
Incremental Development of a Safety
Critical System Combining formal

Methods and DSMLs
− Application to a Railway System −

Akram Idani1,2(B), Yves Ledru1,2, Abderrahim Ait Wakrime2,
Rahma Ben Ayed2, and Simon Collart-Dutilleul2,3

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
{akram.idani,yves.ledru}@imag.fr

2 Institut de Recherche Technologique Railenium, 59300 Famars, France
{abderrahim.ait-wakrime,rahma.ben-ayed}@railenium.eu

3 Univ Lille Nord de France, IFSTTAR, 59666 Villeneuve d’Ascq Cedex, France
simon.collart-dutilleul@ifsttar.fr

Abstract. In order to assist domain experts, several tools exist for the
definition of graphical or textual domain specific modeling languages
(DSMLs). The resulting models are useful, but not sufficient, for an
overall understanding of the system, especially when formal methods
are being applied. Indeed, formal methods failures often result from mis-
understandings of the requirements, even if the system is entirely proved.
This is confirmed by several industrial experiments which showed that
the poor readability of the formal notations is not convenient for commu-
nication with domain experts and hence the validation activity is often
tedious, time consuming and complex. In order to circumvent this short-
coming, we propose to make domain specific models provable and also
executable thanks to the animation of their expected behaviour directly
in a dedicated DSML tool. Our approach starts from an intuitive descrip-
tion of the system’s operational semantics thanks to high-level Petri-nets
which abstract away structural constraints and focus on safety-critical
behaviours. Then we take benefit of the B method in order to refine and
prove these operational semantics on the one hand, and to merge them
with the static semantics of a given DSML, on the other hand. This
work is applied to the design of ERTMS/ETCS 3 which is an emergent
solution for railway system management.

1 Introduction

Application of formal methods in industrial critical systems became a strong
requirement due to their ability to guarantee a zero-fault development. Many
well-known success stories can be cited especially in the railway domain [13],
like for example Meteor, the automated Paris subway. However, formal methods
also suffer from the poor readability of their notations [6] which is not conve-
nient for validation. In fact, failures of formal developments often result from
c© Springer Nature Switzerland AG 2019
K. G. Larsen and T. Willemse (Eds.): FMICS 2019, LNCS 11687, pp. 93–109, 2019.
https://doi.org/10.1007/978-3-030-27008-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27008-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-27008-7_6

94 A. Idani et al.

misunderstandings of the users’ needs or errors in the expression of these needs,
although the system’s correctness is entirely proved.

Petri-nets, introduced in 1962 [16], partially circumvent this shortcoming,
since they combine a mathematical notation with an accessible graphical rep-
resentation based on bipartite directed graphs. They are especially known to
be powerful for event-driven systems [10] like distributed and real-time sys-
tems, logistic networks, embedded controllers, etc. Several high-level variants
of Petri-nets, like coloured Petri-nets or predicate-transition nets, were applied
in safety-critical systems and were assisted by formal verification techniques
such as animation, model-checking or proofs. Moreover, some experiences like
that of the Oslo subway, reported in [8], show that in addition to their formal
semantics, high-level Petri-nets facilitated communication with domain experts,
because chief engineers from railroad infrastructure and traffic department who
are neither specialists in Petri-nets nor in formal methods, were not only able to
understand the models, but also to suggest improvements.

Despite the Petri-nets advantages and their suitability for a readable formal
description, their main disadvantage is that they miss out the system structure
and focus on the system behaviour. Nonetheless, in the real world, structural
and dynamic aspects of a system are often interdependent. For example, in train
controlling systems the topology of the railroad, which defines position of track
sections, orientation of switches and/or automatic train stopping devices with
their corresponding signalling mechanisms, impacts the overall safety of train
movements and behaviours. In safety critical systems, the system structure as
well as critical situations that may arise from this structure are often provided
by domain experts using informal graphical representations which may be ref-
erenced in the specification documents. We believe that these graphical rep-
resentations should be defined in dedicated domain-specific languages (DSLs)
with tool support, especially as modeling languages development is a well mas-
tered technique today. The emergence of DSL tools in safety-critical systems
[9,18,19] allows domain experts themselves to provide useful structural models
to the software system engineer who will then develop the operational aspects
of the system. However, as far as we know, none of the existing works in the
safety-critical domain proposes a way to define proved formal links between the
dynamic system description (in Petri-nets or other well known formalisms) and
DSL tool development. There exist some attempts in model-driven engineering
(MDE) with tools for executable DSLs [2,4,15], however they cannot be applied
as is in safety critical systems because they are not assisted by automated rea-
soning tools and lack well-established verification and validation techniques.

This paper gives practical solutions to address this challenge starting from
an intuitive description of a safety critical system where the dynamic aspects are
specified thanks to high-level Petri-nets and the structural aspects are designed
in a DSL tool. This work allows to enhance the usability of formal methods in
industry because it involves domain experts all along the development process
for both structural and behavioural modeling. Our approach uses the B method
[1] in order to merge both worlds (that of Petri-nets and that of DSLs) and

Incremental Development of a Safety Critical System 95

then applies AtelierB in order to prove the correctness of the resulting static
and dynamic semantics of the modelled system. We also apply the refinement
principle of the B method to incrementally define formal operational semantics
by means of refined Petri-net models. In every refinement step we introduce
additional conceptual elements with associated safety properties and we prove
the preservation of these properties as well as those of the previous level.

Section 2 gives the application context of this work. Sections 3 and 4 sepa-
rately describe operational and static semantics and can be read in any order;
and then, Sect. 5 puts it all together, using the B method, in Meeduse1 − a
tool that we developed in order to mix the formal B method with domain spe-
cific languages. Finally, Sect. 6 draws the conclusion and the perspectives of this
work.

2 Application Context

This work is funded by the NExTRegio project of IRT Railenium. The project
aims at performing a system level analysis of a railway signalling system taking
into account emergent solutions for train automation. Indeed, in the last decade,
new technologies have been considered in railway systems in order to improve
automation on the one hand and to reduce the operating costs on the other hand.
In particular, the European ERTMS/ETCS2 [5,17] has emerged to replace var-
ious national signalling systems. There are three levels of ERTMS/ETCS which
differ by the used equipments and the operating mode. The first two levels are
already operational. However, ERTMS Level 3 is still in design and experimen-
tation phases: it aims at replacing signalling systems with a global european one
which is a GPS-based solution for the acquisition of train positions. In 2018, the
ABZ conference [3], which gathers several formal methods communities, pro-
posed a case study3 to model ERTMS/ETCS level 3 and has published several
formal models. Unfortunately, these models do not combine the power of formal
methods with domain specific approaches and hence they favour verification
(“do the system right”) rather than domain expert validation (“do the right sys-
tem”). The application presented in this paper contributes to the design phase
of ERTMS/ETCS level 3 by mixing formal techniques and domain specific mod-
eling in a well-known Model Driven Engineering (MDE) paradigm which makes
easier domain expert validation without losing sight of the verification activity.

An ERTMS Level 3 solution is based on train position and train integrity
confirmation, both transmitted by the on-board train system (called EVC4) to
the trackside system (called RBC5). Given this information, the traffic agent,
via RBC, assigns a movement authority to a train allowing it to move to a given

1 http://vasco.imag.fr/tools/meeduse/.
2 ERTMS: European Rail Traffic Management System.

ETCS: European Train Control System.
3 https://www.southampton.ac.uk/abz2018/information/case-study.page.
4 European Vital Computer.
5 Radio Block Center.

http://vasco.imag.fr/tools/meeduse/
https://www.southampton.ac.uk/abz2018/information/case-study.page

96 A. Idani et al.

point. In the RBC, track-circuits exist in a logical form by means of trackside
train detection sections (called TTD) which are in turn divided into virtual sub-
sections (called VSS). Figure 1, taken from the ERTMS 3 reference document
[5], illustrates a track circuit divided into two TTDs and four VSSs, and where
a train is located on VSS23. This simplified view of section conventions, used by
railway experts, applies specific domain representations to represent a situation
where a train went through TTD2 and reached its ending VSS.

The work proposed in this paper is intended to make domain specific models,
provided by domain experts themselves, such as that of Fig. 1, not only prov-
able but also executable thanks to the animation of their expected behaviour
directly in the dedicated DSL tool. Operational semantics of these models
are described using high-level Petri-nets, especially coloured Petri-nets (CP-
nets), which abstract away structural constraints and focus on safety-critical
behaviours. Static semantics of these models, together with their graphical rep-
resentation, are developed in a MDE framework based on EMF6 and Sirius7.

Fig. 1. Section conventions [5]

Figure 2 gives the overall architecture of the resulting models and formal spec-
ifications. The DSL meta-model and CP-Net models are automatically translated
into B specifications which are enhanced by safety invariants and proved. Then,
our approach defines linkage machines allowing to control the functional model
and the associated DSL-tool thanks to the CP-Net specifications. Every linkage
machine refines a CP-Net model and includes the functional model.

3 Coloured Petri-Nets: From Modeling to Proofs

3.1 Main Concepts

We use coloured Petri-nets (CP-nets) [12] because of their abstraction capabili-
ties and their readability. They combine the strengths of classical Petri-nets with
the strengths of high-level programming languages [7], to allow handling data
types with pre-defined functions. For a formal description of CP-nets, one can
refer to [11]; nonetheless, the main concepts used in this paper are:

6 https://www.eclipse.org/modeling/emf/.
7 https://www.obeo.fr/fr/produits/eclipse-sirius.

https://www.eclipse.org/modeling/emf/
https://www.obeo.fr/fr/produits/eclipse-sirius

Incremental Development of a Safety Critical System 97

Fig. 2. Overall architecture of a formal DSML semantics

– Data types: can be simple types (i.e. Integer, Boolean,. . .) or complex types
(i.e. arrays, sequences,. . .). In this work, we mainly use integer enumerations.

– Places: represent abstractions on data values (called tokens or colours). The
place type is called the colour set and it is defined by composing data-types.

– Transitions: they are linked to input and output places. When fired, a transi-
tion consumes tokens from its input places such that they match the transition
signature. Then, the transition introduces tokens into its output places.

– Predefined functions: describe some computations done by the transitions
when they are fired. In this paper, we use three basic functions: calculation
of the next (n++) and the previous value (n−−) given a token n when n is of
type integer, and the negation value (¬n) when n is of type boolean.

3.2 Level 1: Simple Train Movements

Our first CP-net (Fig. 3) defines simple train movements without train integrity
nor movement authorities. This abstract level is mainly intended to guarantee
the absence of accidents.

(t,¬s)

Free
(Vss)

changeSens

moveEven moveOdd

(t, true)

(t, false)

(t, false)

(t, true)

(t, v)
(t, v++) (t, v) (t, v−−)

Position

Sens

(Train × Vss)

(Train × Bool)

(v−−)
(v)(v++)(v)

(t, s)

Fig. 3. Simple movement described in a coloured Petri-net

98 A. Idani et al.

This model describes train movements using transitions moveEven and
moveOdd which move the train forward or backward and; and changeSens which
switches the train moving direction. Place Position contains pairs (t, v) which
record the current VSS v occupied by a train t. Place Free gathers the sections
which are not occupied by any train and place Sens registers for every train its
current direction. For our first CP-net model, we would like to prove five safety
properties:

1. Absence of accidents meaning that at most one train occupies a Vss,
2. Every train is located in one and only one Vss,
3. Absence of overlapping between Vss states free and occupied,
4. Vss states cannot be undefined, they are either free or occupied,
5. The train moving direction is never lost

Transition moveEven is fired given a train t located on section v, whose direc-
tion is set to true, and such that its next section v++ is free (e.g. (t, v) ∈
Position ∧ (v++) ∈ Free). When fired, this transition instantly moves train t
from section v to section v++. It consumes tokens (t, v) and (v++) respectively
from places Position and Free, and then respectively introduces into these places
tokens (t, v++) and (v), meaning that v++ becomes the new position of train
t, and section v is released. Transition moveOdd applies the same principles to
trains in direction false but selects the previous section v−− if this section is
free.

3.3 Extraction of B Specifications

In order to prove the safety properties of our first level CP-net model we translate
it into B specifications as follows:

First an abstract machine (named CPNData) is generated in order to gather
the colour sets together with the transition signatures as defined in the CP-net
model. Colour sets Train and Vss, which are integer enumerations, are translated
into bounded natural constants CPNTrain and CPNVss. Places Free, Position
and Sens become variables in refinement CPNLevel1 because their values evolve
during the execution of the CP-net. In this refinement, by default the variable
typing applies general functions such as sets’ cartesian product and inclusion
(e.g. Position ⊆ CPNTrain × CPNV ss).

Every transition leads to a basic operation defined in machine CPNData with
a typing precondition and a skip substitution, like the example below of operation
moveEven:

Incremental Development of a Safety Critical System 99

/* Operation moveEven in machine CPNData */

moveEven(tt, vv) =
PRE tt ∈ CPNTrain ∧ vv ∈ CPNVss THEN

skip
END

The skip substitution of the basic operations is then refined in CPNLevel1 by
introducing the enabledness guards and the expected actions of the transition.
In the following we give the refinement of operation moveEven in CPNLevel1:

/* Refinement of the skip substitution in CPNLevel1 */

moveEven(tt, vv) =
SELECT

(tt �→ vv) ∈ Position ∧ (vv + 1) ∈ Free ∧ (tt �→ TRUE) ∈ Sens
THEN

Free := (Free − {(vv + 1)}) ∪ {(vv)} ||
Position := (Position − {(tt �→ vv)}) ∪ {(tt �→ vv + 1)}

END ;

Transitions moveOdd and changeSens are translated by applying the same
principles. Regarding the five safety properties, they are manually introduced in
machine CPNLevel1 using the following invariants:

Position ∈ CPNTrain � CPNVss /* Properties (1) and (2) */

Free ∩ ran(Position) = ∅ /* Property (3) */

Free ∪ ran(Position) = CPNVss /* Property (4) */

Sens ∈ CPNTrain → BOOL /* Property (5) */

These invariants restrict the state space defined by the typing predicates pre-
sented above. For example, the typing predicate of relation Position defines all
combinations of CPNTrain and CPNVss couples, while the invariant restricts
these combinations to those where a CPNTrain is linked to one and only one
CPNVss while a CPNVss is linked to at the most one CPNTrain. In our method-
ology, we consider that if the CP-net model is correct, proofs should be done
without any enhancement of the corresponding B specifications. Otherwise, we
decide whether the CP-net model is wrong or not, given the AtelierB feedbacks.
In all cases we do not modify the generated B operations; we either call the inter-
active prover when the proof fails due to a limitation in the automatic prover, or
we correct the CP-net model and translate it again into B. The initial marking
substitutions are introduced without invariant violation:

INITIALISATION
Position :∈ CPNTrain � CPNVss ;
Free := CPNVss − ran(Position) ;
Sens :∈ CPNTrain → BOOL

Based on machines CPNData and CPNLevel1, and these additional invariants,
the AtelierB generated 17 proof obligations and automatically proved 11 amongst
them. The 6 other POs were proved using the interactive prover.

100 A. Idani et al.

4 A Railway Domain-Specific Modeling Language

4.1 Railway Meta-Model

In order to provide a tool for domain experts allowing them to draw models
like that of Fig. 1, we apply model-driven engineering tools for DSML creation
(EMF, Ecore-Tools and Sirius). In MDE, the creation of a DSML starts by
the definition of its meta-model and then for every class in the meta-model a
graphical representation is created. Figure 4 gives the meta-model that we use
in this work and Fig. 5 gives a screenshot of the resulting DSML-tool in which a
model is designed using the proposed graphical representations.

Fig. 4. A railway meta-model

In our meta-model, a railway system is composed of trains (class Train),
track sections called TTD in ERTMS/ETCS 3 (class Trackside) and which are
divided into portions called VSS (class VirtualBlock). The bottom of Fig. 5 draws
an overall railway topology by means of TTD links. Every portion of a given
TTD may be linked to two next and previous portions at the most. In practice,
there are four kinds of portions: track extremity (e.g. VSS11 and VSS62), middle
track (e.g. VSS12), switch (e.g. VSS21 and VSS51) and diamonds. Association
pSetted/nSetted provides the currently selected previous/next portion among
those to which a portion is linked. This is useful especially for switches and
diamonds. For example, the next portions of VSS21 are VSS31 and VSS41, but
the position of the switch sets the currently selected next portion of VSS21 to
VSS31 and hence the selected previous portion of VSS31 is VSS21 but for portion
VSS41 there is no previous selected portion. Portion VSS41 remains then a track
limit until the switch position is changed. Note that relation pSetted/nSetted is
independent from train direction and a track limit is a portion without a selected
next or previous portion.

Class TrackView represents linear views that follow the current next/previous
selections and where every view starts and ends with track limits. For example,

Incremental Development of a Safety Critical System 101

Fig. 5. A railway model (Color figure online)

the topology presented in the bottom of Fig. 5, leads to the two views on the top
of the figure. The first view covers sections TTD1, TTD2 and TTD3 and the sec-
ond view covers the three other sections: TTD4, TTD5 and TTD6. If the switches
position changes, these views are changed consequently. For example, if the
selected next portion of VSS21 is set to VSS41, then the resulting topology would
lead to two different views: one composed of TTD1/TTD2/TTD4/TTD5/TTD6,
and an other view dedicated to TTD3 only.

Trains have a direction (even or odd) and their representation depends on
the set of portions that their head and rear occupy. In the example of Fig. 5
we consider two trains: T1 whose front and rear occupy the same portion (i.e.
VSS21), and T2 that stretches from portion VSS42 to VSS51. A TTD is occupied
when at least one of its portions are occupied. This is represented by the yellow
color in the track views and by the red color in the topology representation. The
green color is used to represent free TTD and VSS in the track view.

4.2 Formal Model

As our intention is to provide domain experts with a DSML-tool with formal
semantics, we apply the Meeduse platform8 that we developed in order to auto-
matically translate a meta-model into an equivalent B specification. The result-
ing formal model gathers the structure of the meta-model (by means of sets,
variables and structural invariants) with a set of basic operations such as con-
structors, getters and setters. For example, we give below the translation of
classes Train and VirtualBlock and one basic operation Train AddFront which
adds a virtual block to the set of virtual blocks occupied by the head of a train.

8 http://vasco.imag.fr/tools/meeduse/.

http://vasco.imag.fr/tools/meeduse/

102 A. Idani et al.

Several other basic operations are generated by the tool like: Train RemoveFront,
Train AddRear, Train RemoveRear. . .

MACHINE Functional
SETS
VIRTUALBLOCK; TRACKSIDE
Direction = {even,odd};

VARIABLES
Train, VirtualBlock, Train direction,
frontOfTrain, rearOfTrain

INVARIANT
Train ⊆ TRAIN
∧ VirtualBlock ∈ VIRTUALBLOCK
∧ frontOfTrain ∈ Train ↔ VirtualBlock
∧ rearOfTrain ∈ Train ↔ VirtualBlock
∧ Train direction ∈ Train → Direction

Train AddFront(aTrain,aFront) =
PRE
aTrain ∈ Train ∧
aFront ∈ VirtualBlock ∧
(aTrain �→ aFront) �∈ frontOfTrain

THEN
frontOfTrain :=
frontOfTrain ∪ {(aTrain �→ aFront)}
END;

The translation of a meta-model into B applies a UML-to-B transformation
technique where a meta-class Class is translated into an abstract set named
CLASS representing possible instances and a variable named Class representing
the set of existing instances such that existing instances belong to the set of
possible instances. An enumeration is translated into a enumerated set (e.g.
Direction). Basic types (e.g. integer, boolean) become B types (Z, Bool,. . .).
Attributes and references lead to functional relations depending on multiplicities.

Machine Functional generated by Meeduse is about 500 lines with 38 basic
operations from which the AtelierB produced 80 proof obligations that were
proved automatically. Proofs associated to this functional specification guar-
antee that the basic operations do not violate the structural properties of the
meta-model such as multiplicities and single-valued and mandatory attributes,
etc. Besides the automatic extraction of a correct by-design functional B spec-
ification, the interest of Meeduse is that it integrates the ProB [14] animator.
Given a model (like that of Fig. 5) Meeduse injects it as valuations in the B
specification and calls ProB in order to compute the list of operations that may
be animated from these valuations. For example, the following initialization is
extracted by Meeduse from our graphical model which leads to an initial state
of the B machine which is conformant with the domain model.

INITIALISATION
Train := {T1, T2} ||
VirtualBlock := {VSS11, VSS12, . . . , VSS62} ||
frontOfTrain := {(T1 �→ VSS21), (T2 �→ VSS42)} ||
rearOfTrain := {(T1 �→ VSS21), (T2 �→ VSS51)} ||
Train direction := {(T1 �→ even), (T2 �→ odd)}

Starting from the initial state, when the user asks Meeduse to animate a B
operation, the tool calls ProB and gets the new variable valuations and then it
translates back these valuations to the graphical model. This technique results in

Incremental Development of a Safety Critical System 103

an automatic visual animation9 of domain models. For example, given the above
initial state, the animation of operation Train AddFront(T1, VSS31) introduces
couple (T1 �→ VSS31) into relation frontOfTrain and then Meeduse modifies the
domain model as presented in Fig. 6 where the head of T1 occupies two virtual
blocks VSS21 and VSS31. Since VSS31 is one of the portions of TTD3, then the
visual representation of TTD3 automatically changes from green to yellow.

Fig. 6. View 1 after animation of Train AddFront(T1, VSS31) (Color figure online)

5 Putting It All Together

Section 3 focused on train behaviours with an abstract Petri-net specification
that guarantees the absence of accidents, and Sect. 4 focused on domain model-
ing of structural aspects of a railway DSML. In this section, we combine both
concerns in order to provide a railway DSML with a proved safe train behaviour.
The B specifications extracted from the meta-model of Fig. 4 represent formal
static semantics of our DSML, and those extracted from a coloured Petri-net
model introduce its operational semantics. In order to merge static and oper-
ational semantics we create machine LinkageV1 which refines CPNLevel1 and
includes machine Functional:

REFINEMENT LinkageV1
REFINES CPNLevel1
INCLUDES Functional
VARIABLES

trainMapping, vssMapping, view
INVARIANT

trainMapping ∈ Train �� CPNTrain
∧ vssMapping ∈ VirtualBlock �� CPNVss
∧ view ∈ TrackView

The refinement guarantees the preservation of the safety invariants of CPN-
Level1 and the inclusion allows to redefine the Petri-net transitions and data
using the functional variables of the DSML. In this machine the linkage between
the DSML and the CP-net model is done via functions trainMapping and vssMap-
ping. They respectively map variables Train and VirtualBlock issued from the
9 For place reason we do not develop the animation technique in this paper. Demon-

stration videos of Meeduse with graphical and textual DSL animation can be found
at: http://vasco.imag.fr/tools/meeduse/.

http://vasco.imag.fr/tools/meeduse/

104 A. Idani et al.

meta-model to sets CPNTrain and CPNVss issued from the CP-net. In our app-
roach every view in the DSML is controlled by a CP-net since the CP-net defines
the VSS set by a sequence of integers. Then, the mapping functions are applied
to a given view (view ∈ TrackView). For example, the vssMapping relation is
computed in the initialisation of LinkageV1 as:

LET mapVss BE mapVss = ran(({view} � blocks −1 ; theVSSs −1)) IN
ANY map WHERE

map ∈ mapVss � CPNVss ∧
∀ vss . (vss ∈ mapVss ∧ nSetted[{vss}] �= ∅

⇒ nSetted(vss) ∈ dom(map) ∧ map(nSetted(vss)) = map(vss) + 1)
THEN

vssMapping := map
END

END

Note that blocks and theVSSs represent respectively association blocks between
classes TrackView and Trackside, and association vss between classes Trackside
and VirtualBlock. Local variable mapVss defined by: ran((view � blocks−1 ;
theVSSs−1)) extracts the set of VSS for a given view and the mapping is a
total injection (�) that maps every VSS in this view to a unique value from set
CPNVss. This mapping is done under the condition that if a VSS is not a track
extremity (nSetted[vss] �= ∅) then its next selected VSS is mapped (nSetted(vss)
∈ dom(map)) and the associated CP-net value is equal to the VSS value plus
one. We similarly compute the trainMapping relation but under the condition
that only trains whose head and rear occupy the same VSS are mapped. In this
sense, from the example of Fig. 5 only the first view can be mapped and then
controlled by our first level CP-net model.

Given the mapping relations, the safety invariants of CPNLevel1 are rewrit-
ten by means of linkage invariants ensuring the relationship between the vari-
ous B specifications. For example, invariant Free ∩ ran(Position) = ∅ used for
Property (3) becomes:

(frontOfTrain ∪ rearOfTrain)−1[vssMapping−1[Free]] = ∅
which means that for every free VSS in the CP-net model, the corresponding
virtual block in the DSML does not contain any train head or rear. Having the
linkage invariants, operation moveEven(tt, vv) in the linkage machine is applied
to a train mapped to tt, whose head and rear occupy a VSS mapped to vv,
and whose direction is even and such that the next VSS which is mapped to
vv + 1 is free. Actions of moveEven call basic functional operations issued from
machine Functional. They simply remove the head and the rear of the train from
vv and put them on vv + 1. In the following we give the refinement of operation
moveEven in LinkageV1:

Incremental Development of a Safety Critical System 105

moveEven(tt, vv) =
LET train, vss, nextVss BE

train = trainMapping−1(tt)
∧ vss = vssMapping−1(vv)
∧ nextVss = vssMapping−1(vv + 1)

IN
SELECT

(train �→ vss) ∈ frontOfTrain ∩ rearOfTrain
∧ nextVss �∈ ran(frontOfTrain ∪ rearOfTrain)
∧ Train direction(train) = even

THEN
Train RemoveFront(train, vss); Train AddFront(train, nextVss) ;
Train RemoveRear(train, vss); Train AddRear(train, nextVss)

END
END ;

At this stage we are able to do verification and validation. Indeed, verification
is done thanks to the 41 POs that were proved by the AtelierB for machine
LinkageV1 and which mean that the safety properties (those of CPNLevel1) as
well as the structural properties (those of Functional) are preserved. Regarding
validation, it is done by railway experts using the animation facility of Meeduse.
As we showed previously, Meeduse animation of B operations that impact the
functional model automatically animates the corresponding graphical model.

5.1 Incremental Development of Operational Semantics

CPNLevel1 describes simple train movements without train integrity nor move-
ment authorities which are basic concepts of ERTMS/ETCS 3. This specifica-
tion guarantees the absence of accidents and defines a first abstraction level
of our DSML operational semantics. In this section, we show how operational
semantics, can be incrementally defined in order to first introduce movement
authorities and then the track release mechanism when the train integrity is
confirmed.

Machines CPNLevel1, Functional and LinkageV1 of Fig, 2 were discussed in the
previous sections. Machines CPNLevel2 and CPNLevel3 are extracted from addi-
tional CP-net models and apply a refinement technique where every refinement
level introduces new safety properties without violating the properties of the
previous levels. In this section we mainly discuss CP-net refinements. Machines
LinkageV2 and LinkageV3 will not be discussed since they are defined via the same
principles as LinkageV1. They allow the domain expert to animate the domain
model for every CP-net refinement and validate the observed behaviours. Thanks
to these machines, the domain expert is involved all along the development pro-
cess.

Level 2: Authorized Train Movements

The assumption made in the first CP-net level, considering that a train moves to
the next free virtual section and immediately leaves its current section, is quite

106 A. Idani et al.

simplistic but sufficient in order to model an abstract accident-free behaviour.
In this second level we introduce a movement authority mechanism, in order to
construct routes to which trains are allowed to move. The movement authority,
in the ERTMS/ETCS, is used without visual signals or marker boards. It is sent
by the RBC system to a given train via GSM-R.

Our objective is to prove that authorized train movements, no matter how
authorizations are assigned to trains, preserve the accident-free behaviour of the
previous level. Figure 7 is a CP-net model which includes authorized movements
and where we focus on the refinement of transition moveEven and state Free.
In addition to transition moveOdd which is analog to moveEven, and transition
changeSens which is kept unchanged, this model introduces transition authorize
which represents the actions executed by a train when it receives a movement
authority signal from the RBC.

Train

m
ov
eE

ve
n

(t, v)

(t, v++)

(t, true)(t, true)

(v)

(t, v++)

(Train × Bool)

(v)

(t, v)

(t)

(t)

Free

authorize

Waiting

(Train × Vss)

(Vss)
Position
(Train × Vss)

Sens
Route

(Train)

Fig. 7. CP-net for authorized train movements

In this CP-net model, place Free is refined into two places: Waiting and Route.
When a train moves away from a given Vss, the Vss is freed but cannot be used
before being reserved. The Vss first enters in place Waiting and then transi-
tion authorize assigns it to a given train and adds the corresponding movement
authority to place Route. The extraction of B specifications follows the same
principles as discussed for Level 1, and produces the variables with their typing
invariants showed below:

REFINEMENT CPNLevel2
REFINES CPNLevel1
VARIABLES
Position, Sens, Waiting, Route

INVARIANT
/* Typing invariant generated from CP-net model */

Waiting ⊆ CPNVss ∧ Route ⊆ CPNTrain × CPNVss
/* Refinement invariant */

Waiting ∪ ran(Route) = Free

Incremental Development of a Safety Critical System 107

/* Refinement of moveEven with authorized movements */

moveEven(tt,vv) =
SELECT

(tt �→ vv) ∈ Position ∧ (tt �→ vv + 1) ∈ Route ∧ (tt �→ TRUE) ∈ Sens
THEN

Position := (Position − {(tt �→ vv)}) ∪ {(tt �→ vv + 1)} ||
Route := Route − {(tt �→ vv + 1)} ||
Waiting := Waiting ∪ {vv}

END ;

The refinement invariant means that the set of tokens of place Free are dis-
tributed among places Waiting and Route, and then variable Free is replaced
by variables Waiting and Route which are used in the refinement of transition
moveEven. The additional safety invariants of this second CP-net level are: (6.) a
VSS cannot be waiting and at the same time assigned to a movement authority;
and (7.) a movement authority cannot be shared by several trains.

Waiting ∩ ran(Route) = ∅ /* Property (6) */

Route −1 ∈ CPNVss �→ CPNTrain /* Property (7) */

Given CP-net of Level 2 and the corresponding safety properties, as well as
the refinement invariant, the AtelierB prover generated 32 POs, such that 25
were proved automatically and 7 interactively, which means that CP-net Level
2 guarantees its own properties and also those of CP-net Level 1.

Level 3: Movements with Integrity Confirmation

In the third refinement level we consider a more realistic train representation
than that developed in the two previous levels where a train occupies only one
VSS. In this refinement, a train is seen as a logical entity defined by the set of
VSS that it occupies: its head (place Position), a set of VSS not yet released
behind its head (place Wagon) and the safe rear end (place Tail) which is in
our case one additional VSS defining the minimal distance between two trains.
Thus, a train occupies at least two virtual sections: one for its head and one
behind it. When a train moves, its head is advanced from its current VSS v to
the next VSS v++, and then v is not freed but a virtual wagon is created over it.
Indeed, in ERTMS/ETCS 3, the train must confirm its integrity (i.e. it did not
lose wagons) before releasing its safe rear end which advances its tail by one VSS
and removes the corresponding virtual wagon. Figure 8 provides the refinement of
CP-net level 2 introducing integrity confirmation together with the VSS release
mechanism. This model introduces places Wagon, Tail and Ready as a refinement
of place Waiting, and transition confirmEven which is fired when a train integrity
is confirmed. A released VSS becomes ready for reservation and enters in place
Ready. Given the B specifications issued from this third level and the associated
safety invariants, the AtelierB produced 62 POs and automatically proved 41
among them. The 21 other POs were proved manually.

108 A. Idani et al.

Tail

m
ov
eE

ve
n

authorize (Train)

Train

(Train × Bool)

Sens (Vss)

Ready

Position
(Train × Vss)

confirmEven

(t, v)

(t, true)

(t, v) (t)

(t)

(t, v++)

Waiting

(v)

(Train × Vss)

Route

(Train × Vss)

Wagon
(Train × Vss)

(t, v)(t, v++)

(t, true)
(t, true)

(t, true)

(v)

(t, v++)

(t, v++)

(t, v)

Fig. 8. CP-net for authorized movements and integrity confirmation

6 Conclusion

This paper presented an incremental formal development process that involves
domain experts during the modeling activities. First, we use coloured Petri-nets
because their graphical notations are more readable than textual mathematical
notations. Then, we use DSMLs in order to assist domain experts for the design
of the domain models. CP-nets and DSMLs are convenient for validation because
they both favour communication complementing each other by focusing on par-
ticular concerns: behavioural concerns for CP-nets, and structural concerns for
DSMLs. In order to mix the various models we apply the B method which allows
a proof-based verification thanks to the AtelierB prover, and domain model ani-
mation thanks to Meeduse and ProB. Our approach was successfully applied to
a railway safety critical system, the ERTMS/ETCS 3 train automation solution
and other case studies (automatic car light regulator, parking-lot controller,. . .).

Several perspectives araise from this work, especially we plan to develop an
automated extraction technique of sub-parts of the linkage machines. In this
work, these machines were introduced manually which is still somehow difficult
and time consuming when the CP-net scales up such as our third CP-net refine-
ment. We also plan an empirical study with railway experts in order to validate
the usability of our tool-set. The validation is currently limited to academic
railway experts of the NExTRegio project.

References

1. Abrial, J.-R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Bousse, E., Leroy, D., Combemale, B., Wimmer, M., Baudry, B.: Omniscient debug-
ging for executable DSLs. J. Syst. Softw. 137, 261–288 (2018)

Incremental Development of a Safety Critical System 109

3. Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.): ABZ 2018. LNCS, vol.
10817. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4

4. Deantoni, J.: Modeling the behavioral semantics of heterogeneous languages and
their coordination. In: 2016 Architecture-Centric Virtual Integration (ACVI), pp.
12–18, April 2016

5. EEIG ERTMS USERS GROUP ERA, UNISIG. System Requirements Specifi-
cation, SUBSET-026. Technical report, European Railway Agency, Version 3.6.0
(2016)

6. Gaudel, M.-C.: Advantages and limits of formal approaches for ultra-high depend-
ability. In: Randell, B., Laprie, J.C., Kopetz, H., Littlewood, B. (eds.) Predictably
Dependable Computing Systems. ESPRIT Basic Research Series, pp. 241–251.
Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-79789-7 14

7. Gehlot, V., Nigro, C.: An introduction to systems modeling and simulation with
colored petri nets. In: Proceedings of the 2010 Winter Simulation Conference, WSC
2010, USA, 5–8 December 2010, pp. 104–118 (2010)

8. Hagalisletto, A.M., Bjørk, J., Yu, I.C., Enger, P.: Constructing and refining large-
scale railway models represented by petri nets. IEEE Trans. Syst. Man Cybern.
Part C 37(4), 444–460 (2007)

9. James, P., Knapp, A., Mossakowski, T., Roggenbach, M.: Designing domain spe-
cific languages – a craftsman’s approach for the railway domain using Casl. In:
Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 178–194.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37635-1 11

10. Janczura, C.: Modelling and analysis of railway network control logic using coloured
Petri Nets. Ph.D. thesis. University of South Australia (1998)

11. Jensen, K.: Coloured Petri Nets and the invariant-method. Theor. Comput. Sci.
14, 317–336 (1981)

12. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, vol. 1. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-662-03241-
1

13. Lecomte, T.: Applying a formal method in industry: a 15-year trajectory. In:
Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp.
26–34. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04570-7 3

14. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

15. Mayerhofer, T., Langer, P., Wimmer, M., Kappel, G.: xMOF: executable DSMLs
based on fUML. In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS,
vol. 8225, pp. 56–75. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
02654-1 4

16. Petri, C.-A.: Fundamentals of a theory of asynchronous information flow. In: IFIP
Congress, pp. 386–390 (1962)

17. Schn, W., Larraufie, G., Mons, G., Por, J.: Railway signalling and automation, vol.
3. La vie du rail (2014)

18. Svendsen, A., Haugen, Ø., Møller-Pedersen, B.: Synthesizing software models: gen-
erating train station models automatically. In: Ober, I., Ober, I. (eds.) SDL 2011.
LNCS, vol. 7083, pp. 38–53. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25264-8 5

19. Vu, L.H., Haxthausen, A., Peleska, J.: A domain-specific language for railway inter-
locking systems. In: 10th Symposium on Formal Methods for Automation and
Safety in Railway and Automotive Systems, pp. 200–209 (2014)

https://doi.org/10.1007/978-3-319-91271-4
https://doi.org/10.1007/978-3-642-79789-7_14
https://doi.org/10.1007/978-3-642-37635-1_11
https://doi.org/10.1007/978-3-662-03241-1
https://doi.org/10.1007/978-3-662-03241-1
https://doi.org/10.1007/978-3-642-04570-7_3
https://doi.org/10.1007/978-3-319-02654-1_4
https://doi.org/10.1007/978-3-319-02654-1_4
https://doi.org/10.1007/978-3-642-25264-8_5
https://doi.org/10.1007/978-3-642-25264-8_5

	Incremental Development of a Safety Critical System Combining formal Methods and DSMLs
	1 Introduction
	2 Application Context
	3 Coloured Petri-Nets: From Modeling to Proofs
	3.1 Main Concepts
	3.2 Level 1: Simple Train Movements
	3.3 Extraction of B Specifications

	4 A Railway Domain-Specific Modeling Language
	4.1 Railway Meta-Model
	4.2 Formal Model

	5 Putting It All Together
	5.1 Incremental Development of Operational Semantics

	6 Conclusion
	References

