenomenon were studied in [11,17–20]. In [21] the M/G/1 retrial queue with
batch arrivals was considered. In the papers above, the impatience is understood
as an arriving call joins the orbit with some probability p and leaves the system
with the probability 1 − p.

Studies of some types of retrial queues with MAP (or MMPP) arrivals are
known. But they are performed using truncation methods [12,22–24] or matrix
methods [25–28] which are applied only for numerical solutions obtaining.

It is known that explicit formulas for stationary distributions in complex
retrial queues are derived hard or cannot be obtained at all. But some approxi-
mations or asymptotic solutions can be proposed.

In this paper, we use the asymptotic analysis method developed in research
[29,30] for different types of queueing systems and networks studies. The prin-
ciple of the method is a derivation of some asymptotic equations from the sys-
tems of equations determined models behaviour, and further getting formulas
for asymptotic functions under some limit condition. In previous papers [31,32],
we have obtained asymptotic solutions for different types of retrial queues with-
out loses: M/M/1, M/GI/1 and even MMPP/M/1, MMPP/GI/1 under the
heavy load condition. So in this paper, we generalize our results to models with
impatient calls. For comparison, we have also obtained asymptotic solutions for
retrial queues M/M/1, MMPP/M/2, M/M/N with impatient calls, but under
another asymptotic condition [33–35].

Performance characteristics for retrial queueing systems under heavy and
light loads conditions were also studied by Falin, Anisimov, etc. [36–38]. But for
the asymptotic analysis, they use explicit formulas, so they study only Poisson
arrivals. Also, work [38] is devoted to the investigation under an “extreme” load
(the intensity of primary calls tends to infinity or zero).

The rest of the paper is organized as follows. In Sect. 2, the considered math-
ematical model is described and the aim of the study is defined. In Sect. 3, the
retrial queue is studied under a limit condition of heavy load. The theorem about
the gamma distribution of the asymptotic characteristic function is proved and
the formula for the system throughput is obtained. In Sect. 4, some numeri-
cal examples of the comparison of the asymptotic distributions with exact ones
(which are obtained via simulation) are presented. The last section is devoted
to some conclusions.

2 Mathematical Model

Consider a single server retrial queueing system MMPP/M/1. The system
structure is presented in Fig. 1. Primary calls arrive at the system from out-
side according to Markovian Modulated Poisson Process (MMPP) which is a
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particular case of Markovian Arrival Process (MAP) defined by matrices D0

and D1 [39,40]. If a primary call finds the server free, it stays here with service
time distributed exponentially with a rate μ. Otherwise, the call goes to an orbit,
where it stays during random time distributed by the exponential law with a rate
σ. After the delay, the call makes an attempt to reach the server again. If the
server is free, the call gets the service, otherwise, the call instantly returns to the
orbit. From the orbit, calls can leave the system after random time distributed
exponentially with a rate α/i depending on the number of calls i in the orbit at
this moment.

The arrival process, the service times, the retrial and the impatience times
are assumed to be mutually independent.

Fig. 1. Retrial queueing system MMPP/M/1 with impatient calls

The MMPP underlying process n(t) is a Markov chain with continuous time
and finite set of states n = 1, 2, . . . , N .

We introduce a generator of the process n(t) as matrix Q = D0 + D1 with
elements qmv, where m, v = 1, 2, . . . , N .

Matrix D1 is diagonal with elements ρλn (n = 1, 2, . . . , N), where λn are
conditional arrival rates and ρ is a parameter defined below. We denote Λ =
diag{λn}. Then the following equality holds D1 = ρΛ.

Row vector r is a stationary probability distribution of the underlying process
n(t). r is uniquely determined by the following system

{
rQ = 0,
re = 1,

(1)

where e = {1, 1, . . . , 1}T and 0 = {0, 0, . . . , 0}.
The fundamental rate of MMPP is defined as follows λ = r · ρΛ · e.
Suppose the system parameters satisfy the following condition

r · Λ · e = μ, (2)

then the parameter ρ is the system load and it equals ρ = λ/μ.
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Let i(t) be the number of calls in the orbit and k(t) be the server state

k(t) =
{

0, if the server is free,
1, if the server is busy.

The problem is to find the probability distribution of the number of calls in
the orbit.

The process i(t) is not Markovian, therefore we consider the multidimensional
process {k(t), n(t), i(t) : t ≥ 0} which is a continuous time Markov chain. Denote
P (k, n, i, t) = P{k(t) = k, n(t) = n, i(t) = i}.

The following system of Kolmogorov equations for the stationary distribution
P (k, n, i) = lim

t→∞ P (k, n, i, t) is derived for i > 0, n = 1, N .

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−(ρλn + α + iσ − qnn)P (0, n, i) + αP (0, n, i + 1) + μP (1, n, i)
+

∑
v �=n

P (0, v, i)qvn = 0,

−(ρλn + μ + α − qnn)P (1, n, i) + ρλnP (1, n, i − 1) + ρλnP (0, n, i)
+(i + 1)σP (0, n, i + 1) + αP (1, n, i + 1) +

∑
v �=n

P (1, v, i)qvn = 0.

(3)

Also we have the following equations for i = 0
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−(ρλn − qnn)P (0, n, 0) + αP (0, n, 1) + μP (1, n, 0)
+

∑
v �=n

P (0, v, 0)qvn = 0,

−(ρλn + μ − qnn)P (1, n, 0) + ρλnP (0, n, 0)
+σP (0, n, 1) + αP (1, n, 1) +

∑
v �=n

P (1, v, 0)qvn = 0.

(4)

Let us introduce row vectors Pk(i) = {P (k, 1, i), P (k, 2, i), . . . , P (k,N, i)}.
Then Eqs. (3), (4) have the following matrix form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−P0(0)(ρΛ − Q) + μP1(0) + αP0(1) = 0,
−P1(0)(ρΛ + μI − Q) + P0(0)ρΛ + σP0(1) + αP1(1) = 0,
−P0(i)(ρΛ + (iσ + α)I − Q) + μP1(i) + αP0(i + 1) = 0 for i ≥ 0,
−P1(i)(ρΛ + (μ + α)I − Q) + P0(i)ρΛ + P1(i − 1)ρΛ

+σ(i + 1)P0(i + 1) + αP1(i + 1) = 0 for i ≥ 0,

(5)

where I is the identity matrix.
By Hk(u) =

∑
i

ejuiPk(i) we denote the partial characteristic functions,

where k = 0, 1 and j =
√−1. Then system (5) is rewritten as follows

⎧⎪⎪⎨
⎪⎪⎩

H0(u)(Q − ρΛ − αI) + jσH′
0(u) + μH1(u)

+αe−juH0(u) = αP0(0)(e−ju − 1),
H1(u)(Q − ρΛ(1 − eju) − (μ + α)I) + H0(u)ρΛ − jσe−juH′

0(u)
+αe−juH1(u) = αP1(0)(e−ju − 1).

(6)
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Obviously, system (6) can not be directly solved analytically. To solve system
(6) we propose the method of asymptotic analysis under the heavy load condition
ρ ↑ S [31], where S is the throughput of the retrial queue (i.e. a maximum value
of the load for the system stationary regime).

3 Asymptotic Analysis Under Heavy Load

The method of asymptotic analysis in queueing theory is the method of research
of the equations determining some characteristics of an queueing system under
some limit (asymptotic) condition, which is specific for any model and solving
problem.

Let us prove the following theorem for the considered retrial queue.

Theorem 1. Let i(t) be the number of calls in the orbit in the retrial queueing
system MMPP/M/1 with impatient calls in the stationary regime, then the limit
characteristic function h(u) of the process i(t) under the heavy load condition has
the gamma distribution form

h(u) = lim
ρ→S

E
{

ejw(S−ρ)i(t)
}

=
(

1 − jw

β

)−γ

,

with parameters
β =

μ

SvΛe + μ + α
, γ = 1 +

μ

σ
β,

where S = 1+α/μ is the system throughput and the vector v is a solution of the
following system {

vQ = r((α + μ)I − SΛ),
ve = 0,

and E {X} is mathematical expectation of variable X.

Proof. The proof of the theorem can be divided into two parts: deriving of
asymptotic equations and analysis of this equations for getting required charac-
teristics.

Derivation of Asymptotic Equations. First of all, we introduce some nota-
tions:

ε = S − ρ, u = εw,H0(u) = εF0(w, ε),H1(u) = F1(w, ε),Pk(0) = επk, (7)

where k = 0; 1.
So, the heavy load condition is defined as ρ ↑ S or ε ↓ 0.
Using (7), we rewrite system (6) as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εF0(w, ε)(Q − (S − ε)Λ − αI) + jσ
∂F0(w, ε)

∂w
+ μF1(w, ε)

+αe−jwεεF0(w, ε) = αεπ0(e−jwε − 1),
F1(w, ε)(Q − (S − ε)Λ(1 − ejwε) − (μ + α)I) + (S − ε)εF0(w, ε)Λ

−jσe−jwε ∂F0(w, ε)
∂w

+ αe−jwεF1(w, ε) = αεπ1(e−jwε − 1).

(8)
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Let us consider expansions of functions Fk(w, ε) in the form

Fk(w, ε) = Fk(w) + εfk(w) + O(ε2), (9)

where Fk(w) = lim
ε→0

Fk(w, ε), O(ε2) is an infinitesimal value of order ε2.

Substituting (9) into system (8) and writing equalities for members with
equal powers of ε, we obtain the following system of equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

jσF′
0(w) + μF1(w) = 0,

F1(w)(Q − μI) − jσF′
0(w) = 0,

F0(w)(Q − SΛ) + jσf ′
0(w) + μf1(w) = 0,

jwSF1(w)Λ + f1(w)(Q − μI) + SF0(w)Λ + jσjwF′
0(w)

−jσf ′
0(w) − αjwF1(w) = 0.

(10)

Then we sum all equations of system (8) and multiply the result by e. After
some transformations, we get the following equation

F1(w, ε)
(
(S − ε)ejwεΛ − αI

)
e + jσ

∂F0(w, ε)
∂w

e − εαF0(w, ε) = −εα(π0 + π1)e.

Substitute expansions (9) and again writing equalities for members with equal
powers of ε, we obtain two additional equations

⎧⎨
⎩

F1(w)(SΛ − αI)e + jσF′
0(w)e = 0,

F1(w)(Sjw − 1)Λe + f1(w)(SΛ − αI)e
+jσf ′

0(w)e − αF0(w)e = −α(π0 + π1)e.
(11)

Thus, we have four matrix (10) and two scalar asymptotic equations (11).

Analysis of the Equations. The characteristic function of the number of calls
in the orbit in considered retrial queue is calculated as

H(u) = E
{

ejui(t)
}

= H0(u)e + H1(u)e.

Under the heavy load condition H(u) ≈ h(u), where h(u) is called the asymp-
totic characteristic function and is presented in the form

h(u) = lim
ρ→S

E
{

ejw(S−ρ)i(t)
}

. (12)

Using notations (7), we obtain that

h(u) = F1

(
u

S − ρ

)
e.

Therefore, it is necessary to obtain the scalar function F1(w)e from Eqs. (10),
(11). The derivation includes five steps.

Step 1. Combining the first and the second equations of (10), we get

F1(w)Q = 0.
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Taking into account (1), the function F1(w) have the form:

F1(w) = rΦ(w). (13)

Hence it is necessary to find the function Φ(w).
Step 2. From the second equation of (10), we get

jσF′
0(w) = −μF1(w) = −μrΦ(w). (14)

Substituting (13), (14) into the first equation of (11), it is easy to show that

S =
α + μ

rΛe
=

α + μ

μ
. (15)

Therefore, we obtain the formula for the system throughput. The stationary
regime of the retrial queue exists if ρ < 1 + α/μ.

Step 3. Summing the third and the fourth equations of (10), we obtain

(F0(w) + f1(w))Q + jσjwF′
0(w) + jwF1(w)(SΛ − αI) = 0.

Take into account formulas (13), (14).

(F0(w) + f1(w))Q = jwΦ(w)r((μ + α)I − SΛ).

Let us suppose that

F0(w) + f1(w) = jwΦ(w)v, (16)

where v is a solution of the following equation

vQ = r((μ + α)I − SΛ). (17)

Consider Eq. (17). It is matrix with equal ranks of the system matrix and
augmented one. Obviously, Eq. (17) has infinitely many solutions. Let us present
the general solution of (17) as follows

v = Cr + v0,

where C is some constant and v0 is a particular solution (for example, v0e = 0).
From (16), it follows

f1(w) = jwΦ(w)v − F0(w), (18)

Step 4. Rewrite the third equation of (10) as

jσf ′
0(w) = −F0(w)(Q − SΛ) − μf1(w).

Multiply the last equation by e and substitute expression (18) here.

jσf ′
0(w)e = F0(w)(SΛe + μe) − μjwΦ(w)ve. (19)
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Step 5. Finally, we substitute obtained formulas (13)–(19) in the last equation
of system (11).

Φ(w)(Sjw − 1)rΛe + jwΦ(w)(SvΛe − αve) − μjwΦ(w)ve
+(α + μ)F0(w)e − αF0(w)e = −α(π0 + π1)e.

Differentiating this equation, and taking into account (2), it is easy to obtain
the following equation

Φ′(w) (−μ + jw(SvΛe − αve − μve + Sμ))
+jΦ(w)

(
SvΛe − αve − μve + Sμ + μ2/σ

)
= 0.

(20)

Let us divide (20) by the expression SvΛe − αve − μve + Sμ and introduce
denotation

β =
μ

SvΛe − αve − μve + Sμ
, γ = 1 +

μ

σ
β.

So, Eq. (20) is rewritten as

Φ′(w)(β − jw) = jγΦ(w).

Clearly, the solution has the form

Φ(w) = C0

(
1 − jw

β

)−γ

.

From formula (13), we obtain

F1(w) = r · C0

(
1 − jw

β

)−γ

.

Thus, (12) is written as

h(u) = C0

(
1 − ju

β

)−γ

.

It is easy to show that C0 = 1 due to the normalisation requirement.
Note that the parameters β and γ do not depend on the constant C in the

solution v = Cr + v0. It can be shown by the substituting:

β =
μ

Sv0Λe − αv0e − μv0e + Sμ
=

μ

Sv0Λe + μ + α
.

So, the asymptotic characteristic function of the probability distribution of
the number of calls in the orbit h(u) has the form of the gamma distribution
characteristic function:

h(u) =
(

1 − ju

β

)−γ
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with the inverse scale parameter β =
μ

SvΛe + μ + α
and the shape parameter

γ = 1 +
μ

σ
β, where the vector v is a solution of the following system

{
vQ = r((α + μ)I − SΛ),
ve = 0.

This completes the proof.

4 Numerical Analysis

Denote the probability distribution function of the gamma distribution as Γ (x).
Then the discrete probability distribution of the number of calls in the orbit p(i)
can be approximated as follows

p(i) = Γ (i + 1) − Γ (i).

Now we present some numerical examples to demonstrate the applicability
area of the obtained results. We perform simulation of the system evolution
using software platform ODIS [41], which realizes a discrete-event simulation
approach, and we compare statistical results with analytical ones derived in
the paper. For the comparison we use Kolmogorov distance between respective
distribution functions

d = max
i≥0

∣∣∣∣∣
i∑

l=0

[p̃(l) − p(l)]

∣∣∣∣∣.
Here, p(l) is a probability distribution calculated using the asymptotic formula
and p̃(l) is an empiric distribution of the number of calls in the orbit obtained
as the simulation results of the system evolution. For our purposes, we assume
values d ≤ 0.05 are enough for good accuracy of approximations.

In the example, let the service rate be μ = 1, the retrial rate be α = 0.1 and
the arrival process be MMPP with 3 states and following parameters

Λ =

⎡
⎣0.780 0 0

0 1.014 0
0 0 1.170

⎤
⎦ , Q =

⎡
⎣ -0.5 0.2 0.3

0.1 -0.3 0.2
0.3 0.2 -0.5

⎤
⎦ .

Table 1. Kolmogorov distances d for various values of the parameter ρ for σ = 10

ρ 0.90 · S 0.95 · S 0.97 · S

d 0.087 0.044 0.027
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Fig. 2. Comparisons of the asymptotic (dashed line) and the simulation (solid line)
distributions for σ = 10 and: (a) ρ = 0.90 · S; (b) ρ = 0.95 · S

Table 2. Kolmogorov distances d for various values of the parameter ρ for σ = 2

ρ 0.90 · S 0.95 · S 0.97 · S

d 0.092 0.046 0.028

Fig. 3. Comparisons of the asymptotic (dashed line) and the simulation (solid line)
distributions for σ = 2 and: (a) ρ = 0.90 · S; (b) ρ = 0.95 · S

For these parameters we have rΛe = μ = 1. Thus, the parameter ρ defines
the system load and has values 0 < ρ < S, where S = 1 + α/μ is the system
throughput.

We vary parameters ρ and σ for demonstrating the application area of asymp-
totic analysis. The comparison of the distributions is shown in Fig. 2 (for σ = 10)
and Fig. 3 (for σ = 2). We see that the asymptotic distributions are closer to the
simulation for ρ = 0.95 (right figures) where probabilities P (0) have less values.
Values of Kolmogorov distance are presented in Tables 1, 2.

Note, we obtain the same results of the numerical comparison for different
values of service, arrival and impatient parameters.
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5 Conclusions

In this way in the paper, the single server retrial queue MMPP/M/1 with
impatient calls is analysed under the heavy load condition. The retrial queue
has non-Poisson arrivals and, as far as we know, such types of retrial queues
have not been analytically studied in the literature yet. One more important
distinguishing feature of the considered model is that we assume the rate of the
calls patience to be dynamical.

We have proved that the asymptotic characteristic function of the number
of calls in the orbit has the gamma distribution with parameters (2). By the
numerical comparison of the asymptotic distribution and the simulation one, we
show a good accuracy of the proposed approximation with the applicability area
ρ ≥ 0.95 · S, where S is the system throughput.

Acknowledgments. The reported study was funded by RFBR according to the
research project No. 19-41-703002.

References

1. Wilkinson, R.I.: Theories for toll traffic engineering in the USA. Bell Syst. Tech.
J. 35(2), 421–507 (1956). https://doi.org/10.1002/j.1538-7305.1956.tb02388.x

2. Cohen, J.W.: Basic problems of telephone traffic and the influence of repeated
calls. Philips Telecommun. Rev. 18(2), 49–100 (1957)

3. Elldin, A., Lind, G.: Elementary Telephone Traffic Theory. Ericsson Public
Telecommunications, Stockholm (1971)

4. Gosztony, G.: Repeated call attempts and their effect on traffic engineering.
Budavox Telecommun. Rev. 2, 16–26 (1976)

5. Roszik, J., Sztrik, J., Kim, C.: Retrial queues in the performance modelling of
cellular mobile networks using MOSEL. Int. J. Simul. 6, 38–47 (2005)

6. Nazarov, A.A., Kuznetsov, D.Y.: Analysis of Non-Markovian models of communi-
cation networks with adaptive protocols of multiple random access. Autom. Remote
Control 5, 789–808 (2001)

7. Choi, B.D., Chang, Y.: Single server retrial queues with priority calls. Mathe.
Comput. Modeling 30, 7–32 (1999)

8. Tran-Gia, P., Mandjes, M.: Modeling of customer retrial phenomenon in cellular
mobile networks. IEEE J. Sel. Areas Commun. 15, 1406–1414 (1997). https://doi.
org/10.1109/49.634781

9. Phung-Duc, T., Kawanishi, K.: An efficient method for performance analysis of
blended call centers with redial. Asia-Pac. J. Oper. Res. 31(2), 1–39 (2014).
https://doi.org/10.1142/S0217595914400089

10. Aguir, S., Karaesmen, F., Askin, O.Z., Chauvet, F.: The impact of retrials on call
center performance. OR Spektrum. 26, 353–376 (2004)

11. Kim, J.: Retrial queueing system with collision and impatience. Commun. Korean
Math. Soc. 4, 647–653 (2010)
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Abstract. In this paper, we investigate the nonhomogeneity of state
space for solving retrial queues through the performance of the M/M/S
retrial system with impatient customers and S servers that is mod-
eled under quasi-birth-and-death processes with level-dependent tran-
sient rates. We derive the analytic solution of multiserver retrial queues
with orbit and develop an efficient method to solve this type of sys-
tems effectively. The methods proposed are based on nonhomogeneity
of the state space although this queueing model was tackled by many
researchers before. Under a weaker assumption in this paper, we study
and provide the exact expression based on an eigenvector approach. Con-
structing an efficient algorithm for the stationary probability distribution
by the determination of required eigenvalues with a specific accuracy, we
develop streamlined matrices of state-balanced equations with the effi-
cient implementation for computation of the performance measures.

Keywords: Quasi-birth-death process · Retrial queues ·
Matrix-geometric method · Eigenvalues

1 Introduction

In this paper, we consider a queueing system with retrials of arrivals following
the human behavior that impatience users can abandon the system with cer-
tain probability after an unsuccessful retry. Retrial queues have been used to
model a phenomenon in modern information and telecommunication systems
that blocked customers may retry for service after a certain timeout (See [1,9]
and reference therein). Many examples of retrial queues can be found in commu-
nication networks nowadays. By an M/M/S model, Do in [5] presents the effect
of retrials in data transfers along Internet where in retrial queues a customer
who does not receive the allocation of a server joins the orbit and later initiates
a request for service. The M/M/S retrial queue has been analyzed by many
researchers. However, the stationary probability distribution when the number
of servers is larger than two can be only obtained using approximate techniques
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(e.g., [1,6]). Our goal in this study is to develop an effective method with a
closed-form solution for solving this type of problems in which the number of
servers is big.

The modeling of repeated attempts has been the subject of numerous inves-
tigations in queueing systems. In [7], it explains that two functional blocks are
typically distinguished in models which consider retrials: a block that accom-
modates the servers and possibly a waiting queue, and a block where users that
retry are accommodated, usually called a retrial orbit. Because the retrial rate
among customers depends on the number of customers in the retrial orbit, when
it is modeled by a Quasi-Birth-and-Death approach, it assumably shall build a
nonhomogeneous and infinite state space. The term of nonhomogeneity of state
space is used to describe the state transition probability, or the probability of
increments/decrements, is not homogeneous instead it depends on the state over
the studied system. When the state homogeneity condition does not hold for the
case of multiserver retrial queues, the absence of closed-form solutions for the
main performance characteristics is ineluctable. Either the finite truncated or
generalized truncated methods may be used to replace the original infinite state
space by a solvable state space, that is, a model where steady state probabilities
can be computed. In this paper with an eigenvector approach, we investigate a
computationally solvable with infinite state space to tackle this problem.

Falin and Templeton in [9] present necessary and sufficient conditions for
ergodicity of the retrial queues with M/M/S. Falin in [8] presents an approxima-
tion which is based on the truncation of the state space at a sufficiently large level
related to the number of customers in the orbit. Another approximation based
on the homogenization of the model was pioneered by Neuts and Rao in [13],
where the M/M/S retrial queue is approximated by the multiserver retrial queue
with the total retrial rate that does not depend on the number of customers in
the orbit as long as the orbit contains the number of customers greater than the
specified value N . Note that the discussion for the choice of N is presented in the
book in [1] on retrial queues. With this assumption, the stationary probabilities
of the M/M/S retrial queue can be estimated by any algorithm of [3,12] based
on the matrix-geometric method (MGM). Domenech-Benlloch et al. [7] consider
a multiserver retrial queue with the impatient phenomenon of customers waiting
in the orbit. They propose two different generalized truncated methods (called
HM1 and HM2) based on the homogenization of the state space when beyond
the number of customers in the retrial orbit. The steady-state probabilities of
the multiserver retrial queue with impatient customers are approximated with a
modified retrial queue where the retrial rate beyond a certain level only depends
on the conditional mean value of the number of customers in the orbit. They in
[7] also compared their methods with other well-known algorithms that belong
to different categories in [2], showing that the proposed HM2 method outper-
forms previous approaches from the aspect of accuracy at the price of increasing
computation cost. Based on the HM2 algorithm, Do et al. in [6] propose an
approximation that first obtains the conditional mean value E[L|L ≥ N ] of the
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number L of customers in the orbit under the condition L ≥ N which is the
simple function of both the single eigenvalue and N where N is suggested in [7].

Our contributions allow an efficient computation for the stationary probabil-
ity distribution and the performance measures. The research direction is to eval-
uate the maximal eigenvalue of R without actually having computed R. Instead,
we adopted an approach based on the nonhomogeneity of the state space and
provide an efficient method with the time complexity of only O(S) to compute
the eigenvectors of matrix R. Then, we develop simplified equations that allow
the efficient implementation of the computation of the performance measures.
With a given precision level ε > 0, we may construct an efficient computation
algorithm for solving the stationary probability distribution, which guarantees
a specific accuracy for the computation of performance measures.

The paper is organized as follows. A nonhomogeneous quasi-birth-and-death
queueing model with orbit for impatient customers is constructed in Sect. 2.
Matrix analytic derivation is presented in Sect. 3. The algorithmic solution pro-
cedures are described in Sect. 4. In Sect. 5, numerical test examples are presented
for comparison with the results in [6].

2 A Queueing System with Orbit for Impatient
Customers

In the system under study, we consider a queueing system with S servers. Cus-
tomers arrive according to a Poisson process with rate λ and upon encountering
an available server, request an exponentially distributed service time with rate
μ. Without loss of generality, assume that each customer occupies one resource
unit. When a new request finds all servers occupied, it joins the retrial orbit
immediately. There is an infinite capacity for the retrial orbit with a random
service discipline. After a random time that is exponentially distributed of rate
γ this customer retries, being a successful retrial if it finds a free server. Other-
wise, the customer leaves the system with probability p or returns to the retrial
orbit with probability 1 − p independently of the occupancy rate of the servers
and start the retrial procedure again. Conventionally, denote by ρ the average
load of the system.

The model considered here can be represented as a bi-dimensional
continuous-time Markov chain (MC) whose state space is defined by the num-
ber of customers in the retrial orbit and the number of customers being served,
constituting a Level Dependent Quasi-Birth-and-Death Process (LDQBD). In
QBD related literature, the term level refers to a set of states with the same
first coordinate. Consider a retrial queueing model with S homogeneous servers
and impatient customers. Let a random variable J(t) represent the number of
occupied servers at time t, 0 ≤ J(t) ≤ S. When J(t) = S, a customer joins the
orbit in order to wait and retry. Let L(t) be the number of customers in the
orbit waiting for retrial at time t. Each customer retries with rate γ. A retrying
customer either leaves the queue with probability p if all servers are busy upon
the retrial or rejoins the orbit with probability 1 − p. Note that a time between
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subsequent retrials of a specific customer follows the exponential distribution
with parameter γ. The main characteristics of this model are its infinite state
space (L(t), J(t)) and also its space of nonhomogeneity produced by the fact
that the retrial rate depends on the number of customers in the retrial orbit.

Suppose the system is stable and limt→∞ Pr(L(t), J(t)) exists. This system
can be represented by two-dimensional continuous-time Markov chain (CTMC)
X = {L(t), J(t)} with state space {0, 1, ...} × {0, 1, ..., S}. We will use a two
dimensional state space description where state (�, j) denotes that the number
of customers in orbit equals � (� = 0, 1, 2, · · · ) and that j (j = 0, 1, 2, . . . , S)
servers are busy. Hence, the total effective retrial rate is �γ when L = �. The
infinitesimal generator of this process has an infinite block tridiagonal structure
Q defined in (1). Let m = S + 1 and ei be the row vector in which the ith
component is 1, 0 elsewhere, i = 1, 2, · · · ,m. Denote by et

i the transpose of
the vector ei. Construct a discrete-time and nonhomogeneously infinitesimal
generator for X as the following Q,

Q Δ=

⎡
⎢⎢⎢⎢⎢⎣

Q(0)
1 Q(0)

0 0 · · ·
Q(1)

2 Q(1)
1 Q(1)

0 0 · · ·
0 Q(2)

2 Q(2)
1 Q(2)

0 · · ·
· · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎦

(1)

where

Q(�)
2 = �B for � = 1, 2, · · ·

Q(�)
1 = A − DA − Q(�)

0 − D(�), for � = 0, 1, 2, · · ·
Q(�)

0 = λet
mem for � = 0, 1, 2, · · ·

and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 λ 0
μ 0 λ 0
0 2μ 0 λ

0 · · · · · ·
0 (S − 1)μ 0 λ

Sμ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

m×m

B =

⎡
⎢⎢⎢⎢⎢⎣

0 γ 0
0 0 γ
...

. . .
0 γ
0 0 γp

⎤
⎥⎥⎥⎥⎥⎦

m×m

and D(·) denotes a diagonal matrix with the diagonal elements defined as

DA(i, i) =
∑S

k=0 A(i, k), i = 0, 1, 2, . . . , S

D(�)(i, i) =
∑S

k=0 Q
(�)
2 (i, k), � = 0, 1, 2, . . .

D(0) = 0.
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3 LDQBD Model Formulation

Let the steady-state probabilities of X be denoted by π�,j = limt→∞ Pr(L(t) =
�, J(t) = j). Define the row vector π� = [π�,0, ..., π�,S ], � = 0, 1, 2, . . . . Through-
out the paper, we adhere to the convention, unless stated otherwise, that prob-
ability vectors are row vectors. Q in (1) is an irreducible stochastic matrix, its
steady state probability vector associated to it is denoted by π, and we partition
it as π = (π0,π1,π2....), where π�, � ≥ 0, is an m-vector. Being a stationary
probability distribution, π satisfies πQ = 0 and π1 = 1, where 0 is a zero
matrix and 1 is a column of all 1.

An MC is said to be positive recurrent if the mean time to return to each
state for the first time after leaving it is finite. In infinite QBD MCs, this requires
that the drift to higher level states be smaller than the drift to lower level states.
To preserve the stability of the system, i.e., the existence of the steady state
probability distribution, the MC is assumed aperiodic as well.

Theorem 1 ([10]). If the LDQBD process with a transition rate matrix given
by (1) is irreducible, aperiodic, and positive recurrent, then there exist matrices
{R(�) : � ≥ 1} such that

π(�+1) = π�R(�+1), � ≥ 0

where the sequence {R(�)} is the minimal nonnegative solution of the set of
equations given by

Q(�)
0 + R(�+1)Q(�+1)

1 + R(�+1)R(�+2)Q(�+2)
2 = 0, � ≥ 0 (2)

The proof may be found in [10].
Let || · ||1 denote a matrix norm by

||Z||1 = max
1≤j≤m

m∑
i=1

|[Z]ij |

where Z is an m × m matrix with its element [Z]ij at the ith row and the jth
column. With an extension of Theorem 1, we claim the following fact.

Corollary 1. If Q is irreducible then for any ε > 0, there exists a number K

such that for all n > K we have 1
n

||Q(n)
1 −Q

(n+1)
1 ||1

||Q(n+1)
1 ||1

< ε, if and only if πn1 < ε.

To extend the result from a stable queueing system, we have the following lemma
in general.

Lemma 1. If Q and A(n) for n > K are irreducible, where A(n) = Q(n)
0 +

Q(n)
1 + Q(n)

2 , then Q is positive recurrent if and only if p(Q(n)
0 − Q(n)

2 )1 < 0,
where p satisfies pA(n) = 0 and p1 = 1, for all n > K.
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The proof could be done with a similar homogeneous case and can be found in
[11].

Since we know for every � > 0

|[Q(�)
1 ]ii| >

m∑
j=1
j �=i

|[Q(�)
1 ]ij | for all i = 1, 2, . . . , m,

it implies that Q(�)
1 is invertible. Note supi |[Q(�)

1 ]ii| < ∞ and

|[Q(�)
1 ]ii| >

m∑
j=1

|[Q(�)
2 ]ij | for all i = 1, 2, . . . , m.

By observation, given a fixed n, if the maximal eigenvalue of (xQ(n+2)
2

(Q(n+1)
1 )−1) < 1, then (Q(n+1)

1 + xQ(n+2)
2 ) is invertible. Define I as the iden-

tity matrix. Consider (2), for n > K, and for 0 < x < 1, claim that
matrix (Q(n+1)

1 + xQ(n+2)
2 ) is invertible. Because of (Q(n+1)

1 + xQ(n+2)
2 ) =

(I + xQ(n+2)
2 (Q(n+1)

1 )−1)Q(n+1)
1 . If ||xQ(n+2)

2 (Q(n+1)
1 )−1||1 < 1, then (I +

xQ(n+2)
2 (Q(n+1)

1 )−1) exists. We write (I + xQ(n+2)
2 (Q(n+1)

1 )−1)−1 as a power
series in xQ(n+2)

2 (Q(n+1)
1 )−1. This gives

(Q(n+1)
1 + xQ(n+2)

2 )−1 = (Q(n+1)
1 )−1(I + xQ(n+2)

2 (Q(n+1)
1 )−1)−1

= (Q(n+1)
1 )−1

∞∑
k=0

(−1)k(xQ(n+2)
2 (Q(n+1)

1 )−1)k

Note Q(n)
0 is rank-1 since Q(n)

0 = λet
mem. Define

h(n)(x) Δ= −λem(Q(n+1)
1 + xQ(n+2)

2 )−1et
m.

Moreover, h(n)(x) can be written as

h(n)(x) =
∞∑

k=0

ckxk, 0 < x < 1,

where ck = (−1)k+1em(Q(n+1)
1 )−1[Q(n+2)

2 (Q(n+1)
1 )−1]k λet

m.

Lemma 2. Given (Q(n+1)
1 + xQ(n+2)

2 ) is invertible, we have h(n)(x) = x, such
that 0 < x < 1 for n > K.

Proof. Under the stability in (2), we assume that

R(n) → R, for n > K,

and there exists 0 < x < 1 such that

det[Q(n)
0 + xQ(n+1)

1 + x2Q(n+2)
2 ] = 0.
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Consider the following characteristic polynomial

det[Q(n)
0 + xQ(n+1)

1 + x2Q(n+2)
2 ]

= det[Q(n)
0 + x(Q(n+1)

1 + xQ(n+2)
2 )]

= det[Q(n)
0 (Q(n+1)

1 + xQ(n+2)
2 )−1 + xI] det[Q(n+1)

1 + xQ(n+2)
2 ].

Since det[Q(n+1)
1 +xQ(n+2)

2 ] �= 0, finding a zero of the characteristic polynomial
is equivalent to finding a zero in the following equation,

det[Q(n)
0 (Q(n+1)

1 + xQ(n+2)
2 )−1 + xI] = 0,

det[1 + em(Q(n+1)
1 + xQ(n+2)

2 )−1 1
x

λet
m] = 0,

−em(Q(n+1)
1 + xQ(n+2)

2 )−1et
mλ − x = 0,

h(n)(x) − x = 0. ��

Lemma 3. When Q(n)
0 = λet

mem is rank-1, there exists uniquely x satisfying
x = h(n)(x), 0 < x < 1.

Proof. First, [Q(n)
1 ]ii < 0 defined by (1), for all i, we have c0 = (−1)em

(Q(n)
1 )−1λet

m > 0 and c1 = em(Q(n)
1 )−1(Q(n)

2 (Q(n)
1 )−1)λet

m > 0. By induc-
tion on k, we have ck > 0, for all k ≥ 0. The function is thus increasing for
0 < x < 1, and h(0) = c0 = −em(Q(n)

1 )−1λet
m > 0. In addition, one may check

that h′(x) > 0, and h′′(x) > 0. Second, claim h(1) = 1 in the following argu-
ments. By Lemma 1 with pA(n) = 0 for n > K, we have
−p(Q(n)

1 + Q(n)
2 ) = pQ(n)

0 = λpet
mem, implying that

p = −λpet
mem(Q(n)

1 + Q(n)
2 )−1. Multiplying et

m from right on both sides, it
gives
pet

m = −pet
mem(Q(n)

1 + Q(n)
2 )−1et

mλ.
Thus, it produces λem(Q(n)

1 +Q(n)
2 )−1et

m = −1. Hence, we have that h(n)(1) = 1.
It is now clear that there is a unique solution of x = h(n)(x) between 0 and 1
when n > K. ��
Hence, x can be found when n > K in the following equation,

h(n)(x) = x. (3)

Corollary 2. Suppose Q(�)
0 is rank-1. A fixed point of (3) is an eigenvalue of R

and ξ is the corresponding left eigenvector.

The proof is straightforward.

Theorem 2. If Q(�)
0 is rank-1 and Q(�)

2 is nonsingular, then for any ε > 0
there exists a K such that

∑∞
k=n πk < ε for n > K and solve a fixed point for

h(K)(x) = x.
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The proof is easily obtained by the arguments provided in Lemma 2. For further
discuss explicitly, denote that the fixed point is σ such that h(K)(σ) = σ.

Define
ξ(�)(x) Δ= −λem(Q(�+1)

1 + xQ(�+2)
2 )−1.

Since Q(�)
0 = λet

mem is rank-1, let R(�) = et
mξ(�). Suppose x� is an eigenvalue of

R(�) and the corresponding left eigenvector is ξ(�), that is ξ(�)R(�) = x�ξ
(�) =

ξ(�)et
mξ(�). Thus, it implies x� = ξ(�)et

m. Similarly, x�+1 and ξ(�+1) is an eigenpair
associated with R(�+1). Consider (2) again and let it be written as

Q(�)
0 + et

mξ(�+1)(Q(�+1)
1 + et

mξ(�+2)Q(�+2)
2 ) = 0.

Multiplying em on both sides of the equation above, we have

emQ(�)
0 + emet

mξ(�+1)(Q(�+1)
1 + et

mξ(�+2)Q(�+2)
2 ) = 0

λem + ξ(�+1)(Q(�+1)
1 + et

mξ(�+2)Q(�+2)
2 ) = 0.

Finally, we have

ξ(�+1) = −λem(Q(�+1)
1 + et

mξ(�+2)Q(�+2)
2 )−1 for � = 0, 1, · · · ,K − 1. (4)

Because ξ(�+1) is a function of x and ξ(�+1)et
m = x�+1, we may decide x�+1 by

ξ(�+1)(x)et
m with assigning a x, 0 < x < 1.

Consider h(�)(x) = ξ�(x)et
m again but we are going to use it with ξ(�) for

0 < � < K.

Theorem 3. If the Markov chain is positive recurrent, we have 0 < x < 1 and
h(�)(1) > 1, for 0 < � < K.

Proof. From (4) we know

em(Q(�+1)
1 + (Q(�+2)

2 )−1et
m < em(Q(�+1)

1 + (Q(�+1)
2 )−1et

m,

and

−em(Q(�+1)
1 + (Q(�+2)

2 )−1et
m > −em(Q(�+1)

1 + (Q(�+1)
2 )−1et

m = 1.

Thus we have h(�)(1) > 1. ��
Then it is shown in Theorem 3 that under certain irreducibility conditions,
the value of the h(x) in lies (0,1), which may efficiently be solved and will be
expressed by h(�)(x).
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4 Deficient Matrix Approaches

In this section, we will focus on an efficient approach by taking into account π0

at the boundary state when it solves the stationary probability π. We rewrite
the system state balance equations as

[
π0,π1,π2, · · ·

]

⎡
⎢⎢⎢⎢⎢⎣

Q(0)
1 Q(0)

0 0 1

Q(1)
2 Q(1)

1 Q(1)
0

. . . 1

0 Q(2)
2 Q(2)

1

. . .
...

. . .
...

⎤
⎥⎥⎥⎥⎥⎦

= [0, 0, · · · , 0, 1].

4.1 Boundary Equations and Eigenvector Approaches

Let T = Q(0)
1 + et

mξ(1)Q(1)
2 and ξ(0) = −λem[(T+ et

mem)−1 − (T+ aet
mem)−1].

We consider a general structure of T in the following lemma.

Lemma 4. Let T be an m × m matrix with rank m − 1, and T has no zero row
or column. There exists a rank-1 matrix P that satisfies TP = PT = 0, which
is determined uniquely only up to a constant.

Proof. Let S = m − 1. Without losing of generality, we may assume
{e1T, e2T, · · · , eST} are linearly independent. Since rank(T) = S, there exist
some constants c1, c2, · · · , cS which are not all zero such that

c1e1T + c2e2T + · · · + cSeST = emT. (5)

To prove c1, c2, · · · , cS are uniquely determined. Suppose there are other numbers
d1, d2, · · · , dS such that d1e1T + d2e2T + · · · + dSeST = emT which is also an
expression of emT. By subtracting one from another, we obtain (c1 − d1)e1T+
(c2 − d2)e2T + · · · + (cS − dS)eST = 0. According to our assumption of linear
independence of {e1T, e2T, · · · , eST}, we have ci − di = 0, 1 ≤ i ≤ S. Hence,
ci − di = 0 for 1 ≤ i ≤ S and the expression is determined uniquely.

From (5), we have (c1, c2, · · · , cS ,−1)T = 0 which implies
⎡
⎢⎢⎣

c1 c2 c3 · · · cS −1
c1 c2 c3 · · · cS −1

· · · · · · · · ·
c1 c2 c3 · · · cS −1

⎤
⎥⎥⎦ T = 0

Similarly, suppose {Tet
1,Te

t
2, · · · ,Tet

S} are linearly independent and there exist
some constants a1, a2, · · · , aS which are not all zero such that a1Tet

1 + a2Tet
2 +

· · · + aSTet
S = Tet

m. It implies that

T

⎡
⎢⎢⎢⎢⎣

a1 a1 a1 · · · a1

a2 a2 a2 · · · a2

· · · · · ·
aS aS aS · · · aS

−1 −1 −1 · · · −1

⎤
⎥⎥⎥⎥⎦

= 0
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Based on two cases described, P may be written as

P = c ×

⎡
⎢⎢⎣

a1c1 a2c1 a3c1 · · · aSc1 −c1
a1c2 a2c2 a3c2 · · · aSc2 −c2

· · · · · · · · ·
−a1 −a2 −a3 · · · −aS 1

⎤
⎥⎥⎦

where c is an arbitrary real number. This means P is uniquely determined up to
a constant. It concludes that TP = PT = 0. ��

Define E with a nonzero row vector b as follows

E Δ= et
mb.

Consider the matrix EPE with its element at the ith row and the jth column,
i.e., [EPE]i,j . We write

[EPE]i,j =
m∑

k=1

[E]i,k [PE]k,j

=
m∑

k=1

m∑
�=1

[E]i,k [P]k,� [E]�,j

=
m∑

k=1

[E]i,k [P]k,m [E]m,j

Since E is a rank-1 matrix with the first S rows of zeros, we know that

If i �= m, [EPE]i,j = 0
If i = m, [EPE]m,j = [EP]m,m [E]m,j

This implies EPE = [EP]m,m × E, so we choose a proper r with P such that
[EP]m,m = 1 and EPE = E. It is easy to see that by given a one may choose a
proper r such that EPE = aE.

Suppose the first S columns or rows of T are linear independent. It produces
for a �= 0 that T + a et

mb is full rank and (T + a et
mb)−1 exists. Suppose

(T + a et
mb)−1 Δ= Pa + Wa

where Pa satisfies TPa = PaT = 0 and Wa denotes a matrix for the remainders
with respect to (T + a et

mb)−1.

Lemma 5. Let (T+ aE)−1 = Pa +Wa, where TPa = PaT = 0 and EPaE =
E, then EWa = WaE = 0.
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Proof. Since TPa = PaT = 0, we may choose a proper r such that EPaE = E.
Consider

(−E)[(T + aE)−1 (T + aE)] + E = 0

(−E)(T + aE)−1T − E(T + aE)−1E + E = 0

⇒
−E(T + aE)−1T

= E(T + aE)−1E − E

= EPaE + EWaE − E

= EPaE − E + EWaE

= EWaE with a properly chosen c.

On the other hand, we have a similar derivation in the following,

−E(T + aE)−1T

= −E(Pa + Wa)T
= −EWaT

From the two expressions above, it gives that

EWaE = −EWaT

EWa(T + E) = 0

EWa = 0

For (T + E) is of the full rank, we can similarly acquire WaE = 0. ��
Lemma 6. Let T be an m × m matrix with rank m − 1, has no zero row or
column, and b be a row vector satisfies that T + et

mb is full rank, then [(T +
et

mb)−1 − (T + a et
mb)−1]T = 0 for all a �= 0.

Proof. Recall E = et
mb and consider

I = (T + E)(P1 + W1) = EP1 + TW1 with a = 1,

I = (T + aE)(
1
a
P1 + Wa) = EP1 + TWa

Combining the equations above we have

T(W1 − Wa) = 0.

Similarly, we have

(W1 − Wa)T = 0.

If W1 = Wa, then we are done. Otherwise, it means W1 −Wa = βP1 for some
constant β �= 0 by Lemma 4, then it produces

βEP1 = E(W1 − Wa) = 0.

Since EP1 �= 0, we have β = 0, implying W1 = Wa. ��
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From Lemma 12, em[(T+et
mb)−1 − (T+a et

mb)−1]T = 0, it provides a way
to obtain ξ(0), because Q(0)

1 + R(1)Q(1)
2 plays the role of T in the equation. So

we can set

ξ(0) = −λem[(Q
(0)
1 + etmξ(1)Q

(1)
2 + etmb)−1 − (Q

(0)
1 + etmξ(1)Q

(1)
2 + aetmb)−1]. (6)

for any a �= 0, and any row vector b such that rank(Q(0)
1 + et

mξ(1)Q(1)
2 +

et
mb) = m.

In our case, we set b = em in (6).

4.2 LU Decomposition Approaches

In order to reduce the time complexity of matrix multiplication and inversion,
we will adapt LU decomposition for computing an m × m matrix, namely

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[T]0,0 [T]0,1

[T]1,0 [T]1,1 [T]1,2

0 [T]2,1 [T]2,2 [T]2,3

... 0
. . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

0 0 0 0 · · · [T]S−1,S−2 [T]S−1,S−1 [T]S−1,S

0 [T]S,1 [T]S,2 [T]S,3 · · · [T]S,S−2 [T]S,S−1 [T]S,S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

with its all diagonal elements are nonzero. Denote by [T]i,j the element at the
(i+1)th row and the (j+1)th column of matrix T.

Let L and U be component matrices of LU decomposition of T, where L is
a lower triangular matrix and U is an unit upper triangular matrix, then L and
U can be expressed as

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[L]0,0

[L]1,0 [L]1,1

0 [L]2,1 [L]2,2

... 0
. . . . . .

...
...

. . . . . . . . .
0 0 · · · 0 [L]S−1,S−2 [L]S−1,S−1

0 [L]S,1 [L]S,2 · · · [L]S,S−2 [L]S,S−1 [L]S,S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 [U]0,1 0 0 · · · · · · 0
1 [U]1,2 0 · · · · · · 0

1 [U]2,3 0 · · · 0
. . . . . . . . .

...
1 [U]S−2,S−1 0

1 [U]S−1,S

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)
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From (8), (9), and T = LU, we can write the following equations.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[T]0,0 = [L]0,0

[T]0,1 = [L]0,0[U]0,1

[T]i,i−1 = [L]i,i−1, 1 ≤ i ≤ S − 1
[T]i,i = [L]i,i + [L]i,i−1[U]i−1,i, 1 ≤ i ≤ S − 1
[T]i,i+1 = [L]i,i[U]i,i+1, 1 ≤ i ≤ S − 1
[T]S,1 = [L]S,1

[T]S,i = [L]S,i + [L]S,i−1[U]i−1,i, 2 ≤ i ≤ S

which induces the Algorithm 1 with time complexity O(S).

Algorithm 1: LU decomposition

[Step 1] [L]0,0 = [T]0,0, [U]0,1 = [T]0,1
[L]0,0

[Step 2] Compute recursively for i = 1, 2, · · · , S − 1

[L]i,i−1 = [T]i,i−1

[L]i,i = [T]i,i − [L]i,i−1[U]i−1,i

[U]i,i+1 = [T]i,i+1
[L]i,i

[Step 3] [L]S,1 = [T]S,1

[Step 4] Compute recursively for i = 2, 3, · · · , S

[L]S,i = [T]S,i − [L]S,i−1[U]i−1,i

Lemma 7. If T is of the special form as described in (7) and L,U are the
component matrices of LU decomposition of T, then the last row of T−1 is the
same as the last row of L−1, i.e. emT−1 = emL−1.

Proof. It is easy to check that U−1 is modified to an upper triangular matrix
with all diagonal elements of one by Gaussian elimination.

This implies that the last row of U−1 is emU−1 = [0, 0, · · · , 0, 1] = em

Since T−1 = (LU)−1 = U−1L−1, by multiply em on both sides, we obtain

emT−1 = emU−1L−1 = emL−1

Hence, we have the result. ��
Now, define emT−1 = emL−1 = [�0, �1, �2, · · · , �S ]. Since emL−1L = em, we

obtain the following equation, i.e.,
⎧
⎪⎪⎨
⎪⎪⎩

�0[L]0,0 + �1[L]1,0 = 0
�i[L]i,i + �i+1[L]i+1,i + �S [L]S,i = 0, 1 ≤ i ≤ S − 2
�S−1[L]S−1,S−1 + �S [L]S,S−1 = 0
�S [L]S,S = 1.
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Algorithm 2: Compute et
mL−1

[Step 1] �S = 1
[L]S,S

[Step 2] �S−1 = − [L]S,S−1
[L]S−1,S−1

[Step 3] Compute recursively for i = S − 2, S − 1, · · · , 1

�i = − [L]i+1,i
[L]i,i

�i+1 − [L]S,i

[L]i,i
�S

[Step 4] �0 = − [L]1,0
[L]0,0

which induces the Algorithm 2 with time complexity O(S).
Thus, replacing T by (Q(K)

1 + σQ(K)
2 ) or (Q(�)

1 + emξ(�+1)Q(�+1)
2 ), the time

complexity of solving ξ(�) can be reduced from O(S3) to O(S).
In summary, we present a general computing procedure for obtaining π in

the following.

Algorithm 3: Computing stationary probabilities π

[Step 0] Let K be determined in Corollary 1 by a preset ε > 0
[Step 1] solve x = −λem(Q(K)

1 + xQ(K)
2 )−1et

m

and ξ(K) = −λem(Q(K)
1 + σQ(K)

2 )−1, σ = x

[Step 2] ξ(k) = −λem(Q(k)
1 + et

mξ(k+1)Q(k+1)
2 )−1, k = K − 1,K − 2, · · · , 1

[Step 3] ξ(0) = −λem[(Q(0)
1 + et

mξ(1)Q(1)
2 + et

mem)−1 − (Q(0)
1 + et

mξ(1)Q(1)
2 +

aet
mem)−1]

[Step 4] σk = ξ(k)et
m, k = 0, 1, · · · ,K − 1

[Step 5] sk
Δ=

∏k−1
i=0 σi, s0 = 1, k = 0, 1, · · · ,K

[Step 6] φ = (
∑K−1

k=0 skξ(k)1 + sK

1−σ ξ(K)1)−1

[Step 7] πk = φskξ(k), 0 ≤ k ≤ K
[Step 8] πk = (σ)k−KπK , k ≥ K + 1.

The expected number of customers in the retrial orbit Lq can be determined
by

Lq =
K−1∑
i=0

iπi1 +
∞∑

i=K

iσi−KπK1 =
K−1∑
i=0

iπi1 + πK1{ K

1 − σ
+

σ

(1 − σ)2
}.

Define the effective retrial rate and the effective service rate as Er and Es,
respectively. The performance measures are expressed by

Er =
∞∑

k=1

kγπk1 = Lq γ,

Es =
S∑

i=1

∞∑
k=1

iπket
iμ.
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5 Numerical Experiments

By our model, the computational effort of the suggested approach in Algorithm
3 is significantly reduced while the numerical stability associated with the com-
putational procedure is controlled under a preset precision level. We will conduct
numerical experiments on PC with Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz
for the proposed method with the test problems appeared in [6]. With the help
of stationary distribution π = (π0,π1,π2, . . .) of M/M/S with impatient cus-
tomers, we can compute the expected number of customers in the retrial queue
and the expected number of customers at each level by treating ρ and S as the
decision variables, e.g., λ = ρ × S × μ. In experiments, we first use the test
problems in [6] and comparing the results by computing Nret which is denoted
by Lq in our model, the blocking probability Pb, the delayed service probability
Pds, and the nonservice probability Pns, i.e.,

Pb =
K−1∑
i=0

πiet
m + πKet

m

1
1 − σ

Pds = {Lq −
K∑

i=1

iπiet
m − πKet

m(
K

1 − σ
+

σ

(1 − σ)2
)}γ/λ

Pns = pγ{
K∑

i=0

iπiet
m + πKet

m(
K

1 − σ
+

σ

(1 − σ)2
)}/λ.

Referring to [6], the default value of number of examples are set as S = 50,
100, 200, 500, and 1000, μ = 1/180, γ = 0.01, p = 0,2, ε = 10−5, respectively.
We confirm the computing procedure and robustness of Algorithm 3. The per-
formance measures are presented in particular for S = 500, ρ = 1, μ = 1/180, γ
= 0.01 in Fig. 1.

The main purpose of this paper is the development of an eigenpair approach
that results in an efficient method to effectively solve retrial systems with cus-
tomer impatience. This novel method is a continuing effort inspired in the previ-
ous research papers. The proposed algorithm depends on a series of eigenvalues
and eigenvectors for nonhomogeneous QBD. The computational complexity is
much lower because it only needs to solve an eigenvalue once and the remaining
probabilities are attained by substitution. According to our experiments over
100 test problems including S = 2000, we found the computational complexity
depends on ρ which confirms the observation in [6]. In specific, our test prob-
lems illustrate the relationship K which is denoted by N in [6] among other
system parameters in Fig. 1. Therefore, we choose K by the following rule in our
case rather than using Corollary 1 which only provides a rough upper bound in
general.

Observation: There exists a f(ρ) such that ln(K) is proportional to f(ρ) ln(S)
where f(ρ) may be written as

f(ρ) = {0.3, if ρ < 0.9
1.4ρ, if ρ ≥ 0.9.
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Table 1. Computational Time for λ = ρ(μS), μ = 1/180, γ = 0.01, p = 0.2

ρ S = 50 S = 100 S = 200 S = 500 S = 1000

K Time (s) K Time (s) K Time (s) K Time (s) K Time (s)

0.4 10 0.001 10 0.001 10 0.004 10 0.010 10 0.021

20 0.001 20 0.001 20 0.006 20 0.016 20 0.016

30 0.001 30 0.003 30 0.006 30 0.014 30 0.020

40 0.001 40 0.005 40 0.008 40 0.014 40 0.030

0.8 30 0.002 30 0.003 30 0.005 30 0.016 30 0.033

40 0.002 40 0.003 40 0.007 40 0.026 40 0.033

50 0.004 50 0.004 50 0.008 50 0.026 50 0.047

60 0.003 60 0.005 60 0.009 60 0.03 60 0.047

1.0 50 0.009 80 0.008 120 0.033 200 0.097 350 0.288

75 0.011 100 0.009 160 0.033 250 0.102 400 0.339

100 0.01 120 0.009 200 0.039 300 0.124 450 0.352

125 0.014 140 0.012 240 0.05 350 0.157 500 0.396

1.4 100 0.009 200 0.015 300 0.05 800 0.279 1000 0.937

150 0.013 250 0.02 400 0.061 900 0.332 1500 1.368

200 0.014 300 0.018 500 0.07 1000 0.35 2000 1.648

250 0.01 350 0.029 600 0.084 1100 0.378 2500 2.146

Although this method is one of the generalized truncated methods, we believe
our method can be used in many cases in engineering problems where the matrix
Q(�)

0 has only one non-zero row of which examples are found in [4,14,15]. We
expect that this method will outperform the previous proposals in terms of
accuracy for the most common performance parameters used in retrial systems
and under a wide range of scenarios in applications (Tables 1 and 2).

Table 2. Computational Time for λ = ρ(μS), μ = 10, γ = 1.6, p = 0.15

ρ S = 100 S = 200 S = 500 S = 1000 S = 2000

K Time (s) K Time (s) K Time (s) K Time (s) K Time (s)

0.8 60 0.003 50 0.01 50 0.021 40 0.027 40 0.060

0.9 170 0.01 150 0.031 100 0.009 90 0.07 80 0.124

0.95 320 0.02 350 0.055 320 0.11 270 0.19 190 0.287

1.0 560 0.043 810 0.15 1510 0.507 2390 1.853 3760 6.119
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Fig. 1. Stats v.s. K for S = 500, ρ = 1.0, μ = 1/180, γ = 0.01
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Abstract. We study a multiclass single-server retrial system with inde-
pendent Poisson inputs and the state-dependent retrial rates. Meeting
busy server, a new class-i customer joins orbit i. Orbit i is working
as a FIFO-type queueing system, in which the top customer retries to
occupy server. The retrial times are exponentially distributed with a rate
depending on the current configuration of the binary states of all orbits,
idle or non-idle. We present a new coupling-based proof of the necessary
stability conditions of this retrial system, found earlier in the paper [17].
The key ingredient of the proof is a coupling of the processes of retrials
with the corresponding independent Poisson processes. This result allows
to apply classic property PASTA in the following performance analysis.
A few numerical results verifying stability conditions of a 3-class system
are included as well.

Keywords: Retrial system · Multiclass coupled-orbit queues ·
Stability condition · Coupling · Regeneration · Simulation

1 Introduction

In this work, we provide a coupling-based proof of the necessary stability condi-
tions of a single-server retrial multiclass queueing systems with state-dependent
retrial rates, called coupled orbit queues [7–9]. The new proof allows to apply the
key property PASTA (“Poisson arrivals see time average”) for equating time-
average and customer-average limits and, as a result, to obtain the correspond-
ing stationary probabilities. This in turn allows to obtain the necessary stability
condition by an analogy with analysis of queueing Markov processes by means
of Kolmogorov equations.

We assume that there are N classes of customers following independent Pois-
son inputs. Meeting server busy, a class-i customer joins a virtual class-i orbit
and then attempts to occupy server for transmission. Under coupled orbit queues
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policy, the retrial rate of a given orbit depends on the binary states of other orbits.
By this reason (and not to confuse it with the coupling method applied in the
present work), we call such a system also the system with state-dependent retrial
rates. This setting is well-motivated by modelling wireless multiple access sys-
tems, in particular, relay-assisted cognitive cooperative systems in which users
transmit packets to a common destination node, and the orbit queues play a role
of relay nodes [23]. In general, such models are motivated by increase the impact
of wireless interference, see details in [7–9]. This work is devoted mainly to a new
proof of the necessary stability conditions of the coupled orbit queues, and by
this reason we will not further motivate this setting. Instead, the interested read-
ers, besides the mentioned above works [7–9], can see papers [14,21,22], where
further references can be found as well.

The service times of customers are assumed to have general class-dependent
distribution. In a few previous works [16–18], a regenerative performance analysis
of the single-server system with state-dependent retrial rates has been developed
as well as the numerical verification of the stability conditions of such models
was performed. In work [16], where the regenerative performance and stability
analysis of coupled orbit queues has been applied for the first time, the retrans-
mission rate of each orbit i had only two values: μ∗

i , if all other orbits are idle,
and μi when at least one orbit j �= i is not idle. In the following works [17,18]
the approach suggested in [16] has been extended to much more general model
in which retrial rate of a given orbit in general depends on each possible configu-
ration of other orbits. By configuration we mean a fixed set of the binary states
of orbits: busy or idle.

In the framework of the Markovian models of retrial systems, performance
analysis is typically performed using Kolmogorov equations describing the
detailed dynamics of the process, for instance see [4,13]. In this regard we men-
tion the fundamental works [1–3,11,12], devoted to analysis and bibliography of
the retrial systems.

However, to analyze non-Markov models, we have applied the regenerative
approach and local balance equations in works [16–18], to obtain some steady-
state characteristics, bounds and stability conditions of the models with state-
dependent retrial rates.

In this research we again apply the regenerative approach and balance equa-
tions for each orbit to develop an alternative proof of the necessary stability
stationary and performance analysis of the corresponding models. This unified
approach is based on the coupling arguments and the property PASTA [5]. A
challenging problem of the performance analysis of such a model (and the retrial
models in general) is a complicated structure of the successful attempts of orbital
customers. The key ingredient of the approach proposed in this work is the cou-
pling of the process of retrial attempts from each orbit with an independent
Poisson process. This then allows to apply the property PASTA to the pro-
cess of successful attempts to equate the limiting fraction of customers which
meet server busy and the (limiting) fraction of the busy time of server. This
novel approach is the main contribution of the present research, and it has a
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promising potential in stability and performance analysis of a wide class of the
retrial systems.

In previous works, both necessary and sufficient stability conditions of the
systems with state-dependent retrial rates have been established [8,16,17]. It is
worth mentioning that all performed experiments indicated that sufficient condi-
tion seems to be excessive and the necessary stability condition solely is stability
criterion. In this regard, we now numerically verify the necessary stability con-
dition for each orbit separately. As a result, we establish that violation of the
sufficient stability condition indeed leads to instability of the system (for a set of
the system parameters). The idea used to select the corresponding set of param-
eters (and described in Sect. 5 after formula (25)) is another contribution of the
present research.

As a by-product of our analysis, we obtain the coupling-based proof of some
steady-state results for the multiclass retrial system with class-dependent con-
stant retrial rates, independent of the states of other orbits [15], see Remark 1
at the end of Sect. 4.

The paper is organized as follows. In Sect. 2 we describe the model under con-
sideration. In Sect. 3, preliminary results are shortly given, including previous
proof of the necessary stability conditions. Section 4 contains the new coupling-
based proof of these conditions. In Sect. 5, the proof of sufficient stability con-
ditions is outlined. Finally, in Sect. 6, we present simulation results for N = 3
classes of customers to verify stability conditions, including symmetric system,
when all orbits behave similarly. For the first time we demonstrate examples in
which violation of the necessary stability conditions implies instability of the
orbits. We could not construct such examples in previous works [17,18], and the
new examples are based on a delicate analysis of the mutual influence of the
orbits.

2 Model Description

We study a single-server retrial queueing model with N classes of customers
following independent Poisson inputs. Class-i customers have input rate λi, 1 ≤
i ≤ N . Alternatively, we may assume a Poisson input with rate λ =

∑N
i=1 λi, and

a new arrival is class-i customer with the probability pi =: λi/λ, 1 ≤ i ≤ N. Let
{tn, n ≥ 1} be the arrival instants of the input with rate λ, with interarrival times
τn = tn+1− tn. Throughout the paper, we omit the corresponding serial index to
denote a generic element of an independent identically distributed (iid) sequence.
Thus generic interarrival time τ is exponentially distributed with parameter λ.
It is assumed that service times of class-i customers, {S

(i)
n , n ≥ 1} are iid with

service rate γi = 1/ES(i), 1 ≤ i ≤ N. We stress that (generic) service time S(i)

has general class-dependent distribution. If a class-i customer meets server busy,
then it joins (virtual) FIFO orbit queue i. In this context, discipline FIFO means
that the head customer from orbit i retries until he occupies server, while other
customers blocked in orbit i are waiting “in a queue”. The attempts from orbit
i follow exponential distribution with a rate depending on the current status of
other orbits: idle or non-idle.
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For the following analysis we need definitions from [17]. For each i, we define
the set G(i) of N -dimensional vectors,

J (i)
n = {j

(i)
n,1, . . . , j

(i)
n,i−1, 1, j

(i)
n,i+1, . . . , j

(i)
n,N},

with binary components j
(i)
n,k ∈ {0, 1}, if k �= i, while the ith component j

(i)
n,i = 1

always. We assume that G(i) = {J
(i)
n , 1 ≤ n ≤ 2N−1} is the ordered set (say,

in the lexicographical order), where index n denotes the nth element of this set.
Each vector J

(i)
n is called configuration and has the following interpretation: if

the kth orbit is non-idle, then we put j
(i)
n,k = 1, otherwise, j

(i)
n,k = 0. For a given

configuration J
(i)
n , we denote μ

(i)
n the retransmission rate of orbit i. Thus, the set

G(i) contains all possible different configurations of the orbits “observed from
orbit i”, and each configuration from this set describes a fixed set of the states
of orbits: busy = 1 or idle = 0, provided orbit i is busy. Also we denote the set
of rates

Mi = {μ(i)
n : J (i)

n ∈ G(i)}, (1)

of all configurations belonging to G(i), 1 ≤ i ≤ N . In general, different configu-
rations have different retransmission rates but it is possible that, for given i, the
set Mi contains repetitive elements, say μ

(i)
k = μ

(i)
l . It means that the retrial

rate of orbit i is insensitive to the switching between configurations J
(i)
k and J

(i)
l .

Our analysis is based on the regenerative approach [5]. To describe the regen-
erative structure of the retrial system, we define the basic stochastic processes.
Let Ni(t) be the number of class-i customers blocked in orbit i and Wi(t) be the
remaining workload in orbit i, at instant t−, 1 ≤ i ≤ N . In other words, Wi(t)
is the time which is required to serve all class-i customers blocked at instant t.
Denote N(t) =

∑
i Ni(t) the number of customers in all orbits at instant t. Let

Q(t) = 1 if server be busy at instant t−, and Q(t) = 0, otherwise. Denote

X(t) = N(t) + Q(t), t ≥ 0 and X(tn) = Xn, n ≥ 1.

We will consider the zero initial state when the 1st customer arrives in the idle
system at instant t1 = 0. It is well-known that the process X = {X(t), t ≥ 0}
regenerates when a new customer meets an empty system [5]. More exactly,
regenerations are defined as follows:

Tn+1 = inf
(
tk > Tn : Xk = 0

)
, n ≥ 0, T0 := 0.

After each regeneration, the process starts anew independently of the pre-history.
It implies that the “fragments” of the paths between regenerations, that is
{X(t) : Tn ≤ t < Tn+1}, n ≥ 0, are iid random elements [5,24]. The regen-
eration periods Tn+1 − Tn are iid as well, distributed as a random variable T .
The regenerative process X is called positive recurrent if ET < ∞, and, when the
input is Poisson (as in our setting), positive recurrence implies stationarity of
the system, that is the existence of the stationary distribution of X(t) as t → ∞.
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3 Preliminary Results

Before to present a new proof of the necessary stability conditions of the system,
we give results obtained in [17], which are used in the following analysis. More-
over, we recall in brief the proof of the necessary stability conditions found in
[17] and in [16] (for a less general model), to demonstrate the difference between
these proofs. Note that the new proof can also be applied to reprove stability
conditions of a two-way communication system with multiple classes of incoming
customers and outgoing calls, obtained in [15].

Denote Ai(t) the number of class-i arrivals in the interval of time [0, t). Then
the work which is required to process all class-i customers arriving in the interval
[0, t) is defined as

Vi(t) =
Ai(t)∑

n=1

S(i)
n , 1 ≤ i ≤ N. (2)

Also denote S(t) the remaining service time of a customer at instant t− (S(t) = 0,
if the server is free). Denote Bi(t) the time when the server is occupied by class-
i customers, in the interval [0, t]; then

∑
i Bi(t) = B(t) is the total busy time

of server. Finally, denote the traffic intensity for each class, and the summary
traffic intensity, respectively,

ρi =
λi

γi
, ρ =

N∑

i=1

ρi.

It has been shown in [16,17], using the balance equations

Vi(t) =
N∑

i=1

Wi(t) + S(t) + Bi(t), i = 1, . . . , N,

the Strong Law of Large Numbers (SLLN), and representation (2), that the
stationary probability the server is occupied by a class-i customer is obtained as
the following limit with probability (w.p.) 1,

P
(i)
b = lim

t→∞
Bi(t)

t
= ρi, 1 ≤ i ≤ N. (3)

Then the stationary busy probability of the server is

Pb =
∑

i

P
(i)
b = ρ. (4)

Denote the indicator I
(i)
k = 1, if the kth class-i customer joins orbit i, and

I
(i)
k = 0, otherwise. Let A

(0)
i (t) be the number of customers joining orbit i, and

Di(t) the number of customers leaving orbit i, respectively, in the interval [0, t).
(Note that Di(t) is the number of the successful attempts from orbit i). The
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proof of the stability conditions in [17] is based on the asymptotic analysis of
the following balance relations,

A
(0)
i (t) = Ni(t) + Di(t), 1 ≤ i ≤ N, (5)

between the input to orbit i and the output from orbit i, in the interval [0, t).
In this analysis developed in [16,17], to find the limit Di(t)/t as t → ∞, we
have applied the following approach. Define, in interval [0, t], the time when the
system has configuration J

(i)
n and server is free,

T (i)
n (t) =

∫ t

0

1(Ji(u) = J (i)
n , I(u) = 1)du,

where 1 is the indicator function, the random variable Ji(t) represents the current
configuration of the system, “observed” from the non-idle orbit i, at instant t;
I(u) = 1, if the server is idle at instant u, and I(u) = 0 otherwise. Then

T
(i)
0 (t) =

∑

n:J
(i)
n ∈G(i)

T (i)
n (t),

is the time, in the interval [0, t], when server is idle and orbit i is busy. In
the papers [16,17], we defined (in slightly another notation) the Poisson process
D̂

(i)
n (t) of retrials from orbit i provided that the retrial system has configuration

J
(i)
n during whole interval [0, t]. Evidently, then

D̂i(T
(i)
n (t))

T
(i)
n (t)

→ μ(i)
n , t → ∞, (6)

while the time-average limit,

lim
t→∞

T
(i)
n (t)
t

=: P(i)
n , (7)

represents the stationary probability that the system has configuration J
(i)
n and

server is idle. Thus,
∑

n:J
(i)
n ∈G(i)

P(i)
n = P

(i)
0 (8)

is the stationary probability that server is idle and orbit i is busy. The further
analysis in [16,17] is based on the replacement of the relations (5) by the following
stochastic equality

A
(0)
i (t) =

Ai(t)∑

k=1

I
(i)
k =st Ni(t) +

∑

n:J
(i)
n ∈G(i)

D̂i(T (i)
n (t)), (9)

and using (6)–(8).
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4 Coupling-Based Proof of the Necessary Stability
Condition

In this section, we present the new proof of Theorem 1 below, which as we
mention in Sect. 3, has been proved in [17] by another way. Before to explain
why we present the new proof, we recall the classic property PASTA [25]. This
property states that the long-run fraction of Poisson arrivals which meet the
system in a particular state equals the long-run fraction of time the system is in
that state. In the proof in [17], using Eq. (9), we equate the limiting fraction of
customers joining orbit i, and the limiting fraction of time when server is busy
(and orbit i is busy). However the limit (7) in general has not such interpretation
because the process of the attempts from orbit in general is not Poisson. This is
the main reason why we develop a new proof in the present work. (Note that, to
justify the approach applied in [16,17], it seems promising to use the so-called
conditional PASTA [10]). To overcome the mentioned difficulty, we use a coupling
to connect the process of retrials from a given orbit with an independent Poisson
process. In turn, this construction further allows to apply the property PASTA,
to establish the equality of the corresponding limits. Also note that, in the new
proof, we replace the last term in (9) by a sum of indicators by analogy with
representation of A

(0)
i (t), see (13), (14) below. In our opinion, this new proof can

be useful to analyze a wide class of the retrial systems. (An example is a general
multicalss system with constant retrial rates studied in the paper [19]; another
example is the multiclass system with outgoing calls considered in [15]).

Introduce the maximal and the minimal possible retrial rate from orbit i,
respectively,

μ̂i = max
n:J

(i)
n ∈G(i)

μ(i)
n , μ0

i = min
n:J

(i)
n ∈G(i)

μ(i)
n , 1 ≤ i ≤ N.

Theorem 1. If the system under consideration is positive recurrent, then,

ρ ≤ min
1≤i≤N

[ μ̂i

λi + μ̂i

]
. (10)

Proof. As in [17], using the renewal theory, we find that w.p.1,

lim
t→∞

1
t
A

(0)
i (t) = λiρ, 1 ≤ i ≤ N. (11)

Denote D̂
(i)
n = {D̂

(i)
n (t), t ≥ 0} the Poisson process with rate μ

(i)
n , that is

P(D̂(i)
n (t) = k) = e−µ(i)

n t [μ(i)
n t]k

k!
, k ≥ 0; t ≥ 0, 1 ≤ i ≤ N. (12)
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We may assume that this process is generated by the attempts from (non-idle)
orbit i if the system has permanent configuration J

(i)
n . For each i, introduce the

family of independent processes

Di = {D̂(i)
n : J (i)

n ∈ G(i)},

and let {z
(i)
n (k), k ≥ 1} be the instants of the process D̂

(i)
n . It is assumed that the

families {Di, i = 1, . . . , N} are independent as well. Denote Di(t) the number of
actual attempts from orbit i in interval [0, t). Now, using a coupling, we connect
the process Di = {Di(t), t ≥ 0} with the family of the Poisson processes Di.
At instant t = 0, we start to sample all Poisson processes D̂

(i)
n from the family

Di, and this procedure is simultaneously performed for all orbits, that is for
all families {Di, i = 1, . . . , N}. From now on we fix an arbitrary i. Then, the
first configuration, say J

(i)
n , appears when the 1st class-i customer is blocked on

orbit i at some instant v
(i)
1,n. (Recall that the zero initial state is assumed, while

configurations are defined for non-idle orbit i). At the instant v
(i)
1,n we replace

the remaining exponential time (in the interval covering instant v
(i)
1,n) in the

process D̂
(i)
n by a new independent exponential variable with rate μ

(i)
n . (This

procedure is called resampling). Note that by construction, a switching between
configurations happens if and only if an orbit switches between idle/busy or
busy/idle states. Then, after instant v

(i)
1,n, we synchronize (take identical) expo-

nential intervals in both processes D
(i)
n and D̂

(i)
n , that is synchronize the process

of retrials from orbit i with the corresponding Poisson process. (Namely this syn-
chronization is called a coupling [5]). This synchronization lasts until the current
configuration J

(i)
n switches, at some instant v

(i)
2,n, to the next configuration J

(i)
k ,

say. Then, at the instant v
(i)
2,n, we interrupt the current interval in the process

D̂
(i)
k and synchronize the following intervals in process D̂

(i)
k and process Di of

real attempts, and so on. Analogously, this procedure is applied to all other
orbits. Thus, by construction, the instants of the actual retrials Di constitute a
subsequence of the renewal points of the corresponding processes from the family
Di with resampling. We emphasize that the resampling does not change distri-
bution of the Poisson processes Di, and we will keep the notation D̂

(i)
n for the

resampled process and the notation {z
(i)
n (k), k ≥ 1} for its instants. Now, for

each i, denote

Q(z(i)n (k)) = Q(i)
n (k), Ji(z(i)n (k)) = J (i)

n (k), n ≥ 1.

Then, in particular, the equality

1(Q(i)
n (k) = 0, J (i)

n (k) = J (i)
n ) = 1

means that the kth instant of the Poisson process D̂
(i)
n is the instant of the

successful attempt of a class-i orbital customer, which occurs while configuration
J
(i)
n takes place. (If 1(Q(i)

n (k) = 1, J
(i)
n (k) = J

(i)
n ) = 1, that is server is busy,
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then the attempt is unsuccessful and indeed can be ignored). Then the number
of successful attempts D

(i)
n (t) from orbit i in the interval [0, t), when the system

has configuration J
(i)
n , is defined as

D(i)
n (t) =

D̂(i)
n (t)∑

k=1

1(Q(i)
n (k) = 0, J (i)

n (k) = J (i)
n ). (13)

Consequently, the number of departures from orbit i within this interval is

Di(t) =
∑

n:J
(i)
n ∈G(i)

D(i)
n (t), 1 ≤ i ≤ N. (14)

Recall that P
(i)
n is the stationary probability that server is idle and system has

configuration J
(i)
n , obtained as time-average limit (7). On the other hand, by

construction of the process D̂
(i)
n (t), we can apply the property PASTA and see

that the following event-average limit coincides with the limit (7):

lim
t→∞

∑D̂(i)
n (t)

k=1 1(Q(i)
n (k) = 0, J

(i)
n (k) = J

(i)
n )

D̂
(i)
n (t)

= P(i)
n . (15)

Thus, by (12), (15), it follows that, for 1 ≤ i ≤ N , as t → ∞,

D
(i)
n (t)
t

=
∑D̂(i)

n (t)
k=1 1(Q(i)

n (k) = 0, J
(i)
n (k) = J

(i)
n )

D̂
(i)
n (t)

· D̂
(i)
n (t)
t

→ P(i)
n μ(i)

n . (16)

Now, by (14), (16), we obtain

lim
t→∞

Di(t)
t

=
∑

n:J
(i)
n ∈G(i)

μ(i)
n P(i)

n , 1 ≤ i ≤ N. (17)

It remains to note that, in the positive recurrent case, Ni(t) = o(t), t → ∞ [24],
and that, by (5), (11), (17), the following relation holds for each i:

λiPb = λiρ =
∑

n:J
(i)
n ∈G(i)

μ(i)
n P(i)

n . (18)

Note now that the stationary probability P
(i)
0 that server is idle and orbit i is

busy, defined in (8), connects, for each i, with the stationary idle server proba-
bility P0 as follows:

P0 = P
(i)
0 + P

(i)
00 , (19)

where P
(i)
00 is the stationary probability that both server and orbit i are idle.

Denote π0 the stationary probability that the system is completely empty.
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By the positive recurrence, it then follows from the regeneration theory [5] and
from PASTA that

π0 =
1
ET

> 0.

Evidently, π0 ≤ P
(i)
00 , and then it follows from (19) that P0 > P

(i)
0 . Finally, by

(18), the following strict inequality holds,

λiρ ≤ μ̂iP
(i)
0 < μ̂iP0 = μ̂i(1 − ρ), 1 ≤ i ≤ N, (20)

implying (10).
By (18), we also have the opposite inequality

P
(i)
0 ≤ λi

μ0
i

ρ, 1 ≤ i ≤ N.

Then, by (19), we obtain the following lower bound for the probability P
(i)
00 :

P
(i)
00 ≥ P0 − λi

μ0
i

ρ = 1 − ρ(1 +
λi

μ0
i

), 1 ≤ i ≤ N. (21)

Remark 1. If the retrial rates are insensitive to the configurations, that is
μ
(i)
n ≡ μi for all J

(i)
n , then the system becomes a conventional constant retrial

rates multiserver system [20]. Hence, Theorem 1 can be applied to reprove the
necessary stability conditions of such a system found in [15]. Moreover, in this
case, the first inequality in (20) becomes equality, implying the following explicit
expressions (also see [16,17]):

P
(i)
0 =

λi

μi
ρ, 1 ≤ i ≤ N. (22)

5 Discussion of Sufficient Stability Condition

The complete proof of the sufficient stability condition is indeed quite similar to
that is given for the multiclass retrial system with constant (state-independent)
retrial rates in [19]. By this reason, in this section, we only outline the proof of
the sufficient stability condition of the system with the state-dependent retrial
rates.

For each i, introduce the iid sequence {S
(i)
n , n ≥ 1}, the service times of

class-i customers. Denote the indicator I
(i)
n = 1, if the nth arrival belongs to

class i, and I
(i)
n = 0, otherwise, that is EI

(i)
n = pi, 1 ≤ i ≤ N . Then, the service

time of the nth arrival can be represented as

Sn =
N∑

i=1

I(i)n S(i)
n , n ≥ 1, (23)

where the sequences {I
(i)
n } and {S

(i)
n } are independent. In the retrial model under

consideration, the server has an idle time after each departure. It allows us to
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construct a dominating buffered system, denoted Σ̂, as follows. Using coupling,
we take the same interarrival times (the same input flow). Then, in the system Σ̂,
for each class-i customer, we assign, additionally to the original service time, an
extra exponential service time ζi = min(τ, ξi), where ξi is exponential random
variable with the (minimal) parameter μ0

i . In other words, ξi is the distance
between the “slowest” attempts from orbit i. The exponential variable ζi has
parameter λ+μ0

i and is an upper bound of the idle time of server after departure,
provided orbit i is not empty. Then it follows that the (generic) service time Ŝ(i)

in the system Σ̂ satisfies the following stochastic equality Ŝ(i) =st S(i) + ζi, i =
1, . . . , N . Further, using the corresponding coupling and an induction, we show
that (i) it is possible to serve customers in both systems in the same order, and
(ii) that a customer leaves the system Σ̂ not earlier than the same customer in
the original system [19]. This monotonicity property implies that the workload
(remaining work) in the original system is dominated by the workload in the
system Σ̂. In turns, it means that the positive recurrence of the system Σ̂ implies
positive recurrence of the original system. On the other hand, a standard negative
drift condition for the buffered system Σ̂ to be stable (positive recurrent) is
EŜ < Eτ . Recall that ES(i) = 1/γi, pi = λi/λ. Then, after some algebra and
using (23), we obtain the negative drift condition as follows

ρ + max
1≤i≤N

λ

μ0
i + λ

< 1. (24)

We rewrite this sufficient stability condition in the following form

ρ < min
i

(
μ0
i

λ + μ0
i

)

, (25)

to compare it with the necessary condition (10).
It is worth mentioning that in all previous experiments given in [17,18],

simulations have shown that the orbits remain stable if the necessary stability
condition (10) holds, while the sufficient stability condition (25) is violated.
On the other hand, the presence of the maximal retrial rates in (20) indicates
that condition (10) cannot be stability criterion. To motivate this conclusion, we
assume that the rate μ̂i is achieved for a configuration which rarely happens,
while orbit i is heavily loaded. Then, one can expect that orbit i, working as a
queuing system with capacity less than μ̂i most of time, cannot process incoming
traffic, implying instability of orbit i. In the next section, this observation is
used to select such retrial rates for which sufficient condition (25) is false, but
condition (10) still holds, and it implies instability of the orbits. Moreover, it
was detected in [17] that if condition (25) is violated, while condition (10) holds,
then both stability and instability of separate orbits may happen. To “localize”
the behaviour of the orbits, it seems reasonable to check stability of orbit i
depending on whether the local condition

ρ ≤ μ̂i

λi + μ̂i
, (26)
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is fulfilled for orbit i, or not. In the next section, we present numerical results
confirming these observations.

6 Simulation Results

In this section, we present the results of a few numerical experiments to illustrate
the statements given above. We simulate the system with 3 classes of customers
and estimate each orbit size Ni(t). In all experiments we simulate 600 arrivals
and then average orbit sizes over 30 independent sample paths. In all figures, the
black, grey and (grey) dotted curve corresponds to the 1st, 2nd and 3rd orbit,
respectively, and the axis t counts the number of “events” (arrivals, departures,
attempts) used in the discrete-event simulation algorithm.

Define the measure expressing the proximity between the load and the upper
bound present in the local necessary condition (26) for orbit i:

Δi =
μ̂i

λi + μ̂i
− ρ, i = 1, 2, 3. (27)

Recall that, for the system with three orbits, the capacity of each set Mi and
G(i) equals 4 [17]. Following the comments in previous section, we now choose
the retrial system parameters in such a way to get Δi rather small.

0 200 400 600 800 1000

0
5

10
15

20
25

30

t

N
(t)

Fig. 1. Condition (25) is violated, condition (10) holds, all symmetrical orbits are
unstable.

Experiment 1. Figure 1 demonstrates the dynamics of the symmetric orbits
for the following input and service rates,
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λi = 2, γi = 7, i = 1, 2, 3, (28)

and the following retrial rates

M1 =
{

μ1
00 = 30, μ1

10 = 5, μ1
01 = 5, μ1

11 = 5
}

,

M2 =
{

μ2
00 = 30, μ2

10 = 5, μ2
01 = 5, μ2

11 = 5
}

,

M3 =
{

μ3
00 = 30, μ3

10 = 5, μ3
01 = 5, μ3

11 = 5
}

. (29)

Notation μi
kj reflects the status of a fixed configuration. For instance, μ1

00 = 30
is the retrial rate of (non-idle) orbit 1 when orbits 2 and 3 are idle; μ2

10 = 5 is
the rate of orbit 2, when orbit 1 is busy and orbit 3 is idle, and so on. For the
selected parameters, all orbits are symmetrical and have similar behaviour. (For
more detail on symmetric orbits see [18]). With these parameters we also have
ρ = 0.85, and the r.h.s. of condition (10) equals 0.93. As a result, the necessary
stability condition (26) holds true for each i and

Δi = 0.08, i = 1, 2, 3. (30)

The maximal rate μ̂i = 30 corresponds to the configuration when, for each orbit
i, both other orbits are empty. But the latter event seems to be “rare” because
Δi in (30) are small and thus all orbits are expected to be heavily loaded. As
Fig. 1 shows, all orbits become unstable. This verifies that condition (10) is not
stability criterion. On the other hand, the sufficient stability condition (25) is
violated because the r.h.s of (25) equals 0.71, while ρ = 0.85.

Experiment 2. Figure 2 shows the dynamics of almost symmetrical orbits. In
this experiment we use the same parameters (28) and the same maximal and
minimal rates for each orbit as in Experiment 1, but different other retrial rates:

M1 =
{

μ1
00 = 30, μ1

10 = 5, μ1
01 = 8, μ1

11 = 10
}

,

M2 =
{

μ2
00 = 30, μ2

10 = 10, μ2
01 = 5, μ2

11 = 9
}

,

M3 =
{

μ3
00 = 30, μ3

10 = 5, μ3
01 = 15, μ3

11 = 25
}

. (31)

In this case all calculations remain the same as in Experiment 1, and we again
observe the instability of all orbits.

Experiment 3. In this experiment, we verify how violation of condition (26)
for given orbit i influences on the dynamics of this orbit. In this case we use
parameters λi ≡ 1, γi ≡ 4, and non-symmetrical retrial rates

M1 =
{

μ1
00 = 2, μ1

10 = 2, μ2
01 = 20, μ1

11 = 1
}

,

M2 =
{

μ2
00 = 7, μ2

10 = 5, μ2
01 = 5, μ2

11 = 3
}

,

M3 =
{

μ3
00 = 10, μ3

10 = 9, μ3
01 = 5, μ3

11 = 5
}

.
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Fig. 2. Condition (25) is violated, condition (10) holds, all (non-symmetrical) orbits
are unstable.
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Fig. 3. Condition (25) is violated, condition (26) holds for orbits 2,3 and is violated
for orbit 1.

Then the load coefficients are ρi ≡ 0.25, ρ = 0.75, while the r.h.s. of (25) is 0.25.
Hence the sufficient condition (25) is violated. On the other hand, the r.h.s.
of (26) is 0.66, 0.88, 0.90 for orbit i = 1, 2, 3, respectively. Because 0.66 < ρ =
0.75 < 0.88, then condition (26) is violated for orbit 1 and satisfied for orbits
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Fig. 4. Weibull service time: condition (25) is violated, condition (10) holds, orbits are
unstable.

2 and 3. Figure 3 shows that the 1st orbit is unstable, while orbits 2,3 remain
stable. We emphasize that it was not easy to select the parameters implying
instability of the orbit when sufficient condition is violated.

Experiment 4. In this experiment we simulate the system with Weibull service
time distribution

F (x) = 1 − e−( x
k )β

, x ≥ 0; k > 0, β > 0,

with scale parameter k and shape parameter β. Figure 4 illustrates simulation
results for the case when shape parameters βi = 2, 2, 3, scale parameters ki =
0.5, 0.1, 0.1, and the input rates λi = 1, 2, 3, for orbit i = 1, 2, 3, respectively.
The retrial rates remain the same as in (29). As a result, we obtain that the
r.h.s of (25) equals 0.54, ρ = 0.88 and the r.h.s. of (10) is 0.91. Thus, sufficient
stability condition (25) is violated but the necessary condition (10) holds. As
Fig. 4 shows, in this case all orbits are unstable.

In summary, the experiments confirm that stability criterion of the retrial
system under consideration is located in the interval

[
min
i

μ0
i

λ + μ0
i

, min
i

μ̂i

λi + μ̂i

]
,

in which stability/instability of orbit i may depend on whether condition (26) is
fulfilled for this orbit or not.
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7 Conclusion

We consider a single-server N -class retrial system with independent Poisson
inputs and the state-dependent retrial rates (also called the system with coupled
orbits). A class-i customer, meeting busy server, joins an infinite capacity orbit
i, 1 ≤ i ≤ N . The head customer in orbit i attempts to occupy server after an
exponentially distributed time with a rate depending on the current configura-
tion of the binary states of all orbits, idle/non-idle. We give a new proof of the
necessary stability conditions of this system obtained earlier in the paper [17].
The new proof is based on a coupling of the processes of attempts from the orbits
with independent Poisson processes, allowing to apply classic property PASTA.
We simulate a 3-class system to verify stability conditions.
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Abstract. We consider a multiclass multiserver retrial queuing system
with classical retrial discipline: the customers, meeting server busy, are
blocked on the corresponding (virtual) orbit and then retry to occupy
server independently. The retrial times have general class-dependent dis-
tributions. The input process is renewal and a new arrival is class-i cus-
tomer with a given probability pi. We exploit a regenerative structure of
a basic process describing the dynamics of the system to establish sta-
bility conditions. More exactly, we show that, provided the retrial times
belong to the New-Better-Than-Used class, the convenient requirement
that the mean load (traffic intensity) is less than the number of servers, is
the stability criterion of the model. A few numerical results are included
which, in particular, show that this condition ensures stability of the
system with the New-Worse-Than-Used Weibull retrial times as well.

Keywords: Retrial system · Stability condition · NBU retrials ·
Multiclass queues · Multiple servers

1 Introduction

In this paper, we study an m-server retrial queueing system with classical retrial
discipline and K classes of customers. In this system, a class-i customer which
meets all servers busy, is blocked on the corresponding (virtual) class-i orbit and
then makes attempts until finds a server idle. To establish the necessary stability
conditions, we allow general class-dependent retrial times distributions. To prove
the sufficient stability conditions, the retrial times are assumed to be independent
identically distributed (i.i.d.) with class-dependent distribution belonging to a
subclass of the New-Better-Than-Used (NBU) distributions. The classical retrial
discipline means that all orbital customers make the attempts independently.
The arrivals follow a renewal process with rate λ, and a new arrival belongs to
class i with a given probability pi and has service rate μi. In this research, we
show that if the retrial time of each class has the NBU distribution, then the
well-known stability criterion of the buffered multiserver multiclass system, the
traffic intensity is less than the number of servers, is indeed the stability criterion
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of the retrial model as well. A few ideas of the proof are similar to that have been
used in the closely related paper [5], and omit the corresponding steps focusing
on the new aspects of the proof.

This system has a regenerative structure, and we use this fact to develop
stability analysis of the system using a characterization of the limiting remaining
renewal time in the process generated by the regenerations of a basic process
describing the dynamics of the system [4,6,12].

The retrial systems play an increasing role to model the dynamics of the mod-
ern wireless telecommunication systems. Another area of the application of the
retrial queues is call centres in which customers, who meet an operator busy, call
later again until find operator idle. Because these orbital or blocked customers
are not present in the system, they can not occupies operator immediately when
it becomes idle. As a result, an idle time of the operator (server) after each
departure appears, and this effect reduces the capacity of the system. However,
as it has been shown in a number of papers, for instance, [2,5,6], under classic
retrial policy, the lost capacity becomes negligible as the number of the blocked
customers increases. As we mentioned above, by this reason the classical retrial
discipline has been called asymptotically work-conserving in the paper [6].

The existing literature devoted to analysis of retrial queues is vast, and we
point out here only a few important sources of the bibliography in this area,
[7,8], and the basic books [9,11]. We also mention a recent survey paper [1]
devoted to retrial queues, which contains many performance results and pays
a lot of attention to stability conditions. An interested reader can find further
references in the mentioned above works.

In the most of the works, the retrial times are assumed to be exponential,
and, in many cases, it allows to construct a suitable Markov process describing
the dynamics of the system, to study stability conditions and find stationary
performance measures in an explicit form, see for instance, [1,13,14,17].

To the best of our knowledge, the paper [2] is one of the first works where
the non-exponential retrial times are considered. This notable paper is devoted
to a detailed stability analysis and rate of convergence in a general single-server
single-class retrial queue in various settings. Then, the regenerative approach has
been applied to extend stability analysis to a multiserver single-class system with
classical retrial discipline [6]. More recently, stability of a single-class multiserver
retrial system with classical discipline and generally distributed retrial times has
been analysed by the fluid limit approach in the paper [15]. This analysis reduces
the original stochastic model to its deterministic analogue. The dynamics of this
deterministic model then allows to establish stability/instability of the original
model. However, the analysis in [15], being highly complicated, is applied to the
single-class retrial system only and it seems to be quite difficult, if possible, to
apply it in the analysis of the multiclass retrial system.

By this reason, our goal in this work is to extend to non-exponential retrials
the regenerative approach, which has been successfully applied earlier to analyze
stability of general retrial queueing systems (both multi-server and multiclass)
with the renewal input general class-dependent service times and exponential
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class-dependent retrial times [5,6]. In this work, we first give the necessary sta-
bility condition of the system, using the analysis developed in [5]. Since the proof
is independent of the retrial times and similar to the proof that has given in [5],
we only give some comments for easy understanding. Then, using the mean drift
analysis, we prove that the same condition is also sufficient for the stability of
the system with class-dependent NBU retrial times. The proof of sufficient sta-
bility conditions of such a general model is the main contribution of this work.
It is worth mentioning that the main idea of the proof is that we widely use the
NBU property to replace the remaining retrial times of the blocked customers
by the new copies of the retrial times. The replacement of the remaining retrial
times by the new retrial times makes the new system “more loaded” and allows
to apply the approach from [5]. The regenerative approach is highly effective,
using negative drift condition to “verify” stability of a basic queueing process
(the summary orbit size in our case) at the high levels. Namely by this reason
the obtained (sufficient) stability condition coincides with the stability criterion
of a classical buffered multiclass, multiserver system. The insensitivity of the
stability of the system to the retrial times is confirmed by the independence of
the stability criterion on the retrial rates.

The paper is organized as follows. In Sect. 2, description of the model and
its regenerative property are given. In Sect. 3, we formulate and outline the
proof of the necessary stability condition for generally distributed retrial times
(Theorem 1). Then, the proof of the sufficient stability condition for the NBU
retrials is presented (Theorem 2). It is intuitive that the stability condition indeed
must be true for general retrial times. To illustrate this intuition, in Sect. 4, we
demonstrate the positive results of a few simulation experiments for a two-class
single-server system in which retrial times have class-dependent New-Worse-
Than-Used Weibull distribution. Moreover, we present also the dynamics of the
queues in the corresponding two-class single-server buffered system with the same
input and the same service times as in the original system, to demonstrate the
influence of the retrial rates on the orbit sizes.

2 Description of the Model

We consider an m-server, bufferless K-class retrial queueing system with classical
retrial policy. The customers arrive at the instants {tn, n ≥ 1}, which constitute
a renewal input with the independent identically distributed (i.i.d.) interarrival
times τn := tn+1 − tn, n ≥ 1, with a finite mean Eτ =: 1/λ. (Here τ is a generic
interarrival time, and in what follows we omit serial index to denote a generic
element of an i.i.d. sequence). Assume the service times of class-i customers,
{S

(i)
n , n ≥ 1}, are i.i.d. with corresponding rate μi = 1/ES(i), 1 ≤ i ≤ K. A

new arrival belongs to class-i with a given probability pi regardless of other
arrivals and the state of the system. Thus, the arrival rate of class-i customers
is λi = λ · pi, 1 ≤ i ≤ K. We also denote class-i traffic intensity (load) and
summary load, respectively,
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ρi := λi/μi, ρ :=
K∑

i=1

ρi. (1)

A new class-i customer meeting the system (all servers) busy, joins the i-th
infinite capacity virtual orbit and attacks server after a (generic) retrial time
ξ(i). The classical retrial policy means that the orbital customers make attempts
independently. If the retrial times are exponential, then the retrial rate from
each orbit is proportional to the orbit size, and it is the most studied case in
the literature, see [5,7,11]. (In general, there are various forms of a dependence
between the orbit size and retrial rate, see for instance, [8].)

For general retrial times, a connection between orbit size and a “retrial rate”
(which must be correctly redefined in this case) becomes less evident. However
it is intuitive, that the bigger orbit is, then the retrial rate is more intensive as
well. This informal observation indicates how to investigate the stability of such
a system. We assume that the orbit size increases unlimitedly, in which case
the orbit size approaches to the queue size in a conventional buffered queueing
system.

The main distinctive feature of the system we consider in this research is that
we assume a wider class of retrial times than exponential. Namely, to establish
the necessary stability conditions, we allow general class-dependent retrial dis-
tributions, while to prove the sufficient conditions, we assume, that the retrial
times have a class-dependent NBU distribution. The distribution F of a random
variable ξ ≥ 0 is called NBU if, for each x, y ≥ 0, its tail satisfies the inequality

P(ξ > x + y|ξ > y) ≤ P(ξ > x). (2)

Denote by ν(t) the number of busy servers and by N (i)(t) the number of cus-
tomers in the i-th orbit, at instant t−. Denote the summary orbit size by
N(t) =

∑K
i=1 N (i)(t), and let

X(t) = N(t) + ν(t), t ≥ 0; Xn := X(tn), n ≥ 1. (3)

The basic process X := {X(t), t ≥ 0} is regenerative, with the regeneration
instants

Tn+1 = inf
k

(
tk > Tn : Xk = 0

)
, T0 = 0, n ≥ 0, (4)

the i.i.d. regeneration periods Tn+1−Tn and generic period T . We restrict analy-
sis by the zero initial state in which case the 1st period T1 =st T (stochastically).
We call the process X (and the retrial system) positive recurrent if the mean
ET < ∞. (If T1 �=st T , then we additionally require T1 < ∞ with probability
(w.p.) 1). The positive recurrence is the key requirement to establish stability
[3], so in what follows we use the terms “stability” and “positive recurrence” as
synonyms.

Define the remaining regeneration time at instant t as

T (t) := min
k

(Tk − t : Tk − t > 0), t ≥ 0.
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In the further analysis we use the following asymptotic result from the renewal
theory [4]: if

T (t) �⇒ ∞, t → ∞, (5)

then ET < ∞. (Here ⇒ denotes the convergence in probability). The property
(5) means that there exist a deterministic sequences of instances zk → ∞ and
some constants C, ε ∈ (0, ∞) such that

inf
k
P(T (zk) ≤ C) ≥ ε. (6)

3 Stability Conditions

It has been proved in the [5], that the requirement ρ < m is stability criterion
of a less general m-server system with class-dependent exponential retrials.

A careful analysis of the proof in [5] shows that the necessary stability con-
dition for the new setting can be established exactly as in [5] because the proof
is indeed independent of the retrial distributions. Thus, we formulate below this
statement for the system with general service times and give only a few com-
ments to the proof for easy understanding. Denote Σ the original retrial system.

Theorem 1. Assume that the system Σ with generally distributed retrial times
is positive recurrent and condition

max
1≤i≤K

P(τ > S(i)) > 0 (7)

holds. Then

ρ < m. (8)

To prove, we apply the following balance equation, connecting the work V (t) =∑K
i=1

∑Ai(t)
n=1 S

(i)
n , arrived in the system in the interval [0, t), where Ai(t) is the

number of class-i arrivals, with the departed work D(t) (in the same interval)
and the remaining work R(t) (in the servers and in orbits) at the instant t:

V (t) = R(t) + D(t) = R(t) + mt − I(t), t ≥ 0, (9)

where I(t) is the summary idle time of all servers in [0, t]. By positive recur-
rence, R(t) = o(t), t → ∞, with w.p. 1 [18]. Moreover, using condition (7) and
regeneration theory, one can easily show that w.p.1, limt→∞ I(t)/t > 0, while by
the Strong Law of Large Numbers, V (t)/t → ρ, t → ∞, and then the statement
of Theorem 1 follows.

Remark 1. We emphasize again that the proof of Theorem 1 is independent of
the retrial time distributions. Also note that the statement of Theorem 1 holds
for an arbitrary initial state X(0).
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Remark 2. As in [5], one can show that the stationary busy probability of an
arbitrary server equals

Pb =
ρ

m
. (10)

However, the proof of the sufficiency of conditions (7), (8) for the stability is a
more challenging problem. Below we resolve this problem for a subclass of the
NBU retrials. For each i, denote ξ(i) class-i generic retrial time, and let Fi be
its distribution function with the mean Eξ(i) < ∞, 1 ≤ i ≤ K. Now define the
distribution F0 as follows: for each x ≥ 0,

F0(x) = min
1≤i≤K

Fi(x). (11)

Denote ξ(0) the random variable with distribution F0. Because F0(x) ≤ Fi(x),
it then follows that the stochastic ordering holds [16]:

ξ(0) ≥st ξ(i). (12)

Now we formulate and prove the following sufficient stability conditions.

Theorem 2. Assume condition (8) holds, the system Σ has zero initial state
and the interarrival time τ is unbounded, that is, for each x ≥ 0,

P(τ > x) > 0. (13)

Moreover, assume that each function Fi is NBU distribution such, that

inf(x : Fi(x) > 0) = 0, 1 ≤ i ≤ K. (14)

Then the system is stable, ET < ∞.

Note that condition (13) implies (7), and that by (14), the retrial time ξ(i) takes
arbitrary small value with a positive probability.

First of all, we outline the main steps of the proof. We will focus on the
application of NBU property because it is the key new point of the analysis, while
the remaining steps follow the analysis presented in [5]. First, using condition
(8), we establish the negative drift of the orbit size process. This step is especially
laborious, and to establish it, we show that the idle time of the server between a
departure and the initiation of next service goes to zero as the orbit size increases.
It is intuitive because, as the orbit size grows, the retrial attempts become more
frequent, the idle time decreases and the retrial systems approaches conventional
buffered GI/GI/m system (for which (8) is the stability criterion). It then follows
that the orbit size can not increases unlimitedly and, as a result, visits a bounded
set infinitely often. In the last step, using condition (7), we show that starting
in the bounded set, the process X reaches zero state (regeneration point) with
a positive probability within a finite interval. In other words, the property (5)
holds and the system is positive recurrent.
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Proof. Denote Si(t) the remaining service time in server i at instant t− (Si(t) = 0
if the server is idle). Then the summary idle time of all servers in interval [0, tn]
is defined as

In =
∫ tn

0

m∑

i=1

1(Si(u) = 0)du, n ≥ 1, (15)

where 1 is the indicator function. As in [5] we show that, see (8),

lim inf
n→∞ E

(
In
n

)
≥ (m − ρ)Eτ =: ε > 0. (16)

Denote by Δn = In+1 − In, the summary idle time in the interval [tn, tn+1], and
assume that EΔn → 0. Then, there exists n0 = n0(ε) > 1 such that EΔn ≤ ε/2
for n ≥ n0, implying

EIn =
n0−1∑

k=1

EΔk +
n−1∑

k=n0

EΔk ≤ o(n) +
ε

2
(n − n0), n ≥ n0. (17)

It is easy to see that it contradicts (16), and thus EΔn �→ 0. Hence there exist a
deterministic subsequence nk → ∞ and a constant ε0 > 0 such that

inf
k
EΔnk

≥ ε0. (18)

Denote Nn = N(tn), D(tn) = Dn and, for arbitrary constants d, d0 > 0, write

EΔn = E[Δn, Nn ≤ d + d0] + E[Δn, Nn > d + d0, Dn > d0]
+ E[Δn, Nn > d + d0, Dn ≤ d0]. (19)

Using the independence between Nn and the next interarrival time τn, one can
obtain the following upper bound for the 1st summand in (19):

E[Δn, Nn ≤ d + d0] ≤ mEτP(Nn ≤ d + d0). (20)

Following [5], we consider m i.i.d. sequences of the i.i.d. variables {η
(j)
n }, j =

1, . . . ,m, where each η
(j)
n is distributed as the shortest service time

η(j)
n =st η := min

1≤i≤K
S(i), Eη < ∞.

Then we construct a superposition of the zero-delayed renewal processes gener-
ated by the sequences {η

(j)
n },

Mj(τn) := inf
(
k ≥ 1 : η

(j)
1 + · · · + η

(j)
k ≥ τn

)
, (21)

and denote

M(τn) =
m∑

j=1

Mj(τn), M(0) = m. (22)
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(The process Mj(τn) represents the number of renewals in interval [tn, tn+1)
generated by the shortest service times in server j). Because there are idle times
(“gap”) between the departures in the original retrial system, then the summary
number of departures, Dn, in the interval [tn, tn+1) is upper bounded as follows:

Dn ≤st M(τn), n ≥ 1.

This bound allows to construct the following upper bound for the 2nd term in
(19):

E[Δn, Nn > d + d0, Dn > d0] ≤ maP(M(a) > d0) + mE[τ ; τ > a], (23)

where a ≥ 0 is an arbitrary constant.
While details of previous discussion can be found in [5] and do not depend on

the retrial time distribution, the next step, where we construct an upper bound
of the last term in (19), is new and critically depends on the NBU property.
Note that the remaining retrial time of a class-i (orbital) customer, provided the
attained retrial time ≥ x, denoted ξ̂(i)(x), has the tail distribution

P(ξ̂(i)(x) > y) = P(ξ(i) > x + y|ξ(i) > x) =
1 − Fi(x + y)

1 − Fi(x)
, x ≥ 0, y ≥ 0.

Fix for a moment an arbitrary instant tn, and assume that Nn = d, for some
d ≥ 1. Denote ζn(d) the time since the instant tn until the 1st retrial attempt
after tn occurs, if Nn ≥ d. By the independence of the retrials and by (12), we
have the following upper bound

P(ζn(d) > x) ≤
[
P(ξ(0) > x)

]d
≤ P(ξ(0) > x), (24)

which is independent of n. It implies the upper bound of the expectation

Eζn(d) =
∫ ∞

0

P(ζn(d) > x)dx ≤
∫ ∞

0

[
P(ξ(0) > x)

]d
dx. (25)

Note that, for each x,

[
P(ξ(0) > x)

]d
→ 0, d → ∞, (26)

and that
Eξ(0) =

∫ ∞

0

P(ξ(0) > x)dx < ∞.

It means that the function P(ξ(0) > x) is integrable and (26) implies convergence
in mean (by Lebesgue’s Dominated Convergence Theorem [10]):

lim
d→∞

Eζn(d) ≤ lim
d→∞

∫ ∞

0

[
P(ξ(0) > x)

]d
dx = 0. (27)
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In the event {Nn > d + d0,Dn ≤ d0}, there are at most m initial idle periods of
the servers and at most d0 customers depart the system, and thus the orbit size
remains grater than d during interval [tn, tn+1). Then, by (12), the mean idle
period (of any server) after each departure is upper bounded by Eζn(d), and the
number of the idle periods in this interval is upper bounded by m + d0. It gives
the following upper bound for the last term in (19):

E[Δn, Nn > d + d0,Dn ≤ d0] ≤ (m + d0)Eζn(d). (28)

Note that Eτ < ∞ and EM(a) < ∞. Now we first take a in (23) such that
mE[τ ; τ > a] ≤ ε0/4 (see (18)), then select d0 = d0(a) in such a way that
maP(M(a) > d0) ≤ ε0/4, and, applying convergence (27), take d = d(d0) so
large, that (m + d0)Eζn(d) ≤ ε0/4, see (28). Now we assume that the summary
orbit size Nn grows unlimitedly in probability,

Nn ⇒ ∞, n → ∞, (29)

and show that it implies a contradiction. Indeed, by (29), we can take such n1,
that mEτP(Nn ≤ d + d0) ≤ ε0/4 for all n ≥ n1. Now, picking together all the
upper bounds found above, we obtain from (19), that EΔn < ε0 for n ≥ n1, that
contradicts (18). Thus, Nn �⇒ ∞, and there exist a deterministic subsequence
of the arrival instances tni

→ ∞ as ni → ∞, and constants δ > 0, C < ∞ such
that

inf
i
P(Nni

≤ C) ≥ δ. (30)

The following arguments are similar to that have been used in [5], and the
unboundness of τ plays here a key role (see (13)). Denote Wn the summary
remaining work in all servers at the instant t−n (that is, Wn ≤ R(tn), see (9)).
Because the sequence {Wn} is tight, then there exist a constant C0 such, that,
see (30),

inf
i
P(Nni

≤ C, Wni
≤ C0) ≥ δ

2
. (31)

It is easy to see that each customer can be served within interval with the length
Z := max1≤i≤K S(i) + ξ(0) (maximal service time plus maximal orbital delay).
By EZ < ∞, there are constants a0 < ∞, ε > 0, such, that P(Z ≤ a0) ≥ ε,
and then, on the event {Nni

≤ C, Wni
≤ C0}, the system becomes idle in the

interval [tni
, tni

+C0+aC] with a probability which is not less than εC , provided
the external customers do not arrive since the instant tni

. Now, because Eτ < ∞
and by (13), there are constants A < ∞, ε′ > 0 such that

P(C0 + a0C < τni
≤ A) ≥ ε′,

where we take into account that the probability of the event {C0 + a0C < τni
≤

A} is independent of i. By (31), it now follows that a new customer meets
completely idle system in the interval [tni

, tni
+ A] with a probability which is

bounded from below by the constant δ/2 εC ε′ > 0. This implies (5), and the
positive recurrence follows.
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4 Simulation Results

It is intuitive that the NBU retrials assumption in Theorem2 is rather technical
requirement related to the proof, and condition (8) must be indeed stability
criterion for general retrial times. (In this regard we mention the paper [15]).
To verify this assumption, below we describe a few experiments with a two-
class single-server system with the New-Worse-Than-Used (NWU) retrial times.
Recall that a random variable ξ has a NWU distribution if, for each x, y ≥ 0

P(ξ > x + y|ξ > y) ≥ P(ξ > x). (32)

We assume K = 2 classes of customers, following independent Poisson inputs,
in which service times are exponential, and class-i retrial times ξ(i) have Weibull
distribution with the scale parameter 1 and the shape parameter wi:

Fi(x) = 1 − exp(−xwi), i = 1, 2. (33)

Weibull distribution is NWU one, if wi ≤ 1, while wi ≥ 1 corresponds to the
NBU distribution, including exponential if wi = 1 (with the equality in (32)).
The mean retrial time for class i is

Eξ(i) = Γ
( 1

wi
+ 1

)
, (34)

where Γ denotes Gamma function. If 0 < wi ≤ 1 then class-i retrial rate
decreases monotonically,

1 ≥ γi =
1

Eξ(i)
→ 0, ωi → 0.

(Note that, for the NBU Weibull, γi is not monotone and simulation results are
less illustrative). We present the dynamics of orbits for a few values of the retrial
rates γ1, γ2, under condition ρ = ρ1 + ρ2 < 1. We consider 10000 arrivals and
take average over 100 independent paths of the orbit sizes N

(1)
n , N

(2)
n .

In the 1st experiment, we apply parameters λ1 = 0.2, λ2 = 1.2, μ1 = 1, μ2 =
2, giving the probabilities p1 = 0.14, p2 = 0.86, and the traffic intensities ρ1 =
0.2, ρ2 = 0.6, ρ = 0.8. The parameters of Weibull distribution are, respectively,
w1 = 0.25, w2 = 0.9, implying the retrial rates γ1 = 0.042, γ2 = 0.95. The results
are presented in Fig. 1. We observe that both orbits are stable. However ρ1 < ρ2,
the 1st orbit size strongly dominates: N

(1)
n 	 N

(2)
n (we keep the same notation

for the sample mean and for the orbit size). It is explained by relation γ1 
 γ2
(2nd orbit attempts are much more intensive than the 1st). This observation
indicates that the orbit rate plays a significant role in the behaviour of orbits.

We emphasize that the stable dynamics of the orbits is intuitive and con-
firms our conjecture that stability criterion holds for a wider class of retrial
distributions, because the retrial times in this experiment do not satisfy NBU
assumption.

The virtual orbits in the system Σ are similar to the queues in the conven-
tional infinite buffer system (denoted Σ̂), where a waiting customer immediately



Stability Conditions of a Multiclass System with NBU Retrials 61

0 2000 4000 6000 8000 10000

0
10

20
30

40
50

n

N^(1)_n
N^(2)_n

Fig. 1. Orbit dynamics, light load: ρ1 = 0.2, ρ2 = 0.6, γ1 = 0.042, γ2 = 0.95.

enters server as it becomes idle. The difference with the retrial system, where
an idle time exists after each departure, must lead to a dominance of the sum-
mary orbit size in the system Σ over the summary queue size in the system Σ̂
(provided other corresponding parameters remain equal).

In the following experiment we consider a 2-class FIFO infinite-buffer single-
server system Σ̂ with the same Poisson inputs and the same service times
{S

(i)
n }, i = 1, 2; n ≥ 1. Note, that the service order in the system Σ is not

FIFO in general. Denote by Q
(i)
n the number of class-i customers in the buffer

of Σ̂ at the instant tn. We compare the sample means of orbits with the sample
means of the queues in Σ̂. We use the following parameters λ1 = 0.23, λ2 =
0.46, μ1 = 0.5, μ2 = 1. Thus, ρ1 = ρ2 = 0.46, ρ = 0.92. In the system Σ, we
take Weibull retrials with parameters w1 = 0.9, w2 = 0.25 (and the correspond-
ing orbit rates γ1 = 0.95, γ2 = 0.042). Figure 2 illustrates stability of both orbits
and a dominance of orbit 2: N

(2)
n 	 N

(1)
n . In more detail (in another time scale)

simulation results describing both systems are presented in Fig. 3. This figure
demonstrates the dynamics of both orbits and both queues simultaneously. It
is expected and easy to see that N

(1)
n + N

(2)
n 	 Q

(1)
n + Q

(2)
n , but it is rather

surprising that the queue size Q
(1)
n dominates the orbit N

(1)
n .

These observations allow to conclude that the varying of retrial rates can
be used to optimize the system performance. In particular, orbits can be used
to realize priority-like policy, when customers of some classes capture server,
breaking FIFO discipline. Such a policy seems to be more flexible than the con-
ventional preemptive or non-preemptive priority and needs a further comparative
study.
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Fig. 2. Orbit dynamics: ρ1 = ρ2 = 0.46, γ1 = 0.95, γ2 = 0.042.
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Fig. 3. Orbit dymanics and queue size: ρ1 = ρ2 = 0.46, γ1 = 0.95, γ2 = 0.042.

5 Conclusion

In this research, we consider the stability analysis of a general multiclass mul-
tiserver retrial system with non-exponential retrial times and classical retrial
policy. In this system, an arriving customer who meets all servers busy joins the
corresponding (virtual) orbit and then attempts to occupy server again indepen-
dently of other blocked customers. Both service time and retrial times are class-
dependent. While the distributions of service times are general, it is assumed
that the distributions of the retrial times belong to a subclass of the so-called
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New-Better-Than-Used (NBU) distributions. We develop the regenerative anal-
ysis to obtain sufficient stability conditions of the system. This analysis is also
based on the coupling method and the stochastic ordering. The numerical exam-
ples are given to show that the stability conditions hold for a wider class of the
retrial times distributions.
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Abstract. A retrial queuing system with Poisson input, exponential ser-
vice times, and exponential in-orbit times is studied. The server imple-
ments a randomized acceptance policy: a retrial request from the orbit
is accepted by the server with a probability depending on the number in
the orbit. Such a policy can be used to give preference in service to new-
comers. The queuing process is modelled as a continuous-time countable
Markov process. For its embedded jump chain a sufficient condition for
the existence of the stationary mode is proved. The proof is based on
the iterative dominating technique. Further, a least unloading cost prob-
lem is considered. Given a partition of the state space into an “empty
orbit” set, “sparsely populated orbit” set, and a prohibited “crowded
orbit” set, the conditional expectation and the conditional variance for
the cost of the first passage time with prohibited set (also known as the
“Chung functional”) are used to pose the optimization problem. Results
of a numerical investigation of the structure of optimal policies are
presented.

Keywords: Retrial queue · Randomized acceptance for service ·
Stationary mode · Iterative dominating approach · Chung functionals

1 Introduction

Active waiting in an orbit contrary to classical waiting queues is attracting
increasing attention of researchers in queuing theory. A new customer occu-
pies the server if the server is idle upon arrival, or joins an ‘orbit’ and stays
there, making retrial attempts to occupy the server at (random) times. For a
bibliographical reviews, as well as for some interesting derived schemes, see e.g.,
[1–7]. Retrial queues are widely used to model telecommucation and computer
networks. Modern telecommunication networks follow complex control protocols.
Mathematical study of static protocols, dynamic protocols, and adaptive proto-
cols to resolve conflicts in multiple access networks can be found in [8,9]. At the
same time, optimal control problems for queuing systems with retrial customers
are less studied. For example, in [10], the control policy consists in selecting the
threshold for the number of customers to terminate the server vacation.
c© Springer Nature Switzerland AG 2019
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Since different control policies may essentially change the system dynamics,
the development of methods for obtaining stationarity conditions for retrial
queueing models is important [11–13]. The most popular method to establish
stationarity condition uses a drift criteria. As a rule a stationarity condition for
classical retrial queueing systems involves arrival rates of the input flow together
with mean service times. On the other hand, one can’t exclude a possibility that
controlled retrial queueing systems exist whose stationarity conditions depends
on control policies. Obviously, it is fruitful to learn that the stationarity con-
ditions for a particular retrial queuing system are independent of the selected
control policy.

The majority of researchers consider average operation cost as an objective
function [14,15]. But we would like to draw attention to another kind of objec-
tive functions arising from stochastic least time (least cost) of hitting a state
subspace by a random process. For discrete-time Markov chains, functionals of
this kind were proposed in [16], an application to traffic control problem can be
found in [17]. Original Chung functionals in the sense of [16] were defined as the
number of steps it takes a discrete-time Markov chain to reach a given set with
a given prohibet set (taboo set). In [18,19] Chung functionals were also defined
for continuous-time Markov processes together with an additive cost functional,
and they were applied to the study of a priority queueing system with feed-
back customers, setup times, and input flows modulated by a two-state random
environment.

In the present work a retrial queueing system is investigated in which a
request from the orbit is accepted by an idle server with a given probability.
Such a policy can be used to give preference to newcomers. A control policy is
determined by an infinite sequence of acceptance probabilities which can depend
of the number in the orbit in quite an irregular way. A mathematical model
for this queueing system recently has been considered in [21]. However, a new
approach to establish sufficient conditions for the existence of the stationary
probability distribution will be demonstrated which for a wider class of processes
than studied in [21,22]. Also, the structure of a policy which unloads the orbit
at the least cost is revealed by means of numerical study.

2 The Queueing Model and the Stationarity Condition

Consider a retrial queueing system of M |M |1−RQ type with randomized accep-
tance from the orbit. To be precise, let us assume that the input flow is Poisson
with intensity λ > 0, service times are i.i.d. exponentially distributed with the
mean μ−1. If an arriving customer finds the server busy it joins the orbit and
waits there, emitting service requests with i.i.d. exponentially distributed inter-
vals with the mean γ−1. When a request from the orbit comes to the idle server
it’s accepted with probability px where x is the number in the orbit.

Let us denote by Γ (0) the idle server state, by Γ (1) the busy server state.
Let Γ (t) ∈ Γ = {Γ (0), Γ (1)} be the server state at time t, t � 0. Let κ(t) be the
number in the orbit at time t. Under the above assumptions, the process



66 A. V. Zorine

{(Γ (t), κ(t)), t � 0} (1)

is a continuous-time Markov process, and the Kolmogorov equations for the
probabilities Qj,x(t) = P(Γ (t) = Γ (j), κ(t) = x) are

d

dt
Q0,x(t) = −(λ + xγpx)Q0,x(t) + μQ1,x(t),

d

dt
Q1,x(t) = λQ0,x(t) + (x + 1)γpx+1Q0,x+1(t) − (λ + μ)Q1,x(t)

+ λQ1,x−1(t), x = 0, 1, . . .

(2)

It’s a quasi-birth-and-death process [20] with space state

{(Γ (j), x) : j = 0, 1, x = 0, 1, . . .}

and with infinitesimal generator Q̃, given by

Q̃ =

⎛
⎜⎜⎜⎝

N0 Λ 0 0 . . .
M1 N1 Λ 0 . . .
0 M2 N2 Λ . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎠

where

Λ =
(

0 0
0 λ

)
, Nx =

(−λ − xγpx λ
μ −λ − μ

)
, Mx =

(
0 xγpx

0 0

)
,

and the states ordering is such that j varies first, x varies last, i.e.

(Γ (0), 0), (Γ (1), 0), (Γ (0), 1), (Γ (1), 1), (Γ (0), 2), (Γ (1), 2), . . . .

Besides the dependence on x, the block matrices Nx and Mx depend on the
acceptance probabilities px, x = 0, 1, . . . in an irregular way. In particular, if
the limit limx→∞ xpx exists (either finite or infinite), then the chain is a multi-
dimensional asymptotically quasi-Toeplitz Markov chain [22]. But in general
we don’t assume the limit exists. The Markov process with similar generator
matrix was studied in [21]. In particular, a closed-form solution for the stationary
probability distribution was giver there.

Let τ1, τ2, . . . be the jump instantst of the Markov process (1) and τ0 = 0.
Let us consider the server state Γ̃i = Γ (τi +0) and the number in the orbit κ̃i =
κ(τi + 0) after the i-th jump. It was proved in the theory of time-homogeneous
Markov processes that a two-variate sequence

{(Γ̃i, κ̃i); i = 0, 1, . . .} (3)

is an homogeneous Markov chain.
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If px = 0 for a particular x then the states (Γ (j), w) with w < x are transient.
Then the chain (3) is transient when px = 0 for infinitely many x’s. Thus, to
proceed we assume that px > 0 for all x = 1, 2, . . . . Then all the states here
constitute a single class of communicating aperiodic states.

Put p = lim inf
x→∞ xpx � ∞. The central claim of this section is the following

theorem.

Theorem 1. If either

(1) p = ∞ and λμ−1 < 1, or
(2) 0 < p < ∞ and λμ−1 < γq(λ + γq)−1

then there exists the unique stationary probability distribution for the Markov
chain (3).

The proof is based on the iterative dominating approach [19] and consists of
several lemmas. Set Qi(j, x) = P(Γ̃i = Γ (j), κ̃i = x), j = 0, 1 and x = 0, 1, . . . .
Let us introduce partial probability generating functions

Fj,i(z) =
∞∑

x=0

zxQi(j, x), |z| � 1. (4)

Lemma 1. The partial probability generating functions F0,i(z), F1,i(z), i = 0,
1, . . . satisfy the following functional equations:

F0,i+1(z) =
μ

λ + μ
F1,i(z), (5)

F1,i+1(z) =
λz

λ + μ
F1,i(z) +

∞∑
x=0

zxQi(0, x)
xγpx + λz

(λ + xγpx)z
. (6)

Proof. From the infinitesimal generator Q̃ we find the Chapman–Kolmogorov
equations for the stationary probability distribution of Markov chain (3):

Qi+1(0, x) = Qi(1, x) · μ

λ + μ
, (7)

Qi+1(1, 0) = Qi(0, 1) · γp1
λ + γp1

+ Qi(0, 0), (8)

Qi+1(1, x) = Qi(0, x) · λ

λ + xγpx
+ Qi(0, x + 1) · (x + 1)γpx+1

λ + (x + 1)γpx+1

+Qi(1, x − 1) · λ

μ + λ
.

(9)

Multiplying Eq. (7) by zx and summing for x = 0, 1, . . . we get (5). Multi-
plying Eq. (9) by zx, summing for x = 1, 2, . . . and adding (8) we get (6). This
proves the Lemma.

Lemma 2. If F0,i(z), F1,i(z) are analytic functions of a complex variable z in
a disk |z| < 1 + ε, ε > 0 and px > 0 for x = 1, 2, . . . then F0,i+1(z), F1,i+1(z)
can be analytically continued to the disk |z| < 1 + ε.
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Proof. Let us assume that the series F0,i(z), F1,i(z) converge at z0 (1 < z0 <
1 + ε). It suffices then to prove convergence of F1,i+1(z) at z0.

A function

f(q) =
γq + λz0

(γq + λ)z0
=

1
z0

(
1 +

λ(z0 − 1)
γq + λ

)

is a monotonously decreasing function of q > 0. So, since 0 < xpx � x, we have

1 = f(0) > f(xpx) � f(x) =
xγ + λz

(xγ + λ)z0
→ 1

z0

from above.
One has

∞∑
x=0

Qi(0, x)zx
0

xγpx + λz0
(xγpx + λ)z0

<

x0−1∑
x=0

Qi(x, 0)zx
0 = F1,i(z0).

The right-hand sides of equations from Lemma 1 analytic in the disk |z| < 1+ε.
Then the partial probability generating functions in the left-hand sides can be
analyticall continued into the disk as well. The Lemma is proved.

Put
Fi(z) = F0,i(z) + F1,i(z), i = 0, 1, . . . .

Lemma 3. If p = ∞ and λμ−1 < 1 then there exists an ε > 0 such that |Fi(z)|,
i = 0, 1, . . . , are uniformely bounded inside the disk |z| � 1 + ε if F0(z) is
analytic in the disk.

Proof. Let F0,0(z) = 1 and F1,0(z) = 0. We will demonstrate that one can find
ε > 0 such that |F1,i(z)|, i = 0, 1, . . . , are uniformely bounded inside the disk
|z| � 1 + ε. Then from Eq. (5) we deduce uniform boundness of |F0,i(z)|, i = 0,
1, . . . inside the disk.

Pick a ε′ > 0 and z′ > 1 such that

ε′ < 1 + ρ − ρz′ − 1
z′ , ρz′ < 2 + 2ρ, (10)

ε′ < 1 + ρ + ρz′ − 1
z′ (11)

where ρ = λ/μ. Under assumption that xpx → ∞ as x → ∞, there exists
x0 = x0(ε′, z′) such that

0 � xγpx + λz′

(xγpx + λ)z′ � 1
z′ + ε′

for all x � x0. Then
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F1,i+1(z
′) =

λz′

λ + μ
F1,i(z

′) +
∞∑

x=0

(z′)xQi(0, x)
xγpx + λz′

(λ + xγpx)z′

=
λz′

λ + μ
F1,i(z

′) +
x0−1∑

x=0

(z′)xQi(0, x)
xγpx + λz′

(λ + xγpx)z′ +

∞∑

x=x0

(z′)xQi(0, x)
xγpx + λz′

(λ + xγpx)z′

� λz′

λ + μ
F1,i(z

′) +
( 1

z′ + ε′
) ∞∑

x=x0

(z′)xQi(0, x) +

x0−1∑

x=0

(z′)x
xγpx + λz′

(λ + xγpx)z′ .

Let

B∗ =
x0−1∑
x=0

(z′)x xγpx + λz′

(λ + xγpx)z′ .

Since ∞∑
x=x0

(z′)xQi(0, x) � F0,i(z′)

independently of ε′ and z′, recalling also (5) and setting ρ = λ/μ we get

F1,i+1(z′) � ρz′

1 + ρ
F1,i(z′) +

( 1
z′ + ε′

)
· 1
1 + ρ

· F1,i−1(z′) + B∗.

Let us introduce a dominating sequence

F ∗
i+2 =

ρz′

1 + ρ
F ∗

i+1+
( 1

z′ + ε′
) 1

1 + ρ
F ∗

i + B∗,

F ∗
i � F1,i(z′).

(12)

and prove its convergence. Equation (12) in matrix form is

(
F ∗

i+2

F ∗
i+1

)
=

⎛
⎝

ρz′

1 + ρ

( 1
z′ + ε′

) 1
1 + ρ

1 0

⎞
⎠ ·

(
F ∗

i+1

F ∗
i

)
+

(
B∗

0

)
. (13)

Set

A =

⎛
⎝

ρz′

1 + ρ

( 1
z′ + ε′

) 1
1 + ρ

1 0

⎞
⎠

The dominating sequence (12) is convergent when all eigenvalues of the matrix
A have moduli below one. The eigenvalues θ1, θ2 of the matrix A are the roots
of the equation

θ2 − ρz′

1 + ρ
θ −

( 1
z′ + ε′

) 1
1 + ρ

= 0. (14)

They are the real numbers

θ1 =
1
2

(
ρz′

1 + ρ
+

√( ρz′

1 + ρ

)2

+
4

1 + ρ
·
( 1

z′ + ε′
) )

> 0,

θ2 =
1
2

(
ρz′

1 + ρ
−

√( ρz′

1 + ρ

)2

+
4

1 + ρ

( 1
z′ + ε′

) )
< 0.
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Firstly, |θ1| < 1 is equivalent to
√( ρz′

1 + ρ

)2

+
4

1 + ρ

( 1
z′ + ε′

)
< 2 − ρz′

1 + ρ
. (15)

Inequality (15) holds if

1
z′ + ε′ < 1 + ρ − ρz′, 2 − ρz′

1 + ρ
> 0

and these follow from (10).
Secondly, |θ2| < 1 is when

√( ρz′

1 + ρ

)2

+
4

1 + ρ

( 1
z′ + ε′

)
< 2 +

ρz′

1 + ρ
, (16)

or
1
z′ + ε′ < 1 + ρ + ρz′.

The latter inequality is true because of (11).
So, the sequence {F ∗

i , i = 0, 1, . . .} dominating {F1,i(z), i = 0, 1, . . .} is con-
vergent and bounded from above by some constant M . Then the series F1,i(z)
are convergent in the disk |z| � z′ for all i = 0, 1, . . . and are uniformely bounded
in modulus by the same M (i.e., ε = z′ − 1).

Lemma 4. If 0 < p < ∞ and λμ−1 < γp(λ + γp)−1 then there exists an ε > 0
such that |Fi(z)|, i = 0, 1, . . . , are uniformely bounded inside the disk |z| � 1+ε
if F0(z) is analytic in the disk.

Proof. The proof goes along the proof of Lemma 3. When 0 < p < 0, there exists
x0 = x0(z′, ε′) such that p − ε′ < xpp and

xγpx + λz′

(xγpx + λ)z′ � 1
z′

(
1 +

λ(z′ − 1)
γp + λ

)
+ ε′

for all x � x0. On this account, we have

F1,i+1(z′) � ρz′

1 + ρ
F1,i(z′) +

( 1
z′

(γp + λz′

γp + λ

)
+ ε′

)
· 1
1 + ρ

· F1,i−1(z′) + B∗.

We introduce a dominating sequence

F ∗
i+2 =

ρz′

1 + ρ
F ∗

i+1+
( 1

z′
(γp + λz′

γp + λ

)
+ ε′

) 1
1 + ρ

F ∗
i + B∗,

F ∗
i � F1,i(z′)

and, as above, consider the root of a corresponding equation

θ2 − ρz′

1 + ρ
θ −

( γq + λz′

z′(γq + λ)
+ ε′

) 1
1 + ρ

= 0
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in place of (14). The roots lie inside the unit circle if z′ > 1 and ε′ > 0 satisfy
inequalities

ε′ < z′
( γp

γp + λ
+ ρ

)
− γp

γp + λ
− ρ(z′)2 = (z′ − 1)

( γp

ρ(γp + λ)
− z′

)
, (17)

ρz′ < 2 + 2ρ, (18)

ε′ < z′
( γp

γp + λ
+ ρ

)
− γp

γp + λ
+ ρ(z′)2. (19)

The condition ρ < γp(γp + λ)−1 guarantees that inequalities (17)–(19) have
a solution. The finish the proof of the Lemma as in Lemma 3.

Proof (of Theorem 1). Assume for a moment that the hypothesis on λ, μ, and
px, x = 1, 2, . . . holds but no stationary probability distribution exists. Then,
independently of the initial probability distribution of the Markov chain (3),

lim
i→∞

Qi(j, x) = 0, j = 0, 1, x = 0, 1, . . . .

This in turn means that mathematical expectations Eκ̃i, i = 0, 1, . . . grow to
infinity. By Lemmas 3 and 4, there’s a constant M∗ and an initial probability
distribution such that functions Fi(z) are analytic in an open disk |z| < 1 + ε
for some ε > 0. But for some small δ > 0,

Eκ̃i = lim
z→1

F ′
i (z) =

1
2π

√−1

∫

|z−1|=δ

F (z)
(z − 1)2

dz � M∗

δ
.

The contradiction proves the theorem.

Theorem 2. Under assumtions of Theorem 1, the CTMC (1) has a unique
stationary probability distribution.

Proof. Since, under assumptions of Theorem 1, the embedded jump chain is
positive recurrent, we may choose any state and consider cycles made by visits
to this state. The continous-time Markov process (1) becomes a regenerative
process then, and it has the limiting probability distribution if the mean cycle
length is finite. But it is, indeed, since the mean sojourn times of the continous-
time Markov process (1) are bounded by

max
{
(λ + μ)−1, (λ + γp1)−1, (λ + 2γp2)−1, . . .

}
< λ−1.

Finally, the limiting distribution is also a stationary one.
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The meaning of Theorems 1, 2 consists in easily verifiable sufficient condi-
tions for stationarity. For example, the conditions are fulfilled whenn all px are
bounded from below by a positive constant p∗, px � p∗ > 0, and ρ < 1. Another
example is

ρ <
γ

λ + γ
, px =

{
x−1 if x is odd,

p∗ if x is even,

here
lim inf
x→∞ xpx = 1, lim sup

x→∞
xpx = ∞.

The latter example is not covered by results from [21]. Besides that it’s worth
mentioning that if all px are bounded from below by some p∗>0, the stationarity
condition is free of the acceptance probabilities px, x = 1, 2, . . . . This allows
to solve optimization problems (like the one in the following section) without
taking special care about the stationary regime existence at different parameters
values.

3 A Problem of Acceptance Probabilities Optimization
with Respect to Unloading Costs

Denote by q(Γ (j), x;Γ (l), w) the element of the matrix Q̃, corresponding to the
transition from the state (Γ (j), x) to a different state (Γ (l), w), and by −q(Γ (j), x)
the diagonal element of Q̃ corresponding to the state (Γ (j), x). Let S be the state
space of the process (3). Suppose that it’s partitioned into mutually disjoint
subsets S−, S0, and S+, such that S0 �= ∅, S+ �= ∅. We call S− a taboo set, S0

a critical set, and S+ a final set. Denote by f(j, x) the probability of reaching the
set S+ from an initial state (Γ (j), x) without visits to the taboo set S− by the
process (3), and call it the taboo-probability (of taboo first passage). The taboo
probabilities f(j, x), (Γ (j), x) ∈ S0, can be found as the minimal nonnegative
solution to the linear algebraic system

q(Γ (j), x)f(j, x) =
∑

(Γ (l),w)∈S+

q(Γ (j), x;Γ (l), w)

+
∑

(Γ (l),w)∈S0,

(Γ (l),w) �=(Γ (j),x)

q(Γ (j), x;Γ (l), w)f(l, w), (Γ (j), x) ∈ S0 (20)

Denote by η the number of jumps it takes the process (3) to reach S+ from
a state (Γ (j), x) without visiting the taboo set S−. Furthermore, let the cost
c(γ, x) of sojourn at a state (γ, x) is given for the process (3). Then the total
sojourn cost ζ over all customers up to the visit of S+ is given by

ζ =
η−1∑
i=0

c(Γ̃i, κ̃i)(τi+1 − τi).

It follows from the general theory of Markov processes that a three-dimensi-
onal sequence {(Γ̃i, κ̃i, τi+1 − τi); i = 0, 1, . . .} is a homogeneous Markov chain,
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and that for every t0 > 0, t1 > 0, . . . , ti+1 > 0, j0, j1, . . . , ji+1 ∈ {0, 1}, w0, w1,
. . . , wi+1 ∈ {1, 2, . . . , n}, (ji+1, wi+1) �= (ji, wi), one has

P
(
{Γ̃i+1 = Γ (ji+1), κ̃i+1 = wi+1, τi+2 − τi+1 < ti+1} | H

)

= (1 − e−q(Γ (ji+1),wi+1)ti+1)
q(Γ (ji), wi;Γ (ji+1), wi+1)

q(Γ (ji), wi)
,

where
H =

i∩
l=0

{Γ̃l = Γ (jl), κ̃l = wl, τl+1 − τl < tl}.

This together with methods in [18] leads to the following claim.

Theorem 3. For all (Γ (j), x) ∈ S0

E(ζ | {η < ∞, Γ̃0 = Γ (j), κ̃0 = x}) =
L(1)(j, x)
f(j, x)

Var(ζ | {η < ∞, Γ̃0 = Γ (j), κ̃0 = x}) =
L(2)(j, x)
f(j, x)

−
(L(1)(j, x)

f(j, x)

)2

,

where L(1)(j, x), L(2)(j, x) are the solution of a finite linear algebraic system of
equations

L(1)(j, x) = c(Γ (j), x)
f(j, x)

q(Γ (j), x)
+

∑

(Γ (l),w)∈S0,

(Γ (l),w) �=(Γ (j),x)

q(Γ (j), x;Γ (l), w)
q(Γ (j), x)

L(1)(l, w),

L(2)(j, x) = 2c(Γ (j), x)
L(1)(j, x)
q(Γ (j), x)

+
∑

(Γ (l),w)∈S0,

(Γ (l),w) �=(Γ (j),x)

q(Γ (j), x;Γ (l), w)
q(Γ (j), x)

L(2)(l, w),

by iterations with zero initial condition.

To formulate the optimal unloading problem, choose an integer n and set

S+ = {(Γ (0), 0), (Γ (1), 0)},

S0 = {(Γ (0), 1), (Γ (1), 1), (Γ (0), 2), (Γ (1), 2), . . . , (Γ (0), n), (Γ (1), n)},

S− = {(Γ (0), n + 1), (Γ (1), n + 1), (Γ (0), n + 2), (Γ (1), n + 2), . . .}.

Let c(γ, x) = x. Then c(Γ̃i, κ̃i)(τi+1−τi) = κ̃i(τi+1−τi) is the total sojourn time
over all customers during the time interval [τi, τi+1), and ζ is the total sojourn
time over all customers up to the first visit to S+. One natural optimization
problem is to minimize the mean costs E(ζ | {η < ∞, Γ̃0 = Γ (j), κ̃0 = x}) for
each (Γ (j), x) ∈ S0. The overcome the multi-objective nature of the problem let
us introduce a convolution of objectives with equal weights:

g1(p1, p2, . . . , pn) =
1
2n

∑
j∈{0,1}

x∈{1,2,...,n}

L(1)(j, x)
f(j, x)

,
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and setup an optimization problem

g1(p1, p2, . . . , pn) → min
(p1,...,pn)∈[p∗,1]n

. (21)

The average variance

g2(p1, p2, . . . , pn) =
1
2n

∑
j∈{0,1}

x∈{1,2,...,n}

(L(2)(j, x)
f(j, x)

−
(L(1)(j, x)

f(j, x)

)2)

may characterize the risk (as in financial mathematics). We also can study the
risk minization problem

g2(p1, p2, . . . , pn) → min
(p1,...,pn)∈[p∗,1]n

. (22)

For instance, for n = 1 we have

g1(p1) =
2μ2 + 6λμ + p1γμ + 3λ2 + p1γλ

2(λ + μ)(λ2 + p1γ(λ + μ))
,

g′
1(p1) = − γ(λ2 + 3λμ + μ2)

(λ2 + p1γ(λ + μ))2
< 0,

g2(p1) =
A

2(λ + μ)2(λ2 + p1γ(λ + μ))2
,

A = 3λ4 + 16λ3μ + 22λ2μ2 + 12λμ3 + 2μ4

+2p1γλ(2μ2 + 3λμ + λ2) + 2p21γ
2(λ + μ)2,

g′
2(p1) = −2γ(μ35λμ2 + 6λ2μ + p1γλμ + λ3)

(λ2 + p1γ(λ + μ))3
< 0.

Obviously, the solutions to optimization problems (21), (22) are p1 = 1.
When n � 2, both optimization problems become analytically untractable.

A script was written in the Octave programming language [23] to build and solve
equations from Theorem 3, and also an heuristic search was done, firstly among
threshold policies of the form (i0 = 0, n)

pi = 1, i � i0; pi = p∗ > 0, i > i0 (23)

and, secondly, using the Octave’s built-in successive quadratic programming
solver for nonlinear optimization with several random initial positions in the
hypercube [p∗, 1]n.

Our experiments demonstrate, that ρ = λ/μ plays an important role for the
structure of the optimal acceptance probabilities. When ρ is small, the best con-
ditional mean unloading cost and the best conditional variance of the unloading
cost were with pi = 1 for all i = 1, 2, . . . , n, i.e. the best control is to always
accept requests from the orbit. But when ρ approaches 1, a threshold policy
becomes much more efficient. Let us consider the following numerical example.
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Let N = 15, p∗ = 10−4, λ = 0.5, γ = 1.0, and μ = 1.5. Then the optimal choice
is (23) with i0 = N (i.e., always accept), g1(1, . . . , 1) = 140.78. When λ = 0.9,
the optimal choice with respect to the quantity g1(·) is is (23) with i0 = 12,
g1 = 132.66. And the optimal choice with respect to the quantity g2(·) is

p1 = . . . = p5 = 1, p6 = 0.457, p7 = . . . = p15 = 10−4,

the value of the objective is 4785.58 (compare it to g2(1, . . . , 1) = 13141.08).
Finally, when λ = 1.4, the threshold policy with i0 = 5 still minimizes the con-
ditional mean unloading cost, while the threshold policy with i0 = 3 minimizes
the conditional variance.

4 Conclusion

This paper discusses a new optimization problem for retrial queues. The station-
arity condition for a retrial queue with randomized acceptance from the orbit
given here extends known results for the classical retrial M/M/1 queue. Numer-
ical experiments demonstrate that a retrial queue can unload with less total
waiting time (without getting too crowded) if the acceptance probabilities have
a threshold form.
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Abstract. This paper considers a cognitive radio network system which
has two classes of users that we call Primary Users and Secondary Users.
We model this system using a single server retrial queueing model. In
the conventional retrial queue, if a customer cannot find an idle channel,
he joins the orbit and retries to occupy a channel. The new feature of
our model is that every arriving Secondary User first enters the orbit.
He starts to sense the channels and tries to find an idle channel. For
this model, we obtain explicit expressions for the joint generating func-
tions of the state of the server and the number of Secondary Users in
the orbit. In addition, we derive the necessary stability condition. We
obtain the distribution of the number of retrials by a Secondary User
using simulation. Beside, we consider the multiserver model for which
we obtain the average of the number of Secondary Users in the orbit and
the distribution of the number of retrials by simulation.

Keywords: Retrial queues · Interruption · Number of retrials ·
Cognitive wireless networks · Number of sensings

1 Introduction

In recent years, Internet traffic has been explosively increasing due to the increase
of smart phones, tablet computers and other electronic devices. As a result, wire-
less resource, i.e. radio frequencies are shortage [1]. Thus, we need technologies
that improve the efficiency of a wireless spectrum. Cognitive radio is considered
as one of promising technologies that can solve the bandwidth shortage problem.
Cognitive wireless technology enables unlicensed users to utilize frequencies that
were originally allocated to licensed users [1]. There are two types of cognitive
radio technologies; frequency sharing type and heterogeneous type [2]. In the
former, wireless terminals search for unused frequencies or idle time of licensed
bandwidth and cognitively use them to communicate. On the other hand, in
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the latter, the mobile terminals dynamically choose their optimal communica-
tion method according to the congestion level and connection situations. In this
paper, we focus on the frequency sharing cognitive radio networks. In these sys-
tems, there exists two classes of users that we call Primary Users (PUs) and
Secondary Users (SUs). PUs are referred to as the licensed users that own the
bandwidth and SUs use the bandwidth when PUs are not present.

The sensing mechanism of SUs is similar to the retrial behavior of customers
in retrial queues. In retrial queues, an arriving customer that cannot occupy a
server upon arrival is blocked and joins a virtual waiting room called orbit from
which the customer retries again after some random time until being served.
From that point of view, our queueing model is close to some retrial queues
in the literature. The main difference of our model is that every SU in our
model needs to sense the state of the servers, meaning that each SU first enters
the sensing pool (orbit in retrial queue literature) spending sensing time before
occupying a server.

There are previous studies concerning retrial queues. Keilson et al. [3] ana-
lyzes M/G/1/1 retrial queue, deriving performance measures of the system.
Falin [4,5] derives the waiting time distribution of customers in the orbit while
Falin [6] derives the limiting theorem for the waiting time of customers under
heavy traffic. Falin [7] focuses on the number of retrials, deriving the average,
the variance and the probability distribution. In these models, there is only one
class of users. In our model in this paper, there are two classes of users, i.e. PUs
and SUs. SUs must sense before entering the server and a SU on transmission
may be interrupted upon the arrival of a PU.

Some closely related works concerning cognitive radio networks are as follows.
Konishi et al. [8] consider cognitive radio networks in which SUs request for a
random number channels simultaneously, analyzing the performance measures
such as the probability that SUs cannot enter the servers and the probability
that SUs are forced to terminate their transmissions. The former probability is
called blocking probability. In this model, if the number of idle servers is less
than that a SU requires, the SU is blocked. In [8], the sensing mechanism is not
taken into account.

Salameh et al. [9] propose a queueing model for cognitive radio networks with
reactive-decision spectrum handoff. By limiting the number of simultaneously
sensing SUs, the authors derive some performance measures such as the blocking
probability, the average of the number of blockings, and the time to complete
the transmission. In [9], a SU continuously senses the servers one by one until he
finds an idle one. Furthermore, a SU on transmission may be interrupted upon
the arrival of a PU. The interrupted SU senses again until he finds an idle server.
In this model, they assume that the size of the orbit is limited.

Retrial queues with two-way communication presented by Artalejo and
Phung-Duc [10,11], Sakurai and Phung-Duc [12] are also closely related to our
model. In the models with two-way communications, the server makes out-going
calls when he is idle. In contrast, in our model PUs may interrupt SUs in
transmission.
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In this paper, we consider a cognitive radio network system and model it using
a single server retrial queue. The new feature of our model is that every arriving
SU enters the orbit. They start to sense the server until they find an idle server.
For this model, we obtain explicit expressions for the joint generating function
of the state of the server and the number of SUs in the orbit. In addition, we
derive the necessary stability condition. We find the distribution of the number
of retrials (sensings) of SUs by simulation. Besides, we consider an extended
model with multiple servers (multiserver). We obtain the average of the number
of SUs in the orbit and the distribution of the number of retrials of SUs for this
model by simulation.

The rest of this paper is organized as follows. In Sect. 2, we present an
overview of the system and the setting of the model. In Sect. 3, we present the
analysis of the model deriving the performance measures. Section 4 shows some
numerical results for the performance measures. In Sect. 5, we expand the single
server model to the multiserver one and show some numerical examples. Finally,
in Sect. 6, we conclude our paper.

2 An Overview of the System and the Setting
of the Model

2.1 An Overview of the System

In the system in this paper, we consider two classes of users, PUs and SUs. They
share channels and PUs have preemptive priorities over SUs. Their behaviors
differ in the following two points. First, every SU must sense before occupying a
channel. Second, when a PU arrives at a channel and he cannot find an idle one,
a SU on transmission is interrupted. The interrupted SU returns to the sensing
pool and starts to sense again.

Fig. 1. Our model’s flowchart.
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In the sequel, we explain PU and SU’s behaviors in the system. PUs perform
the following procedures;

1. A PU arrives at the system.
2. If the PU finds an idle channel, he starts to transmit. If all the channels are

occupied by other PUs, the newly arriving PU leaves the system. In case
some channels are used by SUs, the ongoing SU in one of these channels is
interrupted and the PU occupies the channel.

3. The PU finishes the transmission and leaves the system.

Furthermore, SUs perform the following procedures;

1. A SU arrives at the system.
2. The SU starts to sense channels.
3. When the SU finishes sensing and finds an idle channel, the SU starts to

transmit. If the SU finishes sensing and cannot find an idle channel, he senses
again.

4. When a PU arrives at a channel which a SU is using and there are no other
idle channels, the SU is interrupted and returns to the sensing pool again.

5. If the SU finishes his transmission, he leaves the system.

Figure 1 represents an overview of the system as a flowchart.

2.2 The Setting of the Model

In Sect. 2.1, we described an overview of the system with multiple channels. In
this section, we make necessary assumptions in this model. Note that in this
paper, a channel has the same meaning as a server. We can represent this sys-
tem with a retrial queueing model. PUs arrive at servers according to a Poisson
process with parameter λ1. The service time of PUs follows the exponential dis-
tribution with parameter μ1. On the other hand, SUs arrive at servers according
to a Poisson process with parameter λ2 and the service time of SUs follows the
exponential distribution with parameter μ2. In addition, SUs must sense servers
before arriving at servers. The interval between successive sensing times follows
the exponential distribution with parameter σ. We note that the service time
distribution of interrupted SUs is the same as that of the fresh SU due to the
memoryless property of the exponential distribution.

3 The Analysis of Single Server Model

In this section, we use a single server retrial queueing model for cognitive radio
networks with single channel. We derive the probability distribution of the state
of the server, necessary stability condition and the distribution of the number
of SUs in the orbit as well as its mean and variance. We define two random
variables; N(t) ∈ N∪{0} and C(t) ∈ {0, 1, 2}. N(t) expresses the number of SUs
in the orbit and C(t) represents the state of the server. Note that C(t) = 0 means
that there is no user in the server; C(t) = 1 means that a PU is transmitting in
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the server and C(t) = 2 means that a SU is transmitting in the server. Under
these settings, {(C(t), N(t))|t ≥ 0} becomes a continuous time Markov chain.
We assume that this chain is stable and that the input processes of PUs and
SUs and their service time are mutually independent. Subsequently, we define
the joint probability mass function of {C(t) = i,N(t) = j} as πi,j . Note that
we assume that the chain is in steady state, therefore it is not necessary to take
into account the time. We set the partial generating functions of the state of
the server and the number of SUs in the orbit as Πi(z) =

∑∞
j=0 πi,jz

j for i
∈ {0, 1, 2}.

3.1 The Probability Distribution of the State of the Server

In this section, we set up the balance equations for states (0, j), (1, j) and (2, j)
(j ∈ N ∪ {0}) and derive the probability distribution of the state of the server.
The balance equations read as follows.

⎧
⎪⎨

⎪⎩

(λ1 + λ2 + jσ)π0,j = λ2π0,j−1 + μ1π1,j + μ2π2,j ,

(λ2 + μ1)π1,j = λ1π0,j + λ1π2,j−1 + λ2π1,j−1,

(λ1 + λ2 + μ2)π2,j = (j + 1)σπ0,j+1 + λ2π2,j−1,

where πi,−1 = 0 for i ∈ {0, 1, 2}. Multiplying these equations by zj and summing
up over j ∈ N ∪ {0}, we obtain

⎧
⎪⎨

⎪⎩

(λ1 + λ2)Π0(z) + σzΠ
′
0(z) = λ2zΠ0(z) + μ1Π1(z) + μ2Π2(z), (1)

(λ2 + μ1)Π1(z) = λ1Π0(z) + λ1zΠ2(z) + λ2zΠ1(z), (2)

(λ1 + λ2 + μ2)Π2(z) = σΠ
′
0(z) + λ2zΠ2(z). (3)

By (2) and Π0(1) + Π1(1) + Π2(1) = 1, we obtain

Π1(1) =
λ1

μ1 + λ1
, (4)

Π0(1) + Π2(1) =
μ1

μ1 + λ1
. (5)

Transforming (2) and (3) and rearranging the result yields

Π1(z) =
λ1Π0(z) + λ1zΠ2(z)

λ2 + μ1 − λ2z
, (6)

Π2(z) =
σΠ

′
0(z)

λ1 + λ2 + μ2 − λ2z
. (7)

Substituting (6) and (7) into (1), we have

Π
′
0(z)

Π0(z)
= γ(z), (8)
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where

γ(z) :=
λ2(λ1 + λ2 + μ1 − λ2z)(λ1 + λ2 + μ2 − λ2z)

σ(μ2(λ2 + μ1) − λ2(λ1 + λ2 + μ1 + μ2)z + z2λ2
2)

.

Substituting (8) in terms of Π
′
0(z) into (7) and setting z = 1 in the result, we

obtain

Π2(1) =
λ2(λ1 + μ1)

μ2μ1 − λ1λ2 − λ2μ1
Π0(1). (9)

Solving (5) and (9), we have

Π0(1) =
μ2μ1 − λ1λ2 − λ2μ1

μ2(μ1 + λ1)
, (10)

Π2(1) =
λ2

μ2
. (11)

(4), (10) and (11) represent the probability distribution of the state of the server.
Note that the sensing rate, σ, is not appeared in the probability of the state of
the server.

3.2 Necessary Stability Condition

In Sect. 3.1, we can obtain the probability distribution of the state of the server.
We assume that this system is in steady state. If this assumption satisfies, there
exists a stationary distribution. Therefore we get

Π1(1) + Π2(1) < 1.

From this, we obtain the following condition as the necessary stability condition.

λ1

μ1 + λ1
+

λ2

μ2
< 1, (12)

⇔ λ2

μ2
<

μ1

μ1 + λ1
. (13)

Here we consider this condition. In (12), the first term and the second term in
the left side respectively equal Π1(1) and Π2(1). And, by (4), we realize that
the right side of (13) represents the probability that a PU is not transmitting.
Noting this and the fact that the left side of (13) represents SU’s traffic intensity,
(13) means that SU’s traffic intensity is smaller than the probability that PU is
not transmitting. Finally, the sensing rate, σ, did not arise in this condition.

3.3 Joint Distributions of the Number of SUs in the Orbit

In this section, we derive partial generating functions of the number of SUs in
the orbit. Solving (8) in terms of Π0(z), we obtain the following result.

Π0(z) = Π0(1) exp(
∫ z

1

γ(u)du). (14)



Retrial Queues for Cognitive Wireless Networks 83

Letting z1 and z2 (z1 < z2) denote the poles of γ(z), we can represent γ(z)
below.

γ(z) =
A

z1 − z
+

B

z2 − z
, (15)

where

z1 =
λ1 + λ2 + μ1 + μ2 − √

(λ1 + λ2 + μ1 + μ2)2 − 4μ2(λ2 + μ1)
2λ2

,

z2 =
λ1 + λ2 + μ1 + μ2 +

√
(λ1 + λ2 + μ1 + μ2)2 − 4μ2(λ2 + μ1)

2λ2
,

A =
λ2

σ

(λ1 + λ2 + μ2 − λ2z1)(λ1 + λ2 + μ2 − λ2z1)
λ2

2(z2 − z1)
,

B =
λ2

σ

(λ1 + λ2 + μ2 − λ2z2)(λ1 + λ2 + μ2 − λ2z2)
λ2

2(z1 − z2)
.

Differentiating (6) and (7) with respect to z and substituting z = 1, we have

Π
′
1(1) =

μ1{λ1Π
′
0(1) + λ1Π2(1) + λ1Π

′
2(1)} + λ1λ2{Π0(1) + Π2(1)}

μ2
1

, (16)

Π
′
2(1) =

σΠ
′′
0 (1)(λ1 + μ2) + λ2σΠ

′
0(1)

(λ1 + μ2)2
. (17)

Π
′
1(1) represents the average of the number of SUs in the orbit when a PU is

transmitting and Π
′
2(1) represents the average of the number of SUs in the orbit

when a SU is transmitting. Substituting z = 1 into (8) and substituting (10)
into the result, we obtain

Π
′
0(1) =

λ2(λ1 + μ2)
σμ2

, (18)

Π
′′
0 (1) = γ

′
(1)Π0(1) + γ(1)Π

′
0(1). (19)

Combining (16), (17) and (18), we obtain the average of the number of SUs in
the orbit,

E[N ] =
Π

′′
0 (1)σ

λ1 + μ2
+

λ3
2

μ1μ2(λ1 + μ2)
+

λ2
2(λ1 + μ1 + μ2)

μ1μ2(λ1 + μ2)

+ λ2

{
1

σ
+

λ2
1

σμ1μ2
+

Π
′′
0 (1)σμ2

μ1(λ1 + μ2)2
+ λ1

(
1

μ1(λ1 + μ1)
+

1

σμ2
+

1

σμ1
+

Π
′′
0 (1)σ

μ1(λ1 + μ2)2

)}
.

Finally, we derive generating functions of the joint stationary probability of the
state of the server and the number of SUs in the orbit. Substituting (15) into
(14), we obtain the partial generating function when nobody is transmitting.

Π0(z) = Π0(1)
(

z1 − 1
z1 − z

)A (
z2 − 1
z2 − z

)B

. (20)

Using (6), (7) and (20), we obtain Π1(z) and Π2(z) in detail.
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4 Numerical Results

In this section, when PU and SU’s arrival rates or SU’s retrial rate change,
we discuss how the mean and the variance of the number of SUs in the orbit
change, using figures. Generally, in the cognitive radio systems, it is likely that
the transmission time of SUs is shorter than that of PUs. Therefore, we set
μ1 = 4 and μ2 = 20 in all the numerical experiments.

4.1 The Average and Variance of the Number of SUs in the Orbit

First, we consider how the average and the variance of the number of SUs in the
orbit change under the stability condition. Figure 2 shows that the average and
the variance of the number of SUs in the orbit against the arrival rate of PUs for
various values of the sensing parameter. We observe from Fig. 2 that the average
and the variance of the number of SUs in the orbit decrease with the increase of
sensing parameter σ. We can interpret this change below; the higher the arrival
rate of PUs is, the higher the probability of PU’s existence in the server is, too.
As a result, it is difficult for a SU to occupy the server and the number of SUs in
the orbit increases. Figure 3 shows the average and the variance of the number of
SUs in the orbit against the arrival rate of SUs for various values of the sensing
parameter. Similar to Fig. 2, we observe from Fig. 3 that the average and the
variance of the number of SUs in the orbit decrease with the increase of sensing
parameter σ and increase with the arrival rate of SUs. We also interpret this

Fig. 2. The change of the average and the variance of the number of SUs in the orbit
when the arrival rate of PUs changes, where μ1 = 4 and μ2 = 20.

Fig. 3. The change of the average and the variance of the number of SUs in the orbit
when the arrival rate of SUs changes, where μ1 = 4 and μ2 = 20.
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change below; the higher the arrival rate of SUs is, the higher the probability of
SU’s presence in the server is, too. As a result, it is difficult for a SU to occupy
the server and the number of SUs in the orbit increases.

4.2 The Number of Retrials for SUs

In the sequel, we consider the distribution of the number of retrials of SUs under
the stability condition. Note that Fig. 4 is obtained by simulation. The left side of
Fig. 4 shows the distribution of the number of retrials of SUs against the arrival
rate of SUs (λ2). We observe that the distribution of the number of retrials is
greatly affected by the arrival rate of SUs. The right side of Fig. 4 shows the
distribution of the number of retrials of SUs for different retrial rates (σ). We
observe that the distribution of the number of retrials for SUs is more insensitive
to the change of retrial rate than the change of the arrival rate of SUs. These
results are natural because the arrival rate is used in stability condition and the
retrial rate is not used in it.

Fig. 4. The distribution of the number of retrials of SUs for different λ2 or different σ.

5 Multiserver Model

5.1 The Setting of the Model

In the above section, we considered a single server retrial queueing model. In this
section, we extend this model to a model with c identical servers. Note that in
[9], the size of the orbit is limited, however, in our model, the size of the orbit is
unlimited. Similar to the single server model, PUs arrive at the servers according
to a Poisson process with parameter λ1. The service time of PUs follows the
exponential distribution with parameter μ1. On the other hand, SUs arrive at
the servers according to a Poisson process with parameter λ2 and the service time
of SUs follows the exponential distribution with parameter μ2. As with our single
server model, SUs must sense servers before arriving at the servers. The sensing
time follows the exponential distribution with parameter σ. The behaviors of PUs
and SUs are the same as that in the single server model. Compared with the
single server model, we make a change in the definitions of random variables.
The reason is that we have to consider the number of idle servers. We define
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N(t), C1(t) and C2(t) as the number of SUs in the orbit, the number of PUs
on transmission and the number of SUs on transmission. Under these settings,
{(N(t), C1(t), C2(t))|t ≥ 0} forms a continuous time Markov chain. We assume
that the input process of PUs and SUs and their service time are mutually
independent. Under these settings, we perform simulations.

5.2 The Average of the Number of SUs in the Orbit

First, we consider the average of the number of SUs in the orbit with the change
of the arrival rate of PUs when the number of the servers c = 1, 2, 3, 4 and 5. The
left hand side of Fig. 5 shows the change of the average of the number of SUs in
the orbit with the change of the arrival rate of PUs. This result shows that when
the number of servers is small, a little change in the number of servers greatly
affects the average of the number of SUs in the orbit. However, the change is
not significant if the number of servers is large.

Fig. 5. The average of the number of SUs in the orbit with the change of the arrival
rate of PUs or the arrival rate of SUs when c = 1, 2, 3, 4 and 5.

Next, we consider the average of the number of SUs in the orbit with the
change of the arrival rate of SUs when the number of the servers c = 1, 2, 3, 4 and
5. The right hand side of Fig. 5 shows the change of the average of the number
of SUs in the orbit with the change of the arrival rate of SUs. As with the left
side of Fig. 5, this result shows that when the number of servers is small, a little
change in the number of servers greatly affects the average of the number of SUs
in the orbit. However, the change is not significant if the number of servers is
large.

5.3 Distribution of the Number of Retrials for SUs

In the sequel, we consider the distribution of the number of retrials of SUs
with the change of the arrival rate of SUs or the retrial rate of SUs when the
number of the servers c = 3, 4 and 5. Figures 6, 7 and 8 show the distribution of
the number of retrials for several values of λ2 and σ. As with the single server
model, these results show that the distribution of the number of retrials for SUs
is more insensitive to the change of retrial rate than the change of the arrival
rate of SUs.
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5.4 Stability Condition for Multiserver Model

In Sect. 3.2, we derived the necessary stability condition for a single server. From
the results of that stability condition, we consider the stability condition for
our multiserver model. First, we consider the stability condition in the M/M/c
queueing model. In this model, we assume that users arrive at servers according
to a Poisson process with parameter λ and their service time follows the expo-
nential distribution with parameter μ. Then, we can derive the model’s stability
condition as follows.

λ

cμ
< 1 ⇔ λ

μ
< c.

This condition means that the number of available servers is greater than the
mean of the number of customers in the servers. Next, we consider the stability
condition for our single server model again. In (13), we realize that the left side
represents the probability that SUs are transmitting, and the right side repre-
sents the probability that PUs are not transmitting. And we can interpret that
the right side of (13) represents the expected value of the number of servers that
PUs are not transmitting. Therefore, we conjecture that the stability condition
for our multiserver model as follows.

Fig. 6. The distribution of the number of retrials of SUs for different λ2 or different σ
when c = 3.

Fig. 7. The distribution of the number of retrials of SUs for different λ2 or different σ
when c = 4
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Fig. 8. The distribution of the number of retrials of SUs for different λ2 or different σ
when c = 5.

λ2

μ2
<

c∑

i=0

(c − i)πi, (21)

where πi represents the steady state probability that the number of transmitting
PUs equals i. We explain the meaning of (21). The left side represents the offered
load of SUs. On the other hand, the right side represents the expected value of
the number of servers that PUs are not transmitting, namely the expected value
of the number of servers that are available for SUs. And, because of the setting
of our model, it follows that the stationary distribution of PUs is identical to the
stationary distribution of the number of customers of the M/M/c/c queueing
model. Therefore, we can represent the steady state probability that the number
of transmitting PUs equals i as follows.

πi =

λi
1

i!μi
1

∑c
k=0

λk
1

k!μk
1

, i = 0, 1, · · · , c. (22)

Substituting it into (21) and transforming the result, we obtain

λ2

μ2
< c − λ1

μ1

∑c−1
k=0

λk
1

k!μk
1

∑c
k=0

λk
1

k!μk
1

. (23)

In the next section, we verify (23) using simulation.

5.5 Transient Behavior of the Number of SUs in the Orbit

Finally, we show the transient behavior of the number of SUs in the orbit. Thus,
we perform simulation of the transition of the number of SUs in the orbit in the
range. We set the parameters with λ1 = 1, μ1 = 4, μ2 = 20 and σ = 1. Therefore,
from (23), we can estimate the parameter of the boundary of stability region for
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λ2 for each c. When c = 3, the parameter of the boundary of stability region
is λ2 � 55. In the same way, we obtain the parameters of the boundary of
stability region are λ2 � 75 when c = 4 and λ2 � 95 when c = 5. Based on
these parameters, we obtain Figs. 10 and 12 with the change of SU arrival rate
by simulation. These figures show that our estimation is reasonable.

Fig. 9. The average of the number of SUs in the orbit with the change of the arrival
rate of PUs or the arrival rate of SUs when c = 3, 4 and 5, where λ1 = 1, λ2 = 8, μ1 =
4, μ2 = 20 and σ = 1.

Fig. 10. The transition of the number of SUs in the orbit when c = 3.

5.6 Remarks on the Simulations

In all the simulations concerning the average of the number of SUs in the orbit
and the distribution of the number of retrials of SUs, we consider 50 sample
paths of the underlying Markov chains and take the average of these 50 sample
paths. In these cases, in each sample path, we consider 1,100,000 jumps and we
discard the first 100,000 jumps so as to consider the stationary behavior. For the
graphs of the average of the number of SUs in the orbit, we plot the average of
the 50 sample paths and in the graphs of the distributions we plot the histogram
based on these 50 sample paths. In the simulation concerning the transition of
the number of SUs in the orbit, we consider 1 sample path of the underlying
Markov chains. We simulate 5,000,000 jumps.
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Fig. 11. The transition of the number of SUs in the orbit when c = 4.

Fig. 12. The transition of the number of SUs in the orbit when c = 5.

6 Conclusion

In this paper, we have considered cognitive radio network systems and model
them using a single server retrial queueing model and a multiserver queueing
model. The feature of our model is that every arriving SU enters the orbit. They
start to sense servers until they find an idle server. In single server model, we
obtain explicit expressions for the partial generating functions. In addition, we
derive the necessary stability condition. We find the distribution of the number
of retrials of SUs for various values by simulation. In multiserver model, we
obtain the average of the number of SUs in the orbit and the distribution of
retrials of SUs for various values by simulation.

In the future work, we plan to derive the stability condition for the multi-
server model and perform the stationary analysis under the stability condition.
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Abstract. In this paper we consider an M/M/1 queue, in which the cus-
tomer service rate is allowed to be increased and decreased by a fixed value
at each customer service completion. These changes in service rate are con-
trolled by probabilities depending on the actual number of customers and
the actual service rate. The dependency on the number of customers fol-
lows a specific power form, while the dependency on actual service rate is
general and independent of the dependency on the number of customers.

We describe how to compute the partial stationary distribution of the
service rate values when the system is empty. Based on it we provide a
computational procedure for computing the stationary probability vec-
tors of the number of customers in the system. We derive also the vector
probability generating function and the vector mean of the stationary
number of customers.

We establish a methodology which utilizes the specific structure of
the model. This methodology inherits some element from the stationary
analysis of the standard QBD model and provides a first order, forward
algorithm for computing the stationary probability vectors of the number
of customers in the system.

Keywords: Queueing theory · Control of queues ·
State dependent service rate · Variable service rate

1 Introduction

Controlling the service capacity of a queueing model supports achieving the
optimal operational setting according to the requirements of the application
scenario, like reaching an optimal resource allocation or the optimum of a cost
model. The customer service time is determined by the capacity demand of
the customer together with the actually available service capacity. However in
regular queueing system the capacity demand of the customer and the service
capacity of the service are not modeled separately, instead a customer service
time is modeled.
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The change of the available service capacity can be modeled on several ways.
Perhaps the simplest service capacity model is to allow changeable number of
servers [1]. Similar ways of modeling service capacity are to enable variable
service rate in queueing models with Markovian service time [2] or applying speed
scaling [3]. In these models the service capacity determines also the customer
service time.

Another way of modeling service capacity is to see it as time slice, the fraction
of time allocated for service, like in the case of processor time sharing [4]. This
can be realized e.g. by time limited polling models [5] or time limited vacation
models [6]. Recently Bruneel et al. modeled the service capacity in discrete-time
queueing models as an individual random variable from slot to slot, while the
service demand is described by another random variable. They investigated such
models under different settings in a series of papers [7–9].

In general controlling the service capacity is motivated by providing an auto-
mated mechanism to achieve an optimal performance, like e.g. minimal queue
length or minimal operating cost. The control of service capacity is modeled in
several works as dependency of the service capacity on the state of the system.
One early work on such service rate control is [10], which investigates a spe-
cific dependency of the service rate on the number of customers in the system.
According to this dependency the service rate is proportional to the power of
the number of customers. An M/M/s system with variable number of servers
is studied in the paper [11].

Another way of controlling the service capacity is to let increase or decrease
the number of servers depending on the actual state of the system. In the
paper [12] a queue with exponentially distributed service time and a specific
control schema is investigated, in which the number of active servers increases
or decreases when the queue length changes by ±k customers. The control of
the number of servers.

In applications, like manufacturing systems, in which the processing speed
follows the processing demand, a control mechanism can be used in order to
keep the number of incoming items on conveyor belt limited. Such an adapta-
tion mechanism can be realized by enabling the increase and decrease of the
service capacity on probabilistic way after each processing step depending on
the number of not processed items. A power form family of probabilistic depen-
dency of increase and decrease the service capacity ensures the lower (higher)
probability of decrementing (incrementing) the service capacity in case of higher
number of items present in the system. Such a service capacity control mecha-
nism is investigated in the multi-server queue with constant service time of [13],
in which the concurrently served customers are served in synchronized manner.
The increase and decrease of the number of active servers are controlled by prob-
abilities depending on the actual number of customers and the number of active
servers.

In this paper, motivated by the above application scenario, we investigate
an M/M/1 queue, in which the customer service rate is allowed to be increased
and decreased by a fixed value at each customer service completion. The changes
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in service rate are controlled by probabilities depending on the actual number
of customers and the actual service rate. The dependency on the number of
customers follows a power form, while the dependency on actual service rate is
general and independent of the dependency on the number of customers. The
stationary joint distribution of the number of customers and the actual service
rate is described in vector formalism, where the vector pn describes the partial
distribution when the number of customers is n ≥ 0.

We give a description for computing p0. Based on it we provide a compu-
tational procedure for computing the stationary probability vectors pn, n ≥ 1.
We derive also the vector probability generating function (PGF) and the vector
mean of the stationary number of customers in terms of p0. This queueing system
can be described by a special case of level dependent QBD having special struc-
ture on block matrix level. We establish a methodology which utilizes this spe-
cific structure of the model. Thus the methodology inherits some elements from
the stationary analysis of the standard quasi-birth-and-death (QBD) model. For
computing the stationary distribution in terms of the stationary probability vec-
tors pn, n ≥ 1 a first order, forward algorithm is provided. Moreover we provide
an additional condition, under which the forward recursion does not require any
matrix inversion in the iteration steps.

The rest of the paper is organized as follows. Section 2 gives the model
description. In Sect. 3 preliminary results are provided. In Sect. 4 we provide
the recursion for computing the stationary distribution. The vector PGF and
the vector mean of the stationary number of customers are derived in Sect. 5.
Finally, Sect. 6 deals with the computational aspects of the determination of the
stationary distribution.

2 Model and Notation

2.1 Modell Description

We consider a queue with controllable capacity, in which the capacity control is
realized by changeable rate of customer service. The customers arrive according
to a Poisson process with parameter λ. The model has one server and infinite
buffer. The customer service times are i.i.d. and exponentially distributed. The
service rate, μ∗ can only be an integer multiple of μ, more precisely μ∗ = μ, 2 ∗
μ, . . . M∗μ. We call μ∗

μ as the multiplication factor of the service rate. The service
rate can be changed only at service completion epochs. It can be incremented by
μ, decremented by μ or kept changed with some probabilities depending on both
the number of customers in the system and the actual service rate. We assume
that the customer arrival process, the customer service times and the change of
the service rate are mutually independent.

Let q(n,m) be the probability of decrementing the service rate by μ at the
end of a customer service, when there are n = 1, . . . customers in the system and
the actual service rate is m ∗ μ, m = 2, . . . , M . Similarly let r(n,m) stand for
the probability of incrementing the service rate by μ at the end of a customer
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service, when there are n = 1, . . . customers in the system and the actual service
rate is m ∗ μ, m = 1, . . . , M − 1. These probabilities are expressed in the form

q(n,m) = αγnrm, n = 1, . . . , m = 2, . . . , M,

r(n,m) = α − q(n,m) = α (1 − γnrm) , n = 1, . . . ,m = 1, . . . ,M − 1, (1)

where 0 ≤ rm ≤ 1, for m = 1, . . . ,M , 0 ≤ α ≤ 1, and 0 ≤ γ < 1.
These formulas provide a control on the probabilities of decrementing, incre-

menting and keeping unchanged the multiplication factor of the service rate in
terms of parameters rm-s, α and γ. The construction of the expressions in (1)
ensures that 0 ≤ r(n,m) ≤ 1 and 0 ≤ q(n,m) ≤ 1, i.e. they are probabilities.
The parameters rm-s implement a general dependency on the actual service rate
and, as it can be seen from the formulas, it is independent of the dependency on
the number of customers.

The parameter γ counts for the control depending on the number of cus-
tomers. The higher the number of customers, the lower (higher) the probability
of decrementing (incrementing) the multiplication factor of the service rate. The
parameter α determines the probability of no change in the multiplication factor
of the service rate and this probability equals to 1 − α.

For the matrix function M(z) the notation M(n)(z) stands for the n-th
derivative of M(z) with respect to z, for n ≥ 1. Similarly M(n) denotes the n-th
derivative of M(z) with respect to z, at z = 0 for n ≥ 1, i.e. dn

dzn (M(z)) |z=0.
For n = 0 M(n)(z) and M(n) denotes M(z) and M(0), respectively. When M is
a matrix then λmax(M) denotes its eigenvalue with the highest absolute value.

2.2 Formulating a Markov Chain

Let the number of customers in the system and the multiplication factor of the
service rate be denoted at time t > 0 by N(t) and M(t), respectively. Then
the process (N(t);M(t); t ≥ 0) is a continuous-time bivariate Markov chain
(CTMC). The infinitesimal generator matrix of this CTMC, Q can be given in
terms of block matrices. The outer index of matrix Q is the number of customers
(n), while the index inside of the block matrices represents the multiplication
factor of the service rate (m). The matrix Q can be expressed as

Q =

⎛
⎜⎜⎜⎜⎜⎝

B0 C 0 0 . . .
(A − γ1T) B C 0 . . .

0 (A − γ2T) B C . . .
0 0 (A − γ3T) B . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

. (2)

The block matrices A, T, C, B0 and B are given by

A = SA∗,
T = ST∗.

B0 = −C,

B = − (S + C) .
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S =

⎛
⎜⎜⎜⎝

μ 0 0 . . .
0 2μ 0 . . .
...

...
...

. . .
0 0 . . . Mμ

⎞
⎟⎟⎟⎠ . A∗ =

⎛
⎜⎜⎜⎜⎜⎝

1 − α α 0 . . . 0 0
0 1 − α α . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 − α α
0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎠

,

T∗ =

⎛
⎜⎜⎜⎜⎜⎝

−αr1 αr1 0 . . . 0 0 0
−αr2 0 αr2 . . . 0 0 0

...
...

...
. . .

...
...

...
0 0 0 . . . −αrM−1 0 αrM−1

0 0 0 . . . 0 −αrM αrM

⎞
⎟⎟⎟⎟⎟⎠

. C =

⎛
⎜⎜⎜⎝

λ 0 0 . . .
0 λ 0 . . .
...

...
...

. . .
0 0 . . . λ

⎞
⎟⎟⎟⎠ .

Remark 1. We remark here that matrix A∗ is stochastic, matrix T is singular
and hence the row sums of matrices A + B + C are 0. Moreover matrix A is
non-singular.

From now on we call the model in short form as controllable service rate
queue. Furthermore we assume that the controllable service rate queue is stable.

2.3 Relaxing the Structure of the Block Matrices

Without loss of focusing on the controllable service rate queue, from now on we
consider a somewhat more general queueing model having the generator matrix’s
structure like (2), i.e. matrices C, A, T and B may not have to have the forms
as specified above. This is because the solution of the queueing model depends
mainly on the structure of the generator matrix on block matrix level. We assume
that the model is stable, the row sums of matrices A + B + C are 0 as well as
matrix A is non-singular.

3 Preliminary Results

In this section we investigate the properties of the matrices dn

dzn (A + Bz+
Cz2

) |z=0 for n ≥ 0, which we need in the subsequent sections. We introduce
notations for these matrices as follows

Xn =
dn

dzn

(
A + Bz + Cz2

) |z=0, n ≥ 0.

3.1 Second Order Recursions

Lemma 1. The matrices Xn can be computed from the following second order
recursion

Xn = − (
nXn−1BA−1 + n(n − 1)Xn−2CA−1

)
, n ≥ 2, (3)

where

X0 = A−1 and X1 = −A−1BA−1. (4)
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Proof. We consider a complex valued matrix function f(z) on values for z, for
which the inverse of matrix f(z) exists as well as both f(z) and f−1(z) are
analytic. Then we have

f−1(z)f(z) = I. (5)

Taking the n-th derivative of (5) yields

(f−1)(n)(z)f(z) +
n−1∑
k=0

(
n

k

)
(f−1)(k)(z)f (n−k)(z) = 0, n ≥ 1,

from which

(f−1)(n)(z) = −
(

n−1∑
k=0

(
n

k

)
(f−1)(k)(z)f (n−k)(z)

)
f−1(z), n ≥ 1.

follows. Applying it to

f(z) =
(
A + Bz + Cz2

)
, |z| ≤ 1.

and setting z = 0 leads to

(f−1)(1) = −f−1(0)f (1)f−1(0). (6)

and

(f−1)(n) = −
((

n

n − 1

)
(f−1)(n−1)f (1)

+
(

n

n − 2

)
(f−1)(n−2)f (2)

)
f−1(0), n ≥ 2. (7)

The statements come by applying f−1(0) = A−1, f (1) = B and f (2) = 2C as
well as the notation Xn = (f−1)(n) for n ≥ 0 in (6) and (7). ��

We define matrices Yn for n ≥ 0 by means of the following relations

Xn = n!Yn, n ≥ 0. (8)

Lemma 2. The matrices Yn can be computed recursively as

Yn = − (
Yn−1BA−1 + Yn−2CA−1

)
, n ≥ 2, (9)

where

Y0 = A−1 and Y1 = −A−1BA−1. (10)

Proof. The lemma comes by applying (8) in (3) and (4). ��
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3.2 Explicit Formula for Matrices Yn

In this subsection we give an explicit expression for matrices Yn. We define a
corresponding QBD by setting γ = 0 in (2) leading to

Q =

⎛
⎜⎜⎜⎜⎜⎝

B0 C 0 0 . . .
A B C 0 . . .
0 A B C . . .
0 0 A B . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

. (11)

Theorem 1. If corresponding QBD is stable then the matrices Yn can be
expressed in explicit form as

Yn = Y0

n∑
i=0

ViRn−i, n ≥ 1, (12)

where matrix R is the minimal non-negative solution of the quadratic matrix
equation

R2A + RB + C = 0 (13)

and

V = −BA−1 − R. (14)

Proof. Substracting Yn−1R from both sides of (9) results in

Yn − Yn−1R = Yn−1

(
(−BA−1) − R

)
+ Yn−2(−CA−1), n ≥ 2. (15)

We make the conjenture

Yn−1

(
(−BA−1) − R

)
+ Yn−2(−CA−1) = (Yn−1 − Yn−2R)V, n ≥ 2. (16)

In order to show that this conjenture holds we will determine the matrices
R and V without getting any contradiction.

From (16) we conclude

V = −BA−1 − R,

−RV = −CA−1. (17)

Combining the above equations and rearranging leads to a quadratic matrix
equation for R as

R2 + RBA−1 + CA−1 = 0. (18)

Multiplying (18) by matrix A from right gives

R2A + RB + C = 0. (19)
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The quadratic matrix equation could have more solutions. Any solution of
this equation together with the corresponding matrix V, specified by (17), satisfy
the conjecture and hence any second order sequence Yn, n ≥ 2 determined
from (15) and (16) is a solution of (9). However (9) has only one solution for a
given initial matrices Y0 and Y1. It follows that any solution pair R and the
corresponding matrix V leads to the same solution for the sequence Yn, n ≥ 0.
If the corresponding QBD is stable then there exists at least a minimal non-
negative solution of this equation [14]. Therefore we select R as the minimal
non-negative solution of this equation.

The second order sequence Yn, n ≥ 2 can be determined from (15) and (16)
recursively as follows. Combining these two equations gives

Yn − Yn−1R = (Yn−1 − Yn−2R)V, n ≥ 2.

Solving it recursively and replacing the index n by k leads to

Yk − Yk−1R = (Y1 − Y0R)Vk−1, k ≥ 2.

In fact the above relation holds also for k = 1. Multiplying it by Rn−k from
right and summing from k = 1 up to n results in

Yn − Y0Rn = (Y1 − Y0R)
n−1∑
i=0

ViRn−i−1, n ≥ 1. (20)

Observe from (10) that

Y1 = Y0(−BA−1). (21)

Applying (21) and the first relation of (17) in (20) and rearranging gives

Yn − Y0Rn = Y0

(−BA−1 − R
) n−1∑

i=0

ViRn−i−1 = Y0V
n−1∑
i=0

ViRn−i−1

= Y0

n−1∑
i=0

Vi+1Rn−(i+1) = Y0

n∑
i=1

ViRn−i, n ≥ 1. (22)

The statement of the theorem comes by further rearranging of (22). ��

3.3 First Order Recursions for Matrices Yn

Based on the explicit expression for matrices Yn also first order recursions can
be given for them. We will use these recursions in the next sections.

Corollary 1. The following first order recursions hold for matrices Yn

Yn = Yn−1R + A−1Vn, n ≥ 1, (23)
Yn = A−1VAYn−1 + A−1Rn, n ≥ 1. (24)
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Proof. The first statement can be obtained by rearranging (12) as

Yn = Y0

n∑
i=0

ViRn−i = Y0

(
n−1∑
i=0

ViRn−1−i

)
R + Y0Vn

= Y0Yn−1R + A−1Vn.

Similarly the second statement can be obtained also by rearranging (12)
leading to

Yn = Y0

n∑
i=0

ViRn−i = Y0

n∑
i=1

ViRn−i + Y0Rn

= Y0V
n∑

i=1

Vi−1R(n−1)−(i−1) + Y0Rn

= Y0VY−1
0

(
Y0

n−1∑
i=0

ViRn−1−i

)
+ Y0Rn = A−1VAYn−1 + A−1Rn.

��

4 Stationary Solution

In this section we derive a recursive relation for the stationary probability vec-
tors. Based on the preliminary result we reformulate this recursion into an alter-
native form, which enables to guess the stationary solution. Then we establish
a theorem for determining the stationary probability vectors.

4.1 Relation for the PGF of the Stationary Probability Vectors

Let p be the 1 × ∞ stationary probability vector of the number of customers
in the system. Partitioning p in the form p = (p0,p1, . . .), where pi, i ≥ 0 are
1×M stationary probability vectors, enables to expand the system of equations
pQ = 0 as

(p0,p1,p2,p3, . . .)

⎛
⎜⎜⎜⎜⎜⎝

B0 C 0 0 . . .
(A − γ1T) B C 0 . . .

0 (A − γ2T) B C . . .
0 0 (A − γ3T) B . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

= 0. (25)

Let us multiply (25) by the column hypervector
⎛
⎜⎜⎜⎝

I
zI
z2I
...

⎞
⎟⎟⎟⎠ ,
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from right, where I is the M ×M identity matrix and |z| ≤ 1 is a complex value.
This results in

(p0,p1,p2,p3, . . .)

⎛
⎜⎜⎜⎜⎜⎝

B0 C 0 0 . . .
(A − γ1T) B C 0 . . .

0 (A − γ2T) B C . . .
0 0 (A − γ3T) B . . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

I
zI
z2I
...

⎞
⎟⎟⎟⎠ = 0.

Collecting the terms according to matrices A, T, B and C yields
(
p1 + p2z + p3z

2 + . . .
)
A − (

p1γ + p2γ
2z + p3γ

3z2 + . . .
)
T

+
(
p0 + p1z + p2z

2 + . . .
)
B + p0

(
B0 − B

)

+
(
p0z + p1z

2 + p2z
3 + . . .

)
C = 0. (26)

The vector PGF of the stationary number of customers is defined as

p(z) =
∞∑

n=0

pnzn, |z| ≤ 1.

Using it in (26) and rearranging it gives

p(z)
1
z
A − p0

1
z
A − p(γz)

1
z
T + p0

1
z
T + p(z)B + p0

(
B0 − B

)

+p(z)zC = 0. (27)

Multiplying (27) by z and further rearranging leads to the PGF relation

p(z) − p(γz)T
(
A + Bz + Cz2

)−1

= p0

(
(A − T) + (B − B0)z

) (
A + Bz + Cz2

)−1
. (28)

4.2 Recursive Relations for the Stationary Probability Vectors

Proposition 1. The following recursive relations hold for the stationary prob-
ability vectors in the stable controllable service rate queue

pn −
n∑

i=0

γipiTYn−i = p0

(
(A − T)Yn + (B − B0)Yn−1

)
. n ≥ 1 (29)

Proof. Taking the n-th derivative of (28) with respect to z for n = 1, . . . and
setting z = 0 gives

n!pn −
n∑

i=0

(
n

i

)
i!γipiTXn−i = p0

(
(A − T)Xn + n(B − B0)Xn−1

)
, n ≥ 1. (30)

The proposition comes by substituting (8) into (30) and rearranging it. ��
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Proposition 2. An alternative form of the recursive relations for the stationary
probability vectors in the stable controllable service rate queue can be given as

pn −
n∑

i=1

γipiTYn−i = p0Rn − p0

(
RA + B0

)
Yn−1. (31)

Proof. Observe that for i = 0 the term in the sum of the l.h.s of (29) equals to
p0TYn. This enables the following rearrangement of (29)

pn −
n∑

i=1

γipiTYn−i = p0

(
AYn + (B − B0)Yn−1

)
. n ≥ 1 (32)

The r.h.s of (30) can be rearranged by applying (24) and the first relation of
(17) as

p0

(
AYn + (B − B0)Yn−1

)
= p0

(
VAYn−1 + Rn + (B − B0)Yn−1

)

= p0Rn + p0

(−B − RA + (B − B0)
)
Yn−1

= p0Rn − p0

(
RA + B0

)
Yn−1 (33)

The proposition comes by applying (33) in (32). ��

4.3 Solution in Terms of Stationary Probability Vectors

The structure of the equations in Proposition 2 suggests the following conjecture.

p0

(
RA + B0

)
= 0. (34)

pn −
n∑

i=1

γipiTYn−i = p0Rn, n ≥ 1.

This leads to the next theorem.

Theorem 2. The stationary probability vectors in the stable controllable service
rate queue can be determined from the following equations

p0

(
RA + B0

)
= 0. (35)

pn =

(
p0Rn +

n−1∑
i=1

γipiTYn−i

)(
I − γnTA−1

)−1
, n ≥ 1. (36)

Proof. We show that the probability vectors determined by (34) satisfy the par-
titioned form of the equilibrium equation, (25). For n = 1 (34) gives

p1 − γp1TY0 = p0R. (37)
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Multiplying (37) by A from right and rearranging it leads to

p1 (A − γT) − p0RA = 0. (38)

Summing (38) with the first equation of (34) yields

p1 (A − γT) + p0B0 = 0,

which is the first partitioned equilibrium equation.
For n ≥ 2 we apply (34) for n, n− 1 and n− 2, n ≥ 2 after each other, which

leads to

pn −
n∑

i=1

γipiTYn−i = p0Rn.

pn−1 −
n−1∑
i=1

γipiTYn−i−1 = p0Rn−1.

pn−2 −
n−2∑
i=1

γipiTYn−i−2 = p0Rn−2.

Multiplying the first, second and third equation by matrix A, B and C from
right, respectively and summing up them yields

pnA + pn−1B + pn−2C −
n−2∑
i=1

γipiT (Yn−iA + Yn−i−1B + Yn−i−2C)

− γn−1pn−1T (Y0B + Y1A) − γnpnTY0A

= p0Rn−2
(
C + RB + +R2A

)
. (39)

It follows from (9) that Yn−iA + Yn−i−1B + Yn−i−2C = 0 for i ≤ n − 2.
Substituting it, (9) and (21) into (39) and rearranging gives

pnA + pn−1B + pn−2C − γn−1pn−1T
(
Y0B + Y0(−BA−1)A

) − γnpnT

= pnA + pn−1B + pn−2C − γnpnT = 0.

Further rearrangement results in

pn (A − γnT) + pn−1B + pn−2C = 0,

which is the n-th partitioned equilibrium equation for n ≥ 2. According to the
condition of the theorem the model is stable and hence the solution of the equilib-
rium equations is unique. It follows that probability vectors determined by (34)
are the stationary probability vectors of the model. The second equation of the
theorem comes by rearranging the second equation of the conjecture (34). ��
Remark 2. If the model is stable then the second relation of (34) determine
the probability vector pn (from a known p0) uniquely. It follows that under
stability the matrices (I − γnTA) for n ≥ 1 are non-singular, otherwise the
probability vectors pn were determined only up to a multiplication constant, i.e.
not uniquely.
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Theorem 2 provides a recursive way of computing the stationary probability
vectors. The steps of computational procedure can be summarized as follows:

1. Determination of matrix R as the minimal non-negative solution of the
quadratic equation (19) by means of iterative computation.

2. Computation of probability vector p0 up to a multiplication constant as a
solution of the homogenous system of linear equations (35).

3. Recursive computation of the probability vectors pn, for n ≥ 1 from the
relation (36).

4. Determination of the normalization constant from
∑

n pne = 1 and adjusting
the stationary probability vectors pn, n ≥ 0 accordingly.

5 The Stationary PGF and Mean of the Number
of Customers

In this section we derive the stationary PGF of the number of customers. Based
on them we provide an expression for the stationary mean of the number of
customers and also give a sufficient condition for the stability of the system.

5.1 The Stationary PGF of the Number of Customers

Theorem 3. The stationary PGF of the number of customers in the stable con-
trollable service rate queue is given in terms of p0 by

p(z) = p0

∑∞
n=0

(
(A − T) + (B − B0)γnz

) (
A + Bγnz + Cγ2nz2

)−1

×
←−∏

n−1
j=0 T

(
A + Bγjz + Cγ2jz2

)−1
, (40)

where
←−∏n−1

i=0 stands for multiplying from left with increasing index and the empty
product is 0.

Proof. Rearranging (28) leads to

p(z) = p(γz)T
(
A + Bz + Cz2

)−1

+ p0

(
(A − T) + (B − B0)z

) (
A + Bz + Cz2

)−1
.

This relation can be solved for p(z) by recursive substitution of z = γnz, for
n = 0, 1, . . ., since γ < 1, which leads to

p(z) = lim
n→∞ p(γnz)

←−∏∞
n=0T

(
A + Bγnz + Cγ2nz2

)−1

+ p0

∞∑
n=0

(
(A − T) + (B − B0)γnz

) (
A + Bγnz + Cγ2nz2

)−1

×
←−∏

n−1
j=0 T

(
A + Bγjz + Cγ2jz2

)−1
.

The first term vanishes due to due to γ < 1. ��
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5.2 The Stationary Mean of the Number of Customers

Corollary 2. The stationary mean of the number of customers in the stable
controllable service rate queue is given in terms of p0 by

∞∑

n=1

npn = p0

∞∑

n=0

(
((B − B

0
)γ

n
) (

A + Bγ
n
+ Cγ

2n
)−1 ←−∏

n−1
j=0 T

(
A + Bγ

j
+ Cγ

2j
)−1

+ p0

∞∑

n=0

(
(A − T) + (B − B

0
)γ

n
) d

dz

((
A + Bγ

n
z + Cγ

2n
z
2
)−1

)
|z=1

×
←−∏

n−1
j=0 T

(
A + Bγ

j
+ Cγ

2j
)−1

+ p0

∞∑

n=0

(
(A − T) + (B − B

0
)γ

n
) (

A + Bγ
n
+ Cγ

2n
)−1

×
n−1∑

k=0

(←−∏
k−1
j1=0T

(
A + Bγ

j1 + Cγ
2j1

)−1
T

d

dz

((
A + Bγ

n
z + Cγ

2n
z
2
)−1

)
|z=1

×
←−∏

n−1
j2=k+1T

(
A + Bγ

j2 + Cγ
2j2

)−1
)

(41)

Proof. The statement of the corollary is obtained by taking the first derivative
of (40) with respect to z and setting z = 1. ��

5.3 Sufficient Condition of the Stability

Lemma 3. The stability condition of the corresponding QBD is given by

1. Its generator matrix is irreducible.
2. It has negative drift, in other words

πCe − πAe < 0, (42)

where vector π is the stationary probability vector of the corresponding QBD’s
generator matrix and it is determined uniquely by

π (A + B + C = 0) and πe = 1. (43)

Proof. The statement can be derived from the stability condition of the analo-
gous discrete-time QBD, see in [14]. ��
Corollary 3. A sufficient condition of the stability of the controllable service
rate queue is given by,

1. Setting γ = 0 in matrix Q results in an irreducible generator matrix.
2. πCe − πAe < 0, where π is given by (43).
3.

∞∑
n=0

(
(A − T) + (B − B0)γn

) (
A + Bγn + Cγ2n

)−1

×
←−∏

n−1
j=0 T

(
A + Bγj + Cγ2j

)−1
< ∞. (44)



M/M/1 Queue with Controllable Service Rate 109

Proof. The system is stable if
∑∞

n=0 pn < ∞. Setting z = 1 in (40) gives a
stability condition as

p0

∑∞
n=0

(
(A − T) + (B − B0)γn

) (
A + Bγn + Cγ2n

)−1 ×
←−∏

n−1
j=0 T

(
A + Bγj + Cγ2j

)−1
< ∞, (45)

The first criterion of the corollary means that the generator of the correspond-
ing QBD is irreducible. Similarly the second one ensures that the corresponding
QBD has negative drift. Hence the first two criteria together with Lemma 3
ensures the stability of the corresponding QBD, in which case the matrix R, the
minimal non-negative solution of the equation (19) and the probability vector
p0 determined from (34) exist (see in [14]). Hence the above stability condition
reduces to the third criterion of the corollary. ��

6 Computational Considerations

Although the Theorem 2 determines the solution in terms of stationary prob-
ability vectors, it is computationally extensive as it requires all the previously
determined probability vectors in each iteration step. In this section we give a
first order forward recursion for determining the stationary probability vectors,
which requires only the lastly determined probability vector and a temporary
vector variable in each iteration step. Additionally we provide an additional con-
dition, under which the matrix inversions in the iteration steps of the forward
recursion can be replaced by sums.

Theorem 4. The stationary probability vectors in the stable controllable service
rate queue can be computed from the following first order recursion

pn = (pn−1R + zn−1)
(
I − γnTA−1

)−1
, n ≥ 1, (46)

zn =
(
zn−1 + γnpnTA−1

)
V, n ≥ 1, (47)

where p0 is given by (35) and z0 = 0.

Proof. We apply the second relation of (34) for n and n − 1, for n ≥ 1, which
leads to

pn −
n∑

i=1

γipiTYn−i = p0Rn

pn−1 −
n−1∑
i=1

γipiTYn−i−1 = p0Rn−1 (48)

Multiplying the second relation of (48) by R from right and subtracting it
from the first one gives

pn − pn−1R −
n−1∑
i=1

γipiT (Yn−i − Yn−i−1R) − γnpnTY0 = 0. (49)



110 Z. Saffer et al.

Applying (23) in (49) and performing rearrangements yields

pn

(
I − γnTA−1

)
= pn−1R +

n−1∑
i=1

γipiTA−1Vn−i. (50)

We define the vector sequence zn as

zn =
n∑

i=1

γipiTA−1Vn+1−i, n ≥ 0. (51)

The second relation of the statement can be obtained by rearranging (51) as

zn =
n∑

i=1

γipiTA−1Vn+1−i =

(
n−1∑
i=1

γipiTA−1Vn−i

)
V + γnpnTA−1V

=
(
zn−1 + γnpnTA−1

)
V, n ≥ 1.

Observe that the last term on r.h.s. of (51) equals to zn−1. Substituting zn−1

into (51) and rearranging it gives the first relation of the statement. ��
If additional criterion fulfills then the matrix inversions in the iteration steps

of (46) can be replaced by sums.

Lemma 4. If matrix A is non-singular and λmax(TA−1) < 1 then

(
I − γnTA−1

)−1
=

∞∑
�=0

(
γnTA−1

)�
, n ≥ 1. (52)

Proof. If λmax(TA−1) < 1 then
∑∞

�=0

(
γnTA−1

)�
< ∞ due to λmax(γnTA−1) =

γnλmax(TA−1) < 1. ��
Based on Theorem 4, a first order recursion can be established to compute

the stationary probability vectors. The computational steps of the procedure can
be summarized as follows:

1. Determination of matrix R as the minimal non-negative solution of the
quadratic equation (19) by means of iterative computation.

2. Initializations
– Initialize z0 = 0.
– Initialize p0 by computating the solution of the homogenous system of

linear equations (35).
3. Recursive computation of the probability vectors pn based on the relations

(46) and (47), for n ≥ 1
– Compute

(
I − γnTA−1

)−1.
– Compute pn.
– Compute zn.

4. Determination of the normalization constant from
∑

n pne = 1 and adjusting
the stationary probability vectors pn, n ≥ 0 accordingly.



M/M/1 Queue with Controllable Service Rate 111

References

1. Phung-Duc, T.: Exact solutions for M/M/c/setup queues. Telecommun. Syst.
64(2), 309–324 (2017)

2. Yajima, M., Phung-Duc, T.: Batch arrival single server queue with variable service
speed and setup time. Queueing Syst. 86(3–4), 241–260 (2017)

3. Phung-Duc, T., Rogiest, W., Wittevrongel, S.: Single server retrial queues with
speed scaling: analysis and performance evaluation. J. Ind. Manage. Optim. 13(4),
1927–1943 (2017)

4. Kleinrock, L., Muntz, R.: Processor sharing queueing models of mixed scheduling
disciplines for time shared systems. J. ACM 19, 464–482 (1972)

5. Saffer, Z., Telek, M.: Analysis of globally gated Markovian limited cyclic polling
model and its application to uplink traffic in the IEEE 802.16 network. J. Ind.
Manage. Optim. (JIMO) 7(3), 677–697 (2011)

6. Leung, K.K., Eisenberg, M.: A single-server queue with vacations and non-gated
time-limited service. Perform. Eval. 12(2), 115–125 (1991)

7. Bruneel, H., Rogiest, W., Walraevens, J., Wittevrongel, S.: On queues with general
service demands and constant service capacity. In: Norman, G., Sanders, W. (eds.)
QEST 2014. LNCS, vol. 8657, pp. 210–225. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10696-0 17

8. Bruneel, H., Wittevrongel, S., Claeys, D., Walraevens, J.: Discrete-time queues
with variable service capacity: a basic model and its analysis. Ann. Oper. Res.
239(2), 359–380 (2016)

9. De Muynck, M., Bruneel, H., Wittevrongel, S.: Delay analysis of a queue with gen-
eral service demands and correlated service capacities. In: Takahashi, Y., Phung-
Duc, T., Wittevrongel, S., Yue, W. (eds.) QTNA 2018. LNCS, vol. 10932, pp.
64–85. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93736-6 5

10. Conway, R.W., Maxwell, W.L.: A queueing model with state dependent service
rate. J. Ind. Eng. 12, 132–136 (1961)

11. Lia, H., Yang, T.: Queues with a variable number of servers. EJOR 124(3), 615–628
(2000)

12. Mazalov, V., Gurtov, A.: Queuing system with on-demand number of servers.
Math. Applicanda 40(2) 15/56, 1–12 (2012)

13. Saffer, Z., Grill, K., Yue, W.: Controllable capacity queue with synchronous con-
stant service time and loss. In: Takahashi, Y., Phung-Duc, T., Wittevrongel, S.,
Yue, W. (eds.) QTNA 2018. LNCS, vol. 10932, pp. 51–63. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93736-6 4

14. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach. The John Hopkins University Press, Baltimore (1981)

https://doi.org/10.1007/978-3-319-10696-0_17
https://doi.org/10.1007/978-3-319-10696-0_17
https://doi.org/10.1007/978-3-319-93736-6_5
https://doi.org/10.1007/978-3-319-93736-6_4


A Single Server Queue
with Workload-Dependent Service

Speed and Vacations

Yutaka Sakuma1(B) , Onno Boxma2, and Tuan Phung-Duc3

1 Department of Computer Science, National Defense Academy of Japan,
Yokosuka-shi, Japan
sakuma@nda.ac.jp

2 Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

o.j.boxma@tue.nl
3 Department of Policy and Planning Sciences,

University of Tsukuba, Tsukuba-shi, Japan
tuan@sk.tsukuba.ac.jp

Abstract. In modern data centers, the trade-off between processing
speed and energy consumption is an important issue. Motivated by this,
we consider a queueing system in which the service speed is a function
of the workload, and in which the server switches off when the system
becomes empty, only to be activated again when the workload reaches a
certain threshold. For this system we obtain the steady-state workload
distribution. We use this result to choose the activation threshold such
that a certain cost function, involving holding costs and activation costs,
is minimized.
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1 Introduction

In this paper we consider an M/G/1-type queueing system with the following
two special features: (i) the service speed is not constant, but a function of
the workload, and (ii) the server switches off when the system becomes empty,
only to be activated again when the workload reaches a certain threshold. In
the remainder of this introduction we successively provide a motivation for this
study, present a detailed model description, discuss related literature and give
an overview of the rest of the paper.
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1.1 Motivation

Cloud service has become ubiquitous in our modern information society. Most
Internet users are familiar with some cloud service such as Dropbox, Slack,
Google drive etc. These services are supported by data centers where thousands
of servers are available, consuming a large amount of energy. Thus, it is crucial
to have mechanisms balancing energy consumption and performance for users.
While energy saving is very important, most data centers are still designed for
peak traffic of users. As a result, in the off-peak period, most servers are idle
but still consume about 60% of their peak energy consumption [9,13]. One sim-
ple idea is to use an ON-OFF control that automatically adjusts the number
of active servers according to the workload. In addition, dynamic scaling tech-
niques such as frequency scaling or voltage scaling enable individual computers
to adjust their processing speed in accordance with their workload.

These automatic scaling techniques have the advantage of balancing perfor-
mance and energy consumption. Because the energy consumption is a monotonic
function of the processing speed, less energy is consumed when the system is less
congested. When the workload is high, the processing speed is scaled up and thus,
the delay performance is improved. At the single computer (server, CPU) level,
on the other hand, energy could be saved by adjusting the processing speed
of a server according to its own workload. These considerations, featuring the
important trade-off between processing speed and energy consumption, motivate
the analysis and optimization of queueing systems where the server capacity is
dynamically changed according to the workload.

Apart from the interest in power-saving computer systems, queues with vari-
able service speed also naturally arise in service systems with human servers. In
particular, in service systems such as call centers, staff numbers are scheduled
to meet the demands of customers. Also a human server may speed up when
the workload is large, and may spend more time on a job when the workload is
small.

In this paper, we propose and analyze a queueing model that features two
power-saving mechanisms. The speed of the server is scaled according to the
workload in the system. Moreover, the server is turned off when the system is
empty and is activated again once the workload reaches a certain threshold. We
obtain the distribution for the stationary workload in the system and its mean.
We also formulate an optimization problem.

1.2 Model Description

The model under consideration is an M/G/1 queue with two special features
(cf. Fig. 1): (i) when the server is active and the amount of work present equals
x > 0, the server works at speed r(x), and (ii) when the workload has dropped
to zero, the server becomes inactive (“takes a vacation”) and remains inactive
until the workload has reached some level M > 0, after which it immediately
resumes service. We denote the rate of the Poisson arrival process by λ, and the
i.i.d. (independent, identically distributed) service requirements by B1, B2, . . . ,
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with distribution B(·) and Laplace-Stieltjes transform (LST) β(s). B will denote
a generic service requirement. For much of the paper, we shall assume that
B(x) = 1 − e−μx, x ≥ 0.

0

Fig. 1. The workload process.

The case without vacations has been the subject of several studies (see, e.g.,
[1] and its references). The stability condition for that case is that (cf. [4,5,10]),

limsupx→∞
λE(B)
r(x)

< 1. (1)

Clearly, the same condition should hold in case the server takes a vacation until
workload level M is reached. From now on we assume that (1) holds. Below we
focus on the steady-state workload distribution V (·) and its density v(·). We
also need to take into account the steady-state workload distribution VI(·) and
its density vI(·) during inactive (vacation) periods of the server; by pI := VI(∞)
we denote the probability that the server is inactive.

Define
R(x, z) :=

∫ x

z

1
r(y)

dy, 0 ≤ z < x < ∞; (2)

R(x, z) represents the time required to move from level x down to level z in the
absence of any arrivals. In particular, R(x) := R(x, 0) denotes the time required
to empty the system when starting at level x, in the absence of any arrivals. We
assume in the sequel that R(x) < ∞ for x < ∞; notice that this excludes the
choice r(x) = rx, which is sometimes termed the shotnoise case [12].

1.3 Related Literature

Our model is related to several topics in the queueing literature. First of all, it
is a special example of a queue with vacations: the server takes a vacation when
the system becomes empty, and resumes service when the workload reaches or
exceeds a certain level. In the classical M/G/1 setting, such a D-policy has
been extensively studied. We refer to [7] for references and, in particular, for the
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proof of optimality. For the case of switching costs and running costs, and with
a holding cost per time unit which is a non-negative decreasing right-continuous
function of the current workload, Feinberg and Kella [7] prove that D-policies are
optimal for the average-cost-per-time-unit criterion. This means that there is an
optimal policy that either runs the server all the time or switches the server off
when the system becomes empty and switches it on when the workload reaches
or exceeds some threshold D.

Secondly, our model touches upon the topic of speed scaling. We refer to
[18] for an insightful discussion of speed scaling. Recent papers which consider
single server queues with speed scaling where the speed of the server is adjusted
according to the number of jobs in the system are, e.g., [15,19]. Multiserver
queues with ON-OFF control have been extensively studied [8,9,13,14]. In the
models in those papers, each server is turned off once it has no jobs to process
and is turned on again when jobs are waiting.

Thirdly, there is an extensive literature on queues and dams with a level-
dependent outflow rate. We mention the pioneering papers [10,11] and refer to
[1] for some more recent results and further references.

1.4 The Structure of the Paper

Section 2 is devoted to a study of the steady-state workload distribution. A
cost minimization problem is considered in Sect. 3, where also various numerical
results are shown. Section 4 contains some suggestions for further research.

2 The Workload

In this section we first present integral equations for the steady-state workload
density v(·) (Subsect. 2.1), while already deriving the workload density during
inactive periods; then we formally solve those integral equations (Subsect. 2.2),
and finally we present a detailed solution for two special cases: exponentially
distributed service requirements (Subsect. 2.3) and generally distributed service
requirements with r(x) = r1x + r0 (Subsect. 2.4).

2.1 Integral Equations for the Workload Density

We use the level crossing technique (LCT), cf. [2,3,5], which is based on the
principle that, in steady state, each level x is crossed just as often from above
and from below. We need to distinguish between x < M and x ≥ M . When
x ≥ M , we have, with V (0) = P(V = 0) (see also Fig. 1):

r(x)v(x) = λ

∫ x

y=0

P(B > x − y)v(y)dy + λP(B > x)V (0), (3)

and when x < M then

r(x)(v(x) − vI(x)) = λ

∫ x

y=0

P(B > x − y)v(y)dy + λP(B > x)V (0). (4)
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In both cases, the righthand side represents the upcrossing rate, which seems
self-explanatory (see also Sections II.4.5 and III.5.10 of [6] for a similar integral
equation for, respectively, the ordinary M/G/1 queue and the M/G/1 queue
with service speed r(x)). The lefthand side gives the downcrossing rate. Here
one has to realize that for x ∈ (0,M) there can only be a downcrossing when
the server is active; hence the term v(x) − vI(x) for x ∈ (0,M). Let us now first
determine vI(x) for x ∈ (0,M).

The density vI(x).
One can write

vI(x) = v(x|server inactive)P(server inactive), 0 < x < M,

= 0, x ≥ M. (5)

The probability pI that the server is inactive equals the fraction of time that
the server is inactive; hence, with m0 and m1, the means of inactive and active
periods, we have

pI =
m0

m0 + m1
. (6)

It is easy to determine m0. Obviously,

m0 = 1/λ × (1 + m(M)), (7)

where m(x) is the renewal function, defined as m(x) := EN(x), with {N(x) :=
sup{n : B1 + · · · + Bn ≤ x} (cf. Chapter 3 of [16]). The conditional workload
density given that the server is inactive also follows from renewal theory, and
turns out to be closely related to the renewal function. Introducing the density

y(x) := v(x|server inactive), (8)

with distribution Y (·), we shall prove the following.

Theorem 1.

Y (x) =
1 + m(x)
1 + m(M)

, 0 ≤ x ≤ M. (9)

Proof. Remove all the active periods, to obtain a sequence of successive inac-
tive periods. Applying LCT to the thus obtained process, equating the rates of
workload downcrossings and upcrossings of any level x ∈ [0,M ] we obtain:

λ

∫ x

0

P(B > x − u)dY (u) =
1

m0
, 0 ≤ x ≤ M. (10)

The righthand side of this equation reflects the event in which level M is
upcrossed, which instantaneously (because we have omitted the active periods)
is followed by a jump from above M to level 0 – and hence a downcrossing of
each level x ∈ [0,M ]. This happens once per inactive period; hence the term 1

m0
.

Divide both sides of (10) by λ and observe that (e.g., using (10) for x = 0)

Y (0) = P(V = 0|server inactive) =
1

λm0
. (11)
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Rewrite (10) into

Y (x) − Y (0) =
∫ x

0

P(B < x − u)dY (u)

= P(B < x)Y (0) +
∫ x

0

P(B < x − u)y(u)du, 0 ≤ x ≤ M, (12)

and subsequently into

Y (x) − Y (0)
Y (0)

= P(B < x)+
∫ x

0

P(B < x−u)d
Y (u) − Y (0)

Y (0)
, 0 ≤ x ≤ M. (13)

Comparison with the well-known renewal equation (cf. Chapter 3 of [16])

m(x) = P(B < x) +
∫ x

0

P(B < x − u)dm(u), (14)

shows that Y (x)−Y (0)
Y (0) = m(x) and hence Y (x) = Y (0)(1 + m(x)). Finally use

the fact that Y (M) = 1.

Remark 2.1. In the special case in which B ∼ exp(μ), one has m(x) = μx, and
hence y(x) = μ

1+μM ; the workload during an inactive period, when positive, is
uniformly distributed on (0,M).

Remark 2.2. For future use we observe that v(·) has a discontinuity in x = M ,
as revealed by (3) and (4):

v(M) − v(M−) = −vI(M−). (15)

Remark 2.3. We close this subsection by pointing out that, in all model vari-
ants to be studied in this paper, we have the following relation:

1
λV (0)

= m0 + m1. (16)

Indeed, λV (0) is the rate of a customer arriving in an empty system, and hence
1

λV (0) is the mean cycle time, viz., the sum of the means of an inactive period
and an active period. Since m0 is known, Formula (16) constitutes a relation
between two important quantities: the probability V (0) of an empty system,
and the mean m1 of an active period. These quantities will appear in most of
the key workload formulas to be discussed in the sequel. Notice in particular,
combining (5), (6), (7), (9) and (16), that

vI(x) = V (0)m′(x), 0 ≤ x < M. (17)
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2.2 Solution of the Integral Equations

In this subsection we present a formal solution of the integral equations (3) and
(4). First rewrite these two equations into one integral equation:

v(x) =
∫ x

y=0

K(x, y)v(y)dy + L(x), (18)

where

K(x, y) :=
λP(B > x − y)

r(x)
, 0 ≤ y < x, (19)

and (using (16) to express the unknown constant m1 into V (0)):

L(x) := V (0)K(x, 0), x ≥ M, (20)
L(x) := V (0)K(x, 0) + vI(x) = V (0)[K(x, 0) + m0λy(x)], x < M,

where the last equality follows from (7), (9) and (17). Integral equation (18) is
a Volterra integral equation of the second kind. The classical Picard iteration
([17], Chapter I) results in the following formal solution in terms of an infinite
series of convolutions. Define recursively

Kn(x, y) :=
∫ x

y

K(x, z)Kn−1(z, y)dz, 0 < y < x, n = 2, 3, . . . ,

where K1(x, y) := K(x, y). Then the Picard iteration applied to (18) yields

v(x) = L(x) +
∫ x

y=0

K(x, y)[L(y) +
∫ y

z=0

K(y, z)v(z)dz]dy

= ... = L(x) +
∞∑

n=1

∫ x

0

Kn(x, y)L(y)dy. (21)

One can follow the approach of [11] and use the bound K(x, y) ≤ λ
r(x) to show

inductively that Kn+1(x, y) ≤ (
∫ x

y
λ

r(u)du)n

n!
λ

r(x) . That implies the convergence of
the infinite sum in (21).

What remains to be done is to find the unknown constant V (0). This can be
done by using the normalizing condition

∫ ∞
0

v(x)dx + V (0) = 1.
Although one thus in principle obtains an expression for v(·), this solution is

a rather formal one, expressed in terms of an infinite sum of non-explicit convolu-
tions. Therefore we restrict ourselves in the next subsections to two special cases,
for which we aim to derive more explicit expressions for v(·), viz., (i) the case of
exponentially distributed service times, and (ii) the case of r(x) = r1x + r0.

2.3 Solution of the Integral Equations in the Case of Exponentially
Distributed Service Requirements

In this subsection we assume that B(x) = 1− e−μx. After multiplication by eμx,
Formula (3) reduces to

r(x)eμxv(x) = λ

∫ x

y=0

eμyv(y)dy + λV (0), x ≥ M, (22)
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which after differentiation and straightforward calculations yields:

v′(x) =
λ − μr(x) − r′(x)

r(x)
v(x), x ≥ M. (23)

Hence, remembering that R(x) =
∫ x

0
1

r(y)dy, and introducing the yet unknown
constant C:

v(x) = C
eλR(x)−μx

r(x)
, x ≥ M. (24)

We now turn to (4). In the case of exponentially distributed service requirements,
we already observed in Subsect. 2.1 that v(x|server inactive) is constant. Hence
also vI(x) is constant: vI(x) = vI(0), 0 ≤ x < M . After multiplication by eμx,
Formula (4) reduces to

r(x)eμxv(x) = λ

∫ x

y=0

eμyv(y)dy + λV (0) + r(x)eμxvI(0), x < M, (25)

which after differentiation and straightforward calculations yields:

v′(x) =
λ − μr(x) − r′(x)

r(x)
v(x) + vI(0)(

r′(x)
r(x)

+ μ), x < M. (26)

Using variation of constants to solve this inhomogeneous first-order differential
equation, we obtain for x < M :

v(x) = C∗ eλR(x)−μx

r(x)
+ vI(0)

∫ x

y=0

(
r′(y)
r(y)

+ μ)eλR(x,y)−μ(x−y) r(y)
r(x)

dy

=
eλR(x)−μx

r(x)
[C∗ + vI(0)

∫ x

y=0

(r′(y) + μr(y))e−λR(y)+μydy]. (27)

We still need to determine several unknown constants: V (0), vI(0) and the two
constants C and C∗. For this, we have the following equations:

(i) The normalizing condition:
∫ ∞
0

v(x)dx + V (0) = 1.
(ii) Formula (17) for x = 0 yields vI(0) = μV (0).
(iii) It follows from (4) for x = 0 that r(0)[v(0) − vI(0)] = λV (0), while (27)

implies that r(0)v(0) = C∗; hence

C∗ = λV (0) + r(0)vI(0) = V (0)[λ + μr(0)]. (28)

(iv) Finally we use the discontinuity of v(·) in M , as described in Remark 2.2.
After a lengthy calculation, C follows from (15), (24) and (27):

C = V (0)[λ + λμ

∫ M

0

e−λR(y)+μydy]. (29)
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The fact that v(x) is both for x < M and x > M linearly expressed in V (0)
makes it relatively straightforward to determine that remaining unknown V (0)
from the normalizing condition.

The following theorem summarizes our results of this subsection. The expres-
sion for v(x), x < M was obtained by using (27) and (28) and performing a
partial integration.

Theorem 2.

v(x) = μV (0) + V (0)
eλR(x)−μx

r(x)
λ(1 + μ

∫ x

y=0

e−λR(y)+μydy), x < M, (30)

v(x) = V (0)
eλR(x)−μx

r(x)
λ(1 + μ

∫ M

y=0

e−λR(y)+μydy), x ≥ M, (31)

with

V (0)−1 = 1 + μM +
∫ M

x=0

eλR(x)−μx

r(x)
λ(1 + μ

∫ x

y=0

e−λR(y)+μydy)dx

+
∫ ∞

x=M

eλR(x)−μx

r(x)
λ(1 + μ

∫ M

y=0

e−λR(y)+μydy)dx. (32)

2.4 Solution of the Integral Equations in the Case of Linear Service
Speed

In this subsection we allow the service requirements to be generally distributed,
but we assume the service speed to be linear: r(x) = r1x + r0, where r0, r1 > 0.
Notice that the stability condition (1) is always fulfilled, and that the condition
that R(x) < ∞ for all finite x is also fulfilled. We apply Laplace transformation
to (3) and (4), introducing

φ(s) :=
∫ ∞

x=0

e−sxv(x)dx (33)

=
∫ M−

x=0

e−sxv(x)dx +
∫ ∞

x=M

e−sxv(x)dx

for Re s ≥ 0. It follows from (3) and (4) that

− r1
d
ds

φ(s) + r0φ(s) = λ
1 − β(s)

s
φ(s) + λ

1 − β(s)
s

V (0) + γ(s), (34)

where we introduce γ(s) :=
∫ M

x=0
e−sx(r1x + r0)vI(x)dx. According to (17) we

have vI(x) = V (0)m′(x). Hence γ(s) is known up to the yet unknown V (0):

γ(s) = V (0)
∫ M

x=0

e−sx(r1x + r0)m′(x)dx =: V (0)δ(s). (35)
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Solving the inhomogeneous first-order differential equation (34) yields, with D
a yet unknown constant:

φ(s) = e
r0
r1

s− λ
r1

∫ s
0

1−β(u)
u du[D − V (0)

∫ s

v=0

[
λ

r1

1 − β(v)
v

+
1
r1

δ(v)]

×e− r0
r1

v+ λ
r1

∫ v
0

1−β(u)
u dudv]. (36)

We still need to determine two unknown constants: V (0) and D. Noticing that
lims→∞φ(s) = 0 gives

D = V (0)
∫ ∞

v=0

[
λ

r1

1 − β(v)
v

+
1
r1

δ(v)]e− r0
r1

v+ λ
r1

∫ v
0

1−β(u)
u dudv. (37)

Indeed, it is easy to see that the exponential in (36), e
r0
r1

s− λ
r1

∫ s
0

1−β(u)
u du, tends

to ∞ for s → ∞, because the r0
r1

s term dominates for large s:

|
∫ s

0

1 − β(u)
u

du| ≤
∫ 1

0

|β(u) − β(0)
u

|du +
∫ s

1

1
u

du ≤ EB + ln(s).

The normalizing condition states that φ(0) + V (0) = 1, and hence

D = 1 − V (0). (38)

We thus obtain one linear equation in the remaining unknown V (0). The follow-
ing theorem summarizes our results of this subsection.

Theorem 3.

φ(s) = e
r0
r1

s− λ
r1

∫ s
0

1−β(u)
u

du
V (0)

∫ ∞

v=s

[
λ

r1

1 − β(v)

v
+

1

r1
δ(v)]e

− r0
r1

v+ λ
r1

∫ v
0

1−β(u)
u

du
dv],

(39)

with

V (0)−1 = 1 +
∫ ∞

v=0

[
λ

r1

1 − β(v)
v

+
1
r1

δ(v)]e− r0
r1

v+ λ
r1

∫ v
0

1−β(u)
u dudv]. (40)

Remark 2.4. If r1 = 0, our system reduces to an ordinary M/G/1 queue with
a server which is switched off when the system becomes empty and gets activated
again when the workload reaches a certain threshold (D-policy, cf. [7]). It readily
follows from (34) (where the first term disappears for r1 = 0) that φ(s) now
becomes the product of the workload LST in an ordinary M/G/1 queue and an
additional term that relates to the off-periods; such decomposition results are
well-known in the literature of queues with vacations.
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Remark 2.5. A tedious but straightforward calculation verifies that the results
of Theorems 2 and 3 agree when r(x) = r1x + r0 and B(x) = 1 − e−μx. One first
takes Laplace transforms in (30) and (31), obtaining

φ(s)
V (0)

=
∫ M

x=0

μe−sxdx + λ

∫ ∞

x=0

e−(s+μ)x
( r1x+r0

r0
)

λ
r1

r1x + r0
dx

+ λμ

∫ M

y=0

eμy(
r1y + r0

r0
)− λ

r1 dy

∫ ∞

x=y

e−(s+μ)x
( r1x+r0

r0
)

λ
r1

r1x + r0
dx. (41)

One partial integration in the last integral of (41) gives a cancellation against the
first term in the righthand side. Subsequently the transformation r1x+r0

r1y+r0
= v+μ

s+μ

leads to the expression in (39).

Remark 2.6. From (36), using that EV = −φ′(s)|s=0, it follows that

EV = −r0
r1

(1 − V (0)) +
λEB

r1
(1 − V (0)) +

λEB

r1
V (0) +

1

r1

∫ M

x=0

(r1x + r0)vI(x)dx

=
λEB − r0

r1
+ V (0)[

r0
r1

+
1

r1

∫ M

x=0

(r1x + r0)m
′(x)dx]. (42)

In the special case of exp(μ) service times, m′(x) = μ and we have:

EV =
λ − μr0

μr1
+ V (0)[

r0
r1

(1 + μM) +
1
2
μM2]. (43)

3 Cost Optimization

Suppose that two types of costs are involved in the operation of the system:
holding costs ch per time unit for each unit of work present in the system, and
switching costs cs for each time the server is switched on. We are interested in
choosing M such that the system costs are minimized. Hence we consider the
following minimization problem (cf. (16)):

MinimizeM chEV + cs
1

m0 + m1
= chEV + csλV (0). (44)

In addition, the system might receive profits from each amount of work that is
being served. However, we can ignore that profit, as it does not depend on the
choice of M .

We focus on the case, studied in Subsect. 2.4, in which r(x) = r1x + r0. It
follows from (43) that our optimization problem becomes:

MinM ch
λEB − r0

r1
+ chV (0)[

r0
r1

+
1
r1

∫ M

x=0

(r1x + r0)m′(x)dx] + csλV (0), (45)
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which amounts to minimizing, w.r.t. M , the function

f(M) := V (0)[
chr0
r1

+
ch

r1

∫ M

x=0

(r1x + r0)m′(x)dx + csλ]; (46)

here V (0) depends on M , and is given by (40).
The derivative of f(M) w.r.t. M should be zero, and hence M should satisfy

ch

r1
(r1M + r0)m′(M) = V (0)[csλ +

chr0
r1

+
ch

r1

∫ M

0

(r1x + r0)m′(x)dx]

×
∫ ∞

0

1
r1

e−vM (r1M + r0)m′(M)e− r0
r1

v+ λ
r1

∫ v
0

1−β(u)
u dudv.

(47)

Let us now restrict ourselves to the case of exp(μ) service times. Then (47)
reduces to

chμ

r1
(r1M + r0) = V (0)[csλ + ch

r0
r1

+
chμ

r1
(
r1
2

M2 + r0M)]

× (M +
r0
r1

)μ
∫ ∞

0

e−vMe− r0
r1

v(
μ + v

μ
)

λ
r1 dv. (48)

Here 1/V (0) simplifies to

1
V (0)

= 1 +
∫ ∞

0

(
λ

r1

1
μ + v

+
μ

r1

∫ M

0

e−vx(r1x + r0)dx

)
e− r0

r1
v(

μ + v

μ
)

λ
r1 dv.

(49)

Remark 4.1. Matters simplify further if we assume that

λ = r1. (50)

By interchanging the two integrals in (49), we then obtain an explicit expression
for V (0):

1
V (0)

= 1 +
r1
μr0

+ μM + ln
r0
r1

+ M
r0
r1

. (51)

Remark 4.2. It should be observed that, if we take r0 = 0, then the first
integral in the right-hand side of (49) diverges, giving V (0) = 0. The explanation
is that, when the service speed is r1x, the system never becomes zero.

3.1 Numerical Examples

We plot some graphs to show the behavior of the cost function as a function of
the threshold M .



124 Y. Sakuma et al.

In our numerical experiments, we fix the arrival rate: λ = 1 and show the
effect of other parameters on the cost function. Intuitively, on the one hand,
a large threshold M leads to a larger workload in the system since the inac-
tive period is longer. On the other hand, a large threshold may prevent fre-
quent switching and thus may reduce the switching cost. Thus, it is expected to
have an optimal M which balances the two types of costs. In all our numerical
experiments, the cost function was convex, and we found a unique optimal M .
However, we have not yet been able to analytically show convexity of the cost
function in M .
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Fig. 2. Cost function for Case 1: ch = 0.1, cs = 1; various r0.
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Case 1: Cost function vs. M for various r0
Figure 2 displays the cost function against the threshold M for several values of
r0; r0 = 1, 5, 10. Other parameters are as follows: ch = 0.1, cs = 1, μ = 1, r1 = 10.
Notice the above-mentioned convexity of the curves, guaranteeing that there is an
optimal M that minimizes the cost function. We also observe that the optimal
M is almost insensitive to r0 in this case. A close inspection shows that the
optimal M slightly increases with r0.

Case 2: Cost function vs. M for various r1
Figure 3 displays the cost function against the threshold M for several values of
r1; r1 = 0.1, 0.5, 1. Parameters are fixed as follows: ch = 0.1, cs = 1, μ = 1, r0 = 1.
The optimal value of M for a larger r1 is seen to be bigger than that for a
smaller r1.
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Fig. 4. Cost function for Case 3: ch = 0.1, cs = 1, r1 = 0.1; various μ.
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Case 3: Cost function vs. M for various μ
In this case, we display the cost function against the threshold M for various
values of μ. Fixed parameters are as follows: ch = 0.1, cs = 1, r0 = 1. Figure 4 is
for the case r1 = 0.1 while Fig. 5 is for the case r1 = 10. We observe from Figs. 4
and 5 that the optimal value of M increases with μ.

Numerical Insights. Extensive numerical results suggest that the cost function
is a convex function of M , so that there exists an optimal value of the threshold
M . Furthermore, not surprisingly, the optimal threshold increases with r0, r1
and μ. A rigorous proof of the convexity of the cost function in the threshold M
is left for future work.

4 Conclusion and Suggestions for Further Research

Motivated by the trade-off issue between processing speed and energy consump-
tion in data centers, we have studied a queueing system in which the service
speed is a function of the workload, and in which the server switches off when
becoming idle, only to be activated again when the workload reaches a certain
threshold. We have derived the (LST of the) workload distribution, and we have
used an expression for its mean to determine the threshold level that minimizes
a certain cost function. It may be interesting to consider the actual waiting time
distribution of customers, but it will be difficult since future events have an effect
on the actual waiting time in our model.

Topics on our research agenda include:

(i) A further study of the cost minimization problem, in which we also would
like to tackle the question whether the cost function is convex. We wish
to extend our cost function, taking power consumption as a function of
processing speed into account.

(ii) A study of the active period distribution and the distribution of a full cycle,
consisting of an inactive and subsequent active period. It should be observed
that the length of an active period depends on the length of the preceding
inactive period, but that the length of an inactive period does not depend
on the length of the preceding active period; hence the distribution of the
sum of the lengths of an inactive and subsequent active period in general
differs from the distribution of the sum of the lengths of an active and
subsequent inactive period.

(iii) We are presently analyzing the model variant in which the processing speed
r(x) is piecewise constant (r(x) = ri when the workload is lying in an
interval Ji, i = 1, 2, . . . ), and in which the service requirement distribution
B(·) is phase-type. This is a case for which it seems to be possible to obtain
quite explicit results.
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Abstract. In this work we look at the delay analysis of a customer in a
discrete-time queueing system with one permanent server and one occa-
sional extra server. The arrival process is assumed to be general indepen-
dent, the buffer size infinite and the service times deterministically equal
to one slot. The system resides in one of two different states defined by the
number of available servers. In the UP-state 2 servers are available and
in the DOWN-state 1 server is available. State changes can only occur
at slot boundaries. When the extra server becomes available, an UP-
period starts (DOWN-period ends) and when the extra server becomes
unavailable a DOWN-period starts (UP-period ends). The lengths of
these periods, expressed in their number of slots, are assumed to follow
a geometric distribution, with different parameter for UP-periods and
DOWN-periods. Also, the extension is made to DOWN-periods accord-
ing to a mixture of M geometric distributions. Using the technique of the
dominant singularity, we provide a method to evaluate the tail charac-
teristics of the delay of an arbitrary customer. The method is illustrated
with a numerical example.

Keywords: Queueing theory · Discrete-time · Multiserver ·
Server interruptions · Delay · Tail

1 Introduction

This paper focusses on a discrete-time queueing system with two servers, where
one server is permanently available and one server is subject to random inter-
ruptions. The buffer size is assumed to be infinite. The time horizon is divided
into slots of equal length and the service times are deterministic and equal to
one slot. The interruption process divides the system into two states: UP-states
with two servers available and DOWN-states with one server available. State
changes can only occur at slot boundaries, and these mark the beginnings and
ends of UP-periods and DOWN-periods. The lengths of the periods are according
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to a geometric distribution (with different parameter). This introduces correla-
tion in the number of servers available from slot to slot. In a second stage we
also consider a mixture of geometrics for the distribution of the lengths of the
DOWN-periods.

In the earlier paper [3] the queue content of a system as such was described.
The current paper is an extension to that work, we focus now on the delay of
an arbitrary customer. We obtain the tail characteristics of the delay using the
theory of the dominant singularity. This means that we obtain an approximation
for the probability that the delay of an arbitrary customer is equal to, or larger
than a certain value k for large k. In a numerical example the comparison is made
between the proposed method and simulation. We obtain high accuracy even for
not so large k while being much less demanding on computational resources.

Much research has been done on the delay characteristics of a customer in
queueing systems. An important result for the delay characteristics of a multi-
server model is [2], where in every slot c servers are available. In recent research,
queueing systems with server interruptions gathered attention, see [4] for a com-
prehensive survey on both discrete-time and continuous-time models. When deal-
ing with service interruptions, the majority of authors limit themselves to the
analysis of the queue content and consider the delay only through Little’s Law.
Exceptions are [6,7], where the distribution of the waiting time for a continuous-
time queueing model with a single-server subject to interruptions is treated. In
[10] a continuous-time model is proposed with a single server of which the ser-
vice speed depends on the number of customers in the queue. The main con-
tribution of the paper is the Laplace-Stieltjes transform of the sojourn time
distribution. Furthermore, in [8] a discrete-time multiserver queueing system is
analyzed where all m servers are subject to independent interruptions accord-
ing to a Bernoulli process with the same parameter. A relationship is obtained
between the pgf of the system content and the pgf of the delay. The analy-
sis of the current paper stands out in the sense that it handles the delay in a
multiserver queueing system with correlated server interruptions.

The study of this type of queueing systems is motivated by the many appli-
cations of queueing theory where the number of available servers is not constant
over time. Examples are the airport check-in process [12] or production environ-
ments [11].

The outline of the paper is as follows. In the next section we describe the
mathematical model under study. The queue content of this model has been
analyzed in a recent paper [3] and in Sect. 3 we summarize some key results that
are necessary for the delay analysis of this paper. Section 4 then presents the
delay analysis for the case of geometric DOWN-periods, while Sect. 5 considers
the extension where DOWN-periods are distributed according to a mixture of
M geometric distributions. A numerical example is discussed in Sect. 6 and we
conclude the paper in Sect. 7.
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2 Queueing Model Under Study

The model under study is a discrete-time queueing system with infinite buffer
size and service times deterministically equal to one slot. The system resides in
one of two different states, based on the number of servers available. During a
DOWN-slot, only one server is available, while during an UP-slot two servers are
available. State changes can only occur at slot boundaries, and these mark the
beginnings and ends of DOWN-periods and UP-periods. In this paper the lengths
of the UP-periods are according to a geometric distribution with parameter α:

Prob[UP-period has n slots] � (1 − α)αn−1 , n > 0 . (1)

In general, the lengths of the DOWN-periods can be described by

Prob[DOWN-period has n slots] � r(n) , n > 0 , (2)

R(z) �
∞∑

n=1

r(n)zn , (3)

where we have introduced R(z) as the pgf of the distribution of the DOWN-
periods. The mean length of an UP-period is 1

1−α and the mean length of a
DOWN-period is given by r, with

r � R′(1) . (4)

If we denote with rk the length of the kth DOWN-period, then the series {rk}
is a set of independent and identically distributed (i.i.d.) random variables. The
probability that an arbitrary slot is an UP-slot is given by σ and the probability
that an arbitrary slot is a DOWN-slot is given by (1 − σ), with

σ =
1

1 + (1 − α)r
. (5)

The numbers of arrivals in a slot are i.i.d. and according to a general distribution:

Prob[n arrivals during a slot] � c(n) , n ≥ 0 ; (6)

C(z) �
∞∑

n=0

c(n)zn ; (7)

λ �
∞∑

n=0

nc(n) . (8)

The service of a customer can only start at the next slot boundary, even if a
server is idle at the moment of arrival. The system is stable if the average arrival
intensity is strictly smaller than the average number of servers available. The
stability condition thus reads:

λ < 1 + σ =
2 + (1 − α)r
1 + (1 − α)r

. (9)
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For the delay analysis we consider the First In First Out (FIFO) policy. As the
definition of delay we take the total system time of a customer. This includes the
waiting time and service time, but not the remainder of the slot during which
the customer arrives. This definition is illustrated in Fig. 1. This way, the total
system time is an integer number of slots and it is not necessary to specify the
exact arrival moment of a customer within its slot of arrival.

TIME

delay

arrival

start service

leave system

service timenot counted

Fig. 1. Illustration of the delay of a customer

The system as described is also referred to as a Late Arrival System with
Delayed Access (LAS-DA).

3 Queue Content

The delay analysis in this paper heavily relies on the distributions of the queue
content obtained in [3]. In this section we briefly repeat some key results.

Let us denote with the stochastic variable gn (n ≥ 0) the queue content at the
beginning of the (n + 1)st slot of an UP-period, with corresponding pgf Gn(z).
Analogously, we denote with the stochastic variable hn (n ≥ 0) the queue content
at the beginning of the (n + 1)st slot of a DOWN-period, with corresponding
pgf Hn(z). The following recursive equations can be obtained for n > 0:

Gn(z) =
C(z)
z2

[
Gn−1(z) + Gn−1(0) (z2 − 1) + G′

n−1(0) (z2 − z)
]

; (10)

Hn(z) =
C(z)

z
[Hn−1(z) + Hn−1(0) (z − 1)] . (11)
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After recursive application, Gn(z) and Hn(z) can be expressed in terms of
G0(z) and H0(z) and the unknowns Gk(0), G′

k(0) and Hk(0) for 0 ≤ k < n:

Gn(z) =
(

C(z)
z2

)n

G0(z) +
n∑

i=1

(
C(z)
z2

)i [
(z2 − 1)Gn−i(0) + (z2 − z)G′

n−i(0)
]

;

(12)

Hn(z) =
(

C(z)
z

)n

H0(z) +
n∑

i=1

(
C(z)

z

)i

(z − 1)Hn−i(0) . (13)

The queue content at the end of an UP-period can be expressed as the queue
content at the beginning of a DOWN-period (and vice versa). This leads to a
set of two equations:

G0(z) =
∞∑

n=1

r(n)Hn(z)

= H0(z)R

(
C(z)

z

)
+ (z − 1)Q

(
C(z)

z

)
; (14)

H0(z) =
∞∑

n=1

(1 − α)αn−1Gn(z)

=
C(z)

z2 − αC(z)
[
(1 − α)G0(z) + (z − 1)p(0) + (z2 − z)p(1)

]
, (15)

with p(0), p(1) and Q(z) still unknown. The latter is of the form

Q(z) �
∞∑

i=1

q(i)zi ; q(i) �
∞∑

j=0

Hj(0) r(i + j) . (16)

The set of Eqs. (14) and (15) can be solved and leads to:

G0(z) = (z − 1)
[p(0) + p(1)z] C(z)R

(
C(z)

z

)
+

[
z2 − αC(z)

]
Q

(
C(z)

z

)

z2 − C(z)
[
α + (1 − α)R

(
C(z)

z

)] ; (17)

H0(z) = (z − 1)C(z)
p(0) + p(1)z + (1 − α)Q

(
C(z)

z

)

z2 − C(z)
[
α + (1 − α)R

(
C(z)

z

)] . (18)

In [3] it is proven that if R(z) is a rational function also Q(z) is rational and
has the same denominator as R(z). The (finite number of) remaining unknowns
can be determined by relying on the properties of pgfs, namely that they are
normalized and analytical within the complex unit disk. The authors of [3] also
found an expression for the queue content right after an arbitrary UP-slot or
DOWN-slot. We adapt their results to have an expression for the queue con-
tent right before an arbitrary UP-slot or DOWN-slot as it is more useful for
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the delay-analysis. We call these queue contents g and h respectively with cor-
responding pgfs G(z) and H(z). Therefore we introduce the random variables
Kup and Kdown as the ordinate of an arbitrary slot within its period, with cor-
responding pgf Kup(z) and Kdown(z):

Prob[Kup = k] =
∑∞

n=k r(n)
r

; Kup(z) =
z [R(z) − 1]

(z − 1)r
; (19)

Prob[Kdown = k] = (1 − α)
∞∑

n=k

(1 − α)αn−1 = (1 − α)αk−1 . (20)

These expressions are well known in probability theory, see for example [1].
Now we introduce the definitions of G(z) and H(z) and work them out.

G(z) �
∞∑

k=1

Prob[Kup = k] Gk−1(z)

=
∞∑

k=1

(1 − α)αk−1Gk−1(z)

= (1 − α)G0(z) + αH0(z) , (21)

and

H(z) �
∞∑

k=1

Prob[Kdown = k] Hk−1(z)

=
1
r
H0(z) +

∞∑

k=2

∑∞
n=k r(n)

r

[(
C(z)

z

)k−1

H0(z)

+
k−1∑

i=1

(
C(z)

z

)i

(z − 1)Hk−1−i(0)

]

= z
R

(
C(z)

z

)
− 1

[C(z) − z] r
H0(z) +

(z − 1)
r

∞∑

k=2

∞∑

j=0

Hj(0) r(k + j)
k−1∑

i=1

(
C(z)

z

)i

= z
R

(
C(z)

z

)
− 1

[C(z) − z] r
H0(z) +

(z − 1)
r

∞∑

k=2

q(k)

(
C(z)

z

)k

− C(z)
z

C(z)
z − 1

= z
R

(
C(z)

z

)
− 1

[C(z) − z] r
H0(z) + (z − 1)

zQ
(

C(z)
z

)
− Q(1) C(z)

[C(z) − z] r
. (22)

In the following sections we focus on the delay a customer experiences in a
system as described in Sect. 2, with queue content distribution as above.
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4 Delay Analysis for DOWN-Periods According to a
Geometric Distribution

Let us first assume that the DOWN-periods are following a geometric distribu-
tion:

r(n) = (1 − β)βn−1 , n > 0 ; (23)

R(z) =
(1 − β)z
1 − βz

. (24)

In this case Q(z) is of the following form:

Q(z) =
p(2)z
1 − βz

, (25)

with p(2) unknown. Substitution of (24) and (25) into (22) leads to

H(z) =
(1 − β)z

z − βC(z)
H0(z) +

β(z − 1)p(2)C(z)
z − βC(z)

= (1 − β)H0(z) +
β(1 − β)C(z)

z − βC(z)
H0(z) +

β(z − 1)p(2)C(z)
z − βC(z)

= (1 − β)H0(z) + βR

(
C(z)

z

)
H0(z) + β(z − 1)Q

(
C(z)

z

)

= (1 − β)H0(z) + βG0(z) , (26)

where in the last step we have made use of (14). When considering the memo-
ryless property of the geometric distribution we can also directly obtain (26).

4.1 Delay of a Packet with k Customers Ahead

We now introduce the following notations: the stochastic variable uk denotes the
total system time of a customer entering the system during an UP-slot and with
k customers ahead of it in the queue, thus excluding customers in service at the
moment of arrival. The corresponding pgf is Uk(z). Analogously, dk denotes the
total system time of a customer entering the system during a DOWN-slot and
with k customers ahead of it in the queue. The corresponding pgf is Dk(z). We
can compose the following expressions:

U0(z) = z ; (27)

U1(z) = αz + (1 − α)z2 ; (28)
Uk(z) = αzUk−2(z) + (1 − α)zDk−1(z) , k ≥ 2 ; (29)
D0(z) = z ; (30)

D1(z) = βz2 + (1 − β)z ; (31)
Dk(z) = βzDk−1(z) + (1 − β)zUk−2(z) , k ≥ 2 . (32)
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Let us now define the bivariate functions U(x, z) and D(x, z):

U(x, z) �
∞∑

k=0

xkUk(z) ; (33)

D(x, z) �
∞∑

k=0

xkDk(z) . (34)

Working out these definitions leads to

U(x, z) = U0(z) + xU1(z) +
∞∑

k=0

{
αzUk(z) xk+2 + (1 − α)zDk+1(z) xk+2

}

= z + αzx + αzx2U(x, z) + (1 − α)xzD(x, z) ; (35)

D(x, z) = z + (1 − β)zx + βzxD(x, z) + (1 − β)zx2U(x, z) . (36)

From the above two expressions we can get an explicit formula for both
U(x, z) and D(x, z):

U(x, z) =
f1(x, z)
g(x, z)

; (37)

D(x, z) =
f2(x, z)
g(x, z)

, (38)

with

f1(x, z) = z
{
1 + [α + z(1 − α − β)] x + (1 − α − β)zx2

}
; (39)

f2(x, z) = z
[
1 + (1 − β)x + (1 − α − β)zx2

]
; (40)

g(x, z) = 1 − βzx − αzx2 − (1 − α − β)z2x3 . (41)

We expand (37) and (38) in partial fractions based on their poles in x which
we denote as xφ. These xφ are roots of a third degree polynomial and are a
function of z. For notational simplicity their argument is omitted. Note that
there are only 2 xφ when α + β = 1. When that relation holds, there is a
constant chance of α that the system is in an UP-slot and a constant chance
of β = 1 − α that the system is in a down slot. In this simpler case without
correlation on the number of servers available in a slot, the delay analysis can
be performed in full as described in [5] so we leave this case out of consideration
in the current analysis. Furthermore, we assume all xφ to be distinct, i.e. all xφ

to have multiplicity 1. We then get:

U(x, z) =
3∑

φ=1

f1(xφ, z)
gx(xφ, z) (x − xφ)

; (42)

D(x, z) =
3∑

φ=1

f2(xφ, z)
gx(xφ, z) (x − xφ)

, (43)
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with

gx(x, z) � ∂

∂x
g(x, z) = −βz − 2αzx − 3(1 − α − β)z2x2 . (44)

We can then obtain an expression for Uk(z) and Dk(z):

Uk(z) =
1
k!

∂k

∂xk
U(x, z)

∣∣∣∣
x=0

=
3∑

φ=1

−f1(xφ, z)
xk+1

φ gx(xφ, z)
; (45)

Dk(z) =
1
k!

∂k

∂xk
D(x, z)

∣∣∣∣
x=0

=
3∑

φ=1

−f2(xφ, z)
xk+1

φ gx(xφ, z)
. (46)

4.2 Delay of an Arbitrary Packet

Let us now look at an arbitrary packet P , arriving during slot S. There is a
probability σ that S is an UP-slot and a probability (1−σ) that it is a DOWN-
slot. Let us denote with the stochastic variable tup the number of customers
ahead of P at the end of S if S is an UP-slot, with corresponding pgf Tup(z) and
with the stochastic variable tdown the number of customers ahead of P at the
end of S if S is a DOWN-slot, with corresponding pgf Tdown(z). The number of
customers in the queue ahead of P are the customers that were present at the
beginning of S, minus the customers that entered service during S and plus the
customers that arrived during S but before P . The pgf F (z) of this last amount
is known, see for example [1]:

F (z) =
C(z) − 1
λ(z − 1)

. (47)

We can write the following for Tup(z) and Tdown(z):

Tup(z) =
[
G(z) + (z2 − 1)G(0) + (z2 − z)G′(0)

] F (z)
z2

; (48)

Tdown(z) = [H(z) + (z − 1)H(0)]
F (z)

z
. (49)

We can now compose an expression for W (z), the pgf of the delay of an
arbitrary packet P :

W (z) = σ
∞∑

k=0

Prob[tup = k] Uk(z) + (1 − σ)
∞∑

k=0

Prob[tdown = k] Dk(z)

= σ

3∑

φ=1

−f1(xφ, z)
xφgx(xφ, z)

Tup

(
1
xφ

)
+ (1 − σ)

3∑

φ=1

−f2(xφ, z)
xφgx(xφ, z)

Tdown

(
1
xφ

)
.

(50)

Due to its complexity (remember that the xφ are functions of z), the above
expression cannot be easily inverted to give the full delay analysis of an arbitrary
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packet P entering the system. We can however aim to find the tail distribution.
For sufficiently large k we have that:

Prob[Delay = k slots] ≈ −w0

z0
z−k
0 ; (51)

Prob[Delay > k slots] ≈ − w0

z0(z0 − 1)
z−k
0 , (52)

with z0 the pole of W (z) with the smallest modulus and with

w0 = lim
z→z0

[W (z) (z − z0)] . (53)

Note that z0 is real-valued and larger than 1. We denote the corresponding x-
value as xξ. The technique of the dominant singularity to derive tail distributions
from a pgf is not new, see for example [2] and [9].

Let us take a closer look at the shape of W (z) in (50) to determine where we
can find this z0. The functions f1(x, z) and f2(x, z) are polynomials in x and z
and thus contain no poles. Furthermore, x = 0 is not a possible pole as g(x, z)
does not have a root in z in this case. As all xφ are assumed distinct we get that
z0 must be found as a pole of Tup

(
1
x

)
or Tdown

(
1
x

)
. As Tup(z) and Tdown(z) are

pgfs, they cannot have poles within the complex unit disk; which means that
|xξ| < 1. Further examination of (48) and (49) leads to the conclusion that z0
must be found as a pole of C

(
1
x

)
or as a zero of:

1
x2

− C

(
1
x

) [
α + (1 − α)R

(
C

(
1
x

)
x

)]
. (54)

Let us now first look at the pgfs Tup(z) and Tdown(z) and their tail distributions.
They describe the queue content as an arbitrary customer experiences on arrival.
We can calculate a tail approximation of these distributions, based on their
smallest pole in z, we call these zup and zdown respectively. Lets take a closer
look at (48) and (49) and fill in (17), (18), (21), (22) and (47):

Tup(z) =

{
(1 − α)(z − 1)

[p(0) + p(1)z] C(z) R
(

C(z)
z

)
+

[
z2 − αC(z)

]
Q

(
C(z)

z

)

z2 − C(z)
[
α + (1 − α)R

(
C(z)

z

)]

+ α(z − 1)C(z)
p(0) + p(1)z + (1 − α)Q

(
C(z)

z

)

z2 − C(z)
[
α + (1 − α)R

(
C(z)

z

)]

+ (z2 − 1)G(0) + (z2 − z)G′(0)

}
C(z) − 1

λz2(z − 1)
, (55)
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and

Tdown(z) =

{
β(z − 1)

[p(0) + p(1)z] C(z)R
(

C(z)
z

)
+

[
z2 − αC(z)

]
Q

(
C(z)

z

)

z2 − C(z)
[
α + (1 − α)R

(
C(z)

z

)]

+ (1 − β)(z − 1)C(z)
p(0) + p(1)z + (1 − α)Q

(
C(z)

z

)

z2 − C(z)
[
α + (1 − α)R

(
C(z)

z

)]

+ (z − 1)H(0)

}
C(z) − 1
λz(z − 1)

. (56)

These are very similar and obviously have the same poles, and thus zup =
zdown. (Keep in mind that zup is real-valued and larger than 1.) Poles can be

present in C(z) and as zeros of z2 − C(z)
[
α + (1 − α)R

(
C(z)

z

)]
.

Proposition 1. The pole zup cannot be a pole of C(z) and must be found as a
zero of

z2 − C(z)
[
α + (1 − α)R

(
C(z)

z

)]
.

Proof. We prove this by contradiction. Let us denote with zc the smallest pole
of C(z) for which |z| > 1 and state that zup = zc. Then it must be real-valued
and positive. Let us now look at the function f(z) on IR → IR:

f(z) � z2 − C(z)
[
α + (1 − α)R

(
C(z)

z

)]
. (57)

Let zp : 1 < zp ≤ zc be the smallest pole of f(z). Either zp is a pole of

R
(

C(z)
z

)
or zp = zc. We have that f(z) is continuous on the open interval [1, zp[.

Because C(z) and R(z) are pgfs, we have the following left-handed limit:

lim
z→z−

p

f(z) = −∞ . (58)

Let us evaluate the function f(z) and its derivative at z = 1:

f(1) = 0 ; (59)
f ′(1) = 2 + (1 − α)(1 − λ)r . (60)

The derivative f ′(1) must be strictly positive due to the stability condition
given in (9). We thus conclude that f(z) equals 0 at z = 1, increases after z = 1
(and thus reaches positive values) before (continuously) going to −∞ while z
approaches zp. Then, there exists (at least one) z∗ : 1 < z∗ < zp ≤ zc where
f(z) changes sign. This is in contradiction with zup = zc. �	
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For this result we did not rely on the restriction that the DOWN-periods
are according to a geometric distribution, it is valid for all rational choices of
R(z), as long as the stability condition is fulfilled. Note that this does not prove
that zup exists. Indeed if we choose C(z) = z (every slot contains 1 arrival),
then it is obvious that every arriving customer experiences an empty queue
(Tup(z) = Tdown(z) = 1) and there is no pole zup. The theory of the dominant
singularity then stipulates that the tail probabilities can be approximated by 0,
which in this case is exact for k > 0.

We can prove in a similar (but more involved) way that if z0 exists, it must
be a solution of (54) and it cannot be a pole of C

(
1
x

)
. In stead of rigorously

proving this, we provide an intuitive explanation. When an arbitrary arriving
customer P experiences k customers in front of him in the queue, its delay must
be between k+1 and

⌊
k
2

⌋
+1, where 
...� denotes the floor function. The delay is

thus strongly correlated to the observed queue content, which also applies to the
respective tail characteristics. Therefore it is intuitive that the dominant poles
of Tup(z) and W (z) are found in the same expression.

Let us now assume that z0 indeed exists. (It is our belief that for any case
that is not trivial (such as the choice of C(z) = z), z0 exists and can be found
with a reasonable amount of computational effort.) Then we get for w0 after
applying L’Hôpital’s rule on (53):

w0 =
−σf1(xξ, z0)
xξgx(xξ, z0)

T ∗
up

(
1
xξ

)
− (1 − σ)f2(xξ, z0)

xξgx(xξ, z0)
T ∗
down

(
1
xξ

)
; (61)

with

T ∗
up

(
1
xξ

)
� lim

z→z0
Tup

(
1
x

)
(z − z0)

= lim
z→z0

[
(1 − α)G0

(
1
x

)
+ αH0

(
1
x

)
+

(
1
x2

− 1
)

G(0)

+
(

1
x2

− 1
x

)
G′(0)

]
F

(
1
x

)
x2(z − z0)

= lim
z→z0

[
(1 − α)G0

(
1
x

)
+ αH0

(
1
x

)]
F

(
1
x

)
x2(z − z0) ; (62)

T ∗
down

(
1
xξ

)
� lim

z→z0
Tdown

(
1
x

)
(z − z0)

= lim
z→z0

[
(1 − β)H0

(
1
x

)
+ βG0

(
1
x

)]
F

(
1
x

)
x(z − z0) . (63)

Bringing the limits within the square brackets gives:

T ∗
up

(
1
xξ

)
=

[
(1 − α)G∗

0

(
1
xξ

)
+ αH∗

0

(
1
xξ

)]
F

(
1
xξ

)
x2

ξ (64)

T ∗
down

(
1
xξ

)
=

[
(1 − β)H∗

0

(
1
xξ

)
+ βG∗

0

(
1
xξ

)]
F

(
1
xξ

)
xξ , (65)
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where G∗
0

(
1
x

)
and H∗

0

(
1
x

)
are obtained by dividing the numerator of G0

(
1
x

)
and

H0

(
1
x

)
by the derivative (with respect to z) of their respective denominators.

This is not so difficult but rather tedious and leads to:

G∗
0

(
1
x

)
=

(1 − x)
{

xC
(
1
x

)
[p(0)x + p(1)] R

(
C

(
1
x

)
x
)

+
[
1 − αx2C

(
1
x

)]
Q

(
C

(
1
x

)
x
)
}

{
(1 − α)xC

(
1
x

) [
C ′( 1

x

) − xC
(
1
x

)]
R′(C

(
1
x

)
x
)

+ 2
[
α − (1 − α)R

(
C

(
1
x

)
x
)] [

xC
(
1
x

) − 1
2C ′( 1

x

)]
}

dx
dz

; (66)

H∗
0

(
1
x

)
=

(1 − x)C
(
1
x

) [
p(0)x + p(1) + (1 − α)xQ

(
C

(
1
x

)
x
)]

{
(1 − α)xC

(
1
x

) [
C ′( 1

x

) − xC
(
1
x

)]
R′(C

(
1
x

)
x
)

+ 2
[
α − (1 − α)R

(
C

(
1
x

)
x
)] [

xC
(
1
x

) − 1
2C ′( 1

x

)]
}

dx
dz

. (67)

Finally, in order to evaluate dx
dz we remember that x is defined in terms of z as

a solution of:

1 − αzx2 − (1 − α)zx2R(zx) = 0 , (68)

deriving both sides of the equations with respect to z and working out for dx
dz

leads to:

dx

dz
=

−αx − (1 − α)xR(xz) − (1 − α)zx2R′(xz)
2αz + 2(1 − α)zR(xz) + (1 − α)z2xR′(xz)

. (69)

5 Delay Analysis for DOWN-Periods According to a
Mixture of M Geometric Distributions

The methodology as described in the above section can be expanded to the case
where the DOWN-periods follow a distribution that is a mixture of M geometric
distributions:

r(n) =
M∑

j=1

ωj(1 − βj)β
(n−1)
j , n > 0 ; (70)

R(z) =
M∑

j=1

ωj
(1 − βj)z
1 − βjz

, (71)

with
M∑

j=1

ωj = 1 ; (72)

0 < ωj , βj < 1 . (73)

We can think of this situation as if there are M different DOWN-substates,
each with geometrically distributed sojourn times; and when an UP-period ends,
the system has a probability ωj to enter the jth substate.
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5.1 Delay of a Packet with k Customers Ahead

We introduce again stochastic variables for the delay of a customer depending on
the type of its arrival-slot and the number of customers ahead of it in the queue
upon arrival. We use uk and Uk(z) for the delay of a customer arriving during
an UP-slot and with k customers ahead of it in the queue and we introduce
the stochastic variables dj

k as the delay of a customer arriving during a slot of
the jth DOWN-substate and with k customers ahead of it in the queue. The
corresponding pgf is Dj

k(z). We can establish the following relations:

U0(z) = z ; (74)

U1(z) = αz + (1 − α)z2 ; (75)

Uk(z) = αzUk−2(z) + (1 − α)z
M∑

j=1

ωjD
j
k−1(z) , k ≥ 2 ; (76)

Dj
0(z) = z ; (77)

Dj
1(z) = βjz

2 + (1 − βj)z ; (78)

Dj
k(z) = βjzDj

k−1(z) + (1 − βj)zUk−2(z) , k ≥ 2 . (79)

We work out the bivariate function U(x, z) according to its definition in (33):

U(x, z) = z + αzx + αzx2U(x, z) + (1 − α)zx

M∑

j=1

ωjD
j(x, z) , (80)

where we have already introduced Dj(x, z), which we define as:

Dj(x, z) �
∞∑

k=0

xkDj
k(z) (81)

= z + (1 − βj)zx + βjzxDj(x, z) + (1 − βj)zx2U(x, z) . (82)

Combining (80) and (82) leads to:

U(x, z) =
f1(x, z)
g(x, z)

; (83)

Dj(x, z) =
f j
2 (x, z)
g(x, z)

, (84)

with

f1(x, z) =

⎡

⎣z + αzx + (1 − α)zx

M∑

j=1

ωj
z + (1 − βj)zx

1 − βjzx

⎤

⎦
M∏

j=1

(1 − βjzx) ; (85)

g(x, z) =

⎡

⎣1 − αzx2 − (1 − α)z2x3
M∑

j=1

ωj
1 − βj

1 − βjzx

⎤

⎦
M∏

j=1

(1 − βjzx) ; (86)

f j
2 (x, z) =

[z + (1 − βj)zx] g(x, z) + (1 − βj)zx2fU (x, z)
(1 − βjzx)

. (87)



142 F. Verdonck et al.

It can be verified that f1(x, z) and f j
2 (x, z) are polynomial functions in x of

degree M + 1 and that g(x, z) is a polynomial function in x of degree M + 2.
As before we can perform a partial fraction expansion based on the poles xφ of
U(x, z) in x. Note that as before the xφ are functions of z, but for notational
simplicity the argument is omitted. We then get that Uk(z) and Dj

k(z) can be
expressed as:

Uk(z) =
M+2∑

φ=1

−f1(xφ, z)
xk+1

φ gx(xφ, z)
; (88)

Dj
k(z) =

M+2∑

φ=1

−f j
2 (xφ, z)

xk+1
φ gx(xφ, z)

, (89)

with

gx(x, z) � ∂

∂x
g(x, z) . (90)

5.2 Delay of an Arbitrary Packet

Let us now consider an arbitrary packet P arriving during slot S. The probability
that S is an UP-slot is given by σ. The probability that S is a DOWN-slot of
substate j is given by

Prob[S is a DOWN-slot of substate j] =
(1 − σ)ωj

r(1 − βj)
, (91)

We now introduce the stochastic variable hj as the queue content at the
beginning of an arbitrary DOWN-slot of the jth substate, it is easily evaluated
that its pgf Hj(z) is given by:

Hj(z) = (1 − βj)H0(z) + βjG0(z) , (92)

with G0(z) and H0(z) given by (17) and (18) respectively. For the pgf of the
queue content at the beginning of an arbitrary UP-slot, Eq. (21) applies. The
number of customers in front of P at the end of S can be described by the
pgf Tup(z), as given in (48) if S is an UP-slot; or by the pgf T j

down(z) if S is a
DOWN-slot of substate j:

T j
down(z) =

[
Hj(z) + (z − 1)Hj(0)

] F (z)
z

. (93)

We now have all the tools to develop an expression for W (z), the pgf of the delay
of an arbitrary customer:

W (z) =
M+2∑

φ=1

−σf1(xφ, z)
xφgx(xφ, z)

Tup

(
1
xφ

)

−
M∑

j=1

(1 − σ)ωj

r(1 − βj)

M+2∑

φ=1

f j
2 (xφ, z)

xφgx(xφ, z)
T j
down

(
1
xφ

)
. (94)
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From here we can calculate z0 and w0 to obtain the tail-probabilities of the
delay. As before, z0 and the corresponding x-value xξ must be found as a solution
of (54). After applying L’Hôpital’s rule on (53) we get for w0:

w0 =
−σf1(xξ, z0)
xξgx(xξ, z0)

T ∗
up

(
1
xξ

)
−

M∑

j=1

(1 − σ)ωj

r(1 − βj)
f j
2 (xξ, z0)

xξgx(xξ, z0)
T j∗
down

(
1
xξ

)
, (95)

with T ∗
up

(
1
x

)
as given in (64) and with T j∗

down

(
1
x

)
found in a similar way:

T j∗
down

(
1
x

)
� lim

z→z0
T j
down

(
1
x

)
(z − z0)

=
[
(1 − βj)H∗

0

(
1
x

)
+ βjG

∗
0

(
1
x

)]
F

(
1
x

)
x , (96)

with G∗
0

(
1
x

)
and H∗

0

(
1
x

)
as given in (66) and (67).

6 Numerical Example

In this section we work out a numerical example to illustrate the method. We
choose a mixture of 2 geometric distributions for the DOWN-periods with param-
eters as given in Table 1.

Table 1. Parameters of R1(z)

β1 β2 ω1 ω2 = 1 − ω1

0.878 0.922 0.609 0.391

The average length of a DOWN-period is then 10 slots. We choose a Poisson
arrival process:

C(z) = eλ(z−1) . (97)

We look at two different scenarios. Firstly we choose a large α which leads
to long UP-periods and combine this with a high arrival intensity. Secondly, we
choose a smaller α and compensate for the shorter UP-periods with a smaller
arrival intensity. Table 2 gives an overview of the considered scenarios.

Table 2. Overview scenarios

Scenario 1 Scenario 2

λ 1.756 1.207

α 0.989 0.767

σ 0.9 0.3
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The parameters have been chosen in such a way that in both situations the
average queue content equals 12.0 customers. However, the tail characteristics
of the delay are different. In Fig. 2 we plot the probability that a customer has
a certain delay based on the method developed in this paper and based on
simulation. It should be noted that the results obtained by simulation require a
lot more computation time. The figure validates the method developed in this
paper and also shows the importance of this work. The tail characteristics of the
delay are not equal even though the average queue content is. Furthermore, it
shows that the approximations are accurate already for small values of k.
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Situation 1: formula Situation 1: simulation
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Fig. 2. Tail distribution of delay

6.1 Comments on Numerical Procedures

In this subsection we will briefly sketch how the numerical results can be
obtained. Step 1 and 2 are direct application of the method developed in [3].

1. Numerically obtain the zeros zi, i = 1..M + 2 of

z2 − C(z)
[
α + (1 − α)R

(
C(z)

z

)]
= 0 ; |z| ≤ 1 , (98)

with z1 = 1 and with M the number of geometrics in R(z).
2. Solve the set of linear equations

p(0) + p(1)zi + (1 − α)Q
(

C(zi)
zi

)
= 0 ; i = 2..M + 2 ; (99)

p(0) + p(1) + (1 − α)Q(1) =
1 + σ − λ

σ
, (100)
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in order to obtain p(0), p(1) and the coefficients of the numerator of the
rational function Q(z).

3. Numerically obtain the zeros xi of (54) for |x| < 1:

1
x2

− C

(
1
x

) [
α + (1 − α)R

(
C

(
1
x

)
x

)]
= 0 .

4. Use a polynomial rootsolver to obtain the zeros in z of g(xi, z) = 0. Then z0
is the smallest solution in z (real-valued and larger than 1) over all possible
xi. The corresponding x-value is then xξ.

After this, evaluation of w0 is merely filling in all the values in (95). In all of
the numerical examples we calculated, xξ is real-valued and the closest to 1 of
all xi obtained in Step 3.

7 Conclusions

In this paper we studied a discrete-time multiserver queueing model. Special
about the considered model is that the number of available servers alternates
over time (from 1 to 2 and back), this way correlation is introduced on the slot-
to-slot server availability. Specifically in this paper we were interested in the
delay characteristics of an arbitrary customer.

The queueing system is assumed to be in one of two different states: DOWN-
state with 1 server available or UP-state with 2 servers available. The system
resides in a given state for a stochastic number of slots before returning to the
other state. This stochastic process is fully described by the distributions of
the lengths of the state-periods and it introduces correlation on the number of
servers available.

The paper is an extension to an earlier work that described the queue content
distributions of a system as such.

The delay analysis is performed by linking the delay of a customer with k
customers in front of it to the delay of a customer with k−1 and k−2 customers
in front of it, using probability generating functions. The theory of the dominant
singularity then provides a method to evaluate the tail probabilities of the delay
of an arbitrary customer.

A numerical example validates the method and shows the importance of it.
Different queueing systems with the same average queue content can show dif-
ferent delay characteristics. The numerical example also shows that the method
which is an approximation for large delays, gives very accurate results even for
small delays. It also uses a lot less computational resources as compared to
simulation. Further research could include more general distributions for the
DOWN-periods and the UP-periods.
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Abstract. We consider a service system with a single server, exponen-
tially distributed service time, and two types of service rates – high and
low. A customer chooses to obtain a high rate or a low rate service,
and then the customer is active for an exponentially distributed period
of time with a given high or low rate, respectively, and returns to the
queue to be served again. Customers strategically choose a service type
in order to maximize their long-run activity time.

We investigate which strategies of the customers are socially optimal
and explore conditions for Nash equilibria. We examine symmetric and
asymmetric strategies, as well as behavioral strategies. We focus on the
game with two customers.

We prove an equivalence of the conditions for the existence of pure
and mixed equilibria to those in the behavioral model, though the value
of the mixed equilibrium strategy differs from the value of the behavioral
equilibrium strategy for the same parameters. We show that a pure asym-
metric equilibrium does not exist, a pure asymmetric strategy cannot be
socially optimal, and a pure symmetric equilibrium always exists.

Keywords: Strategic queueing · Networks · Nash equilibria ·
Social optimization

1 Introduction

We consider a system with a single server and N customers. The server supplies
two service types - short or long. A served customer is active for a shorter or
a longer period corresponding to the type of service he obtained, and when
the activity period ends, returns to the queue to be served again. Consider, for
example, a closed system of batteries with one charger. A battery can get a long
or a short charging time, and will perform accordingly for a longer or a shorter
time before recharging.

The motivation for our model is an application server shared by computer
processes, described by Courcoubetis and Varaiya [3] and by Cheng and Kohler
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[1]. Gallay and Hongler [4] consider a variation with electric vehicles with various
charging facilities. The same model is described by Xu, Dai, Sykara and Lewis,
[8] for a multi-robot control operator in a disaster area. The referred articles
search for system optimization while we assume strategic customers and analyse
equilibrium strategies.

We focus on the case with two customers and investigate equilibria and opti-
mal solutions for maximum probability to be active. The main technical diffi-
culty in the analysis is that in the closed queueing system there is a dependence
between successive service and waiting times.

Our main results: The socially optimal strategy is the pure symmetric strat-
egy with the smaller utilization factor (Theorem 1). When the low-rate service
has the smaller utilization factor (activity rate/service rate), choosing the low-
rate service is optimal and the unique equilibrium (Theorem 5). We conjecture
that there always exists a pure symmetric equilibrium strategy (Conjecture 16).
We show that a pure asymmetric strategy cannot be an equilibrium (Corollary
17). We prove that a set of parameters (ρl, ρh, λl, λh) induces the same num-
ber and types of equilibria in the mixed-strategy model and in the behavioral-
strategy model. We supply examples of the different cases.

Courcoubetis and Varaiya [3] describe two customers (processes) served by
a single resource. The queueing network is similar to our model, but in their
model the ratio between service time and activity time is fixed and they look for
maximal utilization of the server.

Cheng and Kohler [1] deal with programs as customers too. They describe
web-enabled application services. The customers are programs. A program sends
a transaction to be processed by an ASP - Application Service Provider. Process
time of a transaction is an exponential random variable, and so is the period of
time between transactions. The paper compares the purchase of software for use
in-house, with using the ASP’s services, and analyzes the ASP’s pricing scheme.
This is a variation of the machine interference model described in [5]. Xu, Dai,
Sykara and Lewis [8] describe a multi-robot control operator. There are N robots
operated by a single server. The operator interacts with the robot for a period of
time (IT - Interaction Time) raising its performance above an upper threshold,
after which the robot is neglected for a period of time (NT - Neglect Time)
until its performance deteriorates below a lower threshold, when the operator
must again interact with the server. Both IT and NT are exponential random
variables. In their paper the operator is free to choose between high quality or
low quality interaction, or a mixed strategy, i.e. provide high quality interaction
with a certain probability. They look for the probability p that maximizes the
value of the utility function per cycle, whereas in our paper we look for the
maximal utility per unit time.

Chu, Wan and Zhan [2] consider a ride-hailing platform where idle taxi drivers
accept or ignore a rider’s request depending on profitability considerations. There
are two types of riders with a different profitability (price) but the same service
rate. If instead of discriminating between riders by price, the more profitable
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rider would have a higher service rate, and the utility function would be the
proportion of time the taxi is busy, the model will be similar to ours.

Strategic queueing is introduced and surveyed by Hassin and Haviv [7] and
Hassin [6]. Hassin [6] §4.7 and §6.3.2 survey the literature on expert systems with
duration-dependent service value. In our model customers return to service and
are interested in maximizing their long-run utility. Customers act strategically
choosing their service rate.

Section 2 formally defines the model and summarises our results. Section 3
analyses the model when each customer sticks to the same service type repeat-
edly, and Sect. 4 analyses the model when each customer draws a service type
with the same probability in each cycle. Section 5 shows that the conditions for
equilibria are equivalent in both models, and in Sect. 6 we show that there always
exists a pure equilibrium in the first model, and use the equivalence to prove that
there always exists a pure equilibrium in the second model. Section 7 elaborates
on research continuation of the subject.

2 The Model

We study a closed queueing network with a single server and two customers.
A customer who enters service chooses either a low-rate or a high-rate service.
After the end of the service the customer leaves for a low-rate or a high-rate
activity period, respectively, and then returns to the queue. See Fig. 1.

high-rate

low-rate

SERVER

high-rate activity low-rate activityQUEUE

Fig. 1. The model.

Service time is exponentially distributed. The service rate is μl or μh, cor-
responding to low and high service rate, μh > μl. Activity time is exponen-
tially distributed with rate λl or λh corresponding to low and high activity rate,
λh > λl. The service discipline is FCFS. When both customers choose the same
service rate the model behaves as the Machine Interference Model (e.g. Gross
and Harris [5] Section 2.7).

The utility of a customer is equal to the steady-state probability to be active.
The social utility is the average utility of the customers. We denote the utility
factor ρθ = λθ

μθ
, θ ∈ {l, h}.
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2.1 Model Variations

Let customer i draw low service rate with probability pi, i = 1, 2. We analyse
social optima and existence of equilibria using the following strategies:

– pure strategy - customer i draws once a service rate (low service rate with
probability pi, pi ∈ {0, 1}) and sticks to it.

– mixed strategy - customer i draws once a service rate (low service rate with
probability pi, pi ∈ [0, 1]) and sticks to it.

– behavioral strategy - customer i independently draws low service rate with
probability pi, pi ∈ (0, 1) each time he enters service. The customer sticks to
the same probability throughout the game.

The utility function for a single customer is the expected fraction of time in
activity, or, in other words, the probability to find the customer in the active
period. U(p1, p2) is the value of the utility function for customer 1, when each
customer 2 draws low service rate with probability p2. The social utility is the
average utility of the customers.

We discuss pure symmetric strategies separately as they yield the same util-
ities for the mixed game and for the behavioral game.

3 Mixed Strategies

In the mixed strategy version customer i sticks to low service rate with probabil-
ity pi, otherwise he sticks to the high service rate. We consider three scenarios:

– The pure symmetric solution where p1 = p2, pi ∈ {0, 1} - the machine
interference model.

– The pure asymmetric solution where p1 �= p2, pi ∈ {0, 1}.
– The mixed solution where pi ∈ [0, 1].

3.1 Steady-State Solution - Pure Strategies

Suppose the customers choose different service types. Let (k,m) define a state
of the system, where k,m ∈ {a, s, w} are the states of the first and the second
customers, respectively. a - active, s - in service, w - waiting for service.

ws

μh

sa

μl

λh

aaλl

λh

sw
μl

as

λl

μh

Fig. 2. Transition diagram for the asymmetric strategy, p1 = 1, p2 = 0.
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Let U(p1, p2) denote the utility of customer 1, under the strategy profile
(p1, p2). Let πkm denote the steady-state probability for state (k,m) under the
asymmetric pure strategy case. We compute U(1, 0) = πaa+πas - the probability
that customer 1 is active, and U(0, 1) = πaa+πsa - the probability that customer
2 is active, using Fig. 2.

U(1, 0) =
(

1 + ρl +
λlρh

2(λl + λhρl + λlρl)
(λl + λhρl)(λh + λhρh + λlρh)

)−1

(1a)

U(0, 1) =
(

1 + ρh +
λhρ2l (λh + λlρh + λhρh)

(λh + λlρh)(λl + λlρl + λhρl)

)−1

(1b)

We compute U(1, 1) and U(0, 0) when both customers choose the same service
rate, using (1a) and (1b) respectively: with ρl = ρh, λl = λh:

U(1, 1)) =
(

1 + ρl +
ρl

2

1 + ρl

)−1

(2a)

U(0, 0) =
(

1 + ρh +
ρh

2

1 + ρh

)−1

(2b)

3.2 Optimal Strategy

There are cases (see Subsect. 3.4 for examples), where the pure symmetric strat-
egy with the larger ρ is an equilibrium, but we now show that the socially optimal
strategy is always the pure symmetric strategy with the smaller utilization fac-
tor ρ.

Theorem 1. The pure symmetric strategy with the smaller ρ is optimal.

Proof. We first note that the function 1+ρ
1+2ρ+2ρ2 is monotone decreasing in ρ and

therefore among pure symmetric strategies, choosing the service with the smaller
ρ is optimal.

We now proceed to show that the optimal pure symmetric strategy is better
than the asymmetric pure strategy. When the customers draw different pure
strategies, the social utility is the average utility of the customers, i.e. SU(0, 1) =
U(0,1)+U(1,0)

2 . By (1):

SU(0, 1) =

(
1+ρl+

λlρh
2(λl+λhρl+λlρl)

(λl+λhρl)(λh+λhρh+λlρh)

)−1

2 (3)

+

(
1+ρh+

λhρ2
l (λh+λlρh+λhρh)

(λh+λlρh)(λl+λlρl+λhρl)

)−1

2

Lemma 2. When ρl = ρh, the socially-optimal pure strategy is symmetric.

Proof. Given ρ, the value U(0, 0) of the pure symmetric equilibrium is indepen-
dent of λh and λl. We show that for any λh and λl, SU(0, 1) ≤ U(0, 0). We first
find the parameters that maximize SU(0, 1) by computing ∂SU(0,1)

∂λl
and ∂SU(0,1)

∂λh
,

when ρl = ρh:
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∂SU(0, 1)
∂λl

= λh(λ2
h − λ2

l )D

∂SU(0, 1)
∂λh

= λl(λ2
l − λ2

h)D

where D = ρ2
h(2ρh+1)

2(λ2
l ρh(ρh+1)2+λlλh(2ρh(ρ2

h+ρh+1)+1)+λ2
hρh(ρh+1)2)2

> 0.

By equating both derivatives to zero we see that SU(0,1) is extreme when
λl = λh. The second derivatives are negative when we assign λl = λh, hence
SU(0, 1) ≤ U(0, 0) is maximized when λl = λh in which case it is equal to
U(0, 0). ��
Lemma 3. A pure asymmetric strategy is never strictly better than the best pure
symmetric strategy.

Proof. For ρl = ρh the claim follows from Lemma 2. Assume first that ρl > ρh.
By (3):

∂SU(0,1)
∂ρl

=

− (ρh(λl+λh)+λh)
(

λ3
l ρh(ρh+1)+λ2

l λh((ρl(ρl+4)+1)ρh+1)+λlλ2
hρl(2(ρl+1)ρh+ρl+4)+λ3

hρ2
l (ρh+2)

)

2
(

λlρ2
h
(ρl(λl+λh)+λl)+(ρl+1)ρh(λl+λh)(λl+λhρl)+λh(ρl+1)(λl+λhρl)

)2 < 0,

Given ρh, SU(0, 1) is decreasing in ρl and the maximum in the interval ρl ∈
[ρh,∞] is achieved when ρl = ρh.

Assume now ρl < ρh, By (3):

∂SU(0,1)
∂ρh

=

−
(ρl(λl+λh)+λl)

(
λl

3(ρl+2)ρh
2+λl

2λhρh(2ρl(ρh+1)+ρh+4)+λlλh
2(ρlρh(ρh+4)+ρl+1)+λh

3ρl(ρl+1)
)

2
(

λlρh
2(ρl(λl+λh)+λl)+(ρl+1)ρh(λl+λh)(λl+λhρl)+λh(ρl+1)(λl+λhρl)

)2 < 0,

Given ρl, SU(0, 1) is decreasing in ρh and the maximum in the interval ρh ∈
[ρl,∞] is achieved when ρl = ρh.

We showed in Lemma 2 that when ρl = ρh the maximum is achieved when
λl = λh. ��
Lemma 4. A mixed asymmetric strategy is never optimal

Proof. A mixed strategy is a weighted average of the pure strategies
U(0, 0), U(1, 1), U(0, 1), U(1, 0), therefore it cannot be strictly better than all
of them. ��

3.3 Equilibria

We use Fig. 3, where λh = 1.5, ρh = 0.1, λl = 1. We draw the utilities on the
range ρl ∈ [0.100, 0.110].

W.l.o.g. suppose λl, ρh and λh stay fixed. We start with ρl = ρh (In the
example in Fig. 3 ρh = 0.100) and analyse the change in equilibria as ρl increases.
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1901.03401.0301.0 ρl

U

801.0601.0201.0001.0
0.892

0.894

0.896

0.898

0.900

0.902

0.904

U(0, 0)

U(1, 0)

U(1, 1)

U(0, 1)

Fig. 3. λh = 1.5, ρh = 0.1, λl = 1, ρl > ρh

Theorem 5. When ρl ≤ ρh, p1 = p2 = 1 is the only pure-strategy equilibrium.

Proof. We prove the claim by showing that U(0, 1) < U(1, 1), and U(0, 0) <
U(1, 0).

By definition λh > λl. By (1b) and (2a), U(0, 1) < U(1, 1) is equivalent to

1 + ρh +
λhρ2l (λh + λlρh + λhρh

(λh + λlρh)(λl + λlρh + λhρl)
> 1 + ρl +

ρ2l
1 + ρl

⇔

λh(1 + ρl)(λh + λlρh + λhρh) > (λh + λlρh)(λl + λlρh + λhρl) ⇔
λ2

h + λ2
hρh + λ2

hρlρh > λhλl + λ2
l ρh + λ2

l ρhρl

λ2
h > λhλl, λ2

hρh > λ2
l ρh and λ2

hρlρh > λ2
l ρhρl prove the claim.

In the same way, U(1, 0) > U(0, 0) is equal to

1 + ρl +
λlρh

2(λl + λhρl + λlρl)
(λl + λhρl)(λh + λhρh + λlρh)

< 1 + ρh +
ρh

2

1 + ρh
⇔

λl(λl + λhρl + λlρl)
(λl + λhρl)(λh + λhρh + λlρh)

<
1

1 + ρh
⇔

λl(ρh + 1)(λlρl + λl + λhρl) < λl(ρh + 1)(λlρl + λl + λhρl) ⇔
λ2

l + λ2
l ρl + λlλhρl + λ2

l ρh + λ2
l ρlρh + λlλhρlρh <

λ2
h + λlλhρl + λ2

hρl + λlλhρh + λ2
l ρlρh + λlλhρlρh ⇔

λ2
l + λ2

l ρl + λ2
l ρh < λ2

h + λ2
hρl + λlλhρh.

��

3.4 Examples

In Table 1 we show examples of pure and mixed strategies. In all three examples
p1 = p2 = 0 is socially optimal among pure symmetric and asymmetric strate-
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Table 1. Examples of mixed strategies.

Name λl μl λh μh ρl ρh U(1, 1) U(0, 0) U(1, 0) U(0, 1) U(0,1)+U(1,0)
2

Ex1 1 1 1.1 1.2 1 0.9167 0.4 0.4246 0.4149 0.4083 0.4116

Ex2 1 1 4 5 1 0.8 0.4 0.4639 0.4771 0.3435 .4103

Ex3 1 1 3 4 1 0.75 0.4 0.4828 0.4723 0.369 .4207

gies, but in the first example, Ex1, U(1, 0) < U(0, 0), hence p1 = p2 = 0 is an
equilibrium. In the second example, Ex2, U(0, 1) < U(1, 1), hence p1 = p2 = 1
is an equilibrium. In the third example, Ex3, both p1 = p2 = 0 and p1 = p2 = 1
are equilibria, as U(0, 1) < U(1, 1) and U(1, 0) < U(0, 0).

Theorem 6. A unique mixed equilibrium q = U(0,0)−U(1,0)
U(0,0)−U(1,0)+U(1,1)−U(0,1) exists

iff there exist two pure equilibria, either both symmetric or both asymmetric.

Proof. Suppose both p1 = p2 = 0 and p1 = p2 = 1 are equilibria, then q is
the probability that enforces, for a given customer, indifference between the
strategies, when the other customer sticks to it. It is the solution of the equation
qU(1, 1) + (1 − q)U(1, 0) = qU(0, 1) + (1 − q)U(0, 0).

If both pure strategies are equilibria then U(0, 1) < U(1, 1) and U(1, 0) <
U(0, 0) and therefore 0 < q < 1.

Similarly, if the asymmetric strategies are equilibria then U(0, 1) > U(1, 1)
and U(1, 0) > U(0, 0) so that again 0 < q < 1.

If q is a valid mixed strategy, i.e. 0 < q < 1, then the numerator and the
denominator both have the same sign and either U(0, 0) > U(1, 0) and U(1, 1) >
U(1, 0) and both pure symmetric strategies are equilibria, or U(0, 0) < U(1, 0)
and U(1, 1) < U(1, 0) and then both pure asymmetric strategies are equilibria. ��
In example Ex3, q = 0.4828−0.4723

0.4828−0.4723+0.4−0.369 = 0.2530.

4 Behavioral Strategies

We now consider symmetric behavioral strategies, where all customers indepen-
dently draw low service rate with probability p, every time they enter service.

4.1 Social Optimum of the Behavioral-Strategy Game

We are looking for p that maximizes the probability to be active when all cus-
tomers follow the same strategy p.

Let (k,m) define a state of the system, where, k,m ∈ {al, ah, sl, sh, w} are
the states of the customers without ordering (as customers are homogeneous).
al, ah - low-rate or high-rate activity, sl, sh - low-rate or high-rate service, w -
waiting for service.

There are nine possible states. The vector π provides the stationary proba-
bilities for each state:
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π = (πw,sl
, πw,sh

, πsl,al
, πsh,al

, πsl,ah
, πsh,ah

, πal,al
, πal,ah

, πah,ah
).

We compute π from the transition-rate diagram of the queueing system (see
Fig. 4), and derive the probabilities Pi, i = 0, 1, 2, for i active customers. U(p, p)
is the utility of a customer when both customers select low-service rate with
probability p.

U(p, p) =
P1

2
+ P2.

P1 = πsl,al
+ πsh,al

+ πsl,ah
+ πsh,ah

.

P2 = πal,al
+ πal,ah

+ πah,ah
.

In the resulting formula of U(p, p), p appears always as a divisor of 1 − p,
hence we simplify the presentation by searching for r = 1−p

p that maximizes
V (r) = U(p, p), and then p = 1

r+1 .

V (r) =
a + br + cr2

1+2ρl+2ρ2
l

1+ρl
a + er + 1+2ρh+2ρ2

h

1+ρh
cr2

(4)

where

a = (λl + λlρl + λhρl)(λh + ρh)λ2
h,

b = λlλh(λ2
l ρh(2 + ρl) + λ2

hρl(2 + ρh) + λlλh(2 + ρl + ρh + 2ρlρh)),

c = (λhρl + λl)(λh + λlρh + λhρh),

d = 2λlλh((λ2
hρl + λ2

l ρh)(ρl + 1)(ρh + 1) + λlλh(ρl(ρh(ρl + ρh + 2) + 1) + ρh + 1)).

In particular, when p1 = p2 = 1, U(1, 1) = 1+ρl

1+2ρl+2ρ2
l

which is equal to the
utility computed in (2a). Similarly, for p = 0, using L’Hôpital’s rule, we obtain
U(0, 0) = 1+ρh

1+2ρh+2ρ2
h
, as in (2b).

πal,al 2pλl

2qλl

πsl,al

μl λl

πw,slpμl

qμl

πsh,al

μh

λl

πal,ah

pλl

qλh

pλh

qλl

πsl,ah

λh

μl

πw,sh

qμh

pμh

πah,ah

2qλh

2pλh

πsh,ah
μh

λh

Fig. 4. Steady-state transition diagram for U(p, p), q = 1 − p.
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Theorem 7. If ρl = ρh then U(p, p) has two maximum points, namely p∗ = 0
and p∗ = 1.

Proof. By (4), for every 0 ≤ p ≤ 1,
U(p, p) = V (r) = a+br+cr2

a
U(1,1)+dr+ c

U(1,1) r2 = U(1, 1) a+br+cr2

a+U(1,1)dr+cr2 .

U(1, 1)d > b as 1+ρ
1+2ρ+2ρ2 d − b = λlλh(λl−λh)

2ρ2

1+2ρ+2ρ2 > 0,
hence U(p, p) < U(1, 1) = U(0, 0). ��

We now deal with any ρl and ρh, not necessarily ρl = ρh. Figure 5 shows a
graphical representation of U(p, p) with two numeric examples. U(p, p) is uni-
modal with one minimum point in [0, 1].

p

U(p, p)

0 0.2 0.4 0.6 0.8 1
0.390

0.392

0.394

0.396

0.398

0.4

(a) ρl = ρh = 1,λl = 1, λh = 10.

p

U(p, p)

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

0.85

(b) ρl = 0.2, ρh = 0.5, λl = 1, λh = 2.

Fig. 5. Examples of U(p, p).

Extensive numerical analysis, for virtually all possible parameter values,
shows that social optimum cannot be achieved by a behavioral strategy with
0 < p < 1.

Conjecture 8. arg max U(p, p) ∈ {0, 1}.

4.2 Equilibria of Behavioral Strategies

The mixed behavioral strategy 0 < p < 1 is an equilibrium if

U(1, p) = U(0, p). (5)

This means that if the other customer follows strategy p, the first customer
is indifferent between the two pure selections, therefore p is also a best response.
We first compute U(1, p) - the utility of a customer that always takes the low-rate
service while the other customer - denoted p chooser- draws the low-rate service
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with probability p. We build the steady-state transition diagram (see Fig. 6).
Let (k,m) define a state of the system, where, k,m ∈ {al, ah, sl, sh, w} are the
states of the first and the second customer, respectively. al, ah - low-rate or high-
rate activity, sl, sh - low-rate or high-rate service, w - waiting for service. The
vector π gives the stationary probabilities for each state. The utility U(1, p) =
πal,sl

+ πal,al
+ πal,sh

+ πal,ah
. In the same way we build the corresponding

transition diagram for U(0, p), and compute the utilities:

U(1, p) = (1 + ρl)
ap + b

c1p + d1
(6a)

U(0, p) = (1 + ρh)
ap + b

c0p + d0
(6b)

U(p, 1) = (1 + ρl)
ap + b − k(1 − p)λl

c1p + d1
= U(1, p) − (1 + ρl)λl

(1 − p)k
c1p + d1

(6c)

U(p, 0) = (1 + ρh)
ap + b + kpλh

c0p + d0
= U(0, p) + (1 + ρh)λh

pk

c0p + d0
(6d)

πw,sl

μl

πsl,al

λl

μl

πal,alλl

pλl

(1−p)λl

πal,sl

μl

λl

πsl,w

(1−p)μl

pμl

πal,sh

λl

μh

πal,ah

λl

pλh

(1−p)λh

πw,sh

μh

πsl,ah

λh

μl

Fig. 6. Steady-state transition diagram for U(1, p).

where

a = λ3
hρl − λ3

l ρh + λlλ
2
h − λ2

l λh

b = λl(λhρl + λl)((λl + λh)ρh + λh)
c1 = λ3

hρl

(
2ρ2l + 2ρl + 1

)
+ λlλ

2
h

(
ρ3l (ρh + 1) + 2ρ2l + 2ρl + 1

)
+ λ2

l λh(ρl + 1)
(
ρ2l ρh − ρl

(
ρ2h + 1

) − 1
) − λ3

l (ρl + 1)2ρh(ρh + 1)

d1 = λl(ρl + 1)(λ2
hρl(ρl + 1)(ρh + 1) + λlλh(ρl(ρh(ρl + ρh + 2) + 1) + ρh + 1)

+ λ2
l (ρl + 1)ρh(ρh + 1))
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c0 = λ3
hρl(ρl + 1)(ρh + 1)2 − λlλ

2
h(ρh + 1)

(− (
ρ2l + 1

)
ρh + ρlρ

2
h − 1

)
− λ2

l λh

(
(ρl + 1)ρ3h + 2ρ2h + 2ρh + 1

) − λ3
l ρh

(
2ρ2h + 2ρh + 1

)
d0 = λl(2ρh(ρh + 1) + 1)(λhρl + λl)(λhρh + λh + λlρh))
k = (λ2

h − λ2
l )ρlρh + λlλh(ρh − ρl)

Theorem 9. A unique mixed behavioral equilibrium p = (1+ρh)d1−(1+ρl)d0
(1+ρl)c0−(1+ρh)c1

exists
iff there exist two pure equilibria, either both symmetric or both asymmetric.

Proof. According to Theorem 5 more than one pure equilibrium is possible only
if ρl > ρh. Recall that we defined λh > λl, it is easy to see that in that case all
the coefficients in the following equations are positive. By (6)

U(1, 0) = (1 + ρl)
b

d1
.

U(0, 1) = (1 + ρh)
a + b

c0 + d0
.

U(1, 1) = (1 + ρl)
a + b

c1 + d1
.

U(0, 0) = (1 + ρh)
b

d0
.

U(0, 0) − U(1, 0) =
b

d0d1
((1 + ρh)d1 − (1 + ρl)d0).

U(1, 1) − U(0, 1) =
a + b

(c0 + d0)(c1 + d1)
(1 + ρl)(c0 + d0) − (1 + ρh)(c1 + d1).

p is a mixed behavioral equilibrium when U(1, p) = U(0, p), which implies, by
(6a, 6b) that (1 + ρl) ap+b

c1p+d1
= (1 + ρh) ap+b

c0p+d0
. All the coefficients are positive

hence p = (1+ρh)d1−(1+ρl)d0
(1+ρl)c0−(1+ρh)c1

=
d0d1

b (U(0,0)−U(1,0))
d0d1

b (U(0,0)−U(1,0))+
(c0+d0)(c1+d1)

a+b (U(1,1)−U(0,1))
. In

other words, 0 < p < 1 is a valid probability value iff either both pure symmetric
strategies are equilibria or both pure asymmetric strategies are equilibria. ��

For example, when λl = 1, ρl = 1, λl = 2, ρl = 1, p1 = p2 = 1 is the only
behavioral equilibrium and p < 0. Suppose λl = 1, ρl = 1, λl = 3, ρl = 0.75,
p = 41

482 . In this case, p1 = p2 = 0, p1 = p2 = 1 and p1 = p2 = 41
482 are equilibria.

In Fig. 7 we show the functions U(1, p) and U(0, p) intersecting at p = 41
482 . The

best-response function BR is FTC - Follow the Crowd, i.e. BR = 0 for p < 41
482 ,

BR=1 for p > 41
482 , and indifference exists when p = 41

482 .
Note that there is a mixed equilibrium (see Example Ex3 in Subsect. 3.1)

for the same parameters, but the value is different - p = 0.2530. These are two
different strategies but the conditions for the strategies to be equilibria are equal,
as we prove in the next section.
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5 Equilibrium Equivalence

In this section we prove that an equilibrium in the mixed strategy game exists iff
there exists an equilibrium in the behavioral game for exactly the same param-
eters, though the value may be different.

Lemma 10. In the behavioral model the functions U(p, 1), U(p, 0), U(1, p) and
U(0, p) are monotone in the interval 0 ≤ p ≤ 1.

41
482

p

U

0 0.2 0.4 0.6 0.8 1

0.38
0.40
0.42
0.44
0.46
0.48

U(0, p)

U(1, p)

p
41
482

BR

0 0.2 0.4 0.6 0.8 1

0.20

0.40

0.60

0.80

1

q = p

Fig. 7. Best response - follow the crowd.

Proof. From (6) all these functions have the form

U(p) =
Ap + B

Cp + D

∂U(p)
∂p

=
AD − BC

(Cp + D)2

where A,B,C,D are constants depending on the parameters ρl, ρh, λl, λh alone.
The numerator of the derivative does not contain p hence U(p) is a monotone
function of p. If AD = BC then U(p) is constant. Note that the denominator
of U(p) cannot be zero in the interval [0, 1] as U(p) is bounded by 1, being a
probability value. ��
Theorem 11. A set of parameters (ρl, ρh, λl, λh) induces the same number and
types of equilibria in the mixed-strategy model and in the behavioral-strategy
model.
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Proof. We prove for pure symmetric equilibria, for asymmetric pure equilibria
and then for a mixed equilibrium.

A pure equilibrium in the behavioral-strategy model is a pure equilibrium in
the mixed-strategy model as the condition for behavioral-strategy equilibrium
is needed for a repeated draw in every cycle hence stronger than the condi-
tion needed for mixed-strategy equilibrium. So it is enough to prove that a
pure mixed-strategy equilibrium is also an equilibrium in the behavioral-strategy
model.

There are two pure symmetric strategies - p1 = p2 = 0 and p1 = p2 = 1. We
prove for p1 = p2 = 1 and the proof for p1 = p2 = 0 is similar. p1 = p2 = 1 is an
equilibrium in the mixed-strategy model if U(1, 1) ≥ U(0, 1). p1 = p2 = 1 is an
equilibrium in the behavioral-strategy model if U(1, 1) ≥ U(p, 1) ∀0 ≤ p ≤ 1.
By Lemma 10 U(p, 1) is monotone. When p1 = p2 = 1 is an equilibrium in
the mixed-strategy model U(1, 1) ≥ U(0, 1), hence U(p, 1) is monotone non-
decreasing and U(1, 1) ≥ U(p, 1) ∀0 ≤ p ≤ 1.

There are two pure asymmetric strategies - p1 = 1, p2 = 0 and p1 = 0, p2 = 1.
Either both are equilibria or neither is an equilibrium, as customers are homo-
geneous. When both pure asymmetric strategies are equilibria, U(0, 1) > U(1, 1)
and U(1, 0) > U(0, 0) and therefore neither pure symmetric strategy is an equi-
librium in either model. We showed in Theorems 6 and 9 that in either model a
mixed strategy exists iff there are two pure strategy equilibria, i.e. the formulae
that compute q - the mixed equilibrium, and p - the behavioral equilibrium, will
yield valid probability values for exactly the same set of parameters, although
in general q �= p. ��
Corollary 12. If no pure symmetric strategy is an equilibrium then both asym-
metric pure strategies are equilibria.

Proof. If no pure symmetric strategy is an equilibrium then U(0, 1) ≥ U(1, 1)
and U(1, 0) ≥ U(0, 0) which defines both asymmetric pure equilibria.

6 Graphical Analysis of Equilibria

In Theorem 11 we showed the equivalence of equilibria in the mixed and the
behavioral models, and the following discussion refers to both. We illustrate the
region of each equilibrium type by a graph in the (ρl, ρh) plane, for λl = 1 and
various λh. The points (ρl, ρh) on the boundary of the region where p1 = p2 = 1 is
an equilibrium satisfy U(0, 1) = U(1, 1)), and the points (ρl, ρh) on the boundary
of the region where p1 = p2 = 0 is an equilibrium satisfy U(1, 0) = U(0, 0)). By
(6) we get the two equations that define the relation between (ρl, ρh) on the
boundaries:

(1 + ρh)(c1 + d1) = (1 + ρl)(c0 + d0). (7)

(1 + ρh)d1 = (1 + ρl)d0. (8)



Strategic Network Differentiation 163

Suppose λh is fixed. For every given ρl we define

ρ
h
(ρl) = min{ρh|p0 = p1 = 1 is an equilibrium}.

ρ̄h(ρl) = max{ρh|p0 = p1 = 0 is an equilibrium}.

Figure 8 shows the region of each equilibrium for (ρl, ρh) ∈ [0, 1.5]. Subfigures
8a, b, c and d show that as λh increases, the region where both pure strategies
are equilibria increases as well. We observe in these figures that ρ̄h(ρl) > ρ

h
(ρl),

implying the existence of a region with both p1 = p2 = 1 and p1 = p2 = 0
equilibria, and by Theorem 9 a mixed equilibrium exists as well, for every ρl > 0.

ρl

ρh

0 0.5 1.0 1.5
0

0.5

1.0

1.5 ρh = ρl

(a) λh = 1.

ρl

ρh

0 0.5 1.0 1.5
0

0.5

1.0

1.5 ρh = ρl

ρ̄h(ρl)
ρh(ρl)

(b) λh = 2.

ρl

ρh

0 0.5 1.0 1.5
0

0.5

1.0

1.5 ρh = ρl

ρ̄h(ρl)

ρh(ρl)

(c) λh = 8.

ρl

ρh

0 0.5 1.0 1.5
0

0.5

1.0

1.5 ρh = ρl

ρ̄h(ρl)

ρh(ρl)

(d) λh = 1000.

Fig. 8. p1 = p2 = 1 is equilibrium in the region marked by vertical lines, p1 = p2 = 0
is equilibrium in the region marked by horizontal lines.

The next lemma proves the extreme cases. When λh = λl = 1 the region
where both equilibria exist reduces to the line ρh = ρl, and when λh → ∞ the
region where both symmetric pure strategies are equilibria increases gradually
with λh and the boundaries converge, as we show in Fig. 8.

Lemma 13. Suppose λh = λl = 1. Then p1 = p2 = 1 is an equilibrium when
ρh ≥ ρl, and p1 = p2 = 0 is an equilibrium when ρh ≤ ρl. (See Fig. 8a).
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Proof. When λh = λl = 1 choosing the larger μ (smaller ρ) is a dominant
strategy as it achieves the same activity time for a smaller service time.

Lemma 14. When λh → ∞, ρ̄h(ρl) = 1
4 (ρl − 1 +

√
1 + 6ρl + ρ2l ) and ρ

h
(ρl) =

ρ2
l

(1+ρl)2
(See Figs. 8b, c and d).

Proof. For specific ρl, ρh and λh → ∞, let μh grow accordingly to keep ρh

fixed and note that the service time of the customer with p2 = 0 is negligible.
U(1, 0) = 1

1+ρl
as there is no waiting time for the first customer with p1 = 1.

U(0, 0) = 1+ρh

1+2ρh+2ρ2
h

does not change as it depends on ρh alone. The upper
boundary of the equilibrium region p1 = p0 = 0 satisfies U(1, 0) = U(0, 0), i.e.,

ρ̄h(ρl) =
1
4
(ρl − 1 +

√
1 + 6ρl + ρ2l ) (9)

In the same way, U(0, 1) = 1
1+ρh

1
1+ρl

. U(1, 1) = 1+ρl

1+2ρl+2ρ2
l

does not change as it
depends on ρl alone. The lower boundary of the region of p1 = p0 = 1 satisfies
U(0, 1) = U(1, 1) i.e.,

ρ
h
(ρl) =

ρ2l
(1 + ρl)2

. (10)

��
Lemma 15. When λh → ∞, ρ̄h(ρl) > ρ

h
(ρl).

Proof. For a given ρh, the inverse function of (9) - ρ̄l(ρh) = ρh(1 + ρh

1+ρh
), gives

the value of ρl on the boundary of the region where U(1, 0) = U(0, 0). Then we
use (10) to compute ρ

h
(ρ̄l(ρh)), which corresponds to ρ̄l(ρh) on the boundary

of the region where U(1, 0) = U(1, 1). The claim follows from the following
inequality:

ρ
h
(ρ̄l(ρh)) =

(ρh + 2ρ2h)2

(1 + 2ρh + 2ρ2h)2
< ρh. (11)

��
We use Lemmas 13 and 15 to suggest Conjecture 16.

Conjecture 16. Every (ρl, ρh) is covered either by a region where there is one
pure equilibrium or a region where there are two pure equilibria and one mixed
equilibrium.

We proved the conjecture for when λh = λl in Lemma 13. Our numerical results
indicate that when λh increases the equilibrium curves move downwards as shown
in Fig. 8, and when λh → ∞ we proved the conjecture in Lemma 15.

Corollary 17. Assuming Conjecture 16 is correct, the pure asymmetric strate-
gies p1 = 0, p0 = 1 and p1 = 1, p0 = 0 cannot be equilibria.

Proof. In each point (ρl, ρh) there is at least one pure equilibrium. If each cus-
tomer draws a different pure strategy than at least one of them can improve his
result by changing to the equilibrium pure strategy. Hence there is no asymmetric
equilibrium. ��
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7 Concluding Remarks

We propose future research in the following directions: Generalize the model with
more service types and more customers. Complete conjectures in this paper.

In the current analysis the decision is taken at the entry, and at that point in
time the other customer is always active. If the decision is taken at the entry to
the activity period there are two possible states of the other customer - either
in service or in activity. We want to determine the conditions for optima and
equilibria, and the difference compared to the model discussed in this paper.
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Abstract. We examine a system with two heterogeneous servers. An
arriving customer first observes the queue length at the slower server
and decides whether to join it or join the unobservable queue of the
faster server. Customers arrive to the system and decide which queue
to join according to the reward, waiting cost, and service rates. Once a
customer chooses a queue, she cannot change her decision. We analyze a
special case of this model where there is no waiting space except for the
customer in service. The probability for entering the observable queue (if
the server idle) is denoted by p, and this is the strategy of the customers.
We analyze and characterize the Nash equilibria and the socially-optimal
probabilities of the system, and the relation between the two as function
of the model’s parameters. We also examine throughput maximization.

Keywords: Strategic queueing · Nash equilibrium ·
Social optimization

1 Introduction

We often make decisions using partial or incomplete information, and some
degree of uncertainty. Such situations are frequent in queueing systems, where
the incomplete information can be characterized by unknown service rates,
unknown arrival rates, unobservable queue length, etc. For example:

1. Gas stations - You arrive at a gas station. Your options are to wait in line for
the pump, or to take a chance and proceed to another gas station down the
road.

2. Emergency rooms - Some emergency rooms provide information regarding
the length of the line for treatment or the expected waiting time for a new
patient, while other emergency rooms provide no such service.

3. Parking spots - You wish to park your car. When arriving at a parking lot,
you are faced with the option to park there or to try and find a closer lot
further down the road.
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In these examples one of the queues is unobservable. The third example is dif-
ferent in the sense that there is no waiting line, the parking lot is either full or
has a free spot.

Hassin’s “two gas stations” model [2] describes a system of two identical
queues, Q1 and Q2, where only the line of Q1 is observable, and customers min-
imize expected waiting time. Hassin showed that the model leads to “avoid-the-
crowd” (ATC) behavior, and thus a unique equilibrium exists. Further analysis
of his model proved to be hard. Altman, Jimenez, Núñez-Queija, and Yechiali [1]
considered a more general model, in which the two queues have different service
rates. They left the question of whether this extension is also ATC open.

In this paper we look at the model of [1] with exponential service time and
heterogeneous service rates, with the added assumption that customers cannot
wait in line for a server, i.e. the queues are ·/M/1/1. We find and characterize
the Nash equilibrium, and the socially-optimal strategies for joining Q1. We also
discuss throughput maximization (deleted “the”) and show that the optimal
strategy does not necessarily prescribe joining Q1 with probability 1.

Hassin and Roet-Green describe a model [5] in which customers face parallel
unobservable queues. Upon arrival to the system, every customer picks a queue
randomly and observes it. After learning the length of the queue, the customer
can either stay at that queue, or pay a fixed cost (not necessarily the same
cost for every queue) to observe another queue. The customer then joins the
shorter queue. Customers incur a cost for every unit of time spent waiting for
service. The customers’ objective is to minimize their expected cost. This model
resembles our model in the sense that customers face one observable queue and
one unobservable queue, and then decide what action to take according to the
future potential costs. The difference between the two models is that in our
model there is no cost of observing the queues, and the decision to skip the first
queue and observe the second queue is irrevocable.

Singh, Delasay, and Scheller-Wolf [6] consider a system with two independent
M/M/1 queues (service providers), a leader and a follower. Customers are time
sensitive. The leader chooses whether to reveal the queue length. If the leader
chooses to reveal this information, then the follower has the option to reveal as
well. The service providers compete for market share. The authors find that, in
equilibrium, the leader reveals the queue length if and only if its service rate
is slower than the follower, while the follower’s best response depends on the
parameters of the model.

The subject of queueing systems with strategic players who act to maximize
expected utility is extensively reviewed in [3] and [4].

2 Setting

The system consists of two queues, Q1 and Q2, with exponential service distri-
butions with rates μ1 and μ2 respectively, μ1 < μ2. The arrival process to the
system is Poisson with parameter λ. For simplicity we use the notation Qi for
both the ith queue and the ith server, i = 1, 2. Q1 is M/M/1/1, while Q2 is
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·/M/1/1 since the arrival rate to Q2 is dependent on Q1. Customers obtain a
reward of R by getting served from either Q1 or Q2, and incur a cost of C per
unit of time spent in service (this is a loss system and no time is spent waiting
for service). To avoid trivial solutions, we also assume that R − C

μ1
> 0, i.e.

Rμ1
C > 1.

We use normalized parameters: ρi = λ
μi

, and νi = Rμi

C , for i = 1, 2, where νi

is the normalized reward in units of waiting costs per expected service period,
C
μi

. Notice that ν1
ν2

= μ1
μ2

= ρ2
ρ1

, so there are only three independent parameters.
Subsequently we refer only to ρ1, ρ2, ν1, and disregard ν2. Note that ρ1 > ρ2 since
μ1 < μ2, and ν1 > 1 by assumption. For simplicity we denote θ1 := ρ−1

1 = μ1
λ ,

θ2 := ρ−1
2 = μ2

λ . Hence 0 < θ1 < θ2.

3 The Model

When a customer arrives to the system, she sees Q1. If the server in Q1 is busy,
she proceeds to Q2. If the server in Q1 is idle, she begins service there with
probability p, followed by her departure from the system, and with probability
1−p she moves to Q2. On arrival to Q2 she will be served if the server is idle, and
if the server is busy she will leave the system unserved. This process is illustrated
in Fig. 1.

Clearly, if μ1 ≥ μ2 the customer has no reason to skip Q1, when the first
server is idle. This is why we focus on the case where μ1 < μ2.

Fig. 1. Flowchart of the system.
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3.1 Steady-State Probabilities

As seen in Fig. 2, the system can be in one of four states, each represented by
an ordered pair of 0/1 where the first position refers to Q1 and the second to
Q2, 0 indicates that the server is free, and 1 indicates it is busy. We denote by
π(0,0), π(0,1), π(1,0), π(1,1) the stationary probabilities of the four states.

Fig. 2. Flow diagram of the system.

The steady-state probabilities are determined by the following equations:

1. λπ(0,0) = μ1π(1,0) + μ2π(0,1).
2. (μ2 + pλ)π(0,1) = (1 − p)λπ(0,0) + μ1π(1,1).
3. (μ1 + λ)π(1,0) = pλπ(0,0) + μ2π(1,1).
4. π(0,0) + π(0,1) + π(1,0) + π(1,1) = 1.

Solving the linear system yields:

– π(0,0) = μ1μ2(λ(1+p)+μ1+μ2)
μ1λ2(1+p−p2)+μ2(μ1λ(p+2)+2pλ2+μ2

1)+μ2
2(pλ+μ1)+pλ3+μ2

1λ(1−p)
.

– π(0,1) = μ1λ((μ1+μ2)(1−p)+λ)
μ1λ2(1+p−p2)+μ2(μ1λ(p+2)+2pλ2+μ2

1)+μ2
2(pλ+μ1)+pλ3+μ2

1λ(1−p)
.

– π(1,0) = μ2λp(μ1+μ2+λ)
μ1λ2(1+p−p2)+μ2(μ1λ(p+2)+2pλ2+μ2

1)+μ2
2(pλ+μ1)+pλ3+μ2

1λ(1−p)
.

– π(1,1) = λ2p(μ1(1−p)+μ2+λ)
μ1λ2(1+p−p2)+μ2(μ1λ(p+2)+2pλ2+μ2

1)+μ2
2(pλ+μ1)+pλ3+μ2

1λ(1−p)
.

Dividing the numerator and denominator by λ3, and rearranging gives:

– π(0,0) = θ1θ2(1+θ1+θ2)+(θ1θ2)p

θ1(1+θ1+θ2)(θ2+1)+((1+θ1+θ2)(θ2+1)−θ2
1)p−θ1p2 .

– π(0,1) = θ1(1+θ1+θ2)−(θ1(θ1+θ2))p

θ1(1+θ1+θ2)(θ2+1)+((1+θ1+θ2)(θ2+1)−θ2
1)p−θ1p2 .

– π(1,0) = (θ2(1+θ1+θ2))p

θ1(1+θ1+θ2)(θ2+1)+((1+θ1+θ2)(θ2+1)−θ2
1)p−θ1p2 .

– π(1,1) = (1+θ1+θ2)p−θ1p2

θ1(1+θ1+θ2)(θ2+1)+((1+θ1+θ2)(θ2+1)−θ2
1)p−θ1p2 .

Recall that θi = 1
ρi

, for i = 1, 2.
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4 Throughput Maximization

In this section, our objective is to compute the value of p that maximizes the
system’s throughput, i.e., the average rate of customers served by the system.
In particular, we wish to characterize the condition that guarantees p = 1 is the
optimal strategy for maximizing the throughput.
Denote by T (p) the probability that a customer will be served by the system.

T (p) = P (Q1 is idle) · p + P (Q1 and Q2 are idle) · (1 − p)
+P (Q1 is busy and Q2 is idle)

= (π(0,0) + π(0,1))p + π(0,0)(1 − p) + π(1,0)

= π(0,0) + π(1,0) + π(0,1)p

=
θ1θ2 (1 + θ1 + θ2) + θ1θ2p + θ2(1 + θ1 + θ2)p

θ1 (1 + θ1 + θ2) (θ2 + 1) + ((1 + θ1 + θ2) (θ2 + 1) − θ21) p − θ1p2

+
θ1(1 + θ1 + θ2)p − θ1 (θ1 + θ2) p2

θ1 (1 + θ1 + θ2) (θ2 + 1) + ((1 + θ1 + θ2) (θ2 + 1) − θ21) p − θ1p2

=
θ1θ2κ + (θ1θ2 + κ(θ1 + θ2)) p − θ1 (θ1 + θ2) p2

θ1κ (θ2 + 1) + (κ (θ2 + 1) − θ21) p − θ1p2

=
−p2 (θ1 + θ2) + p

(
κ

(
θ1+θ2

θ1

)
+ θ2

)
+ κθ2

−p2 + p
(
κ

(
θ2+1

θ1

)
− θ1

)
+ κ (1 + θ2)

,

where κ = 1 + θ1 + θ2.
Our objective is to maximize T (p).

Lemma 1. T (p) is concave, for 0 ≤ p ≤ 1.

Proof. We need to show that dT
dp is a monotonically decreasing function of p.

In order to do so, we look at the second derivative, d2T
dp2 .

d2T

dp2
=

2θ21
[(

θ32 + (2θ1 + 1)θ22 − θ31
)
p3 + 3θ1

(
θ22 + θ1θ2 + θ1

)
κp2

]

((θ1 + p)(θ1p − (θ2 + 1)κ))3

+
2θ21

[−3θ1κ
2(2θ2 + 1)p + κ3(1 + 3θ2 + θ22(θ1 + 2))

]

((θ1 + p)(θ1p − θ2 + 1)κ))3
.

The denominator is always negative:

– θ1 + p > 0.
– θ1p− (θ2 +1)κ < θ1p− θ2κ ≤ θ1 − θ2κ < θ1 − θ2 < 0, since 0 < θ1 < θ2 < κ,

p ≤ 1, 1 < κ.
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The numerator is always positive:

–
(
(θ2)

3 + (2θ1 + 1) (θ2)
2 − (θ1)

3
)

p3 ≥ 0, since 0 < θ1 < θ2 and 0 ≤ p.

– 3θ1

(
(θ2)

2 + θ1θ2 + θ1

)
κp2 ≥ 0, since all elements are non-negative.

– −3θ1κ
2 (2θ2 + 1) p + κ3(1 + 3θ2 + θ22(θ1 + 2)) = −κ2 (6θ1θ2 + 3θ1) p + κ2(κ +

3κθ2 + κθ22(θ1 + 2)) > 0, since 0 ≤ p ≤ 1, 0 < θ1 < θ2 < κ = (1 + θ1 + θ2),
and 6θ1θ2 + 3θ1 < 3κθ2 = 3θ2 + 3θ22 + 3θ1θ2.

��
Corollary 1. The optimal value, i.e. the p that maximizes T (p) is strictly pos-
itive, since T ′(0) = 1+2θ2

(1+θ2)2
> 0.

Corollary 2. p = 1 is the optimal strategy for maximizing throughput iff
dT
dp (1) ≥ 0.

T ′(1) =
−θ1

(
θ32 − (θ1 − 1) θ22 − 2θ1 (θ1 + 2) θ2 − θ1

)

(θ1 + 1)2 (θ2 (θ1 + θ2 + 2) + 1)2
≥ 0

⇐⇒ θ32 − θ22(θ1 − 1) − 2θ1(θ1 + 2)θ2 − θ1 ≤ 0,

since 0 < θ1.

For any given θ2, we can write this expression as a second-degree polynomial
of θ1:

T ′(1) ≥ 0 ⇐⇒ (2θ2)θ21 + (1 + 4θ2 + θ22)θ1 − (θ22 + θ32) ≥ 0.
We notice that this polynomial has two roots, one of which is always positive

and the other one is always negative. We also notice that the second derivative
of the polynomial is strictly positive. Therefore (Fig. 3),

Proposition 1. T ′(1) ≥ 0 ⇐⇒ θ1 ≥ −(1+4θ2+θ2
2)+

√
(1+4θ2+θ2

2)
2+8(θ3

2+θ4
2)

4θ2
> 0.

The border between the region where p = 1 is optimal and the region where
p < 1 is optimal, is represented by the function

θ1 = F (θ2) :=
−(1 + 4θ2 + θ22) +

√
(1 + 4θ2 + θ22)2 + 8(θ32 + θ42)

4θ2
.

By differentiating F (θ2) we can show that F is monotonically increasing in θ2,
and its derivative is monotonically approaching 1

2 .
Following Corollary 1 and Corollary 2, we now find the explicit expression

for p that maximizes T (p):

dT

dp
=

p2
(
(θ1 + θ2)

(
θ1 − κ θ2

θ1

)
+ θ2

)
+ p (2κ(−θ1 − θ2(θ1 + θ2)) + κ2(1 + 2θ2)

(
p2 − p

(
κ

(
θ2+1

θ1

)
− θ1

)
− κ(1 + θ2)

)2 .
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Fig. 3. Regions where p < 1 and p = 1 are the optimal strategies.

To find the roots of this derivative, we only look at the roots of the numer-
ator, since the denominator is strictly positive. The numerator is a quadratic
expression, so its roots are:

p =
κ(θ1 + θ2(θ1 + θ2))

(θ1 + θ2)
(
θ1 − κ θ2

θ1

)
+ θ2

±

√
(κ(θ1 + θ2(θ1 + θ2)))

2 −
(
(θ1 + θ2)

(
θ1 − κ θ2

θ1

)
+ θ2

)
κ2(1 + 2θ2)

(θ1 + θ2)
(
θ1 − κ θ2

θ1

)
+ θ2

.

Notice that (θ1 + θ2)
(
θ1 − κ θ2

θ1

)
+ θ2 < 0, since κ = 1 + θ1 + θ2. All other

elements are positive, thus the expression under the square root is greater than
κ(θ1 + θ2(θ1 + θ2)). Therefore, in order to keep p positive we are left with only
one root:

p =
κ(θ1 + θ2(θ1 + θ2))

(θ1 + θ2)
(
θ1 − κ θ2

θ1

)
+ θ2

−

√
(κ(θ1 + θ2(θ1 + θ2)))

2 −
(
(θ1 + θ2)

(
θ1 − κ θ2

θ1

)
+ θ2

)
κ2(1 + 2θ2)

(θ1 + θ2)
(
θ1 − κ θ2

θ1

)
+ θ2

.

(1)

To conclude, from Corollary 1 we know that the p that maximizes the throughput
is strictly positive, from Corollary 2 we get the condition for p = 1, and any other
p < 1 is described by the expression in Eq. 1.
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5 Equilibrium

Decisions made by previous customers affect the state probabilities of the system,
therefore the strategy of a new customer is dependent on strategies of others.
Since customers are homogeneous, we consider symmetric equilibrium strategies.

We have three possibilities:

1. The strategy of all customers is p = 1.
2. The strategy of all customers is p = 0.
3. The strategy of all customers is 0 < p < 1, and customers are indifferent

between joining Q1 when the server is idle, or proceeding to Q2.

We now consider a customer who observes that Q1 is idle.
The probability that Q2 is idle, conditioned on Q1 being idle, is:

P̂ := P (Q2 is idle | Q1 is idle) =
π(0,0)

π(0,0) + π(0,1)

=
θ1θ2(1 + θ1 + θ2) + θ1θ2p

[θ1θ2(1 + θ1 + θ2) + θ1θ2p] + [θ1(1 + θ1 + θ2) − (θ1 + θ2)p]

=
θ2(1 + θ1 + θ2) + θ2p

(1 + θ2)(1 + θ1 + θ2) − θ1p
=

θ2κ + θ2p

(1 + θ2)κ − θ1p
.

We use this probability to characterize the equilibria of customer behavior by
comparing the expected utility of joining Q1 when it is idle, i.e. R− C

μ1
, with the

expected utility of not joining Q1 when it is idle, i.e. P̂ (R − C
μ2

) + (1 − P̂ ) · 0 =

P̂ (R − C
μ2

).

Theorem 1. There exists a unique symmetric equilibrium strategy, pe.

pe =

⎧
⎪⎨
⎪⎩

0 if 1 < ν1 ≤ A
κ(ν1−A)

ν1(θ1+θ2)−2θ1
if A ≤ ν1 ≤ B

1 if ν1 ≥ B

(2)

where κ = 1 + θ1 + θ2, A = κ − 2θ1, and B = κA − 2θ1 (Fig. 4).

Fig. 4. Graphical representation of the regions of each equilibrium type.

Proof. In order to prove the theorem, we will show that p = 0 is an equilibrium
iff ν1 ∈ (1, A], p = 1 is an equilibrium iff ν1 > B, and when ν1 ∈ (A,B] there
exists a unique equilibrium 0 < p < 1.
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– p = 0 is an equilibrium iff when all join Q2 with probability 1 then it is
still preferable to join Q2. In other words, when we plug p = 0 in P̂ , we get

R − C
μ1

≤ P̂ (R − C
μ2

), or equivalently R
C ≤

1
μ1

− ̂P
μ2

1− ̂P
. Substituting p = 0 in P̂

gives
1

μ1
− ̂P

μ2

1− ̂P
=

1
μ1

− θ2
(θ2+1)μ2
1

θ2+1
= θ2+1

μ1
− θ2

μ2
.

Multiplying by μ1 gives us the condition: Rμ1
C ≤ θ2 +1−θ2

μ1
μ2

= 1+θ2 −θ1 =
κ − 2θ1 = A. Notice that A > 1, since θ2 > θ1.
We conclude that p = 0 is an equilibrium iff ν1 ≤ A.

– p = 1 is an equilibrium iff when all join Q1 with probability 1 then it is
still preferable to join Q1. In other words, when we plug p = 1 in P̂ , we get

R − C
μ1

≥ P̂ (R − C
μ2

), or equivalently R
C ≥

1
μ1

− ̂P
μ2

1− ̂P
. Substituting p = 0 in P̂

gives
1

μ1
− ̂P

μ2

1− ̂P
=

1
μ1

− θ2(1+κ)
(θ2(1+κ)+1)μ2

1
θ2(1+κ)+1

= θ2(1+κ)+1
μ1

− θ2(1+κ)
μ2

.

Multiplying by μ1 gives us the condition: Rμ1
C ≥ θ2(1+κ)+1− μ1

μ2
θ2(1+κ) =

θ2(1 + κ) + 1 − θ1(1 + κ) = κ(1 + θ2 − θ1) − 2θ1 = κA − 2θ1 = B.
We conclude that p = 1 is an equilibrium iff ν1 ≥ B.
Notice that B > A, since κ > θ1, and A > 1.

– 0 < p < 1 is an equilibrium iff a customer who sees Q1 idle is indifferent
between the two options, i.e.

R − C

μ1
= P̂

(
R − C

μ2

)
,

or
R − C

μ1

R − C
μ2

= P̂ =
θ2κ + θ2p

(1 + θ2)κ − θ1p
.

After rearranging the elements and solving for p, we get: p = κ(ν1−A)
ν1(θ1+θ2)−2θ1

.
Notice that the denominator is always positive:

ν1(θ1 + θ2) − 2θ1 > 0 ⇔ ν1 >
2θ1

θ1 + θ2
.

This follows since ν1 > 1 and θ1 < θ2.
We now show that 0 < κ(ν1−A)

ν1(θ1+θ2)−2θ1
< 1 iff A < ν1 < B:

κ(ν1−A)
ν1(θ1+θ2)−2θ1

< 1 ⇐⇒ κ(ν1 − A) < ν1(θ1 + θ2) − 2θ1. This is equivalent to
ν1(κ − θ1 − θ2) < κA − 2θ1, which after substituting κ = 1 + θ1 + θ2 gives
ν1 < κA − 2θ1 = B, So κ(ν1−A)

ν1(θ1+θ2)−2θ1
< 1 ⇐⇒ ν1 < B.

It is clear that 0 < κ(ν1−A)
ν1(θ1+θ2)−2θ1

iff A < ν1.
We conclude that 0 < p < 1 is an equilibrium iff A < ν1 < B.

Finally, we notice that κ(ν1−A)
ν1(θ1+θ2)−2θ1

= 1 when ν1 = B, and κ(ν1−A)
ν1(θ1+θ2)−2θ1

= 0
when ν1 = A,
thus completing the proof. ��
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6 Social Optimality

In order to define the social welfare function we define the following probabilities:

– P̃ is the probability that Q1 is idle. Therefore, P̃ = π(0,0) + π(0,1).
We can calculate π(0,0)+π(0,1) directly: Since Q2 does not affect π(0,0)+π(0,1),
we can look at Q1 as a single M/M/1/1 queue with arrival rate of pλ and
service time of μ1.

Hence P̃ =
1

λp
1

λp+ 1
μ1

=
1

λp
λp+μ1
λpμ1

= 1
λp
μ1

+1
= 1

ρ1p+1 = θ1
p+θ1

.

– P̆ is the probability Q2 is idle given that Q1 is busy. Therefore,
P̆ = π(1,0)

π(1,0)+π(1,1)
= θ2κp

θ2κp+κp−θ1p2 = θ2κ
(1+θ2)κ−θ1p .

Recall that P̂ is the probability Q2 is idle given that Q1 is also idle, i.e. P̂ =
θ2κ+θ2p

(1+θ2)κ−θ1p .
The social welfare function is then:

U(p) = P̃

[
p

(
R − C

μ1

)
+ (1 − p) P̂

(
R − C

μ2

)]
+

(
1 − P̃

)
P̆

(
R − C

μ2

)
.

Normalizing U(p) by R gives:

U(p)

R
= ˜P

[

p

(

1 − 1

ν1

)

+ (1 − p) ̂P

(

1 − 1

ν2

)]

+
(

1 − ˜P
)

P̆

(

1 − 1

ν2

)

(∗)
= ˜P

[

p

(

1 − 1

ν1

)

+ (1 − p) ̂P

(

1 − θ1
θ2ν1

)]

+
(

1 − ˜P
)

P̆

(

1 − θ1
θ2ν1

)

= ˜P

[

p

(

1 − 1

ν1

)

+

(

1 − θ1
θ2ν1

)

(

(1 − p) ̂P +

(

1 − ˜P

˜P

)

P̆

)]

(∗∗)
=

θ1
p + θ1

[

p

(

1 − 1

ν1

)]

+
θ1

p + θ1

[(

1 − θ1
θ2ν1

) (

(1 − p)
θ2κ + θ2p

(1 + θ2)κ − θ1p
+

p

θ1

θ2κ

(1 + θ2)κ − θ1p

)]

=
θ1

p + θ1

⎡

⎣p

(

1 − 1

ν1

)

+

(

θ2 − θ1
ν1

)

⎛

⎝

κ + p
(

1 − κ + κ
θ1

− p
)

(1 + θ2)κ − θ1p

⎞

⎠

⎤

⎦

=
1

p + θ1

⎡

⎣p

(

θ1 − θ1
ν1

)

+

(

θ2 − θ1
ν1

)

⎛

⎝

κ + p
(

1 − κ + κ
θ1

− p
)

(

1+θ2
θ1

)

κ − p

⎞

⎠

⎤

⎦

=
−p2

(

θ1 + θ2 − 2θ1
ν1

)

+ p
(

θ2 − θ1
ν1

+ κ
θ1

(

θ1 + θ2 +
θ1
ν1

(θ1 − θ2 − 2)
))

−p2 + p
(

κ
(

θ2+1
θ1

)

− θ1
)

+ κ (1 + θ2)
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+
κ

(

θ2 − θ1
ν1

)

−p2 + p
(

κ
(

θ2+1
θ1

)

− θ1
)

+ κ (1 + θ2)
.

We get equality (*) by substituting ν2 = ν1
μ2
μ1

= ν1
θ2
θ1

, and equality (**) by

plugging P̃ , P̂ and P̌ . The socially optimal probability 0 ≤ p∗ ≤ 1 maximizes
U(p), i.e. p∗ = arg max0≤p≤1 {U(p)} = arg max0≤p≤1

{
U(p)

R

}
.

7 Comparison of Equilibrium and Optimal Joining
Strategies

We look at p∗ and pe as functions of ν1, while we fix θ1 and θ2. We define an
intersection point as the point where the sign of (p∗ − pe) changes from positive
to negative.

Lemma 2. p∗ = 0 =⇒ pe = 0. If an intersection exists, it occurs for ν1 >
1 + θ2 − θ1.

Proof. p∗ is defined as argmax of the function U(p), therefore if p∗ = 0 it follows
that ∂U(p)

∂p (0) < 0, i.e. (2θ2+1)ν1−θ2(θ2−θ1+2)−1
(θ2+1)2ν1

< 0. After rearranging we get

ν1 < θ2(θ2−θ1+2)+1
2θ2+1 .

From Theorem 1, ν1 < 1 + θ2 − θ1(= A) =⇒ pe = 0.
To prove the lemma, we show that θ2(θ2−θ1+1)+1

2θ2+1 < 1 + θ2 − θ1:
θ2(θ2−θ1+1)+1

2θ2+1 < 1 + θ2 − θ1 ⇐⇒
(θ2)2 − θ1θ2 + 2θ2 + 1 < 2θ2 + 1 + 2(θ2)2 + θ2 − 2θ1θ2 − θ1 ⇐⇒
0 < (θ2)2 + θ2 − θ1θ2 − θ1 = θ2(θ2 − θ1) + (θ2 − θ1). The last inequality holds
since θ2 > θ1. ��
Theorem 2. pe and p∗ intersect at most once in the domain where 0 < pe,
p∗ < 1.

Such an intersection exists iff θ1 <
√

1 + θ2 + θ22 − 1.

Proof. According to Lemma 2 p∗ > 0 if pe > 0, and according to Theorem
1 pe > 0 iff ν1 > 1 + θ2 − θ1. Therefore we limit our search or an intersection
point to ν1 > 1 + θ2 − θ1. We can also limit the search for an intersection by
discarding the region where at least one of the functions is 1. In the domain
where 0 < pe, p

∗ < 1 the functions are:

– pe(ν1) = κ(ν1+θ1−θ2−1)
ν1(θ1+θ2)−2θ1

, from expression (2).

– p∗(ν1) =
−ν1κθ1(θ2

2+θ1θ2+θ1)+κθ1(2θ1θ2+θ1)

ν1((κ+θ1)θ2
2−θ3

1)−((κ+θ1)θ1θ2−θ3
1)

+

√

θ1θ2κ3[ν2
1θ2(τ+θ1θ2)−ν1(θ2(τ+θ2

2)+θ1(τ+θ1θ2))+θ1(τ+θ2
2)]

ν1((κ+θ1)θ2
2−θ3

1)−((κ+θ1)θ1θ2−θ3
1)

,

where τ = 1 + θ1 + 2θ2 + θ21.



On Rational Behavior in a Loss System 177

Explanation:
{

p | dU(p)
dp = 0

}
=

−ν1κθ1(θ2
2+θ1θ2+θ1)+κθ1(2θ1θ2+θ1)

ν1((κ+θ1)θ2
2−θ3

1)−((κ+θ1)θ1θ2−θ3
1)

±
√

θ1θ2κ3[ν2
1θ2(τ+θ1θ2)−ν1(θ2(τ+θ2

2)+θ1(τ+θ1θ2))+θ1(τ+θ2
2)]

ν1((κ+θ1)θ2
2−θ3

1)−((κ+θ1)θ1θ2−θ3
1)

.

Notice that the root corresponding to the minus sign is always negative, since
the denominator is always positive and the numerator is always negative.
Thus the only feasible option is the root corresponding to the plus sign.

It should be mentioned that the expression above for p∗(ν1) is not always
valid.

We need to make sure that the discriminant is non-negative:

θ1θ2κ
3
[
ν2
1θ2 (τ + θ1θ2) − ν1

(
θ2

(
τ + θ22

)
+ θ1 (τ + θ1θ2)

)
+ θ1

(
τ + θ22

)] ≥ 0.

We solve this inequality by finding the roots of the quadratic equation. The
solutions are ν1 ≤ θ1

θ2
and ν1 ≥ τ+θ2

2
τ+θ1θ2

. Since ν1 must be greater than 1, and
θ1
θ2

< 1, the only feasibly solution is

ν1 ≥ τ + θ22
τ + θ1θ2

=
1 + θ1 + 2θ2 + θ21 + θ22

1 + θ1 + 2θ2 + θ21 + θ1θ2
.

In addition to this condition on ν1, θ1, θ2, we must demand that the expression
for p∗(ν1) satisfies the following inequalities (Otherwise, we get p∗(ν1) = 0 or
p∗(ν1) = 1):

1. 0 ≤ p∗(ν1) ≤ 1.
2. U(p∗(ν1)) ≥ U(0) and U(p∗(ν1)) ≥ U(1).

There are three roots to the expression {pe(ν1) − p∗(ν1)}:

1. ν1,1 = θ1
θ2

.

2. ν1,2 =
(θ1+2)θ2

2+(2−θ1)θ2−θ3
1−θ2

1−
[

(θ2−θ1)
√

θ1κ((θ1+4)θ2+θ1(θ1+1))
]

2θ2
.

3. ν1,3 =
(θ1+2)θ2

2+(2−θ1)θ2−θ3
1−θ2

1+
[

(θ2−θ1)
√

θ1κ((θ1+4)θ2+θ1(θ1+1))
]

2θ2
.

Notice that ν1,1, ν1,2, ν1,3 are solutions of the equation (θ1 − ν1θ2)(aν2
1 +

bν1 + c) = 0, where a = θ2, b = θ21(θ1 + 1) − θ2(θ21 + 3θ1 + 2),

and c = (θ2
1(θ1+1)−θ2(θ

2
1+3θ1+2))2−(θ1−θ2)

2θ1(θ1+θ2+1)(θ2
2+κθ1)

4θ2
.

ν1,1 and ν1,2 are smaller than 1+ θ2 − θ1, so we ignore them. ν1,3 is larger than
1+ θ2 − θ1. Thus ν1,3 is the only candidate for a point of intersection.
In order for pe and p∗ to intersect at ν1,3, we need to make sure that 0 <
pe(ν1,3) = p∗(ν1,3) < 1.
We examine this with pe(ν1,3):

pe(ν1,3) =
κ

(√
θ1κ ((θ1 + 4) θ2 + θ1 (θ1 + 1)) − θ1 (κ − 2)

)

2
(
(θ1 + θ2)

2 + θ2

) .

The inequality pe(ν1,3) > 0 always holds, since we assume that 0 < θ1 < θ2.
The inequality pe(ν1,3) < 1 holds iff 0 < θ1 <

√
1 + θ2 + θ22 − 1. ��
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We now show that if the inequality from Theorem 2 holds then the model’s
assumption (θ1 < θ2) also holds:√

1 + θ2 + θ22 − 1 < θ2 ⇐⇒
1 + θ2 + θ22 < (θ2 + 1)2 ⇐⇒
1 + θ2 + θ22 < 1 + 2θ2 + θ22, and this is always true, since θ1 > 0.
We conclude the the model’s assumption does in fact hold.

We notice that when ν1 → ∞, social optimality is equivalent to throughput
maximization.

Recall from Sect. 4,

F (θ2) :=
−(1 + 4θ2 + θ22) +

√
(1 + 4θ2 + θ22)2 + 8(θ32 + θ42)

4θ2
,

and define
G(θ2) :=

√
1 + θ2 + θ22 − 1.

See Fig. 5.

Fig. 5. The functions F and G.

Therefore from Corollary 2 we directly obtain:

– limν1→∞ p∗(ν1) = 1 ⇐⇒ θ1 ≥ F (θ2).
– limν1→∞ p∗(ν1) < 1 ⇐⇒ θ1 < F (θ2).

Returning to the condition for intersection in Theorem 2 gives:

– p∗(ν1) and pe(ν1) intersect ⇐⇒ 0 < θ1 < G(θ2).
– p∗(ν1) and pe(ν1) do not intersect ⇐⇒ G(θ2) < θ1.

The following properties hold:

1. F (θ2) < G(θ2), ∀θ2 > 0. Therefore, if limν1→∞ p∗(ν1) < 1, then p∗(ν1) and
pe(ν1) intersect.

2. limθ2→∞ F ′(θ2) = 1
2 .



On Rational Behavior in a Loss System 179

3. limθ2→0 F ′(θ2) = 0.
4. limθ2→∞ G′(θ2) = 1.
5. limθ2→0 G′(θ2) = 1

2 .

We now consider three possible relations between θ1 and θ2:

1. θ1 < F (θ2), i.e. limν1→∞ p∗(ν1) < 1 and pe(ν1) intersects with p∗(ν1).
2. F (θ2) ≤ θ1 < G(θ2), i.e. limν1→∞ p∗(ν1) = 1 and pe(ν1) intersects with

p∗(ν1).
3. θ1 ≥ G(θ2), i.e. limν1→∞ p∗(ν1) = 1 and pe(ν1) does not intersect with p∗(ν1).

It should be mentioned that in the second case, if θ1 = F (θ2) then p∗(ν1) will
asymptotically approach 1 as ν1 goes to infinity, while if θ1 > F (θ2) then p∗(ν1)
will reach 1 at a finite value of ν1.

Examples of these three cases:

1. In Fig. 6, θ1 = 0.1, θ2 = 2.

0.1 <
−(1+4·2+22)+

√
(1+4·2+22)2+8(23+24)

4·2 ≈ 0.75.
2. In Fig. 7, θ1 = 0.13, θ2 = 0.5.

0.11 ≈ −(1+4·0.5+0.52)+
√

(1+4·0.5+0.52)2+8(0.53+0.54)

4·0.5 < 0.13 <√
1 + 0.5 + 0.52 − 1 ≈ 0.32.

3. In Fig. 8, θ1 = 1, θ2 = 1.1.
1 >

√
1 + 1.1 + 1.12 − 1 ≈ 0.82.

Fig. 6. p∗ < pe for ν1 > ν1,3, and limν1→∞ p∗(ν1) < 1.
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Fig. 7. p∗ ≤ pe for ν1 > ν1,3, and limν1→∞ p∗(ν1) = 1.

Fig. 8. p∗ ≥ pe for all ν1 ≥ 1, and limν1→∞ p∗(ν1) = 1.

7.1 Economic Explanation

Increasing the probability one enters Q1 influences the system in both positive
and negative ways:

– Positive: It increases the likelihood that others will be served by the faster
server.
This has greater effect for large values of C (relative to R).
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– Negative: It increases the overall congestion of the system, since one is more
likely to be served by the slower server, and thus others are more likely to
leave the system unserved.
This has greater effect for large values of R (relative to C).

When R
C is small the positive externality is larger than the negative externality.

Customers prefer that others will choose Q1 with greater probability (a large
value of p), in order to have Q2 free for themselves. This is because in this case a
short service time is more important to customers than the guarantee of service.
However, for high values of R (or small values of C) the opposite is also possible.

8 Avoid the Crowd Vs. Follow the Crowd

In order to examine the question whether customers’ best response is to avoid
or follow the crowd we observe P̂ , i.e. the probability that Q2 is idle given that
Q1 is idle.

If P̂ increases in p, then customers would tend to avoid the crowd. When P̂
is increasing, it becomes more likely that Q2 is idle, so the customer would avoid
the crowd and use lower values of p.

If P̂ decreases in p, then customers would tend to follow the crowd. When
P̂ is decreasing, it becomes more likely that Q2 is busy, so the customer would
follow the crowd and use higher values of p. Recall:

P̂ =
θ2κ + θ2p

(1 + θ2)κ − θ1p
.

The derivative of P̂ is:

dP̂

dp
=

θ2κ
2

((1 + θ2) κ − θ1p)2
.

This expression is positive since both the numerator and denominator are
positive.

Hence we conclude that P̂ is monotonically increasing, and customers avoid
the crowd. This explains the uniqueness of the equilibrium probability pe.

9 Concluding Remarks

We managed to describe and analyze the Nash equilibrium and socially-optimal
strategies of the system, finding closed formulas, and showing that it is beneficial
for customers to avoid the crowd, and therefore the equilibrium is unique.

When describing these strategies as a function of the normalized reward, ν1,
we find that the two functions sometimes intersect, depending on the rates of
service. Another property is that in certain cases, the socially-optimal strategy
asymptotically converges to a value strictly smaller than 1. We demonstrate
that the throughput-maximizing strategy does not necessarily dictate entering
the observable queue with probability of 1.
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For further research, we propose the following generalizations of the model:

– Adding more queues to the system:
In this case, the queues need to be in a sequence Q1, Q2, ..., Qn. Upon arrival
to the system, customers can observe only Q1. When customers arrive to
queue Qi 1 ≤ i ≤ n − 1, they choose their action according to the history
they observed, i.e. the status in queues Q1, ..., Qi−1 (if i = 1, the history is
empty). Of course, if Qi is busy, the customer will automatically move to
Qi+1, with probability 1. If customers arrive to the last queue, Qn, there is
no decision for them to make, since they will always prefer getting service
rather than leaving the system unserved.
Notice that here the service rates do not have to be monotonically increasing.

– Adding waiting spots, finite or infinite, making the queues ·/M/1/s, or ·/M/1.
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Abstract. We consider a single-server retrial queue with batch service
where potential customers arrive according to a Poisson process. The
service is divided into two periods: busy period and admission period,
and they are corresponding to whether the server is in service or not
respectively. These two periods constitute an alternate renewal process.
When arrivals find busy period, they make join-or-balk decisions and
the joining ones will stay at the orbit and try to get into server at con-
stant rate; when arrivals find admission period, they get into the server
directly. At the end of each admission period, all customers in the server
will be served together regardless of the size of the batch. Therefore, we
give the assumption of service reward that vary with the service size.
Furthermore, customers in the orbit fail to get into the server before the
end of each service cycle were forced to leave the system. We identify the
(Nash) equilibrium joining strategies and the social- and profit- maxi-
mization problems of arrivals by assuming that they are informed about
the service period upon arrivals. Finally, the optimal joining strategies
are showed by numerical examples.

Keywords: Retrial queue · Batch service · Strategic customers ·
Quality-capacity tradeoff · Busy period · Admission period

1 Introduction

In most of queueing literature, it is usually assumed that customers observe
unavailable server upon arrivals will abandon the system or wait in line for
service. However, in practical applications, blocked customers may leave the ser-
vice area temporarily but repeat their service requests after a random period of
time. These so-called retrial queues have been widely studied in recent decades
to model various problems, such as telecommunication networks, cognitive radio
networks and telephone switching systems, see Falin and Templeton (1997) and
Artalejo and Gómez-Corral (2008). In the majority of these studies, the joining
customers stay at a virtual space (orbit) and retry to occupy the server at a
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random rate continuously. In recent years, there are many researchers focus on
queueing systems with retrial policy. Interested readers may refer to Artalejo
(1995), Artalejo and Gómez-Corral (1997) and Falin (2008) for more details.
Unlike the classical queueing models with FCFS (first-come first-served) disci-
pline, customers’ join-or-balk decisions in retrial queues depend not only on the
current state but also the behavior of future arrivals. Recently, Wang and Zhang
(2011), Wang and Zhang (2013) have studied customers’ strategic behavior in
retrial queueing systems.

The service capacity has always been the focus of queueing studies, while the
vast majority of them, however, take the single service discipline. In fact, batch
service occur quite frequently in practice. For example, in public transportation
system like shuttle, it begins only when a certain number of passengers or a
period of time have been accumulated. In cloud computing service center, the
server handles multiple data at the same time. Studies on batch service include
the monograph of Kleinrock (1976), in which the quantitative batch service queue
(M/Mr/1) was explored by solving the corresponding performance measures.
Early researches of batch service queues focused more on performance evaluation
and optimal control, see, for example, Bailey (1954), Chaudhry and Templeton
(1983), Downton (1955), Deb and Serfozo (1973), Medhi (1975), among others.
In addition, performance analysis in an MAP/PH/1 queue with flexible group
service were carried out in Brugno (2017), Brugno et al. (2017, 2018) recently.

Initiated by Naor (1969) with a single-server observable queue scenario, game-
theoretic analysis of queueing systems has received great attention during the
past decades. There has been a growing number of studies from the viewpoint of
economics, see Edelson and Hilderbrand (1975), Economou and Kanta (2011),
Guo and Hassin (2011), and among others. The monographs Hassin and Haviv
(2003) and Hassin (2016) summarized the main models and methodologies in a
variety of queueing systems by using game analysis. However, there exists only
a few game-theoretic research of batch service queues. Bountali and Economou
(2017a, 2017b) explored the strategic behavior of customers in a single-server
queue with a fixed service scale K in different information cases.

In retrial queues, server remains idle in a random period of time after each
service completion until a customer in the orbit retries or a primary customer
arrives. Hence, the server always be wasted unreasonably. Therefore, Manou et
al. (2014) and Dudin et al. (2015) proposed that server can provide service in
groups for improving throughput. Besides, they considered the admission strat-
egy, and the service process is divided into busy period and admission period. At
the end of busy period, the admission period starts and the external arrivals and
customers in the orbit who make attempts can be served together at the end of
this period. While in Manou et al. (2014), the authors modeled a transportation
station based on batch service and admission strategy in a retrial queue. Besides,
the station is left empty after each departure of facility, that is, customers in the
orbit failed get into server will be cleared when the admission period ends. It
was also obvious that, the shortcoming of admission strategy is that customers
do not receive instant service upon arrivals.
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Inspired by the aforementioned studies, we consider a Markovian single-server
retrial queue with infinite service capacity and admission strategy. By assuming
that each busy and admission period with exponential duration time, we find
that the service process constitutes an alternate renewal process. Customers
make join-or-balk decisions upon arrivals based on linear reward-cost structure
from an economic viewpoint. We give a specific example of the service process
of shuttle in the starting station, where the admission and busy periods are
corresponding to whether the facility stay in the station or not, respectively.
Moreover, passengers find the busy period would like to stroll at the nearby
shopping mall and return after a random period of time. The shuttle departs
with all customers in the server at the end of admission period and a new busy
period start at the same time.

In our model, we adopt a nonconstant service reward scenario, related studies
see Anand et al. (2011), Li et al. (2016), Li et al. (2017), Xu et al. (2015), Xu et al.
(2016) and the reward is decreasing with service congestion in our paper here.
Therefore, the service provider faces a quality-capacity tradeoff: reducing the
congestion in a service cycle increases individual’s service reward, but decreases
the customers’ possibility of getting into server. To summarize, this paper is the
first work that carries out the game-theoretic analysis of a batch service retrial
queue with two-stage service process. Besides, the nonconstant service reward
function is adopted, which is inversely proportional to the congestion level of
each service. Sensitivity analysis of optimal joining strategies is presented from
different perspectives.

The remainder of this paper is organized as follows. Section 2 gives our
assumptions and preliminary results. In Sect. 3, we analyse the steady-state per-
formance measures of the system. The corresponding equilibrium, social- and
profit- maximizing joining strategies are derived in Sect. 4. In Sect. 5, we con-
sider linear-reward function as a special case. Section 6 carries out sensitively
analysis of the customers’ behavior and social- and profit- maximization strate-
gies through different numerical scenarios, then it followed by the conclusions in
Sect. 7.

2 Model Description

We consider a single-server retrial queue with batch service, where potential
customers arrive in a Poisson process with rate λ. When the server is busy,
the service time is exponentially distributed with parameter μ, regardless of the
size of a batch. There are two periods in each service process, busy period and
admission period. In the busy period, each arrival decides whether to join the
orbit or not based on a reward-cost structure. It consists of the service reward
minus waiting cost. If he enters the orbit, then he retries to get into server with
constant rate θ, and he will success when meet admission period. At the end of
the busy period, the admission period starts and it is exponentially distributed
with parameter γ. During this period, all external arrivals and customers in the
orbit who retry can get into the server. At the end of the admission period, all
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customers in the server can be served together and customers in the orbit who
fail to get into server were forced to leave the system at the same time. Finally,
we assume that the inter-arrival times, service times, admission times and retrial
times are mutually independent.

Each customer receives a nonconstant reward after completing service, but
receives no reward if he balks or failed to retry. We denote the reward function
as R(N) (>0), where N is the average number of customers be served in each
service cycle. Also, customers stay at the orbit accumulate waiting cost at rate
C per time unit and there is no waiting cost for these who get into the server.
Besides, every customer is risk neutral and aims to maximize his own expected
benefit, and their join-or-balk decisions are irrevocable, i.e., reneging after joining
and re-enter after balking are forbidden.

We define the service period by I(t) at time t, where I(t) = 0 and 1 (0:
busy period, 1: admission period). Note that the two periods are exponen-
tially distributed with parameter μ and γ, respectively. Denote Bk and Ak as
the busy period and admission period of the kth service cycle Tk respectively,
where Bk and Ak (k = 1, 2, · · · ) constitute an alternate renewal process. More-
over, we denote Nor(t) and Nse(t) as the number of customers in the orbit
and in the server at time t, respectively. It is clear that the stochastic process
{I(t), Nor(t), Nse(t), t ≥ 0} is a three-dimensional continuous time Markov chain
with state space Ω = {1} × {0, 1, · · · } × {0, 1, · · · } ∪ {0} × {0, 1, · · · } × {0}.

Assumption 1. The service reward R(N) is a continuous function with N , and
it is decreasing and concave in the average number of customers be served in a
service cycle N , i.e., dR(N)

dN < 0 and dR2(N)
dN2 ≤ 0.

This assumption satisfies the characteristics of the quality-capacity service.
The inequality dR(N)

dN < 0 implies that the service reward decreasing with the

service congestion. Regarding dR2(N)
dN2 ≤ 0, the reward function R(N) is concave

in the number of customers be served in a service cycle. This makes sense:
when N is small, the quality of service is less affected by increasing one unit,
however, when the number of customers of a batch is relatively large, due to
the unlimited size of a batch in our paper, the marginal effect of adding one
customer shall be increasing. Therefore, the marginal utility due to the increase
of a customer becomes more evident. In the literature, Li et al. (2016) adopted
a linear reward function which satisfies R′(μi) < 0 and R′′(μi) = 0, where they
focus on the quality-speed service. As an extension, a decreasing and concave
reward function R(μi) (R′′(μi) < 0) was considered in Li et al. (2017).

In what follows, we assume that all arrivals can not observe the number
of customers in the system but the service period. Recall that external arrival
definitely join the system due to zero waiting cost and a positive reward. Thus
we concentrate on the these who find busy period upon arrivals.

Remark 1. As we have known, the two periods constitute an alternate renewal
process in a service cycle, and they are exponentially distributed with independent
parameters respectively. According to the knowledge in Stochastic Process, the
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stationary probabilities of the two periods in each service cycle only depend on
parameters μ and γ, i.e.,

p0 =
γ

μ + γ
, p1 =

μ

μ + γ
. (1)

3 Steady-State Analysis

In this Section, we study steady-state results of the system and assume that
arrivals find busy period join the system with probability q. Let pk,i,j represents
the stationary probability of state (k, i, j). Besides, we define the corresponding
partial generating functions as

p1(x, y) =
∞∑

i=0

∞∑

j=0

p1,i,jx
iyj , p0(x) =

∞∑

i=0

p0,i,0x
i. (2)

Then we have the following results.

Lemma 1. In the single-server retrial queue with batch service, arrivals find
busy period join with probability q, then the average number of customers in the
orbit in the two periods and the mean number of customers in the server at the
admission period are given as

N0,or =
λq

μ
, (3)

N1,or =
λqγ

μ(θ + γ)
, (4)

Nse =
λμ(θ + γ) + λqγθ

μγ(θ + γ)
. (5)

Proof. The balance equations for the stationary distribution of the Markov chain
{I(t), Nor(t), Nse(t), t ≥ 0} are given as follows:

(λq + μ)p0,0,0 = γ

∞∑

i=0

∞∑

j=0

p1,i,j , (6)

(λq + μ)p0,i,0 = λqp0,i−1,0, i = 1, 2, 3, · · · , (7)
(λ + γ + iθ)p1,i,0 = μp0,i,0, i = 0, 1, 2, · · · , (8)
(λ + γ + iθ)p1,i,j = λp1,i,j−1 + (i + 1)θp1,i+1,j−1, i = 0, 1, 2, · · · , j = 1, 2, 3, · · · . (9)

The stationary probability of the two periods can be defined as:

p0 =
∞∑

i=0

p0,i,0, p1 =
∞∑

i=0

∞∑

j=0

p1,i,j . (10)
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Multiplying both sides of (8) by xi and summing over all i, respectively. We
obtain

∞∑

i=0

(λ + γ + iθ)p1,i,0x
i = μp0(x). (11)

Multiplying both sides of (9) by xiyj and summing over all i, j, respectively. With
the help of (11), we can easily have the following after some simple algebraic
operations

(λ(1 − y) + γ) p1(x, y) + θ(x − y)
∂p1(x, y)

∂x
= μp0(x). (12)

By using (6), (7) and (1), we have

p0,i,0 =
γp1

λq + μ

(
λq

λq + μ

)i

=
μγ

(μ + γ)(λq + μ)

(
λq

λq + μ

)i

, i = 0, 1, 2, · · · , (13)

then, in the busy period, the mean number of customers in the orbit is

N0,or =
∞∑

i=1

ip0,i,0

p0
=

∞∑

i=1

i

(
λq

λq + μ

)i
μ

λq + μ
=

λq

μ
. (14)

In the admission period, there are customers both in the orbit and the server.
We denote the corresponding average number of customers as N1,or and Nse,
and take the derivative of the Eq. (12) with respect to x, y, respectively. Then,
by setting x = 1, y = 1, we have the following equations:

(θ + γ)p1Nob
1,or = μp0N0,or, (15)

γp1Nse = λp1 + θp1N1,or, (16)

from which we obtain

N1,or =
λqγ

μ(θ + γ)
, (17)

Nse =
1
γ

(λp1 + θN1,or) =
λμ(θ + γ) + λqγθ

μγ(θ + γ)
. (18)

This completes the proof. ��
Remark 2. Obviously, in the steady state, the expected number of customers be
served in a service cycle is exactly the the average number of customers in the
server at the admission period, so we immediately have N = Nse = λμ(θ+γ)+λqγθ

μγ(θ+γ) .
This varies with customers’ joining probability q and we denote it as N(q).

Remark 3. Since dN(q)
dq = λθ

μ(θ+γ) > 0 is a constant here, combining with
Assumption 1, the variation tendency of the reward function R(N) on q is com-
pletely the same as it on N . That is to say, dR(N(q))

dq < 0 and dR2(N(q))
dq2 ≤ 0 are

also established.
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We then consider the mean sojourn time in the orbit and the probability that
customers in the orbit getting into server in a service cycle, and we denote them
as T and ps, respectively.

Proposition 1. In the single-server retrial queue with batch service, the mean
sojourn time before getting into server for arrivals in the orbit and the probability
they get service in a service cycle are as follows:

T =
μ + θ + γ

μ(θ + γ)
, (19)

ps =
θ

θ + γ
. (20)

Proof. By considering arrivals find busy period, their sojourn time in the orbit
T can be divided into two parts in a service cycle: T0 and T1, which represent
the time they stay at the busy period and admission period, respectively. Where
T0 = 1

μ due to the memoryless property of exponential distribution on the busy
period. Besides, customers in the admission period leave the orbit either the
admission period is over or they have retrials in this period. For the admission
period is over, they have to wait for an exponentially distributed time with
parameter γ; for having retrials, they have to wait for an exponentially dis-
tributed time with parameter θ. Therefore, T1 is the time until the occurrence
of one of the two events, that is to say, T1 = 1

θ+γ , then we can get (19) easily.
In addition, the probability that customers in the orbit get into the server is
P (X < Y ), where X follows an exponential distribution with parameter θ and
Y is an exponentially distributed random variable with rate γ. Accordingly, we
obtain that ps = θ

θ+γ . ��

4 Optimal Joining Strategies

We then explore the equilibrium joining strategies of arrivals who find busy
period and the socially optimal strategy from the viewpoint of social planner.
Besides, the revenue-maximizing problem by imposed an admission fee is con-
sidered. The results are summarized in the following.

Theorem 1. In the single-server retrial queue with batch service, a unique Nash
equilibrium joining strategy ‘join the orbit with probability qe whenever finding
the busy period’ exists, and is given as

qe=

⎧
⎪⎨

⎪⎩

0 if CT
ps

> R(N (0 )),
μγ(θ+γ)R−1(CT

ps
)−λμ(θ+γ)

λθγ if R(N (1 )) ≤ CT
ps

≤ R(N (0 )),
1 if CT

ps
< R(N (1 )),

(21)

where R−1(·) is the inverse of function R(N).
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Proof. Considering a tagged customer who join the orbit when find busy period
and the other blocked customers follow the given joining strategy q. So the
expected net benefit of him is

S(q) = psR(N(q)) − CT. (22)

Since we have dR(N(q))
dq < 0, then the benefit S(q) is strictly deceasing with q in

[0, 1] and has a unique maximum

S(0) = psR(N(0)) − CT, (23)

and a unique minimum

S(1) = psR(N(1)) − CT. (24)

Then we have to consider the following three cases:

• When CT
ps

> R(N(0)), S(q) is negative for every q, then the best response is
balking and the unique Nash equilibrium strategy is qe = 0;

• when R(N(1)) ≤ CT
ps

≤ R(N(0)), there exists a unique solution of the equa-
tion S(q) = 0 which lies in the interval [0, 1], and it is exactly the optimal
strategy;

• when CT
ps

< R(N(1)), S(q) is positive for every q, in other words, the best
response is joining and qe = 1.

The results of the three cases are corresponding to the three parts in (21). ��
Since S(q) is a decreasing function of q, whenever the joining probability

q < qe, the expected benefit of a joining customer at the busy period is positive,
thus the optimal response is to join the system. Similarly, when q > qe, the
unique best response is balking. Moreover, every strategy is the best response
when q = qe. Therefore, we can find that the optimal strategy of a customer
is a decreasing function of the strategy adopted by the other customers. This
correspond to the “avoid the crowd” (ATC) situation. What’s more, R(N(0)) ≥ 0
is required for ruling out the situation that no one will join the system.

We can now proceed to the problem of social optimization which aim to
maximize the sum of the benefit of all customers per time unit. The results can
be summarized in the following theorem.

Theorem 2. In the single-server retrial queue with batch service, a unique
mixed strategy ‘join the orbit with probability qsoc whenever finding the busy
period’ that maximizes the social benefits per time unit exists and is given as

qsoc=

⎧
⎨

⎩

0 if qmax < 0 ,
qmax if 0 ≤ qmax ≤ 1 ,
1 if qmax > 1 .

(25)

where qmax is the unique solution of the equation

p0psR(N(q)) + (p0psq + p1) × dR(N(q))
dq

− p0CT = 0. (26)
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Proof. For a given joining strategy q of arrivals who find busy period, and
the operation process in steady-state constitute an alternate renewal process
as described in Sect. 2. Hence, the social benefits per time unit is

Ssoc(q) = λp0q(psR(N(q)) − CT ) + λp1R(N(q))
= λ(qp0ps + p1)R(N(q)) − λp0qCT. (27)

The second-order derivative of Ssoc(q) with respect to q is given as

d2Ssoc(q)
dq2

= λ

(
2p0ps × dR(N(q))

dq
+ (p0psq + p1) × d2R(N(q))

dq2

)
. (28)

Also, with the help of Remark 2 in Sect. 3, we have d2Ssoc(q)
dq2 < 0. Then, there

exists a unique qmax that maximizes Ssoc(q), where qmax is the unique solution
of the equation dSsoc(q)

dq = 0. We then consider the location of qmax and interval
[0, 1] in the following three cases:

• When qmax < 0, Ssoc(q) is decreasing in q, thus Ssoc(q) ≤ Ssoc(0) in the
domain of [0, 1], the best response is to balk, then qsoc = 0;

• when 0 ≤ qmax ≤ 1, Ssoc(q) is concave with q in [0, 1], and qmax is exactly
the maximum point, then qsoc = qmax;

• when qmax > 1, Ssoc(q) is increasing with q, so Ssoc(q) ≤ Ssoc(1) in the
domain of [0, 1], the best response is to join the system, then qsoc = 1.

The results of the three cases are corresponding to the three parts of (25). ��
Finally, we focus our attention on the problem of profit maximization, that

is, the administrator aims to maximize his profit by imposing an admission fee
p on the customers who get into the server. By imposing this fee, the reward
of the customer changes from R(N(q)) to R(N(q)) − p. Therefore, we consider
a new equilibrium joining strategy qprof (p). In addition, the nonnegativity of
R(N(q)) − p is required since arrivals find the admission period prefer to join
the system. That is to say, the price p ≤ R(N(0)) is necessary. We are interested
in studying the strategy qprof in this way, then we have the following results.

Theorem 3. In the single-server retrial queue with batch service, a unique
mixed strategy ‘join the orbit with probability qprof whenever finding the busy
period’ that maximizes the administrator’s net profit per time unit exists and is
given as

qprof=

⎧
⎨

⎩

0 if q̃max < 0 or q̃max ≥ 0 & Π2(0 ) ≥ max{Π1(q̃max ),Π1(1 )},
q̃max if 0 ≤ q̃max ≤ 1 & Π1(q̃max ) > Π2(0 ),
1 if q̃max > 1 & Π1(1 ) > Π2(0 ).

(29)

where q̃max = qmax and Π1(q),Π2(q) are constructed in (34).
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Proof. Suppose that all arrivals adopt the joining strategy q when observe the
busy period and join directly when finding admission period. We define Π(q)
to be the net profit per time unit of the administrator, when blocked customers
follow the strategy q. Let p(q) be the admission fee that induce the strategy q.
Then we have

Π(q) = λ(qp0ps + p1)p(q). (30)

To determine p(q) in terms of q, a reasonable range is p(q) ≤ R(N(0)), if
not, no customer will join the system in each service cycle. First, we consider an
arrival who find busy period when an admission fee p(q) is imposed. Then his
optimal response is to replace R(N(q)) in Theorem 2 with R(N(q)) − p(q).

with R(N(q)) replaced by R(N(q)) − p(q)
This customer responses optimally according to Theorem 2 with R(N(q))

replaced by R(N(q)) − p(q). Therefore we have to solve the equation

ps (R(N(q)) − p1(q)) = CT, (31)

from which we obtain

p1(q) = R(Nob(q)) − CT

ps
, q ∈ [0, 1]. (32)

Subsequently, we pay attention to the arrival who find admission period, simi-
larly, he responses optimally according to the following:

R(N(q)) − p2(q) = 0. (33)

Note that arrival who find busy period has a negative benefit at this time if he
joins the system, thus q = 0, that is p2(q) = R(N(0)).

Then the profit of the administrator assumes the form

Π(q) =

{
Π1(q) = λ(p0psq + p1)(R(N(q)) − CT

ps
), if p = p1(q),

Π2(q) = λp1R(N(0)), if p = p2(q).
(34)

The second-order derivative of Π1(q) is

d2Π1(q)
dq2

= λ

(
2p0ps × dR(N(q))

dq
+ (p0psq + p1) × d2R(N(q))

dq2

)
< 0. (35)

Thus Π1(q) is concave with q and there exists a unique point q̃max that maxi-
mizes Π1(q) which was solved by dΠ1(q)

dq = 0. It is remarkable that the value of
Π2(q) is not depend on q. We then consider the following three cases:

• When q̃max < 0, Π1(q) is decreasing in q in [0, 1], thus Π1(q) ≤ Π1(0) < Π2(0)
in the domain of q, the best response is balking, then qprof = 0, the optimal
price p(q) = R(N(0));
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• when 0 ≤ q̃max ≤ 1, Πob
1 (q) is concave with q in [0, 1], the maximum of

Π1(q) is achieved at q̃max. If Π1(q̃max) > Π2(0), we have qprof = q̃max, the
corresponding optimal price p(q) = R(N(q̃max)) − CT

ps
, otherwise, qprof = 0,

and p(q) = R(N(0));
• when q̃ob

max > 1, Π1(q) is increasing in q in [0, 1], thus Π1(q) ≤ Π1(1) in the
domain of q. If Π1(1) > Π2(0), we have qprof = 1, the corresponding optimal
price p(q) = R(N(1)), otherwise, qprof = 0, and p(q) = R(N(0)).

The results of the three cases are summarized in (29). ��

5 Linear Reward Case

Based on our previous assumption, the service reward R(N) is concave in the
average number of customers be served in a service cycle N . A simple but special
case dR2(N)

dN2 = 0 is worth studying, and we denote it as R(N) = R − kN , where
R is a nonnegative constant, and k is the unit reward loss with the increase of
one customer in a service cycle (k ≥ 0).

We aim to explore the optimal joining strategies of blocked customers.

Theorem 4. In the single-server retrial queue with batch service and lin-
ear service reward, the individual, social and profit optimal joining strategies
qe, qsoc, qprof are given as

qe =

⎧
⎪⎨

⎪⎩

0 if k > psR−CT
psN (0) ,

psR−CT−pskN (0)
psk(N (1)−N (0)) if psR−CT

psN (1) ≤ k ≤ psR−CT
psN (0) ,

1 if k < psR−CT
psN (1) ,

(36)

qsoc =

⎧
⎪⎨

⎪⎩

0 if k > psR−CT
2psN (0) ,

psR−CT−2pskN (0)
2psk(N (1)−N (0)) if psR−CT

2psN (1) ≤ k ≤ psR−CT
2psN (0) ,

1 if k < psR−CT
2psN (1) ,

(37)

qprof =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if k > psR−CT
2psN (0) or k ≤ psR−CT

2psN (0)

& Π2(0 ) ≥ max{Π1(q̃max ),Π1(1 )},
psR−CT−2pskN (0)
2psk(N (1)−N (0)) if psR−CT

2psN (1) ≤ k ≤ psR−CT
2psN (0)

& Π1(q̃max ) > Π2(0 ),
1 if k < psR−CT

2psN (1) & Π1(1 ) > Π2(0 ),
(38)

where q̃max = psR−CT−2pskN(0)
2psk(N(1)−N(0)) , Π1(q) and Π2(q) are given by (45).

Proof. Based on the reward-cost structure, the expected benefit of a joining
customer in the busy period when others follow the strategy q is given as

S(q) = ps(R − kN(q)) − CT. (39)



194 K. Sun et al.

We can easily find that S(q) is deceasing in q. Thus the unique maximum and
minimum are S(0) and S(1), respectively. As a result, we consider the following
three cases:

• When ps((R − kN(0)) − CT < 0, S(q) is negative for every q ∈ [0, 1], then
qe = 0;

• when ps((R−kN(1))−CT ≤ 0 ≤ ps((R−kN(0))−CT , there exists a unique
solution of the equation S(q) = 0 which lies in the interval [0, 1], and it is
exactly the optimal strategy;

• when ps((R − kN(1)) − CT > 0, S(q) is positive for every q ∈ [0, 1], then
qe = 1.

The social benefits per time unit when all blocked customers follow the strat-
egy q in the busy period is

Ssoc(q) = λ(p0psq + p1) (R − kN(q)) − λqp0CT, (40)

and it is concave with q.
Thus there exists a unique point qmax that maximizes Ssoc(q). Where qmax

is the unique solution of the equation

p0ps(R − kN(q)) − (p0psq + p1)k × dN(q)
dq

− p0CT = 0. (41)

Then we obtain qmax = psR−CT−2pskN(0)
2psk(N(1)−N(0)) and we discuss it in the following

three cases:

• When qmax < 0, Ssoc(q) is decreasing in q in [0, 1], the maximum is obtained
at 0, then qsoc = 0;

• when 0 ≤ qmax ≤ 1, Ssoc(q) is concave with q in [0, 1], then qsoc = qmax;
• when qmax > 1, Ssoc(q) is increasing in q in [0, 1], then qsoc = 1.

As we have described before, when arrivals can observe the service period of
the system, they join directly at the admission period. In the profit maximizing
problem, a reasonable admission fee p(q) ≤ R − kN(0) is considered. When
customers adopt the strategy q in the busy period, the profit per time unit is

Π(q) = λ(p0psq + p1)p(q). (42)

By the analysis in Theorem 3, the two possible price which base on the customers’
optimum in two periods respectively are

p1(q) = R − kN(q) − CT

ps
, (43)

p2(q) = R − kN(0). (44)
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The corresponding revenue function is

Π(q) =

{
Π1(q) = λ(p0psq + p1)(R − kN(q) − CT

ps
), if p = p1(q),

Π2(0) = λp1(R − kN(0)), if p = p2(q).
(45)

Since Π1(q) is concave with q, thus there exists a unique point q̃max that maxi-
mizes Π1(q). And it is the unique solution of the equation

p0ps(R − kN(q)) − (p0psq + p1)k × dN(q)
dq

− p0CT = 0. (46)

The value of q̃max are discussed in the three cases:

• When q̃max < 0, Π1(q) is decreasing in q in [0, 1], thus Π1(q) ≤ Π1(0) < Π2(0)
in the domain of q, the best response is balking, then qprof = 0 and the
optimal admission fee is R − kN(0);

• when 0 ≤ q̃max ≤ 1, Π1(q) is concave with q ∈ [0, 1], the maximum of Π1(q)
is achieved at q̃max. If Π1(q̃max) > Π2(0), we have qprof = q̃max, otherwise,
qprof = 0;

• when q̃max > 1, Π1(q) is increasing in q in [0, 1], thus Π1(q) ≤ Π1(1) in the
domain of q. If Π1(1) > Π2(0), we have qprof = 1, otherwise, qprof = 0.

The above results are summarized in Eqs. (36), (37) and (38). ��
Remark 4. Based on the Theorem above, by comparing the Eqs. (36) and (37)
concretely, the order of the individual joining probability and the socially optimal
one is qsoc ≤ qe. However, the order between qprof and qsoc, qe is not clear, and
we shall explore it by numerical examples.

6 Numerical Examples

In this section, we conduct numerical analysis to gain more insights on the
optimal joining probabilities. In addition, customers’ joining probabilities are
all increasing with R, and decreasing with the unit waiting cost C intuitively.
Thus in all applications, we assume R = 4, C = 1, and aim to obtain a direct
observation of the joining probabilities with respect to the parameters λ, μ and
γ, respectively. Throughout the examples, we use the linear function of reward
as a main research object, that is R(N) = R − kN .

More concretely, in Fig. 1, it shows the impact of arrival rate on the three
joining probabilities. As we can see, qe, qsoc, qprof are non-increasing functions of
λ. It can be explained by the ATC situation we have analysed before, that is a
higher congestion level decrease the service reward R(N) as well as customers’s
joining willing. Figure 2 shows that a customer arrive at the busy period find
a higher service rate μ prefers to join the system, since this means a shorter
waiting time in the orbit and less customers be served in a service cycle. In
Fig. 3, it shows the impact of admission rate γ on the joining strategies. As we
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Fig. 1. The three joining probabilities with respect to λ, μ = 1, γ = 2, k = 1.5, θ = 5.
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Fig. 2. The three joining probabilities with respect to μ, λ = 0.7, γ = 2, k = 1.5, θ = 5.
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Fig. 3. The three joining probabilities with respect to γ, λ = 0.8, γ = 2, k = 2, θ = 5.

have seen, the three joining probabilities are nondecreasing with a small γ or a
long admission period. With the increase of γ, the admission period is shorter and
it decreases the average number of customers in the server N and increases the
service reward R(N) at this moment. However, for a large enough γ, the increase
of it has a great negative impact on the final probability ps of getting into the
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server. Therefore, γ has a dual influence on joining probabilities. In addition, the
numerical scenarios in Figs. 1, 2 and 3 all indicate the order qprof ≤ qsoc ≤ qe. It
is a result valid in many other queueing systems due to the negative externality
of individuals.

7 Conclusions

In this paper, we analyzed the strategic customers’ behavior in a Markovian
retrial queueing system with batch service where the number of customers in
the system is not revealed. The system’s operation process is divided into two
periods: busy period and admission period, and it can be regard as a renewal
process. The equilibrium, social- and profit- maximizing joining strategies were
derived and compared numerically. The general reward function scenario as well
as the linear reward function were explored. It was observed that the equilibrium
social benefit is better off when the service period is revealed to customers. In
addition, the order qprof ≤ qsoc ≤ qe is obtained numerically. For the future
work, one may extend the system have a constant admission period, or wait for
a given number of customers before service start, or combine the two by setting
a maximum period length and load simultaneously.
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Artalejo, J.R., Gómez-Corral, A.: Retrial Queueing Systems: A Computational App-
roach. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78725-9

Bailey, N.T.: On queueing processes with bulk service. J. Royal Stat. Soc. Ser. B
(Methodol.) 16, 80–87 (1954)

Bountali, O., Economou, A.: Equilibrium joining strategies in batch service queueing
systems. Eur. J. Oper. Res. 260, 1142–1151 (2017a)

Bountali, O., Economou, A.: Equilibrium threshold joining strategies in partially
observable batch service queueing systems. Ann. Oper. Res. 1–23 (2017b)

Brugno, A.: MAP/PH/1 systems with group service: performance analysis under dif-
ferent admission strategies (2017)

Brugno, A., D’Apice, C., Dudin, A., Manzo, R.: Analysis of an MAP/PH/1 queue with
flexible group service. Int. J. Appl. Math. Comput. Sci. 27, 119–131 (2017)

https://doi.org/10.1007/978-3-540-78725-9


198 K. Sun et al.

Brugno, A., Dudin, A.N., Manzo, R.: Analysis of a strategy of adaptive group admission
of customers to single server retrial system. J. Ambient Intell. Humanized Comput.
9, 123–135 (2018)

Chaudhry, M.L., Templeton, J.G.C.: A First Course in Bulk Queues. Wiley, New York
(1983)

Downton, F.: Waiting time in bulk service queues. J. Roy. Stat. Soc. B Ser. B 17,
256–261 (1955)

Deb, R.K., Serfozo, R.F.: Optimal control of batch service queues. Adv. Appl. Probab.
5, 340–361 (1973)

Dudin, A.N., Manzo, R., Piscopo, R.: Single server retrial queue with group admission
of customers. Comput. Oper. Res. 61, 89–99 (2015)

Economou, A., Kanta, S.: Equilibrium customer strategies and social-profit maximiza-
tion in the single-server constant retrial queue. Naval Res. Logistics 58, 107–122
(2011)

Edelson, N.M., Hilderbrand, D.K.: Congestion tolls for Poisson queuing processes.
Econometrica 43, 81–92 (1975)

Falin, G.I.: The M/M/1 retrial queue with retrials due to server failures. Queueing
Syst. 58, 155–160 (2008)

Falin, G., Templeton, J.G.: Retrial Queues. Chapman & Hall, London (1997)
Guo, P., Hassin, R.: Strategic behavior and social optimization in Markovian vacation

queues. Oper. Res. 59, 986–997 (2011)
Hassin, R., Haviv, M.: To Queue or Not to Queue: Equilibrium Behavior in Queueing

Systems. Kluwer Academic Publishers, Boston (2003)
Hassin, R.: Rational Queueing. CRC Press, Boca Raton (2016)
Kleinrock, L.: Queueing Systems, Volume 2: Computer Applications, vol. 66. Wiley,

New York (1976)
Li, X., Guo, P., Lian, Z.: Quality-speed competition in customer-intensive services with

boundedly rational customers. Prod. Oper. Manage. 25, 1885–1901 (2016)
Li, X., Li, Q., Guo, P., Lian, Z.: On the uniqueness and stability of equilibrium in

quality-speed competition with boundedly-rational customers: the case with general
reward function and multiple servers. Int. J. Prod. Econ. 193, 726–736 (2017)

Manou, A., Economou, A., Karaesmen, F.: Strategic customers in a transportation
station: when is it optimal to wait? Oper. Res. 62, 910–925 (2014)

Medhi, J.: Waiting time distribution in a Poisson queue with a general bulk service
rule. Manage. Sci. 21, 777–782 (1975)

Naor, P.: The regulation of queue size by levying tolls. Econometrica 37, 15–24 (1969)
Wang, J., Zhang, F.: Equilibrium analysis of the observable queues with balking and

delayed repairs. Appl. Math. Comput. 218, 2716–2729 (2011)
Wang, J., Zhang, F.: Strategic joining in M/M/1 retrial queues. Eur. J. Oper. Res.

230, 76–87 (2013)
Xu, Y., Scheller-Wolf, A., Sycara, K.: The benefit of introducing variability in single-

server queues with application to quality-based service domains. Oper. Res. 63,
233–246 (2015)

Xu, X., Lian, Z., Li, X., Guo, P.: A hotelling queue model with probabilistic service.
Oper. Res. Lett. 44, 592–597 (2016)



Queueing Networks



A Linear Programming Approach
to Markov Reward Error Bounds

for Queueing Networks

Xinwei Bai(B) and Jasper Goseling

Department of Applied Mathematics, University of Twente, P.O. Box 217,
7500 AE Enschede, The Netherlands
{x.bai,j.goseling}@utwente.nl

Abstract. In this paper, we present a numerical framework for con-
structing bounds on stationary performance measures of random walks
in the positive orthant using the Markov reward approach. These bounds
are established in terms of stationary performance measures of a per-
turbed random walk whose stationary distribution is known explicitly.
We consider random walks in an arbitrary number of dimensions and
with a transition probability structure that is defined on an arbitrary
partition of the positive orthant. Within each component of this partition
the transition probabilities are homogeneous. This enables us to model
queueing networks with, for instance, break-downs and finite buffers. The
main contribution of this paper is that we generalize the linear program-
ming approach of [10] to this class of models.

Keywords: Multi-dimensional random walk ·
Stationary performance measures · Error bound ·
Markov reward approach · Linear programming

1 Introduction

We present a framework for establishing bounds on stationary performance mea-
sures of a class of discrete-time random walks in the M -dimensional positive
orthant, i.e., with state space S = {0, 1, . . . }M . This class of random walks
enables us to model queueing networks with nodes of finite or infinite capacity,
and with transition rates that depend on the number of jobs in the nodes. The
latter allows us to consider, for instance, queues with break-downs or networks
with overflow. The stationary performance measures that can be considered in
our framework include average number of jobs in a queue, throughput and block-
ing probabilities.

More precisely, for a random walk R we assume that a unique stationary
probability distribution π : S → [0, 1] for which the balance equations hold
exists, i.e., there exists π that satisfies

π(n)
∑

n′∈S

P (n, n′) =
∑

n′∈S

π(n′)P (n′, n), ∀n ∈ S, (1)
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where P (n, n′) denotes the transition probability from n to n′. For a non-negative
function F : S → [0,∞), we are interested in the stationary performance
measure,

F =
∑

n=(n1,...,nM )∈S

π(n)F (n). (2)

For example, if F (n) = n1, then F represents the average number of jobs in the
first node.

If π is known explicitly, F can be derived directly. However, in general it is
difficult to obtain an explicit expression for the stationary probability distribu-
tion of a random walk. In this paper, we do not focus on obtaining the stationary
probability distribution. Instead, our interest is in providing a general numerical
framework to obtain upper and lower bounds on F for general random walks.
In line with this goal, we do not establish existence of F a priori. Instead we
will see that if our method successfully finds an upper and lower bound, then F
exists.

Consider a perturbed random walk R̄, of which the stationary probability
distribution π̄ is known explicitly. Moreover, we consider an F̄ : S → [0,∞) for
R̄, which can be different from F . The bounds on F are established in terms of

F̄ =
∑

n∈S

π̄(n)F̄ (n). (3)

We use the Markov reward approach, as introduced in [4], to build up these
bounds. The method has been applied to various queueing networks in [3,5,7,8]
and an overview of this approach has been given in [6]. In the works mentioned
above, error bounds have been manually verified for each specific model. The
verification can be quite complicated. Thus, a linear programming approach has
been presented in [10] that provides bounds on F for random walks in the quarter
plane (M = 2). In particular, in [10] the quarter plane is partitioned into four
components, namely the interior, the horizontal axis, the vertical axis and the
origin. Homogeneous random walks with respect to this partition, i.e., transition
probabilities are the same everywhere within a component, are considered there.

In this paper, we extend the linear programming approach in [10]. The con-
tribution of this paper is two-fold. First, we build up a numerical program that
can be applied to general models. In [10], an R in the quarter plane with a spe-
cific partition is considered. The numerical program used in [10] cannot be easily
implemented for general partitions or multi-dimensional cases. In this paper, we
are able to consider an R in an arbitrary dimensional state space. Moreover, we
allow for general transition probability structures. For example, we can consider
models such as a two-node queue with one finite buffer and one infinite buffer.
We can also consider models in which the transition probabilities are dependent
on the number of jobs in a node. Secondly, in the linear programming approach
in [10], one important step is that in the optimization problem established for
obtaining the performance bounds we first assign values to a set of variables
using their interpretation such that all the constraints hold. Next we see these
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variables as parameters in the problem. In this paper we formulate a linear
program to obtain values for this set of variables while in [10] the values are
manually chosen and then verified. We show that this linear program is always
feasible.

The problem of obtaining the stationary probability distribution has been
considered in various works. For instance, methods have been developed to find
π through its probability generating function in [2,9,19]. It is shown that for
random walks in the quarter plane a boundary value problem can be formulated
for the probability generating function. However, the boundary value problem
has an explicit solution only in special cases (for example in [19]). If the probabil-
ity generating function is obtained, the algorithm developed in [1] can provide
a numerical inversion of the probability generating function. In addition, the
matrix geometric method has been discussed in [16,18] for Quasi-birth-and-death
(QBD) processes with finite phases, which provides an algorithmic approach to
obtain the stationary probability distribution numerically. In [17] perturbation
analysis has been applied to various QBD processes in the quarter plane. Under
certain drift conditions, explicit expressions are derived for the error bound. One
advantage of the approach in [10] is that its approach can be applied when the
drift conditions are not satisfied. In the works mentioned above, only random
walks in the two-dimensional orthant have been considered. As is mentioned
above, our main contribution is to be able to establish performance bounds for
random walks in the multi-dimensional positive orthant.

The remainder of this paper is structured as follows. In Sect. 2, we define
the model and notation. Then, in Sect. 3 we review the results of the Markov
reward approach. In Sect. 4, we formulate optimization problems for the upper
and lower bounds, which are non-convex and have countably infinite number
of variables and constraints. Next, in Sect. 5 we apply the linear programming
approach and establish linear programs for the bounds. Finally, in Sect. 6 we
present some numerical examples.

2 Model and Notation

Let R be a discrete-time random walk in S = {0, 1, . . . }M . Denote by P : S ×
S → [0, 1] the transition probability matrix of R. In this paper, only transitions
between the nearest neighbors are allowed, i.e., P (n, n′) > 0 only if n′ − n ∈
N(n), where N(n) denotes the set of possible transitions from n, i.e.,

N(n) =
{
u ∈ {−1, 0, 1}M | n + u ∈ S

}
. (4)

For a finite index set K, we define a partition of S as follows.

Definition 1. C = {Ck}k∈K is called a partition of S if

1. S = ∪k∈KCk.
2. For all j, k ∈ K and j �= k, Cj ∩ Ck = ∅.
3. For any k ∈ K, N(n) = N(n′), ∀n, n′ ∈ Ck.
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The third condition, which is non-standard for a partition, ensures that all
the states in a component have the same set of possible transitions. With this
condition, we are able to define homogeneous transition probabilities within a
component, meaning that the transition probabilities are the same everywhere
in a component. Denote by c(n) the index of the component of partition C that
n is located in. We call c : S → K the index indicating function of partition
C. Throughout the paper, various partitions will be used. We will use capital
letters to denote partitions and the corresponding small letters to denote their
index indicating functions.

We restrict our attention to an R that is homogeneous with respect to a
partition C of the state space, i.e., P (n, n + u) depends on n only through
the component index c(n). Therefore, we denote by Nc(n) and pc(n),u the set of
possible transitions from n and transition probability P (n, n + u), respectively.
To illustrate the notation, we present the following example.

Example 1. Consider S = {0, 1, . . . }2. Suppose that C consists of

C1 = {0} × {0} , C2 = {1, 2, 3, 4} × {0} , C3 = {5, 6, . . . } × {0} ,

C4 = {0} × {1, 2, . . . } , C5 = {1, 2, 3, 4} × {1, 2, . . . } ,

C6 = {5, 6, . . . } × {1, 2, . . . } .

The components and their sets of possible transitions are shown in Fig. 1.

n2

n1C1 C2 C3

C4 C5 C6

p1,u p2,u p3,u

p4,u

p5,u p6,u

Fig. 1. A finite partition of S = {0, 1, . . . }2 and the sets of possible transitions for its
components

Based on a partition, we now define a component-wise linear function.

Definition 2. Let C be a partition of S. A function H : S → [0,∞) is called
C-linear if there exists hk,0, . . . , hk,M ∈ R such that

H(n) =
∑

k∈K

1 (n ∈ Ck)

(
hk,0 +

M∑

i=1

hk,ini

)
. (5)
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In this paper, we often consider transformations of H of the form G(n) =
H(n + u), u ∈ N(n). It is of interest to consider a partition Z of S such that G
is Z-linear when H is C-linear.

Definition 3. Given a finite partition C, Z = {Zj}j∈J is called a refinement
of C if

1. Z is a finite partition of S.
2. For any j ∈ J , any n ∈ Zj and any u ∈ Nj, c(n + u) depends only on j and

u, i.e.,

c(n + u) = c(n′ + u), ∀n, n′ ∈ Zj . (6)

Remark that a refinement of C is not unique. To give more intuition, in the
following example we give a refinement of C that is given in Example 1.

Example 2. In this example, consider the partition C given in Example 1. A
refinement of C is shown in Fig. 2.

n2

n1Z1 Z2 Z3 Z4 Z5 Z6

Z7 Z8 Z9 Z10 Z11 Z12

Z13 Z14 Z15 Z16 Z17 Z18

Fig. 2. A refinement of C defined in Example 1

Since R is homogeneous with respect to partition C, it is homogeneous with
respect to partition Z as well. Next, we present the result that H(n + u) is
Z-linear if H is C-linear. The proof of the lemma is straightforward and is hence
omitted.

Lemma 1. Let H : S → [0,∞) be a C-linear function. Moreover, let Z be a
refinement of C. For any u ∈ {−1, 0, 1}M , define G : S → [0,∞) as G(n) =
1(n + u ∈ S)H(n + u). Then, G is Z-linear.

Let us consider an example to demonstrate the intuition behind this lemma.
Consider the partition C and partition Z given in Example 1 and 2 respectively.
Moreover, let

H(n) =

{
1, if n ∈ C1, C2, C4, C5,

0, if n ∈ C3, C6.
(7)
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and let u = (1, 0). It is easy to check that H(n) is C-linear. Now consider
n0 = (4, 0) and n′

0 = (5, 0), which are both in C2. We can verify that G(n0) =
H(n0 + u) = 0 and G(n′

0) = 1. Therefore, G(n) is not C-linear. In partition Z,
n0 and n′

0 are located in two different components. Then it can be checked that
G(n) is indeed Z-linear.

3 Preliminaries: Markov Reward Approach

Suppose that we have obtained an R̄ for which π̄ is known explicitly. Then, we
build up upper and lower bounds on F using the Markov reward approach, an
introduction to which is given in [6]. In this section, we give a review of this
approach including its main result.

In the Markov reward approach, F (n) is considered as a reward if R stays in
n for one time step. Let F t(n) be the expected cumulative reward up to time t
if R starts from n at time 0, i.e.,

F t(n) =
t−1∑

k=0

∑

m∈S

P k(n,m)F (m), (8)

where P k(n,m) is the k-step transition probability from n to m. Then, since R
is ergodic and F exists, for any n ∈ S,

lim
t→∞

F t(n)
t

= F , (9)

i.e., F is the average reward gained by the random walk independent of the
starting state. Moreover, based on the definition of F t, it can be verified that
the following recursive equation holds,

F t+1(n) = F (n) +
∑

n′∈S

P (n, n′)F t(n′) (10)

and F 0(n) = 0. Next, we define the bias terms as follows.

Definition 4. For any t = 0, 1, . . . , the bias terms Dt : S × S → R, are
defined as

Dt(n, n′) = F t(n′) − F t(n). (11)

We present the main result of the Markov reward approach below.

Theorem 1 (Result 9.3.5 in [6]). Suppose that F̄ : S → [0,∞) and G : S →
[0,∞) satisfy

∣∣∣∣∣F̄ (n) − F (n) +
∑

n′∈S

(
P̄ (n, n′) − P (n, n′)

)
Dt(n, n′)

∣∣∣∣∣ ≤ G(n), (12)

for all n ∈ S, t ≥ 0. Then
∣∣F̄ − F∣∣ ≤ ∑

n∈S π̄(n)G(n).
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In this paper, we obtain bounds on F by finding F̄ and G for which (12)
holds.

We do not need R and R̄ to be irreducible. More generally, it is sufficient that
there is a single absorbing communicating class (which can be different for R
and R̄). This implies that we allow for transient states. Even though we are only
interested in the steady-state behavior of our processes, it will be important
for the application of the Markov reward approach to explicitly model these
transient states. Existing proofs of the Markov reward approach considers only
irreducible processes. It is clear from the proof of Result 9.3.2 in [6] that this
result can be straightforwardly generalized to processes with transient states.
We will use this extended result in a numerical example in Sect. 6. In addition to
the bound on

∣∣F̄ − F∣∣, the following comparison result, which sometimes gives
a better upper bound, is given in [6].

Theorem 2 (Result 9.3.2 in [6]). Suppose that F̄ : S → [0,∞) satisfies

F̄ (n) − F (n) +
∑

n′∈S

(
P̄ (n, n′) − P (n, n′)

)
Dt(n, n′) ≥ 0, (13)

for all n ∈ S, t ≥ 0. Then F ≤ F̄ .

Similarly, if the LHS of (13) is non-positive, then F ≥ F̄ .

4 Problem Formulation

Recall that P (n, n′) and P̄ (n, n′) denote the transition probability of R and R̄,
respectively. Let Δ(n, n′) = P̄ (n, n′)−P (n, n′). From the result of Theorem 1, the
following optimization problem comes up naturally to provide an upper bound
on F .

Problem 1 (Upper bound).

min
∑

n∈S

[
F̄ (n) + G(n)

]
π̄(n),

s.t.

∣∣∣∣∣F̄ (n) − F (n) +
∑

n′∈S

Δ(n, n′)Dt(n, n′)

∣∣∣∣∣ ≤ G(n), ∀n ∈ S, t ≥ 0, (14)

F̄ (n) ≥ 0, G(n) ≥ 0, ∀n ∈ S.

In this problem, F̄ (n), G(n) and Dt
u(n) are variables and π̄(n), Δ(n, n′) are

parameters. Similarly, using max
∑

n∈S

[
F̄ (n) − G(n)

]
π̄(n) as the objective

function, we obtain a problem that returns a lower bound on F .
In addition, the following problems provide a direct upper or lower bound on

F , which follows from the comparison result introduced in Sect. 3.
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Problem 2 (Comparison upper bound).

min
∑

n∈S

F̄ (n)π̄(n),

s.t. F̄ (n) − F (n) +
∑

n′∈S

Δ(n, n′)Dt(n, n′) ≥ 0, ∀n ∈ S, t ≥ 0, (15)

F̄ (n) ≥ 0, ∀n ∈ S.

Problem 3 (Comparison lower bound).

max
∑

n∈S

F̄ (n)π̄(n),

s.t. F̄ (n) − F (n) +
∑

n′∈S

Δ(n, n′)Dt(n, n′) ≤ 0, ∀n ∈ S, t ≥ 0, (16)

F̄ (n) ≥ 0, ∀n ∈ S.

Note that if Problem 2 is feasible then Problem 3 will be unbounded or
infeasible and vice versa. It will be seen from numerical results that in some
cases the comparison result can provide a better upper or lower bound than
that obtained from Problem 1. In the remainder of this paper, we only consider
Problem 1, since the other problems can be solved in the same fashion. There
are countably infinite variables and constraints in Problem 1. In the next two
sections, we will reduce Problem 1 to a linear program with a finite number of
variables and constraints.

5 Linear Programming Approach to Error Bounds

In this section we first present the theory of the linear programming approach and
formulate a linear problem for obtaining the lower bound. Then we reduce the
linear problem with infinite number of variables and constraints to one with finite
variables and constraints by restricting our consideration to C-linear functions.
For the linear programming approach, we use the idea from [10] that we consider
bounding functions on Dt(n, n′) which are independent of t. Replacing Dt(n, n′)
with these bounding functions in (14), we get rid of t in the constraints and obtain
sufficient conditions for (14). Simultaneously, we add several extra constraints to
ensure that these newly introduced functions are indeed upper and lower bounds
on Dt(n, n′).

In (12), since only transitions between the nearest neighbors are allowed, we
have Δ(n, n + u) = 0 for u /∈ Nc(n). Then, Δ(n, n′)Dt(n, n′) vanishes from (12)
for all n′−n /∈ Nc(n). Thus, it is sufficient to only consider the bias terms between
nearest neighbors, i.e., Dt(n, n + u) for u ∈ Nc(n).

More precisely, consider functions A : S×S → [0,∞) and B : S×S → [0,∞),
for which

−A(n, n + u) ≤ Dt(n, n + u) ≤ B(n, n + u), (17)
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for all t ≥ 0. Then, in Problem 1, replacing Dt(n, n′) with the bounding func-
tions, we get rid of the time-dependent terms and obtain the following constraints
that guarantee (14),

F̄ (n) − F (n) +
∑

u∈Nc(n)

max {Δ(n, n + u)B(n, n + u),−Δ(n, n + u)A(n, n + u)}

≤ G(n), (18)

F (n) − F̄ (n) +
∑

u∈Nc(n)

max {Δ(n, n + u)A(n, n + u),−Δ(n, n + u)B(n, n + u)}

≤ G(n). (19)

Besides the constraints given above, additional constraints are necessary to guar-
antee that (17) holds. In the next part, we establish these additional constraints.

Recall that Dt(n, n+u) = F t(n+u)−F t(n). We will show in the next section
that Dt+1(n, n + u) can be expressed as a linear combination of Dt(m,m + v)
where v ∈ Nc(m),m ∈ S. More precisely, there exists φ(n, u,m, v) ≥ 0 for which
the following equation holds,

Dt+1(n, n + u) = F (n + u) − F (n) +
∑

m∈S

∑

v∈Nc(m)

φ(n, u,m, v)Dt(m,m + v),

(20)

for t ≥ 0. We will reduce the sum in the equation above to a sum over a finite
number of states. Therefore, the convergence of the sum is not an issue. Then,
the following inequalities are sufficient conditions for −A(n, n′) and B(n, n′) to
be a lower and upper bound on Dt(n, n + u), respectively,

F (n + u) − F (n) +
∑

m∈S

∑

v∈Nc(m)

φ(n, u,m, v)B(m,m + v) ≤ B(n, n + u), (21)

F (n + u) − F (n) −
∑

m∈S

∑

v∈Nc(m)

φ(n, u,m, v)A(m,m + v) ≥ −A(n, n + u).

(22)

Summarizing the discussion above, the following problem gives an upper
bound on F .

Problem 4.

min
∑

n∈S

[
F̄ (n) + G(n)

]
π̄(n),

s.t. F̄ (n) − F (n) +
∑

u∈Nc(n)

max {Δ(n, n + u)B(n, n + u), −Δ(n, n + u)A(n, n + u)}

≤ G(n), (23)

F (n) − F̄ (n) +
∑

u∈Nc(n)

max {Δ(n, n + u)A(n, n + u), −Δ(n, n + u)B(n, n + u)}

≤ G(n), (24)



210 X. Bai and J. Goseling

Dt+1(n, n + u) = F (n + u) − F (n) +
∑

m∈S

∑

v∈Nc(m)

φ(n, u, m, v)Dt(m, m + v),

(25)

F (n + u) − F (n) +
∑

m∈S

∑

v∈Nc(m)

φ(n, u, m, v)B(m, m + v) ≤ B(n, n + u), (26)

F (n) − F (n + u) +
∑

m∈S

∑

v∈Nc(m)

φ(n, u, m, v)A(m, m + v) ≤ A(n, n + u), (27)

φ(n, u,m, v) ≥ 0, for n,m ∈ S, u ∈ Nc(n), v ∈ Nc(m)

A(n, n + u) ≥ 0, B(n, n + u) ≥ 0, F̄ (n) ≥ 0, G(n) ≥ 0, for n, n′ ∈ S.

In this problem the variables are φ(n, u,m, v), A(n, n + u), B(n, n + u),
Dt(n, n+u), F̄ (n), G(n) and the parameters are π̄(n), F (n), Δ(n, n+u). Prob-
lem 4 is non-linear since there are product terms such as φ(n, u,m, v)A(n, n′)
and φ(n, u,m, v)B(n, n′). Therefore, we apply the idea proposed in [10]. More
precisely, first we obtain values of a set of φ(n, u,m, v), for which (25) holds.
Then, we plug the obtained φ(n, u,m, v) into Problem 4 as parameters and
remove (25) from the problem. As a consequence, Problem 4 becomes linear.
In [10], the set of φ(n, u,m, v) is obtained by manual derivation. In the following
part, we formulate a linear program where the variables are φ(n, u,m, v) and
they are interpreted as flows among states.

5.1 Linear Program for Finding φ(n, u, m, v)

In this section, we formulate a linear program to obtain φ(n, u,m, v) for
which (25) holds. For the bias terms, using (10), we get

Dt+1(n, n + u) = F t+1(n + u) − F t+1(n)

= F (n + u) − F (n) +
∑

m∈S

[P (n + u,m) − P (n,m)]F t(m). (28)

Thus, (25) holds if and only if
∑

m∈S

∑

v∈Nc(m)

φ(n, u,m, v)Dt(m,m + v) =
∑

m∈S

[P (n + u,m) − P (n,m)]F t(m).

(29)

Rewriting the LHS of (29), we have
∑

m∈S

∑

v∈Nc(m)

φ(n, u,m,m + v)Dt(m,m + v)

=
∑

m∈S

∑

v∈Nc(m)

φ(n, u,m,m + v)[F t(m + v) − F t(m)]

=
∑

m∈S

⎧
⎨

⎩
∑

v∈Nc(m)

[φ(n, u,m + v,−v) − φ(n, u,m, v)]

⎫
⎬

⎭ F t(m). (30)



Linear Programming Approach to Error Bounds for Queueing Networks 211

In comparison with the RHS of (29), we obtain the following constraint that is
sufficient for (29) as well as for (25),

∑

v∈Nc(m)

[φ(n, u,m + v,−v) − φ(n, u,m, v)] = P (n + u,m) − P (n,m), (31)

for all n,m ∈ S, u ∈ Nc(n). Intuitively, for any fixed n ∈ S and any fixed
u ∈ Nc(n), φ(n, u,m, v) can be interpreted as a flow from state m to state
m + v, and P (n + u,m) − P (n,m) can be seen as the demand at state m. Then,
intuitively (31) means that the demand at every state m is equal to the difference
between the inflow and outflow of m.

Next we formulate a linear program with a finite number of constraints and
variables. Moreover, we show that based on the solution of this linear program
we can obtain φ(n, u,m, v) ≥ 0 that satisfies (31) and hence satisfies (25). The
objective of this linear program is to minimize the sum of all φ(n, u,m, v). We
remark that in this paper we do not optimize with respect to the overall objective,
which is to find the best error bound. In the discussion section, we provide an
outlook on alternative objective functions that may be used.

We need a final piece of notation. Let Z = {Zj}j∈J be a refinement of
partition C defined in Definition 3. Then, for any n ∈ Zj and u ∈ Nj , let c(j, u)
be the index of the component of partition C that n + u is located in. For j ∈ J
and u ∈ Nj , let

Nj,u = Nj ∪ (
u + Nc(j,u)

)
. (32)

Now, we consider the following problem and present Theorem 3.

Problem 5.

min
∑

j∈J

∑

u∈Nj

∑

d∈Nj,u

∑

v∈Nc(j,d)

ϕj,u,d,v,

s.t.
∑

v∈Nc(j,d)

1 (d + v ∈ Nj,u) [ϕj,u,d+v,−v − ϕj,u,d,v] = pc(j,u),d−u − pj,d,

∀j ∈ J, u ∈ Nj , d ∈ Nj,u, (33)
ϕj,u,d,v ≥ 0, ∀j ∈ J, u ∈ Nj , d ∈ Nj,u, v ∈ Nc(j,d).

Theorem 3. Problem 5 is feasible and has a finite number of variables and
constraints. Suppose that ϕj,u,d,v is the optimal solution of Problem 5. Then,

φ(n, u,m, v) =

{
ϕz(n),u,m−n,v, if m ∈ n + Nz(n),u and m + v ∈ n + Nz(n),u,

0, otherwise,
(34)

satisfies (31).
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Proof. We present the proof in two steps. First, for every j ∈ J and u ∈ Nj ,
we consider a specific state in Zj and its neighbors. Using its neighborhood
structure we show that a feasible solution ϕj,u,d,v of Problem 5 exists. Next we
show that based on the optimal solution and using the homogeneous property,
we can assign values to the flows between the states of S, i.e., φ(n, u,m, v). After
this assignment, we can obtain flows φ(n, u,m, v) for which (31) holds.

Consider some fixed j ∈ J and u ∈ Nj . Let n0 be some state in Zj . Consider
an undirected graph G = (V, E), where V contains all the nearest neighbors of n0

and of n0 +u. Moreover, e ∈ E if and only if e connects two nearest neighbors. It
is easy to see that G is connected. From the discussion after (31), we see that (31)
intuitively means to find flows on e ∈ E such that the demand at every node
m ∈ V is equal to the difference between the inflow and outflow of m.

This is a classical flow problem in graph theory and combinatorial optimiza-
tion. In our case, the graph is connected. Moreover, there is no capacity for the
flows and all the demands sum up to 0. Thus, there exists a feasible non-negative
flow on G (see, for instance, Exercise 5 in Chap. 8 in [15]). In other words, there
exists φ0(n0, u,m, v) ≥ 0, where m,m + v ∈ V, such that for all m ∈ V,

∑

v∈Nc(m)

1 (m + v ∈ V) [φ0(n0, u,m + v,−v) − φ0(n0, u,m, v)]

= P (n0 + u,m) − P (n0,m). (35)

From (32), we see that m ∈ V if and only if m = n + d for some d ∈ Nj,u. Take
ϕj,u,d,v = φ0(n0, u, n+d, v). Since R is homogeneous with respect to partition C
as well as partition Z, P (n0+u,m) = pc(j,u),d−u and P (n0,m) = pj,d. Therefore,
we can verify that (35) is equivalent to (33) hence Problem 5 is feasible.

Suppose that ϕj,u,d,v is the optimal solution of Problem 5. Then consider
φ(n, u,m, v) where n,m ∈ S, u ∈ Nc(n) and v ∈ Nc(m). If m ∈ n + Nz(n),u and
m + v ∈ n + Nz(n),u, then ϕz(n),u,m−n,v is well defined and satisfies (33). Thus,
using φ(n, u,m, v) = ϕz(n),u,m−n,v we can verify that (31) holds. Otherwise if
m /∈ n + Nz(n),u or m + v /∈ n + Nz(n),u, (31) holds since φ(n, u,m, v) = 0 and
for its RHS, P (n + u,m) − P (n,m) = 0.

Finally we argue that Problem 5 has a finite number of variables and con-
straints. Since there are |J | components in partition Z and at most 3M possible
transitions for every component, the number of the variables in Problem 5 is
bounded by 2 |J | · 27M from above. Moreover, the number of the constraints is
bounded from above by 2 |J | · 9M .

5.2 Implementation of Problem 4

Suppose that we have obtained a set of coefficients ϕj,u,d,v from Problem 5. In
this section, we show that by restricting F (n), A(n, n′), B(n, n′) to be C-linear
and using the partition structure of S described in Sect. 2, Problem 4 can be
reduced to a linear program with a finite number of variables and constraints.

Since we only consider the bias terms between the nearest neighbors, we
rewrite the bounding functions as Au(n) and Bu(n) for n ∈ S and u ∈ Nc(n).
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Then, using the result of Theorem 3, plugging φ(n, u,m, v) as parameters into
Problem 4 and removing (25), Problem 4 is equivalent to the following problem.

Problem 6.

min
∑

n∈S

[
F̄ (n) + G(n)

]
π̄(n),

s.t. F̄ (n) − F (n) +
∑

u∈Nc(n)

max
{
Δc(n),uBu(n),−Δc(n),uAu(n)

} − G(n) ≤ 0,

(36)

F (n) − F̄ (n) +
∑

u∈Nc(n)

max
{
Δc(n),uAu(n),−Δc(n),uBu(n)

} − G(n) ≤ 0,

(37)

F (n + u) − F (n) +
∑

d∈Nz(n),u

∑

v∈Nc(z(n),d)

ϕz(n),u,d,vBv(n + d) − Bu(n) ≤ 0,

(38)

F (n) − F (n + u) +
∑

d∈Nz(n),u

∑

v∈Nc(z(n),d)

ϕz(n),u,d,vAv(n + d) − Au(n) ≤ 0,

Au(n) ≥ 0, Bu(n) ≥ 0, F̄ (n) ≥ 0, G(n) ≥ 0, for n ∈ S, u ∈ Nc(n). (39)

In the problem the variables are Au(n), Bu(n), F̄ (n) and G(n). Here Prob-
lem 6 is already linear in its variables. It remains to reduce it to a problem with
finite number of constraints and variables.

Next, we give the reduction by restricting F̄ , G, Au and Bu to be C-linear.
From Lemma 1, we know that Av(n + d) and Bv(n + d) are Z-linear. Thus, it is
easy to check that all the constraints in Problem 6 have the form,

H(n) ≤ 0,

where H(n) is Z-linear.
For any Zj and i ∈ {1, . . . ,M}, define Lj,i and Uj,i as

Lj,i = min
n∈Zj

ni, Uj,i = sup
n∈Zj

ni. (40)

Notice that Zj can be unbounded in dimension i, in which case Uj,i = ∞.
Moreover, let I(Zj) be the set containing all the unbounded dimensions of Zj

and ∂Zj be the corners of Zj , i.e.,

I(Zj) = {i ∈ {1, 2, . . . ,M} | Uj,i = ∞} , (41)
∂Zj = {n ∈ Zj | ni = Lj,i, ∀i ∈ I(Zj), nk ∈ {Lj,k, Uj,k} , ∀k /∈ I(Zj)} .

(42)

For example, for the Z partition in Example 2, I(Z3) = ∅, ∂Z3 = {(2, 0), (3, 0)}
and I(Z6) = {1}, ∂Z6 = {(6, 0)}. Then, for the constraint H(n) ≤ 0 for n ∈ Zj ,
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sufficient and necessary conditions can be obtained in terms of the coefficients
hj,i. We give the following lemma to specify these conditions. The proof for this
lemma is straightforward and hence is omitted.

Lemma 2. Suppose that H(n) is Z-linear. Then, H(n) ≤ 0 for all n ∈ n ∈ Zj

if and only if

H(n) ≤ 0, ∀ n ∈ ∂Zj , hj,i ≤ 0, ∀i ∈ J(Zj). (43)

For any n ∈ ∂Zj , clearly H(n) = hj,0+
∑M

i=1 hj,ini is linear in the coefficients
hj,i. For each bounded dimension, there are at two corners of Zj . Thus, (43)
contains at most 2M linear constraints in hj,i.

Next, consider the objective function of Problem 6. In the next lemma, we
show that it can be written as a linear combination of the coefficients f̄k,i and
gk,i. The proof for the lemma is straightforward and hence is omitted.

Lemma 3. Suppose that F̄ : S → [0,∞) and G : S → [0,∞) are C-linear.
Then,

∑

n∈S

[
F̄ (n) + G(n)

]
π̄(n) =

∑

k∈K

(
f̄k,0 + gk,0

) ∑

n∈Ck

π̄(n)

+
∑

k∈K

M∑

i=1

(
f̄k,i + gk,i

) ∑

n∈Ck

niπ̄(n). (44)

Therefore, based on the two lemmas above, we give the main result of this
section in the following theorem.

Theorem 4. Suppose that F̄ , G, Au and Bu are C-linear. Then, Problem 6 can
be reduced to a linear program with a finite number of variables and constraints.

Proof. From Lemmas 2 and 3, we see that Problem 6 can be reduced to a linear
program where the coefficients of the functions are variables. Next, we will show
that there is a finite number of variables and constraints in the reduced problem.

There are at most |K| components and at most 3M transitions from each
state. Since F̄ , G, Au and Bu are C-linear, the total number of coefficients is
at most 2 |K| (3M + 1)(M + 1). Hence, the number of variables in Problem 6
is finite. Moreover, for each component Zj , there are at most 2M corners and
at most M unbounded dimensions. Hence, each constraint in Problem 6 can be
reduced to at most |J | (M + 2M ) constraints. Then, the number of constraints
is finite.

6 Numerical Experiments

In this section, we consider some numerical examples for various queueing net-
works and establish upper and lower bounds on various performance measures.
We have used Pyomo [13], a Python-based, open-source optimization model-
ing language package, to implement the optimization problems. The Gurobi
solver [12] has been used to obtain solutions to these problems.
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6.1 Finite Two-Node Tandem System

Consider a tandem system containing two nodes. Every job arrives at Node 1
according to a Poisson process and then goes to Node 2 after receiving its service
at Node 1. Each node has a capacity for jobs that can be allowed. Let N1 and
N2 denote the capacity of Node 1 and Node 2, respectively. An arriving job is
rejected and lost if Node 1 is saturated. When Node 2 is saturated, a job remains
at Node 1 upon completion. Let λ be the arrival rate. For Node 1, we consider
a threshold T ≤ N1. The service rate is μ1 if the number of jobs in Node 1 is no
more than T and μ∗

1 otherwise. The service rate of Node 2 is always μ2. Assume
that λ < μ1, λ < μ∗

1 and λ < μ2. This system does not have a product-form
stationary probability according to [4].

The Original Random Walk. Let n = (n1, n2) represent the number of
jobs in the system. Then the state space is S = {0, 1, . . . }2. Note that the tan-
dem system is a continuous-time system. We apply the uniformization technique
introduced in [11] to transform the system into a discrete-time random walk R.
Without loss of generality, we assume that λ + max {μ1, μ

∗
1} + μ2 ≤ 1 and take

uniformization constant 1. First we describe the resulting transition probabilities
for n ∈ {0, 1, . . . , N1} × {0, 1, . . . , N2}

P (n, n + e1) = λ1(n1 < N1), P (n, n − e2) = μ21(n2 > 0), (45)

P (n, n + d1) =

{
μ11(n1 > 0, n2 < N2), n1 ≤ T,

μ∗
11(n2 < N2), n1 > T,

(46)

P (n, n) = 1 −
∑

u∈{e1,d1,−e2}
P (n, n + u), (47)

where e1 = (1, 0), d1 = (−1, 1) and e2 = (0, 1).
We see that {0, 1, . . . , N1} × {0, 1, . . . , N2} forms a communicating class.

Next, we define transition probabilities for the states outside {0, 1, . . . , N1} ×
{0, 1, . . . , N2} in such a way that these states are transient. The remaining tran-
sition probabilities are

P (n, n + e1) = λ, (48)
P (n, n − e2) = μ21(n2 > 0), (49)

P (n, n + d1) =

{
μ11(n1 > 0), n1 ≤ T,

μ∗
1, n1 > T,

(50)

P (n, n) = 1 −
∑

u∈{e1,d1,−e2}
P (n, n + u), (51)

The transition probabilities of R are shown in Fig. 3.
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Fig. 3. Transition probabilities of R

The Perturbed Random Walk. For the perturbed random walk, consider
an R̄ in S with the transition probabilities

P̄ (n, n + e1) = λ1(n + e1 ∈ S), P̄ (n, n − e2) = μ21(n − e2 ∈ S), (52)

P̄ (n, n + d1) =

{
μ11(n + d1 ∈ S), n1 ≤ T,

μ∗
11(n + d1 ∈ S), n1 > T,

(53)

P̄ (n, n) = 1 −
∑

u∈{e1,d1,−e2}
P (n, n + u). (54)

The transition probabilities of R̄ are shown in Fig. 4. We can verify that the
stationary probability distribution of R̄ is

π̄(n) =

{
C · ρn1

1 σn2 , n1 ≤ T,

C · ρT1 ρn1−T
2 σn2 , n1 > T,

(55)

where ρ1 = λ/μ1, ρ2 = λ/μ∗
1, σ = λ/μ2 and C is the normalization constant,

i.e., C−1 = (1 − ρ1)−1(1 − ρT+1
1 )(1 − σ)−1 + ρT1 ρ2(1 − ρ2)−1(1 − σ)−1.

We consider two performance measures, namely the probability that an arriv-
ing job is rejected and the average number of jobs in the system. For the first
performance measure F (n) = 1(n1 = N1) and for the second F (n) = n1 + n2.
Consider a symmetric scenario, i.e., N1 = N2. In the numerical example, take
for example T = 4, λ/μ1 = 1/2, λ/μ∗

1 = 1/3 and λ/μ2 = 1/3. In Fig. 5, we plot
bounds on F for various N1. In addition, we plot the upper bound given by the
comparison result in Problem 2. The upper and lower bounds are denoted by Fu

and Fl respectively, and the upper bound given by comparison result is denoted
by F (c)

u . Note that in Fig. 5(a) the y-axis is in logarithm scale. Moreover, in
Fig. 5(a), although it is subtle F (c)

u still provides a slightly better upper bound
than Fu.
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Fig. 5. Bounds on F for various N1: N1 = N2, T = 4, λ/μ1 = 1/2, λ/μ∗
1 = 1/3,
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6.2 Tandem System with Boundary Speed-Up or Slow-Down

Consider a tandem system containing M nodes. Every job arrives at node 1 and
goes through all the nodes to receive its service from each node. In the end, the
job leaves the system through node M . Let λ be the arrival rate. Moreover, we
assume that each server has the service rate μ when there are jobs in the queue.
For server 1, the service rate changes to μ∗, if all the other queues become empty.
Let μ∗ = η · μ. For the stability of the system, assume that λ/μ < 1.

The Original Random Walk. In this example, we have S = {0, 1, . . . }M .
Notice that the tandem system described above is a continuous-time system.
Therefore, we use the uniformization method to transform the continuous-time
tandem system into a discrete-time R. Without loss of generality, assume that
λ + max{μ, μ∗} + 2μ ≤ 1. Hence, we take the uniformization constant 1. Then,
the non-zero transition probabilities of the discrete-time R are given below.
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P (n, n + e1) = λ, (56)

P (n, n + d1) =

{
μ∗, if n2 = · · · = nM = 0,

μ, otherwise,
(57)

P (n, n + di) = 1 (n + di ∈ S) μ, ∀i = 2, . . . ,M − 1, (58)
P (n, n − eM ) = 1 (n − eM ∈ S)μ, (59)

P (n, n) = 1 −
∑

u∈{e1,d1,...,dM−1,eM}
P (n, n + u), (60)

for all n ∈ S, where ei is the vector with the i-th entry being 1 and all the other
entries being 0 and di is the vector with the i-th entry being −1, the i + 1-th
entry being 1 and all the others being 0.

The Perturbed Random Walk. For the perturbed random walks R̄, we take

P̄ (n, n + e1) = λ, (61)
P̄ (n, n + di) = 1 (n + di ∈ S) μ, ∀i = 1, . . . ,M − 1, (62)

P̄ (n, n − eM ) = 1 (n − eM ∈ S)μ, (63)

P̄ (n, n) = 1 −
∑

u∈{e1,d1,...,dM−1,eM}
P̄ (n, n + u). (64)

We know from [14] that the stationary distribution of R̄ is,

π̄(n) = (1 − ρ)M · ρ
∑M

i=1 ni , (65)

where ρ = λ/μ.

0.2 0.4 0.6 0.8
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Fig. 6. Bounds on F for various λ/μ: F (n) = n1, μ∗ = 1.5μ

As the performance measure, we consider the average number of jobs in the
first queue (including the job in service), i.e., F (n) = n1. First we consider
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Table 1. Bounds on F for various M : F (n) = n1, λ/μ = 0.5, μ∗ = 0.75μ

M Fl Fu F (c)
u

2 1.0 1.4667 1.4667

3 1.0 1.26 1.26

4 1.0 1.0843 1.0843

5 1.0 1.0717 1.0717

the case that M = 3, i.e., a three-node tandem system. We take η = 1.5 and
consider various values of λ/μ. The bounds and comparison result are given in
Fig. 6. When the load is larger than 0.75, the problems for both upper and lower
bound are infeasible. Hence, the results for these cases are not included.

Next, we fix λ/μ = 0.5, η = 0.75 and consider various values for M . The
bounds on F and the comparison result are given in Table 1. As we see from
Table 1, our numerical program can be applied to higher-dimensional space.

7 Conclusions and Discussion

In this paper, we have considered random walks in M -dimensional positive
orthant. Given a non-negative C-linear function, we have formulated optimiza-
tion problems that provide upper and lower bounds on the stationary perfor-
mance measure. Moreover, we have shown that these optimization problems can
be reduced to linear programs with a finite number of variables and constraints.

Through numerical experiments, we see that the linear programs for upper
and lower bounds are not always feasible. In particular, for some models, once the
load exceeds some threshold the problems become infeasible. It will be of interest
in future work to gain additional insight and to generalize our methodology to
also work with these models. Another interesting direction is to explore how to
choose the objective function of Problem 5 such that it improves the error bound.
Finally, as the dimension increases, the number of variables and constraints in
Problems 5 and 6 increase exponentially. It is of interest to develop methods to
reduce the number of variables and constraints, especially for models where M
is large.

Acknowledgments. Xinwei Bai acknowledges support by a CSC scholarship [No.
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Abstract. The analytical solution of a queueing network is an appreciable first
option in performance studies of service systems. Under the so-called product-
form conditions, Mean Value Analysis (MVA) is the standard algorithm still
adopted, but the user has to face the exponential computational complexity in
the number of customer classes. In the last three decades, some (pseudo)
polynomial approximated variants to MVA have been proposed in literature.
These approximations are based on the transformation of the recursive MVA
equations into a system of nonlinear equations to be solved iteratively. They are
consolidated only with reference to (fixed-rate) single-server stations and are
used in practice even though theoretical convergence remains an open problem.
In this paper we exploit the possibility of aggregating customer classes in order
to replace the exact multi-class MVA by new approximated procedures where
MVA has to be run under at the most two customer classes. The resulting
procedures are developed around a nested fixed-point iteration schema and are
especially suitable for solving large size multi-class networks with multi-server
stations under a first-come-first-served discipline. Convergence and accuracy of
our procedures are numerically assessed through a very large set of experiments
against the exact solution by the multi-class MVA.

Keywords: Queueing networks � Mean Value Analysis �
Fixed-point approximation

1 Introduction

Queueing networks with multiple customer classes and multiple server stations are a
consolidated mathematical tool for the performance evaluation of both computing and
communication systems since a long time. Nowadays, the increasing diffusion of web-
based service systems [9] and cloud computing architectures [12], as well as wireless
sensor networks [8] calls for the use of analytical tools in service quality evaluation and
capacity planning. Despite the celebrated “bigger is better” principle introduced by
Kleinrock [7], availability requirements under server failures and other causes of ser-
vice interruption suggest to partition the given capacity of one big server into a modular
set of identical smaller servers.

This paper deals with the approximate analytical solution of multi-class queueing
network models of the BCMP type [3]. Service stations can be equipped with multiple
identical servers (mutually independent) each having a common fixed-service rate (i.e.
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non load-dependent). To apply the BCMP modeling framework under the FCFS dis-
cipline, one has to assume that the average service time is the same for all the job
classes and it follows a (negative) exponential probability distribution function. One
such application could occur in evaluating query-based wireless sensor networks [6]
whenever one has to adopt a closed queueing network model.

The standard way to get the exact solution of a multi-class queueing network of the
closed type is by resorting to the classic MVA algorithm [13]. MVA is easy to
understand and implement and also amenable to heuristic modifications to cover
specific models at hand that do not fall within the BCMP class of queueing networks.
Unfortunately, its computational cost becomes prohibitive for models with more than
four or five classes and not restricted to a few customers per class. This occurs because
the recursive MVA algorithm is characterized by a dependency between some variables
being updated at the current iteration and some others that have been calculated at the
previous iteration and whose number rapidly increases with the number of classes.
Hence, in a multi-class queueing network the computational complexity of MVA is
exponential in both the number of iterations and the number of variables.

The contribution of this paper is the proposal and numerical evaluation of a new
approximate but (pseudo) polynomial MVA-based algorithm especially aimed at
covering the multi-server case under FCFS. For this type of networks, due to the same
average service time per class, by running the exact MVA one may verify that just a
slight variability of the waiting time per class of customers is usually observed at any
given station. Hence, the core idea of our approximation is the aggregation of all the
customer classes into one or two classes, followed by the solution of the resulting
network by a single or two-class MVA, respectively. The paper is organized as follows.
Background and previous work are provided in Sect. 2. The new approximate algo-
rithms based on class-aggregation are presented in Sect. 3. Numerical experiments for
accuracy validation are given in Sect. 4. Conclusions are in Sect. 5.

2 Background and Previous Work

To make the paper self-contained, the MVA algorithm of our concern is first resumed.

2.1 MVA Algorithm for Multi-class Multi-Server Networks

The following notation is used from now on.
M = number of stations.
j = 1; . . .;M as station index.
mj = number of servers at station j.
c = 1; . . .;C as class index.
Nc = number of class c customers in network population.
nc = number of class c customers in network population at current MVA

iteration, ranging from 0 to Nc.
N = network population vector N ¼ N1; . . .;Nc; . . .;NCð Þ.
Vjc = expected number of visits to station j by a class c customer.
Rjc = expected service duration for a class c customer at station j.
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n = network population vector n ¼ n1; . . .; nc; . . .; nCð Þ at current MVA
iteration.

n� 1c = network population vector minus one class c customer n� 1c ¼ n1; . . .;ð
nc � 1; . . .; nCÞ at current MVA iteration.

Djc nð Þ = expected sojourn time per visit at station j by a class c customer, under n.
Qjc nð Þ = expected number of class c customers at station j, under n.
Tc nð Þ = expected network throughput for class c customers, under n.
Tjc nð Þ = expected station j throughput for class c customers, under n.
PjðljnÞ = steady-state marginal probability that l ¼ PC

c¼1 nc customers are present at
station j, under n.

According to the above notation, the multi-server MVA algorithm under FCFS
discipline and the common expected service duration over all classes (Rjc ¼ Rj,
c ¼ 1; . . .;C) is given below.

It is easy to recognize that both the sojourn time Eq. (1) and the marginal proba-
bility Eq. (4) are responsible for the exponential computational complexity of MVA. In
fact, due to the recursive dependence of both Qjc nð Þ and Pj ljnð Þ from the corresponding
measures related to the population n with one class c customer removed, the compu-
tational time complexity of the algorithm is:
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O
YM

j¼1
mj � C �

YC

c¼1
Nc þ 1ð Þ

� �
ð6Þ

Observe that the marginal probabilities are needed for computing the expected
values of the customer sojourn time at each station only in the multi-server case. In the
particular case of just one server per station, the sojourn time (fundamental) Eq. (1) of
the MVA algorithm reduces to the following:

Djc nð Þ ¼ Rj 1þQjc n� 1cð Þþ
XC

d¼1;d 6¼c
Qjd n� 1cð Þ

h i
ð7Þ

This applies whenever the user is not interested in computing marginal probabili-
ties, but expected performance measures only (e.g. sojourn times, queue lengths and
throughputs for each station).

2.2 Heuristic Relationships

The previous work that appeared in the literature immediately after the publication of
the MVA algorithm [2, 5, 10, 14] is guided by the idea of circumventing the recursive
nature of the MVA algorithm. This is accomplished by introducing an approximate
relationship between Qjc n� 1cð Þ and Qjc nð Þ and exploiting the possibility of setting
Pj l� 1jn� 1cð Þ equal to Pj l� 1jnð Þ.

The first goal is pursued by introducing a measure (d) of the change in the fraction
of the total number of customers found in station j resulting from the removal of one
class c customer out of the (current) network population n:

djc nð Þ ¼ Qjc n� 1cð Þ= nc � 1ð Þ � Qjc nð Þ=nc ð8Þ

Then a relationship amenable to heuristic particularizations of the d measure is the
following:

Qjc n� 1cð Þ ¼ nc � 1ð Þ Qjc nð Þ=nc þ djc nð Þ� � ð9Þ

Clearly, the first option consists in setting the d factor to zero, thus obtaining a
proportionality assumption ( nc � 1ð Þ=nc as proportionality factor) on the relationship
between Qjc n� 1cð Þ and Qjc nð Þ. This is known as the Bard-Schweitzer heuristic
relationship [2, 14]. According to these authors, one has to further assume that
removing one class c customer does not affect the expected queue length of customers
belonging to different classes:

Qjd n� 1cð Þ ¼ Qjd nð Þ; d ¼ 1; . . .;C; d 6¼ c ð10Þ

Hence, the complete approximation to Eq. (7) of the exact MVA algorithm for
(fixed-rate) single-server stations is obtained:

Djc nð Þ ¼ Rj 1þ nc � 1
nc

Qjc nð Þþ
XC

d¼1; d 6¼c
Qjd nð Þ

� �
ð11Þ
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Provided that marginal probabilities are not required but only expected perfor-
mance measures are required, formula (11) is all the user needs to define a (fixed-point)
iterative heuristic algorithm (known as the proportional estimation (PE) algorithm) for
queueing networks with fixed-rate single-server stations only. This because the
expected system throughput Eq. (2) can be inserted in the formula for the expected
station queue length:

Qjc nð Þ ¼ VjcTc nð ÞDjc nð Þ ð12Þ

thus obtaining the following equation:

Qjc nð Þ=nc ¼ VjcDjc nð Þ=
XM

i¼1
VicDic nð Þ ð13Þ

Equations (11) and (13) are at the basis of an approximated fixed-point iteration
algorithm.

The computational complexity of PE is O MCð Þ in both space and time (per iter-
ation) requirements. An extensive theoretical study on the existence and uniqueness of
the solution of PE, as well as on convergence, has been carried out by Pattipati et al.
[11]. In particular, the existence of the solution is established for monotonic, but single-
class networks, i.e. networks where the service rates are monotonically non decreasing
functions of the number of customers at the stations. Uniqueness and convergence
results have been obtained only under the limiting condition that the number of cus-
tomers of each class grows to infinity.

To cover the case of fixed-rate services in multi-server stations, under the PE
assumption on marginal queue lengths, Pattipati et al. [11] mention the following
assumption

Pj l� 1jn� 1cð Þ ¼ Pj l� 1jnð Þ ð14Þ

as the simplest choice to be used within Eq. (4). This corresponds to using Poisson
arrivals to each station under the further assumption that each station is constrained to
accept at the most N ¼ N1 þN2 þ . . .þNC customers; therefore, it is viewed as an
M=M=mj=N station, and then solved as a birth-death process. To employ the formula
for marginal probabilities returned by the M=M=mj=N queueing model for the open
station, the average arrival rates at any given station, cumulated over all customer
classes (kj; j ¼ 1; . . .;MÞ, are set equal to the average station throughput under the
further approximation:

Tj n� 1cð Þ ¼ Tj nð Þ; Tj nð Þ ¼
XC

c¼1
VjcTc nð Þ, kj; j ¼ 1; . . .;M ð15Þ

More recently, the QD-MVA algorithm [4] provides an extension of the Bard-
Schweitzer approximation to the load-dependency function admitted in the BCMP
class of closed queueing networks with queue-dependent service requirements. It has
been proposed to avoid the computation of state probabilities and operates on mean
values only. Numerical results have only been provided for a pure-delay station which
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supplies one-out-of-two multi-server stations in tandem, under a processor-sharing
discipline.

Research efforts aimed to improve the PE approximation have been based on the
assumption that the change in the fraction of class r customers present at station j
resulting from the removal of one class c customer is constant around the current
population vector n. This corresponds to replacing the null setting of the (d) factor by
the constant setting:

djc nð Þ ¼ djc n� 1cð Þ; 8n ð16Þ

Hence, at the price of introducing a nested fixed-point iteration within the PE (to
estimate the constant d measure), the so-called “Linearizer” heuristics, first proposed by
Chandy and Neuse [5], has been obtained. The new assumption on the djc nð Þ yields an
improvement over the PE algorithm at the expense of an acceptable increase of the
space complexity O MC2ð Þ and the time (per iteration) complexity O MC3ð Þ. Some
years later, Zahorjan et al. [18] propose to work with cumulative (i.e. over all classes
rather than per class) queue lengths in formula (9), namely:

Qj n� 1cð Þ ¼ n� 1ð Þ Qj nð Þ=nþ djc nð Þ� � ð17Þ

where djc nð Þ ¼ Qj n� 1cð Þ= n� 1ð Þ� �� Qj nð Þ=n� �
.

Their resulting Aggregate Queue Length (AQL) algorithm allows reducing the
space complexity of Linearizer from O MC2ð Þ to O MCð Þ and time/iteration complexity
from O MC3ð Þ to O MC2ð Þ, without significantly affecting the accuracy of the algorithm.
They have not established formal convergence results for the original Linearizer
algorithm, nor for their own variant. Since then, some other variants to both PE and
Linearizer and more sophisticated implementations have been proposed [16, 17], but
always restricted to fixed-rate services in single-server stations. In our numerical
experiments we adopt both the consolidated PE and AQL algorithms as (alternative)
inner procedures.

To cope with the case of service stations with load-dependent service rates (hence
the multi-server case of interest in this paper), Neuse and Chandy [10] have introduced
the SCAT algorithm for the approximate solution of multi-class queueing networks
with load-dependent service rate stations. SCAT is based on the idea of reconstructing
the profile of the distribution of the marginal probability of having one customer at
station j from the estimate of the mean queue length at the same station. To this
purpose, Chandy and Neuse assign the whole marginal probability “mass” to the first
two integer values neighboring the estimated (generally fractional) value of the mean
queue length. This idea is later refined by Akyildiz and Bolch [1], who propose to
scatter the assignment of probability mass to a wider range of neighboring integer
values. Their scattering is carried out according to a (pseudo) normal distribution
function. In this way, they are able to achieve significant improvements upon the
original SCAT in some numerical instances. Unfortunately, other numerical evidence
for non heavy-loaded networks states that the profile of marginal queue length prob-
ability strongly departs from a normal-like one. More recently Suri et al. [15] have
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pursued the idea of multiplying Qjc n� 1cð Þ by a correction factor within formula (11),
in order to cope with the multi-server case. Their factor is aimed to capture the
reduction of the expected queue length resulting from the presence of many servers
instead of one at the same station. The above factor is defined as an empirical function
of both the number of servers and their utilization factor for each station at hand.
Unfortunately, this is not appealing for the applications of generic queueing networks
in real practice.

3 A New Approximation for Class Invariant Service Times

Our approach for reducing the computational complexity of the multi-class multi-server
MVA from exponential to (pseudo) polynomial when computing both queue lengths
and marginal probability distributions in multi-server networks under the FCFS dis-
cipline is presented in this section. It aims at providing an alternative practical approach
to the open station approximation to each multi-server station (the one mentioned by
Pattipati et al. [11]). In our opinion, the open station approximation could be poor,
especially for service stations supplied by lightly-loaded stations. On the other hand,
our approximation method is inspired by the observation that just a slight variability of
the customer sojourn time per class occurs under a FCFS discipline. The different
average number of visits to the same station by customers belonging to different
classes, besides the different population per class, is responsible for the (slight) vari-
ability of the waiting time per class. We argue that the different average number of
visits per class produces different sampling patterns according to which a longer or
shorter queue at that station is observed by arriving customers and then suffered in
terms of longer or shorter waiting times.

3.1 One-Phase Class Aggregation

Let us introduce Pj ljNð Þ, l ¼ 1; . . .;N as the probability that l customers are present at
station j under a network population size of N ¼ N1 þN2 þ . . .þNC customers.
Instead of Pj l� 1jN� 1cð Þ l ¼ 1; . . .;N, we propose using Pj l� 1jN � 1ð Þ obtained
by aggregating all customer classes into a unique representative class of size N. Then,
to get an approximate sojourn time equation for our approximate MVA algorithm, we
adopt either the PE or AQL approximation for queue lengths.

The concept of representative class is now introduced. We associate a single-class
network to a multi-class queueing network characterized by a population vector
N ¼ N1; . . .;Ncð Þ, a matrix of visits V ¼ Vjc; j ¼ 1; . . .;M; c ¼ 1; . . .;C

� 	
and a vector

of service requests R ¼ Rj; j ¼ 1; . . .;M
� 	

. The single class, here called “representative
class”, is defined by the following formulas:

N ¼
XC

c¼1
Nc ð18Þ

Vj ¼
XC

c¼1
VjcTc Nð Þ=

XC

c¼1
Tc Nð Þ; j ¼ 1; . . .;M ð19Þ
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It is worth observing that, by simply replacing Vj (Vjc) with Rj (RjcÞ in (19) one
could further define the average service time for the representative class whenever one
has to deal with different average service times per class, under processor-sharing or
other no-waiting service disciplines covered by the celebrated BCMP theorem [3]. In
this case, as it will be made clear in the following, one could aggregate all the classes
except for the one under evaluation and then repeat the evaluation for the remaining
classes one at a time.

For the time being, our reasoning is restricted to the task of aggregating all classes
of customers to be serviced under the FCFS discipline. So, the expected throughput
(TH) values per class, Tc Nð Þ, required by the (aggregation) formulas (18) and (19) to
define the representative class are computed iteratively by a fixed-point procedure
based either on the PE approximation or the AQL approximation for average queue
lengths. Whatever be the approximation adopted, the marginal queue length proba-
bilities referred to the representative class have to be embedded. For sake of clarity, in
the following we give the simpler procedure obtained by using the PE approximation
(aka TH_PE):

The computational time complexity of TH_PE is:

O
XM

j¼1
mj � C

� �
per iteration ð23Þ

Observe that replacing the PE approximation with the AQL approximation requires
using also Pj l� 1jN � 2ð Þ, j ¼ 1; . . .;M, l ¼ 1; . . .;mj � 1 because a nested fixed-
point iteration occurs in order to calculate djc according to (17). The resulting TH_AQL
procedure is a bit more elaborated than TH_PE but straightforward from the algo-
rithmic presentation in [18] and, therefore, it is omitted here.

Whatever be the per class throughput approximation (by PE or AQL) used for
computing the average number of visits per station (19) related to the representative
class, the resulting procedure (TH_PE or TH_AQL) has to be nested into an outer fixed
point-iterative algorithm. This algorithm will be referred as 1P_MP_PE or
1P_MP_AQL to specify that, under a one-phase aggregation (1P) of customer classes,
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marginal probabilities (MP) are computed by the per class throughputs returned from
TH_PE or TH_AQL, respectively.

Both 1P_MP_PE and 1P_MP_AQL refine the definition of the representative class
and evaluate the marginal queue length probabilities at each station for the represen-
tative class on the basis of the following reasoning. If we had the exact throughput
values Tc Nð Þ c ¼ 1; . . .;C, then the expected number of visits to define the represen-
tative class would be determined from (19) once and for all. Instead, since this is not
the case and moreover the above throughputs depend in turn from the marginal
probabilities of the representative class, we have to resort to a nested fixed-point
algorithm where both the expected throughputs and the marginal probabilities are
iteratively refined. Thus, 1P_MP_PE and 1P_MP_AQL require an initial estimate of
the marginal probabilities of the representative class at each station and then they
iteratively updates the initial estimate until convergence is achieved. Both TH _PE and
TH_AQL procedures operate as a nested “repeat until” statement to produce an accurate
approximation of the per class network throughputs. Given the current estimate of the
marginal probabilities, TH_PE or TH_AQL computes the corresponding expected
throughput values per class needed to update the visits parameters (19) for the repre-
sentative class.

For sake of clarity, the 1P_MP_PE procedure is summarized here:

1P_MP_PE Procedure
Initialize Pj l� 1jN � 1ð Þ, l ¼ 1; . . .;mj � 1; j ¼ 1; . . .;M
Repeat

1. Compute class throughput by TH_PE
2. Define representative class
3. Solve multi-server network under representative class by single-class MVA
4. Update Pj l� 1jN � 1ð Þ, l ¼ 1; . . .;mj � 1; j ¼ 1; . . .;M

Until convergence upon Pj l� 1jN � 1ð Þ, l ¼ 1; . . .;mj � 1; j ¼ 1; . . .;M
Return expected performance measures per class and station

Returned performance measures for each (original) class of customers, e.g.
expected throughputs and queue lengths at each station, are computed by the following
formulas:

Tjc Nð Þ ¼ VjcNc=
XM

i¼1
VicDic Nð Þ ð24Þ

Qjc Nð Þ ¼ Tjc Nð ÞDjc Nð Þ ð25Þ

where Djc Nð Þ values, for ¼ 1; . . .;M and c ¼ 1; . . .;C, are those returned by the inner
TH_PE procedure once that the 1P_MP_PE outer procedure is no longer able to update
the marginal queue length probabilities Pj l� 1jN � 1ð Þ, l ¼ 0; 1; . . .;mj � 1 which are
used in the Eq. (22).
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The computational time complexity of 1P_MP_PE is:

O
XM

j¼1
mj � CþNð Þ

� �
per iteration ð26Þ

For later numerical comparisons it is worth presenting the procedure of reference
called M=M=mj=N AQL [11] where the AQL approximation is used in conjunction
with the open station approximation under Poisson arrivals and at the most N cus-
tomers in that station.

For sake of clarity, the procedure is resumed here:

M/M/mj/N_ AQL Procedure
Initialize Pj l� 1jN � 1ð Þ, Pj l� 1jN � 2ð Þ; l ¼ 1; . . .;mj � 1; j ¼ 1; . . .;M
Repeat

1. Compute network throughput for each class by TH_AQL
2. Compute Poisson arrival rates for each station by (15)
3. Compute the marginal probabilities from the basic model M=M=mj=N
4. Update Pj l� 1jN � 1ð Þ, Pj l� 1jN � 2ð Þ l ¼ 1; . . .;mj � 1; j ¼ 1; . . .;M

Until convergence upon Pj l� 1jN � 1ð Þ, Pj l� 1jN � 2ð Þ l ¼ 1; . . .;mj � 1; j ¼
1; . . .;M
Return expected performance measures per class and station by (24) and (25)

Observe that the set of probability values Pj l� 1jN � 2ð Þ l ¼ 1; . . .;mj � 1 are
required by the need of estimating the d factor in (17) within the AQL approximation at
the basis of the TH_AQL procedure time.

3.2 Two-Phase Class Aggregation

Whatever be the inner approximation (PE or AQL) used in the one-phase aggregation
(1P_MP_*) algorithm to estimate the expected marginal queue length at each multi-
server station, Qj N� 1cð Þ, it is clear that it plays a significant role in the quality of the
overall approximation algorithm. In this section, we present an improved procedure
which is based on the idea of using class aggregation two times. The first time (i.e.
phase_1) it is used to obtain an estimate of Qj N� 1cð Þ; the second time (i.e. phase_2) it
is used to obtain Pj l� 1jN � 1ð Þ. To estimate Qj N� 1cð Þ we aggregate all the cus-
tomer classes except for class c (when class c is under evaluation) and then we use a
two-class MVA algorithm where all the other classes are aggregated into a unique
representative class, under an estimate of Pj l� 1jN � 2ð Þ which will be refined at the
end of the second phase. The second phase uses Qj N� 1cð Þ c ¼ 1; . . .;C as returned
from phase_1 and executes just one step of the multi-class MVA algorithm to estimate
the per class network throughputs (Tc Nð Þ) under the network population vector N. This
allows to use class aggregation again, but now for all the customer classes. The net-
work under the new representative class is then solved by a single-class MVA in order
to update the estimates of the marginal queue lengths probabilities until convergence.
In particular, Pj l� 1jN � 2ð Þ is used in phase_1 to estimate Qj N� 1cð Þ while
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Pj l� 1jN � 1ð Þ is subjected to an iterative refinement in phase_2, by running the
single-class MVA algorithm under the representative class.

The two-phase (2P) class aggregation procedures based on the PE or AQL
approximations will be referred as 2P_MP_PE or 2P_MP_AQL, respectively. For
completeness, the 2P_MP_PE is resumed in the following.

2P_MP_PE Procedure
Phase 1: aggregate all classes except for class c and compute Qj N� 1cð Þ
For c ¼ 1 toC Do

1. Compute Td N� 1cð Þ, d ¼ 1; . . .;C and d 6¼ c by TH_PE using
Pj l� 1jN � 2ð Þ, l ¼ 1; . . .;mj � 1

2. Define the representative class for all C � 1 classes (except for c)
3. Execute the two-class MVA and return Qj N� 1cð Þ, j ¼ 1; . . .;M

Phase 2: aggregate all classes and compute Pj l� 1jN � 2ð Þ and Pj l� 1jN � 1ð Þ
Initialize Pj l� 1jN � 1ð Þ, l ¼ 1; . . .;mj � 1; j ¼ 1; . . .;M
Repeat

1. Execute one step of MVA with all C classes using Qj N� 1cð Þ, j ¼ 1; . . .;M,
c ¼ 1; . . .;C

2. Define the representative class for all classes
3. Solve multi-server network under unique representative class by MVA
4. Update Pj l� 1jN � 1ð Þ, l ¼ 1; . . .;mj � 1; j ¼ 1; . . .;M

Until convergence upon Pj l� 1jN � 2ð Þ and Pj l� 1jN � 1ð Þ; l ¼ 1; . . .;mj � 1;
j ¼ 1; . . .;M

The two-phase class aggregation procedure results in an acceptable increase of the
computational time complexity with respect to the simpler one-phase aggregation
procedure:

O
XM

j¼1
mj � C2 � N2

� �
ð27Þ

Providing a formal analysis of convergence for any of our aggregation based fixed-
point iteration procedures is very unlikely, as experienced since the proposal of the
(inner) PE procedure and related successive efforts [11]. Rather, we assess the mech-
anism of class aggregation through extensive numerical experiments. It provides an
accuracy level that is deemed adequate for practical purposes.

4 Numerical Validation

To assess both the accuracy and the convergence of our procedures, an ad-hoc suite has
been implemented for the random generation and automated solution of hundreds of
networks all at one time. The input data setting defining each network instance may be
changed by using a text editor. Clearly, a set of solutions may be identified and, upon
occurrence, rerun by simply repeating the initial seed which identifies the specific
experimental run. Here we give a report on our extensive numerical experience with all
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the procedures based on the idea of class aggregation in comparison with the
M=M=mj=N AQL consolidated procedure of reference from the literature [11].
Numerical results from all the approximate procedures are compared against the exact
solution returned by the multi-class multi-server MVA algorithm. Using the one- and
two-phase class aggregations, we have tested both the PE and AQL variants, thus
obtaining, respectively, 1P_MP_PE, 1P_MP_AQL, 2P_MP_PE and 2P_MP_AQL.
These procedures have been evaluated by solving thousands of network instances
bearing a classical central server topology. This topology does not restrict the gener-
ality of our results since our aggregation procedures combined with the single class
MVA-based approximation do not depend on network topology. Our approximations
are obviously sensitive to the different average number of visits per station attributed to
each class of customers to be aggregated. On the other hand, the open station
decomposition approximation underlying the M=M=mj=N AQL procedure is expected
to result more adequate when the central station acts as a bottleneck for the queueing
network. In this case, the output flow of customers is more likely to be approximated by
an exponential renewal (service) process supplying all the peripheral stations.

This stated, it is our belief that the generation of network instances at the basis of a
validation study has to be random but not entirely blind, i.e. the generation has to be
driven and controlled to make the set of solved instances significant for practice and,
therefore, free from outliers, i.e. cases where the server utilization factor at any given
station is too close to 1 or too close to 0 and from here on referred to as “anomalous”.
To avoid outliers, special attention during the generation of random instances has been
paid by controlling the resulting “loading factor” per station that is defined as the
product of “the average number of visits x the average service time/the number of
servers”. The loading factor per station determines the related “server utilization factor”
(SUF) as the major output measure upon which we have focused our effort in order to
solve random, but significant queueing networks. A significant network instance, for
validation purposes, occurs when high SUF values occur at one or more (bottleneck)
stations, i.e. SUF � 0.90. High SUFs have been pursued in our experiments in order
to get an effective evaluation of the numerical accuracy by which the procedures under
testing are able to return good estimations of the marginal queue length probabilities
involved in the fundamental MVA Eq. (1). As a matter of fact, at low values of SUF
the weight of the above probabilities becomes negligible in (1) since the servers are idle
most of the time. So, given that we aim to solve a random set of instances that share a
pursued configuration of SUF values among the network stations, we have generated
network instances where the population size per class and the station visits per class are
differentiated enough. This ensures carrying out an effective evaluation of the proce-
dures based on class aggregation.

In all our experiments we have considered from three to five customer classes,
while the population size per class has been uniformly generated within ranges that
keep computational time tolerable even when solving a thousand instances. The ranges
are: [9–15] for 3-class instances, [6–10] for 4-class instances and [3–6] for 5-class
instances. These ranges follow the idea of generating both instances with “many”
classes and a “few” customers per class, as well as instances with a “few” classes and
“many” customers per class. Before considering the key parameter for evaluating the
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effect of class aggregation, i.e. the average number of visits per class at the same
service station, we have fixed four service stations: a central station with six (fast)
servers with an average service time fixed to 0.01 t.u. and three peripheral stations with
six (slow) servers with an average service time ranging between 0.02 and 0.04 t.u. The
latter service setting at the peripheral stations allows us to push the bottleneck status
from the central station to one or a couple of the peripheral stations as the average
service values are changed from 0.02 to 0.04. To complete service settings, observe
that the average service times have to be considered in conjunction with the randomly
generated number of visits. In the experiments presented in this section the average
number of visits per class at each station has been uniformly generated within the
interval [1–30]. The resulting loading factor per station (product of the service time per
customer visit to a station multiplied by the average number of visits) is wide enough to
produce one or multiple bottlenecks in unbalanced network instances that seem
appropriate for our numerical tests. A typical sample of SUF values for non-anomalous
instances are shown in Table 1. They share the common feature of belonging to
unbalanced networks with:

(i) a bottleneck occurring either at the central station (as in model n°1) or at one of
the three peripheral stations (as in model n°2);

(ii) a strong bottleneck occurring either at the central station (as in model n°3) or at
one of three peripheral stations (as in model n°4);

(iii) two bottlenecks occurring at the central station and at one of the peripheral
stations (as in models n°5 and n°6);

(iv) two bottlenecks occurring at two of the three peripheral stations (as in models n°
7 and 8);

(v) no bottlenecks occurring in moderate-high loaded networks (as in model n°9 and
n°10).

As usual with the numerical evaluation of MVA-based approximation algorithms,
our tests focus on the expected values for the waiting time, queue length and
throughput per class computed at each station to evaluate the accuracy of our proce-
dures based on both the one-phase and two-phase aggregation of customer classes.

Table 1. Sample of SUF values for numerical tests.

Model Server Utilization Factor (SUF)
Station 1 Station 2 Station 3 Station 4

n°1 0.9513 0.7735 0.6999 0.8313
n°2 0.8171 0.9765 0.8538 0.5265
n°3 0.9867 0.7889 0.7995 0.7967
n°4 0.7213 0.9895 0.6667 0.7817
n°5 0.9623 0.6565 0.6994 0.9693
n°6 0.9606 0.5265 0.8567 0.9416
n°7 0.7751 0.9051 0.9785 0.3359
n°8 0.7219 0.4974 0.9536 0.9788
n°9 0.6394 0.7507 0.6525 0.5542
n°10 0.8436 0.7667 0.7903 0.8765
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Clearly, due to Little’s law, the accuracy on the expected queue lengths depends on the
combination of the errors separately reported on waiting times and throughputs.

For each of the above performance indices (I), both the average (AVG_ER) and
maximum relative error (MAX_ER) have been computed by using their exact evalua-
tion returned by the multi-class multi-server MVA. The former is averaged over all the
evaluations of the same performance index in every network generated and solved,
while the latter is observed throughout the evaluations returned at each station of every
network belonging to the set of solved instances (say K instances and k ¼ 1; . . .K), i.e.:

MAX ER ¼ maxk;j;c
Ikcj Nð ÞAPPROX�Ikcj Nð ÞEXACT



 




Ikcj Nð ÞEXACT ; ð28Þ

AVG ER ¼
PK

k¼1

PCk
c¼1

PM
j¼1

Ikcj Nð ÞAPPROX�Ikcj Nð ÞEXACTj j
Ikcj Nð ÞEXACT

K �M �Pk Ck
ð29Þ

where Ikcj refers to the waiting time, queue length and throughput values per class and
per station.

Numerical validation of our one-phase and two-phase aggregation-based proce-
dures against results from the multi-class exact MVA algorithm is executed once that
convergence is achieved by means of the method of successive substitutions in both the
inner and outer procedures implemented within our fixed-point iteration algorithms.
Usually, i.e. for non-anomalous instances similar to those shown in Table 1, the (outer)
convergence test (on marginal queue length probabilities) is successful within 10
iterations under a level of tolerance that has been fixed to 10�3 when computing the
relative error, element by element, on the entire updated vector of marginal queue
length probabilities. The same tolerance level has been kept for convergence upon the
average performance measures (queue lengths, waiting times and throughputs) returned
by the PE or AQL procedures at the inner level of our aggregation procedures. The
maximum number of allowed iterations has been fixed to 200.

From our extensive numerical experience obtained through thousands of instances,
in Table 2 we report on an example of 1000 generated instances of which 856 instances
under 0.10 � SUF � 0.99 have been selected for solution and the remaining ones
(144) have been skipped because anomalous. Observe that the analytical evaluation of
the average performance measures under SUF values ranging from 0.99 on is neither
necessary in practice, nor reliable from a numerical point when the standard MVA
algorithm is implemented (as in our numerical investigations). Under quite unrealistic
SUF values greater than 0.99 at any given station, the probability of finding 0, 1 or a
few customers at that station (equal to finding 0, 1 or a few busy servers) becomes very
close to zero. This may cause numerical instability and large errors in updating
probability values from one iteration to another, thus, inflating the relative error upon
which the tolerance level for convergence test is performed.

From Table 2, one may immediately appreciate the improvements obtained with
the aggregation-based procedures. Whether they be one- or two-phased, AQL-based
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aggregation procedures always outperform the M=M=mj=N AQL procedure.
The PE-based one-phase procedure outperforms the M=M=mj=N AQL procedure in
terms of maximum errors for all the performance measures, but it underperforms in the
estimation of their average values. Most importantly, the results in Table 2 show the
significant improvement of accuracy achieved by the two-phase aggregation proce-
dures: the average relative error is kept well below 1% for both waiting times and
queue lengths and 0.5% for throughput values. Taking a deeper look at the numerical
differences between 2P_MP_PE and 2P_MP_AQL, one may recognize that there is no
reason to implement the more sophisticated AQL approximation in place of the PE
variant. For the same instances, it is even more important to observe that the maximum
relative error registered is below 10% for both the waiting times and queue lengths and
5% for the throughput estimates.

To further assess the accuracy of our aggregation-based procedures under a couple
of lower-range SUF values (i.e. 0.95 and 0.90 instead of 0.99) that are more likely to
occur in practical usage of analytical solution of queueing networks, we now show in
Tables 3 and 4 the results of the numerical comparisons for the two subsets of instances
sharing the new constraints on the maximum SUF value per station.

Table 2. Results for 856 networks under SUF � 0.99 at each station.

Error on expected
performance measure (%)
per class & station

Algorithm for network solution
1P_MP_PE 1P_MP_AQL 2P_MP_PE 2P_MP_AQL M/M/mj/

N_AQL

Waiting time AVG_ER 4.10 1.39 0.78 0.76 1.83
Waiting time MAX_ER 14.25 12.26 7.44 7.32 16.34
Queue length AVG_ER 4.40 1.45 0.75 0.73 1.86
Queue length MAX_ER 15.48 13.51 9.14 9.02 17.60
Throughput AVG_ER 1.02 0.36 0.21 0.22 0.99
Throughput MAX_ER 6.15 7.95 3.59 3.63 12.32

Table 3. Results for 391 networks under SUF � 0.95 at each station.

Error on expected
performance measure (%)
per class & station

Algorithm for network solution
1P_MP_PE 1P_MP_AQL 2P_MP_PE 2P_MP_AQL M/M/mj/

N_AQL

Waiting time AVG_ER 0.61 0.81 0.37 0.38 1.04
Waiting time MAX_ER 12.52 12.26 6.50 6.56 16.34
Queue length AVG_ER 1.72 0.85 0.36 0.36 1.08
Queue length MAX_ER 11.93 13.51 6.40 6.39 17.60
Throughput AVG_ER 0.45 0.23 0.12 0.13 0.78
Throughput MAX_ER 5.67 7.95 3.59 3.63 12.32
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Both the average relative error and the maximum error on the performance mea-
sures decrease as the maximum SUF decreases. In particular, we believe that the
2P_MP_PE procedure may be recommended in practice: the maximum error on the
most critical performance measures, i.e. the expected waiting time and the expected
queue length, decreases from 7.44% to 6.16% and from 9.14% to 6.40%, respectively,
as the maximum SUF of the solved models decreases from 0.990 to 0.900. Moreover, it
is worth remarking that numerical performance of 2P_MP_PE with respect to
throughput evaluation is confirmed as even better than the one achieved by
2P_MP_AQL. This evidence is not new among researchers who have experienced the
use of PE and AQL approximations.

Once that we have successfully assessed the very good accuracy of our two-phase
aggregation procedures, some final examples are given in the following to summarize
our extensive investigations on the possibility of convergence failure, due to the
standard MVA implementation, under very high SUF values in unbalanced networks.
To this purpose, we have tested our two-phase aggregation procedures on an additional
set of 248 non-anomalous instances out of 1000 that have been generated, all with an
SUF ranging from 0.95 to 0.999. The rationale of choosing similar SUF values is
twofold: on one hand, we investigate the effect of numerical instability on the con-
vergence of the marginal queue length probabilities; on the other, we validate the
superiority of our two-phase procedures also for those type of instances where the
M=M=mj=N AQL procedure should be likely to perform better due to the fact that the
underlying renewal exponential service assumption on the output flow of each station is
more adequate under the above range of SUF values.

We have registered 2 cases of convergence failure for our two-phase aggregation
procedures. Our numerical experience suggests that these failures may occur due to
stations bearing SUF value very close to 0.999. These failures have been recovered by
simply increasing the tolerance level from 0.001 to 0.01 without experiencing an
appreciable loss of accuracy, as illustrated in Table 5.

The adequacy of fixing the tolerance level at 0.01 for the above border-line
instances when evaluating the relative error on single components of the entire prob-
ability vector is confirmed by a further larger sample of 722 non-anomalous instances
solved out of 1000 generated. The growth from 248 to 722 is achieved by randomly
“slowing down” some servers in order for the corresponding SUF values to rise above

Table 4. Results for 169 networks under SUF � 0.90 at each station.

Error on expected
performance measure (%)
per class & station

Algorithm for network solution
1P_MP_PE 1P_MP_AQL 2P_MP_PE 2P_MP_AQL M/M/mj/

N_AQL

Waiting time AVG_ER 0.60 0.39 0.17 0.18 0.52
Waiting time MAX_ER 10.12 11.14 6.16 6.20 15.18
Queue length AVG_ER 0.63 0.42 0.17 0.17 0.53
Queue length MAX_ER 10.36 12.22 6.40 6.39 14.83
Throughput AVG_ER 0.17 0.12 0.06 0.06 0.50
Throughput MAX_ER 4.40 6.35 3.59 3.63 11.02
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0.95. Companion results are reported in Table 6, after that 10 occurrences of conver-
gence failure in our two-phase aggregation procedures have been excluded. Numerical
instabilities and negative probabilities observed in the standard implementation of the
MVA algorithm under SUF values higher than 0.995 are responsible for these failures.

Overall, we may conclude that final results in Tables 5 and 6 confirm the effec-
tiveness of our two-phase aggregation procedures, in particular the 2P_MP_PE,
whatever be the position of the bottleneck within the network (central of peripheral), if
any, as long as it remains limited to non-anomalous SUF values (below 0.99) when
using the standard implementation of the MVA algorithm.

Table 5. Results for 248 networks under 0.95 < SUF < 0.999 at each station and TL
0.001/0.01.

Error on expected performance
measure (%) per class & station

Algorithm for network solution

2P_MP_PE 2P_MP_AQL M/M/mj/N_AQL

Tolerance value for convergence
0.001 0.01 0.001 0.01 0.001 0.01

Waiting time AVG_ER 0.24 0.24 0.24 0.24 0.43 0.44
Waiting time MAX_ER 6.48 6.50 7.40 7.42 8.32 8.34
Queue length AVG_ER 0.23 0.23 0.23 0.23 0.44 0.45
Queue length MAX_ER 7.76 7.78 8.97 8.99 7.49 7.56
Throughput AVG_ER 0.04 0.04 0.04 0.04 0.10 0.10
Throughput MAX_ER 1.22 1.21 1.62 1.61 3.00 3.04

Table 6. Results for 722 networks under 0.95 < SUF < 0.999 at each station.

Error on expected performance
measure (%) per class & station

Algorithm for network solution

2P_MP_PE 2P_MP_AQL M/M/mj/N_AQL

Tolerance value for convergence
0.001 0.01 0.001 0.01 0.001 0.01

Waiting time AVG_ER 0.53 0.53 0.50 0.50 1.31 1.33
Waiting time MAX_ER 5.48 6.32 5.19 5.51 9.12 9.13
Queue length AVG_ER 0.52 0.52 0.47 0.50 1.37 1.40
Queue length MAX_ER 7.99 8.04 6.94 6.98 7.56 7.55
Throughput AVG_ER 0.11 0.11 0.11 0.11 0.26 0.27
Throughput MAX_ER 1.69 1.69 1.38 1.39 3.22 3.23

Class Aggregation for Multi-class Queueing Networks 237



5 Conclusions

Out of all of the approximation procedures investigated, the two-phase fixed-point
iteration schema may be recommended for solving large multi-class queueing networks
with multi-server stations. Polynomial complexity per iteration is obtained by the
aggregation of all customer classes except for one in the first phase and then by
aggregating all the classes into a unique representative in the second phase. Besides the
average performance measures per class at each service station, the marginal queue
length probabilities per class are returned upon convergence. A formal proof of con-
vergence seems difficult and even unlikely, considering the past efforts put into this
type of iterative schemas. Nevertheless, a very safe behavior in convergence, along
with the capability of keeping the maximum relative error upon standard performance
measures below 10%, is assessed after thousands of numerical experiments. Unless
very high levels of the utilization factor of the generic server (SUF) at each station are
overcome, our two-phase aggregation procedure, under both the so-called proportional
estimation or the aggregate queue length approximation used in conjunction with the
standard implementation of the MVA algorithm, may be useful in real practice. No
convergence problems have to be taken into account under a server utilization factor
less than 0.99, when solving queueing networks with one or more bottleneck stations.
Whenever this safeguard is respected, just a few iterations (less than 10 outer iterations)
are usually needed to achieve convergence on the marginal probabilities for the rep-
resentative class at each station.
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Abstract. We consider a tandem queue with coupled processors, which
is subject to global breakdowns. When the network is in the operat-
ing mode and both queues are non empty, the total service capacity is
shared among the stations according to fixed proportions. When one of
the stations becomes empty, the total service capacity is assigned to the
non-empty station. Moreover, arrival rates depend on the state of the
network. The system is described by a Markov modulated random walk
in the quarter plane representing the number of jobs in the two stations,
and the state of the network. We first apply the power series approxima-
tion method to obtain power series expansions of the generating function
of the stationary joint queue length distribution for both network states.
We also provide a way to derive the generating function of the station-
ary joint queue length distribution for both network states in terms of
the solution of a Riemann-Hilbert boundary value problem. Numerical
results are obtained to show insights in the system performance.

Keywords: Tandem queues · Coupled processors ·
Power-series approximation · Boundary value problems

1 Introduction

Queueing networks with service interruptions are known to be adequate models
to handle realistic problems in manufacturing, telecommunications etc. Despite
their great importance, there has been done very few works involving more than
one queue, since even under favourable assumptions, the existence of service
interruptions destroys the separability [5] of the appropriate multidimensional
Markov process and renders its solution intractable.

The problem becomes even more challenging when we further assume that
the nodes are interacting with each other. With the term “interaction”, we mean
that the service rate at a node depends on the state of the other nodes, i.e., a
networks with coupled processors [20,26,32]. For such systems, which do not
possess the “product form” solution, analytic methods have been developed in
[10,21].
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In this work, we go one step further and consider a two-node tandem network
with coupled processors, which is subject to global (i.e., network) breakdowns.
It is assumed that jobs arrive at the first station according to a Poisson process
depended on the state of the network, and require service at both stations before
leaving the network. The amounts of work that a job requires at each of the
stations are independent, exponentially distributed random variables. When the
network is in the operating mode, and both stations are non-empty, the total
service capacity is shared between the stations according to fixed proportions.

When one of the stations becomes empty, the total service capacity is given
to the non-empty station. When the network is in the set-up mode after a failure
occurrence, both stations stop working1, for an exponentially distributed time
period. During set-up period, jobs continue to arrive, but now at a decreased
rate in order to avoid further congestion2. Such a system is fully described by
a random walk in the quarter plane (representing the number of jobs in each
node), which is modulated by a two state Markov chain (representing the state
of the network).

For such a network we provide two different approaches to investigate its
stationary behaviour, named the Power Series Approximation (PSA) method,
and the theory of Riemann-Hilbert boundary value problems (BVP).

1.1 Related Work

Most of the existing studies involving breakdowns have concentrated on models
with a single job queue served by one or more processors, e.g. [28,34]. Other
related results where jobs from a single source are directed to one of several
parallel queues, and where breakdowns result in the loss of jobs, or the direct
transfer to other queues are given in [27,35]. A two-node network subject to
breakdowns and repairs was also analysed in [29]. Approximate solutions to
obtain performance measures, based on replacing an interruptable server with an
uninterruptable but slower one, choosing the new service rate without affecting
the overall service capacity was given in [31,39].

Queues with coupled processors were initially studied in [20]. To gain quan-
titative insights about the queueing process, the probability generating function
(pgf) of the stationary joint queue-length distribution is derived by using the
theory of Riemann-Hilbert boundary value problems. Later, in [10] a systematic
and detailed study of the technique of studying two dimensional random walks
to a boundary value problem was presented, while several numerical issues were
also discussed. Important generalizations were given in [4,9,13–17,19,24,26,32]
(not exhaustive list) where various two-dimensional queueing models with the
aid of the theory of Riemann (-Hilbert) boundary value problems. A tandem
queue with two coupled processors was analyzed in [32], while later, computa-
tional issues as well as asymptotic results were discussed and presented in [23,26],
respectively.
1 This is natural when we are dealing with queues in series.
2 Such an operation can be performed by a central scheduler, responsible for the

congestion management.
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Other approaches to analyze two-dimensional queueing models have been
developed in [1] (compensation method), and [6,25] (power series algorithm). In
the latter one, power series expansions of steady-state probabilities as functions
of a certain parameter of the system (usually the load) were derived. Recently,
the authors in [41] studied generalized processor sharing queues and introduced
an alternative method to provide approximated stationary metrics in slotted
time generalized processor sharing queues, in which at the beginning of a slot,
if both queues are nonempty, a type 1 (resp. type 2) customer is served with
probability β (resp. 1 − β); see also [18,36–38]. There, the authors focus in
constructing power series expansions for the pgf of the joint stationary queue
length distribution directly from the functional equation, while the obtained
power series expansions are in β.

Applications of coupled processor models arise in systems where limited
resources are dynamically shared among processors, e.g., in data transfer in bidi-
rectional cable and data networks [26], in bandwidth sharing of data flows [24], in
the performance modeling of device-to-device communication [40], to model the
complex interdependence among transmitters due to interference [7,15,17,19],
as well as in assembly lines in manufacturing [2].

1.2 Our Contribution

In this work we focus on the stationary analysis of two-node tandem queue with
coupled processors and network breakdowns.

Applications. Potential application of our system are found in systems with
limited capacity, which must be shared in multiple operations. For example, in
the modeling of virus attacks or other malfunctions in cable access networks
regulated by a request-grant mechanism.

Another application of the model can be found in manufacturing [2], and
in particular in an assembly line. There, two operations on each job must be
performed using a limited service capacity. To increase the network throughput,
we couple the service rates at each of the operations, and thus we use the service
capacity of an operation for which no jobs are waiting for the other operation.
Such a system is heavily affected by the presence of failures during the job
processing, which in turn will definitely deteriorate the system throughput.

Fundamental Contribution. Based on the generating function approach, we apply
two different methods to investigate the stationary behaviour of the underline
Markov modulated random walk in the quarter plane. First, we apply the power
series approximation method, initially introduced in [41] (see also [11,18,36,
38]), for two-parallel generalized processor sharing queues, described by a typical
random walk in the quarter plane (RWQP). In this work we show that this
method is still valid for related Markov modulated RWQP (e.g., [4,13,14,30,33]),
and thus, extend the class of models that can be applied. Under such a method
we obtain power series expansions of the pgf of the joint stationary distribution
for either state of the network. A recursive technique to derive their coefficients
is also presented.
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Secondly, we also derive the pgfs of the joint stationary queue-length distri-
bution for either state of the network with the aid of the theory of Riemann-
Hilbert boundary value problems [10,20,21]. It is seen that applying the theory of
boundary value problems some further technical difficulties are also arise. More
precisely, by applying the generating function approach we first come up with a
system of functional equations, which is then reduced to a single fundamental
equation.

The rest of the paper is summarized as follows. In Sect. 2 we present the
mathematical model in detail and obtain the functional equations along with
some preliminary results. Section 3 is devoted to the analysis of the two extreme
cases where the total capacity is allocated to one of the two stations, even if
both stations are nonempty. In Sect. 4 we apply the power series approxima-
tion method for the case where the service capacity is shared by the two sta-
tions, where in Sect. 5, we provide a complete analysis on how to obtain the
pgfs of the stationary joint queue length distribution in terms of a solution of a
Riemann-Hilbert boundary value problem. Numerical validations of the perfor-
mance metrics obtained by using the PSA and the BVP methods, as well as some
observations about how the system parameters affect the system performance
for a near priority system are given in Sect. 6.

2 The Model and the Functional Equations

Consider a two-stage tandem queue, where jobs arrive at queue 1 according to a
Poisson process with rate depending on the state of the network. In particular,
the network is subject to breakdowns which occur according to a Poisson pro-
cess with rate γ. When a breakdown occurs, both stations stop working for an
exponentially distributed time period with rate τ . Thus, the network alternates
between the operating mode and the set-up mode. Denote by C(t) the state of
the network at time t, with C(t) = 0 (resp. 1), when network is in operating
(resp. set-up). When C(t) = i, jobs arrive in station 1 according to a Poisson
process with rate λi, i = 0, 1.

Each job demands service at both queues before departing from the network.
More precisely, at station j, a job requires an exponentially distributed amount
of service with parameter νj , j = 1, 2. The total service capacity of the tandem
network equals one unit of work per time unit. In particular, when both stations
are non-empty, station j is served at a rate φj , j = 1, 2, and at a rate 1 when it
is the only non empty. Without loss of generality we assume hereon that φ1 = p
and φ2 = 1 − p, where 0 ≤ p ≤ 1.

Let Qj(t), j = 1, 2, be the number of customers at queue j at time t. Under
usual assumptions the stochastic process X(t) = {(C(t), Q1(t), Q2(t)); t ≥ 0}
is an irreducible and aperiodic continuous time Markov chain with state space
E = {0, 1}×Z

+ ×Z
+. Denote by πi(n, k) the stationary probability of having n

and k customers at stations 1 and 2, respectively, when the network is in state
i. The balance equations are given by
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(λ0 + γ)π0(0, 0) = ν2π0(0, 1) + τπ1(0, 0),
(λ0 + γ + ν2)π0(0, 1) = ν1π0(1, 0) + ν2π0(0, 2) + τπ1(0, 1),
(λ0 + γ + ν2)π0(0, k) = pν1π0(1, k − 1) + ν2π0(0, k + 1) + τπ1(0, k), k ≥ 2

(1)

(λ0 + γ + ν1)π0(n, 0) = λ0π0(n − 1, 0) + (1 − p)ν2π0(n, 1) + τπ1(n, 0),

(λ0 + γ + pν1 + (1 − p)ν2)π0(n, 1) = λ0π0(n − 1, 1) + ν1π0(n + 1, 0)
+ (1 − p)ν2π0(n, 2) + τπ1(n, 1), n ≥ 1,

(λ0 + γ + pν1 + (1 − p)ν2)π0(n, k) = λ0π0(n − 1, k) + pν1π0(n + 1, k − 1)
+ (1 − p)ν2π0(n, k + 1) + τπ1(n, k), n ≥ 1, k ≥ 2

(2)

(λ1 + τ)π1(n, k) = γπ0(n, k) + λ1π1(n − 1, k). (3)

Define the probability generating functions of the joint stationary queue length
distribution

Πi(x, y) =
∞∑

n=0

∞∑

k=0

πi(n, k)xnyk, i = 0, 1, |x| ≤ 1, |y| ≤ 1.

Using the balance equations we obtain after some algebra the following sys-
tem of functional equations

R(x, y)Π0(x, y) = A(x, y)Π0(x, 0) + B(x, y)Π0(0, y)
+ C(x, y)Π0(0, 0) + τxyΠ1(x, y),

Π1(x, y) = γ
D(x)Π0(x, y),

(4)

where, D(x) = λ1(1 − x) + τ and

R(x, y) = xy(λ0(1 − x) + γ) + ν1py(x − y) + ν2(1 − p)x(y − 1),
A(x, y) = (1 − p)[ν2x(y − 1) + ν1y(y − x)],
B(x, y) = − p

1−pA(x, y),
C(x, y) = ν1(1 − p)y(x − y) + ν2px(y − 1).

(5)

Our aim is to solve the system of functional Eq. (4). Substituting the second
in (4) to the first one, we obtain the following fundamental functional equation

Π0(x, y)[D(x)R(x, y) − τγxy] = D(x){A(x, y)Π0(x, 0) + B(x, y)Π0(0, y)
+ C(x, y)Π0(0, 0)}.

(6)

Clearly, Π0(1, 1) + Π1(1, 1) = 1, while by using the second in (4) we obtain
Π1(1, 1) = τ

γ Π0(1, 1). Thus, the probabilities of the network state are easily
given by

Π0(1, 1) =
τ

τ + γ
, Π1(1, 1) =

γ

τ + γ
.

Let x = s(y) := ν1y2

ν1+ν2(1−y) . Note that A(s(y), y) = B(s(y), y) = 0. Then,
using (6) we obtain

Π0(s(y), y) =
D(s(y))C(s(y), y)

D(s(y))R(s(y), y) − τγs(y)y
Π0(0, 0). (7)
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Letting y → 1 in (7) we obtain

Π0(0, 0) =
τ

τ + γ
−

(
λ0

τ

τ + γ
+ λ1

γ

τ + γ

)(
1
ν1

+
1
ν2

)
. (8)

Note that (8) implies that our network is stable when

λ0

(
1
ν1

+
1
ν2

)
τ

τ + γ
+ λ1

(
1
ν1

+
1
ν2

)
γ

τ + γ
<

τ

τ + γ
, (9)

which can be explained by realizing that the left hand side of (9) equals the
amount of work brought into the system per time unit, and in order the system
to be stable, should be less than the amount of work departing the system per
time unit.

Let ρkj := λk

νj
, k = 0, 1, j = 1, 2, and ρk = ρk1 + ρk2, k = 1, 2. Then, (8) is

rewritten as

Π0(0, 0) =
τ

τ + γ
(1 − ρ0τ + ρ1γ

τ
).

Remark 1. Note that λ0

(
1
ν1

+ 1
ν2

)
τ

τ+γ (resp. λ1

(
1
ν1

+ 1
ν2

)
γ

τ+γ ) refers to the
amount of work that arrive at the system per time unit when the network is
in the operating mode (resp. in the set-up mode), while a job can depart from
the network only when it is in the operating mode, and this is happening with
probability τ/(τ + γ).

3 The Cases p = 0 and 1

When p = 0 (resp. p = 1), the model can be seen as a tandem queues served by a
single server, in which preemptive priority is given to station 2 (resp. station 1).
It is easily seen that in such cases, the functional Eq. (4) can be easily solved since
either the coefficient of Π0(0, y) (when p = 0), or the one of Π0(x, 0) (when p = 1)
is equal to zero.

In case p = 0 (i.e., B(x, y) = 0), upon a service completion in station 1, the
server continues serving the customer in station 2, since station 2 has priority.
Thus, in such a case our system reduces to an unreliable queueing system, in
which the service time consists of two exponential phases with parameters ν1
and ν2, respectively. Note that for p = 0,

y := ξ(x) =
ν2D(x)

D(x)(ν2 + λ0(1 − x)) + λ1γ(1 − x)
,

vanishes the left-hand side of (4), and yields

Π0(x, 0) =
(

τ

τ + γ

)
(1 − ρ0τ+ρ1γ

τ )ν1ξ(x)(ξ(x) − x)
ν2x(ξ(x) − 1) + ν1ξ(x)(ξ(x) − x)

.
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Substituting back in (4) yields

Π0(x, y) =
( τ

τ+γ )(1− ρ0τ+ρ1γ
τ )D(x)ν1ν2x

D(x)[λ0y(1−x)+ν2(y−1)]+λ1γy(1−x)

×
{

ξ(x)(y−1)(ξ(x)−x)+y(x−y)(ξ(x)−1)
ν2x(ξ(x)−1)+ν1ξ(x)(x−ξ(x))

}
,

Π1(x, y) = γ
D(x)Π0(x, y).

(10)

The case p = 1 is even more interesting and corresponds to an unreliable
tandem queue attended by a single server and preemptive priority for the first
station. That is, if upon a customer arrival the server is at the second station, it
switches immediately to the first one. Moreover, upon a set-up completion, after
a global breakdown, the server will start serving at the first station if there are
customers waiting. And this is the case even if a breakdown occurs when was
serving a customer at the second station. To the author’s best knowledge, that
case has never considered before. For p = 1, (4) reduces to

[D(x)(λ0x(1 − x) + ν1(x − y)) + λ1γx(1 − x)]yΠ0(x, y)

= D(x){Π0(0, y)[ν2x(1 − y) + ν1y(x − y)] + Π0(0, 0)ν2x(y − 1)}.
(11)

Let x := u(y) the unique root of D(x)(λ0x(1−x)+ ν1(x− y))+λ1γx(1−x) = 0
inside the unit circle. Then, the right-hand side should also vanish and thus,

Π0(0, y) = Π(0, 0)
ν2u(y)(1 − y)

ν2u(y)(y − 1) + ν1y(y − u(y))
.

Substituting back in (11) yields

Π0(x, y) = D(x)ν1y(x−u(y))
u(y)[D(x)(λ0x(1−x)+ν1(x−y))+λ1γx(1−x)]Π0(0, y),

Π1(x, y) = γ
D(x)Π0(x, y).

(12)

4 The Case 0 < p < 1: Power Series Approximation in p

In the following, we are going to construct a power series expansion of the pgf
Π0(x, y) in p starting by (6). Then, having that result we are able to construct
power series expansions of Π1(x, y) in p using the second in (4). With that in
mind, let

Πj(x, y) =
∞∑

m=0

V (j)
m (x, y)pm, j = 0, 1. (13)

Our aim in the following, is to obtain V
(j)
m (x, y), m ≥ 0, j = 0, 1, by employing an

approach similar to the one developed in [11,18,41]3. Equation (6) is rewritten as

G(x, y)Π0(x, y) − G10(x, y)Π0(x, 0) − G00(x, y)Π0(0, 0)

= pG10(x, y)[Π0(x, y) − Π0(x, 0) − Π0(0, y) + Π0(0, 0)],
(14)

3 See Appendix C for the analyticity of Πj(x, y) close to p = 0.
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where,

G(x, y) = D(x)[λ0y(1 − x) + ν2(y − 1)] + λ1γy(1 − x),
G10(x, y) = D(x)[ν2(y − 1) − ν1y(1 − yx−1)],
G00(x, y) = D(x)ν1y(1 − yx−1).

The major difficulty in solving (6) corresponds to the presence of the two
unknown boundary functions Π0(x, 0), Π0(0, y). Having in mind that in the
left-hand side of (14) there is only one boundary function, we are able to follow
the approach in [11,18,41]. The next Theorem summarizes the basic result of
this section.

Theorem 1. Under stability condition (9),

V
(0)
0 (x, y) = D(x)ν1ν2(Ỹ (x)−x)(Ỹ (x)(y−1)+x−y)

G(x,y)[ν2x(Ỹ (x)−1)−ν1Ỹ (x)(x−Ỹ (x))]
V (0)(0, 0),

V
(0)
m (x, y) = G10(x,y)

G(x,y) Qm−1(x, y), m > 0,

V
(1)
m (x, y) = γ

D(x)V
(0)
m (x, y), m ≥ 0,

(15)

where

Ỹ (x) = ν2D(x)
D(x)(ν2+λ0(1−x))+λ1γ(1−x) ,

Qm(x, y) = V
(0)
m (x, y) − V

(0)
m (x, Ỹ (x)) − V

(0)
m (0, y) + V

(0)
m (0, Ỹ (x)), m ≥ 0,

and Q−1(x, y) := 0.

Proof. The proof follows the lines in [18,41]. Note that Π0(x, y) is analytic func-
tion of p in a neighbourhood of 0. We start by expressing Π0(x, y) in power
series expansion of p by using (14), and equating the corresponding powers of p
at both sides. This yields

V
(0)
m (x, y)G(x, y) = G10(x, y)[V (0)

m (x, 0) + Pm−1(x, y)]
+G00(x, y)V (0)

m (0, 0), m ≥ 0,
(16)

where

Pm(x, y) = V (0)
m (x, y) − V (0)

m (x, 0) − V (0)
m (0, y) + V (0)

m (0, 0),

with P−1(x, y) = 0. Note that G(x, y) = 0 has a unique zero y = Ỹ (x) such that

Ỹ (x) =
ν2D(x)

D(x)(ν2 + λ0(1 − x)) + λ1γ(1 − x)
4.

4 Note that Ỹ (x) = ξ(x), where ξ(x) was defined in Sect. 3 for the case p = 0.
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It is easy to realize that |Ỹ (x)| < 1, for |x| = 1. Substituting in (16) we eliminate
its left-hand side yielding

V (0)
m (x, 0) = −G00(x, Ỹ (x))

G10(x, Ỹ (x))
V (0)

m (0, 0) − Pm−1(x, y). (17)

Substituting (17) back in (16) yields the first in (15). Then, using the second
equation in (4) we derive the coefficients V

(1)
m (x, y) in terms of V

(0)
m (x, y) as given

in the second in (15). From (8) it is readily seen that

V
(0)
0 (0, 0) = τ

τ+γ −
(
λ0

τ
τ+γ + λ1

γ
τ+γ

) (
1
ν1

+ 1
ν2

)
,

V
(0)
m (0, 0) = 0, m > 0.

4.1 Performance Metrics

We focus on the mean queue lengths given by

E(Q1) =
∑∞

m=0p
m ∂

∂x [V (0)
m (x, 1) + V

(1)
m (x, 1)]|x=1

= λ1γ
τ(τ+γ) + (1 + γ

τ )
∑∞

m=0p
m ∂

∂xV
(0)
m (x, 1)|x=1,

E(Q2) =
∑∞

m=0p
m ∂

∂y [V (0)
m (1, y) + V

(1)
m (1, y)]|y=1

= (1 + γ
τ )

∑∞
m=0p

m ∂
∂y V

(0)
m (1, y)|y=1,

(18)

Let

vm,1 =
∂

∂x
V (0)

m (x, 1)|x=1, vm,2 =
∂

∂y
V (0)

m (1, y)|y=1.

Truncation of the power series in (18) yields,

E(Q1) = λ1γ
τ(τ+γ) + (1 + γ

τ )
∑M

m=0p
mvm,1 + O(pM+1),

E(Q2) = (1 + γ
τ )

∑∞
m=0p

mvm,2 + O(pM+1).
(19)

Truncation yields accurate approximations for p close to 0. However, we have
to note the actual calculation of the expressions in (18) requires the computa-
tion of the first derivatives of V

(0)
m (x, y) for m ≥ 0. Although we provided an

algorithm (see Theorem 1) to calculate these coefficients, the calculation of their
first derivatives is far from straightforward due to the extensive use of L’Hopital’s
rule.

5 The Case 0 < p < 1: A Riemann-Hilbert Boundary
Value Problem

In the following, we proceed with the determination of Πj(x, y), j = 0, 1, |x| ≤
1, |y| ≤ 1 with the aid of the theory of boundary value problems (BVP). In
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particular, we first obtain Π0(x, y) in terms of the solution of a Riemann-Hilbert
boundary value problem by using (6), and then, we use the second in (4), to
finally derive Π1(x, y).

A key step to analyze the functional Eq. (6) is the careful examination of the
algebraic curve defined by the kernel equation,

H(x, y) := D(x)R(x, y) − τγxy = 0. (20)

It is easily seen that H(x, y) is a polynomial of third degree in x, and of second
degree in y. The study of H(x, y) = 0 (see Appendix A) allows to continue the
unknown functions Π0(x, 0) , Π0(0, y) analytically outside the unit disk, and to
reduce their determination to a Dirichlet boundary value problem.

Let Cx = {x ∈ C : |x| = 1}, Cy = {y ∈ C : |y| = 1}, Dx = {x ∈ C : |x| ≤ 1},
Dy = {y ∈ C : |y| ≤ 1}, and denote by U+ (resp. U−) the interior (resp. the
exterior) domain bounded by the contour U . Then the following lemma provides
information about the location of the zeros of the kernel H(x, y).

Lemma 1. If y ∈ Cy (resp. x ∈ Cx), H(x, y) = 0 has a unique root, say X0(y) ∈
Dx (resp. Y0(x) ∈ Dy).

Proof. See Appendix A

By the implicit function theorem, we see that the algebraic function Y (x)
(respectively X(y)) defined by H(x, Y (x)) = 0 (resp. H(X(y), y) = 0) is ana-
lytic except at branch points. Denote X1(y), X2(y) the other two in x, with
|X1(1)| < |X2(1)|, by Y1(x) the other one in y.

Lemma 2. The algebraic function Y (x), defined by H(x, Y (x)) = 0, has six real
positive branch points, and two of them, say x1, x2, are such that 0 = x1 < x2 < 1.

Proof. See Appendix A.

Define the image contour, L = Y0([
−−→
0, x2←−−]), where [−→u, v←−] stands for the contour

traversed from u to v along the upper edge of the slit [u, v] and then back to u
along the lower edge of the slit. The following lemma shows that the mapping
Y (x), x ∈ [0, x2], gives rise to the smooth and closed contour L.

Remark 2. The study of H(x, y) = 0 with respect to x is slightly more difficult,
but allows to also show that the algebraic function X(y) has also two real and
non-negative branch points inside Dy, say 0 ≤ y1 < y2 < 1. Similarly, for
y ∈ [y1, y2], X(y) lies on a closed contour M. Further details are omitted due to
space limitations, and mainly due to the fact that our main contribution relies
on the use of PSA method.

Lemma 3. For x ∈ [0, x2], the algebraic function Y (x) lies on a closed contour
L, which is symmetric with respect to the real line and such that

|y|2 =
(1 − p)ν2

pν1
x, |y|2 ≤ (1 − p)ν2

pν1
x2.

Proof. Follows directly from the fact that Δ(x) is negative for x ∈ (0, x2) (see
Appendix A).
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5.1 A Boundary Value Problem for Π0(0, y)

For x ∈ Cx, y = Y0(x) we obtain

(1 − p)Π0(x, 0) − pΠ0(0, Y0(x)) +
C(x, Y0(x))
F (x, Y0(x))

Π0(0, 0) = 0, (21)

where F (x, y) = A(x,y)
1−p = −B(x,y)

p . For y ∈ Cy, x = X0(y)

(1 − p)Π0(X0(y), 0) − pΠ0(0, y) +
C(X0(y), y)
F (X0(y), y)

Π0(0, 0) = 0. (22)

Equation (22) implies that

Π(0, y) =
1 − p

p
Π0(X0(y), 0) − C(X0(y), y)

F (X0(y), y)
Π0(0, 0),

which is a meromorphic function5. For y ∈ L+ ∩ C−
y , |X0(y)| < 1, and thus, we

can construct analytic continuation of Π0(0, y) for all y ∈ ζy := L+ ∩ C−
y .6

Moreover, as Y0(x) is analytic in Dx−[0, x2] [21], Π0(0, Y0(x)) is meromorphic
in Dx − [0, x2], and from (21)

Π0(x, 0) =
p

1 − p
Π0(0, Y0(x)) +

C(x, Y0(x))

F (x, Y0(x))
Π0(0, 0) = 0, x ∈ Dx − [0, x2]. (23)

We therefore have the relation (21), not only for x ∈ Cx but also for x ∈ Dx −
[0, x2], and by continuity, for x ∈ Dx − [0, x2] too. Since Π0(x, 0) is real for
x ∈ [0, x2], we obtain

Re[iΠ(0, Y0(x))] = Im[Π0(0, 0)
C(x, Y0(x))
F (x, Y0(x))

], x ∈ [0, x2],

or equivalently,

Re[iΠ(0, y)] = c(y) := Im[Π0(0, 0)
C(|y|2pν1/(1 − p)ν2, y)
F (|y|2pν1/(1 − p)ν2, y)

], y ∈ L. (24)

Thus our problem is reduced to the determination of a function, which is
regular for y ∈ L+, continuous in L+ ∪L satisfying the boundary condition (24).
A standard way to solve this Riemann-Hilbert boundary value problem is to
conformally transform it on the unit circle [21,26] by introducing the conformal
mappings z = γ(y) : L+ → C+

y , and its inverse y = γ0(z) : C+
y → L+.7

Then, we have the following problem: Find a function T (z) = Π0(0, γ0(z))
regular for z ∈ C+

z , and continuous for z ∈ Cz ∪ C+
z such that, Re(iT (z)) =

c(γ0(z)), z ∈ C. Its solution (see [22]) is given by

Π0(0, y) = − 1
2π

∫

Cz

c(γ0(z))
z + γ(y)
z − γ(y)

dz

z
+ K, y ∈ Cy ∪ C+

y , (25)

5 Its possible poles are the zeros of F (X0(y), y) in L+ ∩ C−
y .

6 Note that ζy is an empty set when (1−p)ν2 ≤ pν1, since in such a case L lies entirely
inside the unit circle.

7 See Appendix B for details on the numerical derivation of the conformal mappings.
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where K is a constant. Then, (21) can be used to obtain Π0(x, 0), x ∈ Cx
8. For

x ∈ C+
x , Π0(x, 0) can be derived by using the Cauchy’s formula, yielding

Π0(x, 0) =
1
2π

∫

Cy

V (y)
y − x

dy, x ∈ C+
x ,

where

V (y) =
1 − p

p
Π0(X0(y), 0) − C(X0(y), y)

F (X0(y), y)
Π0(0, 0), y ∈ Cy.

Using (6) we obtain Π0(x, y). Then, using the second in (4) we obtain Π1(x, y)
and all unknowns are fully specified.

6 Numerical Results

6.1 Numerical Validation

We now compare the PSA to the exact results derived by the BVP approach
and investigate the influence of some parameters on the mean queue lengths.

Figure 1 depicts the approximations (19) as a function of p for increasing
values of M . Set λ0 = 1, λ1 = 0.5, τ = 4, γ = 2, ν1 = 4, ν2 = 5. The horizontal
lines (M = 0) equal the values for the tandem system with priority for the second
queue. Figure 1 confirms that the PSA approximations are accurate for p close
to 0, and clearly, more terms provide larger regions for p where the accuracy is
good.

In Fig. 2 (λ0 = 1, λ1 = 0.5, M = 3, ν1 = 4, ν2 = 5), we can observe that
the increase in γ will definitely increase E(Q2), since the system switches to the
set-up mode more frequently.

Figure 3 shows the total expected number of customers in the system as
a function of λ0 and γ. We can observe that by increasing both λ0 and γ,
E(Q1 + Q2) increases too. An interesting observation arises when we increase τ
and reveals the importance of controlling the arrivals. In particular, it is seen
that when we increase τ , and thus, decrease the duration of the set-up period,
E(Q1+Q2) increases faster. This is because of the reduced arrival rate when the
network is in the set-up mode compared with the arrival rate at the operating
mode.

6.2 Influence of System Parameters as p → 0

Here on we focus on the influence of system parameters on the mean content for
the near priority tandem queue as p → 0 when τ = 4, ν1 = 4, ν2 = 5. Recall
that as p → 0, our system behaves as a single server tandem queue, in which
station 2 has preemptive priority over station 1.
8 Note that a similar analysis can be also performed to obtain Π0(x, 0) in terms of

another Riemann-Hilbert boundary value problem.
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Fig. 1. Truncation approximations for λ0 = 1, λ1 = 0.5, τ = 4, γ = 2, ν1 = 4, ν2 = 5.
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Fig. 2. Truncation approximations for λ0 = 1, λ1 = 0.5, τ = 4, M = 3, ν1 = 4, ν2 = 5.
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Fig. 3. Truncation approximations for λ1 = 0.5, M = 3, ν1 = 4, ν2 = 5, p = 0.2.

Table 1 displays some values of the first-order correction term (i.e., the first
derivative of the station 2 queue content as p = 0) for increasing values λ0. It is
seen that as γ increases the mean queue content in station 2 increases, and that
increase becomes more apparent as λ0 increases too. This is expected since by
increasing the load in system, the station 1 has always customers. Thus, sharing
the server with that station, even for a small percentage of the time can have a
large influence, especially when the rate of failures increases too.

Table 1. First-order correction as p → 0 for λ0 = 0.5.

λ0 γ

0.1 0.3 0.5 0.7

0.7 0.0173 0.1064 0.1931 0.2775

0.8 0.3683 0.4482 0.5265 0.6033

0.9 0.6844 0.7582 0.8309 0.9025

1 0.9771 1.0466 1.1154 1.1835

1.1 1.2534 1.3200 1.3861 1.4516

In Table 2 we set α = λ1
λ0+λ1

and derive first-order correction term for station
2 queue content for increasing values of λ0, α. It is interesting to note that for
fixed λ0, as α increases, we particularly increase the percentage of customers
that may arrive when the network is down. Since we have also assumed low rate
of failures the mean queue content in station 2 decreases. However, by increasing
λ0 we clearly increase the mean queue content in station 2.
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Table 2. First-order correction as p → 0 for γ = 0.3.

λ0 α

0.1 0.2 0.3 0.4

0.7 0.8998 0.6773 0.4090 0.0796

0.8 1.0786 0.8699 0.6205 0.3175

0.9 1.2610 1.0666 0.8362 0.5592

1 1.4471 1.2672 1.0559 0.8047

1.1 1.6368 1.4717 1.2797 1.0540

7 Conclusion

In this work, we investigated the stationary behaviour of an unreliable two-node
tandem queue with coupled processors, which is described by a Markov modu-
lated RWQP. Based on the generating function approach, we applied the PSA
method and obtained power series expansions of the pgfs of the stationary joint
queue length distributions for each state of the network. With this result we
shown the flexibility of the PSA approach to be applied in more complicated
models. Moreover, we also obtained the corresponding pgfs with the aid of the
theory of Riemann-Hilbert boundary value problems. By truncating the power
series, we find good approximations for the expected number of customers espe-
cially when p is close to 0, by comparing them with the “exact” derivations
through BVP.

In the future, we plan to expand our results to networks with more than two
nodes, where the theory of BVPs cannot be applied, as well as to consider general
routing among the nodes. Moreover, it could be also interesting to compare
PSA method with other approximation techniques developed so far [8,31,35,
39]. Moreover, it would be interesting to derive asymptotic estimates for the
occurrence of large queue lengths due to the presence of failures.

Acknowledgements. The author would like to thank the the anonymous Reviewers
for the careful reading of the manuscript and the insightful remarks and input, which
helped to improve the original exposition.

Appendix

A Analysis of the Kernel

Proof of Lemma 1. Let u(x, y) = λ0(1−x)+ν1p(1− y
x )+ν2(1−p)(1− 1

y )+γ.
Note that

H(x, y) = 0 ⇔ xy{D(x)u(x, y) − γτ} = 0.

Using the principal value argument it is seen that the number of zeros of H(x, y)
in Dx equals the number of zeros of D(x)u(x, y) in Dx, which is equal to one. 
�
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Proof of Lemma 2. The branch points of the two-valued function Y (x) are
the zeros of the discriminant Δ(x) = x(f(x) + g(x)) of H(x, y) = 0, where

f(x) = D2(x)[x(λ0(1 − x) + γ + pν1 + (1 − p)ν2)2 − 4(pν1 + (1 − p)ν2)],
g(x) = xλ1(1 − x)γ[λ1(1 − x)γ + 2D(x)(λ0(1 − x) + pν1 + (1 − p)ν2)].

Note g(x) = 0 if and only if x = 0, x = 1, and

2λ0λ1x
2 − x[2λ0(2λ1 + τ) + λ1(γ + 2(pν1 + (1 − p)ν2))]

+2(τ + λ1)(λ0 + pν1 + (1 − p)ν2) + λ1γ = 0.
(26)

Let x∗
1, x∗

2 the zeros of (26). Then,

x∗
1x

∗
2 = 1 + 2(τ+λ1)(pν1+(1−p)ν2)+λ1γ+2λ0τ

2λ0λ1
> 1,

x∗
1 + x∗

2 = 2 + λ1γ+2λ1(pν1+(1−p)ν2)+2λ0τ
2λ0λ1

> 2,

which means that x∗
1, x

∗
2 > 1. Thus g(x) = 0 has exactly two roots in [0, 1]. By

using Rouche’s theorem, we can show that D(x) = 0, i.e., x(f(x) + g(x)) = 0
has exactly two zeros in [0, 1], and one of them equals x1 = 0.

B On the Derivation of Conformal Mappings

A detailed approach on how we can numerically obtain the conformal mappings
is given in [10,26]. We summarized the basic steps. First, we need to represent L
in polar coordinates, i.e., L = {y : y = ρ(φ) exp(iφ), φ ∈ [0, 2π]}. Since 0 ∈ L+,
for each y ∈ L, we can have a relation between its absolute value and its real
part, i.e., |y|2 = m(Re(y)). Given the angle φ of some point on L, the real part
of this point, say δ(φ), is the solution of δ − cos(φ)

√
m(δ), φ ∈ [0, 2π]. Since L is

a smooth, egg-shaped contour, the solution is unique. Clearly, ρ(φ) = δ(φ)
cos(φ) , and

the parametrization of L is fully specified. Then, the mapping from z ∈ C+
z to

y ∈ L+, where z = eiφ and y = ρ(ψ(φ))eiψ(φ), satisfying γ0(0) = 0, γ0(z) = γ0(z)
is uniquely determined by,

γ0(z) = z exp[ 1
2π

∫ 2π

0
log{ρ(ψ(ω))} eiω+z

eiω−z dω], |z| < 1,

ψ(φ) = φ − ∫ 2π

0
log{ρ(ψ(ω))} cot(ω−φ

2 )dω, 0 ≤ φ ≤ 2π,
(27)

i.e., ψ(.) is uniquely determined as the solution of a Theodorsen integral equation
with ψ(φ) = 2π − ψ(2π − φ). Due to the correspondence-boundaries theorem,
γ0(z) is continuous in Cz ∪ C+

z .

C On the Analyticity of Πj(x, y) Close to p = 0

We focus only on the analyticity of Π0(x, y) in a neighborhood of p = 0 by
using a variant of the implicit function theorem on the functional Eq. (6). The
analyticity of Π1(x, y), follows directly by the analyticity of Π0(x, y) from the
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second in (4). We follow the lines in [18,41], and use the implicit function theorem
for Banach spaces (see Theorem 10.2.3, p. 272 in [12]). Define the mapping
f : S ⊂ C × B2 → B3 × C,

f(p,Π0) = [Π0(x, y)H(x, y) − D(x){A(x, y)Π0(x, 0)
+B(x, y)Π0(0, y) + C(x, y)Π0(0, 0)},Π0(1, 1) − τ

τ+γ ],

where S contains the point (0, V (0)
0 ), H, A, B, C, are as in (20) and (5) respec-

tively, B2 be the Banach space comprising all bivariate analytic bounded func-
tions in D

2, with D the open complex unit disk, and B3 be the Banach space
comprising all trivariate analytic bounded functions in D

3 that have a limit of 0
for the first two arguments going to 1.

Since H, A, B, C are bounded analytic functions in D
3, and since f is affine

in Π0 and p, it is easily seen that f is r-times continuously differentiable for all
r. Note also that f(0, V

(0)
0 ) = [0, 0]. Then, the (Banach space) derivative of f at

the point (0, V (0)
0 ) [12] equals

df(0, V
(0)
0 ) = [Π0(x, y)H(x, y) − D(x){A(x, y)Π0(x, 0)

+C(x, y)Π0(0, 0)},Π0(1, 1)].

We need to show that this mapping is a homeomorphism. Indeed,

1. df(0, V
(0)
0 ) is a continuous mapping for the same reasons that the mapping f

itself is continuous.
2. For given Π

(1)
0 , Π

(2)
0 , let df(0, V

(0)
0 )(Π(1)

0 ) = df(0, V
(0)
0 )(Π(1)

0 ). Then,

[Π
(1)
0 (x, y) − Π

(2)
0 (x, y)]H(x, y)

−D(x){A(x, y)(Π
(1)
0 (x, 0) − Π

(2)
0 (x, 0)) + C(x, y)(Π

(1)
0 (0, 0) − Π

(2)
0 (0, 0))} = 0,

Π
(1)
0 (1, 1) − Π

(2)
0 (1, 1) = 0.

or equivalently f(0,Π
(1)
0 − Π

(2)
0 ) = (0,− τ

τ+γ ), which in turn has the zero

solution as a unique solution [3], and thus Π
(0)
1 = Π

(0)
2 so that df(0, V

(0)
0 ) is

injective.
3. To show that df(0, V

(0)
0 ) is surjective, we solve the df(0, V

(0)
0 )(Π0) = (g, c)

with g a bivariate analytic bounded function in D
2 with limit 0 for its argu-

ments going to 1, and c a complex number. The solution is

Π0(x, y)
= g(x,y)A(x,Y0(x))−g(x,Y0(x))A(x,y)+Π(0)(0,0)[C(x,y)A(x,Y0(x))−C(x,Y0(x))A(x,y)]

H(x,y)A(x,Y0(x))
.

4. The Π0 obtained previously equals (df(0, V
(0)
0 ))−1, which is readily seen that

it is continuous.

Thus, Π0 → df(0, V
(0)
0 )(Π(0)) is a linear homeomorphism and using Theorem

10.2.3 in [12], Π0(x, y) is r-times differentiable at p = 0. Having this result, and
using the second in (4), Π1(x, y) is also r-times differentiable at p = 0.
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Abstract. We derive a heavy traffic analysis for a G/G/1 queue in
which the server uses the Shortest Remaining Processing Time (SRPT)
policy from diffusion limits for G/G/1 Earliest Deadline First (EDF) sys-
tems. Our approach yields simple, concise justifications and new insights
for SRPT heavy traffic limit theorems of Gromoll, Kruk and Puha [9].
Corresponding results for the longest remaining processing time (LRPT)
policy are also provided.
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1 Introduction

The Shortest Remaining Processing Time (SRPT) service protocol gives pre-
emptive priority to the job with the shortest residual service time. It is of great
theoretical interest, because it is known to minimize the queue length in a single-
server system at any point of time (Schrage [22]). In spite of this, SRPT is not
often implemented in practice, because it is believed to unfairly penalize large
jobs (see, e.g., Bender, Chakrabarti and Muthukrishnan [2]), although this objec-
tion has largely been dismissed, e.g., by Bansal and Harchol-Balter [1], Wierman
and Harchol-Balter [24].

Expressions for the mean response time for an M/G/1 SRPT queue were
developed by Schrage and Miller [23], and extended later in Schassberger [21] and
Perera [19]. Pavlov [17] and Pechinkin [18] characterized the heavy traffic limit
of the steady state distributions for the queue length of an M/G/1 SRPT queue.
The tail behavior of single server queues under SRPT was investigated, e.g., by
Núñez Queija [15] and Nuyens and Zwart [16], who discussed the advisability of
implementing SRPT using large deviations.

There has also been a growing body of work on functional limit theorems
for SRPT systems. Down, Gromoll and Puha [4] proposed a fluid model and
obtained fluid limits for G/G/1 SRPT queues. Gromoll and Keutel [8] obtained
the same fluid limits in the case of a non-preemptive variant of SRPT, called
Shortest Job First (SJF). Recently, the results of [4] were extended by Kruk
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and Soko�lowska [14] to SRPT queues with multiple inputs. Down and Wu [5]
employed diffusion limits to show certain optimality properties of a multi-layered
round robin routing policy for a system of parallel servers, each operating under
SRPT, under the assumption of a finitely supported service time distribution.
Gromoll, Kruk and Puha [9] provided diffusion limits for G/G/1 SRPT queues
with general service time distributions. Not surprisingly, their limiting distribu-
tions are supported on the invariant manifolds for the corresponding fluid limit
models, identified in [4]. More recently, Puha [20] provided a diffusion limit for
a G/G/1 SRPT system under nonstandard spacial scaling for the queue length
process.

In this paper, we show that under some technical conditions, the diffusion
limits of [9] for G/G/1 SRPT queues can alternatively be derived from diffusion
limits of Kruk [13] for preemptive G/G/1 Earliest Deadline First (EDF) systems
with job service times correlated with their initial lead times. (Recall that under
the EDF discipline, the server gives priority to the customer with the shortest
lead time.) The main idea of our proofs is to approximate the SRPT system under
consideration by G/G/1 queueing systems with the same stochastic primitives,
but operating under the preemptive EDF protocol. The initial lead times of
the customers in these auxiliary EDF queues are set to be large multiples of
their service times. Since, by the above-mentioned result of Schrage [22], SRPT
minimizes the number of jobs in the system at any point of time, the queue length
in an EDF system is an upper bound for the queue length in the corresponding
SRPT system. Using this fact, together with heavy traffic limiting distributions
of [13] and obvious lower bounds, we arrive at the required results. The idea of
comparing the behavior of a SRPT system with that of a corresponding EDF
system goes back to Bender, Chakrabarti and Muthukrishnan [2], although it
was originally used to “regularize” the SRPT protocol in order to make it more
fair to large jobs, rather than to provide asymptotics for SRPT queues.

An advantage of our approach is simplicity and conciseness of the proofs.
Indeed, once the limiting distributions for sufficiently general G/G/1 EDF
queues are available, the derivation of heavy traffic limits for G/G/1 SRPT
systems by our method is relatively easy. Moreover, as it is shown in Sect. 5, our
approach carries over, with only minor modifications, to the Longest Remaining
Processing Time (LRPT) queue discipline, which gives preemptive priority to the
job in the system with the longest remaining processing time. While the latter
protocol may seem to be of little practical interest since it maximizes the queue
length, it does appear in some applications. See Kittsteiner and Moldovanu [12],
where both SRPT and LRPT queue disciplines arise in equilibria for priority
auctions. It is also plausible that our approach will turn out to be useful in the
analysis of other service protocols with priorities dependent on the job service
times.

This paper is organized as follows. Section 2 presents the models, notation
and assumptions. Section 3 states limit theorems for G/G/1 SRPT queues, while
Sect. 4 is devoted to the proofs of these results. Finally, in Sect. 5 we provide
analogous results for G/G/1 LRPT queueing systems.
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2 The Models, Assumptions and Notation

2.1 Notation

The following notation will be used throughout the paper. Let N = {1, 2, . . .}
and let R denote the set of real numbers. Let R+

Δ= [0,∞). Let R+
Δ= R+ ∪ {∞}

and R
Δ= R ∪ {∞} be equipped with the obvious topologies. Denote by e the

identity map on R, i.e., e(t) = t, t ∈ R.
Denote by M the set of all finite, nonnegative measures on B(R), the Borel

subsets of R. Under the weak topology, M is a Polish space. We denote the
zero measure in M by 0 and the Dirac delta measure with unit mass at x ∈ R

by δx. For x ∈ R+, let δ+x be δx if x > 0 and 0 otherwise. For ξ ∈ M and
a Borel measurable function f : R → R integrable with respect to ξ, we write∫

R
f(x)dξ(x) as < f, ξ >.
We will use the symbol ⇒ to denote weak convergence of measures, either

on R (in this case, the same symbol is used for convergence of the corresponding
cumulative distribution functions (c.d.f.s)), or on the space DS [0,∞) of right-
continuous functions with left-hand limits (RCLL functions) from [0,∞) to a
Polish space S, equipped with the Skorokhod J1 topology. See Ethier and Kurtz
[10] for details. When dealing with DS [0,∞), we take S = R or Rd, with appro-
priate dimension d for vector-valued functions, unless explicitly stated otherwise.

2.2 The Basic Models

We have a sequence of single-station queueing systems, each serving one class of
customers. The queueing systems are indexed by superscript n.

The inter-arrival times for the customer arrival process are
{
un

j

}∞
j=1

, a
sequence of strictly positive, independent, identically distributed (i.i.d.) random
variables (r.v.s) with mean 1/λn and standard deviation αn. The service times
are

{
vn

j

}∞
j=1

, another sequence of strictly positive, i.i.d. r.v.s with distribution
function Gn, mean 1/μn and standard deviation βn. For every n, the sequences{
un

j

}∞
j=1

and
{
vn

j

}∞
j=1

are mutually independent, each queue is empty at time
zero and

lim
n→∞ λn = lim

n→∞ μn = λ > 0. (1)

We assume that for some c.d.f. G

Gn ⇒ G (2)

and

Gn
v (y) Δ= E

[
vn

j I{vn
j ≤y}

]
⇒ Gv(y), (3)

where Gv is a c.d.f. of a finite positive measure on R+. In particular, by (1), Gv

has total mass 1/λ.
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In our analysis of SRPT queueing systems, we will consider two cases, cor-
responding to bounded and unbounded service times, respectively. In the first
one, we additionally assume that for all n,

v∗ Δ= min{y ∈ R : Gn(y) = 1} = min{y ∈ R : G(y) = 1} < ∞. (4)

Observe that the constant v∗ in (4) does not depend on n. In the second case
we additionally make the following assumptions. First,

Gv(y) < 1/λ, y ∈ R, (5)

and

Gn
v2(y) Δ= E

[(
vn

j

)2
I{vn

j ≤y}
]

⇒ Gv2(y), (6)

where Gv2 is a c.d.f of a finite positive measure on R+. We extend Gn
v2 to R+

by Gn
v2(∞) Δ= E(vn

j )2. For every x, y ∈ R+, we define a semimetric ρ on R+ by
the formula

ρ(x, y) Δ= sup
n∈N

|Gn
v2(x) − Gn

v2(y)|.

We assume that (R+, ρ) is a totally bounded semimetric space, i.e., for every
ε > 0, R+ may be decomposed into a finite number of sets with radius less than
ε. This is the case if, for example, Gv2 is continuous or Gn

v2 ≡ Gv2 . However,
the assumption (6) does not always imply total boundedness of (R+, ρ), a coun-
terexample is Gn

v2(y) = (1 + 1/n)2I{1+1/n≤y}, n ∈ N. Finally, in the second case
we assume that

lim
y→∞ sup

n∈N

∫ ∞

y

(1 − Gn(η)) dη = lim
y→∞ sup

n∈N

∫ ∞

y

(
1
μn

− Gn
v (η)

)

dη = 0. (7)

(In the first case, (7) is an immediate consequence of (4).) Either (4), or (1)–(3),
(7) and Fatou’s lemma imply that

∫ ∞

0

(1 − G(η))dη < ∞,

∫ ∞

0

(1 − λ Gv(η))dη < ∞. (8)

For the asymptotic analysis of LRPT queueing systems, we do not need the
assumptions (4)–(7) and total bondedness of (R+, ρ). Instead, we assume that
for every n ∈ N

inf{y ∈ R : Gn(y) > 0} = v∗
Δ= inf{y ∈ R : G(y) > 0}. (9)

We define the customer arrival times

Sn
0

Δ= 0, Sn
k

Δ=
k∑

i=1

un
i , k ≥ 1,
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the customer arrival process

An(t) Δ= max
{
k : Sn

k ≤ t
}
, t ≥ 0,

and the work arrival process

V n(t) Δ=
�t	∑

j=1

vn
j , t ≥ 0.

The work which has arrived to the queue by time t is then V n(An(t)). The netput
process

Nn(t) Δ= V n
(
An(t)

) − t

measures the amount of work in queue at time t provided that the server is never
idle up to time t. The cumulative idleness process

In(t) Δ= − inf
0≤s≤t

Nn(s),

gives the amount of time the server is idle, and adding this to the netput process,
we obtain the workload process

Wn(t) = Nn(t) + In(t),

which records the amount of work in the queue, taking server idleness into
account. All the above processes are independent of the queue service discipline,
provided that the server is never idle when there are customers in the queue.
However, the queue length process Qn(t), which is the number of customers in
the queue at time t, depends on the queue discipline. All these processes are
RCLL.

2.3 Heavy Traffic Assumptions

We assume that

lim
n→∞ αn = α > 0, lim

n→∞ βn = β > 0. (10)

Define the traffic intensity ρn
Δ= λn/μn. We make the heavy traffic assumption

lim
n→∞

√
n(1 − ρn) = γ (11)

for some γ ∈ R. We impose the Lindeberg condition on the inter-arrival times:

lim
n→∞E

[(
un

j − (λn)−1
)2

I{|un
j −(λn)−1|>c

√
n}

]
= 0 ∀c > 0. (12)
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One may check that the analogous Lindeberg condition on the service times
follows from (1)–(2) and (10). We introduce the heavy traffic scaling for the
idleness, workload and queue length processes

În(t) =
1√
n

In(nt), Ŵn(t) =
1√
n

Wn(nt), Q̂n(t) =
1√
n

Qn(nt).

We define also

N̂n(t) =
1√
n

[
V n

(
An(nt)

) − nt
]
.

Note that Ŵn(t) = N̂n(t)+ În(t). It is a standard result (see Iglehart and Whitt
[11]) that

(N̂n, În, Ŵn) ⇒ (N∗, I∗,W ∗), (13)

where N∗ is a Brownian motion with variance (α2+β2)λ per unit time and drift
−γ, I∗(t) Δ= −min0≤s≤t N∗(s), and W ∗(t) = N∗(t) + I∗(t). In other words, W ∗

is a reflected Brownian motion with drift, and I∗ causes the reflection.

3 Main Results

In this section and in Sect. 4 we assume that customers are served using the
SRPT queue discipline. The following theorems are the main results of this
paper.

Theorem 1. Assume that (1)–(4) and (10)–(12) hold. Then Q̂n ⇒ 1
v∗ W ∗ in

D[0,∞) jointly with (13) as n → ∞.

Theorem 2. Assume that (1)–(3), (5)–(7), (10)–(12) hold and that (R+, ρ) is
a totally bounded semimetric space. Then Q̂n ⇒ 0 in D[0,∞) as n → ∞.

Theorems 1 and 2 can be easily upgraded to limit theorems for measure-
valued state descriptors. Let wn

j (t) be the residual service time at time t of the
j-th customer to appear in the n-th SRPT queueing system. For n ∈ N, t ≥ 0
and B ∈ B(R), let

Qn(t) =
An(t)∑

j=1

δ+wn
j (t), Q̂n(t)(B) Δ=

1√
n

Qn(nt)(B). (14)

Note that < 1,Qn(t) >= Qn(t) and < e,Qn(t) >= Wn(t), so < 1, Q̂n(t) >=
Q̂n(t) and < e, Q̂n(t) >= Ŵn(t). Theorem 2 obviously implies

Corollary 1. Under the assumptions of Theorem 2 we have Q̂n ⇒ 0 in
DM[0,∞) as n → ∞.

Theorem 1 in turn implies
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Corollary 2. Under the assumptions of Theorem 1 we have Q̂n ⇒ 1
v∗ W ∗δv∗ in

DM[0,∞) as n → ∞.

The proofs of Theorems 1, 2 and Corollary 2 will be given in the next section.
The assumptions of Theorems 1 and 2 can be simplified considerably if the

service time distribution Gn ≡ G does not vary with n. In this case, we have

Corollary 3. Asume that Gn ≡ G for every n ∈ N,

lim
n→∞ λn = λ

Δ=
1

Evn
j

(15)

and that (10)–(12) hold. If v∗ Δ= min{y ∈ R : G(y) = 1} < ∞, then Q̂n ⇒
1
v∗ W ∗δv∗ in DM[0,∞) and Q̂n ⇒ 1

v∗ W ∗ in D[0,∞) jointly with (13) as n → ∞.
In the opposite case, Q̂n ⇒ 0 in DM[0,∞) as n → ∞.

Corollary 3 follows directly from Theorem 1 and Corollaries 1, 2.
It is interesting that in the case of SRPT (and LRPT, see Sect. 5, to fol-

low) the limiting behavior of the measure-valued state descriptor process can be
retrieved from the limiting behavior of the one-dimensional queue length pro-
cess which contains much less information. In fact, in the existing literature on
heavy traffic approximations for queueing systems operating under EDF [6,13]
and processor sharing [7], the opposite approach was used: first limiting distribu-
tions for the measure-valued state descriptors were found, and then heavy traffic
limits for the real-valued queue length processes were derived as immediate con-
sequences. In the case of SRPT and LRPT this order can be reversed due to
simple and very special forms of the limiting distributions under consideration.

4 Proofs of the Main Results

4.1 Approximating EDF Systems

Without loss of generality we can assume that λ = 1, since this is only a matter
of rescaling. Fix M ∈ N. Consider a sequence of auxiliary EDF queueing systems,
indexed by superscript n. The inter-arrival times for the n-th system are

{
un

j

}∞
j=1

and the service times are
{
vn

j

}∞
j=1

. The j-th customer arrives at the n-th system
with an initial lead time (i.e., the time between the arrival time and the deadline
for completion of service for that customer) equal to M

√
nvn

j . Denote by Qn
M (t)

the queue length process in the n-th EDF system and let

Q̂n
M (t) =

1√
n

Qn
M (nt).

By the above-mentioned SRPT optimality result, Qn(t) ≤ Qn
M (t) for each t ≥ 0,

so

Q̂n(t) ≤ Q̂n
M (t), t ≥ 0. (16)
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For any y ∈ R, define

Hv(y) Δ=
∫ ∞

y

(1 − Gv(η)) dη, H(y) Δ=
∫ ∞

y

(
1 − G(η)

)
dη.

By (8), H and Hv are finite on R. Under the assumptions of Theorem 1 (The-
orem 2), the function Hv maps (−∞, v∗] (R) onto R+ and is strictly decreasing
and continuous on (−∞, v∗] (R). Therefore, there exists a continuous inverse
function H−1

v mapping R+ onto (−∞, v∗] (R). Let

HM (y) = M

∫ ∞

y
M

(1 − G(η))dη = MH
( y

M

)
,

HM
v (y) = M

∫ ∞

y
M

(1 − Gv(η))dη = MHv

( y

M

)
,

and let fM = HM ◦ (HM
v )−1. For x ≥ 0 we have fM (x) = MH

(
(Hv)−1(x/M)

)
,

so fM is a continuous, strictly increasing mapping of R+ onto R+.
Under the assumptions of Theorem 1, Theorem A2 from [13], together with

elementary computations, implies that

Q̂n
M ⇒ Q∗

M
Δ= fM (W ∗), (17)

in D[0,∞) as n → ∞, jointly with (13), where W ∗ is as in (13). Under the
assumptions of Theorem 2, we again have (17), but now by Corollary 3.2
from [13].

4.2 Proof of Theorem 1

We will first show that for each x ≥ 0 we have

lim
M→∞

fM (x) =
x

v∗ . (18)

Since fM (0) = 0 for each M , it suffices to show (18) for x > 0. Fix x > 0 and
let yM = (HM

v )−1(x). We have

∫ v∗

yM
M

(1 − Gv(η))dη = Hv

(yM

M

)
=

x

M
→ 0, M → ∞,

so yM/M < v∗ and

lim
M→∞

yM

M
= v∗. (19)

Also, for z < v∗ being the continuity point of both G and Gv we have, by (1)–(4),
the fact that λ = 1 and the Markov inequality,

1 − Gv(z)
1 − G(z)

= lim
n→∞

1
λn

− Gn
v (z)

1 − Gn(z)
= lim

n→∞
E[vn

1 I[z<vn
1 ≤v∗]]

P[z < vn
1 ≤ v∗]

∈ [z, v∗]. (20)
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If z < v∗ is a point of discontinuity of either G, or Gv, there exist points zn < v∗,
zn ↓ z such that both G and Gv are continuous at zn. Thus, (20) holds at zn

and right-continuity of G, Gv implies that

z ≤ 1 − Gv(z)
1 − G(z)

≤ v∗, 0 < z < v∗. (21)

Consequently, by (19) and (21), as M → ∞,

HM (yM )
HM

v (yM )
=

∫ v∗
yM
M

(1 − G(η))dη
∫ v∗

yM
M

(1 − Gv(η))dη
→ 1

v∗ .

Hence, as M → ∞,

fM (x) = HM (yM ) = HM
v (yM )

HM (yM )
HM

v (yM )
= x

HM (yM )
HM

v (yM )
→ x

v∗ .

We have proved (18). Since the functions fM (x), x/v∗ are continuous and increas-
ing in x, it is not hard to check that the convergence (18) is uniform on compact
subsets of R+ (see, e.g., the proof of Proposition 3.4 in [6] for a similar argument).

Fix T > 0, ε > 0. Let N ∈ N be so large that

P

[

max
0≤t≤T

W ∗(t) ≤ N

]

≥ 1 − ε

2
. (22)

Fix M so large that sup0≤x≤N |fM (x) − x/v∗| ≤ ε/2. Thus, by (22),

P

[

max
0≤t≤T

∣
∣
∣
∣fM (W ∗(t)) − 1

v∗ W ∗(t)
∣
∣
∣
∣ ≤ ε

2

]

≥ 1 − ε

2
. (23)

Using (13), (17) and the Skorokhod representation theorem (see, e.g., [3], Theo-
rem 6.7), we can construct the model primitives un

j and vn
j for j ∈ N and n ∈ N

on a common probability space (Ω,F ,P) such that the sequences of processes
N̂n, În, Ŵn, Q̂n

M , n ∈ N, and the processes N∗, I∗, W ∗ are defined on this space
and

N̂n → N∗, În → I∗, Ŵn → W ∗, Q̂n
M → fM (W ∗) (24)

almost surely (a.s.). Here each a.s. convergence is in the J1 topology on D[0,∞)
and since the limits are continuous, this is equivalent to uniform convergence on
compact intervals. Therefore, for n large enough,

P

[

max
0≤t≤T

∣
∣
∣Q̂n

M (t) − fM (W ∗(t))
∣
∣
∣ ≤ ε

2

]

≥ 1 − ε

2
.

This, together with (23), yields

P

[

max
0≤t≤T

∣
∣
∣
∣Q̂

n
M (t) − 1

v∗ W ∗(t)
∣
∣
∣
∣ ≤ ε

]

≥ 1 − ε. (25)
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for n large enough. The relations (16) and (25) yield

P

[

Q̂n(t) ≤ 1
v∗ W ∗(t) + ε ∀t ∈ [0, T ]

]

≥ 1 − ε. (26)

On the other hand, (4) clearly implies that Wn(t) ≤ v∗Qn(t) (and hence
Ŵn(t) ≤ v∗Q̂n(t)) for all n ∈ N and t ≥ 0, so by (24) for n large enough
we have

P

[

Q̂n(t) ≥ 1
v∗ W ∗(t) − ε ∀t ∈ [0, T ]

]

≥ 1 − ε. (27)

The relations (26) and (27) imply Theorem 1.

4.3 Proof of Theorem 2

We will first show that for each x ≥ 0 we have

lim
M→∞

fM (x) = 0. (28)

Since fM (0) = 0 for each M , it suffices to show (28) for x > 0. Let x > 0 and
let yM = (HM

v )−1(x). We have
∫ ∞

yM
M

(1 − Gv(η))dη = Hv

(yM

M

)
=

x

M
→ 0, M → ∞,

so

lim
M→∞

yM

M
= ∞. (29)

Also, for z being the continuity point of both G and Gv we have, by (2)–(3), the
fact that λ = 1 and the Markov inequality,

1 − Gv(z)
1 − G(z)

= lim
n→∞

1
λn

− Gn
v (z)

1 − Gn(z)
= lim

n→∞
E[vn

1 I[vn
1 >z]]

P[vn
1 > z]

≥ z. (30)

If z is a point of discontinuity of either G, or Gv, there exist points zn ↓ z
such that both G and Gv are continuous at zn. Thus, (30) holds at zn and
right-continuity of G, Gv implies that

1 − Gv(z)
1 − G(z)

≥ z, z > 0. (31)

Consequently, by (29) and (31), as M → ∞,

HM (yM )
HM

v (yM )
=

∫ ∞
yM
M

(1 − G(η))dη
∫ ∞

yM
M

(1 − Gv(η))dη
≤

∫ ∞
yM
M

(1 − G(η))dη
∫ ∞

yM
M

η(1 − G(η))dη
≤ M

yM
→ 0,
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so as M → ∞,

fM (x) = HM (yM ) = HM
v (yM )

HM (yM )
HM

v (yM )
= x

HM (yM )
HM

v (yM )
→ 0.

We have proved (28).
Let T > 0, ε > 0 be arbitrary and let N ∈ N be so large that (22) holds. By

(28), for M large enough, fM (N) ≤ ε/2. Thus, by (17), (22) and the fact that
fM is increasing, for n sufficiently large, we have

P

[

max
0≤t≤T

Q̂n
M (t) ≤ ε

]

≥ 1 − ε. (32)

This, together with (16) and the fact that Qn(t) ≥ 0 for all t, proves Theorem 2.

4.4 Proof of Corollary 2

Since wn
j (t) ≤ vn

j , (4) implies that Q̂n(t)(v∗,∞) = 0 for all n ∈ N and t ≥ 0. Also,
by Theorem 1, the total mass Q̂n(t) of the random measure Q̂n(t) converges to
1
v∗ W ∗(t) in D[0,∞). Therefore, to prove Corollary 2 it is sufficient to show that
for any x ∈ (0, v∗),

Q̂n(t)[0, x) ⇒ 0, n → ∞. (33)

Fix x ∈ (0, v∗). We have

Ŵn(t) = < e, Q̂n(t) > ≤ x Q̂n(t)[0, x) + v∗Q̂n(t)[x, v∗]

= v∗Q̂n(t) − (v∗ − x)Q̂n(t)[0, x).

Thus,

Q̂n(t)[0, x) ≤ 1
v∗ − x

(
v∗Q̂n(t) − Ŵn(t)

)
. (34)

The right-hand side of (34) converges weakly to zero by Theorem 1, which
proves (33).

5 Limiting Distributions for LRPT

In this section we assume that customers are served using the LRPT queue
discipline. We assume that (1)–(3), (9) and (10)–(12) hold. In this case, we have
the following two theorems.

Theorem 3. If v∗ > 0, then Q̂n ⇒ 1
v∗

W ∗ in D[0,∞) jointly with (13) as
n → ∞.

Theorem 4. If v∗ = 0, then for every fixed t > 0 Q̂n(t) ⇒ ∞ as n → ∞.
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Let us note that it is not possible to generalize Theorem 4 to convergence in
D

R
[0,∞). Indeed, Qn(0) = 0 a.s. for every n. Moreover, if ρn < 1, 0 < c < T

and n is large, then a “typical” sample path of the process Qn hits zero at some
t ∈ [nc, nT ], so in fact for any 0 < c < T the convergence Q̂n ⇒ ∞, n → ∞,
cannot hold in D

R
[c, T ].

Let the measure-valued processes Qn and Q̂n be defined by (14). Theorem 3
has the following

Corollary 4. Under the assumptions of Theorem 3 we have Q̂n ⇒ 1
v∗

W ∗δv∗ in
DM[0,∞) as n → ∞.

The proofs of Theorems 3, 4 and Corollary 4 are similar to the proofs of
Theorems 1, 2 and Corollary 2 presented in Sect. 4. The most notable difference
is that in the case of LRPT we use approximating EDF G/G/1 systems with
initial lead times equal to −M

√
nvn

j instead of M
√

nvn
j . We omit the details.

As in the case of SRPT, if the service time distribution Gn ≡ G does not
depend on n, then the assumptions for the results of this section can be sim-
plified. Namely, in this case only (10)–(12) and (15) need to be assumed for
Theorems 3, 4 and Corollary 4 to hold.
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Abstract. As the scheduling principle of Shortest Remaining Process-
ing Time (SRPT) has been proven to be optimal in the single-machine
setting, it’s a natural thought that SRPT shall also be extended to yield
various scheduling algorithms with theoretical performance guarantees
in distributed computing clusters which consist of multiple machines. In
this paper, we revisit the SRPT scheduling principle to derive new and
tight competitive performance bounds with respect to the overall job
flowtime. In particular, for the transient scheduling scenario where all
jobs arrive at the cluster at time zero, we study two different cases and
show that the SRPT-based scheduling algorithm can achieve a constant
competitive ratio of at most two, compared to the prior state-of-the-art
ratio of 12 in the algorithm of Moseley et al. For online scheduling, we
study a special case where each job only consists of one single task and
show that the online SRPT Algorithm is (1+ε)-speed, (3+ 3

ε
)-competitive

with respect to the overall job flowtime for ε > 0, improving the recent
result of Fox and Moseley which upper bounds SRPT to be (1+ε)-speed,
4
ε
-competitive.

Keywords: Job scheduling · SRPT ·
Competitive performance bound · Dual-fitting

1 Introduction

The recent years witnessed rapid emergence and proliferation of distributed
computing. A key performance metric for such computing paradigm is the job
response time, which is also referred to as the job flowtime. As demand for large-
scale analytics soars, today’s computing clusters usually scale out to consist of
hundreds of thousands of machines. In addition, the job profiles are becoming
increasingly diverse as small latency-sensitive jobs coexist with large batch pro-
cessing applications that may take hours to months to complete [22]. To make
things even challenging, jobs can have multiple small tasks with complicated
precedence constraints. With a huge number of heterogeneous tasks sharing
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a computing cluster with multiple machines, it becomes extremely difficult to
design job schedulers to allocate computing machines efficiently which achieving
fast job response time.

To provide efficient resource sharing among heterogeneous jobs/ tasks, vari-
ous schedules have been designed for production clusters. It is well known that
the SRPT scheduler (Shortest Remaining Processing Time) is optimal for min-
imizing the overall/ average job flowtime [5] on a single machine under the
clairvoyant setting. As such, many works have aimed to extend the SRPT prin-
ciple to yield efficient scheduling algorithms in the multiprocessor setting for
different systems and programming frameworks [6,17,18,23]. Under SRPT, job
sizes are known to the job scheduler upon job arrival and smaller jobs are given
priority. However, most existing SRPT-based algorithms do not come with sys-
tematic analysis or reference study on how well or suboptimal they are when
compared to the corresponding theoretical limits (e.g., [6]). [17,18,23] are excep-
tions and can provide performance guarantees in terms of overall job flowtime via
a competitive-based analysis. However, these studies mainly address the online
scheduling problem and the competitive bounds they derived are quite loose.

With the above observations in mind, in this paper, we revisit the SRPT
scheduling principle in distributed computing clusters and derive tighter compet-
itive performance bounds. Moreover, we investigate both the transient scheduling
as well as the online scheduling scenarios. Under our study, we assume preemp-
tion is allowed, i.e., the scheduler can preempt a running task and later resume
its execution.

Under the transient setting where all jobs arrive at the cluster at the same
time, we analyze two cases, namely, the single-task case and the multi-task case.
In the single-task case where each job only consists of one single task, we take a
new approach to show that SRPT is optimal in terms of minimizing the overall
job flowtime when jobs can be preempted. Our approach is novel in the sense
that it decomposes the job flowtime into two parts, namely, the waiting time
and the processing time. By contrast, the previous analysis for SRPT are mainly
based on tuning the scheduling sequence of different jobs [19]. In the multi-task
setting where each job consists of multiple small tasks, we consider the general
case where the execution times of tasks within the same job are different. In this
setting, our SRPT-based algorithm shall give scheduling priority to jobs with the
smallest amount of workload where the workload is the sum of all task execution
times. We also show that this algorithm is two-competitive with respect to the
overall job flowtime.

For online setting where all jobs arrive at the cluster over time, we study
the case in which each job consists of only one single task. Note that, this
case has been extensively studied in the literature and the online SRPT algo-
rithm is shown to be O(min{log P, log N/M})-competitive where P is the ratio
of maximum execution time to minimum execution time with Nand M being
the number of jobs and the number of machines in the cluster respectively [5].
In fact, [15] has shown that no online algorithm can achieve a smaller bound
than O(min{log P, log N/M}). Due to this negative result, previous works [12,14]
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have adopted a resource augmentation analysis to bound the competitive perfor-
mance of online scheduling algorithms. Under such analysis, the performance of
the offline optimal algorithm on M unit-speed machines is compared with that
of the proposed algorithms on M δ-speed machines where δ > 1. In this paper,
we also follow the resource augmentation setup and apply a novel dual fitting
approach to show that SRPT is (1 + ε)-speed, (3 + 3

ε )-competitive with respect
to the overall job flowtime for ε > 0. In summary, we have made the following
technical contributions in this paper:

– In Sect. 4.1, we adopt a different approach from the analysis in the seminal
work [19] to show that, SRPT is optimal in terms of overall job flowtime in
the one-single-task setting. Our approach takes preemption into consideration
and does not restrict to only tune the scheduling sequence of different jobs
[19].

– In Sect. 4.2, we show the SRPT-based algorithm achieves a competitive ratio
of 2, which is much tighter than the previous best result of 12. Notice that,
[18] proposes two additional algorithms to assign priorities to tasks within
each job. By contrast, in our analysis, we only consider the total workload of
each job and use it to determine the scheduling priority of each job. As such,
we can avoid most of the unnecessary approximations in [18].

– In Sect. 5, we apply a new dual-fitting framework to bound the competitive
performance of online SRPT. We show that, the online SRPT algorithm is
(1+ ε)-speed, (3+ 3

ε )-competitive with respect to the overall job flowtime for
ε > 0. Interestingly, when given small resource augmentation where ε ≤ 1

3 ,
our algorithm improves the recent result in [5], i.e., SRPT on multiple identi-
cal machines is (1+ε)-speed, 4

ε -competitive. To prove this result, we compute
the difference of the overall job flowtime caused by each job arrival under
SRPT. We then use this difference to set the variables of the formulated
dual problem and explore the relationship between the objective of the dual
problem and that of the original problem. By contrast, [5] defines a compli-
cated potential function to track the dynamics of the overall job flowtime in
the cluster achieved by the SRPT algorithm and the optimal scheme respec-
tively. However, the construction of the required potential function is problem
specific, which makes it difficult for one to generalize the approach to solve
other scheduling problems.

2 Related Work

The design of job schedulers for large-scale computing clusters is currently an
active research topic, e.g., [2,3,17,18,21,23]. Several works have derived per-
formance bounds on algorithms geared at minimizing the total job completion
time by formulating an approximate linear programming problem [2,3,21]. Other
works, e.g., [17,18,23] derive performance bounds for algorithms with respect to
the total job flowtime. Leonardia et al. show in [16] that there is a strong lower
bound on any online randomized algorithm for the job scheduling problem on
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multiple unit-speed processors with the objective to minimize the overall job
flowtime. Based on this lower bound, [17,18,23] extended the SRPT algorithm
to design scheduling schemes aim at minimizing the overall flowtime of jobs,
each consisting of multiple small tasks with precedence constraints. However,
the proposed algorithm in [18] is non-work-conserving since each job can only
be scheduled after it completes in another simulated system. One limitation of
[17,23] is that their derived bounds are quite loose.

Recently, researchers begin to analyze the performance of SRPT from a queu-
ing perspective. In particular, [7] proposed to analyze the mean and variance of
occupancy for SRPT under the M/GI/1 setting. [4] analyzed the mean response
time for SRPT scheduling policy for multi-sever systems.

Another group of works [2,3,17,18,21,23] study the clairvoyant setting where
the job size is known once the job arrives. For the non-clairvoyant setting, [9–11]
designed several multi-tasking algorithms (i.e., a server can serve multiple jobs
simultaneously) in which machines are allocated to all active jobs and priority
is given to the most-recently-arrived jobs.

Under the transient scheduling setting, previous work, e.g., [19] has shown
the optimality of SRPT for the single-task case in the non-preemptive mode.
The analysis of [19] is based on tuning the scheduling sequence of different jobs,
which cannot be extended to the preemptive mode. By contrast, we take a new
approach by decoupling the job flowtime, which can easily accommodate the
preemptive setting.

For the analysis of the online SRPT algorithm in Sect. 5, we adopt the dual
fitting approach. Dual fitting was first developed by [1,8] and is now widely
used for the analysis of online algorithms [10,11]. On the one hand, [1,10] and
[11] address linear objectives and use the dual-fitting approach to derive com-
petitive bounds for traditional scheduling algorithms without redundancy. On
the other hand, [8] focuses on a convex objective in the multi-tasking mode. In
contrast, we include integer constraints associated with the non-multi-tasking
mode. Moreover, our setting of dual variables is novel in the sense that it deals
with the dynamical change of job flowtime across multiple machines where other
settings of dual variables can only deal with the change of job flowtime on one
single machine.

3 System Model

Consider a distributed cluster which consists of M servers1, where the servers
are indexed from 1 to M . Each machine can only hold one task at any time. Job
j arrives at the cluster at time aj and the job arrival process, (a1, a2, · · · , aN ),
is an arbitrary deterministic time sequence, where N is the total amount of the
jobs. Upon arrival, job j joins a global queue managed by a cluster scheduler,
waiting to be scheduled.

1 Each server can either represent a CPU core or a machine.
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3.1 Job Service Process

Job j consists of mj tasks which can be executed in parallel and we let δi
j

denote the ith task of job j for all i ∈ {1, 2, . . . ,mj}. The execution time of δi
j

is denoted by pi
j , i.e., it takes pi

j units of time to complete δi
j on any of these

M machines. We consider that tasks can be preempted, i.e, the scheduler can
preempt a running task and later resume its execution. We shall use ci

j to denote
the completion time of task δi

j , therefore, the completion time of job j, cj , can
be formulated as:

cj = max
i∈{1,··· ,mj}

ci
j . (1)

The flowtime of job j, fj , is denoted by fj = cj − aj . In this paper, we only
focus on the overall job flowtime, i.e.,

∑N
j=1 fj .

3.2 Competitive Performance Metrics

In this paper, we revisit the SRPT scheduling algorithms under the offline and
the online scheduling cases. In particular, we shall use the following metric to
evaluate the performance of an offline algorithm.

Definition 1. An algorithm is c-competitive if the algorithm’s objective is
within a factor of c of the optimal solution’s objective.

Kalyanasundaram et al. show in [13] that, no online algorithm can achieve
a constant competitive performance bound even for the total flowtime of jobs
with a single task on multiple machines. As such, previous work [12,13] has
adopted a resource augmentation analysis. The following definition characterizes
the competitive performance of an online algorithm with resource augmentation.

Definition 2. [13] An online algorithm is δ-speed, c-competitive if the algo-
rithm’s objective is within a factor of c of the optimal solution’s objective when
the algorithm is given δ resource augmentation.

In this paper, we adopt the resource augmentation setup to bound the com-
petitive performance of the online SRPT algorithm.

4 Transient Scheduling: All the Jobs Arrive at the
Cluster at Time Zero

Before studying of the online scheduling algorithm, in this section, we consider
the transient scheduling case, i.e., all jobs arrive at the cluster at time zero.
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4.1 Each Job Only Consists of One Single Task

In this subsection, we model a large-scale computing cluster as follows: the cluster
consists of M identical machines which are indexed from 1 to M . Job j arrives at
the cluster at time 0 and consists of only one single task, i.e., δ1j . The execution
time of δ1j is denoted by p1j , i.e., it takes p1j units of time to complete δ1j on any
of these M machines.

[19] has shown that SRPT is optimal for minimizing the overall job flowtime
when preemption is not allowed. In this section, we show a more general result
in the following theorem:

Theorem 1. Under the transient scheduling setting, SRPT is optimal with
respect to the overall job flowtime when each job only consists of one single
task and preemption is allowed.

Proof. Without loss of generality, we assume that jobs have been ordered such
that c1 ≤ c2 ≤ · · · ≤ cN . When N ≤ M , the theorem follows immediately since
all jobs can be scheduled simultaneously and fj is equal to p1j .

Let us then consider the case where N > M . Let N = zM + q where z ≥ 1,
0 ≤ q ≤ M − 1 and z, q are non-negative integers. We first show that for all k
such that M ≤ k ≤ N , the following result holds:

k∑

j=k−M+1

fj =
k∑

j=1

p1j (2)

At any time between 0 and c1, there are (k − M) jobs waiting to be processed
among those k jobs which complete first. Hence, the accumulated waiting time
in this period is (k − M)f1. Similarly, at any time between c1 and c2, there are
(k−M−1) jobs waiting to be processed and they contribute (k−M−1)·(c2−c1) =
(k − M − 1) · (f2 − f1) waiting time. Hence, the total waiting time of the k jobs
is given by:

k−M−1∑

j=0

(k − M − j) · (fj+1 − fj) =
k−M∑

j=1

fj . (3)

Therefore, the total flowtime for these k jobs is given by:

k∑

j=1

fj =
k∑

j=1

p1j +
k−M∑

j=1

fj . (4)

By shifting terms in (4), we have:

k∑

j=k−M+1

fj =
k∑

j=1

p1j .
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Summing up all job flowtime, it follows that:

N∑

j=1

fj =
q∑

j=1

fj +
z∑

k=1

kM+q∑

j=(k−1)M+q+1

fj

(i)
=

q∑

j=1

p1j +
z∑

k=1

kM+q∑

j=1

p1j =
N∑

j=1

(
⌊N − j

M

⌋
+ 1)p1j ,

(5)

where the first term on the R.H.S. of (i) is due to the fact that the flowtime of
the first q jobs is equal to their task execution time and the second term follows
from the equality of

∑kM+q
j=(k−1)M+q+1 fj =

∑kM+q
j=1 p1j .

One can easily observe that the total flowtime achieved by SPRT is a lower
bound of (5). This completes the proof.

4.2 Each Job Consists of Multiple Tasks

In this subsection, we consider a more general case where each job consists of
multiple tasks and the execution time of all tasks within each job are different.
In this case, let wj define the workload of job j, thus, wj is given by:

wj =
mj∑

i=1

pi
j .

In this case, the SRPT-based algorithm works as follows: when there is an
available machine, the scheduler assigns the unscheduled task with the largest
execution time from the job which has the smallest wj to this machine.

Our main result, characterizing the competitive performance of SRPT in this
setting, is given in the following theorem:

Theorem 2. Under the transient scheduling setting where each job consists of
multiple tasks and the task execution times within a job are different, the SRPT-
based algorithm is 2-competitive with respect to the overall job flowtime.

Proof. To prove this result, we first show an upper bound of the total response
time achieved by the SRPT-based algorithm and then give a lower bound of the
total job flowtime achieved by any other algorithm.

Without loss of generality, assume jobs are ordered such that w1 ≤ w2 ≤
· · · wN . Let pj define the largest task execution time of job j, i.e., pj =
maxi∈{1,2,··· ,mj} pi

j . Based on the scheduling policy of the SRPT-based algo-
rithm, the whole cluster must be busy processing the tasks of jobs with index
no larger than j during the time period [0, fj − pj ]. Therefore, we have:

M · (fj − pj) ≤
j∑

k=1

wk, (6)
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which implies that, fj ≤ ∑j
k=1 wk/M + pj , therefore, the total job flowtime

achieved by the SRPT-based algorithm is upper bounded by:

N∑

j=1

fj ≤
N∑

j=1

(
j∑

k=1

wk

M
+ pj

)

=

∑N
j=1(N + 1 − j)wj

M
+

N∑

j=1

pj . (7)

On the one hand, the total job flowtime achieved by any algorithm on
M machines with unit speed is no less than that under one machine with a
speed of M . Since SRPT is optimal for overall job flowtime on one machine, we
have:

N∑

j=1

f∗
j ≥

N∑

j=1

j∑

k=1

wk

M
=

∑N
j=1(N + 1 − j)wj

M
, (8)

where f∗
j is the job flowtime under the optimal algorithm. On the other hand,

the flowtime of job j is no less than the maximum of the task execution time,
i.e.,

f∗
j ≥ pj . (9)

Combining Eqs. (7), (8) and (9), the result immediately follows. This completes
the proof.

5 SRPT Algorithm in the Online Setting

In this section, we study the SRPT algorithm in the online scheduling case, i.e.,
jobs arrive at the cluster at different times. Here we assume time is slotted for
the sake of convenience.

5.1 Linear Programming Relaxation

We first formulate a linear optimization problem which serves as a relaxation
of the online scheduling problem. Let xi

j(t) be the scheduling variable of task
δi
j at time t such that xi

j(t) is equal to one if task δi
j is being executed at time

t and zero otherwise. Let x(t) =
(
xi

j(t)
∣
∣j = 1, 2, · · · , N, i = 1, 2, · · · ,mj

)
and

x =
(
x(t)|t ≥ 0

)
, our relaxed optimization problem is formulated as follows:

min
x

N∑

j=1

∑

t≥aj

mj∑

i=1

(
t − aj∑

i pi
j

× xi
j(t) +

2xi
j(t)

mj

)

s.t.
∑

t≥aj

xi
j(t) ≥ pi

j , ∀ j, i

∑

j:t≥aj

∑

i

xi
j(t) ≤ M, ∀ t

(10)
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Here, the first constraint is due to the fact that the total amount of work delivered
for each task is no smaller than its execution time. The second constraint states
that there can be at most M machines busy processing tasks in the cluster at
any time.

Lemma 1. The optimal value of the optimization problem in (10) is upper
bounded by the overall job flowtime achieved by the optimal scheduling policy
with a factor of 3.

Proof. Consider an optimal solution to the optimal scheduling policy, x∗. Denote
by c∗

j the corresponding job completion time for job j. For all j = 1, 2, · · · , N ,
x∗ and c∗

j satisfy:
c∗
j∑

aj

(xi
j(t))

∗ = pi
j , ∀j, i. (11)

It follows that (xi
j(t))

∗ = 0 for all t ≥ c∗
j , therefore, the first term in the sum-

mation of the objective function is upper bounded by the job flowtime achieved
by the optimal scheme.

Since at most mj tasks from job j can be processed in parallel, the flowtime of

job j under the optimal scheduling policy is at least
∑

t≥aj

∑mj

i=1

(xi
j(t))

∗

mj
. Thus,

the second term in the summation of the objective is upper bound by twice of
the job flowtime achieved by the optimal scheme. This completes the proof.

We proceed to write down the dual of the optimization problem in (10) as
follows [9]:

max
α ,β

∑

j,i

αj,i · pi
j −

∑

t

β(t) · M

s.t.
(t − aj)∑

i pi
j

+
2

mj
− αj,i + β(t) ≥ 0 ∀j, i, t.

(12)

The dual has a variable αi
j for every task δi

j corresponding to the first constraint
in the primal and a variable β(t) corresponding to the second constraint.

5.2 Each Job Only Consists of One Task

In this section, we apply the optimization framework in (12) to study a special
online case where each job only consists of one single task. For this case, we
characterize the performance of online SRPT using the following theorem:

Theorem 3. SRPT is (1+ε)-speed, (3+ 3
ε )-competitive with respect to the overall

job flowtime for ε > 0 when each job only consists of one task.

Proof. We omit the notation i in α and p for convenience. We use n(t) and pj(t)
to denote the number of active jobs in the cluster and the remaining execution
time of job j at time t respectively. Let Θj = {k : ak ≤ aj ≤ ck}, i.e., the set of
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jobs that are active when job j arrives and Aj = {k �= j : k ∈ Θj and pk(aj) ≤
pj}, i.e., jobs whose residual workload upon job j’s arrival is less than job j’s
processing requirement, and let ρj = |Aj |. Our setting of dual variables as fol-
lows:

αj =

{(
1
pj

×
ρj∑

k=1

(

�n(aj) − k

M
� − �n(aj) − k − 1

M
�
)

pk(aj)

)

+
(

�n(aj) − ρj − 1
M

� + 1
)}

× 1
1 + ε

(13)

and

β(t) =
n(t)

(1 + ε) · M
(14)

Lemma 2. The setting of dual variables above produces a feasible solution (12).

Proof. Since α and β are both nonnegative, we only need to show

αj − β(t) ≤ t − aj

pj
+ 2 ∀j; t ≥ aj . (15)

Suppose n(aj) = zM+q > M , and notice that the multiplicative factor for pk(aj)
in (13) is nonzero only when k = lM + q for some l = 0, 1, · · · , z. Therefore, (13)
can be rewritten as:

αj =
∑z

l=0 plM+q(aj)1(lM + q ≤ ρj)
(1 + ε)pj

+

(⌊n(aj)−ρj−1
M

⌋
+ 1

)

1 + ε
. (16)

For ease of illustration, let Ω1 and Ω2 be the first and second term on the R.H.S
of (16) respectively.

If n(aj) ≤ M , then Ω1 = 0. Thus, we have αj = 1
1+ε and the result follows.

When n(aj) > M , we have the following three cases:
Case I: Suppose the jobs in Θj are completed at time t. If there are no

job arrivals after time aj , jobs indexed by lM + q where l is a non-negative
integer, are all processed on Machine q. Since the service capacity of Machine q
is (1 + ε)(t − aj) during (aj , t], it follows that,

t − aj ≥ 1
1 + ε

z∑

l=0

plM+q(aj). (17)

In contrast, if there are other job arrivals after time aj , since we assume Θj must
have been completed by time t, Machine q needs to process an amount of work
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which exceeds
∑z

l=0 plM+q(aj). In other words, (17) still holds. Thus, we have:

t − aj

pj
≥ 1

(1 + ε)pj

z∑

l=0

plM+q(aj)

=
∑z

l=0 plM+q(aj)1(lM + q ≤ ρj)
(1 + ε)pj

+
∑z

l=0 plM+q(aj)1(lM + q ≥ ρj + 1)
(1 + ε)pj

(i)
≥ Ω1 +

∑z
l=0 1(lM + q ≥ ρj + 1)

(1 + ε)
= αj ≥ αj − β(t) − 2,

(18)
where (i) is due to the fact that plM+q(aj) ≥ pj when lM + q > ρj .

Case II: Suppose jobs indexed from 1 to κ in Θj have been completed where
κ ≤ ρj . Let κ = z1M + q1. An argument similar to that for Case I shows that
by time t, we have:

t − aj ≥ 1
1 + ε

z1∑

k=0

plM+q1(aj). (19)

On the one hand, when q ≤ q1,

Ω1 =
1

(1 + ε)pj

z1∑

l=0

plM+q(aj) +

∑z
l=z1+1 plM+q(aj)1(lM + q ≤ ρj)

(1 + ε)pj

(ii)
≤ 1

(1 + ε)pj

z1∑

l=0

plM+q1(aj) +

∑z
l=z1+1 1(lM + q ≤ ρj)

1 + ε

=
1

(1 + ε)pj

z1∑

l=0

plM+q1(aj) +
∑z

l=0 1(κ < lM + q ≤ ρj)
1 + ε

,

(20)

where (ii) is due to the fact that jobs with index smaller than ρj in Θj have
remaining workload no less than pj . On the other hand, when q > q1, we have:

Ω1 =
∑z1−1

l=0 plM+q(aj)
(1 + ε)pj

+

∑z
l=z1

plM+q(aj)1(lM + q ≤ ρj)
(1 + ε)pj

≤ 1
(1 + ε)pj

z1∑

l=0

plM+q1(aj) +

∑z
l=z1

1(lM + q ≤ ρj)
1 + ε

=
1

(1 + ε)pj

z1∑

l=0

plM+q1(aj) +
∑z

l=0 1(κ < lM + q ≤ ρj)
1 + ε

.

(21)
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Therefore, it follows that,

Ω1 ≤ 1
(1 + ε)pj

z1∑

l=0

plM+q1(aj) +
∑z

l=0 1(κ < lM + q ≤ ρj)
1 + ε

≤ 1
(1 + ε)pj

z1∑

l=0

plM+q1(aj) +
	ρj−κ

M 

1 + ε

(iii)
≤ t − aj

pj
+

1
1 + ε

	ρj − κ

M

,

(22)

where 	x
 denotes the smallest integer which is no less than x and (iii) is due to
(19). Based on (22), we then have:

αj ≤ t − aj

pj
+

1
1 + ε

	ρj − κ

M

 +

(⌊n(aj)−ρj−1
M

⌋
+ 1

)

1 + ε

≤ t − aj

pj
+

1
1 + ε

(�n(aj) − κ

M
� + 2

)

≤ t − aj

pj
+ β(t) + 2,

(23)

where the last inequality is based on the observation that β(t) ≥ 1
1+ε

(�n(aj)−κ
M �)

since the number of active jobs at time t, n(t), is no less than n(aj) − κ.
Case III: Suppose jobs indexed from 1 to κ in Θj have been completed

where κ = z1M + q1 > ρj . In this case, (19) still holds. Moreover, an argument
similar to that of (22) shows that,

Ω1 ≤ 1
(1 + ε)pj

z1∑

l=0

plM+q1(aj) − �κ − ρj

M
�

≤ t − aj

pj
− 1

1 + ε
�κ − ρj

M
�.

(24)

Therefore, it follows that,

αj ≤ t − aj

pj
− 1

1 + ε
�κ − ρj

M
� +

1
1 + ε

	n(aj) − ρj

M



≤ t − aj

pj
+

1
1 + ε

(�n(aj) − κ

M
� + 2

)

≤ t − aj

pj
+ β(t) + 2.

(25)

In summary, for all the three cases above, Inequality (15) is satisfied. This
completes the proof of Lemma 2.

Let F
′
j (aj) and Fj(aj) denote the overall remaining job flowtime at time aj

without and with job j respectively. Based on Theorem 1, if job j never arrives at
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the cluster and the subsequent jobs do not enter the cluster, the overall remaining
job flowtime at time aj under SRPT is given by:

F
′
j (aj) =

1
1 + ε

n(aj)−1∑

k=1

(⌊n(aj) − 1 − k

M

⌋
+ 1

)
pk(aj). (26)

By contrast, when job j arrives at time aj but the subsequent jobs do not enter
the cluster, the overall remaining job flowtime at time aj under SRPT is given by:

Fj(aj) =
1

1 + ε

ρj∑

k=1

(⌊n(aj) − k

M

⌋
+ 1

)
pk(aj) +

1
1 + ε

(⌊n(aj) − ρj − 1
M

⌋
+ 1

)
pj

+
1

1 + ε

n(aj)∑

k=ρj+1

(⌊n(aj) − k

M

⌋
+ 1

)
pk(aj),

(27)
therefore, one can view αj as the difference of (27) and (26). This is also the
incremental increase of the overall job flowtime caused by the arrival of job j
and divided by (1 + ε)pj . As a result,

∑
j pjαj corresponds to the overall job

flowtime under SRPT, i.e.,
∑

j αjpj = SRPT where SRPT is the total job
flowtime achieved by the SRPT algorithm.

Moreover, (1 + ε)Mβ(t) is the number of active jobs in the cluster at time
t, so, M

∫ ∞
0

β(t)dt = 1
1+εSRPT . Therefore, we have

∑
j αjpj − M

∫ ∞
0

β(t)dt =
ε

1+εSRPT .
Based on Lemmas 1 and 2, we conclude that ε

1+εSRPT ≤ 3OPT where OPT
is the overall job flowtime achieved by the optimal algorithm. This completes
the proof of Theorem 3.

6 Performance Evaluation

In this section, we evaluate the performance of the SRPT-based algorithm in the
online setting via extensive simulations driven by Google cluster-usage traces
[20]. The traces contain the information of job submission and the completion
time of Google services. It also includes the number of tasks in each job as well
as the duration of each task without preemption. From the traces, we extract
the statistics of jobs during a 28-h period. We also exclude the unfinished jobs
as well as those which have specific constraints on machine attributes. All the

Table 1. Simulation results of different performance metrics under all schemes.

Algorithm Utilization Makespan (s) Average flowtime (s) Average waiting time (s)

Our scheme 95.01% 1.97 × 105 1.92 × 104 1.80 × 104

FIFO 99.58% 1.89 × 105 7.87 × 104 7.75 × 104

LJF 99.91% 1.88 × 105 14.1 × 104 14.0 × 104
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experiments are conducted on a PC with a 2.6 GHz Intel i5 Dual-core CPU.
Since a job may consist of multiple small tasks in the traces, we randomly select
one task as its representative. In addition, we set the number of servers to 500
under our simulations.

Baseline Algorithms: We use the following algorithms as the baselines for
comparison with the SRPT-based algorithm:

– First-In First-Out (FIFO): Jobs are served according to their arrival times
and the earliest arrived jobs are served first without preemption.

– Longest Job First (LJF): The jobs with longest processing times are served
first.

Performance Metrics: For each of the scheduling algorithms, we run all jobs
contained in the traces until they are completed. We then compare across dif-
ferent scheduling algorithms the largest job completion time (which is referred
to as the makespan) and the sum of the job flowtime. To evaluate the fairness
across jobs, we also study the waiting time of jobs under different algorithms.

Simulation Results: We depict the simulation results in Table 1, which shows
that the average job flowtime under the SRPT-based scheme is 1.92×104 s while
it is 7.89 × 104 and 1.41 × 105 s under FIFO and LJF respectively. As such, the
SRPT-based scheme can reduce the job flowtime by nearly 80% compared to
other two baselines. LJF has shown to be optimal for minimizing makespan in
the single-sever setting. Nevertheless, Table 1 shows that the make-span achieved
by SRPT is similar to that achieved by LJF. To quantify the fairness of SRPT,
we also characterize the waiting time of all jobs achieved by different schemes.
As illustrated in Table 1, the variance between job waiting times under SRPT is
much smaller compared to that under LJF and FIFO. In this sense, the SRPT-
based scheme achieves a much better fairness comparing to LJF and FIFO.
Interestingly, one can note from Table 1 that the server utilization rate under
SRPT is also the lowest among all three schemes, which indicates that, SRPT
produces the smallest computation cost.

7 Conclusions

This paper revisits the SRPT scheduling principle and provides tighter com-
petitive performance bounds of SRPT-based algorithms in distributed comput-
ing clusters under both the transient scheduling and online settings. Using new
approaches, we focus on the competitive performance ratio of SRPT with respect
to the overall job flowtime and successfully derive new bounds which improve
prior state-of-the-art considerably. Our analytical approaches can also be appli-
cable to more complicated scenarios where there is service variability among
machines in a cluster. In the future, we aim to generalize the SRPT scheduling
to take the multi-dimensional resource requirement into consideration and derive
corresponding competitive performance bounds.
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Abstract. We consider a fluid flow model with infinite buffer. We com-
pute the Laplace-Stieltjes transform of the sojourn time proceeding in
two steps. We first compute the stationary distribution of the buffer
at arrival instants, using a change of clock. Secondly, we compute the
transform of the time spent to empty the buffer. Numerical examples of
sojourn time in a fluid flow are finally examined.

Keywords: Markov-modulated fluid flow · Sojourn time ·
Laplace-Stieljes transform

1 Introduction

A fluid flow (X(t), S(t))t≥0 represents the behavior of a reservoir content X(t)
which evolves linearly following some rates modulated by a background Markov
process S(t) with finite state space S. When the background process S(t) takes
a value i ∈ S, the rate of evolution of X(t) is ri. Fluid flows have applications
in telecommunication and computer systems, where they model the amount of
data entering and being processed by a server. When studying these systems the
attention is generally focused on the stationary distribution of the level, while
less attention is paid to sojourn times.

In a traditional queueing system, where clients arrive and are served indi-
vidually, the sojourn time of a typical client is easy to define. This is the time
spent inside the system, from the instant of its arrival until its departure. There
exist many results on the determination of the sojourn time distribution in such
a system ([1,5,8]). When we consider a fluid flow, the “clients” have infinitesi-
mal size and they arrive and leave the system continuously. The analysis of the
sojourn time is more involved, and a different approach is required. Some work
has already been done in this direction (see for example [7] and [4]).

When defining the time spent into the buffer by a unit of fluid, it is necessary
to separate the input rates of the fluid, and the output rates at which the server
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is working. The net rate of the fluid ri is then given by the difference between
the input and the output rates: ri = rin,i − rout,i, i in S.

Masuyama and Takine [7] derive the distribution of the sojourn time in a fluid
flow where the server works at a constant rate rout,j = 1, for all the phases j in
the state space S. Their analysis is based on a geometric approach: the sojourn
time is given by a linear transformation of the original process. Their definition
is simple, thanks to their assumption of a constant output rate. Moreover, the
authors assume the sojourn time to be zero when the buffer is empty. On the
other hand, while the buffer is empty, input rates might be strictly positive but
smaller than the corresponding output rates. In this case there are units of fluid
joining the system whose sojourn time is null, and it definitely contribute to the
sojourn time distribution. However, in a fluid flow the buffer might be empty also
when input rates are null and so there is no unit of fluid arriving. These epochs
should not contribute to the sojourn time. This is illustrated with Example 7.1,
where the buffer is empty during a positive amount of time, while the sojourn
time is strictly positive with probability one.

Another approach is that of Horváth and Telek [4], who proceed in two steps.
They first determine the distribution of the buffer content at arrival epochs,
denoted as π∗(x). They next condition on the initial state of the system, dis-
tributed following π∗(x), to determine the sojourn time distribution. To obtain
π∗(x), the authors state that they proceed by similarity with [8], where the
author analyses sojourn times in discrete level QBDs, but they do not give
more details. Moreover, they prove in [4] that the asymptotic distribution of the
sojourn time is phase-type of order n · n+, with n being the number of phases,
and n+ the number of phases corresponding to positive rates.

We follow the same two steps approach but we give a precise development
of the distribution π∗(x). This is based on the definition of a new clock φ(y),
which is the epoch when a total of y units of fluid have entered the buffer. The
distribution of the level at arrival instant π∗(x) is then determined applying this
change of clock to the original process. This approach is being adapted to more
complex systems.

Let W be the stationary sojourn time of the fluid, with distribution function
V (t) = Pr [W ≤ t]. As it will be explained in Sect. 2, the distribution V (t) is

V (t) =
∫ ∞

0

π∗(x)P outΓ (x, t)1dx, (1)

where Γ (x, t) is a matrix whose entries give the distribution of the time needed
to empty the buffer when the initial level is x, and P out is a permutation matrix
which we will define later. We determine the Laplace-Stieltjes (LS) transform of
the distribution V (t). This provides us with an alternative representation, using
matrices of order n × n+, smaller than the order (n · n+)2 of the phase-type
representation in [4].

The paper is organized as follows. We analyze in Sect. 2 a simple discrete
queueing system to illustrate our introduction of a new clock and to show that
the sojourn time of this system has the same form as in Eq. (1). Section 3 details
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the fluid model we are interested in, and focus on well-known preliminary results
of crucial interest in the sequel. The distribution of the buffer content at arrival
epochs is completely determined in Sect. 4, while in Sect. 5 we focus on the time
needed to empty the buffer. The sojourn time distribution is finally determined
in Sect. 6. Section 7 exhibits some numerical examples. We briefly conclude our
work in Sect. 8.

2 A Discrete Queueing System

We propose here to work with a discrete queue in order to explain the change
of clock for the distribution at arrival epochs, and justify the form of Eq. (1) for
the sojourn time distribution.

Let us consider a queueing system in a random environment. This is a two
dimensional process (N(t), S(t))t≥0, where N(t) is the number of clients in the
system at instant t, and S(t) is the phase process, with finite state space S.
Arrivals and services depend on the actual phase of the process S(t). Let us tag
every customers in order of arrival: the nth customer arrives at instant τn and
has sojourn time Wn.

Our goal is to calculate the distribution of the stationary sojourn time W ,
defined as

Pr [W ≤ t] = lim
n→∞ Pr [Wn ≤ t] . (2)

In a discrete queueing system, the sojourn time Wn of a single client is the
time spent into the system starting from the arrival instant τn. In particular, it
is a function of the number of clients in the buffer, and the phase at instant τn,
thus we write

Wn = W (N(τn), S(τn)) .

Let us define the function A(t) counting the number of arrivals. For every
instant t, A(t) is the number of clients arrived in the interval of time [0, t]. This
function makes a jump at every instant of type τn. We can define the reciprocal
function A−1 such that

A−1(n) = τn ⇔ A(τn) = n.

We can write Eq. (2) using the function A−1, it gives

Pr [W ≤ t] = lim
n→∞ Pr [Wn ≤ t]

= lim
n→∞ Pr [W (N(τn), S(τn)) ≤ t]

= lim
n→∞ Pr

[W (
N(A−1(n)), S(A−1(n))

) ≤ t
]
. (3)

We can see A−1(·) as a new clock for the process. Using this clock, we no
longer consider the process continuously in time, but only at those instants when
an arrival occurs. We define a new process,

(N∗(n), S∗(n))n≥0 =
(
N(A−1(n)), S(A−1(n))

)
n≥0

,
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and the corresponding stationary distribution γ∗(n), as

γ∗
i (k) = lim

n→∞ Pr [N∗(n) = k, S∗(n) = i] , i ∈ S.

We condition Eq. (3) on the initial level and phase, distributed following
γ∗(k), and we write the distribution of the sojourn time W as

Pr [W ≤ t] = lim
n→∞ Pr [W (N∗(n), S∗(n)) ≤ t] ,

= lim
n→∞

∑
k≥0

∑
i∈S

Pr [N∗(n) = k, S∗(n) = i] ×

Pr [W (k, i) ≤ t|N∗(n) = k, S∗(n) = i]

=
∑
k≥0

∑
i∈S

γ∗
i (k) Pr [W (k, i) ≤ t|N∗(0) = k, S∗(0) = i]

= γ∗F (t)1,

where F (t) is a matrix with entries Fk,i(t) = Pr [W (k, i) ≤ t]: the sojourn time
is the product of two factors. Equation (1) for the sojourn time in a fluid flow
has the same structure.

3 The Fluid Flow of Interest

We consider a classic fluid flow (X(t), S(t))t≥0 in continuous time, where

– X(t) ∈ R+ is the level of the buffer content,
– S(t) ∈ S = {1, 2, . . . , n}, with n < ∞, is the phase process, an irreducible

Markov process with generator matrix T and stationary distribution α, such
that {

αT = 0,

α1 = 1.

For S(t) = i, the net rate of the fluid is ri = rin,i − rout,i. We define the
diagonal rate matrices R, Rin and Rout with elements of the diagonal ri, rin,i

and rout,i respectively. The input and output rates are always non-negative

rin,i ≥ 0, rout,i ≥ 0, ∀i ∈ S.

The net rates ri can take any real values. It is customary to partition the state
space of the phases according to the sign of the net rates:

S = S+ ∪ S− ∪ S0, (4)

with ⎧⎪⎨
⎪⎩

ri > 0 for i ∈ S+,

ri < 0 for i ∈ S−,

ri = 0 for i ∈ S0.
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Following this partition, the generator matrix T and the rate matrix R may be
written as,

T =

⎡
⎣T++ T+− T+0

T−+ T−− T−0

T0+ T0− T00

⎤
⎦ , R =

⎡
⎣R+

R−
0

⎤
⎦ . (5)

Let us define the matrix Q as the generator of the process censored to the
phases with non zero rates:

Q =
[
Q++ Q+−
Q−+ Q−−

]
=

[
T++ T+−
T−+ T−−

]
+

[
T+0

T−0

]
(−T00)

−1 [
T0+ T0−

]
.

Let Π(x) be the vector of elements Πj(x) defined as the stationary distri-
bution of the buffer content in phase j, for j ∈ S,

Πj(x) = lim
t→∞ P [X(t) ≤ x, S(t) = j] ,

and π(x) vector of elements πj(x) defined as its density

πj(x) =
∂

∂x
Πj(x).

We also define the elements pj of the vector p, as the stationary probabilities of
observing a null buffer content while the phase process is j, that is

pj = lim
t→∞ P [X(t) = 0, S(t) = j] .

We recall the stationary density π(x) of a classic fluid flow [6] in the following
theorem.

Theorem 1. The mean drift of the fluid flow is λ = αR1. If λ < 0, then the
stationary density of the level is given by

π(x) = μeKx
[
R−1

+ Ψ |R−|−1 Θ
]
,

with Θ =
(
R−1

+ T+0 + Ψ |R−|−1T−0

)
(−T00)−1, and where |R−| is the matrix

of absolute values of the elements of R−.
The matrix K is given by

K = R−1
+ Q++ + Ψ |R−|−1Q−+,

and the matrix Ψ is the unique solution, with Ψ1 = 1, of the following Riccati
equation

Ψ |R−|−1Q−+Ψ + Ψ |R−|−1Q−− + R−1
+ Q++Ψ + R−1

+ Q+− = 0.

The vector μ is defined by the system

[
μ p

]
⎡
⎣ −I −Ψ 0

T−+ T−− T−0

T0+ T0− T00

⎤
⎦ = 0

p1 + μ(−K)−1
[
R−1

+ Ψ |R−|−1 Θ
]
1 = 1.
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4 Distribution at Arrival Epochs

As mentioned earlier, the distribution at arrival epochs is obtained working with
a new clock φ(y). We proceed step by step and define successively the input
process, the new clock, and then the distribution at arrival epochs. We use
Fig. 1 to illustrate the different steps.

Input Process. We define the fluid flow (Y (t), S(t))t≥0 of the accumulated
fluid, as the input process, where Y (t) ∈ R+ represents the total amount of fluid
which entered the buffer up to time t. The process S(t) is the phase process of
the original fluid queue.

We only consider here the input rates rin,i at which the fluid is entering the
buffer. The rate matrix of the input process is Rin. Recall that the input rates
are always positive or null. Depending on the sign of the input rates, we partition
the state space S using two new subsets S = Sin

+ ∪ Sin
0 , defined as

{
rin,i > 0 for i ∈ Sin

+ ,

rin,i = 0 for i ∈ Sin
0 .

The left side of Fig. 1 shows a sample path of the fluid X(t) above the corre-
sponding input process Y (t). We see that when S(t) visits a phase i ∈ Sin

0 , Y (t)
stays at the same level during this interval of time, and X(t) may decrease if
rout,i < 0.

New Clock. We define the new clock φ(y) as

φ(y) = max{u, 0 < u < ∞ : Y (u) = y},

so we have Y (φ(y)) = y. For a fixed value y, one can see φ(y) as the last instant
when the total amount of fluid entered in the buffer is y, and new fluid is coming
in at that time.

When S(u) = i ∈ Sin
+ , we have

φ(y) = u ⇔ y = Y (u). (6)

In general, however, the implication goes only in one direction

φ(y) = u ⇒ y = Y (u).

In the right lower part of Fig. 1 we can see how we obtain the new clock φ(y)
by taking the inverse of the process Y (t). At the beginning the input rate is
quite high, so the clock is slow. Then for a certain interval of time there is no
input, so that time does increase but the accumulated fluid y does not, and the
clock jumps when input resumes. It then continues again as the beginning.



Sojourn Time Distribution in Fluid Queues 301

Process with the New Clock. The process defined with the new clock is
specified as

(X∗(y), S∗(y))y≥0 = (X(φ(y)), S(φ(y)))y≥0.

It represents the content of the buffer seen at the arrival of the yth unit of fluid.
Finally, on the right upper part of Fig. 1, we show a representation of this

new process. At the beginning, X∗(y) is slower than the original process, as there
is a lot of entries in that interval of time. As soon as there is no entries, X∗(y)
does not take any values but makes a jump. This corresponds to the interval of
time when the phase process takes a value i in the subset Sin

0 . After that, X∗(y)
continues again to increase as at the beginning.

X(t)

t

Y (t)

t

X (y)

y

φ(y)

y

Fig. 1. An illustration of the different processes. On the upper left, a sample path of
the original fluid flow X(t), and below the corresponding input process Y (t). On the
right, the corresponding new clock φ(y) below, and the new process X∗(y) above.

Stationary Distribution at Arrivals. We now determine the stationary dis-
tribution Π∗(x) of this new process, with elements Π∗

j (x) defined as

Π∗
j (x) = lim

y→∞ P [X(φ(y)) ≤ x, S(φ(y)) = j] ,

and its density π∗(x) with elements

π∗
j (x) =

∂

∂x
Π∗(x), j ∈ S. (7)

The next theorem explains the relation between the stationary distribution
Π∗(x) and the stationary distribution Π(x) of the original process.
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Theorem 2. The stationary distribution of the process (X∗(y), S∗(y))y≥0 is

Π∗(x) =
1
λ

Π(x)Rin,

where λ = αRin1.

Proof. Let j be in Sin
+ , one has

Π∗
j (x) = lim

y→∞ P [X(φ(y)) ≤ x, S(φ(y)) = j]

= lim
y→∞

1
y

∫ y

0

1{X(φ(u)) ≤ x, S(φ(u)) = j}du.

Take t = φ(u), which is equivalent to u = Y (t). By definition of Y (t) we have
Y ′(t) = rin,j when S(t) = j. Accordingly,

Π∗
j (x) = lim

T→∞
1

Y (T )

∫ T

0

1{X(t) ≤ x, S(t) = j}rin,jdt

=
(

lim
T→∞

T

Y (T )

)
lim

T→∞
1
T

∫ T

0

1{X(t) ≤ x, S(t) = j}rin,jdt

= lim
T→∞

T

Y (T )
Πj(x)rin,j

= cΠj(x)rin,j .

for some scalar c.
If j ∈ Sin

0 , the process X∗(t) makes a jump. The stationary distribution is
then 0 for these phases. We have

Π∗
j (x) = 0, with rin,j = 0.

As S = Sin
+ ∪ Sin

0 , the result holds for all the phases in S, so that:

Π∗(x) = cΠ(x)Rin.

Let us now find the constant c, defined as c = limT→∞ T
Y (T ) . Let us remember

that ∑
j∈S

lim
x→∞ Π∗

j (x) = 1, (8)

and

lim
x→∞ Πj(x) = αj .

One may conclude from (8) that

c =
1∑

j∈S αjrin,j

=
1

αRin1
,

which concludes the proof. 	
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Corollary 1. The stationary density of the process (X∗(y), S∗(y))y≥0 is

π∗(x) =
1
λ

π(x)Rin,

where λ = αRin1.

Proof. It follows from the definition of the density (7). 	

Remark 1. This is the same equation as in [4], but here is a proof.

5 Time to Empty the Buffer

We now proceed with the second step of our analysis, that is the computation
of the distribution of the time needed to empty the buffer content. We first
describe the output process that will help us to characterize the Laplace-Stieltjes
transform of the time to empty the buffer.

Output Process. We define the output process (Z(t), S(t))t≥0, where Z(t) ∈
R+ represents the amount of fluid which may leave the buffer up to time t. The
process S(t) is the phase process of the original fluid flow.

We take into account the fluid leaving the buffer, so the rate matrix of the
fluid is −Rout. Depending on the sign of the output rates rout,i, which are always
non negative, the state space S may be partitioned using new subsets: S =
Sout

− ∪ Sout
0 . These subsets are defined as

{
−rout,i < 0 for i ∈ Sout

− ,

rout,i = 0 for i ∈ Sout
0 .

This leads to a different partition of the matrices. The entries of matrix T in
Eq. (5) are ordered following the partition S = S+ ∪ S− ∪ S0. We define an
appropriate permutation matrix P out to switch from the partition S = S+ ∪
S− ∪S0 to the new one S = Sout

− ∪Sout
0 . Using the matrix P out we partition the

matrices T and −Rout as

(P out)−1TP out =
[
T out

−− T out
−0

T out
0− T out

00

]
, (9)

(P out)−1
(−Rout

)
P out =

[
Rout

−
0

]
. (10)

In particular, Rout
− is a diagonal matrix, whose elements −rout,i are all strictly

negatives.
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Time to Empty the Buffer. The first passage time to a given level x is τ(x),
defined as

τ(x) = inf{t ≥ 0 : Z(t) = x}.

The distribution of the time spent to empty the buffer, given the initial level
x is

Γij(x, t) = Pr [τ(0) ≤ t, S(τ(0)) = j|Z(0) = x, S(0) = i] ,

and its LS-transform is

Γ̂ij(x, s) =
∫ ∞

0

e−stdΓij(x, t).

The matrix Γ̂ (x, s), with entries Γ̂ij(x, s), can be partitioned as

Γ̂ (x, s) =

[
Γ̂−−(x, s)
Γ̂0−(x, s)

]
,

following the partition S = Sout
− ∪ Sout

0 .
We have the following theorem.

Theorem 3. The LS-transform Γ̂ (x, s) of the time to empty the buffer when
the initial level is x, is

Γ̂ (x, s) =
[

I

− (T out
00 − sI)−1

T out
0−

]
eQout(s)x,

where

Qout(s) = |Rout
− |−1

[(
T out

−− − sI
) − T out

−0

(
T out
00 − sI

)−1
T out
0−

]
,

with Re(s) ≥ 0.

Proof. This results is adapted from [2, Lemma 2]. It is proved there that if the
initial phase is in Sout

− , then

Γ̂−−(x, s) = eQout(s)x. (11)

Let us now consider an initial phase i ∈ Sout
0 . In this case the process stays

an interval of time u in phase i with probability eT out
ii u and then it changes to a

phase k with transition rate T out
ik . Accordingly, one has

Γ̂ij(x, s) =
∫ ∞

0

e(T
out
ii −s)u

∑
k 	=i

T out
ik Γ̂kj(x, s)du

= −(T out
ii − s)−1

∑
k 	=i

T out
ik Γ̂kj(x, s).
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Using (11), we have in matrix form

Γ̂0−(x, s) = − (
T out
00 − sI

)−1
T out
0− Γ̂−−(x, s)

= − (
T out
00 − sI

)−1
T out
0− eQout(s)x,

which gives the result. 	

Remark 2. If all output rates are strictly negative, then S = Sout

− , and Theorem
3 becomes simpler. One has

Γ̂ (x, s) = eQout(s)x,

where Qout(s) = |Rout|−1 (T − sI).

6 Sojourn Time Distribution

We now want to obtain the stationary distribution V (t) of the sojourn time W
for an arriving unit of fluid. As we explained in Sect. 2, this distribution has the
following form

V (t) =
∫ ∞

0

π∗(x)P outΓ (x, t)1dx.

While determining π∗(x) in Corollary 1, we use the matrix of input rates
Rin and the phases are ordered following the partition S = S+ ∪ S− ∪ S0. In
Theorem 3 we compute Γ (x, t) using the matrix of output rates Rout, and we
partition it following S = Sout

− ∪ Sout
0 . For this reason we need the permutation

matrix P out defined in (9), to multiply the two quantities π∗(x) and Γ (x, t),
ordered following different partitions of S.

Using Theorem 3, the LS-transform of the sojourn time has the form

V̂ (s) =
∫ ∞

0

π∗(x)Bout(s)eQout(s)x1dx, (12)

where

Bout(s) = P out

[
I

− (T out
00 − sI)−1

T out
0−

]
.

From Corollary 1 and Theorem 1, we write π∗(x) as

π∗(x) =
1
λ

π(x)Rin

=
1
λ

(
μeKx

[
R−1

+ ΨR−1
− Θ

])
Rin

= βeKxΦin,
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with

β =
1
λ

μ and Φin =
[
R−1

+ ΨR−1
− Θ

]
Rin.

Equation (12) becomes then

V̂ (s) =
∫ ∞

0

βeKxΦinBout(s)eQout(s)x1dx (13)

= βA(s)1, (14)

with A(s) defined as

A(s) =
∫ ∞

0

eKxΦinBout(s)eQout(s)xdx.

Let us remark that this integral is the solution of a non-singular Sylvester equa-
tion. Using integration by parts, we have

A(s) =
∫ ∞

0

eKxΦinBout(s)eQout(s)xdx

=
[
(K)−1eKxΦinBout(s)eQout(s)x

]∞

0

−
∫ ∞

0

(K)−1eKxΦinBout(s)eQout(s)xQout(s)dx

= −(K)−1ΦinBout(s) − (K)−1

∫ ∞

0

eKxΦinBout(s)eQout(s)xdx Qout(s)

as limx→∞ eKx = 0 and limx→∞ eQout(s)x < ∞. We write it as

KA(s) = −ΦinBout(s) −
∫ ∞

0

eKxΦinBout(s)eQout(s)xdx Qout(s),

or simply

KA(s) + A(s)Qout(s) + ΦinBout(s) = 0. (15)

The Sylvester equation can be solved numerically and the LS-transform V̂ (s)
will be fully determined. Its numerical inversion will lead to the complete distri-
bution determination.

Using the LS-transform of the sojourn time, it is possible to obtain the
expected sojourn time.

Theorem 4. The expected sojourn time is given by

E[W ] = −βA′1.

Here, A′ = lims→0
∂
∂sA(s), is solution of the Sylvester equation

KA′ + A′Qout = −AQ′
out − ΦinB′

out, (16)
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where A = lims→0 A(s) is solution of the Sylvester equation

KA + AQout + Φin = 0,

and

Qout = |Rout
− |−1

[
T out

−− − T out
−0

(
T out
00

)−1
T out
0−

]
,

Q′
out = |Rout

− |−1
[
−I + T out

−0

(
T out
00

)−2
T out
0−

]
,

B′
out = P out

[
0

(T out
00 )−2

T out
0−

]
.

Proof. In order to calculate the expected sojourn time, we take the first moment
of the LS transform, defined in (12):

E[W ] = − lim
s→0

∂

∂s
V̂ (s)

= − lim
s→0

∂

∂s
βA(s)1,

where we denote A′ = lims→0
∂
∂sA(s).

We then take the derivative and the limit for s tending to 0 in the Sylvester
equation (16) to obtain the result. 	


Taking the successive derivatives in Eq. (15) allows us to obtain the successive
moments of the Sojourn time.

7 Numerical Illustration

We give here some numerical examples of sojourn time distributions.
In the following, we use the notations F (x) and F ∗(x) to indicate the sta-

tionary marginal distribution of the level for the original process X(t) and the
new process X∗(t), respectively, without considering the phases. We have

F (x) = lim
t→∞ P [X(t) ≤ x] ,

F ∗(x) = lim
t→∞ P [X∗(t) ≤ x] .

7.1 Example from [4]

We start with the example in [4, Section 6]. The authors model the amount of
data arriving in a buffer and being processed by a group of servers. Data arrive
in the buffer at different rates, depending on the number of active sources, and
the processing rates depend on the number of active servers.

The system is modeled as a fluid flow with independent input and output
processes. These are controlled by two independent Markov processes Sin(t) and
Sout(t), respectively with generator matrices Qin and Qout. The rate matrices
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for each process are Rin and Rout. The Markov process Sin(t) represents the
number of active sources. Each source switches from off to on at rate νin and
from on to off at a rate μin independently from the other sources. In particular,
when Sin(t) = i, there are i active sources and the total rate of data arriving in
the buffer is

ri,in = ρin
0 + i

ρin

nin
,

with 0 ≤ i ≤ nin. Similarly for the number of active servers. When Sout(t) = i,
there are i active servers and the total rate at which the data is processed is

ri,out = ρout
0 + i

ρout

nout
,

with 0 ≤ i ≤ nout.
Both input and output process matrices have the same structure.

For Q :

⎡
⎢⎢⎢⎢⎢⎣

• nν
γ • (n − 1)ν

. . .
(n − 1)γ • ν

nγ •

⎤
⎥⎥⎥⎥⎥⎦

,

for R :

⎡
⎢⎢⎢⎢⎢⎣

ρ0
ρ0 + ρ

n

ρ0 + 2ρ
n

. . .
ρ0 + ρ

⎤
⎥⎥⎥⎥⎥⎦

,

where n is the number of phases in the input or in the output process respectively.
The bullets • in the diagonal are calculated in order to have a generator matrix,
with the sum of the elements in each row being equal to zero. The parameters
corresponding to the two processes are given in Table 1.

Table 1. Parameters for the matrices.

Input process Output process

νin 1/2 νout 1/20

γin 1 γout 1/30

ρin
0 0 ρout

0 1/10

ρin 10 ρout 8

nin 20 nout 10
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As input and output processes are independent, the total rate matrix R and
the generator matrix of the whole process Q are

R = Rin ⊗ I − I ⊗ Rout,

Q = Qin ⊗ I + I ⊗ Qout,

with ⊗ being the Kronecker product.
Figure 2 shows the stationary distribution of the buffer F (x), the distribu-

tion at the arrival epochs F ∗(x), calculated with the change of clock, and the
distribution of the sojourn time V (t). As expected, the sojourn time distribution
is the same as the authors obtained in [4].

Fig. 2. Stationary distributions F (x) and F ∗(x), sojourn time distribution V (t) for
Example 7.1.

Remark 3. To obtain the sojourn time distributions in Sect. 7, we have used the
LS-transform inversion method from Whitt [9]. It is well-known that numerical
inversion methods are prone to numerical instability, and this is considered to
be a drawback of the LS-transform approach. We did not, however, encounter
this issue here. In addition, we should mention recent work from Horvàth et al.
[3] on techniques free from the risk of overshoot or undershoot.

7.2 Example with Strictly Positive Sojourn Time

We consider a system where the server works at a constant rate rout,j = 1, as
in the paper [7]. The system is simple, there is only two phases. While in the
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first phase there is no fluid arriving in the system, so the total rate is negative.
In the second phase, the input rate is positive. We choose the values of the
generator matrix T of the Markov chain so that the process spends more time in
the negative phase than in the positive phase. Thus, the mean drift λ is negative.
The rate matrix and the generator matrix are as follows

Rin =
[
0 0
0 2

]
, Rout =

[
1 0
0 1

]
,

R =
[−1 0

0 1

]
, T =

[−1 1
1/3 −1/3

]
.

Figure 3 shows the stationary distribution of the buffer F (x) and the distri-
bution at arrival epochs F ∗(x), calculated with the change of clock. The last one
is identical to V (t), the distribution of the sojourn time, as the output rate is
always equal to one.

Fig. 3. Stationary distributions F (x) and F ∗(x), sojourn time distribution V (t) for
Example 7.2.

The buffer is empty with a probability around 0.5. It is empty in phase 1.
As soon as the phase changes to 2, the level starts to increase. In this simple
example, the negative net rate corresponds to a null input rate. This means
there is no fluid arriving in the system, and this period does not contribute to
the sojourn time distribution. As we see in Fig. 3, the sojourn time is always
strictly positive. Every time there is some input, the rate is positive, so that the
arriving units of fluid are not served immediately.
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7.3 A New Example

In this third example, the Markov process S(t) is assumed to cycle through eight
phases, remaining on average one unit of time in every phase. The generator
matrix of the process is given by

T =

⎡
⎢⎢⎢⎣

−1 1
−1 1

. . .
1 −1

⎤
⎥⎥⎥⎦ .

We fix the mean input drift to be λin = ρ, where ρ is fixed and such that
0 < ρ < 1. We consider three different types of environment. The first case
represents a situation where during a short period (only one phase) the input
rate suddenly increases. In the other two cases there is less variability in the
input rates. In particular

– Case A: phase 8 by itself brings 3/4 of the total charge arriving into the
buffer;

– Case B: two phases (7 and 8) bring 3/4 of the total charge arriving into the
buffer;

– Case C: four phases (5 to 8) bring 3/4 of the total charge arriving into the
buffer.

For each environmental case, we define the vector of the input rates rk
in, with

k = A,B,C depending on the case:

rA
in =

[
2/7, 2/7, 2/7, 2/7, 2/7, 2/7, 2/7, 6

]
ρ,

rB
in =

[
1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 3, 3

]
ρ,

rC
in =

[
1/2, 1/2, 1/2, 1/2, 3/2, 3/2, 3/2, 3/2

]
ρ.

We fix the output rates to be all constants and equal to one, so that the
mean output drift λout is also equal to one. We also fix ρ = 0.8.

Figure 4 shows the stationary distribution of the level and the stationary
distribution at the arrival epochs for the three cases. As the output rate is
constant and equal to one, this is also the distribution of the sojourn time. We
can see the influence of the variability of the input rates in the distributions.
Even if the peak input rates lasts only one unit of time, its effects last longer.
The sojourn time in case A is quite high, due to the unpredictability of the input
rates. In case C it is much lower, thanks to the input rates more uniforms.

Let us now take the case A for the input rate, and we compare the effect of
the constant output rates with some adaptive output rates. The output drift is
fixed, λout = 1, and again ρ = 0.8. We consider three cases:

– Case a: the server works at a constant rate 1;
– Case b: during two phases the server does half of the total work;
– Case c: in phase 8 the server does half of the total work.
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BC

A

Fig. 4. Stationary distribution at arbitrary instants and at arrival instants for the input
environments A, B and C.

Fig. 5. Stationary distribution at arbitrary instants and at arrival instants for three
different input environment, corresponding to cases a, b and c.
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For each output environment, we define the vector of the output rates rk
out,

with k = a, b, c depending on the case:

ra
out =

[
1, 1, 1, 1, 1, 1, 1, 1

]
rb

out =
[
2/3, 2/3, 2/3, 2/3, 2/3, 2/3, 2, 2

]
rc

out =
[
4/7, 4/7, 4/7, 4/7, 4/7, 4/7, 4/7, 4

]

The sojourn time distribution for these output cases is shown in Fig. 5. As
we make the output rates more adapted to the input rate, the peak input rate
does not influence so much the sojourn time, which becomes lower. Note that
the case a here correspond to the case A in Fig. 4.

8 Conclusion and Further Works

We have computed the LS-transform of the sojourn time distribution for a fluid
flow with infinite buffer. The most important contribution is the introduction
of the change of clock to calculate the stationary distribution at arrival epochs.
The focus on the input rates when constructing the clock, allows us to adapt it
to more general case. The first extension of the work will be to consider a fluid
flow with finite buffer. With our clock it is possible to clearly consider the fluid
which actually enters the buffer, separate from the fluid lost due to the finite
buffer.
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Abstract. We consider a discrete-time queueing system with one server
and two types of customers, say type-1 and type-2 customers. The server
serves customers of either type alternately according to a Bernoulli pro-
cess. The service times of the customers are deterministically equal to
1 time slot. For this queueing system, we derive a functional equation
for the joint probability generating function of the number of type-1 and
type-2 customers. The functional equation contains two unknown partial
generating functions which complicates the analysis. We investigate the
dominant singularity of these two unknown functions and propose an
approximation for the coefficients of the Maclaurin series expansion of
these functions. This approximation provides a fast method to compute
approximations of various performance measures of interest.

Keywords: Discrete-time · Alternating service · Functional equation ·
Approximation

1 Introduction

Two-queue queueing systems, queueing systems with two types of customers or,
more generally, Markov processes with a two-dimensional state space are often
harder to analyse than one-queue systems, or again more generally, Markov pro-
cesses with a one-dimensional state space. Explicit expressions for the joint prob-
ability distribution or the joint probability generating function of the number of
customers in the queues are usually hard to obtain. The probability generating
function approach often leads to a functional equation for the joint probability
generating function, which is not readily solved. In queueing systems where two
types of customers share one server according to some sharing discipline, the fol-
lowing particular type of functional equation for the joint probability generating
function of the numbers of customers of both types, U(z1, z2), frequently occurs
[5,10],

K(z1, z2)U(z1, z2) = f(z1, z2)U(z1, 0)+g(z1, z2)U(0, z2)+h(z1, z2)U(0, 0) , (1)
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where K, f , g and h are known functions. In the expression above, there are
three quantities yet to be determined in the right-hand side, namely the functions
U(z1, 0) and U(0, z2) and the constant U(0, 0). In some fortunate circumstances
where not both U(z1, 0) and U(0, z2) are present in the above equation, the
kernel usually has the convenient property that it has one zero inside the unit
disk for each z2 with |z2| < 1 or vice versa. This property yields an expression
for the remaining unknown function since the right-hand side of the functional
equation must vanish for these zero tuples. A well known example is a two-class
priority queueing system, see e.g. [17].

The occurrence of both U(z1, 0) and U(0, z2) complicates the analysis, and
no trivial zeroes of K seem to exist in general to determine one of the func-
tions. Pioneering work on this problem can be found in [5,9] and [15]. In [5],
the authors have developed an analytical technique such that the functions
U(z, 0) and U(0, z) are the solutions of a so-called (Riemann-)Hilbert problem.
Therefore, functional equations of the type (1) are in queueing theory some-
times referred to as boundary value problems. To obtain performance measures,
the method in [5] requires the numerical evaluation of conformal mappings and
(singular) integral equations. In [6], a problem where the function K in the
functional equation is quadratic in both z1, z2 and U(z, 0) = U(0, z) is stud-
ied. Instead of formulating a boundary value problem, the author proved that
U(z, 0) is a meromorphic function using analytic continuation and determined
all it poles and zeros. This analysis was later extended in [7] to an asymmetric
model, where the unknown functions are no longer equal. A profound analy-
sis for general K that is quadratic in both variables is done in [10], where the
authors either propose an algebraic method or the reduction to a boundary value
problem in the complex plane. The former requires some knowledge on Galois
automorphisms and elliptic functions, while the latter is similar to the approach
in [5]. The function K is crucial in all these approaches and is referred to as the
kernel. In [9,10,15] and most of the other literature, the kernel K is quadratic
in z1 and z2.

The applicability of the analytical results obtained by solving these boundary
value problems depends on the possibility to evaluate these results numerically
[5]. Because of this drawback of the boundary value approach, some approxima-
tions for two- as well as multi-class queues have been investigated in the past.
The most prominent approach is perhaps the Power Series Approximation app-
roach [18], where the output distributions, their transforms or their moments are
expressed as power series in a specified parameter and the terms of these power
series are calculated iteratively (either numerically or analytically). Truncation
or any other approximation based on the knowledge of a finite number of these
coefficients are the result of this technique. Another approach is the so-called
compensation technique [1], although this one only works for a specific class of
problems. Yet another direction of analysis is obtaining partial information of
the model. For instance, in some cases the asymptotics of (the decay of) the dis-
tributions of interest can be found, without the determination of the unknown
functions U(z, 0) and U(0, z) is required [12,13].
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In this paper, we analyze a discrete-time single server queueing system where
the server is (alternately) responsible for the service of two types of customers.
Such a queueing system is related to systems where the server or processor does
not have information on the queue lengths, possibly due to technical limita-
tions. The functional equation for the joint probability generating function of
the number of type-1 and type-2 customers belongs to the class of functional
equations (1). This queueing model has a simple description and is interesting
because the marginal probability generating functions can be seperately deter-
mined, in contrast to the joint generating function. This is because the analysis
for a single customer type is equivalent to that of a queue with server interrup-
tions. This kind of queueing systems is well-studied [2–4]. Moreover with the
concept of effective service times, see for example [8], the seperate queues are
in fact equivalent to the G − Geom − 1 buffer system, where the parameters of
the geometric service times are related: the effective service times are geomet-
rically distributed with parameter α and parameter 1 − α, for the type-1 and
type-2 queue, respectively. While we can obtain the marginal distributions, the
determination of the joint probability generating function remains a challenging
task. This becomes an issue if one is for instance interested in the distribution
of the total number of customers. A closely related paper is [16] which studies
a continuous-time single server two-queue polling model with random residing
time service discipline. A parametric perturbation is proposed for the computa-
tion of the joint queue length distribution. However this approach also leads to
a boundary value problem. In our paper we propose an approximation method
that requires less complex numerical work and that can be generalized to multi-
class systems where asymptotics can be obtained [13]. In contrast to [5], we
approximate the unknown functions U(z, 0) and U(0, z) directly, partially based
on information of the dominant singularities and zeros of the function K. This
method is fairly simple and provides a fast method to approximate performance
measures related to the joint distribution for different parameter values.

The remainder of this paper is outlined as follows. In the next section we
provide a more detailed description of the queueing model under consideration.
In Sect. 3, we derive the functional equation of the joint probability generating
function of the number of type-1 and type-2 customers in the system. Moreover,
we recapitulate the marginal distributions and their dominant singularities, as
these will be helpful later on. Next, we obtain the dominant singularities of
U(z, 0) and U(0, z) in Sect. 4. In Sect. 5, we propose a method to approximate
all the coefficients of the Maclaurin series of these two functions. Finally, we
compare this approximation with simulation results in Sect. 6, for some numerical
examples.

2 Mathematical Model

We investigate a discrete-time queueing model with two infinite waiting rooms
and one server. As in all discrete-time models, the time axis is divided into fixed-
length intervals referred to as (time) slots. New customers may enter the system
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at any given (continuous) point on the time axis, but services are synchronized
to (i.e. can only start and end at) slot boundaries. We further assume that the
service of each customer requires exactly one slot.

Type-1 and type-2 customers arrive to the system according to two indepen-
dent arrival processes. The number of type-1 and type-2 arrivals during slot k
are denoted by a1,k and a2,k respectively. The sequence aj,k is assumed to be
i.i.d. with common probability generating function (pgf) Aj(z) (j = 1, 2). The
mean number of type-j arrivals within a slot is given by

λj � A′
j(1), j = 1, 2 . (2)

Let us define the dominant singularity1 of Aj(z) by σj . We assume that

σj > 1 and Aj(σj) = ∞ j = 1, 2 . (3)

This includes all usual arrival processes, except arrival processes with a long tail
[14]. We emphasize that the dominant singularity of these distributions is not
necessary a pole.

As the server is (alternately) responsible for the service of two types of cus-
tomers, our model basically divides the time axis into two types of time slots,
referred to as “X-slots” and “Y -slots”, respectively. During X-slots and Y -slots,
the server can only serve customers of type 1 or 2 respectively; if no customers
of the designated type are present in the system, the server remains idle. The
state of the slot (X or Y ) evolves independently from slot to slot: α and 1 − α
indicate the probabilities that a slot is an X-slot or Y -slot respectively.

We assume a stable system, i.e. the mean number of arrivals per slot is strictly
less than the mean number of customers that can be served per slot. For the
type-1 customers this yields the condition

λ1 < α ,

while for type-2 customers we have the following constraint

λ2 < 1 − α′ .

Throughout the remainder of this paper we use the notation Pr[·] for the prob-
ability measure and E[·] for the expectation operator.

3 The Functional Equation

We denote the system content of type-1 and type-2 customers at the beginning
of slot k by u1,k and u2,k, respectively. The evolution of the system content from

1 Dominant singularities are singularities that lie on the boundary of the disk of
convergence.
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slot k to slot k + 1 is described by the following system equations:

u1,k+1 =

{
(u1,k − 1)+ + a1,k, if slot k is an X-slot ;
u1,k + a1,k, if slot k is a Y -slot ;

(4)

u2,k+1 =

{
u2,k + a2,k, if slot k is an X-slot ;
(u2,k − 1)+ + a2,k, if slot k is an Y -slot ,

(5)

where (·)+ = max(·, 0). Note that u1,k and u2,k are independent of the state of
the system during slot k. From the system equations we obtain the following
relation for the joint pgf Uk+1(z1, z2) of the number of type-1 and type-2 cus-
tomers at the beginning of slot k + 1 and the joint pgf Uk(z1, z2) of the number
of type-1 and type-2 customers at the beginning of slot k:

Uk+1(z1, z2) � E[zu1,k+1
1 z

u2,k+1
2 ]

=
A1(z1)A2(z2)

z1z2
{[(1 − α)z1 + αz2]Uk(z1, z2)

+ (1 − α)(z2 − 1)z1Uk(z1, 0) + α(z1 − 1)z2Uk(0, z2)} . (6)

Notice that

Uk(z1, 0) =
∞∑

n=0

Pr[u1,k = n, u2,k = 0]zn
1 , (7)

Uk(0, z2) =
∞∑

n=0

Pr[u1,k = 0, u2,k = n]zn
2 , (8)

by definition.
Since we are interested in the joint steady state distribution of u1,k and u2,k,

we define U(z1, z2) as

U(z1, z2) � lim
k→∞

E[zu1,k
1 z

u2,k
2 ] .

Finally, applying this definition in Eq. (6) we find the following functional equa-
tion for U(z1, z2),

K(z1, z2)U(z1, z2) = A1(z1)A2(z2)
×[(1 − α)(z2 − 1)z1U(z1, 0) + α(z1 − 1)z2U(0, z2)] , (9)

where we defined

K(z1, z2) = z1z2 − [(1 − α)z1 + αz2]A1(z1)A2(z2) . (10)

There are two unknown functions yet to be determined in the right-hand side of
(9), namely the functions U(z, 0) and U(0, z).
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3.1 The Marginal Pgfs and Their Radius of Convergence

From the functional equation (9), we easily obtain expressions for the marginal
pgfs U1(z) and U2(z), describing the numbers of type-1 customers and type-2
customers respectively at the beginning of random time slot. The pgf U1(z) is
given by

U1(z) � lim
k→∞

E[zu1,k ]

= U(z, 1)

=
(z − 1)A1(z)(α − λ1)

z − [(1 − α)z + α]A1(z)
. (11)

This result can be obtained as a special case of the result(s) obtained in [2].
Let us denote the radius of convergence of U1(z) by τ1. Since U1(z) is a pgf,

we have that τ1 ≥ 1. According to Pringsheim’s Theorem [11, Th. IV.6], τ1 is
a singularity of U1(z). This is one of the so-called dominant singularities. The
singularities of U1(z) are those of A1(z) and the possible zeros of the denominator
in (11). Because A1(z) is a strictly increasing, convex function on the positive real
axis and A1 becomes infinite in its dominant singularity (3), the denominator
of (11) has a simple zero in the interval (1, σ1). Hence, the unique dominant
singularity τ1 is this zero, which is a simple pole of U1(z) and satisfies

τ1 = [(1 − α)τ1 + α]A1(τ1), 1 < τ1 < σ1 . (12)

The residue of U1(z) in τ1 is given by

res
z=τ1

U1(z) = lim
z→τ1

(z − τ1)U1(z)

=
(τ1 − 1)A1(τ1)(α − λ1)

1 − (1 − α)A1(τ1) − [(1 − α)τ1 + α]A′
1(τ1)

. (13)

We furthermore calculate the pgf U2(z) of the number of type-2 customers
as follows

U2(z) � lim
k→∞

E[zu2,k ]

= U(1, z)

=
(z − 1)A2(z)(1 − α − λ2)
z − (αz + 1 − α)A2(z)

. (14)

As for U1(z), similar remarks hold for U2(z) concerning the radius of convergence.
Let τ2 be the unique dominant singularity of U2(z). It holds that τ2 is a simple
pole of U2(z) and

τ2 = (ατ2 + 1 − α)A2(τ2), 1 < τ2 < σ2 . (15)

The residue of U2(z) in τ2 is given by

res
z=τ2

U2(z) = lim
z→τ2

(z − τ2)U2(z)

=
(τ2 − 1)A2(τ2)(1 − α − λ2)

1 − αA2(τ2) − (ατ2 + 1 − α)A′
2(τ2)

. (16)
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3.2 The Functional Equation Revisited

First of all, we want to emphasize that u1 and u2 are not independent. This
is easily proven by the fact that the function U1(z1)U2(z2) does not satisfy the
functional equation (9), not even for α = 1/2. Simulation results suggests that
the correlation coefficient between type-1 and type-2 customers is negative. We
now give a possible intuitive explanation for this. If u1 is exceptionally large,
then either there were a lot of type-1 arrivals in the previous time slot, or type-1
customers are not served often during the last couple of slots. In the latter case,
it is likely that u2 is small.

Secondly, we note that (z2 − 1)z1U(z1, 0) in the functional equation (9) van-
ishes for z2 = 1, if U(z1, 0) is bounded. The resulting formula (11) is therefore a
priori only valid for those z values where U(z, 0) is bounded. This implies that
the radius of convergence of U1(z) cannot be greater than the radius of conver-
gence of U(z1, 0). This is not surprising since the coefficients in the Maclaurin
series expansion of U(z, 0) are bounded by those in the Maclaurin series expan-
sion of U1(z), i.e. Pr[u1 = n, u2 = 0] ≤ Pr[u1 = n], ∀n ≥ 0. Hence U(z, 0)
converges in any disk centred at the origin, where U1(z) converges. The same
conclusion can be drawn for U(0, z) and U2(z). Consequently, it follows that for
fixed z2 with |z2| ≤ 1, the joint pgf U(z1, z2) is analytic in |z1| < τ1. Similar,
we have that for fixed z1 with |z1| ≤ 1, U(z1, z2) is analytic in |z2| < τ2. Hence
U(z1, z2) is finite for these tuples (z1, z2). This implies that

(1 − α)(z2 − 1)z1U(z1, 0) + α(z1 − 1)z2U(0, z2) = 0

for those tuples (z1, z2) where K(z1, z2) = 0 and either |z1| < τ1, |z2| ≤ 1 or
|z1| ≤ 1, |z2| < τ2.

As in [5], we can consider tuples of the form (zeiϕ, ze−iϕ), with ϕ ∈ [0, 2π[.

Theorem 1. The kernel K(zeiϕ, ze−iϕ), ϕ ∈]0, 2π[ has exactly two zeros in
|z| < 1; one of them is always equal to zero. We define z = f(eiϕ) as the non-
trivial zero. Further we have that limϕ→0 f(eiϕ) = 1.

Proof. See [5].

Hence, from (9) we have the following relationship for w � eiϕ,

(1 − α)(f(w) − w)U(f(w)w, 0) + α(f(w) − w−1)U(0, f(w)w−1) = 0 . (17)

In order to obtain a so called (Riemann-) Hilbert problem, one has to further
transform the problem to obtain a relation between two unknown functions on
a specific contour such that one of two functions is analytic in the interior of the
contour, while the other is analytic outside of the contour.

In Sect. 5, we propose a method to approximate the function U(z, 0) and
U(0, z), based on their dominant singularities and using Eq. (17).
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4 Dominant Singularities of U(z, 0) and U(0, z)

In this section we show that the dominant singularity of U(z, 0) is τ1 and that it
is also a simple pole. Likewise, we show that the dominant singularity of U(0, z)
is τ2 and that it is a simple pole as well. We start this section with the dominant
singularity of U(z, 0).

Proposition 1. The dominant singularity of U(z, 0) is τ1. Moreover, this sin-
gularity is a simple pole with residue

res
z=τ1

U(z, 0) =
(

res
z=τ1

U1(z)
) (

1 − λ2

(1 − α)A1(τ1)

)
. (18)

Proof. We have that K(z1, z2), as defined in (10), is jointly analytic near z1 = τ1,
z2 = 1. By the definition of τ1, we further have that K(τ1, 1) = 0. Moreover, we
have ∂

∂z2
K(τ1, 1) �= 0 since,

∂

∂z2
K(τ1, 1) = τ1 − αA1(τ1) − ((1 − α)τ1 + α)A1(τ1)λ2

= τ1(1 − λ2) − αA1(τ1)
> τ1(1 − α − λ2)
> 0 . (19)

Here we used (12) in the second step, the fact that A1(τ1) < τ1 in the third
step and part of the stability condition in the last step. By the implicit function
theorem for analytic functions,2 there exists a unique function Y (z) and a radius
r > 0 such that Y (z) is analytic in a neighbourhood {z ∈ C : |z − τ1| < r} of τ1,
Y (τ1) = 1 and K(z, Y (z)) = 0 for z ∈ {z ∈ C : |z − τ1| < r}.

Notice that

Y ′(τ1) =
(1 − α)A1(τ1) + ((1 − α)τ1 + α)A′

1(τ1) − 1
τ1 − αA1(τ1) − ((1 − α)τ1 + α)A1(τ1)λ2

> 0 . (20)

Indeed, the denominator of (20) is strictly positive by (19). Now consider the
numerator of (11) and notice that the derivative of this function evaluated at
one is positive by the stability condition. Since τ1 is the smallest real zero bigger
than one, the derivative of the numerator of (11) evaluated at τ1 is strictly3

negative. The numerator of (20) is equal to the value of this derivative, but
multiplied by minus one. Therefore the numerator of (20) is strictly positive.
Because Y ′(τ1) > 0, we have that Y (x) < 1, for real values x < τ1 close enough
to τ1. Moreover since Y is analytic in τ1 and Y ′(τ1) �= 0, Y is injective in a
neighbourhood of τ1.

Define D as the subset of the open ball {z ∈ C : |z − τ1| < r} wherefore
|z| < τ1 and |Y (z)| ≤ 1. This subset is non-empty in view of the previous

2 For a reference, see e.g. [11, Th B.4].
3 Because τ1 is a zero of multiplicity one.
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reasoning. Since for z ∈ D \ {τ1}, U(z, Y (z)) remains bounded, we have that

U(z, 0) = − α(z − 1)Y (z)
(1 − α)z(Y (z) − 1)

U(0, Y (z)), z ∈ D \ {τ1} . (21)

For 0 < r′ ≤ min(r, τ1) sufficiently small such that |Y (z)| < τ2 and such that
Y is injective in {z ∈ C : |z − τ1| < r′}, the right-hand side of this equation is
analytic in this open ball, except at the point z = τ1, since Y (τ1) = 1. Therefore
U(z, 0) can be analytically continued into this punctured disk, which proves that
z = τ1 is an isolated singularity of U(z, 0).

Using that U(0, 1) = 1 − λ1/α, we find that

lim
z→τ1

(z − τ1)U(z, 0) = − 1
Y ′(τ1)

α − λ1

1 − α

τ1 − 1
τ1

< 0 .

Hence, τ1 is a simple pole of U(z, 0). Substituting (20) into the above expression
yields (18).

If we define
b1 � − res

z=τ1
U1(z), (22)

then we can write

Pr[u1 = n] ∼ b1

τn+1
1

,

and

Pr[u1 = n, u2 = 0] ∼ b1

τn+1
1

(
1 − λ2

(1 − α)A1(τ1)

)
, (23)

where we write fn ∼ gn for n → ∞ if limn→∞ gn/fn = 1. From this we can
conclude that

Pr[u1 = n, u2 = 0] ∼ Pr[u1 = n]
(

1 − λ2

(1 − α)A1(τ1)

)
.

This identity shows that u1 and u2 are non-independent. Indeed, if u1 and u2

were independent, then it should be the case that Pr[u1 = n, u2 = 0] = Pr[u1 =
n]

(
1 − λ2

1−α

)
, which is certainly not the case since A(τ1) > 1 is a constant.

Using identical arguments, we have the following similar result for U(0, z),
for which we omit the proof.

Proposition 2. The dominant singularity of U(0, z) is τ2. Moreover, this sin-
gularity is a simple pole with residue

res
z=τ2

U(0, z) =
(

res
z=τ2

U2(z)
) (

1 − λ1

αA2(τ2)

)
. (24)

Let us define
b2 � − res

z=τ2
U2(z), (25)

then we have the following asymptotic behaviour

Pr[u1 = 0, u2 = n] ∼ b2

τn+1
2

(
1 − λ1

αA2(τ2)

)
. (26)
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5 Approximation of U(z, 0) and U(0, z)

In this section we propose an approximation for the functions U(z, 0) and U(0, z),
which can then be used to approximate several other performance measures,
using the functional equation (9). The functions U(z, 0) and U(0, z) are char-
acterized by a countable infinite number of (unknown) coefficients.4 From now
on, if we speak about the coefficients of the functions U(z, 0) and U(0, z) we are
referring to the coefficients of their Maclaurin series expansion. The asymptotics
(23) and (26) approximates these coefficients accurately, except for small values
of n. Let b∗

1 be given by − res
z=τ1

U(z, 0) and b∗
2 given by − res

z=τ2
U(0, z). We pro-

pose the following approximations U∗(z, 0) and U∗(0, z) for U(z, 0) and U(0, z),
respectively:

U∗(z, 0) = p0 + p1z + . . . + pm−1z
m−1 +

b∗
1

τm
1

zm

τ1 − z
, (27)

U∗(0, z) = p0 + p−1z + . . . p−(m−1)z
m−1 +

b∗
2

τm
2

zm

τ2 − z
. (28)

Apart for the first m coefficients, we thus approximate the coefficients by the
obtained asymptotics (23), (26). We therefore reduce the problem to that of find-
ing N � 2m−1 unknowns, namely p := (p0, p1, . . . , pm−1, p−1, p−2, . . . , p−m−1).
In Sect. 3.2 we showed how the function K(z1, z2) plays a crucial role in the
determination of U(z, 0) and U(0, z). We therefore transfer equation (17) to the
approximated functions, i.e. replace U(z, 0) and U(0, z) in (17) by U∗(z, 0) and
U∗(0, z) respectively. Furthermore we can sample N values on the complex unit
circle, and plug them into equation (17), resulting in N linear equations between
the unknowns p. To this end, the following lemma will be useful.

Lemma 1. For the function f defined in Theorem 1, we have that

1. f(e−iϕ) = f(eiϕ) ,
2. f(−eiϕ) = −f(eiϕ) ,
3. f(eiϕ)eiϕ = f(ei(ϕ+π))ei(ϕ+π),
4. f(eiϕ)e−iϕ = f(ei(ϕ+π))e−i(ϕ+π).

Proof. See [5].

From Lemma 1 we conclude that it is no use to sample both eiϕ and ei(ϕ+π)

because this results into the same equation. The same holds true for eiϕ and
−eiϕ. Let ω � exp

(−2πi
N

)
, such that ωN = 1. We propose to use ω, ω2, . . . , ωN−1

as values for eiϕ in (17). Since N is odd, the two previously mentioned problems
do not occur. Moreover, it suffices to compute f(ω), . . . , f(ωm−1) because of the
first statement in Lemma 1.

4 We refer to the steady-state versions of Eqs. (7) and (8).
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Using the definition of U∗(z, 0) and U∗(0, z) (17) translates to

(1 − α)(f(ωk) − ωk)
m−1∑
j=1

f(ωk)jωkjpj + α(f(ωk) − ω−k)
m−1∑
j=1

f(ωk)jωkjp−j

+(f(ωk) − (1 − α)wk − αw−k)p0 =
(1 − α)(ωk − f(ωk))f(ωk)mωkmb∗

1

τm
1 (τ1 − f(ωk)ωk)

+
α(ω−k − f(ωk))f(ωk)mω−kmb∗

2

τm
2 (τ2 − f(ωk)ω−k)

, (29)

for k = 1, 2, . . . , N − 1. Hence we have N − 1 linear equations in the unknowns
p. We cannot use the equation for k = 0 since f(1) = 1 and the right-hand side
of (9) vanishes trivially in that case. Instead, we propose to use the equation
(1−α)U∗(1, 0)+αU∗(0, 1) = 1−λ1−λ2, which originates from the normalization
condition limz→1 U(z, z) = 1. For the approximate functions this yields

(1−α)
m−1∑
j=1

pj +α

m−1∑
j=1

p−j + p0 = 1−λ1 −λ2 − b∗
1

τm
1 (τ1 − 1)

− b∗
2

τm
2 (τ2 − 1)

. (30)

The system of equations (29), (30) constitute a system of linear equations,
i.e. we can write it as Ap = v. Unfortunately, the matrix A cannot be inverted
analytically. We want to remark that the matrix A is highly ill-conditioned for
large N (which is typical for polynomial fitting). Since the approximation of the
tail coefficients, i.e. (23) and (26) are more accurate for large N , there is an
obvious tradeoff. We need sufficient terms for accurately determining the partial
generating functions for lower order terms. Increasing the size however may lead
to numerical problems while the tail approximation is already accurate. There
are several heuristics to observe if the obtained solution is close to the real
solution. For example, one can

1. compare U∗(1, 0) with 1 − λ2
1−α ,

2. compare U∗(0, 1) with 1 − λ1
α ,

3. compare pm−1 with b∗
1

τm
1

, or

4. compare p−(m−1) with b∗
2

τm
2

.

6 Validation and Numerical Results

In the previous section we obtained an approximation for the functions U(z, 0)
and U(0, z). In this section we compare our approximation with simulation
results. To this end, we assume a Binomial arrival process for both customer
types, the pgf of the number of type-j arrivals taking the form

Aj(z) =
(

1 − λj

16
+

λj

16
z

)16

, j = 1, 2 . (31)
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Fig. 1 shows the partial probability mass functions Pr[u1 = k, u2 = 0], for k ∈
{0, 1, . . . , 9}, with λ1 = λ2 = 0.3. The figure shows the simulation results and the
results from the approximation method of Sect. 5 for the threshold values m = 3,
m = 6 and m = 10. These figures roughly justify the approximation method, at
least for this choice of parameters. The figures indicate that a greater threshold
value m does not necessarily leads to better results. In contrast, for m = 10 we
even get negative values for the coefficients. This is likely due to the numerical
instability, which increases for increasing m. By the choice of λ1 and λ2, type-1
and type-2 customers have the same arrival process. Hence, changing α to 1−α
will yield the same result, but with type-1 and type-2 customers interchanged.
Therefore we omitted the results for Pr[u1 = 0, u2 = k].
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Fig. 1. The partial pmf Pr[u1 = k, u2 = 0], k ∈ {0, . . . , 9}: comparison between simu-
lation and approximation method for various values of m (λ1 = λ2 = 0.3).

Next, we show the influence of varying λ2 on the approximation. In Figs. 2
and 3 we show the mean and the variance respectively of the total buffer occu-
pancy versus λ2, with λ1 = 0.3 and α = 0.5 kept fixed. Remark the constraint
λ2 < 1 − α, see also Sect. 2. The right most value of λ2 in Figs. 2 and 3 equals
λ2 = 0.46. As we can see from Fig. 2, the approximation method gives accurate
results for the mean total buffer occupancy. Remark that we did not need simula-
tion results to validate the mean total buffer occupancy, because the expectation
operator is linear and we have explicit expressions for the marginal pgfs. The
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variance of the total buffer occupancy is an example of a performance measure
that cannot be obtained analytically. As illustrated in Fig. 3, the approximation
of this performance measure is accurate w.r.t. simulation results. In the left sub-
figure of Fig. 3 (m = 3), we see that the approximation becomes worse when λ2

is closer to the stability border. Increasing the threshold value m seems to over-
come this problem, as shown in the right subfigure of Fig. 3 (m = 6). However
there is an upperbound for increasing m as shown in Fig. 4.
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Fig. 2. Mean value of the total number of customers (λ1 = 0.3 and α = 0.5).

The first subfigure in Fig. 4 shows the variance of the total buffer occupancy
for λ2 = 0.46, λ = 0.3 and α = 0.5, for increasing m. As we can see, the
approximation improves until m ≈ 12. We do however indicate that for large
values of m, the vector p contains some negative values. The second subfigure
in Fig. 4 shows the variance of the total buffer occupancy for λ2 = 0.48, i.e. even
closer to the stability bound. For visual reference, this point was not shown in
Fig. 3. Also, the approximation is bad in this particular case. We indicate that
even for m = 3, we already obtain a negative value in the vector p.

Finally, Fig. 5 shows the variance of the total buffer occupancy versus α, with
λ1 = λ2 = 0.3 kept fixed. The smallest and largest value of α that we used are
α = 0.34 and α = 0.66, respectively. The same remarks as above hold for Fig. 5
as well. Here we also observe that the shape of the exact curve of the variance
of the total buffer occupancy in terms of α is very well approximated by our
technique. More precisely, we observe a minimal variance for α = 0.5 and a
rapidly increasing variance for α close to the stability border.
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Fig. 3. Variance of the total number of customers (λ1 = 0.3 and α = 0.5).
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Fig. 4. Variance of the total number of customers versus threshold parameter m (λ1 =
0.3 and α = 0.5).
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Fig. 5. Variance of the total number of customers (λ1 = λ2 = 0.3).

The previous experiments in this section were also executed for Poisson and
Geometric arrivals. The results do not differ much (qualitatively) as for the
binomial arrival process. Particularly, we also see in these examples that our
approximation generally works well, except for values of the parameters close to
the stability bound.

We emphasize that for given threshold parameter m, the approximation
requires to apply Newton’s method m − 1 times and solve one linear system
of size 2m − 1. As we have shown, the best results are obtained when m is
small, say 3 < m < 14. As a consequence, the method is therefore very fast.
Except for heavy traffic regime, the method provides an accurate estimation of
the performance measures that cannot be computed analytically.

7 Conclusion

In this paper we proposed an approximation to the solution of a functional equa-
tion. The first contribution is the determination of the dominant singularity of
the unknown partial generating functions contained in the functional equation.
A second contribution is method to approximate the first coefficients of the func-
tions using the knowledge of this dominant singularity. The accuracy depends on
the system parameters. This method can be used as a fast method to compute
performance measures from the functional equation. In future, we will try to
refine the method in order to obtain more accurate results, especially for high
loads.
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Abstract. To study the effect of burstiness in arrival streams on the
congestion in queueing systems this paper presents a one-server queue-
ing model in a random environment in discrete time. The environment
can be in two states. The number of time slots between two consec-
utive transitions of the environment follows a geometric distribution
with a transition-dependent parameter. In every slot customers arrive
in batches, and the batch-size distribution depends on the environment.
Each customer requires a generally distributed service time. Arriving
customers are put in a queue which is served in FIFO order. Arrivals
have precedence over departures and departures have precedence over a
change of the environment. The generating functions of the number of
customers in the queue and the individual waiting time will be derived.
Numerical results will show the effect of the burstiness in the arrival
stream on the waiting-time and the queue-size distribution by calculat-
ing in parallel the corresponding results for the standard discrete-time
model with a mixed batch-size distribution, ceteris paribus.

Keywords: Discrete-time queue · Random environment ·
Generating functions

1 Introduction

Burstiness is a well-known and nasty phenomenon in the dynamics of complex
systems (see Goh and Baharabási [2] for a nice general introduction to the con-
cept of ‘burstiness’). E.g. in telecommunication systems the burstiness of the
incoming traffic leads to more congestion, visualized in longer queues and larger
waiting times, than in comparable non-bursty systems. To get a better insight
into burstiness, queueing theorists have studied systems with bursty traffic by
considering queueing models with ‘correlated input streams’ or enriched with
an exogenous ‘random environment process’. Yechiali and Naor [14] is one of
the first papers in which a queueing model in a random environment is con-
sidered. In this paper an M/M/1 queue is discussed of which both the arrival
rate and the service rate undergo Poissonian jumps. In van Hoorn and Seelen [5]
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an SPP/G/1 queue is studied, i.e. a single-server queue with a switched Pois-
son process as input process. For a much more recent paper we refer to Jiang
et al. [6] and the references therein. In Jiang et al. an M/G/1 queueing model
is discussed in a multi-phase random environment with disasters. These papers
are just three examples of the many studies on continuous-time queueing mod-
els enriched with an exogenously changing environment, i.e. the system non-
intermittently changes environment after an exponentially distributed time with
a parameter only depending on the actual environment state. A different way
to model burstiness in queueing systems can be found in Nain [9] who discusses
a discrete-time single-server queue fed by the number of active servers in an
M/G/∞ queue. This arrival stream to the discrete-time queue shows several
forms of dependencies and becomes more bursty as the tail of the service-time
distribution G of the input process becomes heavier. Other authors have studied
discrete-time queueing models with an on/off source for the arrival stream: in
the off-state there are no arrivals (see e.g. Zhou and Wang [15]). In Hashida
et al. [4] the authors study a discrete-time single-server queue with a switched
batch Bernoulli process (SBBP) as input process. They present a thorough anal-
ysis of the statistical characteristics of the SBBP, showing among others the
autocorrelation between the sizes of the subsequent arriving batches and they
derive the probability generating function of the queue size and the individual
waiting time of a customer. Also discrete-time models with Markov modulated
(batch) input or with working vacations (creating a non-exogenous randomly
changing environment) have been studied. We only mention Li and Liu [7] and
Li et al. [8] for two studies of discrete-time models with (working) vacations in
a random environment. A discrete-time model with Markov modulated (batch)
Bernoulli input has been studied in Tsuchiya and Takahashi [13], but contrary to
the other papers mentioned before, in this paper the buffer size is taken finite.
So, in this paper apart from the steady-state queue-size distribution also the
loss-probability is an important performance measure to be studied. As a side
remark we notice that often the steady-state distribution of the infinite-buffer
model can be used to approximate the loss probability of the equivalent finite-
buffer model (see e.g. Gouweleeuw and Tijms [3]), which is another motivation to
study infinite-buffer models, and specifically the discrete-time model discussed
in this paper.

After this short and necessarily incomplete overview we will sketch the main
objective of this paper. To get a deeper insight into burstiness, it is interesting to
compare numerically the performance measures (queue length, waiting time, et
cetera) of a bursty model with the same performance measures of the equivalent
non-bursty model, e.g. by taking the average arrival rate of the bursty model
as the constant arrival rate for the equivalent non-bursty model, ceteris paribus.
And that is exactly what we want to pursue in this paper. We take the discrete-
time single-server queue discussed in Bruneel [1] as a starting point and enrich
this model with a two-state exogenous environment process. Then we get a
discrete-time model similar to the model studied in Hashida et al. [4], but our
setup is slightly different (e.g. we work with Delayed Access (see below)), and
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for that reason we will give a complete steady-state analysis of this random
environment model from scratch. Due to the Delayed Access setup our analysis
becomes more complicated and we claim that this analysis has its own merits. In
Sect. 2 the description of this discrete-time single-server model will be presented
in full detail. Here we only give a short self-contained preview of our model.

As said, we will discuss a one-server queueing model in a random environment
in discrete time, i.e. time is counted only in slots. The environment can be in two
states, say green and orange. The environment switches, non-intermittently and
independently from any other event, from green to orange and vice versa. The
number of slots between two consecutive transitions of the environment follows
a geometric distribution with a transition-dependent parameter. In every slot a
generally distributed number (batch) of customers arrives, and the probability
distribution of the batch size depends on the actual state of the environment.
The different numbers of arrivals in consecutive slots are mutually independent.
Each customer requires a generally distributed service time, also counted in slots.
Customers arriving in a slot can start their service only at the beginning of the
next slot at the earliest (i.e. Delayed Access!). When upon arrival customers
find the server busy, they join a queue and wait for their service. When upon
arrival customers find the server idle, then one of the incoming customers (ran-
domly chosen) starts his service at the beginning of the next slot, whereas the
other incoming customers, if any, join the queue. The customers in the queue
are served in the order of arrival (within a batch in random order). Arrivals
have precedence over departures (the so-called Late Arrivals Setup), and depar-
tures have precedence over a change of the environment. We coin this model
as the discrete-time single server LAS-DA-RE model (Late Arrival System with
Delayed Access and a Random Environment).

To analyze this model we will derive the probability generating function
(p.g.f.) of the joint equilibrium distribution of the number of customers in the
queue, the residual service time of the customer in service, and the state of
the environment. From this p.g.f. several performance measures will be deduced,
like the average queue size, and using the discrete Fast Fourier Transform (FFT)
method the tail probabilities of the queue-size distribution. We refer to Tijms [12]
for a nice tutorial on the discrete FFT method. Also for the individual waiting
time of a customer we will derive the p.g.f. from which the average individual
waiting time and the tail probabilities (using the discrete FFT method again)
will be calculated.

In Sect. 3 we will present the full steady-state analysis from scratch. In Sect. 4
we discuss the steady-state distribution of the queue length, and in Sect. 5 the
individual waiting-time distribution of a customer. In Sect. 6 we will present some
numerical results which will illustrate the discrepancies between the LAS-DA-RE
model studied in this paper and the analogous results for the standard discrete-
time single-server model as discussed in Bruneel [1] (and here coined as the
standard LAS-DA model), by taking in this LAS-DA model the batch-size arrival
distribution equal to the mixture of the two different batch-size distributions
chosen for the numerical results of the LAS-DA-RE model. Our results show
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large differences between the results of the LAS-DA-RE model and the analogous
results of the standard LAS-DA model, which illustrate anew that in bursty-
traffic models the congestion should not be underestimated by using results from
non-bursty equivalent models by simply averaging the different arrival streams
of the bursty model.

2 Description of the Model

We consider a discrete-time queueing model with one server and an infinite
waiting space in a random environment. So, time is only counted in slots and in
every time slot the system finds itself in one of two possible environment states
(e-states), say green (0) or orange (1). When in a time slot the system is in e-state
i the environment changes to e-state 1 − i in the next slot with probability pi
and stays unaltered in the next slot with probability 1 − pi (i = 0, 1). In other
words, the system stays in e-state i a geometrically distributed number of slots
with parameter pi. For technical reasons we assume that p0 + p1 < 1. In every
time slot customers arrive in batches and the batch-size distribution depends on
the environment state. To be precise, let a

(i)
k be the probability that an arriving

batch consists of k customers, given that the system is in e-state i (k = 0, 1, . . .;
i = 0, 1). We introduce the p.g.f.’s

Ai(z) :=
∞∑

k=0

a
(i)
k zk.

All batch sizes are mutually independent. Arriving batches are put in a queue and
every customer is served individually by the single server in the order of arrival
(within the same batch in random order). Each individual customer requires a
generally distributed service time which is independent of the environment state.
Let bj be the probability that a customer requires j time slots for his service.
We introduce the p.g.f.

B(w) :=
∞∑

j=1

bjw
j .

All service times are mutually independent and the service times are also inde-
pendent of the batch sizes of the arriving customers. Because we discuss a
discrete-time system, it is crucial to establish the precedences among the dif-
ferent types of events which can take place in a time slot, i.e. a (batch-)arrival,
a service completion (departure) and/or a change in the environment. We have
chosen for the so-called Late Arrival Setup (LAS) with Delayed Access (DA), i.e.
arrivals have precedence over departures and an arriving customer can start his
service in the next time slot at the earliest. Further we postulate that departures
have precedence over a possible change in the environment. We coin this choice
for the precedence relations among the different types of events as LAS-DA-RE
setup, and in Fig. 1 these precedence relations are illustrated. In this figure we
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also show the observation point of the system: just after the (possible) start of a
service, but before any possible arrivals. For a more detailed description of the
discrete-time setup with late arrivals and delayed access (LAS-DA) we refer to
Nobel and Moreno [10]. Recall that after a departure which leaves the system
empty the server always stays idle for at least one slot due to LAS-DA setup
and this characteristic makes our model more complicated than the discrete-time
model discussed in Hashida et al. [4], which will become apparent in the steady-
state analysis below, which is also much more involved than the steady-state
analysis in Nobel and Moreno [10].

To analyze this discrete-time delay queueing model in a random environment,
we define a discrete-time Markov chain (DTMC) by observing the system at the
observation points k−, that is at the start of the time slots k just after, possibly,
a service of a customer has started, but before the arrivals during time slot k
have occurred (see again Fig. 1). We define the following random variables,

Ek = the environment state at time k−,

Hk = the residual service time of the ongoing service at time k−,

Qk = the number of customers in the queue at time k − .

We define Hk = 0 when at epoch k− the server is idle.

Fig. 1. Order of events taking place in the late arrival queueing system with delayed
access and a random environment (LAS-DA-RE).

Then, {(Ek,Hk, Qk) : k = 0, 1, 2, . . .} is an irreducible aperiodic DTMC
which is positive recurrent under the stability condition

� :=
p0A′

1(1) + p1A′
0(1)

p0 + p1
B′(1) < 1.
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Notice that � is just the offered load. We skip the formal proof that � < 1 is
the stability condition and just refer to Nobel and Moreno [10] where a similar
stability proof is spelled out in detail.

As said before, we want to study the steady-state behaviour of this DTMC.
Define the following limiting joint distribution,

πi(j, n) = lim
k→∞

IP(Ek = i;Hk = j;Qk = n),

i = 0, 1; j = 0, 1, 2, . . . ; n = 0, 1, 2, . . . ,

and introduce the partial two-dimensional generating functions,

Πi(w, z) =
∞∑

j=0

∞∑

n=0

πi(j, n)wjzn, i = 0, 1,

and the partial one-dimensional generating functions,

Πij(z) =
∞∑

n=0

πi(j, n)zn, i = 0, 1 j = 0, 1, 2, . . . .

Our first main goal is to find expressions for the two two-dimensional partial
p.g.f.’s Π0(w, z) and Π1(w, z). Once we have obtained these expressions we can
write down almost immediately the p.g.f. of the steady-state queue-length dis-
tribution (Sect. 4) and it is also rather easy to find the p.g.f. of the individual
waiting-time distribution using these expressions (Sect. 5).

3 The Joint Distribution of Queue Length, Residual
Service Time and Environment State

In this section we will derive expressions for the two (partial) joint probabil-
ity generating functions Πi(w, z) of the steady-state distribution of the DTMC
{(Ek,Hk, Qk) : k = 0, 1, 2, . . .}. To find the p.g.f. Πi(w, z) we write down the
following system of balance equations (i = 0, 1),

πi(0, 0) = (1 − pi)a
(i)
0 [πi(0, 0) + πi(1, 0)] + p1−ia

(1−i)
0 [π1−i(0, 0) + π1−i(1, 0)],

and for j = 1, 2, . . . ; n = 0, 1, 2, . . .

πi(j, n) = (1 − pi)
n∑

k=0

a
(i)
k πi(j + 1, n − k) + p1−i

n∑

k=0

a
(1−i)
k π1−i(j + 1, n − k)

+ bj

(
(1 − pi)

[
n+1∑

k=0

a
(i)
k πi(1, n + 1 − k) + a

(i)
n+1πi(0, 0)

]

+ p1−i

[
n+1∑

k=0

a
(1−i)
k π1−i(1, n + 1 − k) + a

(1−i)
n+1 π1−i(0, 0)

])
.
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By multiplying both sides with zn and summing over n we get

Πij(z) = (1 − pi)Ai(z)Πi,j+1(z) + p1−iA1−i(z)Π1−i,j+1(z)

+
bj
z

{
(1 − pi)

(
Ai(z)Πi1(z) − a

(i)
0 πi(1, 0)

+
[
Ai(z) − a

(i)
0

]
πi(0, 0)

)

+ p1−i

(
A1−i(z)Π1−i,1(z) − a

(1−i)
0 π1−i(1, 0)

+
[
A1−i(z) − a

(1−i)
0

]
π1−i(0, 0)

)}
.

We can get rid of the πi(1, 0) and the a
(i)
0 ,

Πij(z) = (1 − pi)Ai(z)Πi,j+1(z) + p1−iA1−i(z)Π1−i,j+1(z)

+
bj
z

{(1 − pi)Ai(z) [Πi1(z) + πi(0, 0)]

+ p1−iA1−i(z) [Π1−i,1(z) + π1−i(0, 0)] − πi(0, 0)} .

Multiplying by wj and summing over j = 1, 2, . . . gives after rearranging terms
two equations (i = 0, 1),

z [w − (1− pi)Ai(z)]Πi(w, z) = p1−izA1−i(z)Π1−i(w, z)

+ πi(0, 0) [(1− pi)Ai(z)(wB(w)− z) + w(z − B(w))]

+ π1−i(0, 0) [p1−iA1−i(z)(wB(w)− z)]

+ Πi1(z) [(1− pi)Ai(z)w(B(w)− z)]

+ Π1−i,1(z) [p1−iA1−i(z)w(B(w)− z)] . (1)

So, we have to specify four unknown quantities/functions:

– the probabilities π0(0, 0) and π1(0, 0) (we know of course that π0(0, 0) +
π1(0, 0) = 1 − �),

– the partial generating functions Π01(z) and Π11(z).

From the two Eq. (1) for Π0(w, z) and Π1(w, z) we get after eliminating Π1(w, z)

[(w − (1 − p0)A0(z))(w − (1 − p1)A1(z)) − p0p1A0(z)A1(z)] zΠ0(w, z)
= π0(0, 0)[w(w − (1 − p1)A1(z))(z − B(w))

+ A0(z)(wB(w) − z)((1 − p0)w − (1 − p0 − p1)A1(z))]
+ π1(0, 0)p1w(w − 1)A1(z)B(w)
+ Π01(z)wA0(z)(B(w) − z)((1 − p0)w − (1 − p0 − p1)A1(z))
+ Π11(z)p1w2A1(z)(B(w) − z). (2)

Notice that the first factor of the left-hand side is a quadratic expression in w.
So, consider the roots of the following quadratic equation

w2 − [(1 − p0)A0(z) + (1 − p1)A1(z)]w + (1 − p0 − p1)A0(z)A1(z) = 0.
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These are given by

w±(z) =
1
2

{
(1 − p0)A0(z) + (1 − p1)A1(z) ±

√
D(z)

}
,

where D(z) is the discriminant of this quadratic equation. So,

D(z) = (1 − p0)2A2
0(z) + (1 − p1)2A2

1(z) − 2(1 − p0 − p1 − p0p1)A0(z)A1(z).

Notice that it is easy to see that for all real z ∈ [0, 1]

D(z) ≥ (p0 + p1)2 (min {A0(z),A1(z)})2 > 0.

Hence, for all real z ∈ [0, 1] the roots w+(z) and w−(z) are different. Next,
choosing w = w+(z) or w = w−(z) the left-hand side in (2) vanishes, which
leads to two equations in the unknowns

π0(0, 0), π1(0, 0), Π01(z), Π11(z).

To enhance readability we introduce the following abbreviations

Li(w, z) := w(w − (1 − pi)Ai(z))(z − B(w))
+ A1−i(z)(wB(w) − z)((1 − p1−i)w − (1 − p0 − p1)Ai(z)),

Ki(w, z) := piw(w − 1)Ai(z)B(w),
Mi(w, z) := wA1−i(z)(B(w) − z)((1 − p1−i)w − (1 − p0 − p1)Ai(z)),
Ni(w, z) := piw

2Ai(z)(B(w) − z).

Plugging in w = w+(z) and w = w−(z), respectively in the right-hand side of
(2) and using the above notations we get the following two equations in z,

π0(0, 0)L1

(
w+(z), z

)
+ π1(0, 0)K1

(
w+(z), z

)

+ Π01(z)M1

(
w+(z), z

)
+ Π11(z)N1

(
w+(z), z

)
= 0, (3)

π0(0, 0)L1

(
w−(z), z

)
+ π1(0, 0)K1

(
w−(z), z

)

+ Π01(z)M1

(
w−(z), z

)
+ Π11(z)N1

(
w−(z), z

)
= 0. (4)

We emphasize that for real 0 ≤ z < 1 (z �= 1!) this is a system of two independent
linear equations, due the fact that (i) w+(z) �= w−(z), (ii) all the coefficients of
the four unknowns are non-zero for these z-values, and (iii) for all real z ∈ (0, 1)

L1(w+(z), z)
L1(w−(z), z)

,
K1(w+(z), z)
K1(w−(z), z)

,
M1(w+(z), z)
M1(w−(z), z)

�= N1(w+(z), z)
N1(w−(z), z)

.

Eliminating Π11(z) from (3) and (4) we get (z in w±(z) will be suppressed)

Π01(z) =

π0(0, 0) [L1 (w+, z) N1 (w−, z) − L1 (w−, z) N1 (w+, z)]
+

π1(0, 0) [K1 (w+, z) N1 (w−, z) − K1 (w−, z) N1 (w+, z)]
N1 (w+, z) M1 (w−, z) − N1 (w−, z) M1 (w+, z)

.
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Evaluating the denominator gives

N1

(
w+(z), z

) M1

(
w−(z), z

) − N1

(
w−(z), z

) M1

(
w+(z), z

)

= w+(z)w−(z)p1(1 − p0 − p1)A0(z)A2
1(z)

× [B (
w+(z)

) − z
] [B (

w−(z)
) − z

] (
w−(z) − w+(z)

)

= −p1(1 − p0 − p1)2A2
0(z)A3

1(z)
[B (

w+(z)
) − z

]

× [B (
w−(z)

) − z
]√

D(z). (5)

Evaluating the two terms in the numerator gives (argument z in w±(z) sup-
pressed again)

L1

(
w+, z

)N1

(
w−, z

) − L1

(
w−, z

)N1

(
w+, z

)

= p1A2
1(z)w

+w− {B (
w+

)B (
w−) (

w+ − w−)
((1− p0 − p1)A0(z)− (1− p1))

+ z
[
(1− p0 − p1)A0(z)(1− (1− p0)A0(z))

[B (
w+

) − B (
w−)]

+ (1− p1 − (1− p0 − p1)A0(z))
[
w+B (

w−) − w−B (
w+

)]]}
,

and

K1

(
w+, z

) N1

(
w−, z

) − K1

(
w−, z

) N1

(
w+, z

)

= p21A2
1(z)w+w− {B (

w+
) B (

w−) (
w+ − w−)

+ z
[
w+

(
w− − 1

) B (
w−) − w− (

w+ − 1
) B (

w+
)]}

. (6)

Taking everything together gives after cancelation of the common factor

p1(1 − p0 − p1)A0(z)A3
1(z)

in the numerator and the denominator,

Π01(z) =
⎡

⎣
B (

w+
)B (

w−) (
w+ − w−)

((1− p0 − p1)A0(z)− (1− p1))
+ z

{
(1− p0 − p1)A0(z)(1− (1− p0)A0(z))

[B (
w+

) − B (
w−)]

+(1− p1 − (1− p0 − p1)A0(z))
[
w+B (

w−) − w−B (
w+

)]}

⎤

⎦ π0(0, 0)

+

[
p1

{B (
w+

)B (
w−) (

w+ − w−)

+z
[
w+

(
w− − 1

)B (
w−) − w− (

w+ − 1
)B (

w+
)]}

]
π1(0, 0)

−(1− p0 − p1)A0(z)
[B (

w+(z)
) − z

] [B (
w−(z)

) − z
] √D(z)

. (7)

Next, we can make the following observations (for all straightforward
calculus-type proofs we refer to Rondaij [11])

– w+(1) = 1 and w−(1) = 1 − p0 − p1.
– For z = 1 both the numerator and the denominator vanish.
– Both w+(0) and w−(0) are positive. [We have assumed 1 − p0 − p1 > 0!]
– The denominator is negative for z = 0.
– The factor [B (w+(z)) − z] is positive on the real interval (0, 1).
– The factor [B (w−(z)) − z] is positive for z = 0 and negative for z = 1.
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Hence, the denominator has a unique zero in the real interval (0, 1), because
D(z) > 0 for z ∈ [0, 1] and this zero is the unique solution in (0, 1) (for a
detailed proof see Rondaij [11] again), say z = z•, of the equation

B (
w−(z)

) − z = 0.

So, for z = z• also the numerator must vanish. Plugging in z = z• in the
numerator of (7) gives after some simplifications

{
z• (B (

w+(z•)
) − z•) (

1 − w−(z•)
)

× [
(1 − p0 − p1)A0(z•) − (1 − p1)w+ (z•)

]}
π0(0, 0)

+
{
p1z

•w+(z•)
(
1 − w−(z•)

) (B (
w+(z•)

) − z•)} π1(0, 0).

So, we get the following equation for the unknown probabilities π0(0, 0) and
π1(0, 0),

[
(1 − p0 − p1)A0 (z•) − (1 − p1)w+ (z•)

]
π0(0, 0) + p1w

+ (z•) π1(0, 0) = 0. (8)

Notice that because for all z ∈ (0, 1) we have

w+(z) > max {(1 − p0)A0(z), (1 − p1)A1(z)} ,

the coefficient of π0(0, 0) in (8) is negative! From (8) we get

π1(0, 0) =
(1 − p1)w+ (z•) − (1 − p0 − p1)A0 (z•)

p1w+ (z•)
π0(0, 0),

and using

π0(0, 0) + π1(0, 0) = 1 − �

we find

π0(0, 0) = (1 − �)
p1w

+ (z•)
w+ (z•) − (1 − p0 − p1)A0 (z•)

π1(0, 0) = (1 − �)
(1 − p1)w+ (z•) − (1 − p0 − p1)A0 (z•)

w+ (z•) − (1 − p0 − p1)A0 (z•)
,

where

w+ (z•) =
1
2

{
(1 − p0)A0 (z•) + (1 − p1)A1 (z•) +

√
D (z•)

}
,

with D (z•) = [(1 − p0)A0 (z•) − (1 − p1)A1 (z•)]2 + 4p0p1.
Due to the fact that all formulae are symmetric with respect to the

environment-index i = 0, 1 we have the alternative expressions

π1(0, 0) = (1 − �)
p0w

+ (z•)
w+ (z•) − (1 − p0 − p1)A1 (z•)

π0(0, 0) = (1 − �)
(1 − p0)w+ (z•) − (1 − p0 − p1)A1 (z•)

w+ (z•) − (1 − p0 − p1)A1 (z•)
,
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which can also be easily checked algebraically using the elementary facts

w+(z) + w−(z) = (1 − p0)A0(z) + (1 − p1)A(z),
w+(z)w−(z) = (1 − p0 − p1)A0(z)A1(z).

By interchanging the environment-index i in (7) throughout we immediately find

Π11(z) =
⎡

⎣
B (

w+
)B (

w−) (
w+ − w−)

((1− p0 − p1)A1(z)− (1− p0))
+z

{
(1− p0 − p1)A1(z)(1− (1− p1)A1(z))

[B (
w+

) − B (
w−)]

+(1− p0 − (1− p0 − p1)A1(z))
[
w+B (

w−) − w−B (
w+

)]}

⎤

⎦ π1(0, 0)

+

[
p0

{B (
w+

)B (
w−) (

w+ − w−)

+z
[
w+

(
w− − 1

)B (
w−) − w− (

w+ − 1
)B (

w+
)]}

]
π0(0, 0)

−(1− p0 − p1)A1(z)
[B (

w+(z)
) − z

] [B (
w−(z)

) − z
] √D(z)

. (9)

Once we have found the probabilities π0(0, 0) and π1(0, 0) and the partial
generating functions Π01(z) and Π11(z) we get from (2)

Π0(w, z) =
π0(0, 0)[w(w − (1 − p1)A1(z))(z − B(w))

+A0(z)(wB(w) − z)((1 − p0)w − (1 − p0 − p1)A1(z))]
+π1(0, 0)p1w(w − 1)A1(z)B(w)

+Π01(z)wA0(z)(B(w) − z)((1 − p0)w − (1 − p0 − p1)A1(z))
+Π11(z)p1w2A1(z)(B(w) − z)

[(w − (1 − p0)A0(z))(w − (1 − p1)A1(z)) − p0p1A0(z)A1(z)] z
,

and a completely similar formula for Π1(w, z) by interchanging the environment-
index from 0 to 1 and vice versa throughout the expression above.

4 The Queue-Length Distribution

Using the explicit expressions for the two-dimensional p.g.f.’s Π0(w, z) and
Π1(w, z) we immediately get the p.g.f. Q(z) of the queue-length distribution,

Q(z) = Π0(1, z) + Π1(1, z).

So, using the results of the previous section we find

Q(z) =
1 − z

[(1 − (1 − p0)A0(z))(1 − (1 − p1)A1(z)) − p0p1A0(z)A1(z)] z

×

⎛
⎜⎜⎝

π0(0, 0)[A0(z)(1 − p0 − (1 − p0 − p1)A1(z)) − (1 − (1 − p1)A1(z))]
+ π1(0, 0)[A1(z)(1 − p1 − (1 − p0 − p1)A0(z)) − (1 − (1 − p0)A0(z))]
+ Π01(z)A0(z)(1 − (1 − p0 − p1)A1(z))
+ Π11(z)A1(z)(1 − (1 − p0 − p1)A0(z))

⎞
⎟⎟⎠ .
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Due to the complexity of this expression, we will not differentiate the
p.g.f. Q(z) to derive e.g. the long-run average queue length, say Q, by setting
Q = Q′(1). Instead we will use the discrete FFT method to calculate the tail
probabilities IP(Q > n) from the p.g.f. Q(z), where Q stands for an artefact ran-
dom variable having the steady-state queue-length distribution. Subsequently,
we get the long-run average queue length using the well-known formula

Q = IE[Q] =
∞∑

n=0

IP(Q > n).

Of course, to get numerical results we can only use a finite number of terms in
this series. See Sect. 6 for more details.

5 The Individual Waiting-Time Distribution

In this section we will derive the p.g.f. W(z) of the steady-state individual waiting
time, say W , of a tagged customer. So,

W(z) :=
∞∑

r=0

IP{W = r}zr.

Let

γ(i)
m (j, n) = the probability that a tagged customer occupies the

(m + 1)-th position in his batch and arrives in e-state i,

finds a residual time of j slots of the ongoing service,
and n customers waiting in queue.

Standard ergodicity arguments give

γ(i)
m (j, n) =

p0 + p1
p0A′

1(1) + p1A′
0(1)

∑

k>m

a
(i)
k πi(j, n).

Remark that for the waiting time of an individual customer we do not count the
slot in which the customer arrives, although we use the setup of Delayed Access.

Take r = 0, 1, 2, . . .. Then we have (an empty sum is zero w.p. 1)

IP{W = r} =
r∑

m=0

r−m+1∑

j=1

1∑

i=0

r−m+1−j∑

n=0

IP

{
n+m∑

k=1

Bk = r − j + 1

}
γ(i)
m (j, n)

+
r∑

m=0

1∑

i=0

IP

{
m∑

k=1

Bk = r

}
γ(i)
m (0, 0).
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In the usual way we find the p.g.f.

W(z) =
∞∑

r=0

IP(W = r)zr =
p0 + p1

p0A′
1(1) + p1A′

0(1)

×
{

1 − A0(B(z))
1 − B(z)

[
Π0(z,B(z)) − π0(0, 0)

z
+ π0(0, 0)

]

+
1 − A1(B(z))

1 − B(z)

[
Π1(z,B(z)) − π1(0, 0)

z
+ π1(0, 0)

]}
.

As for the long-run average queue length, also for the long-run average individual
waiting time, say W we will not differentiate the p.g.f. W(z), but use the tail
probabilities IP(W > r) instead, which will be calculated using the discrete FFT
method again. See Sect. 6 for further details.

6 Numerical Results: Comparisons Between the Random
Environment Model and the Standard LAS-DA Model

In this section we want to compare numerical results of the random environment
LAS-DA-RE model with the analogous results for the standard LAS-DA model
with a mixed batch-size distribution, ceteris paribus. So, we begin with a short
overview of results for the standard model.

6.1 Queue-Size and Waiting-Time Distribution for the Standard
LAS-DA Model

In case there is no change in the environment [so only one batch-size distribution
A(z), ceteris paribus] we have the following well-known results (see e.g. Bruneel
[1] or Rondaij [11])

Q(z) = (1 − A′(1)B′(1))
1 − z

B(A(z)) − z
,

Q = Q′(1) =
A′′(1)B′(1) + [A′(1)]2B′′(1)

2[1 − A′(1)B′(1)]
,

W(z) =
[
Π(z,B(z)) − π(0, 0)

z
+ π(0, 0)

]
1 − A(B(z))

A′(1)(1 − B(z))
,

W = W ′(1) =
A′′(1)B′(1) + [A′(1)]2B′′(1)

2A′(1)[1 − A′(1)B′(1)]
.

Notice Little’s Law : Q = A′(1)W .
To compare our numerical results for the random environment LAS-DA-RE

model with the equivalent results for the standard LAS-DA model we take the
p.g.f. of the batch-size distribution in the standard LAS-DA model equal to

A(z) :=
p0A1(z) + p1A0(z)

p0 + p1
,



A Discrete-Time Queueing Model in a Random Environment 343

Then we have for this model

Q =
(p0 + p1)[p1A′′

0 (1) + p0A′′
1 (1)]B′(1) + [p1A′

0(1) + p0A′
1(1)]2B′′(1)

2(p0 + p1){p0 + p1 − [p1A′
0(1) + p0A′

1(1)]B′(1)} ,

and

W =
(p0 + p1)[p1A′′

0 (1) + p0A′′
1 (1)]B′(1) + [p1A′

0(1) + p0A′
1(1)]2B′′(1)

2[p1A′
0(1) + p0A′

1(1)]{p0 + p1 − [p1A′
0(1) + p0A′

1(1)]B′(1)} .

6.2 How to Calculate the Performance Measures for the Random
Environment LAS-DA-RE Model?

As said before, differentiating the p.g.f.’s Q(z) and W(z) is too cumbersome,
so we use the discrete Fast Fourier Transform [FFT] method to calculate the
long-run average mean queue length Q and the long-run average mean individual
waiting time W as follows (see Tijms [12] for more details on the discrete FFT
method)

– use the discrete FFT method to calculate the tail probabilities IP(Q > n) and
IP(W > r) for n, r = 0, 1, 2, . . . , 215 − 1,

– calculate subsequently Q =
∑

n>0 IP(Q > n) and W =
∑

r>0 IP(W > r),
– finally, we checked the quality of the numerical results by using Little’s Law.

6.3 Comparison of the Numerical Results

In our first examples we take the offered load

� =
p0A′

1(1) + p1A′
0(1)

p0 + p1
B′(1) = 0.96, p0 = 0.9, p1 = 0.05, B′(1) = 3

and so the overall mean batch size

p0A′
1(1) + p1A′

0(1)
p0 + p1

= 0.32.

We want to compare results for the mean queue length Q and the mean waiting
time W between the standard LAS-DA model with a mixed batch-size distribu-
tion and the random environment LAS-DA-RE model.

We vary A′
0(1) and A′

1(1) keeping A′(1) = 0.32, p0 = 0.9, p1 = 0.05, constant
for the moment. In e-state 0 we choose a Poisson distribution for the batch size
and in e-state 1 the batch size follows a geometric distribution (shifted to zero).
In Table 1 we show the mean queue lengths and the mean waiting times for
both models for several choices of A′

0(1) and A′
1(1). We see that the differences

between the standard model and the random environment model become more
apparent as the gap between the two mean batch sizes increases. In Figs. 2 and
3 we show the tail probabilities of the queue length for the standard model and
the random environment model, respectively. Notice the fatter tails in Figs. 3.
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Fig. 2. Tail probabilities of the queue length for the standard LAS-DA model with
mixed batch-size distribution: poisson, geometric.

Fig. 3. Tail probabilities of the queue length for the random environment LAS-DA-RE
model: poisson, geometric.

In Figs. 4 and 5 we show the tail probabilities of the waiting time, and again the
fatter tails can be seen in Fig. 5.

In Table 2 and the Figs. 6, 7, 8 and 9 we present the analogous results for the
case that in e-state 0 the batch-size is taken two-point 0 or 8 and the batch-size
distribution in e-state 1 is kept unchanged, i.e. Poisson.

All these results clearly illustrate the phenomenon that in the random envi-
ronment LAS-DA-RE model the performance measures (means and tail proba-
bilities) are significantly larger than the equivalent performance measures in the
standard LAS-DA model. For more numerical results we refer to Rondaij [11].
Finally, we remark that many of the numerical results have been checked by
simulations.
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Fig. 4. Tail probabilities of the waiting-time for the standard LAS-DA model with
mixed batch-size distribution: poisson, geometric.

Fig. 5. Tail probabilities of the waiting-time for the random environment LAS-DA-RE
model: poisson, geometric.

Table 1. Batch size distributions are poisson and geometric for environment 0 and 1,
respectively. Furthermore, p0 = 0.9, p1 = 0.05. Overall mean batch size is 0.32. Service
time follows a constant distribution with mean 3.

Mean queue length Mean waiting-time

Random env. Mixed standard Random env. Mixed standard

A′
0(1) = 6,A′

1(1) = 0.0044 85.7926 78.7340 268.1017 246.0439

A′
0(1) = 5,A′

1(1) = 0.060 62.0675 57.2779 193.9608 178.9934

A′
0(1) = 3,A′

1(1) = 0.1711 29.0912 27.5235 90.9101 86.0110

A′
0(1) = 2,A′

1(1) = 0.2267 19.8401 19.2253 62.0004 60.0789

A′
0(1) = 0.32,A′

1(1) = 0.32 15.1579 15.1579 47.3684 47.3684
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Fig. 6. Tail probabilities of the queue length for the standard LAS-DA model with
mixed batch-size distribution: two-point, geometric.

Fig. 7. Tail probabilities of the queue length for the random environment LAS-DA-RE
model: two-point, geometric.

Table 2. Batch size distributions are two-point and Geometric for environment 0 and
1, respectively. Furthermore, p0 = 0.9, p1 = 0.05. Overall mean batch size is 0.32.
Service time follows a constant distribution with mean 3.

Mean queue length Mean waiting-time

Random env. Mixed standard Random env. Mixed standard

A′
0(1) = 6,A′

1(1) = 0.0044 97.6388 90.5761 305.1212 283.0504

A′
0(1) = 5,A′

1(1) = 0.060 81.8097 77.0147 255.6552 240.6711

A′
0(1) = 3,A′

1(1) = 0.1711 52.7807 51.2077 164.9397 160.0241

A′
0(1) = 2,A′

1(1) = 0.2267 39.5807 38.9621 123.6896 121.7566

A′
0(1) = 0.32,A′

1(1) = 0.32 19.3768 19.3768 60.5526 60.5526
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Fig. 8. Tail probabilities of the waiting-time for the standard LAS-DA model with
mixed batch-size distribution: two-point, geometric.

Fig. 9. Tail probabilities of the waiting-time for the random environment LAS-DA-RE
model: two-point, geometric.

7 Conclusions

For the random environment LAS-DA-RE model explicit expressions have been
derived for the p.g.f. Q(z) of the steady-state queue-length distribution, and for
the p.g.f. W(z) of the steady-state waiting-time distribution of an individual
customer. Using the discrete FFT method the tail probabilities IP(Q > n) and
IP(W > m) have been calculated, and using these tail probabilities approximate
values for the mean queue length Q and the mean individual waiting time W
have been presented. We compared the numerical results of the standard LAS-
DA model with a mixed batch-size distribution with the numerical results of the
random environment LAS-DA-RE model. Especially in case the mean batch sizes
are very different for the two e-states in the LAS-DA-RE model the discrepancy
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between the standard model and the random environment model is significant.
Hence, a detailed analysis of the random environment LAS-DA-RE model is
required to get a correct insight into the idiosyncracies of this model. To use the
equivalent results of the standard model with a mixed batch-size distribution as
an approximation is far from being acceptable.
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Abstract. Nowadays, Parcel Delivery Service (PDS) has become popu-
lar due to the popularization of Electric Commerce (EC). The redelivery
problem has also become serious due to the absence of receivers and the
courier must deliver again at a later time. The increase in the number of
redeliveries causes social losses such as extra workload of delivery, carbon
dioxide emissions and so on. To improve this problem, Japanese govern-
ment recommends the utilization of the parcel locker which is expected
to reduce the number of redeliveries. While some empirical researches
reveal the effectiveness of the parcel locker, quantitative evaluation using
stochastic models has not been carried out yet. In this paper, we model
the PDS including the parcel locker service as a queueing model and
analyze it using a Quasi-Birth-and-Death (QBD) process. Furthermore,
we derive the stability condition which must be satisfied to ensure the
proper service and we derive some performance measures such as block-
ing probability, the mean number of parcels in queues. Our numerical
experiments show the influence of the collaborative behavior of users on
the efficiency of the system.

Keywords: Parcel Delivery Service (PDS) ·
Parcel locker · Quasi-Birth-and-Death (QBD) process

1 Introduction

Nowadays, many people use the Parcel Delivery Service (PDS) in Japan because
of the expansion of e-commerce business. According to MLIT (Ministry of Land,
Infrastructure, Transport and Tourism, Japan), the handling number of home
delivery parcels in Japan nearly approached 4.25 billion items in FY2017 of
Japan [1]. On the other hand, redelivery due to the absence of receivers has
become a serious social problem. The number of redeliveries increases with the
number of delivery parcels. Redelivery causes some social losses such as extra
workload of delivery, carbon dioxide emissions, and so on. According to MLIT,
about 20% of parcels are being redelivered. In order to deal with the problem,
c© Springer Nature Switzerland AG 2019
T. Phung-Duc et al. (Eds.): QTNA 2019, LNCS 11688, pp. 351–368, 2019.
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MLIT advocates the utilization of the parcel locker as a way of receipt of parcels.
Parcel locker is the facility which enables us to receive parcels 24 hours a day.
The parcel locker is located in various places and receivers could choose the most
convenient one when using the service. To evaluate the parcel locker service,
some studies are conducted. Focusing on the configuration of the parcel locker,
Iwan et al. [2] assess the parcel locker as one of the solutions for the last mile
delivery in Szczecin, Poland. Lachapelle et al. [3] evaluate the place and regional
location characteristics of parcel lockers in five South East Queensland (SEQ)
cities, Australia. From these results, the parcel locker can be considered as an
effective solution for the redelivery problem.

On the other hand, these studies have not paid attention to the fact that
the number of parcels in the parcel locker changes with time. Actually, since the
size of the parcel locker is limited, services cannot be used if the parcel locker is
already full. This is commonly referred to as blocking and we call the probability
that it occurs the blocking probability. It is worth analyzing how often blocking
occurs.

From these backgrounds, our research focuses on the dynamic analysis using
queueing theory for PDS including the parcel locker. Queueing theory is one of
effective and famous methods for analyzing systems with dynamic changes and it
is applied to modeling service systems in various fields including transportation
[4,5]. In our queueing model, the parcels which fail to home delivery because of
the receiver’s absence will be stored in the parcel locker under certain conditions.
Such a system can be expressed by a queueing model with feedback for which
several related studies are available [6,7].

The structure of this paper is organized as follows. In Sect. 2, PDS including
the parcel locker is modeled by a feed-back queue which is analyzed using a
Quasi-Birth-and-Death process. In Sect. 3, we present the analysis of the model
and derive the stability condition and some performance measures. In Sect. 4,
we conduct numerical experiments on the stability condition and performance
measures obtained in Sect. 3. Finally, in Sect. 5, we conclude this paper and
discuss future works.

2 Modelling

In this section, we describe the system of PDS including the parcel locker and
model as a queueing model, and formulate it as a Quasi-Birth-and-Death (QBD)
process. There are various kinds of actual courier services, but here we consider
the PDS including the parcel locker as shown in Fig. 1 and propose two slightly
different queueing systems, System 1 and System 2. System 1 considers losses
and System 2 does not take the loss into consideration. We will describe details
of each system.
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2.1 Parcel Delivery Service

System 1. We define the system of PDS including the parcel locker with some
assumptions as System 1. In this study, it is assumed that the courier has two
delivery methods: delivery by truck and delivery by the parcel locker. In the case
of delivery by truck, the courier goes to the receiver’s home by truck. On the
other hand, in the case of delivery by the parcel locker, the courier stores the
parcel in the locker, then the receiver will go to collect the parcel.

Fig. 1. PDS including the parcel locker.

First of all, we describe the arrival of parcels for delivery to the courier’s
office. In this system, there are two types of parcels to arrive and we will call
them as Parcel A and Parcel B, respectively. Parcel A is the parcel that the
receiver wishes to be delivered by delivery truck. Parcel A arrives at the office
according to a Poisson process with rate (1−r)λ. On the other hand, Parcel B is
the parcel that the receiver wishes to be delivered by the parcel locker. Parcel B
arrives at the office according to a Poisson process with rate rλ. Then, it should
be noted that the combined arrival rate of Parcel A and Parcel B is λ. The office
prepares two kinds of queues: a queue of parcels for delivery truck and a queue
of parcels for the parcel locker. The former has infinite size and the latter has
finite size. Parcel A is always allotted to the queue of parcels for delivery truck.
Parcel B is allocated to the queue of parcels for the parcel locker if there is room
in the queue. However, if the queue is full, it is handled as a loss and handled
out of the system. In practice, it means that the parcel is not delivered by the
truck again, but by another method not presented here.

Next, we describe the queue of parcels for delivery truck. Parcels in the queue
are loaded to the delivery truck in order of arrivals and delivered one by one to
each receiver’s home. However, in this paper, we will not consider the number of
parcels that can be loaded in the delivery truck and the loading time, and the
office owns just one delivery truck. The time it takes for the delivery truck to
move to the next delivery destination follows the exponential distribution with
rate μ1. When the courier arrives at the receiver’s home, the courier succeeds
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in delivery with probability p which means that they handed over a parcel to
the receiver. On the other hand, the courier fails in delivery with probability
1 − p which means that the courier could not hand over a parcel to the receiver
because of the receiver’s absence. At that time, if there is still room in the queue
of parcels for the parcel locker, they go to the locker before returning to the office
and they distribute the parcel to the queue. However, if there is no vacancy, they
bring the parcel back to the office. In fact, there is a time lag between delivery
failure and the placement of the parcel at the locker. However, in this study, we
assume that this time lag is negligible if μ1 >> μ2 (μ2 will be described later).
From the above, this queue can be seen as a single server queue with infinite
waiting room. It should be noted that the parcel in service refers to the parcel to
the next delivery destination and the waiting parcel refers to the parcel waiting
for delivery within the delivery truck or the office. We define N1(t) as the number
of parcels in the queue at time t ≥ 0.

Finally, we describe the queue of parcels at the locker. The parcel locker
is located within the delivery area of the office and we do not consider the
movement time from the office to the parcel locker. We assume that the parcel
locker can store up to c parcels at the same time. This queue is prepared on
the side of the parcel locker, and parcels in the queue are stored in order of
arrivals. Here, we define the queue as that the number of servers is c and the
size of waiting room is K − c (K ≥ c). Parcels stored in the parcel locker are
collected independently by receivers, and the time until collection of each parcel
follows the exponential distribution with rate μ2. We define N2(t) as the number
of parcels in the queue at time t ≥ 0.

Based on these assumptions, the queueing model diagram of System 1 can
be represented as shown in Fig. 2. Also, the parameters appearing above are
summarized in Table 1.

Fig. 2. The queueing model of System 1.

System 2. Next, we also describe System 2. System 2 has the same properties
as System 1 except for one point described below. In System 1, Parcel B arriving
when the queue of parcels for the parcel locker is full is treated as loss. However,
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in System 2, loss should be avoided by distributing it to the queue of parcel
for the delivery truck. Thus the queueing model diagram of System 2 can be
represented as shown in Fig. 3.

Fig. 3. The queueing model of System 2.

Table 1. The list of parameters.

Parameters Definitions

λ The arrival rate of parcels

r The probability of the parcel locker service

μ1 The service rate of delivery truck

μ2 The service rate of the parcel locker

p The success probability of home delivery

c The number of service windows of the parcel locker service

K The buffer size of the parcel locker service

2.2 Markov Chain

System 1. We modeled the PDS including the parcel locker in Sect. 2.1. Now
we define S as follows.

S = {(i, j) | i ∈ I, j ∈ J},

where,

I = {0, 1, 2, . . .}, J = {0, 1, 2, . . . ,K}.

Then, it is clear that {(N1(t), N2(t)) | t ≥ 0} forms a Continuous-Time Markov
Chain (CTMC) in the state space S. Furthermore, in a jump, the value of N1(t)
changes at most 1, {(N1(t), N2(t)) | t ≥ 0} forms a Quasi-Birth-and-Death
(QBD) process. Moreover, we separate S as follows.
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S =
∞⋃

k=0

Lk,

where,

Lk := {(i, j) | i = k, j ∈ J} (k ∈ I).

Then, the infinitesimal generator Q of {(N1(t), N2(t)) | t ≥ 0} is given as follows.

Q =

⎛
⎜⎜⎜⎜⎜⎝

L0 L1 L2 L3 · · ·
L0 B0 A1 O O · · ·
L1 A−1 A0 A1 O · · ·
L2 O A−1 A0 A1 · · ·
L3 O O A−1 A0 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

,

where,

B0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · c · · · K − 1 K

0 −λ rλ · · · 0 · · · 0 0

1 μ2 −(μ2 + λ)
. . . 0

. . . 0 0

.

.

.
.
.
.

. . .
. . .

. . .
. . .

. . .
.
.
.

c − 1 0 0
. . . rλ

. . . 0 0

c 0 0
. . . −(cμ2 + λ)

. . . 0 0

c + 1 0 0
. . . cμ2

. . . 0 0

.

.

.
.
.
.

. . .
. . .

. . .
. . .

. . .
.
.
.

K − 1 0 0
. . . 0

. . . −(cμ2 + λ) rλ

K 0 0 · · · 0 · · · cμ2 − {cμ2 + (1 − r)λ}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · K − 1 K

0 pμ1 (1 − p)μ1 · · · 0 0

1 0 pμ1

. . . 0 0

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

K − 1 0 0
. . . pμ1 (1 − p)μ1

K 0 0 · · · 0 pμ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A0 = B0 −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · K − 1 K

0 μ1 0 · · · 0 0

1 0 μ1

. . . 0 0

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

K − 1 0 0
. . . μ1 0

K 0 0 · · · 0 pμ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · K − 1 K

0 (1 − r)λ 0 · · · 0 0

1 0 (1 − r)λ
. . . 0 0

.

.

.
.
.
.

. . .
. . .

. . .
.
.
.

K − 1 0 0
. . . (1 − r)λ 0

K 0 0 · · · 0 (1 − r)λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and O is the zero matrix with an appropriate dimension.

System 2. System 2 can be formulated in the same way as System 1 by replacing
the (K,K) element of B0 with −(cμ2 + λ) and the (K,K) element of A1 with
λ. These changes are due to the fact that parcels handled as losses in System 1
are allocated to the queue of parcels for delivery truck in System 2.

3 Analysis

In this section, we present the analysis of our model. We derive the stability
condition, the stationary distribution and performance measures. Because the
analysis of both systems is the same, we present the same description and indi-
cate the difference when necessary.

3.1 Stability Condition

We derive the stability condition which must be satisfied to have the stationary
distribution. We consider the column vector η which satisfies (1) as follows.

ηA = 0, ηe = 1, (1)

where,

A = A−1 + A0 + A1.

Then, let 0 and e denote the row vector which all elements are 0 with an appro-
priate dimension and the column vector which all elements are 1 with an appro-
priate dimension, respectively. In this study, we obtain η as follows.

η =
(
η0, η0ρ, η0

ρ2

2! , · · · , η0
ρc

c! , η0
ρc

c!

(
ρ
c

)
, · · · , η0

ρc

c!

(
ρ
c

)K−c )
,

where,

η0 =
1

∑c
k=0

ρk

k! + ρc

c!

∑K−c
k=1

(
ρ
c

)k
, ρ =

(1 − p)μ1 + rλ

μ2
.

It should be noted that η corresponds to the stationary distribution of M/M/c/K
queues which the arrival rate is (1−p)μ1+rλ and the service rate is μ2. According
to Takine [8], QBD’s stability condition is given as follows.

ηA1e − ηA−1e < 0. (2)
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Symplifying (2), we can obtain the stability condition of each system. In this
study, the stability condition of System 1 is (3) and the stability condition of
System 2 is (4).

(1 − r)λ + {(1 − p)μ1}
ρc

c!

(
ρ
c

)K−c

∑c
k=0

ρk

k! + ρc

c!

∑K−c
k=1

(
ρ
c

)k
< μ1, (3)

(1 − r)λ + {rλ + (1 − p)μ1}
ρc

c!

(
ρ
c

)K−c

∑c
k=0

ρk

k! + ρc

c!

∑K−c
k=1

(
ρ
c

)k
< μ1. (4)

These stability conditions mean the conditions for the queue of parcels for deliv-
ery truck does not diverge within each system. In both (3) and (4), the first term
on the left side represents the arrival rate of Parcel A and the second term on
the left side expresses the arrival rate of parcels which are blocked by the queue
for parcel locker. The sum of these arrival rates should not exceed the service
rate of the delivery truck.

3.2 Stationary State Probability

Since our Markov chains are irreducible, the stationary distribution exists under
the stability condition. Then, stationary state probability πi,j is defined as
follows.

πi,j = lim
t→∞ P {N1(t) = i,N2(t) = j} .

Moreover, we define πi and π as follows.

πi =
(
πi,0, πi,1, πi,2, · · · , πi,K

)
, (i ∈ I),

π =
(
π0, π1, π2, · · · ) .

From the property of Markov chain, π is the unique solution of the following
equations.

πQ = 0, (5)
πe = 1. (6)

These equations are obtained by the global balance equations and the normal-
ization condition. Equation (5) is rewritten as follows.

π0B0 + π1A−1 = 0, (7)
πk−1A1 + πkA0 + πk+1A−1 = 0, k = 1, 2, . . . . (8)

From Takine [8], we obtain the solution for πi,j as follows.

πk = π1Rk−1, k = 1, 2, . . . , (9)
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where R is the minimal nonnegative solution of (10).

A1 + RA0 + R2A−1 = 0. (10)

Matrix R is numerically computed using the method in Takine [8]. Moreover,
we also obtain (11) if stability condition is satisfied.

∞∑

k=1

πke = π1(I − R)−1e < ∞, (11)

where I is an identity matrix with an appropriate dimension. Next, we will
derive π0 and π1. From (7) and (8) with k = 1, we obtain the matrix equation
as follows.

(
π0, π1

)(
B0 A1

A−1 A0 + RA−1

)
=

(
0, 0

)
. (12)

Also, (6), (9) and (11) yield

π0e + π1(I − R)−1e = 1. (13)

From the above, R can be calculated numerically by solving (10) by Takine [8],
π0 and π1 can be calculated by solving (12) and (13) and πk (k = 2, 3, . . .) can
be calculated by using (9) recursively.

3.3 Performance Measures

In order to analyze our model, we define several performance measures sum-
marized in Table 2. Here, E[·] denotes the expectation. The derivations of these
performance measures will be described in sequel. First, we define Pb. It must
be described as follows.

Pb =
∑

i∈I (arrival rate for the parcel locker service in state (i,K)) × πi,K∑
(i,j)∈S (arrival rate for the parcel locker service in state (i, j)) × πi,j

.(14)

We could rewrite (14) as follows.

Pb =
rλπ0e1 + {(1 − p)μ1 + rλ}∑∞

i=1 πie1

rλπ0e + {(1 − p)μ1 + rλ}∑∞
i=1 πie

, (15)

where,

e1 =
(
0, 0, · · · , 0, 1

)T
.

From (9) and (15), we rewrite Pb as follows.

Pb =
rλπ0e1 + {(1 − p)μ1 + rλ}π1(I − R)−1e1

rλπ0e + {(1 − p)μ1 + rλ}π1(I − R)−1e
.
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Table 2. The list of performance measures.

Indicators Definitions

Pb The blocking probability of the queue of parcels
for the parcel locker

E[N1(t)] The mean number of parcels in the queue for
delivery truck

E[N2(t)] The mean number of parcels in the queue for
the parcel locker

T1 The number of parcels delivered by delivery
truck per a unit time

T2 The number of parcels delivered by the parcel
locker per a unit time

TLoss The number of parcels treated as loss per a unit
time (defined only for System 1)

TC The total of social costs

Next, we define E[N1(t)] and E[N2(t)] as follows.

E[N1(t)] =
∞∑

i=1

iπie, E[N2(t)] =
∞∑

i=0

πie2, (16)

where,

e2 =
(
0, 1, · · · , K − 1, K

)T
.

For E[N1(t)], (17) can be described from the nature of the expectation,

E[N1(t)] =
∞∑

i=1

P{N1(t) ≥ i} =
∞∑

i=1

∞∑

k=i

πke. (17)

By (11), (16) and (17), E[N1(t)] and E[N2(t)] can be transformed as follows.

E[N1(t)] = π1(I − R)−2e, E[N2(t)] = π0e2 + π1(I − R)−1e2.

Next, we derive T1, T2 and TLoss. These are given by

T1 = μ1

∞∑

i=1

πie, T2 = μ2

∞∑

i=0

πie3, TLoss = rλ

∞∑

i=0

πie1. (18)

From (11) and (18), we derive T1, T2 and TLoss as follows.

T1 = μ1(1 − π0e),
T2 = μ2

{
π0e3 + π1(I − R)−1e3

}
,

TLoss = rλ
{
π0e1 + π1(I − R)−1e1

}
,
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where,

e3 =
(
min(0, c), min(1, c), · · · , min(K − 1, c), min(K, c)

)T
.

It should be noted that TLoss is defined only for System 1, hence TLoss = 0 in
System 2. Finally, we define TC as follows.

TC = CTruck + CLocker + w3TLoss,

where,

CTruck = w11E[N1(t)] + w12T1,

CLocker = w21E[N2(t)] + w22T2.

CTruck denotes the social costs about the delivery of truck. w11 is the manage-
ment cost per a unit time for a parcel for delivery truck; w12 is the delivery cost
of delivery truck per a parcel. On the other hand, we define CLocker as the social
cost which is mainly borne by the receiver. w21 is the management cost per a
unit time for a parcel for the parcel locker and w22 is the delivery cost of the
parcel locker per a parcel. Also, w3 is the processing cost per a parcel treated as
loss. It should be noted that TLoss = 0 in System 2. By defining such an TC, it
is possible to compare the two systems in terms of cost.

4 Numerical Examples

In this section, we plot the numerical examples of stability region and perfor-
mance measures by using computer. It should be noted that stability region is
the range where stability condition is satisfied.

4.1 Stability Region

In order to evaluate the increment of stability region by the introduction of the
parcel locker service, we need to look at the boundary of the stability region of
each of the following three situations.

– (a): The situation which the parcel locker service is introduced and p = 1.0.
– (b): The situation which the parcel locker service is introduced.
– (c): The situation which the parcel locker service is not introduced.

By comparing the stability region of (b) and the stability region of (c), we
can see the increment of the stability region by introducing the parcel locker
service. Therefore, the increment of the stability region is the area sandwiched
between the boundaries of these stability regions. Furthermore, by comparing the
boundary of the stability region of (a) and the boundary of the stability region
of (b), it is possible to see the difference of the stability region. Actually, (b) is
a situation given by parameters at the time of analysis, (c) is a situation where
c = K = 0 are changed among the parameters of (b), and (a) is a situation where
p = 1.0 is changed among the parameters of (b). For this time we set p = 0.8,
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r = 0.1, c = K = 50 and see the increment of stability region in each of μ2 = 0.1,
1.0 and 5.0 for System 1 and System 2. Results of numerical experiments are
as shown in Fig. 4. It should be noted that the left column shows the result of
System 1, and the right column shows the result of System 2. From these results,
it can be seen that the larger the μ2, the larger the increment of the stability
region. It is easy to understand intuitively. In addition, it can be seen that the
increment of the stability region in System 2 is larger than that in System 1. This
is because System 2 tends to accumulate parcels in the system more than System
1 due to the non-existence of lost parcels in System 2. Also, when μ2 = 5.0, both
System 1 and System 2 show that the boundary of the stability region of (b)
is considerably close to the boundary of the stability region of (a). Therefore,
when μ2 is large, it is possible to obtain a stability region close to the situation
where redelivery does not exist in both systems.

4.2 Performance Measures

In this section, we conduct the numerical experiments on performance measures
which are defined in Sect. 3.3 by changing r from 0 to 1 and discuss the results.
We fix λ = 80, μ1 = 100, μ2 = 1.0, p = 0.8, and K = c. Also, for each value
of c = 5, 10, 20 and 30, numerical experiments are conducted on System 1 and
System 2. First, for Pb, E[N1(t)] and E[N2(t)], numerical experiment results are
as shown in Fig. 5. From these results, Pb and E[N2(t)] increase in both System
1 and System 2 as r increases. The increase in Pb can be easily understood
from the increase in the amount of parcels arriving at the parcel locker due to
the increase in r. Also, E[N2(t)] is asymptotically approaching c as r increases.
This is due to the fact that the parcel locker is always close to full since the
maximum service rate of the parcel locker will be lower than the arrival rate of
parcels to the parcel locker in this parameter setting. On the other hand, E[N1(t)]
tends to decrease roughly. Therefore, roughly speaking, the number of parcels
for the delivery truck decreases as the use of the parcel locker becomes active.
However, looking closely at Fig. 5d, the graph of c = 20 takes the minimum
value E[N1(t)] = 3.68711994 when r = 0.24 and the graph of c = 30 takes the
minimum value E[N1(t)] = 2.15232469 when r = 0.31. In other words, increasing
the utilization rate of the parcel locker service to reduce parcels for the delivery
truck can be counterproductive depending on the situation.

Next, for T1, T2 and TLoss, numerical experiment results are as shown in Fig. 6.
As shown in Fig. 6a, T1 of System 1 decreases monotonically with the increase of
r. On the other hand, from Fig. 6b, each graph decreases asymptotically to a cer-
tain value, respectively. With the increase of r, more parcels which are desired to
be received at the parcel locker arrive. If the parcel locker is full when the parcel
arrives, it will be delivered by the delivery truck in System 2 but will leave the sys-
tem by treating it as a loss in System 1. The difference in T1 is considered to be
due to the difference in these systems. Also, from Fig. 6c and d, the trend is almost
the same. As for T2, it can be seen that each graph changes asymptotically to the
maximum service rate cμ2. TLoss is defined only for System 1 and shown in Fig. 6e,
it is monotonically increasing with the increase of r.
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Fig. 4. Numerical results for the increment of stability region.

Finally, we compare TC of System 1 and System 2. As mentioned above, the
difference between System 1 and System 2 is whether or not the parcel blocked
by the parcel locker upon arrival is treated as a loss. When considering the
delivery cost, we want to know under what conditions System 1 (or System 2)
will be better. In Fig. 7, we set the values of w11, w12, w21 and w22 and conduct
the numerical calculation on w3 which TC of System 1 becomes equal to TC
of System 2. Therefore, in Fig. 7, System 1 is better than System 2 when the
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Fig. 5. Numerical results of Pb, E[N1(t)] and E[N2(t)].

value of w3 is smaller than that in the curve and reverse. We use the numerical
experiment results of each of the performance measures that is already shown in
Figs. 5 and 6 and the five cost unit setting patterns described below.

– Setting 1: w11 = 1.0, w12 = 1.0, w21 = 1.0 and w22 = 1.0.
– Setting 2: w11 = 5.0, w12 = 1.0, w21 = 1.0 and w22 = 1.0.
– Setting 3: w11 = 1.0, w12 = 5.0, w21 = 1.0 and w22 = 1.0.
– Setting 4: w11 = 1.0, w12 = 1.0, w21 = 5.0 and w22 = 1.0.
– Setting 5: w11 = 1.0, w12 = 1.0, w21 = 1.0 and w22 = 5.0.
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Fig. 6. Numerical results of T1, T2 and TLoss.

The results of numerical experiments under these settings are as shown in Fig. 7.
It should be noted that Fig. 7a assumes w11 = w12 = w21 = w22 = 1.0. Each
graph decreases monotonically with the increase of r, and approaches a certain
value. Also, we observe that the border value of w3 decreases with the increase in
c. Figure 7b shows the case w11 = 5 while other costs are the same as in Fig. 7a
and we observe that the tendency is more pronounced. This difference might be
due to the difference in E[N1(t)] among the two systems. Figure 7c is for the case
w12 = 5 and other costs are the same as in Setting 1. From the result, it shows a
monotonically increasing tendency with respect to the increase of r when c = 30.
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(a) Setting 1. (b) Setting 2.

(c) Setting 3. (d) Setting 4.

(e) Setting 5.

Fig. 7. Numerical results of w3.

In this regard, when c is large, the difference in T1 between the two systems is
small when r is small, but the difference enlarges when r is large. This is the
reason while the curve for c = 30 increases with the increase in r. Also, Fig. 7d
and e give almost the same results as Fig. 7a. This is because the difference of
E[N2(t)] and T2 between the two systems is small.
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5 Conclusions

We have modeled the PDS system by two queueing systems. In System 1, blocked
parcels are lost and thus are proceeded outside the system while in System 2,
blocked parcels are redelivered by the truck. Each system contains the parcel
locker that is considered as one of the solutions for the redelivery problem. By
analyzing these systems, we have evaluated the impact of the use of the parcel
locker on the performance measures such as the blocking probability of the parcel
locker and the mean number of parcels. Moreover, based on a cost function, we
have found that if the cost of lost parcels is smaller (or bigger) than a certain
value, System 1 (or System 2) is better.

Finally, we consider the future works. In this study, we have modeled the
PDS which is composed by some simple elements. However, the real PDS is
more complicated so that we should consider more elements so as to be closer
to the reality. For instance, we have not considered the loading time and the
number of parcels on the truck, but these expansions may allow more detailed
analysis. Furthermore, we have assumed an exponential distribution of delivery
times and arrival intervals of parcels, but parcel arrivals are often batch arrivals
and delivery time do not always follow an exponential distribution. Hence, we
may be able to make a more general model by considering batch arrival of
parcels or general distribution of delivery time intervals. It is also worth using
simulations to verify the differences that arise from changing these assumptions.
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Abstract. For the purpose of satisfying the service level agreement
of cloud users while at the same time reducing the energy consump-
tion in cloud computing, we analyze the system performance of an
energy-saving mechanism with a synchronous sleep mode. Considering
the correlation of traffic in cloud computing, the arrival of the data
requests is described as a Markovian Arrival Process (MAP), and a
MAP/M/N/N+K queue with synchronous multiple-vacations is estab-
lished to evaluate the energy-saving mechanism. Taking into account the
random cloud environment, we construct a state transition rate matrix
and analyze the queueing model in the steady state. Accordingly, we
derive the energy conservation level and the average latency of tasks to
evaluate the energy-saving mechanism. Finally, numerical experiments
are provided to illustrate the impact of the sleep parameter on the sys-
tem performance.

Keywords: Cloud computing · Energy-saving mechanism ·
Markovian Arrival Process · Synchronous vacation

1 Introduction

Cloud computing is a state-of-the-art paradigm, and the cloud service market is
estimated to be valued at $383.4 billion US dollars by 2020 [1]. Construction size
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and power consumption of the cloud data centers worldwide will dramatically
increase, and a considerable amount of greenhouse gases will be emitted into
the environment [2,3]. Constructing and evaluating green cloud computing has
become an extremely challenging research issues.

Queueing theory has made significant contributions to performance stud-
ies on cloud computing. In [4], an M/G/c queueing model was constructed for
analyzing cloud computing centers, and the mean response time of a task for
different offered loads was shown with analytical and simulation results. In [5],
aiming to determine and measure the Quality of Service (QoS) guarantees of
cloud users, an open Jackson network was built to provide cloud users with the
best service option. In [6], Cheng et al. used a vacation queue with exhaustive ser-
vice to model the task schedule of a heterogeneous cloud computing system and
proposed a task scheduling algorithm with similar traffic to reduce the energy
consumption. In [7], a task scheduling strategy with a sleep-delay timer and
a waking-up threshold was proposed in cloud computing. The task scheduling
strategy was modeled as an M/M/c synchronous vacation queue with a vacation-
delay and a N-policy. The energy conservation level of this proposed strategy was
evaluated through numerical experiments. In [8], a second optional service queue
was proposed to model the service provided by cloud vendors. The parameters of
the cloud service queue was optimized by establishing a two-dimensional Markov
chain. In all the literature mentioned above, the arrival of customers was assumed
to follow a Poisson process. However, using a Markovian Arrival Process (MAP)
would be more appropriate for capturing the stochastic behavior of correlated
data requests in cloud computing.

There have been a lot of studies on MAP-based queues in recent years since
a MAP is more universal than a Poisson distribution. In [9], a queueing model
with MAP arrivals and negative customers was studied. In the model, there
were two classes of removal rules: the arrival of a negative customer removed
all the customers in the system; the arrival of a negative customer removed
only one customer from the head of the system. In [10], a MAP/M/c queue was
studied. Numerical results illustrated the relationship of the loss probability, the
mean waiting time and the mean queue size to different impatience times. In
[11], a MAP/M/N retrial queueing model with asynchronous single-vacations
was constructed to calculate the loss probability, the blocking probability, the
expected queue length and the actual arrival rate of customers entering the
servers. Numerical examples illustrated the relationship of the mean number
of customers in the orbit and the mean number of customers under service
with different fundamental arrival rates of MAP and different arrival processes.
Although there is a body of literature dedicated to MAP-based queues, there
have been few works on the MAP queueing model in cloud computing. Unlike the
research mentioned above, in [12], Dudina et al. proposed a MAP/M/N/N+K
queueing model in a random environment to evaluate a call center. The Laplace-
Stieltjes transform of the sojourn time was derived by using the method of
collective marks.
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As far as we know, MAP-based queueing models have not been applied to
cloud computing. In this paper, we investigate the energy-saving mechanism in
cloud computing by building a type of MAP-based queueing model. The rest
structure of this paper is organized as follows. In Sect. 2, for application in
an energy-saving mechanism in a random cloud environment, we construct a
MAP-based queueing model with multiple servers and a synchronous multiple-
vacations. In Sect. 3, we analyze the queueing model through constructing the
infinitesimal generator of the four-dimensional Markov chain. In Sect. 4, the per-
formance measures for the energy-saving mechanism in cloud computing are
derived. Then, in Sect. 5, we carry out experiments and elaborate to evaluate
the energy-saving mechanism. Finally, we make our conclusions in Sect. 6.

2 System Model

Cloud computing deploys multiple Virtual Machines (VMs) on one Physical
Machine (PM) with the help of virtualization technology and provides services
to users in the form of a resource pool, so as to allocate cloud resources more
efficiently [13]. Considering the energy conservation of PMs in cloud computing,
we investigate an energy-saving mechanism with a sleep mode in a random cloud
environment. In this energy-saving mechanism, if all the VMs on a PM are idle,
all the VMs hosted on a PM together with the PM itself (abbreviated to PM)
will simultaneously switch to a sleep period controlled by a sleep timer with a
random length. If no task arrives before the sleep timer expires, the PM will
switch to another sleep period with a new sleep timer. Otherwise, the PM will
be awakened after the sleep timer expires.

We regard the tasks to be submitted to the cloud data center as customers,
the VMs as servers, the buffer as a waiting space and the sleep period as a
vacation. A queueing model with multiple servers and a synchronous multiple-
vacations is established.

Let N be the number of VMs and K be the buffer size. At an arbitrary task
arrival epoch: (i) if the VMs are asleep and the buffer is not full, the arriving
task will queue in the buffer; (ii) if the VMs are awake and there is at least
one idle VM, the arriving task will join the system and occupy one of the idle
VMs immediately; (iii) if the VMs are awake and there are i, i ∈ {N,N +
1, . . . , N + K − 1} tasks in the system, the arriving task has to queue in the
buffer; (iv) if the buffer is full, the arriving task will be balked by the system.

The operation of the queueing model is dependent on the state of the random
cloud environment. The random cloud environment is described as a stochastic
process rt, t ≥ 0, which is a homogeneous irreducible continuous-time Markov
chain. The state space of rt is Er = {1, 2, . . . , R} and the infinitesimal generator
of rt is H.

The arrival of tasks is supposed to follow a MAP. The arrival of tasks is directed
by the stochastic process νt, t ≥ 0 with state space Eν = {0, 1, . . . ,W}. Under
a fixed environment state r, r ∈ Er, the stochastic process νt is an irreducible
continuous-time Markov chain. The time duration for the Markov chain sojourn-
ing in state ν, ν ∈ Eν is supposed to follow an exponential distribution with a
positive parameter λ

(r)
ν . At the probability p

(r)
0 (ν, ν′), ν, ν′ ∈ Eν , ν �= ν′, r ∈ Er,
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the Markov chain νt jumps to state ν′ from state ν without any task arrival, and at
the probability p

(r)
1 (ν, ν′), ν, ν′ ∈ Eν , r ∈ Er, the Markov chain νt jumps to state

ν′ from state ν with one task arrival. The arrival pattern of tasks is characterized
by the matrices D

(r)
0 and D

(r)
1 , which are given by

D
(r)
0 =

⎡
⎢⎢⎢⎢⎣

−λ
(r)
0 λ

(r)
0 p

(r)
0 (0, 1) . . . λ

(r)
0 p

(r)
0 (0,W )

λ
(r)
1 p

(r)
0 (1, 0) −λ

(r)
1 . . . λ

(r)
1 p

(r)
0 (1,W )

...
...

. . .
...

λ
(r)
W p

(r)
0 (W, 0) λ

(r)
W p

(r)
0 (W, 1) . . . −λ

(r)
W

⎤
⎥⎥⎥⎥⎦

,

D
(r)
1 =

⎡
⎢⎢⎢⎢⎣

λ
(r)
0 p

(r)
1 (0, 0) λ

(r)
0 p

(r)
1 (0, 1) . . . λ

(r)
0 p

(r)
1 (0,W )

λ
(r)
1 p

(r)
1 (1, 0) λ

(r)
1 p

(r)
1 (1, 1) . . . λ

(r)
1 p

(r)
1 (1,W )

...
...

. . .
...

λ
(r)
W p

(r)
1 (W, 0) λ

(r)
W p

(r)
1 (W, 1) . . . λ

(r)
W p

(r)
1 (W,W )

⎤
⎥⎥⎥⎥⎦

.

The matrix D(r) = D
(r)
0 +D

(r)
1 represents the infinitesimal generator of Markov

chain νt. The average arrival rate λ(r) of tasks can be calculated by

λ(r) = θ(r)D
(r)
1 e

where θ(r) is the invariant vector of the Markov chain νt with generator matrix
D(r). The vector θ(r) can be calculated by θ(r)D(r) = 0 and θ(r)e = 1. Here e
is a column vector of appropriate size consisting of 1 and 0 is a row vector of
appropriate size consisting of 0.

Under a fixed environment state r, r ∈ Er, the service times of tasks are
supposed to follow an exponential distribution with a positive parameter μr.
The time durations of sleep periods are supposed to be exponentially distributed
with a positive parameter α. The service time of a task, the arrival epoch of a
task and the time duration of a sleep period are supposed to be independent of
each other.

3 Model Analysis

Let xt, xt ∈ {0, 1} be the VM states at epoch t, t ≥ 0. xt = 0 means that
the VMs are asleep, and xt = 1 means that the VMs are awake. Let yt, yt ∈
{0, 1, . . . , N + K} be the number of tasks in the queueing system, including the
tasks being served on VMs and the tasks waiting in the buffer, at epoch t, t ≥ 0.
We call yt the system level for convenience. Let ht, ht ∈ Er be the state of
the random cloud environment at epoch t, t ≥ 0, and zt, zt ∈ Eν be the state
of MAP at epoch t, t ≥ 0. Thus, the system model under consideration can be
described in terms of the regular irreducible continuous-time four-dimensional
Markov chain ξt = {xt, yt, ht, zt} , t ≥ 0 with infinitesimal generator matrix Q.
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The stationary distribution of the four-dimensional Markov chain ξt is defined
as follows:

πj,i,r,ν = lim
t→∞ P {xt = j, yt = i, ht = r, zt = ν} ,

j = 0, 1, i ∈ {0, 1, . . . , N + K}, r ∈ Er, ν ∈ Eν .

Let πj be the stationary probability vector for the VMs being at state j.
When j = 0:

π0 = (π0,0,π0,1, . . . ,π0,K)

where π0,i is the stationary probability vector for the VMs being at state j = 0
and the system being at level i, i = 0, 1, . . . ,K. π0,i is given as

π0,i =(π0,i,1,0, π0,i,1,1, . . . , π0,i,1,W , π0,i,2,0, π0,i,2,1, . . . , π0,i,2,W , . . . ,

π0,i,R,0, π0,i,R,1, . . . , π0,i,R,W ), i = 0, 1, . . . ,K.

When j = 1:
π1 = (π1,1,π1,2, . . . ,π1,N+K)

where π1,i is the stationary probability vector for the VMs being at state j = 1
and the system being at level i, i = 1, 2, . . . , N + K. π1,i is given as

π1,i =(π1,i,1,0, π1,i,1,1, . . . , π1,i,1,W , π1,i,2,0, π1,i,2,1, . . . , π1,i,2,W , . . . ,

π1,i,R,0, π1,i,R,1, . . . , π1,i,R,W ), i = 1, 2, . . . , N + K.

Then, the stationary probability vector Π of the four-dimensional Markov chain
ξt is shown as follows:

Π = (π0,π1).

The stationary distribution Π can be obtained by solving the system of linear
equations

ΠQ = 0 (1)

subject to the condition of Πe = 1.
The infinitesimal generator matrix Q can be given in a 2 × 2 block-structure

form as follows:

Q=
[
Q0,0 Q0,1

Q1,0 Q1,1

]

where Qb,c, b, c = 0, 1 indicates that the VMs change to state c from state b.
In order to analyze the non-zero sub-blocks of Qb,c, we introduce some nota-

tions as follows:

IW : an identity matrix of W + 1 dimension;
IR: an identity matrix of R dimension;
IR×W : an identity matrix of R × (W + 1) dimension;
O: a zero matrix of appropriate dimension;
⊗: the symbol Kroneckers product;
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D̃l = diag
{

D
(r)
l , r ∈ Er

}
, l = 0, 1;

A = diag{μr, r ∈ Er}.

Submatrix Q0,0 can be given in a (K + 1) × (K + 1) block-structure form as
follows:

Q0,0=

⎡
⎢⎢⎢⎢⎢⎣

L0,0 L0,1

L1,1 L1,2

. . . . . .
LK−1,K−1 LK−1,K

LK,K

⎤
⎥⎥⎥⎥⎥⎦

where Ls,d, s, d ∈ {0, 1, . . . ,K} represents the transition rate submatrix from
the system level s to d when the VMs stay in the sleep state. Ls,d is given by

L0,0 = D̃0 + H ⊗ IW ,

Ls,s = D̃0 + (H − αIR) ⊗ IW , s ∈ {1, 2, . . . ,K − 1},

LK,K = D̃0 + D̃1 + (H − αIR) ⊗ IW ,

Ls,s+1 = D̃1, s ∈ {0, 1, . . . ,K − 1}.

Submatrix Q1,1 can be given in a (N + K) × (N + K) block-structure form
as follows:

Q1,1=

⎡
⎢⎢⎢⎢⎢⎣

U1,1 U1,2

U2,1 U2,2 U2,3

. . . . . . . . .
UN+K−1,N+K−2 UN+K−1,N+K−1 UN+K−1,N+K

UN+K,N+K−1 UN+K,N+K

⎤
⎥⎥⎥⎥⎥⎦

where U s,d, s, d ∈ {1, 2, . . . , N + K} represents the transition rate submatrix
from the system level s to d when the VMs remain awake. U s,d can be calculated
as follows:

U s,s = D̃0 + (H − sA) ⊗ IW , s ∈ {1, 2, . . . , N},

U s,s = D̃0 + (H − NA) ⊗ IW , s ∈ {N + 1, N + 2, . . . , N + K − 1},

UN+K,N+K = D̃0 + D̃1 + (H − NA) ⊗ IW ,

U s,s−1 = sA ⊗ IW , s ∈ {2, 3, . . . , N},

U s,s−1 = (NA) ⊗ IW , s ∈ {N + 1, . . . , N + K},

U s,s+1 = D̃1, s ∈ {1, 2, . . . , N + K − 1}.
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Submatrix Q0,1 represents the transition rate submatrix where the system
is awakened from a sleep period. Q0,1 can be given in a (K + 1) × (N + K)
block-structure form as follows:

Q0,1=

⎡
⎢⎢⎢⎢⎢⎣

O
αIR×W

. . .
αIR×W

αIR×W

⎤
⎥⎥⎥⎥⎥⎦

.

Submatrix Q1,0 represents the transition rate submatrix where the system
goes to sleep from an awake state. Q1,0 can be given in a (N + K) × (K + 1)
block-structure form as follows:

Q1,0=

⎡
⎢⎢⎢⎢⎢⎣

A ⊗ IW

O
. . .

O
O

⎤
⎥⎥⎥⎥⎥⎦

.

There are mainly two methods for computing the stationary distribution of
finite state Markov chains: the direct method and the iterative method. If the
dimension of the infinitesimal generator Q is small, it can be easily solved using
the direct method. Otherwise, it can be solved using the iterative method. In this
paper, we use the Gauss-Seidel method, one of the iterative methods, to calculate
the stationary distribution Π of the four-dimensional Markov chain ξt.

4 Performance Measures

In order to evaluate the system performance, we derive some performance mea-
sures in terms of the energy conservation level and the average latency of tasks
in the system.

We define the energy conservation level as the energy conservation per unit
time for the VMs in cloud computing with an energy-saving mechanism. Let Cv

be the energy consumption per time unit when the system is in a sleep period,
and Cb be the energy consumption per time unit when the system is in the awake
state. The energy conservation level ω can be calculated by the criterion

ω = (Cb − Cv) π0e (2)

where π0 is the probability that the VMs are asleep.
We define the average latency of tasks as the sum of the average waiting

time of tasks in the buffer and the average service time of tasks on the VMs. By
Little’s law, the average latency σ of tasks in the system can be calculated as
follows:

σ =

(
K∑

i=1

iπ0,ie +
N+K∑
i=1

iπ1,ie

)
/λout (3)
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where λout is the effective arrival rate of the tasks. λout is calculated as

λout =
N+K∑
i=1

min {i,N} π1,i (A ⊗ IW ) e.

5 Numerical Results

In order to evaluate the energy-saving mechanism, we provide experiments to
demonstrate the relationship between the performance measures and the sleep
parameter.

Figure 1 demonstrates the relationship between the energy conservation level
ω and the sleep parameters α.

Fig. 1. Change trend of energy conservation level ω.

From Fig. 1, we observe that for the same number N of VMs, the energy
conservation level ω will decrease as the sleep parameter α increases. When the
sleep parameter increases, the VMs change to the awake state from a sleep period
earlier, so the VMs are less likely to be asleep. Thus, the energy consumption of
VMs will increase, and the energy conservation of the system will decrease.

In addition, it appears also from Fig. 1 that for the same sleep parameter
α, the energy conservation level ω will increase as the VM number N increases.
The larger the VM number is, the stronger the system service ability is, so the
quicker the system will empty. Consequently, the system will be more likely to
be asleep, and the energy conservation of the system will increase.

Figure 2 shows the relationship between the average latency σ of tasks and
the sleep parameter α.
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Fig. 2. Change trend of average latency σ.

From Fig. 2, we find that for the same number N of VMs, the average latency
σ of tasks will decrease as the sleep parameter α increases. We note that the tasks
arriving while the system is in the sleep state have to wait for the expiration
of the sleep timer before getting service. The bigger the sleep parameter is, the
earlier the VMs are awakened. Thus, the shorter time the tasks have to wait
during sleep state, and the average latency of arrival tasks will decrease.

On the other hand, from Fig. 2, we also observe that for the same sleep
parameter α, the average latency σ of tasks will decrease as the VM number N
increases. This is because the larger the VM number is, the stronger the system
service ability is. Consequently, the shorter time a task will wait in the buffer,
and the average latency of tasks will decrease.

Comparing Figs. 1 and 2, we can see that there is a trade-off between the
energy conservation level and the average latency of tasks when setting the sleep
parameter in the energy-saving mechanism.

6 Conclusions

Considering the correlation of cloud traffic, we evaluated the energy-saving mech-
anism in random cloud computing. We assumed that the arrival of cloud data
requests follows a MAP, and we established a MAP/M/N/N+K queue with syn-
chronous multiple-vacations to evaluate the energy-saving mechanism. Based on
the model analysis, we derived performance measures in terms of the energy con-
servation level and the average latency of tasks for the energy-saving mechanism.
With correlated traffic in a random cloud environment, we carried out numerical
experiments to illustrate the change trends of the energy conservation level and
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the average latency of tasks with different sleep parameters. In future research,
we will verify the numerical results by performing simulations and construct a
cost function to optimize the energy-saving mechanism.
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Abstract. Blockchain is well known as a database technology support-
ing digital currencies, such as Bitcoin, Ether, and Ripple. Regarding
the mining process as a vacation, and the block-verification process as
a service, we establish a type of non-exhaustive queueing model with a
limited batch service and a possible zero-transaction service. By select-
ing the beginning instant of a block-verification process as a regeneration
point and using the method of a generating function, we obtain the sta-
tionary probability distribution for the number of transactions in the
system at the regeneration points. Then, we derive the average number
of transactions and the average confirmation time of transactions in the
blockchain system. Finally, we provide numerical results with analysis
and simulation to demonstrate how the average number of transactions
and the average confirmation time of transactions in the blockchain sys-
tem change with the mining parameter.

Keywords: Blockchain · Regeneration point · Generating function ·
Average confirmation time

1 Introduction

Blockchain is a decentralized distributed ledger that does not allow deletion of
data [1]. Compared with traditional accounting techniques, blockchain has many
obvious advantages, such as irreversibility, anonymity, and autonomy [2]. Since
the terminology of blockchain was first presented by Nakamoto in [3], blockchain
has continued to develop. In recent years, considerable efforts have been devoted
to the study of the blockchain system.
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One of the research topics in the field of the blockchain system is the appli-
cation technology. In [4], Konstantinos et al. investigated how blockchain and
smart contracts work on the Internet of Things (IoT), and pointed out certain
issues that should be considered before the deployment of a blockchain network.
In [5], Huang et al. presented a decentralized security model, called the lightning
network and smart contracts (LNSC). With this model, the security of trades
between electric vehicles (EVs) and charging piles can be effectively enhanced.
In [6], with the help of the blockchain technology, Muhamed et al. proposed a
global higher education credit platform, named EduCTX. The establishment of
this platform was the first step toward a higher education system with trans-
parency and technical advancement. However, one important issue that has been
overlooked by the afore-mentioned research is how to evaluate and improve the
performance of the blockchain system.

From a queueing theory point of view, some works have appeared concerning
the performance evaluation of the blockchain system. In [7] and [8], Kasahara
et al. established a single-server queue with a batch service and a priority mech-
anism based on the Bitcoin system. By using the method of a supplementary
variable, they derived the average transaction-confirmation time. With numeri-
cal experiment results, they were able to quantitatively evaluate the effects of the
block size on the transaction-confirmation time. However, in the research above,
neither the process of solving the puzzle-like problem, nor the implementation
of the coinbase in the blockchain system was taken into account.

In [9], Li et al. built a Markovian batch-service queueing system with two dif-
ferent service stages and derived the stationary probability vector of the system.
They obtained formulas for the average number of transactions in the queue, the
average number of transactions in a block and the average confirmation time of
transactions, yet the coinbase transaction was also omitted in this model, and
the model analysis was short of generality due to the assumption of exponentially
distributed service time.

In this paper, by considering the process for solving the puzzle-like problem
and the implementation of the coinbase in the blockchain system, we present
a modeling approach to analyze the average number of transactions and the
average confirmation time of transactions in the blockchain system.

The rest of this paper is organized as follows. In Sect. 2, based on the mining
cycle in the blockchain system, we establish a type of non-exhaustive queueing
model with a limited batch service and a possible zero-transaction service. In
Sect. 3, we carry out an analysis of the system model and derive the average
number of transactions and the average confirmation time of transactions in the
blockchain system. In Sect. 4, we provide numerical results with analysis and
simulation. In Sect. 5, we summarize the conclusions.

2 System Model

In this section, we establish a type of non-exhaustive queueing model with a
limited batch service and a possible zero-transaction service to model the mining
cycle in a blockchain system.
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Transactions, nodes and blocks are the basic components of a blockchain sys-
tem. In order to quantitatively evaluate the response performance of a blockchain
system, we need to establish a mathematical model to more realistically capture
the stochastic behaviors of transactions. Note that the size of a block is limited
and the block can not be confirmed during the mining process in a blockchain
system. A non-exhaustive queue is naturally suitable to capture the working flow
of a mining cycle in a blockchain system.

Once a newly generated block is connected to the blockchain, i.e. a block-
verification process ends, a mining process begins no matter whether there are
transactions waiting in the system. Moreover, when a puzzle-like problem is
solved, i.e. a mining process ends, a zero-transaction begins if the newly gener-
ated block is empty, otherwise, a normal service period begins.

Considering that transactions in the newly generated block are simultane-
ously validated and the newly generated block is possibly empty, we establish
a type of non-exhaustive queueing model with a limited batch service and a
possible zero-transaction service. In this queueing model, the mining process is
regarded as a vacation, the block-verification process is regarded as a service.

We assume that the arrivals of transactions follow a Poisson process with the
parameter λ (λ > 0).

We assume that the time duration V for a mining process is an independent
and identically distributed (i.i.d) random variable and follows a general distri-
bution with a distribution function V (t). The Laplace-Stieltjes Transform (LST)
V ∗(s), the mean value E[V ] and the second moment E[V 2] of the time duration
V for a mining process are given as follows:

V ∗(s) =
∫ ∞

0

e−st dV (t), E[V ] =
1
θ

=
∫ ∞

0

t dV (t), E[V 2] =
∫ ∞

0

t2 dV (t).

We assume that the time duration S for a block-verification process is an i.i.d
random variable and follows a general distribution with a distribution function
S(t). The LST S∗(s), the mean value E[S] and the second moment E[S2] of the
time duration S for a block-verification process are given as follows:

S∗(s) =
∫ ∞

0

e−st dS(t), E[S] =
1
μ

=
∫ ∞

0

t dS(t), E[S2] =
∫ ∞

0

t2 dS(t).

3 Model Analysis

3.1 Number of Transactions at the Regeneration Points

Let Q(n) be the number of transactions in the system at the beginning instant
of the nth block-verification process. We select the beginning instant of a block-
verification process as a regeneration point. The numbers of transactions in the
system at the regeneration points constitute a Markov chain

{
Q(n), n ≥ 1

}
.

The stability condition of
{
Q(n), n ≥ 1

}
is given as follows:

λ(E[S] + E[V ]) < b

where b is the maximum block capacity.
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The transition probability of this Markov chain is given by

pjk = P
{

Q(n+1) = k | Q(n) = j
}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ ∞

0

(λt)k

k!
e−λt dS ∗ V (t), j < b

∫ ∞

0

(λt)k−j+b

(k − j + b)!
e−λt dS ∗ V (t), b < j < b + k

0, j ≥ b + k

(1)

where S ∗ V (t) is the distribution function for the convolution of S with V .
Let qk be the probability distribution for the number of transactions at the

regeneration point in the steady state. It follows that

qk =
b−1∑
j=0

qj

∫ ∞

0

(λt)k

k!
e−λt dS ∗ V (t)

+
k+b∑
j=b

qj

∫ ∞

0

(λt)k−j+b

(k − j + b)!
e−λt dS ∗ V (t). (2)

The probability generating function Q(z) for the number of transactions at
the regeneration point in the steady state is given as follows:

Q(z) =
1
zb

S∗(λ(1 − z))V ∗(λ(1 − z))

⎛
⎝b−1∑

j=0

qjz
b + Q(z) − Qb(z)

⎞
⎠ (3)

where

Qb(z) =
b−1∑
k=0

qkzk.

Simplifying Eq. (3), we get

Q(z) =
S∗(λ(1 − z))V ∗(λ(1 − z))(Qb(1)zb − Qb(z))

zb − S∗(λ(1 − z))V ∗(λ(1 − z))
. (4)

In the denominator on the right-hand side (r.h.s.) of Eq. (4), we introduce
some notations as follow:

f(z) = zb, g(z) = −S∗(λ(1 − z))V ∗(λ(1 − z)).

Using Rouche’s theorem [10] and Lagrange’s theorem [11], for ε > 0, it can be
proved that |f(z)| > |g(z)| on the circle |z| = 1+ε, and that f(z) and f(z)+g(z)
have the same number of zeros inside |z| = 1+ ε. Therefore, the denominator on
the r.h.s. of Eq. (4) has b roots inside |z| = 1 + ε. One of these roots is z = 1,
and the other b − 1 roots are given as follows:

zr =
∞∑

n=1

e
2πrn

b i

n!
dn−1

dzn−1
(S∗(λ(1 − z))V ∗(λ(1 − z)))n/b

∣∣
z=0

, r = 1, 2, . . . , b − 1
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where i =
√−1.

Since Q(z) is analytic in |z| ≤ 1, the numerator on the r.h.s. of Eq. (4) must
also be zero at z = zr for r = 1, 2, . . . , b − 1. Therefore, we have b − 1 equations
as follows:

b−1∑
k=0

qkzb
r −

b−1∑
k=0

qkzk
r = 0, r = 1, 2, . . . , b − 1. (5)

Letting z → 1 and using L’Hospital rule in Eq. (4), we get

1 =
bQb(1) − Q

′
b(1)

b − λE[S] − λE[V ]
(6)

where Q
′
b(1) is the first derivative of Qb(z) at z = 1.

Rearranging Eq. (6) yields

b−1∑
k=0

(b − k)qk = b − λE[S] − λE[V ]. (7)

Based on Eqs. (5) and (7), we can numerically compute the coefficients
{q0, q1, . . . , qb−1} of Qb(z). Furthermore, we obtain the probability generating
function Q(z).

3.2 Average Confirmation Time E[T ] of Transactions

A mining process and the subsequent block-verification process combine to con-
stitute a mining cycle. Let C be the time duration of a mining cycle. The LST
C∗(s) and the mean value E[C] for the time duration C of a mining cycle are
given as follows:

C∗(s) = S∗(s)V ∗(s), E[C] = E[S] + E[V ].

The probability generating function AC(z) for the number of transactions
arriving during a mining cycle is given as follows:

AC(z) = S∗(λ(1 − z))V ∗(λ(1 − z)). (8)

Let D be the elapsed time of a mining cycle. Referencing to [12], the proba-
bility density function h(t) of D is given as follows:

h(t) =
1

E[C]
(1 − C(t)) (9)

where C(t) is the distribution function for the time duration C of a mining cycle.
The probability generating function AD(z) for the number of transactions

arriving during the elapsed time D of a mining cycle is given as follows:

AD(z) =
∞∑

i=0

zi

∫ ∞

0

(λt)i

i!
e−λth(t)dt

=
1 − S∗(λ(1 − z))V ∗(λ(1 − z))

λ(1 − z)(E[S] + E[V ])
. (10)
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The probability generating function Ls(z) for the number of transactions at
the beginning instant of a mining cycle is given as follows:

Ls(z) =
Q(z)

V ∗(λ(1 − z))

=
S∗(λ(1 − z))(Qb(1)zb − Qb(z))
zb − S∗(λ(1 − z))V ∗(λ(1 − z))

. (11)

We note that the number of transactions at any moment within a mining
cycle is the sum of the number of transactions at the beginning instant of a
mining cycle and the number of transactions arriving during the elapsed time of
the same mining cycle. The probability generating function L(z) for the number
of transactions at any moment is then obtained as follows:

L(z) = Ls(z)AD(z). (12)

Substituting Eqs. (10) and (11) into Eq. (12), we give that

L(z) =
S∗(λ(1 − z))(Qb(1)zb − Qb(z))
zb − S∗(λ(1 − z))V ∗(λ(1 − z))

× 1 − S∗(λ(1 − z))V ∗(λ(1 − z))
λ(1 − z)(E[S] + E[V ])

. (13)

Taking the derivative of z, letting z → 1 and using L’Hospital rule in Eq.
(13), the average number E[L] of transactions in the blockchain system is given
as follows:

E[L] = λE[S] +
λ(E[S2] + 2E[S]E[V ] + E[V 2])

2(E[S] + E[V ])

+
b(b − 1)(Qb(1) − 1) − Q

′′
b (1) + λ2(E[S2] + 2E[S]E[V ] + E[V 2])

2(b − λE[S] − λE[V ])
(14)

where Q
′′
b (1) is the second derivative of Qb(z) at z = 1.

Following Little’s law [13], the average confirmation time E[T ] of transactions
is then given as follows:

E[T ] = E[S] +
E[S2] + 2E[S]E[V ] + E[V 2]

2(E[S] + E[V ])

+
b(b − 1)(1 − Qb(1)) + Q

′′
b (1)

2λ(b − λE[S] − λE[V ])
+

λ(E[S2] + 2E[S]E[V ] + E[V 2])
2(b − λE[S] − λE[V ])

.

(15)

4 Numerical Experiments

In order to quantitatively evaluate the response performance of a blockchain
system, we provide numerical experiments with analysis and simulation.

Experiments are carried out on Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz
3.60 GHz, 8.00 GB RAM. Analysis results are obtained in Matlab 2016a, sim-
ulation results are obtained using MyEclipse 2014. For simulation, we create a
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TRANSACTION class with attributes in terms of UNARRIVE, WAIT, VALI-
DATE and CONNECT to record the transaction state. We also create a BLOCK
class with attributes in terms of MINE and VERIFY to record the state of a
blockchain system.

By setting the arrival rate λ = 0.5, the mining parameter θ = 0.2, 0.4, 0.8, the
maximum block capacity b = 4, 8 and the block-verification rate μ ∈ [0.4, 1.4] as
an example, we carry out experiments with analysis and simulation to investigate
the change for the average number E[L] of transactions in the blockchain system
versus the block-verification rate μ for different mining parameter θ and different
maximum block capacity b in Fig. 1.

From Fig. 1, we observe that for all the mining parameter θ and the max-
imum block capacity b, as the block-verification rate μ increases, the duration
of the block-verification process becomes shorter, the number of transactions
arrived during the block-verification process decreases. So the average number
of transactions in the blockchain system will decrease.

We also observe that for all the block-verification rate μ and the maximum
block capacity b, as the mining parameter θ increases, the mining process lasts
a shorter time, the number of transactions arrived during the mining process
decreases. So the average number of transactions in the blockchain system will
decrease.

Comparing Figs. 1(a) and (b), we find that for the same mining parameter
θ and the same block-verification rate μ, as the maximum block capacity b
increases, fewer transactions will sojourn in the Transaction Memory Pool. So
the average number of transactions in the blockchain system will decrease.

By setting the arrival rate λ = 0.5, the block-verification rate μ = 0.5, 1.0, 1.5,
the maximum block capacity b = 4, 8 and the mining parameter θ ∈ [0.2, 1.2]
as an example, we carry out experiments with analysis and simulation to inves-
tigate the change trend for the average confirmation time E[T ] of transactions
versus the mining parameter θ for different block-verification rate μ and different
maximum block capacity b in Fig. 2.

From Fig. 2, we notice that for all the block-verification rate μ and the max-
imum block capacity b, as the mining parameter θ increases, the mining process
lasts a shorter time, the new block including transactions is generated earlier
and get confirmed earlier. So the average confirmation time of transactions will
decrease.

We also notice that for all the mining parameter θ and the maximum block
capacity b, as block-verification rate μ increases, the duration of the block-
verification process becomes shorter, the newly generated block including trans-
actions is also connected earlier to blockchain. So the average confirmation time
of transactions will decrease.

Comparing Figs. 2(a) and (b), we find that for the same mining parameter
θ and the same block-verification rate μ, as the maximum block capacity b
increases, transactions in the Transaction Memory Pool are put earlier into a
newly generated block and get confirmed earlier. So the average confirmation
time of transactions will decrease.
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(a) b = 4

(b) b = 8

Fig. 1. Change trend for the average number E[L] of transactions in the blockchain
system.

The experiment results above show that when the arrival rate of transactions
is given, the performance of a blockchain system is sensitive to several system
parameters, such as the maximum block capacity, the block-verification rate and
the mining parameter.
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(a) b = 4

(b) b = 8

Fig. 2. Change trend for the average confirmation time E[T ] of transactions.

5 Conclusions

Based on the working flow of a blockchain system, in this paper, we established
a type of non-exhaustive queueing model with a limited batch service and a
possible zero-transaction service. By employing the methods of an embedded
Markov chain and a generating function, we obtained the stationary probabil-
ity for the number of transactions in the system at the regeneration points.
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We derived performance measures in terms of the average number of transac-
tions and the average confirmation time of transactions in the blockchain system.
Combing analysis results and simulation results, we validated the system model
and evaluated the performance of the blockchain system.

In future research, we plan to extend our study to investigate Nash equi-
librium of transactions and present an appropriate remittance fee charged to
transactions for maximizing the overall revenue of a blockchain system.
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