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Abstract
Plants grow in an environment of abiotic stresses such as drought, high light
(HL) intensity, heat, salinity, metal/metalloid, or a combination of these
environmental stresses requires a delicate balance between energy production
and consumption, to mention normal energy. Reactive oxygen species (ROS), a
by-product of aerobic metabolism, are key signaling molecules which play a
significant role in plants’ responses to myriad of abiotic and biotic stresses. ROS
initially evidenced as only damaging factors in plants further were found to play
an important role in numerous signaling pathways that mediate plants’
acclimatory and defense responses. The production and scavenging of ROS
are accomplished in various cellular compartments such as the apoplast, cell
membrane, mitochondria, chloroplasts, peroxisomes, and endoplasmic reticu-
lum. Under abiotic stresses, an imbalance between ROS biosynthesis and
scavenging and elimination in favor of biosynthesis with certain consequences
for plant cell physiology has been termed as “oxidative stress.” Regulation of
redox environment and ROS signals via the cross talk of ROS with various
signaling agents within plants’ cell requires a high degree of coordination in
different cellular compartments. In this present chapter, we provide an update on
ROS generation, scavenging, and redox signaling in the context of plant abiotic
stress tolerance. Unraveling destabilizing and stabilizing factors of ROS
homeostasis and signaling in plants under biotic and abiotic stress environment
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may provide a detailed exploration of ROS/antioxidative signature-related
kinetics that can help in designing new and sustainable innovative ways and
means for (a) mounting proper acclimation response, (b) monitoring/increasing
overall plants’ fitness in improving health and productivity of plants under the
influence of various stress conditions, and (c) identification and characterization
of new targets and key regulator ROS-signaling transduction pathways which
may provide excellent future candidates for breeding/engineering stress-resilient
crop plants.
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responses

7.1 Introduction

Various abiotic pressures orchestrate the formation of reactive oxygen species
(ROS) in plants, thus leading to severe alterations in plants’ physiological, bio-
chemical, and molecular process (Mahmud et al. 2017; Wani et al. 2018b).
The ROS homeostases are most crucial events during oxidative stress-related
metabolism in plants because ROS play a dual role in plants in a dose-dependent
fashion, by acting as signaling molecules at low levels, and inducers of oxidative
stress at the high levels (Chen et al. 2015; Requena et al. 2017; Mohanta et al. 2018;
Wani et al. 2018a). As ROS accumulation poses negative impacts on plant cells,
however, they regulate processes like systemic acquired resistance (SAR) and
systemic acquired acclimation (SAA) during acclimation and defense responses in
plants (Abdelrahman et al. 2016, 2017b; Czarnocka and Karpiński 2018). Thus, it
cannot be ruled out that ROS are involved in diverse facets of development and
metabolism of plants by regulating a plethora of oxidative and reductive signals and
by acting as potential regulators of metabolic and energy fluxes in living organisms.

Superoxide radical (O��
2 ), hydroxyl radical (OH˙), hydroperoxyl radical (HO2˙),

alkoxy radical (RO˙), peroxy radical (ROO˙), excited carbonyl (RO*) are free
radical and hydrogen peroxide (H2O2) and singlet oxygen (1▲g or 1O2), are
non-radical molecular forms which are partially reduced or activated forms of
atmospheric molecular oxygen (O2), and are considered as ROS, and their high
concentrations are considered as cytotoxic to plants tissues (Gill and Tuteja 2010;
Vellosillo et al. 2010; Karuppanapandian et al. 2011; Abdelrahman et al. 2017a;
Del Río 2015; Choudhury et al. 2017) (Fig. 7.1). ROS are regarded as unavoidable
biochemical by-products of normal aerobic life that appeared on the surface of
the Earth about 2.2–2.7 billion years ago, and their production is generally con-
fined to cellular organelles having high flow of electrons like chloroplast, mito-
chondria, and peroxisomes (Choudhury et al. 2013) in addition to the apoplast
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(Roychoudhury and Basu 2012). About 1–2% of the molecular O2 which is utilized
by plants is sidetracked to lead the generation of ROS (Bhattacharjee 2005; Ban-
erjee and Roychoudhury 2017). O2 is a free radical and strong oxidant molecule
because it contains two unpaired electrons having the same spin quantum number.
This property makes it able to accept electrons, consequently leading to the gen-
eration of ROS in aerobic organisms. Anaerobic organisms also produce ROS and
are thus having a well ROS detoxification system (Ślesak et al. 2012). Thus, we can
say that both prokaryotic evolution and eukaryotic evolution took place in the
presence of ROS-rich environment. In addition to various abiotic and biotic stress
conditions, ROS are also produced under controlled conditions which lead to
oxidative signaling in plants if they are consequently sequenced by antioxidants and
osmolytes (Wani et al. 2018a, b). Under physiological circumstances, ROS are
indispensable players for maintaining proper cellular metabolism, regulation of
essential processes like proliferation, differentiation, and development of cells, light
acclimation, cytoplasmic signaling reactions, pathogen resistance, hormonal signal
transduction, and programmed cell death (Swanson and Gilroy 2010; Karpiński
et al. 2013; Foyer and Noctor 2013; Gilroy et al. 2016; Mittler 2017).

However, biotic and abiotic perturbations such as high salt concentrations
(Rasool et al. 2013; Ahmad et al. 2018), incidence of UV radiation and ozone
(Yu et al. 2004; Yan et al. 2016; Chen et al. 2018), occurrence of drought
(Huseynova et al. 2016; Sezgin et al. 2018), high and low temperature

Fig. 7.1 A schematic representation showing free radical and non-radical forms of reactive
oxygen species
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(Li et al. 2015; Sailaja et al. 2015; Tahmasebi and Pakniyat 2015; Muneer et al.
2017; Abdelrahman et al. 2017a), heavy metal/metalloid accumulation (reviewed
by Wani et al. 2018b; Kohli et al. 2018; Shi et al. 2018; Zaid et al. 2019), deficiency
of mineral nutrients (Gill and Tuteja 2010; Liu et al. 2018), air pollution (Lodovici
and Bigagli 2011; Lakey et al. 2016), hazardous gases (Muneer and Lee 2018),
herbicides (Islam et al. 2016), and pathogen attack (De Gara et al. 2003; Torres
et al. 2006; Torres 2010) lead to abrupt increase in endogenous ROS levels which
in turn can lead to a state of “oxidative stress,” thereby altering normal activities
and causing cell death (Fig. 7.2) by damaging genetic makeup, oxidation of pro-
teins, peroxidation of lipid bilayer, and leakage of ions. ROS accumulation due to
various environmental stresses is a principal factor of decrease in global crop
productivity (Khan and Singh 2008; Tuteja 2010; Khan and Khan 2017). In the
complete sequence of events, ROS can lead to the initiation of new responses by
triggering the expression of new genes. However, plants employ a sessile lifestyle
and for countering oxidative stress-induced ROS bioaccumulation, they have
evolved antioxidant defense systems that include enzymatic antioxidants which
include battery of scavenger proteins, such as superoxide dismutase (SOD), mon-
odehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR),
catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), glu-
tathione peroxidase (GPX), and peroxiredoxin (PRX) and non-enzymatic antioxi-
dants, such as ascorbic acid (vitamin C), reduced glutathione (GSH), tocopherols
(vitamin E), carotenoids, and phenolic compounds (Ahmad et al. 2010; Rejeb et al.
2014; Inupakutika et al. 2016; Dar et al. 2017; Pandey et al. 2017; Abdelrahman
et al. 2018; Mohanta et al. 2018). Also, osmolytes such as proline and glycine
betaine present in microbes, animals, and plants are known to alleviate the inhi-
bitory effects of ROS (Kumar and Yadav 2009; Iqbal et al. 2015; Noreen et al.
2018) (Fig. 7.2).

7.2 Types of ROS, Their Chemistry, and the Underlying
Detoxification Systems

As mentioned in the above section, there are various types of ROS which are
generated under various stressful environments. According to Temple et al. (2005),
the presence of atmosphere O2 enabled metabolism of respiration and energy
transfer systems to use O2 as terminal oxidant. This leads to ROS formation in cells.
Atmospheric O2 can relatively give rise to various intermediate ROS by the uni-
valent reduction reactions, which otherwise is non-reactive in its ground state
(Scandalios 2005). Also, the availability of d block elements such as copper and
iron, which further catalyze the reactions through the Haber-Weiss mechanism or
the Fenton reaction, gives rise to the formation of OH˙, which is regarded as the
most reactive chemical species in the biological systems. In the accompanying
section, we are schematically representing the formation of various ROS in bio-
logical world.

114 A. Zaid and S. H. Wani



(1) Hydroxyl radical ( OH�)

H2O2 þO��
2 !Fe2þ ; 3þ

OH� þO2 þOH�

(2) Superoxide radical ( O��
2 )

O��
2 þ Fe3þ ! 1O2 þ Fe2þ

2O��
2 þ 2Hþ ! O2 þH2O2Fe

3þ

Fe2þ þH2O2 ! Fe3þ þOH� þOH� Fenton reactionð Þ

(3) Singlet oxygen (1O2)

Chl ! 3Chl

3Chlþ 3O2 ! Chlþ 1O2

Fig. 7.2 A schematic representation depicting the production and detoxification of reactive
oxygen species in plants through the antioxidant defense system
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(4) Hydrogen peroxide (H2O2)

2O��
2 þ 2Hþ ! H2O2 þO2

2O��
2 þ 2Hþ !SODH2O2 þO2

These ROS are generated continuously at chloroplast, mitochondria, endoplas-
mic reticulum, peroxisomes, apoplast, cell membrane, and cell wall. The generation
of ROS in different cell components has been depicted in Fig. 7.3.

A brief description of their generation in cell compartments is as follows:
Hydroxyl radical (OH˙) is generated by Fenton reaction and is most reactive

ROS known. In cell systems, (OH˙) radicals are largely responsible for oxidation of
DNA, lipids, proteins (Sharma et al. 2012; Sewelam et al. 2016). They have the
distinction in cells in the manner that (OH˙) radicals do not have any enzymatic
antioxidants for their elimination (Vranová et al. 2002, Pinto et al. 2003; Gill and
Tuteja 2010).

Operation of photosynthesis under stress conditions results in absorption of light
energy in excess more than the capacity of photosynthetic machinery to utilize it
through photosynthetic electron transport chain (Végh et al. 2018). This results in
the formation of singlet oxygen (1O2) at photosystem PS (II) and superoxide radical
(O��

2 ) at PSI and PSII, respectively (Schmitt et al. 2014; Foyer 2018). As repre-
sented in Fig. 7.3, singlet oxygen (1O2) is formed by the reaction of triplet state of
chlorophyll (3Chl) with molecular O2 (Das and Roychoudhury 2014). At PSII, the
excess energy absorbed by the 3Chl is transferred to molecular O2 to give rise to the
1O2.

1O2 is thus a strong oxidant molecule that causes oxidation of macromolecules
leading to cellular “damage” (Watabe et al. 2007). Singlet oxygen (1O2) is thus
responsible for much of the oxidative inactivation during over-excitation of the
photosynthetic electron transport chain (Telfer 2014). Superoxide radical (O��

2 ) is
the first ROS to be formed in plant tissues as only 1–2% of total O2 consumption in
cell tissues leads to their formation (Puntarulo et al. 1988). O��

2 radicals may further
lead to the generation of more toxic ROS like (OH˙) and (1O2) as depicted above
(Halliwell 2006; Gill and Tuteja 2010). H2O2 among all ROS is moderate ROS
species and plays a dual role in plant signaling at low concentrations, it acts as a
signaling molecule to mitigate biotic and abiotic stresses, at high levels, and it
triggers cell death (Hossain et al. 2015; Cuypers et al. 2016; Khan et al. 2018).
Production of H2O2 involves two-step electron reduction of O��

2 (reaction 4). As
represented in reaction 4, superoxide dismutase (SOD) catalyzes the second
reduction step of O��

2 which is finally converted into H2O2 (Sharma et al. 2012). As
compared to other ROS, H2O2 has got a long half-life of 1 ms (Møller et al. 2007).
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Fig. 7.3 Production sites of different reactive oxygen species (ROS) in plants. ROS are
biosynthesized at various locations in the cells like chloroplast, mitochondria, plasma membrane,
peroxisomes, apoplast, endoplasmic reticulum, and cell wall. The figure also shows the
components of cell structures where ROS are produced
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7.3 Antioxidant Batteries in Plants for Excess ROS
Detoxification

As mentioned in the introductory part that plant stress tolerance mechanisms
involve activation of the antioxidant defense system. The antioxidant defense
system among others consists of antioxidants which are present in almost all cel-
lular compartments that demonstrate their ability to detoxify ROS for plant survival.
As ROS trigger the gene expression and signal transduction pathways in response
to various stress-response programs, thus the antioxidant proteins are activated as
and when ROS concentration exceeds the threshold. Here in the present section, we
have covered the components of an antioxidant defense system that include
enzymatic (SOD, CAT, APX, MDHAR, DHAR, and GR) and non-enzymatic
(GSH, ASA, carotenoids, and tocopherols) antioxidants which are directly or
indirectly engaged in the detoxification of ROS.

7.3.1 Enzymatic Antioxidants

7.3.1.1 Superoxide Dismutase (SOD, EC 1.15.1.1)
SOD is an intracellular ubiquitous enzymatic antioxidant which belongs to the
metalloenzyme family present universally in all aerobic organisms. SOD is known
to provide first the line of defense against excess (O��

2 ) in the chloroplast, mito-
chondria, peroxisomes, and cytosol (Gill and Tuteja 2010).

O��
2 þO��

2 þ 2Hþ !SOD H2O2 þO2

The reaction shows the dismutation of O��
2 radical into molecular oxygen and

hydrogen peroxide, and the reaction rate is 10,000 times faster than the spontaneous
dismutation (Das and Roychoudhury 2014). SOD contains isoenzyme cofactors,
viz. Mn-SOD, Fe-SOD, and Cu/Zn-SOD (Alscher et al. 2002), all of which function
in the dismutation of O��

2 , thus overcoming O��
2 radical-induced oxidative stress. An

increase in SOD activity has been reported in diverse plants subjected to various
environmental pressures such as salt stress (Ahmad et al. 2018), heavy metal
toxicity (Zaid and Mohammad 2018; Zaid et al. 2019), pesticide stress (Fatma et al.
2018), ozone (Chen et al. 2018), wounding (Si et al. 2017, 2018), cold stress (Wani
et al. 2018c; Sheteiwy et al. 2018), and drought (Ahmad et al. 2017; Moazzam-Jazi
et al. 2018).

7.3.1.2 Catalase (CAT, EC 1.11.1.6)
Catalases are heme-possessing antioxidant enzymes having ability to directly
scavenge H2O2 into H2O and O2.

2H2O2 !CAT 2H2OþO2
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As reviewed by Gill and Tuteja (2010), CAT has highest reaction turnover rates
and one molecule of CAT can dismute approximately 6 million molecules of H2O2

to H2O and O2 in the 60 s time span. Animal cells contain only one CAT isoform,
while plant cells are characterized by a couple of CATs (Iwamoto et al. 1998). As
peroxisomes are the main sites of H2O2 production, however, CATs in plants also
exist in chloroplasts, mitochondria, and cytosol. The expression and activity of
CATs are triggered when plants are exposed to various kinds of abiotic stresses
such as nematode (Vicente et al. 2015), arbuscular mycorrhizal fungi (Hashem et al.
2018), heavy metal (Zaid and Mohammad 2018), drought (Wang et al. 2018a),
salinity (Fariduddin et al. 2018), cold (Jan et al. 2018a), heat (Rai et al. 2018), and
UV radiation (Mariz-Ponte et al. 2018).

7.3.1.3 Enzymes of Ascorbate–Glutathione (AsA-GSH) Cycle
The AsA-GSH pathway consists of four enzymes, namely ascorbate peroxidase
(APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase
(DHAR), and glutathione reductase (GR) (Fig. 7.4), and two non-enzymatic
antioxidant proteins, viz. ascorbate (AsA) and glutathione (GSH). In the accom-
panying section, we are discussing them one by one that how ASA-GSH pathway
operates to eliminate excess ROS in plants.

7.3.1.4 Ascorbate Peroxidase (APX, E.C.1.1.11.1)
APX is the first enzyme of the AsA-GSH cycle, which detoxifies H2O2 by causing
peroxidation of AsA and yielding water and monodehydroascorbate (MDHA)
radical (Asada 1999; Pandey et al. 2015) (Fig. 7.4). MDHA is then either converted
to dehydroascorbate (DHA) non-enzymatically or reduced back to AsA by an
enzyme (MDHAR). The reaction involved is represented below:

H2O2 þ 2AsA !APX 2H2Oþ 2MDHA ð! 2DHAÞ

Five APX isoforms have been discovered in plants, namely cytosolic (cAPX),
mitochondrial (mitAPX), stromal (sAPX), membrane-bound APXs present in
chloroplasts (tAPX), and peroxisomes/glyoxysomes (Asada 1999; Caverzan et al.
2012; Anjum et al. 2014). Over-expression of genes related to APX has been shown
to mediate stress tolerance to various abiotic stresses in various crop plants.

H2O2

APX

H2O 

AsA

DHAR

GSH

NADPH

NADP
DHA

MDHA 

MDHAR 
GSSG

GR

Fig. 7.4 Schematic representation of ascorbate–glutathione cycle showing enzymes and forma-
tion of reducing equivalents. Details are described in the text
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For example in Jatropha curcas plants, quantitative polymerase chain reaction
(qPCR) analysis showed over-expressing a thylakoid APX was responsible for
conferring salt stress tolerance (Liu et al. 2013). In another study, ectopic
over-expression of the peroxisomal APX gene (SbpAPX) conferred salt stress tol-
erance in Arachis hypogea plants (Singh et al. 2014). In a recent study, Balfagón
et al. (2018) found that APX is the chief protein to be involved in citrus tolerance to
combined conditions of drought and high temperatures. In sorghum, Akbudak et al.
(2018) reported the genome-wide identification and expression profiling of APX
gene families under drought stress conditions and found that APX families in leaves
and roots showed significant changes in their expression levels, which, therefore,
regulate drought stress tolerance. Employing bioinformatics approaches, Ozyigit
et al. (2016) presented a comparative evaluation of APX gene/protein families in 18
different plant species. They analyzed the exon/intron organization of APX, studied
and identified conserved motif signatures of APX, constructed the phylogenetic
trees and 3D models of APX families, and analyzed the APX gene expression
profiles. They conclude that APX is major H2O2-scavenging enzymes in plants.

7.3.1.5 Monodehydroascorbate Reductase (MDHAR, E.C.1.6.5.4)
MDHAR is a flavin adenine dinucleotide (FAD) enzyme which is responsible for
rejuvenating AsA from the short-lived MDHA radical by using NADPH as an
electron donor agent, thus maintaining reduced AsA pool in cellular tissues
(Sharma et al. 2012). MDHA can react non-enzymatically to form DHA (Fig. 7.4).
The reaction catalyzed by MDHAR is represented below:

NADPH + H+ + 2MDHA MDHAR 2AsA+NADP+

                             2DHA 

MDHAR contains several isozymes present in the chloroplast, mitochondria,
peroxisomes, cytosol, and glyoxysomes (Foyer and Halliwell 1976; Reumann and
Corpas 2010). Modulated MDHAR activity has been observed in diverse crop
plants in response to various abiotic stresses such as salinity (Ahanger et al. 2018),
metal toxicity (Jan et al. 2018b; Hasanuzzaman et al. 2017), drought stress (Sharma
and Dubey 2005), ultraviolet-B stress (Shiu and Lee 2005), and high-temperature
stress (Nahar et al. 2015). Nevertheless, over-expression of MDHAR gene (AtM-
DAR1) in the cytosol has been shown to minimize the deleterious effects of ozone,
salt, and polyethylene glycol-induced stress in transgenic tobacco plants (Eltayeb
et al. 2007). These transgenic plants were found to exhibit up to 2.1-fold higher
MDHAR activity as compared to wild-type plants. In yet another experiment, Li
et al. (2010) observed that over-expression of chloroplastic MDHAR increased
tolerance to temperature and methyl viologen-induced oxidative stresses by alle-
viating photoinhibition of PSI and PSII and elevating AsA pool. These results
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suggest that an over-expressed MDHAR level confers enhanced tolerance against
multiple abiotic stresses in plants.

7.3.1.6 Dehydroascorbate Reductase (DHAR, EC.1.8.5.1)
DHAR brings the reduction of DHA to AsA using reduced glutathione (GSH) as
the reducing substrate (Ushimaru et al. 1997; Das and Roychoudhury 2014)
(Fig. 7.4). It is thus the second enzyme apart from MDHAR which maintains the
redox pool of AsA in plant cells (Qin et al. 2011). The reaction catalyzed by DHAR
is given below:

DHAþGSH !DHARAsAþGSSG

DHAR also showed tolerance to abiotic stress. In an experiment, Eltayeb et al.
(2011) demonstrated that transgenic potato plants over-expressing Arabidopsis
AtDHAR1 gene showed tolerance against herbicide, drought, and salt stresses.

7.3.1.7 Glutathione Reductase (GR, E.C.1.6.4.2)
GR is a flavoprotein having a disulfide bond which catalyzes the
NADPH-dependent reduction of oxidized glutathione (GSSG) to reduce glutathione
(GSH), is thus important for maintaining the reduced redox pool of GSH, and thus
maintains homeostatic redox balance in cellular environment (Ghisla and Massey
1989; Gill and Tuteja 2010; Achary et al. 2015) (Fig. 7.4). As depicted in Fig. 7.4,
GSH is used to regenerate AsA from DHA by DHAR enzyme and is itself con-
verted to GSSG. GR is thus a crucial enzyme in AsA-GSH cycle to maintain
GSH/GSSG ratio. The reaction involved is:

GSSGþNADPH!GRGSHþNADP

7.3.2 Non-enzymatic Antioxidants

7.3.2.1 Reduced Glutathione (GSH)
GSH is a tripeptide (c-glutamyl-cysteinyl-glycine) molecule, having a low molec-
ular weight, and is one of the crucial nonprotein sulfur-containing thiols in plants to
scavenge ROS and ROS-induced oxidative damage. It has been detected abundantly
in reduced form (GSH) and is present in all cellular compartments like apoplast,
endoplasmic reticulum, cytosol, vacuole, mitochondria, chloroplasts, peroxisomes
(Foyer and Noctor 2003). GSH provides a reducing environment by functioning as
an antioxidant molecule in several ways. In plants, GSH production imparts chilling
stress tolerance (Lukatkin and Anjum 2014), metal/metalloid tolerance (Per et al.
2017; Kim et al. 2017), high-temperature stress tolerance (Nahar et al. 2015), and
salt stress tolerance (Zhou et al. 2018). GSH is involved in redox signaling, regu-
lation and modulation of enzymatic activities, and expression of defense gene during
biotic and abiotic stresses (Zechmann 2014; Anjum et al. 2012). In the AsA-GSH

7 Reactive Oxygen Species Generation, Scavenging and Signaling … 121



cycle, as represented in Fig. 7.4, GSH acts as a reductant to reduce DHA to AsA
enzymatically and is itself oxidized to GSSG which indicates that GSH plays a
crucial role in maintaining AsA pool in the cellular environment (Noctor et al. 1998).
On the other hand, GSSG is reduced back to GSH by GR in the presence of reducing
equivalents. This process replenishes and maintains a cellular redox of GSH which
provides a reducing environment during stress conditions.

7.3.2.2 Ascorbate
AsA (vitamin C) is the most abundant water-soluble antioxidant molecule and is
regarded as a key electron donating substrate to detoxify excess ROS (Khan et al.
2011; Qian et al. 2014; Akram et al. 2017). In plant cells, biosynthesis of AsA takes
place in mitochondria as a result of the Smirnoff-Wheeler pathway (Wheeler et al.
1998). AsA protects cells and their organelles from toxic ROS produced as a result
of biotic and abiotic stresses (Khan et al. 2012; Naz et al. 2016), controls division of
cells, and acts as a cofactor of many enzymes (Lisko et al. 2014). Exogenous
application of AsA increases resistance in plants against various abiotic stresses. In
a study involving young peach trees, Penella et al. (2017) applied foliar AsA to
improve their performance after rewatering the plants. Their results suggested that
AsA improved water stress tolerance under suboptimal water regimes. In yet
another study, Xu et al. (2015) found that AsA mitigated the water stress-induced
root growth in tall fescue by increasing the antioxidative defense system. In wheat
plants, Alamri et al. (2018) applied AsA to improve their tolerance against lead
toxicity. They concluded that AsA-induced lead stress tolerance was associated
with improved plants’ defense systems, content of essential nutrients, reduced
chlorophyll degradation, increased cysteine accumulation, maintained relative water
content, and the enhancement in the activities of enzymes like ATP sulfurylase,
ribulose-1,5-bisphosphate carboxylase/oxygenase, nitrate reductase, and
O-acetylserine(thiol)lyase. In Arabidopsis, AsA has been shown to trigger the
release of the cytosolic-free calcium, which is essential in plant signaling phe-
nomenon (Makavitskaya et al. 2018). Thus, it is evident from the above discussion
that AsA imparts stress tolerance by modulating various plant mechanisms.

7.3.2.3 Carotenoids
Carotenoids are a class of lipophilic antioxidant molecule present in plants, algae,
and microorganisms (Young 1991; Ahmad et al. 2010; Abdelrahman et al. 2016;
Patias et al. 2017). Carotenoids play an essential role in different plant processes and
are characterized with antioxidant potential during plant stress signaling by acting as
light harvesters by dissipating excess light as heat, light quenchers, and their ability
to scavenge the triplet chlorophyll (3Chl*) state and ROS (Uarrota et al. 2018). They
are also precursors of abscisic acid and strigolactones (Ruiz-Sola and Rodrí-
guez-Concepción 2012). As ROS scavenger, carotenoids prevent oxidative stress
and confer abiotic stress in plants. Carotenoids protect the photosynthetic machinery
from ROS-induced oxidative stress (Srichandan et al. 1989). In a study carried out
by Wang et al. (2018c), over-expression of alfalfa gene (MsOr) in tobacco increased
tolerance to multiple abiotic stresses along with enhanced carotenoid content
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showing possible cross talk between stress tolerance and carotenoid accumulation.
In a classical study involving cyanobacterial species, Patias et al. (2017) found that
the carotenoid extracts were shown to be a potent scavenger of peroxyl radical,
having peroxyl radical scavenger ability. In mango plants during ROS stress sig-
naling, Rosalie et al. (2018) proposed a link made between antioxidant system
defense and carotenoid metabolism. In response to drought stress, over-expression
of a carotenoid e-hydroxylase gene (SlLUT1) in transgenic tobacco plants improved
drought stress tolerance by maintaining photosynthesis as well as scavenging of
ROS (Wang et al. 2018b). In Arabidopsis thaliana, Caliandro et al. (2013) high-
lighted the proper regulation of altered a- and b-branch carotenoid biosynthesis in
maintaining leaf photoprotection and whole-plant acclimation in response to pho-
tooxidative stress.

7.3.2.4 Tocopherols
Tocopherols are considered as lipid-soluble antioxidant molecules which contribute
to plant resistance to biotic and abiotic stresses (Munne-Bosch 2005; Cela et al.
2018). Tocopherols are exclusively present in thylakoid membranes or in plastids
and have four isomers (a-, b-, c-, and d-) with a-tocopherol (vitamin E) possessing
highest biological activity and antioxidant capability. Along with other antioxi-
dants, tocopherols play a principal role in reducing ROS level in photosynthesizing
apparatus and protect photosynthetic membranes from lipid peroxidation to main-
tain the stability of membranes under various stress environments (Munné-Bosch
and Alegre 2002; Munné-Bosch et al. 2013). Supply of tocopherols increases
resistance in plants against various abiotic stress conditions. In water-stressed Vigna
radiata cultivars, Sadiq et al. (2017) applied tocopherol which considerably
improved antioxidant enzyme activities (SOD, POD, and CAT), chlorophyll con-
tent, and also the composition of fresh pods in both the cultivars. In Arabidopsis
thaliana, vitamin E played an essential role in enhancing tolerance to metal-induced
oxidative stress (Collin et al. 2008). In response to 75 lM Cu and Cd treatment,
transcript levels of genes encoding enzymes of the vitamin E biosynthetic pathway
were found to be increased, while tocopherol-deficient (vte1) mutant showed an
enhanced sensitivity toward 75 lM Cu and Cd treatment as compared to the rel-
ative wild-type (WT) control. As tocopherols protect PSII from photoinhibition,
lack of tocopherol modulates the PSII antenna and thus the functioning of PSI and
II under light conditions (Niewiadomska et al. 2018); however, in tocopherol
mutants (vte1) action of ROS (1O2) on PSII resulted in permanent damage at
light-harvesting complex II and at PSII core. In response to biotic stress, an
alteration in the composition of tocopherol in chloroplasts negatively influences the
Arabidopsis thaliana response to stress condition by causing marked changes in
fatty acid membrane composition, highest peroxidation of lipids, and altered acti-
vation of the defense system (Cela et al. 2018).

7.3.2.5 Phenolic Compounds
Phenolics are diverse secondary metabolites found widely in plant tissues. These
possess antioxidant capacity. Commonly studied plant phenolics in relation to
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abiotic stress are flavonoids, tannins, hydroxycinnamate esters, and lignins.
Antioxidative properties of polyphenols are due to

(1) ability to chelate ions of heavy metals,
(2) high reactivity as a donor of electrons or hydrogen,
(3) radical derived from polyphenols which stabilize unpaired and unstable

electrons which have chain-breaking functions (Rice-Evans et al. 1997).

Phenolic compounds engineer plants’ stress tolerance. In a study involving
Scrophularia striata plants, Falahi et al. (2018) showed that water stress alleviation
by phenolic compounds is mediated by cross talk between nitric oxide and H2O2.
Key enzymes of phenolic pathways like phenylalanine ammonia-lyase (PAL) and
tyrosine ammonia-lyase (TAL) were increased and were deployed in response to
the stress mitigation. In a recent study, Siddiqui et al. (2018) found that PAL in
beetroot increased when plants were infected with pathogenic microbes. Thus, these
pieces of evidence clearly indicate that phenolic compounds are directly or indi-
rectly involved in imparting resistance to a range of stresses in plants.

7.4 Conclusion and Future Directives

During the last few decades, a rich development in our knowledge of ROS
chemistry, biosynthesis, and regulation in the context of abiotic stress tolerance has
emerged. However, the exact underlying ROS-signaling pathways largely remain a
mystery. In the present chapter, we attempt to address the regulatory role of ROS in
plant abiotic defense responses and discuss at length how batteries of the antioxi-
dant defense machinery, the antioxidant enzymes, and the non-antioxidant
metabolites work in coordination to alleviate the oxidative damage induced by
various ROS to engineer tolerance against various environmental stress conditions.
By collecting the literature, we have tried here to unravel the basic chemistry of
various ROS and the ameliorative role of various enzymatic and non-enzymatic
antioxidants in imparting plant abiotic stress tolerance. Undoubtedly, the current
concept may increase our understanding of the field of ROS biosynthesis and
signaling in plant defense responses. Further research is needed to accurately
explain the complex regulatory mechanisms that integrate ROS-signaling pathways
for regulating growth and development of plants under abiotic stresses. Functional
genomic techniques, along with metabolomics and proteomics, will give detailed
insights into the regulation of ROS-signaling networks and the crucial role played
by the antioxidant defense system during plants’ responses to various environ-
mental pressures. These concepts might pave the way for the development of
transgenic approaches to engineer tolerance for optimization of crop performance,
under multiple stresses in the future.
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