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Foreword

International concern in scientific, industrial, and governmental communities over
traces of xenobiotics in foods and in both abiotic and biotic environments has
justified the present triumvirate of specialized publications in this field: compre-
hensive reviews, rapidly published research papers and progress reports, and
archival documentations These three international publications are integrated and
scheduled to provide the coherency essential for nonduplicative and current pro-
gress in a field as dynamic and complex as environmental contamination and
toxicology. This series is reserved exclusively for the diversified literature on
“toxic” chemicals in our food, our feeds, our homes, recreational and working
surroundings, our domestic animals, our wildlife, and ourselves. Tremendous
efforts worldwide have been mobilized to evaluate the nature, presence, magnitude,
fate, and toxicology of the chemicals loosed upon the Earth. Among the sequelae of
this broad new emphasis is an undeniable need for an articulated set of authoritative
publications, where one can find the latest important world literature produced by
these emerging areas of science together with documentation of pertinent ancillary
legislation.

Research directors and legislative or administrative advisers do not have the
time to scan the escalating number of technical publications that may contain
articles important to current responsibility. Rather, these individuals need the
background provided by detailed reviews and the assurance that the latest informa-
tion is made available to them, all with minimal literature searching. Similarly, the
scientist assigned or attracted to a new problem is required to glean all literature
pertinent to the task, to publish new developments or important new experimental
details quickly, to inform others of findings that might alter their own efforts, and
eventually to publish all his/her supporting data and conclusions for archival
purposes.

In the fields of environmental contamination and toxicology, the sum of these
concerns and responsibilities is decisively addressed by the uniform, encompassing,
and timely publication format of the Springer triumvirate:
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Reviews of Environmental Contamination and Toxicology [Vol. 1 through 97
(1962–1986) as Residue Reviews] for detailed review articles concerned with
any aspects of chemical contaminants, including pesticides, in the total environ-
ment with toxicological considerations and consequences.

Bulletin of Environmental Contamination and Toxicology (Vol. 1 in 1966) for
rapid publication of short reports of significant advances and discoveries in the
fields of air, soil, water, and food contamination and pollution as well as
methodology and other disciplines concerned with the introduction, presence,
and effects of toxicants in the total environment.

Archives of Environmental Contamination and Toxicology (Vol. 1 in 1973) for
important complete articles emphasizing and describing original experimental or
theoretical research work pertaining to the scientific aspects of chemical con-
taminants in the environment.

The individual editors of these three publications comprise the joint Coordinating
Board of Editors with referral within the board of manuscripts submitted to one
publication but deemed by major emphasis or length more suitable for one of the
others.

Coordinating Board of Editors
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Preface

The role of Reviews is to publish detailed scientific review articles on all aspects of
environmental contamination and associated (eco)toxicological consequences.
Such articles facilitate the often complex task of accessing and interpreting cogent
scientific data within the confines of one or more closely related research fields.

In the 50+ years since Reviews of Environmental Contamination and Toxicology
(formerly Residue Reviews) was first published, the number, scope, and complexity
of environmental pollution incidents have grown unabated. During this entire
period, the emphasis has been on publishing articles that address the presence
and toxicity of environmental contaminants. New research is published each year
on a myriad of environmental pollution issues facing people worldwide. This fact,
and the routine discovery and reporting of emerging contaminants and new envi-
ronmental contamination cases, creates an increasingly important function for
Reviews. The staggering volume of scientific literature demands remedy by which
data can be synthesized and made available to readers in an abridged form. Reviews
addresses this need and provides detailed reviews worldwide to key scientists and
science or policy administrators, whether employed by government, universities,
nongovernmental organizations, or the private sector.

There is a panoply of environmental issues and concerns on which many
scientists have focused their research in past years. The scope of this list is quite
broad, encompassing environmental events globally that affect marine and terres-
trial ecosystems; biotic and abiotic environments; impacts on plants, humans, and
wildlife; and pollutants, both chemical and radioactive; as well as the ravages
of environmental disease in virtually all environmental media (soil, water, air).
New or enhanced safety and environmental concerns have emerged in the last
decade to be added to incidents covered by the media, studied by scientists, and
addressed by governmental and private institutions. Among these are events so
striking that they are creating a paradigm shift. Two in particular are at the center
of ever increasing media as well as scientific attention: bioterrorism and global
warming. Unfortunately, these very worrisome issues are now superimposed on
the already extensive list of ongoing environmental challenges.
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The ultimate role of publishing scientific environmental research is to enhance
understanding of the environment in ways that allow the public to be better
informed or, in other words, to enable the public to have access to sufficient
information. Because the public gets most of its information on science and
technology from internet, TV news, and reports, the role for scientists as inter-
preters and brokers of scientific information to the public will grow rather than
diminish. Environmentalism is an important global political force, resulting in the
emergence of multinational consortia to control pollution and the evolution of the
environmental ethic. Will the new politics of the twenty-first century involve a
consortium of technologists and environmentalists, or a progressive confrontation?
These matters are of genuine concern to governmental agencies and legislative
bodies around the world.

For those who make the decisions about how our planet is managed, there is an
ongoing need for continual surveillance and intelligent controls to avoid endanger-
ing the environment, public health, and wildlife. Ensuring safety-in-use of the many
chemicals involved in our highly industrialized culture is a dynamic challenge,
because the old, established materials are continually being displaced by newly
developed molecules more acceptable to federal and state regulatory agencies,
public health officials, and environmentalists. New legislation that will deal in an
appropriate manner with this challenge is currently in the making or has been
implemented recently, such as the REACH legislation in Europe. These regulations
demand scientifically sound and documented dossiers on new chemicals.

Reviews publishes synoptic articles designed to treat the presence, fate, and, if
possible, the safety of xenobiotics in any segment of the environment. These
reviews can be either general or specific, but properly lie in the domains
of analytical chemistry and its methodology, biochemistry, human and animal
medicine, legislation, pharmacology, physiology, (eco)toxicology, and regulation.
Certain affairs in food technology concerned specifically with pesticide and other
food-additive problems may also be appropriate.

Because manuscripts are published in the order in which they are received in
final form, it may seem that some important aspects have been neglected at times.
However, these apparent omissions are recognized, and pertinent manuscripts are
likely in preparation or planned. The field is so very large and the interests in it are
so varied that the editor and the editorial board earnestly solicit authors and
suggestions of underrepresented topics to make this international book series yet
more useful and worthwhile.

Justification for the preparation of any review for this book series is that it deals
with some aspect of the many real problems arising from the presence of anthro-
pogenic chemicals in our surroundings. Thus, manuscripts may encompass case
studies from any country. Additionally, chemical contamination in any manner of
air, water, soil, or plant or animal life is within these objectives and their scope.

Manuscripts are often contributed by invitation. However, nominations for new
topics or topics in areas that are rapidly advancing are welcome. Preliminary
communication with the Editor-in-Chief is recommended before volunteered
review manuscripts are submitted. Reviews is registered in WebofScience™.
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Inclusion in the Science Citation Index serves to encourage scientists in academia
to contribute to the series. The impact factor in recent years has increased from 2.5
in 2009 to 7.0 in 2017. The Editor-in-Chief and the Editorial Board strive for a
further increase of the journal impact factor by actively inviting authors to submit
manuscripts.

Amsterdam, The Netherlands Pim de Voogt
August 2018
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Abbreviations

CEC Council of the European Communities
CR Cancer risk
CSF Cancer slope factor
EPA Environmental Protection Agency
EU European Union
HI Hazard quotient index
HQ Hazard quotient
M-K Mann-Kendall
MLR Multiple linear regression
PCA Principal component analysis
RFD Reference dose
UNECE United Nations Economic Commission for Europe
US United States

1 Introduction

In recent decades, heavy metal pollution has become a global environmental issue
and the prime focus of environmental security. Such heavy metals derive from both
natural sources, such as rock weathering, and anthropogenic sources, such as
mining, manufacturing, fertilizer and pesticide use, and waste discharge (Hu et al.
2015; Huang et al. 2015; Ren et al. 2015; Facchinelli et al. 2001; Muhammad et al.
2011). In the last half of the twentieth century, the global amount of heavy metals
released to the environment amounted to 22,000 ton of Cd, 939,000 ton of Cu,
783,000 ton of Pb, and 1,350,000 ton of Zn (Singh et al. 2003). Given their
solubility, heavy metals can be dispersed by water and, subsequently, contaminate
water ecosystems (Nguyen et al. 2005; Jiang et al. 2012; Ağca et al. 2014). In the
Buriganga River (Bangladesh), the dissolved metal concentration amounted to
126 μg L�1 of Cd, 805 μg L�1 of Pb, 5,274 μg L�1 of Cr, and 595 μg L�1 of As
in 2006 (Bhuiyan et al. 2011). Such high levels of heavy metals in surface water pose
a direct threat to human health and require urgent attention, as well as further
research (Muhammad et al. 2011; Gao et al. 2016).

In an effort to reduce the health risks associated with heavy metal pollution,
action has been taken worldwide to control their sources. Since the 1970s, the
Congress of the United States (US) has mandated the Federal Environmental
Protection Agency (EPA) to regulate the manufacturing, processing, commercial
use, labeling, and disposal of such harmful substances (Babich and Stotzky 1985).
During the 1980s, the attention of this organization was directed toward regulating
the permitted maximum metal concentrations in fertilizers and the maximum metal
loading in agricultural land (Mortvedt 1996). In the 1990s, the European Community
(now the European Union [EU]) obligated the collection and treatment of municipal
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wastewater and prohibited the disposal of wastewater to surface water (CEC 1991).
In the 2000s, the Chinese government prohibited the use of leaded gasoline nation-
wide and issued stricter local emission standards for coal combustion (Duan and Tan
2013).

Measures that successfully control the sources of heavy metal pollution lead to a
reduction in the amount of heavy metals released to the environment and, eventually,
reduce the metal concentrations in surface water. However, to date, no published
research has reported on global levels of heavy metal pollution in water bodies such
as rivers and lakes. Therefore, this study collected concentrations of 12 dissolved
heavy metals (Cd, Pb, Cr, Zn, Cu, Ni, Mn, Fe, Hg, Al, As, and Co) in global river
and lake water bodies from published papers and investigated the trends and health
risks from 1970 to 2017 (note, data for the latter four metals were insufficient for
analysis). The aim of the study was to explore the sources of heavy metal pollution
on decadal and continental scales, to assess the effects of implemented countermea-
sures for pollution control, and to determine successful measures that could be
adopted worldwide.

2 Materials and Methods

2.1 Data Collection

Data on the dissolved concentrations of 12 heavy metal species (Cd, Pb, Cr, Zn, Cu,
Ni, Mn, Fe, Hg, Al, As, and Co) in river and lake water worldwide were collected
initially from published papers (using a search conducted in Google Scholar and
Web of Science). Each sample was assigned a specific year according to the reported
sampling date, as follows: for a single sampling year, that year was used; for a
sampling range of 1–2 years, the first year was used; and for a sampling range of
more than 2 years, the middle year was used. When the sampling date was not
provided, the year prior to publication was used. The samples we reviewed had been
collected from a total of 120 rivers and 116 lakes in Africa, Asia, Europe, North
America, Oceania, and South America and selected from pristine areas, polluted
areas, urban area, and estuarine area over the period 1970–2017 (Tables 1, 2, and 3).

2.2 Trend Assessment

In our study, we employed the Mann-Kendall (M-K) test (Mann 1945; Kendall
1975), used extensively to detect change trends in heavy metal pollution over time
(Gao et al. 2016; Sharley et al. 2016). As the amount of collected data (number of
rivers or lakes) changed by year, the data were classified into five decadal groups
(1970–1979, 1980–1989, 1990–1999, 2000–2009, and 2010–2017) to improve the
exploration of the trends in dissolved heavy metal pollution in water. The mean

Trends and Health Risks of Dissolved Heavy Metal Pollution in Global. . . 3



Table 1 Regional distribution of the rivers and lakes considered in this study

Continents

Rivers Lakes

Number Name of typical rivers Number Name of typical lakes

Africa 13a Congo River, Niger River,
Nile River, Nyando River,
Nzoia River

4b Kainji Lake, Nasser Lake,
Victoria Lake

Asia 75c Aras River, Brahmaputra
River, Buriganga River,
Ganga River, Lean River,
Mekong River, Ob River,
Pearl River, Pechora River,
Tigris River, Yangtze River,
Yellow River, Yenisey River

97d Ataturk Dam Lake, Bolgoda
Lake, Chaohu Lake,
Dongting Lake, Hazar Lake,
Hussainsagar Lake, Poyang
Lake, Qinghaihu Lake,
Taihu Lake, Tasik Chini
Lake

Europe 18e Arno River, Danube River,
Dordogne River, Elbe River,
Mersey River, Rhône River,
Stour River, Tiber River

11f Balaton Lake, Hampen
Lake, Sortesø Lake, Venice
Lagoon

North
America

4g Arkansas River, Mississippi
River, Tippecanoe River

4h Ivanhoe Lake, Palestine
Lake, Thompson Lake

South
America

7i Amazon River, Orinoco
River, Paraiba do Sul-Guandu
River, Pilcomayo River, Sinos
River

– –

Oceania 3j South Alligator River, South
Esk River, St. Paul’s River

– –

aDorten et al. (1991), Lalah et al. (2008), Dupré et al. (1996), Banzi et al. (2015), Krika and Krika
(2017), and Faton et al. (2015)
bRashed (2001), Muwanga and Barifaijo (2006), and Oyewale and Musa (2006)
cPolprasert (1982), Cenci and Martin (2004), Elbaz-Poulichet et al. (1987), Huang et al. (1988),
Guay et al. (2010), Martin et al. (1993), Guieu et al. (1996), Dai and Martin (1995), Bradley and
Woods (1997), Shiller and Boyle (1987), Cui et al. (2011), Li et al. (2013), Wan et al. (2007), Wang
et al. (2018), Varol and Şen (2012), Luo (1984), Sin et al. (1991), Zingde et al. (1988), Shen et al.
(1989), Karadede-Akin and Ünlü (2007), Demirak et al. (2006), Karbassi et al. (2008), Kar et al.
(2008), Aydinalp et al. (2005), Fan et al. (2008), Turgut (2003), Reza and Singh (2010), Sundaray
(2010), Konhauser et al. (1997), Salati and Moore (2010), Varol (2013), Varol et al. (2010),
Rahman et al. (2014), Kumar et al. (2013), Li and Zhang (2010), Wu et al. (2002), Zeng et al.
(2002), Zhang and Hu (2006), Li and Liu (2009), Cheng and Li (2017), Wang et al. (2015), Li et al.
(2008, 2010), Yang et al. (2008), Su et al. (2006), Cheng et al. (2009), Sun et al. (2009), Deng et al.
(2016), Qin et al. (2015), Zhang et al. (2016), Gümgüm et al. (1994), Khan et al. (2005), Bhuiyan
et al. (2011), Sharma and Vaishnav (2015), Ismail et al. (2013), Rahman et al. (2015), Arefin et al.
(2016), Zilkir et al. (2006), Chen and Zhang (1986), Shi (2014), Li (2009), Gong (2011), and
Nasehi et al. (2012)
dÖzmen et al. (2004), Ebrahimpour and Mushrifah (2008), Pathiratne et al. (2009), Barlas et al.
(2005), Singare et al. (2010), Jiang et al. (2012), Tao et al. (2012), Rahman et al. (2014), Liu et al.
(2010, 2011), Yue et al. (2015), Li et al. (2010, 2013), Wang et al. (2014a, b), Lu et al. (2016), Tian
et al. (2011), Yan et al. (2018), Sun and Zang (2012), Mao et al. (2013), Wang et al. (2018), Yang
et al. (2008), Sun et al. (2009), Wu et al. (2018), Karadede and Ünlü (2000), Reddy et al. (2012),
Farkas et al. (2000), Alhas et al. (2009), Singare et al. (2013), Moore et al. (2009), Zhang (2013),
and Meng (2016)
eMüller and Förstner (1975), Zwolsman and van Eck (1999), Guieu et al. (1998), Martin et al.
(1993, 1994), Dorten et al. (1991), Stoica (1999), Elbaz-Poulichet et al. (1987, 1996), Pettine et al.

(continued)
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dissolved metal concentration in each decadal group was determined as the average
of all the collected data in that decadal group. As we inly identified only 92 data
points for As, 51 for Co, 38 for Hg, and 7 for Al, these four metals were subsequently
removed from the database. M-K tests were conducted on the remaining eight metals
(Cd, Pb, Cr, Zn, Cu, Ni, Mn, and Fe) to ensure accuracy of the results (Table 2). We
used the M-K calculation methods described by Kisi and Ay (2014) and we used
95% two-tailed confidence levels.

The mean dissolved metal concentrations for each continent were determined as
the average of all the collected data for that continent. As the data from Oceania
reflected only three rivers (South Alligator River, South Esk River, and St. Paul’s
River) and there were only three data points for Zn, Cu, and Fe, two data points for
Cd and Mn, one data for Pb and Ni, and no data for Cr, this continent was excluded;
therefore, only data from Africa, Asia, Europe, North America, and South America
were selected to compare the mean dissolved metal concentrations.

2.3 Health Risk Assessment

Humans are exposed to heavy metals via three main pathways: oral ingestion, mouth
and nose inhalation, and dermal absorption; ingestion and dermal absorption are the
most common pathways for the heavy metal pollution in water (Li and Zhang 2010;
Muhammad et al. 2011). The health risk associated with heavy metal toxicity is
characterized into non-carcinogenic and carcinogenic. Non-carcinogenic risk,
reflected by the hazard quotient index (HI), is defined as the sum of the hazard
quotient (HQ) from both exposure routes (oral ingestion and dermal contact). For
each exposure route, the HQ is estimated by the average intake of heavy metals from
that route divided by the corresponding reference dose (RFD; i.e., the security
threshold of a specific metal). When the HI exceeds one, there could be an adverse
non-carcinogenic effect on human health. Similarly, carcinogenic risk, reflected by
the cancer risk (CR), is the probability of an individual developing any type of
cancer over a lifetime and is defined as the sum of CR from both exposure routes. For
each exposure route, the CR is assessed as the average intake of heavy metals in that
exposure multiplied by the corresponding cancer slope factor (CSF).

(1996), Bonanno and Giudice (2010), Bubb and Lester (1994), Say et al. (1981), Adamiec and
Helios-Rybicka (2002), and Ramos et al. (1999)
fSchierup and Larsen (1981), Martin et al. (1994), Nguyen et al. (2005), and Waara (1992)
gAdams et al. (1980), Presley et al. (1980), Martin et al. (1993), Shiller and Boyle (1987), Winner
et al. (1980), DeLeon et al. (1986), and Kimball et al. (1995)
hAdams et al. (1980), Shephard et al. (1980), Yousef et al. (1984), and McFarlane and Franzin
(1978)
iMartin et al. (1993), Malm et al. (1988), Shiller and Boyle (1987), Smolders et al. (2003), Hatje
et al. (1998), Miller et al. (2004), and Magdaleno et al. (2014)
jThorp and Lake (1973) and Munksgaard and Parry (2001)
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The calculation methods for the average intake of metals from oral ingestion or
dermal absorption and the relevant parameters (RFD, CSF) used here were described
by Li and Zhang (2010) and Gao et al. (2016). The non-carcinogenic risk of eight
metals (Cd, Pb, Cr, Zn, Cu, Ni, Mn, and Fe) was estimated relevant to the five
decades and five continents by using their corresponding mean concentrations in
water (Liu et al. 2015; Gao et al. 2016). Owing to a lack of relevant references for
some carcinogenic metals (Cd, Pb, Ni, and Cr), only Pb and Cr were selected to
estimate their carcinogenic risk relevant to oral ingestion; their carcinogenic risk
relevant to dermal absorption was not assessed (De Miguel et al. 2007; Li and Zhang
2010; Liu et al. 2015).

2.4 Source Apportionment

Principal component analysis (PCA) followed by multiple linear regression (MLR)
is a useful method for source apportionment (Yang et al. 2017; Ashayeri et al. 2018;
Larsen and Baker 2003). In this study, PCA-MLR was used to determine the
contribution percentages of the investigated metal sources to water pollution. First,
PCA was employed to represent the total variability of the original metal data in a
minimum number of factors; that is, factors with an eigenvalue greater than one were
extracted (Loska and Wiechuła 2003). The metal source responsible for each factor
could be identified by critically evaluating the factor loadings (Wuana and Okieimen
2011; Järup 2003). Subsequently, MLR was conducted using the standardized PCA
scores and the standardized normal deviation of the total dissolved metal concentra-
tions as the independent and dependent variables, respectively. Regression coeffi-
cients were applied subsequently to estimate the contribution percentages of the
various metal sources.

To compare the changes in the metal pollution sources over time, the potential
sources in water were classified into four main types, namely, rock weathering,
fertilizer and pesticide use, mining and manufacturing, and waste discharge. Source
apportionment of metal pollution in river and lake water was conducted using the
SPSS V17.0 software (IBM Corp., Armonk, NY, USA).

3 Results

3.1 Trends of Dissolved Heavy Metal Pollution in Water

The concentrations of the dissolved heavy metals in water differed between the five
different time groups over the period 1970–2017 (Table 2 and Fig. 1). Most heavy
metal species had the highest dissolved concentrations in the 2010s and the lowest
concentrations in the 1970s or 1980s. Collectively, increasing trends were shown in
the water for Cd, Cr, Cu, Ni, Mn, and Fe and decreasing trends for Pb and Zn.

8 Y. Li et al.
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The concentrations of dissolved heavy metals in water also differed for the five
continents (Table 3 and Fig. 1). Most heavy metal species showed the highest
dissolved concentrations in Asia and the lowest in Europe.

3.2 Human Health Risks of Dissolved Heavy Metals in Water

The hazard quotient indices of most heavy metals relevant to non-carcinogenic risks
were generally lower than one (Table 4). However, these indices were greater than
one for Pb in the 2010s, for Cr in the 2000s and 2010s, and for Zn in the 1970s,
2000s, and 2010s, as well as for Cr in Asia, and for Zn in Asia and North America.

The cancer risks related to Pb contamination were all in the secure range (10�6
–

10�4) on the five continents over the five decades. However, the cancer risks
associated with Cr contamination exceeded the hazardous level in the 1970s,
2000s, and 2010s, as well as in Africa, Asia, and North America for the entire period.

3.3 Sources of Dissolved Heavy Metal Pollution in Water

The main pollution sources in water have changed significantly over time (Table 5).
In the 1970s, the main metal sources were fertilizer and pesticide use, along with
mining and manufacturing, with a total contribution exceeding 64%. In the 1980s,
with the same sources as in the previous decade, the total contribution increased to
more than 78%. In the 1990s, the main sources were mining and manufacturing,
along with rock weathering, with a total contribution exceeding 58%. In the 2000s,
with the main sources remaining the same, the total contribution exceeded 46%. In
the 2010s, with the dominant sources the same as those in the 2000s, the combined
contribution increased to more than 65%.

Furthermore, the main pollution sources in water differed by continent (Table 6).
In Africa, the main metal sources were waste discharge and rock weathering, with a
total contribution exceeding 59%. In Asia and South America, the main sources were
mining and manufacturing, along with rock weathering, with total contributions
exceeding 53% and 60%, respectively. In Europe, mining and manufacturing, waste
discharge, and rock weathering were all dominant sources, with a total contribution
of 97%. In North America, fertilizer and pesticide use, along with rock weathering,
were the main sources, with a total contribution exceeding 86%.

4 Discussion

From 1970 to 2017, river and lake water worldwide showed an increasing trend in
the concentrations of dissolved Cd, Cr, Cu, Ni, Mn, and Fe and a decreasing trend for
Pb and Zn. This indicated that the heavy metal loadings in water had increased for

10 Y. Li et al.
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the former and decreased for the latter over that period. This finding showed the poor
results obtained and illustrated the failure of the measures to control metal pollution.
Furthermore, the dissolved heavy metal concentrations differed by continent. As a
typical developed region, Europe had the lowest dissolved concentration for most
heavy metal species (Cd, Pb, Cr, Cu, Ni, and Mn). In contrast, developing regions
such as Asia had the highest dissolved concentration for Cd, Pb, Cr, Zn, and Ni. This
indicates not only that the measures to control pollution have been more successful
in Europe than in Asia but also that such measures should be extended to other
regions.

The health risk assessment showed that the hazard quotient indices of most heavy
metal species (Cd, Cu, Ni, Mn, and Fe) were smaller than one, suggesting that these
metals posed negligent non-carcinogenic risks to human health. However, the hazard
quotient indices of other heavy metal species, such as Pb (in the 2010s), Cr (in the
2000s and 2010s), and Zn (in the 1970s, 2000s, and 2010s), were greater than one,
implying that these metals could have caused adverse non-carcinogenic effects to
human health in those decades. As regards the two selected carcinogenic heavy
metals, the cancer risks associated with Pb from oral ingestion were lower than the
hazardous level for the five decades and five continents. However, the cancer risks
related to Cr exceeded the hazardous level in the 1970s, 2000s, and 2010s, as well as
in Africa, Asia, and North America over the entire period. As exposure to Cr is
associated with a high risk of contracting cancer and as there are other pathways
(dermal contact and inhalation) to heavy metal exposure in addition to the oral
ingestion considered in the present study, preventing such exposure should be a
matter of high concern (De Miguel et al. 2007; Li and Zhang 2010; Liu et al. 2015).
In addition to water, exposure to heavy metals from the food chain (vegetables, rice,
fruits, fish, and other food) could lead to the accumulation of such metals, ultimately
leading to chronic toxic effects in humans (Yi et al. 2011; Gao et al. 2016).
Therefore, the actual health risks of heavy metal exposure to humans could be
more substantial than the results this assessment indicates. Consequently, this should
be a matter of global concern.

Source apportionment showed that the main heavy metal sources in river and lake
water have changed over time. From the 1970s to the 1980s, these sources were
mining and manufacturing, along with fertilizer and pesticide use. A study in
1981–1983 found that mineral refining was the main source for Cd, Hg, Pb, Cu,
and Zn pollution in surface water in the National Park of Doñana (Baluja et al. 1985).
From the 1990s to the 2010s, the sources were mining and manufacturing, along
with rock weathering. A study in 2003 showed that sources of Cd and Pb in Kumho
River (Korea) originated from mine discharge (Kim et al. 2010). This finding
suggests mining and manufacturing as the critical sources to control global heavy
metal pollution in river and lake water. Additionally, the metal sources differed
significantly by continent, with waste discharge and rock weathering being dominant
in Africa; mining and manufacturing, along with rock weathering being dominant in
Asia and South America; fertilizer and pesticide use, along with rock weathering
being dominant in North America; and mining and manufacturing, waste discharge,
and rock weathering being dominant in Europe. For instance, in the Obuasi mining
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area of Ghana, Pb in surface water derives from waste discharge from towns and
mine machinery maintenance yards (Armah et al. 2010). In the Yangtze River, heavy
metals (Cu, Ni, Fe, Co, and Al) are mainly derived from rock weathering (Wang
et al. 2011). Therefore, regional pollution-control measures should concentrate on
such region-specific sources.

The decreasing trend in the concentrations of dissolved Pb and Zn in river and
lake water indicate that the pollution-control measures for these substances had
produced positive effects. For example, from 1994, the US EPA Part 503 rule
restricted the ceiling concentration of Pb (300 mg kg�1) and Zn (2,800 mg kg�1)
in biosolids applied to the land (Agency 1994). In 1998, the United Nations
Economic Commission for Europe (UNECE) agreed the Aarhus Protocol on
Heavy Metals to control harmful levels of Pb in Europe (Duan and Tan 2013). In
China, after the nationwide prohibition of leaded gasoline in 2000, the Pb pollution
level decreased remarkably in cities (Wang et al. 2003). Additionally, having the
lowest dissolved metal concentration and the lowest health risk demonstrates the
efficiency of the pollution-control measures in Europe; we suggest that these mea-
sures should be adopted by the rest of the world. Since the last century, the maximum
heavy metal concentration permitted in fertilizers has been regulated in Europe. For
instance, in the mid-1990s, the Dutch government proposed regulations limiting the
maximum Cd concentration in P fertilizers to 35 mg kg�1 (Anon 1989). In addition
to the maximum Cd concentration of 100 mg kg�1 in P fertilizers, Sweden imposed
a tax (30 SEK kg�1 Cd) on P fertilizers with Cd concentrations between 5 and
100 mg kg�1. The EU placed limits on the metal concentrations in industrial
effluents discharged into the Rhine River in an effort to alleviate the metal pollution
in the river (Mortvedt 1996). In 1998, the United Nations Economic Commission for
Europe signed the Aarhus Protocol on Heavy Metals to control harmful levels of Cd
(Duan and Tan 2013). European legislation prescribes the priority order to be applied
to waste treatment, such as prevention, reuse, recycling, other recovery (e.g., energy
recovery), and disposal (Kelessidis and Stasinakis 2012). These measures, including
implementing rigorous standards on metal emissions, limiting the metals added to
products, and pretreating metal-contaminated waste effectively, have controlled
heavy metal pollution in rivers and lakes and, we suggest, should be extended
worldwide.

5 Conclusions

The present study clearly shows that global river and lake water have increasing
trends for Cd, Cr, Cu, Ni, Mn, and Fe and decreasing trends for Pb and Zn over the
past period from 1970 to 2017. Most heavy metals had low non-carcinogenic risks
over this period. The cancer risks associated with Pb were lower than the hazardous
level on the five continents over the five decades, whereas the cancer risks related to
Cr exceeded the hazardous level in the 1970s, 2000s, and 2010s, as well as in Africa,
Asia, and North America over the entire period. This finding illustrates the failure of
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measures to control global metal pollution; the high cancer risks related to Cr on
these continents should be a matter of high concern.

Over the past five decades, mining and manufacturing were consistently found
to be critical sources of metal pollution in river and lake water. The heavy metal
sources differed significantly by continent, with waste discharge and rock weathering
dominant in Africa; mining andmanufacturing, along with rock weathering dominant
in Asia and South America; fertilizer and pesticide use, along with rock weathering
dominant in North America; and mining and manufacturing, waste discharge, and
rock weathering dominant in Europe. Therefore, regional pollution-control measures
should concentrate on such region-specific sources.

The lowest mean dissolved concentrations of most heavy metals in Europe
suggest that the countermeasures in the continent have successfully controlled
heavy metal pollution. Successful measures include implementing rigorous stan-
dards for metal emissions, limiting the metal concentrations in products, and rigor-
ously treating metal-contaminated waste. In addition to such environmental
measures, ecological approaches should be considered for heavy metal treatment.
For example, after landscape reclamation in catchments, heavy metal inputs to the
United Kingdom’s Fendrod Lake declined (Blake et al. 2007). Therefore, compre-
hensive application of environmental and ecological measures should be considered
for the remediation of heavy metal-polluted rivers and lakes.

6 Summary

Heavy metal pollution in surface water is a global environmental problem. This
study analyzed the trends, health risks, and sources of eight dissolved heavy metal
species in river and lake water across five continents (Africa, Asia, Europe, North
America, and South America; Oceania was excluded owing to a lack of data) for the
period 1970–2017. We wanted to assess the effects of various implemented coun-
termeasures to pollution and to determine those that could be adopted worldwide.
Collectively, the water system showed increasing trends for Cd, Cr, Cu, Ni, Mn, and
Fe and decreasing trends for Pb and Zn. The mean dissolved concentrations of most
heavy metals were highest in Asia and lowest in Europe. Most heavy metals had low
non-carcinogenic risks over this period. The cancer risks associated with Pb were
lower than the hazardous level on all five continents over the five decades, whereas
the cancer risks related to Cr exceeded the hazardous level in the 1970s, 2000s, and
2010s, and in Africa, Asia, and North America over the entire period. Mining and
manufacturing were consistently found to be critical sources of metal pollution from
1970 to 2017. However, the heavy metal sources differed significantly by continent,
with waste discharge and rock weathering dominant in Africa; mining and
manufacturing, along with rock weathering, are dominant in Asia and South Amer-
ica; fertilizer and pesticide use, along with rock weathering, are dominant in North
America; and mining and manufacturing, waste discharge, and rock weathering are
dominant in Europe. Global trends in the metal loadings in water and in relevant

16 Y. Li et al.



pollution-control measures suggest that countermeasures in Europe have success-
fully controlled heavy metal pollution. The successful measures include
implementing rigorous standards for metal emissions, limiting the metal concentra-
tions in products, and rigorously treating metal-contaminated waste. Therefore, the
measures implemented in Europe should be extended worldwide to treat heavy metal
pollution in water.
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Abbreviations

ΔG�0 Standard Gibbs free energy change
1,2,3,4-THNA 1,2,3,4-Tetrahydro-2-naphthoic acid
1-MN 1-Methylnaphthalene
1-NA 1-Naphthoic acid
2-DMNA 2-Dimethylnaphthalene
2-MN 2-Methylnaphthalene
2-NA 2-Naphthoic acid
5,6,7,8-THNA 5,6,7,8-Tetrahydro-2-naphthoic acid
ADP Adenosine diphosphate
ATP Adenosine triphosphate
BaP Benzo(a)pyrene
Bcr Benzoyl-CoA reductase
BESA Bromoethane sulfonic acid
Bns Beta-oxidation of naphthyl-2-methylsuccinate
Bss Benzylsuccinate synthase
BTEX Benzene, toluene, ethylbenzene, and xylene
CoA Coenzyme A
DO Dissolved oxygen
E00 Standard reduction potential
FBR Fluidized bed reactor
GC Gas chromatography
H2O2 Hydrogen peroxide
HH-2-NA Hexahydro-2-naphthoic acid
HMW High molecular weight
kDa Kilodalton
LC Liquid chromatography
LC-ESI-MS-MS Liquid chromatography electrospray ionization tandem mass

spectrometry
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LiP Lignin peroxidase
LMW Low molecular weight
logKOW Octanol-water partition coefficient
MGP Manufactured gas plant sites
MNA Methylnaphthoic acid
MnP Manganese-dependent peroxidase
MS Mass spectrometry
Ncr Naphthoyl-CoA reductase
NMeS Naphthyl-2-methylenesuccinic acid
Nms 2-Napthylmethylsuccinate synthase
NMS Naphthyl-2-methylsuccinic acid
NRB Nitrate-reducing bacteria
OYE Old yellow enzyme
PAHs Polycyclic aromatic hydrocarbons
POP Persistent organic pollutants
PpcA Phenylphosphate carboxylase
Q-TOF-MS Quadrupole time-of-flight mass spectrometry
rRNA Ribosomal RNA
SOM Soil organic matter
SRB Sulfate-reducing bacteria
TCA Tricarboxylic acid
TEA Terminal electron acceptor
THNA Tetrahydronaphthoic acid
TOC Total organic carbon
T-RFLP Terminal restriction fragment length polymorphism
UbiD 3-Polyprenyl-4-hydroxybenzoate decarboxylase
US EPA United States Environmental Protection Agency

1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a group of hundreds of related organic
aromatic compounds consisting of at least two (e.g., naphthalene) or more (e.g.,
anthracene) fused benzene rings arranged in linear (e.g., naphthalene, anthracene),
angular [e.g., dibenzo(a,h)anthracene], or cluster (e.g., pyrene) fashion. PAHs that
are composed of only fused benzene rings are classified as alternant PAHs (Smith
and March 2007). In addition to the regular hexagonal benzene ring, non-alternant
PAHs contain an additional annealed cyclic structure, for example, a tetragonal or
a pentagonal ring. Thus, naphthalene, phenanthrene, and pyrene are alternant PAHs,
while fluorene, fluoranthene, cyclopenta(d,e,j)phenanthrene, 7H-benzanthrene, and
indeno(1,2,3-c,d)pyrene are non-alternant PAHs (Blumer 1976; Maliszewska-
Kordybach 1999; Neilson 2013; Abdel-Shafy and Mansour 2016). Two- and
three-ring PAHs are generally regarded as low-molecular-weight (LMW) PAHs,
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whereas those having four or more rings are considered as high-molecular-weight
(HMW) PAHs. Incomplete combustion of carbonaceous materials and crude oil
spills are the two major sources of PAHs in the environment (Maliszewska-
Kordybach 1999; Lundstedt et al. 2007; Ohura 2007). They are ubiquitous environ-
mental pollutants; many of them show toxic, mutagenic, and carcinogenic properties
(White and Claxton 2004). Their complex and rigid aromatic structure, high reso-
nance energy, and limited bioavailability make them chemically stable as well as
resistant to microbial degradation. Due to the ubiquity, persistence, bioaccumulative
tendency, and acute toxicity to biota, PAHs are regarded as a class of hazardous
organic contaminants.

The United States Environmental Protection Agency (US EPA) announced
16 PAHs as “priority pollutants” in aquatic and terrestrial ecosystems (US EPA
1982). The US EPA (2008) extended the list of hazardous PAHs in January 2008
(see Fig. 1). Although PAHs are removed from the environment by physicochemical
processes, biodegradation of the pollutants by bacteria, fungi, algae, and plants is
regarded as the principal mechanism of detoxification and removal (Samanta et al.
2002). Aerobic degradation of PAHs is well studied, and associated biochemical
mechanisms have already been elucidated. Aerobic bacterial degradation of PAHs
initiates with the dioxygenase enzyme-catalyzed introduction of both atoms of
molecular oxygen into the aromatic nucleus of PAHs (Cerniglia 1992; Kanaly and
Harayama 2000; Haritash and Kaushik 2009). PAHs can dissipate from their
sources to many environmental compartments where the oxygen level is too low
or zero. Such an anaerobic environment exists in many habitats such as subsurface
soil, groundwater, aquifer sediment, freshwater sediment, marine sediment, sewage
sludge, anaerobic wastewater treatment plant, etc. Biodegradation of PAHs in an
anaerobic environment is challenging because molecular oxygen that is involved in
the first step of the degradation pathway is not available to serve as the terminal
electron acceptor during aerobic respiration and as a substrate for dioxygenases. For
many years, PAHs were thought to be refractory to anaerobic microbial degradation;
unavailability of oxygen and lower energy yield in the anaerobic metabolism were
believed to be the critical restraining factors. However, many facultative and strictly
anaerobic bacteria and archaea are now known to degrade PAHs using alternative
electron acceptors such as nitrate, iron(III), and sulfate. Furthermore, pathways of
anaerobic naphthalene and 2-methylnaphthalene degradation in sulfate-reducing
bacteria have been elucidated.

The understanding in the field of anaerobic biodegradation of PAHs is expanding
consistently. Therefore, a critical appraisal of the field will help researchers to keep
abreast of trends and state of the art of the knowledge. Only a few reviews in this
field are available; most of them discussed PAHs degradation in association with
monoaromatic compounds like benzene and toluene (Meckenstock et al. 2004, 2016;
Foght 2008; Meckenstock and Mouttaki 2011). That too, many of the reviews
focused primarily on degradation and metabolism of PAHs by sulfate-reducing
bacteria (SRB). As such, only limited information is available on the facultative
anaerobic degradation of PAHs by nitrate reducers, iron reducers, and methanogens.
Therefore, the present review aims at providing a comprehensive critique of the
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Fig. 1 Chemical structure of some PAHs of environmental concern
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various aspects of anaerobic PAHs biodegradation. Initial few sections deal with
the physicochemical properties, toxicity, sources, and possible fates of PAHs in the
environment. The main discussion begins with an explanation of the process for
development of anaerobic conditions and theoretical prediction of the thermody-
namic feasibility of PAHs degradation under different reducing conditions. Later,
PAHs degradation under various reducing conditions, their effects on anaerobic
microbial community, and factors affecting anaerobic biodegradation are discussed.
Furthermore, metabolic pathways of anaerobic PAHs degradation under various
redox conditions and progress in the area of metabolic biomarker-based in situ
degradation monitoring techniques are summarized. Finally, we identified some
critical research gaps and suggested bioremediation approaches for mitigating
PAHs contamination in anaerobic environments.

2 Physicochemical Properties of PAHs

The behavior, transport, and fate of PAHs in the environment largely depend on their
physical and chemical properties. Three main aspects of PAHs as pollutants –

bioavailability, persistence and bioaccumulation tendency – are strongly influenced
by these physicochemical properties (Skupinska et al. 2004; Wiktorska et al. 2004;
Abdel-Shafy and Mansour 2016). With an increase in molecular weight and number
of benzene rings in the structure, their aqueous solubility decreases, resistance to
oxidation and reduction increases, and vapor pressure drops. Common physical,
chemical, and toxicological properties of some selected PAHs, those are listed in
US EPA Toxic Release Inventory for polycyclic aromatic compounds, are listed in
Table 1. Pure PAHs are white to pale yellow color solids. They are nonpolar,
hydrophobic, and lipophilic. PAHs are slightly soluble in water, and, in general,
their solubility in water decreases as the molecular weight increases (Table 1). They
are soluble in many organic solvents and have a strong tendency to sorb to and
accumulate in organic molecules of soil and sediments or in fat (Subashchandrabose
et al. 2014). Water-soluble PAHs, such as naphthalene, have higher aqueous solu-
bility and hence are more available for microbial degradation. HMW PAHs are less
water soluble and thus less accessible for microbial attack and, therefore, remain
persistent in the environment.

PAHs exist as a complex mixture in nature. The composition of a PAHs pool
emitted from a combusted source depends on the properties of the combusting
carbonaceous material and combustion temperature. Likewise, crude oil, petroleum
fuels, coal tar, creosote, and asphalt contain different combinations of PAHs and
their derivatives (Blumer 1976). Vapor pressure is an essential determinant of
dispersion, transport, and fate of PAHs. LMW PAHs having higher vapor pressure
are mostly emitted as gas phase in ambient air. HMW PAHs have lower vapor
pressure, and they are released predominantly as particle form. Most of the time,
the particles tend to be associated with the airborne particulates such as soot, dust,
and fly ash. The octanol-water partition coefficient (logKOW) is also a crucial
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determinant of PAHs compartmentalization in the environment. It is a measure
that expresses the extent of a substance to partition itself between an organic phase
(n-octanol) and an aqueous phase. It is used for predicting the distribution of a
substance in various environmental compartments, i.e., water, soil, sediment, and
biota. A logKOW value greater than four indicates that a chemical is likely to be
sorbed strongly to minerals and organic matters (Karickhoff et al. 1979; Means et al.
1980). The logKOW values for almost all the PAHs exceed four (Table 1). The values
increase proportionally with the increase in molecular weight (Miller et al. 1985).
Thus, benzo(a)pyrene (BaP) with a logKOW ¼ 6.13 is expected to bind strongly to
organic fraction of soil and sediment and to lipids of organisms. PAHs with high
logKOW may disappear quickly from aqueous mixture but remain persistent in soil
and sediment. The propensity of PAHs to sorb to lipids indicates the potential of
bioaccumulation in living organisms. Moreover, PAHs exhibit some notable char-
acteristics like photosensitivity, conductivity, heat resistance, and corrosion resis-
tance (Miller and Olejnik 2001; Northrop et al. 1956; Stein and Fahr 1985).
Although PAHs are relatively stable compounds, they are prone to several chemical
alteration processes in the natural environment. They may be subjected to photoox-
idation, chemical oxidation with oxidizing agents, hydroxylation, nitration, emulsi-
fication, as well as a range of microbial degradation processes. Some of the
breakdown products are less toxic than the parental PAHs, while some nitro-,
oxy-, amino-, and hydroxy-derivatives pose even greater toxicity (Nielsen et al.
1983; Neilson et al. 1998; Yu 2002; Kim et al. 2013; Neilson 2013; Andersson and
Achten 2015).

3 Sources of PAHs

PAHs may not be abundant only in our planet, they are proposed to be widely
distributed in the universe and constitute up to one fifth of all the carbon present in
the galaxy (Allamandola et al. 1989; Cohen and Barlow 2005; Tielens 2005). They
might have formed just after a couple of billion years after the Big Bang. The
presence of anthracene and pyrene in Red Triangle nebula has been suggested
based on the spectral signature analysis (Mulas et al. 2006). The new “PAHs
world” hypothesis argues that the primordial soup might contain PAHs that in
eons of time underwent several difficult changes and eventually transformed into
the starting materials such as purines and pyrimidines for the origin of life (Peeters
2011). If the theory were proven right, it would shed some light on explaining the
ubiquity of PAHs on Earth. PAHs are present in every sphere of Earth: atmosphere,
hydrosphere, lithosphere, and biosphere. They can enter the environment in several
ways. Based on their origin and mode of distribution, the sources of PAHs can be
categorized into three major groups: pyrogenic, petrogenic, and diagenetic and
biogenic (Fig. 2).
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3.1 Pyrogenic Sources

Pyrolysis or thermal cracking is an irreversible thermochemical process in which
organic matter decomposes at high temperature in the absence of oxygen. Incom-
plete combustion of fossil fuel and biomass during pyrolysis release a significant
amount of hazardous substances including PAHs (Ross et al. 2002). Pyrogenic
PAHs are typically formed at elevated temperature (350–1,200�C), although they
can also be emitted from a low temperature (100–150�C) combustion process.
Pyrogenic sources can be natural or anthropogenic. Many natural events, for
instance, forest burning, bushfire, and volcanic eruption, release PAHs into the
environment (Menzie et al. 1992; Zhang and Tao 2009). Anthropogenic emission
sources can be divided further into four major subclasses based on the sources:
domestic, industrial, automotive exhaust, and agricultural. Domestic emission
results from cooking and heating activities. The burning of coal, oil, gas, garbage,
wood, and other organic substances emit PAHs. Cigarette smoke, fireplace, and
backyard barbecues also contribute to the emission.

Pyrogenic process is defined as high-temperature low-oxygen combustion pro-
cess, domestic open burning of coal, peat, wood, straw, cow-dung-cake, rice husk
briquettes, and garbage at a temperature as low as 150–200�C contributing to the
emission of PAHs (Tsibart et al. 2014). Since the industrial revolution, the major
portion of PAHs in the environment, especially in the ambient air, has been added
directly or indirectly from industrial activities. Destructive distillation of coal to coke
and coal tar, thermal cracking of petroleum residue, burning of fuels, metallurgical
process such as aluminum smelting, rubber tire industry, cement manufacturing

Fig. 2 Classification of PAHs sources based on their origin and mode of distribution
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industry, waste incineration, bitumen and asphalt production, wood preservation,
commercial heating plant, as well as manufactured gas plant sites (MGP) are some of
the conventional sources of pyrogenic PAHs. Automotive emission sources include
exhaust gases from automobile vehicles, railway, ship, aircraft, jet engine, and other
motor vehicles. Some agricultural practices, for example, intentional burning of
bushland and forest, straw and stubble, and moorland heather, also contribute to
the buildup of PAHs concentration in the environment (Stogiannidis and Laane
2015; Abdel-Shafy and Mansour 2016). Pyrogenic emission contains both LMW
and HMWPAHs. Due to their higher vapor pressure, LMW constituents are released
in gaseous form, whereas HMW PAHs are abundant in particle-sorbed form.
Generally, HMW PAHs share the significant part of emitted PAHs from a pyrogenic
origin (Ou et al. 2004; Page et al. 2006; Boll et al. 2008). Pyrene, fluoranthene, BaP,
chrysene, and, to a lesser extent, phenanthrene are found commonly in pyrogenic
emission. The predominance of these parent PAHs over their alkylated homologues
is used as an indication of pyrogenic origin (Blumer and Youngblood 1975;
Laflamme and Hites 1978; Sporstol et al. 1983; Wang et al. 2001).

3.2 Petrogenic Sources

Petrogenic PAHs are constituents of petroleum products including crude oil, engine
oils, lubricant, and their derivatives. Petroleum fuel has become the inevitable
energy source since the dawn of the industrial revolution in the late eighteenth
century. Dependency on fossil petroleum fuels leads to an extensive exploration
and transportation of petrochemicals. Crude oil and refined petroleum fuels are rich
in parental PAHs, alkyl-PAHs, azaarenes, and thiophenes (Grimmer et al. 1983).
Petrogenic PAHs enter the environment through maturation, drilling, transportation,
storage, use of crude oil, and related petrochemicals. Petrogenic sources can be
natural or anthropogenic. Petroleum seeps from natural crude oil reservoir and
erosion of sedimentary rock release PAHs into the environment. The release of
petrogenic PAHs from anthropogenic activities is a significant route of PAHs
contamination. Fuel-based industrial dependency has boosted economic growth;
however, indiscriminate use of fossil fuels also engenders severe environmental
pollution as a result of accidental as well as the intentional release of crude oil and
refined products. Some important sources of petrogenic PAHs of anthropogenic
origin are oceanic and freshwater oil spills, underground or aboveground storage
tank leak, oil refinery waste, and leakage of crude and refined oil during transpor-
tation (Stogiannidis and Laane 2015). Since the last few decades, marine oil spills
have become a recurring disaster. Amoco Cadiz (1978), Ixtoc I (1979), Atlantic
Empress (1979), Exxon Valdez (1989), Kuwaiti Oil Lakes (1991), Kuwaiti Oil Fires
(1991), Gulf War (1991), and Deepwater Horizon (2010) oil spills released massive
amounts of crude and refined fuel rich in PAHs in aquatic environment (Hayakawa
2018).
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Although the PAHs constituents of petrogenic sources vary greatly depending on
the origins, LMW PAHs are the dominant representatives. Furthermore, most of the
petrogenic release contains 16 US EPA priority pollutants and alkylated forms of
5 parental PAHs (alkylated naphthalene, phenanthrene, dibenzothiophene, fluorene,
and chrysene). The parental compounds and “alkylated five” are used often as
signature molecules for indicating petrogenic PAHs contamination of sediments
(Laflamme and Hites 1978; Wang et al. 2001; Boll et al. 2008; Stogiannidis and
Laane 2015). Coal tar and creosote are other important sources of PAHs. Creosote is
a mixture of several hundreds of compounds; PAHs may constitute 90% of creosote.
It is used widely as a wood preservative and waterproofing agent. Creosote enters
soil and water mainly through wood preservation industry wastewater. Seeping and
leakage of creosotes from treated timber may add PAHs in soil. A minor fraction
(1–2%) of creosote is released in air through volatilization (Nestler 1974).

3.3 Diagenetic and Biogenic Sources

Not as pronounced and pernicious as pyrogenic and petrogenic sources, the biogenic
and diagenetic process contribute to the environmental PAHs load. Crude oil, coal,
and gases are formed from sedimentary algae, diatoms, phytoplankton, and bacteria
through a process called diagenesis. Biogenic PAHs are derived from biosynthesis
of the compounds in plant, phytoplankton, and microorganisms. Some endophytic
fungi produce naphthalene (Daisy et al. 2002; Ezra et al. 2004). Naphthalene is also a
major chemical component of Magnolia flower (Azuma et al. 1996). A microalga,
Chlorella vulgaris, was found to synthesize several PAHs, including BaP, while
growing in acetate-containing medium (Borneff et al. 1968).

In addition to the sources mentioned above, unburnt hard coal (bituminous coal)
has recently been reported as a PAHs source (Achten and Hofmann 2009). Rochman
et al. (2013) reported the sorption of several unsubstituted PAHs and their nitro- and
methyl-substitutes on virgin polystyrene and polystyrene debris in marine environ-
ment suggesting that the polymers are a potential secondary source. Petrogenic
sources are generally accidental and acute. They do not contribute to continuous
contamination. In contrast, pyrogenic sources, especially incomplete combustion
processes, are considered as the prominent and chronic sources of PAHs entering the
environment (Duran and Cravo-Laureau 2016). Irrespective of sources, most of the
released PAHs ultimately find their way to surface water, topsoil, the bottom surface
of lakes, estuaries or rivers, and sediments either via airshed (dry and wet deposition)
or watershed (e.g., urban runoff, rainfall, snow/ice fall, etc.).
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4 Fate of PAHs in Aerobic Environments

The distribution, partition, transport, and fate of PAHs in the environment are
intimately dependent on their sources, physicochemical properties, some environ-
mental parameters, and biodegradation mechanisms. As their origin can be diverse,
assigning a single source to a pool of PAHs in each environment is difficult (Blumer
1976). Moreover, post-emission alteration of PAHs gives rise to substitutes. As a
result, the atmosphere contains a variable concentration of unsubstituted and
substituted PAHs. A simplified overview of the possible fates of PAHs in the
environment is presented in Fig. 3.

The fate of PAHs in air depends largely on temperature, humidity, precipitation,
sunlight, and presence of atmospheric gases and acids. Temperature and humidity
are the two main factors that govern the ratio of gas-to-particulate PAHs in the air
(Maliszewska-Kordybach 1999). PAHs transformation in the atmosphere occurs

Fig. 3 The possible fates of PAHs (in black dots) in the environment. Among the several
possibilities, the most common ways of origin, transfer, and removal are illustrated
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mainly by chemical reactions and physical deposition. Reaction with ozone, nitrate
and hydroxyl radicals, and acids derived from NOx and SOx and photolysis are
accounted for the loss of gas-phase PAHs (Valerio et al. 1984). Alkyl-substituted
PAHs are common constituents of crude and refined oil. Petroleum products are
formed in sediment over a long period under pressure and temperature (150–200�C).
Such comparatively mild temperature range favors the formation of alkylated deriv-
atives so vigorously that the relative amounts of alkyl-PAHs may far exceed their
parent compounds. Alkyl-PAHs have been found as the major pollutant in environ-
ments contaminated with crude and petroleum oil. Several methylated PAHs have
been identified in urban air, street dust, and sediment. Alkyl-PAH also enter the
environment through petrogenic, pyrogenic, and industrial sources (Miki et al. 2014;
Tuyen et al. 2014; Wei et al. 2015). Nitro-PAHs are formed by nitration of parent
PAHs during incomplete combustion or atmospheric gas-phase reaction. They enter
the environment from automobile exhaust, waste incinerator, and domestic wood
burning (Lima et al. 2005; Karavalakis et al. 2010; Shen et al. 2012; Bandowe and
Meusel 2017). Oxygenated PAHs (oxy-PAHs) have one or more oxygen atom(s)
attached to the aromatic structure of parent PAHs. Incomplete combustion is one of
the major sources of oxy-PAHs. Parent PAHs may also transform to oxy-PAHs
through light-induced reaction and chemical oxidation with singlet oxygen, perox-
ides, peroxyl radical, and hydroxyl radicals (Lundstedt et al. 2007). Particle-phase
PAHs are also subjected to similar reactions. Most of the atmospheric PAHs deposit
near their sources; however, PAHs with higher vapor pressure are transported to far
away from their sources and are distributed worldwide. PAHs were detected in
remote areas like Antarctic snow (Kukučka et al. 2010) and the Antarctic and
Southern sea atmosphere (Cabrerizo et al. 2014). Physical removal of PAHs from
the atmosphere generally occurs through dry deposition and wet deposition. In a dry
deposition, PAHs are adsorbed on particulates and settle down slowly due to
gravitational pull. The process depends on the size/mass of the particle and some
environmental factors such as seasonal temperature, wind speed, turbulence, etc.
Due to comparatively high aqueous solubility, atmospheric vapor-phase LMW
PAHs may dissolve in cloud and raindrop that upon condensation of clouds settle
down on Earth’s surface during precipitation. Particle-sorbed PAHs also settle on the
surface through wet deposition. Transport of gas-phase PAHs from temperate or
tropical warm regions of Earth to high-latitude cold regions is governed mainly by
atmospheric temperature and vapor pressure of PAHs. The phenomenon can be
explained by the global distillation effect theory. It predicts that atmospheric gas
PAHs are transported to colder regions and condense. The deposited compounds
may undergo several volatilization-transport-deposition cycles. This multiple hop-
ping from low latitude to high latitude is known as the grasshopper effect. Conse-
quently, PAHs would reach to the polar regions where low ambient temperature
prevents their further transport; the effect is termed as “cold trap” or “cold finger”
(Wania and Mackay 1993, 1995, 1996; Fernández and Grimalt 2003). Although not
all atmospheric PAHs are removed, a significant portion finds their way to soil, water
surface, and vegetation (Maliszewska-Kordybach 1999).
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Soil can be contaminated with PAHs through different ways. Notable routes
include dry and wet atmospheric deposition, automobile exhaust, sewage sludge,
industrial effluent, seeping and leakage from coal tar creosote impregnated timbers,
unburnt bituminous coal, roadway asphalts, accidental release of crude or refined oil
during transportation and handling. PAHs in the soil can have different fates
depending on the physical and chemical properties of PAHs, soil texture, soil
organic matter (SOM) content, environmental conditions, and associated removal
mechanisms. Sorption, sequestration, evaporation, photolysis, leaching, as well as
biodegradation are the primary routes of PAHs processing in the soil. Sorption and
sequestration processes play a significant role in PAHs accumulation in soil. Due to
the strong sorption capacity of SOM and minerals, PAHs tend to be fixed with these
substances (Means et al. 1980). The content, composition, and structure of SOM
influence the sorption process. Also, soil particle size, the presence of clay minerals,
and soil pH determine the extent of PAHs sorption to soil. Rhizosphere soil
facilitates sorption of PAHs as root exudates increase soil structure (Wilcke 2000;
Okere and Semple 2012). Evaporation or volatilization largely depends on daily and
seasonal temperature. At elevated temperature, PAHs, mostly from topsoil, may
evaporate quickly. Air current disperses the evaporated PAHs to a lower temperature
region where they settle down through wet deposition (Sims and Overcash 1983;
Wild and Jones 1995). Unlike atmospheric PAHs, very little soil PAHs are
transformed through light energy. If any photo-destruction occurs, it remains con-
fined to few millimeters of topsoil only. Therefore, photooxidation is not considered
as a significant way of PAHs processing in the soil (Sims and Overcash 1983). Due
to lower aqueous solubility and decreased mobility, leaching of unsubstituted PAHs
is limited in the soil. However, semipolar derivatives (nitro-, oxy-, hydroxy-PAHs)
show increased mobility in soil and hence dissipate to the soil column through
micropores (Sims and Overcash 1983). Lipophilic nature of both PAHs and plant
cuticle facilitate the accumulation of significant amounts of particle-bound PAHs in
leaves, trunk, needles, and bark. Accumulated PAHs can enter the soil through plant
litters during or at the end of vegetation period, precipitation, and near-stem runoff.
Plant root system can uptake PAHs, and gas-phase PAHs may be accumulated by
plant stroma and subsequently transported through vascular system or by diffusion;
the cycle is completed at the end of vegetation (Wilcke 2000).

The marine environments including estuaries, coastal areas, ocean surface, and
deep-sea shelter are diverse ecosystems. The fate of PAHs in the marine environ-
ment is determined mainly by the mode of PAHs entrance. Also, physical and
chemical properties of PAHs, the presence of co-contaminants, sediment composi-
tion, environmental conditions, and hydrologic dynamics also influence PAHs fate
in the marine environment (Latimer and Zheng 2003). Pyrogenic PAHs from
combustion sources enter through urban runoff and atmospheric deposition. The
accidental oil spill has become a significant means of PAHs entrance into the marine
environment. Crude oil release from natural oil seep is the other notable source of
PAHs in the environment. In the marine environment, petrogenic PAHs are more
bioavailable because of the abundance of LMW PAHs, while pyrogenic PAHs are
more recalcitrant as they remain sorbed to organic particulate matters. PAHs in the
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marine environment are transformed in abiotic processes such as volatilization,
photooxidation, and chemical alteration. A significant portion of PAHs sinks verti-
cally to marine sediment where microbial degradation becomes the primary fate of
the pollutant. However, due to the hydrophobic nature of PAHs, they tend to become
sorbed to sediment organic matters and mineral particles and thus become less
bioavailable, hence persist in the marine environment (Acosta-González and
Marqués 2016; Duran and Cravo-Laureau 2016).

Biodegradation is the principal mechanism for removing PAHs from the soil. The
uptake and degradation of PAHs by microorganisms depend largely on soil temper-
ature and other physicochemical properties of PAHs and the nature of the organisms.
Bacteria, algae, and fungi can degrade many PAHs and their derivatives. Plants
can also extract, sequester, and detoxify PAHs from the environment. In general,
bacteria utilize PAHs as a carbon and energy source. Fungal degradation process, in
contrast, leads to detoxification rather than mineralization (Cerniglia 1992; Samanta
et al. 2002; Haritash and Kaushik 2009; Cerniglia and Sutherland 2010).

A growing body of literature deals with the bacterial degradation of PAHs from
soil, water, and sediment under aerobic, microaerobic, and anaerobic conditions.
Aerobic degradation of PAHs has been outlined in some excellent reviews (Cerniglia
1992; Juhasz and Naidu 2000; Kanaly and Harayama 2000; Peng et al. 2008;
Haritash and Kaushik 2009). Aerobic bacterial degradation of PAHs, especially
2–5 ring PAHs, has been investigated well. Members of the genera, Pseudomonas,
Sphingomonas, Mycobacteria, Burkholderia, Rhodococcus, Flavobacterium,
Acinetobacter, and Klebsiella, have been frequently isolated from contaminated
sites. Aerobic degradation of PAHs by bacteria involves the introduction of both
atoms of oxygen to the aromatic structure producing cis-dihydrodiols. The enzyme
dioxygenase is a multicomponent protein consisting of ferredoxin, ferredoxin
reductase, and an iron-sulfur protein (Habe and Omori 2003). The resulting cis-
dihydrodiols are then rearomatized to dihydroxylated intermediates by the action of
dehydrogenases. Ring cleavage of the intermediates produce TCA cycle intermedi-
ates and finally mineralized to CO2 and H2O with the production of energy. In
addition, identification of trans-dihydrodiol metabolites during PAHs degradation
by certain strains of Mycobacterium and Streptomyces suggests cytochrome P450
oxygenases-mediated transformation also accounts for PAHs metabolism in bacteria
(Sutherland et al. 1990; Tongpim and Pickard 1999).

Many fungi have been reported to degrade PAHs. In most of the cases, fungal
degradation of PAHs is cometabolic. However, some fungi can utilize PAHs as the
sole sources of carbon. For example, Fusarium solani was able to germinate on and
mineralize BaP (Rafin et al. 2000). PAHs-degrading fungi generally belong to two
major groups: (a) ligninolytic fungi that produce extracellular enzymes to degrade
wood derived lignin and (b) non-ligninolytic fungi that do not possess lignin-
degrading enzyme system. Lignin is a class of complex HMW compounds
found in the vascular tissue of plants and some algae. Lignin bears structural
resemblance to PAHs. Due to structural irregularity, lignin-decomposing enzymes
show low substrate specificities; these enzymes can catalyze the transformation of
several organic pollutants including PAHs. Among the wood-decaying and
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lignin-decomposing fungi, “white-rot fungi” has been studied extensively. Notable
members of this group are Phanerochaete chrysosporium, Trametes versicolor, and
Pleurotus ostreatus. The ligninolytic enzyme system involved in PAHs degradation
comprises one or more of two glycosylated heme-containing peroxidases, lignin
peroxidase (LiP), manganese-dependent peroxidase (MnP), and a copper-containing
phenoloxidase, laccase. LiP oxidizes PAHs in the presence of H2O2, MnP oxidizes
PAHs using Mn-dependent peroxidation of unsaturated lipids, whereas laccase
oxidizes PAHs in the presence of phenol, aniline, 4-hydroxybenzoic acid, methio-
nine, cysteine, or reduced glutathione as mediator. PAHs biodegradation by white-
rot fungi initiates with the generation of hydroxyl free radical by the donation of one
electron, which oxidizes the PAHs ring. The reaction products include PAH quinone
and acids, which may be further metabolized to nontoxic intermediates or end
products via ring fission (Cerniglia and Sutherland 2010).

Many non-ligninolytic hyphomycetes, zygomycetes, and ascomycetes can
metabolize PAHs. Several species of Aspergillus, Penicillium, Fusarium, and
Cunninghamella have been reported to transform and sometime mineralize PAHs.
Many of these fungi utilize intracellular cytochrome 450 monooxygenases system
that initiates PAHs metabolism through ring epoxidation reaction producing epoxide
and water. The unstable epoxide is hydrated by an epoxide hydrolase to form trans-
dihydrodiol or rearranged to phenol derivatives by nonenzymatic action. The reac-
tion products, PAH trans-hydrodiol and phenols, are then methylated or form
conjugates with sulfate, xylose, glucuronic acid, or glucose. Ligninolytic fungi
may also involve in PAHs metabolism through the production of intracellular
cytochrome P450 and epoxide hydrolase (Cerniglia and Sutherland 2010). Unfortu-
nately, some fungal metabolites are more toxic than the substrate PAHs. Vázquez-
Duhalt et al. (2001) reported the conversion of PAHs to mono-, di-, and
tri-chlorinated compounds by the chloroperoxidase enzyme of Caldariomyces
fumago in the presence of H2O2 and chloride ion. Some of these chlorinated
compounds were more mutagenic than their parent PAHs.

PAHs are toxic to many aquatic animals and plants (Landrum et al. 1986;
Yu 2002). Nevertheless, algal biotransformation of PAHs along with bacterial and
fungal degradation is an important determinant of the fate of PAHs in the aquatic
environment. Both fresh and marine water algae can degrade PAHs. A cyano-
bacterial strain, Agmenellum quadruplicatum PR-6, and a microalga, Oscillatoria
sp. JCM, can oxidize naphthalene to 1-naphthol (Cerniglia et al. 1979, 1980). The
green algae, Selenastrum capricornutum, Scenedesmus acutus, and Ankistrodesmus
braunii, metabolize BaP through dioxygenase pathway and produce dihydrodiols
and quinones. The degradation extent and metabolites were found to depend on light
intensities, algal species, and dose (Schoeny et al. 1988; Warshawsky et al. 1995).
Two diatoms, Skeletonema costatum and Nitzschia sp., isolated from mangrove
aquatic ecosystem, were reported to accumulate and degrade phenanthrene and
fluoranthene (Hong et al. 2008). Interesting enough, dead cells of algae retain
PAHs removal capability. Lei et al. (2002) reported no significant differences in
the removal of pyrene by live and dead cells of Chlamydomonas sp., Chlorella
miniata, Chlorella vulgaris, Scenedesmus platydiscus, Scenedesmus quadricauda,
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S. capricornutum, and Synechocystis sp. This study suggested both biosorption
(by dead cells) and bioaccumulation (inside live cells) as PAHs removal mechanisms
by the microalgal cultures. Similarly, dead cells of S. capricornutum exhibited
removal of several HMW PAHs including benz(a)anthracene, BaP, dibenzo(a,h)
anthracene, indeno(1,2,3-cd)pyrene, and benzo(g,h,i)perylene (Luo et al. 2014).
The same research team established that photocatalytic transformation of BaP is
catalyzed by chlorophyll of dead algal cells through the formation of a high level of
reactive singlet oxygen species (Luo et al. 2015). Soil microalgae have also been
reported to degrade PAHs. A soil microalga, Chlorella sp. MM3, has recently
been reported to degrade pyrene from both liquid media and soil slurry
(Subashchandrabose et al. 2017). Algal transformation of PAHs is species-specific
(Kirso and Irha 1998), and bacterial-algal consortia have been considered better
suited than monoculture in the removal of PAHs from the environment
(Warshawsky et al. 2007).

In addition to microbial degradation, several plants including grasses have been
reported to play a role in the removal of PAHs from the environment. As with
microbial bioremediation, phytoremediation of PAHs has been gaining recognition
as an efficient pollutant-remediation technique (Sivaram et al. 2018). Plant-mediated
transformation of PAHs involves the uptake of the pollutants from contaminated soil
to the plant system through the root, translocation within the plant tissues, enzymatic
breakdown or modification, conjugate formation, sequestration of conjugates within
plant compartment, and further processing of the conjugates (Arthur et al. 2005).
Moreover, plants facilitate immobilization of PAHs in soil and promote microbial
degradation. Plant-microbe association, as in rhizosphere and mycorrhiza, is another
means in determining the fate of PAHs in the environment (Ma et al. 2010).

As such, very little is known about the fate of PAHs in the anaerobic environ-
ment. Fresh and marine water sediments, sewage, subsurface aquifer sediment, and
groundwater contamination with PAHs occur from anthropogenic activities such as
shipping, boating, fishing, oil spill, leakage of coal tar, creosote and petroleum fuel
from the surface storage tank, and gas production. The absence of molecular oxygen
and sorption of PAHs to sediment organic matter are probably the most critical
factors that govern persistence of PAHs in such marine environment.

5 Onset of Anoxia and Nature of Anoxic Environment

Unavailability of gaseous and dissolved oxygen in an environment renders it anoxic.
The atmosphere, as we know it now, consists of the essential gaseous mixture for
supporting life. The strong oxidizing gas, oxygen, is an absolute requirement for
aerobic respiration. It acts as the terminal electron acceptor (TEA) in the aerobic
cellular respiration process and participates in many biological reactions as a
co-substrate. During the formation of Earth, it experienced extended anoxia until
molecular oxygen began accumulating in the atmosphere when ancient microbial life
forms breathed out the gas. After millions of years of accumulation, we are now
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breathing in an atmosphere consisting of ~21% oxygen (Margulis and Sagan 1997;
Planavsky et al. 2014).

In well-structured and drained soil, gaseous oxygen penetrates through the cracks
and pores. As a result, the topsoil layer becomes sufficiently oxygenated and
supports aerobic microbial metabolism and root respiration (Drew 1990). Hydro-
sphere can be saturated with atmospheric oxygen to the extent that the maximum
dissolved oxygen (DO) level can reach as much as 9–10 mg L�1 (McNeely et al.
1979). Often oxygen level becomes limited below few millimeters/centimeters along
soil/sediment profile. Wet or waterlogged soil, sediment overlaid by stagnant or
constant-depth water column, and subsurface groundwater aquifers generally con-
tain very limited DO that, in many cases, reaches a zero value. Moreover, specific
habitats like marine sediment remain in permanent anoxia (Kaiho 1994). Contrary to
the complete aerobic and anaerobic environment, DO level in a hypoxic environ-
ment ranges between 0 and 4.5 mg L�1 (Wu 2002). Many habitats such as wetlands
and swamps exhibit hypoxic condition. The DO level of an environment is highly
influenced by temperature, salinity, and microbial activity (Brune et al. 2000).
Sediment top layer receives considerable input of organic biomass from terrestrial
and aquatic algae, plants, and animals. During the decomposition of organic com-
pounds, aerobic microorganisms use available oxygen. As a result, DO level
decreases with time. Once the oxygen demand of a habitat exceeds the oxygen
dissolution rate, anoxia begins to develop. Moreover, continuous input of a large
amount of natural and synthetic organic compounds in water, soil, or sediment
environment exacerbates the DO level and creates an oxygen-depleted anaerobic
condition (Burdige 2007).

A redox gradient along its depth characterizes an anoxic environment (Fig. 4).
Extensive use of oxygen during microbial decomposition of organic matters fosters
the formation of a redox gradient that is characterized by rapid decrease in DO level
and redox potential across the gradient and the variable availability of alternate
electron acceptors for microbial respiration (Fig. 4) (Brune et al. 2000; Li et al.
2009). Depending on the characteristics of the site, nitrate, manganese, iron, and
sulfate become the dominant electron acceptors. The gradient starts at a transition
zone where nitrate, manganese(IV), and iron(III) are used preferentially as a TEA.
Down to the transition zone, sulfur reduction process turns out to be the prominent
anaerobic respiration regime. The methanogenic zone may be developed further
below a sulfidic regime where methane production often occurs through interspecies
syntrophic metabolism (Cappenberg 1974; Acosta-González and Marqués 2016).

In the anoxic environment, anaerobes are the key players in geochemical cycling.
Cellular respiration in oxygen-depleted conditions is challenging because oxygen is
no longer available or “died out.” The Gibbs free energy (ΔG�0) change in the
oxidation of NADH (E00 ¼ �320 mV) coupled with oxygen reduction to water
(E00 ¼ +818 mV) is �220 KJ mol�1. When the same reaction coupled with NO3

�

reduction to NO2
� (E0

0 ¼ +433 mV) and CO2 reduction to CH4 (E0
0 ¼ �244 mV),

the free energy changes decrease by �56.2 KJ mol�1 and �157.2 KJ mol�1 for the
respective processes (Thauer et al. 1977). Microorganisms being the first forms of
life on Earth show adaptation to a range of oxygen environments. On the contrary,
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some of them are fitted out at surviving in the total absence of oxygen. It comes with
a surprise to think that the first life form, no matter whether it emerged in an ancient
“pond of soup” or in a hydrothermal vent (Nisbet and Sleep 2001; Weiss et al. 2016),
might be capable of thriving under anoxic conditions. Still, we know very little about
the physiology and metabolism of anaerobic microorganisms. Facultative anaerobes
are the significant occupants in the transition zones, while strict anaerobes govern
biogeochemical cycling at sulfate-reducing and methanogenic zones (Lovley 2001).
Down to the gradient, the reduction potential drops abruptly, and the net energy yield
during oxidation, per molecule, of organic matter decreases strongly. Anaerobic
lifestyle, therefore, should be parsimonious enough to allow efficient survival,
maintenance, and cell growth with a limited amount of available energy. Many

Fig. 4 Schematic of a typical sediment column characterized by decreasing redox gradient below
the oxidized zone. In the transition zone, microbial respiration processes use NO3

�, NO2
�, Mn4+,

Fe3+, and SO4
2� as terminal electron acceptors. With increasing depth, redox potential drops

dramatically, and sulfur reduction becomes predominant in the high negative redox potential
zone. Further down to this sulfidic zone, methanogenic activity by strict anaerobic bacteria and
archaea may be present
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anaerobic metabolisms even run close to the thermodynamic limits (Fuchs et al.
2011). Although several growth-limiting constraints exist, anaerobes contribute
crucially to the global biogeochemical cycle.

6 Persistence of PAHs Under Anaerobic Conditions

In an anaerobic environment, PAHs are susceptible to microbial enzymatic degra-
dation if they are bioavailable, enough appropriate inorganic electron acceptors are
present, and the native microflora possess genetic setup for encoding necessary
degradative enzymes. The absence of one or more of the prerequisites may affect
PAHs degradation process that consequently would lead to recalcitrance and accu-
mulation of the pollutants in the environment. Additionally, PAHs often occur with
other mixed contaminants in real impacted sites. The presence of other toxic sub-
stances such as heavy metals, cyanides, and organic compounds can impede PAHs
degradation (Kuppusamy et al. 2017).

Under anaerobic condition, PAHs may resist microbial degradation. Sharak
Genthner et al. (1997) reported the persistence of many PAHs tested in their
study under various redox conditions. Only little degradation of naphthalene,
1-methylnaphthalene (MN), and 2-MN occurred under methanogenic conditions.
In a methanogenic sediment column, benzene as well as naphthalene remained
persistent for 20–40 days even after the addition of simpler co-substrates such as
acetate, benzoate, lactate, and phenol (Langenhoff et al. 1996). Bauer and Capone
(1985) observed that although anthracene and phenanthrene were degraded rela-
tively well under aerobic conditions, they remained persistent under anaerobic
conditions. In another study, HMW PAHs in contaminated arctic soils remained
refractory to biodegradation under nitrate-reducing conditions at both low (7�C) and
moderate (20�C) temperature. Under aerobic conditions, however, the HMW PAHs
were degraded well (Eriksson et al. 2003). Recently, Folwell et al. (2016) reported
persistence of pyrene and naphthenic acids in oil-sand-water from tailing pond.
Failure to establish PAHs-degrading enrichment culture in laboratory microcosm
study may be attributed to the absence of appropriate electron acceptor, reducing
conditions and essential nutrients in the culture media. In addition, very low or total
absence of requisite microbial population and their slow adaptation to the contam-
inants may also lead to the failure in developing enrichments. Inhibition of degra-
dation by co-occurring contaminants may also contribute to the apparent persistence
of PAHs in the environment or a laboratory microcosm.

7 Feasibility of Anaerobic Biodegradation of PAHs

The stabilizing resonance energy of the aromatic compounds is the major hindrance
to microbial degradation. Moreover, unavailability of oxygen in an anaerobic envi-
ronment presents another critical challenge to microorganisms that require to use
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aromatic compounds as growth substrates (Fuchs et al. 2011). In the absence of
oxygen, where it is no longer available to accept electrons during respiratory electron
transport, anaerobes use several inorganic ions or compounds as TEA (Fig. 5).
Nitrate is one of the first components in anaerobic nitrate respiration process;
facultative nitrate reducers can harness energy by reducing nitrate to different
nitrogen oxides and molecular dinitrogen. From a thermodynamic point of view,
standard Gibbs free energy change in nitrate reduction process is close to that in
aerobic respiration process (�220 KJ mol�1 vs �163.2 KJ mol�1) (Thauer et al.
1977). Thus, nitrate reduction is a widespread process often associated with degra-
dation of POPs. Nitrate-reducing microorganisms mainly belong to the facultative
anaerobic group of bacteria. If available, oxides of manganese and iron(III) can also
act as TEA in anaerobic metabolism. Contaminants often move down to the gradient
to the utterly anoxic zone. SRB often degrade organic compounds in strictly
anaerobic conditions. Fortunately, sulfate is abundant in many anaerobic systems
such as marine sediment. SRB are considered the oldest life forms that can be dated
back to 3.5 billion years. Soon after the formation of Earth, SRB have been
contributing to the biogeochemical cycling (Barton and Fauque 2009).

The primary challenge in organic pollutant degradation through sulfur reduction
process is low changes in Gibbs free energy. Despite the limitation, many SRB are
known to degrade many POPs including PAHs. For a long time, anaerobic degra-
dation of hydrocarbon compounds under methanogenic conditions was considered
as thermodynamically improbable. However, the evidence is accumulating in sup-
port of the methanogenic degradation of crude oil in the deep subsurface environ-
ment (Aitken et al. 2004). Dolfing et al. (2009) calculated free energy change during

Fig. 5 Conceptual
representation of anaerobic
degradation of PAHs under
various reducing conditions.
The standard Gibbs free
energy changes (ΔG�0) for
the redox couples under
standard conditions and
pH 7.0 in reduction
processes of electron
acceptor are obtained from
Thauer et al. (1977)
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the oxidation of PAHs under methanogenic conditions. The ΔG�0 values for
methanogenic naphthalene, phenanthrene, anthracene, pyrene, and chrysene degra-
dation ranged from �208.8 to �331.4 kJ mol�1, and the energy yield per mole CH4

generation was in the range of �27.1 to �34.8 kJ mol�1. Although the reaction is
exergonic, sharing of energy among the associated interdependent microbial mem-
bers of an anaerobic syntrophic metabolism makes the process challenging. The
authors predicted that oxidation to H2/CO2 or conversion to acetate is energetically
more favorable for PAHs degradation under methanogenic conditions. The calcula-
tion of free energy changes under standard conditions (25�C, atmospheric pressure)
during anaerobic oxidation of four model PAHs indicates that the anaerobic oxida-
tion processes under nitrate-reducing, sulfate-reducing, and methanogenic condi-
tions are exergonic (Table 2). The Gibbs free energy change and the ATP produced
per mole of substrate oxidation for any of the PAHs are the highest under
denitrifying process and lowest under methanogenic conditions. With increasing
molecular weight, energy yield also increases. However, the thermodynamic calcu-
lation is based on differences between the formation energy of reactants and
products. Therefore, calculations of free energy changes under standard conditions

Table 2 Reaction stoichiometry, free energy change at standard conditions (at 1 M concentration
of solute and 25�C) during anaerobic oxidation of naphthalene, phenanthrene, pyrene, and benzo(a)
pyrene (BaP) under nitrate-reducing, sulfate-reducing, and methanogenic conditions

TEA Stoichiometric equation ΔG�0 (KJ)a

Naphthalene

NO3
�/N2 C10H8 + 1.2H2O + 9.6NO3

� ! 10HCO3
� + 0.4H+ + 4.8N2 �4,783.35

SO4
2�/HS� C10H8 + 6SO4

2� + 6H2O ! 10HCO3
� + 6HS� + 4H+ �461.81

CO2/CH4 C10H8 + 18H2O + 6CO2 ! 10HCO3
� + 6CH4 + 10H+ �188.72

Phenanthrene

NO3
�/N2 C14H10 + 2.4H2O + 13.2NO3

� ! 14HCO3
� + 0.8H+ + 6.6N2 �6,591.96

SO4
2�/HS� C14H10 + 8.25SO4

2� + 9H2O ! 14HCO3
� + 8.25HS� + 5.75H+ �649.84

CO2/CH4 C14H10 + 25.5H2O + 8.25CO2 ! 14HCO3
� + 8.25CH4 + 14H+ �274.35

Pyrene

NO3
�/N2 C16H10 + 3.6H2O + 14.8NO3

� ! 16HCO3
� + 1.2H+ + 7.4N2 �7,626.95

SO4
2�/HS� C16H10 + 9.25SO4

2� + 11H2O ! 16HCO3
� + 9.25HS� + 6.75H+ �764.58

CO2/CH4 C16H10 + 29.5H2O + 9.25CO2 ! 16HCO3
� + 9.25CH4 + 16H+ �343.56

BaP

NO3
�/N2 C20H12 + 4.8H2O + 18.4NO3

� ! 20HCO3
� + 1.6H+ + 9.2N2 �9,235.56

SO4
2�/HS� C20H12 + 11.5SO4

2� + 14H2O ! 20HCO3
� + 11.5HS� + 8.5H+ �952.61

CO2/CH4 C20H12 + 37H2O + 11.5CO2 ! 20HCO3
� + 11.5CH4 + 20H+ �429.19

TEA terminal electron acceptor
aThe standard Gibbs free energy of formation (ΔfG�) for naphthalene(s) (252.38 KJ mol�1),
phenanthrene(s) (383.08 KJ mol�1), pyrene(s) (491.18 KJ mol�1), and BaP(s) (621.88 KJ mol�1)
is calculated according to the group contribution method as described by Joback and Reid (1987).
Formation energy for other compounds, gases, and ions is obtained from Thauer et al. (1977)
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are not directly applicable to environmental conditions. In a real environment, the
biodegradability of PAHs depends on some factors that are not considered in a free
energy change calculation. Such factors include molecular weight and conformation-
related properties such as solubility, logKOW, affinity to organic matter, and bio-
availability. Nevertheless, Table 2 indicates the feasibility of anaerobic degradation
of PAHs such as naphthalene, phenanthrene, pyrene, and BaP.

8 PAHs Biodegradation Under Nitrate-Reducing
Conditions

8.1 PAHs Degradation by Nitrate-Reducing Bacteria

Nitrate reduction is a crucial microbial respiration process that is often adopted by
facultative anaerobes in many organic-rich and oxygen-depleted environments. The
process produces enough energy that is comparable to aerobic respiration as the
reduction potential of nitrate is close to oxygen. Denitrification process leads to
the conversion of nitrate to dinitrogen via various oxides of nitrogen (Kuypers et al.
2018). Nitrate-reducing bacteria are versatile aromatic hydrocarbon degraders.
Benzene degradation under the nitrate-reducing condition is a well-documented
process (Majora et al. 1988; Nales et al. 1998; Burland and Edwards 1999; Coates
et al. 2001; Folwell et al. 2016). Mihelcic and Luthy (1988a) were the first to
demonstrate PAHs degradation under nitrate-reducing conditions. In this study,
aqueous-phase concentration of spiked naphthalene and acenaphthene did not
change during anaerobic incubation without an external electron acceptor. When
nitrate was added to the culture medium, complete degradation of naphthalene and
acenaphthene was observed despite a lag of about 2 weeks. Since then, PAHs
degradation by several nitrate-reducing enrichments and pure cultures has been
reported so far. Table 3 summarizes many of the available reports on PAHs degra-
dation under nitrate-reducing conditions.

PAHs degradation under nitrate-reducing conditions is widespread in nature:
from pristine to contaminated samples, temperate to arctic soils, freshwater to marine
sediment, petrochemical to sewage sludge, etc. (Mihelcic and Luthy 1988b;
Al-Bashir et al. 1990; Leduc et al. 1992; Murphy et al. 1995; MacRae and Hall
1998; McNally et al. 1998; Rockne and Strand 1998, 2001; Rockne et al. 2000;
Chang et al. 2003; Eriksson et al. 2003; Ambrosoli et al. 2005; Dou et al. 2009; Lu
et al. 2011; Yang et al. 2013; Liang et al. 2014; Qin et al. 2017, 2018). Most of these
studies used classical ecology approach, i.e., microcosm incubation, to investigate
PAHs degradation using contaminated or uncontaminated samples, non-reduced
mineral salt, nitrate as the TEA and PAHs as the electron donor. Rockne and Strand
(1998) adopted a fluidized bed reactor (FBR) approach for enriching PAHs-
degrading nitrate-respiring bacteria (NRB). Langenhoff et al. (1996) studied naph-
thalene degradation in a soil percolation column. Also, PAHs degradation by pure
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bacterial cultures has also been established (McNally et al. 1998; Rockne et al. 2000;
Yang et al. 2013; Qin et al. 2017, 2018).

In the natural environment, nitrate-reducing facultative anaerobes degrade both
LMW and HMW PAHs. Several nitrate-reducing microcosm studies demonstrated
naphthalene degradation using soil, sediment, and sludge samples. Acenaphthene,
anthracene, fluorene, fluoranthene, phenanthrene, pyrene, and BaP degradation have
also been reported. Al-Bashir et al. (1990) described naphthalene mineralization in
both pristine and oil-contaminated soil slurry under denitrifying conditions. Naph-
thalene degradation was observed in a nitrate-amended sediment column only after
the addition of benzoate (Langenhoff et al. 1996). McNally et al. (1998) isolated
three nitrate-reducing facultative anaerobic pure bacterial cultures that could degrade
acenaphthene, phenanthrene, and pyrene, both aerobically and anaerobically. A
FBR enrichment culture that was developed from coal tar creosote-contaminated
sediment could degrade naphthalene and phenanthrene (Rockne and Strand 1998).
Subsequently, subculture was obtained through the transfer of FBR cell mass
and biocarrier to PAHs amended media. The subculture showed nitrate-dependent
mineralization of naphthalene and phenanthrene (Rockne and Strand 2001). Pure
cultures isolated from the FBR enrichment showed higher degradation ability
although at a low rate compared to the original FBR enrichments (Rockne et al.
2000). Degradation of acenaphthene, anthracene, phenanthrene, fluorene, and
pyrene under nitrate-reducing conditions was also demonstrated in soil, sediment,
and sludge (Chang et al. 2002, 2003; Yuan and Chang 2007). Eriksson et al. (2003)
investigated anaerobic biodegradation potential of contaminated arctic soil at low
temperature under nitrate-reducing conditions. Only naphthalene and 2-MN were
entirely degraded by the enriched culture; fluorene and phenanthrene were also
degraded to a lesser extent. HMW PAHs used in this study remained persistent at
both 7 and 20�C temperature. Dou et al. (2009) demonstrated naphthalene degrada-
tion by the nitrate-reducing mixed culture at different doses. Among the 16 priority
PAHs, 2- and 3-ring members have been shown to be degraded more efficiently by
sediment enrichment culture under nitrate-reducing conditions than sulfate-reducing
conditions (Lu et al. 2012). Experimental evidence of HMW PAHs degradation
under the nitrate-reducing conditions is scarce. Only recently, some pure bacterial
cultures capable of degrading HMW PAHs have been obtained. Yang et al. (2013)
isolated Pseudomonas sp. JP1 form river sediment that can degrade BaP,
fluoranthene, and phenanthrene. Liang et al. (2014) isolated a pyrene-degrading
bacterium, Paracoccus denitrificans, from river sediment. Cellulosimicrobium
cellulans CWS2 that has been isolated from coking plant soil could degrade BaP
(Qin et al. 2018). Qin et al. (2017) isolated a BaP-degrading Microbacterium
sp. strain from contaminated soil. It is worth noting here that some habitats such
as a continental shelf, shallow lake, and wetland experience fluctuations in oxygen
level on a daily or seasonal basis. Facultative anaerobes, especially NRB, might have
a potential role in PAHs removal from these habitats. However, to the best of our
knowledge, no study so far has investigated the role of nitrate reducers in PAHs
removal from an environment that experiences fluctuating oxygen regime.

54 K. Dhar et al.



8.2 PAHs Biodegradation and Nitrate Consumption

PAHs degradation under nitrate-reducing conditions depends on the availability of
nitrate to support respiration (Mihelcic and Luthy 1988a, b; Al-Bashir et al. 1990;
Rockne and Strand 1998, 2001; Rockne et al. 2000). In a soil-water system, limiting
nitrate concentration did not allow naphthalene and acenaphthene degradation.
Only when excess nitrate was provided, degradation of the substrates commenced
(Mihelcic and Luthy 1988b). Al-Bashir et al. (1990) demonstrated a linear relation-
ship between naphthalene mineralization and nitrate depletion. Stoichiometric deple-
tion of nitrate and degradation of PAHs was also observed by Rockne and Strand
(1998). Recently, Qin et al. (2017) reported that BaP degradation byMicrobacterium
sp. was affected by C:N ratio and BaP:nitrate ratio of 1:33 resulting in 84.2%
degradation in 10 days.

Nitrate demand for anaerobic oxidation (per mole of PAHs) depends on the
reduction chemistry. Theoretically, one mole of naphthalene degradation requires
9.6 mol of nitrate assuming complete denitrification (Table 2) and 24 mol assuming
partial reduction to nitrite (Dou et al. 2009). However, experimental values
(10.71–12.02 mol) obtained by Dou et al. (2009) were in between the theoretical
values. Additionally, the observed disproportion between nitrate consumption
and nitrite accumulation suggested that only a fraction of nitrite is converted to
dinitrogen rather than complete denitrification (Dou et al. 2009). A similar relation-
ship between nitrate and PAHs depletion was also observed by Rockne and Strand
(1998). The reaction stoichiometry of PAHs degradation and nitrate reduction is
crucial for determining the extent of nitrate amendment for stimulation of biodegra-
dation and, at the same time, avoiding adverse effects of nitrate, nitrite, and nitrogen
oxides.

8.3 Enhanced PAHs Biodegradation by Nitrate Amendment

Available nitrate that initially supports the microbial degradation of organic com-
pounds would be depleted in an environment with high contaminant load. It should
be noted that total organic carbon load is also important in the context of nitrate
availability in a given habitat. In such a situation, replenishing nitrate by external
amendment could help to resume biodegradation. Naphthalene and phenanthrene
degradation were ceased when nitrate was depleted from the media. Refeeding of the
culture with nitrate re-established degradation of PAHs (Rockne and Strand 2001).
Nitrate was injected into PAHs-contaminated Hamilton sediment, Canada, to
enhance biodegradation. Among the 16 priority PAHs, 15 of them were degraded
in the sediment (Murphy et al. 1995). Tang et al. (2005) demonstrated that slow
release of nitrate from nitrocellulose in an anaerobic marine sediment increased
phenanthrene degradation by 2–3 orders of magnitude.

Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A. . . 55



The above findings suggest that nitrate addition to the anoxic contaminated
environment may be useful for enhancing bioremediation. Nitrate amendment in
PAHs-contaminated soil enhanced the abundance and activity of denitrifying bac-
teria and induced a shift in microbial community structure (Zhou et al. 2017). To
examine the effect of nitrate addition to contaminated sediment, Xu et al. (2014)
injected Ca(NO3)2 solution into the sediment of a field-scale in situ bioremediation
site. They observed changes, induced by nitrate addition, in functional diversity,
composition, structure, and dynamics of sediment microbial communities using
GeoChip 4.0 gene array technology (Tu et al. 2014). Functional genes involved
in C, N, P, and S cycling were enriched in metabolically versatile microbial members
of the community. Reduced total organic carbon (TOC) as well as polybrominated
diphenyl ethers and PAHs level after injection indicated that the nitrate amendment
was effective in increasing potential of the sediment microflora in PAHs bioreme-
diation. Xu et al. (2015) also reported enrichment of several aerobic PAHs-
degrading genes in the nitrate-amended sediment. However, differential enrichment
of genes involved in anaerobic PAHs degradation after nitrate amendment in a real
contaminated environment has not been documented yet. It should be noted that the
fate of supplied nitrate depends on soil chemistry, C:N ratio, total carbon load,
temperature, and concentrations of nitrate-nitrite and sulfide (Tiedje et al. 1983;
Akunna et al. 1993; Kraft et al. 2014). Excess of nitrate and nitrite affects biodiver-
sity and ecosystem (Sutton et al. 2011). Therefore, the dosage of nitrate amendment
to a contaminated sediment should be carefully determined to ensure considerable
degradation and avoidance of excess nitrogen toxicity.

9 PAHs Biodegradation Under Iron-Reducing Conditions

Iron constitutes approximately 80% of the inner and outer cores of Earth. It is the
fourth most abundant element in Earth’s crust (Frey and Reed 2012). Iron-reducing
bacteria participate in the anaerobic degradation of organic matter (Canfield et al.
1993), BTEX compounds (Edwards et al. 1992; Jahn et al. 2005), phenols, and
p-cresol (Lovley and Lonergan 1990). However, very few reports on PAHs degra-
dation under iron-reducing conditions are available. Anderson and Lovley (1999)
demonstrated anaerobic naphthalene oxidation to CO2 in petroleum-contaminated
aquifer sediment where the iron reduction was the terminal electron-accepting
process. An iron-reducing enrichment culture, N49, degraded naphthalene. It was
enriched from a sediment sample of monitoring well set at a former MGP site
(Kleemann and Meckenstock 2011). The culture is composed mainly of one bacte-
rial member that is closely related to the significant organism in the iron-reducing,
benzene-degrading enrichment culture, BF, as revealed by T-RFLP pattern and 16S
rRNA gene sequences. Apart from naphthalene, N49 can also grow on 1-MN,
2-MN, 1-naphthoic acid (1-NA), or 2-NA. Hydrogenophaga sp. PYR1, an iron-
reducing facultative anaerobe, has been recently isolated from PAHs-contaminated
river sediment (Yan et al. 2017). This biosurfactant-producing bacterium degraded
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both pyrene and BaP under both aerobic and iron-reducing conditions. Marozava
et al. (2018) enriched a 1-MN-degrading culture from contaminated soil at a former
coal gasification site using Fe(III) as the TEA. The enrichment culture consisted of
two bacteria related to uncultured Gram-positive Thermoanaerobacteraceae and
uncultured Gram-negative Desulfobulbaceae. The culture could also grow on naph-
thalene and 2-MN.

10 PAHs Biodegradation Under Sulfate-Reducing
Conditions

10.1 PAHs Degradation by Sulfate-Reducing Bacteria

Sulfur is one of the most abundant elements on Earth. Sulfate ion significantly
influences microbial activities in anaerobic environments (Capone and Kiene
1988). Dissimilatory sulfate reduction by anaerobic bacteria and archaea is a
crucial and perhaps one of the earliest biochemical processes on Earth. SRB
play a crucial role in global sulfur cycling (Muyzer and Stams 2008). SRB
belong to ~23 bacterial genera representing only 7 phylogenetic lineages,
5 within bacteria (Deltaproteobacteria, Gram-positive Clostridia, Nitrospirae,
Thermodesulfobacteria, and Thermodesulfobiceae) and 2 within archaea
(Euryarchaeota and Crenarchaeota) (Muyzer and Stams 2008). During anaerobic
degradation of organic matter, SRB use sulfate as the TEA and produce hydrogen
sulfide in this process. SRB are widespread in freshwater and marine sediment,
aquifer materials, hydrothermal vent, volcanic mud, and anaerobic sludge (Widdel
and Bak 1992; Muyzer and Stams 2008). Earth’s ocean is a main sink of sulfate;
hence, sulfate is not a limiting nutrient in the marine environment. Thus, anaerobic
degradation of organic matter in marine sediments by SRB becomes a major
element cycling mechanism. Some SRB can degrade organic pollutants such as
BTEX compounds (Edwards et al. 1992; Lovley et al. 1995; Phelps et al. 1996;
Meckenstock et al. 2016). To date, PAHs degradation coupled with sulfate reduc-
tion has been demonstrated in many enrichments and pure cultures. Table 4
summarizes most of the available reports on PAHs degradation under sulfate-
reducing conditions.

Among the PAHs, the processes of naphthalene and 2-MN degradation by
SRB are better explored. Most of the information on genetics and biochemistry
of anaerobic degradation of PAHs has been obtained from naphthalene and
2-MN-degrading SRB enrichments and pure cultures. SRB are abundant in sedi-
ment; so, it is not surprising that the majority of PAHs-degrading SRB cultures are
obtained from freshwater and marine sediments. Coates et al. (1997) obtained
naphthalene- and phenanthrene-degrading enrichment cultures from contaminated
marine harbor sediments. PAHs oxidation rate was higher in the heavily contami-
nated sediment than that in less contaminated sediment. The former sediment
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enrichment could also degrade methylnaphthalene, fluorene, and fluoranthene
under sulfate-reducing conditions. Bedessem et al. (1997) established several
sulfate-reducing naphthalene-degrading enrichment cultures from creosote-
contaminated aquifer sediment and maintained them throughout for 3 years. After
repeated feeding with naphthalene, the duration of initial lag (1–20 weeks) was
reduced to a minimum, and the adapted enrichment could mineralize 66% of added
14C-naphthalene to 14CO2 in 13 days. Zhang and Young (1997) enriched naphtha-
lene- and phenanthrene-degrading culture from contaminated harbor sediment under
strict sulfate-reducing conditions. The cultures could degrade 150–200 μM naph-
thalene and phenanthrene within 150 days. N47, which is one of the thoroughly
investigated enrichment cultures, was derived from the soil of a contaminated
aquifer near Stuttgart, Germany (Meckenstock et al. 2000). The culture utilized
naphthalene and 2-MN without a significant lag (Annweiler et al. 2000;
Meckenstock et al. 2000). Thus, N47 is one of the few anaerobic PAHs-degrading
cultures that can consistently degrade naphthalene and 2-MN upon repeated transfer.
Terminal fragment length analysis and 16S rRNA gene sequencing of N47 revealed
that the culture is composed of an unidentified member of Deltaproteobacteria
in association with 7% of Spirochaetes members. In addition to naphthalene and
2-MN, N47 can also co-metabolically degrade different poly- and heterocyclic
aromatic hydrocarbon compounds (Safinowski et al. 2006). Rothermich et al.
(2002) demonstrated mineralization of 14C-naphthalene and 14C-phenanthrene in
sulfidogenic contaminated harbor sediment.

Moreover, degradation of in situ PAHs pool (naphthalene, 1-MN, 2-MN,
acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)
anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and BaP) was
demonstrated in sediment microcosm (Safinowski et al. 2006). In this study,
LMW PAHs except naphthalene were degraded more rapidly than HMW
congeners. Davidova et al. (2007) enriched a phenanthrene-degrading culture from
hydrocarbon-contaminated marine sediment. The culture is mainly composed of
members of Deltaproteobacteria that are like other known hydrocarbon degraders
and uncultured clones obtained from hydrocarbon-degrading communities. An SRB
enrichment culture was obtained from swine sewage sludge that can degrade
fluorene and phenanthrene (Tsai et al. 2009). The enrichment degraded 88% fluorene
and 65% phenanthrene (initially 5 mg L�1 each) after 21 days of operation. How-
ever, when the substrate mixture was provided as a carbon source, the degradation
rate decreased, indicating that an enrichment or a pure culture may degrade a single
compound more efficiently than mixed substrates. Environmental contaminants exist
as conglomeration and degradation efficiency of culture in microcosm might not
necessarily be the same as in real contaminated site. An SRB pure culture, NaphS2,
isolated from North Sea harbor sediment, degraded naphthalene and 2-MN under
sulfate reduction conditions (Galushko et al. 1999). Two other pure strains, NaphS3
and NaphS6, were isolated from Mediterranean lagoon sediment using naphthalene
as the substrate (Musat et al. 2009). Both strains also utilized 2-MN as the sole
carbon source. All the pure bacterial strains (NaphS2, NaphS3, and NaphS6) are
affiliated with δ-subclass of Proteobacteria and are closely related to SRB that
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degrade some other aromatic compounds. Five naphthalene-degrading SRB enrich-
ment cultures (SobN1, MicN1, GölN1, EgN1, and EgN2) were enriched from
contaminated groundwater and aquifer sediment (Kummel et al. 2015). These highly
enriched cultures degraded naphthalene at a much higher concentration (7.8 mM)
with appreciable degradation rates (7–13.3 μM day�1). Acenaphthene and phenan-
threne degradation ability of the enrichment cultures was tested, but none of the
cultures could utilize the PAHs. Very recently, Himmelberg et al. (2018) enriched
phenanthrene-degrading and sulfate-reducing culture, namely, TRIP1, from muddy
soil mixture sample in which a member of Desulfobacteraceae that was very closely
related to naphthalene-degrading strain, NaphS2, dominated in the enrichment.

The coupling of sulfate reduction with PAHs degradation has been demonstrated
in many sulfate-reducing enrichment cultures. Partial or complete inhibition of
PAHs degradation upon the addition of sulfate reduction inhibitor is a hallmark of
direct involvement of SRB in PAHs degradation process. Several studies used
sodium molybdate (usually 20 mM) as sulfate reduction inhibitor to demonstrate
the role of SRB in PAHs degradation (Coates et al. 1996; Bedessem et al. 1997;
Annweiler et al. 2000; Meckenstock et al. 2000; Rothermich et al. 2002; Davidova
et al. 2007). Besides, stoichiometric sulfate loss from the media assuming complete
mineralization of substrate PAHs was also demonstrated (Davidova et al. 2007).
Furthermore, the reduction of 35S-sulfate to 35S-sulfide during naphthalene degra-
dation by a sulfate-reducing enrichment microcosm was demonstrated by Bedessem
et al. (1997). Although anaerobic degradation of some PAHs, exceptionally low-
molecular-weight congeners, under sulfate reduction condition is better investigated
and biochemical mechanisms of naphthalene and 2-MN degradation have been
elucidated, similar investigations on HMW PAHs such as pyrene, BaP, or chrysene
are rarely reported. Pyrene degradation under sulfate-reducing conditions has been
reported in some instances. However, no culture capable of consistently degrading
pyrene has been identified.

10.2 Enhanced PAHs Biodegradation by Sulfate Amendment

Although sulfate is abundant in seawater, availability of sulfate in anoxic sediment
depends on diffusion of seawater sulfate to sediment. Moreover, utilization of sulfate
during anaerobic oxidation of organic substances may exceed sulfate supply from
overlaying sulfate-rich water (Martens and Val Klump 1984). On the other hand,
freshwater sediments are generally low in sulfate content compared to marine
sediments. In general, sulfate reduction will predominate over methanogenesis if
sulfate supply is enough to sustain the process (Muyzer and Stams 2008). In both
fresh and marine water systems, when sedimentary sulfate concentration decreases
because of the extensive activity of SRB or other physicochemical reasons,
methanogenic degradation becomes the primary means of organic compound
decomposition. Methanogenesis, however, is a less efficient energy-generating
process than sulfate reduction. In sulfate-depleted sediment, the external amendment
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could help to restore SRB-mediated bioremediation. Sulfate addition has been
shown to be effective in stimulating anaerobic benzene (Weiner et al. 1998;
Anderson and Lovley 2000) and BTEX (Cunningham et al. 2001) degradation.

The addition of sulfate in the form of soluble sodium sulfate and less soluble
gypsum to a sulfate-depleted methanogenic sediment stimulated naphthalene and
2-MN degradation (Rothermich et al. 2002). Similarly, the controlled release of
sulfate in marine sediment significantly enhanced anaerobic degradation of phenan-
threne (Tang et al. 2005). Sulfate addition in more soluble form may be practicable
for enhancing bioremediation potential of contaminated groundwater and aquifer
sediment, whereas addition of less soluble form (e.g., gypsum) may be useful in
alleviating sulfate concentration in the marine system (Rothermich et al. 2002).
Nonetheless, Bach et al. (2005) did not find any stimulatory effect of sulfate addition
in a sulfate-deficient PAHs-contaminated estuarine sediment. To date, the effect of
sulfate amendment on shaping sediment microbial community structure and function
and in situ demonstrations of the stimulatory effect of sulfate in PAHs degradation
have not been reported.

11 PAHs Biodegradation Under Methanogenic Conditions

PAHs degradation under methanogenic conditions is a thermodynamically challeng-
ing process, as the net gain of ATP during the biodegradation process is extremely
low (Dolfing et al. 2009). Complex organic compounds such as polysaccharides,
halogenated organic compounds, alkanes, as well as PAHs can be transformed via
syntrophic metabolism which involves cross-feeding between microbial species
(Schink 1997). In anaerobic syntrophic metabolism, substrates are first hydrolyzed
to acetate, longer-chain fatty acids, propionate, alcohols, CO2, formate, and H2 by
fermentative bacteria. Subsequently, the other crucial participant of a syntrophic
consortium, methanogenic bacteria, utilizes some of the products of the preceding
fermentative metabolism to reduce CO2 to CH4. The conversion of the most oxidized
state of carbon, i.e., CO2, to the most reduced form, i.e., CH4, generates adequate
energy that makes the overall anaerobic transformation process thermodynamically
feasible (McInerney et al. 2009). Christensen et al. (2004) inferred from a thermo-
dynamic calculation that methanogenic degradation of naphthalene is feasible only
in the presence of hydrogen-utilizing methanogens. PAHs are widespread in fuel-
contaminated methanogenic sediments, oil reservoirs, and groundwater aquifers.
Methanogenic degradation of PAHs can be a major route of PAHs detoxification
in methane-rich environments. So far, degradation of some LMW PAHs under
methanogenic conditions has been reported in contaminated soils, sewage and
petrochemical sludge, and sediments (Table 5). However, the degradability of
HMW PAHs under methanogenic conditions remains elusive due to the dearth of
experimental evidence. Methanogenic degradation of PAHs with two or more rings
was demonstrated in contaminated sewage sludge (Trably et al. 2003; Christensen
et al. 2004; Cea-Barcia et al. 2013). Zhang et al. (2012b) demonstrated incorporation
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of labeled carbon from 13C6-anthracene in the microbial community of landfill
leachate-contaminated subsurface aquifer sediment under methanogenic conditions.
Production of methane relative to the sterile control in this study also suggested
methanogenic degradation of anthracene. In another study, naphthalene- and
phenanthrene-degrading methanogenic enrichment cultures were developed with
Baltimore Harbor sediments without the addition of any external electron acceptors
(Chang et al. 2001). As PAHs are natural components of crude oil, microorganisms
that can degrade alkane compounds may also adapt to and degrade aromatic
hydrocarbons. Berdugo-Clavijo et al. (2012) examined the ability of a methanogenic
enrichment culture in biodegradation of naphthalene and methylated naphthalene
substitutes. The methanogenic enrichment was obtained from aquifer sediment that
was contaminated with natural gas compensate. The culture was able to degrade
alkane fraction of crude oil with concomitant production of methane (Townsend
et al. 2003; Gieg et al. 2008). Under methanogenic conditions, 2-MN- and
2,6-dimethylnaphthalene-amended enrichments produced methane gas compared
to unamended controls. However, naphthalene- and 1-MN-amended culture did
not show substantial amount of methane production. Interestingly, Toth et al.
(2018) demonstrated development of naphthalene degradation ability of the
methanogenic culture after long adaptation period. The findings suggested that
methanogenic microorganisms in crude oil-contaminated sediment could adapt to
PAHs and, over time, developed considerable degradation ability.

The involvement of methanogens in PAHs degradation has been demonstrated
experimentally. In PAHs-degrading methanogenic enrichment cultures, the addition
of methanogenesis inhibitor, bromoethane sulfonic acid (BESA), and eubacterial
inhibitor, vancomycin, caused a significant reduction in degradation rates indicating
the role of both methanogens and syntrophic bacteria (Chang et al. 2003). Similarly,
the addition of BESA to a naphthalene- and phenanthrene-degrading consortia
partially inhibited degradation and eliminated archaeal members from the consortia
suggesting the involvement of methanogens in the degradation process (Chang
et al. 2006). Fluorescence in situ hybridization analysis of naphthalene- and
1-MN-degrading enriched methanogenic consortia revealed that both bacteria and
archaea were involved in the degradation process. Moreover, the presence of the
members of Methanobacteriales in the consortia indicated the involvement of
syntrophic obligate hydrogen- or formate-utilizing archaea (Christensen et al. 2004).

Several members of methanogenic PAHs-degrading community have been iden-
tified. Microbial community analysis revealed the dominance of archaeal members
affiliated with Methanosaeta and Methanoculleus species and bacterial members
related to the Clostridiaceae in aquifer sediment enrichments that degrade 2-MN and
2,6-dimethylnaphthalene (Berdugo-Clavijo et al. 2012). The cultures were previ-
ously reported incapable of degrading naphthalene under methanogenic conditions.
However, after repeated transfer and tuning of the culture conditions, an enrichment
culture capable of mineralizing naphthalene to methane has been obtained recently
(Toth et al. 2018). Using next-generation sequencing and DNA-stable isotope
probing techniques, the authors identified an unclassified Clostridiaceae species
as a putative naphthalene degrader along with a Desulfuromonadales phylotype
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(function unknown). In another study, clone library analysis of phenanthrene-
degrading leachate-contaminated sediment microcosm identified a community
consisting of γ-Proteobacteria dominated by members of Citrobacter and Pseudo-
monas and archaea represented by members ofMethanosarcina,Methanobacterium,
and Thermogymnomonas (Zhang et al. 2012a). Using 13C6-anthracene and DNA-
based stable isotope probing technique, Zhang et al. (2012b) demonstrated incorpo-
ration of radiolabel into three Proteobacteria phylotypes represented by the genera
Methylibium and Legionella and an unclassified Rhizobiales. Methanogenic PAHs
degradation and biogas/methane production may be correlated. Degradation of
PAHs in laboratory-scale stirred-tank sewage sludge digester resulted in decreased
biogas production but increased PAHs removal (Trably et al. 2003). In contrast, near
stoichiometric production of methane was reported in methanogenic enrichment
culture amended with 2-MN and 2, 6-dimethylnaphthalene (Berdugo-Clavijo et al.
2012).

12 Anaerobic PAHs Degradation by Pure Cultures
of Bacteria

Pure cultures are invaluable especially in investigating the molecular mechanism
of biodegradation. Several pure cultures of bacteria capable of degrading PAHs
anaerobically have been isolated (Table 6). Among them, only three are strictly
anaerobic sulfate-reducing bacterial strains, whereas most of the isolates are facul-
tative anaerobic nitrate reducers. The scarcity of strictly anaerobic PAHs-degrading
pure isolates may be due to (a) complex nutrient requirement, (b) slow growth,
(c) failure to provide in situ-like incubation environment, and (d) obligatory mutu-
alistic dependence among members of degrading consortium. Attempts to isolate
Deltaproteobacterium sp. from naphthalene-degrading enrichment culture, N47,
failed even though most of the genes/proteins involved in degradation are associated
with this bacterium (Safinowski and Meckenstock 2006; Selesi et al. 2010;
Bergmann et al. 2011b). In another case, Martirani-Von Abercron et al. (2016)
isolated several naphthalene-degrading and nitrate-reducing bacterial strains. How-
ever, nitrate-respiring and naphthalene-degrading properties of the pure isolates
could not be reproduced in liquid culture. A naphthalene-degrading pure culture,
NaphS2, was isolated from the anoxic black sediment of North Sea (Galushko et al.
1999). Two other naphthalene-degrading SRB cultures, NaphS3 and NaphS6,
were obtained from anoxic Mediterranean lagoon sediment (Musat et al. 2009).
Much information on anaerobic naphthalene degradation has been obtained from
Deltaproteobacteria NaphS2. Rockne et al. (2000) isolated three nitrate-reducing
naphthalene-degrading facultative anaerobic bacteria. Stain NAP-3-1 and NAP-4 are
phylogenetically close to Pseudomonas stutzeri and Vibrio pelagius, respectively.
McNally et al. (1998) demonstrated anthracene, phenanthrene, and pyrene degrada-
tion by nitrate-reducing facultative anaerobic bacteria, Pseudomonas stutzeri
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SAG-R, P. fluorescens W-2, and P. putida KBM-1. Recently, Microbacterium
sp. (Qin et al. 2017) and Cellulosimicrobium cellulans CWS2 (Qin et al. 2018)
have been shown to degrade BaP under nitrate-reducing conditions. The efficiency
of pure cultures over enrichment cultures in anaerobic PAHs degradation is not fully
understood. Pure strains, NAP-3-1 and NAP-4, were less efficient in degrading
naphthalene compared to their efficiency in the consortia; better degradation in
co-culture may be due to the consortium synergy (Rockne et al. 2000). Pure cultures
may not necessarily reflect the bioremediation potency of the environment from
which they are obtained. Nevertheless, the value of obtaining pure bacterial strains
for the elucidation of the molecular mechanism of degradation remains crucial.

13 Effects of PAHs Contamination on Anaerobic Microbial
Community

PAHs input in an environment changes the total organic matter content. Depending
on solubility and bioavailability of contaminants, an alteration in dissolved and
particulate organic matter content is expected. The altered ratio, together with the
toxicity of PAHs, would have a consequence on the natural microbial community.
Knowledge on PAHs-induced changes in the microbial community is almost vague,
as only a few studies have been conducted so far. Thus, PAHs-induced selection
pressure on the microbial community is evident from the available few instances of
evidence. Chang et al. (2005) investigated the effect of naphthalene and phenan-
threne on methanogenic microbial community in harbor sediment. They found that
SRB dominated the baseline community. Addition of naphthalene or phenanthrene
triggered a marked shift toward the enrichment of methanogenic community in that
sediment.

Comparative analysis of 16S rRNA genes indicated that naphthalene- and
phenanthrene-degrading communities were different. Wan et al. (2012) reported
an increased abundance of archaeal community in anthracene-treated methanogenic
sediment. Alejandro et al. (2013) investigated the impact of Prestige oil spill on the
microbial community in contaminated subtidal sediment after 18 and 53 months of
the spill. The spilled oil contained naphthalene and its methylated derivatives. Along
the depth, aerobic hydrocarbon degraders were abundant in the upper zone, NRB
were present in higher number in the oxidized zone, and their number decreased with
depth while SRB count reached a maximum at depth of 12–15 cm. The deep anoxic
sediment was dominated by strictly anaerobic SRB. Although the spill caused a
decrease in bacterial count, aromatic-oxidizing cultivable populations increased with
time. The time-dependent difference in community distribution was also evident.
Gammaproteobacteria and Deltaproteobacteria were the dominant phyla in the
contaminated sediment as indicated by 16S rRNA gene analysis and fluorescent in
situ hybridization analysis. Within the Deltaproteobacteria, Desulfobacteraceae
was the most abundant, and Desulfarculales constituted half of the specific
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sequences. This study indicates that introduction of crude oil PAHs in anaerobic
sediment exerts some toxic effect to the microbial community; however, resistant
bacterial community will eventually develop and participate in PAHs cleaning
from the impacted environment. Recently, Martirani-Von Abercron et al. (2016)
investigated the effect of PAHs on different environmental samples under nitrate-
reducing conditions. The samples were collected from the diverse environment:
rice paddy fields, activated sludge, compost pile, lagoon sediment, and marine
sediment. MPN enumeration indicated the presence of nitrate reducers and naph-
thalene, 2-MN, 2-NA, and anthracene degraders in all samples. Bacterial commu-
nity analysis of the non-spiked control samples indicated that the samples, with
one exception, were dominated by Proteobacteria followed by a different propor-
tion of Bacteroidetes, Chloroflexi, and Actinobacteria. After enriching the samples
in naphthalene and 2-MN, significant changes in the bacterial community occurred.
Groups of uncultured and poorly characterized Acidobacteria, Firmicutes, and
Verrucomicrobia could be enriched over Proteobacteria.

A recent study showed rapid shaping of the methanogenic microbiome in full-
scale anaerobic digester reactors amended with naphthalene, fluorene, anthracene,
phenanthrene, and fluoranthene (Oko et al. 2017). The adaptation was more rapid
with oil and gas processing wastewater treatment reactor sludge (OG) than with
municipal solid waste reactor sludge (MS). Over time, PAHs, feed, and nutrient-
dependent succession in the bacterial and archaeal community was observed. After
14 days of incubation with PAHs, the relative abundance of the Euryarchaeota
group increased by 35 and 90% in MS and OG communities, respectively, while the
total abundance of bacteria decreased. In contrast, Ribeiro et al. (2018) argued that
the microbial community structure in sediment microcosms amended with naphtha-
lene and fluoranthene was mainly shaped by sample type and incubation time rather
than the PAHs. In addition, Zhou et al. (2017) observed that pyrene amendment did
not affect the activity and abundance of soil denitrifiers as well as microbial
respiration. Also, pyrene addition to soil did not cause any change in microbial
community.

14 Factors Affecting Anaerobic Biodegradation of PAHs

Many factors affect bioavailability and degradability of PAHs in the environment. In
addition to the physicochemical properties of PAHs, some characteristics of the
contaminated sites such as organic matter content, soil/sediment texture, clay min-
erals, pH, temperature, salinity, nutrient availability, and redox potential affect
biodegradation of PAHs (Wilson and Jones 1993). Apart from these factors, con-
stituents of a contaminating PAHs mixture and presence of co-contaminants such as
heavy metals, cyanides, and other organic compounds also affect the microbial
degradation of PAHs (Kuppusamy et al. 2017). As described in Sects. 8.3 and
10.2, the availability of TEAs such as nitrate and sulfate is a prominent factor
affecting anaerobic degradation. The field of anaerobic PAHs degradation is nascent;
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very few studies so far have investigated the role of factors in determining anaerobic
degradation of PAHs.

14.1 Influence of Structural Complexity of PAHs
on Biodegradability

In general, structurally simple compounds are better biodegradable than complex
compounds. Xenobiotic compounds are comparatively persistent to biodegradation.
Several rules for predicting biodegradability of natural and synthetic compounds
based on structural and chemical properties have been proposed, but numerous
exceptions make them overly generalized (Kobayashi and Rittmann 1982). For
example, benzene is structurally simpler and show more water solubility than
naphthalene. Even so, it is chemically more stable than naphthalene. Benzene
remained persistent in anaerobic sediment columns while naphthalene was degraded
(Langenhoff et al. 1996). Hypothetically, LMW PAHs, as they are less complex in
structure and more soluble in water, should be more readily degradable than their
HMW congeners. Indeed, this premise is supported by many studies. For instance,
Rothermich et al. (2002) observed quicker removal of 2–3 ring PAHs than 4–5
ring congeners. In a nitrate-reducing marine sediment enrichment, LMW PAHs
(acenaphthene, phenanthrene, and fluorine) were degraded more efficiently than
heavier fluoranthene and pyrene; the more complex PAHs like chrysene and benz
(a)anthracene were degraded very slowly, and BaP remained persistent (MacRae and
Hall 1998). Naphthalene was better degraded than phenanthrene by a denitrifying
fluidized bed enrichment culture (Rockne and Strand 1998). Ambrosoli et al.
(2005) reported a trend of three PAHs in the following order: fluorene > phenan-
threne> pyrene. In a contaminated arctic soil, naphthalene and 2-methylnaphthalene
were degraded under nitrate-reducing conditions, but HMW PAHs showed persis-
tence for 90 days (Eriksson et al. 2003). However, complexity and solubility are not
the only factors that determine degradability of PAHs. In a sediment enrichment,
naphthalene degradation was slow compared to other 2–5 ring PAHs tested, includ-
ing BaP (Rothermich et al. 2002). Relatively complex peri-fused pyrene was better
degraded than cata-condensed anthracene by denitrifying strain KBM-1 (McNally
et al. 1998). Three-ring phenanthrene was degraded slowly compared to five-ring
BaP by a facultative anaerobe, Pseudomonas sp. JP1 (Liang et al. 2014). Interest-
ingly, Murphy et al. (1995) demonstrated equal degradation rate of 15 priority PAHs
in real contaminated sediment upon nitrate supplement. It is thus apparent that a
simple correlation between structural complexity and biodegradability during anaer-
obic PAHs degradation cannot be drawn conclusively.

It may seem that increasing concentration of PAHs in an environment could
impede their degradability. Available evidence is contrasting enough that does
not allow to arrive at a general conclusion. Al-Bashir et al. (1990) reported
that denitrifying soil slurry enrichment culture could mineralize naphthalene at
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aqueous-phase saturation level (50 ppm) and beyond (200 and 500 ppm) at the same
rate. However, at concentration beyond the saturation level, degradation rate plum-
met after substrate concentration decreased to aqueous-phase solubility limit. The
authors suggested that desorption of substrate rather than concentration determines
the degradability. Dou et al. (2009) determined the degradation rates of naphthalene
at a different initial concentration by mixed bacterial culture. Degradation rate
increased with the increase in naphthalene concentration in 5–30 mg L�1 range. A
BaP-degrading pure culture, Cellulosimicrobium cellulans CWS2, degraded
10 mg L�1 of BaP more efficiently than 5 mg L�1 concentration (Qin et al. 2018).
Zhou et al. (2017) reported that increase in concentration of pyrene from 30 to
60 mg L�1 cause an increase in pyrene removal efficiency in denitrifying soil
microcosms. Nevertheless, it can be inferred that apart from structural complexity
and concentration of the contaminants, some yet unknown factors also affect
degradability of PAHs in anaerobic environment.

14.2 Effect of Prior Exposure to PAHs

Experimental evidence does not allow reaching a generalized assumption that a site
with previous contamination history possesses higher bioremediation potency than a
pristine one. It is tempting to assume that microorganisms in a long-term contami-
nated site are better adapted to the pollutant(s); hence more efficient in degrading
contaminants. Indeed, PAHs-degrading enrichment and pure cultures have been
frequently isolated from contaminated samples. In such habitats, metabolically
versatile microorganisms that can survive and utilize otherwise toxic pollutants
confront selection pressure and might get competitive advantages over other com-
munity members. However, bacterial degradation of PAHs in pristine environments
has also been reported in many studies. One possible explanation for the scenario is
the possession of uninduced genetic machinery within the microbial members of an
uncontaminated environment. Those unexpressed metabolic “toolboxes” are possi-
bly induced after exposure to pollutants. Additionally, not all community members
may have the ability to initialize attacking the pollutants. In the natural environment,
many compounds including toxic contaminants are degraded co-metabolically
(Hazen 2010).

Comparison between anaerobic PAHs removal efficiency of contaminated and
uncontaminated (or less contaminated) indicates that samples with previous expo-
sure history sometimes have greater bioremediation potential. Naphthalene and
phenanthrene degradation in two sulfidogenic marine sediments that differ in the
degree of contamination history was investigated (Coates et al. 1996). Both the
substrates were readily degraded in one sediment that was severely contaminated
with PAHs (33 mg of PAHs kg�1 of sediment). In contrast, the less contaminated
sediment (4 mg PAHs kg�1) showed very minimal degradation. Interestingly,
naphthalene degradation ability of the less contaminated sediment was stimulated
when it was incubated with some of the heavily contaminated sediment (Coates et al.
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1997). Hayes et al. (1999) observed a similar correspondence between the exposure
level of a sample and its PAHs removal potential. In both studies, long-term
exposure of the pristine-like samples to PAHs also resulted in the development of
better degradation capacity. Eriksson et al. (2003) observed a better degradation of
naphthalene, 2-MN, fluorene, and phenanthrene in a nitrate-reducing arctic soil
contaminated with fuel.

Previous exposure, however, does not always lead to the development of
better remediation capacity. Al-Bashir et al. (1990) observed that prior exposure
did not help in improving PAHs degradation rates and reduction of the lag phase.
The denitrifying Pseudomonas stutzeri strain SAG-R was isolated from a soil of
creosote-contaminated hazardous waste site. It could degrade anthracene, phenan-
threne, and pyrene more efficiently than the other two bacteria tested (McNally et al.
1998). Surprisingly, one of the strains, Pseudomonas putida KBM-1, which was
isolated from almost pristine soil, could also degrade all the three PAHs at the rates
comparable to those of the strain SAG-R. Sometimes, prolonged exposure to PAHs
promotes the abundance of specialized degrading microbial community that is
reflected in enhanced biodegradation rate, but such contamination history is not a
prerequisite in all cases.

14.3 Effect of Soil Amendments and Heavy Metals

The effects of nitrate and sulfate amendment in enhancing natural attenuation
of PAHs in an anaerobic environment and changes in abundance, activity, and
community structure following the addition of inorganic electron acceptors
have already been discussed. Li et al. (2015) investigated the effect of bicarbonate
addition on anaerobic degradation of fluorene, phenanthrene, fluoranthene, and
pyrene. Addition of 20 mM bicarbonate did not cause any significant change in
PAHs removal rate. A similar result was also reported by Bach et al. (2005). Li et al.
(2011) observed that addition of 1,160 mg L�1 of Mn(IV) to a PAHs degrading
enriched bacterial consortium decreased the degradation rates of fluorene, phenan-
threne, fluoranthene, and pyrene by 31–70%. The effect of bio-stimulating agents
such as fertilizers, labile carbon sources in the form of organic acids, and surfactants
was studied by Agarry and Owabor (2011). When added individually, all the
amendments such as Tween 80, silicone oil, pig dung, and NPK fertilizer stimulated
the degradation of naphthalene and anthracene in marine sediment. Pig dung and a
mixture of pig dung with Tween 80 were the best in PAHs removal when tested
individually or in combination. Organic acids such as acetate, lactate, and pyruvate
were also found to be stimulatory in PAHs degradation (Chang et al. 2002, 2008;
Bach et al. 2005). Langenhoff et al. (1996) reported that naphthalene degradation in
a nitrate-reducing sediment column was only commenced after the addition of
benzoate.

Very recently, Qin et al. (2018) investigated the effect of Fe2+, Zn2+, Cu(II),
Mn2+, Hg2+, Co2+, Pb2+, and Cd2+ on BaP degradation by a nitrate-reducing
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bacterium, Cellulosimicrobium cellulans CWS2. Among the metal ions, Cd2+

inhibited the degradation; Fe2+, Zn2+, Hg2+, and Pb2+ did not show any toxic effect,
while other metals slightly decreased the degradation rate.

14.4 Biosurfactants

Low solubility of PAHs in water is a major degradation rate-limiting factor.
Biosurfactants are amphiphilic detergent-like molecules that promote release of
sorbed PAHs and increase their aqueous concentrations by emulsification or
solubilization process (Deziel et al. 1996; Ron and Rosenberg 2002; Johnsen et al.
2005; Mulligan 2005). The role of biosurfactants in aerobic PAHs degradation was
better investigated. However, reports on biosurfactant production and role of
biosurfactants in anaerobic degradation of hydrocarbon compounds are rare. Yan
et al. (2017) reported biosurfactant production by iron-reducing facultative anaero-
bic strain, Hydrogenophaga sp. PYR1, that could degrade pyrene and BaP. Iron(III)
stimulated the biosurfactant production, and the best production was observed with
ferric citrate. Biosurfactant production by PAHs-degrading anaerobic bacteria and
mechanism of enhanced anaerobic biodegradation by biosurfactants remain
unknown.

15 Genetics and Biochemistry of Anaerobic PAHs
Biodegradation

Our current understanding of the molecular mechanism of PAHs degradation is
limited. Molecular mechanisms of anaerobic degradation of naphthalene and 2-MN
in SRB are well studied. Difficulties in maintaining anaerobic cultures and their
enzymes and extremely slow growth rate of anaerobic PAHs-degrading bacteria are
the two main factors that hinder in-depth molecular investigation of anaerobic
PAHs metabolism (Foght 2008; Meckenstock et al. 2016). Most of the information
related to anaerobic degradation of naphthalene and 2-MN has been garnered
from sulfate-reducing pure culture, NaphS2, and a freshwater enrichment culture,
N47 (Meckenstock et al. 2016). The pathways for anaerobic BaP degradation by
nitrate-reducing bacteria, Cellulosimicrobium cellulans CWS2 (Qin et al. 2018),
Microbacterium sp. (Qin et al. 2017), and Pseudomonas sp. JP1 (Liang et al. 2014),
and iron-reducing bacterial strain, Hydrogenophaga sp. PYR1 (Yan et al. 2017),
have been proposed. Anaerobic degradation pathways of naphthalene and 2-MN in
NaphS2 and N47 under sulfate-reducing conditions are analogous to anaerobic
benzene and toluene degradation pathways, respectively (Foght 2008; Meckenstock
et al. 2016). In contrast, the proposed pathways for anaerobic degradation of HMW
PAHs, for example, BaP, in several nitrate- and iron-reducing pure cultures indicate
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that they are entirely different from anaerobic naphthalene and 2-MN degradation
pathways. This variation could be specific for PAHs (LMW vs HMW) or reducing
conditions (facultative anaerobic vs strict anaerobic or nitrate-reducing vs sulfate-
reducing conditions) or organism-specific. In view of the currently available infor-
mation, anaerobic metabolism of naphthalene and 2-MN is summarized in detail,
and metabolism of phenanthrene and BaP has been outlined briefly in the following
subsections.

15.1 Mechanism of Naphthalene Biodegradation

15.1.1 Initial Activation of Naphthalene

At least three different activation mechanisms, i.e., hydroxylation, carboxylation, and
methylation, of naphthalene under entirely anaerobic conditions have been proposed
(Fig. 6). Bedessem et al. (1997) detected an unresolved isomer naphthalenol (naph-
thol) as a principal intermediate during naphthalene degradation under sulfate-
reducing conditions. Therefore, hydroxylation was proposed as the initial activation
mechanism. Several lines of supporting evidence bake this plausible hypothesis.
Indeed, benzene could be hydroxylated to phenol under methanogenic and sulfate-
and iron-reducing conditions (Vogel and Grbic-Galic 1986; Caldwell and Suflita
2000). Moreover, phenol formation from benzene has recently been reported in an
anaerobic benzene-oxidizing bacterium, Geobacter metallireducens (Zhang et al.
2013). Ideally, an activated intermediate of a recalcitrant compound should be readily
utilizable by the degrading bacteria. Expectedly, Mihelcic and Luthy (1988a)
observed that naphthol was more readily degraded than naphthalene by nitrate-
reducing enrichment culture. On the contrary, the inability of several sulfate-reducing
and naphthalene-degrading bacteria in using naphthol as substrate and absence of the
compound in cellular metabolites exclude it as an intermediate of the metabolic
pathways (Zhang and Young 1997; Meckenstock et al. 2000; Musat et al. 2009;
Kleemann and Meckenstock 2011).

Most of the available literature dealing with anaerobic naphthalene degradation
support carboxylation as the first activation step (Fig. 6). Zhang and Young (1997)
reported the accumulation of 2-NA in the supernatant of a naphthalene-degrading
and sulfate-reducing enrichment culture. The culture could also use 2-NA for growth
without any lag indicating the ready degradability of the compound as a typically
activated compound. To confirm the origin of the carboxyl group, the enrichment
culture was incubated in the presence of naphthalene and 14C-labeled bicarbonate.
Results indicated the incorporation of 14CO2 to the most negative carbon atom
(C2) of the naphthalene ring.

Interestingly, carboxylation is not exclusive for naphthalene; phenanthrene-
carboxylic acid was also detected in phenanthrene-amended sulfate-reducing
enrichment culture (Zhang and Young 1997). The position of the carboxylation
in phenanthrene ring remained unknown for many years. Using deuterated
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Fig. 6 The reactions of the upper pathway of anaerobic naphthalene and 2-methylnaphthalene
degradation. Solid arrows direct to the formation of 2-NA-CoA ester following initial activation of
naphthalene by carboxylation reaction and 2-MN activation by fumarate addition reaction. Dotted
arrows indicate the alternative pathways

78 K. Dhar et al.



phenanthrene and 13C-labeled bicarbonate, Davidova et al. (2007) unequivocally
presented the evidence that phenanthrene is also carboxylated at the C2 position, and
the reaction produces 2-phenanthrenecarboxylic acid. Furthermore, carboxylation is
not unique to SRB; 2-NA has also been detected as a primary metabolite during
naphthalene degradation by iron-reducing bacteria (Kleemann and Meckenstock
2011). Notably, several in situ metabolic profiling investigations identified carbox-
ylated PAHs including 2-NA in PAHs-contaminated sites (Gieg and Toth 2017).
Carboxylated PAHs are neither synthesized commercially nor occur as by-products
of any known biological reactions; so the presence of these compounds in contam-
inated sites indicates that carboxylation may be a common activation reaction for
many, if not all, PAHs. However, carboxylated intermediates are absent in cellular
metabolites of phenanthrene- and BaP-degrading cultures (Tsai et al. 2009; Liang
et al. 2014; Qin et al. 2017, 2018; Yan et al. 2017). Likewise, Toth et al. (2018) did
not find any carboxylated, methylated, or fumarate substituted naphthalene metab-
olites in a methanogenic naphthalene-degrading enrichment culture. Therefore, a
generalized activating step for all PAHs under anaerobic condition perhaps does not
exist.

In sulfate-reducing enrichment culture N47, naphthalene is carboxylated by the
enzyme naphthalene carboxylase. The enzyme activity was demonstrated in a crude
cell extract of N47 (Mouttaki et al. 2012). In the reaction mixture of a crude cell
extract of N47, naphthalene and 13C-bicarbonate, this enzyme produced 13C-labeled
2-NA at a rate of 0.12 nmol min�1 mg�1 of protein. Interestingly, the enzyme
activity was ATP-independent. Divalent cations (Mn2+ and Mg2+) and chelating
agent (EDTA) do not affect the activity. Moreover, the enzyme is biotin-
independent, susceptible to oxygen exposure, and affected by strong reducing agents
like sodium dithionite and Ti(III)citrate. Many of the characteristics of the naphtha-
lene carboxylase enzyme suggest that it belongs to UbiD-like carboxylase enzyme
family (Meckenstock et al. 2016). A recent proteogenomic study has revealed the
presence of an alpha-subunit of the putative naphthalene carboxylase in N47
(Bergmann et al. 2011b). The ORF of the putative carboxylase shows 48 and 45%
sequence similarity to alpha-subunit of phenylphosphate carboxylase (PpcA) of
Aromatoleum aromaticum EbN1 (Rabus et al. 2005) and putative anaerobic benzene
carboxylase of the iron-reducing and benzene-degrading culture, BF (Abu Laban
et al. 2010), respectively. Also, molecular mass (53.23 kDa) and peptide chain
length (481 amino acids) of putative naphthalene carboxylase are almost analogous
to those of the EbN1 PpcA (53.99 kDa and 485 amino acids, respectively). Despite
the similarities, naphthalene carboxylase is different from PpcA as the latter requires
ATP and phosphorylated substrate.

A completely different mechanism of naphthalene activation was also proposed
for sulfate-reducing Deltaproteobacterial culture, N47 (Safinowski and Meckenstock
2006). According to the proposal, naphthalene is first methylated to 2-MN and
then subsequently transformed to the central metabolite 2-NA (Fig. 6). This
pathway is analogous to the anaerobic conversion of benzene to toluene (Coates
et al. 2002). The methylation theory is based on the detection of naphthyl-2-
methylsuccinic acid (NMS) and naphthyl-2-methylenesuccinic acid (NeMS) in
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naphthalene-supplemented N47 culture. These two metabolites are highly specific
for anaerobic 2-MN degradation; Safinowski and Meckenstock (2006) therefore
reasoned that the metabolites were produced from 2-MN which, in turn, was derived
from naphthalene by a methylation reaction.

Additionally, when naphthalene-degrading N47 culture was transferred to
2-MN-amended medium, rapid onset of degradation occurred without a pronounced
lag (Safinowski and Meckenstock 2006). However, in vice versa scenario, i.e., when
2-MN-adapted culture was transferred to naphthalene-amended medium, degrada-
tion commenced after a long period of ~100 days. The authors suggested that
naphthalene-grown cells contained all necessary enzyme(s) required for 2-MN
degradation, while the enzyme(s) were not induced in 2-MN-grown cells that caused
such a long adaptation period. While it came to the origin of the methyl group, the
authors argued that it could be generated from bicarbonate via a reverse carbon
monoxide (CO) dehydrogenase pathway. CO dehydrogenase activity of about
0.0974 μmol min�1 mg�1 of protein was found in culture N47 using methyl
viologen as the TEA. Although methylation is not regarded as a primary mechanism
of benzene activation during anaerobic degradation, Ulrich et al. (2005) detected
toluene in benzene-degrading and nitrate-reducing enrichment culture. Like ben-
zene, naphthalene could also be methylated, as it is more reactive than benzene in
electrophilic substitution and addition reaction. According to quantum mechanical
calculations, the net loss in stabilization energy for the first step in electrophilic
substitution or addition is higher for benzene than that for naphthalene. Therefore, it
is expected that electrophilic substitution will occur for naphthalene if it reacts
with strong methyl group-donating compounds. However, later studies on N47
failed to detect methylated derivative in culture incubated with naphthalene and a
methyl group donor such as methyltetrahydrofolate, S-adenosyl-L-methionine, and
methylcobalamin (Mouttaki et al. 2012).

Convincing evidence that cancels out methylation as an initial activation mech-
anism has been provided by Musat et al. (2009). When naphthalene-grown cells of
three sulfate-reducing pure bacterial strains, NaphS2, NaphS3, and NaphS6, were
transferred to 2-MN, substrate utilization did not commence before a long adaptation
period. The second evidence was obtained by growing NaphS2 in deuterated(d8)
naphthalene and unlabeled 2-MN. Most of the d8 label was found in the carboxyl-
ation product 2-NA, while succinic acid adduct 2-naphthylmethylsuccinate
was found unlabeled. In addition, gel electrophoresis of 2-MN-grown cell extracts
revealed high-molecular-mass co-migrating protein bands. These protein bands were
only specific for 2-MN-grown cells, indicating that the bacteria use different activa-
tion mechanisms for naphthalene and 2-MN. Nevertheless, traces of 2-MN-specific
metabolites were also detected in naphthalene-grown cultures of NaphS2, NaphS3,
and NaphS6 (Musat et al. 2009). The authors argued that these metabolites were
probably produced via back reaction starting from 2-naphthoyl-CoA and succinyl-
CoA. Recently, enzymes specific for 2-MN degradation have been found in several
naphthalene-degrading and sulfate-reducing cultures of Desulfobacteraceae
(Kummel et al. 2015). One possible explanation for this scenario may be the
co-induction of 2-MN-specific gene clusters by naphthalene.
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15.1.2 Initial Activation of 2-Methylnaphthalene

In many senses, anaerobic degradation 2-MN and toluene show striking similarities.
Most of the information on anaerobic toluene degradation has been obtained from
Azoarcus sp. strain T (Beller and Spormann 1997) and Thauera aromatica (Biegert
et al. 1996). Anaerobic toluene degradation in these organisms initiates with the
conversion of toluene to benzylsuccinic acid by the enzyme benzylsuccinate
synthase (Bss) that catalyzes the addition of fumarate to the methyl side chain of
toluene. Likewise, the initial activation of 2-MN involves similar fumarate addition
step that leads to the production of naphthyl-2-methylsuccinic acid by the catalytic
action of 2-naphthylmethylsuccinate synthase (Nms) (Fig. 6). The enzyme reaction
was demonstrated in a dense cell suspension of culture N47 with fumarate
(Safinowski and Meckenstock 2004). Musat et al. (2009) observed 2-MN-specific
co-migrating protein band in gel electrophoresis of cell extract from sulfate-reducing
cultures, NaphS2, NaphS3, and NaphS6. Peptide sequencing of the putative large
subunit of Nms (NmsA) revealed that the protein shares sequence similarity to the
large catalytic subunit of Bss (BssA). Whole genome and proteome sequencing of
the culture N47 revealed Nms genes, nmsA, nmsB, and nmsC, corresponding to the
three subunits of the Nms protein. The α (95.9 kDa), β (7.9 kDa), and γ (7.8 kDa)
subunits share sequence similarities to the corresponding subunits of Bss enzyme.
Notably, the NmsA sequences of N47 show more similarity (92%) to those of
NaphS6 compared to any BssA sequences. In addition to the gene products of
nmsABC, NmsD, a putative Nms-activating enzyme that shares sequence similarity
to putative 1-methyl alkyl-succinate synthase activase (MasG) of Azoarcus sp. strain
HxN1, was also identified in N47 (Selesi et al. 2010).

During 2-MN degradation by a sulfate-reducing consortium that was enriched
from marine harbor estuarine sediment, Sullivan et al. (2001) found very different
degradation metabolites. They argued that 2-NA is not a product of direct carbox-
ylation or fumarate addition. Instead 2-NA was proposed to be generated via the
oxidation of the methyl side chain. Also, several carboxylated-2-MN metabolites
and their reduced derivatives were detected. As in the case of naphthalene, several
alternative activation mechanisms of 2-MN activation, i.e., oxidation and carboxyl-
ation, may exist in nature.

15.1.3 Conversion of Naphthyl-2-Methylsuccinic Acid to 2-NA

Despite the difference in naphthalene and 2-MN activation mechanisms, both the
substrates channeled to the central metabolic pathway via the common intermediate
2-NA. Unlike one-step naphthalene activation reaction (naphthalene to 2-NA),
conversion of 2-MN to 2-NA via naphthyl-2-methylsuccinic acid (NMS) is a
multistep process (Fig. 6). As in toluene degradation, the reactions following NMS
generation proceed via the formation of corresponding CoA ester, NMS-CoA. In a
subsequent reaction, NMS-CoA is oxidized to naphthyl-2-methylenesuccinyl-CoA
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(NMeS-CoA) by naphthyl-2-methylsuccinyl-CoA dehydrogenase activity. The
activity of the succinyl-CoA:naphthyl-2-methylsuccinate CoA-transferase enzyme,
which converts NMS to the corresponding CoA ester, has been measured in crude
cell extract of culture N47. This CoA-transferase enzyme shares significant similar-
ity to succinyl-CoA:(R)-benzylsuccinate CoA-transferase, and both belong to the
family(III) of CoA-transferases. In addition, naphthyl-2-methylsuccinyl-CoA dehy-
drogenase activity has also been measured in crude extract of N47 (Safinowski and
Meckenstock 2004). The rest of the steps leads to the conversion of NMeS-CoA to
2-NA. The reaction series should proceed via the formation of oxidized intermedi-
ates as in benzoyl-CoA pathway of anaerobic toluene degradation. However, the
predicted intermediates, naphthyl-2-hydroxymethyl-succinyl-CoA and naphthyl-2-
oxomethyl-succinyl-CoA, are not yet detected in any 2-MN-degrading culture
extracts. Nevertheless, recent proteogenomic studies on culture N47 (Selesi et al.
2010; Bergmann et al. 2011a) and NaphS2 (Didonato et al. 2010) provide interesting
clues suggesting the presence of all the necessary genes and enzymes for the putative
oxidation reactions. The bns (beta-oxidation of naphthyl-2-methylsuccinate) operon
in N47 consists of eight genes, bnsABCDEFGH. Functions of the gene products
were predicted from orthologous sequences of toluene-degrading Aromatoleum
aromaticum EbN1, Thauera aromatica, and Azoarcus sp. strain T (Meckenstock
et al. 2016).

15.1.4 Formation of 2-Naphthoyl-CoA from 2-NA by CoA Ligase

Anaerobic metabolism of aromatic acid proceeds via the formation of a thioester
with coenzyme A (CoA) by CoA ligase or CoA-transferase enzyme (Fuchs et al.
2011). Observing the formation of 2-NA and reduced 2-NA derivatives, Zhang et al.
(2000) speculated that 2-NA might be thioesterified with CoA-SH so that the
subsequent reactions would proceed through the formation of ring reduction prod-
ucts in a manner that is similar to the anaerobic benzoyl-CoA pathway (Harwood
et al. 1998). Indeed, the –CO-S-CoA group facilitates further electron transfer and
ring reduction by lowering the midpoint potential of the first electron transfer process
(Johann and Georg 1997). A phototrophic bacterium, Rhodopseudomonas palustris,
produces a 4-hydroxybenzoate-coenzyme A ligase that can catalyze the MgATP-
requiring thioesterification reaction with 4-hydroxybenzoate (or benzoate) and coen-
zyme A. Benzoate-CoA ligase of a facultative anaerobe, T. aromatica, can also
perform benzoyl-CoA-forming catalysis in the presence of benzoate, MgATP, and
coenzyme A (Schühle et al. 2003). An indication for the presence of similar CoA
ligase enzyme in NaphS2 and N47 has been obtained from proteogenomic investi-
gations (Didonato et al. 2010; Bergmann et al. 2011b). Deltaproteobacterium
NaphS2 genome contains a gene (NPH_5477) that encodes a putative 2-NA-CoA
ligase with 50% similarity to E. coli phenylacetate-CoA ligase. During differential
growth on benzene and naphthalene, NPH_5477 was upregulated (Didonato et al.
2010). Sequence comparison between 2-NA-CoA ligase in N47 and benzoate-CoA
ligase of R. palustris revealed the presence of several ORFs. Among the most related
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ORFs, N47_B20660 was found to be expressed exclusively in naphthalene- and
2-NA-grown cultures (Bergmann et al. 2011b). However, experimental evidence
confirming the presence and activity of 2-NA-CoA ligase has not yet been provided.

15.1.5 Ring Reduction of 2-NA

Following the formation of common 2-NA intermediate, both naphthalene and
2-MN degradation proceeds through identical sequential ring reduction steps that
ultimately pave the way of ring cleavage (Fig. 7). Early GC-MS analysis of culture
extract from the culture N47 provided clues for the formation of several metabolites
by ring reduction (Meckenstock et al. 2000). Two tetrahydro-derivatives, 1,2,3,4-
tetrahydro-2-naphthoic acid (1,2,3,4-THNA) and 5,6,7,8-tetrahydro-2-naphthoic
acid (5,6,7,8-THNA), in addition to octahydro-2-NA and decahydro-2-NA, in
naphthalene-fed culture were detected (Meckenstock et al. 2000). A similar analysis
on another naphthalene-degrading and sulfate-reducing enrichment culture extracts
also revealed the formation of five-ring reduction products: dihydro-; 5,6,7,8-
tetrahydro-; hexahydro-; octahydro-; and decahydro-2-NA (Zhang et al. 2000).
The formation of these metabolites has suggested that 2-NA is sequentially reduced
through five successive steps toward the production of decahydro-2-NA. However,
decahydro-2-NA was proposed as a dead-end metabolite (Annweiler et al. 2002).

Detection of only deuterated 5,6,7,8-THNA (but not 1,2,3,4-THNA) in the study
by Zhang et al. (2000) has provided an important clue that the ring reduction might
start in the non-substituted ring (ring II) rather than the carboxyl-substituted ring
(ring I). On the other hand, accumulation of 1,2,3,4-THNA, even in small amounts,
together with 5,6,7,8-THNA in the study of Meckenstock et al. (2000) could not
deduce where the first reduction was initiated from the metabolites’ profile. If
the ring reduction starts at the ring I, then 1,2,3,4-THNA should have been the
major metabolite. To resolve the apparent discrepancy, Annweiler et al. (2002)
analyzed the metabolites formed while growing the culture N47 on 1,2,3,4-
tetrahydronaphthalene (tetralin). Only 5,6,7,8-THNA was detected in culture extract
indicating that the addition of C1 unit requires an aromatic ring and the ring
reduction starts from the unsubstituted ring II. However, recent metabolite profiling
studies have reported the presence of 1,2,3,4-THNA in PAHs-contaminated samples
(Aitken et al. 2004; Griebler et al. 2004; Wawrik et al. 2012). Therefore, ring
reduction may initiate in either of the rings. Conditions that favor a reduction process
are still unknown.

High resonance energy of mono- or polyaromatic compounds makes a ring
cleavage reaction very challenging in a biological system. Before cleavage of the
ring structure, anaerobic bacteria adopt a strategy that involves the dearomatization
of the ring. Reductive dearomatization of the central metabolite benzoyl-CoA is a
well-known process in anaerobic degradation of monoaromatic BTEX compounds
(Boll 2005; Fuchs et al. 2011). The dearomatization process that leads to the
production of 1,5-dienoyl-CoA (cyclohex-1,5-diene-1-carboxy-CoA) is catalyzed
by benzoyl-CoA reductase (Bcr) enzyme (Boll and Fuchs 1995; Fuchs et al. 2011).
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Fig. 7 Formation of the lower pathway central metabolite pimeloyl-CoA from 2-naphthoyl-CoA
via sequential ring reduction and two ring-opening reactions in the anaerobic degradation of
naphthalene and 2-MN

84 K. Dhar et al.



Two classes of Bcr have been reported so far. They catalyze the formation of the
same product but differ in some properties; ATP dependence is one of the most
striking features of the enzyme. Bcr I activity has been reported so far in Thauera
aromatica (Breese et al. 1998), Rhodopseudomonas palustris (Egland et al. 1997),
and Azoarcus evansii (Harwood et al. 1998). Oxygen-sensitive Bcr I catalyzes
two-electron transfer from reduced ferredoxin to the substrate with stoichiometric
hydrolysis of two molecules of ATP to ADP and PPi. On the other hand, class II
Bcr activity in obligate anaerobic Geobacter metallireducens does not require
ATP (Kung et al. 2009). N47 genome contains genes that are similar to the genes
encoding the four subunits of class I Bcr in Azoarcus sp. However, the gene similar
to BamB that codes for the active site of Bcr II is absent in N47. In contrast, NaphS2
genome harbors gene analogous to both classes of Bcr (Didonato et al. 2010). The
activity of the putative naphthoyl-CoA reductase (Ncr) has been shown in the crude
cell extracts of N47 which catalyzes sodium dithionite-dependent four-electron
transfer reaction, converting NCoA to 5,6,7,8-THN-CoA. Although sequences of
ncrABCD and bcrABCD are similar, unlike Bcr I protein, Ncr activity in N47 is
independent of ATP and insensitive to oxygen indicating the novelty of Ncr within
the family of reductases (Eberlein et al. 2013b). Ncr has been purified and charac-
terized from N47 culture. The enzyme is a 150 kDa dimeric protein consisting of two
72 kDa subunits. It contains FMN and FAD cofactors and [4Fe-4S] clusters. It is
classified as a member of old yellow enzyme (OYE) family based on the presence of
flavin cofactors and iron-sulfur cluster as well as sequence similarity to cyclohexa-
1,5-diene-1-carboxyl-CoA oxidase from T. aromatica (Eberlein et al. 2013a).

Notably, no dihydro derivative formation was observed during NCoA reduction.
However, when ncr gene of N47 (N47_G38220) was heterologously expressed in
Escherichia coli, the extract of recombinant cells catalyzed the conversion of NCoA
to dihydro-2-naphthoyl-CoA (DHN-CoA) rather than 5,6,7,8-THN-CoA (Eberlein
et al. 2013a). Further, Estelmann et al. (2015) investigated the expression of three
putative ncr (N47_G38220 from N47 and NPH_5475 and NPH_1753 from NaphS2)
in E. coli host. All ncr gene products could convert NCoA to a two-electron reduced
metabolite 5,6-dihydro-2-naphthoyl-CoA (5,6-DHN-CoA). However, none of the
enzymes showed a four-electron reduction of NCoA to THN-COA. Genes encoding
putative 5,6-DHN-CoA reductases from both N47 (N47-G38210) and NaphS2
(NPH_5476) were expressed in E. coli. The gene products catalyzed the formation
of 5,6,7,8-THN-CoA from 5,6-DHN-CoA (Estelmann et al. 2015). Subsequent
reduction of 5,6,7,8-THN-CoA to hexahydro-2-naphthoyl-CoA (HHNCoA) in
N47 involves another two-electron reduction step that is catalyzed by an ATP-
dependent and oxygen-sensitive THN-CoA reductase enzyme (Eberlein et al.
2013b). Therefore, reduction of NCoA to HHNCoA involves three enzymatic
reduction steps. The first two enzymes in this series belong to the OYE family,
and the other, HHNCoA, is identical to class I Bcr family. In both N47 and NaphS2,
genes encoding four putative subunits of THN-CoA reductase have been identified
as a part of a gene cluster. In N47, the gene cluster forms thn operon. Protein
prediction from the operon indicates that the operon contains genes that may encode
several putative enzymes in addition to THN-CoA reductase. The predicted enzymes
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include an oxidoreductase, enoyl-CoA hydratases/hydrolases, acyl-CoA dehydroge-
nases, 3-hydroxyacyl-CoA dehydrogenases, and acetyl-CoA thiolases/transferases
(Meckenstock et al. 2016). By comparing the putative functions of the enzymes with
the functions of analogous enzymes in benzoyl-CoA pathway, Meckenstock et al.
(2016) hypothesized that downstream degradation of hexahydronaphthoyl-CoA
could proceed via β-oxidation-like reactions, and the first ring cleavage would
occur through a thiolytic cleavage of acetyl-CoA producing a cyclohexanoic acid-
CoA ester derivative.

15.1.6 Ring Cleavage of Reduced 2-NA Products

The downstream ring cleavage pathways in anaerobic naphthalene and 2-MN
degradation proceed through cyclohexanoic acid rather than monoaromatic com-
pound (Annweiler et al. 2002; Weyrauch et al. 2017). In naphthalene-degrading N47
culture extracts, GC-MS analysis revealed the presence of two ring cleavage prod-
ucts (Annweiler et al. 2002). The first product consisted of a cyclohexane ring with
two carboxylic acid side chains with C11H16O4-diacid. The exact constituents of the
diacid side chains are not known yet. The second ring cleavage product was detected
as a cis-2-carboxycyclohexylacetic acid that was assumed to be a β-oxidation
product of the diacid. Recently, metabolism of cis-2-carboxycyclohexylacetic
acid-CoA ester (2-(carboxymethyl)cyclohexane-1-carboxylic acid-CoA ester) by
N47 culture extracts has been demonstrated by Weyrauch et al. (2017). When
cis-2-carboxycyclohexylacetic acid-CoA ester (m/z ¼ 936) was incubated with a
cell-free extract of the culture N47 and NaphS2 in the presence of ferrocenium
hexafluorophosphate as the artificial electron acceptor, two new compounds were
detected in GC-MS representing m/z values of 934 and 952, respectively. This
indicates that metabolism of cis-2-carboxycyclohexylacetic acid proceeds via α-,
β-desaturation and a subsequent water addition at the β-position. The dehydrogenase
and hydratase enzymes catalyzing the two reactions show similarity in reaction to
corresponding enzymes of branched acyl-CoA ester metabolism. The acyl-CoA
dehydrogenase introduces a double bond to cis-2-carboxycyclohexylacetic acid
producing 2-carboxycyclohexylideneacetyl-CoA that is converted into 1-hydroxy-
2-carboxycyclohexylacetyl CoA in the hydratase-catalyzed reaction. The remaining
cyclohexane ring opening and central acetyl-CoA metabolism substrates production
proceed via pimeloyl-CoA. Before converting to CoA ester of dicarboxylic C7
pimelic acid, the ring structure of 1-hydroxy-2-carboxycyclohexylacetic acid-CoA
ester is opened by a novel class of ring-cleaving lyase. In the subsequent thiolytic
cleavage reaction, the ring cleavage reaction product, 3-oxononanedioyl-CoA, is
converted to pimeloyl-CoA by thiolase (Weyrauch et al. 2017).

Further degradation of pimeloyl-CoA to glutaryl-CoA proceeds via β-oxidation
(Fig. 8). Pimeloyl-CoA is converted sequentially to 2,3-dehydropimeloyl-CoA,
3-hydroxypimeloyl-CoA, and 3-oxopimeloyl-CoA probably by acyl-CoA dehydro-
genase, acyl-CoA hydratase, and β-hydroxyacyl-CoA dehydrogenase, respectively.
Although no peak representing glutaryl-CoA was detected during pimeloyl-CoA
conversion, cell-free extracts of both N47 and NaphS2 strains can utilize glutaryl-

86 K. Dhar et al.



Fig. 8 Lower pathway of
anaerobic naphthalene and
2-methylnaphthalene
degradation. Pimeloyl-CoA
is converted to the TCA
cycle intermediate acetyl-
CoA via glutaryl-CoA.
Pimeloyl-CoA is derived
from 2-naphthoyl-CoA that
is in turn generated during
the anaerobic oxidation of
the parent substrates
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CoA (Weyrauch et al. 2017). In the glutaryl-CoA assay, four major peaks
appeared in LC-MS chromatogram representing glutaconyl-CoA, crotonyl-CoA,
3-hydroxybutyryl-CoA, and acetyl-CoA. A similar conversion process of glutaryl-
CoA to glutaconyl-CoA and glutaconyl-CoA to crotonyl-CoA has been previously
reported in strict anaerobes (Schöcke and Schink 1999; Müller and Schink 2000;
Wischgoll et al. 2009). Unlike facultative anaerobes that exploit decarboxylating
glutaryl-CoA dehydrogenase only for the direct conversion of glutaryl-CoA to
crotonyl-CoA, strict anaerobes use non-decarboxylating glutaryl-CoA dehydroge-
nase and glutaconyl-CoA decarboxylase to produce crotonyl-CoA from glutaryl-
CoA via glutaconyl-CoA. By the formation of TCA cycle intermediate, acetyl-CoA,
the pathway merges to the central respiration pathway.

15.2 Mechanism of Phenanthrene and BaP Biodegradation

As mentioned above, phenanthrene degradation in a sulfate-reducing enrichment
culture starts with the carboxylation at the C2 position (Davidova et al. 2007).
Recently, Himmelberg et al. (2018) detected 2-phenanthroic acid as the primary
metabolite in phenanthrene-degrading and sulfate-reducing enrichment culture.
Detection of carboxylated phenanthrene also suggests that the anaerobic phenan-
threne metabolism might follow analogous steps as in naphthalene biodegradation.
The study of Himmelberg et al. (2018) also provided some clues that indicate
possibility for the existence of a similar metabolic route. Like 2-NA, 2-phenanthroic
acid is also converted to corresponding CoA ester by the enzyme 2-phenanthroate-
CoA ligase. Moreover, several ring-reduced products were also identified, indicating
the occurrence of ring reduction steps that will make the ring cleavage possible at
later stages. Tsai et al. (2009) detected phenol and p-cresol in phenanthrene-
degrading and sulfate-reducing enrichment culture. The authors proposed that phen-
anthrene degradation proceed through a series of hydration and hydrolysis reactions
and a decarboxylation reaction on p-cresol. Phenol was also detected in the fluorene-
amended cultures.

Reports proposing anaerobic BaP degradation mechanism are extremely
sporadic. BaP degradation pathways have been reported for facultative anaerobes,
Pseudomonas sp. JP1 (Liang et al. 2014), Microbacterium sp. (Qin et al. 2017), and
Cellulosimicrobium cellulans CWS2 (Qin et al. 2018), and biosurfactant-producing
and iron-reducing Hydrogenophaga sp. PYR1 (Yan et al. 2017). The metabolites of
BaP degradation identified so far are listed in Table 7. If BaP biodegradation is
thought to proceed via a pathway that is comparable to naphthalene degradation
pathway, carboxylated BaP should be a metabolite in upper degradation pathway.
However, such a metabolite is not reported yet in any BaP-degrading culture.
Available proposed BaP degradation pathway does not merge at a central metabolite
like benzoic acid or naphthoic acid as in benzene and naphthalene degradation,
respectively. In addition, a common activation reaction in BaP-degrading pathway
cannot be expected, not only for the absence of carboxylated metabolites,
but proposed pathways indicate several distinct first step metabolites even for
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the same strain. For instance, both 4,5-dihydrobenzo(a)pyrene and 7,8,9,10-
tetrahydrobenzo(a)pyrene have been suggested as initial reduction step products
for BaP-degrading and nitrate-reducing Microbacterium sp. (Qin et al. 2017).
Similarly, Liang et al. (2014) suggested 1,12-dimethylbenz(a)anthracene, 7,8,9,10-

Table 7 Metabolites of BaP degradation identified so far in nitrate- and iron-reducing bacteria

Bacterium TEA Identified metabolites
Detection
system Reference

Microbacterium sp. Nitrate 4,5-Dihydrobenzo(a)pyrene;
chrysene; 7,8,9,10-
tetrahydrochrysene; phenanthrene;
3-acetylphenanthrene; 2-methyl-1-
naphthaleneacetic acid; naphthalene;
1-naphthalenol; 5,8-nihydro-1-
naphthalenol; 3,8-nihydroxy-3,4-
dihydronaphthalen-1(2H)-one;
2-(1-hydroxyethyl)
hydroxymethylbenzene; 7,8,9,10-
tetrahydrobenzo(a)pyrene; pyrene;
4,5-dihydropyrene;
4,5-dimethylphenanthrene;
4-methylphenanthrene

GC-MS Qin et al.
(2017)

Cellulosimicrobium
cellulans CWS2

Nitrate Pyrene; 1-aminopyrene; phenan-
threne; 1-methylphenanthrene;
1,7-dimethylnaphthalene;
1-(2-hydroxypropyl)-naphthalene;
1-hydroxy-3-(3-methyl-2-butenyl)-
1,4-naphthalenedione;
1-methylnaphthalene; diethyl
phthalate; 2-acetyl-3-
methoxybenzoic acid

GC-MS Qin et al.
(2018)

Pseudomonas
sp. JP1

Nitrate 1,12-Dimethylbenz(a)anthracene;
7,8,9,10-tetrahydrobenzo(a)pyrene;
5-ethylchrysene; benz(a)anthracene;
pyrene; chrysene;
4,5-dimethylphenanthrene;
4-methylphenanthrene; phenan-
threne; 1,2,3,4-tetrahydro-4-methyl-
4-phenanthrenol; 1-ethyl-2-
methylphenanthrene;
1-methylphenanthrene;
2-methylphenanthrene; alpha-
methylstilbene; benz(a)anthracene;
2,3-dimethylphenanthrene;
2-methylphenanthrene;
2-methylanthracene;
1-methylanthracene; anthracene

GC-MS Liang
et al.
(2014)

Hydrogenophaga
sp. PYR1

Iron(III) 5-Ethylchrysene; pyrene;
1H-phenalen-1-one; phenanthrene;
benzoic acid-2-hydroxy-phenyl
ester; 1,2,3-trimethyl-4-propenyl
naphthalene

GC-MS Yan et al.
(2017)
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tetrahydrobenzo(a)pyrene, and 5-ethylchrysene as products of alternative initial
reactions. According to Qin et al. (2017), BaP degradation proceeds through initial
reduction followed by formation of unsubstituted BaP congeners (pyrene and
chrysene) and subsequently through ring opening that leads to the production of
naphthalene and its hydroxyl derivatives. In contrast, the pathway proposed by
Liang et al. (2014) involves methylated derivatives in addition to the reduced and
congener derivatives.

At this moment, reaching a consensus about BaP biodegradation seems difficult.
However, proposed pathways indicate the formation of some common metabolites
during BaP degradation. Pyrene and phenanthrene have been detected as BaP metab-
olites in cultures of Pseudomonas sp. JP1, Microbacterium sp., Hydrogenophaga
sp. PYR1, andCellulosimicrobium cellulansCWS2 (Qin et al. 2017). Chrysene is the
common BaP metabolite in Pseudomonas sp. JP1 andMicrobacterium sp. The same
7,8,9,10-tetrahydrobenzo(a)pyrene has been detected in bothMicrobacterium sp. and
Pseudomonas sp. JP1. Detection of similar compounds may be indicative of the
existence of novel pathway(s) for BaP biodegradation. In contrast, detection of
reduced derivatives, 4,5-dihydrobenzo(a)pyrene and 7,8,9,10-tetrahydrobenzo(a)
pyrene, indicates the involvement of ring reduction steps as in naphthalene and
2-MN degradation.

16 Metabolite Profiling for Monitoring In Situ Anaerobic
PAHs Biodegradation

Degradation metabolites of various environmental contaminants are used as diag-
nostic biomarkers for investigating the biotic fate of the compounds in the real
environments (Callaghan 2013; Gieg and Toth 2017). Metabolite profiling or
metabolome analysis provides unambiguous evidence that biodegradation is occur-
ring or has already occurred since metabolites are the products of enzyme-catalyzed
reactions. Suitability of a compound as a biomarker is determined by some essential
criteria. The metabolite generated during the active biodegradation process must be
specific to the parent compound monitored and is not a natural as well as xenobiotic
compound and is biodegradable (Callaghan 2013). The selection criteria necessitate
in-depth knowledge of the degradation pathway(s) and analytical competence.
Availability and continuous improvement of efficient extraction methods and high
precision hyphenated separation and detection techniques have made the task of
detection of compound-specific biomarker(s) easier for both field and laboratory
investigations. However, our current understanding of anaerobic PAHs metabolism
is very limited. Insight into the naphthalene and 2-MN metabolism provided
some specific metabolites that are used as biomarkers. These include naphthyl-2-
methylsuccinic acid, naphthyl-2-methylenesuccinic acid, 2-NA, 5,6,7,8-
tetrahydronaphthoic acid, and hexahydronaphthoic acids. Therefore, these metabo-
lites have been used as metabolic markers for monitoring PAHs biodegradation
mainly in groundwater samples obtained from PAHs-impacted sites (Table 8).
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In addition to the detection of signature metabolites that provide evidence of
ongoing or already occurred biodegradation, metabolite profiling provides a strong
indication of the presence of yet to be discovered metabolites and even the existence
of alternative novel degradation pathway(s). For example, methylnaphthoic acid,
which might be a metabolite of either naphthalene or 2-MN or both, has been
identified (Aitken et al. 2004). This metabolite is not reported in any PAHs-degrading
enrichment or pure culture study. The same is true for 2,6-dimethylnapthoic acid.
Detection of indanoic acid, acenaphthenoic acid, and acenaphthylenoic acid indicates
that these metabolites result from carboxylation of the parent compounds. Drawing
analogy to naphthalene and phenanthrene activation pathways, it can be inferred that
the same carboxylating activation mechanism also works for other unsubstituted
PAHs. Detection of 1-NA, 2-NA, 1-hydroxy-2-naphthoic acid, and 2-hydroxy-3-
naphthoic acid is suggestive of the existence of yet undiscovered degradation path-
ways. To harness the maximum from a metabolite profiling, further studies in
anaerobic degradation of HMW as well as carcinogenic PAHs such as BaP are
required.

17 Anaerobic Bioremediation of PAHs

Integrated remediation approaches that combine physical, chemical, and biological
treatment technologies have been shown to be more effective than a single treatment
(Kuppusamy et al. 2017). However, remediation of anaerobic environments con-
taminated with PAHs is quite challenging. Anaerobic remediation options available
are less compared to aerobic treatment processes and limited in terms of feasibility
and applicability. Contamination of anaerobic subsurface soils, aquifers, sediments,
and sludge with PAHs is a worldwide problem. Addition of oxygen to anoxic
environments for stimulating in situ degradation of organic pollutants has very
limited success, and the process encounters technical difficulties (Thomas and
Ward 1989; Morgan and Watkinson 1992; Lovley et al. 1994). Several physical
and chemical remediation technologies for the removal of the pollutants from
anaerobic environments are available. Mechanical removal of contaminated sedi-
ment (dredging), removal of the overlying water body and subsequent physical
removal of contaminated sediment (dry excavation), covering the contaminated
sediment with fresh material (capping), and complete isolation of a contaminated
area with containment barriers are associated with limited success (Perelo 2010).
Chemical remediation options such as oxidation with H2O2, modified Fenton’s
reagent, activated sodium persulfate, potassium permanganate, and their combina-
tions were shown to be effective in the removal of PAHs from contaminated
sediments (Ferrarese et al. 2008). The practicability of physical and chemical
treatment technologies is questioned due to cost, limited efficiency, technical com-
plexity, destruction of habitats, and increased exposure to site workers and native
organisms.
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Bioremediation approaches offer several advantages over physical and chemical
remediation options. But, investigations on the feasibility of laboratory- and field-
scale bioremediation of PAHs from anaerobic environments are limited. Some
studies suggested biostimulation (enhanced removal of contaminants following the
addition of electron acceptors and/or nutrients) as a successful option for remediation
of PAHs. For instance, nitrate addition in nitrate-deficient contaminated sediments
resulted in significant removal of PAHs (Murphy et al. 1995; Rockne and Strand
2001; Tang et al. 2005; Yang et al. 2013). Similarly, sulfate addition in contaminated
sediments promoted biodegradation of naphthalene, 2-MN, and phenanthrene
(Rothermich et al. 2002; Tang et al. 2005). On the other hand, the arbitrary addition
of electron acceptors appeared to be futile. Johnson and Ghosh (1998) compared
the effect of nitrate and sulfate addition to dredged contaminated sediments. The
sediments were rich in sulfate and supported appreciable anaerobic degradation of
PAHs without any amendment. Addition of sulfate further enhanced PAHs degra-
dation; however, nitrate addition did not have any stimulatory effect. Likewise,
induction of methanogenesis by the addition of dextrin did not promote PAHs
degradation. Similarly, Mn(IV) addition to contaminated sediment, where sulfate
was the dominant electron acceptor, inhibited PAHs biodegradation (Li et al. 2011).
Determination of dominant electron-accepting process in contaminated anaerobic
environments, demonstration of the presence of requisite microorganisms, and
laboratory-scale investigation into the efficacy of electron acceptor(s) seem to be
critical steps in the process of anaerobic remediation through biostimulation.

Although laboratory-scale demonstrations of anaerobic PAHs degradation under
various reducing conditions by enrichment and pure cultures are available, evidence
suggesting their role in the degradation of PAHs from contaminated environments is
still lacking. Future research should focus on evaluating the efficacy of PAHs-
degrading cultures from real contaminated samples. The direct application of micro-
organisms as bioaugmentation agents also require site characterization and under-
standing of the degradation processes. Further research must also be directed toward
feasibility assessment to establish the chance of success, effectiveness, and applica-
bility. Moreover, laboratory investigations should focus on establishing the ability
of native microorganisms to degrade PAHs from the anaerobic environments,
deciphering the degradation mechanisms, identification of influencing parameters,
and demonstration of bioremediation in laboratory-scale bioreactors. Behavior of
anaerobic PAHs-degrading bacteria in the presence of mixed contaminants, for
example, PAHs + heavy metals + cyanides, should be investigated. As strict
anaerobes are sensitive to atmospheric oxygen, inoculation of the contaminated
sites with microorganisms would also require special techniques. In this direction,
facultative anaerobes would offer more flexibility in terms of oxygen sensitivity and
inoculation techniques.
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18 Conclusion

Field- and laboratory-scale investigations have provided ample evidence that LMW
PAHs are biodegradable under various anaerobic conditions. Besides, anaerobic
degradation of 4–5 ring PAHs, for example, BaP, is also known for some facultative
anaerobes. However, most of the carcinogenic PAHs are HMW compounds and
have more compact ring system compared to the LMW congeners. Still, there is a
dearth of evidence of biodegradability of HMW PAHs, especially in strictly anaer-
obic sulfate-reducing and methanogenic conditions. Most of the existing literature
shows anaerobic biodegradation in enrichment cultures, and very few pure cultures
have been isolated. As the biomarker-based in situ monitoring depends upon the
knowledge on biochemical transformation pathways, anaerobic PAHs-degrading
pure culture isolation should receive due attention from concerned researchers.
Factors that affect anaerobic PAHs degradation are still poorly understood. In
many real contaminated environments, PAHs exist with other co-contaminants
such as heavy metals, BTEX compounds, cyanides, and phenolics. Effect of
co-contaminants is almost neglected in anaerobic PAHs degradation studies.

Furthermore, interactions among degrading microorganisms in anaerobic envi-
ronments should be investigated, as the natural environment is an interactive and
interdependent system regarding niche and nutrient cycling. Biochemistry of naph-
thalene and 2-MN degradation in SRB is now known. The mechanisms may not
necessarily be the same for the other reducing conditions. It is especially relevant for
facultative anaerobes that can switch among aerobic, hypoxic, and anaerobic modes.
Thus, future studies should focus on elucidating the mechanism of PAHs degrada-
tion in both facultative anaerobic and strictly anaerobic bacteria. Identification of
HMW PAHs degradation metabolites will also guide to develop tools for contam-
ination monitoring. Information on the suitability of bioremediation, for instance,
nutrient amendment or bioaugmentation, in the restoration of PAHs-impacted anaer-
obic environments should come from field-scale investigations. The field of anaer-
obic degradation of PAHs is about to pass its infancy, and it’s now expanding
reasonably well. Now it is our time to learn how to translate the ever-growing
knowledge into remediation planning.

19 Summary

Many natural environments such as subsurface soil, groundwater, freshwater, and
marine sediment and sludge are devoid of oxygen, i.e., anaerobic. Feasibility of
degradation of hazardous polycyclic aromatic hydrocarbons (PAHs) in anaerobic
environment was questioned for a long time. Thermodynamically, anaerobic bio-
degradation of PAHs under different reducing conditions is feasible despite lower
energy yield compared to the aerobic process. So far, degradation of PAHs by
facultative and strict anaerobic bacteria and archaea under nitrate-, sulfate-, and
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iron-reducing and methanogenic conditions have been reported. But, experimental
evidence of high-molecular-weight (HMW) PAHs degradation is still lacking.
Metabolic pathways for low-molecular-weight (LMW) naphthalene and
2-methylnaphthalene (2-MN) in SRB have been well investigated. In SRB, naph-
thalene is activated by carboxylation at C2 position, whereas 2-MN is activated by a
fumarate addition reaction. Subsequently, anaerobic bacteria employ ring reductases
system to overcome the resonance energy of PAHs. Striking dissimilarities between
degradation pathways of LMW PAHs and HMW PAHs suggest that the anaerobic
degradation mechanisms are either organism-specific, reducing condition-specific or
substrate-specific, or all. Because of the limited understanding of anaerobic PAHs
metabolism, in situ diagnosis of the impacted environment based on metabolite
profiling is still underdeveloped. PAHs exert a selection pressure on the anaerobic
microbial community that is often reflected in marked change in abundance, diver-
sity, and function. Inorganic electron acceptor amendment could be a viable method
for enhancing anaerobic biodegradation of PAHs. Further investigations on anaer-
obic degradation of PAHs, especially HMW members, under different redox condi-
tions are crucial to understand the natural attenuation process and to develop
approaches for remediation of anaerobic environments contaminated with PAHs.
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1 Introduction

One of the fastest-growing global food sectors is the bivalve aquaculture industry.
Bivalves particularly oysters, mussels and clams are important sources of animal
protein (Tan and Ransangan 2016a, b). Bivalve aquaculture represents 14–16%
of the average per capita animal protein for 1.5 billion people and supports over
200,000 livelihoods, mostly in developing countries (FAO 2018). Most of the
bivalves produced around the world (89%) are from aquaculture (FAO 2016). To
date, mollusc aquaculture have accounted for 21.42% (17.14 million tonnes) of
the total aquaculture production, with Asia being the largest contributor (92.27%)
(FAO 2018).

Unfortunately, there are reported increasing worldwide mass mortality trends in
cultured mussels (McFarland et al. 2016; Tan and Ransangan 2016c), clams (Ortega
et al. 2016), cockles (Defeo et al. 2013), oysters (Vohmann et al. 2009) and scallops
(Leverone et al. 2007), which affect all life stages of bivalve from larvae to juvenile
and adults (Yurimoto et al. 2014; Malham et al. 2012). In fact, many more natural
bivalve populations suffer from mass mortalities (Wootton et al. 2003), although
such events are not always published in scientific literature. In general, bivalve
mass mortalities can result from various external and/or internal physiological
factors. Several causative factors are responsible for mass mortalities of bivalves,
but episodes of most bivalve mass mortalities are triggered by the synergistic effects
of two or more factors (Callaway et al. 2013; Malham et al. 2012). Climate change
issues particularly global warming and ocean acidification are the two main potential
threats that have been predicted to increase the frequency and intensity of bivalve
mortality outbreaks.

It cannot be denied that the climate is warming as the result of excessive human
activities through the combustion of fossil fuels since 1950 (Feely et al. 2004).
Seawater warming driven by anthropogenic emission is expected to negatively
impact bivalve aquaculture (Filgueira et al. 2016). However, the direct links between
climate change drivers (mainly ocean warming and ocean acidification) and bivalve
mass mortality outbreaks are not well understood. Both warming and acidification
require special attention regarding their potential impacts to aquaculture. Therefore,
there is the need for rigorous scientific reviews on the links between climate change
and mass mortalities in bivalves. Such information will aid in establishing an
aquaculture and fishery management plan to be implemented in both commercial
fisheries and nature conservation. To our knowledge, this paper represents the first
review that summarizes climate change-related factors that caused episodic marine
bivalves mass mortalities in temperate regions. The term “mass mortalities” used in
this paper refers to a sudden loss (within 30 days) of more than 30% of the bivalve
stock (Soletchnik et al. 2007).
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2 Climate Change

Over the past two-and-a-half centuries, emissions released into the atmosphere from
the burning of wood and fossil fuels for energy have led to a dramatic increase in
atmospheric CO2 levels from approximately 280 ppm at pre-industrial to about
400 ppm in year 2010 (Hartmann et al. 2013; Feely et al. 2004). The accumulation
of CO2 traps heat in the atmosphere, resulting in atmosphere and the ocean warming.
Significant warming of sea surface temperatures has been documented in Australia
(Lough and Hobday 2011), North Atlantic and Pacific, including near US coasts
since 1900 (Deser et al. 2010), where global mean sea temperature has increased
by about 0.7�C in the last century (IPCC 2007) (Fig. 1). In estimates of future CO2

levels, based on business as usual emission scenarios, the oceanic surface temper-
ature could increase by >3�C by the year 2100 (IPCC 2007).

Even though global oceans have absorbed about 550 billion tons of anthropo-
genic carbon dioxide (CO2) (Hartmann et al. 2013), this absorption of atmospheric
CO2 has increased ocean acidity (ocean acidification (OA)). Since the beginning
of the Industrial Revolution, global mean sea surface pH has declined by 0.1 units
(from 8.2 to 8.1), equivalent to a 30% increase in ocean acidity (Feely et al. 2009).
Seawater acidification leads to a shift in inorganic carbon equilibrium towards higher
bicarbonate and lower carbonate ions (CO3

2�) concentrations (Sabine et al. 2004).
Anthropogenic climate change is expected to cause further decrease in the global
mean sea surface pH up to 0.32 units, which can result in an increase in ocean acidity
by 150% in the year 2100 (IPCC 2007) and could reach pH 7.4 by the year 2300
(Gattuso and Hansson 2011).

Fig. 1 Changes of global
average temperature from
pre-industrial to present
(adopted from Google
image)
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3 Influence of Climate Change on Bivalve Mass Mortality

3.1 Warming Seawater Temperature and Dissolved Oxygen
Depletion

In Arcachon Bay and Galicia, the presence of high organic matter accompanied
by warm water caused mass mortality in juvenile cockles, Cerastoderma edule
(Gonzalez and Perez Camacho 1984). High organic content in warm water promotes
excessive microbial growth (Joint and Smale 2017), which consumes high levels
of dissolved oxygen through microbial decomposition and results in dissolved
oxygen depletion (Degerman et al. 2013). Similar observations have been reported
in Uruguay and Argentina, where episodic mass mortalities of yellow clams,
Mesodesma mactroides, along the sandy beaches of Uruguay and Argentina were
associated with the warm seasons since the early 1990s (late spring to early summer)
(Defeo et al. 2013; Fiori and Cazzaniga 1999). Twenty-two-year (from 1985 to
2007) observation provides a solid evidence that the warming of sea surface water
due to anthropogenic climate change did not only lead to recurrence of mass
mortality outbreaks but also decreased the abundance and individual size and
caused shell abnormalities in the yellow clams along the sandy beaches of Uruguay
(Ortega et al. 2016). In Puget Sound, Washington, and Tomales Bay, California,
mass mortality of Crassostrea gigas occurred in summer 1998 during periods when
water temperature elevated with corresponding low dissolved oxygen concentration
(Cheney et al. 2000). In the year 2009, an unusual low river flow to Miño estuary,
Spain, leads to dissolved oxygen depletion and high temperatures, resulting in mass
mortality of C. fluminea (Ilarri et al. 2011).

The effects of elevated temperature on bivalve survival and energy metabolism
are species specific, with some species particularly C. virginica (Ivanina et al. 2013)
andMytilus galloprovincialis (Gazeau et al. 2014) being highly sensitive to elevated
temperatures. An experimental study showed that C. virginica experienced 65%
mortality when exposed to temperature of 27�C for 15 weeks (Ivanina et al. 2013).
Another experimental study has shown 100% mortality of adult mussels My.
galloprovincialis when water temperature increased by 3�C in summer (Gazeau
et al. 2014). Temperature increase negatively affects bioenergetics of bivalves
leading to energy deficiency, affecting their growth, reproduction and immunity,
which could lead to mortality (Ivanina et al. 2013). On the other hand, C. fluminea is
relatively sensitive to hypoxia (Matthews and McMahon 1999), and massive die-off
of C. fluminea is frequently reported in areas with low-level dissolved oxygen
(Vohmann et al. 2009; Werner and Rothhauot 2008; Mouthon and Daufesne 2006).
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3.2 Open Windows of Opportunity for Toxins Producing
Algae

The effects of anthropogenic climate change include altered seasonal patterns, with
longer duration of summer time conditions and corresponding shifts in the timing
of spring and fall transitions (IPCC 2007). Biogeographic boundary shifts in phyto-
plankton populations due to warming seawater temperature have led to the poleward
spread of harmful algal bloom (HAB) species (Tan and Ransangan 2017, 2016d;
Thomas et al. 2012). For instance, Dinophysis blooms had never been reported in
the United Kingdom before 1997; however, there have been multiple Dinophysis
blooms across this region since then (Whyte et al. 2014). Another example of the
global expansion of HABs is Aureococcus anophagefferens which had never
been documented before 1985, but since then it has recurred in the United States
and South Africa annually (Gobler et al. 2005). Based on historical environmental
and phytoplankton data (1951–2000) and predicted future (2051–2100) ocean con-
ditions, 74% of the phytoplankton taxa shifted poleward at the median speed of
12.9 km per decade (Barton et al. 2016). Another prediction study based on the
global circulation model demonstrated that the oceanic warming of the North
Atlantic since 1982 has significantly increased the potential mean growth rate
and duration (lengthened by as much as 8 weeks) of Alexandrium fundyense and
D. acuminata blooms in Gulf of Maine, waters surrounding the United Kingdom
and coastal Norway (Gobler et al. 2017). There is therefore a growing concern about
the effects of HABs upon shellfish resources, both in terms of seafood safety and the
sustainability of shellfish industries (Tan and Ransangan 2015). HABs species
mainly Prorocentrum minimum (Sellner et al. 1995), Heterocapsa circularisquama
(Matsuyama et al. 1996) and Aureococcus anophagefferens (Bricelj and MacQuarrie
2007) have been associated with climate change and mass mortality episodes in
bivalves.

The first record of bivalve mass mortality episodes associated with Prorocentrum
minimum bloom was documented by Leibovitz et al. (1984). The incident of scallops
Argopecten irradians massive die-off during P. minimum blooms was thought to
be due to physical damage caused by the apical tooth, a sharp anterior spine on some
Prorocentrum taxa (Leibovitz et al. 1984). In Chesapeake Bay, USA, mass mortal-
ities of commercial hard clams (Mercenaria mercenaria) (Wikfors and Smolowitz
1993) and oyster (C. virginica) larvae (Luckenbach et al. 1993) were observed in
the presence of P. minimum blooms, indicating high density of P. minimum may
have adverse effects on the filtering and feeding systems of bivalves. Moreover, the
P. minimum blooms also caused 100% mortality of juvenile oysters within 14 days
and at 33% bloom density caused 43% mortality over 22 days (Luckenbach et al.
1993). The gill damage hypothesis had not been confirmed, and no follow-up studies
of scallops in natural P. minimum blooms were conducted until the occurrence of
mass mortality of wild eastern oyster, C. virginica, populations in Chesapeake Bay
(Sellner et al. 1995). The P. minimum induces thrombosis throughout the vascular
systems of bay scallops which indicate enterotoxin may be involved (Wikfors and
Smolowitz 1993; Landsberg 2002). In bioassay experiments, 100% mortality of

Climate Change and Bivalve Mass Mortality in Temperate Regions 113



juvenile scallops was found when exposed to P. minimum isolates from Chesapeake
Bay tributaries which had confirmed that P. minimum caused poor larval develop-
ment (Wikfors 2005) and can kill juvenile oysters by altering immune-system
competence, thereby compromising disease resistance (Hegaret and Wikfors 2005).

The initial report pertaining to bivalve mass mortality associated with dinoflag-
ellate, Heterocapsa circularisquama, was first reported in Uranouchi Bay, Japan,
in 1988, which caused mass mortality of cultured Manila clam Ruditapes
philippinarum (Matsuyama et al. 1995). In 1989, H. circularisquama caused
blooms (maximum 2 � 104 cells/mL) in Fukuoka Bay and resulted in mass
mortalities of pearl oysters Pinctada fucata, Pacific oysters C. gigas, Manila
clams R. philippinarum and blue mussels My. galloprovincialis (Matsuyama
1999; Yamamoto and Tanaka 1990). In 1992, another massive bloom by
H. circularisquama occurred between August and November in Ago Bay and caused
mass mortality of cultured Pinctada fucata (Matsuyama et al. 1996). Since then,
H. circularisquama blooms have spread and frequently caused mass mortalities to
more than 19 natural and cultivated bivalve species in embayments of western Japan
(Matsuyama 2012). The toxin produced by the dinoflagellate H. circularisquama
is very specific, as it is only harmful to bivalves but harmless to other animals
(Basti et al. 2009). H. circularisquama induce several deleterious effects on juve-
niles and adult bivalves, ranging from marked shrinkage of the mantle and gut
discoloration (dark brown to beige) during the early phase of the bloom (Matsuyama
et al. 1996), followed by behavioural change (Basti and Segawa 2010) and impair-
ments of the basic physiological functions of feeding and respiration (Matsuyama
1999). Prior to death, bivalves exhibit an extreme retraction of their mantle edge and
siphon, along with recurrent vomiting behaviour before initiating a closure reaction
followed by paralysis and death (Basti and Segawa 2010). Mortality of bivalves
generally occurred during early to middle periods of the bloom (Matsuyama et al.
1996).

Aureococcus anophagefferens is a pelagophyte that causes harmful brown tide
blooms with densities exceeding 106 cells/mL for extended periods in estuaries in
the eastern United States and South Africa (Gobler et al. 2005). Brown tides do not
produce toxins that poison humans but have deleterious effects on bivalves. The first
occurrence of bivalve mass mortality episode associated with A. anophagefferens
took place in 1985. The brown tide (0.9 to 1.5 � 106 cells/mL) incident caused
reproductive failure and mass mortalities (30 to 100%) of natural and transplanted
mussels, My. edulis, in Narragansett Bay, United States (Tracey 1988). At the
same time, the bay scallop, Ar. irradians, fishery in Great South Bay, New York,
was collapsed due to two A. anophagefferens blooms in summers of 1985 and
1986, respectively (Bricelj and Kuenstner 1989). Peak density of the brown tide
(106 cells/mL) coincided with Ar. irradians spawning season, thus leading to
recruitment failure (Bricelj et al. 1987). In 2000, 67% mortality of juvenile
M. mercenaria was noted during a 4-week brown tide with a cell abundance
>105 cells/mL in Great South Bay (Greenfield and Lonsdale 2002). In 2002,
Wazniak and Glibert (2004) found that growth rates of juvenile clams were
significantly lower during a brown tide bloom in Maryland with a cell abundance
of 108 cells/L compared to the period following its collapse. The factor of the
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bivalve mortality is attributed to cessation of feeding and starvation. There is
evidence that a toxin-like principle in the extracellular, polysaccharide-like layer
of A. anophagefferens deters feeding in bivalves (Draper et al. 1990; Gainey and
Shumway 1991). Feeding reduction by brown tide in adult bivalves was proposed
to occur via the inhibition of gill lateral cilia which are responsible for generation
of feeding currents (Gainey and Shumway 1991). A laboratory study showed
that brown tide, A. anophagefferens, consistently inhibits the growth of veliger in
a dose-dependent manner, where moderate densities of A. anophagefferens
(3.5 � 105 cells/mL) were sufficient to dramatically reduce the feeding activity of
juvenile M. mercenaria (Bricelj et al. 2001). Moreover, juvenile M. mercenaria
(1 mm) that survived from severe A. anophagefferens bloom (8 � 105 cells/mL)
for 2 weeks were completely unable to resume normal growth rate, but 20% of
the larval population is able to resume normal growth rate if exposed to lower
cell densities of <4 � 105 cells/mL (for 2 weeks) (Bricelj and MacQuarrie 2007).
In addition, exposure to >2 � 105 cells/mL of A. anophagefferens is sufficient
to cause permanent metamorphic failure to hard clam larval populations. These
lead to extension of planktonic stage of the larvae, hence increasing mortality rate
(Bricelj and MacQuarrie 2007).

3.3 Facilitating Deadly Pathogens Infestation

There is growing evidence that climate change may affect the burden of infectious
diseases, potentially altering pathogens occurrence, distribution, severity or seasonal
cycles, as well as altering the physiological state of bivalves and their susceptibility
to pathogen infections (Harvell et al. 2009). Since the early 1990s, climate change
has been a hot topic due to growing evidence that suggest that warming of seawater
contributes to proliferation and spread of Perkinsus marinus (Cook et al. 1998) and
OsHV-1 (Peeler et al. 2012) northward. Moreover, warming sea temperature is also
believed to increase the prevalence of Vibrio parahaemolyticus infection in noble
scallop, Chlamys nobilis, in southern coast of China and therefore consequences in
scallops mass mortality outbreaks almost annually since 1998 (Lan et al. 2018).
Laboratory studies revealed that warming seawater temperature affects some impor-
tant functional responses of hemocytes in bivalves. Significant decrease in phago-
cytic activities has been observed in hemocytes of C. gallina (Monari et al. 2007)
and C. virginica (Hégaret et al. 2003) when kept at 30�C and 28�C, respectively, for
7 days. In C. farreri, the percentage of phagocytic hemocytes was significantly lower
at 28�C than those placed at 11�C and 23�C after 1-h stress application (Chen et al.
2007). The decrease in enzymatic and phagocytic activities of hemocytes at higher
temperature is believed to be due to increase number of death cells (Gagnaire et al.
2006). Numerous pathogens are known to be responsible for bivalve mass mortality
outbreaks. However, in the present review, only pathogens that caused deadly
diseases associated to climate change are discussed as summarized in Table 1.
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3.3.1 Vibrio splendidus

Vibrio splendidus biovar II is the pathogen that is responsible for juvenile summer
mortality (also known as bacillary necrosis disease), which was first reported to
cause mass mortality in larvae of M. mercenaria (Guillard 1959; Tubiash et al.
1965). In summer 1979, the V. splendidus caused mass mortality in juvenile Pacific
oysters, C. gigas, for the first time. Since then, this phenomenon was only found to
be specific to juvenile Pacific oyster C. gigas and has been observed numerous times
in different countries including Japan, France, United States, Europe and Brazil
(Saulnier et al. 2010; Garnier et al. 2007). In Brittany (France), V. splendidus has
repeatedly caused mass mortality of 60 to 100% and 10 to 80% to C. gigas spat and
juvenile (6 to 12 months old, 5 to 40 mm in shell length), respectively, since the
mid-eighties (Deslou-Paoli et al. 1982). Similar disease outbreaks had also occurred
along the coast of Europe, where high but sporadic C. gigas spat mortality rates
(60 to 100%) in both wild and cultured oysters have been observed during summer
since 1991 (Goulletquer et al. 1998). A 4-year epidemiological survey (2003–2007)
confirmed that the high prevalence of V. splendidus and V. aestuarianus was
associated with mortality events in Pacific oysters in France (Saulnier et al. 2010).

Table 1 Major deadly pathogens infestation associated with bivalve mass mortality in temperate
regions

Pathogen Host
Outbreak
location

Temperature
association Year References

Vibrio
splendidus

Crassostrea
gigas

Brittany,
France

19–23�C Mid-
eighties

Deslou-Paoli et al.
(1982)

Ireland 21�C 2003 Malham et al.
(2010)

Roseovarius
crassostreae

C. virginica Northern
United States

>20�C Summer
1988 and
1989

Bricelj et al. (1992)

France Summer
of 1993

Renault et al.
(2002)

Herpes-like
viruses

C. gigas France and
New Zealand

>16�C Summer
of 1991

Nicolas et al.
(1992) and Hine
et al. (1992)

French
Atlantic
coast

1993 Renault et al.
(1994a)

Perkinsus
marinus

C. virginica Gulf of
Mexico

>24�C Mid 1940s Mackin et al.
(1950)

Delaware
Bay and
Cape Cod

1990
through
1992

Ford (1996)

Southern
Maine

1995 Ford (1996)
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In all these cases, mortalities occurred when the temperature rose above 18�C
and during the reproduction period (Saulnier et al. 2010; Malham et al. 2010;
Goulletquer et al. 1998; Deslou-Paoli et al. 1982).

Clinical signs frequently observed in mollusc larvae suffering from vibriosis
outbreaks include bacterial swarms on the margins of the larvae, detachment of
velum cells, colonization of the mantle, invasion of the internal cavity and subse-
quently a necrosis of soft tissues followed by larval mortality between day 12 to
19 after hatching (Lacoste et al. 2001; Nicolas et al. 1996). Summer mortality of
C. gigas is the result of complex interaction between oysters (host), their surround-
ing environment and opportunistic pathogens (Huvet et al. 2004). Some factors
have been shown either to initiate mortalities or to promote V. splendidus infestation.
These stressful conditions including low dissolved oxygen, harmful algae, pollutants
or toxic substances released by sediments could trigger mortality, whereas manage-
ment practices, oyster genetic origin and phytoplankton quantity and quality might
modulate the extent of mortality (Malham et al. 2010; Harvell et al. 2009; Li et al.
2007; Degremont et al. 2005; Cheney et al. 2000). In 2003, mass mortality of oysters
occurred in Ireland, where combination of high temperature (21�C) and high nutrient
level (15 μM phosphate, 278 μM nitrate, 5.14 μM nitrite) was contributed to the high
oyster mortalities of >20% (Malham et al. 2010). Elevated temperature facilitates
the proliferation and spread of V. splendidus once the critical temperature threshold
of 19�C is exceeded (Harvell et al. 2009). At the same time, high temperature periods
coincides with oyster spawning season, which further compromises oyster immunity
as post-spawning oysters have a lower thermal tolerance and a reduced ability to
withstand pathogen infections (Li et al. 2007). Relative contribution of each caus-
ative agent (water temperature, spawning status and pathogen infection) to oyster
summer mortality is responsible for less than a 15% increase of mortality risk,
but taken together, the risk of mortality can add up to more than 50% (Wendling
and Wegner 2013).

3.3.2 Roseovarius crassostreae

Roseovarius crassostreae is a member of the Roseobacter clade of the marine
α-proteobacteria that causes Roseovarius oyster disease (ROD) which is also called
juvenile oyster disease (JOD) (Maloy et al. 2007). The first occurrence of bivalve
mass mortality associated with R. crassostreaewas in Oyster Bay and Fishers Island,
Northern United States, where mass mortality (40 to 90%) of hatchery reared
juvenile oyster, C. virginica, at mean shell heights ranging from 15 to 24 mm
occurred in summers 1988 and 1989, respectively (Bricelj et al. 1992). Since then,
R. crassostreae has affected nursery operations along the Northeast Atlantic coast of
the United States, from Maine to New York (Bricelj et al. 1992; Davis and Barber
1994; Ford and Borrero 2001; Maloy et al. 2007). Similar mass mortality episodes
have also been reported in France, where 80 to 90% of C. virginica spats reared
in the French Research Institution for the Exploitation of the Sea (IFREMER)
laboratories in La Tremblade (Charente Maritime, France) and Bouin (Vendee,
France) experienced massive die-off during summer of 1993 (Renault et al. 2002).
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R. crassostreae affects seed oysters with size less than 25 mm in shell height
(Davis and Barber 1994). Epizootics typically occur in the late summer at moderate
salinities and temperatures (Davis and Barber 1994; Bricelj et al. 1992). Initial signs
of R. crassostreae infection include a drastic reduction in growth rates, fragile and
uneven valve margins, cupping of the left valve, thin, watery tissues, and anomalous
deposits of conchiolin (brown ring) on the inner shell surfaces (Ford and Borrero
2001; Bricelj et al. 1992). Mortalities usually occur within 1–2 weeks of disease
onset, and losses may exceed 95%, especially among individuals <25 mm in shell
height (Davis and Barber 1994; Bricelj et al. 1992).

Laboratory study reveals R. crassostreae produce tufts of polar fimbriae that
may be involved in colonization of susceptible oysters (Boettcher et al. 2005).
This hypothesis is supported by microscopic observation of R. crassostreae attached
by their poles to the inner shell surfaces of affected individuals (Boardman et al.
2008). Once established, colonization by R. crassostreae progresses along the shell
surfaces in a biofilm-like mode of growth (Boardman et al. 2008), which may help
them evade host defences. The deposit may cover the entire mantle surface and
the attachment of the adductor muscle to the shell, which resembles the brown ring
symptom of Manila clam, R. philippinarum (Ford and Borrero 2001).

3.3.3 Herpes-Like Viruses

Herpes-like viral infection was first reported in eastern oyster, C. virginica, from
the east coast of the United States in 1972 (Farley et al. 1972). Because of the
morphological similarity, it was later classified to be a member of Herpesviridae.
Afterwards, disease outbreaks associated with herpes-like virus were later reported
in Pacific oysters, C. gigas. In the summer of 1991, mass mortality outbreaks
(60–100%), which were associated with the detection of a herpes-like virus, were
reported among larvae of hatchery-reared Pacific oyster, C. gigas, for the first time
in France (Nicolas et al. 1992) and New Zealand (Hine et al. 1992). Subsequently,
another mass mortality outbreak (80 to 90%) among 3- to 7-month-old Pacific
oysters was reported in July 1993 along the French Atlantic coast, where the
presence of herpes-like virus particles in the connective tissue of gills and mantle
(Renault et al. 1994a) was evident. At the same time, sporadic high mortalities
(90–100%) occurred among batches of C. gigas larvae in several French hatcheries.
In the summer 2008, abnormal mortality rates ranging from 80 to 100% that affected
only C. gigas were reported in France, with higher mortalities observed in 2009
and 2010 (Segarra et al. 2010). Moreover, the oyster herpes-like virus was also found
associated with C. gigas mass mortalities in Ireland, Italy, the Netherlands, Spain,
the United Kingdom, Australia, New Zealand and Korea, while in other areas such
as Japan, the virus was detected but did not cause oyster mortalities (e.g. Japan)
(Lynch et al. 2012). Other than in C. gigas, herpes-like viruses have been identified
in many bivalve species, including the Pacific oyster C. gigas, the European oyster
Ostrea edulis, the Antipodean flat oyster O. angasi, the Chilean oyster Tiostrea
chilensis, the Manila clam R. philippinarum, the carpet shell clam R. decussatus, the
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Portuguese oyster C. angulata, the Suminoe oyster C. rivularis and the French
scallop Pecten maximus (Renault et al. 2012; Hine and Thorne 1997; Hine 1997;
Renault et al. 1994a, b; Hine et al. 1992; Comps and Cochennec 1993).

Transmission electron microscopy analysis showed that C. gigas larvae exhibited
generalized infections, whereas focal infections usually occurred in juveniles. Adult
stages were less sensitive than younger stages. Infected larvae at 3- to 4-day age
showed a significant reduction in feeding and swimming activities (Da Silva et al.
2008). Significant mortality occurred by day 6, with 100% mortality by days 8–10 in
most batches (Renault et al. 1994b). The effects of the herpes-like viral infection on
the hosts are manifested in velar and mantle lesions and the attitude of larvae to
swim weakly in circles. Histologically, fibroblastic-like cells exhibited abnormal
cytoplasmic basophilia and enlarged nuclei with marginated chromatin; other cell
types including hemocytes and myocytes showed extensive chromatin condensation
(Da Silva et al. 2008).

3.3.4 Perkinsus marinus

Perkinsus marinus is a parasite that caused Dermo disease, which is characterized
by emaciation of the digestive gland in C. virginica and, to a lesser extent, in
C. gigas, C. rhizophorae and C. corteziensis (Ford 2011). Adult oyster is most
susceptible after spawning, and mortality increases with age and size (Lauckner
1983). The Perkinsus marinus (formerly Dermocystidium marinum) was first dis-
covered in the Gulf of Mexico in mid-1940s when unusual mortalities of oysters
were observed (Mackin et al. 1950). For many years, Perkinsus marinus was
restricted primarily to the region extending from lower Chesapeake along the
Southern United States and Gulf Coasts. In general, prevalence and infection
intensity increase with temperature and salinity even when other factors have an
influence in these parameters (Soniat 1996). Beginning in the mid-1980s, Perkinsus
marinus outbreaks occurred progressively farther north, which coincides with the
warming trend (Ford 1996). In 1990, an epizootic began in Delaware Bay. From
1990 to 1992, disease outbreaks occurred as far north as Cape Cod, and in 1995,
oysters in Southern Maine were found infected. In addition, Delaware Bay
C. virginica stocks suffered annual mortality ranging from <5% to 55% due to
various mortality agents, with higher rates being induced by Perkinsus marinus
(Bushek et al. 2012). The occurrence of Perkinsus marinus was then found along
the southeast coast of the United States from Maine to Florida (Remacha-Trivino
et al. 2008), along the Pacific coast of Mexico (Caceres-Martinez et al. 2016), in
the Gulf of California (northwest Mexico) (Enriquez-Espinoza et al. 2010) and
in Brazil (Queiroga et al. 2015).

Perkinsus marinus is transmitted directly from oyster to oyster (Hofmann et al.
2009), as viable Perkinsus marinus cells are released in host faeces or on the death
of the host (Park et al. 2010) and are acquired through host feeding. Every life
stage of host is susceptible to disease (Paynter et al. 2010). The pathogen infects
and proliferates in the digestive epithelium, connective tissue of all organs and
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hemocytes causing hemocytosis and tissue lysis with a consequent severe emacia-
tion, with up to 80% mortality arrives based on environmental factors (Smolowitz
2013).

3.4 Ocean Acidification

Ocean acidification (OA) is a potential threat to marine ecosystems (Halpern et al.
2008). Although there are no evidence that the elevated acidity of seawater at the
present level can trigger bivalve mass mortality outbreaks, the changes in seawater
chemistry could cause various negative effects on marine organisms. Meta-analysis
predicted overall strong negative impact of future OA on marine biodiversity,
particularly bivalve calcifying organisms (Kroeker et al. 2010), by diminishing
availability of carbonate minerals which could hamper the development of early
life stages, the process of calcification, growth, byssus attachment and survival
(Kroeker et al. 2013, Gazeau et al. 2014, O’Donnell et al. 2013). A laboratory
study showed that at pH levels of 0.3 units lower (pH 7.8) than the current global
seawater pH (pH 8.1), the Ca and Mg content of shells ofM. edulis reduced by 24%
and 77%, respectively (Li et al. 2015). At pH 7.7 (0.4 units lower than current global
seawater pH), strawberry conch, Strombus luhuanus, population experienced 10%
higher mortality with significant lower shell height and weight compared to control
within 26-week exposure (Shirayama and Thornton 2005). At pH of 0.7 units lower
(pH 7.4) than current global seawater pH, M. edulis and C. gigas showed reduced
calcification rate by 25% and 10%, respectively (Gazeau et al. 2007), whereas
Mediterranean mussel My. galloprovincialis and the striped venus clam Chamelea
gallina demonstrated shell damage area of 35% and 11%, respectively, compared
to no shell damage at current global seawater pH (pH 8.1) (Bressan et al. 2014).
At the same pH value of 7.4, blood clam Tegillarca granosa was 2.5 times more
susceptible to Vibrio pathogen infection (Zha et al. 2017).

OA is expected to change the speciation of a number of metal ions in seawater
where metals that form strong complexes with OH– and CO3

2– will have a higher
fraction in their free forms (Byrne 2002). Ocean acidification is expected to reduce
the carbonate ion level but increases free Pb2+, Cu2+, Ni2+ and Fe2+ concentrations
from 3%, 8%, 4% and 66% at present (pH 8.1) to 6%, 32%, 13% and 90% by the
year 2250 (expected pH 7.4), respectively (Millero et al. 2009a). Moreover, OA will
increase the adsorption of metals as organic material due to most organic particles in
seawater is negatively charged (Millero et al. 2009b). Therefore, OA will increase
the metal accumulation in the body of filter feeder bivalves through direct absorption
and feeding on suspended organic materials, which will reduce the survival rate of
bivalve larvae by reducing the metabolic processes and delaying their metamorpho-
sis (Kroeker et al. 2013). Laboratory studies also suggested that lower pH of 7.8
and 7.4 cause 1.21 and 1.32 times increase, respectively, in Cd accumulation in
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M. meretrix compared to control at pH 8.07 � 0.05 (Shi et al. 2016). Some bivalve
species such as Modiolus philippinarum are sensitive to metals and have relatively
low LC50 values (0.023, 0.221, 2.876, 2.337 and 0.007 mg/L for Cu, Cd, Pb, Zn and
Hg (Ramakritinan et al. 2012).

Although interactive effects of elevated temperature and acidity of seawater on
marine molluscs are poorly understood, laboratory studies have predicted harmful
consequences of these events. For example, a 15-week laboratory study showed that
increase in temperature (from 22 to 27�C) or decrease in pH (from 8.14 to 7.95)
alone did not significantly affect the shell harness of C. virginica andM. mercenaria,
respectively. However, the combination of these factors leads to significant negative
effects on biomineralization causing in 5–10% decrease in shell hardness in
C. virginica and M. mercenaria (Ivanina et al. 2013). Another 8-week laboratory
study of reared mussel My. edulis at different combinations of pH (from 8.1 to 7.8)
and temperature (19.22 to 25�C) revealed that OA significantly decreased the net
calcification rate, modified shell ultrastructure and altered amino acid content.
Notably, warming seawater temperature enhanced the effects of OA on these
parameters and significantly decreased the shell breaking force (Li et al. 2015).
The negative effects of combine ocean acidification and warming events on juvenile
and larvae bivalve are even detrimental. Laboratory study showed that OA and
seawater warming significantly reduced growth, survival, filtration rates and
strength of shells in juvenile eastern oyster C. virginica. Moreover, increases in
temperature (24 to 28�C) and CO2 concentration (250 to 750 ppm) supressed
survival, growth and lipid synthesis of M. mercenaria and Ar. irradians larvae by
50 to 60%, 5 to 10% and 2 to 10%, respectively (Talmage and Gobler 2011).

4 Conclusions

The earth’s climate is changing that enhances global warming, and anthropogenic
ocean acidification is happening. Warming of sea surface temperature has been
shown to contribute to bivalve mass mortality outbreaks mainly by altering the
physiological state of bivalves and their susceptibility to stressors and open windows
of opportunity for biotoxins producing algae and facilitating pathogen infestations.
On the other hand, although the degree of ocean acidification at present does not
cause bivalve mass mortality, it has reduced growth and calcification rates and
caused shell dissolution particularly in bivalve larvae and juveniles. Scientific
evidences also show that the interactive impact of seawater acidification and elevated
temperature on bivalves is likely to have ecological and functional implications,
where ocean warming and acidification may act synergistically to increase the
intensity and frequency of bivalve mass mortality outbreaks in the near future. In
this context, some questions remain to be addressed. A lot more synergistic effects
of various stressors caused by climate change remain to investigate in bivalves at
different life stages. Moreover, the connections between climate change and bivalve
mass mortality in tropical and polar regions are yet to be reviewed. More
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importantly, efforts aimed at developing effective mitigation strategies to minimize
the impact of climate change on the bivalve production industry should become the
global priority in the next millennium in order to address the pressing seafood
security issues.

5 Summary

Seawater warming and acidification resulting from anthropogenic activities are
increasing threats to marine ecosystems. The increasing worldwide bivalve mass
mortality trends since 1960s could be associated with climate change. Although
there are many documented bivalve mass mortality cases, this information is not well
organized, and the connection between climate change drivers (mainly ocean
warming and ocean acidification) and bivalve mass mortality outbreaks is not well
understood. Both warming and acidification require special attention regarding their
potential impacts to ecosystem and to aquaculture industry. Therefore, there is the
need for rigorous scientific reviews on the connection between climate change and
the mass mortality of bivalves. Such information will aid in establishing an aqua-
culture and fishery management plan to be implemented in both commercial fisheries
and nature conservation. In general, scientific evidences show warming sea surface
temperature has directly triggered bivalve mass mortality outbreaks by causing low
dissolved oxygen, facilitate the proliferation and spread of deadly diseases and
promote higher frequency and intensity of harmful algal blooms. Although the
present OA has not directly caused bivalve mass mortality, scientific evidences
highlighted that bivalves will experience a reduction in calcification, shell thickness
and shell breaking force which could cause bivalves more susceptible to various
stressors. Therefore efforts aimed at minimizing the impacts of climate change to
the bivalve production industry should become the global priority in the next
millennium to address the pressing seafood security issues.
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1 Introduction

Endocrine-disrupting chemicals (EDCs) are exogenous substances that interfere
with the synthesis, metabolism, or action of hormones (U.S. Environmental Protec-
tion Agency 1997). They are put into two groups: persistent and nonpersistent
chemicals. Persistent chemicals persist in the environment and the human body
and undergo biomagnification in the food chain. They can persist for a short duration
or for decades (Jiang et al. 2014). Nonpersistent chemicals are short-lived in the
environment and are rapidly metabolized in and excreted from the human body.
Both categories of EDCs are ubiquitously abundant in the environment. Human
beings are exposed to EDCs through air and water pollution, contamination of the
food chain, and consumer products (Gore et al. 2014). Human exposures have been
associated with several noncommunicable diseases that have been increasing in
recent decades (U.S. Environmental Protection Agency 2013).

Effects of perinatal exposure to EDCs attracted global attention after the early
1980s. It was observed that pregnant mothers who were treated with diethylstilbes-
trol (DES) – a synthetic estrogen – had their sons presenting with an increased risk
of hypospadias, cryptorchidism, decreased sperm count (Stillman 1982), and an
increased risk of developing testicular cancer (Arai et al. 1983). Analysis of preg-
nancy data from the National Health and Nutrition Examination Survey (NHANES)
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showed that pregnant women are ubiquitously exposed to multiple chemicals during
a sensitive period of fetal development. At least 43 different environmental
chemicals were detected in the bloodstream of pregnant women (Woodruff et al.
2011). Fetuses are exposed to these chemicals in utero when they cross the placental
barrier by diffusion either transcellularly through the syncytiotrophoblast layer or
paracellularly through water channels incorporated into the membrane (Griffiths and
Campbell 2015). Exposure continues after birth through breastfeeding (Agatonovic-
Kustrin et al. 2002). Studies report that lactational transfer of EDCs in mammals
during nursing is greater than that of placental transfer (Desforges et al. 2012;
Shin et al. 2017). For example, brominated flame-retardant (2-ethylhexyl-2,3,4,5-
tetrabromobenzoate) body burdens resulting from the lactational transfer are approx-
imately 200- to 300-fold higher than those resulting from the placental transfer
(Phillips et al. 2016).

Large volumes of evidence have been generated on the adverse health effects of
perinatal exposure to EDCs, raising the need for a review to summarize the existing
knowledge and identify gaps in knowledge and recommend priorities for future
research. This review summarizes the research evidence from animal experimental
and human epidemiological studies on the impact of in utero and lactational exposure
to selected EDCs on the health status of the first generation (F1) and subsequent
generations of the exposed offspring. EDCs addressed in this review are grouped into
two: nonpersistent and persistent chemicals. Nonpersistent chemicals include phenols
and phthalates. The phenols comprise bisphenol A (BPA), 4-nonylphenol (NP), and
4-tert-octylphenol (OP). Persistent chemicals include organochlorides
[polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), 4,40-
dichlorodiphenyltrichloroethane (DDT), and 4,40-dichlorodiphenyldichloroethylene
(DDE)], polybrominated compounds [polybrominated diphenyl ethers (PBDEs) and
polybrominated biphenyl (PBB)], dioxins and dioxin-like compounds, fenvalerate
(FV), tributyltin chloride (TBTCl), perfluoroalkyl substances (PFASs), triphenyltin
chloride (TPTCl), and vinclozolin (VZ).

2 Methods

2.1 Search Strategy

Descriptive reviews of animal experimental and human epidemiological studies
were performed by conducting an electronic search of literature published between
1 January 2000 and 29 October 2018 in MEDLINE on the PubMed platform, Web of
Science (webofknowledge.com), and Toxline (National Library of Medicine, USA).
We developed and performed the bibliographic searches using subject thesaurus
vocabulary (MeSH), keywords, and text words for each of the search concepts. The
search strategy employed each of the following terms: developmental, maternal,
perinatal, gestational, in utero, early life, intrauterine, fetal, exposure, endocrine-
disrupting chemicals, endocrine disruptors, specific chemical names, health effects,
and offspring. These terms were searched using the Boolean operators: “OR”
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and “AND.” Retrievals were limited to studies in English. Search results were
downloaded to Mendeley software (Elsevier) to merge references and remove
duplicates.

2.2 Screening and Eligibility

Article screening and eligibility followed PRISMA 2009 Flow Diagram (Moher
et al. 2009). Each level of review (Fig. 1) was completed in duplicates by authors
W.N.M, G.S, and Y.D. At the title and abstract screening level, we included all
rodents (rat and mice) experimental and human epidemiological studies with paren-
tal exposure to known EDCs and which considered offspring health as an outcome.

Endocrine-disrupting chemicals were limited to persistent (PCBs, PBDEs,
organochlorides, dioxins, and dioxin-like compounds, fenvalerate, TBT, PFASs,

Records identified through Database Search (2000-2018)

(N=3,883)

Sc
re
en

in
g

In
cl
ud

ed
El
ig
ib
ili
ty

Id
en

tif
ic
at
io
n

Records after duplicates removed

(N = 1,952)

Records screened on title

and abstract (N=1,952)

Records excluded

(N = 1,359)

Full-text articles assessed for

eligibility

(N = 593)

Full-text articles excluded (N = 407)

· Not an original, empirical research study (N = 8)

· Chemical exposure is not during perinatal period (N = 91)

· Offspring received additional chemical exposure after birth 
other than lactational exposure (N = 109). 

· Exposure included non-selected chemicals (N = 16)

· Studies mechanisms of the reported effects (N = 183)

Human studies included in

qualitative synthesis

(N = 73)

Animal studies included in

qualitative synthesis

(N = 113)

Fig. 1 PRISMA flow chart
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TPT, and vinclozolin) and nonpersistent (BPA, OP, phthalates, and NP) pollutants.
In animal experimental studies, the perinatal period was considered as chemical
exposure during gestation and lactation or gestation period alone, but not lactational
period alone. In addition, animals were restricted to rodents, particularly mice and
rats. Also, human epidemiological studies, which quantified chemical exposures
from maternal biological media, during gestation and/or lactation or at birth, were
used for this review.

We obtained full-text articles of all titles that satisfied the inclusion criteria. At the
second level of screening, we included only original empirical research studies that
considered offspring health as an outcome and which examined exposure to selected
chemicals during the perinatal period.

2.3 Risk of Bias and Quality Assessment of Epidemiological
Studies

We adopted the Newcastle-Ottawa Scale (NOS) for cohort and case-control studies
(Wells et al. 2013) to assess the risk of bias and quality of studies in three domains:
participant selection/exposure, comparability of groups, and outcome assessment
(Table 1). Each assessment criterion was awarded a score of 1 or 0, making a
maximum of 9 quality score points. Specifically, good-quality studies were identi-
fied as those awarded 5–6 points in the selection/exposure domain, 1 point in
the comparability domain, and 2 points in the outcome domain. Fair studies
were indicated by 3–4 points for selection/exposure, 1 point for comparability, and
2 points for the outcome, whereas poor-quality studies scored <3 for selection/
exposure or 0 for comparability OR � 1 for the outcome.

3 Results

The search resulted in a total 3,883 articles. And after we had removed duplicates,
only 1,952 potentially relevant journal articles remained. Of these remaining articles,
1,359 were excluded at the title and abstract screening level, leaving only 593 full-
text articles which were later assessed for eligibility. One hundred thirteen rodent
and 73 human studies met the inclusion criteria and hence were used for this study
(Fig. 1).
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3.1 Description of Studies

Characteristics of the 113 rodent and 73 human studies are summarized in Tables 2
and 3, respectively. Animal studies have focused much on the health effects of
perinatal exposure to nonpersistent chemicals (phenols and phthalates) (59%;
n ¼ 67). Many nonpersistent chemicals’ studies focused on offspring’s reproductive
health (46%; n ¼ 52). Eighteen studies (15.9%) covered offspring effects in more
than one generation (multigenerational); seven covered two generations; eight cov-
ered three generations, and three covered four generations.

On the other hand, 81% (n ¼ 59) of the human studies addressed the effects of
persistent chemicals, and 41% (n ¼ 30) focused on offspring growth and develop-
ment (Table 4). By using NOS scores, we found that 43 of these articles were of
good quality, while the other 30 were of fair quality. All human studies on nonper-
sistent chemicals (phenols and phthalates) used maternal urine samples to quantify

Table 1 Assessment of risk of bias and study quality

Assessment scale items Criteria for higher-quality selection Score

Selection

Representativeness of the
exposed cohort

Truly or somewhat representative of the exposed
population

1 or 0

Adequacy of exposure measure A measure of maternal chemical concentration in
urine, blood, breast milk, or cord blood exposure
level

1 or 0

A measure of health outcomes in the offspring rela-
tive to maternal chemical concentrations. A statisti-
cal association between chemical concentrations in
maternal biological media and the offspring’s health
outcome established

1 or 0

Study design Cohort or cross-sectional studies 1 or 0

Exposed population Mother. No additional exposure in the offspring 1 or 0

Outcome population Exposed male and/or female offspring, i.e., fetus,
newborn, infant, or young children exposed in utero
and/or during lactation to the chemical

1 or 0

Comparability

Comparability of cohorts on the
basis of the design or analysis

Outcome measure confounded by one of the factors
like smoking status, maternal age, birth weight,
maternal BMI, gestational age, breastfeeding dura-
tion, etc.

1 or 0

Outcome

Assessment of outcome A measure of individual (maternal) chemical con-
centration during pregnancy, at delivery or
breastfeeding

1 or 0

Measurement of individual (child) health outcome
done by trained practitioner blinded of the mother’s
exposure status

1 or 0

Total quality score
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e

H
oj
o
et
al
.

(2
00

8)
T
C
C
D

L
on

g-
E
va
ns

H
oo

de
d
ra
ts

T
C
D
D
(5
0,

20
0,

or
80

0
ng

/k
g)
;

P
C
B
12

6
(5
00

,2
,0
00

,o
r8

,0
00

ng
/k
g)

G
D
15

O
ra
lg

av
ag
e

F
ro
m

11
w
ee
ks

of
ag
e

fo
r
30

da
ys

(c
on

tin
ue
d)
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T
ab

le
2

(c
on

tin
ue
d)

A
rt
ic
le
ID

C
he
m
ic
al

S
pe
ci
es

D
os
in
g

E
xp

os
ur
e
pe
ri
od

R
ou

te
E
ff
ec
ta
ss
es
sm

en
t

pe
ri
od

H
on

m
a
et
al
.

(2
00

2)
B
P
A

IC
R
/J
cl
m
ic
e

2
or

20
μg

/k
g

G
D
11

–
17

s.
c.
in
je
ct
io
n

P
N
D
s
22

an
d
60

Ic
hi
ha
ra

et
al
.

(2
00

3)
B
P
A

F
34

4
ra
ts

0.
05

,7
.5
,3

0,
12

0
m
g/
kg

/d
ay

G
D
1–

P
N
D
21

O
ra
lg

av
ag
e

A
t6

5
w
ee
ks

of
ag
e

Ik
ed
a
et
al
.

(2
00

5)
T
C
C
D

H
ol
tz
m
an

ra
ts

80
0
an
d
20

0
ng

/k
g

G
D
15

O
ra
lg

av
ag
e

P
N
D
2

Ja
ng

et
al
.

(2
01

2)
a

B
P
A

C
57

B
L
/6

m
ic
e

0.
1,

1,
or

10
m
g/
kg

G
D
6–

17
i.p

.i
nj
ec
tio

n
A
t6

w
ee
ks

Ja
ša
re
vi
ć
et
al
.

(2
01

3)
B
P
A

O
ut
br
ed

de
er

m
ic
e

50
m
g,

5
m
g,

50
μg

/k
g
fe
ed

w
ei
gh

t
2
w
ee
ks

pr
io
r
to

G
D
;

G
D
1–

P
N
D
21

D
ie
t

�6
0
da
ys

of
ag
e

Ji
n
et
al
.(
20

08
)

T
C
D
D

C
57

B
L
/6

m
ic
e

1
μg

/k
g

G
D
15

i.p
.i
nj
ec
tio

n
Im

m
at
ur
e
(P
N
D
30

)
an
d
m
at
ur
e
(P
N
D
60

)

Jo
ne
s
et
al
.

(2
01

1)
B
P
A

L
on

g-
E
va
ns

ra
ts

5,
50

,5
00

μg
/k
g-
B
W
/d
ay
,o

r
5
m
g/

kg
-B
W
/d
ay

G
D
7–

P
N
D
14

O
ra
lg

av
ag
e

90
–
12

0
da
ys

of
ag
e

K
ak
ey
am

a
et
al
.

(2
01

4)
T
C
D
D

L
on

g-
E
va
ns

ra
ts

20
0
or

80
0
ng

/k
g

G
D
15

O
ra
lg

av
ag
e

A
du

lth
oo

d

K
ak
ey
am

a
et
al
.

(2
00

8)
T
C
D
D

L
on

g-
E
va
ns

ho
od

ed
ra
ts

20
0
or

80
0
ng

/k
g-
B
W

G
D
15

O
ra
lg

av
ag
e

P
N
D
25

K
aw

ai
et
al
.

(2
00

3)
B
P
A

C
D
-1

m
ic
e

2
ng

/g
or

20
ng

/g
G
D
11

–
17

M
ic
ro
pi
pe
tte

8,
12

,a
nd

16
w
ee
ks

of
ag
e

K
ay
a
et
al
.

(2
00

2)
P
C
B
s

L
on

g-
E
va
ns

ho
od

ed
ra
ts

0.
5,

2,
or

4
m
g/
kg

-B
W
/d
ay

50
da
ys

pr
e-
m
at
in
g–

P
N
D
0

D
ie
t

P
N
D
21

an
d
P
N
D
11

0

K
im

et
al
.(
20

10
)

D
B
P

S
D
ra
ts

25
0,

50
0,

or
70

0
m
g/
kg

/d
ay

G
D
10

–
19

O
ra
lg

av
ag
e

M
al
e
of
f
sa
cr
ifi
ce
d
at

31
da
ys

of
ag
e

K
ob

ay
as
hi

et
al
.

(2
00

2)
B
P
A

S
D
ra
ts

4
or

40
m
g/
kg

-B
W
/d
ay

G
D
6–

P
N
D
20

O
ra
lg

av
ag
e

1,
3,

an
d
9
w
ee
ks

of
ag
e
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K
ob

ay
as
hi

et
al
.

(2
00

9)
P
C
B
15

3
S
D
ra
ts

1
or

4
m
g/
kg

/d
ay

G
D
10

–
16

O
ra
lg

av
ag
e

1,
3,

or
9
w
ee
ks

of
ag
e

K
od

av
an
ti
et
al
.

(2
01

0)
P
B
D
E
s

(D
E
-7
1)

L
on

g-
E
va
ns

ra
ts

1.
7,

10
.2
,o

r
30

.6
m
g/
kg

/d
ay

G
D
6–

P
N
D
21

O
ra
lg

av
ag
e

P
N
D
7
an
d
P
N
D
30

on
w
ar
d

K
ur
iy
am

a
an
d

C
ha
ho

ud
(2
00

4)
P
C
B
11

8
S
D
ra
ts

37
5
m
g
of

P
C
B
11

8/
kg

-B
W

G
D
6

O
ra
lg

av
ag
e

P
N
D
70
–
74

K
w
on

et
al
.

(2
00

0)
B
P
A

S
D
ra
ts

3.
2,

32
,o

r
32

0
m
g/
kg

/d
ay

G
D
11

–
P
N
D
20

O
ra
lg

av
ag
e

P
N
D
27

on
w
ar
d

L
a
et
al
.(
20

14
)

D
D
T

C
57

B
L
/6
J
m
ic
e

1.
7
m
g
D
D
T
/k
g-
B
W

11
.5
–
P
N
D
5

S
ev
er
al
ag
es

up
to

9
m
on

th
s

L
ee

et
al
.(
20

16
)

D
E
H
P

C
57

B
L
/6

m
ic
e

30
m
g/
kg

-B
W

4
w
ee
ks

pr
e-
m
at
in
g–

P
N
D
21

O
ra
lg

av
ag
e

8
w
ee
ks

ol
d

L
ej
on

kl
ou

et
al
.

(2
01

6)
B
P
A

W
is
ta
r
ra
ts

25
,2

50
,5

,0
00

,o
r
50

,0
00

μg
B
P
A
/k
g-
B
W
/d
ay

G
D
7–

P
N
D
22

O
ra
lg

av
ag
e

3
m
on

th
s
ol
d

L
i
et
al
.(
20

14
)

B
P
A

S
D
ra
ts

40
μg

/k
g-
B
W

G
D
0–

P
N
D
21

O
ra
lg

av
ag
e

9
w
ee
ks

an
d
20

w
ee
ks

ol
d
F
2

L
i
et
al
.(
20

13
a)

D
E
H
P

S
D
ra
ts

50
0,

75
0,

or
1,
00

0
m
g/
kg

-B
W
/d
ay

G
D
12

–
19

G
as
tr
ic

in
tu
ba
tio

n
P
N
D
30

an
d
P
N
D
60

L
in

et
al
.(
20

11
)

D
E
H
P

W
is
ta
r
ra
ts

1.
25

an
d
6.
25

m
g/
kg

/d
ay

G
D
0–

P
N
D
21

O
ra
lg

av
ag
e

27
w
ee
ks

ol
d

L
in
d
et
al
.(
20

17
)

B
P
A

F
is
ch
er

34
4
ra
t

0.
5
or

50
μg

/k
g
B
W
/d
ay

G
D
3.
5–

P
N
D
22

D
ri
nk

in
g

w
at
er

5
w
ee
ks

ol
d

M
a
et
al
.(
20

17
)

D
B
P

S
D
ra
ts

50
,2

50
,o

r
50

0
m
g/
kg

/d
ay

G
D
12

.5
–
21

.5
O
ra
lg

av
ag
e

P
N
D
9,

21
,3

5,
an
d
90

M
ak
ita

et
al
.

(2
00

4)
D
D
E
an
d

T
B
T

W
is
ta
r
ra
ts

12
6
pp

m
(D

D
E
)
an
d
25

pp
m

T
B
T

G
D
1–

P
N
D
22

D
ie
t

P
N
D
4;

P
N
D
35

–
43

M
an
dr
up

et
al
.

(2
01

6)
B
P
A

W
is
ta
r
ra
ts

0.
02

5,
0.
25

,5
,a
nd

50
m
g/
kg

-B
W
/

da
y

G
D
7–

P
N
D
22

O
ra
lg

av
ag
e

A
t2

2,
10

0,
an
d

40
0
da
ys

ol
d

M
ar
tin

ez
-

A
rg
ue
lle
s
et
al
.

(2
01

3)

D
E
H
P

S
D
ra
ts

30
0
m
g
D
E
H
P
/k
g/
da
y

G
D
14

–
bi
rt
h

O
ra
lg

av
ag
e

P
N
D
60

an
d
20

0

M
en
ni
ge
n
et
al
.

(2
01

8)
c

P
C
B

(A
12

21
)

S
D
ra
ts

1
m
g/
kg

E
16

an
d
E
18

i.p
.a
nd

s.
c.
in
je
ct
io
ns

P
N
D
58
–
63

(c
on

tin
ue
d)

Multigenerational Effects of Endocrine Disruptors 141



T
ab

le
2

(c
on

tin
ue
d)

A
rt
ic
le
ID

C
he
m
ic
al

S
pe
ci
es

D
os
in
g

E
xp

os
ur
e
pe
ri
od

R
ou

te
E
ff
ec
ta
ss
es
sm

en
t

pe
ri
od

L
a
M
er
ri
ll
et
al
.

(2
01

0)
T
C
D
D

+
fa
t
di
et

F
V
B
/N
J
m
ic
e

1
μg

/k
g
T
C
D
D

G
D
12

.5
O
ra
lly

P
N
D
50

an
d
83

M
oo

n
et
al
.

(2
00

7)
N
P

L
on

g-
E
va
ns

ra
ts

10
or

10
0
m
g/
kg

G
D
15

–
19

O
ra
lg

av
ag
e

P
N
D
22

M
oo

re
et
al
.

(2
00

1)
D
E
H
P

S
D
ra
ts

37
5,

75
0,

or
1,
50

0
m
g/
kg

/d
ay

G
D
3–

P
N
D
21

O
ra
lly

P
N
D
24
–
63

M
yl
ch
re
es
t
et
al
.

(2
00

0)
D
B
P

C
D

ra
ts

0.
5,

5,
50

,o
r
10

0,
or

50
0
m
g/
kg

/d
ay

G
D
12

–
21

O
ra
lg

av
ag
e

P
N
D
1
an
d
14

N
as
sr
et
al
.

(2
01

0)
F
V

W
is
ta
r
ra
ts

40
or

80
m
g/
kg

G
D
12

–
P
N
D
21

O
ra
lg

av
ag
e

P
N
D
40

,6
0,

an
d
90

N
gu

ye
n
et
al
.

(2
01

3)
T
C
D
D

W
is
ta
r
ra
ts

1.
0
μg

/k
g

G
D
15

O
ra
lg

av
ag
e

8–
9,

11
–
12

,a
nd

19
w
ee
ks

of
ag
e

N
ils
so
n
et
al
.

(2
00

8)
c

V
Z

S
D
ra
ts

10
0
m
g/
kg

/d
ay

E
8–
E
14

i.p
.i
nj
ec
tio

ns

N
is
hi
jo

et
al
.

(2
00

7)
T
C
D
D

W
is
ta
r
ra
ts

0.
1
μg

/k
g

G
D
9–

19
G
as
tr
ic

in
tu
ba
tio

n
P
N
D
4–
14

an
d

P
N
D
31
–
44

O
hs
ak
o
et
al
.

(2
00

2)
T
C
D
D

S
D
ra
ts

1
μg

T
C
D
D
/k
g
bo

dy
G
D
15

or
18

O
ra
ld

os
e

P
N
D
70

O
ri
to

et
al
.

(2
00

7)
P
C
B
12

6
S
D
ra
ts

30
μg

/k
g

G
D
15

O
ra
lly

4–
5
w
ee
ks

ol
d

P
oc
ar

et
al
.

(2
01

7)
c

D
E
H
P

C
D
-1
m
ic
e

0.
05

,5
m
g/
kg

/d
ay

G
D
0.
5–

P
N
D
21

D
ie
t

P
N
D
42

R
ya
n
et
al
.

(2
01

0)
B
P
A

L
on

g-
E
va
ns

ra
t

2,
20

,a
nd

20
0
m
g/
kg

/d
ay

G
D
7–

P
N
D
18

O
ra
lg

av
ag
e

P
N
D
2–
23

S
al
ia
n
et
al
.

(2
00

9)
c

B
P
A

H
ol
tz
m
an

ra
ts

1.
2
an
d
2.
4
μg

/k
g-
B
W
/d
ay

G
D
12

–
P
N
D
21

O
ra
lg

av
ag
e

P
N
D
75

an
d
P
N
D
12

5

S
an
ab
ri
a
et
al
.

(2
01

6)
c

T
C
D
D

W
is
ta
r
ra
ts

0.
1,

0.
5,

an
d
1.
0
μg

of
T
C
D
D

G
D
15

O
ra
lg

av
ag
e

A
du

lt
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S
ch
ne
id
er

et
al
.

(2
00

8)
c

V
Z

W
is
ta
r
ra
ts

4
or

10
0
m
g/
kg

-B
W
/d
ay

G
D
6–

15
O
ra
lg

av
ag
e

A
ta
ge

12
7–
13

4
da
ys

S
ch
ön

fe
ld
er

et
al
.(
20

02
)

B
P
A

S
D
ra
ts

0.
1
or

50
m
g/
kg

/d
ay

G
D
6–

21
O
ra
lg

av
ag
e

4
m
on

th
s
of

ag
e

S
ho

no
et
al
.

(2
00

4)
V
Z

W
is
ta
r
K
in
g
A

ra
ts

20
0
m
g/
kg

/d
ay

G
D
15

–
18

O
ra
lg

av
ag
e

A
G
D

at
bi
rt
h,

P
N
D
10

an
d
60

S
i
et
al
.(
20

12
a)

T
B
T
C
l

C
hi
ne
se

K
un

M
in
g
m
ic
e

1,
10

,o
r
10

0
μg

T
B
T
C
l/
kg

-B
W
/d
ay

G
D
6–

P
N
D
21

O
ra
lg

av
ag
e

P
N
D
21

(V
O
);
P
N
D
s

49
an
d
15

2

S
i
et
al
.(
20

12
b)

T
B
T
C
l

C
hi
ne
se

K
un

M
in
g
m
ic
e

1,
10

,o
r
10

0
μg

T
B
T
C
l/
kg

-B
W
/d
ay

G
D
6–

P
N
D
22

O
ra
lg

av
ag
e

P
N
D
s
3,

5,
7,

an
d
9

S
on

g
et
al
.

(2
01

4)
B
P
A

S
D
ra
ts

1
an
d
10

μg
/m

L
B
P
A

G
D
6–

P
N
D
21

D
ri
nk

in
g

w
at
er

P
N
D
50

an
d
P
N
D
10

0

S
pö

rn
dl
y-
N
ee
s

et
al
.(
20

18
)

B
P
A

F
is
ch
er
34

4
ra
ts

0.
5
or

50
μg

B
P
A
/k
g/
da
y

G
D
3.
5–

P
N
D
22

D
ri
nk

in
g

w
at
er

P
N
D
35

an
d
12

m
on

th
s

ol
d

S
te
in
be
rg

et
al
.

(2
00

8)
a

P
C
B

(A
12

21
)

S
D
ra
ts

0.
1,

1,
or

10
m
g/
kg

E
16
–
18

i.p
.i
nj
ec
tio

n
�P

N
D
42

S
tu
m
p
et
al
.

(2
01

0)
B
P
A

S
D
ra
ts

0.
15

,1
.5
,7

5,
75

0,
an
d
2,
25

0
pp

m
da
ily

G
D
0–

P
N
D
21

D
ie
t

P
N
D
s
4–

72

S
ug

aw
ar
a
(2
00

6)
P
C
B

(A
12

54
)

C
57

B
L
/6
C
r

m
ic
e

6,
18

,a
nd

54
m
g/
kg

-B
W

ev
er
y

3
da
ys

G
D
6–

P
N
D
20

O
ra
lg

av
ag
e

P
N
D
s
4,

7,
10

,1
2,

14
,a
nd

16

S
us
ia
rj
o
et
al
.

(2
01

5)
a

B
P
A

C
57

B
L
/6

m
ic
e

10
μg

/k
g/
da
y
or

10
m
g/
kg

/d
ay

2
w
ee
ks

pr
io
r
to

m
at
in
g–

P
N
D
21

D
ie
t

P
N
D
98
–
11

7

T
ak
ag
i
et
al
.

(2
00

4)
B
P
A
an
d

N
P

S
D
ra
ts

B
P
A
,6

0,
60

0,
or

3,
00

0
pp

m
;
N
P
,

60
,6

00
,o

r
3,
00

0
pp

m
G
D
15

–
P
N
D
10

D
ie
t

P
N
D
21

an
d
P
N
W

8–
11

X
u
et
al
.(
20

15
)

D
E
H
P

IC
R
m
ic
e

10
,5

0,
an
d
20

0
m
g/
kg

/d
ay

G
D
7–

P
N
D
21

O
ra
lly

6
w
ee
ks

ol
d

A
nd

ra
de

et
al
.

(2
00

6)
D
E
H
P

W
is
ta
r
ra
ts

L
ow

,0
.0
15

,0
.0
45

,0
.1
35

,0
.4
05

,a
nd

1.
21

5,
an
d
hi
gh

,5
,1

5,
45

,1
35

,a
nd

40
5
m
g
D
E
H
P
/k
g-
B
W
/d
ay

G
D
6–

P
N
D
21

O
ra
lg

av
ag
e

P
N
D
14

4
�

7
da
ys

B
ru
ne
r-
T
ra
n
an
d

O
st
ee
n
(2
01

1)
b

T
C
D
D

C
57

B
L
/6

m
ic
e

10
μg

/k
g

G
D
15

.5
O
ra
lg

av
ag
e

P
N
D
21

(c
on

tin
ue
d)

Multigenerational Effects of Endocrine Disruptors 143



T
ab

le
2

(c
on

tin
ue
d)

A
rt
ic
le
ID

C
he
m
ic
al

S
pe
ci
es

D
os
in
g

E
xp

os
ur
e
pe
ri
od

R
ou

te
E
ff
ec
ta
ss
es
sm

en
t

pe
ri
od

G
ro
te
et
al
.

(2
00

7)
T
P
T
C
l

W
is
ta
r
ra
ts

2
or

6
m
g
T
P
T
C
l/k

g-
B
W
/d
ay

G
D
6–

P
N
D
21

O
ra
lg

av
ag
e

A
tb

ir
th

K
im

ur
a
et
al
.

(2
00

6)
N
P

IC
R
m
ic
e

1.
23

1,
12

.3
1,

or
12

3.
1
m
g/
kg

G
D
5–

20
s.
c.
in
je
ct
io
n

P
N
D
42

K
uw

ah
ar
a
et
al
.

(2
01

3)
B
P
A

S
D
ra
ts

50
or

50
0
μg

/k
g/
da
y

G
D
10

–
P
N
D
14

O
ra
lly

7–
11

w
ee
ks

of
ag
e

L
aR

oc
ca

et
al
.

(2
01

1)
B
P
A

C
57

/B
l6

m
ic
e

50
or

1,
00

0
μg

/k
g
B
P
A

G
D
10

–
16

O
ra
lg

av
ag
e

P
N
D
56

L
i
et
al
.(
20

13
b)

D
B
P

S
D
ra
ts

50
0
m
g/
kg

-B
W

G
D
6–

P
N
D
21

G
as
tr
ic

in
tu
ba
tio

n
P
N
D
21

an
d
60

L
ili
en
th
al
et
al
.

(2
00

6)
P
B
D
E
-

99
L
on

g-
E
va
ns

ho
od

ed
ra
ts

1
or

10
m
g/
kg

-B
W
/d
ay

G
D
10

–
18

s.
c.
in
je
ct
io
n

P
N
D
30

on
w
ar
d
an
d

P
N
D
12

0

P
oc
oc
k
et
al
.

(2
00

2)
O
P

W
is
ta
r
ra
ts

10
0–

25
0
m
g/
kg

/d
ay

G
D
0–

P
N
D
21

D
ie
t

P
N
D
0–
32

7

R
ub

in
et
al
.

(2
01

6)
B
P
A

C
D
-1

m
ic
e

0.
25

,2
.5
,2

5,
or

25
0
μg

/k
g-
B
W
/d
ay

G
D
8–

P
N
D
16

O
sm

ot
ic

pu
m
ps

W
ee
k
3–
43

S
i
et
al
.(
20

13
)

T
B
T
C
l

C
hi
ne
se

K
un

M
in
g
m
ic
e

1,
10

,o
r
10

0
μg

/k
g-
B
W

G
D
6–

P
N
D
21

O
ra
lg

av
ag
e

P
N
D
s
49

an
d
15

2

Y
an
g
et
al
.

(2
01

7)
N
P

S
D
ra
ts

20
0
m
g/
kg

/d
ay

G
D
6–

P
N
D
21

O
ra
lg

av
ag
e

P
N
D
60

L
D

la
ct
at
io
n
da
y,

SD
S
pr
ag
ue
-D

aw
le
y,

s.
c.
su
bc
ut
an
eo
us
,i
.p
.i
nt
ra
pe
ri
to
ne
al
,P

N
D
po

st
na
ta
l
da
y,

G
D

ge
st
at
io
na
l
da
y,

V
O

va
gi
na
lo

pe
ni
ng

a F
1
an
d
F
2
ge
ne
ra
tio

n
b
F
1–

F
4
ge
ne
ra
tio

n
c F
1–

F
3
ge
ne
ra
tio

n

144 W. Nelson et al.



T
ab

le
3

C
ha
ra
ct
er
is
tic
s
of

hu
m
an

st
ud

ie
s

A
rt
ic
le
ID

C
he
m
ic
al
s

C
ou

nt
ry

S
tu
dy

pe
ri
od

N
o.

of
m
ot
he
r-
ch
ild

re
n

pa
ir
s

M
at
er
na
l

bi
ol
og

ic
al

m
ed
ia

S
am

pl
in
g
pe
ri
od

O
ff
sp
ri
ng

as
se
ss
m
en
t

pe
ri
od

B
ot
to
n
et
al
.(
20

16
)

P
ht
ha
la
te
s

F
ra
nc
e

20
03

–
20

06
52

0
U
ri
ne

G
W
22

–
29

M
ea
n

G
W
12

.6

B
ra
un

et
al
.(
20

09
)

B
P
A

U
S
A

20
13

24
9

U
ri
ne

G
W
16

,2
6,

an
d
at

bi
rt
h

A
t
2
ye
ar
s

B
ro
w
n
et
al
.(
20

18
)

D
D
T
an
d
P
C
B

F
in
la
nd

20
05

–
20

07
77

8
ca
se
s
an
d

77
8
co
nt
ro
ls

S
er
um

2–
4
m
on

th
s
of

pr
eg
na
nc
y

C
hi
ld
ho

od

C
he
n
et
al
.(
20

18
)

P
F
A
S
s

C
hi
na

20
12

–
20

15
68

7
C
or
d
bl
oo

d
B
ir
th

A
t
6,

12
,a
nd

24
m
on

th
s

C
up

ul
-U

ic
ab

et
al
.

(2
01

3)
O
rg
an
oc
hl
or
id
es

U
S
A

19
59

–
19

65
1,
68

3
S
er
um

T
hi
rd

tr
im

es
te
r

7
ye
ar
s

F
le
is
ch

et
al
.(
20

17
)

P
F
A
S
s

U
S
A

19
99

–
20

02
66

5
P
la
sm

a
M
ed
ia
n
G
W
9.
6

M
ed
ia
n

7.
7
ye
ar
s

G
ar
cí
a-
V
ill
ar
in
o
et
al
.

(2
01

8)
P
O
P
s
(H

C
B
,

P
B
D
E
,D

D
D
,

P
C
B
s)

S
pa
in

20
04

–
20

07
43

B
lo
od

M
ed
ia
n
G
W
12

A
t
18

m
on

th
s

H
an

et
al
.(
20

16
)

P
C
B
s
an
d
D
D
E

U
S
A

20
01

–
20

02
15

1
S
er
um

N
ot

in
di
ca
te
d

20
–
50

ye
ar
s

H
an
se
n
et
al
.(
20

16
)

P
O
P
s
(H

C
B
,

P
C
B
s,
an
d

D
D
E
)

D
en
m
ar
k

20
08

–
20

09
42

1
S
er
um

G
es
t.
w
ee
k
30

A
t
20

ye
ar
s

H
an
se
n
et
al
.(
20

14
)

P
O
P
s
(H

C
B
,

P
C
B
s,
an
d

D
D
E
)

D
en
m
ar
k

20
08

–
20

10
65

4
S
er
um

G
es
t.
w
ee
k
31

A
t
20

ye
ar
s

Ja
rr
el
l
et
al
.(
20

02
)

H
C
B

T
ur
ke
y

19
35

–
19

90
42

ca
se
-c
on

tr
ol

pa
ir
sa

S
er
um

N
ot

in
di
ca
te
d

40
ye
ar
s

fo
llo

w
-u
p

Je
dd

y
et
al
.(
20

17
)

P
F
A
S
s

G
re
at

B
ri
ta
in

19
91

–
19

92
43

2
S
er
um

M
ed
ia
n
G
W
15

A
t
15

an
d

38
m
on

th
s

Je
dd

y
et
al
.(
20

18
)

P
F
A
S
s

G
re
at

B
ri
ta
in

19
91

–
19

93
25

7
S
er
um

M
ed
ia
n
G
W
15

17
-y
ea
r-
ol
d

da
ug

ht
er
s

(c
on

tin
ue
d)

Multigenerational Effects of Endocrine Disruptors 145



T
ab

le
3

(c
on

tin
ue
d)

A
rt
ic
le
ID

C
he
m
ic
al
s

C
ou

nt
ry

S
tu
dy

pe
ri
od

N
o.

of
m
ot
he
r-
ch
ild

re
n

pa
ir
s

M
at
er
na
l

bi
ol
og

ic
al

m
ed
ia

S
am

pl
in
g
pe
ri
od

O
ff
sp
ri
ng

as
se
ss
m
en
t

pe
ri
od

Je
ns
en

et
al
.(
20

15
)

P
ht
ha
la
te
s

D
en
m
ar
k

20
08

–
20

09
24

5
U
ri
ne

F
ir
st
tr
im

es
te
r

3
m
on

th
s
af
te
r

E
D
D

Ju
sk
o
et
al
.(
20

10
)

P
C
B
s

S
lo
va
ki
a

20
02

–
20

04
38

4
S
er
um

D
ay

re
po

rt
ed

fo
r

de
liv

er
y
an
d
co
rd

bl
oo

d

A
t
6
m
on

th
s

Ju
sk
o
et
al
.(
20

12
)

D
D
E
an
d
D
D
T

U
S
A

19
59

–
19

65
1,
10

0
S
er
um

3r
d
tr
im

es
te
r

A
t
8
m
on

th
s

an
d
7
ye
ar
s

K
al
ra

et
al
.(
20

16
)

O
rg
an
oc
hl
or
id
es

In
di
a

20
13

–
20

15
35

ca
se
-c
on

tr
ol

pa
ir
sb

S
er
um

W
ith

in
72

h
of

de
liv

er
y

W
ith

in
72

h
of

de
liv

er
y

K
ar
m
au
s
et
al
.(
20

09
)

P
C
B
s
an
d
D
D
E

U
S
A

19
73

–
19

91
16

9
S
er
um

N
ot

in
di
ca
te
d

20
–
50

ye
ar
s

K
ha
nj
an
i
an
d
S
im

(2
00

7)
D
D
T
an
d
D
D
E

A
us
tr
al
ia

19
90

s
81

5
B
re
as
tm

ilk
6–

12
w
ee
ks

po
st
pa
rt
um

In
fa
nt

K
im

et
al
.(
20

18
)

B
P
A
,

ph
th
al
at
es
,

P
C
B
s,
P
B
D
E
,

an
d
O
C
P
s

K
or
ea

20
11

–
20

12
14

0
B
lo
od

,u
ri
ne

an
d
br
ea
st

m
ilk

c

B
lo
od

an
d
ur
in
e

at
te
rm

,b
re
as
t

m
ilk

30
da
ys

af
te
r

de
liv

er
y

A
t
13
–
24

m
on

th
s

L
au
ri
tz
en

et
al
.(
20

18
)

P
O
P
s

N
or
w
ay

an
d

S
w
ed
en

19
86

–
19

88
41

2
S
er
um

S
ec
on

d
tr
im

es
te
r

(G
W
17

–
20

)
5-
ye
ar

fo
llo

w
-

up

L
ie
w

et
al
.(
20

18
)

P
F
A
S
s

D
en
m
ar
k

19
96

–
20

02
1,
59

2
S
er
um

M
ea
n
G
W
8.
7

A
t
5
ye
ar
s

L
im

et
al
.(
20

17
)

B
P
A

K
or
ea

20
08

–
20

11
;

20
14

–
20

15
30

4
U
ri
ne

S
ec
on

d
tr
im

es
te
r

A
t
4
ye
ar
s

L
on

gn
ec
ke
r
et
al
.

(2
00

4)
P
C
B
s

D
en
m
ar
k

19
59

–
19

66
19

5
ca
se
s
an
d

61
5
co
nt
ro
ls
d

S
er
um

S
ev
er
al
e

A
t
8
ye
ar
s

L
on

gn
ec
ke
r
et
al
.

(2
00

2)
D
D
E

U
S
A

19
59

–
19

66
58

5
ca
se
s
an
d

52
2
co
nt
ro
ls
f

S
er
um

T
hi
rd

tr
im

es
te
r

In
fa
nt

M
cg
ly
nn

et
al
.(
20

09
)

P
C
B
s

U
S
A

19
59

–
19

65
43

1
ca
se
s
an
d
59

3
ca
se
sg

S
er
um

T
hi
rd

tr
im

es
te
r

A
t
4
m
on

th
s,

1
ye
ar
,7

ye
ar
s

146 W. Nelson et al.



M
iy
as
hi
ta
et
al
.(
20

18
)

D
io
xi
n-
lik

e
co
m
po

un
ds

(D
L
C
s)

Ja
pa
n

20
02

–
20

05
32

7
V
ei
n
bl
oo

d
an
d
co
rd

bl
oo

d
S
ec
on

d
to

th
ir
d

tr
im

es
te
r,
co
rd

bl
oo

d
at
de
liv

er
y

A
t
3.
5
ye
ar
s

an
d
7
ye
ar
s

M
iy
as
hi
ta
et
al
.(
20

11
)

D
io
xi
n-
lik

e
co
m
po

un
ds

Ja
pa
n

20
02

–
20

05
36

4
M
at
er
na
l

bl
oo

d
A
t
18

m
on

th
s

M
us
tie
le
s
et
al
.(
20

18
)

B
P
A

U
S
A

20
05

–
20

16
10

7
U
ri
ne

1
pe
r
tr
im

es
te
r

In
fa
nt

O
le
se
n
et
al
.(
20

18
)

P
ht
ha
la
te
s

D
en
m
ar
k

20
10

–
20

12
51

8
U
ri
ne

T
hi
rd

tr
im

es
te
r

A
t
20
–
36

m
on

th
s

S
hu

et
al
.(
20

18
)

P
ht
ha
la
te
s

S
w
ed
en

20
07

–
20

10
1,
06

2
U
ri
ne

M
ed
ia
n
G
W
10

A
t
12

m
on

th
s

S
ta
rl
in
g
et
al
.(
20

17
)

P
F
A
S

U
S
A

20
09

–
20

14
65

2
S
er
um

an
d

co
rd

bl
oo

d
M
id
-p
re
gn

an
cy
,

co
rd

bl
oo

d
at

de
liv

er
y

W
ith

in
3
da
ys

of
bi
rt
h

S
un

et
al
.(
20

18
)

B
P
A

C
hi
na

20
12

98
2

U
ri
ne

G
W
12

–
16

A
t
6
an
d

12
m
on

th
s

T
er
re
ll
et
al
.(
20

15
)

P
B
B
an
d
P
C
B
s

U
S
A

19
76

–
19

78
61

3
of
fs
pr
in
g
fr
om

33
0
w
om

en
S
er
um

A
t
en
ro
lm

en
t

In
fa
nt

V
af
ei
ad
i
et
al
.(
20

13
)

D
io
xi
ns

(T
C
D
D
)
an
d

di
ox

in
-l
ik
e

co
m
po

un
ds

G
re
ec
e
an
d

S
pa
in

20
07

–
20

08
11

9
ne
w
bo

rn
an
d

23
9
yo

un
g
bo

ys
;

11
8
ne
w
bo

rn
an
d

22
3
yo

un
g
gi
rl
s

B
lo
od

A
t
de
liv

er
y

R
an
ge
;
1–

31
m
on

th
s

V
af
ei
ad
i
et
al
.(
20

15
)

P
O
P
s
(P
C
B
s,

H
C
B
,a
nd

D
D
E
)

G
re
ec
e

20
07

–
20

08
68

9
S
er
um

F
ir
st
tr
im

es
te
r

A
t
4
ye
ar
s
of

ag
e

V
af
ei
ad
i
et
al
.(
20

16
)

B
P
A

G
re
ec
e

20
07

–
20

08
50

0
U
ri
ne

F
ir
st
tr
im

es
te
r

A
t
2.
5
an
d

4
ye
ar
s

V
al
vi

et
al
.(
20

13
)

B
P
A

S
pa
in

20
04

–
20

06
40

2
m
ot
he
rs

U
ri
ne

(2
sa
m
pl
es
)

F
ir
st
an
d
th
ir
d

tr
im

es
te
r

A
t
6
an
d

14
m
on

th
s

an
d
4
ye
ar
s

V
as
ili
u
et
al
.(
20

04
)

P
C
B
s
an
d
D
D
E

U
S
A

20
00

15
1
fe
m
al
e
of
fs
pr
in
g

ag
ed

20
–
50

ye
ar
s

S
er
um

N
ot

in
di
ca
te
d

20
�

50
ye
ar
s

V
es
te
d
et
al
.(
20

14
)

P
O
P
s
(P
C
B
s

an
d
D
D
E
)

D
en
m
ar
k

20
08

–
20

09
17

6
B
lo
od

,o
ff
-

sp
ri
ng

–

se
m
en

an
d

bl
oo

d
sa
m
pl
es

G
W
30

M
ed
ia
n

20
ye
ar
s

(c
on

tin
ue
d)

Multigenerational Effects of Endocrine Disruptors 147



T
ab

le
3

(c
on

tin
ue
d)

A
rt
ic
le
ID

C
he
m
ic
al
s

C
ou

nt
ry

S
tu
dy

pe
ri
od

N
o.

of
m
ot
he
r-
ch
ild

re
n

pa
ir
s

M
at
er
na
l

bi
ol
og

ic
al

m
ed
ia

S
am

pl
in
g
pe
ri
od

O
ff
sp
ri
ng

as
se
ss
m
en
t

pe
ri
od

W
an
g
et
al
.(
20

14
)

O
rg
an
oc
hl
or
id
es

C
hi
na

20
10

–
20

13
11

7
ca
se
s
an
d

12
1
co
nt
ro
ls
h

S
er
um

P
la
ce
nt
a

A
t
de
liv

er
y
or

te
rm

in
at
io
n

Z
hu

et
al
.(
20

18
)

P
ht
ha
la
te
s

C
hi
na

20
14

–
20

14
1,
00

2
m
ot
he
r-
in
fa
nt
pa
ir
s

U
ri
ne

3
da
ys

be
fo
re

de
liv

er
y

In
fa
nt

B
la
nc
k
et
al
.(
20

00
)

P
B
B
s
an
d
P
C
B
s

U
S
A

19
97

32
7
m
ot
he
r-
da
ug

ht
er

pa
ir
s

S
er
um

A
ft
er

ex
po

su
re

(1
97

6–
19

79
)

A
t
5–
24

ye
ar
s

B
ra
un

et
al
.(
20

17
)

B
P
A

an
d
P
B
D
E

U
S
A

20
03

–
20

06
;

20
12

–
20

14
U
ri
ne

(B
P
A
)

an
d
se
ru
m

(P
B
D
E
)

U
ri
ne

–
G
W
16

an
d
26

S
er
um

–

G
W
16

A
t
1–
8
ye
ar
s

B
ru
ck
er
-D

av
is
et
al
.

(2
01

0)
X
en
ob

io
tic
s

F
ra
nc
e

20
02

–
20

05
86

m
at
er
na
l-
in
fa
nt

pa
ir
s

C
or
d
se
ru
m

an
d
br
ea
st

m
ilk

M
ilk

–
da
y
2
an
d

5
po

st
pa
rt
um

In
fa
nt

B
ru
ck
er
-D

av
is
et
al
.

(2
00

8)
X
en
ob

io
tic
s

F
ra
nc
e

20
02

–
20

05
16

4
in
fa
nt
/m

ot
he
r
pa
ir
s

C
or
d
se
ru
m

an
d
br
ea
st

m
ilk

M
ilk

–
da
y
2
an
d

5
po

st
pa
rt
um

In
fa
nt

C
ha
ng

et
al
.(
20

13
)

N
on

yl
ph

en
ol

T
ai
w
an

20
10

16
2
pr
eg
na
nt

w
om

en
U
ri
ne

E
ac
h
tr
im

es
te
r

N
eo
na
te

D
am

ga
ar
d
et
al
.(
20

06
)

O
rg
an
oc
hl
or
id
e

F
in
la
nd

an
d

D
en
m
ar
k

19
97

–
20

01
62

ca
se
s
an
d
68

co
nt
ro
ls
i

B
re
as
tm

ilk
1–

3
m
on

th
s

po
st
pa
rt
um

N
eo
na
te

G
ar
ce
d
et
al
.(
20

12
)

D
D
E

M
ex
ic
o

20
01

–
20

05
25

3
pr
eg
na
nt

w
om

en
S
er
um

E
ac
h
tr
im

es
te
r

F
ro
m

bi
rt
h
to

1
ye
ar

G
as
co
n
et
al
.(
20

13
)

P
O
P
s

(P
C
B
-1
53

,
D
D
E
,a
nd

H
C
B
)

S
pa
in

20
03

–
20

08
1,
17

5
S
er
um

B
et
w
ee
n
se
ve
nt
h

an
d
th
e
26

th
w
ee
k

A
t
14

m
on

th
s

G
iv
en
s
et
al
.(
20

07
)

P
B
B

U
S
A

19
97

–
19

98
44

4
m
ot
he
rs
an
d
th
ei
r

89
9
in
fa
nt
s

S
er
um

A
tc
on

ce
pt
io
n
an
d

en
ro
llm

en
t

In
fa
nt

G
la
de
n
et
al
.(
20

03
)

O
rg
an
oc
hl
or
id
es

U
kr
ai
ne

19
93

–
19

94
19

7
B
re
as
tm

ilk
4
or

5
da
ys

af
te
r

bi
rt
h

In
fa
nt

148 W. Nelson et al.



H
er
tz
-P
ic
ci
ot
to

et
al
.

(2
00

5)
P
C
B
s

U
S
A

19
64

–
19

67
39

9
m
ot
he
rs

S
er
um

an
d

lip
id

S
ec
on

d
or

th
ir
d

tr
im

es
te
r

In
fa
nt

an
d

5
ye
ar
s
of

ag
e

Is
za
tt
et
al
.(
20

16
)

D
io
xi
n
an
d

di
ox

in
-l
ik
e

co
m
po

un
ds

B
el
gi
um

,
N
or
w
ay
,

an
d

S
lo
va
ki
a

20
02

–
20

04
36

7
fo
ri
nf
an
tg
ro
w
th
an
d

25
1
fo
r
B
M
I

C
or
d
bl
oo

d
or

br
ea
st
m
ilk

M
ilk

4–
5
da
ys

af
te
r
de
liv

er
y
an
d

8
co
ns
ec
ut
iv
e

da
ys

fo
r
1
m
on

th

A
t
bi
rt
h,

24
h

an
d
7
ye
ar
s

K
ha
nj
an
i
an
d
S
im

(2
00

7)
P
C
B
s

A
us
tr
al
ia

19
90

s
20

0
B
re
as
tm

ilk
6–

12
w
ee
ks

po
st
pa
rt
um

In
fa
nt

L
au
ri
tz
en

et
al
.(
20

17
)

P
F
A
S
s
an
d
O
C
s

N
or
w
ay

an
d

S
w
ed
en

19
86

–
19

88
14

3
S
G
A
s
an
d

28
1
no

n-
S
G
A

S
er
um

G
W
17

–
20

A
t
G
W
17

L
on

gn
ec
ke
r
et
al
.

(2
00

5)
P
C
B
s

U
S
A

19
59

–
19

65
1,
03

4
w
om

en
w
ith

13
2
pr
et
er
m

bi
rt
hs

an
d

10
1
S
G
A
bi
rt
hs

S
er
um

T
hi
rd

tr
im

es
te
r

In
fa
nt

L
on

gn
ec
ke
r
et
al
.

(2
00

1)
D
D
E

U
S
A

19
59

–
19

66
2,
38

0
ch
ild

re
n;

36
1
pr
e-

te
rm

an
d
22

1
S
G
A

S
er
um

F
ou

rt
h
tr
im

es
te
r

In
fa
nt

M
ai
n
et
al
.(
20

07
)

P
B
D
E
s

D
en
m
ar
k

an
d
F
in
la
nd

19
97

–
20

01
86

pl
ac
en
ta
-m

ilk
pa
ir
s

P
la
ce
nt
a
tis
su
e

an
d
M
ilk

M
ilk

-1
m
on

th
af
te
r
bi
rt
h

In
fa
nt

M
en
de
z
et
al
.(
20

11
)

O
C
s
(D

D
E
an
d

H
C
B
)

S
pa
in

20
04

–
20

06
65

7
S
er
um

F
ir
st
tr
im

es
te
r

In
fa
nt

N
ag
ay
am

a
et
al
.(
20

07
)

D
io
xi
ns
,P

C
B
s,

an
d

or
ga
no

ch
lo
ri
de
s

Ja
pa
n

19
94

–
19

96
10

8
B
re
as
tm

ilk
2
an
d
4
m
on

th
s

af
te
r
de
liv

er
y

In
fa
nt
s

(a
pp

ro
x.

10
m
on

th
s)

P
an

et
al
.(
20

10
)

D
D
T
,D

D
E
,a
nd

P
C
B
s

U
S
A

20
04

–
20

06
21

0
B
re
as
tm

ilk
3
m
on

th
s

po
st
pa
rt
um

In
fa
nt

(fi
rs
t

12
m
on

th
s)

S
ag
iv

et
al
.(
20

07
)

O
rg
an
oc
hl
or
in
es

U
S
A

19
93

–
19

98
72

2
C
or
d
bl
oo

d
A
t
bi
rt
h

A
t
1–
2
da
ys

S
ho

af
f
et
al
.(
20

16
)

P
ht
ha
la
te

U
S
A

20
03

–
20

06
36

8
U
ri
ne

G
W
16

an
d
26

In
fa
nt

S
m
in
k
et
al
.(
20

08
)

H
C
B
,P

C
B
s,

D
D
T
,a
nd

D
D
E

S
pa
in

19
97

48
2

C
or
d
se
ru
m

A
t
bi
rt
h

A
t
ag
e

6.
5
ye
ar
s

(c
on

tin
ue
d)

Multigenerational Effects of Endocrine Disruptors 149



T
ab

le
3

(c
on

tin
ue
d)

A
rt
ic
le
ID

C
he
m
ic
al
s

C
ou

nt
ry

S
tu
dy

pe
ri
od

N
o.

of
m
ot
he
r-
ch
ild

re
n

pa
ir
s

M
at
er
na
l

bi
ol
og

ic
al

m
ed
ia

S
am

pl
in
g
pe
ri
od

O
ff
sp
ri
ng

as
se
ss
m
en
t

pe
ri
od

T
ai
et
al
.(
20

16
)

D
io
xi
ns

V
ie
tn
am

20
08

–
20

09
21

7
B
re
as
tm

ilk
1
m
on

th
af
te
r

bi
rt
h

F
ir
st
3
ye
ar
s

of
lif
e

T
an

et
al
.(
20

09
)

P
O
P
s
(P
C
B
,

P
B
D
E
,a
nd

O
C
P
s)

S
in
ga
po

re
20

06
41

C
or
d
bl
oo

d
A
t
bi
rt
h

In
fa
nt

V
al
vi

et
al
.(
20

12
)

O
C
s
(P
C
B
s,

D
D
E
,a
nd

D
D
T
)

S
pa
in

19
97

–
19

98
34

4
C
or
d
bl
oo

d
A
t
bi
rt
h

6.
5
ye
ar
s

V
re
ug

de
nh

il
et
al
.

(2
00

4)
P
C
B
s

N
et
he
rl
an
ds

19
90

–
19

92
10

4
P
la
sm

a
L
as
t
m
on

th
s
of

pr
eg
na
nc
y

A
t
9
ye
ar
s
of

ag
e

W
ol
ff
et
al
.(
20

07
)

D
D
E
,P

C
B

U
S
A

19
98

–
20

02
40

4
P
la
sm

a
T
hi
rd

tr
im

es
te
r

In
fa
nt

G
la
de
n
et
al
.(
20

00
)

P
C
B
s
an
d
D
D
E

U
S
A

19
92

59
4
(3
16

gi
rl
s
an
d

27
8
bo

ys
)
ch
ild

re
n

B
re
as
tm

ilk
,

m
at
er
na
l

bl
oo

d,
co
rd

bl
oo

d,
an
d

pl
ac
en
ta

N
ot

in
di
ca
te
d

A
t
12

ye
ar
s

R
ib
as
-F
itó

et
al
.(
20

02
)

H
C
B

S
pa
in

19
97

–
19

99
98

M
at
er
na
l

se
ru
m

an
d

co
rd

se
ru
m

A
t
de
liv

er
y

In
fa
nt

S
w
an

et
al
.(
20

05
)

P
ht
ha
la
te

U
S
A

19
99

–
20

02
85

U
ri
ne

M
ea
n
G
W
28

.3
A
t
2–
36

m
on

th
s

a C
as
es
,c
hi
ld
re
n
bo

rn
to

m
ot
he
rs
w
ho

su
rv
iv
ed

H
C
B
ep
is
od

e;
co
nt
ro
ls
,c
hi
ld
re
n
bo

rn
to

m
ot
he
rs
w
ho

co
nt
in
uo

us
ly

liv
ed

in
th
e
sa
m
e
ar
ea

b
C
as
es
,m

ot
he
rs
-n
eo
na
te
dy

ad
s
w
ith

ne
ur
al
tu
be

de
fe
ct
s;
co
nt
ro
l,
m
ot
he
rs
-n
eo
na
te
dy

ad
s
w
ith

ou
tc
on

ge
ni
ta
la
no

m
al
ie
s.
G
W

ge
st
at
io
n
w
ee
k,
E
D
D
ex
pe
ct
ed

da
y

of
de
liv

er
y

c B
lo
od

fo
r
P
C
B
s,
P
B
D
E
,a
nd

O
C
P
s,
ur
in
e
fo
r
B
P
A
,a
nd

ph
th
al
at
es

an
d
br
ea
st
m
ilk

fo
r
B
P
A

an
d
ph

th
al
at
es

d
C
as
es
,m

ot
he
r-
ch
ild

re
n
w
ith

se
ns
or
in
eu
ra
l
he
ar
in
g
lo
ss
;
co
nt
ro
ls
,c
hi
ld
re
n
se
le
ct
ed

at
ra
nd

om
e A

t
re
gi
st
ra
tio

n,
ev
er
y
8
w
ee
ks

du
ri
ng

pr
eg
na
nc
y,

at
de
liv

er
y,

an
d
6
w
ee
ks

po
st
pa
rt
um

f C
as
es
,b

oy
s
w
ith

cr
yp

to
rc
hi
di
sm

,h
yp

os
pa
di
as
,a
nd

po
ly
th
el
ia
(e
xt
ra

ni
pp

le
);
co
nt
ro
ls
,h

ea
lth

y
ba
bi
es

g
C
as
es
,s
on

s
w
ith

cr
yp

to
rc
hi
di
sm

an
d
hy

po
sp
ad
ia
s;
co
nt
ro
l,
so
ns

w
ith

ne
ith

er
co
nd

iti
on

h
C
as
es
,m

ot
he
rs
w
ho

de
liv

er
ed

ne
ur
al
tu
be

de
fe
ct
in
fa
nt
s;
co
nt
ro
ls
,m

ot
he
rs
w
ho

de
liv

er
ed

he
al
th
y
in
fa
nt
s

i C
as
es
,m

ot
he
rs
of

cr
yp

to
rc
hi
d
bo

ys
;
co
nt
ro
ls
,m

ot
he
rs
w
ith

he
al
th
y
bo

ys

150 W. Nelson et al.



T
ab

le
4

S
um

m
ar
y
of

nu
m
be
r
of

st
ud

ie
s
pe
r
ch
em

ic
al
an
d
th
ei
r
di
st
ri
bu

tio
n
ac
ro
ss

ef
fe
ct
s
on

th
e
of
fs
pr
in
g

C
he
m
ic
al
s

T
ot
al

R
ep
ro
du

ct
iv
e

ef
fe
ct
s

Im
m
un

ol
og

ic
al

ef
fe
ct
s

M
et
ab
ol
ic

ef
fe
ct
s

N
eu
ro
lo
gi
ca
l

ef
fe
ct
s

G
ro
w
th

an
d

de
ve
lo
pm

en
t
ef
fe
ct
s

A
ni
m
al

st
ud

ie
s
(N

¼
11

3)
n
¼

52
n
¼

4
n
¼

20
n
¼

31
n
¼

6

P
he
no

ls
(B
P
A
,N

P
,a
nd

O
P
)

43
16

2
10

12
3

P
ht
ha
la
te
s

24
16

0
4

4
0

D
io
xi
ns

18
9

1
1

7
0

P
C
B
s

12
4

1
1

5
1

P
B
D
E
s

2
1

0
0

1
0

O
th
er

pe
rs
is
te
nt

ch
em

ic
al
s
(F
V
,V

N
,T

B
T
,T

P
T
,

D
D
T
)

9
6

0
4

1
1

M
ul
tip

le
(2
+
)

2
0

0
0

1
1

H
um

an
st
ud

ie
s
(N

¼
73

)
n
¼

16
n
¼

7
n
¼

11
n
¼

9
n
¼

30

P
he
no

ls
(B
P
A

an
d
N
P
)

7
1

0
1

1
4

P
ht
ha
la
te
s

7
2

0
0

0
5

P
er
si
st
en
t
ch
em

ic
al
s
(P
C
B
s,
P
B
D
E
s,
D
D
T
,

D
D
E
,H

C
B
,O

C
P
s)

43
11

3
7

5
17

P
F
A
S
s

6
0

2
2

0
2

D
io
xi
ns

an
d
di
ox

in
-l
ik
e
co
m
po

un
ds

4
1

1
1

1
0

M
ul
tip

le
(2
+
)

6
1

1
0

2
2

Multigenerational Effects of Endocrine Disruptors 151



maternal chemical levels at different pregnancy durations. For the persistent
chemicals’ quantification, maternal blood was mostly used (n ¼ 34) except for
few studies which used breast milk (n ¼ 7), breast milk and blood (n ¼ 1), cord
blood (n ¼ 4), cord blood and breast milk (n ¼ 2), maternal blood and cord blood
(n ¼ 3), and other (n ¼ 8). Most of these studies (n ¼ 34) were done in European
countries, followed by North America (n¼ 25), Asia (n¼ 13), and Australia (n¼ 1).
None of the studies was done in Africa. Details of the adverse health outcomes on the
offspring exposed to EDCs in utero or during lactation are described below. The
adverse health effects are summarized in Table 5 (animal studies) and Table 6
(human studies).

3.2 Animal Experimental Studies

3.2.1 Exposure to Nonpersistent Chemicals in Rodents

Phenols (BPA, NP, and OP)

Phenols are environmental chemical contaminants which belong to category 1 of
EDCs (clear evidence of endocrine-disrupting activity) (Errico et al. 2017). They
interfere with endocrine system functions by binding to estrogen receptors (ERs) and
act competitively toward natural hormones. Several studies have reported potential
adverse health effects on the exposed offspring.

Reproductive Effects

Rodent experimental studies have been performed on the effects of perinatal expo-
sure to BPA on mammary gland showing the development of proliferative lesions in
the glands of female rat offspring. Most of the reported effects occur at the lowest
doses investigated. At PND90, mammary gland adenocarcinomas were reported in
female rat offspring exposed to 250 μg/kg-BW/day which is an environmentally
relevant level (Acevedo et al. 2013). Intraductal hyperplasia was also reported in
female adult offspring (PND400) exposed perinatally to a tenfold lower dose (25 μg/
kg-BW/day) (Mandrup et al. 2016). These studies suggest that low-dose exposure to
BPA can affect mammary gland development in female rat offspring. For the
NP-exposed female pups, advanced lobular development of their mammary glands
was observed on PND22 in a group exposed to high dose (100 mg/kg-BW/day), and
not low dose (Moon et al. 2007). Noteworthy, these three studies have a big variation
in the exposure period. In the first study, dams were exposed once at GD18, while
the duration of exposure in the second study was long, starting at GD7 to PND22
(birthday excluded). The NP-exposed dams were exposed during the late stages of
pregnancy only (GD15–19). These variations might have significantly affected
outcomes.
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Table 5 Summary of adverse health effects from animal experimental studies

EDCs Adverse health effects

Reproductive effects

BPA • ♀ induced malignant mammary gland tumors (Acevedo et al. 2013)
• ♀ induces a delay in the functional differentiation of the mammary gland in F1
and " body weight gain of F2 (Altamirano et al. 2015)
• Early vaginal opening (Honma et al. 2002)
• ♂ impaired sexual performance (Jones et al. 2011)
• ♀" mammary development (Mandrup et al. 2016)
•♀" in postimplantation loss and♂# sperm count and motility in the F1–F3 (Salian
et al. 2009)
• Vaginal morphological changes at postpubertal (Schönfelder et al. 2002)

OP •♀ disrupted vaginal cyclicity,♂# seminiferous tubule diameter and testis (Pocock
et al. 2002)

NP • " mammary development (♀) (Moon et al. 2007)

DEHP • ♂# fertility prematurely (Barakat et al. 2017)
• ♂" nipple retention, # sperm motility, and " sperm count (Moore et al. 2001)
• ♂ disruption of testicular function in F1–F4 (Doyle et al. 2013)
• ♂# AGD (Mylchreest et al. 2000)
• ♀# oocyte quality and embryonic developmental competence in F1–F3 (Pocar
et al. 2017)
• ♂# in daily sperm production and " serum testosterone concentration (Andrade
et al. 2006)

DINP • ♂" nipple retention, # sperm motility, and " sperm count (Boberg et al. 2011)

DBP • Deterioration in sperm quality parameters at 50 mg/kg (Ahmad et al. 2014)
• ♂# AGD, ♂" incidence of hypospadias and cryptorchidism (Kim et al. 2010)
• ♂# penile length and " incidence of severe hypospadias (Li et al. 2013a)
• ♂# AGD (Ma et al. 2017)

BBP • Deterioration in sperm quality parameters at 100 mg/kg (Ahmad et al. 2014)
• ♂# AGD, undescended testes (Ema and Miyawaki 2002)
• ♂# AGD (DeBartolo et al. 2016)

MBuP • ♂# AGD, undescended testes (Ema and Miyawaki 2001)

TCDD • ♀ impaired mammary gland maturation (Fenton et al. 2002)
• ♂# AGD and testis weights (Jin et al. 2008)
• Early vaginal opening and first estrus (Kakeyama et al. 2008)
• " incidence of mammary tumor in HFD-fed mice (La Merrill et al. 2010)
• ♂# urogenital complex, ventral prostate weights, and AGD (Ohsako et al. 2002)
• ♂# sperm quality and fertility in F1–F3 (Sanabria et al. 2016)
• ♀# fertility and "incidence of PTB in F1–F4 (Bruner-Tran and Osteen 2011)

Vinclozolin • ♂# spermatogenetic capacity of the adult in F1–F4 (Anway et al. 2006)
• ♂ testicular maldescent and # AGI (Shono et al. 2004)

PCBs • # sperm-fertilizing ability in vitro at 16 and 45 weeks of age (Fielden et al. 2001)
• # sperm and spermatid numbers and impairment of daily sperm production
(Kuriyama and Chahoud 2004)
• Altered uterine and ovarian weight in F2 adult (Steinberg et al. 2008)
• ♀ earlier puberty onset, ♂ delayed testicular descent (Colciago et al. 2009)

PBDEs • ♂ #AGD, delay in preputial separation, and #mean testosterone concentration
(Kodavanti et al. 2010)
• ♂# circulating sex steroids in male offspring at weaning and in adulthood, #AGD
(Lilienthal et al. 2006)
• ♀ delayed puberty onset (Lilienthal et al. 2006)

(continued)
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Table 5 (continued)

EDCs Adverse health effects

TBT • ♀ early puberty and impaired estrous cyclicity (Si et al. 2012a)
• #sperm counts and motility (Si et al. 2013)

Neuro- and behavioral effects

BPA • Enlarged anteroventral periventricular nucleus (Arambula et al. 2017)
• ♀" sweet preference in F1 and F2 (Boudalia et al. 2014)
• Disruption of global metabolism (Cabaton et al. 2013)
• " adiposity and systolic blood pressure and impaired glucose homeostasis
(Cagampang et al. 2012)
• ♀ masculinization of female behavior, ♂ an intensification of male behavior
(Dessì-Fulgheri et al. 2002)
• ♀ masculinization of spatial learning and # sperm count (Hass et al. 2016)
• Neurocognitive deficit in F2 (Jang et al. 2012)
• ♂ disrupted normal spatial learning and exploratory behaviors and induced
anxiety-like behaviors (Jašarević et al. 2013)

OP • ♂ " sexual arousal, ♀" sexual motivation and motor activity (Pocock et al. 2002)

DEHP • " anxious behavior and impaired recognition memory (Barakat et al. 2018)
• Impaired locomotion activity and spatial memory (Dai et al. 2015)
• " anxiety- and depressive-like behaviors in puberty and adulthood (Xu et al. 2015)
• Induced neurotoxicity in immature offspring (Li et al. 2013b)

TCDD • ♂ hyperactivity and # duration of proximity and social contact (Anh et al. 2013)
• Behavioral inflexibility, compulsive repetitive behavior, and # competitive dom-
inance (Endo et al. 2012)
• Induced hyperactive behavior (Hojo et al. 2008)
• ♂ demasculinization (Ikeda et al. 2005)
• Perturbed paired-associate learning (Kakeyama et al. 2014)
• ♂ induced hyperactivity and socioemotional deficits (Nguyen et al. 2013)
• ♂ delayed fetal brain growth and neurodevelopment in early stage (Nishijo et al.
2007)

PCBs • ♂ anxiety-like behaviors (Orito et al. 2007; Gillette et al. 2017)
• ♂ " sweet preference in adults (Kaya et al. 2002)
• # walking speed in the open-field test and a prolonged time to reach the platform
in the water maze test (Sugawara et al. 2006)

PBDEs • ♂" sweet preference in adults (Lilienthal et al. 2006)

TBT • Delay in cliff-drop aversion (TBT) (Si et al. 2012b)

Growth and development effects

BPA • ♀ elongated femur, ♂" cortical thickness (Lejonklou et al. 2016)
• ♂# femurs length (Lind et al. 2017)
• Growth retardation (Takagi et al. 2004.)

NP • Growth retardation (Takagi et al. 2004)

TBT • Suppressed the growth and delayed eye opening (Makita et al. 2004)

TPT • Delayed eye opening and physical maturation (Grote et al. 2007)

Metabolic effects

BPA • ♂# glucose tolerance, " insulin resistance (Alonso-Magdalena et al. 2010; Angle
et al. 2013)
• ♀ accelerated the insulitis and spontaneous diabetes type 1 development (Bodin
et al. 2014)
• Induce changes in fatty acid metabolism (Dunder et al. 2018)

(continued)
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The reproductive effects following perinatal exposure to BPA are sex-dependent
and are dominant in female offspring. Interestingly, while studies have reported
adverse reproductive effects in the exposed female offspring, similar studies did not
record any effect in the male. Authors have reported early vaginal opening in
BPA-exposed offspring (Honma et al. 2002). But early vaginal opening did not
have a significant impact on general female pubertal development and reproductive
functions (Kwon et al. 2000). However, there are reports of vaginal morphological
changes at a postpubertal age in BPA-exposed and disrupted vaginal cyclicity in
OP-exposed offspring (Pocock et al. 2002; Schönfelder et al. 2002). Several studies
did not record significant reproductive effects in the first-generation offspring
exposed to phenolic chemicals (Kobayashi et al. 2002; Ichihara et al. 2003; Kimura
et al. 2006; Ryan et al. 2010; LaRocca et al. 2011; Spörndly-Nees et al. 2018).
However, a lack of adverse effects in the first generation does not guarantee the same
results in subsequent generations.

Table 5 (continued)

EDCs Adverse health effects

• ♂ impaired glucose tolerance at 6 weeks and 6 months (Galyon et al. 2017)
• Glucose intolerance and insulin resistance in F2 (Li et al. 2014)
• Hyperglycemia with insulin resistance, " oxidative stress, and # adiponectin
production (Song et al. 2014)
• Impaired body weight and body composition (Rubin et al. 2016)

NP • ♂ induced glucose metabolism disorder (Yang et al. 2017)

DEHP • " serum leptin, insulin, lipid, and fasting glucose concentrations (Gu et al. 2016)
• " blood pressure (Lee et al. 2016)
• ♀" blood glucose, # serum insulin and impaired glucose tolerance, and insulin
secretion (Lin et al. 2011)
• # systolic and diastolic systemic arterial pressures (Martinez-Arguelles et al.
2013)

TCDD • " susceptibility to renal fibrosis and hypertension in adulthood (Aragon et al.
2008)

Vinclozolin • Anemia late in pregnancy and glomerular abnormalities in F1–F3 (Nilsson et al.
2008)

PCBs • Altered hormones and body weight in F2 and F3 (Mennigen et al. 2018)

DDT • ♀# core body temperature, impaired cold tolerance, #energy expenditure, " body
fat (La et al. 2014)

TBT • Increased fat mass when switched to a higher fat diet and impaired fat mobiliza-
tion during fasting (Chamorro-Garcia et al. 2012)
• Increased white adipose tissue fat depots and induced a phenotype resembling
nonalcoholic fatty liver disease (Chamorro-García et al. 2013)

Immunologic effects

BPA • ♂ induced islet inflammation in F1 and F2 (Bansal et al. 2017)
• ♀ intestinal barrier dysfunctions in adulthood (Braniste et al. 2010)

TCDD • " incidence of airway obstruction (Hamm et al. 2000)

AGD anogenital distance, AGI anogenital index, HFD high-fat diet, PTB preterm birth, DDT
dichlorodiphenyltrichloroethane, TBT tributyltin, TPT triphenyltin, MBuP monobutyl phthalate,
DBP di-n-butyl phthalate, BBP benzyl butyl phthalate, PCBs polychlorobiphenyls, TCDD 2,3,7,8-
tetrachlorodibenzo-p-dioxin, PBDEs polybrominated diphenyl ethers
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Table 6 Summary of adverse health effects from human epidemiological studies

EDCs Adverse health effects

Reproductive effects

BPA • ♂ # AGD at 12 months (Sun et al. 2018)

DEHP
metabolites

• ♂ # AGI and testicular descent impaired (Swan et al. 2005)

Organochlorides • " risk of congenital cryptorchidism (Damgaard et al. 2006; Brucker-Davis
et al. 2008)

PCBs • ♀# fecundability (Han et al. 2016)

PBDEs • ♂ # AGI (García-Villarino et al. 2018)
• " risk of congenital cryptorchidism (Main et al. 2007)

Neuro- and behavioral effects

BPA • ♀Externalizing behaviors at 2 years (Braun et al. 2009)
• Social impairment (Lim et al. 2017)

DDE • " risk of autism (Brown et al. 2018)
• " risk of neural tube defects (Kalra et al. 2016)

PCBs • # reaction times and scores on the Tower of London (Vreugdenhil et al.
2004)
• Lower psychomotor scores at 2 years (Gascon et al. 2013)

Dioxins •♂ # expressive communication, composite, and gross motor scores (Tai et al.
2016)

Growth and development

BPA • #birth weight and head circumference (Mustieles et al. 2018)
• " waist circumference and BMI (Valvi et al. 2013; Vafeiadi et al. 2016)

NP • "risk of low neonatal weight (Chang et al. 2013)

MCNP • " femoral length and child height (Botton et al. 2016)

DEHP and MEP • ♂ #language scores (Olesen et al. 2018)

BBP and DEHP • " incidence of croup in infants up to 12 months (Shu et al. 2018)

DEHP
metabolites

• "birth weight (Zhu et al. 2018)

PBDEs • # cognitive abilities up to 8 years (Braun et al. 2017)

DDE • ♂" height at puberty (Gladen et al. 2000)

PFASs • # vocabulary score at 15 months and language score at 38 months (Jeddy
et al. 2017)
• # bone size and mass (Jeddy et al. 2018)

PCBs • ♀" risk of language delay at age 3 years (Caspersen et al. 2016)

Dioxins • ♀" early infant growth and BMI in school-age girls (Iszatt et al. 2016)

PBB • " odds of a below-median Apgar score at 1 and 5 min (Terrell et al. 2015)
• ♀ earlier age at menarche and earlier pubic hair stage (Blanck et al. 2000)

Immunologic effects

PCB and HCB • " risk of asthma at 20 years (Hansen et al. 2014)

PFASs • ♀" risk of childhood atopic dermatitis in first 24 months of life (Chen et al.
2018)

Dioxins • " frequency of wheezing up to 7 years (Miyashita et al. 2018)
• " risk of otitis media at 18 months (Miyashita et al. 2011)

Metabolic effects

(continued)
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Few multigeneration studies have been identified for phenols. First-generation
offspring exposed to low BPA dose (0.6 μg/kg-BW/day) have been reported with a
delay in the functional differentiation of the mammary gland during secretory
activation. The consequence of this effect was the impairment of F1 milk lipid
content and fatty acid composition which resulted in an increased body weight
gain of F2 suckling rats (Altamirano et al. 2015). Meanwhile, developmental
exposure of F0 to NP (below NOEL) in drinking water affected neonatal birth
weight in the F1 pups. However, the F3 pups recovered to normal (F0) state
(Chang et al. 2014). This signifies that if preventive measures are employed in the
subsequent generation, no inherited effects will be observed. This is contrary to
offspring exposed to 1.2 and 2.4 μg/kg BW/day of BPA. In this study, the offspring
presented with a significant increase in postimplantation loss and a decrease in litter
size, sperm count, and sperm motility in the F1. These effects were amplified in the
F2 and F3 generations (Salian et al. 2009).

Effects on the Metabolic System

The effects of perinatal exposure to BPA in rodents are sex-specific and in most
cases are influenced by the precise window of BPA exposure. Male offspring
exposed to BPA during the period of differentiation of preadipocytes (GD6–16)
have been reported with impaired glucose tolerance, insulin resistance, and altered
blood parameters at doses even below “no observed adverse effect level” (NOAEL)
(Alonso-Magdalena et al. 2010; Cagampang et al. 2012; Angle et al. 2013; Galyon
et al. 2017). At PND100, male offspring exposed in utero to BPA in drinking water
developed hyperglycemia with insulin resistance, increased oxidative stress, and
decreased adiponectin production (Song et al. 2014). In addition to BPA, NP
perinatal exposure was also reported to induce glucose metabolism disorder in
male rat offspring (Yang et al. 2017).

Few studies have documented an impairment in the metabolic functions of female
offspring exposed to phenols. During adulthood, the offspring presented insulitis and
spontaneous diabetes type 1 after in utero and breast milk BPA exposure (Bodin

Table 6 (continued)

EDCs Adverse health effects

Organochlorides • Induces clinical porphyria cutanea tarda (Jarrell et al. 2002)
• ♀" risk of obesity (Smink et al. 2008; Valvi et al. 2012; Vafeiadi et al. 2015)
• Rapid weight gain in the first 6 months (Mendez et al. 2011)

PFASs • " risk of obesity (Lauritzen et al. 2018)
• # adiposity (Starling et al. 2017)

AGD anogenital distance, AGI anogenital index, MEP monoethyl phthalate, MBP mono-n-butyl
phthalate, MBzP monobenzyl phthalate, MiBP monoisobutyl phthalate, POPs persistent organic
pollutants, MCNP monocarboxyisononyl phthalate, BBP benzyl butyl phthalate, PBB
polybrominated biphenyls, HCB hexachlorobenzene, PFASs perfluoroalkyl substances, PBDEs
polybrominated diphenyl ethers, PCBs polychlorobiphenyls, BPA bisphenol A
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et al. 2014). Similarly, the increase in body weight was observed at a very low BPA
dose (0.5 μg/kg-BW/day) in adult female offspring (Dunder et al. 2018) and at
environmental relevant dose in both sexes (Rubin et al. 2016). There is some
evidence of the multigenerational transfer of metabolic effects resulting from expo-
sure to phenolic chemicals. Second-generation offspring (F2) of pups exposed to
BPA from conception day to weaning also had glucose intolerance and insulin
resistance (Li et al. 2014). Surprisingly, in a later study, compromised maternal
metabolic milieu was reported in both F1 and F2. But the effects observed in F1
cannot account for all of the observed multigenerational phenotypes (Susiarjo et al.
2015).

Generally, animal studies have made it clear that perinatal exposure to phenolic
chemicals, particularly BPA, impairs metabolic processes that are precursors of
overweight, obesity, altered glucose/insulin homeostasis, diabetes, and cardiovascu-
lar diseases in adulthood. The effects are more expressed in male offspring.

Neurobehavioral Effects

The endocrine and nervous systems are closely connected; therefore abnormal
alterations in the functions of one system automatically link to the other. The brain
is highly vulnerable to chemical exposures, and changes in its functions can cause
widespread disruption in hormone receptors and nerve signals, thus affecting infant
brain development (Xu et al. 2010). The effects from phenolic chemicals exposure
can occur even at doses far below the NOAEL. For example, at as low as
0.025 μg BPA/kg-BW/day, impairment of brain function was reported in the
PND2 and 21 exposed offspring (Cabaton et al. 2013). In addition, in utero exposure
to 2.5 mg BPA/kg-BW/day was associated with an enlarged anteroventral
periventricular nucleus (AVPV) of the offspring’s brain (Arambula et al. 2017).
Surprisingly, dietary exposures of up to 150 mg BPA/kg-BW/day throughout
pregnancy and lactation did not result in neurotoxic action in rat offspring (Stump
et al. 2010). This might be resulting from errors in calculating target exposure doses
from dietary exposure.

Phenols also exert sex-specific behavior alterations in exposed offspring. At
low dose (40 μg/kg/day), BPA-exposed offspring presented masculinization of
female behavior, but at a high dose (400 μg/kg/day), no effects were observed in
the females. Rather, there was an intensification of male behavior in males
(Dessì-Fulgheri et al. 2002). A similar effect was observed in offspring exposed to
a dose range of 25–50 mg/kg-BW/day who presented with masculinization of spatial
learning in females (Hass et al. 2016). In a study using outbred deer mice, F1
exposed to 50 μg, 5 mg, and 50 mg/kg-BW/day had disrupted spatial learning and
exploratory behaviors and produced anxiety-like effects in male but not in female
mice (Jašarević et al. 2013). The effects were most dominant in the mid and upper
dose. Temporary activation of aggressive behavior in mice at 8 weeks of age were
also observed in BPA-exposed offspring (Kawai et al. 2003). Surprisingly, SD rat
offspring exposed maternally to 50 and 500 μg/kg/day from 10th day of gestation to
14th day of lactation observed no significant behavioral alterations in all the tests
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(Kuwahara et al. 2013). The pattern of effects observed in these studies indicates that
the effect of BPA on behavior patterns of offspring is not only sex-specific but is also
non-monotonic in terms of dose response.

In terms of neurodevelopmental and behavioral effects across generations, we
managed to acquire two studies only. The first study observed adverse effects on
both F1 and F2 generations (Boudalia et al. 2014). Similarly, the neurocognitive
deficit in terms of memory retention was observed in F2 of C57BL/6 mice (Jang
et al. 2012). Although there is an inadequate amount of evidence, we cannot rule out
the multigenerational transfer of effects as both studies reported significant effects.

Other Effects

Very few studies have explored the role of maternal BPA on the impairment of the
immune system and the offspring’s growth and development. Still, the outcomes
suggest positive associations. Offspring exposed to BPA, as low as 5 mg/kg/day,
suffered intestinal barrier dysfunctions in adulthood. The effects were presented by a
decrease in colonic paracellular permeability in the female offspring (Braniste et al.
2010). There is also evidence of immunotoxic effects in the F2 generation without
additional exposure to F1. BPA-induced islets inflammation observed in the F1
exposed offspring persisted to the F2 generation (Bansal et al. 2017).

Little evidence is available linking perinatal BPA exposure and offspring’s
physical growth impairment. Both low dose (25 μg BPA/kg-BW/day) and high
dose (5,000 μg BPA/kg-BW/day) elicited femur elongation, particularly in females.
In male offspring, the increased cortical thickness was only observed in the small
dose group (Lejonklou et al. 2016). This adds up to effects that skew toward
low-dose exposures.

Phthalates

Phthalates are a class of nonpersistent chemical compounds that are used in a
multitude of consumer products; and exposure to them occurs through ingestion,
dermal, or inhalation. Although they have short biological half-lives (<24 h),
repeated, episodic, and long-term exposures to them occur (Hipwell et al. 2019).
Phthalates can cross the placenta to induce developmental defects in animals and
may exert similar effects in humans (Gray et al. 2000). The effects of perinatal
exposure to phthalates in rodents are summarized below.

Reproductive Effects

Findings from a meta-analysis of 19 experimental animal studies have shown that
exposure to antiandrogenic DEHP is associated with reduced anogenital distance
(AGD) with a dose-response gradient (Dorman et al. 2018). Phthalates are also
responsible for decreasing male fertility (Barakat et al. 2017) by deteriorating sperm
quality (Ahmad et al. 2014) and sperm count (Boberg et al. 2011). Effects related to
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disruption of testicular function have been reported to persist up to the F4 offspring
(Doyle et al. 2013). Reduction of sperm count can be up to a rate of 19–25%
reduction in daily sperm production which is above the recommended cutoff point
of 20% using rat animal models (Andrade et al. 2006). Some female fertility-related
effects, which are not limited to the F1 offspring, have been reported. DEHP-
exposed female offspring were recorded with reduced oocyte quality and embryonic
developmental competence in F1 and were transferred up to the F3 offspring (Pocar
et al. 2017).

Studies have also demonstrated an increase in the incidence of other reproductive
tract malformations particularly inguinal cryptorchidism, undescended testes, and
hypospadias (Ema and Miyawaki 2001, 2002; Moore et al. 2001; Kim et al. 2010;
Li et al. 2013a). Both BBP and MBuP have been identified to be associated
with undescended testes in male offspring in a dose-dependent manner (Ema and
Miyawaki 2001, 2002; Moore et al. 2001). The incidences of hypospadias and
cryptorchidism have been reported to increase in the higher doses as it was recorded
in DBP (700 mg/kg-BW/day)-treated group (Kim et al. 2010) as well as DEHP
(1,000 mg/kg-BW/day)-treated group (Li et al. 2013a). At low doses of DBP
(100 mg/kg-BW/day) and DEHP (3 and 30 mg/kg-BW/day), no significant repro-
ductive changes were observed in female and male rat offspring, respectively
(Guerra et al. 2010; Carbone et al. 2012).

Metabolic Effects

Phthalates are considered as potential obesogens because of their ability to promote
the development of obesity through interference with critical pathways associated
with energy balance, adipogenesis, and lipid metabolism. They are associated with
impaired glucose tolerance and insulin secretion in female offspring (Lin et al.
2011). The stated effects are expressed by elevated serum leptin, insulin, lipid, and
fasting glucose concentrations (Gu et al. 2016). Some cardiometabolic effects have
also been observed in the exposed offspring, but the results are contradictory. Eight-
week-old offspring exposed to 30 mg/kg-BW/day DEHP had an increased blood
pressure (Lee et al. 2016). Meanwhile, high-dose exposure (300 mg/kg-BW/day)
resulted in a reduced systolic and diastolic systemic arterial pressures in 28-week-old
offspring (Martinez-Arguelles et al. 2013). The differences might be attributed to
methodological differences between the two studies. Differences in rodent species
(C57BL/6 mice vs SD rats), exposure duration (4 weeks before mating to weaning
versus GD14–birth), dose, and outcome measure period (young vs old) might have
caused the variations.

Neurobehavioral Effects

The antiandrogenic nature of DEHP is also linked to impairment of neuronal
development in exposed offspring resulting in abnormal neurobehavior. Under
similar experimental models, exposure of ICR mice offspring to DEHP resulted in
an impairment in their pubertal and adulthood behaviors (Xu et al. 2015; Dai et al.
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2015). At higher DEHP exposure doses, CD-1 mice offspring had elevated anxious
behavior and impaired recognition memory in adulthood (Barakat et al. 2018). DBP
is also involved in the induction of neurotoxic effects in immature offspring, but it
has no influence on mature offspring (Li et al. 2013b). The mechanism behind the
ability of DEHP to elicit neurobehavioral effects in perinatally exposed offspring is
still under debate.

3.2.2 Exposure to Persistent Chemicals in Rodents

There are about 30 chemicals listed in the Stockholm Convention declared for
banning in 2001 because of their resistance to degradation and persistence in the
environment (UNEP 2010). These chemicals, despite the international intent for
banning them, still exist in the food chain of animals and humans. Both humans and
animals are in a constant exposure to cocktails of persistent chemicals. Rodent
studies have been conducted to simulate maternal human exposures to persistent
and nonpersistent chemicals and to assess their consequential outcomes in the
subsequent generations of offspring. Unfortunately, most of these studies have
focused on nonpersistent chemicals, while very few have focused on persistent
chemicals.

Persistent Organochloride Compounds

PCBs are the most explored among organochloride compounds. Maybe it was
because of their extensive use in various industrial and commercial applications
before they were banned. Studies have provided evidence of impairment in the
offspring’s reproductive physiology, fertility, and fecundity. Male offspring fertility
has been reported to be compromised after in utero exposure to PCBs, and the effects
are manifested by impairment of daily sperm production (Kuriyama and Chahoud
2004). Loss of sperm’s fertilizing ability (in vitro) at 16- and 45-week-old C57BL6
mice offspring was also reported after PCB exposure (Fielden et al. 2001). No effects
were observed on the AGD among the exposed male offspring (Fielden et al. 2001;
Kobayashi et al. 2009). Similar effects were observed in female offspring exposed
to PCB (A1221), and more effects were recorded in the F2 generation compared
to the F1 generation (Steinberg et al. 2008). This might be an indication of
bioaccumulation of chemical levels across generations.

Perinatal exposure to organochloride compounds has resulted in neurobehavioral
effects in the exposed rodent’s offspring. To mimic the cocktail nature of persistent
chemicals in the environment, SD rat offspring were exposed to a mixture of
14 PCBs and 11 OCPs in the whole period of gestation and lactation, and
neurobehavioral endpoints were measured. Several neurobehavioral effects were
observed in a dose-dependent manner (Bowers et al. 2004). Exposure to PCBs is
also associated with anxiety-like behaviors in male offspring (Orito et al. 2007;
Gillette et al. 2017) and feminization of sweet preference (Kaya et al. 2002).
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Other adverse health effects associated with early-life exposure to organochloride
compounds include metabolic, immune, and growth disturbances. Female offspring
exposed to DDT exhibited a reduced core body temperature, an impaired cold
tolerance, a decreased energy expenditure, and a transient increase in early-life
body fat (La Merrill et al. 2014). On the other hand, offspring exposed to PCB
(A1221) does not only disrupt growth and serum hormones in the F1, but the effects
cut across to the F2 and F3 generations (Mennigen et al. 2018). Effects on growth
alter age at puberty onset as well. Exposed rat offspring expressed early puberty
onset in female and delayed testicular descent in male (Colciago et al. 2009).

Dioxins

In the offspring’s reproductive development, TCDD exposure is associated with
reduced AGD in the male during development (GD15 and 18) (Ohsako et al. 2002)
and later in life (PND30 and 60) (Jin et al. 2008). In the female offspring, exposures
are associated with impairment in the maturation of mammary glands (Fenton et al.
2002), acceleration of mammary tumor incidence in offspring fed with a high-fat diet
(La Merrill et al. 2010), and earlier vaginal opening and first estrus appearance.
These were observed 4–7 days earlier than normal (Kakeyama et al. 2008). At low
(0.1–1 μg/kg-BW/day) and high (10 μg/kg-BW/day) TCDD doses administered by
oral gavage on GD15, both male and female offspring had impaired fertility. These
effects were transferred to the next generations, up to the F3 (male) and F4 (female)
generations (Bruner-Tran and Osteen 2011; Sanabria et al. 2016).

With the exception of one study (Hojo et al. 2008), all studies on neurobehavioral
effects of TCDD exposure have been done in male offspring. Exposed pups were
subjected to various behavior and learning tests. Hyperactivity behavior (Hojo et al.
2008; Anh et al. 2013; Nguyen et al. 2013), compulsive repetitive behavior (Endo
et al. 2012), and paired social learning (Kakeyama et al. 2014) were perturbed after
in utero exposure. The effects might be associated with the reported delayed fetal
growth and neurodevelopment in early stages of development (PND4–14) (Nishijo
et al. 2007).

Other Persistent Chemicals

There are other persistent chemicals that render adverse health effects after devel-
opmental exposure. All of them present similar kind of effects in the exposed
offspring; and these effects cut across reproductive, growth, metabolic, and neuro-
behavioral development. Flame retardants (PBDEs), antiandrogenic dicarboximide
fungicide (vinclozolin, VZ), estrogenic synthetic pyrethroid insecticide (fenvalerate,
FV), and organotin compounds (TBTCl and TPTCl) are all linked to adverse
reproductive and other health outcomes in the exposed offspring. PBDEs, TBTCl,
and VZ are linked with impairment of male reproductive physiology. PBDEs and
VZ have been reported to reduce AGD and impair spermatogenesis in male offspring
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(Shono et al. 2004; Lilienthal et al. 2006; Kodavanti et al. 2010). PBDEs are also
associated with a delay in preputial separation, an effect that was not observed in the
FV-exposed offspring (Nassr et al. 2010; Kodavanti et al. 2010).

SD rat male offspring exposed to 100 mg/kg-BW/day VZ from embryonic
(E) days 8 to 14 presented with reduced spermatogenetic capacity in four generations
(F1–F4) indicating impaired fertility (Anway et al. 2006). Meanwhile, when the
same dose was given to Wistar rats from GD6 to 15, no effects were observed in
male offspring sexual development in all the F1–F4 generations (Schneider et al.
2008). This might be due to the differences in the exposure period as a window of
sensitivity for antiandrogenic effects is normally from days 16 to 20 post coitus
(Schneider et al. 2008).

Four studies from two authors have explored the effects associated with exposure
to organotin compound (TBTCl). Wistar rats exposed to 25 ppm TBT (approxi-
mately 2 mg/kg) in the diet in the whole period of gestation and lactation resulted in
growth suppression and delayed eye opening in their offspring (Makita et al. 2004).
Meanwhile, oral gavage of Chinese Kun Ming mice with low doses of 1, 10, and
100 μg TBTCl/kg-BW/day from GD6 to PND22 resulted in various dose-specific
effects. 10 and 100 μg/kg exposed offspring expressed a delay in cliff-drop aversion
response in the behavior test and altered patterns of estrous cyclicity in adulthood
(Si et al. 2012b). Meanwhile, at 100 μg/kg TBTCl retarded the testes descent of male
offspring (Si et al. 2012b). Similarly, exposed offspring presented early puberty
and impaired estrous cyclicity in female (Si et al. 2012a) and decreased sperm counts
and motility in male (Si et al. 2013). These findings suggest that reproductive and
neurobehavioral toxicity might be good markers of low-dose TBTCl exposure.

Chamorro-Garcia and colleagues had a series of animal experiments to test
whether prenatal TBT exposure elicit obesogenic effects that can be transferred to
subsequent generations without additional exposure. After a high-fat diet challenge,
the F4 offspring presented an increased fat mass in adulthood. Additionally, during
the fasting period, fat mobilization was significantly impaired (Chamorro-Garcia
et al. 2012). In another experiment, TBT induced a phenotype resembling
nonalcoholic fatty liver disease in the F3 of the in utero-exposed F1. They also
observed an increase in the white adipose tissue fat depots (Chamorro-García et al.
2013). Altogether, these results suggest that early-life exposure to obesogens might
have long-lasting effects even without additional environmental exposures.

3.3 Human Epidemiological Studies

3.3.1 Exposure to Nonpersistent Chemicals

Studies have been identified focusing on in utero and/or lactational exposure to
phenols (BPA and NP) and phthalates. All studies used maternal urine samples
because both phenols and phthalates have short half-lives. Urine samples were taken
at different pregnancy durations ranging from the first trimester to the day of
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delivery. To get a better association between maternal chemical levels in urine and
adverse health effects on the exposed offspring, most of the articles in this review
used multiple samples. However, some studies used only one sample to establish the
association between phthalates and BPA and birth weight indices and children
growth, respectively (Swan et al. 2005; Vafeiadi et al. 2016). With such studies,
the strength of the association is questionable.

Since AGD is associated with multiple semen parameters, it is considered to be
the most sensitive marker in predicting the effect of antiandrogenic EDCs in human
populations (Mendiola et al. 2011). AGD has been reported to be affected by
exposure to EDCs during the masculinization programming window (Scott et al.
2008). Prenatal androgen exposure or hyper-androgenic environment have the
potential to modify female offspring’s reproductive tract during in utero develop-
ment, resulting in AGD impairment (Mira-Escolano et al. 2014). A recent systematic
review and meta-analysis study reported an association between decreased AGD and
maternal urine DEHP metabolites concentrations (Dorman et al. 2018). To support
these findings, low levels did not have any significant effect on AGD but had
impaired testicular descent (Jensen et al. 2015). A similar association was observed
in 12 months infant boys born to mothers with higher urine concentration of BPA
(Sun et al. 2018).

Although the amount of evidence is limited, researchers established the impact of
perinatal BPA on impairment of children’s neurobehavioral development. Until
2009, there were no studies that had examined the association between BPA and
neurobehavioral development in children. The first study to establish association was
done on 249 USA mothers and their children which reported externalizing behaviors
in 2-year-old girls (Braun et al. 2009). Later, in 2015, social impairments in 4 years
children were reported about Korean children who were produced by mothers
with high BPA urine concentration (Lim et al. 2017). Recently, delayed neuro-
development with increasing urinary phthalate metabolites and BPA has been
reported in 13–24 months toddlers in the Korean (CHECK) cohort (Kim et al.
2018). However, the available evidence is not enough to confirm the direct cause-
effect relationship. Further studies are required to evaluate the effects of perinatal
exposure to nonpersistent pollutants on children’s behavior and their associated
underlying mechanisms.

Sixty-four percent (9/14) of the studies on nonpersistent chemicals have focused
on the impacts of high levels of phthalates and phenols on children’s growth and
development from gestation to infancy. Increased fetal height, during the third
trimester, has been observed to be positively associated with exposure to DEHP
(Botton et al. 2016). Contrary to these findings, a USA-based cohort study found no
association between phthalate metabolites and infant length (Shoaff et al. 2016).
These different results might be attributed to the number of urine samples from each
woman. While Botton and colleagues used one spot urine sample at 26 mean
gestational weeks from each study subject, Shoaff and his colleagues used two
spot urine samples at approximately 16 and 26 weeks of gestation.

Impacts of high maternal concentrations of phenols and phthalates on birth
weight have been reported. DEHP metabolites are positively associated with birth
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weight and birth weight z-scores (Zhu et al. 2018). Meanwhile, BPA in utero
exposures is associated with reduced birth weight and head circumference
(Mustieles et al. 2018). Similar impacts were observed in neonates exposed to NP,
where they presented with an increased risk of low neonatal weight (Chang et al.
2013). However, the effects of phenols seem to be short-lived because, at 4 years,
children were reported with increased waist circumference (WC) and BMI (Valvi
et al. 2013; Vafeiadi et al. 2016). Furthermore, phthalates have been implicated in
other children’s development indices. Boys who are between 20 and 36 months from
high prenatal phthalate exposures had lower scores in language development
(Olesen et al. 2018). In addition, benzyl butyl phthalate (BBP) and DEHP are
associated with maternal reports of croup in infants up to 12 months of age
(Shu et al. 2018).

3.3.2 Exposure to Persistent Chemicals

In human, most of the studies have addressed the effects of persistent chemicals on
perinatal development. This review has focused on organochloride compounds
(PCBs, DDT, DDE, and HCB), perfluoroalkyl substances (PFASs), dioxins and
dioxin-like compounds, and polybrominated compounds (PBDEs and PBB).

Effects on Offspring’s Growth and Neurodevelopment

Studies have examined the impact of early-life exposure to persistent chemicals on
children’s body and intellectual growth. Transplacental exposure to DDE has been
associated with an increased height of boys at puberty, an effect which was not seen
in lactationally exposed children (Gladen et al. 2000). This effect was not observed
at infancy (Pan et al. 2010) or during the first year of life (Garced et al. 2012).
Adolescent girls who were prenatally exposed to PFAS had reduced bone mass and
size (Jeddy et al. 2018).

Studies have also examined the impacts of these chemicals on children’s
neurodevelopment. At birth, PBB-exposed infants are reported to have an increased
odds of a below-median Apgar score at 1 and 5 min (Terrell et al. 2015). Later in life,
effects are still being seen. High maternal serum levels of PBDE-47 at 16 weeks of
gestation was associated with reduced cognitive abilities in 8 years children (Braun
et al. 2017).

Young girls born to adolescent mothers with high PFAS serum levels had a lower
vocabulary score at 15 months and lower language score at 38 months (Jeddy et al.
2017). This defect seems to disappear as the girls develop because there seems not to
be any association between intelligent quotient (IQ) and PFAS exposure at 5 years
(Liew et al. 2018).

Tai and colleagues observed that dioxins from breast milk, collected a month after
birth, are associated with a decrease in expressive communication, composite, and
gross motor scores in male offspring (Tai et al. 2016). This effect was not observed
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in children exposed to DDE and DDT at 7 years of age (Jusko et al. 2012). However,
worse psychomotor scores were recorded in 2 years children exposed prenatally to
PCB-153 (Gascon et al. 2013). The sample size used in these studies to assess
neurodevelopmental outcome was very small (range 217–1,175) with much diver-
sity in socioeconomics, customs, cultures, and languages among study subjects. It is,
therefore, difficult to generalize the findings. Studies with larger sample sizes are
needed to confirm these neurodevelopmental outcomes.

Persistent chemicals are also attributed to early puberty onset. Breastfed girls born
to mothers with high PBB serum levels had an earlier age at menarche and earlier
pubic hair stage (Blanck et al. 2000). In addition, maternal DDE levels at 15 μg/L
have been associated with a reduction of the age at menarche by 1 year (Vasiliu et al.
2004). This effect might be attributed to body weight as there was no significant
association after adjusting for children’s body weight.

Longnecker and his colleagues did a study about the effect of high maternal PCB
serum levels on hearing abilities of 8-year-old offspring. The study reported a lack
of association between maternal PCBs concentrations and sensorineural hearing
(Longnecker et al. 2004).

Effects on Offspring’s Reproductive Development

Perinatal exposure to persistent chemicals has been reported to affect offspring
reproductive development by eliciting genital malformations, particularly, in male
offspring. High breast milk levels of PBDEs and organochlorides increased preva-
lence of congenital cryptorchidism in boys (Damgaard et al. 2006; Main et al. 2007).
PCBs in breast milk increased the incidence of undescended testes in exposed
children (Brucker-Davis et al. 2008). Meanwhile, serum concentrations of PCBs
and DDE were not associated with an increased incidence of cryptorchidism and
hypospadias in children (Longnecker et al. 2002; Mcglynn et al. 2009). This might
mean that, for persistent chemicals, breast milk chemical levels are good determi-
nants of genital malformations than serum levels. The identified risk factor for
hypospadias includes maternal exposure to EDCs through occupational, profes-
sional, and environmental exposure during fetal life (Kalfa et al. 2015). Other risk
factors include maternal occupational exposure to EDCs, use of prescription drugs
during the first trimester of pregnancy, maternal exposure to EDCs during early
pregnancy, and the use of hair cosmetics at home (Haraux et al. 2017).

Other reproductive effects assessed includes fecundability and genital organs
impairments. The effects on fecundity seem to differ by child’s sex. In male
offspring, PCBs and DDE maternal levels did not have any effect on semen quality
(Vested et al. 2014). Meanwhile in female offspring, in utero exposure to PCBs from
fish eaters decreased fecundity (Han et al. 2016). For the PCBs to pose a threat in
human offspring reproductive health, women must be exposed to high doses. This is
because contamination with low doses of PCBs does not pose a reproduction
threat in humans (Khanjani and Sim 2007). Boys born to mothers with high
PBDE-99 levels were reported to have reduced anogenital index (AGD/Weight)
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(García-Villarino et al. 2018). This effect was not observed in boys born to mothers
with higher serum DDE levels (Longnecker et al. 2007).

Effect on the Offspring’s Weight and Other Metabolic Parameters

There is some evidence that portrays the role that endocrine disruptors play in
obesity and the metabolic programming of obesity risk. EDCs that are known to
induce obesity by regulating lipid metabolism and adipogenesis are referred to as
obesogens (Hao et al. 2012). Serum or cord blood organochlorine levels are associ-
ated with impairment of offspring weight. A positive association has been reported
between high HCB concentration in cord blood, as well as high maternal serum
concentrations, with increased risk of overweight and obesity in children (Smink
et al. 2008; Vafeiadi et al. 2015). Prenatal DDE and PCB exposure was observed to
be associated with elevated BMI in young and adult girls (Karmaus et al. 2009;
Mendez et al. 2011; Valvi et al. 2012), while for boys, overweight was observed to
be associated with exposure to DDT (Valvi et al. 2012).

A similar effect has been observed about other persistent chemicals. Overweight
was observed in children born to mothers with high PFAS serum concentrations
(Lauritzen et al. 2018). Similarly, 7-year-old girls in a pooled cohort study from three
European countries (Belgium, Norway, and Slovakia), born to mothers with high
dioxin and dioxin-like compounds, were reported with an increased BMI (Iszatt et al.
2016).

Contrarily, a large sample size study done in the USA, which used third-trimester
serum sample, did not find any association between exposures to persistent
organochlorides and BMI among children followed up to 7 years (Cupul-Uicab
et al. 2013). In addition, no effect on metabolic function was observed in
mid-childhood children exposed in utero to PFAS (Fleisch et al. 2017). There is
no exact reason that can explain the contradiction of results among studies; however,
there is a significant variation of the sampling period among studies ranging from the
first semester to the third trimester.

Effects on Offspring’s Immune System

During early life, the human immune system, just as other systems, is vulnerable to
immunotoxic EDCs. At 6 months of age, when children’s immune system was tested
on antibody responses in association with maternal serum PCBs, no specific anti-
body response was observed (Jusko et al. 2010). A study done in Japanese infants
showed that, at about 10 months, dioxins, PCBs, and organochlorides significantly
influence the percentages of lymphocyte subsets (Nagayama et al. 2007). At
18 months of age, children exposed prenatally to environmental levels of dioxins
had increased risk of otitis media (Miyashita et al. 2011). At 24 months of life, fetal
umbilical cord levels of some PFAS were associated with an increased risk of atopic
dermatitis in female offspring (Chen et al. 2018).
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In another study, there was a follow-up of the children from birth to 7 years. The
study reported an association between maternal dioxin-like compounds concentra-
tions and an increased frequency of wheezing in children aged up to 7 years
(Miyashita et al. 2018). So far, the longest follow-up study was done for 20 years.
This study, which was done in Denmark, yielded two conflicting reports. First, in
2014, they reported an increased risk of asthma in offspring exposed to PCB-118 and
HCB (Hansen et al. 2014). Second, in 2016, they reported positive associations
between in utero exposure to HCB, PCBs, and DDE and airway obstruction, but
there was lack of association with allergic sensitization (Hansen et al. 2016). This
study supports the understanding that chronic obstructive lung diseases are partly
determined early in life and that the impact of early-life disadvantageous exposures
persists beyond childhood (Svanes et al. 2010). However, it is important to note that,
at 20 years follow-up, there is a high possibility for offspring to present adverse
health effects associated with secondary exposure to environmental and dietary
sources of EDCs.

Effects on Pregnancy Outcome

Many studies in this aspect focused and reported on the effects of organochloride
chemicals. Among organochlorides, PCB in cord blood, maternal serum, and milk
have been associated with reduced birth weight and head circumference (Hertz-
Picciotto et al. 2005; Sagiv et al. 2007; Tan et al. 2009; Brucker-Davis et al. 2010).
Reduced birth weight and head circumference in infants have also been associated
with higher cord serum levels of HCB (Ribas-Fitó et al. 2002; Lauritzen et al. 2017).
Birth weight is also negatively associated with DDT exposure (Sagiv et al. 2007).
Other studies have reported lack of significant association between exposure to
organochlorides and PBB during pregnancy and undesirable pregnancy outcomes
that impair fetal growth (Gladen et al. 2003; Longnecker et al. 2005; Givens et al.
2007; Khanjani and Sim 2007; Sagiv et al. 2007; Wolff et al. 2007). Longer storage
of the serum samples might have affected the stability of the chemicals and hence the
observed lack of association between the parameters of interest.

Some researchers have investigated the association between organochlorides and
congenital anomalies. In a case-control study done in China, serum organochlorides
were measured in 117 mothers who delivered neural tube defect (NTD) infants
(cases) and 121 mothers who delivered healthy infants (control). No association was
observed between organochlorides exposure and the risk of NTDs (Wang et al.
2014). Meanwhile, Indian case-control study, which used only 35 mothers-neonates
with NTDs (cases) and 35 mothers-neonate dyads without congenital anomalies
(control), reported an association between NTDs and DDE (Kalra et al. 2016). The
Indian study used both maternal and neonate serum; and both samples were posi-
tively associated with NTDs. However, more studies with larger sample sizes are
needed to confirm these associations.
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3.4 Mechanism of Action of EDCs

By definition, EDCs develop their effects by affecting the organism’s endocrine
system. The mechanisms by which the various EDCs disrupt the endocrine system
differ. This difference is attributable to the variation in the susceptibility of the
bodily tissues to each EDC, as well as the period by which each EDC disrupts the
endocrine system. While some EDCs disrupt the endocrine system at the embryonic
stage, others elicit their effects at the lactational stage. Generally, mechanisms
involving elicitation of effects by endocrine disruptors involve two pathways: either
directly on hormone-receptor complex or directly on the specific proteins that are
involved in the control of delivery of hormones. EDCs act as agonists or antagonists
of naturally occurring hormones, particularly, estrogens, androgens, and thyroid
hormones. As agonists, they produce hormonal responses; and as antagonists, they
inhibit hormonal responses (Kabir et al. 2015).

Estrogenic EDCs act by intracellularly or extracellularly binding to either classi-
cal, isoforms of classical, or nonclassical estrogen receptors (ERs) (ERα and ERβ)
(Ropero et al. 2006). Intracellular estrogenic signal networks comprise the genomic
pathway, which involves transcription of target genes, and the non-genomic path-
way, which involves the rapid transduction of signals mediated by membrane-bound
estrogen receptors (ERs) and/or other receptors, through crosstalk and/or bypassing.
Extracellular estrogenic signal networks consist of pathways of autocrine and/or
paracrine signaling, which involve other hormones, growth factors, and cytokines
(Kiyama and Wada-Kiyama 2015). After binding to these receptors, estrogenic
EDCs activate signaling cascades that, in many cases, finalize with the activation
of transcription factors, turning a non-genomic response into a genomic one (Ropero
et al. 2006).

Other EDCs act in an antiandrogenic mechanism where they disrupt the
androgen-signaling pathway and influence androgen-sensitive tissues through
androgen-receptor (AR) antagonism or steroid synthesis inhibition (Blystone et al.
2009). AR antagonists, like BPA and VZ, act by inhibiting the binding of androgens
to AR, which leads to suppression of androgen-dependent gene expression
(Sidorkiewicz et al. 2017).

Some EDCs are also known as thyroid disruptors (Patrick 2009). Offspring
neurodevelopment can be affected when maternal thyroid hormone reaches the
fetus and affect gene expression in the fetal brain (Zoeller and Crofton 2000).
Some EDCs bind to thyroid transport proteins such as transthyretin and interfere
with thyroid hormone transport resulting in either agonistic or antagonistic effects
depending on the type of chemical and the target tissue. They can act as either
thyroid receptor (TR) agonists and hence facilitate mRNA expression of well-known
thyroid hormone response genes in the liver and in the pituitary or as thyroid receptor
(TR) antagonists and hence inhibit TR-mediated gene activation of T3 (Ghassabian
and Trasande 2018).

Obesogens, like TBT, TPT, and some phthalates, target transcription regulators
(PPARα, δ, and γ) found in gene networks that function to control intracellular lipid
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homeostasis as well as proliferation and differentiation of adipocytes (Yang et al.
2015). Transcription regulators are activated by heterodimerization with another
receptor known as the 9-cis retinoic acid receptor. The process is regulated by the
PPARγ, which associates with the RXR receptors and binds DNA targets as a
heterodimer to directly regulate the expression at the transcriptional level (Grün
and Blumberg 2009).

4 Conclusion

Results from studies show that in utero and lactational exposure to EDCs is associ-
ated with impairment of reproductive, immunologic, metabolic, neurobehavioral,
and growth physiology of the exposed offspring up to the fourth generation. In some
of the chemicals, a clear correlation exists between effects noted in the animal
experimental and human epidemiological studies. However, little has been done in
extrapolating animal toxicity studies into the human population. Based on the
findings of this review, we would advocate that:

1. Future risk assessment for EDCs needs to take into account that humans are
exposed to multiple chemicals that might share mechanisms and pathways in
rendering their effects. Exposures to multiple chemicals necessitate the need for
risk assessors to consider cumulative risks from each chemical.

2. Methodological approaches in both animal experiments and human epidemio-
logical studies should be improved to achieve more specificity and better repli-
cation of results. The following should be considered:

(a) Using multiple urine samples over the gestation period to better characterize
ongoing exposure to nonpersistent EDCs.

(b) Follow-up of perinatal exposure effects over several years should consider the
confounding secondary exposure from environmental and dietary sources.

(c) Animal experimental studies should move from the classical low throughput
designs that have been used for decades into more advanced and precise
designs.

3. Considering the ubiquitous daily exposure to persistent and nonpersistent EDCs
across the lifespan, it is important to reassess the current safe chemical exposure
levels and advocate for common-sense lifestyle changes in which females who
wish to reproduce minimize their exposure to EDCs for the safety of future
generations.

4. Further human studies are necessary to clarify the effects of perinatal exposure to
EDCs as well as the physiologic mechanisms underlying these effects.
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5 Summary

Animal experimental and human epidemiological studies reviewed have established
an understanding that perinatal exposure to EDCs is associated with multiple adverse
health effects in the exposed offspring. Little convergence is seen between animal
experiments and human studies in terms of the reported effects. This might be due
to methodological challenges as well as inadequate work that has been done in
translating animal experiments by using high sample size human population studies.
Since new chemicals, which have the potential of eliciting adverse health effects, are
produced every day, it is very important to think of more sophisticated technologies
with high throughput to screen-out unsafe chemicals.
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