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Preface

This volume contains the proceedings of the 24th International Conference on Formal
Methods for Industrial Critical Systems (FMICS 2019), which was held at CWI in
Amsterdam, The Netherlands, during August 30–31, 2019. This year the conference
was jointly organized with the 30th International Conference on Concurrency Theory
(CONCUR 2019), and the 17th International Conference on Formal Modeling and
Analysis of Timed Systems (FORMATS 2019).

The aim of FMICS is to provide a forum for researchers who are interested in the
development and application of formal methods in industry. In particular, FMICS
brings together scientists and engineers who are active in the area of formal methods
and interested in exchanging their experiences in the industrial usage of these methods.
FMICS also strives to promote research and development for the improvement of
formal methods and tools for industrial applications. The topics of interest include, but
are not limited to:

– Case studies and experience reports on industrial applications of formal methods,
focusing on lessons learned or identification of new research directions.

– Methods, techniques, and tools to support automated analysis, certification,
debugging, descriptions, learning, optimization, and transformation of complex,
distributed, real-time, embedded, mobile and autonomous systems.

– Verification and validation methods (model checking, theorem proving, SAT and
SMT solving and constraint solving, abstract interpretation, etc.) that address
shortcomings of existing methods with respect to their industrial applicability (e.g.,
scalability and usability issues).

– Impact of the adoption of formal methods on the development process and asso-
ciated costs. Application of formal methods in standardization and industrial
forums.

This year we received 15 submissions. Each of these submissions went through a
rigorous review process in which each paper received at least 3 reports. We selected
9 papers for presentation during the conference and inclusion in these proceedings. The
conference also featured invited talks by Jaco van de Pol (Aarhus University, and
Twente University), jointly with CONCUR, and Holger Hermanns (Universität des
Saarlandes), and a special session on (commercial) formal methods in industry.

We would like to thank the ERCIM FMICS working group coordinator Jaco van de
Pol (Aarhus University, and Twente University), for his counseling and support during
the organization of FMICS 2019, the CONCUR general chair Jos Baeten, and the local
organizers for taking care of all the local arrangements in Amsterdam. We would also
like to thank CWI for the generous sponsoring of the joint events. ERCIM supported
the event through the FMICS Working Group, Springer provided the best paper award,
and Springer Nature produced the conference proceedings. Finally, we would like to
thank the Program Committee members and external reviewers for their useful and



detailed reviews and discussions, all authors for their submissions, and all presenters
and attendees of the conference.

August 2019 Kim Guldstrand Larsen
Tim Willemse
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Abstracts



Concurrent Algorithms and Data Structures
for Model Checking

Jaco van de Pol

Aarhus University and University of Twente

Model checking is a successful method for checking properties on the state space of
concurrent, reactive systems. Since it is based on exhaustive search, scaling the method
to industrial systems has been a challenge since its conception. Research has focused
on clever data structures and algorithms, to reduce the size of the state space or its
representation; smart search heuristics, to reveal potential bugs and counterexamples
early; and high-performance computing, to deploy the brute force processing power of
clusters of compute-servers.

The main challenge is to combine a brute force approach with clever algorithms:
brute force alone (when implemented carefully) can bring a linear speedup in the
number of processors. This is great, since it reduces model-checking times from days to
minutes. On the other hand, proper algorithms and data structures can lead to expo-
nential gains. Therefore, the parallelization bonus is only real if we manage to speedup
clever algorithms.

There are some obstacles: many linear-time graph algorithms depend on a
depth-first exploration order, which is hard to parallelize. Examples include the
detection of strongly connected components (SCC), and the nested depth-first-search
(NDFS) algorithm. Both are used in model checking LTL properties. Symbolic rep-
resentations, like binary decision diagrams (BDDs), reduce model checking to
“pointer-chasing”, leading to irregular memory-access patterns. This poses severe
challenges on achieving actual speedup in (clusters of) modern multi-core computer
architectures.

This talk will present some of the solutions found over the last 10 years, leading to
the high-performance model checker LTSmin. These include parallel NDFS (based on
the PhD thesis of Alfons Laarman), the parallel detection of SCCs with concurrent
Union-Find (based on the PhD thesis of Vincent Bloemen), and concurrent BDDs and
other decision diagrams (based on the PhD thesis of Tom van Dijk). This functionality
is provided in a specification-language agnostic manner, while exploiting the locality
typical for asynchronous distributed systems (based on the PhD thesis of Jeroen
Meijer).

Finally, I will sketch a perspective on moving forward from high-performance
model checking to high-performance synthesis algorithms. Examples include parameter
synthesis for stochastic and timed systems, and strategy synthesis for (stochastic and
timed) games.



Power in Low Earth Orbit. Verified

Holger Hermanns1,2

1 Saarland University – Computer Science, Saarland Informatics Campus,
Saarbrücken, Germany

2 Institute of Intelligent Software, Guangzhou, China

There is an increasing interest across the space industry in deploying large-scale
Low-Earth Orbit (LEO) satellite constellations for the purpose of traffic observation,
Earth monitoring, and for offering communication services across the globe. Current
in-orbit technology demonstrators, such as the GomX-4A and GomX-4B satellites
from GomSpace, make it obvious that the main operational bottleneck in such missions
is the electric power budget.

This keynote provides a survey of past and ongoing work to master operational
limitations of LEO satellites and satellite constellations using formal methods. After
presenting the major technological characteristics and challenges of the LEO domain, I
will discuss how optimal reachability analysis in priced timed automata [5, 7] can be
combined with stochastic battery kinetics [3, 4] to best exploit a satellite’s operational
capabilities in orbit while keeping the risk of draining the on-board battery [1, 6]
provably low. We then turn to the question how to attack the problem for constellations
with dozens of communicating satellites. This requires profound support for extrapo-
lating the electric power budget as part of the inter-satellite and satellite-to-ground
communication design. I present a solution embedded in the construction process of
contact plans in delay tolerant networking [2], and finally address scalability aspects
of the proposed solution, important for upcoming mega constellations consisting of
hundreds of satellites.

References

1. Bisgaard, M., Gerhardt, D., Hermanns, H., Krčál, J., Nies, G., Stenger, M.: Battery-aware
scheduling in low orbit: the GomX-3 case. Formal Asp. Comput., 31(2), 261–285 (2019)

2. Fraire, J.A., Nies, G., Hermanns, H., Bay, K., Bisgaard, M.: Battery-aware contact plan design
for LEO satellite constellations: The Ulloriaq case study. In: IEEE Global Communications
Conference, GLOBECOM 2018, Abu Dhabi, United Arab Emirates, December 9–13, 2018,
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LNCS, vol. 9361, pp. 83–98. Springer, Cham (2015)
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Modelling and Analysing ERTMS L3
Moving Block Railway Signalling
with Simulink and UPPAAL SMC

Davide Basile1,2 , Maurice H. ter Beek1(B) , Alessio Ferrari1 ,
and Axel Legay3

1 ISTI–CNR, Pisa, Italy
maurice.terbeek@isti.cnr.it

2 University of Florence, Florence, Italy
3 Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Abstract. Efficient and safe railway signalling systems, together with
energy-saving infrastructures, are among the main pillars to guarantee
sustainable transportation. ERTMS L3 moving block is one of the next
generation railway signalling systems currently under trial deployment,
with the promise of increased capacity on railway tracks, reduced costs
and improved reliability. We report an experience in modelling a satellite-
based ERTMS L3 moving block signalling system from the railway indus-
try with Simulink and Uppaal and analysing the Uppaal model with
Uppaal SMC. The lessons learned range from demonstrating the feasi-
bility of applying Uppaal SMC in a moving block railway context, to the
offered possibility of fine tuning communication parameters in satellite-
based ERTMS L3 moving block railway signalling system models that
are fundamental for the reliability of their operational behaviour.

1 Introduction

The railway sector is well known for its robust safety requirements, as witnessed
by the CENELEC EN 50128 standard [22] for the development of software for
railway control and protection systems, which highly recommends the use of
formal methods for software systems to be certified at Safety Integrity Levels
SIL 3 and SIL 4. In fact, formal methods and tools are widely applied to railway
systems [7,9,13,23–25,28,30]. Consequently, the railway sector is notoriously
cautious about the adoption of technological innovations compared with other
transport sectors. Hence, while satellite-based positioning systems are in use for
some time now in the avionics and automotive sectors, current railway signalling
systems still prevalently use traditional ground-based train detection systems
and fixed block distancing. However, the faster trains are allowed to run, the
longer their braking distance and the longer the safety distance must be, thus
decreasing line capacity. A challenge in the railway sector therefore concerns
the development of moving block signalling systems that are as effective and
precise as possible [32]. This includes satellite-based positioning, leveraging on
c© Springer Nature Switzerland AG 2019
K. G. Larsen and T. Willemse (Eds.): FMICS 2019, LNCS 11687, pp. 1–21, 2019.
https://doi.org/10.1007/978-3-030-27008-7_1
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an integrated solution for signal outages (think, e.g., of tunnels) and so-called
multi-paths, which typically affect satellite positioning in urban environments
[12,46].

The work presented in this paper is one of the outputs of a larger endeav-
our of the first three authors in the context of the H2020 project ASTRail1

(SAtellite-based Signalling and Automation SysTems on Railways along with
Formal Method and Moving Block Validation) funded by the EU’s Shift2Rail2

initiative. Shift2Rail stimulates the development of safe and reliable technolog-
ical advances that allow to complete the single european railway area with an
ambitious aim: “double the capacity of the European rail system and increase its
reliability and service quality by 50%, all while halving life-cycle costs.” To this
aim, it supports the transition to next generation ERTMS railway signalling sys-
tems, including satellite-based train positioning, moving block distancing, and
automatic driving [8]. ASTRail makes use of a satellite-based ERTMS Level 3
moving block railway signalling scenario for two different purposes:

– First, in a reduced format, for a trial application of formal modelling and
analysis to assess the usability and applicability of formal methods and tools
in the railway domain. This assessment is an important issue for the successful
uptake of formal methods and tools in the railway industry [7]. In [5], we
presented our trial experience in modelling and (statistical) model checking
a satellite-based moving block signalling scenario with Uppaal SMC.

– Second, for modelling and validating a more detailed model as a major por-
tion of an integrated system design of moving block signalling with automated
driving technologies to provide a rigorous and verified definition of functional,
interoperability, and dependability requirements. As part of the assessment,
we conducted a survey with railway practitioners to identify the most mature
(semi-)formal methods and tools to be used in the railway context [28]. As a
result of this survey, a total of 14 tools were carefully reviewed by means of
a systematic evaluation based on a set of 34 evaluation features, upon which
eight tools were selected for the above mentioned trial application phase,
in which we modelled principles of the moving block scenario in all eight
tools. Simulink and Uppaal were among the eight selected tools. Specifically,
Simulink was considered particularly appropriate for functional requirements
elicitation and animation involving domain experts, while Uppaal was con-
sidered the appropriate choice for verification of quantitative aspects. More
information is available in our contribution [28].

In this paper, we present models of the aforementioned detailed satellite-
based ERTMS L3 moving block signalling system model in both Simulink and
Uppaal. The Simulink model was obtained from a requirements elicitation and
refinement activity performed with the industrial partners of ASTRail, carried
out to consolidate an initial set of requirements for the moving block signalling

1 http://www.astrail.eu.
2 http://www.shift2rail.org.

http://www.astrail.eu
http://www.shift2rail.org
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system into an executable specification, after which we developed a correspond-
ing Uppaal model. We report on and draw some lessons from this modelling
experience and subsequent analyses with Uppaal SMC. We choose to perform
statistical model checking with Uppaal SMC rather than simulation and analy-
sis with Simulink, because we have all the monitoring infrastructure for temporal
properties. However, the level of abstraction is the same in both models.

We show how Uppaal SMC can assist in fine tuning communication parame-
ters that are fundamental for the reliability of the model’s operational behaviour.
In particular, we validate that (i) the frequencies of the messages exchanged
between the train and its trackside control system as well as (ii) the unit of dis-
tance that a train is allowed to proceed based on a movement authority can be
set such that the probabilities of failures (like the train exceeding its movement
authority, i.e., failing to brake if it lacks permission to proceed) are close to zero.
While numerical constraints for (i) and (ii) were previously defined by railway
experts, in ASTRail we wanted to explore to which extent Uppaal SMC can be
exploited to validate such constraints and to support sensitivity analysis on the
parameters.

Related Work. We know of several other attempts at modelling and analysing
ERTMS L3 signalling systems. Most notably, ERTMS Hybrid L3 systems (using
virtual fixed blocks) and its RBC component have recently been modelled and
analysed in [2,4,15,41,44] with Promela/Spin, mCRL2, Electrum, and Event-
B. However, none of these permit quantitative modelling and analysis, which
are fundamental to demonstrating the reliability of the operational behaviour of
satellite-based ERTMS L3 moving block railway signalling system models.

We are also aware of attempts to model stochastic or hybrid models
of ERTMS L3 (moving block) scenarios in [31,34,35,38] with Simulink, the
bounded model checker HySAT, the probabilistic hybrid automata verifier Pro-
HVer, UML, the symbolic model checker SMV, timed Petri nets and the timed
Petri net analyser Tina, generally applying classical (i.e., not statistical) model
checking.

We recognise added value in so-called formal methods diversity, as advocated
in [42,43], according to which, inspired by code or design diversity [40], applying
diverse formal methods and tools on replications or different variants of a design
may increase confidence in the correctness of the analysis results. Therefore, we
believe that this paper contributes to an increased confidence in the reliability of
satellite-based ERTMS L3 moving block railway signalling systems. At the same
time, we show how multiple formal/semi-formal tools can also play a complemen-
tary role to address different needs of the railway development process, namely
functional requirements elicitation and verification of quantitative properties.

Outline. The rest of the paper is organised as follows. Section 2 introduces the
industrial case study: next generation satellite-based ERTMS moving block rail-
way signalling systems. Section 3 describes a Simulink model of the case study,
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developed in agreement with our industrial partners, followed by a corresponding
Uppaal model in Sect. 4. Section 5 presents an analysis of the case study with
Uppaal SMC and Sect. 6 reports some lessons learned from this modelling and
analysis experience. Section 7 concludes the paper and discusses future work.

2 ERTMS L3 Moving Block Railway Signalling

The ASTRail project aims to introduce recent scientific achievements as well
as cutting-edge technologies from other transport sectors, in particular avionics
and automotive, in the railway sector. The project leverages formal methods
and tools for careful analyses of the resulting novel applications and solutions in
terms of safety and performance. One of the main focusses of ASTRail concerns
the use of the Global Navigation Satellite System (GNSS) [46] for onboard train
localisation. While satellite-based positioning systems have been in use for quite
some time now in the avionics and automotive sectors, to provide accurate posi-
tioning and distancing, the current railway signalling systems are largely based
on fixed blocks, implemented by specific trackside equipment along the railway
lines. A block is a section of the track between two fixed points, which start and
end at signals, with their lengths designed to allow trains to operate as frequently
as necessary (i.e., ranging from many kilometres for secondary tracks to a few
hundred metres for busy commuter lines). The block sizes are determined based
on parameters like the line’s speed limit, the train’s speed, the train’s braking
characteristics, drivers’ sighting and reaction times, etc. But the faster trains are
allowed to run, the longer the braking distance and the longer the blocks need
to be, thus decreasing the line’s capacity. This is because the railway sector’s
stringent safety requirements impose the length of fixed blocks to be based on
the worst-case braking distance, regardless of the actual speed of the train.

The next generation railway signalling systems no longer rely on trackside
equipment for train position detection and train integrity supervision, but an
onboard odometry system is responsible for monitoring the train’s position and
autonomously computing its current speed [32]. By exploiting knowledge of the
position of the rear end of the train ahead, a safe zone around the moving
train can be computed, thus considerably reducing headways between subsequent
trains. The resulting moving block signalling systems allow trains in succession
to close up, in principle to the braking distance (cf. Fig. 1).

Moving block signalling allows for more trains to run on existing railway
tracks, in response to the ever-increasing need to boost the volume of passen-
ger and freight rail transport and the cost and impracticability of constructing
new tracks. For this to work, the precise absolute location, speed, and direction
of each train needs to be known. These can be determined by a combination
of sensors: active and passive markers along the track, as well as trainborne
speedometers. This envisioned future switch to next generation signalling sys-
tems would not only optimise the exploitation of railway lines due to the adoption
of moving block signalling, but the removal of trackside equipment would result
in lower capital and maintenance costs [32]. In ASTRail, the first three authors
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Fig. 1. Safe braking distance between trains for fixed block and moving block signalling
(Image courtesy of Israel.abad/Wikimedia Commons distributed under the CC BY-SA 3.0 license)

are involved in the formal modelling and analysis of moving block railway sig-
nalling systems by means of different formal methods and tools, and this paper
reports on one such experience (cf., e.g., [5,28]).

ERTMS. The European Rail Traffic Management System (ERTMS) [19] is an
international standard aiming to enhance safety and efficiency and improve cross-
border interoperability of trains in Europe by the replacement of national rail-
way signalling systems with a European standard for train control and com-
mand systems. ERTMS relies on the European Train Control System (ETCS),
an Automatic Train Protection (ATP) system continuously supervising the train
to ensure that safety speed and distances are not exceeded. The ERTMS/ETCS
standard distinguishes four levels of operation, depending on the role of track-
side equipment and on the way the information is transmitted to/from trains. It
is currently deployed on several lines throughout Europe at most in its Level 2.

ERTMS Level 2. ERTMS L2 uses trackside equipment (track circuits) to detect
the occupancy of a section of a railway track by trains, determining the location
of trains with a coarse granularity. This information is sent to a trackside unit,
termed Radio Block Centre (RBC), which sends a Movement Authority (MA)
to each train. The MA is computed by summing the free track circuits ahead,
meaning L2 is based on fixed block signalling. The MA provides a train with the
maximum distance it is allowed to travel, the maximum speed (depending on the
track) it is allowed to travel at, and data about the track ahead (like temporary
speed restrictions and (un)conditional emergency stops). The so-called Onboard
Unit (OBU) of each train uses the MA and data stored on board (e.g., the train’s
braking capability) to compute the braking curve or the dynamic speed profile
that determine the speed limit, triggering an emergency brake whenever this
limit is exceeded. In L2, so-called Eurobalise responders on the rails of a railway
are used for exact train positioning, while the required signalling information is
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provided to the driver’s display by continuous data transmission via GSM-R with
the RBC. Further trackside equipment is needed for train integrity detection.

ERTMS Level 3. ERTMS L3 no longer uses trackside equipment for train posi-
tioning and train integrity supervision. Instead, the OBU is responsible for moni-
toring the train’s position and computing its current speed through its odometry
system. To this aim, the OBU periodically sends the train’s position to the RBC
and the RBC, in turn, sends back an MA to each train. The MA is computed by
exploiting knowledge of the position of the rear-end of the foregoing train, mean-
ing L3 is based on moving block signalling. As a result, headways between trains
can be considerably reduced, in principle to the braking distance. Actually, L3
as defined in [20] does not explicitly refer to the moving block concept, but it
admits any implementation able to periodically provide the RBC with the train
positions and using limited trackside equipment. A few pilot implementations,
referred to as Hybrid L3 [2,4,15,21,41], use virtual fixed blocks: a line is logically
divided into fixed length blocks and the OBU is in charge of communicating, at
specific points of the line (virtual balises), the train’s position, computed using
its onboard odometry system. Moving block signalling based on continuous com-
munication and MA computation is currently implemented in some automatic
metros, as part of CBTC (Communication Based Train Control) systems.

Moving Block Scenario. The components of the moving block scenario consid-
ered in this paper are depicted in Fig. 2. The train carries the Location Unit
(LU) and OBU components, while the RBC is a trackside component. The LU
receives the train’s location from GNSS satellites, sends this location (and the
train’s integrity) to the OBU, which, in turn, sends the location to the RBC.
Upon receiving a train’s location, the RBC sends an MA to the OBU (together
with speed restrictions and route configurations), indicating the space the train
can safely travel based on the safety distance with preceding trains. The RBC
computes the MA by communicating with neighbouring RBCs and by exploiting
its knowledge of the positions of switches and other trains (head and tail position)
by communicating with a Route Management System (RMS). In our scenario,
we abstract from an RMS and communication among neighbouring RBCs: we
consider one train to communicate with one RBC, based on a seamless handover
when the train moves from one RBC supervision area to an adjacent one, as
regulated by its Functional Interface Specification [48]. Next to these physical
components, there are two temporal constraints for the OBU to respect: the
location is continuously updated every 5 s, whereas the MA must be continu-
ously updated within 10 s. If the OBU does not receive an MA within 10 s from
the last MA, the OBU is required to force the train to brake.
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Fig. 2. Overview of ERTMS moving block railway signalling

3 Simulink Model of ERTMS L3 Moving Block

Simulink is a model-based development tool supporting graphical design, sim-
ulation, test generation, and code synthesis of dynamic systems.3 A Simulink
model’s basic unit is a block, an element that acquires some input and produces
some output. Simulink also includes Stateflow, a graphical language inspired
by Harel’s hierarchical statecharts [37]. Simulink blocks can contain Stateflow
state-charts (called charts in Simulink terminology), to represent event-based
systems.

In this section, we present the Simulink model of the moving block system
resulting from a requirements elicitation and refinement activity performed with
the industrial partners of ASTRail. It is the output of multiple iterations involv-
ing the third author and the industrial partners, carried out to consolidate an
initial set of requirements for the moving block system into an executable specifi-
cation. Simulink was selected as preferred tool to support this elicitation activity
for two reasons. First, given its previous usage in the railway industry for simi-
lar purposes [26,27]. Second, because of the outcome of the assessment reported
in [28]. As mentioned in the Introduction, we conducted a survey with railway
practitioners to identify the most mature (semi-)formal methods and tools to be
used in the railway context, and Simulink was one of the eight selected tools. The
model, together with its documentation in HTML format, is publicly available.4

Here, we show the model’s architecture and some excerpts of its behaviour.

Model Architecture. Figure 3 reports the architecture of the model, which
includes three main Simulink blocks representing the interacting subsystems,
namely OBU, LU, and RBC.5 Each block communicates with the other blocks
by means of input/output messages. For example, the label named location is
one of the outputs of the LU, and it is input to the OBU block. This indicates a

3 http://www.mathworks.com/products/simulink.html.
4 https://github.com/alessioferrari/ASTRail-simulink-models.
5 The full model includes the train’s dynamics, not reported here to ease visualisation.

http://www.mathworks.com/products/simulink.html
https://github.com/alessioferrari/ASTRail-simulink-models
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virtual channel by which a message is exchanged between LU and OBU, includ-
ing the current train location. Similarly, location to RBC is one of the outputs
of the OBU block, also serving as input to the RBC block: the OBU location,
received from the LU, is passed to the RBC, which, in turn, can compute the
MA and send it to the OBU. The OBU is also in charge of activating the brake,
and the brake’s status can be visualised in the BRAKE COMMAND scope element.
Similarly, other scope elements are used to visualise a TIMER, indicating the time
from the last received MA (2.4 s in Fig. 3), and SPACE TO EOA, which is the space
from the current position to the end of the MA (996.4 m). Following the require-
ments, failure inputs (OBU FAIL, RBC FAIL, and LU FAIL) are associated to each
block to simulate external events that may trigger system failures.

Behaviour. The behaviour of each block is represented by means of a Stateflow
chart. Figure 4 reports an excerpt of the chart representing the OBU behaviour.
The excerpt depicts a parallel state (dashed lines indicate parallel states) named
SEND LOCATION TO RBC, which includes two mutually exclusive substates: one
normal state (SEND LOC TO RBC) and one failure state (POSITION ERROR). When
the system is in the normal state, it continuously checks whether a new loca-
tion is received. This is performed through the function check new location(),
which is graphically represented as a flowchart inside the state. Whenever a
new location is received from the LU (OBU REC location flg == 1), it is stored
together with the current time stamp. Every five seconds, the location is sent to
the RBC, if the location is not older than one second. This is enforced through
the condition after(5, sec) && check location fresh [...].

The other parallel state named RECEIVE MA takes care of MA reception.
Specifically, when an MA is received (OBU REC MA flg == 1), it is stored in the
variable MA value, and the OBU also stores the current location in the variable
MA reference. This will be used as a reference to update the variable that indi-
cates how much space is left to the end of the MA (SPACE TO EOA in Fig. 3),
while the train progresses its mission. Then, an ack message is sent to the RBC.
The code inside the state NEW MA RECEIVED continuously updates the value of
the variable OBU out timer, which represents the time that has passed since the
last MA was received, and is visualised in the scope TIMER of Fig. 3.

4 UPPAAL Model of ERTMS L3 Moving Block

Uppaal SMC [16] is a variant of Uppaal [11], which is a well-known toolbox
for the verification of real-time systems.6 Uppaal models are stochastic timed
automata, in which non-determinism is replaced with probabilistic choices and
time delays with probability distributions (uniform for bounded time and expo-
nential for unbounded time). These automata may communicate via broadcast
channels and shared variables.

6 http://people.cs.aau.dk/∼adavid/smc.

http://people.cs.aau.dk/~adavid/smc
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Fig. 3. Architecture of the Simulink moving block model
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Fig. 4. Excerpt of the behaviour of the OBU model

Statistical Model Checking (SMC) [1,39] is concerned with running a suffi-
cient number of (probabilistic) simulations of a system model to obtain statisti-
cal evidence (with a predefined level of statistical confidence) of the quantitative
properties to be checked. SMC offers advantages over exhaustive (probabilistic)
model checking. Most importantly, it scales better, since there is no need to gen-
erate and possibly explore the full state space of the model under scrutiny, thus
avoiding the combinatorial state-space explosion problem typical of model check-
ing. Moreover, the required simulations can trivially be distributed and run in
parallel. This comes at a price. Contrary to (probabilistic) model checking, exact
results (with 100% confidence) are impossible to obtain. A further advantage is
related to its possible uptake in industry. Compared to model checking, SMC
is simple to implement, understand and use, and it requires no specific mod-
elling effort other than an operational system model that can be simulated and
checked against (state-based) quantitative properties. In fact, SMC is becoming
more and more widely accepted in industry [3,10,14,29,36,45].
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In this section, we discuss the Uppaal formalisation of the moving block
system, derived from the semi-formal Simulink model presented in the previ-
ous section. The model is publicly available.7 Here, we outline the automata
constituting the model and describe the one modelling the OBU in more detail.

From Simulink/Stateflow to UPPAAL. This transformation is simplified by the
fact that both formalisms use state machines. While we are aware of other
efforts to map Simulink/Stateflow diagrams into Uppaal SMC (cf., e.g., [29]),
we encountered some peculiarities to be taken care of to transform the moving
block model of the previous section. In particular, Uppaal does not cater for the
primitive description of machines with hierarchical states. Moreover, Simulink
does not primitively provide concurrency between the processes, i.e., the schedul-
ing is fixed a priori. This is not the case in Uppaal, where there is an interleaving
between all possible actions. Actually, the scheduling order was not part of the
original ASTRail specification, so this forced scheduling was relieved in Uppaal.

Communication between Simulink blocks is implemented through messages
and input/output variables, and through shared variables inside Stateflow charts,
whereas in the Uppaal model we use communication via broadcast channels.
Simulink/Stateflow diagrams and Uppaal models use different time modelling.
In the Simulink model, variables were used that memorise the time difference
between events, while the Uppaal model uses clocks that allow to memorise
the time elapsed between the various events. Furthermore, the Uppaal model
was enriched with probabilities and stochastic events, which were taken from
additional specifications of the moving block system by our industrial project
partners. We only used rates of exponential delays, since exponential distribu-
tions are the only available distributions in Uppaal for unbounded delays due
to their memoryless property. Hence, the Uppaal model represents a refinement
of the initial semi-formal specification in Simulink. In Sect. 5, we will see that
this allows subsequent verification of properties of interest with Uppaal SMC.

The UPPAAL Model. The model consists of a number of automata composed as a
synchronous product. Below, we list the various components that together form
the model, followed by a more detailed description of the main automaton mod-
elling the OBU component. As for the Simulink specification, the model consists
of three main entities, namely the RBC, the LU, and the OBU, each represented
by a different automaton. Each entity moreover accounts for a probabilistic fail-
ure that is modelled through three additional automata, called RBC Failure T,
LU Failure T, and OBU Failure T, which model the failure of the respective
component. The values of these probabilities are input parameters for the model,
thus allowing to analyse several different scenarios, depending on, for example,
the devices used. Another task within ASTRail concerns the evaluation of such
numbers, input to our model. For the analysis in Sect. 5, we abstract from these
automata generating failures, which is eased by their separate modelling.
7 https://github.com/davidebasile/ASTRail.

https://github.com/davidebasile/ASTRail
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The failure of these components was not foreseen in the original Simulink
model, where it can be simulated by the manual intervention of the user who
wants to analyse the behaviour of the system in case of failure. Note that, in the
Simulink/Stateflow specification, failure transitions could be activated by shared
variables whose value is assigned by the user.

All components listed next are templates in Uppaal, which is a mechanism
allowing to instantiate different instances of an automaton. This makes it possible
to perform simulations and analyses with a certain number of RBCs, OBUs, and
LUs; not fixed beforehand in the model. However, in line with the specification
from our industrial partners, we assume that each component communicates with
other components of the same index. For instance, RBC 0 always communicates
with OBC 0 and never with OBC 1, who communicates with RBC 1. In reality,
an RBC will have different threads, each one communicating with one train;
each of these threads is an automaton. For simplicity, in the next section we will
analyse the system considering only one OBC, one LU, and one RBC.

Furthermore, this model is parametric and highly customisable. It is possible
to analyse different operational scenarios of the ASTRail moving block system by
instantiating the individual parameters of the model. For instance, it is possible
to customise the frequency of each of the various messages such as the frequency
of requesting the location or the frequency of sending the MA. It is also possible
to specify the size of the MA in terms of meters. Moreover, it is possible to model
the acceleration of the train, as well as its average speed. By changing these
parameters, we can perform different evaluations of the properties of interest, as
we will show in the next section, so as to fine tune the setup of these parameters.

We briefly describe the model’s components, followed by details of the OBU.

OBU MAIN GenerateLocationRequest T: This automaton is the initial compo-
nent that starts the system interactions and takes care of generating every
few seconds a request for a new location to be sent to the LU.

LU MAIN T: This automaton models the LU. Its behaviour involves receiving a
new position request from the OBU and replying with the current train loca-
tion (computed via GNSS).

OBU MAIN SendLocationToRBC T: This automaton, depicted in Fig. 5, is the main
component of the OBU, and as such it performs a variety of operations. The
first operation is the reception of the position by the LU. Subsequently, with a
certain frequency, this component sends the received position to the RBC. The
same component moreover receives the MA from the RBC (after sending its
position). Finally, it implements one of the safety mechanisms present in the
system specification. In particular, at each instant of time, the model checks
that the train’s position has not exceeded the MA received from the RBC; if
it has, it will enter a failure state. All components listed so far provide the
possibility to enter a failure state if one of the probabilistic failures foreseen
by the corresponding probabilistic automata occurs.

RBC Main T: This automaton models the RBC. It receives the MA request from
the OBU. Once this request is received, the RBC sends a certain number
of times the MA message until the corresponding acknowledgement from the
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Fig. 5. The automaton OBU MAIN SendLocationToRBC T

OBU is received or the number of attempts is exceeded. Also this component,
like all others, enters a failure state if one of the aforementioned errors occurs.

OBU MAIN ReceiveMA T: This is the last automaton modelling the logic of the
OBU. It receives an MA from the RBC and sends back a corresponding
acknowledgement message. This component implements an additional safety
mechanism of the system specification by means of a timer that counts the
time passed from the reception of the last MA. In the event that this timer is
exceeded, an alarm is emitted and a failure state (TimeOutFail) is entered.

TRAIN ATO T: This is a special component that was introduced to model more
accurately the behaviour of a train. In particular, this component models the
movement of the train, its speed, and the acceleration and deceleration that
are triggered by approaching the limit described by the MA. This automaton
also deals with simulating braking curves when a particular failure state is
reached. In particular, the position of the train is stated in an unidimensional
space and identified by one coordinate. Figure 6 shows the speed of the train
and its sudden braking the moment it exceeds the MA.

The OBU Model. This automaton, depicted in Fig. 5, has four states. The ini-
tial state is the nominal state I WatingLocFromLU, drawn with two circles, while
the other three states represent system failures that are due to failure of the LU
(LU Failed), failure to receive the MA (MAexceededFailure), or both failures
together (MAexceededAndLUfailed). The initial state has three outgoing tran-
sitions that have the same initial state as their target state (i.e., loops). The
initial state also has an invariant to guarantee that the initial state’s clock c is
always less than or equal to the freq parameter, which represents the frequency
of sending the location to the RBC.
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Fig. 6. A simulation showing the speed of the train in m/s

In order of execution, the first transition to be performed is the one with
signal LU send location [id T]?. This action represents the reception of the
position from the LU; loc = x represents the assignment of the variable loc
that reads from the buffer variable x used to implement value passing. The tran-
sition with guard c == freq is activated exactly when the guard is satisfied,
i.e., when the clock reaches the freq parameter. This transition implements a
periodic operation which is carried out every instant of time freq. The action is
that of sending the position data to the RBC. The sending operation is trans-
mitted via the signal OBU send location to RBC [id T]!, while the assignment
of variables is x = loc, c = 0.0, y = id T; i.e., the value loc of the location
and the unique train identifier id T are stored in the buffer variables, and the
clock c is reset. Similarly, OBU read MA [id T]? performs the reception from the
RBC of the MA stored in the variable ma.

The outgoing transition from I WatingLocFromLU to MAexceededFailure is
activated by the guard loc >= ma && ma > 0; i.e., it is activated when the train
position exceeds the MA. In this case, a failure signal is sent via the OBU fail
[id T]! channel. Transitions in other failure states likewise encode reception of
failure signals arriving from the LU. Finally, note that once the system restart
message is received via the reset channel, the initial MA value is set to zero.
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5 Analyses of ERTMS L3 Moving Block

Next to standard model-checking queries concerning reachability and deadlock-
freedom, Uppaal SMC allows to check (quantitative) properties over simulation
runs of an Uppaal model (i.e. a network of stochastic timed automata). For
instance, Uppaal SMC supports the evaluation of the probability estimation
PM (♦x≤t p) over a model M , where x is a clock, t ∈ N, and p is a state predicate.
Moreover, ♦x≤t p = true Ux≤t p, in which U is a time-bounded Until operator of
the form p1 Ux≤t p2, which is satisfied if p1 holds on a simulation run until p2 is
satisfied, and this must happen before clock x exceeds time bound t. Apart from
bounding over time, which may result in non-termination, we may bound runs
for a number of discrete steps, which guarantees termination of the simulation.
For a given model in Uppaal SMC, the query Pr[<= N](<> p), where N ∈ N, is
satisfied if <> p holds on a simulation run of at most N discrete steps.

We provide two temporal logic formulae to evaluate measures of interest of
the moving block system. Both measure the probability of the Uppaal model
entering a failure state within 1000 steps, namely when the train’s position
exceeds the MA (φ1) or when the timeout for the reception of a new MA is
exceeded (φ2):

φ1
def= Pr[<= 1000](<> OBU MAIN SendLocationToRBC.MAexceededFailure)

φ2
def= Pr[<= 1000](<> OBU MAIN ReceiveMA.TimeOutFail)

We now show the potential of Uppaal SMC to analyse the modelled system
for these properties of interest. The model has a myriad of possible parameters to
fine tune. Here we limit ourselves to two different parameter setups, allowing to
demonstrate the tool’s effectiveness in confirming or rejecting parameter values.

We used academic version 4.1.19 (rev. 5649) of Uppaal SMC, with the prob-
abilistic deviation set to 0.01, the probability of false negatives and false positives
set to 0.005 and 0.5, respectively, and the probability uncertainty set to 0.005.

As mentioned before, the experiments instantiate one OBC, one LU, and
one RBC (i.e. the experiments are performed with one train communicating
with an RBC). Moreover, the automata generating probabilistic failures have
been deactivated.

Table 1 contains the parameter values used in the experiments. The first
experiment serves to confirm the correctness of the system specification received
from the domain experts, which concerns both quantitative aspects (e.g., the
MA size and the communication frequencies) and qualitative aspects (i.e., fail-
ure states). Our formalisation in Uppaal confirms that with the given param-
eter values the possibility to reach one of the failure states is indeed very low.
More precisely, Uppaal SMC reports with 99.5% confidence the same interval
[0, 0.00998576] obtained from 597 runs after just under eight minutes.

We set up a second experiment to show that Uppaal SMC can also be used
to reject parameter values that do lead to a high probability of failure and thus
to hazardous scenarios. In this experiment there are less frequent updates of the
train’s position to the RBC and a tighter MA. Our formalisation in Uppaal
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Table 1. Parameter values used in the experiments

Component (abbreviated) Parameter Value Description

exp 1 exp 2

RBC Main freq 1000 s 1000 s Frequency of sending MA
to OBU before ack

RBC Main ma 1000m 500 m Size of MA (in meters
from current location)

OBU MAIN SendLocToRBC freq 0.5 s 5.0 s Frequency of sending
location to RBC

OBU MAIN GenerateLocReq freq 0.5 s 0.5 s Frequency of sending
location request to LU

OBU MAIN ReceiveMA OBU out timer 10 s 10 s Timeout for receiving MA
from RBC

Fig. 7. The cumulative probability confidence interval of experiment 2

confirms this to be an inappropriate parameter setup, as the probability for the
train to exceed the MA (as expressed by formula φ1) becomes high. Uppaal
SMC reports with 99.5% confidence the interval [0.0430205, 0.14268] obtained
from 263 runs after approximately three minutes (cf. further details in Fig. 7).

This shows that further varying the parameters values, in principle the pos-
itive results of the first experiment could be improved. This would require more
experiments and close interaction with the domain experts to understand which
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parameter values could theoretically be changed, without violating physical lim-
its or fundamental requirements (e.g., an OBU cycle may take at most 500 ms).

6 Lessons Learned

In this section, we report some lessons learned from our modelling and analysis
experience of a satellite-based ERTMS L3 moving block railway signalling system
with Simulink and Uppaal SMC.

Formal Evidence. The analysis of two fundamental properties of the satellite-
based ERTMS L3 moving block railway signalling system with Uppaal SMC,
described in Sect. 5, provided further evidence for the applicability of Uppaal
SMC in the railway domain (cf. also, e.g., [5,6,14,29]). In particular, we showed
the tool’s potential for fine tuning communication parameters in satellite-based
ERTMS L3 moving block railway signalling system models that are fundamental
for the reliability of their operational behaviour. Given a specific parameter
setup, we showed how to use Uppaal SMC to confirm or reject parameter values.
The analysis of the Uppaal model for the parameter setup provided by our
industrial partners confirmed the (desired) very low possibility to reach one of
the failure states. Further analysis showed the capability of Uppaal SMC to
detect a bad parameter setup.

Complementarity of Tools. The starting point was a model in Real-Time UML
[18,47] and a set of requirements, both provided by our industrial partners [5].
The requirements elicitation and refinement activity performed with the indus-
trial partners, as briefly outlined in Sect. 3, confirmed Simulink as an appropriate
tool for the initial phases of a development process. Its simulation and debugging
facilities increase confidence in the initial design and facilitate interaction with
the industrial partners, thus allowing to consolidate a final set of requirements.
Not surprisingly, the resulting model and requirements turned out to be far more
detailed than the Real-Time UML model and the initial set of requirements. In
this initial phase, the focus was on the elicitation and animation of functional
requirements. At the same time, the probabilistic aspects initially introduced in
the Real-Time UML model [5] could not be expressed in Simulink, thus requir-
ing the usage of Uppaal. This confirms the need to introduce formal methods
diversity [43] to properly address all the functional, quality and process-related
aspects related to the development of railway signalling systems.

Transformation and Refinement. The transformation of the Simulink model into
an Uppaal model, described in Sect. 4, required us to revisit in particular the
communication among the different processes, removing the fixed scheduling
through shared variables in favour of action interleaving via broadcast chan-
nels. Moreover, in the Uppaal model time is no longer modelled by memorising
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the time difference between events in variables, but by explicit clocks. Most
notably, Uppaal allows to model events to occur with certain probabilities and
to consider stochastic timed behaviour, which we used to enrich the initial model
according to additional specifications of the moving block system provided by
our industrial partners. As such, the Uppaal model represents a refinement of
the initial semi-formal Simulink specification into a more formal specification
amenable to quantitative analyses.

Challenges. We presented only some preliminary analyses in Sect. 5. Further
properties of interest would require a more complex model with more than one
train and more than one RBC, next to running more systematic experiments.
Moreover, it remains to further vary the parameter values to investigate whether
the parameter setup provided by our industrial partners can be improved. How-
ever, while it is not too difficult to use Uppaal SMC to either confirm or reject a
parameter setup, it is much more difficult to use it to find an optimal parameter
setup. We believe this requires profound knowledge of the statistical model-
checking algorithms underlying the tool as well as of the tool’s functionality,
combined with expert knowledge from the railway domain concerning the phys-
ical limits of certain parameter values as well as best practices from the field.

7 Conclusion

In this paper, we have presented an experience in modelling a satellite-based
ERTMS L3 moving block signalling system from the railway industry with
Simulink (upon close interaction with the domain experts) and Uppaal and
in performing preliminary analyses of the Uppaal model with Uppaal SMC
(to be continued in close interaction with the domain experts). In the previous
section, we have reported some lessons learned from this experience.

Future Work. We plan to extend the model with more actors. This would allow
us to consider properties like deadlocks (e.g., following [14], we could model
several trains and use SMC to verify deadlock avoidance under intra communi-
cations). The work could also be extended by using Uppaal Stratego [17], an
SMC and learning-based tool, to synthesise best routes to avoid deadlocking and
match performance objectives (e.g., arrival delays). This would require a dras-
tic modification of the model to introduce measure of performances. We could
also see if Uppaal Stratego can be used for the optimisation of the model’s
parameters.

Finally, it would be worth to consider cyber attacks, e.g., by modelling the
attacker and attacks with attack trees and combine the new model with that of
the train. The result could be analysed via the Uppaal extension for cyber secu-
rity [33]. Note, however, that this would be a major challenge as it would require
a model of potential attacks (and thus know attacks typically kept secret).
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Abstract. This paper presents an application of the formal modelling
and model checking toolkit mCRL2 and the model-based testing tool
JTorX in the signalling domain. The mCRL2 toolkit is used to formally
model the behaviour of a system at the core of signalling solutions: the
interlocking. The model of the interlocking is validated through model-
based testing. We use the mCRL2 toolkit to verify high-level safety prop-
erties of the interlocking software. The suitability of mCRL2, JTorX and
our modelling approach is evaluated and suggestions are given for future
research to improve the applicability of mCRL2 in the signalling domain.

1 Introduction

Developing railway signalling systems is a tough engineering challenge. From
the design of higher level protocols to their electrical/mechanical implementa-
tion and to guidelines for train drivers: scrutiny is essential, a single flaw could
potentially lead to an unacceptable hazard. As the higher level protocols of
railway signalling become more and more complex it also becomes increasingly
difficult and costly to verify the correctness of these protocols. Formal methods
have proven useful to improve the quality of (software) systems [22], including
within the railway domain [10].

The system at the core of signalling solutions is the interlocking, which con-
trols the trackside equipment and contains most of the logic to prevent unsafe
train movements. We were given access to a simulator of the software of an
interlocking developed by Siemens with the challenge to verify the safety of the
interlocking software. The relevant safety properties we investigated in this paper
are the absence of collisions and the absence of derailments caused by moving
an occupied point. We were given the simulator as a black-box. To construct
a formal model of the interlocking we combined input from signalling experts
and validated the model through model-based testing. We chose to model the
behaviour using the mCRL2 toolkit [9], which features state-of-the-art verifica-
tion technology as well as a connection to the model-based testing tool JTorX [3].

The model we obtained revealed potential collisions. By consulting signalling
experts we were able to conclude that the dangerous scenario is excluded through
assumptions on how fast a train can move through the network, giving the
c© Springer Nature Switzerland AG 2019
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interlocking time to process inputs. By building these assumptions into the model
we were able to obtain a collision-free model. Interestingly, the new model could
be validated using model-based testing, while we were also able to replay collision
scenarios found in the initial model on the simulator. This revealed that model-
based testing with JTorX could not test for certain behaviour that relies on a
quick succession of stimuli.

Formal methods have been used extensively within the railway domain [2,10].
Several recent applications use bounded model checking [6,7,14,15,17,18]. A
recent survey [2] shows that a number of other techniques and tools are used in
academia and industry, most notably the B method (and variants of it). mCRL2
and its predecessor μCRL have been used in the signalling domain before [1,12].
Traditionally, an authoritative model is used to put the interlocking software
to the test, such as in [14]. Model-learning techniques can also be applied to
obtain a model from an implementation [16,21]. In our work we combine the
two approaches by creating an approximate model and improving the model
using model-based testing.

2 Railway Signalling Systems

In this section we will touch on some of the core interlocking concepts before
presenting the formal model in the next section. We do not cover all aspects of
the behaviour, for example, behaviour regarding level crossings is not consid-
ered. Signalling system behaviour is specified in national rules and regulations
that have grown over the years as a corpus of texts in natural language. As the
interlocking software of the simulator is designed for the Netherlands, our model
captures the Dutch signalling rules (seinreglement 1955 ). The necessary infor-
mation to construct the model was provided mainly by Siemens, complemented
by infrastructure manager ProRail. An example of a track layout with various
field elements is depicted in Fig. 1.

point
section

signal

Fig. 1. Example track layout

Railway systems consist of a number of layers. On the top level is the traffic
management layer in which the logistics and timetables are planned out. In the
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layer beneath, signalmen or automated systems request routes to move the right
train to the right place. These route requests are passed to the interlocking which
handles the requests and controls the field elements to move the points along the
route in the correct position and to guide the train through the route by con-
trolling the signals along the route. The interlocking plays an important role in
ensuring safety, for example by excluding conflicting routes. Signals and trainside
safety systems ensure that when the interlocking disallows a train movement, the
train is automatically stopped.

An interlocking controls various elements in its yard, with which it can
exchange the messages listed in Table 1. It controls the points in the yard, which
it can place in the left or right position. Sections of track are equipped with
train detection systems to notify the interlocking whether the section is occu-
pied. Signals are present at the borders of sections to control train movements.
An interlocking also has a communication channel with a signalman from which
it receives route requests. A signalman requests a route with an entry signal and
an exit signal. Note that the interlocking does not have a connection with the
train, it can only indirectly observe the train via occupancy detection. Trains
interact with sections by occupying them, with signals by obeying them and
with points by being guided by their position. The signalling setup used in our
simulator features sequential release (in the event that, due to loss of shunt or
timing issues, occupations occur non-sequentially in the view of the interlock-
ing, a section is marked as logically occupied and is thus not released for future
routes). A section that is occupied can only be marked as free if at the moment
the interlocking sees that the section has become unoccupied, the next section
along the route is marked as occupied.

Table 1. Overview of messages exchanged between the interlocking and its
environment.

From To Communication Data passed

Signalman Interlocking Request route IDs of entry signal and exit signal

Interlocking Signalman Route decision Decision: accepted or rejected

Interlocking Point Set position The desired position (left or right)

Interlocking Signal Set aspect Signal aspect: red, yellow or green

Section Interlocking Inform occupancy Boolean to indicate occupancy

There are two major interlocking-families distinguished by the way they
implement signalling rules; the control table family lays down in a table the
logical conditions for allowing a route. The geographical family regards signals,
sections and points as networked objects. These objects communicate and allow
a route only when the neighbouring objects reports a safe state. We model an
interlocking of the geographical family, in accordance with the simulator.

Siemens designs and manufactures both the interlocking and field ele-
ments. To test the software of their interlocking they have developed a test-
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ing/simulation platform called TeSys (short for Test Systemen). TeSys is a PC
platform that emulates the Simis W vital hardware and operating system. This
allows TeSys to run the real interlocking software and test various signalling sce-
narios. As a user it is possible to request routes and to simulate train movements
by making sections occupied. Output from the interlocking software is displayed
visually and in text.

The aim is to construct a formal model that describes the behaviour of the
Siemens interlocking software. The properties we would like to prove for this
model are the two classical safety properties for interlockings: absence of train
collisions (which we interpret as two trains being allowed to move to the same
section) and derailments (for which we only consider derailments due to train
movements while occupied).

3 mCRL2 Model of an Interlocking

The mCRL2 process algebra is a formal language in the lineage of the Algebra of
Communication Processes (ACP) [4]. The associated toolkit offers state-of-the-
art verification technology. The supported language for specifying properties is
a first order extension of the modal μ-calculus. For a more elaborate description
of the mCRL2 language and the extension of the modal μ-calculus we refer to
[11] and for recent advances of the toolkit we refer to [9]. The toolkit itself can
be downloaded from www.mcrl2.org.

In Sect. 3.1 we describe how we used the data language of mCRL2 to capture
both the static and dynamic data aspects such as the track layout and the
conditions to change the status of a route. In Sect. 3.2 we describe how we
have modelled the behaviour of the interlocking, trains and field elements. The
complete model can be found in the appendix of [8] or in plain text1.

3.1 Modelling Data and Predicates

As the interlocking’s behaviour depends on its internal data state (section occu-
pations, routes, etc.) a specification of the internal memory of the interlocking
needs to be included in the formal model. The mCRL2 language includes a rich
data language in which users can construct data types, and define functions on
them. Common data types such as natural numbers and Booleans are built-in, as
well as a few container types such as lists, sets and bags. Data structures can be
created using structured types and function types and they can be manipulated
through mappings and equations that act as rewrite rules.

Enumerations such as the status of a section, the position of a point and the
status of a route are modelled using structured types. Various attributes of an
element can also be grouped together in a structured type, as shown below.

1 https://www.win.tue.nl/∼luttik/Models/IxL/original.mcrl2.

http://www.mcrl2.org
https://www.win.tue.nl/~luttik/Models/IxL/original.mcrl2
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sort
signal_colour = struct RD | GL | GR;
driving_direction = struct L | R;

section_id = Nat;
signal_id = Nat;

signal_info =
struct signal_info(

colour: signal_colour,
direction: driving_direction,
virtual: Bool,
section_before: section_id,
section_after: section_id

);

The constructed sort signal info contains information about its position
in the track topology as well as its current colour aspect, as recorded by the
interlocking. Virtual signals do not correspond to physical signals but can be
used to specify a route to a particular location. In order to let the interlocking
distinguish different signals, identifiers are needed. A function type is used to
create a mapping of a signal identifier to signal info objects, as shown below.
This way, signals is a data structure similar to a key value mapping, mapping
the ID to the associated object.

sort
signals = signal_id -> signal_info;

Sections and points are modelled in a similar fashion. The benefit of using
these function types is that structured types referencing sections, signals and/or
points can store the IDs, instead of duplicating the entire type.

Based on the data structure, operations can be defined to update data, eval-
uate some condition based on the current state, or do some other computation.
Mappings and equations, which are interpreted as rewrite rules, can be defined
to specify how these computations are to be performed. The data types are used
to specify the processes. The following mapping and equation give an example
of an operation on the topology:

map
legal_signal: signal_id -> Bool;
signal_between_sections: section_id#section_id#signals -> Bool;

var
se,se2: section_id;
si: signal_id;
sic: signals;

eqn
legal_signal(si) = si >= first_signal && si <= last_signal;
signal_between_sections(se,se2,sic) =



Formal Modelling and Verification of an Interlocking Using mCRL2 27

exists signal:signal_id. legal_signal(signal)
&& section_before(sic(signal)) == se
&& section_after(sic(signal)) == se2
&& !virtual(sic(signal));

The mapping signal between sections maps two section IDs and the map-
ping signals to a Boolean. In natural language the predicate is true if and only if
there exists a non-virtual signal between the given sections, facing the first given
section. The legal signal predicate checks whether the given ID is a valid ID
for which a signal info object is defined. This is necessary as the ID is a natu-
ral number and thus part of an infinite set. The mCRL2 toolkit recognizes that
the existential quantification is bounded by the legal signal predicate, and as
there are finitely many legal signals it is not necessary to consider all natural
numbers when evaluating the existential quantification.

3.2 Modelling the Behaviour of the Interlocking and the Field
Elements

We have defined a process for each section, signal, point and train as well as
for the interlocking itself. The processes for the field elements act as a kind
of variables; their only behaviour is that they keep track of the state of the
element. The processes of the field elements always allow their states to be
changed, which is achieved by specifying the processes in such a way that in
every state they accept communications that change their state; a section always
allows communication with a train to make the section occupied and points and
signals always allow communication with the interlocking to change the aspect
of a signal or the position of a point, respectively. The train processes interact
with the field elements by making sections occupied, obeying signal aspects and
moving across the track in accordance with the positions of points.

The process representing the behaviour of the interlocking is more complex:
it reads the status of the sections, moves points, sets signals and processes route
requests. To avoid implementation decisions we use non-determinism to specify
that any action for which the condition in the guard is satisfied may happen,
without assuming a particular order of processing inputs or outputs. The mCRL2
fragment below shows the main process of the interlocking as well as one of its
subprocesses, which can result in the update of a signal aspect. Based on the
data state, as maintained by the interlocking, compute signal determines what
the colour aspect of a signal should be. In the case that the signal currently has
a different aspect, the signal aspect is updated. In mCRL2 . denotes sequential
composition, -> denotes a conditional, + denotes non-deterministic choice and
sum expresses a non-deterministic choice over a quantified domain.

proc
Interlocking(sec: sections, sic: signals,

roc:List(route_info), poc: points,
pro:Set(route_info), rro: List(route_info)) =
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InterlockingUpdatingSignal()
+ InterlockingReadingSection()
+ InterlockingMovingPoint()
+ InterlockingReceivingRouteRequest()
+ InterlockingProcessingRoute()
+ InterlockingReadyRoute()
+ InterlockingNotReadyRoute()
+ InterlockingPermitTrainEntry();

InterlockingUpdatingSignal(sec: sections, sic: signals,
roc: List(route_info), poc: points, pro:Set(route_info),
rro: List(route_info)) =

sum result: signal_colour. sum si: signal_id.
(legal_signal(si)
&& result == compute_signal(si,sec,sic,roc,poc)
&& !signal_get_virtual(si,sic))

-> ((!(result == signal_get_colour(si,sic)))
-> setSignalSend(si, result)
.Interlocking(sic = signal_update_colour(si, result, sic),
roc = routes_handle_update_signal(si,result,sec,sic,roc)));

The processes are specified independently of a particular track layout. The
processes are parametrized on the track layout (sections, signals and points),
as can be seen in the example above. At initialization, the processes are given
a particular track layout. We added a configuration mechanism to specify a
configuration that is used in the initialization. It allows us to specify different
configurations in one file of which one can be selected. By example, the frag-
ment below specifies a mapping signals config from a configuration number
to signals. The equations specify that configuration number 3 consists of 3 sig-
nals and the location of these signals. The constructed signals object can then
be used to initialize the interlocking process, as well as the signal processes.

map
signals_config : Nat -> signals

eqn
signals_config(3)(1) = signal_info(RD, R, false, 1,2);
signals_config(3)(2) = signal_info(RD, L, false, 3,2);
signals_config(3)(3) = signal_info(RD, L, false, 4,2);

This approach allows us to quickly switch between configurations. The configu-
ration also specifies the number of trains and which section they will enter on.

4 Formal Verification of the mCRL2 Model

4.1 Requirements

The safety requirements on which we focus are collisions and derailments. As
we only consider collisions within the yard and disallow shunting movements,
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the requirement for collisions reduces to: a section may never be occupied by
two trains. If we formulate this in terms of actions in the model we would like
to verify that it can never happen that setStatusSection(section id, true) occurs
twice without setStatusSection(section id, false) in between, for every section
ID. This is captured by the modal μ-formula φno collision:

∀s : section id. legal section(s) =⇒ [true* . setStatusSection(s, true)
. !setStatusSection(s, false)* . setStatusSection(s, true)] false.

Regarding derailments, as in the model points instantaneously change posi-
tion, it suffices to verify that a point is not moved while the section in which
it is located, is occupied. To make verification easier, the model is adapted
such that the section ID is included in the communication between a point
and the interlocking. Formulated in terms of actions in the model we would
like to verify that it can never happen that an occurrence of setStatusSec-
tion(section id, true) is followed by setPositionPoint(point id,left,section id) or
setPositionPoint(point id,right,section id) without setStatusSection(section id,
false) in between, captured by the modal μ-calculus formula φno derailment:

∀s:section id, p:point id.(s ≤ last section ∧ p ≤ last point)
=⇒ [true* . setStatusSection(s, true) . !setStatusSection(s, false)*]
([setPositionPoint(p,left,s)]false ∧ [setPositionPoint(p,right,s)]false).

We also like to verify that the interlocking satisfies certain liveness properties.
We might want to verify that the interlocking does not prevent trains from
reaching the other side of the yard. In some cases, for example when two trains
are facing each other without options to pass each other, we can not expect that
all trains can reach the other side of the yard. For some track layouts, however,
it is to be expected that all trains can cross the yard. Suppose that we have
a configuration where all trains enter the yard on the right side and there is a
single section on the left side denoted by Z connected to the open track. Also
suppose that for each entry section on the right side the section on the left
side is reachable. In this case it is expected that eventually all trains are able
to cross the yard. The property is captured by the modal μ-calculus formula
φinv possibly cross:

νX(c:Nat = 0, t:Nat = last train). ([!setStatusSection(Z,false)]X(c,t) ∧
[setStatusSection(Z,false)]X(c + 1,t) ∧ φpossibly cross(c,t)),

φpossibly cross(x, y) = μY(c: Nat = x, t:Nat = y).

(〈!setStatusSection(Z,false)〉 Y(c,t) ∨ 〈setStatusSection(Z,false)〉 Y(c+1,t) ∨ c = t).

The formula φpossibly cross keeps track of the current number of trains that
have crossed the yard c and the total number of trains that should eventually
cross the yard t. Using a smallest fixed point operator it specifies that within
finitely many steps c should be equal to t. The formula holds in states from which
there is a path on which there are t− c occurrences of SetStatusSection(Z,false),
i.e., in all states from which a state is reachable in which all trains have crossed
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the yard. In φinv possibly cross a largest fixed point operator is used to specify
that invariantly, the remaining trains can cross the yard. Note that, purposely,
this formula does not specify that all trains always cross the yard within finitely
many steps. Such a formula would not hold as the behaviour of the interlocking
contains loops of routes being requested and rejected.

4.2 Verification Toolchain

The model needs to be configured with a track layout to verify a property. This
track layout should contain a wide variety of possible scenarios as the safety
properties will only be proven for this yard. On the other hand, the state space
of the model should be small enough to perform the verification, restricting
the number of sections, signals and trains we can put in the configuration. To
achieve both a variety of scenarios and a limited amount of field elements it is
also possible to verify several differently configured models. We picked the yard
depicted in Fig. 2, as it contains a point, routes that may conflict head on or on
flanks, and it contains trains following each other on the same route. To verify the
safety properties we constructed two scenarios: one where one train may enter
via Sect. 1 and one train may enter via Sect. 4, and a scenario where two trains
may enter via Sect. 4. To verify the liveness properties the latter configuration
is used with the restriction that only routes from signal 3 to signal 6 may be
requested.

4

1 2 3

4

1

2

3

6

5

Fig. 2. Track layout used for model checking.

The mCRL2 toolkit provides a collection of tools to verify properties of
mCRL2 models. The first step of the analysis of a model is to linearise it to
a Linear Process Specification (LPS). To prove a property, a Parameterized
Boolean Equation System (PBES) is generated and solved. The PBES can be
generated directly from the LPS, but, for our model and properties, solving
such a PBES is relatively slow compared to another strategy: first generating
the LTS. The LTS can be minimised modulo divergence-preserving branching
bisimilarity. From the LTS the PBES can be obtained, which can subsequently
be solved, answering whether the given formula holds for the mode, providing a
counterexample if does not.
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4.3 Results

Property φno derailment holds for the model configured with the track layout
shown in Fig. 2. Liveness property φinv possibly cross does not hold. If a train
leaves behind a logical occupation (see Sect. 2) this might prevent other trains
from being able to cross the yard. We would still require that the model con-
tains at least a trace where all trains cross the yard, expressed in the formula
φpossibly cross. This weaker property was proven to hold for the model.

We found that φno collision does not hold for the model, as it contains collision
scenarios. The scenario depicted in Fig. 3 shows how a dangerous situation can
be reached. The scenario begins with a train on the entry section (Sect. 2) of
the yard with a route set from signal 2 to some signal further ahead. The train
passes the signal and Sect. 2 is seen by the interlocking to be free but the section
after the signal is not yet seen as occupied. This causes the entry signal to be
set to show stop again in step 3. Signal 1, facing the chasing train on the open
track, is set to show yellow and the chasing train enters the entry section of
the interlocking area. As the section before the entry signal of the route is now
occupied signal 2 is set to show green, creating a dangerous situation.

Interlocking area

1

21

1

2

3

4

5

6

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1

1

1

1 2

2

2

2

2

Fig. 3. Scenario showing dangerous situation, colour depicts occupancy as seen by the
interlocking (green= free, red=occupied). (Color figure online)



32 M. Bouwman et al.

According to signalling experts, this scenario is not likely as the time between
step 2 and 5 should be sufficient to detect the train on Sect. 3. The scenario would
be possible in the event that Sect. 3 would never detect a train due to detection
problems, called loss of shunt. We were able to replay the scenario on the TeSys
simulator by not marking Sect. 3 as occupied, simulating the loss of shunt.

By making sections long enough and adding delays in some situations such
timing issues are excluded by infrastructure managers. As such a loss of shunt
is not likely to occur in reality we would like to exclude this scenario from the
model. We were able to find three ways to remove the observed type of collision
from the model and prove the safety property concerning collisions. The first
is to exclude that the interlocking observes an entry section to be free before
it observes that the next section is occupied, yielding model variant Fix read
order. The dangerous situation is possible because the entry section is not part
of the route and can therefore not become logically occupied. Another way to
exclude collisions is then to make the entry section part of the route, guarded
by sequential release (see Sect. 2), model variant Guard entry section. Note
that guarding the entry section deviates from the behaviour of the Siemens
interlocking simulated in TeSys. It is unclear why it was chosen to not include
the entry section in routes. A model in which the interlocking is always per-
fectly up to date regarding section occupations, variant Instant update, also
satisfies φno collision. For this last variant φinv possibly cross also holds as logical
occupations can not occur in this model. An overview of the results is presented
in Table 2 and statistics on the model variants can be found in Table 3. The
different variants are accessible online2

Table 2. Statistics of state spaces of the model variants. Total running time is up to
30min with 30GB of memory usage on a MacBook pro 2018.

Original Fix read
order

Guard entry
section

Instant
update

#states 110229 7170 9837 1713

#transitions 483428 26015 38929 4925

#states (minimized) 4621 577 598 190

#transitions (minimized) 23131 2322 2421 640

5 Model-Based Testing to Validate Model

In order to increase confidence that the formal model, based on the description
of signalling experts, accurately describes the behaviour of the interlocking soft-
ware. To this end, we have used the model-based test tool JTorX [3] to fully
automatically test whether our model accurately describes the behaviour of the
interlocking software.
2 https://www.win.tue.nl/∼luttik/Models/IxL/.

https://www.win.tue.nl/~luttik/Models/IxL/
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Table 3. Overview of what properties hold for which variant of the model.

Original Fix read order Guard entry section Instant update

φno collision False True True True

φno derailment True True True True

φinv possibly cross False False False True

A testing theory defined for Labelled Transition Systems (LTS) is the input
output conformance testing theory (ioco) [20]. The theory considers both the
specification and the implementation as an LTS (while in practice the System
Under Test (SUT) is of course not an LTS). From the specification, test cases can
be generated, which can be executed on the implementation, resulting in a pass
(the implementation conforms to the specification) or a fail (the implementation
deviates from the specification). The test derivation algorithm and when an
implementation passes a test case are formally defined using LTSs.

We use JTorX as testing tool. Like its predecessor TorX [19] it implements
the ioco testing theory. JTorX derives from a given specification which stim-
uli it can send to the SUT and which observations it should expect. JTorX
accepts Labelled Transition Systems as input, as well as linearised mCRL2 mod-
els that represent a possibly infinite transition system via lps2torx (included in
the mCRL2 toolkit but considered deprecated). We used the random stimulus
selection and automated testing features of JTorX to perform online automated
tests (Fig. 4).

mCRL2
model 

LPS JTorX

Adapter
configuration

mcrl22lps lps2torx

Adapter

TeSys

configures

stimuli translated
observations

translated
stimuli observations

Fig. 4. Toolchain to perform model-based testing using JTorX.

We connected the Siemens simulator TeSys to JTorX via an adapter that
translates transition labels from the model to stimuli in TeSys and translates
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events generated by the interlocking to transition labels. The adapter is con-
figured with a two-way mapping between identifiers used in the model and in
TeSys. We chose to validate the instant update variant as it is the most restric-
tive variant. For testing we used the track layout depicted in Fig. 5, with trains
being allowed to enter on all border sections. Note that for this yard it is no
longer feasible to generate the state space, mainly due to the large number of
trains that may be present on the yard.

Fig. 5. Track layout used for testing on the simulator.

Results of Testing. Testing with JTorX revealed several inconsistencies between
the model and the interlocking software. An example of an inconsistency was
that the original model specified that after requesting a route, the next action
of the interlocking is to accept or reject the route, no other action could come
in between. It turns out that when a route is requested and some section occu-
pation is changed shortly after, the interlocking might respond to the section
occupation (by updating a signal aspect) before it accepts/rejects the requested
route. These inconsistencies were fixed in the model, resulting in a model to
which the behaviour of the interlocking conforms according to JTorX. Twenty
test runs consisting of, on average, 50 stimuli/observations have been performed
with the adjusted model. Note that due to the size of the state space test cover-
age is low. Moreover, as the connection between the adapter and the simulator
was not completely stable it can not be guaranteed that all messages arrive at
the other end, still model-based testing has allowed us to construct a better
model. We have verified that the revised model (all variants) still satisfy the
same properties listed in Table 3.

6 Discussion and Conclusions

6.1 Lessons Learned

Importance of Modelling the Environment. Safety properties can be specified
in terms of conflicting routes or other proxies for collisions without needing
to model the environment explicitly. However, we were able to find a type of
collision that is hard to express directly in terms of behaviour of the interlocking
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as no conflicting routes need to be approved or opposing signals need to be set
to show proceed. This was possible because we included the behaviour of trains
in the model. This allowed us to specify the absence of collisions more directly,
independently of how trains might collide.

This approach shifts work from the modeller to the model checking toolkit,
allowing the modeller to be more naive in how unsafe behaviour might emerge. In
some cases the size of the state space might increase by including the environment
into the model, though in this case study, modelling the behaviour of trains
helped to restrict what orders of section occupations are realistic.

Shortcomings of Model-Based Testing. The initial model (and some of the
variants) contain behaviour where a section becomes logically occupied when
section occupations occur non-sequentially in the view of the interlocking. This
behaviour did not occur during testing. The issue is that it only occurs when
section occupations follow each other quickly. JTorX is not able to compute
stimuli quickly enough to test this aspect of the behaviour. JTorX can therefore
not differentiate between a model where the interlocking is notified instantly of
a section occupation and a model that allows a delay.

At some point during the initial modelling phase we had to make a decision
on how to model the environment and more specifically section occupations.
We decided to allow as much behaviour as possible by making the interaction
between a train and a section, and the interaction between a section and the
interlocking distinct actions in the model. This allowed us to find collision sce-
narios that we would not have found otherwise. It can thus be helpful to initially
allow too much behaviour and restrict unrealistic behaviour later, especially in
a setting where model-based testing cannot test all time related behaviour. An
additional benefit is that you learn more about which assumptions are necessary
to ensure safety.

6.2 Research Challenges for mCRL2 and JTorX

An issue that is prevalent in the signalling domain is how to deal with different
configurations. Track layout configurations are different for each interlocking but
also the behaviour of the interlocking is dependent on several factors. For exam-
ple, the behaviour depends on the country and the Automatic Train Protection
system used in that area. The mCRL2 toolkit currently has limited features to
handle these configuration issues as an mCRL2 model is a closed model. In this
case study we used the data language of the mCRL2 language to construct a
function that maps a natural number to a configuration, allowing us to select
a configuration by changing a single line in the model. The different variants
of the model that we created to exclude specific collision scenarios could not
so easily be incorporated into the model, forcing us to create separate models,
duplicating most of the mCRL2 code.

Another challenge is that it is currently very hard to troubleshoot perfor-
mance issues. The mCRL2 toolkit rewrites data terms, a predicate in the data
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is, for example, rewritten to true or false. The sum operator in process defini-
tions and forall/exists statements in data equations, may cause the rewriter to
evaluate an infinite domain, such as all natural numbers. If the rewriter does not
evaluate an infinite domain but nevertheless does need a large number of rewrite
steps to rewrite certain terms it can have a significant impact on the performance
of the toolkit. The issue is that it is hard to figure out which term slows down
the rewriter. It would be helpful if the toolkit would provide some feedback to
the user. A possibility would be to provide the user with the option to display a
log of the rewriter. In some cases the toolkit might be improved to recognise that
an infinite domain will be evaluated, though, in general, termination of rewriting
is undecidable.

6.3 Further Research for Development of Signalling Systems

Other modelling languages than mCRL2 are already in use in the signalling
domain. Siemens currently uses GRACE, a graphical modelling language, to
design the interlocking logic. From GRACE the interlocking software is gener-
ated. The EULYNX initiative3 uses SysML models to standardize interfaces and
certain aspects of the behaviour of field elements. It would be beneficial for them
if they could profit from the advantages of formal methods without needing to
develop formal models from scratch or radically changing their current workflow.

If it would be possible to generate a formal model from the models already
being used, the flow depicted in Fig. 6 could be achieved. In the setting where an
authoritative model is created from the requirements, model-based testing could

Requirements

Model
(GRACE/SysML/etc.) 

Yard configuration
(EULYNX data prep) 

Formal model
(mCRL2) 

Automated testing
platform (JTorX)

modelling/system design

automatic generation
of formal model 

Model checking

input for

input for

Fig. 6. Further integration formal methods in signalling system/standard development.

3 https://www.eulynx.eu/.

https://www.eulynx.eu/
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be used to (automatically) check the software. Some research has been done on
generating mCRL2 code from other modelling languages [5,13].

Signalling engineers generally do not have the expertise to use formal mod-
elling languages and toolkits. Getting the expertise in formal methods requires
a significant time investment. Using an intermediate modelling language would
allow signalling experts to use more intuitive modelling languages while formal
methods experts could manage the analysis of the formal models.

6.4 Concluding Remarks on Formal Methods in Railway Signalling

Traditionally, the level of experience and rigour of the people who design and test
signalling systems determined the quality of the systems, and consequently the
safety of systems. This is not by definition an undesirable situation, considering
the high level of safety that is achieved in this way.

That is not to say that formal methods could not play a valuable role in
the development of signalling systems. By also employing formal methods to
find flaws, one can reduce the sole dependency on human experience. Moreover,
the development of formal models promotes the discussion about why signalling
systems are safe and the models themselves provide a more detailed account
of the design than plain text. Finally, finding flaws in early design phases and
automation of testing could offer significant cost reductions.

Acknowledgements. We would like to thank Daan van der Meij from ProRail for
his contributions to this work by sharing his expertise on signalling systems.
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Abstract. Infrastructure failures—in particular in station and junction
areas—are one of the most important causes for train delays in railway
systems. Individually, subsystems, such as track circuits or radio com-
munication, are well understood and have been analyzed using formal
methods. However, verification of the capability of station areas to fulfill
operational design specifications as a whole remains widely open.

In this paper, we present a fully automatic translation from station
area infrastructure to dynamic fault trees (DFT) with special empha-
sis on field elements including switches, signals and track occupation
detection systems. Reliability is assessed in terms of train routability,
where feasible train routes consist of the set of train paths projected
in the interlocking system including their requirements w.r.t. the state
of field elements. Analysing the DFTs by probabilistic model checking
techniques allows for new performance metrics based on, e.g., conditional
events or the sequence of failures, which can serve to provide additional
insights into the criticality of field elements.

We demonstrate the feasibility of the DFT-based analysis based on
data for railway stations in Germany where the generated DFTs consist
of hundreds of elements.

Keywords: Railway infrastructure · Dynamic fault trees · Reliability

1 Introduction

Strategic decisions in infrastructure design and asset management of railway
networks are extremely critical as renewal cycles can easily span several decades
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Fig. 1. Overview of the DFT-based analysis approach for railway stations

and decisions tend to shape the network layout for decades. This is why a quan-
titative a-priori analysis of infrastructure reliability and performance is highly
important.

Formal methods have found widespread application in verification of hard-
and software standards in safety-critical applications such as interlockings
[10,11,18,19,26] or train communications [3,5,24,37]. The need for formal sys-
tem analysis in a broader RAMS setting has recently been emphasized in the
rail-specific CENELEC norms EN 50126-1, 50128, 50129, 50159 [12,13]. To date,
formal method applications in this context are mostly delimited to the verifica-
tion of specifications of individual components by original equipment manufac-
turers (OEMs), whereas – on the network level – heuristic or manual approaches
continue to dominate [32].

This paper presents an infrastructure reliability model based on dynamic
fault trees (DFTs) [17,40] for the performance analysis and verification of railway
station areas. The system description is based on train paths projected in the
interlocking system, which are the fundamental element for train routing and
operation in railway systems. Train path functionality is conditioned on the
operability of tracks as well as field elements such as switches or signals, which
are typically specified in interlocking tables (cf. e.g., [19]). Quality parameters of
these systems or subsystems thereof are reported to the infrastructure manager
by OEMs and can also often be deduced from network records.

An overview of our approach is depicted in Fig. 1. The fully automatic app-
roach translates station infrastructure data to DFTs by combining DFTs for
train paths and dedicated DFTs for field elements into one complete DFT (top
row). We place special emphasis on field elements including switches, signals
and track occupation detection systems, which are known to be responsible
for the majority of infrastructure failures in station and junction areas [4]. We
develop new performance metrics for asset management (bottom row) and apply
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probabilistic model checking (middle row) for analysis. The results can be used
to gain a deeper understanding on the long term effects of strategic decisions in
infrastructure design and maintenance planning.

The paper is structured as follows: In Sect. 2 we review the current status
of reliability analysis for railway networks and previous applications of formal
methods in this context. Section 3 discusses the principles of railway operation
procedures and briefly introduces DFTs. Section 4 presents our DFT-based mod-
eling approach for railway networks on the system level. In Sect. 5 we discuss
new performance metrics for quantitative analysis of the state of the infrastruc-
ture. The metrics become accessible through the state-based DFT model. We
demonstrate the functionality and the capabilities of our approach in application
scenarios for three German railway stations in Sect. 6.

2 Related Work

Train operations in railway networks are based on interlocking systems, a com-
bination of technical systems that prohibit conflicting movements of trains. In
order to set a train route and to grant movement authority to a train, precondi-
tions on the state of tracks and field elements have to be met, which are typically
stored in interlocking control tables [19,43]. Due to the safety-criticality of train
control, formal methods are widely used for hard- and software verification in
this area.

For a broad methodological overview on formal methods for railway software
development, see [7]. The suitability of formal methods and tools for railway sig-
naling and control applications with respect to the safety integrity level (SIL)—
4 being the highest, 0 the lowest—has been reviewed in [18]. In station areas,
solid state interlocking programs (e.g., [26]) and railway signalling data (e.g.,
[25]) have been formally verified. In view of the migration of “old” signal-based
train control systems to new radio-based infrastructure such as ERTMS/ETCS
(European Rail Traffic Management System/European Train Control System),
verification of train control specifications has received new attention recently,
especially with respect to train radio communications: [15] verifies consistency
of ETCS requirements in a hybrid system setting including train dynamics using
a combination of temporal logic with regular expressions. In [37], ETCS is viewed
as a hybrid system controller and controllability, safety, liveness and reactivity of
ETCS in view of perturbations in train dynamics are investigated using deduc-
tive verification. [24] presents a statechart extension and its transformation to
discrete event simulation-based analysis of reliability in this context to verify
compliance with QoS standards for train radio communication. [5] focuses on
failure modeling of ERTMS/ETCS Level 3, an entirely radio-based control sys-
tem standard. Stochastic Petri nets are used to provide a quantitative assessment
of the effects of communication losses. In [3], a Level 3 moving block signalling
scenario is modelled and analysed with UPPAAL SMC.

Quality and safety requirements for electrotechnical systems in railway sig-
naling applications have been specified in the CENELEC standards EN 50128,
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EN 50129 and EN 50159 [12]. EN 50128 recommends the use of formal methods
even for software applications at SIL 1 and 2. The related EN 50126-1 standard
[13] provides guidelines for risk and asset management, also emphasizing the
qualities of formal modeling approaches in this context.

To date, the use of formal methods in railway asset management remains
limited and often focuses on specific elements or subsystems only. [22] and [31]
discuss failure modes of tracks and switches and develop Failure Mode and Effect
Analysis (FMEA) schemes for asset management based on application scenarios
from the British and Swedish railway networks. Markovian models for degra-
dation modeling of rails and track foundations have been discussed in [38] and
extended to a Petri net-based approach in [1].

Another class of models mentioned in EN 50126 are fault trees. Henry [23]
uses fault trees to model train protection systems in a metro transit system. The
railway power supply system and the effects of different maintenance strategies
have been analyzed using (static) fault trees in [14]. The model is solved using
binary decision diagrams. [21] discusses a DFT model for the investigation of
general railway failure scenarios and maintenance strategies. By integrating new
“dynamic” gates, functional dependencies and spare parts typical for repair pro-
cesses can be modeled. Probabilistic model checking based on a Markov chain
representation of the fault tree is applied to solve the model. An extension is
provided in [39], where DFTs are used to optimize maintenance strategies for
insulating joints, which are essential for train detection based on track circuits.
A first step to transfer the use of fault trees to performability analysis of entire
stations have been recently undertaken in [43], where the main focus has been
on the modeling of fallback levels in case of infrastructure disruptions.

3 Preliminaries

3.1 Fundamentals of Railway Operations

In the following we recap infrastructure reliability in railway station areas. Apart
from the permanent way including tracks, switches and crossings, the wayside
infrastructure also includes field elements required by the signaling and train
control system such as signals and axle counters or track circuits to detect train
movements. For radio-based train control systems track-bound balises trans-
mitting position indication and movement authority are required, as well. In
this paper we focus on elements in signal-based fixed-block train control, which
remains the standard for train operations in stations (see Fig. 2 for an example).

Similar to [43] and the verification of interlocking systems (cf. [18]), our
analysis is based on train routes. Train routes denote paths on the infrastructure
which are delimited by signals governing station entry and exit. As no additional
driving indication is given to train drivers en route in standard operations, the
entire route has to be cleared and set for the train before the movement authority
(by means of signals) is given. As a result, train routes can be seen as the
fundamental routing elements in station areas and will be the base of our model.
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Fig. 2. Railway station with exit route. The central station area in the middle of the
figure is connected to three adjacent railway lines: Two double-track lines to the right
and a 3-track line segment to the left. Field elements including signals, axle counters
and switches included in the interlocking system are marked.

3.2 Fault Trees

Fault trees [40,41] (FTs) are directed acyclic graphs (DAG) with typed nodes
(AND, OR, etc.). We refer to nodes of type T as “a T”.

Successors of a node v in the DAG are called children of v. Nodes without
children are basic events (BEs), nodes with children are gates. We say a BE
“fails”, if the event occurs. Similarly, a gate fails if the failure condition over the
children holds. The top-level event (TLE(F )) is a specifically marked node of FT
F . We write TLE if F is clear from the context. The FT F fails iff TLE(F ) fails.

In the following, we recapitulate the different node types in a fault tree as
presented in [20]. A detailed account of the semantics is given in [29].

Static Fault Trees. Static fault trees (SFTs) have node types BE and VOT.

Basic events. BEs (Fig. 3(a)) represent system components which can fail accord-
ing to an exponential failure distribution defined by the failure rate. A special
case of BEs are constant fail-safe BEs (CONST(⊥), Fig. 3(b)) which never fail.

(a) BE

⊥

(b) CONST(⊥)

k

. . .

(c) VOTk

. . .

(d) OR

. . .

(e) AND

→
. . .

(f) SEQ

↔
. . .

(g) MUTEX

Fig. 3. Node types in ((a)–(e)) static and (all) dynamic fault trees
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Voting Gate. The voting gate with threshold k (VOTk, Fig. 3(c)) is the key gate
for static fault trees. A VOTk-gate fails, if k of its children have failed. The OR-
gate (Fig. 3(d)) fails if at least one child has failed and can be represented by
a VOT1-gate. The AND-gate (Fig. 3(e)) with n children fails if all children have
failed and can be represented by a VOTn-gate.

Dynamic Fault Trees. For complex systems, SFTs lack expressive power
to faithfully model many required aspects such as spare components, order-
dependent failures, functional dependencies or failure restrictions. Dynamic fault
trees (DFTs) [17] are an extension of SFTs including these aspects. In the fol-
lowing, we only describe the gate types required for our modelling purposes.

T

A B

(a) MUTEX

T

D

A B

⊥

(b) MUTEX modelled by SEQ

Fig. 4. A Mutex

Restrictors. Restrictors limit
the possible failures of events.
The sequence enforcer (SEQ,
Fig. 3(f)) only allows fail-
ures of its children from
left to right. A special case
of the SEQ is the mutual
exclusion restriction (MUTEX,
Fig. 3(g)). A MUTEX prevents
the failure of more than one
of its children. As an example,
consider the DFT in Fig. 4(a).
If A has failed, the MUTEX prevents the failure of B, and vice versa. MUTEX
are syntactic sugar [28] and can be modelled with a SEQ and a fail-safe BE as
shown in Fig. 4(b).

3.3 Markov Chains

For analysis purposes, the DFTs are translated into continuous-time Markov
Chains (CTMCs) [2].

Definition 1 (CTMC). A CTMC is a tuple C = (S, P,R,L) with

– S a finite set of states,
– P : S × S → [0, 1] a stochastic matrix i.e.,

∑
s′∈S P (s, s′) = 1 for all s ∈ S,

– R : S → R>0 a function assigning an exit rate R(s) to each state s ∈ S,
– L : S → 2AP a labeling function assigning a set of atomic propositions L(s)

to each state s ∈ S.

The residence time in each state s is defined by the negative exponential dis-
tribution parameterised by exit rate R(s). The transition rate between states s
and s′ is defined as R(s, s′) = R(s) · P (s, s′). State labels identify states in the
DFT fulfilling specific conditions, e.g., states where a specific DFT event has
occurred. For example, an atomic proposition Afail could be added to all states
where DFT element A has failed.
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4 DFT Model for Railway Station Reliability Analysis

4.1 DFT Model for Railway Station

The fault tree model for the railway station area focuses on the possible train
routing options. Different train types are associated with route sets, sets of pos-
sible train routes within the station area. The train routes in a route set are
prioritised and the train route with the highest priority is the standard route.
A train route consists of up to two train paths: a train path leading from the
station entry to a halt in the station area, and similarly a train path leading to
the station exit. For trains starting or ending in the station, only one train path
is present. A train path is specified in the interlocking system and determines,
for example, the required state of switches and signals along the path.

Figure 5 depicts the DFT model for a railway station. A station is considered
failed if at least for one train type no routing is possible anymore. The routing
for a train type is impossible if all train routes in the corresponding route set are
unavailable. A train route is unavailable if at least one of the train paths (tp1,
tp2) is unavailable. Note that a train path can be used in different train routes.
Lastly, a train path tp is unavailable if at least one element (e.g., signal, crossing,
etc.) along the path has failed. For switches and slip switches the correct track
of the component has to be unavailable. If, for instance, a train path requires
the main track of a switch and only the branch track is unavailable, the train
path is still available. Field elements can be used in multiple train paths as well.

station

route set 1

. . .
route set n

route 1 route 2

. . .

route 1 route 2

. . .

route k

tp 1 tp 2 tp 3

. . .

tp i tp i+1

. . .

tp m

switch 1 main switch 1 branch

. . .

crossing switch 2 right main crossing 4

. . .

signal 5

Fig. 5. Railway station fault tree
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4.2 DFT Models for Infrastructure Components

In the following, we present DFT models for all relevant wayside infrastructure
elements in the station area. A special focus lies on switches which are most
important for routing, and are modelled with the greatest detail.

Switches. Switches allow routing on either the main track or the branching
track depending on the current state of the blades. When changing the routing,
the actuation and the control of the motor have to work in order to move the
blades. Moreover, the locking mechanism has to work as well, to ensure that the
blades are safely locked in their final position and do not move underneath a
train. One important aspect of the switch is that a failure in one of the tracks
might still allow routing on the other track. For example, if the actuation fails
to move the blades, but they are still safely lockable in their present position,
the current route can still be used.

The DFT modelling the different failure types of a switch is depicted in
Fig. 6. We separately consider the status of the main track and the branch track.
Both of the corresponding OR-gates (switch main and switch branch) might have
connections to other parts of the DFT.

switch main switch branch

branch stuck global fail main stuck

main Actuation

main Control main Locking

Perm. way (main) branch Actuation

branch Control branch Locking

Perm. way (branch)

Detection Perm. way (global)

Fig. 6. Switch fault tree

For the modeling of the failure modes we rely on the detailed categorisation of
switch failures provided in [4] (for the UK network), where 5 technical categories
have been identified:

– Actuation (A) – failures in the track switching process (blade movement, lock
actuation),

– Control/Power (C) – failures in control or power supply of switch subsystems,
– Detection (D) – failure to detect/transmit the position of switch rails/locks,
– Locking (L) – failure to lock the switch blades,
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– Permanent Way (P) – mech. failures of rails, stretcher bars, slide chairs, etc.

Whereas failures to detect the current switch position/locking (D) will render
the entire switch unusable, failures of the permanent way (P) can be both posi-
tion specific (blade rail, guiding rail failures) or global (ballast, crossing failures).
Locking (L), Control (C) and Actuation (A) failures originate in the context of
blade movements and typically only affect one of the two switch routing options.
For example, switch main is unavailable if branch stuck occurred, i.e. if the blades
cannot be moved from their current position “branch” and locked to the “main”
position any more. The MUTEX ensures that the switch can only be stuck in
one position and not in both positions at the same time.

Slip Switches. Slip switches allow up to four different routing options from two
ingoing to two outgoing tracks. Intuitively, they can be seen as a combination of
two switches that each move the blades in two tracks. One motor sets the position
of the blades on the two ingoing tracks—the right track and the left track. The
other motor sets the position of the blades in the two outgoing tracks. Depending
on the joint position of the blades, a train arriving on any ingoing track can be
routed to the corresponding outgoing main or branch track. Note that not all
routing options need be technically realised in a slip switch.

The DFT model for a slip switch is depicted in Fig. 7. It has four top events
(right/left × main/branch) which all might have connections to other DFT parts.
Again, we distinguish between stuck branches and total failures. As the slip
switch consists of two switches, if one has failed completely (switch 1 fail or
switch 2 fail), all four routing options become unavailable and the slip switch has
failed. However, if the blades for one switch are stuck, only two tracks become
unavailable. These cases are represented by the four OR-gates with stuck. As
before, two MUTEX ensure that the blades can only be stuck in one position.

right branch left main right main left branch

switch 1 right stuck

switch 1 global fail

switch 1 left stuck switch 2 right stuck

switch 2 global fail

switch 2 left stuck

Fig. 7. Slip switch fault tree (without BEs)
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For better visualisation, we omitted the BEs in the slip switch DFT, but they
are similar as for the single switch DFT. For example, the OR-gate switch 1 right
stuck has four BEs for actuation, control, locking and permanent way failures.

Crossings. Crossings allow overlapping of two tracks without switching the
tracks as in a slip switch. Without the presence of electromechanical components
such as the motor or switch blades, the failure causes reduce to permanent way
failures. The corresponding fault tree is depicted in Fig. 8(a).

Further Components. As we focus on train routability in our DFT model,
sub fault trees for switches have the richest topology. Further components such
as signals or track clearance detection can be modelled as atomic components
without detailed failure behaviour for routability. If desired, these components
can of course be modelled in greater detail using all available gate types in DFTs.
An overview of the fault trees for further components is given in Fig. 8.

crossing

permanent way failure

(a) Crossing

track clearance detection

permanent axle counter failure

transient axle counter failure

(b) Track clearance

signal

permanent failure

(c) Signal

track segment

permanent way failure

(d) Track segment

Fig. 8. Fault trees for further components

Track Clearance Detection. Track clearance detection reports whether the cur-
rent track segment is occupied by a train. In Germany, axle counters are predom-
inantly used for track clearance detection. Failures for axle counters (Fig. 8(b))
can be subdivided into permanent failures of the component and transient fail-
ures, where a train axle was not detected and functionality is quickly restored
by a reset [30].

Signals. Signals failures (Fig. 8(c)) are often confused with other system mal-
functions connected with the interlocking system that prohibit the signal being
switched to green. We here consider intrinsic failures of the signal as a field
element. With the establishment of highly reliable LED technology they are
typically not caused by the lamps, but by wayside electronics of the signal [30].
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Track Segments. Track segments (Fig. 8(d)) only experience failures due to wear
from the trains running on the tracks. Failure rates for short track segments in
stations, which are travelled at low speed, are typically small (cf. Sect. 4.3).

4.3 Failure Rates

Switches and Crossings. For the switch and crossing failure rates we rely
on the extensive data from the UK Railway Network provided in [4], assuming
electromechanical actuation systems (Type HW/W63) for switches, which are
the most widespread designs both in the UK and in the German railway network.
Failure rates for the different failure causes are based on the MTTFRI data
(mean time to failure requiring intervention) in [4, Table 4].

Type (L), (C) and (A) failures originate in the context of blade movements,
only. As [22] shows, almost 80% of switch failure causes are due to blade obstruc-
tion (snow/ice, ballast) and insufficient lubrication of slide chairs. As these fail-
ures are more likely to occur when moving the switch blades to the position used
less frequently it could be argued for load dependent failure rates at this point.
However, as no consistent information on the effects of load could be found in
the literature, an even spread over the two branches has been assumed.

Permanent way (P) failures can yield both a complete failure of the switch
(T) in case elements used by all tracks are affected (crossings, ballast) or depend
on the branch (guiding rails, blades). The share of permanent way failures that
renders the entire switch unusable, regardless of the blade position, is denoted
by ηT,P and is estimated based on the share of ballast, crossing, fishplate and
sleeper failures in UK failure cause data for switches provided in [22, Table 1].
The parameters are summarised in Table 1.

Table 1. Failure parameters for switches based on HW/W63 switch data in [4, Table 4].
Failure rates λA, λC , λD, λL, λP correspond to failure causes (A), (C), (D), (L) and (P),
ηT,P denotes the share of permanent way failures rendering the switch totally failed.

λP [1/d] λA [1/d] λC [1/d] λD [1/d] λL [1/d] ηP,G

1.46 · 10−4 4.98 · 10−4 2.26 · 10−4 2.32 · 10−4 1.28 · 10−4 0.11

Data for crossings and slip switches rely on the same parameters. For cross-
ings only Type (P) failures have to be considered. For slip switches Type (A),
(C), (D) and (L) failures apply to both switching motors, independently.

Further Components. Track segments, track clearance detection and signals
do not have degraded modes bearing on train routability, such that aggregated
values can be used. For track segments and signals, failure rates consistent to the
switch failure rates for the UK network can be estimated based on the number
of reported failures and the approximate number of elements in the UK network
in [35]. The number of track circuits and axle counters in the UK could not be
found, such that failure data from [39] and [30] was chosen in Table 2.
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Table 2. Failure rates [1/d] for track segments, signals, axle counters and track circuits.

Track Segments Signals Track Circuits Axle Counters

Failure Failure Failure Reset request Failure

4.4 · 10−4 (per km) 2.9 · 10−4 5.5 · 10−4 2.8 · 10−4 1.1 · 10−4

5 Quality Metrics for Railway Station Areas

Fault tree analysis can be performed by translating the DFT into a CTMC
[8,17,42]. The analysis is performed on the CTMC by applying the standard
model checking algorithms for a set of relevant properties. The properties to
analyse are specified in continuous stochastic logic (CSL) with reward extensions
[2].

We use atomic label Failed(v) to indicate the failure of DFT node v. The
label Failed(TLE(F )) represents a failure of FT F . The labeling function of the
CTMC assigns atomic labels to those states where the corresponding DFT node
has failed. A set of states indicating certain failures is specified by a Boolean
combination over the corresponding labels.

Table 3. Model-checking queries

Measure Model-checking queries

Unreliability Ps0
(

♦≤t Failed(TLE(F ))
)

MTTF ETs0 (♦Failed(TLE(F )))

Unrel. for route i Ps0
(

♦≤t Failed(route i)
)

Unrel. for train path i Ps0
(

♦≤t Failed(tp i)
)

Criticality of element v Ĩv(t)

Unrel. after comp. v failed
∑

s∈S,Failed(v)∈L(s)
Ps0 (¬Failed(v)U s) · Ps

(
♦≤t Failed(TLE(F ))

)

MTTF after comp. v failed
∑

s∈S,Failed(v)∈L(s)
Ps0 (¬Failed(v)U s) · ETs (♦Failed(TLE(F )))

Most metrics are reduced to the reachability probability Ps(♦≤t event) of
reaching a state e satisfying the labeling event from state s within time bound
t. In the following, we present the metrics we computed in the context of rail-
way station areas. The corresponding model-checking queries are formalised in
Table 3.

General Metrics. As for static fault trees, the standard metrics such as unre-
liability and mean-time-to-failure (MTTF) can be checked on the CTMC. The
unreliability is given by the reachability probability of a state where TLE(F )
has failed from initial state s0. The MTTF is computed as the expected time
ET of the failure of TLE(F ) from the initial state. Analysing the unreliability of
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the routing options is performed by computing the reachability probability for
a route or a train path.

Re-routing Probability. The TLE represents the complete failure of at least
one route set. To assess the probability that at least one train must be re-
routed, we change the DFT model. The DFT is changed by only considering the
standard route for each route set and removing all alternative train routes. The
unreliability in the changed DFT corresponds to the re-routing probability.

Criticality of Infrastructure Elements. We denote the unreliability of a set
of states e from initial state s0 at time t by the transient probability Unrt(e) =
Ps0(♦=t e). One important metric in the station area model is the criticality of
infrastructure elements, i.e., the influence of failures of a specific field element on
the overall unreliability. A common way to measure the sensitivity of the system
to an element is the Birnbaum importance index [6] defined as Iv(t) = ∂Unrt(TLE)

∂Unrt(v)
.

Following [36], we can approximate the importance index Iv(t) by

Ĩv(t) = x ·
(
Unrt(Failed(TLE) ∧ Failed(v)))

Unrt(Failed(v)))
− Unrt(Failed(TLE) ∧ ¬Failed(v))

Unrt(¬Failed(v))

)

with x = UnrtF (Failed(v))
UnrtFiso

(Failed(v))
. The factor x computes the fraction of the unreliability

of the element in the system F and in isolation Fiso. The FT Fiso for element
v is obtained from F by setting TLE(Fiso) = v and removing all restrictions on
v. Computing Ĩv(t) for each element v gives insight into which element failures
have the most impact on the routing in the station area.

Reliability Until Next Maintenance. If an element has failed, it is important
to know how fast the element should be repaired or replaced. We can compute the
unreliability after component failure for a component v by looking at all states
where v has already failed. Each state s should be the first instance where v has
failed, i.e., v is operational in all predecessors of s. We compute the unreliability
in each state s and multiply it with the probability to reach s in the first place.
The time bound for the unreliability is chosen as a typical maintenance interval.
In a similar fashion, the MTTF after component failure can be computed. Both
computations use the improved algorithm from [20] which avoids performing the
model checking query for each state and uses only two checks instead.

6 Application Scenarios

6.1 Test Cases

As application scenarios for our fault-tree based station reliability model we
consider three railway stations in the German state North Rhine Westphalia:
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Aachen Hbf, Mönchengladbach Hbf and Herzogenrath Bf. Aachen Hbf and
Mönchengladbach Hbf are major stations with multiple starting and ending train
lines, and 9 and 10 tracks, respectively (7/9 platform tracks). Herzogenrath is a
considerably smaller medium size station with 4 platform tracks (3 in use) and
a small freight yard.

In the following analysis we focus on switches; track segments, axle counters
and signals are not considered. While including the other elements is perfectly
viable from a computational point of view we focus on switches for three reasons:

– First, switches possess the most interesting routability properties as they
exhibit various degraded modes which still allow the use in some train routes,
depending on whether the branching or the main track of the switch is used.

– Second, switch failures have been shown to be one of the most important
factors in delay build-up [4]. As a result, more reliable switch designs have
been discussed both by research [16] and OEMs (e.g. [33]). There now exist
multiple switch layouts to choose from, such that switches are interesting
from an asset management and investment point of view, as well. Failure
rates of track segments, by contrast, can only be optimized to some extent
by shortening inspection intervals, for instance.

– Finally, signal and axle counter failures tend to yield milder disruptions as
fallback levels such as visual driving mode exist [43]. In addition, about 70%
of axle counter failures are detection errors only requiring a reset once track
clearance has been confirmed [30, Table 6]. Hence, the majority of axle counter
failures are transient failures that can be resolved by train dispatchers.

6.2 Input Data

For the input data we rely on infrastructure and train data for the German
railway network, as specified in the XML-ISS and XML-KSS standards [9], data
exchange formats for railway infrastructure and train data currently used by Ger-
man infrastructure manager DB Netz AG. The format is related to the railML
standard [34], to which our method could be adapted with minor modifications.
As discussed before, the requirements of train routes with respect to the state of
field elements are typically specified in control tables, to which access is highly
restrictive. We therefore follow a similar approach as the one recently discussed
in [32] and construct control tables from the infrastructure data. While this
approach can only provide an approximation to the actual situation specified
in the interlocking control tables – which tend to vary between countries and
even locally as a result of the exact track topology – it provides comparable data
input, such that the approach is transferable to actual interlocking data.

6.3 Results and Discussion

We run Storm [42] on a HP BL685C G7 restricted to 16 GB RAM and use
a single 2.0-GHz core. We generate the DFT models from the input railway
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infrastructure and simplify the resulting DFT models with the rewrite framework
from [27]. The complete workflow as presented in Fig. 1 is fully automatized.

We evaluate our approach on the three stations for two different route sets:
either a route set consists of only the standard route (std) or a route set contains
the 5 most feasible routes according to priorities in the input data (alt 5 ).

Results. The model characteristics are given in Table 4. The first three columns
specify the scenario by a unique id, the station and the variant. The fourth
column indicates the maximal length of explored subsequent failures. The next
four columns give the number of route sets, routes, train paths and components
in the station. The next three columns characterise the resulting DFTs in terms
of number of BEs, static gates and dynamic gates. The last two columns give
the number of states and transitions in the resulting CTMCs. Note, that the
maximal failure sequence length is required to mitigate the state space growth
for larger models. It is reasonable to only consider a fixed number of subsequent
failures as repairs or replacements would be performed after multiple failures.

Table 4. Model characteristics

Scenario Railway DFT CTMC

id Station Variant Max Rset Rou Tp Com. BE Stat. Dyn. States Trans.

1 Aachen std ∞ 61 61 62 53 544 459 54 2,049 13,313

2 alt 5 4 23 115 41 54 536 451 53 11,371,990 45,946,651

3 Herzog. std ∞ 11 11 15 22 194 137 19 257 1,281

4 alt 5 4 9 19 15 24 214 153 21 275,073 1,109,037

5 alt 5 6 9 19 15 24 214 153 21 17,592,280 106,375,167

6 M’gladb. std ∞ 26 26 32 40 480 325 48 8,193 61,441

7 alt 5 4 11 43 25 41 490 325 49 6,224,521 24,798,158

We analyse the resulting CTMCs according to the model checking queries
specified in Sect. 5. The time bound is 90 days (a typical maintenance interval).
The results are presented in Table 5. The id in the first column references the
scenario. The second column gives the time (in seconds) for building the CTMC.
The next three columns give results for unreliability and MTTF, and the time
needed to compute both metrics. The remainder presents the results for more
intricate metrics: the unreliability of each route, the criticality of each switch
and the MTTF after a switch failed. For all three metrics we give an exemplary
result and the average analysis time. Note that we gain upper and lower bounds
for all results on the partially explored models and present the worst-case results
here.

Analysis results for all switches in Mönchengladbach Hbf (scenario 7) are
depicted in Fig. 9. The criticality results Ĩv(t) are given in Fig. 9(a) and the
MTTF after the switch failures are given in Fig. 9(b). Each coloured dot rep-
resents a switch and its analysis result where red indicates a higher and yellow
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Table 5. Analysis results (MTTF in [days], comp. times in [seconds])

id Build Time General metrics Unrel. route Criticality MTTF aft. fail

Unrel. MTTF Time Result avg. Time Result avg. Time Result avg. Time

1 0.11 0.996 16.39 0.01 0.246 0.05 0.025 7.86 0.00 0.58

2 2006.16 0.895 46.71 10.75 0.758 1.31 0.569 63.86 1.31 75.84

3 0.04 0.826 51.54 0.00 0.172 1.41 0.196 1.78 0.00 0.95

4 12.33 0.715 70.09 0.39 0.273 0.03 0.312 0.36 1.89 0.28

5 1110.48 0.711 72.41 17.78 0.274 0.43 0.214 4.40 2.24 2.43

6 27.79 0.991 19.02 0.02 0.203 0.20 0.037 5.95 0.00 0.33

7 645.51 0.842 55.77 6.09 0.650 0.90 0.673 73.54 1.22 41.39

(a) Criticality Ĩv(t)

(b) MTTF after component failure

Fig. 9. Analysis of switches in Mönchengladbach Hbf for the considered route sets
(scenario 7) (Color figure online)

a lower value. Grey dots indicate switches which are not amongst the 5 train
routes with highest priority for any train type.

Discussion. All models experience high unreliability within a 3-months period.
Allowing multiple alternative paths instead of a standard path increases the
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reliability of the stations and the MTTF nearly triples for Aachen and
Mönchengladbach.

When considering alternative paths, the state space growth and therefore
the building times become the main limiting factor. The time needed for model
checking remains negligible even for the largest models. For Herzogenrath we
increased the maximal failure sequence from 4 to 6. While the state space greatly
increases, the results only slightly change. Thus, it is reasonable to limit the
number of considered subsequent failures and still get insightful results.

The criticality results in Fig. 9(a) show that the switches on the ingoing and
outgoing tracks are the most critical. Unavailable switches in these positions
render large parts of the station area unavailable. It is also possible to see that
the two yellow switches to the top right are not critical. This might indicate that
most routes we considered are not using those tracks. The MTTF after switch
failures in Fig. 9(b) yield a similar result with subtle differences such as more
distinct differences between the switches in the bottom right corner.

7 Conclusion

We presented a DFT-based model for the infrastructure in railway station areas
focussing on field elements, e.g., switches. Probabilistic models allow computing
new metrics and offer insights into routing options based on the reliability of
field elements. Future work includes extending the existing DFTs, for example
dynamical adaptions of component failures rates according to the current load.
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Abstract. In industrial model-based development (MBD) frameworks,
requirements are typically specified informally using textual descriptions.
To enable the application of formal methods, these specifications need
to be formalized in the input languages of all formal tools that should
be applied to analyse the models at different development levels. In this
paper we propose a unified approach for the computer-assisted formal
specification of requirements and their fully automated translation into
the specification languages of different verification tools. We consider a
two-stage MBD scenario where first Simulink models are developed from
which executable code is generated automatically. We (i) propose a spec-
ification language and a prototypical tool for the formal but still textual
specification of requirements, (ii) show how these requirements can be
translated automatically into the input languages of Simulink Design
Verifier for verification of Simulink models and BTC EmbeddedValida-
tor for source code verification, and (iii) show how our unified framework
enables besides automated formal verification also the automated gener-
ation of test cases.

1 Introduction

In the automotive industry, software units for controllers are often implemen-
ted using model-based development (MBD). The industry standard ISO26262
recommends formal verification to ensure that such safety-critical software is
implemented in accordance with the functional requirements. The work of our
previous two papers [2,20] and this paper not only applies to safety critical
automotive software but also to quality management (QM) or non-safety critical
automotive software. In fact, we worked only on Ford QM software features
in our papers. To optimally exploit recent academic developments as well as
the capabilities of state-of-the-art verification tools, Ford Motor Company and
RWTH Aachen University initiated an alliance research project to analyze how
c© Springer Nature Switzerland AG 2019
K. G. Larsen and T. Willemse (Eds.): FMICS 2019, LNCS 11687, pp. 59–75, 2019.
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formal verification techniques for discrete-time systems can be embedded into
Ford’s model-based controller development framework, and to experimentally
test their feasibility for industrial-scale C code controllers for mass production.

In our previous works [2,20], we considered an MBD process starting with
the development of Simulink controller models and using Simulink’s code gener-
ation functionality to derive C code for software units. For formal verification,
we analyzed the feasibility of both Simulink Design Verifier (SLDV ) for Simulink
models as well as BTC EmbeddedPlatform verification tool for the generated C
code. Our papers [2,20] present our observations and give recommendations for
requirement engineers, model developers and tool vendors how they can con-
tribute to a formal verification process that can be smoothly integrated into
MBD.

The most serious pragmatic obstacles that we identified for the integration
of formal methods are related to the requirement specifications. The requirement
specifications were given informally in natural language. All the considered nat-
ural language requirements described time-bounded linear temporal logic (LTL)
properties, which we manually formalized for both the SLDV and the BTC verifi-
cation tools. During the formalization we detected ambiguity, incompleteness or
inconsistency for roughly half of the textual requirements.

The manual formalizations needed discussions with requirement engineers
to clarify and correct these flaws. However, a high degree of automation is a
prerequisite for mass production and the integration of formal methods into
the established MBD process at Ford. Automation allows the usage of formal
verification within a development team of engineers with little knowledge of for-
mal verification. Ideally, verification is automatically triggered whenever changes
have been made to either the requirements, the Simulink model, or the used veri-
fication tools. Verification results can then be stored and compared with previous
runs, making deviations from previous results easily detectable. All deviations
can then be reported to a person with a strong background in formal methods
for thorough investigation.

We also encountered problems rooted in the fact that the formalizations for
the two different formal tools were done independently due to syntactic dif-
ferences: in Simulink, requirements are themselves Simulink models that need
to be embedded into the models that should satisfy them, whereas in BTC the
requirements can be specified either using a graphical interface for pattern-based
specification or directly in an XML-based file input format.

The independence of multiple requirement formalizations has several disad-
vantages. First and foremost, basically the same work is done multiple times,
using different input languages. In addition, the formalizations have the risk to
be slightly different. This may result in potentially incompatible analysis results
requiring a deep and time-consuming analysis. When the formalizations are done
independently, they cost additional resources in time and expert knowledge, rais-
ing development cost.

In addition, typically several programming and modeling languages are used
within a company such as Ford. The preference of these languages changes over
time and each language has its own analyses tools. Different teams within a



Multiple Analyses, Requirements Once 61

company like Ford may use different tools for the same purpose. The fact that
almost every formal verification tool has its unique input language is a big obsta-
cle to introduce formal methods into versatile companies like Ford. A common
requirement language for all formal verification tools may help to take advantage
of the strengths of different tools.

To diminish these problems, this paper presents a common formal require-
ment specification framework . We focus on Simulink and C code verification in
the automotive domain, but our framework is naturally extensible to further lan-
guages and tools. Concretely, the paper makes the following main contributions:

1. We identify a small fragment of LTL as a formal specification language that is
expressive enough for the formalization of typical requirements in the context
of MBD in the automotive sector .

2. We describe our tool that was designed as a prototype for use inside this
research project as a proof of concept. Similar to BTC EmbeddedSpecifier it
assists users who are not experts in formal methods to specify unambiguous
and complete formal requirements using textual descriptions according to a
pattern-based syntax.

3. We propose an approach for the fully automated translation of the above-
specified formal requirements into Simulink models that can be embedded in
SLDV verification processes.

4. We describe how to automatically generate BTC models from those formal
requirements for source code verification.

5. We show how to automatically generate test objectives from formal require-
ments that can be used for automated test-case generation.

Textual output
of requirements

Specification

- Simulink verification
- Source code verification

Verification

Test case generation
within Simulink

Testing

Pattern-based
specification

tool

Requirements

Model data
(optional)

Fig. 1. The structure of our unified specification
and analysis framework.

Our framework is illus-
trated in Fig. 1. While compu-
ter-assisted approaches for for-
mal requirement specification
have been proposed (see Sect. 2),
we believe that our app-
roach supporting direct anal-
ysis using multiple tools at
different development levels
is novel, especially the auto-
mated specification export to
Simulink and the generation of
test-cases.

2 Related Work

Patterns for specifying properties in formal verification were introduced by
Dwyer et al. [7]. Cheng et al. has extended this work to real-time properties
[14] and Grunske introduced a pattern system for probabilistic properties [10].
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Autili et al. [1] recently presented a unified pattern catalog that combines known
patterns for qualitative, real-time and probabilistic properties. Then the work
has been extended by some new patterns. Our works relies on the pattern cata-
logs from [1,7]. Inspired by our experience with Ford [2,20], we selected a set of
patterns that covers more than 90% of our investigated automotive requirements.

Several tools are available for pattern-based specifications. The PSPWizard
[17] and the SESAMM Specifier [8] provide for a given pattern library export
functionalities to a formal logic or to a textual representation. The SESAMM
specifier has been integrated into an industrial toolchain in the automotive
domain. The tool PASS (Property ASSistant) [21] guides the user by a set
of questions towards a suitable pattern from which a µ-calculus formula and a
UML sequence diagram can be generated. The tool PROPEL [22] represents pat-
terns in natural language and by finite-state automata. The COMPASS toolset
[6] supports the original patterns by Dwyer, real-time- and probabilistic pat-
terns. While the previous mentioned tools use the pattern catalog from [1,6,7],
the work [16] presents different patterns and a tool for the requirement specifi-
cation and automated translation to a formal language. The tool DDPSL [11]
goes a step further by allowing the user to fill the templates in a pattern with
assumptions on the variables using a defined set of logical and temporal opera-
tors. The ReSA tool [18] allows an automated consistency check of requirements
on multiple abstraction levels using SAT checking. The commercial tool BTC

EmbeddedPlatform1 also offers the possibility to formalize textual requirements
in a pattern-based language. Former versions of the tool support a pattern cat-
alog but the latest release uses the universal pattern [23] that offers a graphical
specification for trigger-action based requirements. Our tool focuses on the key
patterns but allows for automated generation of test cases, as well as properties
for Simulink model and source code verification.

Besides the tools for pattern-based specifications, several experience reports
on using specification patterns have been published. In [4], a case study in the
field of service-based applications is presented. [24] reports on an approach using
pattern-based specifications in the area of work flow modeling. Bosch company
investigated the suitability of the pattern catalog from [14] for 289 informal
behavioral requirements from their automotive projects. A report on the inte-
gration of a pattern-based specification tool in an industrial (automotive) tool
chain is given in [8,9]. A restricted set of patterns was used for the formal spec-
ifications within the PICASSOS project [5]. A system for modeling and testing
flight critical software was presented in [19], but their focus lies on test-case
generation and modeling structural aspects of the software system, whereas our
focus is on the automated translation of requirements.

3 Pattern-Based Requirement Specification Language

Requirement documents are commonplace in the automotive industry and are
usually written in natural language by a large number of stakeholders. These
1 https://www.btc-es.de/en/products/btc-embeddedplatform/.

https://www.btc-es.de/en/products/btc-embeddedplatform/
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Table 1. Pattern distributions for three different controller models.

Pattern LSC DSR ECC

Invariant 35 85.4% 50 92.6% 80 97.6%

Time-bounded response (exact bound) 5 12.2% 4 7.4% 2 2.4%

Event-bounded response 1 2.4% 0 0.0% 0 0.0%

can include engineers and other people without a strong background in formal
methods, which may lead to ambiguous requirements. Specification patterns may
assist engineers in writing complete and unambiguous textual requirements. A
pattern defines the behavior that is described by a requirement and uses tem-
plates for additional information like the specification of events and durations.
In contrast to most existing approaches, events are specified by a constrained
grammar, and higher-order operators, e.g. hysteresis2, are supported to enable
specifying new operations on events.

Goals. The pattern-based specification language should produce human read-
able specifications. A formal semantics avoids ambiguities and allows the auto-
mated generation of tool-specific requirement specifications. Our aim is to keep
the pattern language simple such that no expert knowledge is needed and the
learning curve for requirement engineers is low. We believe that a limited number
of simple patterns reduces incorrect choices of patterns or scopes when writing
requirements while still covering a high percentage of requirements.

WhyYet Another Specification Language? Tools like BTC EmbeddedPlatform

come with their own, existing, pattern-based specification language and there
are existing tools for pattern-based specification. Nonetheless we decided that
creating our own language and tool was the better choice. A key difference from
many established pattern-based specification languages is that we also require
the events to be specified using a constrained grammar, enforcing the events to
be formalizable properties. This, in turn, allows us to immediately export the
entire property to a supported format without the need for any further user
interaction.

Adding new features or constructs like higher-order operators (e.g. hysteresis)
is easy to achieve, requiring only very modular changes to the grammar and
the back-end exporter classes. We want to be able to create our own pool of
higher-order operators for event specification that can be used to ease the burden
of formalization for the engineers. Our own language allowed us to do rapid
prototyping while coming up with new ideas, without the burden of getting all
stakeholders of an established language on board beforehand.

Syntax. We used [1,7,14] as a starting point to design our pattern-based require-
ment specification language L, whose grammar is shown in Fig. 2; for more details
see also Appendix A.
2 Hysteresis is a functionality often used to prevent rapid toggling when observing an

input signal against some threshold by introducing an upper and a lower delta.
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specification: scope pattern;

scope: initially | globally;

pattern: invariant | response;

initially: ’At system start, ’;

globally: ’At each time step, ’;

invariant: ’[ ’ event ’] holds. ’;

response: ’if [ ’ event ’] has been valid for [ ’ duration ’], ’

’then in response, after a delay of [ ’ duration ’], ’

’[ ’ event ’] is valid for [ ’ duration ’]. ’;

event: identifier | event AND event | ...| term ≤ term | ...

term: identifier | term + term |...

duration: uint unit;

uint: [1..9] [0..9]*;

unit: ’simulation steps ’ | ’milliseconds ’ | ’seconds ’

| ’minutes ’ | ’hours ’;

Fig. 2. Syntax of our pattern-based requirement specification language.

Requirement specifications consist of a scope followed by a pattern. We start
with a limited set of scopes and patterns that can be extended later to cover fur-
ther specification types. However, these limited sets were sufficient to formalize
more than 90% of the requirements in all three case studies (Low Speed Con-
trol for Parking (LSC), Driveline State Request (DSR) and E-Clutch Control
(ECC)) we considered in [2,20] (see Table 1). Other internal case studies from
Ford show similar results.

Currently two scopes are supported: the initially scope is used to express
that a property should hold at system start, i.e. at time step 0 of a simulation
before any operations have been performed, while the globally scope expresses
that a property should hold at each time step of an execution, but starting after
the first execution. In [1,7,14] there are further scopes like before R, after
Q, between Q and R and after Q until R that can be considered for future
inclusion.

We support two patterns for defining which property is required to hold for
a given scope. The invariant pattern allows to state that a certain event holds
(at each time step within the specified scope), and covers both the absence
and the universality patterns from [7] if the negation of events is supported.
The response pattern specifies causalities between two events: the continuous
validity of a trigger event for a given trigger duration implies that after a fixed
separative duration the response event holds continuously for a given response
duration.

The events in the above patterns are built from identifiers (signals, con-
stants and (calibration) parameters) using a set of functions and operators.
We support those operators and functions that were used in our case studies,
including the Boolean operators AND, OR, NOT and IMPLIES, the relational
operators <, ≤, >, ≥ and =, the arithmetic operators +, −, · and /, absolute
value, minimum, maximum, functions for bit extraction (bit x of variable y) and
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scopes: initially pattern = pattern

globally pattern = pattern

patterns: [e] holds. = e
if [eP ] has been valid for [dP ], then in response, after a delay of [d],
[eQ] is valid for [dQ].

= [≤ dP ] eP
[= dP + d ] [≤ dQ ] eQ

events: identifier = identifier . . .
e1 AND e2 = e1 e2 . . .
t1 ≤ t2 = t1 ≤ t2 . . .

durations: n seconds = 1000·n
DStep

. . .

Fig. 3. Semantics of our pattern-based requirement specification language.

time delays (value of x n steps ago). The complete ANTLR grammar for events is
presented in AppendixA. We plan in future work to incorporate more advanced
operators like state change (“the value of [param] transitions from [const1] to
[const2]”), different variants of hysteresis functions, saturation, rate limiter and
ramping up functions and lookup tables. Note that though custom operators and
functions allow users a more efficient specification, special operators (e.g. lookup
tables) might not be realizable in all specification languages for which export is
provided.

Semantics. We define the semantics of requirement specifications using linear
temporal logic with quantitative temporal operators to express time durations,
that is MTL [15]. The main semantical components are shown in Fig. 3 using
only future temporal modalities (straightforward and therefore not listed in Fig. 3
are the semantics for events and durations, see AppendixA for a complete def-
inition). We use DStep to denote the step-size, here in milliseconds. We sup-
port durations that are multiples of DStep. An equivalent semantics using past
temporal modalities is given in AppendixA. The difference in terms of a time-
shift between the formulations using past (resp. future) operators is illustrated
in Fig. 4. The two equivalent semantics support the export of a pattern-based
specification into different specification languages. For example the specification
language of the analysis tool SLDV only supports past temporal operators.

4 Pattern-Based Requirement Specification Tool

We have implemented a pattern-based specification tool as a prototype for use
inside this research project to support requirement engineers in writing unam-
biguous and complete textual requirements. Our focus was to create a modular
tool that is easy to learn and extendible, if in the future a larger set of scopes,
patterns or operators needs to be supported.

A user can either import signals, calibratables and constants from a file,
or create, change and delete them manually. Calibratable parameters remain
constant during software execution but can be adjusted before the execution for
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Trigger P
dP

Delay
d

Response Q
dQ

past temporal operators

+ time-shift by dP + d+ dQ

Trigger P
dP

Delay
d

Response Q
dQ

future temporal operators

Fig. 4. Evaluation of a response pattern with past or future operators. The present is
represented by the red tick on the timeline. (Color figure online)

Fig. 5. User interface of our pattern-based specification tool.

tuning or selecting the possible functionalities. Captured data includes a name,
description, minimum and maximum values, dimensions, a value, the data type
and the variable type (signal, calibratable or constant). With the information of
available variables readily available, the tool checks specified events for whether
all referenced variables actually exist.

The current version of the tool provides export functionality for a selected
requirement or for all of them. Export formats are textual (.txt), SLDV (.m),
BTC (.spec) and C (.c) specifications. The last one is compatible with the
SV-COMP standard [3] and can be used for formal verification with e.g. the
Ultimate Automizer [12].

The requirement specification panel in Fig. 5 is the main panel of our tool.
A scope and a pattern must be selected for the requirement. A textual transla-
tion of the scope and pattern is given as well as a visualization that shows the
time steps where the chosen pattern is evaluated, see Fig. 5. Events are built

https://sv-comp.sosy-lab.org/
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&tool=automizer
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using operators, functions, signals, constants and calibration parameters. For
each event, a duration and a time unit can be specified. Additionally, for pat-
terns with more than one event, a time delay between events can be specified,
again together with a time unit.

If the pattern-based specification is incomplete or if it contains specification
errors, the lower part of the specification panel provides the list of errors and
warnings. When all issues are resolved, a textual formal specification is generated
from the specification. The modular set-up of the tool allows to add further
exporters, e.g. to generate specification in a logic like MTL in a straightforward
manner.

Our prototypical implementation supports the functions abs(param),
min(param1, param2), max(param1, param2), last(param), last(param,
steps) and extractBit(index, param). For an explanation see AppendixA.
Parenthesis expressions can be built using (param) and the basic boolean oper-
ators not, and, or and implication are provided.

5 Requirement Specification Export to Verification Tools

5.1 Export to SLDV

A formal pattern specification is exported to Simulink in the form of a Matlab
script. This script generates a specification block inside a model on the currently
selected hierarchy level. For verification on model-level, the topmost level of a
model should be selected, whereas for verification on subsystem-level the topmost
level of the subsystem should be selected. To implement the semantics of L in
Simulink, we use a custom-build, modular and interchangeable block library and
existing Simulink logic blocks.

The following requirement is used as a running example to illustrate the
various steps:

Example 1. At each time step if [(((signal A is equal to TRUE) and ((not
signal B) is equal to constant A)) and ((the absolute value of signal C) is
greater than constant B)) and (signal D is less than constant C)] has been
valid for [50 ms], then in response, after a delay of [0 steps], [signal E is equal
to TRUE] is valid for [1 step].

To support the requirement specification for SLDV, we implemented a Simulink
library with building blocks for all elements of our requirement specification lan-
guage. The library provides sub-libraries for the specification of scopes, patterns
and events.

Verification Subsystem. Figure 6 shows the topmost generated block, a verifi-
cation subsystem. Its input are all input and output signals of the Simulink model
that are used by the generated requirement specification. The content of veri-
fication subsystems is considered during formal verification but ignored during
code generation and is not part of the generated code. The top-level verification
subsystem contains a separate verification subsystem for each requirement.
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signal A

signal B

signal C

signal D

signal E

Verification Subsystem

×

[signal A]

[signal B]

[signal C]

[signal D]

[signal E]

Fig. 6. A sample verification subsystem block.

signal A

signal B

signal C

signal D

Trigger

signal E

Response

[signal A]

[signal B]

[signal C]

[signal D]

[signal E]

Trigger P

Response Q

Result

Response Pattern

Pattern

Globally

Fig. 7. The responseTbEb pattern of the verification subsystem in Fig. 6.

The verification subsystem subsumes the implementation of the actual
requirements, i.e. encoding the expected functional behavior, by separating
it into parts: Transformations on inputs, and implementing timed behavioral
aspects. A requirement specification consists of three parts: a set of events, a
pattern and a scope; each is represented by distinct blocks in the library. Figure 7
shows an example requirement specification that consists of a globally scope,
a response pattern and two events.

Scopes. A scope block defines the time steps during which a pattern needs to be
evaluated. The pattern result is a Boolean input parameter. At each simulation
step, either the pattern result or true (if the pattern result needs not to be
evaluated at the current time step) is the input of a proof objective. During
formal verification, SLDV analyzes this proof objective. A requirement is violated
if the input of a proof objective can be false at any simulation step.

The initially scope evaluates the pattern result only at system start, while
the globally scope evaluates the pattern result at each time step. Figure 8(a)
and (b) show the implementations of scopes globally and initially, respec-
tively. The delay block is initialized with the value 1, while all subsequent output
values will be 0. The time shift (see Sect. 3) is realized by the Detector block.

Patterns. A pattern receives the Boolean signals from the events as inputs along
with the time duration and delays between events specified as mask parameters
of the pattern. A pattern block ensures the correct order of events and handles
timing aspects like event durations and delays between events. Simulink blocks
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A

B

Implies

A B

Z−1

Signal Delay
Detector

In Out0

Constant

1
Pattern

P

(a) Scope initially

1 P

(b) Scope globally

Fig. 8. Proof objectives for the scopes initially and globally.

for time durations and delays are provided by our Simulink specification library.
The output of a pattern block is again a Boolean signal. In Fig. 7, the blocks
Trigger and Response contain the part of signal transformation, whereas the block
labeled Response Pattern represents the details of the duration- and delay checks,
as shown in Fig. 9. Inside this subsystem block, the event order (trigger before
response) is established together with the specified time delay between the two
events.

A

B

Implies

A B

Event Timed Event

Delay

Event Timed Event

Duration Check

Event Timed Event

Duration Check

1
Trigger P

2
Response Q

1
Result

Fig. 9. The implementation of the Trigger/Response pattern.

In our example, the trigger has to be true for 50 ms. This duration is checked
by the Duration Check block which returns a Boolean true iff its input evaluated
to true for a given number of time steps. A delay block is then used to account for
the response duration and a possible fixed delay between trigger and response.

Events. Each event is specified in its subsystem. The event subsystems are
connected with the input signals of the verification subsystem using From
blocks. An event is built using the blocks provided by our Simulink specifi-
cation library. These building blocks must be connected in accordance with the
rules of our event grammar. The output of an event specification is a Boolean
signal. Figure 10 shows the necessary signal transformations for the trigger of
the example requirement.

Connection to the Simulink Model. After the automated insertion of the
verification subsystem at a user-chosen level in the model, the inputs of the
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[signal A]

TRUE

[signal B]

constant A

[signal C]

constant B

[signal D]

constant C

Equal

a == b
a

b

NOT

Not

Equal

a == b
a

b

Abs

abs(a)a

And

AND

Greater

a > b
a

b

And

AND

Less

a < b
a

b

And

AND 1

Fig. 10. The logic of the trigger condition of the example requirement.

verification system need to be connected to the corresponding signals in the
model. Because of possible data dependency issues, we use global data store
blocks for accessing the signals. For selecting the source signal, we traverse the
model in a hierarchical approach and try to find the first match of a named signal
matching the one being looked for. A data store write is then inserted into the
model at the matched location, allowing us to generate the corresponding global
data store read block next to our verification subsystem.

5.2 Export to BTC EmbeddedPlatform

We support the export of formalized requirements to BTC’s input format, so-
called SPEC files. They contain an XML-based structured representation of the
requirements and their patterns. Small transformations are applied during export
to match BTC’s pattern semantics. We consider the time step 0 to be the first time
step in the initially scope. This means that we start to evaluate the pattern
directly after initialization, i.e. before the first computation step. In contrast,
BTC starts the evaluation after the first computation step. It is not possible to
check initial variable valuations in BTC, therefore, an error is presented when
exporting a requirement with scope initially to BTC. The generated SPEC files
can then be imported into BTC EmbeddedPlatform and used for verification.

5.3 Export to Textual Requirements

Formally specified requirements can easily be exported to textual form. As many
engineers and stakeholders without a solid background in formal methods are
involved in the design, testing and implementation of the defined software com-
ponents, it is vital to present the agreed-upon requirements in a textual repre-
sentation, which is easy to understand, distribute and review. Our export feature
for textual requirements additionally supports automatically introducing paren-
thesis around all non-trivial arguments used in the specification to prohibit mis-
interpretations or misunderstandings of the written specification—a problem we
encountered several times in [2,20].
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5.4 Export to SV-Comp-style C Code

To enable the use of state-of-the-art academic C code model checkers, we explic-
itly encode our pattern semantics in C code. This enables to embed all assump-
tions and behavior directly in the code, instead of going around it with LTL
specifications or similar, as supported by some tools. We built a boiler-plate
framework for initializing parameters and calibratables (enabling verifying with
varying calibrations) and updating input variables after every step. We decided
to use the established VERIFIER error(); functionality for encoding violations
of the behavior allowed by the patterns as supported by many code verifiers such
as more than 20 tools participating in the SV-comp.

6 Requirement-Based Test Vector Generation

The automated generation of an SLDV specification can be reused for automated
requirement-based test vector generation. The Automotive Functional Safety
standard ISO26262 [13] recommends to identify missing test vectors and unin-
tended behavior of the implemented model by: “For each requirement, a set
of test vectors should be generated. Afterwards, the structural coverage of the
requirement-based test vectors shall be measured according to a suitable cover-
age metrics. The industry norm recommends different coverage metrics depend-
ing on the ASIL-level of the model. In case the coverage metrics reveals uncovered
parts of the model, a further analysis is needed: either test vectors are missing
or unintended functionality in the model has been detected”.

If requirements are verified using formal verification and the implemented
requirement is shown to be valid, additional, manual creation of test vectors
should not be necessary. Manual creation of test vectors is a tedious work and
should be limited to those requirements that are not tested using formal ver-
ification. We propose to reuse the automated generation of SLDV requirement
specification for generating test vectors for these same requirements. For this
purpose, we annotate the generated specification with so-called test objectives
(see Fig. 11) automatically. The test objectives specify the signal valuations that
must be considered during test-vector generation.

The set of requirement-based test vectors depends on the chosen coverage
metric. For condition coverage, a set of test vectors is required such that each
condition takes every possible value, while for decision coverage a set of test
vectors must generate every possible outcome for each decision. Decision cover-
age is closely related to branch coverage, where conditional and unconditional
branches are considered. According to ISO26262, branch coverage is suitable
for requirement coverage at software unit-level for ASIL A to C. However, for
ASIL D, modified condition/decision coverage (MC/DC) is highly recommended.
Additionally, it is required that all conditions contributing to a decision must
independently affect the outcome of the decision.

To achieve condition coverage, test objectives must be added to all Boolean
input signals. For decision coverage, test objectives are needed for all Boolean
output signals. If test objectives are added to all Boolean output signals and
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to all Boolean input signals of blocks with more than one input parameter,
condition/decision coverage is achieved, which guarantees both condition and
decision coverage. For MC/DC coverage, test objectives are hard to generate
and currently out of scope of our project. One way to at least partly cover
MC/DC would be to generate test objectives for all Boolean combinations of
possible input signals. For an OR block, we currently generate vectors for both
outcomes, but “true” could be generated by inputs 01, 10 or 11—by adding
additional logic we can enforce all combinations to be generated.

Alternatively, we propose to use the built-in function of SLDV to compute
a set of test vectors for MC/DC coverage. Unfortunately, this functionality is
currently only available on model-level. To get requirement-based test vectors
for the model, MC/DC must be checked at requirement (i.e. subsystem) level
while test vectors must be generated for the complete model.

To automate the requirement-based test vector generation, we added test
objectives for condition/decision coverage to all blocks in our Simulink formal
specification library. The relational operators compute Boolean output signals
that also must be annotated with test objectives. Additional test objectives are
necessary for all temporal operators to assure the correct length of generated
test cases. Since we handle Boolean signals only, all test objectives can take the
values true and false. Figure 11 presents the implementation of the annotated
Boolean Or operator from our specification library.

or

OR

O

{true, false}
1

O

{true, false}
2

O

{true, false}
1

Fig. 11. A logic OR block with test objectives attached.

Annotating the specification library allows the flexibility of adding/removing
test objectives without adapting the source code of the specification tool. This
enables the user to maintain a set of specification libraries for different coverage
metrics or to create a library without any test objective annotations.

7 Conclusion and Future Work

In this paper we presented a prototypical pattern-based specification tool
together with automated translations to SLDV and BTC EmbeddedPlatform together
with an adaption of the SLDV input for automated test-case generation. This cor-
responds to the vision of enabling engineers to specify requirements with formal
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semantics once and then applying the requirements in multiple analyses. The
tool was designed as a prototype for use inside this research project as a proof
of concept.

Although a big step towards a highly automated automotive verification pro-
cess has been made within this project and investigations by Ford have been
producing encouraging results, this is only a proof-of-concept and many open
problems still need to be resolved.

As future work we plan the extension of our pattern set with a few further
relevant elements like time- and event-bounded response patterns. We plan to
tackle the automated translation of textual legacy requirements into formal nota-
tion. Scripts are needed to further automate verification at different development
levels with suitable configuration parameters, and to trigger the verification pro-
cess if changes are applied to the model or the requirements. Another module
should monitor the verification results and automatically report conspicuous
behavior if the comparison with previous results reveals deviations. In case of
invalid verification results, counterexamples should be analyzed.

We plan to use the export of formalized requirements to SV-COMP like
C-code patterns in order to benchmark academic C-code model checkers on
industrial examples against commercial tools.

A Appendix

A version of this paper containing the full appendix can be found at http://
arxiv.org/abs/1906.07083.
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Abstract. Supervisory control theory provides means to synthesize
supervisors for a cyber-physical system based on models of the uncon-
trolled system components and models of the control requirements.
Although several synthesis procedures have been proposed and auto-
mated, obtaining correct and useful models of industrial-size applications
that are needed as their input remains a challenge. We show that the effi-
ciency of supervisor synthesis techniques tends to increase significantly
if a single large requirement is split into a set of smaller requirements.
A theoretical underpinning is provided for showing the strength of this
modeling guideline. Moreover, several examples from the literature as
well as some real-life case studies are included for illustration.

Keywords: Supervisory control synthesis · Automata ·
Requirements engineering

1 Introduction

The design of supervisors for cyber-physical systems has become a challenge as
they include more and more components to control and functions to fulfill, while
at the same time market demands require verified safety, decreasing costs, and
decreasing time-to-market for these systems. Model-based systems engineering
methods can help in overcoming these difficulties, see [23].

For the design of supervisors, the supervisory control theory of Ramadge-
Wonham [21,22] provides means to synthesize supervisors from a model of the
uncontrolled plant (describing what the system could do) and a model of the
control requirements (describing what the system should do). Such a supervisor
interacts with the plant by dynamically disabling some controllable events. Then
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synthesis guarantees by construction that the closed-loop behavior of the super-
visor and the plant adheres to all requirements and furthermore is nonblocking,
controllable, and maximally permissive.

A major drawback of synthesizing monolithic supervisors is its computational
complexity, both in the time and memory domain. Although the time complexity
of this step is polynomial in the number of states that represent the system, this
number increases exponentially with the number of constituent models of the
different components in the system, as already observed in [22]. For industrial
systems, the number of states can easily reach an order of 10100 states. Different
supervisor architectures are exploited in an attempt to overcome these computa-
tional difficulties: modular [20], hierarchical [34], decentralized [28], distributed
[3], multilevel [12], and compositional supervisory control synthesis [18]. Modu-
lar, decentralized, and multilevel synthesis are closely related and in this paper
we refer to them as module-based supervisor architectures.

While these architectures claim to gain computational efficiency, in practice
the observed gain depends on the models provided as input for these synthesis
algorithms. Moreover, as systems can be modeled in several ways, i.e., there is
not a single correct model formulation for a certain plant and its requirements,
an engineer might model an industrial system in a disadvantageous way and
might (wrongly) conclude that supervisory control synthesis is not possible for
his system.

To the best of our knowledge, not much attention has been paid in the liter-
ature to the fact that the way in which models are defined can be of a significant
influence on the efficiency of the synthesis procedure. A notable exception is [11],
where symmetry in the model is exploited to efficiently synthesize a supervisor.
Others [6,7,10] have indicated that modeling the system and its requirements is
difficult, and introduced concepts like, e.g., templates to assist the engineer in
modeling correctly, i.e., the obtained models exhibit the behavior the engineer
intended to model.

The purpose of this paper is to provide a modeling guideline to (re)formulate
the models such that the applicability of supervisory control synthesis techniques
increases. This modeling guideline concerns the modeling of the requirements and
expresses that they should be split into smaller ones when possible. We show the-
oretically why this modeling guideline increases the applicability of supervisory
control synthesis. Essentially, smaller requirements allow module-based synthe-
sis techniques to solve numerous but computationally easier problems instead of
those obtained with large requirements, because each new requirement relates
to fewer plant models than the original large requirement. For multilevel synthe-
sis, this effect is visualized by displaying the dependencies with a Dependency
Structure Matrix, see [5]. Experimental results of several case studies show that
this efficiency gain can indeed be obtained in practice. By proposing this guide-
line and by providing examples, our aim is to assist practitioners in applying
supervisory control synthesis.

Requirement specifications in practice often violate the aforementioned
guideline, which turns out to be detrimental for supervisory control synthesis.
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Although the guideline may sound somewhat obvious, it required several real-life
case studies with supervisory control synthesis to grasp its importance [25–27].
These case studies were performed in the context of a research project with Rijks-
waterstaat, the national organisation responsible for the main infrastructure like
roads and bridges in the Netherlands. Notably, the so-called Oisterwijksebaan
revolving bridge in the Dutch city of Tilburg was recently operated by PLC code
automatically generated from the requirements, by means of the CIF supervi-
sory control toolset [2]. These case studies have inspired us to formulate several
modeling guidelines. The aim of this paper is to describe one of them in detail.

The paper is structured as follows. Section 2 provides the preliminaries of
this paper. Section 3 continues by discussing the guideline concerning the model
of the requirement in detail including a theoretical substantiation. In Sect. 4,
the guideline is demonstrated with an example of supervisory control for an
infrastructural system. Section 5 provides experimental results with cases also
from other application domains where applying the guideline benefits supervisory
control synthesis. The paper concludes with Sect. 6.

2 Preliminaries

This section provides a brief summary of concepts related to automata and
supervisory control theory relevant for this paper. These concepts are taken
from [4,33].

2.1 Automata

An automaton is a five-tuple G = (Q,Σ, δ, q0, Qm), where Q is the (finite) state
set, Σ is the alphabet of events, δ : Q × Σ → Q the partial function called the
transition function, q0 ∈ Q the initial state, and Qm ⊆ Q the set of marked
states. The alphabet Σ = Σc ∪ Σu is partitioned into sets containing the con-
trollable events (Σc) and the uncontrollable events (Σu), and Σ∗ is the set of all
finite strings of events in Σ, including empty string ε.

We denote with δ(q, σ)! that there exists a transition from state q ∈ Q labeled
with event σ, i.e., δ(q, σ) is defined. The transition function can be extended in
the natural way to strings as δ(q, sσ) = δ(δ(q, s), σ) where s ∈ Σ∗, σ ∈ Σ, and
δ(q, sσ)! if δ(q, s)!∧ δ(δ(q, s), σ)!. We define δ(q, ε) = q for the empty string. The
language generated by the automaton G is L(G) = {s ∈ Σ∗ | δ(q0, s)!} and the
language marked by the automaton is Lm(G) = {s ∈ Σ∗ | δ(q0, s) ∈ Qm}.

A state q of an automaton is called reachable if there is a string s ∈ Σ∗ with
δ(q0, s)! and δ(q0, s) = q. A state q is coreachable if there is a string s ∈ Σ∗ with
δ(q, s)! and δ(q, s) ∈ Qm. An automaton is called nonblocking if every reachable
state is coreachable.

Two automata can be combined by synchronous composition.

Definition 1. Let G1 = (Q1, Σ1, δ1, q0,1, Qm,1), G2 = (Q2, Σ2, δ2, q0,2, Qm,2) be
two automata. The synchronous composition of G1 and G2 is defined as

G1 ‖ G2 = (Q1 × Q2, Σ1 ∪ Σ2, δ1‖2, (q0,1, q0,2), Qm,1 × Qm,2)
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where

δ1‖2((x1, x2), σ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(δ1(x1, σ), δ2(x2, σ)) if σ ∈ Σ1 ∩ Σ2, δ1(x1, σ)!,
and δ2(x2, σ)!

(δ1(x1, σ), x2) if σ ∈ Σ1 \ Σ2 and δ1(x1, σ)!
(x1, δ2(x2, σ)) if σ ∈ Σ2 \ Σ1 and δ2(x2, σ)!
undefined otherwise.

Synchronous composition is associative and commutative up to reordering of
the state components in the composed state set. Two automata are called asyn-
chronous if no events are shared, i.e., they do not synchronize over any event.

A composed system G is a collection of automata, i.e., G = {G1, . . . , Gm}. The
synchronous composition of a composed system G, denoted by ‖ G, is defined as
‖ G = G1 ‖ . . . ‖ Gm, and the synchronous composition of two composed systems
G1 ‖ G2 is defined as (‖ G1) ‖ (‖ G2). A composed system G = {G1, . . . , Gm} is
called a product system if the alphabets of the automata are pairwise disjoint,
i.e., Σi ∩ Σj = ∅ for all i, j ∈ [1,m], i 
= j [22].

Finally, let G and K be two automata with the same alphabet Σ. K is said
to be controllable with respect to G if, for every string s ∈ Σ∗ and u ∈ Σu such
that δK(q0,K , s)! and δG(q0,G, su)!, it holds that δK(q0,K , su)!.

2.2 Supervisory Control Theory

The objective of supervisory control theory is to design an automaton called a
supervisor which function is to dynamically disable controllable events so that
the closed-loop system of the plant and the supervisor obeys some specified
behavior, see [4,21,22,33]. More formally, given a plant model P and requirement
model R, the goal is to synthesize supervisor S that adheres to the following
control objectives.

– Safety : all possible behavior of the closed-loop system P ‖ S should always
satisfy the imposed requirements, i.e., L(P ‖ S) ⊆ L(P ‖ R).

– Controllability : uncontrollable events may never be disabled by the supervi-
sor, i.e., S is controllable with respect to P .

– Nonblockingness: the closed-loop system should be able to reach a marked
state from every reachable state, i.e., P ‖ S is nonblocking.

– Maximal permissiveness: the supervisor does not restrict more behavior than
strictly necessary to enforce safety, controllability, and nonblockingness, i.e.,
for all other supervisors S′ satisfying safety, controllability, and nonblocking-
ness it holds that L(P ‖ S′) ⊆ L(P ‖ S).

For the purpose of supervisor synthesis, requirements can be modeled with
automata and state-based expressions, as introduced in [15,16]. The latter is
useful in practice, as engineers tend to formulate requirements based on states
of the plant. To refer to states of the plant, we introduce the notation P.q which
refers to state q of plant P . State references can be combined with the Boolean
literals T and F and logic connectives to create predicates.
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A state-event invariant expression formulates conditions on the enablement
of an event based on states of the plant, i.e., the condition should evaluate to
true for the event to be enabled. A state-event invariant expression is of the form
σ needs C where σ is an event and C a predicate stating the condition. Let
R be a state-event invariant expression, then event(R) returns the event used
in R and cond(R) returns the condition predicate. An example of a state-event
invariant expression is a needs P1.q1 ∧ P2.q2 formulating that event a is only
allowed when automaton P1 is in state q1 and automaton P2 is in state q2.

Given a composed system representation of the plant Ps = {P1, . . . , Pm} and
a collection of requirements Rs = {R1, . . . , Rn}, we define the tuple (Ps, Rs) as
the control problem for which we want to synthesize a supervisor.

Monolithic supervisory control synthesis results in a single supervisor S from
a single plant model and a single requirement model [21]. There may exist mul-
tiple automata representations of the maximally permissive, safe, controllable,
and nonblocking supervisor. When the plant model and the requirement model
are given as a composed system Ps and Rs, respectively, the monolithic plant
model P and requirement model R are obtained by performing the synchronous
composition of the models in the respective composed system.

Modular supervisory control synthesis uses the fact that the desired behav-
ior is often specified with a collection of requirements Rs [32]. Instead of
first transforming the collection of requirements into a single requirement, as
monolithic synthesis does, modular synthesis calculates for each requirement a
supervisor based on the plant model. In other words, given a control problem
(Ps, Rs) with Rs = {R1, . . . , Rn}, modular synthesis solves n control problems
(Ps, {R1}), . . . , (Ps, {Rn}). Each control problem (Ps, {Ri}) for i ∈ [1, n] results
in a safe, controllable, nonblocking, and maximally permissive supervisor Si.
Unfortunately, the collection of supervisors Ss = {S1, . . . , Sn} can be conflict-
ing, i.e., S1 ‖ . . . ‖ Sn can be blocking. A nonconflicting check can verify whether
Ss is nonconflicting, see [19,30]. In the case that Ss is nonconflicting, Ss is also
safe, controllable, nonblocking, and maximally permissive for the original control
problem (Ps, Rs) [32]. In the case that Ss is conflicting, an additional coordinator
C can be synthesized such that Ss ∪ {C} is safe, controllable, nonblocking, and
maximally permissive for the original control problem (Ps, Rs) [29]. An exten-
sion to this approach, as proposed by [20], states that instead of synthesizing
each time with the complete plant Ps, it suffices to only consider those automata
that relate to the requirement that is considered. This extension is used in the
remainder of this paper.

Decentralized supervisory control synthesis has a similar setting as modu-
lar supervisory control synthesis, except that each supervisor is only allowed
to observe certain events, called local events, instead of all events [14]. This
results in the notion of observability, which is not further discussed in this paper.
Nevertheless, also for decentralized supervisory control synthesis with multiple
requirements, the obtained supervisors may be conflicting.

Multilevel supervisory control synthesis is inspired by decompositions of sys-
tems by engineers [12]. For each subsystem, a supervisor is synthesized based on
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requirements for only those subsystems. For synthesis, this resembles modular
supervisory control in the sense that for multilevel synthesis requirements related
to the same subsystem are grouped together before synthesis is performed using
those requirements and the plant model representing the subsystem. Again, the
collection of synthesized supervisors may be conflicting.

3 Modeling Guideline and Theoretical Substantiation

When formulating the requirements, engineers often tend to think in desired
control logic and formulate this logic as requirements. The benefit of supervi-
sory control synthesis is that an engineer is able to focus on what the system
should do, not how it should do it. By shifting from specifying how to specifying
what, requirements do not always become smaller. In this section, we show that
module-based supervisor architectures benefit from having small requirement
models.

We specifically focus on requirements formulated with state-event invariant
expressions. This form matches well with requirements formulated in a natural
language like, e.g., English, see [16]. Furthermore, requirements for industrial-size
applications often originate from failure-mode analysis [17]. States are identified
in which some actuator actions would result in unsafe behavior. Therefore, this
form is frequently used in real-life case studies of infrastructural systems, see
[25–27].

The modeling guideline is formulated as follows:

Split requirements formulated with state-event invariant expressions into a
set of smaller ones.

Splitting a state-event invariant expression can be done as follows. Consider
requirement σ needs C expressing that event σ is only allowed when condi-
tion C holds. When this condition is denoted in conjunctive normal form, i.e.,
C = C1 ∧ . . .∧Cl, the single requirement can be split into multiple requirements
σ needs C1, . . . , σ needs Cl. Due to the safety property of synthesized super-
visors, mentioned in Sect. 2.2, the set of requirements is equivalent to the single
requirement. In the rest of this section, we show the benefit of having small
requirements theoretically.

Splitting requirements in the form of propositional formula to benefit con-
troller synthesis is a well-known strategy for software product lines, see for exam-
ple [1,9]. Here, a requirement, called a feature constraint, is split into several
configurations (or products) each describing a specific feature combination. For
each configuration a controller is synthesized. There are two main differences
between that work and the work in this paper. First, a feature constraint limits
the possible configurations, while requirements in this paper limit the behavior
of one configuration. Second, only one of the synthesized supervisors for a soft-
ware product line is active (the one for that specific configuration), while in this
work all modular supervisors work in conjunction.
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3.1 Theoretical Substantiation

Consider the plant being modeled with a product system Ps = {P1, . . . , Pn}, and
assume that a requirement R may also be modeled with a set of requirements
Rs = {R1, . . . , Rm} such that R =‖ Rs.1 Any module-based supervisor archi-
tecture ensures that for each (set of) requirement(s) synthesis is performed with
only those plant models that are related to the (set of) requirement(s). Reformu-
lating a larger requirement into smaller requirements ensures that module-based
supervisor architectures can identify smaller control problems to solve. Hence, a
reduction in computational effort is gained.

For modular supervisory control synthesis, the analysis above can be even
further detailed as follows. Assume for simplicity that requirement R relates to
all plant models in Ps, while each smaller requirement Rj ∈ Rs only refers to
a subset Ps,j ⊆ Ps. In the case of a single requirement R, modular supervisory
control synthesis obtains a supervisor for control problem (Ps, {R}). In the case
of multiple smaller requirements, m supervisors are obtained for each control
problem (Ps,j , {Rj}), 1 ≤ j ≤ m. As |Ps,j | ≤ |Ps| holds, the state-space size
of Ps,j is smaller or equal than Ps. The computational effort for each synthesis
problem is therefore at most equal to that of monolithic synthesis. Yet, m super-
visors are synthesized instead of just one, so there is a tradeoff between more
control problems to solve and creating smaller control problems to solve. As the
state-space size grows exponentially with the number of automata, reducing the
number of plant components often has a larger effect than synthesizing more
supervisors. Experimental results in Sect. 5 confirm this tradeoff.

For multilevel supervisory control synthesis, we analyze the effect of splitting
requirements differently than for modular supervisory control synthesis. In mul-
tilevel synthesis, the system is decomposed into subsystems. The dependencies
between plant models indicate how the system may be decomposed. For the pur-
pose of multilevel synthesis, analyzing the dependencies between plant models
induced by the requirement models is valuable, see [8]. Dependencies between
two plant models can be formalized as follows. Given Pi, Pj ∈ Ps, Pi 
= Pj , there
is a dependency between Pi and Pj if and only if there exists a requirement
Rk ∈ Rs such that both plant models are used in Rk. A plant model is used
in a state-event invariant expression if the event in the requirement originates
from the alphabet of that plant model or the condition uses a state of that plant
model. For example, in R = P1.σ needs P2.q2, where we used the notation P1.σ
to indicate that σ is in the alphabet of P1, plant models P1 and P2 are used
in R.

Now, consider requirement R = P.σ needs C where condition C is the con-
junction of some state references, that is C = P1.q1∧. . .∧Pl.ql . This requirement
results in dependencies between plant models P and P1, P and P2, and so on, and

1 Here we have a slight abuse of notation of the synchronous product operator, as this
one is only formally defined for automata. In case of two requirements modeled with
state-event invariant expressions restricting the same event σ, denoted by Ri = σ
needs C1, i ∈ {1, 2}, we define R1 ‖ R2 = σ needs C1 ∧ C2.
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also in dependencies between any pair (Pi, Pj), i, j ∈ [1, l], i 
= j. These depen-
dencies can be visualized with a Dependency Structure Matrix (DSM), see [5].
Figure 1 shows on the left the DSM D for requirement R with l = 4. A depen-
dency between plant models is indicated in this DSM with a 1, no dependency
is indicated with an empty cell. Such a visualization shows that all plant models
are related with each other. Therefore, multilevel synthesis considers plant mod-
els P, P1, . . . , Pl as a single subsystem and synthesizes a supervisor for control
problem ({P, P1, . . . , Pl}, {R}).

When requirement R is split into multiple requirements collected in set
Rs = {R1, . . . , Rl} where Rk = P.σ needs Pk.qk, k ∈ [0, l], the dependencies
between the plant models reduces. There are still dependencies between plant
models P and P1, P and P2, and so on till P and Pl, yet there are no longer
dependencies between any pair (Pi, Pj), i, j ∈ [1, l], i 
= j, which is the case with
the single requirement R. The effect of splitting requirements is visualized in
DSM D′ in Fig. 1. The number of dependencies has reduced significantly. This
reduction allows multilevel synthesis to decompose the system into smaller sub-
systems, for example into two subsystems where the first is composed of plant
models P, P1, P2 and the second of plant models P, P3, P4. Similar to modular
synthesis, smaller subsystems result in smaller control problems to solve, result-
ing in a reduction of computational effort. Therefore, splitting requirements can
be beneficial for multilevel supervisory control synthesis.
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Fig. 1. Left the DSM D constructed with the original requirement R and right the
DSM D′ with the set of splitted requirements Rs.

3.2 Conflicting Supervisors

Similar to modular synthesis, splitting requirements introduces an over-approxi-
mation. Synthesizing multiple supervisors for the split requirements may result
in conflicting supervisors.

Consider the following example to illustrate the over-approximation induced
by splitting requirements. Figure 2 shows the plant models of a door actuator and
a door sensor. Requirement R = A Door.c off needs S Door.Off ∧ S Door.On
expresses that the actuator may only be turned off when the door sensor is off and
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A Door
Off On

c on

c off

S Door
Off On

u on

u off

Fig. 2. Examples of two plant models, with an actuator of a door and a sensor of a
door. Concentric circles indicate marked locations. Solid arrows indicate controllable
events while dashed arrows indicate uncontrollable events.

on. This requirement can be split into the two requirements R1 = A Door.c off
needs S Door.Off and R2 = A Door.c off needs S Door.On. Since an automa-
ton cannot be in two locations at the same time, the condition of the original
requirement R can never be satisfied, effectively disabling event c off indefinitely.
A supervisor synthesized for the single requirement disables event c on of the
actuator, because location On is not marked. When the single requirement R
is replaced by the two requirements R1 and R2, conflicting modular supervisors
are synthesized. Each local supervisor will not disable event c on, allowing the
actuator to block in location On.

In general, one can perform a nonconflicting check after synthesizing modular
or multilevel supervisors for the split requirements. Yet, as discussed in Sect. 2.2,
a nonconflicting check should always be performed if modular or multilevel syn-
thesis is applied, even when requirements are not split. It is an interesting ques-
tion for future research to determine the effect of splitting requirements on the
efficiency of the nonconflicting check and on the synthesis of a coordinator.

The example may indicate that splitting ‘bad’ requirements could induce
conflicts. A requirement demanding an automaton to be in multiple states at
the same time would probably not be the intention of an engineer. Yet, there is
no guarantee that an engineer does not formulate such a requirement. Notwith-
standing the general situation, the following conjecture formalizes the situations
encountered in cases where requirements can be split which will not introduce
conflicting problems.

Conjecture 1. Let P = {P, P1, . . . , Pm} be a product system and requirement
R = P.σ needs C1 ∧ C2 ∧ . . . ∧ Cn such that no pair of conditions Ci, Cj , i, j ∈
[1, n], i 
= j uses the same plant model. Construct the set of split requirements
R = {R1, . . . , Rn} with each split requirement being Ri = P.σ needs Ci. Then
the set of modular supervisors for R is nonconflicting.

4 Demonstration with Case Study of Infrastructural
System

Splitting state-event invariant requirements is demonstrated with the model of
Lock III, located at Tilburg, The Netherlands. Figure 3 shows the lock. The
model of Lock III is given in [25]. A lock is an infrastructural system in rivers
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Fig. 3. Photo of Lock III, located at Tilburg, The Netherlands. Image from https://
beeldbank.rws.nl, Rijkswaterstaat.

and canals with the purpose to maintain different water levels outside the lock
while also allowing the vessels to pass from one level to the other. A lock consists
primarily of a lock chamber with a lock head on each side. The main subsystems
of a lock head are the gates, water leveling systems, and the incoming and
outgoing traffic lights. Supervisory control is deployed to ensure safe operation
of the system. In this context, safety not only concerns avoiding human injuries
or causalities, but also water management as large parts of The Netherlands are
located below water level.

For modeling convenience, there is also the state-event invariant expression
D disables σ, which expresses that event σ is disabled when condition D holds.
This expression has the same expressiveness as the form σ needs C: D disables
σ is equivalent to σ needs ¬D. Following the same splitting mechanism as
introduced with the guideline, requirements of the form D disables σ can be
split if condition D is in disjunctive normal form, i.e., D = D1 ∨ . . . ∨ Dk.

The guideline is demonstrated with the following requirement: it is unsafe to
open a gate if (1) the water-leveling system at the other side is not closed, or (2)
the gate at the other side is not closed, or (3) there is no equal water over the
gate, or (4) the incoming traffic light at that lock head is not showing a red or
red-red aspect, or (5) the outgoing traffic light at that lock head is not showing
a red aspect. For one of the gates this requirement is formalized in the model as

https://beeldbank.rws.nl
https://beeldbank.rws.nl
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(1) culvert N.S.flow ∨ culvert N.A.open ∨ culvert S.S.flow ∨ culvert S.A.open ∨
(2) ¬gate U N.S.closed ∨ gate U N.Dir.opening ∨

¬gate U S.S.closed ∨ gate U S.Dir.opening ∨
(3) s equal D.off ∨
(4) ¬(in D N.S.red ∨ in D N.S.redred) ∨ ¬(in D N.A.red ∨ in D N.A.redred) ∨

¬(in D S.S.red ∨ in D S.S.redred) ∨ ¬(in D S.A.red ∨ in D S.A.redred) ∨
(5) ¬out D N.S.red ∨ ¬out D N.A.red ∨ ¬out D S.S.red ∨ ¬out D S.A.red

disables gate D N.c open,

where before the first full stop (.) in every state and event name the letter D is an
abbreviation for downstream, U for upstream, N for north, and S for south, and
where after the first full stop the letter A stands for actuator and S for sensor.
The five unsafe situations in which the gate should not open are indicated in the
requirement.

The first option for splitting this requirement is creating five requirements,
one for each unsafe situation. This results in the following five requirements:

(1) culvert N.S.flow ∨ culvert N.A.open ∨ culvert S.S.flow ∨ culvert S.A.open
disables gate D N.c open,

(2) ¬gate U N.S.closed ∨ gate U N.Dir.opening ∨ ¬gate U S.S.closed ∨
gate U S.Dir.opening
disables gate D N.c open,

(3) s equal D.off
disables gate D N.c open,

(4) ¬(in D N.S.red ∨ in D N.S.redred) ∨ ¬(in D N.A.red ∨ in D N.A.redred) ∨
¬(in D S.S.red ∨ in D S.S.redred) ∨ ¬(in D S.A.red ∨ in D S.A.redred)
disables gate D N.c open,

(5) ¬out D N.S.red ∨ ¬out D N.A.red ∨ ¬out D S.S.red ∨ ¬out D S.A.red
disables gate D N.c open.

By specifying these five requirements instead of one, the readability and main-
tainability of the models also increases. Yet, these requirements can be split
even further, as each condition is still in disjunctive normal form. Hence, 17
requirements can be formulated, of which the first four originated from (1) are

(1a) culvert N.S.flow disables gate D N.c open,

(1b) culvert N.A.open disables gate D N.c open,

(1c) culvert S.S.flow disables gate D N.c open,

(1d) culvert S.A.open disables gate D N.c open.

The other requirements can be split similarly.
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Table 1. Experimental results for synthesizing modular and multilevel supervisors with
the original and adapted Lock III models. The reported state-space size for modular and
multilevel synthesis is the sum of the state-space sizes of the individual supervisors. The
number of supervisors refers to the result of multilevel synthesis, monolithic synthesis
results in only one supervisor and modular synthesis creates a supervisor for each
requirement.

Model Number of
requirements

Monolithic Modular Multilevel Number of
supervisors

Original 142 6.0 · 1024 1.60 · 1013 1.45 · 1019 7

Adapted 358 6.0 · 1024 1.32 · 1005 4.62 · 1009 34

Another requirement describes normal closing of a gate and expresses that a
gate may only be closed if (1) the command to close the gate is given, and (2)
the gate is not yet closed, and (3) the command to stop the gate is not given.
The model of this textual requirement for one of the gates is

gate D N.c close needs cmd D gate close ∧ ¬gate D N.S.closed ∧
¬cmd stop D gate,

where D is an abbreviation for downstream, N for north, S for sensor, and cmd
for command. The three terms of the condition are conjunctive, thus this require-
ment can be split into three smaller requirements as follows:

gate D N.c close needs cmd D gate close,
gate D N.c close needs¬gate D N.S.closed,

gate D N.c close needs¬cmd stop D gate.

Finally, not all requirements may be split. Consider the requirement express-
ing that the outgoing traffic light may only switch to a red aspect if the command
for showing the red aspect is given or any stop command is given. This require-
ment is formalized for one of the outgoing traffic lights as

out D N.c red needs cmd D out r ∨ cmd stop.

Experimental results are shown in Table 1. These results have been obtained
with the CIF toolset [2] and the models can be accessed at a GitHub reposi-
tory2. For both the original model and the adapted model we show the number
of requirements, the controlled state-space size of the monolithic supervisor, the
sum of the controlled state-space sizes of each modular and multilevel supervi-
sor, and the number of multilevel supervisors. Splitting the requirements more
than doubles the number of requirements and significantly increases the effi-
ciency of both modular and multilevel supervisory control synthesis. Focussing
on multilevel synthesis, the gain of using that supervisor architecture for the
2 https://github.com/magoorden/SplittingRequirements.

https://github.com/magoorden/SplittingRequirements
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original model is already substantial comparing to monolithic synthesis. Yet, for
the adapted model, the state-space size of the multilevel supervisors approaches
the result of modular supervisors by synthesizing only 34 supervisors instead
of 358 supervisors, respectively. Also, the number of multilevel supervisors indi-
cates that by splitting the requirements the system can be decomposed into more
subsystems, as what is expected from the analysis in Sect. 3.1.

5 Four Case Studies with Experimental Results

In this section, the modeling guideline described in Sect. 3 is applied on sev-
eral other models of real-life case studies. We first introduce the case studies
and show a typical requirement that is split according to the modeling guide-
line. Subsequently, experimental results are shown after applying modular and
multilevel supervisory control synthesis on these models.

5.1 Case Studies Description

Case Marijke. In this case study, the Prinses Marijke complex is modeled, see
[26]. This infrastructural complex is located in the center of The Netherlands
and consists of two waterway locks and a storm surge barrier. In case of high
water levels in the Amsterdam-Rhine Canal, the barrier is closed and vessels
need to use the waterway locks. In all other conditions, the barrier is opened
and vessels can pass under it, without using the waterway locks.

The models of the locks in the Prinses Marijke complex are similar to the
model of Lock III, see Sect. 3. Only the modeling level, or abstraction detail,
differs. Therefore, the same requirements are specified, which opens the oppor-
tunity to split them.

Case ADAS. In this case study, an Advanced Driver Assistant Systems (ADAS)
is modeled, see [13]. In such an application, a supervisor is synthesized to safely
switch in a vehicle between the modes ‘no cruise control (NCC)’, ‘cruise control
(CC)’, and ‘adaptive cruise control (ACC)’. Based on input from the driver as
well as vehicle sensors, the vehicle may or may not switch between these different
modes of cruise control.

One of the formulated requirements is related to the desired behavior of the
CC mode. It expresses that the set-point velocity can be decreased if CC is active
and the brake sensor is off and the set-point velocity is higher than 30 km/h
and the CC lever is pushed up for longer than 0.5 s and a set-point velocity is
stored and CC is enabled and the vehicle velocity is higher than 30 km/h. This
single requirement can be split into seven smaller requirements.

Case FESTO. In this case study, a production line designed by FESTO is
modeled, see [24]. The FESTO production line is designed for vocational training
in the field of industrial automation. While no real production takes place, all
movements, velocities, and timings are as if it were. The production line consists
of six workstations with in total 28 actuators, like DC motors and pneumatic
cylinders, and 59 capacitive, optical, and inductive sensors.
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In the first workstation, products enter the system from a storage tube. At
the bottom of the tube, a pusher is able to push a product out. This pusher is
only allowed to push (extend) if the system is initialized and the pusher is fully
retracted and there is a product in the storage tube and the output place to
push the product to is empty. This example requirement can be split into four
smaller requirements formulating together the same desired behavior.

5.2 Results

For each case study, requirements are split as much as possible according to
the modeling guideline of Sect. 3, which results in the original model and an
adapted model. Subsequently, monolithic, modular, and multilevel supervisory
control synthesis are applying with the CIF toolset [2].

Table 2. Experimental results for synthesizing modular and multilevel supervisors
with the original and adapted models of the several case studies. The reported state-
space size for modular and multilevel synthesis is the sum of the state-space sizes of
the individual supervisors. The number of supervisors refers to the result of multilevel
synthesis, monolithic synthesis results in only one supervisor and modular synthesis
creates a supervisor for each requirement

Model Variant Number of
requirements

Monolithic Modular Multilevel Number of
supervisors

LockIII Original 142 6.0 · 1024 1.60 · 1013 1.45 · 1019 7

Adapted 358 6.0 · 1024 1.32 · 1005 4.62 · 1009 34

Marijke Original 248 6.68 · 1026 1.29 · 107 5.50 · 1012 26

Adapted 529 6.68 · 1026 2.24 · 105 4.03 · 1011 33

ADAS Original 33 2.0 · 1010 1.5 · 104 1.1 · 108 8

Adapted 72 2.0 · 1010 1.1 · 103 5.2 · 105 16

FESTO Original 78 2.2 · 1025 2.10 · 104 4.00 · 106 12

Adapted 205 2.2 · 1025 2.00 · 103 5.06 · 104 24

The results are shown in Table 2. For the three different synthesis techniques,
the controlled state space is reported. For monolithic synthesis, the number is
the state-space size of the single synthesized supervisor; for modular and multi-
level synthesis, the number is the sum of the state-space sizes of the individual
supervisors. The number of supervisors in the table refers to the number of
supervisors of multilevel synthesis. The number of supervisors for modular syn-
thesis equals the number of requirements and for monolithic synthesis there is
only one supervisor. The results from Lock III, discussed in Sect. 4, are added
for completeness.

For all four cases, adapting the models by splitting requirements increases
the number of requirements significantly, it often more than doubles. The results
for modular and multilevel synthesis indicate that splitting the requirements
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is beneficial for the efficiency of these supervisor architectures. For multilevel
synthesis, splitting the requirements allows to decompose the system differently
such that more subsystems are identified. Therefore, smaller control problems
are defined to be solved, resulting in the reduction of the computational effort.

As expected, the obtained efficiency gain of splitting the requirements differs
per model. For example, reformulating the model of Lock III allows multilevel
synthesis to formulate an efficient decomposition, indicated by the state-space
size and the number of supervisors, while the reduction is minimal for the model
of the Prinses Marijke complex. Nevertheless, reformulating the model by split-
ting the requirements seems to be always valuable for models of real-life cases.

6 Conclusion and Future Work

This paper presents a guideline expressing that requirements should be split
into smaller ones, each referring to less plant models than before. Theoretical
substantiation is provided for the effectiveness of this guideline. Examples from
practice show how the guideline can be used. Experimental results indicate that
splitting requirements increases the applicability and efficiency of module-based
supervisor architectures.

The examples indicate that automatic model transformation based on this
guideline should be possible. Future work includes the design and implemen-
tation of such transformations. Furthermore, Sect. 3 showed an example of a
requirement that could not be split. In [31], the introduction of new event in
the plant is suggested to circumvent this issue. It is worth investigating this sug-
gestion, albeit that also the plant model needs to be adapted. Finally, another
direction for future research is considering requirements in the form of state
invariant expressions, like the one expressing that actuators A and B may never
be both on at the same time, and determining whether, for example, a logically
equivalent set of state-event invariant expressions may be more beneficial for
module-based supervisor architectures.
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Abstract. In order to assist domain experts, several tools exist for the
definition of graphical or textual domain specific modeling languages
(DSMLs). The resulting models are useful, but not sufficient, for an
overall understanding of the system, especially when formal methods
are being applied. Indeed, formal methods failures often result from mis-
understandings of the requirements, even if the system is entirely proved.
This is confirmed by several industrial experiments which showed that
the poor readability of the formal notations is not convenient for commu-
nication with domain experts and hence the validation activity is often
tedious, time consuming and complex. In order to circumvent this short-
coming, we propose to make domain specific models provable and also
executable thanks to the animation of their expected behaviour directly
in a dedicated DSML tool. Our approach starts from an intuitive descrip-
tion of the system’s operational semantics thanks to high-level Petri-nets
which abstract away structural constraints and focus on safety-critical
behaviours. Then we take benefit of the B method in order to refine and
prove these operational semantics on the one hand, and to merge them
with the static semantics of a given DSML, on the other hand. This
work is applied to the design of ERTMS/ETCS 3 which is an emergent
solution for railway system management.

1 Introduction

Application of formal methods in industrial critical systems became a strong
requirement due to their ability to guarantee a zero-fault development. Many
well-known success stories can be cited especially in the railway domain [13],
like for example Meteor, the automated Paris subway. However, formal methods
also suffer from the poor readability of their notations [6] which is not conve-
nient for validation. In fact, failures of formal developments often result from
c© Springer Nature Switzerland AG 2019
K. G. Larsen and T. Willemse (Eds.): FMICS 2019, LNCS 11687, pp. 93–109, 2019.
https://doi.org/10.1007/978-3-030-27008-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27008-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-27008-7_6


94 A. Idani et al.

misunderstandings of the users’ needs or errors in the expression of these needs,
although the system’s correctness is entirely proved.

Petri-nets, introduced in 1962 [16], partially circumvent this shortcoming,
since they combine a mathematical notation with an accessible graphical rep-
resentation based on bipartite directed graphs. They are especially known to
be powerful for event-driven systems [10] like distributed and real-time sys-
tems, logistic networks, embedded controllers, etc. Several high-level variants
of Petri-nets, like coloured Petri-nets or predicate-transition nets, were applied
in safety-critical systems and were assisted by formal verification techniques
such as animation, model-checking or proofs. Moreover, some experiences like
that of the Oslo subway, reported in [8], show that in addition to their formal
semantics, high-level Petri-nets facilitated communication with domain experts,
because chief engineers from railroad infrastructure and traffic department who
are neither specialists in Petri-nets nor in formal methods, were not only able to
understand the models, but also to suggest improvements.

Despite the Petri-nets advantages and their suitability for a readable formal
description, their main disadvantage is that they miss out the system structure
and focus on the system behaviour. Nonetheless, in the real world, structural
and dynamic aspects of a system are often interdependent. For example, in train
controlling systems the topology of the railroad, which defines position of track
sections, orientation of switches and/or automatic train stopping devices with
their corresponding signalling mechanisms, impacts the overall safety of train
movements and behaviours. In safety critical systems, the system structure as
well as critical situations that may arise from this structure are often provided
by domain experts using informal graphical representations which may be ref-
erenced in the specification documents. We believe that these graphical rep-
resentations should be defined in dedicated domain-specific languages (DSLs)
with tool support, especially as modeling languages development is a well mas-
tered technique today. The emergence of DSL tools in safety-critical systems
[9,18,19] allows domain experts themselves to provide useful structural models
to the software system engineer who will then develop the operational aspects
of the system. However, as far as we know, none of the existing works in the
safety-critical domain proposes a way to define proved formal links between the
dynamic system description (in Petri-nets or other well known formalisms) and
DSL tool development. There exist some attempts in model-driven engineering
(MDE) with tools for executable DSLs [2,4,15], however they cannot be applied
as is in safety critical systems because they are not assisted by automated rea-
soning tools and lack well-established verification and validation techniques.

This paper gives practical solutions to address this challenge starting from
an intuitive description of a safety critical system where the dynamic aspects are
specified thanks to high-level Petri-nets and the structural aspects are designed
in a DSL tool. This work allows to enhance the usability of formal methods in
industry because it involves domain experts all along the development process
for both structural and behavioural modeling. Our approach uses the B method
[1] in order to merge both worlds (that of Petri-nets and that of DSLs) and
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then applies AtelierB in order to prove the correctness of the resulting static
and dynamic semantics of the modelled system. We also apply the refinement
principle of the B method to incrementally define formal operational semantics
by means of refined Petri-net models. In every refinement step we introduce
additional conceptual elements with associated safety properties and we prove
the preservation of these properties as well as those of the previous level.

Section 2 gives the application context of this work. Sections 3 and 4 sepa-
rately describe operational and static semantics and can be read in any order;
and then, Sect. 5 puts it all together, using the B method, in Meeduse1 − a
tool that we developed in order to mix the formal B method with domain spe-
cific languages. Finally, Sect. 6 draws the conclusion and the perspectives of this
work.

2 Application Context

This work is funded by the NExTRegio project of IRT Railenium. The project
aims at performing a system level analysis of a railway signalling system taking
into account emergent solutions for train automation. Indeed, in the last decade,
new technologies have been considered in railway systems in order to improve
automation on the one hand and to reduce the operating costs on the other hand.
In particular, the European ERTMS/ETCS2 [5,17] has emerged to replace var-
ious national signalling systems. There are three levels of ERTMS/ETCS which
differ by the used equipments and the operating mode. The first two levels are
already operational. However, ERTMS Level 3 is still in design and experimen-
tation phases: it aims at replacing signalling systems with a global european one
which is a GPS-based solution for the acquisition of train positions. In 2018, the
ABZ conference [3], which gathers several formal methods communities, pro-
posed a case study3 to model ERTMS/ETCS level 3 and has published several
formal models. Unfortunately, these models do not combine the power of formal
methods with domain specific approaches and hence they favour verification
(“do the system right”) rather than domain expert validation (“do the right sys-
tem”). The application presented in this paper contributes to the design phase
of ERTMS/ETCS level 3 by mixing formal techniques and domain specific mod-
eling in a well-known Model Driven Engineering (MDE) paradigm which makes
easier domain expert validation without losing sight of the verification activity.

An ERTMS Level 3 solution is based on train position and train integrity
confirmation, both transmitted by the on-board train system (called EVC4) to
the trackside system (called RBC5). Given this information, the traffic agent,
via RBC, assigns a movement authority to a train allowing it to move to a given

1 http://vasco.imag.fr/tools/meeduse/.
2 ERTMS: European Rail Traffic Management System.

ETCS: European Train Control System.
3 https://www.southampton.ac.uk/abz2018/information/case-study.page.
4 European Vital Computer.
5 Radio Block Center.

http://vasco.imag.fr/tools/meeduse/
https://www.southampton.ac.uk/abz2018/information/case-study.page
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point. In the RBC, track-circuits exist in a logical form by means of trackside
train detection sections (called TTD) which are in turn divided into virtual sub-
sections (called VSS). Figure 1, taken from the ERTMS 3 reference document
[5], illustrates a track circuit divided into two TTDs and four VSSs, and where
a train is located on VSS23. This simplified view of section conventions, used by
railway experts, applies specific domain representations to represent a situation
where a train went through TTD2 and reached its ending VSS.

The work proposed in this paper is intended to make domain specific models,
provided by domain experts themselves, such as that of Fig. 1, not only prov-
able but also executable thanks to the animation of their expected behaviour
directly in the dedicated DSL tool. Operational semantics of these models
are described using high-level Petri-nets, especially coloured Petri-nets (CP-
nets), which abstract away structural constraints and focus on safety-critical
behaviours. Static semantics of these models, together with their graphical rep-
resentation, are developed in a MDE framework based on EMF6 and Sirius7.

Fig. 1. Section conventions [5]

Figure 2 gives the overall architecture of the resulting models and formal spec-
ifications. The DSL meta-model and CP-Net models are automatically translated
into B specifications which are enhanced by safety invariants and proved. Then,
our approach defines linkage machines allowing to control the functional model
and the associated DSL-tool thanks to the CP-Net specifications. Every linkage
machine refines a CP-Net model and includes the functional model.

3 Coloured Petri-Nets: From Modeling to Proofs

3.1 Main Concepts

We use coloured Petri-nets (CP-nets) [12] because of their abstraction capabili-
ties and their readability. They combine the strengths of classical Petri-nets with
the strengths of high-level programming languages [7], to allow handling data
types with pre-defined functions. For a formal description of CP-nets, one can
refer to [11]; nonetheless, the main concepts used in this paper are:

6 https://www.eclipse.org/modeling/emf/.
7 https://www.obeo.fr/fr/produits/eclipse-sirius.

https://www.eclipse.org/modeling/emf/
https://www.obeo.fr/fr/produits/eclipse-sirius
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Fig. 2. Overall architecture of a formal DSML semantics

– Data types: can be simple types (i.e. Integer, Boolean,. . . ) or complex types
(i.e. arrays, sequences,. . . ). In this work, we mainly use integer enumerations.

– Places: represent abstractions on data values (called tokens or colours). The
place type is called the colour set and it is defined by composing data-types.

– Transitions: they are linked to input and output places. When fired, a transi-
tion consumes tokens from its input places such that they match the transition
signature. Then, the transition introduces tokens into its output places.

– Predefined functions: describe some computations done by the transitions
when they are fired. In this paper, we use three basic functions: calculation
of the next (n++) and the previous value (n−−) given a token n when n is of
type integer, and the negation value (¬n) when n is of type boolean.

3.2 Level 1: Simple Train Movements

Our first CP-net (Fig. 3) defines simple train movements without train integrity
nor movement authorities. This abstract level is mainly intended to guarantee
the absence of accidents.

(t,¬s)

Free
(Vss)

changeSens

moveEven moveOdd

(t, true)

(t, false)

(t, false)

(t, true)

(t, v)
(t, v++) (t, v) (t, v−−)

Position

Sens

(Train × Vss)

(Train × Bool)

(v−−)
(v)(v++)(v)

(t, s)

Fig. 3. Simple movement described in a coloured Petri-net
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This model describes train movements using transitions moveEven and
moveOdd which move the train forward or backward and; and changeSens which
switches the train moving direction. Place Position contains pairs (t, v) which
record the current VSS v occupied by a train t. Place Free gathers the sections
which are not occupied by any train and place Sens registers for every train its
current direction. For our first CP-net model, we would like to prove five safety
properties:

1. Absence of accidents meaning that at most one train occupies a Vss,
2. Every train is located in one and only one Vss,
3. Absence of overlapping between Vss states free and occupied,
4. Vss states cannot be undefined, they are either free or occupied,
5. The train moving direction is never lost

Transition moveEven is fired given a train t located on section v, whose direc-
tion is set to true, and such that its next section v++ is free (e.g. (t, v) ∈
Position ∧ (v++) ∈ Free). When fired, this transition instantly moves train t
from section v to section v++. It consumes tokens (t, v) and (v++) respectively
from places Position and Free, and then respectively introduces into these places
tokens (t, v++) and (v), meaning that v++ becomes the new position of train
t, and section v is released. Transition moveOdd applies the same principles to
trains in direction false but selects the previous section v−− if this section is
free.

3.3 Extraction of B Specifications

In order to prove the safety properties of our first level CP-net model we translate
it into B specifications as follows:

First an abstract machine (named CPNData) is generated in order to gather
the colour sets together with the transition signatures as defined in the CP-net
model. Colour sets Train and Vss, which are integer enumerations, are translated
into bounded natural constants CPNTrain and CPNVss. Places Free, Position
and Sens become variables in refinement CPNLevel1 because their values evolve
during the execution of the CP-net. In this refinement, by default the variable
typing applies general functions such as sets’ cartesian product and inclusion
(e.g. Position ⊆ CPNTrain × CPNV ss).

Every transition leads to a basic operation defined in machine CPNData with
a typing precondition and a skip substitution, like the example below of operation
moveEven:
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/* Operation moveEven in machine CPNData */

moveEven(tt, vv) =
PRE tt ∈ CPNTrain ∧ vv ∈ CPNVss THEN

skip
END

The skip substitution of the basic operations is then refined in CPNLevel1 by
introducing the enabledness guards and the expected actions of the transition.
In the following we give the refinement of operation moveEven in CPNLevel1:

/* Refinement of the skip substitution in CPNLevel1 */

moveEven(tt, vv) =
SELECT

(tt �→ vv) ∈ Position ∧ (vv + 1) ∈ Free ∧ (tt �→ TRUE) ∈ Sens
THEN

Free := (Free − {(vv + 1)}) ∪ {(vv)} ||
Position := (Position − {(tt �→ vv)}) ∪ {(tt �→ vv + 1)}

END ;

Transitions moveOdd and changeSens are translated by applying the same
principles. Regarding the five safety properties, they are manually introduced in
machine CPNLevel1 using the following invariants:

Position ∈ CPNTrain � CPNVss /* Properties (1) and (2) */

Free ∩ ran(Position) = ∅ /* Property (3) */

Free ∪ ran(Position) = CPNVss /* Property (4) */

Sens ∈ CPNTrain → BOOL /* Property (5) */

These invariants restrict the state space defined by the typing predicates pre-
sented above. For example, the typing predicate of relation Position defines all
combinations of CPNTrain and CPNVss couples, while the invariant restricts
these combinations to those where a CPNTrain is linked to one and only one
CPNVss while a CPNVss is linked to at the most one CPNTrain. In our method-
ology, we consider that if the CP-net model is correct, proofs should be done
without any enhancement of the corresponding B specifications. Otherwise, we
decide whether the CP-net model is wrong or not, given the AtelierB feedbacks.
In all cases we do not modify the generated B operations; we either call the inter-
active prover when the proof fails due to a limitation in the automatic prover, or
we correct the CP-net model and translate it again into B. The initial marking
substitutions are introduced without invariant violation:

INITIALISATION
Position :∈ CPNTrain � CPNVss ;
Free := CPNVss − ran(Position) ;
Sens :∈ CPNTrain → BOOL

Based on machines CPNData and CPNLevel1, and these additional invariants,
the AtelierB generated 17 proof obligations and automatically proved 11 amongst
them. The 6 other POs were proved using the interactive prover.



100 A. Idani et al.

4 A Railway Domain-Specific Modeling Language

4.1 Railway Meta-Model

In order to provide a tool for domain experts allowing them to draw models
like that of Fig. 1, we apply model-driven engineering tools for DSML creation
(EMF, Ecore-Tools and Sirius). In MDE, the creation of a DSML starts by
the definition of its meta-model and then for every class in the meta-model a
graphical representation is created. Figure 4 gives the meta-model that we use
in this work and Fig. 5 gives a screenshot of the resulting DSML-tool in which a
model is designed using the proposed graphical representations.

Fig. 4. A railway meta-model

In our meta-model, a railway system is composed of trains (class Train),
track sections called TTD in ERTMS/ETCS 3 (class Trackside) and which are
divided into portions called VSS (class VirtualBlock). The bottom of Fig. 5 draws
an overall railway topology by means of TTD links. Every portion of a given
TTD may be linked to two next and previous portions at the most. In practice,
there are four kinds of portions: track extremity (e.g. VSS11 and VSS62), middle
track (e.g. VSS12), switch (e.g. VSS21 and VSS51) and diamonds. Association
pSetted/nSetted provides the currently selected previous/next portion among
those to which a portion is linked. This is useful especially for switches and
diamonds. For example, the next portions of VSS21 are VSS31 and VSS41, but
the position of the switch sets the currently selected next portion of VSS21 to
VSS31 and hence the selected previous portion of VSS31 is VSS21 but for portion
VSS41 there is no previous selected portion. Portion VSS41 remains then a track
limit until the switch position is changed. Note that relation pSetted/nSetted is
independent from train direction and a track limit is a portion without a selected
next or previous portion.

Class TrackView represents linear views that follow the current next/previous
selections and where every view starts and ends with track limits. For example,
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Fig. 5. A railway model (Color figure online)

the topology presented in the bottom of Fig. 5, leads to the two views on the top
of the figure. The first view covers sections TTD1, TTD2 and TTD3 and the sec-
ond view covers the three other sections: TTD4, TTD5 and TTD6. If the switches
position changes, these views are changed consequently. For example, if the
selected next portion of VSS21 is set to VSS41, then the resulting topology would
lead to two different views: one composed of TTD1/TTD2/TTD4/TTD5/TTD6,
and an other view dedicated to TTD3 only.

Trains have a direction (even or odd) and their representation depends on
the set of portions that their head and rear occupy. In the example of Fig. 5
we consider two trains: T1 whose front and rear occupy the same portion (i.e.
VSS21), and T2 that stretches from portion VSS42 to VSS51. A TTD is occupied
when at least one of its portions are occupied. This is represented by the yellow
color in the track views and by the red color in the topology representation. The
green color is used to represent free TTD and VSS in the track view.

4.2 Formal Model

As our intention is to provide domain experts with a DSML-tool with formal
semantics, we apply the Meeduse platform8 that we developed in order to auto-
matically translate a meta-model into an equivalent B specification. The result-
ing formal model gathers the structure of the meta-model (by means of sets,
variables and structural invariants) with a set of basic operations such as con-
structors, getters and setters. For example, we give below the translation of
classes Train and VirtualBlock and one basic operation Train AddFront which
adds a virtual block to the set of virtual blocks occupied by the head of a train.

8 http://vasco.imag.fr/tools/meeduse/.

http://vasco.imag.fr/tools/meeduse/
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Several other basic operations are generated by the tool like: Train RemoveFront,
Train AddRear, Train RemoveRear. . .

MACHINE Functional
SETS
VIRTUALBLOCK; TRACKSIDE
Direction = {even,odd};

VARIABLES
Train, VirtualBlock, Train direction,
frontOfTrain, rearOfTrain

INVARIANT
Train ⊆ TRAIN
∧ VirtualBlock ∈ VIRTUALBLOCK
∧ frontOfTrain ∈ Train ↔ VirtualBlock
∧ rearOfTrain ∈ Train ↔ VirtualBlock
∧ Train direction ∈ Train → Direction

Train AddFront(aTrain,aFront) =
PRE
aTrain ∈ Train ∧
aFront ∈ VirtualBlock ∧
(aTrain �→ aFront) �∈ frontOfTrain

THEN
frontOfTrain :=
frontOfTrain ∪ {(aTrain �→ aFront)}
END;

The translation of a meta-model into B applies a UML-to-B transformation
technique where a meta-class Class is translated into an abstract set named
CLASS representing possible instances and a variable named Class representing
the set of existing instances such that existing instances belong to the set of
possible instances. An enumeration is translated into a enumerated set (e.g.
Direction). Basic types (e.g. integer, boolean) become B types (Z, Bool,. . . ).
Attributes and references lead to functional relations depending on multiplicities.

Machine Functional generated by Meeduse is about 500 lines with 38 basic
operations from which the AtelierB produced 80 proof obligations that were
proved automatically. Proofs associated to this functional specification guar-
antee that the basic operations do not violate the structural properties of the
meta-model such as multiplicities and single-valued and mandatory attributes,
etc. Besides the automatic extraction of a correct by-design functional B spec-
ification, the interest of Meeduse is that it integrates the ProB [14] animator.
Given a model (like that of Fig. 5) Meeduse injects it as valuations in the B
specification and calls ProB in order to compute the list of operations that may
be animated from these valuations. For example, the following initialization is
extracted by Meeduse from our graphical model which leads to an initial state
of the B machine which is conformant with the domain model.

INITIALISATION
Train := {T1, T2} ||
VirtualBlock := {VSS11, VSS12, . . . , VSS62} ||
frontOfTrain := {(T1 �→ VSS21), (T2 �→ VSS42)} ||
rearOfTrain := {(T1 �→ VSS21), (T2 �→ VSS51)} ||
Train direction := {(T1 �→ even), (T2 �→ odd)}

Starting from the initial state, when the user asks Meeduse to animate a B
operation, the tool calls ProB and gets the new variable valuations and then it
translates back these valuations to the graphical model. This technique results in
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an automatic visual animation9 of domain models. For example, given the above
initial state, the animation of operation Train AddFront(T1, VSS31) introduces
couple (T1 �→ VSS31 ) into relation frontOfTrain and then Meeduse modifies the
domain model as presented in Fig. 6 where the head of T1 occupies two virtual
blocks VSS21 and VSS31. Since VSS31 is one of the portions of TTD3, then the
visual representation of TTD3 automatically changes from green to yellow.

Fig. 6. View 1 after animation of Train AddFront(T1, VSS31) (Color figure online)

5 Putting It All Together

Section 3 focused on train behaviours with an abstract Petri-net specification
that guarantees the absence of accidents, and Sect. 4 focused on domain model-
ing of structural aspects of a railway DSML. In this section, we combine both
concerns in order to provide a railway DSML with a proved safe train behaviour.
The B specifications extracted from the meta-model of Fig. 4 represent formal
static semantics of our DSML, and those extracted from a coloured Petri-net
model introduce its operational semantics. In order to merge static and oper-
ational semantics we create machine LinkageV1 which refines CPNLevel1 and
includes machine Functional:

REFINEMENT LinkageV1
REFINES CPNLevel1
INCLUDES Functional
VARIABLES

trainMapping, vssMapping, view
INVARIANT

trainMapping ∈ Train �� CPNTrain
∧ vssMapping ∈ VirtualBlock �� CPNVss
∧ view ∈ TrackView

The refinement guarantees the preservation of the safety invariants of CPN-
Level1 and the inclusion allows to redefine the Petri-net transitions and data
using the functional variables of the DSML. In this machine the linkage between
the DSML and the CP-net model is done via functions trainMapping and vssMap-
ping. They respectively map variables Train and VirtualBlock issued from the
9 For place reason we do not develop the animation technique in this paper. Demon-

stration videos of Meeduse with graphical and textual DSL animation can be found
at: http://vasco.imag.fr/tools/meeduse/.

http://vasco.imag.fr/tools/meeduse/


104 A. Idani et al.

meta-model to sets CPNTrain and CPNVss issued from the CP-net. In our app-
roach every view in the DSML is controlled by a CP-net since the CP-net defines
the VSS set by a sequence of integers. Then, the mapping functions are applied
to a given view (view ∈ TrackView). For example, the vssMapping relation is
computed in the initialisation of LinkageV1 as:

LET mapVss BE mapVss = ran(({view} � blocks −1 ; theVSSs −1 )) IN
ANY map WHERE

map ∈ mapVss � CPNVss ∧
∀ vss . (vss ∈ mapVss ∧ nSetted[{vss}] �= ∅

⇒ nSetted(vss) ∈ dom(map) ∧ map(nSetted(vss)) = map(vss) + 1)
THEN

vssMapping := map
END

END

Note that blocks and theVSSs represent respectively association blocks between
classes TrackView and Trackside, and association vss between classes Trackside
and VirtualBlock. Local variable mapVss defined by: ran((view � blocks−1 ;
theVSSs−1 )) extracts the set of VSS for a given view and the mapping is a
total injection (�) that maps every VSS in this view to a unique value from set
CPNVss. This mapping is done under the condition that if a VSS is not a track
extremity (nSetted[vss ] �= ∅) then its next selected VSS is mapped (nSetted(vss)
∈ dom(map)) and the associated CP-net value is equal to the VSS value plus
one. We similarly compute the trainMapping relation but under the condition
that only trains whose head and rear occupy the same VSS are mapped. In this
sense, from the example of Fig. 5 only the first view can be mapped and then
controlled by our first level CP-net model.

Given the mapping relations, the safety invariants of CPNLevel1 are rewrit-
ten by means of linkage invariants ensuring the relationship between the vari-
ous B specifications. For example, invariant Free ∩ ran(Position) = ∅ used for
Property (3) becomes:

(frontOfTrain ∪ rearOfTrain)−1[vssMapping−1[Free]] = ∅
which means that for every free VSS in the CP-net model, the corresponding
virtual block in the DSML does not contain any train head or rear. Having the
linkage invariants, operation moveEven(tt, vv) in the linkage machine is applied
to a train mapped to tt, whose head and rear occupy a VSS mapped to vv,
and whose direction is even and such that the next VSS which is mapped to
vv + 1 is free. Actions of moveEven call basic functional operations issued from
machine Functional. They simply remove the head and the rear of the train from
vv and put them on vv + 1. In the following we give the refinement of operation
moveEven in LinkageV1:
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moveEven(tt, vv) =
LET train, vss, nextVss BE

train = trainMapping−1(tt)
∧ vss = vssMapping−1(vv)
∧ nextVss = vssMapping−1(vv + 1)

IN
SELECT

(train �→ vss) ∈ frontOfTrain ∩ rearOfTrain
∧ nextVss �∈ ran(frontOfTrain ∪ rearOfTrain)
∧ Train direction(train) = even

THEN
Train RemoveFront(train, vss); Train AddFront(train, nextVss) ;
Train RemoveRear(train, vss); Train AddRear(train, nextVss)

END
END ;

At this stage we are able to do verification and validation. Indeed, verification
is done thanks to the 41 POs that were proved by the AtelierB for machine
LinkageV1 and which mean that the safety properties (those of CPNLevel1) as
well as the structural properties (those of Functional) are preserved. Regarding
validation, it is done by railway experts using the animation facility of Meeduse.
As we showed previously, Meeduse animation of B operations that impact the
functional model automatically animates the corresponding graphical model.

5.1 Incremental Development of Operational Semantics

CPNLevel1 describes simple train movements without train integrity nor move-
ment authorities which are basic concepts of ERTMS/ETCS 3. This specifica-
tion guarantees the absence of accidents and defines a first abstraction level
of our DSML operational semantics. In this section, we show how operational
semantics, can be incrementally defined in order to first introduce movement
authorities and then the track release mechanism when the train integrity is
confirmed.

Machines CPNLevel1, Functional and LinkageV1 of Fig, 2 were discussed in the
previous sections. Machines CPNLevel2 and CPNLevel3 are extracted from addi-
tional CP-net models and apply a refinement technique where every refinement
level introduces new safety properties without violating the properties of the
previous levels. In this section we mainly discuss CP-net refinements. Machines
LinkageV2 and LinkageV3 will not be discussed since they are defined via the same
principles as LinkageV1. They allow the domain expert to animate the domain
model for every CP-net refinement and validate the observed behaviours. Thanks
to these machines, the domain expert is involved all along the development pro-
cess.

Level 2: Authorized Train Movements

The assumption made in the first CP-net level, considering that a train moves to
the next free virtual section and immediately leaves its current section, is quite



106 A. Idani et al.

simplistic but sufficient in order to model an abstract accident-free behaviour.
In this second level we introduce a movement authority mechanism, in order to
construct routes to which trains are allowed to move. The movement authority,
in the ERTMS/ETCS, is used without visual signals or marker boards. It is sent
by the RBC system to a given train via GSM-R.

Our objective is to prove that authorized train movements, no matter how
authorizations are assigned to trains, preserve the accident-free behaviour of the
previous level. Figure 7 is a CP-net model which includes authorized movements
and where we focus on the refinement of transition moveEven and state Free.
In addition to transition moveOdd which is analog to moveEven, and transition
changeSens which is kept unchanged, this model introduces transition authorize
which represents the actions executed by a train when it receives a movement
authority signal from the RBC.

Train

m
ov
eE

ve
n

(t, v)

(t, v++)

(t, true)(t, true)

(v)

(t, v++)

(Train × Bool)

(v)

(t, v)

(t)

(t)

Free

authorize

Waiting

(Train × Vss)

(Vss)
Position
(Train × Vss)

Sens
Route

(Train)

Fig. 7. CP-net for authorized train movements

In this CP-net model, place Free is refined into two places: Waiting and Route.
When a train moves away from a given Vss, the Vss is freed but cannot be used
before being reserved. The Vss first enters in place Waiting and then transi-
tion authorize assigns it to a given train and adds the corresponding movement
authority to place Route. The extraction of B specifications follows the same
principles as discussed for Level 1, and produces the variables with their typing
invariants showed below:

REFINEMENT CPNLevel2
REFINES CPNLevel1
VARIABLES
Position, Sens, Waiting, Route

INVARIANT
/* Typing invariant generated from CP-net model */

Waiting ⊆ CPNVss ∧ Route ⊆ CPNTrain × CPNVss
/* Refinement invariant */

Waiting ∪ ran(Route) = Free
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/* Refinement of moveEven with authorized movements */

moveEven(tt,vv) =
SELECT

(tt �→ vv) ∈ Position ∧ (tt �→ vv + 1) ∈ Route ∧ (tt �→ TRUE) ∈ Sens
THEN

Position := (Position − {(tt �→ vv)}) ∪ {(tt �→ vv + 1)} ||
Route := Route − {(tt �→ vv + 1)} ||
Waiting := Waiting ∪ {vv}

END ;

The refinement invariant means that the set of tokens of place Free are dis-
tributed among places Waiting and Route, and then variable Free is replaced
by variables Waiting and Route which are used in the refinement of transition
moveEven. The additional safety invariants of this second CP-net level are: (6.) a
VSS cannot be waiting and at the same time assigned to a movement authority;
and (7.) a movement authority cannot be shared by several trains.

Waiting ∩ ran(Route) = ∅ /* Property (6) */

Route −1 ∈ CPNVss �→ CPNTrain /* Property (7) */

Given CP-net of Level 2 and the corresponding safety properties, as well as
the refinement invariant, the AtelierB prover generated 32 POs, such that 25
were proved automatically and 7 interactively, which means that CP-net Level
2 guarantees its own properties and also those of CP-net Level 1.

Level 3: Movements with Integrity Confirmation

In the third refinement level we consider a more realistic train representation
than that developed in the two previous levels where a train occupies only one
VSS. In this refinement, a train is seen as a logical entity defined by the set of
VSS that it occupies: its head (place Position), a set of VSS not yet released
behind its head (place Wagon) and the safe rear end (place Tail) which is in
our case one additional VSS defining the minimal distance between two trains.
Thus, a train occupies at least two virtual sections: one for its head and one
behind it. When a train moves, its head is advanced from its current VSS v to
the next VSS v++, and then v is not freed but a virtual wagon is created over it.
Indeed, in ERTMS/ETCS 3, the train must confirm its integrity (i.e. it did not
lose wagons) before releasing its safe rear end which advances its tail by one VSS
and removes the corresponding virtual wagon. Figure 8 provides the refinement of
CP-net level 2 introducing integrity confirmation together with the VSS release
mechanism. This model introduces places Wagon, Tail and Ready as a refinement
of place Waiting, and transition confirmEven which is fired when a train integrity
is confirmed. A released VSS becomes ready for reservation and enters in place
Ready. Given the B specifications issued from this third level and the associated
safety invariants, the AtelierB produced 62 POs and automatically proved 41
among them. The 21 other POs were proved manually.
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6 Conclusion

This paper presented an incremental formal development process that involves
domain experts during the modeling activities. First, we use coloured Petri-nets
because their graphical notations are more readable than textual mathematical
notations. Then, we use DSMLs in order to assist domain experts for the design
of the domain models. CP-nets and DSMLs are convenient for validation because
they both favour communication complementing each other by focusing on par-
ticular concerns: behavioural concerns for CP-nets, and structural concerns for
DSMLs. In order to mix the various models we apply the B method which allows
a proof-based verification thanks to the AtelierB prover, and domain model ani-
mation thanks to Meeduse and ProB. Our approach was successfully applied to
a railway safety critical system, the ERTMS/ETCS 3 train automation solution
and other case studies (automatic car light regulator, parking-lot controller,. . . ).

Several perspectives araise from this work, especially we plan to develop an
automated extraction technique of sub-parts of the linkage machines. In this
work, these machines were introduced manually which is still somehow difficult
and time consuming when the CP-net scales up such as our third CP-net refine-
ment. We also plan an empirical study with railway experts in order to validate
the usability of our tool-set. The validation is currently limited to academic
railway experts of the NExTRegio project.
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Abstract. The design of modern network-on-chip (NoC) systems faces
reliability challenges due to process and environmental variations. Peak
power supply noise (PSN) in the power delivery network of a NoC device
plays a critical role in determining reliable operations: PSN typically
leads to voltage droop, which can cause timing errors in the NoC router
pipelines. Existing simulation-based approaches cannot provide rigorous,
worst-case reliability guarantees on the probabilistic behaviors of PSN.
To address this problem, this paper takes a significant step in formally
analyzing PSN in modern NoCs. Specifically, we present a probabilistic
model checking approach for the rigorous characterization of PSN for
a generic central router of a large mesh-NoC system, under the Round
Robin scheduling mechanism with a uniform random network traffic load.
Defining features for PSN are extracted at the behavioral level to facil-
itate property formulation. Several abstract models have been derived
for the central router’s concrete model based on the observations of its
arbiter’s conflict resolution behavior. Probabilistic modeling and verifica-
tion are performed using the Modest Toolset. Results show significant
scalability of our abstract models, and reveal key PSN characteristics
that are indicative of NoC design and optimization.

Keywords: Probabilistic model checking · Network-on-chip ·
Reliability analysis · Power supply noise

1 Introduction

The advancement in probabilistic model checking has enabled its applications
in a wide range of domains, including cryptography [11], systems biology [22],
network protocols [21], game theory [6], and distributed systems [20]. Likewise,
in recent times, the growing demand for robust and secure digital system design
has challenged the potential for innovation in formal methods. In this work, we
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venture into the probabilistic model checking of the reliability evaluation of a
complex and distributed digital system—the on-chip communication network,
network-on-chip (NoC), deployed in a many-core system.

NoC—the de-facto standard for on-chip communication in modern many-
core systems—generally comprises of several topologically homogeneous routers
operating synchronously in a decentralized control system. Despite the concep-
tual similarity with conventional computer networks, a NoC is subject to several
unique reliability challenges, e.g., process and environmental variations, that
are vastly dissimilar to conventional network communication. Over a decade of
simulation-based research has gone into NoC design exploration and reliability
analysis [1–3,27]. However, simulation-based ecosystems fail to provide worst-
case reliability and safety guarantees. Consequently, formal verification is neces-
sary to ensure the correctness of specific functionality of the NoC components.

The primary challenge of applying automated verification, specifically, model
checking, is the notorious state explosion issue, as evidenced by a recent work
on model checking an asynchronous NoC [31] where the intermediate state space
corresponding to only 13 out of the 66 components in a 3 × 3 NoC consists of
several hundred million states. Consequently, accurate modeling of the reliability
issues (e.g., power supply noise, quality-of-service guarantees, etc.) is poised to
further aggravate its computational complexity.

This paper presents a probabilistic model checking method for the analysis
of power supply noise (PSN) for a generic central router of a large mesh-NoC
system and its impact on the router’s reliability under uniform random traffic
loads. To enable an accurate and efficient analysis and a convenient formulation
of the probabilistic properties, we extract the key characterizing features of the
router at the behavioral level. We present formal models for the central router
with four full-duplex channels, operated under uniform random packet injection
with the starvation-free Round Robin conflict resolution scheduling. To tackle
the state space explosion challenge, abstract models have been derived based
on critical observations of conflict resolution patterns. Transition probabilities
between abstract states are inferred from exhaustive executions of the underly-
ing concrete models with limited steps. We use the high-level formal modeling
language Modest [13] to formulate our models, the state spaces of which are
large discrete-time Markov chains (DTMC), and the Modest Toolset’s [15]
probabilistic model checker mcsta for the analysis. We check reward-bounded
properties, for which mcsta implements scalable analysis techniques [12]; in par-
ticular the state elimination approach resulted in significant analysis speedups.
The final verification results show significant scalability of our abstract models,
and reveal key relations between traffic loads and PSN.

2 Motivation

PSN in the power delivery network of an integrated circuit is composed of two
major components: (a) resistive noise, which is estimated by the product of the
current drawn and the lumped resistance of the circuit; and (b) inductive noise
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that is caused by the inductance the power grid and is proportional to the rate
of change of current through the inductance (Δi

Δt ). For a distributed system such
as a NoC, the latter takes a central component [2].

A high inductive noise is responsible for the intermittent peaks in the cycle-
wise noise profile of a NoC. Basu et al. have recently demonstrated that, in
an 8 × 8 NoC, the peak PSN can increase from 40% of the supply voltage at
the 32-nm technology node to about 80% of the supply voltage at the 14-nm
technology node, while running a uniform-random synthetic traffic pattern [2].
Voltage droop due to PSN can radically degrade the delay of various on-chip
circuit components. Such increase in the delay has the potential to engender
timing errors in the pipe-stages of the NoC routers, thus severely impacting the
reliability as well as the performance of the overall on-chip communication.

Although recent works [2,27] tackle the PSN problem in NoCs to some extent,
they do not guarantee the worst-case peak PSN—a determinant of the NoC
reliability—across different operating conditions, realistically conceivable, for
any parallel workload. Moreover, these works do not provide any bounds on
the temporal PSN profile for a router, given an application execution. Conse-
quently, existing approaches to mitigate PSN are a far cry from a truly reliable
NoC design paradigm that can be deployed in mission-critical systems. On the
contrary, this work shows that probabilistic model checking, despite its inherent
challenges, can offer precise bounds on the performance and reliability with com-
mon environment assumptions, leading the way to future reliable NoC design.

3 Related Work

Reliable and energy efficient communication is the backbone of many-core sys-
tems. Significant recent research exploring reactive, proactive and predictive
techniques has focused on addressing the challenges of fault tolerance in NoC
[4,5,7,17,28]. However, a wide majority of these works are simulation-based
analyses, which cannot provide rigorous reliability and performance guarantees.

Formal verification in NoC architectures has largely been focused on func-
tional correctness of routing algorithms [26,31,32]. Zhang et al. investigate prop-
erties of deadlock and livelock freedom and tolerance to link failure, and use
model checking to enhance an existing routing protocol [31,32]. Based on theo-
rem proving techniques, the DCI2 developed by Verbeek demonstrates significant
scalability in proving properties of deadlock and livelock freedom and topology
violations of statically determined routing logic [29]. Accurate assessment of
NoC reliability has to incorporate quantitative aspects depicting the inherent
distributive and reactive nature of NoC. Coste et al. presents in [8] a trans-
lation procedure to convert existing functional model into Markov chains for
the evaluation of the latency of memory accesses over a Globally Asynchronous
Locally Synchronous (GALS) NoC. Nevertheless, the scope of existing literature
in probabilistic verification of the NoC is minimal.

On the other hand, researchers have extensively employed probabilistic ver-
ification to assess and improve reliability, resilience, and security of computer
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hardware designs [10,24,25,30]. For example, Han et al. demonstrate how to
obtain the fundamental error bounds by using bifurcation analysis based on
probabilistic models of unreliable gates [14]. Kumar et al. propose an automatic
compositional reasoning technique to improve the scalability of probabilistic
model checking of hardware systems [19]. Mundhenk et al. propose probabilistic
model checking for the security analysis of automotive architectures at the sys-
tem level [23]. However, the dividends of these works have not yet been carried
forward to the NoC domain.

4 Conflict Resolution in Central Routers

Fig. 1. NoC router model.

Figure 1 depicts the central router
of an 8 × 8, two-dimensional mesh
NoC network [2]. It has four full-
duplex channels with the bandwidth
of one flit of a network packet, where
each channel has a buffer with the
capability of storing four flits. The
router simultaneously transmits and
receives flits in all four directions.
Assume that each flit carries the
next forwarding direction, and that a
flit is not diverted back to its incom-
ing direction. The forwarding direc-
tion is used for the arbiter in the cen-
tral router to detect possible conflicts. The arbiter resolves conflicts, created by
multiple flits originated from the four buffers attempting the same output direc-
tion. The order of conflict resolution relies on the Round Robin scheduling mech-
anism to guarantee fairness and starvation-free arbitration. The input interface
handles flits arrived from all of four directions, and accommodates them in the
first available space in the corresponding buffer. The output interface directs flits
from the arbiter that are ready to be dispatched to the neighboring routers. The
rest of this section describes details of the arbiter’s conflict resolution mechanism.

Since the bandwidth of all outgoing channels allows only one flit at a time,
conflicts are resolved inside the central router. Conflicts affect the performance
of each individual router and hence the entire NoC. During each clock cycle,
the arbiter first examines each buffer’s front flit’s outgoing direction to detect
conflicts. If no conflict exists, all the buffers can forward their front flits to
their respective outputs in one cycle to maximize the throughput. Otherwise,
the arbiter has to resolve all conflicts, requiring one or more additional cycles.
Figure 2 demonstrates three representative scenarios of conflicts and their reso-
lution. For simplicity, we ignore the incoming packets to all four buffers at each
cycle, and only illustrate conflict resolution. In Scenario A, only one conflict
exists between the east and west buffers at cycle tn, and the east buffer has
higher priority. The arbiter, therefore, serves the east buffer at cycle tn, and
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Fig. 2. Conflict scenarios.

it also directs the north and south buffers in this cycle, as their flits do not
conflict. In the following cycle tn+1, the priority gets updated by shifting the
priority queue, and the west buffer is served. Scenario B demonstrates two pairs
of conflicts: the north and south buffers compete for the east output, while east
and west compete for the north output in cycle tn. Following the priority queue,
the arbiter serves the east and south buffers in cycle tn, and the west and north
buffers in the next cycle. Scenario C illustrates a three-way conflict: all front flits
of the east, west, and south buffers compete for the north output. The arbiter
serves the west buffer first, and simultaneously serves the north buffer as it is
not conflicting with others. In the following cycle tn+1, the south buffer gets
serviced, as it has higher priority than the east, leaving the east buffer to be
serviced in cycle tn+2.

5 Formal Model of the Central Router

The formal model implements all potential conflicts in the central router. The
Modest language [13] is used to model the router as shown in Fig. 1. We intro-
duce a datatype buffer shown in Listing 1.1. Integer variable dest represents the
front flit’s destination in each buffer: 0 (north), 1 (east), 2 (south), or 3 (west).
Value −1 indicates an empty buffer. The field id stores the buffer location in
the central router, with the same encoding as the flit’s destination. Variable
serviced is true if the front flit was serviced in the current cycle, and false

otherwise. The priority field represents the priority position each buffer will
occupy in the next clock cycle. Lastly, the actual buffer, buff, is modeled as
an integer linked list. The size of buff is set to four for all models presented
in this paper, but its length can be set to any finite integer. The arbiter model
arb is an array of four buffer values. The position of buffer in arb represents
the current priority for servicing all four buffers, array index 0 being the highest
priority and 3 being the lowest. For example, if arb[1] refers to the east buffer
with id = 1 and priority = 3, then at the beginning of the next cycle the buffer
will have been moved to position arb[3]. Two internal integer variables, namely,
unserviced and totalUnserviced, are used in the Round Robin scheduling mech-
anism: unserviced counts the number of unserviced buffers in one cycle due to
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Listing 1.1. Buffer model.

datatype buffer = {int ( -1..3) dest , int (0..3) id,
bool serviced , int (0..3) priority , intlist option buff};

buffer north , east , south , west;
buffer[] arb = [north , east , south , west];
int (0..2) unserviced;
int (0..2) totalUnserviced;

Listing 1.2. Procedure for updating serviced and unserviced.

arb [0]. serviced = true;
if (arb [1]. dest != -1 && arb [1]. dest == arb [0]. dest) {

arb [1]. serviced = false;
unserviced ++;

}
else {

arb [1]. serviced = true;
}
if(arb [1]. dest != -1 && (arb [2]. dest == arb [1]. dest || arb

[2]. dest == arb [0]. dest)) {
arb [2]. serviced = false;
unserviced ++;

}
else {

arb [2]. serviced = true
}
if(arb [1]. dest != -1 && (arb [3]. dest == arb [2]. dest || arb

[3]. dest == arb [1]. dest || arb [3]. dest == arb [0]. dest)) {
arb [3]. serviced = false;
unserviced ++;

}
else {

arb [3]. serviced = true;
}

totalServiced = unserviced;

conflict, and decrements as the unserviced buffer’s priority values are calculated;
and totalUnserviced tracks the total number of buffers unserviced in one cycle.

The serviced field for each buffer and unserviced are updated by the proce-
dure shown in Listing 1.2. It automatically sets serviced to true for the buffer
in position 0, because the arbiter will definitely serve this buffer in the current
cycle. It then moves on to the buffers in all remaining positions. If a buffer is
non-empty and is in conflict with another buffer with higher priority, then the
latter will be serviced in the current cycle and the former has to wait for its
chance in the next cycle. Therefore, serviced of the former is set to false and
unserviced is incremented. Otherwise serviced is set to true. Lastly, the arbiter
assigns totalUnserviced the updated unserviced.

Next, priority for each buffer gets updated using the procedure shown in
Listing 1.3. It should be noted that priority update is assumed to strictly follow
the order shown in the procedure, starting with the buffer in position 0 of the
arbiter array arb. If the buffer at arb[i] was serviced, its dest is updated by
peeking the front of the corresponding buffer, followed by an update of the buffer
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Listing 1.3. Update priority.

for(int i = 0, i < 3, i++) {
if (arb[i]. serviced == true) {

arb[i].dest = peekFront(arb[i].buff);
arb[i].buff = dequeue(arb[i].buff);
arb[i]. priority = i + unserviced;

}
else {

arb[i]. priority = totalUnserviced - unserviced;
unserviced --;

}
}

itself. If no element is in buff, the peekFront function will return −1 to indicate
an empty buffer. The priority is updated to the sum of its current priority i

and the number of unserviced buffers, whose priorities have not been updated.
Intuitively, buffers not serviced in the current cycle will be given higher priority
in the next, and those serviced receive priority corresponding to their position
in the arbiter array. If the buffer was not serviced, the priority is determined
by subtracting unserviced from the total number of unserviced buffers in the
current cycle, after which the unserviced is decremented. We use this method to
keep track of the order for buffers that did not get serviced in the current cycle.

As an example, assume arb=[north, east, south, west], and serviced are
true, false, true, and false, respectively. Both unserviced and totalUnserviced

are set to 2, because the east and west buffers were not serviced in the current
cycle. Priority updates start with arb[0], i.e., the north buffer. Since it was
serviced in the current cycle, its priority is updated to 0 + 2 = 2. The value of
unserviced remains at 2. Next, the priority is updated for the east buffer. Because
it was not serviced in the current cycle, its priority is set to 2−2 = 0, giving itself
the top priority for the next cycle. The value of unserviced then decrements from
2 to 1, indicating that one remaining unserviced buffer is scheduled for the next
cycle. Similarly, priorities for the south and west buffers are updated to 2+1 = 3
and 2 − 1 = 1, respectively. The variable unserviced decrements to 0 after all
priory updates. The resulting arbiter array is [east, west, north, south].

To model incoming flits to all four buffers, we randomly assign their dest fields
using the discrete uniform distribution, with the exception that a buffer does not
receive a flit destined to its incoming direction. Probabilistic model checking on
this routing node model incurs exponential state space growth as cycles increase,
quickly becoming too large to be handled. For 100 clock cycles, mcsta explored
400 million states with another 100 million queued for expansion when 132 GB
memory were filled. This is mainly due to the combinatorial explosion of flit
values. To address this issue, we present several abstract router models next.

6 Abstract Models and Refinement

Abstract models presented in this paper are based on an ad-hoc method specif-
ically for the central router. The initial abstraction is based on the observation
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that rather than specific scenarios of conflicts formed by the dest field of four
buffers, the arbiter’s behavior is only determined by a few conflict patterns that
can co-exist in one cycle, including non-conflicting scenarios. This observation
leads to four abstract states: (1) no conflicts, where all buffers are serviced in the
current cycle; (2) one pair of conflicts, where the only unserviced buffer is the
one with lower priority in the pair; (3) two pairs of conflicts with two unserviced
buffers, both of which have lower priority compared to their conflicting counter-
parts; and (4) three buffers in conflict, where the two buffers with low priorities
are not serviced in the current cycle. Four buffers cannot all be in conflict as it
is assumed that a flit is not diverted back to its incoming direction.

Since the abstract model is formulated at the behavioral level without circuit-
level details, one has to project the measure of PSN onto the same abstract level.
We know that the inductive noise, a major source of PSN, is proportional to the
rate of change of current in the circuit. An abrupt change in the router activity
in two consecutive cycles directly leads to a high rate of current change [2]. A low
router activity is characterized by the arbiter serving no routers in a cycle, as all
buffers are empty; while a high router activity is indicated by the arbiter serving
three or more buffers in a cycle. The relative frequency of both high-to-low and
low-to-high activities over a given timespan can, therefore, accurately reflect the
state of the local noise and hence PSN in the NoC routers. For this purpose,
we consider the following two probabilistic properties: (1) the probability that
the number of high router activity cycles is lower-bounded by k · N within N
overall cycles; and (2) the probability that the total number of high-to-low and
low-to-high activities is lower-bounded by k · N within N overall cycles, where
k ∈ (0, 1). High router activity, as indicated by property (1), can potentially
create a high local congestion in the network, leading to a high PSN due to
an unbalanced power density [9]. On the other hand, property (2) reflects a
large and sudden load change in a router that can lead to a large inductive
drop in the power delivery network of the NoC [2]. Collectively, understanding
these properties is essential to ascertain the minimum voltage guardband for
the NoC, sufficient to ensure a fault-free communication in a many-core system.
To facilitate checking of these properties, two variables are created, namely,
optimalRuns, which increments if all four buffers are serviced in a cycle, and
noiseRuns, which accumulates cycles with high-to-low or low-to-high activities.
Formulation of these properties is presented in Sect. 8.

The initial abstract model, however, is incorrect in that after two clock cycles,
the accumulation of optimalRuns diverges from that obtained from the concrete
model. This is because the probability varies when transitioning between two
states with two-pair conflict. Specifically, different scenarios of two-pair conflict
result in different probabilities. Table 1 illustrates some examples. Each entry
listed under columns arb[i] shows the buffer location and the destination of its
front element. For example, “n(e)” under column arb[2] means that the north
buffer’s front flit is destined for the east output. The entry “w(n, e, s)” in the
same column indicates that the west buffer can receive a flit destined to any
other three directions. For state “2a”, if the arbiter has the two-pair conflict in



118 B. Lewis et al.

cycle k, then arb[0] and arb[1] are serviced, allowing “n(e)” and “e(n)” to move
to arb[0] and arb[1], respectively, in the next cycle. Observe that at cycle k+1,
two-pair conflict scenarios include (n(e), e(n), w(n), s(e)) and (n(e), e(n), w(e),
s(n)), and the possible three-way conflicts are (n(e), e(n), w(e), s(e)) and (n(e),
e(n), w(n), s(n)). For state “2b” with a different two-pair conflict pattern at cycle
k, the next cycle can only form the two-pair conflict (w(n), s(e), n(e), e(n)), and
no three-way conflict can exist. For state “2c”, the only two-pair conflict is (w(s),
s(e), n(e), e(s)), and the only three-way conflict is (w(s), s(e), n(s), e(s)). Our
analysis reveals that such discrepancies exist in other abstract states.

Table 1. History-dependent conflict examples.

State Cycle arb[0] arb[1] arb[2] arb[3]

2a k w(n) s(e) n(e) e(n)

k + 1 n(e) e(n) w(n, e, s) s(n, e, w)

2b k n(e) e(n) w(n) s(e)

k + 1 w(n) s(e) n(e, w, s) e(n, w, s)

2c k n(e) e(s) w(s) s(e)

k + 1 w(s) s(e) n(e, w, s) e(n, w, s)

The four-abstract model is
refined based on an analy-
sis of all possible inputs into
the arbiter and their respec-
tive behaviors. The possible
inputs can be grouped into
thirteen behaviors which are
defined as states as shown in
Table 2. Each refined state is
conditioned on the number of
unserviced buffers at the end
of a cycle and where the flit’s destination points, specifically, buffer locations
(i.e., the id field) the destinations at the arbiter’s positions 0 and 1 point to.
This table shows predicates defining these refinement conditions. Notations have
been simplified as follows: dest i represents the front flit’s destination of the buffer
at index i of the arbiter array, i.e., arb[i].dest.

To calculate transition probabilities among the thirteen abstract states, we
modify the concrete model to include two variables: sprev and s. For every clock
cycle, sprev first updates to s and then all predicates in Table 2 are evaluated and
s is updated accordingly. Assuming the model starts with no conflicts (sprev = 0),
we observe that for up to two transitions, which corresponds to two clock cycles,
every one of the thirteen states in Table 2 is reachable. Transition probability
emanating from state 0 to an abstract state, say 1b, is calculated by summarizing
all probabilities of transitioning from the concrete state 0, which is the same as
the abstract state 0, to all concrete states that satisfy the predicate for state
1b, which is unserviced = 1 ∧ dest0 = id2. For this calculation, we added to the
model a variable clk that is incremented with every clock cycle. The calculation
is then performed by first using mcsta to query for

P=?(� (clk = 2 ∧ sprev = 0 ∧ s = 2)),

i.e., the probability to eventually (�) reach a state in the model after two clock
cycles where sprev = 0 and the new abstract state is s = 2, i.e., 1b in Table 2. We
then divide the result by the sum of probabilities out of state 0. Other transition
probabilities are calculated similarly. Another observation is that the next states
and transition probabilities from states 2b and 2c are identical, so we combine
them into state 2b to form a twelve-state abstract model as shown in Table 3.
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Table 2. Refined abstract model with thirteen states.

State Predicate

0 unserviced = 0

1a unserviced = 1 ∧ dest0 = id1

1b unserviced = 1 ∧ dest0 = id2

1c unserviced = 1 ∧ dest0 = id3

2a unserviced = 2 ∧ dest0 �= dest1 ∧ dest0 = id1 ∧ dest1 = id0

2b unserviced = 2 ∧ dest0 �= dest1 ∧ dest0 = id2 ∧ dest1 = id3

2c unserviced = 2 ∧ dest0 �= dest1 ∧ dest0 = id3 ∧ dest1 = id2

2d unserviced = 2 ∧ dest0 �= dest1 ∧ dest0 = id1 ∧ dest1 = id2

2e unserviced = 2 ∧ dest0 �= dest1 ∧ dest0 = id1 ∧ dest1 = id3

2f unserviced = 2 ∧ dest0 �= dest1 ∧ dest0 = id2 ∧ dest1 = id0

2g unserviced = 2 ∧ dest0 �= dest1 ∧ dest0 = id3 ∧ dest1 = id0

3a unserviced = 2 ∧ dest0 = dest1 = id2

3b unserviced = 2 ∧ dest0 = dest1 = id3

7 Including Idle Cycles in the Abstract Model

The twelve-state abstract model shown in Table 3 assumes that a flit is injected
to all buffers in every cycle. This is, however, not quite realistic as it is common
that one or more buffers do not receive an incoming flit. Such situations change
the conflict patterns and hence the arbiter’s resolution behavior. From [2], we
know that the cycle-wise and intermittent PSN is a direct result of a signif-
icant change of buffers served. Precisely three or four buffers are serviced by
the arbiter between two consecutive clock cycles. Counting these changes allows
us to accurately reflect the state of the local noise and hence PSN in the NoC
routers. This implies that change from serving zero to four buffers and vice
versa needs to be modeled. This section describes a modified abstract model to
include idle cycles for each buffer. Using similar method as described in Sect. 6,
refinement is applied to the twelve-state abstract model to account for scenarios
with three, two, one, and none serviced buffers in one cycle. This leads to the
twenty-five-state abstract model provided in Table 4. The state notation in this
table represents the conflict scenario and the number of buffers with incoming
flits in a given state. For example state 2b

4 represents the state with the conflict
scenario 2b in Table 2 in which four buffers have incoming flits. Note that this
refinement does not change the fact that probabilities in this table can be calcu-
lated by checking its underlying concrete model for two clock cycles as described
in Sect. 6.
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Table 3. Twelve-state abstract model with transition probabilities.

0 1a 1b 1c 2a 2b 2d 2e 2f 2g 3a 3b

0 1
9

4
27

16
81

20
81

1
27

3
81

2
81

1
81

1
81

2
81

1
27

1
9

1a 1
9

4
27

8
27

4
27

0 2
27

0 1
27

0 1
27

1
27

1
9

1b 1
9

4
27

2
9

2
9

1
27

1
27

0 0 1
27

1
27

1
27

1
9

1c 1
9

4
27

2
27

10
27

2
27

0 2
27

0 1
81

0 1
27

1
9

2a 1
9

2
9

2
9

0 0 2
9

0 0 0 0 1
9

1
9

2b 2
9

1
9

1
9

4
9

1
9

0 0 0 0 0 0 0

2d 1
9

1
9

1
3

2
9

0 0 0 0 0 1
9

0 1
9

2e 1
9

1
9

1
3

2
9

0 0 0 1
9

0 0 0 1
9

2f 1
9

1
3

1
9

2
9

0 0 0 0 1
9

0 1
9

0

2g 1
9

1
3

1
9

2
9

0 0 1
9

0 0 0 1
9

0

3a 0 0 4
9

0 0 1
9

0 0 0 1
9

0 1
3

3b 0 0 0 4
9

1
9

0 1
9

0 0 0 0 1
3

8 Verification Results

All experiments have been performed on the abstract central router models,
which are constructed as DTMC models using the high-level compositional mod-
eling language Modest. The explicit-state probabilistic model checker mcsta
in the Modest Toolset has been used for verification. Properties (1) and (2)
are bounded probabilistic reachability queries for the transient behavior up to
N clock cycles, with N being a rather large number. Implementing the cycle
counter clk as a state variable, which we did for the computations in Sect. 6
with bound 2, would unfold the model over the cycle count up to the (now large)
bound, exacerbating the state space explosion problem. To avoid this problem
now, we made clk a transient variable that is set to 1 when moving from one
clock cycle to the next and to 0 otherwise. A transient variable is only “live”
during the assignments executed when taking a transition; it is not part of the
state vector. In this way, clock cycle progress becomes a reward annotation to
certain transitions instead of being encoded in the structure of an (unfolded)
state space. We can then formalize properties (1) and (2) as reward-bounded
reachability queries:

(1) P=?(�[accumulate(clk)�N ] optimalRuns � k · N)

(2) P=?(�[accumulate(clk)�N ] noiseRuns � k · N)

We use the state elimination method [12] implemented in mcsta for the reward-
bounded property checking reported in this section. For our experiments, it
provides a significant scalability and efficiency improvement over the classic
unfolding-based approaches, but also over the default modified-iteration method,
both of which we attempted to use in earlier versions of this model. In this way,
our experience mirrors the performance behaviour observed earlier in [12,16,18].
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Table 4. Twenty-five-state abstract model with transition probabilities.

Results are generated on a desktop computer with an AMD Ryzen Thread-
ripper 12-Core 3.5 GHz Processor and 132 GB memory, running Ubuntu Linux.
One core is used at any time. All results presented in this section assume uni-
form random packet arrival at all four buffers. Verification results for property
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Fig. 3. The two probabilistic properties denote high activity (Fig. 3a) and high change
in activity (Fig. 3b) in the central router of a mesh NoC, experiencing a uniform-random
traffic (Sect. 6). The steep curves reveal a high probability of a heavy congestion, as
well as, a sudden and large change in the traffic, which can cause a high PSN in the
NoC power delivery network.
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(1) are presented for the twelve-state abstract model described in Sect. 6, and
it is expected that these results are over-approximations for the abstract model
with idle cycles in Sect. 7. For checking property (2), the latter model is used.

Figure 3a shows the cumulative probability for property (1) with several lower
bounds. The formal model used for checking this property does not consider any
empty buffer, in order to demonstrate the worst case scenario. At the architecture
level, a high activity denotes the reception of three or more flits in one cycle.
The steep slope of the curves indicates that the central router of a mesh NoC is
likely to experience a heavy surge of the traffic load at a relatively short span
of time. Such high load of traffic can engender a local hostspot in the network,
which in turn, can lead to a large peak PSN.

Figure 3b depicts the cumulative probability for property (2) with several
lower bounds. In this case, we consider empty buffers in the formal model of the
central router. A high probability of such transitions within a short time span,
as seen in this figure, denotes a bursty nature of the traffic encountered by the
central router. As a result, there is a large inductive noise in the power delivery
network of the NoC. Collectively, these two properties are pivotal in determining
the minimum voltage guardband for the central router, because a more conser-
vative guardband marks a power inefficient design, while a smaller one will be
prone to intermittent timing errors in the NoC, aggravating its reliability.

Table 5 shows the peak memory usage and the total run-time reported by
the mcsta tool. Model checking property (2) requires significantly more memory
than that for property (1). This is due to the increased complexity of the twenty-
five-state abstract model depicting idle cycles over the twelve-state model, as well
as, that checking property (2) requires more cycles to converge.

Table 5. Performance results.

Property k · N Peak memory usage (MB) Total run-time (s)

(1) 50 795 6.6

100 1393 14.5

150 2293 24.5

200 2965 36.3

(2) 50 858 20.7

100 2993 92.2

150 6302 249

200 11522 528.8

9 Conclusion

This paper presents a probabilistic model checking method for the reliability
analysis for a generic central router of a large mesh NoC design under uni-
form random traffic loads. To combat the notorious state explosion problem,
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abstract models have been derived based on critical observations of conflict res-
olution using the Round Robin scheduling mechanism. Probabilistic properties
are derived by identifying the frequency of abrupt changes in router activities,
which causes the inductive noise of PSN. To enable efficient checking, the clock
cycle counter variable is set as transient and is treated as a reward annota-
tion only to certain transitions, instead of part of the state space. Verification
results reveal crucial PSN behaviors that allow the minimal voltage guardband
to be determined for the central router, providing insights in NoC designs with
improved reliability.

For future work, we plan to extend the central router model with increased
number of channels and variants of Round Robin scheduling mechanisms. Incor-
porating routing protocols in the router model is also important, as it enables us
to model a full NoC and better evaluate its reliability with respect to PSN. Addi-
tionally, we plan to investigate probabilistic predicate abstraction techniques to
automate the abstraction and refinement of larger NoC models, and evaluate
how they may affect the verification of PSN-related properties.
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Abstract. In this paper, we introduce an interactive simulator for pro-
grams in the form of LLVM bitcode. The main features of the simulator
include precise control over thread scheduling, automatic checkpoints
and reverse stepping, support for source-level information about func-
tions and variables in C and C++ programs and structured heap visu-
alisation. Additionally, the simulator is compatible with DiVM (DIVINE
VM) hypercalls, which makes it possible to load, simulate and analyse
counterexamples from an existing model checker.

1 Introduction

Verification tools are increasingly adopting LLVM bitcode as their input language
of choice. A frequent reason for implementing LLVM-based model checkers (and
other analysis tools) is that they can leverage existing compiler front ends, CLang
in particular. This in turn enables those model checkers to work with C and even
C++ programs without dealing with their irregularity and complexity. Clearly,
this tremendously improves the usefulness of any such tool, since C and C++ are
widespread implementation languages, and implementation-level model checking
is naturally desirable for many reasons.

An additional benefit of the standardisation around the LLVM IR [11] (inter-
mediate representation) is that an ecosystem of tools is emerging, where those
tools can cooperate through the common input format. Analysis and model
checking tools can be used to ascertain correctness of the program with respect
to a specification; however, when they find that there is a violation, printing
“property violated” is rarely enough. For the result to be genuinely useful, it
must somehow convey how the specification is violated to the user, so they can
analyse the problem and fix their program. One option is to print a counterexam-
ple trace, which describes the violating execution of the program. In traditional
model checkers, for example, it is often sufficient to provide a textual description
of the entire execution, since the input model is usually small and its states and
transitions can be described compactly.

More advanced tools, however, provide a simulator, an interactive tool
for stepping through the counterexample, where the user can highlight and
investigate particular sections of the counterexample in more detail, and fast-
forward through other, uninteresting parts. A simulator is often also useful as
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an exploratory tool: the behaviour of the system can be explored by the user,
manually navigating through its state space and inspecting variables along the
way.

In case of C and C++ programs, it is vitally important that counterexamples
can be inspected interactively, since the state of a program is a very complicated
structure, often comprising hundreds of kilobytes of structured data. Moreover,
violating executions can be quite long, easily hundreds or thousands of distinct
states, with non-trivial relationships.

The main contribution of this paper is a reusable simulator for C and C++
code. Since it builds on the LLVM intermediate language, it can be used by
multiple different tools which produce counterexamples or otherwise work with
LLVM bitcode, and is easily adapted to new high-level languages with LLVM
toolchains (like Objective C or Rust). To the best of our knowledge, this work is
unique in the sense that no other simulator which would handle C++ programs is
available, and simulators which handle C code typically miss important features.
Moreover, the simulator is also reusable: while originating from the DIVINE tool
set, it can be used standalone, or possibly in combination with other analysis
and verification tools.

From a more theoretical standpoint, the debug graph (described in Sect. 3.4)
represents a new approach to reconciling low-level data as it exists during pro-
gram runtime with the high-level structure declared in the source code. Another
new idea is to build a simulator based on compiled code (as opposed to inter-
preting the source code directly) and leveraging existing debugger-focused infras-
tructure (debug metadata in particular), making the implementation especially
simple and compact.

The rest of this paper is structured as follows: in Sect. 2 we discuss related
work and compare our approach to existing tools. Section 3 describes the LLVM
bitcode as it is used by the simulator, how the simulator represents the program
state and also introduces the debug graph. The focus of Sect. 4 is presentation of
the data aspects of a program, while Sect. 5 is concerned with the program’s state
space. Section 6 mentions some of the more important implementation details.
Section 7 wraps the paper up. Additional resources (mainly evaluation-related)
are available online1.

2 Related Work

It is a well-established fact that isolating some bad behaviour of a program in a
test is, in itself, not sufficient to easily explain the cause of the problem [1]. The
situation is similar in (linear-time) model checking, where a counterexample
trace can often be extracted easily enough, but it may not contain sufficient
detail, or conversely, may swamp the user in large amount of irrelevant data [15].
The problem also goes beyond the software realm, as witnessed in, for instance,
verification of MATLAB Simulink designs [3].

1 https://divine.fi.muni.cz/2019/sim/.

https://divine.fi.muni.cz/2019/sim/
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There are basically two orthogonal approaches that attempt to resolve these
problems. One is to locate, or at least narrow down, the error automatically, in
the hopes that from such a narrowed-down trace, the user will be able to under-
stand the problem by inspection of the source code. In the domain of software
verification, this approach is pursued by many tools: counterexamples for viola-
tion of temporal properties, generated by the software model checker SLAM [2],
for instance, can be analysed and reduced to only cover a small number of source
lines, in which the root cause of the error is most likely to lie [1]. An approach
to succinctly describe assertion violations (violations of safety properties), based
on automated dependency analysis, has also been proposed [4]. Finally, coun-
terexamples from CBMC can be post-processed, in an approach similar to those
mentioned above, with a tool called explain [6], in this case based on distance
metrics.

Unfortunately, even if the problem area is only a few lines of source code,
it can be very hard to understand the dynamic behaviour during the erroneous
execution. The problem gets much worse when the program in question is par-
allel, because reasoning about the behaviour of such programs is much harder
than it is in the sequential case.

To make understanding and fixing problems in programs (or complex systems
in general) easier, many formal verification tools come equipped with a simulator.
For instance the UPPAAL tool for analysis of real-time systems provides an
integrated graphical simulator [5]. Another example of a formal analysis tool with
a graphical simulator would be LTSA [9], based on labelled transition systems
as its modelling formalism.

Like many verification tools, the valgrind [10] run-time program analyser
is primarily non-interactive, but it provides an interface to allow interactive
exploration of program state upon encountering a problem, based on gdb [13].

Our simulator is based on DiVM [12], an extension of the LLVM language that
allows verification and analysis of a wider class of programs (a more detailed
description of the DiVM extensions is given in Sect. 3.1). Since pure LLVM is
retained as a subset of the DiVM language, the simulator can also transparently
work with pure LLVM bitcode.

Besides its relationship to various simulators for modelling and design lan-
guages, a simulator for LLVM bitcode is, through its application to code written
in standard programming languages like C, related to standard symbolic debug-
gers. A ubiquitous example on POSIX systems is gdb, the GNU debugger [13].
Unlike a simulator, which interprets the program, a debugger instead attaches to
a standard process executing in its native environment. A more recent example
would be lldb [8], which works in essentially the same way, but builds on LLVM
components.

2.1 Comparison to Symbolic Debuggers

As outlined above, simulators and debuggers substantially differ in their mode
of operation and this leads to very different overall trade-offs. For example, a
simulator is much more resilient to memory corruption than a debugger, because
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the latter has only limited control over the process it is attached to. Both types
of tools rely on understanding the execution stack of the program; however, if the
program corrupts its execution stack, a debugger must rely on imprecise heuris-
tics to detect this fact and risks providing wrong and possibly misleading infor-
mation to the user. The simulator can, on the other hand, quite easily prevent
such corruption from happening, since it simulates the program at instruction
level, and can enforce much stricter memory protections.

On the other hand, the situation is reversed when the program interacts with
its surroundings through the operating system. In a debugger, such communi-
cation comes about transparently from the fact that the program is a standard
process in the operating system and has all the standard facilities at its disposal.
In a simulator, communication with the operating system must be specifically
relayed and due to imperfections in this translation, some programs may misbe-
have in the simulation.

Finally, a simulator has a substantial advantage in two additional areas: first,
a simulator can very precisely and comfortably control thread interleaving. This
allows analysis of subtle timing-dependent issues in the program. Second, since a
simulator has a complete representation of the program’s state under its control,
it can easily move backwards in time or compare variable values from different
points in the execution history. While both scheduler locking and reversible
debugging exist to a certain degree in traditional debuggers [14], those features
are very hard to implement and usually quite limited.

3 LLVM Bitcode

The LLVM bitcode (or intermediate representation) [11] is an assembly-like lan-
guage primarily aimed at optimisation and analysis. The idea is that LLVM-based
analysis and optimisation code can be shared by many different compilers: a com-
piler front end builds simple LLVM IR corresponding to its input and delegates
all further optimisation and native code generation to a common back end. This
architecture is quite common in other compilers: as an example, GCC contains
a number of different front ends that share infrastructure and code generation.
The major innovation of LLVM is that the language on which all the common
middle and back end code operates is exposed and available to 3rd-party tools.
It is also quite well documented and LLVM provides stand-alone tools to work
with both bitcode and textual form of this intermediate representation.

From a language viewpoint, LLVM IR is in a partial SSA form (single static
assignment) with explicit basic blocks. Each basic block is made up of instruc-
tions, the last of which is a terminator. The terminator instruction encodes
relationships between basic blocks, which form an explicit control flow graph.
An example of a terminator instruction would be a conditional or an uncondi-
tional branch or a ret. Such instructions either transfer control to another basic
block of the same function or stop execution of the function altogether.

Besides explicit control flow, LLVM also strives to make much of the data
flow explicit, taking advantage of partial SSA for this reason. It is, in general,
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impossible to convert entire programs to a full SSA form; however, especially
within a single function, it is possible to convert a significant portion of the code.
The SSA-form values are called registers in LLVM and only a few instructions
can “lift” values from memory into registers and put them back again (most
importantly load and store, respectively, plus a handful of atomic memory
access instructions).

From the point of view of a simulator, memory and registers are somewhat
distinct entities, both of which can hold values. Memory is completely unstruc-
tured at the LLVM level, the only assumption is that it is byte-addressed (endi-
anity of multi-byte values is configurable, but uniform). Traditional C stack is,
however, not required. Instead, all “local” memory is obtained via a special
instruction, alloca, and treated like any other memory (memory obtained by
alloca is assumed to be freed automatically when the function that requested
the memory exits, via ret or any other way, e.g. due to stack unwinding dur-
ing an exception propagation). Therefore, a C-style stack is a legitimate way to
implement alloca, but not the most convenient in a simulator (for more details
on how memory is handled in our simulator, see Sect. 3.2).

3.1 Verification Extensions

Unfortunately, LLVM bitcode alone is not sufficiently expressive to describe real
programs: most importantly, it is not possible to encode interaction with the
operating system into LLVM instructions. When LLVM is used as an interme-
diate step in a compiler, the lowest level of the user side of the system call
mechanism is usually provided as an external, platform-specific function with
a standard C calling convention. This function is usually implemented in the
platform’s assembly language. The system call interface, in turn, serves as a
gateway between the program and the operating system, unlocking OS-specific
functionality to the program. An important point is that the gateway function
itself cannot be implemented in portable LLVM. Moreover, while large portions
of the kernel are often implemented in C or a similar portable language, they
are also tightly coupled to the underlying hardware platform.

The language of “real” programs is, therefore, LLVM enriched with system
calls, which are provided by the operating system kernel. For verification pur-
poses, however, this language is quite unsuitable: the list of system calls is long
(well over 100 functions on many systems) and exposes implementation details
of the particular kernel. Moreover, re-implementing a complete operating sys-
tem inside every LLVM analysis tool is wasteful. To reduce this problem, a much
smaller set of requisite primitives was proposed in [12] (henceforth, we will refer
to this enriched language as DiVM). Since for model checking and simulation
purposes, the program needs to be isolated from the outside world, we can skip
most of the complexity of an operating system kernel – communication with
hardware in particular. Therefore, it is possible to implement a small, isolated
operating system in the DiVM language alone. One such operating system is
DiOS – the core OS is about 1500 lines of C++, with additional 5000 lines of
code providing POSIX-compatible file system and socket interfaces.



132 P. Ročkai and J. Barnat

Thanks to its support for the DiVM language, our simulator can transparently
load programs which are linked to DiOS and its libc implementation. Since a
program compiled into the DiVM language is fully isolated from any environment
effects, it can be simulated just like a pure LLVM program could be.

Finally, while the simulator uses DiVM to evaluate program instructions and
hence relies on correctness of the implementation, errors in DiOS have a smaller
impact. The DiOS code is executed in the virtual machine, and is subject to
its error checking: therefore, in this case, the most likely outcome is by far a
spurious error which can be analysed using the simulator itself.

3.2 Program Memory

Internally, the simulator uses DiVM to evaluate LLVM bitcode, and therefore,
how memory is represented in the simulator is directly inherited from DiVM.
This means that we can take advantage of the fact that DiVM tracks each object
stored in memory separately, and also keeps track of relationships (pointers)
between such objects.2 This way, the simulator precisely knows which words
stored in memory are pointers and the exact bounds of each object in memory.

Moreover, DiVM can efficiently store multiple snapshots of the entire address
space of the program, both in terms of space (most of the actual storage is
shared between such snapshots) and time (taking a snapshot needs time roughly
proportional to the total size of modified objects since the last snapshot). Once a
snapshot is taken, it is preserved unmodified, regardless of the future behaviour
of the program (that is, it becomes persistent).
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(slot)

(slot)

f()

caller

(slot)

(slot)

main()

caller = 0

(slot)

globals

(slot)

(slot)

...

Fig. 1. Execution stack and global variables.

The execution stack of an LLVM program consists of activation frames, one
for each active procedure call. In DiVM, activation frames are separate memory
objects. Moreover, each memory-stored local variable (i.e. those represented by
alloca instructions) is again represented by a distinct memory object. Each
frame object contains 2 pointers in its header (one points at the currently exe-
cuting instruction, the other to the parent frame). Besides the header, the rest of
the object is split into slots, where each slot corresponds to a single LLVM regis-
ter. An example stack structure is shown in Fig. 1. The correspondence between
slots and LLVM registers is maintained by DiVM and is available to the simulator.
2 How this is achieved is described in more detail in [12].
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Together, those features of DiVM make it very easy to access the program
state in a highly structured fashion. When compared to a traditional debugger,
which must work with nearly unstructured memory space, the information our
simulator can provide to the user is simultaneously easier to obtain and more
detailed and reliable. Finally, since DiVM strictly enforces object boundaries,
both the control stack and heap structure in our simulator are very well protected
from overflows and other memory corruption bugs in the program. Therefore,
the simulated program cannot accidentally destroy information which is vital for
the functioning of the simulator, like all too often happens in debuggers.

3.3 Relating Bitcode to Source Code

In native code debuggers, the relationship between the binary and the original
source code is often not quite obvious. For this reason, in addition to the exe-
cutable binary, the compiler emits metadata which describe these relationships.
For instance, it attaches a source code location (filename and line number) to
each machine instruction. This way, when the debugger executes an instruction,
it can display the relevant piece of source code. Likewise, it can analyse the
execution stack to discover how the currently executing function was called, and
display a backtrace consisting not only of function names, but also source code
lines. This is important whenever a given function contains two similar calls.

Fig. 2. An example C struct type and the corresponding representations: binary and
structured (the latter is only possible with debug metadata).

The situation is analogous in LLVM-based tools. Compiler front ends are
therefore encouraged to generate debuginfo metadata (in a form that reflects the
structure of the DWARF debug information format, which is widely used by
native source-level debuggers). Besides the vitally important source code loca-
tions, the metadata describe local and global variables and their types (including
user defined types, like struct and union types in C). This in turn enables the
debugger to display the data in a structured way, resembling the structure which
exists in the source code. For example, struct types in C have named fields –
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the debugger can use the debug metadata to discover the relationship between
offsets in the binary representation of the value with the source-level field names
(an example is shown in Fig. 2).

3.4 Debug Graph

The memory graph maintained by DiVM is a good basis for presenting the pro-
gram state to the user, but on its own is insufficient: the only type information it
contains is whether a particular piece of memory holds a pointer or not. There-
fore, we overlay another graph structure on top of the memory (heap) graph,
with richer type information based on debuginfo metadata (more details on how
this graph is computed will be presented in Sect. 4). The nodes in the debug
graph may be further structured: they have attributes (atomic properties, such
as an integer or floating point value), components and relations. While both com-
ponents and relations are again nodes of the graph, they crucially differ in how
they relate to the underlying memory: components of a debug node represent
the same memory as their parent node; for example, a debug node which con-
sists of a struct C type will contain a component for each field of the struct.
In contrast, relations of a debug node correspond to the pointers embedded in
the memory it represents (it may, however, point back at the same object it is
embedded in). An example debug graph is shown in Fig. 3.

Since memory objects are persistent in DiVM (cf. Sect. 3.2), so is the debug
graph in our simulator. This means that objects (debug nodes) are immutable,
i.e. they always come from a snapshot of the memory of the program. Since
it would be too expensive to make a copy of the entire memory after every
instruction, such snapshots are implemented via copy-on-write semantics.

4 Working with Data

Providing facilities for inspecting data of the program is one of the main func-
tions of an interactive debugger or a simulator. This data can be presented in
different forms and from different starting points. In our simulator, heap memory
is structured explicitly as a graph, and we can leverage this to greatly improve
presentation of data. An example of such a graph is shown in Fig. 3. Each node of
the graph corresponds to a single in-memory object, which can have (and often
has) additional internal structure. The internal structure reflects the C/C++
type which is deduced from the types of pointers pointing at this particular
node.

4.1 Starting Points

For certain memory objects, the type information is directly encoded in the
metadata generated by the compiler and does not need to be inferred via point-
ers. Such objects are the starting point of the type assignment process by which
the debug graph is obtained.
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Fig. 3. A debug graph of a simple program. A single memory object may contain
multiple component debug nodes which are rendered textually. The arrows correspond
to relations. The depicted graph was obtained directly from the simulator; the only
change was that descriptions of some of the nodes were elided for presentation purposes.

In principle, there are 2 types of such objects: activation frames and globals.
Both consist of slots which in turn contain values. Values in those slots either
correspond to values of (local or global) source-level variables, or contain pointers
to variables held elsewhere in memory. In both cases, a component debug node is
created for each slot, based on the debug information generated by the compiler.
These components then form a basis for presenting the data to the user.

Additionally, in DiVM, there is always a single distinguished root object in
the heap, from which the entire heap is reachable, including the stacks of all
threads and any kernel data structures. The address and the C type of this root
object is also available to the simulator, and is mainly used to discover all the
nodes of the 2 abovementioned types.

4.2 Typing the Heap

In all cases, the type information available for the starting points is used to
derive type information for the portion of the heap reachable from that starting
point. For frames, we can deduce which function the frame belongs to, and obtain
information about the frame layout used by that function. That is, for each LLVM
register, we obtain a corresponding C type, which is usually either a primitive
type or a pointer. If the type is a pointer and it is not null or otherwise invalid,
there is an edge in the graph of the heap corresponding to this pointer. The
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object at the other end of the edge is then assigned the base type of the pointer,
that is, type of a value obtained by dereferencing the pointer. This procedure
is then repeated recursively until all objects where type information exists are
assigned a type.

Of course, there is a potential for ambiguity: not all C/C++ programs are
consistently typed, therefore, multiple edges pointing at a single object can each
carry a different type. In this case, we collect all the applicable types and con-
struct a synthetic union type, which is assigned to any such ambiguous debug
node. This ambiguity might propagate downstream from an affected node, but
for most programs, this does not appear to pose a significant problem.

4.3 Relating Data and Control

The control flow of a C program is reflected in the execution stack and is a part of
the program’s data. C and C++ are lexically scoped languages: which variables
are currently in scope depends on which function (and possibly which block in
that function) is currently executing. This is achieved by making local variables
part of the execution stack: when a function is entered, an activation frame
(or activation record) is pushed onto the execution stack. In a native execution
environment, the frame has space for CPU register spills and for local variables
which have their address taken. In DiVM, there are no general-purpose registers
as such; instead, LLVM registers are stored inside the frame itself. Any address-
taken variables are stored as separate objects (and their address is stored in a
register).

Additionally, in a typical implementation of C, the activation frame contains
a return address, which is a pointer to the call instruction that caused the
current function to execute. In DiVM, the frame instead contains a program
counter (in a real CPU, the program counter, also known as instruction pointer,
is held in a register). The program counter tells us which function, and which
instruction within that function, is currently being executed. Each instruction
can in turn be tied, via debug metadata (cf. Sect. 3.3), to a particular source
code location (a source file and a line number).

As an example of how this is used in the simulator, if the user requests to list
the source code of the currently executed function, the simulator examines the
current active activation frame to find the current value of the program counter.
Then it proceeds to read the corresponding debug metadata to obtain the source
code file name, reads the source file, finds the line corresponding to the program
counter and prints the surrounding function (example output is shown in Fig. 4).

5 Navigating the State Space

If we treat the data of a program as a spatial dimension, it is natural, then,
to treat the state space – the behaviour of program as it executes – as a time
dimension. Since the state space is a graph (cf. Fig. 5), the predecessors of a given
state (the path from the initial state to the “current” state – the one that is being
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Fig. 4. An example interaction: listing source code.

examined) constitute the past of the computation. The successors, on the other
hand, correspond to possible futures of the computation (since the behaviour of
the program is often non-deterministic3, there is more than one possible future).
In this correspondence of the state-space graph to temporal behaviour of the
program, cycles in the state space clearly correspond to behaviours that go on
forever.

Fig. 5. An example C program along with its state space.

In a standard debugger, time can only flow in one direction, and which of the
potential futures is realised can be influenced, but not controlled. In a simulator,
however, it is possible to both go backwards in time (rewind the program state
to some past configuration) and to pick exactly which future should be explored.
Likewise, it is entirely possible to go back in time and select a different future to
explore. These capabilities are derived mainly from the persistent and compact
memory representation (see Sect. 3.2).

5.1 Stepping Forward

On the other hand, the state space as explored by model checkers is often too
coarse to follow the computation in detail. The states typically correspond to
3 The behaviour of the program may depend on external factors, such as scheduling
choices, user inputs, asynchronous events and so on.
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locations where threads interleave or where cycles can potentially form. At this
level, the edges in the state space correspond, approximately, to atomic actions
in the program. Even in heavily parallel programs, though, such atomic actions
will span many instructions and possibly multiple source lines. A simulator which
works at this level4 can only present very coarse computation steps to the user
and not seeing the intermediate state of the program can prevent users from
relating effects to their causes. If the simulator operates with fixed computation
steps, the opposite problem can also happen: the user must step through a large
number of irrelevant program configurations [7], again frustrating the debugging
effort.

In contrast, debuggers give the user very precise control over the forward
execution of the program, down to stepping one machine instruction at a time.
However, they also make it very easy to fast forward through thousands of lines
of code, stopping when a predetermined condition is met, most often a particular
source code line is executed (this feature is known as a breakpoint).

Building the simulator on top of DiVM, however, gives us execution control at
the level of individual LLVM instructions, analogous to a debugger. Building on
the instruction stepping mechanism, the simulator also provides all the control
functionality common in debuggers: source-line stepping – both into and over
function calls – and various breakpoint types (on a source line or a on a function
entry).

5.2 Going Back

In general, it is impossible to execute individual instructions backwards. How-
ever, if execution is perfectly repeatable (as it is in a simulator), we can reach
any earlier configuration of the program by replaying the current execution from
the start and stopping right before the instruction of interest executes.

Additionally, the simulator stores intermediate states (automatically at con-
venient locations, or at a user request). It is then possible to go back to any such
stored state and continue execution from that point. This can make the above-
mentioned process considerably more efficient: it is enough to replay execution
from the most recent stored state that lies on the current execution path.

5.3 Inspecting the Stack

As explained in Sect. 4.3, the control flow of a C program (or, more generally, any
LLVM program) is tracked by a simple data structure stored in memory along
with other data. This data structure often represents the best means for a user
to locate themselves within the execution of a program. A so-called backtrace
(or stack trace) is a fundamental program analysis tool. A backtrace lists each

4 This is often the case in verification-centric tools, partly because it is a simple imple-
mentation strategy that builds on the same primitives as the verification tool itself.
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Fig. 6. Left: new states are discovered during execution of a program. Right: displaying
a backtrace.

activation record in the (reverse) order of activation, and constitutes a descrip-
tion of a location in the computation of the program5 (an example is shown in
Fig. 6).

5.4 Thread Interleaving

As mentioned in Sect. 2.1, a simulator can precisely control thread interleaving:
the underlying virtual machine provides means to switch threads at all relevant
points. However, many instruction interleavings have equivalent effects, and for
this reason, allowing threads to be switched at arbitrary points would be waste-
ful. For this reason, DiVM explicitly marks points in the instruction stream where
threads may be switched, and this behaviour is carried over to the simulator.
These interrupt points are inserted in such a manner that all possible behaviours
of the program are retained in the state space. From a simulation point of view,
the downside is that the interleaving may not be the most intuitive, but the
reduction in the number of possible states generally outweighs this, since the
user needs to consider fewer runs. To further reduce the number of context
switches, a model checker may use some form of partial order reduction, but
this is not necessary in a simulator, since it doesn’t need to explore or store the
entire state space.

5.5 Simulating Counterexamples

There are two major tasks for the simulator in the context of program analysis
and verification. The first is to allow the user to explore program behaviour and
5 This description is necessarily incomplete, being much more concise than the real
representation of the program’s state. Including additional information improves
completeness, but compromises brevity, which is an important strength of this pre-
sentation format.
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read off details about its executions. The other is to support verification tools
which provide counterexamples to the user. As detailed in Sect. 2, it is a difficult
task to analyse problem reports from automated analysis and verification tools,
and a simulator can be very helpful in this regard. In case of model checkers,
the problem report contains an execution trace: a step-by-step description of the
problematic behaviour. For tools based on DiVM, this trace is simply a list of 2
types of information:

1. The non-deterministic choices made during the execution of the program
(internally, there is only one non-deterministic choice operator and all state-
space branching is caused by this operator, including thread interleaving).

2. Which of the interrupt points were used in the execution: the model checker
may be able to prove that a particular interrupt point is not required, and the
simulator needs this information to correctly reproduce the counterexample.

Since the program is isolated from the environment, this list completely and
unambiguously describes its entire execution history. When the model checker
discovers a problem in the program, it writes this list into a text file, which the
simulator can then load along with the program.

When the simulator loads a trace, it locks the outcomes of all non-
deterministic choices to follow the trace. In this mode, stepping through the
program (backwards or forwards) will simply follow the counterexample, unless
a particular choice is overridden by the user. In effect, the user will be guided
through the faulty behaviour of the program, and can easily move back and forth
to locate the cause of the problem (as opposed to the symptom, which is what
the model checker reports and may be distinct from the original cause).

6 Implementation

The ideas presented in this paper are implemented in the simulator component of
DIVINE 4, which is available as divine sim. All relevant source code is available
online6, under a permissive open source licence. Additional details about the
user interface and user interaction in particular can be found in the DIVINE 4
manual7.

6.1 User Interface

The data structures and most of the code are independent of a particular user
interface. In fact, two user interfaces exist for the simulator. The primary inter-
face is command-driven, similar to terminal-based symbolic debuggers like gdb.
The command-line parser and other interface-specific code entails approximately
800 lines of C++. Additionally, a third-party graphical interface is also avail-
able.8

6 https://divine.fi.muni.cz/download.html.
7 https://divine.fi.muni.cz/manual.html.
8 The source code of the graphical user interface is available from the supplementary
materials page at https://divine.fi.muni.cz/2019/sim/.

https://divine.fi.muni.cz/download.html
https://divine.fi.muni.cz/manual.html
https://divine.fi.muni.cz/2019/sim/
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The command interface uses meta variables extensively: each such meta vari-
able holds a reference to a single debug node (cf. Section 3.4). There are two basic
types of meta variables, static and dynamic.

Static variables always point to the same debug node, even as the program
executes and the content of its memory changes. Since objects in the DiVM
memory are persistent (not mutable), this type of variable simply points to such
a persistent, immutable object. Static meta variables have names starting with
a # sign, e.g. #start.

Dynamic variables reflect the current state of the program at any given time.
The debug nodes referenced by those variables are refreshed every time the
program mutates its memory, so that they always point to an up-to-date copy of
the persistent memory object (in other words, they always refer to the current
program state). These variables are prefixed with a $ sign, e.g. $frame.

6.2 Programming Language Support

Our simulator design is, to a large degree, independent of the particular high-
level language in which the simulated program was developed. The structure
of the program is described in the debug info metadata in sufficient detail to
provide precise and readable information to the user. This is in contrast to tools
like gdb and lldb [8] which mostly rely on evaluating C and/or C++ statements
for presenting the program data. That is, the user is allowed to type in a C or
C++ expression to be evaluated and the result displayed. The major downside
is that if the high-level language support is incomplete (like it is the case with
C++ support in gdb), it becomes much harder to obtain certain values without
resorting to very low-level means (printing bytes at particular addresses). Con-
sequently, the amount of implementation work required to support a particular
programming language in a debugger can be substantial.9

On the other hand, the debug graph implemented in our simulator (see
Sect. 3.4) is language-neutral, and hence the features derived from this graph
are independent of the original programming language. For this reason, we con-
sider the debug graph to be an important contribution: it can be built from
LLVM debug metadata in a comparatively small amount of code, but nonethe-
less provides a very convenient interface.

7 Conclusion

We have described a novel approach to interactive analysis of real, multi-
threaded C and C++ programs. The approach plays an important support role
in the wider context of automated verification and, in particular, model check-
ing of software. The simulator naturally supports the compact and universal
counterexample format used in DiVM. Compared to earlier tools, DIVINE 4

9 We speculate that this is the primary reason why interactive simulators (and debug-
gers in general) are so scarce.
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is substantially more useful in practice, also thanks to the new interactive
simulator.10
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Abstract. Correctness of autonomous driving systems is crucial as
incorrect behaviour may have catastrophic consequences. Many different
hardware and software components (e.g. sensing, decision making, actua-
tion, and control) interact to solve the autonomous driving task, leading
to a level of complexity that brings new challenges for the formal veri-
fication community. Though formal verification has been used to prove
correctness of software, there are significant challenges in transferring
such techniques to an agile software development process and to ensure
widespread industrial adoption. In the light of these challenges, the iden-
tification of appropriate formalisms, and consequently the right verifica-
tion tools, has significant impact on addressing them. In this paper, we
evaluate the application of different formal techniques from supervisory
control theory, model checking, and deductive verification to verify exist-
ing decision and control software (in development) for an autonomous
vehicle. We discuss how the verification objective differs with respect to
the choice of formalism and the level of formality that can be applied.
Insights from the case study show a need for multiple formal methods to
prove correctness, the difficulty to capture the right level of abstraction
to model and specify the formal properties for the verification objectives.

Keywords: Autonomous driving · Formal verification ·
Supervisory Control Theory · Model checking · Deductive verification

1 Introduction and Related Work

Significant progress has lately been made in the global automotive industry
towards autonomous vehicles. Autonomous vehicles can potentially increase road
safety and help reduce road traffic accidents. However, these are extremely com-
plex safety critical systems, and human safety depends on their correctness.
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The level of complexity in these systems is manually intractable. Factors like
size, structure (level of interaction and communication between different sys-
tems), environment (the physical world in the case of autonomous vehicles),
application domain etc., all contribute to the complexity. It is imperative that
all safety critical parts of an autonomous vehicle are veritably reliable and safe.
This is a challenge for the development process due to the complexity needed
to be managed not only in the design but also in the verification and validation
process.

An autonomous vehicle consists of many software and hardware components
interacting to solve different tasks, ranging from sensing, decision making, and
planning to actuation and control. The level of complexity involved may lead
to subtle but potentially dangerous bugs arising due to unforeseen edge cases,
errors in the software design and/or implementation. Coverage based testing is a
widely adopted work flow in many large scale software development companies,
but exhaustive testing is not tractable. Testing can never guarantee absence of
unintended consequences nor provide sufficient certification evidence in all cases.
Thus, there is a need for complementary methods to guarantee system safety,
and the use of formal methods for this is becoming prevalent [14,23].

The international standard ISO 26262 [16] provides guidance on a risk based
approach to manage, specify, develop, integrate, and verify safety critical systems
in road vehicles, including various references to formal specification and verifi-
cation. Adherence to the standard can potentially ensure that system quality
is maintained, and unreasonable residual risk is avoided. The standard is based
upon the V model of product development [13] and aims at achieving system
safety through safety measures implemented at various levels of the development
process. However, the standard addresses neither specific challenges inherent to
autonomous driving systems, nor the development of safety critical software in
an agile development work flow.

Thus, research is needed to solve challenges arising from such inter-
disciplinary problems, and these challenges are at-least two fold:

1. The application of formal verification to autonomous driving systems;
2. The transfer of formal verification techniques to large scale agile development

of safety critical software.

The first challenge is relatively new and is driven by recent developments in
autonomous systems. The second challenge relates to a long standing problem
of successful industrial adoption of formal techniques in software development.
However, the addition of agile methods to safety critical software development
has introduced new directions.

Formal methods—with varying levels of formalisation—can be applied at
various stages of the software development process. The choice of verification
method and the expressive power of the formalism used to specify the proper-
ties is an important choice that affects the conclusions drawn from the results
of the verification process. In this paper, we evaluate three formal verifica-
tion methods and their respective formalisms to verify existing software in an
autonomous driving vehicle: Supervisory Control Theory with Extended Finite
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State Machines [30,34], Model Checking with Temporal Logic of Actions [22],
Deductive Verification with contract based programming [4]. We discuss how the
verification objective differs in these methods and how multiple formal methods
can help tackle the challenges in industrial autonomous driving software devel-
opment.

A recent survey [23] on formal specification and verification of autonomous
robotic systems is a comprehensive study of current state-of-the art literature
focused on formal modelling, formal specification, and formal verification of
robotic systems. It gives a summary on the challenges faced, current methods
in tackling the challenges, and the limitations of existing methods. In [33], an
overview of the challenges in designing, specifying and verifying cyber-physical
systems, particularly semi-autonomous driving systems with human interaction
is provided. [12] presents a model checking framework for verifying autonomous
systems with a distinguished rational ‘agent’, confined to the system architecture
level with autonomous driving as one example scenario. There are prior research
focused on the development of autonomous systems in a generic sense [14,23],
surveys on tool based verification methods and tools [5,9], and the general indus-
trial adoption of formal methods technology [17,18,32,35].

In contrast to the literature cited above, our work is specific to autonomous
driving and we discuss a tightly coupled approach to tackle the two-fold challenge
with an industrial case study. The problem description is given in Sect. 2, followed
by separate sections for the three different verification approaches handled in this
paper. Section 6 discusses the evaluation and insights from the industrial case
study. The paper concludes with some remarks in Sect. 7.

2 Problem Description

Zenuity is one of the leading companies in the development of safe and reli-
able autonomous driving software. A significant part of the embedded software
developed at Zenuity is safety critical. In [36], formal verification was applied
to a small part of the autonomous driving software in development and non-
conformance to a few basic specifications was reported. The work presented in
this paper is a continuation of the work started in [36].

The focus of this paper is a sub-module of the decision making and planning
module, called Lateral State Manager (LSM ), which solves the sub-function of
managing modes during a lane change. A simplified overview of the system and
the interactions are shown in Fig. 1. The software module is implemented in
object-oriented MATLAB-code using several classes, each solving different sub-
problems. The interaction of the LSM class with a high level strategic planner
(Planner) and a low level planner (Path Planner) is also shown in Fig. 1.

The Planner in the lane change module is responsible for strategic decisions
and depending on the state of the vehicle, the Planner sends lane change requests
to the LSM, indicating the desired lane to drive in. These requests are in the form
of NoRequest, ChangeLeft, and ChangeRight. On receiving a request, the LSM
keeps track of the lane change process by managing the different modes possible
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Fig. 1. System overview and interactions.

during the process, and issues commands to the Path Planner. If a lane change
is requested, the Path Planner sends control signals to the low level controller
to perform a safe and efficient lane change. Due to the inherent nature of the
task to solve, the LSM implements a finite state machine. An example of a state
in the LSM state machine is State F inished that represents the completion of
the lane change process.

A call to LSM is issued at every execution cycle. During each call, the
LSM undergoes three distinct execution stages. First, all the inputs are updated
according to the function call arguments. Second, depending on the current state,
code is executed to decide whether the system transits to a new state or not.
This code also assigns outputs and persistent variables. Finally, if a transition is
performed, the last stage executes code corresponding to the new state entered
and assigns new values to the variables.

Of course, LSM is safety critical and its correctness is crucial. In our work,
we focus on verifying properties that affect the safety of the system, i.e. a vio-
lation of which will result in an unsafe behaviour. From a software development
perspective, these properties are typically stated as safety requirements. In [36],
one such requirement was modelled to check whether the LSM always performs
a lane change to the same lane as requested by the Planner. This requirement
was shown to be violated. Under certain circumstances the vehicle could indicate
to go to the right (say), and check for traffic on the right side, but when it was
clear to move into the right lane, the vehicle moved to the left. In our work, we
further strengthen the property to express definite unsafe behaviours and the
strengthened requirement is shown as Req.1 .

Req.1 : If changing lane, the lane change shall always be to the same side as
indicated.

In the following sections, we describe how formal verification is performed to
show correctness of the LSM and to identify the violation of Req.1 in the three
different methods discussed in this paper. While there are several tools and
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tool based methods that support formal verification [5,9], the choice of the tools
discussed in this paper is primarily motivated by prior case studies with Suprem-
ica [25,36], TLA+ [20,27], and SPARK [1,7] on software systems similar in nature
and scale to autonomous driving systems.

3 Supervisory Control Theory

The Supervisory Control Theory [31] (SCT) provides a framework for modelling,
synthesis, and verification of reactive control functions for discrete event systems
(DES), which are systems that occupy at each time instant a single state out
of its many possible ones, and transits to another state on the occurrence of an
event. Given a DES model of a system to control, the plant, and a specification1

of the desired controlled behaviour, the SCT provides means to synthesize a
supervisor that interacting with the plant in a closed-loop dynamically restricts
the event generation of the plant such that the specification is satisfied.

Though the original SCT focused on synthesising supervisors that by con-
struction fulfil the desired properties, a dual problem of interest here is to, given
a model of a plant and specification, verify whether the specification is fulfilled
or not. So, in this paper we use ideas from SCT to formally verify LSM , and do
not focus on the synthesis of supervisors.

A DES modelling formalism appropriate in our context is finite-state
machines extended with bounded discrete variables, with guards (logical expres-
sions) over the variables and actions that assign values to the variables on the
transitions [34].

Definition 1. An Extended Finite State Machine (EFSM) is a tuple E =
〈Σ,V, L,→, Li, Lm〉, where Σ is a finite set of events, V is a finite set of bounded
discrete variables, L is a finite set of locations, →⊆ L × Σ × G × A × L is the
conditional transition relation, where G and A are the respective sets of guards
and actions, Li ⊆ L is the set of initial locations, and Lm ⊆ L is the set of
marked locations.

The current state of such an Extended Finite State-Machine (EFSM) is given
by its current location together with the current values of the variables. Thus,
the state of an EFSM is not necessarily explicitly enumerated, but can be repre-
sented symbolically. This richer structure, though with equal expressive power,
shows good modelling potential compared to ordinary finite state machines. The

expression l0
σ:[g]a−−−→ l1 denotes a transition from location l0 to l1 labelled by

event σ ∈ Σ, and with guard g ∈ G and action a ∈ A. The transition is enabled
when g evaluates to T, and on its occurrence a updates some of the values of
the variables v ∈ V , thereby causing the EFSM to change location from l0 to l1.

EFSMs naturally interact through shared variables, but they can also interact
through shared events, which is modelled by synchronous composition, where
1 In the SCT framework, the specification is the property of interest to verify with

respect to the plant.
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common events occur simultaneously in all interacting EFSMs, or not at all,
while non-shared events occur independently. By this interaction mechanism a
supervisor restricts the event generation of the plant; if the supervisor has a
specific event in its alphabet but has no enabled transition labelled by that
event from its current state, then the closed-loop system cannot execute that
event in the current global state. We denote the synchronous composition of
two EFSMs E1 and E2 by E1 ‖ E2 [34]. As defined by [34], transitions labelled
by shared events but with mutually exclusive guards, or conflicting actions can
never occur.

3.1 Nonblocking Verification

Given a set of EFSMs E = {G1, . . . , Gn,K1, . . . ,Km} where the components
Gi (i = 1, . . . , n) represent the plant, and Kj (j = 1, . . . ,m) represent the
specification, we now want to determine whether the synchronous composition
over all the components can from any reachable state always reach some marked
state. The straightforward way to do this, called the monolithic approach, is
intractable for all but the smallest systems, due to the combinatorial state-space
explosion problem. Thus, more efficient approaches are needed.

One such approach that pushes the limit of what is tractable is the
abstraction-based compositional verification [26], which has shown remarkable
efficiency and manages to handle systems of industrially interesting sizes and
complexity. It can be shown [26] that when E is blocking, this is due to some
conflict between the components of E . Thus, the approach of [26] employs
conflict-preserving abstractions to iteratively remove redundancy and thus to
keep the abstracted system size manageable. However, this approach eventu-
ally ends up converting the resulting abstracted EFSM system into ordinary
finite-state machines, and then doing a monolithic verification of that. This then
requires an efficient explicit verification algorithm, such as the one presented
in [24].

3.2 Verification of LSM in Supremica

The software tool Supremica [25] implements the nonblocking verification algo-
rithms mentioned above (as well as various other algorithms, both for verification
and synthesis). To verify whether LSM presented in Sect. 2 fulfils Req.1 or not,
we transform Req.1 into an EFSM specification in such a way that with an
EFSM model of the LSM code as the plant, the system will be nonblocking if
and only if LSM fulfils Req.1 .

The manual modelling of the LSM as an EFSM, similar to [36], is illustrated
with a small excerpt from the actual MATLAB-code, shown in Listing 1.1 with
some variable and state names anonymized. Listing 1.1 is a piece of the code that
assigns variables and decides whether the system transits to a new state or not.
The EFSM corresponding to the code is shown in Fig. 2. As described in Sect. 2,
the LSM involves three execution stages during each call. The event update
in the EFSM signifies the first stage: update on the inputs. The event update
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Listing 1.1. An illustrative excerpt from LSM code used for verification.

1 f unc t i on duringStateA ( var , laneChangeRequest )
2

3 var . d i r e c t i o n = laneChangeRequest ;
4 var . x = f a l s e ;
5 var . y = f a l s e ;
6 i f laneChangeRequest != NoRequest
7 var . s t a t e = StateB ;
8 end
9

10 end

is followed by three transitions to model the possibility for the input variable
laneChangeRequest to take one of the three values equally likely. Modelling the
rest of the lines of code is straightforward. Note that the illustration provided is
a minimal example to explain the modelling approach undertaken to manually
model the LSM source code as an EFSM in Supremica.

update

e1: Request = NoRequest

e2: Request = ChangeRight

e3: Request = ChangeLeft

e4:
direction = Request

x = False
y = False

check:
[Request = NoRequest]

state = stateB

check: [Request = NoRequest]

Fig. 2. EFSM of Listing 1.1. Primed variables represent next-state values.

Req.1 modelled as an EFSM is shown in Fig. 3. The event enterFinished
denotes that the LSM has reached State Finished completing the lane change
process. The guard on the event checks for equality between two variables,
Output Indication and Output ChangeLane. When these variables differ, the
EFSM transits to a blocking state as shown in Fig. 3. Output Indication and
Output ChangeLane are modelled in a way such that they are set only during
specific modes during the lane change process and are reset only when the LSM
transits back to the initial state, when no lane change is requested. This makes it
possible for their use in expressing Req.1 . Modelling the LSM code in Suprem-
ica resulted in an EFSM with 76 locations, 113 events, 144 transitions, and 20
variables. The synchronisation of the LSM with the EFSM in Fig. 3 resulted in
a model with 1,522,117 reachable states, 113 events, and 2,164,607 transitions.
The nonblocking verification of the synchronised model took less than a second
and showed that a blocking state can indeed be reached. Supremica also provides
a 43 events long counter example that can be analysed in detail to understand
the underlying cause.
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×

enterFinished:
[Output Indication = Output ChangeLane]

enterFinished:
[Output Indication = Output ChangeLane]

Fig. 3. EFSM of the specification to model Req.1 . The blocking state is represented
with a cross inside.

4 Model Checking

Model checking [10,29] is a framework for verification of finite transition systems
using temporal logic [28] as a specification formalism. Several formalisms and
powerful model checking tools have emerged over the years [6,11].

Definition 2. A finite transition system is a tuple T = 〈S,Act,→, I, AP,L〉
where S is a finite set of states, Act is a finite set of actions, →⊆ S ×Act×S is
a transition relation, AP is a finite set of atomic propositions, and L : S → 2AP

is a labelling function.

Given a transition system T , and a temporal logic formula f , the model checking
problem is a decision procedure for T � f . If T � f , then the model checking
algorithm provides a counter example as an evidence for the violation, which
can then be used to analyse the issue and the ways to resolve it.

4.1 Temporal Logic of Actions

The Temporal Logic of Actions (TLA) is a logical formalism for specifying and
reasoning about concurrent systems [21]. TLA is a variant of temporal logic [28]
and uses the notion of states and actions to model behavioural properties of
systems. TLA, as a logical formalism provides the expressive power to reason
about programs using assertions on states and pairs of states (actions). Actions
are predicates that relate two consecutive states and are used to capture how
the system is allowed to evolve. This section only presents a brief overview of
TLA and the associated formalism for specifying and model checking systems.
A more detailed description of the language and other advanced advanced topics
is available in [20–22].

The reasoning system in TLA is built around TLA formulas. A TLA formula
is true or false on a behaviour. A behaviour in TLA is an infinite sequence of
states. A state in TLA is an assignment of values to variables and a step is a
pair of states. Steps of a behaviour denote successive pairs of states. Given a
system S, with the executions of the system represented as behaviours, and a
formula f , we can decide whether S satisfies f iff the formula f is true for every
behaviour of S.

The elementary building blocks of a TLA formula include state predicates,
actions, logical operators (such as ∧, ¬, etc.), the temporal operator � (always)
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and the existential quantifier ∃. A state predicate is a boolean valued expression
(predicate) on states. An action, A, is a boolean valued expression (predicate)
on steps. Actions are formed from unprimed variables and primed variables to
represent the relation between old states and new states. The unprimed variables
refer to the values of the variables in old states, the first state of the step, whereas
the primed variables refer to the variable values in new states, the second state
of the step. State predicates have no primed variables. A step is an A-step if it
satisfies A. An action is valid, � A, iff every step is an A-step. In TLA, atomic
operations of programs are represented by actions.

TLA+ is a formal specification language based on formal set theory, first
order logic and TLA. A TLA+ specification, typically denoted Spec, is a temporal
formula predicate on behaviours. All the behaviours satisfying Spec constitute the
correct behaviours of the system. TLA+ describes a system as a set of behaviours
with an initial condition and a next state relation. The initial condition specifies
the possible initial states and the next state relation specifies the possible steps.
A TLA+ specification is a temporal formula of the form

Spec � Init ∧ �[Next]〈vars〉 ∧ Temporal (1)

where Init is a state predicate corresponding to the initial condition, Next is an
action corresponding to the next state relation, vars is a tuple of all variables in
the specification, and Temporal is a temporal formula usually specifying liveness
conditions. Formula Spec can be seen as a predicate on behaviours. Spec is true
for a behaviour σ, iff Init is true in the first state of σ and every step in σ is
either a step that satisfies Next or is a stuttering step. A stuttering step is one
in which none of the variables are changed.

The specification (1) can be model checked using the TLC model checker.
TLC takes a TLA+ specification and checks whether the specification satisfies
the desired properties by evaluating all possible behaviours of the specification.
The TLA+ specification language accompanied by an IDE consisting of TLC
and other useful tools can be downloaded from [20].

4.2 Verification of LSM in TLA+

The approach we use to formally verify the LSM in TLA+ is similar to the
approach of Supremica. The LSM code is manually translated in TLA+ using the
constructs available in the specification language. Listing 1.2 shows the TLA+

translation of the MATLAB-code in Listing 1.1 as a TLA+ formula that relates
unprimed variables and primed variables using arithmetic and logical operators.
The formula describes the allowed behaviour of the function in Listing 1.1. A call
to the function duringStateA is translated to a behaviour where the formula
During StateA is valid.

The TLA+ translation of the entire LSM code consists of an initial state
predicate, Init and Next. Next is composed of smaller sub-formulae, each cor-
responding to different functions in the original code, of which one formula is
shown in Listing 1.2. With the complete TLA+ translation of the LSM , TLC
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Listing 1.2. TLA+ translation of the code in Listing 1.1.

1 During StateA ==
2 /\ Lane Change Request ' \ in ...

{”NoRequest ” ,” ChangeLeft ” ,” ChangeRight”}
3 /\ va r s t a t e = ”StateA”
4 /\ va r d i r e c t i on ' = Lane Change Request
5 /\ var x ' = FALSE
6 /\ var y ' = FALSE
7 /\ IF Lane Change Request # ”NoRequest” THEN
8 va r s ta t e ' = ”StateB”
9 ELSE UNCHANGED va r s t a t e

can model check for desired properties, which are described using pre-defined
statements and constructs available. More details on the statements and the
restrictions on TLC is available in [22]. In order to verify Req.1 of Sect. 2, we
make use of invariant checking in TLC.

An invariant, typically denoted as Inv, of a Spec is a state predicate that
should be valid in all reachable states. Invariants can be defined for specifications
as well as next-state actions. An invariant of a specification that is also an
invariant of a next-state action is sometimes called an inductive invariant of
Spec. In model checking mode for invariance checking, TLC explores all reachable
states and looks for states in which the invariant is not satisfied.

Req.1 is translated to a TLA formula as

InvProp � ¬(var state = “State Finished”

∧Output Indication �= Output Change Lane). (2)

Reaching a state where InvProp is violated means that the state predicate eval-
uate to false, i.e. a behaviour where the lane change is finished and the outputs
for showing indication and changing lane differ, is allowed in our specification,
thereby showing the presence of an error in our code. The complete TLA+ trans-
lation was 250 lines with 20 variables. In model checking mode using breadth-first
search, TLC shows the violation of InvProp with a 5 step long error trace for
analysis.

5 Deductive Verification

Model checking is well suited to establish (temporal) properties of state traces,
but mostly requires abstractions over the real source code. In contrast to that,
deductive verification [15] techniques are well suited for fully precise reasoning
about the computation on the source code level. Often, first order-logic is used to
characterise conditions on the data in specific states, in pre and post-conditions
of procedures, or invariants. Deductive verification typically uses a compositional
methodology, specifying and verifying one procedure at a time. Verification tools
exist for common programming languages such as C [19], Java [3], or Ada [7].
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5.1 SPARK

Ada [8] is a high level imperative programming language targeting the devel-
opment of large scale safety critical software. Ada is suited to meet the high
integrity software requirements and has been used in several industrial embed-
ded software development projects [1]. SPARK is a subset of Ada with additional
features to support formal verification [7]. SPARK uses property specifications
in the form of program annotations described inline with the source code to
perform static program analysis and build automated proofs to show the cor-
rectness of the software. In that sense, SPARK uses the correct by construction
philosophy through contract based programming to develop software.

A SPARK program is made up of one or more program units. Subprograms
and packages are two examples of SPARK program units. A subprogram exe-
cution is invoked by a call and subprograms express a sequence of actions. Pro-
cedures and functions are the two types of subprograms in SPARK. Procedure
calls are standalone statements, whereas function calls occur in an expression
and return a value. Packages group together entities like data types, subpro-
grams, etc., and can be considered to be the equivalent of header files in an
object oriented programming language like C++. A program unit consists of
two structures, a specification and a body. The specification contains the vari-
ables, types and the subprogram declarations with their annotations. The body
of a program unit contains the details of the implementation.

Properties are in SPARK specified using subprogram contracts (pre and
post-conditions), loop invariants, and data dependencies. The formal verification
toolset in SPARK can perform program analysis on the source code at various
levels. Flow analysis capabilities ensure the program correctness with respect
to data flow and information flow. Errors arising due to uninitialized variables,
data dependencies between inputs and outputs of subprograms, well-formedness
of programs, etc., are checked by this level of analysis. A higher level of analysis
is to perform automated proofs to check for run time errors and conformance
of the program with the specifications. The program annotations specified are
used to generate verification conditions, which can then be discharged using the
proof tools to show program correctness.

5.2 Verification of LSM in SPARK

SPARK 2014 [1] and its associated tools are used to formally verify the LSM.
With the use of packages and subprograms in SPARK, the code structure of the
original implementation of LSM using classes and methods in MATLAB-code
is preserved. Listing 1.3 shows how the code in Listing 1.1 is built in SPARK.
The implementation is done as a procedure (subprogram). Lines 1–6 represent
the specification part of the subprogram and lines 8–19 represent the body. The
specification consists of the subprogram declaration and its contract in the form
of pre and post-conditions. The parameter mode in out permits both read and
write operations on the values of the associated parameter.
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Listing 1.3. SPARK implementation of the code in Listing 1.1.

1 procedure During StateA
2 (Var : in out Var Type ;
3 Lane Change Request : in Lane Change Direct ion Type )
4 with Pre => Var . State = StateA ,
5 Post => ( ( Var . D i r e c t i on = Lane Change Request ) and
6 (Var . State in StateA | StateB ) ) ;
7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
8 procedure During StateA
9 (Var : in out Var Type ;

10 Lane Change Request : in Lane Change Direct ion Type )
11 i s
12 begin
13 Var . D i r e c t i on := Lane Change Request ;
14 Var .X := False ;
15 Var .Y := False ;
16 i f Lane Change Request /= NoRequest then
17 Var . State := StateB ;
18 end i f ;
19 end During StateA ;

SPARK has a set of core annotations as predefined rules that can be checked
without user defined contracts. However, here we are interested in verifying func-
tional properties like Req.1 and therefore SPARK needs stronger annotations to
perform formal analysis. The contract specified in Listing 1.3 is an illustrative
example of type of contracts used to show correctness of LSM with respect to
Req.1 . The preconditions, denoted Pre, are assertions that are satisfied when
the procedure is called and the postconditions, denoted Post, are the conditions
that should be satisfied as a result of the procedure call. These contracts are used
by the analysis tools to generate verification conditions, which are mathemat-
ical expressions relating a number of hypotheses (obtained from preconditons)
and conclusions (from postconditions). Providing a correctness proof of the pro-
gram then boils down to showing that the conclusions always follow from the
hypotheses. Detailed information on the the analysis tools is available in [2,7].

With this general idea, the initial approach to prove correctness of the LSM
was to specify one global contract to capture Req.1 . This global contract was
specified on the complete LSM code implemented as a package in SPARK. How-
ever, results from the analysis showed that one global contract was insufficient
to show correctness of Req.1 . Subsequent annotations were added to the differ-
ent subprograms. Req.1 was specified as a postcondition (3) of a subprogram
responsible for execution on the completion of a lane change.

Post ⇒ (Var.State = Finished) and

(Output Indication = Output ChangeLane) (3)

Although the proof checks for most of the subprogram contracts were automati-
cally proved by SPARK analysis tools, error messages from proof checks reported
that a few postconditions including (3) might fail. The unproved checks could
possibly indicate incorrectness of the code (implementation and specification)
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or the need for stronger annotations for the tools in the form of intermediate
assertions and better code organisation. In order to conclusively decide the cause
for the failed proof checks, more manual reviews, analysis of the execution paths
corresponding to the failed checks and possibly stronger contracts were needed.
However, the undertaken approach of implementing the code first and then incre-
mentally annotating the subprograms in order to satisfy the property turned out
to be inefficient. A better work flow in our case would be the reverse approach,
where the property is formally broken down into suitable subprogram contracts
followed by the implementation to show correctness.

6 Insights and Discussion

This section provides a discussion and the insights gained from this case study.
The discussion is focused on how the verification methods aid in addressing the
challenges mentioned in Sect. 1, and does not aim to compare the performances
or the algorithms of the tools.

Describing the System. Autonomous driving systems are often categorised as
Cyber-Physical Systems (CPS) or reactive systems in literature, depending on
the focus of research. Irrespective of the classification, modelling and observing
the system and its environment is a known challenge. The expressive power is
limited to the choice of formalism. In our case, describing LSM as extended
finite state machines and transition systems (although not too different) was
sufficient to capture—and reason about—correctness due to its discrete nature.
However, correctness of Path Planner, Controller, Sense in Fig. 1 is just as cru-
cial as LSM and the formalism discussed in this paper might not be sufficient
as they have continuous dynamics and probabilistic behaviour. Choosing task
specific formalisms and tools for different software development teams compli-
cates the industrial adoption of such techniques. In this respect, having subtle
and necessary extensions to the existing formalisms so as to capture a wider
spectrum of abstractions, while still being decidable, can be invaluable.

Modelling the observable behaviour of the environment faces the risk of state-
space explosion. Defining the operating boundaries of the environment with
respect to the system is very crucial in successfully addressing the challenge.
For example, in our case of the lane change software module, the traffic state
(position, behaviour of other vehicles,...) could serve as a definition of the envi-
ronment for the decision making component in Fig. 1. However, using the same
definition for environment to model and reason about LSM or Path Planner,
would neither help tackle the challenge nor be an efficient use of any of the
formal technique discussed in this paper. The use of deductive verification in
SPARK decouples from such problems by applying verification techniques on
the source code. Nevertheless, the challenge then manifests in the need to write
complex functional specifications to have the formal analysis done, as it turned
out in our case.

From our experience, the key to address these challenges is to use formal
approaches with different levels of abstractions to divide and conquer in a mod-
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ular way, similar to classical large scale software development. Higher level
abstractions could be used to define logical boundaries between the systems
and their environments and lower level abstractions to reason about the systems
within their boundaries. Compositional verification can then be used to reason
about systems in a modular way. Supremica, TLA+ and SPARK have features
to support such compositional verification of systems. This work flow could also
be used to formally obtain subprogram annotations in the deductive verification
framework to show correctness of source code.

Requirements and Properties. In this paper, the focus is to verify one require-
ment that affects the safety of the system. In the SCT framework, EFSM is used
as the specification language. A violation of the requirement is modelled as an
event leading to a blocking state and nonblocking verification is performed to
check for errors. This is similar to checking whether in all computations, we
eventually reach a state from where a marked state can be reached. While non-
blocking cannot be directly translated in linear-time temporal logic, the use of
invariants is exploited in TLA+ to check for the desired property. In SPARK,
the use of pre/post conditions to look for the particular unsafe behaviour did
not prove to be an efficient work method. While TLA+ and Supremica pro-
vided counter examples that could help in the analysis of the bug, the counter
example generation in SPARK was not sufficient to draw concrete conclusions
in our particular case. This could be attributed to the fact that for efficient use
of automated reasoning in contract based programming, operational complete-
ness, meaning contracts for normal, error and exceptional behaviour should be
included in the specification. The reverse approach of implementing the source
code first and then annotating with contracts to check for a particular unsafe
behaviour proved very inefficient. However, a program crashing is just as unsafe
as compared to the behavioural safety property discussed in this paper. For such
software program malfunction due to run time errors (such as division by zero,
overflow, etc.), modelling and specifying in Supremica and TLA+ is complicated
and will greatly increase the complexity. SPARK is efficient in this regard.

Type of Analysis and the Scope of Correctness. Formal methods can be
applied to all levels of the software development process. While acknowledg-
ing the individual strengths of each of the methods discussed in this paper, no
method on its own is sufficient to prove correctness for the LSM. Supervisory
control and TLA+ are abstract methods that are best suited for verification at
the system level, software architectural level and software design level of the ISO
26262 standard. Deductive verification methods give the most benefit at the soft-
ware unit (program) verification, the lowest level (source code) of the V-model.
SPARK is developed to suit the needs of high integrity safety critical applica-
tions and therefore provides better evidence for compliance to several clauses
of the standard at the software unit verification level. The abstraction based
approaches discussed in this paper involves manual modelling of the system and
therefore requires additional effort to ensure that the right detail is captured
in the modelling as well as in specifying the properties. The occurrence of false
alarms in such methods is of course an implicit trade-off.
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Leveraging Formal Methods in an Industrial Setting. The verification
approaches discussed in this paper are all performed after the software was imple-
mented. A software to solve an intended function was written in a programming
language and then verified for correctness. Although, better use of the methods
described in this paper could be made in the earlier stages of the development
process (correct by construction approach), the situation where software is ver-
ified for correctness in the later stages seems more common in the industrial
setting. In our experience, the challenging task encountered while working with
the abstract methods is the lack of interoperability with the other tools used in
the development. Supremica and TLA+ are stand alone methods and currently,
the only way to use them is for engineers to have parallel activities, one with the
formal tools and the other with the conventional development tools. While this
might be justified for high integrity applications, the need for manual effort to
synchronise the parallel activities to obtain a concrete impact is often a draw-
back. Work on suitable intermediary plug-ins to have traceability between the
informal requirements management activity and the formal specification meth-
ods would definitely work in favour of increased adoption in the software specifi-
cation stages. Counter-example generation in the abstract methods discussed in
this paper is easily the highest return on investment in an industrial setting. This
could further be enhanced by work on using counter-examples to generate test
scenarios in the preferred testing framework in the development routine. This
will also suit well within the continuous development and continuous integration
principles of agile development. In this regard, SPARK is well suited for easier
integration. However, the use of SPARK as an after development verification
tool without formal specification in the earlier stages, is still inefficient.

7 Conclusion

In this paper, we have applied formal verification based on Supervisory Control
Theory, Model Checking and Deductive Verification to verify correctness of a
decision making software in an autonomous vehicle. Discussion on how the ver-
ification scenario differs in each of the methods is presented. We also provide
insights on how the different approaches can address the challenges in indus-
trial development of safe autonomous driving software. The difficulty in working
with all these tools is not in learning them but in capturing the right level
of abstraction for the verification objectives and stating the formal properties.
Although this paper deals with the verification of one safety requirement of a
decision making software module, the insights gained are valuable to address
the challenges. Future work includes the investigation of integrating multiple
formal approaches to tackle the challenges mentioned in this paper also to scale
the approaches to different types of systems in an autonomous vehicle for larger
classes of properties with more software requirements.
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