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Abstract. In industrial model-based development (MBD) frameworks,
requirements are typically specified informally using textual descriptions.
To enable the application of formal methods, these specifications need
to be formalized in the input languages of all formal tools that should
be applied to analyse the models at different development levels. In this
paper we propose a unified approach for the computer-assisted formal
specification of requirements and their fully automated translation into
the specification languages of different verification tools. We consider a
two-stage MBD scenario where first Simulink models are developed from
which executable code is generated automatically. We (i) propose a spec-
ification language and a prototypical tool for the formal but still textual
specification of requirements, (ii) show how these requirements can be
translated automatically into the input languages of Simulink Design
Verifier for verification of Simulink models and BTC EmbeddedValida-
tor for source code verification, and (iii) show how our unified framework
enables besides automated formal verification also the automated gener-
ation of test cases.

1 Introduction

In the automotive industry, software units for controllers are often implemen-
ted using model-based development (MBD). The industry standard ISO26262
recommends formal verification to ensure that such safety-critical software is
implemented in accordance with the functional requirements. The work of our
previous two papers [2,20] and this paper not only applies to safety critical
automotive software but also to quality management (QM) or non-safety critical
automotive software. In fact, we worked only on Ford QM software features
in our papers. To optimally exploit recent academic developments as well as
the capabilities of state-of-the-art verification tools, Ford Motor Company and
RWTH Aachen University initiated an alliance research project to analyze how
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formal verification techniques for discrete-time systems can be embedded into
Ford’s model-based controller development framework, and to experimentally
test their feasibility for industrial-scale C code controllers for mass production.

In our previous works [2,20], we considered an MBD process starting with
the development of Simulink controller models and using Simulink’s code gener-
ation functionality to derive C code for software units. For formal verification,
we analyzed the feasibility of both Simulink Design Verifier (SLDV ) for Simulink
models as well as BTC EmbeddedPlatform verification tool for the generated C
code. Our papers [2,20] present our observations and give recommendations for
requirement engineers, model developers and tool vendors how they can con-
tribute to a formal verification process that can be smoothly integrated into
MBD.

The most serious pragmatic obstacles that we identified for the integration
of formal methods are related to the requirement specifications. The requirement
specifications were given informally in natural language. All the considered nat-
ural language requirements described time-bounded linear temporal logic (LTL)
properties, which we manually formalized for both the SLDV and the BTC verifi-
cation tools. During the formalization we detected ambiguity, incompleteness or
inconsistency for roughly half of the textual requirements.

The manual formalizations needed discussions with requirement engineers
to clarify and correct these flaws. However, a high degree of automation is a
prerequisite for mass production and the integration of formal methods into
the established MBD process at Ford. Automation allows the usage of formal
verification within a development team of engineers with little knowledge of for-
mal verification. Ideally, verification is automatically triggered whenever changes
have been made to either the requirements, the Simulink model, or the used veri-
fication tools. Verification results can then be stored and compared with previous
runs, making deviations from previous results easily detectable. All deviations
can then be reported to a person with a strong background in formal methods
for thorough investigation.

We also encountered problems rooted in the fact that the formalizations for
the two different formal tools were done independently due to syntactic dif-
ferences: in Simulink, requirements are themselves Simulink models that need
to be embedded into the models that should satisfy them, whereas in BTC the
requirements can be specified either using a graphical interface for pattern-based
specification or directly in an XML-based file input format.

The independence of multiple requirement formalizations has several disad-
vantages. First and foremost, basically the same work is done multiple times,
using different input languages. In addition, the formalizations have the risk to
be slightly different. This may result in potentially incompatible analysis results
requiring a deep and time-consuming analysis. When the formalizations are done
independently, they cost additional resources in time and expert knowledge, rais-
ing development cost.

In addition, typically several programming and modeling languages are used
within a company such as Ford. The preference of these languages changes over
time and each language has its own analyses tools. Different teams within a
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company like Ford may use different tools for the same purpose. The fact that
almost every formal verification tool has its unique input language is a big obsta-
cle to introduce formal methods into versatile companies like Ford. A common
requirement language for all formal verification tools may help to take advantage
of the strengths of different tools.

To diminish these problems, this paper presents a common formal require-
ment specification framework . We focus on Simulink and C code verification in
the automotive domain, but our framework is naturally extensible to further lan-
guages and tools. Concretely, the paper makes the following main contributions:

1. We identify a small fragment of LTL as a formal specification language that is
expressive enough for the formalization of typical requirements in the context
of MBD in the automotive sector .

2. We describe our tool that was designed as a prototype for use inside this
research project as a proof of concept. Similar to BTC EmbeddedSpecifier it
assists users who are not experts in formal methods to specify unambiguous
and complete formal requirements using textual descriptions according to a
pattern-based syntax.

3. We propose an approach for the fully automated translation of the above-
specified formal requirements into Simulink models that can be embedded in
SLDV verification processes.

4. We describe how to automatically generate BTC models from those formal
requirements for source code verification.

5. We show how to automatically generate test objectives from formal require-
ments that can be used for automated test-case generation.

Textual output
of requirements

Specification

- Simulink verification
- Source code verification

Verification

Test case generation
within Simulink

Testing

Pattern-based
specification

tool

Requirements

Model data
(optional)

Fig. 1. The structure of our unified specification
and analysis framework.

Our framework is illus-
trated in Fig. 1. While compu-
ter-assisted approaches for for-
mal requirement specification
have been proposed (see Sect. 2),
we believe that our app-
roach supporting direct anal-
ysis using multiple tools at
different development levels
is novel, especially the auto-
mated specification export to
Simulink and the generation of
test-cases.

2 Related Work

Patterns for specifying properties in formal verification were introduced by
Dwyer et al. [7]. Cheng et al. has extended this work to real-time properties
[14] and Grunske introduced a pattern system for probabilistic properties [10].
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Autili et al. [1] recently presented a unified pattern catalog that combines known
patterns for qualitative, real-time and probabilistic properties. Then the work
has been extended by some new patterns. Our works relies on the pattern cata-
logs from [1,7]. Inspired by our experience with Ford [2,20], we selected a set of
patterns that covers more than 90% of our investigated automotive requirements.

Several tools are available for pattern-based specifications. The PSPWizard
[17] and the SESAMM Specifier [8] provide for a given pattern library export
functionalities to a formal logic or to a textual representation. The SESAMM
specifier has been integrated into an industrial toolchain in the automotive
domain. The tool PASS (Property ASSistant) [21] guides the user by a set
of questions towards a suitable pattern from which a µ-calculus formula and a
UML sequence diagram can be generated. The tool PROPEL [22] represents pat-
terns in natural language and by finite-state automata. The COMPASS toolset
[6] supports the original patterns by Dwyer, real-time- and probabilistic pat-
terns. While the previous mentioned tools use the pattern catalog from [1,6,7],
the work [16] presents different patterns and a tool for the requirement specifi-
cation and automated translation to a formal language. The tool DDPSL [11]
goes a step further by allowing the user to fill the templates in a pattern with
assumptions on the variables using a defined set of logical and temporal opera-
tors. The ReSA tool [18] allows an automated consistency check of requirements
on multiple abstraction levels using SAT checking. The commercial tool BTC

EmbeddedPlatform1 also offers the possibility to formalize textual requirements
in a pattern-based language. Former versions of the tool support a pattern cat-
alog but the latest release uses the universal pattern [23] that offers a graphical
specification for trigger-action based requirements. Our tool focuses on the key
patterns but allows for automated generation of test cases, as well as properties
for Simulink model and source code verification.

Besides the tools for pattern-based specifications, several experience reports
on using specification patterns have been published. In [4], a case study in the
field of service-based applications is presented. [24] reports on an approach using
pattern-based specifications in the area of work flow modeling. Bosch company
investigated the suitability of the pattern catalog from [14] for 289 informal
behavioral requirements from their automotive projects. A report on the inte-
gration of a pattern-based specification tool in an industrial (automotive) tool
chain is given in [8,9]. A restricted set of patterns was used for the formal spec-
ifications within the PICASSOS project [5]. A system for modeling and testing
flight critical software was presented in [19], but their focus lies on test-case
generation and modeling structural aspects of the software system, whereas our
focus is on the automated translation of requirements.

3 Pattern-Based Requirement Specification Language

Requirement documents are commonplace in the automotive industry and are
usually written in natural language by a large number of stakeholders. These
1 https://www.btc-es.de/en/products/btc-embeddedplatform/.

https://www.btc-es.de/en/products/btc-embeddedplatform/
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Table 1. Pattern distributions for three different controller models.

Pattern LSC DSR ECC

Invariant 35 85.4% 50 92.6% 80 97.6%

Time-bounded response (exact bound) 5 12.2% 4 7.4% 2 2.4%

Event-bounded response 1 2.4% 0 0.0% 0 0.0%

can include engineers and other people without a strong background in formal
methods, which may lead to ambiguous requirements. Specification patterns may
assist engineers in writing complete and unambiguous textual requirements. A
pattern defines the behavior that is described by a requirement and uses tem-
plates for additional information like the specification of events and durations.
In contrast to most existing approaches, events are specified by a constrained
grammar, and higher-order operators, e.g. hysteresis2, are supported to enable
specifying new operations on events.

Goals. The pattern-based specification language should produce human read-
able specifications. A formal semantics avoids ambiguities and allows the auto-
mated generation of tool-specific requirement specifications. Our aim is to keep
the pattern language simple such that no expert knowledge is needed and the
learning curve for requirement engineers is low. We believe that a limited number
of simple patterns reduces incorrect choices of patterns or scopes when writing
requirements while still covering a high percentage of requirements.

WhyYet Another Specification Language? Tools like BTC EmbeddedPlatform

come with their own, existing, pattern-based specification language and there
are existing tools for pattern-based specification. Nonetheless we decided that
creating our own language and tool was the better choice. A key difference from
many established pattern-based specification languages is that we also require
the events to be specified using a constrained grammar, enforcing the events to
be formalizable properties. This, in turn, allows us to immediately export the
entire property to a supported format without the need for any further user
interaction.

Adding new features or constructs like higher-order operators (e.g. hysteresis)
is easy to achieve, requiring only very modular changes to the grammar and
the back-end exporter classes. We want to be able to create our own pool of
higher-order operators for event specification that can be used to ease the burden
of formalization for the engineers. Our own language allowed us to do rapid
prototyping while coming up with new ideas, without the burden of getting all
stakeholders of an established language on board beforehand.

Syntax. We used [1,7,14] as a starting point to design our pattern-based require-
ment specification language L, whose grammar is shown in Fig. 2; for more details
see also Appendix A.
2 Hysteresis is a functionality often used to prevent rapid toggling when observing an

input signal against some threshold by introducing an upper and a lower delta.
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specification: scope pattern;

scope: initially | globally;

pattern: invariant | response;

initially: ’At system start, ’;

globally: ’At each time step, ’;

invariant: ’[ ’ event ’] holds. ’;

response: ’if [ ’ event ’] has been valid for [ ’ duration ’], ’

’then in response, after a delay of [ ’ duration ’], ’

’[ ’ event ’] is valid for [ ’ duration ’]. ’;

event: identifier | event AND event | ...| term ≤ term | ...

term: identifier | term + term |...

duration: uint unit;

uint: [1..9] [0..9]*;

unit: ’simulation steps ’ | ’milliseconds ’ | ’seconds ’

| ’minutes ’ | ’hours ’;

Fig. 2. Syntax of our pattern-based requirement specification language.

Requirement specifications consist of a scope followed by a pattern. We start
with a limited set of scopes and patterns that can be extended later to cover fur-
ther specification types. However, these limited sets were sufficient to formalize
more than 90% of the requirements in all three case studies (Low Speed Con-
trol for Parking (LSC), Driveline State Request (DSR) and E-Clutch Control
(ECC)) we considered in [2,20] (see Table 1). Other internal case studies from
Ford show similar results.

Currently two scopes are supported: the initially scope is used to express
that a property should hold at system start, i.e. at time step 0 of a simulation
before any operations have been performed, while the globally scope expresses
that a property should hold at each time step of an execution, but starting after
the first execution. In [1,7,14] there are further scopes like before R, after
Q, between Q and R and after Q until R that can be considered for future
inclusion.

We support two patterns for defining which property is required to hold for
a given scope. The invariant pattern allows to state that a certain event holds
(at each time step within the specified scope), and covers both the absence
and the universality patterns from [7] if the negation of events is supported.
The response pattern specifies causalities between two events: the continuous
validity of a trigger event for a given trigger duration implies that after a fixed
separative duration the response event holds continuously for a given response
duration.

The events in the above patterns are built from identifiers (signals, con-
stants and (calibration) parameters) using a set of functions and operators.
We support those operators and functions that were used in our case studies,
including the Boolean operators AND, OR, NOT and IMPLIES, the relational
operators <, ≤, >, ≥ and =, the arithmetic operators +, −, · and /, absolute
value, minimum, maximum, functions for bit extraction (bit x of variable y) and
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scopes: initially pattern = pattern

globally pattern = pattern

patterns: [e] holds. = e
if [eP ] has been valid for [dP ], then in response, after a delay of [d],
[eQ] is valid for [dQ].

= [≤ dP ] eP
[= dP + d ] [≤ dQ ] eQ

events: identifier = identifier . . .
e1 AND e2 = e1 e2 . . .
t1 ≤ t2 = t1 ≤ t2 . . .

durations: n seconds = 1000·n
DStep

. . .

Fig. 3. Semantics of our pattern-based requirement specification language.

time delays (value of x n steps ago). The complete ANTLR grammar for events is
presented in AppendixA. We plan in future work to incorporate more advanced
operators like state change (“the value of [param] transitions from [const1] to
[const2]”), different variants of hysteresis functions, saturation, rate limiter and
ramping up functions and lookup tables. Note that though custom operators and
functions allow users a more efficient specification, special operators (e.g. lookup
tables) might not be realizable in all specification languages for which export is
provided.

Semantics. We define the semantics of requirement specifications using linear
temporal logic with quantitative temporal operators to express time durations,
that is MTL [15]. The main semantical components are shown in Fig. 3 using
only future temporal modalities (straightforward and therefore not listed in Fig. 3
are the semantics for events and durations, see AppendixA for a complete def-
inition). We use DStep to denote the step-size, here in milliseconds. We sup-
port durations that are multiples of DStep. An equivalent semantics using past
temporal modalities is given in AppendixA. The difference in terms of a time-
shift between the formulations using past (resp. future) operators is illustrated
in Fig. 4. The two equivalent semantics support the export of a pattern-based
specification into different specification languages. For example the specification
language of the analysis tool SLDV only supports past temporal operators.

4 Pattern-Based Requirement Specification Tool

We have implemented a pattern-based specification tool as a prototype for use
inside this research project to support requirement engineers in writing unam-
biguous and complete textual requirements. Our focus was to create a modular
tool that is easy to learn and extendible, if in the future a larger set of scopes,
patterns or operators needs to be supported.

A user can either import signals, calibratables and constants from a file,
or create, change and delete them manually. Calibratable parameters remain
constant during software execution but can be adjusted before the execution for
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Trigger P
dP

Delay
d

Response Q
dQ

past temporal operators

+ time-shift by dP + d+ dQ

Trigger P
dP

Delay
d

Response Q
dQ

future temporal operators

Fig. 4. Evaluation of a response pattern with past or future operators. The present is
represented by the red tick on the timeline. (Color figure online)

Fig. 5. User interface of our pattern-based specification tool.

tuning or selecting the possible functionalities. Captured data includes a name,
description, minimum and maximum values, dimensions, a value, the data type
and the variable type (signal, calibratable or constant). With the information of
available variables readily available, the tool checks specified events for whether
all referenced variables actually exist.

The current version of the tool provides export functionality for a selected
requirement or for all of them. Export formats are textual (.txt), SLDV (.m),
BTC (.spec) and C (.c) specifications. The last one is compatible with the
SV-COMP standard [3] and can be used for formal verification with e.g. the
Ultimate Automizer [12].

The requirement specification panel in Fig. 5 is the main panel of our tool.
A scope and a pattern must be selected for the requirement. A textual transla-
tion of the scope and pattern is given as well as a visualization that shows the
time steps where the chosen pattern is evaluated, see Fig. 5. Events are built

https://sv-comp.sosy-lab.org/
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&tool=automizer
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using operators, functions, signals, constants and calibration parameters. For
each event, a duration and a time unit can be specified. Additionally, for pat-
terns with more than one event, a time delay between events can be specified,
again together with a time unit.

If the pattern-based specification is incomplete or if it contains specification
errors, the lower part of the specification panel provides the list of errors and
warnings. When all issues are resolved, a textual formal specification is generated
from the specification. The modular set-up of the tool allows to add further
exporters, e.g. to generate specification in a logic like MTL in a straightforward
manner.

Our prototypical implementation supports the functions abs(param),
min(param1, param2), max(param1, param2), last(param), last(param,
steps) and extractBit(index, param). For an explanation see AppendixA.
Parenthesis expressions can be built using (param) and the basic boolean oper-
ators not, and, or and implication are provided.

5 Requirement Specification Export to Verification Tools

5.1 Export to SLDV

A formal pattern specification is exported to Simulink in the form of a Matlab
script. This script generates a specification block inside a model on the currently
selected hierarchy level. For verification on model-level, the topmost level of a
model should be selected, whereas for verification on subsystem-level the topmost
level of the subsystem should be selected. To implement the semantics of L in
Simulink, we use a custom-build, modular and interchangeable block library and
existing Simulink logic blocks.

The following requirement is used as a running example to illustrate the
various steps:

Example 1. At each time step if [(((signal A is equal to TRUE) and ((not
signal B) is equal to constant A)) and ((the absolute value of signal C) is
greater than constant B)) and (signal D is less than constant C)] has been
valid for [50 ms], then in response, after a delay of [0 steps], [signal E is equal
to TRUE] is valid for [1 step].

To support the requirement specification for SLDV, we implemented a Simulink
library with building blocks for all elements of our requirement specification lan-
guage. The library provides sub-libraries for the specification of scopes, patterns
and events.

Verification Subsystem. Figure 6 shows the topmost generated block, a verifi-
cation subsystem. Its input are all input and output signals of the Simulink model
that are used by the generated requirement specification. The content of veri-
fication subsystems is considered during formal verification but ignored during
code generation and is not part of the generated code. The top-level verification
subsystem contains a separate verification subsystem for each requirement.
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signal A

signal B

signal C

signal D

signal E

Verification Subsystem

×

[signal A]

[signal B]

[signal C]

[signal D]

[signal E]

Fig. 6. A sample verification subsystem block.

signal A

signal B

signal C

signal D

Trigger

signal E

Response

[signal A]

[signal B]

[signal C]

[signal D]

[signal E]

Trigger P

Response Q

Result

Response Pattern

Pattern

Globally

Fig. 7. The responseTbEb pattern of the verification subsystem in Fig. 6.

The verification subsystem subsumes the implementation of the actual
requirements, i.e. encoding the expected functional behavior, by separating
it into parts: Transformations on inputs, and implementing timed behavioral
aspects. A requirement specification consists of three parts: a set of events, a
pattern and a scope; each is represented by distinct blocks in the library. Figure 7
shows an example requirement specification that consists of a globally scope,
a response pattern and two events.

Scopes. A scope block defines the time steps during which a pattern needs to be
evaluated. The pattern result is a Boolean input parameter. At each simulation
step, either the pattern result or true (if the pattern result needs not to be
evaluated at the current time step) is the input of a proof objective. During
formal verification, SLDV analyzes this proof objective. A requirement is violated
if the input of a proof objective can be false at any simulation step.

The initially scope evaluates the pattern result only at system start, while
the globally scope evaluates the pattern result at each time step. Figure 8(a)
and (b) show the implementations of scopes globally and initially, respec-
tively. The delay block is initialized with the value 1, while all subsequent output
values will be 0. The time shift (see Sect. 3) is realized by the Detector block.

Patterns. A pattern receives the Boolean signals from the events as inputs along
with the time duration and delays between events specified as mask parameters
of the pattern. A pattern block ensures the correct order of events and handles
timing aspects like event durations and delays between events. Simulink blocks
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A B

Z−1

Signal Delay
Detector

In Out0

Constant

1
Pattern
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(a) Scope initially

1 P

(b) Scope globally

Fig. 8. Proof objectives for the scopes initially and globally.

for time durations and delays are provided by our Simulink specification library.
The output of a pattern block is again a Boolean signal. In Fig. 7, the blocks
Trigger and Response contain the part of signal transformation, whereas the block
labeled Response Pattern represents the details of the duration- and delay checks,
as shown in Fig. 9. Inside this subsystem block, the event order (trigger before
response) is established together with the specified time delay between the two
events.

A

B

Implies

A B

Event Timed Event

Delay

Event Timed Event

Duration Check

Event Timed Event

Duration Check

1
Trigger P

2
Response Q

1
Result

Fig. 9. The implementation of the Trigger/Response pattern.

In our example, the trigger has to be true for 50 ms. This duration is checked
by the Duration Check block which returns a Boolean true iff its input evaluated
to true for a given number of time steps. A delay block is then used to account for
the response duration and a possible fixed delay between trigger and response.

Events. Each event is specified in its subsystem. The event subsystems are
connected with the input signals of the verification subsystem using From
blocks. An event is built using the blocks provided by our Simulink specifi-
cation library. These building blocks must be connected in accordance with the
rules of our event grammar. The output of an event specification is a Boolean
signal. Figure 10 shows the necessary signal transformations for the trigger of
the example requirement.

Connection to the Simulink Model. After the automated insertion of the
verification subsystem at a user-chosen level in the model, the inputs of the
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a < b
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And
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Fig. 10. The logic of the trigger condition of the example requirement.

verification system need to be connected to the corresponding signals in the
model. Because of possible data dependency issues, we use global data store
blocks for accessing the signals. For selecting the source signal, we traverse the
model in a hierarchical approach and try to find the first match of a named signal
matching the one being looked for. A data store write is then inserted into the
model at the matched location, allowing us to generate the corresponding global
data store read block next to our verification subsystem.

5.2 Export to BTC EmbeddedPlatform

We support the export of formalized requirements to BTC’s input format, so-
called SPEC files. They contain an XML-based structured representation of the
requirements and their patterns. Small transformations are applied during export
to match BTC’s pattern semantics. We consider the time step 0 to be the first time
step in the initially scope. This means that we start to evaluate the pattern
directly after initialization, i.e. before the first computation step. In contrast,
BTC starts the evaluation after the first computation step. It is not possible to
check initial variable valuations in BTC, therefore, an error is presented when
exporting a requirement with scope initially to BTC. The generated SPEC files
can then be imported into BTC EmbeddedPlatform and used for verification.

5.3 Export to Textual Requirements

Formally specified requirements can easily be exported to textual form. As many
engineers and stakeholders without a solid background in formal methods are
involved in the design, testing and implementation of the defined software com-
ponents, it is vital to present the agreed-upon requirements in a textual repre-
sentation, which is easy to understand, distribute and review. Our export feature
for textual requirements additionally supports automatically introducing paren-
thesis around all non-trivial arguments used in the specification to prohibit mis-
interpretations or misunderstandings of the written specification—a problem we
encountered several times in [2,20].
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5.4 Export to SV-Comp-style C Code

To enable the use of state-of-the-art academic C code model checkers, we explic-
itly encode our pattern semantics in C code. This enables to embed all assump-
tions and behavior directly in the code, instead of going around it with LTL
specifications or similar, as supported by some tools. We built a boiler-plate
framework for initializing parameters and calibratables (enabling verifying with
varying calibrations) and updating input variables after every step. We decided
to use the established VERIFIER error(); functionality for encoding violations
of the behavior allowed by the patterns as supported by many code verifiers such
as more than 20 tools participating in the SV-comp.

6 Requirement-Based Test Vector Generation

The automated generation of an SLDV specification can be reused for automated
requirement-based test vector generation. The Automotive Functional Safety
standard ISO26262 [13] recommends to identify missing test vectors and unin-
tended behavior of the implemented model by: “For each requirement, a set
of test vectors should be generated. Afterwards, the structural coverage of the
requirement-based test vectors shall be measured according to a suitable cover-
age metrics. The industry norm recommends different coverage metrics depend-
ing on the ASIL-level of the model. In case the coverage metrics reveals uncovered
parts of the model, a further analysis is needed: either test vectors are missing
or unintended functionality in the model has been detected”.

If requirements are verified using formal verification and the implemented
requirement is shown to be valid, additional, manual creation of test vectors
should not be necessary. Manual creation of test vectors is a tedious work and
should be limited to those requirements that are not tested using formal ver-
ification. We propose to reuse the automated generation of SLDV requirement
specification for generating test vectors for these same requirements. For this
purpose, we annotate the generated specification with so-called test objectives
(see Fig. 11) automatically. The test objectives specify the signal valuations that
must be considered during test-vector generation.

The set of requirement-based test vectors depends on the chosen coverage
metric. For condition coverage, a set of test vectors is required such that each
condition takes every possible value, while for decision coverage a set of test
vectors must generate every possible outcome for each decision. Decision cover-
age is closely related to branch coverage, where conditional and unconditional
branches are considered. According to ISO26262, branch coverage is suitable
for requirement coverage at software unit-level for ASIL A to C. However, for
ASIL D, modified condition/decision coverage (MC/DC) is highly recommended.
Additionally, it is required that all conditions contributing to a decision must
independently affect the outcome of the decision.

To achieve condition coverage, test objectives must be added to all Boolean
input signals. For decision coverage, test objectives are needed for all Boolean
output signals. If test objectives are added to all Boolean output signals and
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to all Boolean input signals of blocks with more than one input parameter,
condition/decision coverage is achieved, which guarantees both condition and
decision coverage. For MC/DC coverage, test objectives are hard to generate
and currently out of scope of our project. One way to at least partly cover
MC/DC would be to generate test objectives for all Boolean combinations of
possible input signals. For an OR block, we currently generate vectors for both
outcomes, but “true” could be generated by inputs 01, 10 or 11—by adding
additional logic we can enforce all combinations to be generated.

Alternatively, we propose to use the built-in function of SLDV to compute
a set of test vectors for MC/DC coverage. Unfortunately, this functionality is
currently only available on model-level. To get requirement-based test vectors
for the model, MC/DC must be checked at requirement (i.e. subsystem) level
while test vectors must be generated for the complete model.

To automate the requirement-based test vector generation, we added test
objectives for condition/decision coverage to all blocks in our Simulink formal
specification library. The relational operators compute Boolean output signals
that also must be annotated with test objectives. Additional test objectives are
necessary for all temporal operators to assure the correct length of generated
test cases. Since we handle Boolean signals only, all test objectives can take the
values true and false. Figure 11 presents the implementation of the annotated
Boolean Or operator from our specification library.

or

OR

O

{true, false}
1

O

{true, false}
2

O

{true, false}
1

Fig. 11. A logic OR block with test objectives attached.

Annotating the specification library allows the flexibility of adding/removing
test objectives without adapting the source code of the specification tool. This
enables the user to maintain a set of specification libraries for different coverage
metrics or to create a library without any test objective annotations.

7 Conclusion and Future Work

In this paper we presented a prototypical pattern-based specification tool
together with automated translations to SLDV and BTC EmbeddedPlatform together
with an adaption of the SLDV input for automated test-case generation. This cor-
responds to the vision of enabling engineers to specify requirements with formal
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semantics once and then applying the requirements in multiple analyses. The
tool was designed as a prototype for use inside this research project as a proof
of concept.

Although a big step towards a highly automated automotive verification pro-
cess has been made within this project and investigations by Ford have been
producing encouraging results, this is only a proof-of-concept and many open
problems still need to be resolved.

As future work we plan the extension of our pattern set with a few further
relevant elements like time- and event-bounded response patterns. We plan to
tackle the automated translation of textual legacy requirements into formal nota-
tion. Scripts are needed to further automate verification at different development
levels with suitable configuration parameters, and to trigger the verification pro-
cess if changes are applied to the model or the requirements. Another module
should monitor the verification results and automatically report conspicuous
behavior if the comparison with previous results reveals deviations. In case of
invalid verification results, counterexamples should be analyzed.

We plan to use the export of formalized requirements to SV-COMP like
C-code patterns in order to benchmark academic C-code model checkers on
industrial examples against commercial tools.

A Appendix

A version of this paper containing the full appendix can be found at http://
arxiv.org/abs/1906.07083.
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