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Abstract. Classical fracture models assume that the stress triaxiality is the key
parameter controlling the magnitude of the fracture strain. However, recent
works shown the influence of other parameters that characterize the stress state
on the prediction of fracture strains. In this work, two uncoupled fracture
models, Mae and Wierzbicki [8] and Xue and Wierzbicki [9], were analysed
using finite element models. These models define a ductile fracture locus for-
mulated in the 3D space of the stress triaxiality, Lode angle parameter and the
equivalent fracture strain. The material selected was a cast A356 aluminium
alloy for which the model parameters were previously defined. Two groups of
tests are analysed in order to provide additional information on the material
ductility. The first corresponds to plane strain tests carried out on flat plates with
different grooves. The second corresponds to uniaxial tension tests applied on
smooth and notched round bars, which were designed with different notch radii.
These specimens allow covering a wide range of stress triaxiality. The present
work extracts the evolution of the equivalent plastic strain at fracture, the stress
triaxiality and the Lode angle parameter in order to evaluate the possibility of
using either smooth and notched bars tests or smooth and notched bars tests and
grooved plates to evaluate the 3D locus for high values of stress triaxiality. In
this context, a new function is proposed to describe the equivalent plastic strain
at fracture based on the stress triaxiality and the Lode angle parameter.
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Nomenclature

E Young’s modulus
k Exponent in curvilinear Lode angle dependence function
m Damage exponent
n Strain hardening exponent
p Mean pressure
plim Limiting pressure below which no damage occurs
q Exponent in pressure dependence function
g ¼ rm=req Stress Triaxiality
�ef Equivalent fracture strain
�ef 0 Reference equivalent fracture strain
ð�ef;tÞ Effective fracture strain under uniaxial tension
�ef;s
� �

Effective fracture strain under pure shear
c Ratio of fracture strains
n; hl Third invariant of the deviatoric stress tensor, Lode angle
lp Pressure dependence function
lh Lode angle dependence function
# Poisson’s ratio
r1;2;3 Principal components of the Cauchy stress tensor
r Cauchy Stress tensor
rm Mean stress
req; �r Equivalent stress
J3 ¼ s1s2s3 Is the third stress invariant
D Damage accumulation
y0; k and n Swift law hardening parameters.

1 Introduction

Although it has been extensively studied, the prediction of ductile fracture of metallic
materials still presents considerable challenges when resorting to numerical tools to
analyse the mechanical behaviour of structural components under various loading
conditions. The models proposed in literature for ductile fracture prediction, can be
divided in two groups: micromechanical models and continuum damage models. The
first relies on the mathematical description of the mechanisms of void nucleation,
growth and coalescence. The second group is based on the definition of a damage
variable, which acts as a softening mechanism. This type of models can also include
phenomenological laws, which can be implemented using a coupled or an uncoupled
approach. The Johnson and Cook’s uncoupled model [1] integrated the effect of stress
triaxiality, strain rate, and temperature [2]. Bao and co-worker [3, 4] designed and
performed tests on several type of specimens to calibrate the fracture locus in a wide
range of stress triaxiality. They showed that the fracture strain does not have to be a
monotonically decreasing function of the stress triaxiality [5]. Xue and co-workers [6]
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introduced the Lode angle parameter in the definition of the 3D fracture locus. This
model is similar to the one proposed by Wilkins [7] in the sense that the fracture locus
is constructed in the 3D space, which defines an equivalent strain to fracture, based on
the stress triaxiality and the third invariant of the deviatoric stress tensor.

In this work, the grooved plane strain plates specimens with different notches and
tensile tests on smooth and notched round bars will be examined using two uncoupled
phenomological fracture models: Mae and Wierzbicki [8] and Xue and Wierzbicki [9].

2 Ductile Fracture Models

A number of ductile fracture models have been proposed to predict failure. In this
work, two phenomenological uncoupled models are presented and discussed. They take
into account different material parameters to assess the effective fracture strain, for
various loading conditions. The mean pressure, the equivalent stress and the stress
triaxiality are expressed by the following equations, since the material is assumed to
have isotropic plastic behaviour, described by the von Mises yield criterion:

p ¼ �rm ¼ � 1
3
trðrÞ ¼ � 1

3
ðr1 þ r2 þ r3Þ ð1Þ

�r ¼ req ¼
ffiffiffi
1
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðr1 � r2Þ2 þðr2 � r3Þ2 þðr3 � r1Þ2�

q
ð2Þ

g ¼ � p
req

¼ rm
req

ð3Þ

2.1 Mae and Wierzbicki [8]

Mae and Wierzbicki [8] indicated that the ductile fracture locus consists of three
branches in the whole range of the stress triaxiality, which define the equivalent strain
to fracture (ef ) as follows:

ef ¼ D1
1þ 3g ; � 1

3 � g� 0
ef ¼ ef ;t þðef ;t � ef ;sÞð3g� 1Þ; 0� g� 1

3
ef ¼ D2eD3g þD4; g� 1

3

8<
:

9=
; ð4Þ

Table 1 Material parameters for ductile fracture characterization of the cast Aluminum Alloy
for the model of Mae and Wierzbicki [8]

D1 D2 D3 D4

0.2733 0.1417 −1.545 0.0
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where D1;D2;D3;D4 are the model parameters that must be evaluated for each
material. Table 1 presents the parameters determined for a cast aluminium alloy A356,
as shown in Mae and Wierzbicki [8].

2.2 Xue and Wierzbicki [9]

Xue and Wierzbicki [9] assume that two other variables play an important role in the
evaluation of the equivalent strain to fracture: the mean pressure and the Lode angle
ðhlÞ. The ductile fracture envelope assumes the following form:

ef ¼ ef0 :upðpÞ:uhðhlÞ ð5Þ

where the function up(p) adopts a logarithmic form:

upðpÞ ¼
1� q logð1� p

plim
Þ; p� plimð1� expð1qÞ

0 p� plimð1� expð1qÞ

( )
ð6Þ

and **:

uhðhlÞ ¼ cþð1� cÞð6 hlj j
p

Þk ð7Þ

where ðhl 2 ½� p
6 ;

p
6�Þ. The Lode angle is one of the several parameters that are com-

monly used to demote the azimuthal angle on an octahedral plane in the principal stress
space. It can be defined by:

hl ¼ tan�1ð 1ffiffiffi
3

p 2r2 � r1 � r3
r1 � r3

Þ or by hl ¼ � 1
3
sin�1ð27J3

2r3
Þ ð8Þ

n ¼ 27J3
2r3

ð9Þ

The parameters ef0 ; c; plim; q; k;m need to be identified for each material. Table 2
presents the set of the parameters determined for an aluminium alloy A356.

Table 2 Material constants for ductile fracture characterization of the cast Aluminum Alloy for
the model of Xue and Wierzbicki [9]

ef0 plim q c k m

1.20 800.0 MPa 1.5 0.6 1.0 1.0
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2.3 Damage Evolution

The models previously described define the equivalent plastic strain at fracture in
function of the stress state variables used to characterize the stress state. These models
allow a direct prediction of the equivalent plastic strain at fracture, for a monotonic
stress state. However, when there are changes in the stress path it is necessary to
evaluate the impact of those changes in the predicted equivalent plastic strain at
fracture. This is commonly done using a damage parameter, D. Ductile failure occurs
when the damage parameter reaches the critical damage value of 1.0. The evolution of
damage is defined by [9]:

D ¼
Z ec

0
f ð�ep;�ef Þd�ep ¼ 1 ð10Þ

where ec is the equivalent strain at fracture.
For the case of Mae and Wierzbicki [8] model, the damage evolution can be

represented by Eq. (11).

D ¼
Zep
0

1
�ef
d�ep ð11Þ

For Xue and Wierzbicki [9] model, the damage accumulation is expressed in terms
of the ratio between the current plastic strain and the equivalent strain to fracture. The
damage plasticity model can be represented by the following expressions [9],

D
: ¼ mð�ep

�ef
Þm�1 �ep

�ef
ð12Þ

In this work, the exponent value of damage m is equal to one, i.e. the damage rule
corresponds to a linear damage function.

3 Numerical Simulations

Based on the literature review, geometries of standardized and non-standardized test
specimens were identified, as shown in Fig. 1. The numerical simulations were per-
formed with the DD3IMPsolver [10, 11]. The commercial software GiD was used as
pre and post-processor. Thus, after building the CAD models of the specimens (see
Fig. 1), a three-dimensional finite element mesh was built in GID, using eight-node
solid finite elements. A selective reduced integration (SRI) technique is employed, with
eight and a single GP for the deviatoric and hydrostatic parts of the velocity field
gradient, respectively.
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The numerical simulations were performed considering the two fracture uncoupled
models using the cast aluminium alloy. The Swift law (isotropic hardening) is adopted:

Y ¼ kðe0 þ�eÞn ð13Þ

Y represents the yield stress and its evolution during deformation. The initial yield
stress y0 can be written as a function of k; e0 and n as follows: y0 ¼ ken0. Table 3 present
the material parameters.

3.1 Effect of Models Parameters

In this section, the prediction of ductile fracture is analysed for the two groups of
classical tests carried out:

• Flat-grooved Plate Plain Strain Specimens

Eight different ratio of t/R were considered. All specimens had a constant thickness
t = 1.2 and 2.11 mm, respectively at the groove, but the radii of the grooves are equal
to 1.6, 4, 8 and 12.7 mm, respectively. The loading condition is simple tension. The
notation adopted for these tests is “Tx Rymm”, were x is the thickness of the plate and
y is the groove radius.

Fig. 1 A sketch of flat-grooved plane strain specimens (left), and smooth and notched round
bars specimens [12]

Table 3 Material properties used in the numerical simulation [13]

Material parameters

Swift law + Linear
kinematic hardening

Isotropic
elastic
behaviour

y0 k n # E

200.167 556.06 0.2010 0.33 86 GPa
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• Smooth and Notched Round Bars Specimens

Four values of a/R were assigned to specimens a/R = 0 (smooth round bars), a/R = 1/2,
1 and 2/3 (notched round bars). The notation adopted for theses tests is “R = ymm”,
were x is the radius of the notch.

Table 4 summarizes the results obtained with both models. Note that the model
proposed by Mae and Wierzbicki [8, 13] only takes the stress triaxiality into account.
On the other hand, the model proposed by Xue and Wierzbicki [9] assumes the
influence of the mean pressure and the Lode angle. The value of �ef is the one obtained
by the model, assuming a constant value for the variables that characterize the stress
state, equal to the one predicted at the onset of ductile fracture. On the other hand, �epf
corresponds to the numerically predicted equivalent plastic strain at the location where
fracture is predicted by the model. Therefore, the results shown in Table 4 highlight the
importance of the damage accumulation variable, since it is clear that there are higher
differences between both values when adopting the Xue and Wierzbicki [9] model.

Table 4 A summary of numerical results of fracture strains, stress triaxialities and Lode angle
parameters for a cast A356 aluminium alloy

Tests �epf �ef g hl

Mae and Wierzbicki [8] T1.6 R1.6 mm
T1.6 R4 mm
T1.6 R8 mm
T1.6 R12.7 mm
T2.11 R1.6 mm
T2.11 R4 mm
T2.11 R8 mm
T2.11 R12.7 mm
Smooth round bar
R = 4 mm
R = 8 mm
R = 12 mm

0.033
0.047
0.054
0.058
0.032
0.045
0.053
0.056
0.085
0.064
0.068
0.073

0.032
0.047
0.053
0.057
0.031
0.045
0.052
0.055
0.084
0.064
0.067
0.071

0.967
0.713
0.642
0.597
0.994
0.747
0.651
0.614
0.339
0.519
0.483
0.453

−0.05
−0.02
−0.02
−0.09
−0.13
−0.02
−0.04
−0.06
0.999
0.93
0.999
0.999

Xue and Wierzbicki [9] T1.6 R1.6 mm
T1.6 R4 mm
T1.6 R8 mm
T1.6 R12.7 mm
T2.11 R1.6 mm
T2.11 R4 mm
T2.11 R8 mm
T2.11 R12.7 mm
Smooth round bar
R = 4 mm
R = 8 mm
R = 12 mm

0.271
0.365
0.370
0.382
0.292
0.349
0.378
0.388
0.673
0.541
0.605
0.647

0.182
0.262
0.281
0.288
0.223
0.267
0.298
0.296
0.337
0.385
0.478
0.483

1.21
0.996
0.919
0.878
1.080
0.934
0.857
0.860
0.942
0.929
0.782
0.763

−0.01
0.09
0.04
0.02
0.005
−0.01
0.02
0.02
0.996
0.999
0.999
0.999
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Although not shown here, this is also related with the fact that the stress triaxiality
follows a more stable evolution during the deformation process than the mean pressure
and the Lode angle. Also, the mean pressure and the Lode angle evolutions are more
sensitive to the mesh descritization adopted.

The analysis of Table 4 also shows that, when considering a tensile loading, all
specimens considered present a positive value for the stress triaxiality for the point
where ductile fracture is predicted by both models. When considering the Mae and
Wierzbicki [8, 13] the flat-grooved plates present a negative value for the Lode angle,
while for the Xue and Wierzbicki [9] model, ductile fracture is predicted either for
positive or negative values of this parameter. Nevertheless, the Lode angle parameter
presents a value close to zero for the flat-grooved plates and a value close to 1.0 for the
round bars. Moreover, the Xue and Wierzbicki [9] model is predicting the occurrence
of ductile fracture for higher values of tensile displacement, i.e. equivalent plastic
strain. Note that this results from the fact that, the parameters shown in Table 2 are
recommended by the authors to be used in a coupled implementation of the model,
which is not the one adopted in the current work.

Fig. 2 Equivalent plastic strain versus stress triaxiality in the center of flat-grooved plates (a),
(b) and smooth and notched round bars (c), (d) from numerical simulations using the fracture
models: a, c Mae and Wierzbicki [8] and b, d Xue and Wierzbicki [9]
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Figure 2 shows the evolution of the equivalent plastic strain with the stress triax-
iality, obtained for the central element, with the two fracture uncoupled models. Note
that the different scale used for both models results from the fact that the Xue and
Wierzbicki [9] model always predicts the onset of ductile fracture for much higher
values of equivalent plastic strain. The use of uncoupled models always assures that the
evolution of the variables that characterize the stress state is equal. The fact that the
stress triaxiality suffers an abrupt increase for the central element denotes the onset of
necking.

Both Table 4 and Fig. 2 show the effect of stress triaxiality on the predicted fracture
strain, under a fixed Lode angle parameter. As the stress triaxiality increases, the
equivalent fracture strain and, consequently, the equivalent plastic strain at fracture
decreases, for both models. This is an important feature of ductile fracture models as
noted by many authors including Johnson-Cook [1]. In fact, theoretical analysis [14,
15] and numerous experimental studies [1, 3, 8, 13] have proved that the fracture strain
increases when the stress triaxiality increases. Moreover, since the stress triaxiality is
quite constant in the beginning of the tests (see Fig. 2), the damage accumulation
follows a linear trend, meaning that the numerically predicted equivalent plastic strain
at fracture is almost equal to the one predicted by the the Mae and Wierzbicki model
[8]. In fact, as shown in Fig. 3 the results show a good agreement with the experiments
performed by Bae and Wierzbicki [8, 16] for the high range of stress triaxiality.

3.2 3D Fracture Locus

Based on the analysis of the results, the two sets of test enable the definition of two
boundary limits, for positive values of stress triaxiality:

Fig. 3 Fracture loci of the cast Aluminum Alloy [8]
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• n ¼ 0 corresponding to plane strain, �eð0Þf

• n ¼ 1 corresponding to axial symmetry in deviatoric tension, �eðþ Þ
f

This enables the construction of a 3D fracture locus that defines the equivalent
plastic strain to fracture, based on the stress triaxiality and Lode angle parameter, such
as ðg; n; e fp Þ.

If the effect of the Lode angle parameter on the fracture locus is neglected, only one
set of tests should be considered. In this case, the expression adopted for the range of
high values of stress triaxiality is the one corresponding to the third branch of Eq. (4) of
Mae and Wierzbicki [8] model, meaning that three parameters need to be identified, D2,
D3 and D4. This emplies that a constant surface is assumed for all values of Lode angle
parameter. If both sets of tests is considered the effect of the Lode angle parameter is
also included. However, based on the analysis of the results, the mean pressure is a
variable that with the deformation and is quite sensitive to the mesh discretization
adopted. Therefore, a new function is adopted to describe the 3D fracture locus for high
values of stress triaxiality, as follows [17]:

�ef ¼ D1e
D2 g � ðD1e

D2 g � D3e
D4 gÞ ð1� nj j1nÞn ð14Þ

In these case five parameters need to be identified, D1, D2, D3 and D4 and n.
An objective function is chosen in order to minimize the average error between the

equivalent plastic strain predicted by the model and the one of each test, as follows:

Min
ðD1;D2;D3;D4Þ

ðErrorÞ ¼ Min
ðD1;D2;D3;D4Þ

XN
i¼1

�ef ; iNum � �ef ;i Calc
�� �� ð15Þ

where test i listed in Table 4 and N is the total number of tests, �ef ;i Num;�ef ;i Calc refer to
the numerical determined fracture strain and the calculated fracture strain, respectivelty.

Figure 4 shows the 3D fracture locus calibrated using the numerical results
obtained with Mae and Wierzbicki [8] model and assuming no influence of the Lode
angle parameter. The values obtained for the model parameters are also shown in the
Fig. 4. The comparison of the values obtained with the ones used in the numerical
simulations (see Table 2) confirms that the optimization procedure recovers the pro-
posed values. This validates the proposed procedure based on the results shown in
Fig. 3. Figure 5 shows the 3D fracture locus presented in Eq. (14), calibrated using the
numerical results obtained with Xue and Wierzbicki [9] model. The set of parameters
obtained was the following: D1 ¼ 1:9286;D2 ¼ 1:795;D3 ¼ 0:9664;D4 ¼ 1:366;
n ¼ 0:2. Moreover, Fig. 5 shows the results for the two boundary limits.

The models previously described define the equivalent plastic strain at fracture in
function of the stress state variables used to characterize the stress state. Figures 4 and
5 show a comparison of the 3D surfaces obtained with each model. These surfaces
allow a direct prediction of the equivalent plastic strain at fracture, for a monotonic
stress state. The calibrated 3D fracture locus can give us a visualized overall view of the
models. The shape of the 3D fracture locus predicted by Eqs. (4) and (14) are clearly
different. In the case of Eq. (4), for c ¼ 1, (c is the ratio of Lode angle function for
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hl ¼ 0 and hl ¼ �p=6) the predicted fracture locus flattens out and for 0 � c � 1, the
shape is a concave, similar to that shown in the Xue and Wierzbicki [8, 9, 14], model.
Thus, the shape of the 3D fracture locus is sensitive to the Lode angle parameter.

Both models are based on an uncoupled phenomenological approach between
fracture and the variables that characterize the stress state; the stress triaxiality, the
Lode angle parameter. Therefore, the evolution of the stress and strain distributions is
only dictated by the plasticity model adopted and is the same whatever the fracture

Fig. 5 The 3D Fracture locus of the cast Aluminum Alloy, Xue and Wierzbicki [9]

Fig. 4 The 3D Fracture locus of the cast Aluminum Alloy, Mae and Wierzbicki [8]
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model adopted. This means that fracture strain is predicted for different displacement
has a direct result of the fracture locus adopted to analyze the results. Figure 6 indicated
that the model adopted, for the tensile test on smooth round bar, has no influence on the
stress-strain distribution.

4 Conclusion

In this work two uncoupled models: Mae and Wierzbicki [8] and Xue and Wierzbicki
[9], are sued to evaluate the occurrence of ductile fracture, considering two sets pf
experimental test. These sets are characterized by presenting a wide range of positive
values of stress triaxiality, for two values of Lode angle parameter. The results are used
to test a procedure that enables the definition of the fracture locus, ðg; n;�e fpÞ, following
the same approach used by several authors p to construct the fracture loci based on
experimental results. The results show that the use of tensile tests on round and notched
round bars and grooved plates specimens enables the identification of the fracture
locus, for positive values of stress triaxiality and Lode angle parameter.
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