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Abstract. The design of modern network-on-chip (NoC) systems faces
reliability challenges due to process and environmental variations. Peak
power supply noise (PSN) in the power delivery network of a NoC device
plays a critical role in determining reliable operations: PSN typically
leads to voltage droop, which can cause timing errors in the NoC router
pipelines. Existing simulation-based approaches cannot provide rigorous,
worst-case reliability guarantees on the probabilistic behaviors of PSN.
To address this problem, this paper takes a significant step in formally
analyzing PSN in modern NoCs. Specifically, we present a probabilistic
model checking approach for the rigorous characterization of PSN for
a generic central router of a large mesh-NoC system, under the Round
Robin scheduling mechanism with a uniform random network traffic load.
Defining features for PSN are extracted at the behavioral level to facil-
itate property formulation. Several abstract models have been derived
for the central router’s concrete model based on the observations of its
arbiter’s conflict resolution behavior. Probabilistic modeling and verifica-
tion are performed using the Modest Toolset. Results show significant
scalability of our abstract models, and reveal key PSN characteristics
that are indicative of NoC design and optimization.

Keywords: Probabilistic model checking · Network-on-chip ·
Reliability analysis · Power supply noise

1 Introduction

The advancement in probabilistic model checking has enabled its applications
in a wide range of domains, including cryptography [11], systems biology [22],
network protocols [21], game theory [6], and distributed systems [20]. Likewise,
in recent times, the growing demand for robust and secure digital system design
has challenged the potential for innovation in formal methods. In this work, we
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venture into the probabilistic model checking of the reliability evaluation of a
complex and distributed digital system—the on-chip communication network,
network-on-chip (NoC), deployed in a many-core system.

NoC—the de-facto standard for on-chip communication in modern many-
core systems—generally comprises of several topologically homogeneous routers
operating synchronously in a decentralized control system. Despite the concep-
tual similarity with conventional computer networks, a NoC is subject to several
unique reliability challenges, e.g., process and environmental variations, that
are vastly dissimilar to conventional network communication. Over a decade of
simulation-based research has gone into NoC design exploration and reliability
analysis [1–3,27]. However, simulation-based ecosystems fail to provide worst-
case reliability and safety guarantees. Consequently, formal verification is neces-
sary to ensure the correctness of specific functionality of the NoC components.

The primary challenge of applying automated verification, specifically, model
checking, is the notorious state explosion issue, as evidenced by a recent work
on model checking an asynchronous NoC [31] where the intermediate state space
corresponding to only 13 out of the 66 components in a 3 × 3 NoC consists of
several hundred million states. Consequently, accurate modeling of the reliability
issues (e.g., power supply noise, quality-of-service guarantees, etc.) is poised to
further aggravate its computational complexity.

This paper presents a probabilistic model checking method for the analysis
of power supply noise (PSN) for a generic central router of a large mesh-NoC
system and its impact on the router’s reliability under uniform random traffic
loads. To enable an accurate and efficient analysis and a convenient formulation
of the probabilistic properties, we extract the key characterizing features of the
router at the behavioral level. We present formal models for the central router
with four full-duplex channels, operated under uniform random packet injection
with the starvation-free Round Robin conflict resolution scheduling. To tackle
the state space explosion challenge, abstract models have been derived based
on critical observations of conflict resolution patterns. Transition probabilities
between abstract states are inferred from exhaustive executions of the underly-
ing concrete models with limited steps. We use the high-level formal modeling
language Modest [13] to formulate our models, the state spaces of which are
large discrete-time Markov chains (DTMC), and the Modest Toolset’s [15]
probabilistic model checker mcsta for the analysis. We check reward-bounded
properties, for which mcsta implements scalable analysis techniques [12]; in par-
ticular the state elimination approach resulted in significant analysis speedups.
The final verification results show significant scalability of our abstract models,
and reveal key relations between traffic loads and PSN.

2 Motivation

PSN in the power delivery network of an integrated circuit is composed of two
major components: (a) resistive noise, which is estimated by the product of the
current drawn and the lumped resistance of the circuit; and (b) inductive noise
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that is caused by the inductance the power grid and is proportional to the rate
of change of current through the inductance (Δi

Δt ). For a distributed system such
as a NoC, the latter takes a central component [2].

A high inductive noise is responsible for the intermittent peaks in the cycle-
wise noise profile of a NoC. Basu et al. have recently demonstrated that, in
an 8 × 8 NoC, the peak PSN can increase from 40% of the supply voltage at
the 32-nm technology node to about 80% of the supply voltage at the 14-nm
technology node, while running a uniform-random synthetic traffic pattern [2].
Voltage droop due to PSN can radically degrade the delay of various on-chip
circuit components. Such increase in the delay has the potential to engender
timing errors in the pipe-stages of the NoC routers, thus severely impacting the
reliability as well as the performance of the overall on-chip communication.

Although recent works [2,27] tackle the PSN problem in NoCs to some extent,
they do not guarantee the worst-case peak PSN—a determinant of the NoC
reliability—across different operating conditions, realistically conceivable, for
any parallel workload. Moreover, these works do not provide any bounds on
the temporal PSN profile for a router, given an application execution. Conse-
quently, existing approaches to mitigate PSN are a far cry from a truly reliable
NoC design paradigm that can be deployed in mission-critical systems. On the
contrary, this work shows that probabilistic model checking, despite its inherent
challenges, can offer precise bounds on the performance and reliability with com-
mon environment assumptions, leading the way to future reliable NoC design.

3 Related Work

Reliable and energy efficient communication is the backbone of many-core sys-
tems. Significant recent research exploring reactive, proactive and predictive
techniques has focused on addressing the challenges of fault tolerance in NoC
[4,5,7,17,28]. However, a wide majority of these works are simulation-based
analyses, which cannot provide rigorous reliability and performance guarantees.

Formal verification in NoC architectures has largely been focused on func-
tional correctness of routing algorithms [26,31,32]. Zhang et al. investigate prop-
erties of deadlock and livelock freedom and tolerance to link failure, and use
model checking to enhance an existing routing protocol [31,32]. Based on theo-
rem proving techniques, the DCI2 developed by Verbeek demonstrates significant
scalability in proving properties of deadlock and livelock freedom and topology
violations of statically determined routing logic [29]. Accurate assessment of
NoC reliability has to incorporate quantitative aspects depicting the inherent
distributive and reactive nature of NoC. Coste et al. presents in [8] a trans-
lation procedure to convert existing functional model into Markov chains for
the evaluation of the latency of memory accesses over a Globally Asynchronous
Locally Synchronous (GALS) NoC. Nevertheless, the scope of existing literature
in probabilistic verification of the NoC is minimal.

On the other hand, researchers have extensively employed probabilistic ver-
ification to assess and improve reliability, resilience, and security of computer
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hardware designs [10,24,25,30]. For example, Han et al. demonstrate how to
obtain the fundamental error bounds by using bifurcation analysis based on
probabilistic models of unreliable gates [14]. Kumar et al. propose an automatic
compositional reasoning technique to improve the scalability of probabilistic
model checking of hardware systems [19]. Mundhenk et al. propose probabilistic
model checking for the security analysis of automotive architectures at the sys-
tem level [23]. However, the dividends of these works have not yet been carried
forward to the NoC domain.

4 Conflict Resolution in Central Routers

Fig. 1. NoC router model.

Figure 1 depicts the central router
of an 8 × 8, two-dimensional mesh
NoC network [2]. It has four full-
duplex channels with the bandwidth
of one flit of a network packet, where
each channel has a buffer with the
capability of storing four flits. The
router simultaneously transmits and
receives flits in all four directions.
Assume that each flit carries the
next forwarding direction, and that a
flit is not diverted back to its incom-
ing direction. The forwarding direc-
tion is used for the arbiter in the cen-
tral router to detect possible conflicts. The arbiter resolves conflicts, created by
multiple flits originated from the four buffers attempting the same output direc-
tion. The order of conflict resolution relies on the Round Robin scheduling mech-
anism to guarantee fairness and starvation-free arbitration. The input interface
handles flits arrived from all of four directions, and accommodates them in the
first available space in the corresponding buffer. The output interface directs flits
from the arbiter that are ready to be dispatched to the neighboring routers. The
rest of this section describes details of the arbiter’s conflict resolution mechanism.

Since the bandwidth of all outgoing channels allows only one flit at a time,
conflicts are resolved inside the central router. Conflicts affect the performance
of each individual router and hence the entire NoC. During each clock cycle,
the arbiter first examines each buffer’s front flit’s outgoing direction to detect
conflicts. If no conflict exists, all the buffers can forward their front flits to
their respective outputs in one cycle to maximize the throughput. Otherwise,
the arbiter has to resolve all conflicts, requiring one or more additional cycles.
Figure 2 demonstrates three representative scenarios of conflicts and their reso-
lution. For simplicity, we ignore the incoming packets to all four buffers at each
cycle, and only illustrate conflict resolution. In Scenario A, only one conflict
exists between the east and west buffers at cycle tn, and the east buffer has
higher priority. The arbiter, therefore, serves the east buffer at cycle tn, and
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Fig. 2. Conflict scenarios.

it also directs the north and south buffers in this cycle, as their flits do not
conflict. In the following cycle tn+1, the priority gets updated by shifting the
priority queue, and the west buffer is served. Scenario B demonstrates two pairs
of conflicts: the north and south buffers compete for the east output, while east
and west compete for the north output in cycle tn. Following the priority queue,
the arbiter serves the east and south buffers in cycle tn, and the west and north
buffers in the next cycle. Scenario C illustrates a three-way conflict: all front flits
of the east, west, and south buffers compete for the north output. The arbiter
serves the west buffer first, and simultaneously serves the north buffer as it is
not conflicting with others. In the following cycle tn+1, the south buffer gets
serviced, as it has higher priority than the east, leaving the east buffer to be
serviced in cycle tn+2.

5 Formal Model of the Central Router

The formal model implements all potential conflicts in the central router. The
Modest language [13] is used to model the router as shown in Fig. 1. We intro-
duce a datatype buffer shown in Listing 1.1. Integer variable dest represents the
front flit’s destination in each buffer: 0 (north), 1 (east), 2 (south), or 3 (west).
Value −1 indicates an empty buffer. The field id stores the buffer location in
the central router, with the same encoding as the flit’s destination. Variable
serviced is true if the front flit was serviced in the current cycle, and false

otherwise. The priority field represents the priority position each buffer will
occupy in the next clock cycle. Lastly, the actual buffer, buff, is modeled as
an integer linked list. The size of buff is set to four for all models presented
in this paper, but its length can be set to any finite integer. The arbiter model
arb is an array of four buffer values. The position of buffer in arb represents
the current priority for servicing all four buffers, array index 0 being the highest
priority and 3 being the lowest. For example, if arb[1] refers to the east buffer
with id = 1 and priority = 3, then at the beginning of the next cycle the buffer
will have been moved to position arb[3]. Two internal integer variables, namely,
unserviced and totalUnserviced, are used in the Round Robin scheduling mech-
anism: unserviced counts the number of unserviced buffers in one cycle due to
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Listing 1.1. Buffer model.

datatype buffer = {int ( -1..3) dest , int (0..3) id,
bool serviced , int (0..3) priority , intlist option buff};

buffer north , east , south , west;
buffer[] arb = [north , east , south , west];
int (0..2) unserviced;
int (0..2) totalUnserviced;

Listing 1.2. Procedure for updating serviced and unserviced.

arb [0]. serviced = true;
if (arb [1]. dest != -1 && arb [1]. dest == arb [0]. dest) {

arb [1]. serviced = false;
unserviced ++;

}
else {

arb [1]. serviced = true;
}
if(arb [1]. dest != -1 && (arb [2]. dest == arb [1]. dest || arb

[2]. dest == arb [0]. dest)) {
arb [2]. serviced = false;
unserviced ++;

}
else {

arb [2]. serviced = true
}
if(arb [1]. dest != -1 && (arb [3]. dest == arb [2]. dest || arb

[3]. dest == arb [1]. dest || arb [3]. dest == arb [0]. dest)) {
arb [3]. serviced = false;
unserviced ++;

}
else {

arb [3]. serviced = true;
}

totalServiced = unserviced;

conflict, and decrements as the unserviced buffer’s priority values are calculated;
and totalUnserviced tracks the total number of buffers unserviced in one cycle.

The serviced field for each buffer and unserviced are updated by the proce-
dure shown in Listing 1.2. It automatically sets serviced to true for the buffer
in position 0, because the arbiter will definitely serve this buffer in the current
cycle. It then moves on to the buffers in all remaining positions. If a buffer is
non-empty and is in conflict with another buffer with higher priority, then the
latter will be serviced in the current cycle and the former has to wait for its
chance in the next cycle. Therefore, serviced of the former is set to false and
unserviced is incremented. Otherwise serviced is set to true. Lastly, the arbiter
assigns totalUnserviced the updated unserviced.

Next, priority for each buffer gets updated using the procedure shown in
Listing 1.3. It should be noted that priority update is assumed to strictly follow
the order shown in the procedure, starting with the buffer in position 0 of the
arbiter array arb. If the buffer at arb[i] was serviced, its dest is updated by
peeking the front of the corresponding buffer, followed by an update of the buffer
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Listing 1.3. Update priority.

for(int i = 0, i < 3, i++) {
if (arb[i]. serviced == true) {

arb[i].dest = peekFront(arb[i].buff);
arb[i].buff = dequeue(arb[i].buff);
arb[i]. priority = i + unserviced;

}
else {

arb[i]. priority = totalUnserviced - unserviced;
unserviced --;

}
}

itself. If no element is in buff, the peekFront function will return −1 to indicate
an empty buffer. The priority is updated to the sum of its current priority i

and the number of unserviced buffers, whose priorities have not been updated.
Intuitively, buffers not serviced in the current cycle will be given higher priority
in the next, and those serviced receive priority corresponding to their position
in the arbiter array. If the buffer was not serviced, the priority is determined
by subtracting unserviced from the total number of unserviced buffers in the
current cycle, after which the unserviced is decremented. We use this method to
keep track of the order for buffers that did not get serviced in the current cycle.

As an example, assume arb=[north, east, south, west], and serviced are
true, false, true, and false, respectively. Both unserviced and totalUnserviced

are set to 2, because the east and west buffers were not serviced in the current
cycle. Priority updates start with arb[0], i.e., the north buffer. Since it was
serviced in the current cycle, its priority is updated to 0 + 2 = 2. The value of
unserviced remains at 2. Next, the priority is updated for the east buffer. Because
it was not serviced in the current cycle, its priority is set to 2−2 = 0, giving itself
the top priority for the next cycle. The value of unserviced then decrements from
2 to 1, indicating that one remaining unserviced buffer is scheduled for the next
cycle. Similarly, priorities for the south and west buffers are updated to 2+1 = 3
and 2 − 1 = 1, respectively. The variable unserviced decrements to 0 after all
priory updates. The resulting arbiter array is [east, west, north, south].

To model incoming flits to all four buffers, we randomly assign their dest fields
using the discrete uniform distribution, with the exception that a buffer does not
receive a flit destined to its incoming direction. Probabilistic model checking on
this routing node model incurs exponential state space growth as cycles increase,
quickly becoming too large to be handled. For 100 clock cycles, mcsta explored
400 million states with another 100 million queued for expansion when 132 GB
memory were filled. This is mainly due to the combinatorial explosion of flit
values. To address this issue, we present several abstract router models next.

6 Abstract Models and Refinement

Abstract models presented in this paper are based on an ad-hoc method specif-
ically for the central router. The initial abstraction is based on the observation
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that rather than specific scenarios of conflicts formed by the dest field of four
buffers, the arbiter’s behavior is only determined by a few conflict patterns that
can co-exist in one cycle, including non-conflicting scenarios. This observation
leads to four abstract states: (1) no conflicts, where all buffers are serviced in the
current cycle; (2) one pair of conflicts, where the only unserviced buffer is the
one with lower priority in the pair; (3) two pairs of conflicts with two unserviced
buffers, both of which have lower priority compared to their conflicting counter-
parts; and (4) three buffers in conflict, where the two buffers with low priorities
are not serviced in the current cycle. Four buffers cannot all be in conflict as it
is assumed that a flit is not diverted back to its incoming direction.

Since the abstract model is formulated at the behavioral level without circuit-
level details, one has to project the measure of PSN onto the same abstract level.
We know that the inductive noise, a major source of PSN, is proportional to the
rate of change of current in the circuit. An abrupt change in the router activity
in two consecutive cycles directly leads to a high rate of current change [2]. A low
router activity is characterized by the arbiter serving no routers in a cycle, as all
buffers are empty; while a high router activity is indicated by the arbiter serving
three or more buffers in a cycle. The relative frequency of both high-to-low and
low-to-high activities over a given timespan can, therefore, accurately reflect the
state of the local noise and hence PSN in the NoC routers. For this purpose,
we consider the following two probabilistic properties: (1) the probability that
the number of high router activity cycles is lower-bounded by k · N within N
overall cycles; and (2) the probability that the total number of high-to-low and
low-to-high activities is lower-bounded by k · N within N overall cycles, where
k ∈ (0, 1). High router activity, as indicated by property (1), can potentially
create a high local congestion in the network, leading to a high PSN due to
an unbalanced power density [9]. On the other hand, property (2) reflects a
large and sudden load change in a router that can lead to a large inductive
drop in the power delivery network of the NoC [2]. Collectively, understanding
these properties is essential to ascertain the minimum voltage guardband for
the NoC, sufficient to ensure a fault-free communication in a many-core system.
To facilitate checking of these properties, two variables are created, namely,
optimalRuns, which increments if all four buffers are serviced in a cycle, and
noiseRuns, which accumulates cycles with high-to-low or low-to-high activities.
Formulation of these properties is presented in Sect. 8.

The initial abstract model, however, is incorrect in that after two clock cycles,
the accumulation of optimalRuns diverges from that obtained from the concrete
model. This is because the probability varies when transitioning between two
states with two-pair conflict. Specifically, different scenarios of two-pair conflict
result in different probabilities. Table 1 illustrates some examples. Each entry
listed under columns arb[i] shows the buffer location and the destination of its
front element. For example, “n(e)” under column arb[2] means that the north
buffer’s front flit is destined for the east output. The entry “w(n, e, s)” in the
same column indicates that the west buffer can receive a flit destined to any
other three directions. For state “2a”, if the arbiter has the two-pair conflict in
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cycle k, then arb[0] and arb[1] are serviced, allowing “n(e)” and “e(n)” to move
to arb[0] and arb[1], respectively, in the next cycle. Observe that at cycle k+1,
two-pair conflict scenarios include (n(e), e(n), w(n), s(e)) and (n(e), e(n), w(e),
s(n)), and the possible three-way conflicts are (n(e), e(n), w(e), s(e)) and (n(e),
e(n), w(n), s(n)). For state “2b” with a different two-pair conflict pattern at cycle
k, the next cycle can only form the two-pair conflict (w(n), s(e), n(e), e(n)), and
no three-way conflict can exist. For state “2c”, the only two-pair conflict is (w(s),
s(e), n(e), e(s)), and the only three-way conflict is (w(s), s(e), n(s), e(s)). Our
analysis reveals that such discrepancies exist in other abstract states.

Table 1. History-dependent conflict examples.

State Cycle arb[0] arb[1] arb[2] arb[3]

2a k w(n) s(e) n(e) e(n)

k + 1 n(e) e(n) w(n, e, s) s(n, e, w)

2b k n(e) e(n) w(n) s(e)

k + 1 w(n) s(e) n(e, w, s) e(n, w, s)

2c k n(e) e(s) w(s) s(e)

k + 1 w(s) s(e) n(e, w, s) e(n, w, s)

The four-abstract model is
refined based on an analy-
sis of all possible inputs into
the arbiter and their respec-
tive behaviors. The possible
inputs can be grouped into
thirteen behaviors which are
defined as states as shown in
Table 2. Each refined state is
conditioned on the number of
unserviced buffers at the end
of a cycle and where the flit’s destination points, specifically, buffer locations
(i.e., the id field) the destinations at the arbiter’s positions 0 and 1 point to.
This table shows predicates defining these refinement conditions. Notations have
been simplified as follows: dest i represents the front flit’s destination of the buffer
at index i of the arbiter array, i.e., arb[i].dest.

To calculate transition probabilities among the thirteen abstract states, we
modify the concrete model to include two variables: sprev and s. For every clock
cycle, sprev first updates to s and then all predicates in Table 2 are evaluated and
s is updated accordingly. Assuming the model starts with no conflicts (sprev = 0),
we observe that for up to two transitions, which corresponds to two clock cycles,
every one of the thirteen states in Table 2 is reachable. Transition probability
emanating from state 0 to an abstract state, say 1b, is calculated by summarizing
all probabilities of transitioning from the concrete state 0, which is the same as
the abstract state 0, to all concrete states that satisfy the predicate for state
1b, which is unserviced = 1 ∧ dest0 = id2. For this calculation, we added to the
model a variable clk that is incremented with every clock cycle. The calculation
is then performed by first using mcsta to query for

P=?(� (clk = 2 ∧ sprev = 0 ∧ s = 2)),

i.e., the probability to eventually (�) reach a state in the model after two clock
cycles where sprev = 0 and the new abstract state is s = 2, i.e., 1b in Table 2. We
then divide the result by the sum of probabilities out of state 0. Other transition
probabilities are calculated similarly. Another observation is that the next states
and transition probabilities from states 2b and 2c are identical, so we combine
them into state 2b to form a twelve-state abstract model as shown in Table 3.
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Table 2. Refined abstract model with thirteen states.

State Predicate

0 unserviced = 0

1a unserviced = 1 ∧ dest0 = id1

1b unserviced = 1 ∧ dest0 = id2

1c unserviced = 1 ∧ dest0 = id3

2a unserviced = 2 ∧ dest0 �= dest1 ∧ dest0 = id1 ∧ dest1 = id0

2b unserviced = 2 ∧ dest0 �= dest1 ∧ dest0 = id2 ∧ dest1 = id3

2c unserviced = 2 ∧ dest0 �= dest1 ∧ dest0 = id3 ∧ dest1 = id2

2d unserviced = 2 ∧ dest0 �= dest1 ∧ dest0 = id1 ∧ dest1 = id2

2e unserviced = 2 ∧ dest0 �= dest1 ∧ dest0 = id1 ∧ dest1 = id3

2f unserviced = 2 ∧ dest0 �= dest1 ∧ dest0 = id2 ∧ dest1 = id0

2g unserviced = 2 ∧ dest0 �= dest1 ∧ dest0 = id3 ∧ dest1 = id0

3a unserviced = 2 ∧ dest0 = dest1 = id2

3b unserviced = 2 ∧ dest0 = dest1 = id3

7 Including Idle Cycles in the Abstract Model

The twelve-state abstract model shown in Table 3 assumes that a flit is injected
to all buffers in every cycle. This is, however, not quite realistic as it is common
that one or more buffers do not receive an incoming flit. Such situations change
the conflict patterns and hence the arbiter’s resolution behavior. From [2], we
know that the cycle-wise and intermittent PSN is a direct result of a signif-
icant change of buffers served. Precisely three or four buffers are serviced by
the arbiter between two consecutive clock cycles. Counting these changes allows
us to accurately reflect the state of the local noise and hence PSN in the NoC
routers. This implies that change from serving zero to four buffers and vice
versa needs to be modeled. This section describes a modified abstract model to
include idle cycles for each buffer. Using similar method as described in Sect. 6,
refinement is applied to the twelve-state abstract model to account for scenarios
with three, two, one, and none serviced buffers in one cycle. This leads to the
twenty-five-state abstract model provided in Table 4. The state notation in this
table represents the conflict scenario and the number of buffers with incoming
flits in a given state. For example state 2b

4 represents the state with the conflict
scenario 2b in Table 2 in which four buffers have incoming flits. Note that this
refinement does not change the fact that probabilities in this table can be calcu-
lated by checking its underlying concrete model for two clock cycles as described
in Sect. 6.
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Table 3. Twelve-state abstract model with transition probabilities.

0 1a 1b 1c 2a 2b 2d 2e 2f 2g 3a 3b

0 1
9

4
27

16
81

20
81

1
27

3
81

2
81

1
81

1
81

2
81

1
27

1
9

1a 1
9

4
27

8
27

4
27

0 2
27

0 1
27

0 1
27

1
27

1
9

1b 1
9

4
27

2
9

2
9

1
27

1
27

0 0 1
27

1
27

1
27

1
9

1c 1
9

4
27

2
27

10
27

2
27

0 2
27

0 1
81

0 1
27

1
9

2a 1
9

2
9

2
9

0 0 2
9

0 0 0 0 1
9

1
9

2b 2
9

1
9

1
9

4
9

1
9

0 0 0 0 0 0 0

2d 1
9

1
9

1
3

2
9

0 0 0 0 0 1
9

0 1
9

2e 1
9

1
9

1
3

2
9

0 0 0 1
9

0 0 0 1
9

2f 1
9

1
3

1
9

2
9

0 0 0 0 1
9

0 1
9

0

2g 1
9

1
3

1
9

2
9

0 0 1
9

0 0 0 1
9

0

3a 0 0 4
9

0 0 1
9

0 0 0 1
9

0 1
3

3b 0 0 0 4
9

1
9

0 1
9

0 0 0 0 1
3

8 Verification Results

All experiments have been performed on the abstract central router models,
which are constructed as DTMC models using the high-level compositional mod-
eling language Modest. The explicit-state probabilistic model checker mcsta
in the Modest Toolset has been used for verification. Properties (1) and (2)
are bounded probabilistic reachability queries for the transient behavior up to
N clock cycles, with N being a rather large number. Implementing the cycle
counter clk as a state variable, which we did for the computations in Sect. 6
with bound 2, would unfold the model over the cycle count up to the (now large)
bound, exacerbating the state space explosion problem. To avoid this problem
now, we made clk a transient variable that is set to 1 when moving from one
clock cycle to the next and to 0 otherwise. A transient variable is only “live”
during the assignments executed when taking a transition; it is not part of the
state vector. In this way, clock cycle progress becomes a reward annotation to
certain transitions instead of being encoded in the structure of an (unfolded)
state space. We can then formalize properties (1) and (2) as reward-bounded
reachability queries:

(1) P=?(�[accumulate(clk)�N ] optimalRuns � k · N)

(2) P=?(�[accumulate(clk)�N ] noiseRuns � k · N)

We use the state elimination method [12] implemented in mcsta for the reward-
bounded property checking reported in this section. For our experiments, it
provides a significant scalability and efficiency improvement over the classic
unfolding-based approaches, but also over the default modified-iteration method,
both of which we attempted to use in earlier versions of this model. In this way,
our experience mirrors the performance behaviour observed earlier in [12,16,18].
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Table 4. Twenty-five-state abstract model with transition probabilities.

Results are generated on a desktop computer with an AMD Ryzen Thread-
ripper 12-Core 3.5 GHz Processor and 132 GB memory, running Ubuntu Linux.
One core is used at any time. All results presented in this section assume uni-
form random packet arrival at all four buffers. Verification results for property
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Fig. 3. The two probabilistic properties denote high activity (Fig. 3a) and high change
in activity (Fig. 3b) in the central router of a mesh NoC, experiencing a uniform-random
traffic (Sect. 6). The steep curves reveal a high probability of a heavy congestion, as
well as, a sudden and large change in the traffic, which can cause a high PSN in the
NoC power delivery network.
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(1) are presented for the twelve-state abstract model described in Sect. 6, and
it is expected that these results are over-approximations for the abstract model
with idle cycles in Sect. 7. For checking property (2), the latter model is used.

Figure 3a shows the cumulative probability for property (1) with several lower
bounds. The formal model used for checking this property does not consider any
empty buffer, in order to demonstrate the worst case scenario. At the architecture
level, a high activity denotes the reception of three or more flits in one cycle.
The steep slope of the curves indicates that the central router of a mesh NoC is
likely to experience a heavy surge of the traffic load at a relatively short span
of time. Such high load of traffic can engender a local hostspot in the network,
which in turn, can lead to a large peak PSN.

Figure 3b depicts the cumulative probability for property (2) with several
lower bounds. In this case, we consider empty buffers in the formal model of the
central router. A high probability of such transitions within a short time span,
as seen in this figure, denotes a bursty nature of the traffic encountered by the
central router. As a result, there is a large inductive noise in the power delivery
network of the NoC. Collectively, these two properties are pivotal in determining
the minimum voltage guardband for the central router, because a more conser-
vative guardband marks a power inefficient design, while a smaller one will be
prone to intermittent timing errors in the NoC, aggravating its reliability.

Table 5 shows the peak memory usage and the total run-time reported by
the mcsta tool. Model checking property (2) requires significantly more memory
than that for property (1). This is due to the increased complexity of the twenty-
five-state abstract model depicting idle cycles over the twelve-state model, as well
as, that checking property (2) requires more cycles to converge.

Table 5. Performance results.

Property k · N Peak memory usage (MB) Total run-time (s)

(1) 50 795 6.6

100 1393 14.5

150 2293 24.5

200 2965 36.3

(2) 50 858 20.7

100 2993 92.2

150 6302 249

200 11522 528.8

9 Conclusion

This paper presents a probabilistic model checking method for the reliability
analysis for a generic central router of a large mesh NoC design under uni-
form random traffic loads. To combat the notorious state explosion problem,
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abstract models have been derived based on critical observations of conflict res-
olution using the Round Robin scheduling mechanism. Probabilistic properties
are derived by identifying the frequency of abrupt changes in router activities,
which causes the inductive noise of PSN. To enable efficient checking, the clock
cycle counter variable is set as transient and is treated as a reward annota-
tion only to certain transitions, instead of part of the state space. Verification
results reveal crucial PSN behaviors that allow the minimal voltage guardband
to be determined for the central router, providing insights in NoC designs with
improved reliability.

For future work, we plan to extend the central router model with increased
number of channels and variants of Round Robin scheduling mechanisms. Incor-
porating routing protocols in the router model is also important, as it enables us
to model a full NoC and better evaluate its reliability with respect to PSN. Addi-
tionally, we plan to investigate probabilistic predicate abstraction techniques to
automate the abstraction and refinement of larger NoC models, and evaluate
how they may affect the verification of PSN-related properties.
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