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Preface

This volume contains the papers presented at the 12th Conference on Artificial
Intelligence (AGI 2019), held during August 6–9, 2019, in Shenzhen, China. In
addition to co-locating with the International Joint Conferences in Artificial General
Intelligence (IJCAI 2019) held in nearby Macau, the Shenzhen location was designed
to spur enhanced engagement and discussion between researchers from Europe and the
Americas with the burgeoning Chinese research community. Building upon the
palpable energy apparent during the 2018 joint Human Level Artificial Intelligence
(HLAI 2018) conference, of which the Artificial General Intelligence (AGI 2018)
conference was a part, AGI 2019 brought together researchers from at least 14 coun-
tries from around the globe, resulting in a robust set of stimulating, diverse, and
extremely deep discussions.

Transfer learning, one-shot learning, meta-learning, causality, and unsupervised
natural language processing are all becoming increasingly common topics in AGI
research. Recent breakthroughs in hybrid neuro-symbolic systems are beginning to
produce better results than more specialized sub-symbolic deep neural networks or
reinforcement learning alone. In addition, new AI platforms are being developed to
take advantage of blockchain technologies.

This volume contains the contributed talks presented at AGI 2019. There were 30
submissions. Each submission was reviewed by at least three (on average 3.0) Program
Committee members. The committee decided to accept 16 long papers (53% accep-
tance) for oral presentation, and 5 papers for poster presentation. Once again the topics
covered proved to be very diverse.

There are papers covering AGI architectures, papers discussing mathematical and
philosophical foundations and details, papers developing ideas from neuro-science and
cognitive science, papers on emotional modeling, papers discussing safety and ethics,
and a host of other papers covering a wide-ranging array of additional relevant topics.

Keynote speeches were shared by the participating organizations, and were
presented by researchers from both academia and industry including such experts as
Hugo Latapie (Cisco), Zhongzhi Shi (Institute of Computing Technology, Chinese
Academy of Sciences), Harri Valpola, (Curious AI), Wei Xu, (Horizon Robotics), and
Yi Zeng (Research Center for Brain-inspired Intelligence, Institute of Automation,
Chinese Academy of Sciences).

In addition, the AGI 2019 conference featured tutorials and workshops on the
Non-Axiomatic Reasoning System (NARS) and on the OpenCog system.

We thank all the Program Committee members for their dedicated service to the
review process. We thank all of our contributors, participants, and tutorial, workshop
and panel session organizers, without whom the conference would not exist.



Finally, we thank our sponsors: the Artificial General Intelligence Society, Springer
Nature Publishing, SingularityNET, Hanson Robotics, and OpenCog Foundation.

June 2019 Patrick Hammer
Pulin Agrawal
Ben Goertzel
Matthew Iklé
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AGI Brain: A Learning and Decision Making
Framework for Artificial General Intelligence
Systems Based on Modern Control Theory

Mohammadreza Alidoust(&)

Mashhad, Iran

Abstract. In this paper a unified learning and decision making framework for
artificial general intelligence (AGI) based on modern control theory is presented.
The framework, called AGI Brain, considers intelligence as a form of optimality
and tries to duplicate intelligence using a unified strategy. AGI Brain benefits
from powerful modelling capability of state-space representation, as well as
ultimate learning ability of the neural networks. The model emulates three
learning stages of human being for learning its surrounding world. The model
was tested on three different continuous and hybrid (continuous and discrete)
Action/State/Output/Reward (ASOR) space scenarios in deterministic single-
agent/multi-agent worlds. Successful simulation results demonstrate the multi-
purpose applicability of AGI Brain in deterministic worlds.

Keywords: Artificial general intelligence � Modern control theory �
Optimization � Implicit and explicit memory � Shared memory �
Stages of learning � Planning � Policy � Multi-Agent � Emotions �
Decision making � Continuous and hybrid ASOR space

1 Introduction

In this paper, AGI Brain, a learning and decision making framework for AGI is
proposed which has a unified, simple structure and tries to emulate the stages of human
learning. Based on Wang’s classification [1], AGI Brain looks at intelligence as a form
of optimality and tries to duplicate intelligence using a unified approach by applying
state-space representation (e.g. see [2]) and neural networks as its modelling technique.
In AGI Brain, intelligence is defined as “optimizing the surrounding world towards
common goals”, counting the agent’s body as a part of the surrounding world. AGI
Brain is a model based algorithm and delays its decision making stage until it built a
model upon collected data from interaction with the environment. It estimates the
reward value using feedforward neural networks. Like reinforcement learning (RL) [3],
AGI Brain works in both continuous and discrete Action/State/Output/Reward (ASOR)
spaces. But, unlike RL, AGI Brain works only in deterministic worlds with immediate
rewards as yet. AGI Brain benefits from multi-agent capability. In the multi-agent case,
the agents can share their experiences easily, and they can also benefit from shared
memories.

© Springer Nature Switzerland AG 2019
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2 AGI Brain

2.1 The Agent and the World

Consider an intelligent agent x living in the world c which also contains the object w.
The agent x benefits from an artificial brain C which controls the behavior of x for
achieving its goals (Fig. 1).

At every time step n, the artificial brain C produces commands u (e.g. hormones or
neural signals) which change the states of x’s body, i.e. xx, which then leads to
performing action a on the object w. This action changes w’s states xw, which con-
sequently leads to w’s response r. Like a natural brain, the C can observe these values
by its sensors.

We model the agent x by its input u, its states xx and its output, i.e. action a;

x :
xxðnþ 1Þ ¼ fxðxxðnÞ; uðnÞÞ
aðnÞ ¼ gxðxxðnÞ; uðnÞÞ

�
ð1Þ

And, the object w by its input a, its states xw and its output, i.e. response r;

w :
xwðnþ 1Þ ¼ fwðxwðnÞ; aðnÞÞ
rðnÞ ¼ gwðxwðnÞ; aðnÞÞ

�
ð2Þ

The functions f and g are columns and they are, in general, complex nonlinear
functions of the states and the inputs.

Please note that bold letters represent vectors or matrices. For simplicity, here we
assume that both of x and w change simultaneously.

From the C’s viewpoint, the x’s body is an actuator for performing the C’s
commands, so, the world c can be modeled by its input u, its states x ¼ xc (vector of all
states contained in the world c, i.e. combination of xx and xw), as well as its outputs
y ¼ yc (vector of all outputs contained in the world c, i.e. combination of a and r).

Fig. 1. The world c consisting of the artificial agent x and the object w.

2 M. Alidoust



x ¼ xc ¼
xx
� � �
xw

2
4

3
5 ; y ¼ yc ¼

a
� � �
r

2
4

3
5 ð3Þ

Thus, the discrete time state-space representation of the world c will be as follows;

c :
xðnþ 1Þ ¼ f ðxðnÞ; uðnÞÞ
yðnÞ ¼ gðxðnÞ; uðnÞÞ

�
ð4Þ

And the continuous time state-space representation of the world c will be as
follows;

c :
_xðtÞ ¼ f ðxðtÞ; uðtÞÞ
yðtÞ ¼ gðxðtÞ; uðtÞÞ

�
ð5Þ

2.2 Inside the Artificial Brain

As mentioned in the previous section, in AGI Brain we look at intelligence as a form of
optimality. This optimality should be observable and also measurable during the arti-
ficial life of an intelligent agent (or a swarm of them). Therefore, an optimality criterion
must be defined first. We define the artificial life of an artificial intelligent agent x
living in the world c as completing a task Q (or a series of tasks) on the object(s) w (or
on its own body). Completion of task Q requires maximization of reward function R as
the task completion criterion, which is a linear combination of objectives J and their
corresponding importance coefficients P called personality, as well as an artificial brain
C which is responsible for this optimization procedure.

For the reward function R we have;

R ¼ PTJ ð6Þ

Thus, completion of task Q will be as follows;

Q : Max R ¼ PTJ
� � ð7Þ

The aim of the artificial brain C is to complete Q by calculating and then producing
the optimal control signal u� such that the reward function R is maximized with respect
to the state equations that govern the world c, i.e. equation (4) (or (5)). So, in discrete
time case, the brain C has to solve the following optimization problem at every time
step n;

AGI Brain: A Learning and Decision Making Framework 3



u�ðnÞ ¼ ArgMax
u2@

R ¼ PTJ
� �

s:t:

xðnþ 1Þ ¼ f ðxðnÞ; uðnÞÞ
yðnÞ ¼ gðxðnÞ; uðnÞÞ

� ð8Þ

Where @ is the set of all possible alternatives. The optimal command u� is the
decision made by the C and will be transmitted to the agent’s body to produce a desired
action. Please note that the same problem applies to the continuous time case.

Remark 1: Objectives. The vector of objectives J is a vector that contains the
objectives of the agent x on a benefit-cost basis and relates the components of the
world c to the agent’s goals. In general, it is a function of time, input, states and outputs
as well as the desired states xd and desired outputs yd of the world c, i.e.
J ¼ Jðn; u; x; xd; y; ydÞ.

Remark 2: Personality. Personality vector P is a dynamical vector which regulates
the behavior of the agent and plays as the necessary condition for attaining an
objective. Each element of the dynamical vector P, i.e. pk , is the coefficient of a
corresponding objective jk at the current time. In general, P is a function of the current
states and outputs of the world c, i.e. P ¼ Pðx0; y0Þ, and based on the current situations
alters the importance of each objective to be achieved, in order to regulate the behavior
of the agent x. For instance, P activates fight-or-flight behavior by deactivating other
objectives when x senses a predator approaching. Also it leads to more diversity in
multi-agent environments.

2.3 Learning and Decision Making

Equation (8) has two parts; the reward function and the state equations that govern the
world c. For solving Eq. (8), the artificial brain C has to search its available alternative
set @. For each alternative uk 2 @, the C must solve the state equations first and then
evaluate the reward function. The reward function is pre-defined by the designer, but
since most environments are unknown, the state equations of such environments are not
available. Therefore, the agent does not know what the consequences of performing a
command uk 2 @ are, how it changes the world and how the world may seem after
performing each command.

In this major case, the agent has to build a model of the world which enables the
agent to estimate the consequences of performing each alternative uk 2 @ on the world
during the decision making stage. So, by using an estimator, the state equations of
Eq. (8) turn into the following estimation problem:

x̂ðnþ 1Þ
ŷðnþ 1Þ

� �
 �Estimator

xðnÞ
yðnÞ
uðnÞ

* +
ð9Þ

Where x̂ðnþ 1Þ and ŷðnþ 1Þ are the estimated states and outputs of the world c
after performing command uðnÞ on the c with initial conditions xðnÞ and yðnÞ.

4 M. Alidoust



For building such an estimator the agent needs a set of collected data from the
world, i.e. observations during its learning stages (which will be described in the
following paragraph), as well as a memory to learn those collected data. In AGI Brain,
due to the high power of function approximation of neural networks, the agent is
equipped with two neural network memories: explicit memory (EM) and implicit
memory (IM). The EM is used as the estimator model in Eq. (9) and the IM is used for
direct production of the optimal command u� without solving Eq. (8).

According to [4], there are three stages of human skill learning; (1) Cognitive: in
which movements are slow, inconsistent, and inefficient, (2) Associative: in which
movements are more fluid, reliable, and efficient, (3) Autonomous: in which move-
ments are accurate, consistent, and efficient. Regarding the accuracy of the produced
signals and with some connivance in the meanings, we implemented the above learning
stages in our model as infancy, decision making and expert respectively. During these
three learning stages, the artificial brain C produces three differently-produced control
signals, and stores the consequences of them in its memories, EM and IM.

Infancy Stage. In the infancy stage, the agent tries to collect data from its surrounding
world by interacting with it. During this stage, at every time step n, the artificial brain C
exerts randomly-generated commands u to the world with initial conditions xðnÞ and
yðnÞ, and then observes the results xðnþ 1Þ and yðnþ 1Þ.

Each observation vector o at time step n has the following form;

on ¼ xðnÞ; yðnÞ; uðnÞ; xðnþ 1Þ; yðnþ 1Þ½ �T ð10Þ

The agent stores these data in its memories EM and IM. For the EM, each
observation is split into vectors InEM ¼ xðnÞ; yðnÞ; uðnÞ½ �T and Tn

EM ¼ xðnþ 1Þ;½
yðnþ 1Þ�T which are trained to the EM as its inputs and targets respectively. And, for
the IM, each observation is split into vectors InIM ¼ xðnÞ; yðnÞ; xðnþ 1Þ; yðnþ 1Þ½ �T and
Tn
IM ¼ uðnÞ½ � which are trained to the IM as its inputs and targets respectively. During

this stage, these observations will not be used for producing the next commands.

Decision Making Stage. Using EM as the estimator in Eq. (9) and substituting Eq. (9)
with state equations of Eq. (8), the decision making problem of Eq. (8) turns into the
following equation;

u�ðnÞ ¼ ArgMax
u2@

R ¼ PTJ
� �

s:t:

x̂ðnþ 1Þ
ŷðnþ 1Þ

� �
 �EM

xðnÞ
yðnÞ
uðnÞ

* + ð11Þ

For solving Eq. (11), at every time step n, the artificial brain C searches @ in three
stages: (1) Estimation: using its EM, the C estimates how the world c would seem after
executing each alternative uk 2 @, i.e. estimating the states x̂ðnþ 1Þ and the output

AGI Brain: A Learning and Decision Making Framework 5



ŷðnþ 1Þ of the world c for each alternative uk 2 @, given the current states xðnÞ and
outputs yðnÞ, (2) Computation: computing the influence of the estimations on reward
function R ¼ PTJ with respect to J ¼ Jðn; u; x̂; xd; ŷ; ydÞ and P ¼ Pðx0; y0Þ, (3) Com-
parison: selecting the alternative which maximizes the reward function R the most as
the optimal decision u�. The learning process of the agent is also continued in this stage
by learning observations with its IM and EM at certain time steps.

Planning. Planning happens when the agent cannot solve a problem at once (because
of its limitations) and has to solve it by making decisions in a series of consecutive
steps. During this process, the agent estimates the total value of the reward function
over different possible series of consecutive inputs, i.e. U ¼ fuðn1Þ;
uðn2Þ; . . .; uðnf Þg 2 @, that here we call them policies. Using its EM, the C estimates
the consequences of the first member of each randomly-generated policy on current
states and outputs of the c; and then the consequence of the second input on the
changed c, and so on. By computing and then comparing the overall reward of all the
policies, the C selects the optimal policy U� which has the maximum reward value over
the time horizon nf : Thus, planning can be considered as an extension of decision
making and we have;

U� ¼ uðnÞj ArgMax
u2@

Xnf
n¼n1

R ¼ PTJ
� �( )

s:t:

x̂ðnþ 1Þ
ŷðnþ 1Þ

� �
 �EM

xðnÞ
yðnÞ
uðnÞ

* + ð12Þ

Expert Stage. In the expert stage, the IM takes over the decision making unit. Given
the initial conditions x0 and y0 as well as the desired states xd and outputs yd , the IM
produces the command u which transits the current states and outputs to the desired
states and outputs. In this stage the commands are produced faster and they are more
accurate and efficient. The learning process of the agent is also continued in this stage
by learning observations with its IM and EM at certain time steps.

Role of Emotions (Stress). The role of stress as a key factor in decision making has
been implemented in our model as the exploration/exploitation ratio regulator. It
empowers the agent to a further exploration of the world during its second and third
stage of learning. Here, we define stress as the distance between the agent’s current
state/output and its desired state/output, that produces stress signal s which changes the
probability of selecting the optimal decision u� (or optimal policy U�) as follows;

pu¼u
�¼ 1

1þ es
ð13Þ

6 M. Alidoust



Data Sharing and Shared Memories. In the multi-agent scenarios, the agents can share
their experience in the form of observation vectors of Eq. (10). This helps the agents to
benefit from the experiences of the other agents and make better decisions.

At a higher level, all of the agents can benefit from one shared explicit memory
(SEM) and one shared implicit memory (SIM) which are trained with the observations
of all of the agents. For training SEM and SIM, a matrix of observations On is formed
from the observation vector on of each agent.

3 Simulation

3.1 Continuous ASOR Space

Function Optimization. Assume a world c1 which contains a function f as the object
w1 which is going to be optimized by a group of agents x1

1;x
2
1; . . .;x

N
1 , who have these

objectives: (1) j1: finding the maxima of the function, (2) j2: social behavior by moving
close to the group, and (3) j3: following the leader, i.e. the agent whose function value
is more than the other agents. The agents have different personalities. Coefficient p1 is
positive but p2 and p3 are small normally distributed random numbers, so that some
agents may try to get far from the group and/or the leader. Agents with negative value
of p3 get nervous when they are far from the leader and may not execute their optimal
decision. They select their next moves during their three stages of learning using their
SEM and SIM.

c1 : y ¼ f ðx1; x2Þ

¼ 20 expð�0:01
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21þ x22

q
Þþ

X20
i¼1

10 expð�0:05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x1ið Þ2þ x2 � x2ið Þ2

q
Þ ð14Þ

Where x1i and x2i are random numbers that satisfy the equation: x21iþ x22i ¼ 10002. The
simulation results are depicted in Fig. 2.

Fig. 2. Simulation results of AGI Brain on c1: small spheres represent agents’ positions at:
(Left) the infancy stage, (Center) At epoch 35 of the decision making stage some agents reached
local and global maxima, (Right) Expert stage: Starting from any initial position, they all reached
the global maxima using SIM.
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Tracking Control of a MIMO Nonlinear System. Assume a world c2 which con-
tains a continuous stirred tank reactor (CSTR) as the object w2, which is a multi-input
multi-output (MIMO) plant described by the following state-space equations1:

c2 :
dhðtÞ
dt ¼ w1ðtÞþw2ðtÞ � 0:2

ffiffiffiffiffiffiffiffi
hðtÞp

dCbðtÞ
dt ¼ ðCb1 � CbðtÞÞ w1ðtÞ

hðtÞ þ ðCb2 � CbðtÞÞ w2ðtÞ
hðtÞ � k1CbðtÞ

ð1þ k2CbðtÞÞ2

(
ð15Þ

Where hðtÞ is the liquid level, CbðtÞ is concentration of the output product, w1ðtÞ
and w2ðtÞ are input flow rates, Cb1 ¼ 24:9 and Cb2 ¼ 0:1 are input concentrations, and
k1 ¼ k1 ¼ 1 are constants associated with the rate of consumption. The single agent x2

has to control the liquid level and product concentration on a predefined reference
yd ¼ ½18; 20�T by its available actions uðnÞ ¼ ½w1ðnÞ;w2ðnÞ�T . Figure 3 illustrates the
results of simulation.

3.2 Hybrid ASOR Space

Animats. The term animats coined by S.W. Wilson refers to artificial animals which
interact with real or artificial ecosystems and have the following key properties:
(1) autonomy, (2) generality, and (3) adequacy. They exist in a sea of sensory signals,
capable of actions, act both externally and internally, and their certain signal or absence
of them have special status [5].
Assume a world c3 which is an artificial ecosystem that contains a cattle of grazing
animats x1

3;x
2
3; . . .;x

N
3 , pasturages wps1

3 ;wps2
3 ; . . .;wpsM

3 , and a predator wPr
3 . The ani-

mats have the following objectives: (1) Staying alive by (a) j1: grazing for increasing

Fig. 3. Simulation results of AGI Brain on c2: (Left) Plant outputs during: Infancy stage
ð0� n� 650Þ, decision making stage ð651� n� 850Þ, and expert stage ð851� n� 1000Þ. Blue
line: liquid level, red line: liquid concentration, dashed red line: level reference, and dashed
magenta line: concentration reference, (Right) Total reward value.

1 Although the describing equations of the first and the second scenario are available, AGI Brain
considers them as unknown environments, and from the observations that are gathered by interaction
with these unknown environments, it builds their models in its memories and then completes its
required tasks based on the models.
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their energy, (b) not getting hunted by the predator by j2: moving as far as possible
from it, and j3: by moving close to the cattle, (2) j4: Reproduction by mating, and (3) j5:
Searching for new pasturages wpsl

3 . The animats have the following discrete actions set:
@ ¼ fup,down,right,left,eat,mateg:

The rules of the world c3 are as follows: The animats can move by performing
u1 = up,u2 = down,u3 = right and u4 = left. They can only increase their energy by
performing action u5 ¼ eat when they are near a pasturage, otherwise they lose one unit
of energy. They can only reproduce by performing action u6 ¼ mate when they are
mature and they have enough energy. The animats get hunted and die by the predator
wPr
3 when they are very close to it. Also, they die whether their energy level is equal to

zero, or they get old. Corresponding elements of the dynamic personality vector
Pðx0; y0Þ will change when different situations occur, e.g. when the animat xk

3 observes
the predator near to it, p2ðx0; y0Þ and p3ðx0; y0Þ are increased while other elements are
decreased to zero. They select their next actions during their three levels of learning
using their SEM and SIM. Figure 4 illustrates snap shots of simulation.

4 Discussion and Future Works

In this paper, the AGI Brain as a learning and decision making framework was
introduced. The model utilizes optimization as its theory and state-space representation
as its technique. It implements the three levels of human learning using its IM and EM.
Also it incorporates planning as well as some mental factors of the human intelligence
like emotions and different personalities. AGI Brain was tested on two category of
problems with continuous and hybrid ASOR deterministic spaces.

As can be seen in the simulation section, the model returned successful results in
the above-mentioned scenarios. Utilizing different personalities helped in different
behavior as well as exploration/exploitation diversity. For instance, in the first scenario,
agents with different personalities found other local maxima of the function. Also,

Fig. 4. Simulation snapshots of AGI Brain on c3: (Left) snapshot of the agents’ positions during
decision making stage. The big green circle represent a pasturage, small circles represent the
agents moving towards the pasturage, big red circle represent the predator, and small circles with
red star represent hunted agents, (Right) Reward value of agent xk

3 during decision making stage
(color figure online).
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implementation of the role of stress resulted in more exploration, e.g. in the second
scenario. Additionally, the model benefits from ultimate learning power of neural
networks. The learning problem of neural networks when dealing with discrete (cat-
egorical) ASORs was solved by incorporating pattern recognition neural networks, and
high precision learning achieved, e.g. in the third scenario. In multi-agent scenarios, the
agents utilize SEM and SIM where they can share their experiences with other agents.

Despite the successful results of AGI Brain on current scenarios, still more
developments, implementations and tests on other scenarios must be performed, in
order to guarantee the multi-purpose applicability of AGI Brain. Currently, the model is
parameter-dependent, e.g. the time horizon of planning. In order to determining the
sufficient amount of a parameter for successfully accomplishing a policy on a desired
task, the model should also learn these parameters during its learning stages, preferably
during its infancy stage. The model works only in deterministic environments as yet.
For stochastic environments, the IM and EM must be empowered with memories which
are able to correctly estimate, for example, the results of an action in a stochastic world.
For large alternatives sets @, the performance speed of the model can be improved by
searching over smaller random subsets of @ (whose elements are randomly selected
from @), instead of searching over @. The size of those subsets of @ with respect to the
size of @ determines a trade-off between speed and accuracy.

The ideal realization goal of the AGI Brain is to be implemented as a full-neural-
network artificial brain in order to seem like a natural brain. To this end, proper neural
networks -that are able to completely mimic the optimization behavior of the AGI
Brain- must be developed.
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Abstract. In the light of ongoing progresses of research on artificial
intelligent systems exhibiting a steadily increasing problem-solving abil-
ity, the identification of practicable solutions to the value alignment
problem in AGI Safety is becoming a matter of urgency. In this con-
text, one preeminent challenge that has been addressed by multiple
researchers is the adequate formulation of utility functions or equivalents
reliably capturing human ethical conceptions. However, the specification
of suitable utility functions harbors the risk of “perverse instantiation”
for which no final consensus on responsible proactive countermeasures
has been achieved so far. Amidst this background, we propose a novel
non-normative socio-technological ethical framework denoted Augmented
Utilitarianism which directly alleviates the perverse instantiation prob-
lem. We elaborate on how augmented by AI and more generally science
and technology, it might allow a society to craft and update ethical util-
ity functions while jointly undergoing a dynamical ethical enhancement.
Further, we elucidate the need to consider embodied simulations in the
design of utility functions for AGIs aligned with human values. Finally,
we discuss future prospects regarding the usage of the presented scien-
tifically grounded ethical framework and mention possible challenges.

Keywords: AGI Safety · Utility function · Perverse instantiation ·
AI alignment · Augmented Utilitarianism

1 Motivation

The problem of unambiguously specifying human goals for advanced AI systems
such that these systems once deployed, do not violate the implicitly underlying
intended human conceptions by pursuing unforeseen solutions, has been referred
to as “literalness” [31,42] or also “perverse instantiation” [10,41] problem. A
higher problem solving ability does not necessarily entail the integration of the
contextual knowledge required from an advanced AI in order to accurately inter-
pret human ethical conceptions. Therefore, it is of great importance from the
perspective of A(G)I Safety and A(G)I Ethics to a priori consider this crucial
issue when crafting quantitative utility functions for intelligent systems that
would operate based on the human goals these functions encode. Recently, a
novel type of such explicitly formulated utility functions denoted ethical goal
c© Springer Nature Switzerland AG 2019
P. Hammer et al. (Eds.): AGI 2019, LNAI 11654, pp. 11–21, 2019.
https://doi.org/10.1007/978-3-030-27005-6_2
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functions [2,40] has been introduced as critical tool for a society to achieve a
meaningful control of autonomous intelligent systems aligned with human eth-
ical values. Departing from this, we show why in order to design ethical goal
functions and avoid perverse instantiation scenarios, one needs a novel type of
ethical framework for the utility elicitation on whose basis these functions are
crafted. We introduce a new to be described socio-technological ethical frame-
work denoted Augmented Utilitarianism (which we abbreviate with AU in the
following).

While multiple methods have been suggested as moral theory approaches
to achieve ethical objective functions for AGIs [16,17] (including classical ethi-
cal frameworks like consequentialism or encompassing methods based on uncer-
tain objectives and moral uncertainty [9,15]), most approaches do not provide
a fundamental solution to the underlying problem which wrongly appears to be
solely of philosophical nature. According to Goertzel [20], “pithy summaries of
complex human values evoke their commonly accepted meanings only within the
human cultural context”. More generally, we argue that in order to craft utility
functions that should not lead to a behavior of advanced AI systems violating
human ethical intuitions, one has to scientifically consider relevant contextual
and embodied information. Moreover, it could be highly valuable to take into
account human biases and constraints that obstruct ethical decision-making and
attempt to remediate resulting detrimental effects using science and technology.
In contrast to the AU approach we will present, most currently known moral
theories and classical ethical frameworks considered for advanced AI systems do
not integrate these decisive elements and might therefore riskily not exhibit a
sufficient safety level with regard to perverse instantiation.

2 Deconstructing Perverse Instantiation

In the following, we enumerate (using the generic notation < FinalGoal >:
< PerverseInstantiation >) a few conceivable perverse instantion scenarios
that have been formulated in the past:

1. “Make us smile”: “Paralyze human facial musculatures into constant beaming
smiles” (example by Bostrom [10])

2. “Make us happy”: “Implant electrodes into the pleasure centers of our brains”
(example by Bostrom [10])

3. “Making all people happy”: “Killing all people [...] as with zero people around
all of them are happy” (example by Yampolskiy [42])

4. “Making all people happy”: “Forced lobotomies for every man, woman and
child [...]” (example by Yampolskiy [42])

From our view, one could extract the following two types of failures out of the
specified perverse instantiations: misspecification of final goal criteria and the so
called perspectival fallacy of utility assignment [2] which will become apparant in
our explanation. First, one could argue that already the proposed formulations
regarding the criteria of the final goal do not optimally capture the nature of the
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intended sense from a scientific perspective which might have finally misguided
the AI. While the concept of happiness certainly represents a highly ambiguous
construct, modern research in the field of positive psychology [35,39], hedonic
psychology [23] and further research areas offers a scientific basis to assess what
it means for human entities. For instance, one might come to the conclusion that
a highly desirable final goal of humanity for a superintelligence rather represents
a concept which is close to the notion of “well-being”. In psychology, well-being
has been among others described as a construct consisting of five measurable
elements: positive emotions, engagement, relationships, meaning and achieve-
ment (PERMA) [38]. Another known psychological measure for well-being is
subjective well-being [29] (SWB) which is composed of frequent positive affect,
infrequent negative affect and life satisfaction [11,13]. In both cases, happiness
only represents a subelement of the respective well-being construct. Similarly,
as stated by Diener and Bieswas-Diener [14], “happiness alone is not enough;
people need to be happy for the right reasons”. Coming back to the provided
examples for perverse instantiation, in the cases 1, 2 and 4, it is implausible that
a pluralistic criteria of well-being like PERMA would have been met.

Second, it is however important to note that even if the final goal would have
been specified in a way reflecting psychological insights, a perverse instantiation
cannot necessarily be precluded without more ado. By way of illustration, we
correspondingly reformulate the example 3 within a new type of perverse instan-
tiation and provide an additional example. We thereby use the term “flourish” to
allude to the achievement of a high level of well-being in line with a psychological
understanding of the concept as exemplified in the last paragraph.

5. Make all people flourish: Killing all people
6. Make all people flourish: Initiate a secret genocide until the few uninformed

people left in future generations all flourish

Despite a suitable final goal, value alignment is not succesful in 5 and 6 because
the underlying assignment of utility seems to be based on a detached modus
operandi in which the effects of scenarios on the own current mental states of
the people generating this function are ignored. Thereby, it is assumed that dur-
ing utility assignment, the involved people are considered as remote observers,
while at the same time one inherently takes their perspective while referring to
this mapping with the emotionally connoted description of a perverse instantia-
tion. This type of detached design of utility functions ignoring i.a. affective and
emotional parameters of the own mental state has been described as being sub-
ject to the perspectival fallacy of utility assignment [2]. Although most people
would currently dislike all provided examples 1–6, the aggregated mental states
of their current selves seem not to be reflected within the utility function of
the AI which instead considered a synthetic detached measure only related to
their future selves or/and future living people. In the next paragraph, we briefly
introduce a known problem in population ethics that exhibits similar patterns
and which might be of interest for the design of utility functions for advanced
AI systems in certain safety-relevant application areas [15].
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Population ethics [21] is an issue in philosophy concerning decision-making
that potentially leads to populations with varying numbers or/and identities
of their members. One interesting element of a population ethics theory is the
derived population axiology which represents the total order of different popu-
lation states according to their ethical desirability. As an example, consider the
choice of either perform a policy measure that leads to a population A of ca.
10 billion members and a very high positive welfare or to rather prefer another
policy measure leading to a population Z of ca. 10.000 billion members and a
much lower only barely acceptable (but still positive) welfare. Intuitively, most
people would rank the policy measure leading to population A as higher than
the one leading to population Z. However, given the population axiology of total
utilitarianism [21], Z might well be ranked higher than A if the number of people
multiplied by their welfare is bigger for population Z in comparison to popula-
tion A. This type of violation of human ethical intuitions when applying total
utilitarianism to population ethics has been termed “Repugnant Conclusion” by
Derik Parfit [34]. In this context, Arrhenius [3] proved in one of his impossibil-
ity theorems that no population axiology1 can be formulated that concurrently
satisfies a certain number of ethical desiderata.

However, as shown by Aliman and Kester [2], this type of impossibility theo-
rem does not apply to population axiologies that take the mental states of those
attempting to craft the total orders during utility elicitation into account. Sim-
ilarly to the perverse instantiation examples 1–6, the application of e.g. total
utilitarianism to the described scenario is subject to the perspectival fallacy of
utility assignment. As in the case of these perverse instantiations, the fact that
most people consider the scenario involving population Z as repugnant is not
reflected in the utility function which only includes a detached measure of the
well-being of future people. In practice, how humans rate the ethical desirability
of for instance a policy measure leading to a certain population, is dependent
on the effect the mental simulation of the associated scenario has on their corre-
sponding mental states which inherently encode e.g. societal, cultural and tem-
poral information. For instance, from the perspective of a current population Z0

being similar to population Z both with regard to number of people and wel-
fare level, it might instead be “repugnant” to prefer the policy measure leading
to population A [2]. The reason being that the scenario leading from Z0 to A
might have included a dying out or even a genocide. The lack of the required
contextual information in consequentialist frameworks (such as utilitarianism)
has implications for AIs and AGIs that are implemented in the form of expected
utility maximizers mostly operating in a consequentialist fashion.

3 Augmenting Utilitarianism

In the light of the above, it appears vital to refine classical utilitarianism (CU) if
one intends to utilize it as basis for utility functions that do not lead to perverse
1 Importantly, this also applies to non-consequentialist frameworks such as deontolog-

ical ethics [21].
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instantiation scenarios. However, as opposed to classical ethical frameworks, AU
does not represent a normative theory aimed at specifying what humans ought
to do. In fact, its necessity arises directly from a technical requirement for the
meaningful control of artificial intelligent systems equipped with a utility func-
tion. Since the perverse instantiation problem represents a significant constraint
to the design of ethical goal functions, a novel tailored ethical framework able to
alleviate issues related to both misspecification of final goal criteria and perspec-
tival fallacy of utility assignment emerges as exigency. With this in mind, AU is
formulated as a non-normative ethical framework for AGI Safety which can be
augmented by the use of science and technology in order to facilitate a dynam-
ical societal process of crafting and updating ethical goal functions. Instead of
specifying what an agent ought to do, AU helps to identify what the current
society should want an (artificial or human) agent to do if this society wants to
maximize expected utility. In this connection, utility could ideally represent a
generic scientifically grounded (possibly aggregated) measure capturing one or
more ethically desirable final goal(s) as defined by society itself. In the following,
we describe by what type of components AU could augment CU:

– Scientific grounding of utility: According to Jeremy Bentham [7], the founder
of CU “by the principle of utility is meant that principle which approves or
disapproves of every action whatsoever according to the tendency it appears
to have to augment or diminish the happiness of the party whose interest
is in question”. For AU, one could for instance reformulate the principle of
utility by substituting “happiness” with a generic scientific measure for one
or more final goal(s). In the context of crafting ethical goal functions, the
party whose interest is in question is society. Further, a crucial difference
between CU and AU is that in order to assess the tendency an action has
to augment or diminish the chosen ethical measure, AU considers more than
just the outcome of that action as used in the classical sense, since AU pre-
supposes the mental-state-dependency [2] of utility as will be expounded in
the next subitem. With this application-oriented view, one could then argue
that what society should ideally want an agent to do are actions that are
conformable to this modified mental-state-dependent principle of utility. In
this paper, we exemplarily consider well-being as reasonable high level final
goal candidate which is e.g. already reflected in the UN Sustainable Devel-
opmental Goals (SDGs) [44] and is in the spirit of positive computing [12].
Besides SWB [29] and PERMA [38], multiple measures of well-being exist
in psychology with focus on different well-being factors. For instance, the
concept of objective happiness [23] has been proposed by Kahneman. Well-
being has moreover been linked to the hierarchy of needs of Abraham Maslow
which he extended to contain self-transcendence at the highest level on top of
self-actualization in his later years [26,27,30]. (Recently, related AI research
aiming at inducing self-transcendent states for users has been considered by
among others Mossbridge and Goertzel [32].) For a review on relevant well-
being factors that might be pivotal for a dedicated positive computing, see
Calvo and Peters [11].
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– Mental-state-dependency: As adumbrated in the last section, human ethi-
cal evaluation of an outcome of an action is related to their mental states
which take into account the simulation that led to this outcome. The mental
phenomenon of actively simulating different alternative scenarios (including
anticipatory emotions [6]) has been termed conceptual consumption [19] and
plays a role in decision-making. Similarly, according to Johnson [22] “moral
deliberation is a process of cognitive conative affective simulation”. Moreover,
it has been shown that for diverse economical and societal contexts, people
do not only value the outcome of actions but also assign a well-being relevant
procedural utility [18,25] to the policy that led to these outcomes. In light
of this, AU assigns utility at a higher abstraction level by e.g. considering
the underlying state transition (from starting state s over action a to out-
come s′) instead of the outcome alone as performed in classical consequential
frameworks like CU. Furthermore, according to constructionist approaches
in neuroscience [5], the brain constructs mental states based on “sensations
from the world, sensations from the body, and prior experience” [33]. Hence,
ethical judgements might vary with respect to multiple parameters encom-
passing e.g. psychological, biographical, cultural, temporal, social and physio-
logical information. Likewise, the recent Moral Machine experiment studying
human ethical conceptions on trolley case scenarios with i.a. autonomous
vehicles showed “substantial cultural variations” in the exhibited moral pref-
erences [4]. Ethical frameworks for AGI utility functions that disregard the
mental-state-dependency may more likely lead to perverse instantiations,
since they ignore what we call the embodied nature of ethical total orders.
In the light of the aforesaid, AU considers perceiver-dependent and context-
sensitive utility functions which could e.g. be formulated at the transition
level leading to utility functions Ux(s, a, s′) for each perceiver x instead of
the general U(s′) in CU.

– Debiasing of utility assignment: One might regard decision utility based on
observed choices (as exhibited e.g. in big data [36]) as sufficient utility source
for a possible instantiation of AU if one assumes that humans are rational
agents that already act as to optimize what increases their well-being. How-
ever, utility as measured from this third-person perspective might not capture
the actual experienced utility from a first-person perspective due to multiple
human cognitive biases [8,24]. Since it is impossible to directly extract the
instant utility (the basic building block of experienced utility [24]) of future
outcomes to craft ethical goal functions, AU could – in its most basic imple-
mentation – rely on predicted utility which represents the belief on the future
experienced utility people would assign to a given scenario from a first-person
perspective. However, the mental simulations on whose basis predicted utility
is extracted are still distorted among others due to the fact that humans fail
to accurately predict their appreciation of future scenarios [24]. Therefore, it
has been suggested by Aliman and Kester [2] to augment the utility elicitation
process by the utilization of technologies like virtual reality and augmented
reality within a simulation environment in order to be able to get access
to a less biased artificially simulated future instant utility. (Thereby, simpler
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techniques such as movies or diverse types of immersive storytelling are as well
conceivable.) Analogous to the AI-aided policy-by-simulation approach [40],
this technique might offer a powerful preemptive tool for AGI Safety in an AU
framework. Overall, the experience of possible future world scenarios might
improve the quality of utility assignment while having the potential to yield
an ethical enhancement for one thing due to the debiased view on the future
and secondly, for instance due to beneficial effects that immersive technologies
might have on prosocial behavior including certain forms of empathy [12,28].
Interestingly, the experience of individualized and tailored simulations itself
might provide an alternative simulation-based solution to the value alignment
problem [43].

– Self-reflexivity: As opposed to CU, AU is intended as a self-reflexive ethi-
cal framework which augments itself. Due to the mental-state-dependency it
incorporates and the associated embodied nature of ethical total orders, it
might even be necessary to craft new ethical goal functions within a so-called
socio-technological feedback-loop [2]. In doing so, ongoing technological pro-
gresses might help to augment the debiasing of utility assignment while novel
scientific insights might facilitate to filter out the most sophisticated mea-
sure for the ethically desired form of utility given the current state of society.
Advances in A(G)I development itself leading to a higher problem solving
ability might further boost AU with an improved predictability of future out-
comes leading to more precise ethical goal functions. Given its generic nature,
what humans should want an agent to do might thereby vary qualitatively
in an AU framework, since quantitatively specifiable observations at specific
time steps within a socio-technological feedback-loop might even lead society
to modify the desired final goal candidate(s) making it possible to ameliorate
the framework as time goes by.

Table 1. Decision-making focuses within different possible ethical frameworks for AGI
Safety. “S&T” denotes a foreseen augmentation of the ethical decision making process
by science and technology including A(G)I itself. By “experiencer”, we refer to the
entities in society performing the ethical evaluation via the experience of simulations
(in a mental mode only or augmented).

Ethics framework/Focus Agent Action Outcome Experiencer S&T

Virtue ethics x

Deontological ethics x

Consequentialist ethics (e.g. CU) x

AU x x x x x
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– Amalgamation of diverse perspectives: Finally, we postulate that AU2, despite
its intrinsically different motivation as a socio-technological ethical framework
for AGI Safety and its non-normative nature, can be nevertheless understood
as allowing a coalescence of diverse theoretical perspectives that have been
historically assigned to normative ethical frameworks. To sum up and con-
textualize the experiencer-based AU, Table 1 provides an overview on the
different decision-making focuses used in relevant known ethical frameworks
that might be seen as candidates for AGI Safety.

4 Conclusion and Future Prospects

In a nutshell, we proposed AU as a novel non-normative socio-technological ethi-
cal framework grounded in science which is conceived for the purpose of crafting
societal ethical goal functions for AGI Safety. While CU and other classical eth-
ical frameworks if used for AGI utility functions might engender the perverse
instantiation problem, AU directly tackles this issue. AU augments CU by the
following main elements: scientific grounding of utility, mental-state-dependency,
debiasing of utility assignment using technology, self-reflexivity and amalgama-
tion of diverse perspectives. Thereby, AU facilitates the explicit formulation
of perceiver-dependent and context-sensitive utility functions (e.g. of the form
Ux(s, a, s′) instead of U(s′) as performed in CU) for an aggregation at the societal
level. These human-crafted ethical goal functions should be made publicly avail-
able within a white-box setting e.g. for reasons of transparency, AI coordination,
disentanglement of responsibilities for AI governance and law enforcement [2]
(which differs from using utility functions implicitly learned by AI agents or AIs
learning moral conceptions from data such as e.g. in [36]). Besides being able
to contribute to the meaningful control of intelligent systems, AU could also
be utilizable for human agents in the policy-making domain. Overall, we agree
with Goertzel [20] that the perverse instantiation problem seems rather not to
represent “a general point about machine intelligence or superintelligence”.

One of the main future challenges for the realization of AU could be the
circumstance that one can only strive to approximate ethical goal functions,
since a full utility elicitation on all possible future scenarios is obviously not fea-
sible. However, already an approximation process within a socio-technological
feedback-loop could lead to an ethical enhancement at a societal level. Besides
that, in order to achieve safe run-time adaptive artificial intelligent systems
reliably complying with ethical goal functions, a “self-awareness” functionality
might be required [1,40]. Moreover, the security of the utility function itself is
essential, due to the possibility of its modification by malevolent actors dur-
ing the deployment phase. Finally, proactive AGI Safety research [1] on ethical
adversarial examples – a conceivable type of integrity attacks on the AGI sen-
sors having ethical consequences might be important to study in future work to
complement the use of safe utility functions.
2 AU is not be to confused with agent-relative consequentialism which is a normative

agent-based framework, does not foresee a grounding in science and seems to assume
a “pretheoretical grasp” [37] of its “better-than-relative-to” relation.
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Abstract. In recent years, the implementation of meaningfully control-
lable advanced intelligent systems whose goals are aligned with ethical
values as specified by human entities emerged as key subject of investiga-
tion of international relevance across diverse AI-related research areas. In
this paper, we present a novel transdisciplinary and Systems Engineering
oriented approach denoted “orthogonality-based disentanglement” which
jointly tackles both the thereby underlying control problem and value
alignment problem while unraveling the corresponding responsibilities of
different stakeholders based on the distinction of two orthogonal axes
assigned to the problem-solving ability of these intelligent systems on
the one hand and to the ethical abilities they exhibit based on quanti-
tatively encoded human values on the other hand. Moreover, we intro-
duce the notion of explicitly formulated ethical goal functions ideally
encoding what humans should want and exemplify a possible class of
“self-aware” intelligent systems with the capability to reliably adhere to
these human-defined goal functions. Beyond that, we discuss an attain-
able transformative socio-technological feedback-loop that could result
out of the introduced orthogonality-based disentanglement approach and
briefly elaborate on how the framework additionally provides valuable
hints with regard to the coordination subtask in AI Safety. Finally, we
point out remaining crucial challenges as incentive for future work.

Keywords: Ethical goal function · Self-awareness · AI alignment ·
Control problem · AI coordination

1 Motivation

In the current both safety-critical and ethically relevant international debate on
how to achieve a meaningful control of advanced intelligent systems that comply
with human values [19], diverse solution approaches have been proposed that
fundamentally differ in the way they would affect the future development of
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A(G)I research. In a nutshell, one could identify a set of four main clusters of
conceptually different solution approaches for which one could advocate for by
distinguishing between (1) prohibitive, (2) self-regulative, (3) deontological and
(4) utility-based methods. While the prohibitive approach aims at restricting or
even banning the development of highly sophisticated AI until problems related
to control and value alignment are solved in the first place, it seems highly
unlikely to be put into practice especially in its most extreme forms and it is
therefore not further considered in this paper. By contrast, option (2) implies the
assumption that certain mechanisms (for instance specific market mechanisms
or mechanisms inherent to certain types of A(G)I architectures) could allow for
a more or less automatically emerging stability or desirability of the behavior as
exhibited by intelligent systems. Furthermore, solution (3) classically considers
the direct hard-coding of ethical values into AI systems for instance by encoding
deontological values at design time [18], while in the case of the utility-based
approach (4), one mostly foresees a human-defined utility function [24] quanti-
tatively encoding human values.

This debate – especially on whether to prefer the solution approach (3) or
(4) – is often strongly imprinted by particularly difficult to solve philosophi-
cal issues and the AI-related responsibilities of different involved stakeholders
such as users, programmers, manufacturers and legislators appears to be only
vaguely and therefore insufficiently definable. Against this backdrop, the need
for a practicable technically oriented and at the same time forward-looking solu-
tion appears to be of urgent importance for a responsible future planning of a
hybrid society in close conjunction with advanced AI systems.

2 Disentanglement of Responsibilities

For reasons of safety, security, controllability, accountability and reliability, it
can be assumed that it is in the interest of a democratic society to achieve a
transparent division of responsibilities for the deployment of intelligent systems
in diverse application areas. Thereby, the systems should act in accordance with
ethical and legal specifications as formulated by the legislative power and allow
for traceability in order to facilitate an assignment of responsibility by the judi-
cial power. Consequently, we argue that the self-regulative solution (2) can be
ruled out since it would lead to a heterogeneous set of different ethical frame-
works implemented within different types of intelligent systems yielding highly
complex entanglements especially with regard to responsibility assignments (e.g.
among manufacturers, programmers, users and operators). Furthermore, as the
problem solving ability of the intelligent systems increases, the severity of possi-
ble unintended effects, malicious attacks [6] or the development of intentionally
crafted unethical systems [17] which could even induce existential risks seems to
prohibit a laissez-faire approach. Thus, the remaining options are the deontolog-
ical approach (3) and the utility-based solution (4) since both could be in theory
implemented within a framework separating the responsibilities as described.

According to the orthogonality thesis by Bostrom [5], “intelligence and
final goals are orthogonal axes along which possible agents can freely vary”.
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Though, the thesis is not uncontroversial for reasons comprising the fact that it
does not address probabilities as postulated by Goertzel [10]. However, for the
purpose of our specific argument, it is not necessary to consider the soundness of
the thesis, since we only presuppose that “there exists a type of AI architecture
for which final goals and intelligence are orthogonal” which is self-evident consid-
ering utility maximizers [4] as classical examples epistomizing solution (4). From
this, it trivially follows that formulating a goal function for a utility maximizer
and designing the architecture of this agent are separable tasks. Building on
that, we argue that the already existing practice of the legislative power having
a say on the what goals to achieve as long as societal impacts are concerned and
the manufacturers implementing the how in various contexts can be adapted to
goal-oriented utility maximizers (albeit with certain reservations particularly on
the nature of the architecture used) and can thus be pursued as postulated by
Werkhoven et al. [23].

Apart from that, it is undoubtedly possible to think of a similar disentangle-
ment of responsibilities in accordance with a solution of the type (3). However,
for mostly technical reasons we will now illustrate, we do not consider a deonto-
logical framework in which lawful and ethical behavior is encoded for instance
in ontologies [12] or directly in natural language as possible instantiation of our
orthogonality-based disentanglement approach. First, the attempt to formulate
deontological rules for every possible situation in a complex unpredictable real-
world environment ultimately leads to a state-action space explosion [23] (it
is thereby obvious that law does not represent a complete framework). To be
able to handle the complexity of such environments and the complexity of inter-
nal states, the intelligent system needs to be run-time adaptive which cannot be
achieved by using static rules. Second, since law is formulated in natural language
which is inherently highly ambiguous at multiple linguistic levels, the intelligent
system would have to either make sense of the legal material using error-prone
Natural Language Processing techniques or in the case of the ontology-based
approach, the programmers/manufacturers would have to first interpret law
before encoding it which induces uncertainty and violates the desired disen-
tanglement of responsibilities. Third, law leaves many legal interpretations open
and entails tradeoffs and dilemmas that an intelligent system might encounter
and would need to address leading to an unspecified assignment of responsibil-
ities. Fourth, an update of laws will require a costly and laborious update of
designs for every manufacturer. Fifth, a deontological approach with fixed rules
cannot easily directly endorse a process in which progresses in AI could be effi-
ciently used to transform society in a highly beneficial way enabling humans to
overcome their cognitive and evolutionary biases and creating new possibilities
to improve the foundations of society.

Having expounded why the deontological solution approach (3) is inappropri-
ate for the central problem of disentangling responsibilities for the deployment of
intelligent systems, we now elucidate how a properly designed solution (4) is able
to avoid all mentioned disadvantages associated with solution (3). First, it might
be possible to realize run-time adaptivity within utility maximizers by equipping
them with a “self-awareness” functionality [1] (self-assessment, self-management
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and the ability to deliver explanations for actions to human entities) which
we outline in Sect. 4. Moreover, deontological elements could be used as con-
straints on the utility function of such utility maximizers in order to selectively
restrict the action or the state space. Second, by quantifying law within a pub-
licly available ethical goal function as addressed in the next Sect. 3, one achieves
an increased level of transparency. Third, through a utility function approach
tradeoffs and dilemmas are more easily and comprehensibly solved. Thereby, for
safety reasons, the utility functions can and should include context-sensitive and
perceiver-dependent elements as integrated e.g. in augmented utilitarianism [2].
Fourth, updates of law are solely reflected in the ethical goal functions which
leads to a more flexible and controllable task. Fifth, the use of such an ethi-
cal goal function approach opens up the opportunity for a society to actively
perform an enhancement of ethical abilities which we depict in Sect. 5.

3 Ethical Goal Function and “What One Should Want”

A first step of crafting ethical goal functions could be for instance to start with
the mapping of each relevant application domain of law to a specific utility func-
tion which quantifies the expected utility of the possible transitions of the world.
For this purpose, the legislative has for instance to define the relevant compo-
nents of each goal function and assign weights to each component, decide which
parameters to consider for each component and identify possible underlying cor-
relations. (It is thinkable that specific stakeholders might then while applying
the goal function to their particular area of application, craft a lower-level cus-
tomized mission goal function [8] for their specific mission goals which would
however have to be compliant with the ethical goal function provided by the
legislative.) The implementation of this strategy will require a relatively broad
multidisciplinary knowledge by policy-makers or might require the practical col-
laboration with trained multidisciplinary researchers with expertise in e.g. AI
and Systems Engineering.

One important feature of the proposed framework is the requirement of trans-
parent human-readable goal functions that can be inspected by anyone which
substantially facilitates accountability. In order to obtain a specification of a
human-oriented goal function, different methods have been proposed including
inverse reinforcement learning (IRL) [9] and reward modeling [16]. However, the
IRL method comes with the main drawback of yielding ambiguous reward func-
tions that could explain the observed behavior and within reward modeling, a
black-box model is trained by a user in order to act as reward function for a
reinforcement learning agent which violates both the transparency requirement
of our approach and the disentanglement of responsibilities since it is the user
that trains the reward model (and not a representation of society).

However, it is important to note, that as implicit so far, the goal functions
would be rather specified based on what humans want and not necessarily on
what humans should want from a scientific perspective, since it is known that
humans exhibit biases for instance inherent to their neural systems [15], due
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to their evolutionary past of survival in small groups [23] or through ethical
blindspots [20] which represent serious constraints to their ethical views. On
these grounds, the framework described in this paper is intended to be of trans-
formative and dynamical nature and might enable the legislative to receive a
quantitatively defined feedback from the environment, which in turn might foster
the human-made evidence-based adjustment of the explicitly formulated ethical
goal functions towards more scientifically sound assumptions.

Beyond that, as postulated by Harris [11], a science of morality which might
enable humans to identify the peaks on the “moral landscape” which he described
as “a [hypothetical] space of real and potential outcomes whose peaks correspond
to the heights of potential well-being and whose valleys represent the deepest
possible suffering” could represent a feasible general approach to solve moral
issues. In the light of the aforesaid, one could attempt to in the long-term pursue
research that facilitates the design of a scientifically grounded universal ethical
goal function whose local optima will ideally be conceptually equivalent to the
peaks of this hypothetical moral landscape potentially reflecting what humans
should want. Another interesting point of departure to be mentioned in this con-
text, has been introduced by Ziesche [26] who describes how the UN sustainable
development goals already representing an international consensus and contain-
ing values such as well-being could be quantified to start to practically tackle
the value alignment problem.

Note that Yudkowsky’ s early idea of a coherent extrapolated volition [25] in
the context of friendly AI which envisaged an AI maximizing the utility based
on an extrapolation of what we would want “if we knew more, thought faster,
were more the people we wished we were, had grown up farther together” while
being relatively close to it, is though subtly different from our described concept
of what we should want based on a scientifically grounded ethical goal func-
tion, since an improvement of our problem solving ability does not necessarily
improve our ethical abilities nor does “the people we wished we were” neces-
sarily corresponds to a more ethical version of ourselves on average. Moreover,
there is no reason to assume that human values would necessarily converge to
ethical values if they “had grown up farther together”. However, as will be intro-
duced in Sect. 5, our method of utilizing ethical goal functions aims at actively
grounding the implementation of ethics in a transformative socio-technological
feedback-loop for which the legislative provides the seed.

4 “Self-Aware” Utility Maximizer

After having commented on the procedure of crafting ethical goal functions,
we now describe a class of architectures able to yield controllable utility max-
imizers that strictly comply with a generic goal function specified by humans.
In the following, we explain how a top-down analysis leads to an exemplary
technically feasible and minimalistic instance of this class. Note that when we
refer to an intelligent system in the following, we specifically mean a system
able to independently perform the OODA-loop (Observe, Orient, Decide, Act).
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One can further decompose the system into four distinct cognitive functions: sen-
sors, orienter, decision maker and actuators according to these four subcompo-
nents respectively. In a first step, we assume that the utility maximizer cannot be
based on a subsymbolic learning paradigm alone (such as Deep Learning (DL)),
since desirable reactions to all possible situations an intelligent system could
encounter in complex real-world environments cannot be learned in reasonable
time with finite computational resources. Thus, we postulate in a second step
that a certain level of abstraction is required which can be achieved by combin-
ing a symbolic reasoning component with a perception exploiting the advantages
of learning algorithms resulting in a “hybrid architecture”. However, this hybrid
intelligent system needs to be as well-equipped with a self-model to face the
possible complexity of its internal processes without which the system would be
confronted with similar problems caused by the inability to anticipate reactions
to all possible internal states. In a third step, we argue that the requirement for a
self-awareness capability [1] comprising self-assessment and self-management as
well as the ability to provide explanations for actions to human entities appears
essential for instance for reasons such as the necessity of constructing solutions
in real-time that have not been learned before including sensor management [13],
adaptivity in the case of communication to other intelligent systems [14] and for
explainability purposes. Apart from this, the view expressed by Thorissón [21]
that “self-modeling is a necessary part of any intelligent being” which similarly
considers the importance of feedback-loops relating the actions of a system to
the context of its own internal processes could be a further argument supporting
the relevance of self-awareness.

Taking these requirements into account, one feasible instance of the described
class of hybrid self-aware utility maximizers could integrate DL algorithms –
presently representing relatively accurate Machine Learning models especially
in the vision domain – as sensors at the subsymbolic level able to output classifi-
cation results that can be further processed by the orienter component yielding a
symbolic representation of the situation and the internal processes. As decision
maker one could envisage a utility-based reasoning/planning (and not learn-
ing) process such as e.g. with (partially observable) Markov decision processes
(MDP) equipped with the ethical goal function as specified by the legislative, a
causal model of the world and of the system itself. The decision maker would
map symbolically encoded situations and internal processes to actions maximiz-
ing on expected utility with respect to the ethical goal function that are finally
executed by the actuators either on the environment or on the system itself. In
this framework, explanations could be delivered at the symbolic level. Concern-
ing the input-to-output mappings of the DL sensors, one possibility could be to
strive to monitor the related uncertainty by means of self-management which
will have to be reflected in the goal function.

5 Socio-Technological Feedback-Loop

Having discussed how a disentanglement of societal responsibilities for the
deployment of intelligent systems could be achieved, introduced the notion of



28 N.-M. Aliman et al.

Fig. 1. Simplified illustration and contextualization of a socio-technological feedback-
loop (highlighted in blue) implementing the orthogonality-based disentanglement app-
roach for a generic stakeholder domain. (Color figure online)

an ethical goal function and described the corresponding requirements an intel-
ligent system might need to fulfill in order to comply with such a function, we
illustrate and contextualize the composite construction of a consequently result-
ing socio-technological feedback-loop in Fig. 1. At the pre-deployment stage, the
manufacturer is responsible for verification and validation practices including
the conduct of system tests demonstrating the ability of the intelligent system
to adhere to the ethical goal function. At post-deployment stages, the judicial
power determines for instance whether the different agents acted in compliance
with an ethical goal function given a set of explanations. Concerning the main
socio-technological feedback-loop, its key characteristic lies in the fact that it
would enable the legislative to dynamically perform revisions of an ethical goal
function based on its quantifiable impacts on the environment and that it could
serve as powerful policy-making tool. Thereby, this feature is paired with the
peculiarity that the nature of the environment is not restricted to solely encom-
pass real-world frameworks. More precisely, one could for instance distinguish
between three different variations thereof enumerated in an order of potentially
increasing speed of formulating/testing hereto related policy-making measures
that might be substantiated in an ethical goal function: (1) classical real-world
environments, (2) specifically crafted and constrained synthetic environments
and (3) simulation environments.

Since the design of an appropriate ethical goal function represents a highly
complex task and the necessary time window to collect evidence on its societal
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impacts in real-world settings on a large-scale might often represent an undesir-
able complication, policy experimentation on a small-scale in restricted synthetic
environments relating the ethical goal function to specific impacts might repre-
sent a complementary measure. However, an even more efficient solution allowing
for faster decision-making is the “policy by simulation” approach [23] in which
human expert knowledge can be extended by AI systems within simulation envi-
ronments. In doing so, AI might finally assist humans in developing more ethical
AI systems while ultimately enhancing human ethical frameworks by relating
the mathematic formulation of an ethical goal function to its direct impacts on
the (simulated) environment making possible answers to the crucial question on
“what humans should want” graspable and beyond that, potentially a direct
object of scientific investigation.

Finally, the proposed orthogonality-based disentanglement of responsibilities
could provide a new perspective for the AI coordination subtask in AI Safety –
the non-trivial issue of making sure that global AI research is dovetailed in
such a way that no entity actually implements an unethical and unsafe AGI or
ASI – e.g. by offering a starting point for considerations towards an international
consensus on the principle of using publicly accessible ethical goal functions that
can be easily inspected by the public and international actors. This method might
reduce the AI race to the problem-solving ability dimension while at the same
time providing incentives for demonstrably ethical and transparent frameworks
tightly coupled to an ethical enhancement of partaking societies. Given that the
law already represents a public matter, it does thereby not seem to represent an
exceedingly disruptive step to advocate for public ethical goal functions.

6 Conclusion and Future Prospects

In a nutshell, the Systems-Engineering oriented approach presented in this paper
which we termed “orthogonality-based disentanglement” evinced a technically
feasible solution for a responsible deployment of intelligent systems which jointly
tackles the control problem and the value alignment problem. We postulated that
for this purpose, manufacturers should be responsible for the safety and secu-
rity of the intelligent systems which they could implement using a utility-based
approach with hybrid “self-aware” utility maximizers combining e.g. symbolic
reasoning/planning with deep learning sensors. Complementarily, the legislative
as representation of the whole society should be responsible for the selection
of final goals in the form of human-made, publicly available and quantitatively
explicitly specified ethical goal functions (which are not implicitly encoded in
an opaque learning model). Additionally, we discussed how a socio-technological
feedback-loop stemming from this particular disentanglement might facilitate
a dynamical human ethical enhancement supported by AI-driven simulations.
Moreover, we briefly explained how the presented framework provides hints on
how to solve the AI coordination problem in AI Safety at an international level.

However, certain crucial safety and security challenges remain to be sep-
arately addressed and should be taken into consideration in future work.
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First, self-improvement within an intelligent system could for instance be imple-
mented by an online learning process or by reconfigurability through run-time
adaptivity. While it is reasonable to avoid self-improvement by learning dur-
ing the deployment of the system in order to limit safety risks, future work
will need to examine the possibility of verification methods for self-improvement
by reconfigurability at run-time. Second, while the self-awareness functionality
facilitates (self-)testing mechanisms, extended research on the controllability of
specific test procedures in synthetic testing environments will be required. Third,
a turn-off action could be seen as a primitive form of self-management in the
context of tasks where the performance of the system superseded human per-
formance. However, the possibility to turn-off the system for security reasons
by specified human entities should always be given. Fourth, for the purpose of
malevolence prevention, it is important to rigorously consider proactive security
measures such as A(G)I Red-Teaming at the post-deployment stage and research
on adversarial attacks on the sensors [1,22] of the self-aware intelligent system.
Fifth, a blockchain approach to ensure the security and transparency of the goal
functions themselves and all updates on these functions might be recommend-
able. Crucially, in order to avoid formulations of an ethical goal function with
safety-critical side effects for human entities (including implications related to
impossibility theorems for consequentialist frameworks [7]), it is recommendable
to assign a type of perceiver-dependent and context-sensitive utility to simu-
lations of situations instead of only to the future outcome of actions [2,3]. In
the long-term, we believe that scientific research with the goal to integrate the
first-person perspective of society on perceived well-being within an ethical goal
function at the core of the presented socio-technological feedback-loop might
represent one substantial element needed to promote human flourishing in the
most efficient possible way aided by the problem solving ability of AI.
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Abstract. We describe a model of emotion and motivation that extends the
MicroPsi motivation model for applications in conversational agents and
tracking human emotions. The model is based on reactions of the agent to
satisfaction and frustration of physiological, cognitive or social needs, and to
changes of the agent’s expectations regarding such events. The model covers
motivational states, affective states (modulation of cognition), feelings (sensa-
tions that correspond to a situation appraisal), emotions (conceptual aggregates
of motivational states, modulators and feelings) and is currently being adapted to
express emotional states.

Keywords: MicroPsi architecture � Artificial emotion � Affect � Motivation �
Modulation � Feelings � Appraisal models � Affective computing

1 Introduction

The success of deep learning models in AI (LeCun et al. 2015) is arguably leading to a
shift in the analysis of cognitive architectures within cognitive science and AGI
research. Traditionally, such architectures (e.g., Minsky 2006, Newell 1990) focused
on the multitude of observable or inferred functionality of cognitive agents, and pro-
posed structures and mechanisms for their implementation. The complexity of human
cognition is thought to emanate from a large set of implemented functions and struc-
tural components, which have to be modeled and implemented by the researcher.

A different perspective is given by the idea of general learning systems (e.g., Hutter
2005), which propose that neocortex and hippocampus allow for general hierarchical
function approximation to express complex emergent behaviors and perceptual abili-
ties, with other parts of the brain supplying infrastructure for learning, reward gener-
ation, differential attention control, routing of information between cortical areas, and
interfacing with perceptual and motor systems (see Marcus et al. (2014)).

This perspective suggests that cognition and interpersonal differences are largely
defined by motivational and attentional responses to environmental stimuli. If we
understand intelligent agents primarily as learning systems, we need to understand the
structures that shape this learning and give rise to perceptual models, imagination,
reasoning and problem solving, decision making, reflection, social interaction, and so
on. Unlike most current AI learning systems, human behavior is not driven by a single
reward or unified utility function, but by a complex system of physiological, cognitive
and social needs. For the implementation of a fully autonomous AI agent in a complex
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environment, we will need to identify a set of needs that spans the full spectrum of
relevant behavioral tendencies. A suggestion for such a set has been introduced by the
Psi theory (Dörner 1999), and later extended in the MicroPsi model (Bach 2012b,
2015), which describes a detailed framework of such needs, reward generators and
cognitive modulators. The MicroPsi motivation model forms the core of the cognitive
architecture MicroPsi (Bach 2009), but has also been used in the cognitive architecture
OpenCog as OpenPsi (Cai et al. 2012).

2 From Needs to Behavior

The MicroPsi model sees a cognitive architecture as a system to regulate and control a
complex organism (or comparable agent). Perception, learning and imagination are
tools in the service of that regulation. The demands of the agent (such as sustenance,
rest, social embedding) are represented as needs, and signaled to the cognitive pro-
cesses as urges, which are proportional to the strength (weight) of the respective need.
A need can be understood as a tank that runs dry over time, and which can be filled by
satisfaction events (consumptive actions) or emptied by aversive events.

In MicroPsi, memory content is represented in a neuro-symbolic formalism, and
representations of situations, objects and actions may be associated to urge signals via
learning. The presence of an urge sends activation into the representations, and thus
primes content in memory and perception, so attention and processing resources of the
agent are directed at them. The strength of urges modulate cognition to the situation at
hand, giving rise to the configurations that we call affective states.

The satisfaction or frustration of a need generates reinforcement signals that (to-
gether with sparseness and stability criteria) give rise to reinforcement learning and the
gradual formation of complex processing structures enabling perception, mental sim-
ulation and high-level cognition. Finally, urge signals inform the decision making of
the agent, direct its impulses and give rise to goal-directed behavior.

2.1 Needs

Needs reflect the demands of the organism, for instance, the requirement to maintain a
suitable body temperature, to obtain rest, or to find sustenance. The physiological
needs give rise to foraging, feeding, resting, pain avoidance and so on.

Social behaviors are driven by social needs, such as a need to be recognized and
reaffirmed as a member of a social group (affiliation), or to reduce another agent’s
suffering (nurturing), to conform to internalized norms (legitimacy), to obtain a posi-
tion in a social hierarchy (status), to regulate a social environment (justice), to engage
in courtship (affection), and to experience intimacy.

Cognitive needs direct skill acquisition (competence), exploration (uncertainty
reduction) and the formation of mental representations (aesthetics).

All goals of the agent correspond to the satisfaction of a need, or the avoidance of
its frustration. This reflects the direction of behavior by approach goals and avoidance
goals (Carver and Scheier, 1998; Elliot and Church 1997; Higgins, 1996).
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A need is defined by an extensive parameter set:

Each need is characterized by its current value vt 2 0; 1½ � and a weight x 2 R
þ ,

which specifies how strong the need registers in comparison to others (v0 is the initial
value of the need). An urge with an urge strength at 2 0; 1½ � represents the difference
between the target state (a fully satisfied need) and its current state for each need:

at ¼ x 1� vt�1½ �120
In addition to the strength of an urge, a need is characterized by the urgency

bt 2 0; 1½ � to address it. Urge strength and urgency are separate values, because
sometimes, even weak needs might have a short time window for satisfying them, which
should trigger the activity of the agent. The urgency is determined by amount of time
left to realize satisfaction, either because a crucial resource is about to drop to a critically
low level, or because the dynamics in the environment require immediate action.

bt ¼ x
k � remaining timet

k

� �12
0

The value of the need represents the inverse of a systemic demand. Satisfying the
need leads to an increase of the value, proportional to the gain g 2 0; 1½ � of the need,
frustrating it leads to a reduction of the value, proportional to the loss ‘ 2 0; 1½ �.

The satisfaction is provided either from a consumption event (such as eating for the
sustenance need, reaping praise for the affiliation need, or successfully acquiring a skill
for the competence need). Demands can also increase due to aversive events (such as
suffering an injury for the pain avoidance need, or failing at a task for the competence
need), which leads to a frustration of the need, proportional to its loss factor. A strong
gain or loss means that a consumption or frustration event has a stronger effect on the
value and reward signal of that need.

Some needs may also be satisfied or frustrated (usually to a lesser degree) by an
anticipated event. For instance, anticipating future uncertainty may frustrate the need
for uncertainty reduction. The strength of the gain and loss due to anticipated events is
given by the factors ĝ 2 0; 1½ � and ‘̂ 2 0; 1½ �. Most needs also deplete over time on their
own, depending on their decay factor, so they need to be regularly replenished. For
instance, the demands for sustenance, rest and affiliation will increase over time, and
thus require the agent to satisfy them repeatedly. In each moment, the agent may
experience a change in its current demand, dt. Let d

þ
t be the positive change at time t,
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d�t the negative change, and cdþ
t and cd�t anticipated positive and negative changes. The

new value of the need can be calculated as:

It seems natural to assume that the value of a need decays logistically, for instance
using a sigmoidal function that will decrease slowly at first, then rapidly, before
decreasing slowly again, such as

r xð Þ := 1� 1
1þ e�12 x�1=2ð Þ

For 0\y\1; we can calculate the inverse of this function as

r�1 yð Þ := 1
12

log
1� y
y

� �
þ 1

2

so that we can determine how far the decay of a variable has progressed, based on its
current value.

The differences in parameter configurations of the needs (especially weight,
gain, loss, and decay factor) can be used to model interpersonal variance in motivation
and thereby different personality properties. For instance, high weight and loss for
affiliation, combined with a low weight and gain for competence, would lead to high
agreeableness. High weights and gains for competence, uncertainty reduction and
aesthetics would lead to high openness. Low decay and high loss for affiliation may
lead to introversion. High weights and loss on competence and uncertainty reduction
will lead to high conscientiousness, and high loss on competence, affiliation, and
uncertainty reduction may lead to neuroticism (Bach 2012a).

Pleasure and pain are generated by changes in values of a need. They provide
rewards for the agent’s actions, and are used as reinforcement signals for learning.
Satisfying a need leads to a pleasure signal that is proportional to how much
the value of the need increases, the gain factor g of the need, and its pleasure sensitivity

. The anticipation of future consumption can also generate a pleasure signal,
proportional to the imaginary pleasure sensitivity . Pleasure signals decay over
time, according to a sigmoid function with a pleasure decay:

Pain signals are generated as a reaction to the depletion of a need.
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In addition, depleted needs (such as an empty stomach) may also cause a contin-
uous pain signal. For instance, using the following function with h ¼ 0:10 will increase
the pain value from 0 to 1, starting when the value is depleted to 10%:

2.2 Events and Consumptions

Anticipated events are expected situations in the inner or perceptual world of the
agent. They become relevant if they are associated with the expectation of a con-
sumption event C, i.e. with satisfying or frustrating a need and can be defined as

E :¼ hC; er; c; s; ei

Events can just happen, or they can be chosen as goals, which are actively pursued
by the agent and are either appetitive (positive reward) or aversive (negative reward). In
the latter case, the goal is to avoid the event. The motivational relevance of any event
is given by its expected reward er 2 �1; 1½ �, which can be positive (a need is satisfied)
or negative (frustration). The certainty c 2 0; 1ð � of the event specifies the confidence
of the agent that the event will happen. The skill (epistemic competence)s 2 0; 1½ �
specifies the chance that the agent can reap the benefits or avoid the dangers of the
event. The expiration time et 2 R

þ determines the duration until the event is expected
to happen. In every time step, or as the result of a belief update, the remaining time is
updated:

et ¼ et�1 � duration t; t � 1ð Þ½ �10
(Note that this is a simplification; a more accurate model should capture expected

reward, epistemic competence and expiration time as distributions).
Consumptions are the parts of an event that affect needs of an agent. Each con-

sumption either satisfies or frustrates a need (with a positive or negative total reward).

C :¼ hN ; rt; r
total; rmax; rd; discounti

When the associated event is triggered, the consumption continuously generates a
certain amount rt 2 Rð Þ of satisfaction or frustration for its associated need N , over a
certain reward duration rewardduration 2 R

þ , limited to a certain maximum reward
rmax 2 R per time step, until the total reward rtotal 2 R is reached.
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In an organism, reward signals are delivered via neurotransmitters, and their release
typically follows a right-skewed distribution. We may approximate this for instance as
a v distribution with degree 2:

signal tð Þ :¼ te�
1
2t
2

This way, the signal peaks at t ¼ 1 with a value of 0.6, and at t ¼ 3:5, we have
delivered 99.78% of the signal. In a discrete simulation, the actual reward value
delivered at a time step t for a reward signal triggered at t0 can be approximated using

t1 ¼ t � t0ð Þ 3:5
rd

duration t; t� 1ð Þ; t2 ¼ t � 1� t0ð Þ 3:5
rd

duration t; t� 1ð Þ

rt ¼ 3:5rtotal

rd
Zt2
t1

te�
1
2t
2

" #rmax

�rmax

¼ 3:5rtotal

rd
e�

1
2t
2
1 � e�

1
2t
2
2

� �� �rmax
�rmax

The reward value of an active consumption will change the value of the corre-
sponding need by

dþ
t ¼ rCt

� 	1
0 ; d�t ¼ rCt

� 	0
�1

as well as create the corresponding pleasure and pain signals. Pleasure and pain signals
indicate the performance of the agent and can be used to drive reinforcement learning.
Learning associates the respective need indicator with the current situation represen-
tation or action, to establish an appetitive or aversive goal. It can also be used to
associate the current situation or action with preceding elements in protocol memory, to
establish procedural memory. The learning signal is derived by multiplying the
respective pleasure or pain signal with the weight of the affected need.

2.3 Managing Expectations

Perception and cognition trigger belief updates, which manifest as the establishment,
change, execution or deletion of anticipated events. At each point in time, the agent
maintains a list of anticipated events. If the agent visits one of these events, either
during an update (such as establishing or changing an event, or reflecting upon it during
planning), it generates anticipation rewards, depending on the certainty c of the event
and the epistemic competence (skill) s of the agent to manage or avoid it:

cdþ
t ¼ cs

rCt
1þ discountet

� �1
0
; cd�t ¼ c 1� sð Þ rCt

1þ discountet

� �0
�1

Here, we are using hyperbolic discounting, to ensure that the agent is progressively
less concerned about the effects of events, the more the event lies in the future. The
effects of anticipated events on need satisfaction and pleasure/pain generation only
manifest as the result of the agent focusing on them in the respective time step, but the
actual signal generation may extend over an extended time.

Extending MicroPsi’s Model of Motivation and Emotion 37



Changes in an expected event may concern higher or lower certainty in its
occurrence, a difference in remaining time, a different expected reward, or a different
ability to deal with it (skill). In such cases, d is computed using the change in the
expected reward. If expected events manifest, they generate a reward for the need for
certainty. If they do not, they frustrate the need for certainty (which increases the
probability for the agent to engage in exploration behavior). If events are goals of the
agent, their occurrence or failure will also satisfy or frustrate the need for competence.

3 Modulators

Motivation determines the direction of cognition and the relevance of its content. In
contrast, modulation adapts the parameters of cognition to the situation at hand.
Examples of such modulators are arousal, valence and attentional focus, which may
vary in response to chances in the external and internal environment of the agent.
A configuration of modulators amounts to an affective state.

Each modulator M has a current value , and five parameters that
account for individual variance between subjects: the baseline is the
default value of the modulator; min and max 2 R the upper and lower bound of its
changes, the volatility defines the reaction to change, and the decay time
how long it takes until the modulator returns to its baseline.

Modulators do not assume a target value s instantly, but according to their
volatility:

We currently use six modulators: valence, arousal, dominance, which correspond
to the pleasure, arousal and dominance of Mehrabian’s PAD model (Mehrabian 1980),
and have first been suggested as valence, arousal and tension by Wundt (1910).
Dominance is also sometimes called agency; it describes how much the agent is in
control of a situation, as opposed to being in a passive state with reduced metacog-
nition. In addition, MicroPsi defines three attentional modulators: resolution level,
focus and exteroception. Modulators change depending on aggregates of the current
values and changes of the needs. We determine the value of these aggregates using
marginal sums (because combining urgency or pain signals is not simply additive, but
approaches a limit given by the signaling pathways of the organism):

marginal sum V ; limitð Þ :¼
X Vj j

n¼0
Sn



Sn :=

limit � Sn�1

limit
vn; limit

¼ max xjx 2 weightsNf gð Þ
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Valence represents a qualitative evaluation of the current situation. Valence is
determined as the aggregate of pleasure and pain:

svalence ¼ P �Q
limit

Arousal reflects the combined strength and urgency of the needs of the agent.
Arousal leads to more energy expenditure in actions, action readiness, stronger
responses to sensory stimuli, and faster reactions:

urge ¼ marginal sum xN aNf gð Þ; urgency ¼ marginal sum xN bNf gð Þ

sarousal ¼ urgeþ urgency
limit

� 1

Dominance suggests whether to approach or retract from the attended object, based
on the competence for dealing with it. High dominance corresponds to a high antici-
pated reward, a middle value marks indifference, and low dominance tends to lead to
retraction from the object.

epistemic comp: ¼ scurrent goal event general comp: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vcomp:epistemic comp:

p
sdominance ¼ general comp:þ epistemic comp:� 1

The resolution level controls the level of detail when performing cognitive and
perceptual tasks. A high resolution will consider more details and thus often arrive at
more accurate solutions and representations, while a low resolution allows faster
responses. (In MicroPsi, the resolution level is interpreted as the width of activation
spreading in neuro-symbolic representations). It is calculated by the urge strength of
the goal, but reduced by its urgency, allowing for faster responses.

The focus modulator defines a selection threshold, which amounts to a stronger
focus on the current task, and a narrower direction of attention. Suppression is a
mechanism to avoid oscillations between competing motives. (In our implementation
of the model, we also use focus as a factor to proportionally increase pleasure and pain
signals of a need that corresponds to a current goal, i.e. is currently in attendance.)
Focus is increased by the strength and urgency of the current goal, and is reduced by a
low general competence.

Exteroception (sometimes also called securing rate)- determines the frequency of
obtaining/updating information from the environment, vs attending to interoception
(mental events). A dynamic environment requires more cognitive resources for per-
ceptual processing, while a static environment frees resources for deliberation and
reflection. The securing rate is decreased by the strength and urgency of the leading
motive, but increases with low competence and a high need for exploration (which is
equivalent to experienced uncertainty).
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4 Feelings

In human beings, the ability to perform motivational appraisals precedes symbolic and
conceptual cognition. These appraisals are influencing decision making and action
control below the consciously accessible level, and can often be experienced as distinct
sensations (feelings). While the world “feeling” is sometimes colloquially used to mean
“emotion”, “romantic affect” or “intution”, here it refers to the hedonic aspect of an
emotion or motivational state, i.e. a perceptual sensation with distinct qualities that may
or may not accompany the emotional episode. Feelings sometimes correspond to
characteristic changes in modulation of physiological parameters during certain emo-
tions, such as tension of muscles and increased heart rate during anger, or the flushing
of the cheeks during shame. However, we suspect that in large part, the mapping of
feelings to the body image serves disambiguation (such as love or heartbreak in the
chest, anxiety and power in the solar plexus, cognitive events in the head). To further
the disambiguation, feelings tend to have a valence (pleasant or painful), as well as
additional perceptual features (weight, extension, expansion/contraction). While there
seems to be considerable interpersonal variation in how feelings are experienced, and
these experiences change during childhood development, most subjects report simi-
larity in the way in which they sense correlates to their emotional states (Nummenma
et al. 2013). Our artificial agents do not possess a dynamic self model that would allow
to model cognitive access to their feelings and other experiential content, but we can
treat them as semantic items that influence conversation, and model their influence on
the expression of emotional states, especially with respect to posture and movement
patterns.

5 Emotions

The MicroPsi model does not assume that emotions are explicitly implemented, like for
instance in the classic OCC model (Orthony et al. 1988), but emergent, as perceptual
classifications. Modulator dimensions give rise to a space of affective states, with
higher level emotions resulting from affects that are bound to an object via appraisals
that result from motivational relevance. This makes the MicroPsi model similar to the
EMotion and Adaptation Model (EMA) (Gratch and Marsella 2009). Emotion cate-
gories are perceptual classifications that we can use to characterize and predict the
modulator state and behavior tendencies of an agent.

There is no generally accepted taxonomy of emotional states, and the classification
of emotions depends very much of on the cultural and individual context (see, for
instance, Cowen and Kentner 2017). For the purpose of classification within our model
of conversational agents, we can nevertheless give characterizations, such as the joy, as
a state of positive valence and high arousal, and bliss, with positive valence and high
resolution level (which often corresponds to low arousal).
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Social emotions often depend on a difference between how we perceive an agent or
action and a normative expectation (how the agent or action should be). For instance,
we call the perception of the position of an agent in a social hierarchy status, and the
measure of the actual value of that agent esteem (corresponding to the level of the need
for legitimacy). A difference between status and esteem in another agent is perceived as
an injustice, and in oneself as a source of guilt. An event that causes other agents to
lower their esteem of oneself may be a cause of shame. Envy is an emotion that
describes a status differential between oneself and another agent that is not reflected by
a corresponding difference in esteem. In this way, we have characterized 32 emotions
along the following dimensions: valence (positive, negative or neutral), dominance
(agency/control), arousal, urge (as aggregate of all present need strengths), urgency,
certainty, immediacy vs. expectation vs. memory of past, confirmation of expectation,
competence, physiological pleasure, valence for ingestion (appetence/disgust), aes-
thetic valence, normative valence of agent (esteem), status of agent (level in hierarchy),
relational valence of agent (sympathy, potential for affiliation), romantic valence of
agent (potential for affection), erotic valence of agent (sexual attraction), normative
valence of self (self-esteem, need for legitimacy), status of self, relational valence of
self (need for affiliation), romantic valence of self (need for affection). (The detailed
description of this characterization is beyond the scope of this paper). In this way,
typical emotion categories can be defined and mapped to feelings, facial expression,
modulation of utterances, changes in posture etc.

6 Evaluation

The MicroPsi model has been implemented in various agents. The extensions that we
present here attempt to approach the time dynamics of human behavior, by modeling
the gradual release and change of signals, and dealing with anticipated rewards. A full
blown psychological study has been outside of the scope of this engineering work.
Instead, we annotated video sequences with human actors with their motivational
events (expecting events, changing expectations, setting and dropping goals, experi-
encing events), and displayed the resulting modulator dynamics and emotional states in
real-time (Fig. 1). The viewer combines consumptions with corresponding physio-
logical, social and cognitive needs (eat–food, drink/perspire–water, heal/injure–health,
recover/exert–rest, acceptance/rejection–affiliation, virtue/transgression–legitimacy,
win/loss–status, compassion/pity–nurturing, connection/abandonment–affection,
success/failure–competence, confirmation/disconfirmation–uncertainty reduction,
enjoyment/disgust–aesthetics). For each need, it displays real-time responses to plea-
sure, pain, urge and urgency, and the combination of these into aggregates (valence,
global urgency/stress level, global urge) and modulators (resolution level, focus,
dominance, exteroception and arousal). By triggering consumptions based on events in
the video, we are able to reproduce and display the motivational and affective dynamics
of the actor. Future work may use the same approach to model affective states of human
interaction partners of conversational agents in real time.
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While such an approach is insufficient to demonstrate psychological adequacy of
the model (even though such adequacy is ultimately the goal of our work), it
demonstrates that MicroPsi can be used to mimic plausible human behavior over a
range of events, which we see as an important step in creating a computational model
of complex motivation and emotion.
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Abstract. We present WILLIAM – an inductive programming system
based on the theory of incremental compression. It builds representa-
tions by incrementally stacking autoencoders made up of trees of general
Python functions, thereby stepwise compressing data. It is able to solve
a diverse set of tasks including the compression and prediction of sim-
ple sequences, recognition of geometric shapes, write code based on test
cases, self-improve by solving some of its own problems and play tic-tac-
toe when attached to AIXI and without being specifically programmed
for it.

Keywords: Inductive programming · Incremental compression ·
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1 Introduction

It is well-known to any trained machine learning practitioner that the choice of
a learning algorithm severely depends on the class of tasks to be solved. Cynical
voices have even claimed that the really intelligent part of the final performance
actually resides within the human developer choosing, twisting and tweaking the
algorithm, rather than inside the algorithm itself.1 Somehow, a trained human
is able to recognize the narrowness of the algorithm and come up with simple
data samples which the algorithm will fail to represent.

In the context of AGI we would like to ask, how can we build an algorithm
that can derive such wide and diverse representations that even trained humans
will not recognize their limits? Conversely, humans seem to be limited by the
complexity of the represented data, since the ability to recognize structure in
large and complex data sets is what we need machine learning for in the first
place. The strength of those algorithms appears to entail their weakness: the
inability to represent a wide range of simple data. In order to make progress
toward AGI, we suggest to fill the “cup of complexity” for the bottom up, as
exemplified in Fig. 1.1 in [3]. Instead of building algorithms for complex but
narrow data, we suggest heading for simple but general ones.
1 Christoph von der Malsburg, personal communication.
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This is exactly what we have attempted in the present paper: we have built
WILLIAM – an algorithm that can handle a diverse set of simple data with the
goal of turning up the complexity in future. The importance of this approach is
also backed by the idea of a seed AI, recursively self-improving itself. After all,
in order to f-improve, an algorithm has to be able to solve problems occurring
during its own implementation. Even more so, the fraction of issues solved by
the algorithm itself rather than by the programmers should increase continu-
ously during the development of a real AGI system. Instead, developers usually
build various specialized algorithms, i.e. heuristics, in order to deal with various
difficulties during development, leading to narrow and brittle solutions. We have
avoided to use heuristics as much as possible and demonstrate in Sect. 3.5 a
simple self-improving ability of WILLIAM.

As opposed to cognitive architectures which consist of many narrow algo-
rithms trying to patch up each others representational holes in the crusade
against the curse of dimensionality, WILLIAM constitutes a monolithic app-
roach, i.e. it is essentially a single algorithm that helps itself and stays out of
high-dimensional regions of the task space by systematically giving preference
to simple data. Such a strong Occam bias is also what is demanded by formal
descriptions of optimal prediction and intelligence [6,14]: the prior probability
of a representation q of length l(q) being relevant to the current task should be
given a weight of 2−l(q)!.

These considerations impose several constraints on any monolithic algorithm.
In order to be wide enough it should employ search of general programs expressed
in a Turing complete language. Those programs have to be as simple as possible,
hence achieve high data compression ratios. WILLIAM achieves this by searching
in the space of syntax trees made up of Python operators and building stacked
autoencoders. By doing so, it exploits the efficiency of optimal compression guar-
anteed by the theory of incremental compression [4]. In order to enable actual
problem solving, we have attached these compression abilities to the expectimax
search of actions leading to high expected rewards, as demanded by an optimally
intelligent AIXI agent [6]. In Sect. 3.6 we describe how the resulting agent was
able to play tic-tac-toe without being explicitly programmed for it.

2 Description of the Algorithm

In the following we will describe the current state of WILLIAM built in our
OCCAM laboratory during the last 1.5 years. It is work in progress and consists
currently of about 9600 lines of Python code, including 876 test cases. Its main
task is, given a data string, to induce a representation with a short description
length. As a language we have used trees of currently 41 Python operators, which
can be converted to abstract syntax trees, compiled and executed by Python
itself. We have described the basics of the algorithm already in [5] and will focus
on the novel parts in this paper.
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2.1 Description Length

The description length of various data sets is computed in the following way.
Positive integers n are encoded with the Elias delta code [1], whose length is

l(n) = �log2(n)� + 2 �log2 (�log2(n)� + 1)� + 1 (1)

Arbitrary integers are assigned the code length l(2|n| + 1), due to the extra bit
for the sign. Floats are approximated by fractions up to a given precision by
minimizing the sum of the description lengths of nominator and denominator,
which are integers. Chars cost 8 bits due to 256 elements of the ASCII table. The
description length of iterable structures such as strings, lists and tuples consisted
of basic elements is simply the sum of the lengths of each element plus description
length of the length of the iterable structure. For example, the description length
of [-21,7,-4] is l(2·21+1)+l(2·7+1)+l(2·4+1)+l(3) = 10+8+8+4 = 30 bits.

Fig. 1. (a) The target list contains a subsequence [137,82,38] repeating three times.
The autoencoder tree squeezes the target through an information bottleneck. (b) The
tree corresponds to actual Python code that can be compiled and executed.

Beyond data sets, elementary operators and the trees of them that define
composite operators have to be described. The information needed to specify
an elementary operator is simply �log2(N)� = 6 bits where N is the length of
the alphabet, currently N = 41. Since each operator knows the number if its
inputs/children, a tree made up of operators can be described by assigning a
number 0, . . . , N − 1 to each operator and writing those numbers in sequence,
assuming a depth-first enumeration order. Thus, the description length of a tree
is simply 6 times the number of operators.

2.2 Representing Autoencoders

The idea of incremental compression rests on the construction of stacked autoen-
coders. Figure 1(a) exemplifies one such autoencoder. The whole autoencoder is
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a single tree where the target has to be the output of the tree and is allowed to
be an input to any of the leaf nodes of appropriate type. When a tree with the
property is found, the system tries to cut through it at the location of smallest
description length, i.e. it tries to find the information bottleneck whose descrip-
tion length (called waistline) is shorter than the target. In Fig. 1(a) listslice
and its inputs I1 and I2 slice the first three elements from the target list,
functioning in the role of a descriptive map f ′. The information bottleneck is
given by the dashed line at which point the intermediate, residual description2 is
[INCS,N,[137,82,38],REST]. The description length of the waistline consists
of 46 + 3 + 44 + 53 = 146 bits for the residual description and 18 bits for the
feature tree (6 bits per operator)). This is less than the description length of the
target (176 bits). Ergo, some compression has been achieved. The feature tree f
decompresses those variables back onto the target by inserting the repeating sub-
sequence at the indicated indices. The conditioned inputs are those to be given
(i.e. guessed), the inferred inputs can be computed by inverting the tree. We see
that without the descriptive map f ′, i.e. listslice, the list [137,82,38] would
have to be guessed in order to compress the target, which is highly improbable.

The search for such autoencoders is performed by enumerating all trees of
operators from the set of primitives, such that input and output types match.
The enumeration was sorted by a rating consisting of the description length of
the tree and conditioned inputs plus the logarithm of the number of attempts
to invert that tree, i.e. to find some inferred inputs. When some tree can not be
inverted for a long time, its rating drops and the search focuses on trees with
the smallest rating. Effectively, this search amounts to exhaustive search for a
pair (f, f ′) sorted by the sum of their lengths l(f) + l(f ′) if we consider the
conditioned inputs as belonging to f ′.

After an autoencoder is found, f ′ is removed and the residual description is
joined to a single list which serves as the target for the next autoencoders to be
stacked on the first one (see Sect. 3.2 for more details). This incremental process
continues until either no compression can be found or some maximal search time
is reached.

2.3 Prediction

Given a function and its inputs, predictions are generated by manipulating the
inputs in certain ways. In general, as demanded by Solomonoff induction, every
possible continuation of a string has to be considered and separately compressed.
Remember the Solomonoff prior of a string x:

M(x) =
∑

q:U(q)=x

2−l(q) (2)

where x, q ∈ B∗ are finite strings defined on a finite alphabet B, U is a universal
Turing machine that executes program q and prints x and l(q) is the length of

2 What we have called “parameter” in [4] is now called “residual description”.



48 A. Franz et al.

program q. Given already seen history x<k ≡ x1 · · ·xk−1 the prediction of the
next h bits is computed by considering all |B|h strings of length h and computing
the conditional distribution M (xk:k+h−1|x1:k) = M (x<k+h−1) /M (x<k), each
of which requires to find a set of short functions q that are able to compute
x<k+h−1.

This is clearly intractable in practice. However, if we consider the set of short
programs for x<k+h−1 in which the continuation xk:k+h−1 is chosen freely, it can
be shown that the continuation can not contain much additional information
compared to x<k

3. Therefore, that set of programs is likely to be among the set
of shortest programs already found for x<k. In this sense, although it is not a
general solution, it appears reasonable to look for small modifications of a short
function of x<k in order to predict its continuation.

In the present implementation we modify those leaves of the tree that are
related to the length of the output sequence, trying to extend its length. This
seems like a heuristic, however, from the theoretic perspective it turns out that
given a feature f of x, to arrive at some extended string xy, it takes a program of
constant size, K(g|f) = O(1), to arrive at some feature g of xy (yet unpublished
result). In that sense, we are well-set for the computation of predictions in a
theoretically grounded way.

In this paper, we use the shortest found functions for computing predictions,
but nothing prevents us from using several short functions for the approximation
of the Solomonoff prior and the Bayesian posterior for prediction purposes. For
prediction examples see Table 1 below.

Table 1. Examples of induced functions. The indicated compression ratio has been
reached after the indicated number of program execution attempts.

Target Induced program Attempts Compression Predictions

[0,1,2,...,99] urange(100) 1 98% 100,101,102,103,...

[0,9,9,1,9,9,2,9,9,

...,6,9,9]

insertel(trange(0,21,3),

urange(7),21,9)

1383 62% 7 or 9,9,...

[9,8,9,9,8,9,8,8,9,9,9] cumsum([9,-1,1,0,-1,1,

-1,0,1,0,0])

2 51% 9 or 10 or 11 or 12...

[100,200,300,400,500,

100,200,...,500]

repeat(100,

trange(100,600,100))

46 99% 100,200,300,400,500,

100,200,...

[7,1,8,7,1,8,7,...,

1,8,3,3,...,3,3]

conc rep(20, [7,1,8],

repeat(15, [3]))

317 85% 3,3,3,...

[33,35,...,147,149,150,

149,148,...,6,5]

conc tr(33, 151, 2,

trange(150, 4, -1))

384 96% 4,3,2,...

’ABCDEFGHIJKLMN’ str2idx(trange(65,79,1)) 23 60% ‘OPQRS...’

’aaaaammmmmzzzzz’ str2idx(cumsum([[97,0,0,0,

0,12,0,0,0,0,13,0,0,0,0]]))

8 49% ‘z’ or ‘{’ or ‘|’...

3 The proof would be beyond the scope of the present paper and will be published
soon.
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3 Results

3.1 Examples of Induced Programs

In the following, we present some test cases of what has been achieved so far.
The algorithm keeps searching for matching programs, until either a config-
urable amount of valid programs has been found, or all functions up to a certain
description length have been attempted. The target column in Table 1 describes
the data, for which the algorithm had to find a program, consisting of a function
and input data for that found function, so that calling the function with that
input data reproduces the target. In the last four examples, we also demonstrate
the reuse of already found functions, which were not present in the original set
of primitives, but were previously learned and (manually) stored.

In order to compute predictions, each function (also called composite opera-
tor) knows which leaves to update in order to extend the output. For example, in
the ABCD.. example, 79 is updated to 80 etc. since the trange operator knows
that its second input has to be incremented in order to increment its output.
Every operator knows how to be incremented which is propagated to the whole
composite. Integers are incremented by 1, while lists are extended by [0] or [1]
or [2] etc. which in the cumsum example in the third line, leads to the predictions
9, 10, 11 etc.

Table 2. Example of an incrementally induced composition of functions (also called
alleys in [5])

Denotation Feature Residual description Compression

x [0,9,9,1,9,9,2,9,9,3,9,9,4,9,9,5,9,9,6,9,9] 0%

f1 (a, b, c) , r1 insertel(a,b,c) [[0,3,6,9,12,15,18], [0,1,2,3,4,5,6],21,9] 28%

f2 (a) , r2 cumsum(a) [[0,3,3,3,3,3,3,-18,1,1,1,1,1,1,15,-12]] 40%

f3 (a) , r3 cumsum(a) [[0,3,0,0,0,0,0,-21,19,0,0,0,0,0,14,-27]] 52%

3.2 Example of Incrementally Induced Composition of Functions

Consider the target x from Table 2. WILLIAM has first found a function
f1 (a, b, c) and its residual description r1 = [a]. The feature f1 and the resid-
ual description r1 form the program

x = insertel([0, 3, 6, 9, 12, 15, 18], [0, 1, 2, 3, 4, 5, 6], 21, 9), (3)

which inserts the numbers 0 to 6 at the indicated indices and fills the rest with
9’s, which is shorter than the initial target x by 28%. In the current version of
WILLIAM, the new target is obtained by joining the residual into a single list
(denoted by c(r1)), so at step two the new target is set to

c(r1) = [0, 3, 6, 9, 12, 15, 18, 0, 1, 2, 3, 4, 5, 6, 21, 9].
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This concatenation is done in order to account for possible mutual information
between leaves. For example, the two lists in Eq. (3) both increment the previous
number by a constant and therefore there is mutual information between those
lists. Therefore, the application of a single cumsum function to the concatenated
list c(r1) compresses both lists.

After running the inductor on the new target c(r1) we obtain a new feature
f2 (a) and its residual r2 such that c(r1) = f2 (r2). Using c(r2) as the new target
we obtain f3 (a) and p3. This process is continued until the inductor can not find
a shorter description, which is c(p3) in this example. Overall, the final description
of the target x contains features (functions) f1, f2, f3, a residual r3 and some
information that allows to obtain initial versions of ri from the concatenated
forms c(ri), by saving the indices of each input in the concatenated list c(ri).

This compression required merely 45 attempts while the non-incremental
compression of the same required 1383 attempts (see Table 1), demonstrating
how incremental compression can be faster than non-incremental compression.
However, the compression ratio is somewhat lower. The reason is the concatena-
tion of ri to c(ri), which deletes the information about where the input to one
leaf ends and to the next leaf starts. We could do without this concatenation
and incrementally compress the values at each leaf independently, but this would
ignore possible mutual information between leaves. Consider another example in
Table 3, where this effect is even stronger.

Table 3. Another example of incremental compression. The depth of the incrementally
found tree is 7, which would be intractable in the non-incremental setting.

Denotation Feature Residual description Compr.

x [7,1,8,7,1,8,...,7,1,8,3,3,...,3] 0%

f1 (a, b) , r1 table(a,b) [[1,3,7,8], [2,0,3,2,0,3,...,2,0,3,1,1,...,1]] 36%

f2 (a, b, c, d, e) , r2 insertel(trange(a,b,c),d,e) [1,64,1, [3,7,8,2,0,3,2,0,3,...,2,0,3], 79, 1] 38%

f3 (a, b, c, d, e) , r3 insert(trange(a,b,c),d,e) [6,66,3,2, [1,64,1,3,7,8,0,3,0,3,...,0,3,79,1]] 49%

f4 (a, b, c, d, e) , r4 insert(trange(a,b,c),

d,cumsum(e))

[10,50,2,0,

[6,60,-63,-1,-1,63,-63,2,4,1,-5,0,0,...,0,76,-78]]

57%

This very target has been compressed by 85% in Table 1, while incremen-
tal compression has only achieved 57%. We see that due to the just discussed
concatenation of residuals, the next feature has to make efforts to cut out the
compressible parts of the residual using the insert and trange operators, wast-
ing description length this way. We don’t have a satisfactory solution to this
problem at this point. Nevertheless, this example demonstrates that deep trees
can be found incrementally.

3.3 Perception: Recognition of Geometric Figures and Line
Drawings

More examples are seen in Fig. 2 where a list of coordinate pairs coded for
various geometric figures. Those figures could be compressed successfully by



WILLIAM: A Monolithic Approach to AGI 51

Fig. 2. Incrementally compressed simple geometric figures, paths and line drawings

functions like zip(cumsum(cumsum(y)). They also constitute examples of incre-
mental compression in the sense that the list of coordinates were transformed to
two lists of x− and y−values, respectively, by an autoencoder using the zip oper-
ator. Remarkably, the residual description does not correspond to any usual way,
we would represent a, say, rectangle. Usually, we would encode the coordinates of
one corner (x0,y0), the length dx and the width dy. Instead, consider a larger
version of the rectangle in Fig. 2, having a width dx=100 and height dy=200
with one corner defined by x1=850 and y1=370. The residual after incremental
compression turns out to be

[[0,1,dx+1,n+1,dx+n,2*n,2*n+1,dx+2*n+1,3*n,dx+3*n],
[y0,-y0,1,-1,-1,x0-y0+1,y0-x0+1,-1,-1,1],4*n,0],
where n=dx+dy. We see that the residual does consist of the basic parameters of
a rectangle and some small numbers, albeit not fully compressed. Moreover, we
see that the residual of a square is a special case of the residual of a rectangle,
where dx=dy. The reason why compression has stopped before is the compression
condition: the residual has become quite short such as the description length of
a new feature plus its residual is too long. The fundamental reason is, that in
order to compress optimally, we should not consider a single rectangle, but a set
of rectangles compressed by the same function (see discussion). Overall, these
examples demonstrate that WILLIAM can compress simple geometric figures,
paths and line drawings.

3.4 Combining Our Induction Algorithm with AIXI

Given some induction capabilities of WILLIAM, we have implemented a plain
version of the AIXI agent, which chooses its actions according to the formula [6]

ak := arg max
ak

∑

okrk

· · · max
am

∑

omrm

[rk + · · · + rm] ·
∑

2−l(q)

q:U(q,a1...am)=o1r1···omrm

(4)

where ai, oi and ri are actions, observations and rewards at time step i,
respectively. In a nutshell, AIXI has seen the observation and reward sequence
o1r1 · · · ok−1rk−1, performed actions a1 · · · ak−1 and considers all permutations
of futures okrk · · · omrm and actions ak · · · am. For each such permutation it looks
for all programs, executed on a universal Turing machine U that can compute
the observation-reward sequence given the actions. The shortest such programs
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receive the highest weight 2−l(q), which implies that the most predictive pro-
grams are predominantly considered. Additionally, if the reward sum for such
a highly probable future is high as well, the action maximizing this expected
reward is taken.

WILLIAM uses its inductive capabilities in order to find a list of programs
q, which are operator trees, and computes their description length l(q). The
expectimax tree is implemented as is, without any modifications. The next two
subsections present examples of intelligent tasks solved by WILLIAM.

3.5 Recursive Self-improvement: WILLIAM Helps Itself to Do
Gradient Descent

One of the most thorny induction problems is the search for good sampling
algorithms. The central problem is to find inputs to a given function, such that
its value is maximized. For example, probabilistic graphical models face the
problem of finding areas of high probability in a high-dimensional space [9].
A long list of sampling procedures have been researched, however, a general
solution is not in sight. Any procedure is good for some problems and bad for
others, which hints to the fact that sampling is probably AI complete.

In our context, some inputs may lead to high compression ratios,
while others do not. Consider the following function, for example:
f1(x1,x2,x3,x4) := insert(range(x1, 20), repeat(x2, [x3]), x4) with
the target [N,N,...,N,0,0,...,0] where a large number N is repeated 20 times
and followed by zeros. Some values for x1 leads to long input descriptions, for
example, x1=14 leads to x2=6, x3=N, x4=[N,N,...,N,0,0,...,0] after invert-
ing the function, where the lange number N occurs 14 times within x4 while
lower values of x1 lead to shorter input descriptions. Thus, the total description
length of the inputs depends on x1: lower values of x1 lead to more compression.
Therefore, some gradient descent procedure would be helpful in order to find the
minimum (x1=0, cutting out all numbers N from the target). However, a priori
our algorithm would not perform a gradient descent procedure but exhaustive
search by default, which is inefficient. Usually, people start hard-coding a special
algorithm, like gradient descent in this case, in order to find the minimum more
efficiently. Instead, we have followed our general paradigm of refraining from
such heuristics and used our AIXI agent, in order to find the minimum.

The state space was set up as follows. There were two actions allowed, +1
and −1 to modify x1, no observations were needed for that task and rewards
were set to +1 if the input description becomes shorter and −1 otherwise. The
agent looked one time step ahead: m = k. The agent was initialized with a
start value x1=15, an action history -1,1,1,-1 with the respective rewards
1,-1,-1,1, since decreasing x1 leads better compression ratios. Given that his-
tory, the induction system of the agent has figured out that, among others, the
function f2(x) := map(negate, x) is able to compute the reward sequence
from the action sequence. That same function can then be used to compute
future rewards for any action and thus to maximize them. In this way, the agent
has figured out to take action -1 at every time step. However, the agent was
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not able to figure out appropriate actions when the history had some noise,
since filtering out noise currently exceeds the abilities of the induction system.
Nevertheless, an effective gradient descent ability has emerged from the agent
which relieves us from having to implement it as a heuristic. Moreover, nothing
additional will have to be implemented in future, since AIXI is a generally intel-
ligent agent and can be applied to a wide range of tasks. This is an example of
self-improvement, since AIXI uses the induction system (it has found function
f2) to improve the induction system (to find inputs to the function f1 more
efficiently). Note that even though from the perspective of intelligence, figur-
ing out that reducing a number reduces some objective function is not a hard
thing to do, the real achievement is about the fact that WILLIAM has found
the solution on its own and has thereby drastically reduced the size of its own
search space. This ability to recognize properties of a given task and deriving a
task-dependent efficient procedure instead of blindly applying some general but
inefficient one, is a crucial step for any system striving for AGI.

3.6 Intelligent Behavior: WILLIAM Plays Tic-tac-toe

Figure 3 shows a sequence of tic-tac-toe positions and alternate moves.

 ['-', 'o', '-', '-', 'x', 'o', '-', 'x', '-'],[['-', '-', '-', '-', '-', '-', '-', '-', '-'], ['-', '-', '-', '-', 'x', '-', '-', '-', '-'], ['-', 'o', '-', '-', 'x', '-', '-', '-', '-'], ['-', 'o', '-', '-', 'x', '-', '-', 'x', ,'-','-','o','-'[,]'-' 'x', 'o', 'x', 'x', '-']]

Start Agent` tnegAevoms ` tnegAevoms `s moveevoms`tnenoppOevoms`tnenoppO

Tic-tac-toe
positions

Encoded
positions

Encoded
moves 4 1 7 5 6

(a)

(b)

(c)

Fig. 3. WILLIAM plays tic-tac-toe. (a) A sample game. (b) The compression target
is the sequence of positions is encoded as a list of lists of strings. (c) The moves are
encoded by the square number. The agent’s last move on square 6 is a fork that cannot
be defended – a smart move.

We encoded the sequence of positions into a list of lists, each of which contains
9 strings of length 1, where ’x’ denotes the agent’s move, ’o’ the opponent’s
move and ’-’ a yet empty square. WILLIAM receives a target like Fig. 3(b)
(except the last position) and tries to compress it.

Relatively quickly, the function ttt := cumop3(setitem, START, MOVES,
repeat(NUMREP, CONTENT)) with respective inputs.

START=[’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’], MOVES=[4,1,7,5],
NUMREP=2 and CONTENT= [’x’,’o’] is found by the induction algorithm.
repeat(2, [’x’,’o’]) evaluates to [’x’,’o’, ’x’,’o’]. setitem is an oper-
ator that writes some content in a list at the specified position. For exam-
ple, setitem([’a’,’b’,’c’], 2, ’x’) evaluates to [’a’,’b’,’x’]. Finally,
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cumop3 is an arity 3 operator that cumulatively applies the function at its first
input to the other inputs computing the list of encoded positions in Fig. 3(b).

We observe that the found function ttt is a tree of depth two which can be
found quickly. The only thing that had to be programmed specifically for this
game is the map from a position to the reward, since recognizing that a positive
reward is given whenever there are three x-es in a row currently exceeds the
induction abilities of the system. A winning position is rewarded by +1 and a
losing one by −1. An illegal move is penalized by reward −100 if done by the
agent and by +100 if done by the opponent.

The only thing that remains to be done by WILLIAM is to find a sequence
of moves up that lead to a winning position. This kind of exhaustive search is
already part of the generic AIXI implementation: the expectimax operation: it is
not specific to tic-tac-toe. We chose the horizon of m = k+3, i.e. 4 moves ahead
(two taken by the agent, two by the opponent). However, instead of considering
all permutation of all possible lists of four lists and compressing all possible
futures, as would be required by AIXI, we used the found function ttt to run the
prediction algorithm (Sect. 2.3) to compute the probable futures. Note that the
sequence of past moves [4,1,7,5] was found by inversion. The generic prediction
algorithm took the induced function and their inputs and extended it by looking
at all continuations [4,1,7,5,a,b,c,d] of length 4 of a list of integers. The
extended target contains either 4 possible future positions if 0 ≤ a, b, c, d ≤ 8 or
throws an index error (since setitem could not write on an index larger than the
length of its list). The agent does not know that only numbers from 0 to 8 are
valid moves. It simply attempts the numbers with the lowest description length
first. Since the associated reward was given for free, the reward for every length-
4-sequence of moves can be computed and the best move can be selected using
the expectimax operation. Note, that minimax is a special case of expectimax,
if the probability of the opponent making a move that minimizes the value of
the agent’s position, is set to 1 and the other moves to 0 (see [6], Chap. 6.4).

Note that apart from the reward computation, the agent doesn’t know any-
thing specific about the game. For example, if only the first starting position
[’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’,’-’] is given, the agent compresses it
simply with repeat(9,[’-’]). Curiously, instead of making a ’x’, WILLIAM’s
“move” is to attach ’-’ to this target, since this function is simpler than the ttt
function above. After all, a list of dashes is all the agent has seen in its life. How-
ever, when more moves have been made, the agent finds a different description
that successfully captures the regularities in the sequence of positions, namely,
that each position is generated by the previous position by making an ’x’ or
an ’o’. The last move of the agent on square 6 in Fig. 3 is a fork that can not
be defended. It is selected since no answer by the opponent can compromise the
agent’s victory.

4 Discussion

We have demonstrated the current state of WILLIAM, showing the ability to
compress a diverse set of simple sequences, predict their continuation and use
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these abilities to solve simple tasks. As shown in Sects. 3.2 and 3.3, much larger
program trees could be induced than would be tractable by exhaustive search,
which consitutes evidence of the practical usefulness of our theory of incremental
compression.

4.1 Related Work

The field of inductive programming has traditionally focused on the deriva-
tion/search of recursive or logic programs, which has generally suffered from the
intractable vastness of possible programs to induce (see [8], [2] for a review), nur-
turing the demand for an incremental approach. The subfield of genetic program-
ming can be viewed as one such approach making it beyond toy problems, since
candidate programs are synthesized from already promising previous attempts or
by small mutations. The problem of bloat however has challenged progress in the
past [11]. We feel that algorithmic information theory can help out by providing
theoretical guarantees for the implementation of such a challenging endeavor.
The present paper can be viewed as an example of such a collaboration between
theory and practice.

Another attempt to deal with the curse of dimensionality is to try to make
the system itself deal with its own problems, by recursively improving itself.
Adaptive Levin Search [12] is comparable to our approach being an inductive
system with life-long self-improvement. It updates the probability distribution
of the primitives in order to speed up the system based on acquired knowledge.
WILLIAM is also able to do this, but moreover it can solve tasks incrementally,
such that it does not need to find a difficult solution at once, but instead breaks
down this process into steps.

4.2 Limitations

The list of current limitations is long both on the practical and theoretical side.
Problematic is the aspect that the used language is not Turing complete, since
the resulting Python programs always halt: there are no infinite loops and no
recursion. We will change this by using loop operators but the search algorithm
will have to be changed due to the halting problem, possibly using dovetailing
or a yet to be developed computable theory of incremental compression. The
conceptual problem of concatenating the leaves of a tree in the formation of the
residual description is also problematic as presented in Sect. 3.2.

A systematic evaluation of the compression algorithm comparing it to the
state of the art is also missing yet. Note that the tree in Fig. 1(a) is a way to cut
out arbitrary repeating substrings from a string. For example, the widespread
celebrated Lempel-Ziv algorithm also capitalizes on repeating substrings. We
haven’t tried it yet, but it seems straightforward to keep cutting out substring
after substring during incremental compression using the very same function.
This way, we can expect similar compression ratios for sequences at which
Lempel-Ziv compression is good while possessing much more general compres-
sion abilities than specialized compression algorithms.
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Another big missing piece is the lack of a dynamic memory. After all, pieces
of programs that have proven useful, should be reused in future in order to
enable incremental, open-ended learning. For this purpose, we could learn from
successful memoization techniques in inductive programming, such as in [7]. On
a more general note, the optimal structure of a memory is a difficult theoretical
problem and to be embarked on in future.

4.3 Recursive Self-Improvement

It is interesting to observe that many of the current problems in this induction
system could potentially be solved by the system itself. After all, it is a general
problem solver when attached to AIXI. We have already demonstrated one self-
aided way to search for inputs to a function in Sect. 3.5. Note that AIXI’s
problem solving abilities mostly depend on the abilities of the induction system.
But if some version of the system uses AIXI to solve some of its own problems, it
thereby effectively builds a new version of the induction system itself. Currently,
WILLIAM is yet too weak to help itself on a large scale, but several other self-
help problems come to mind.

For example, instead of using exhaustive search for various trees, we should
bias the search toward more simple trees first. But simplicity is measured only
after finding a short description, i.e. by finding a tree describing the tree! Hence,
this would require a search through short trees that generate codes for other
trees. The latter ones would then be simple by definition, since they have got a
short description, and therefore more likely a priori, as given by the Solomonoff
prior, Eq. 2.

Another example is the reuse of found trees by encapsulating them as com-
posite operators, which is already possible. This way frequently used such com-
posite operators will receive a short code (e.g. Huffman) increasing the likelihood
of being reused.

Another issue is noticed for example in the prediction of the tic-tac-toe moves.
The agent does not know anything about the game, it simply tries to extend a
list of integers, such as the moves in Fig. 3(c). This leads to the attempt to try
all integer combinations with the length defined by the AIXI horizon, including
invalid combinations like [0,0,0,2534] which has a shorter description length
than a set of valid moves [6,8,7,5] due to the logarithmic coding of natu-
ral numbers in the Elias delta code. A “smart” way would be to notice that
any move above 8 makes the function throw an exception. Instead of building
a heuristic, we plan to reuse WILLIAM’s induction abilities in the framework
of general knowledge-seeking agents [10], in order to find a function that com-
putes the possible valid entries. In this case, a function like lessthan(a, 9)
returns True for valid entries and its inversion would work as a generator for
valid entries. Since the theory of knowledge-seeking agents already provides with
optimal “experiments” that can rule out wrong hypotheses and WILLIAM is a
system that comes up with those hypotheses, we can expect WILLIAM to be
able to generate those inputs that are likely to be valid and help it to solve its
own problems.
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4.4 Compression, Interpretability and Concept Acquisition

Apart from facilitating the implementation of AIXI, one of the reasons we think
that compression is important is the hypothesis that it facilitates the acquisition
of concepts and reaches interpretable representations. Consider the rectangle
example in Sect. 3.3. The compression target was a list of pixel coordinates
which did not contain the width and length of the rectangle explicitly. Neverthe-
less, the final residual description did contain those variables. In fact, we suspect
that if we run the algorithm on an ensemble of different rectangles, the residual
will distill those variables even better, since those are the only unpredictable, i.e.
incompressible, changes between rectangles. Therefore, the distillation of inter-
pretable variables which could be mapped onto concepts and words for concepts
is an important step toward building an agent endowed with conceptualizations
tightly bound to grounded representations of the world. Moreover, for the pur-
pose of building taxonomies of objects, deciding statements like “any square is a
rectangle” appear possible since the (residual) description of a square is a special
case of the (residual) description of a rectangle. This is a non-trivial observation
since it is usually hard to obtain such taxonomic relationships in distributed
representations such as in neural networks.

4.5 Training Time and Generalization Abilities

Speaking of neural networks, another striking difference between our approach
and many common approaches in machine learning is that much less training is
required in order to solve tasks. “Big data” is necessary exactly because many
methods in machine learning do not generalize well. The lack of previous knowl-
edge is not the only reason why so called one-shot learning is difficult for con-
ventional methods. A major reason is that those methods do not compress data
well. As exemplified in the tic-tac-toe example, the agent plays well in the very
first game. Reasonable predictions in Table 1 are possible after the very first
sequence seen by the algorithm. Moreover, the fact that compression leads to
optimal generalization abilities is a fact proven in the theory of universal induc-
tion [13]. Therefore, heading for better compression ratios in machine learning
is another message we would like to convey in this paper.

4.6 Could this be a Path Toward AGI?

In the face of the AGI challenge, the current results are very modest, to say the
least, even though we don’t see any fundamental limits to this approach, since it
is backed by sound theories and any regularity seems to be representable by the
current or future version of the algorithm. The scalability of any algorithm is
usually impeded by the curse of dimensionality. In this case, our theory of incre-
mental compression and the encouraging aspects of self-improvement emerging
from the algorithm provide a fundamental response to this question, grounding
the hope for scalability in future, although it is too early to say for sure.

In summary, we have demonstrated a general agent able to solve tasks in a
range of diverse and simple environments. It searches for representations in a gen-
eral algorithmic space instead of using a fixed representation usually employed by
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machine learning approaches or a patchwork of algorithms in cognitive architec-
tures. Nevertheless, it achieves its relative efficiency by exploiting the fact, that
our environment usually contains features that can be searched for incremen-
tally. Possessing (nondegenerate) features is an assumption that is possibly not
valid for the universal set of strings, however it may be valid for the universe we
live in. In this sense, looking for such general but non-universal properties may
boost the efficiency even further without making compromises on the generality
of intelligence.
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Abstract. A novel pattern mining algorithm and a novel formal def-
inition of surprisingness are introduced, both framed in the context of
formal reasoning. Hypergraphs are used to represent the data in which
patterns are mined, the patterns themselves, and the control rules for
the pattern miner. The implementation of these tools in the OpenCog
framework, as part of a broader multi-algorithm approach to AGI, is
described.
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1 Introduction

Pattern recognition is broadly recognized as a key aspect of general intelligence,
as well as of many varieties of specialized intelligence. General intelligence can
be envisioned, among other ways, as the process of an agent recognizing patterns
in itself and its environment, including patterns regarding which of its actions
tend to achieve which goals in which contexts [5].

The scope of pattern recognition algorithms in AI and allied disciplines is
very broad, including many specialized algorithms aimed at recognizing pat-
terns in particular sorts of data such as visual data, auditory data or genomic
data. Among more general-purpose approaches to pattern recognition, so-called
“pattern mining” plays a prominent role. Mining here refers to the process of
systematically searching a body of data to find a large number of patterns sat-
isfying certain criteria. Most pattern mining algorithms are greedy in operation,
meaning they start by finding simple patterns and then try to combine these
to guide their search for more complex patterns, and iterate this approach a
few times. Pattern mining algorithms tend to work at the syntactic level, such
as subtree mining [2], where patterns are subtrees within a database of trees,
and each subtree represents a concept containing all the trees consistent with
that subtree. This is both a limit and a strength. Limit because they cannot
express arbitrary abstractions, and strength because they can be relatively effi-
cient. Moreover even purely syntactic pattern miners can go a long way if much
of the semantic knowledge is represented in syntax. For instance if the data con-
tains human(John) and human ⇒ mortal a purely syntactic pattern miner will
c© Springer Nature Switzerland AG 2019
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not be able to take into account the implicit datum mortal(John) unless a step
of inference is formerly taken to make it visible. Another shortcoming of pattern
mining is the volume of patterns it tends to produce. For that reason it can be
useful to rank the patterns according to interestingness [12]. One can also use
pattern mining in combination with other pattern recognition techniques, e.g.
evolutionary programming or logical inference.

Here we present a novel approach to pattern mining that combines semantic
with syntactic understanding of patterns, and that uses a sophisticated measure
of pattern surprisingness to filter the combinatorial explosion of patterns. The
surprisingness measure and the semantic aspect of patterns are handled via
embedding the pattern mining process in an inference engine, operating on a
highly general hypergraph-based knowledge representation.

1.1 Contribution

A pattern miner algorithm alongside a measure of surprisingness designed to
find patterns in hypergraph database are introduced. Both are implemented on
the OpenCog framework [6], on top of the Unified Rule Engine, URE for short,
the reasoning engine of OpenCog. Framing pattern mining as reasoning provides
the following advantages:

1. Enable hybridizations between syntactic and semantic pattern mining.
2. Allow to handle the full notion of surprisingness, as will be further shown.
3. Offer more transparency. Produced knowledge can be reasoned upon. Rea-

soning steps selected during mining can be represented as data for subsequent
mining and reasoning, enabling meta-learning by leveraging URE’s inference
control mechanism.

The last point, although already important as it stands, goes further than it may
at first seem. One of the motivations to have a pattern miner in OpenCog is to
mine inference traces, to discover control rules and apply these control rules to
speed up reasoning, akin to a Heuristic Algorithmic Memory [9] for reasoning.
By framing not only pattern mining but more generally learning as reasoning
we hope to kickstart a virtuous self-improvement cycle. Towards that end more
components of OpenCog, such as MOSES [8], an evolutionary program learner,
are in the process of being ported to the URE.

Framing learning as reasoning is not without drawbacks as more transparency
comes at a computational cost. However by carefully partitioning transpar-
ent/costly versus opaque/efficient computations we hope to reach an adequate
balance between efficiency and open-endedness. For instance in the case of evolu-
tionary programming, decisions pertaining to what regions of the program space
to explore is best processed as reasoning, given the importance and the cost of
such operation. While more systematic operations such as evaluating the fitness
of a candidate can be left as opaque. One may draw a speculative analogy with
the distinction between conscious and unconscious processes.
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1.2 Outline

In Sect. 2 a pattern mining algorithm over hypergraphs is presented; it is framed
as reasoning in Sect. 3. In Sect. 4 a definition of surprisingness is provided, and a
more specialized implementation is derived from it. Then, in Sect. 5 an example
of how it can be framed as reasoning is presented, both for the specialized and
abstract definitions of surprisingness.

2 Pattern Mining in Hypergraph Database

2.1 AtomSpace: Hypergraph Database

Let us first rapidly recall what is the AtomSpace [6], the hypergraph knowledge
store with which we shall work here. The AtomSpace is the OpenCog AGI frame-
work’s primary data storage solution. It is a labeled hypergraph particularly
suited for representing symbolic knowledge, but is also capable of representing
sub-symbolic knowledge (probabilities, tensors, etc), and most importantly com-
binations of the two. In the OpenCog terminology, edges of that hypergraph are
called links, vertices are called nodes, and atoms are either links or nodes.

For example one may express that cars are vehicles with

(Inheritance (Concept "car") (Concept "vehicle"))

Inheritance is a link connecting two concept nodes, car and vehicle. If one
wishes to express the other way around, how much vehicles are cars, then one
can attach the inheritance with a truth value

(Inheritance (stv 0.4 0.8) (Concept "vehicle") (Concept "car"))

where 0.4 represents a probability and 0.8 represents a confidence.
Storing knowledge as hypergraph rather than collections of formulae allows

to rapidly query atoms and how they relate to other atoms.

2.2 Pattern Matching

OpenCog comes with a pattern matcher, a component that can query the Atom-
Space, similar in spirit to SQL, but different in several aspects. For instance
queries are themselves programs represented as atoms in the AtomSpace. This
insures reflexivity where queries can be queried or produced by queries.

Here’s an example of such a query

(Get (Present (Inheritance (Variable "$X") (Variable "$Y"))
(Inheritance (Variable "$Y") (Variable "$Z"))))

which fetches instances of transitivity of inheritance in the AtomSpace. For
instance if the AtomSpace contains
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(Inheritance (Concept "cat") (Concept "mammal"))
(Inheritance (Concept "mammal") (Concept "animal"))
(Inheritance (Concept "square") (Concept "shape"))

it retrieves

(Set (List (Concept "cat") (Concept "mammal") (Concept "animal")))

where cat, mammal and animal are associated to variable $X, $Y and $Z according
to the prefix order of the query, but square and shape are not retrieved because
they do not exhibit transitivity. The construct Set represents a set of atoms,
and List in this context represents tuples of values. The construct Get means
retrieve. The construct Present means that the arguments are patterns to be
conjunctively matched against the data present in the AtomSpace. We also call
the arguments of Present, clauses, and say that the pattern is a conjunction of
clauses.

In addition, the pattern matcher can rewrite. For instance a transitivity rule
could be implemented with

(Bind (Present (Inheritance (Variable "$X") (Variable "$Y"))
(Inheritance (Variable "$Y") (Variable "$Z")))

(Inheritance (Variable "$X") (Variable "$Z")))

The pattern matcher provides the building blocks for the reasoning engine. In
fact the URE is, for the most part, pattern matching + unification. The collection
of atoms that can be executed in OpenCog, to query the atomspace, reason or
such, forms a language called Atomese.

2.3 Pattern Mining as Inverse of Pattern Matching

The pattern miner solves the inverse problem of pattern matching. It attempts
to find queries that would retrieve a certain minimum number of matches. This
number is called the support in the pattern mining terminology [1,2].

It is worth mentioning that the pattern matcher has more constructs than
Get, Present and Bind; for declaring types, expressing preconditions, and per-
forming general computations. However the pattern miner only supports a subset
of constructs due to the inherent complexity of such expressiveness.

2.4 High Level Algorithm of the Pattern Miner

Before showing how to express pattern mining as reasoning, let us explain the
algorithm itself.

Our pattern mining algorithm operates like most pattern mining algorithms
[2] by greedily searching the space of frequent patterns while pruning the parts
that do not reach the minimum support. It typically starts from the most
abstract one, the top pattern, constructing specializations of it and only retain
those that have enough support, then repeat. The apriori property [1] guar-
anties that no pattern with enough support will be missed based on the fact
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that patterns without enough support cannot have specializations with enough
support. More formally, given a database D, a minimal support S and an ini-
tialize collection C of patterns with enough support, the mining algorithm is as
follows

1. Select a pattern P from C.
2. Produce a shallow specialization Q of P with support equal to or above S.
3. Add Q to C, remove P if all its shallow specializations have been produced.
4. Repeat till a termination criterion has been met.

The pattern collection C is usually initialized with the top pattern

(Get (Present (Variable "$X")))

that matches the whole database, and from which all subsequent patterns are
specialized. A shallow specialization is a specialization such that the expansion
is only a level deep. For instance, if D is the 3 inheritances links of Subsect. 2.2
(cat is a mammal, a mammal is an animal and square is a shape), a shallow
specialization of the top pattern could be

(Get (Present (Inheritance (Variable "$X") (Variable "$Y"))))

which would match all inheritance links, thus have a support of 3. A subsequent
shallow specialization of it could be

(Get (Present (Inheritance (Concept "cat") (Variable "$Y"))))

which would only match

(Inheritance (Concept "cat") (Concept "mammal"))

and have a support of 1. So if the minimum support S is 2, this one would
be discarded. In practice the algorithm is complemented by heuristics to avoid
exhaustive search, but that is the core of it.

3 Framing Pattern Mining as Reasoning

The hardest part of the algorithm above is step 1, selecting which pattern to
expand; this has the biggest impact on how the space is explored. When pat-
tern mining is framed as reasoning such decision corresponds to a premise or
conclusion selection. Let us formalize the type of propositions we need to prove
in order to search the space of patterns. For sake of conciseness we will use a
hybridization between mathematics and Atomese, it being understood that all
can be formalized in Atomese. Given a database D and a minimum support S
we want to instantiate and prove the following theorem

S ≤ support(P,D)

which expresses that pattern P has enough support with respect to the data
base D. To simplify we introduce the predicate minsup(P, S,D) as a shorthand
for S ≤ support(P,D). The primary inference rule we need is (given in Gentzen
style),
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minsup(Q,S,D) spec(Q,P )
(AP)

minsup(P, S,D)

expressing that if Q has enough support, and Q is a specialization of P , then
P has enough support, essentially formalizing the apriori property (AP). We
can either apply such rule in a forward way, top-down, or in a backward way,
bottom-up. If we search from more abstract to more specialized we want to
use it in a backward way. Meaning the reasoning engine needs to choose P
(conclusion selection from minsup(P, S,D)) and then construct a specialization
Q. In practice that rule is actually written backward so that choosing P amounts
to a premise selection, but is presented here this way for expository purpose.
The definition of spec is left out, but it is merely a variation of the subtree
relationship accounting for variables.

Other heuristic rules can be used to infer knowledge about minsup. They are
heuristics because unlike the apriori property, they do not guaranty complete-
ness, but can speed-up the search by eliminating large portions of the search
space. For instance the following rule

minsup(P, S,D) minsup(Q,S,D) R(P ⊗ Q)
(CE)

minsup(P ⊗ Q,S,D)

expresses that if P and Q have enough support, and a certain combination P ⊗Q
has a certain property R, then such combination has enough support. Such rule
can be used to build the conjunction of patterns. For instance given P and Q
both equal to

(Get (Present (Inheritance (Variable "$X") (Variable "$Y"))))

One can combine them (joint by variable $Y) to form

(Get (Present (Inheritance (Variable "$X") (Variable "$Y"))
(Inheritance (Variable "$Y") (Variable "$Z"))))

The property R here is that both clauses must share at least one joint variable
and the combination must have its support above or equal to the minimum
threshold.

4 Surprisingness

Even with the help of the apriori property and additional heuristics to prune
the search, the volume of mined patterns can still be overwhelming. For that it
is helpful to assign to the patterns a measure of interestingness. This is a broad
notion and we will restrict our attention to the sub-notion of surprisingness, that
can be defined as what is contrary to expectations.

Just like for pattern mining, surprisingness can be framed as reasoning. They
are many ways to formalize it. We tentatively suggest that in its most general
sense, surprisingness may be the considered as the difference of outcome between
different inferences over the same conjecture.
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Of course in most conventional logical systems, if consistent, different infer-
ences will produce the same result. However in para-consistent systems, such as
PLN for Probabilistic Logic Network [4], OpenCog’s logic for common sense rea-
soning, conflicting outcomes are possible. In particular PLN allows propositions
to be believed with various degrees of truth, ranging from total ignorance to
absolute certainty. Thus PLN is well suited for such definition of surprisingness.

More specifically we define surprisingness as the distance of truth values
between different inferences over the same conjecture. In PLN a truth value is a
second order distribution, probabilities over probabilities, Chapter 4 of [4]. Sec-
ond order distributions are good at capturing uncertainties. Total ignorance is
represented by a flat distribution (Bayesian prior), or a slightly concave one
(Jeffreys prior [7]), and absolute certainty by a Dirac delta function.

Such definition of surprisingness has the merit of encompassing a wide variety
of cases; like the surprisingness of finding a proof contradicting human intuition.
For instance the outcome of Euclid’s proof of the infinity of prime numbers might
contradict the intuition of a beginner upon observation that prime numbers
rapidly rarefy as they grow. It also encompasses the surprisingness of observing
an unexpected event, or the surprisingness of discovering a pattern in seemingly
random data. All these cases can be framed as ways of constructing different
types of inferences and finding contradictions between them. For instance in the
case of discovering a pattern in a database, one inference could calculate the
empirical probability based on the data, while an other inference could calculate
a probability estimate based on variable independences.

The distance measure to use to compare conjecture outcomes remains to be
defined. Since our truth values are distributions the Jensen-Shannon Distance,
JSD for short [3], suggested as surprisingness measure in [11], could be used. The
advantage of such distance is that it accounts well for uncertainty. If for instance
a pattern is discovered in a small data set displaying high levels of dependencies
between variables (thus surprising relative to an independence assumption), the
surprisingness measure should consider the possibility that it might be a fluke
since the data set is small. Fortunately, the smaller the data set, the flatter the
second order distributions representing the empirical and the estimated truth
values of the pattern, consequently reducing the JSD.

Likewise one can imagine the following experiments. In the first experiment
a coin is tossed 3 times, a probability p1 of head is calculated, then the coin is
tossed 3 more times, a second probability p2 of head is calculated. p1 and p2
might be very different, but it should not be surprising given the low number
of observations. On the contrary, in the second experiment the coin is tossed a
billion times, p1 is calculated, then another billion times, p2 is calculated. Here
even tiny differences between p1 and p2 should be surprising. In both cases the
Jensen-Shannon Distance seems to adequately accounts for the uncertainty.

A slight refinement of our definition of surprisingness, probably closer to
human intuition, can be obtained by fixing one type of inference provided by the
current model of the world from which rapid (and usually uncertain) conclusions
can be derived, and the other type of inference implied by the world itself, either
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via observations, in the case of an experiential reality, or via crisp and long chains
of deductions in the case of a mathematical reality.

4.1 Independence-Based Surprisingness

Here we explore a limited form of surprisingness based on the independence
of the variables involved in the clauses of a pattern, called I-Surprisingness for
Independence-based Surprisingness. For instance

(Get (Present (Inheritance (Variable "$X") (Variable "$Y"))
(Inheritance (Variable "$Y") (Variable "$Z"))))

has two clauses

(Inheritance (Variable "$X") (Variable "$Y"))

and

(Inheritance (Variable "$Y") (Variable "$Z"))

If each clause is considered independently, that is the distribution of values taken
by the variable tuples ($X, $Y) appearing in the first clause is independent from
the distribution of values taken by the variable tuples ($Y, $Z) in the second
clause, one can simply use the product of the two probabilities to obtain an
probability estimate of their conjunctions. However the presence of joint vari-
ables, here $Y, makes this calculation incorrect. The connections need to be taken
into account. To do that we use the fact that a pattern of connected clauses is
equivalent to a pattern of disconnected clauses combined with a condition of
equality between the joint variables. For instance

(Get (Present (Inheritance (Variable "$X") (Variable "$Y"))
(Inheritance (Variable "$Y") (Variable "$Z"))))

is equivalent to

(Get (And (Present (Inheritance (Variable "$X") (Variable "$Y1"))
(Inheritance (Variable "$Y2") (Variable "$Z")))

(Equal (Variable "$Y1") (Variable "$Y2"))))

where the joint variables, here $Y, have been replaced by variable occurrences in
each clause, $Y1 and $Y2. Then we can express the probability estimate as the
product of the probabilities of the clauses, times the probability of having the
values of the joint variables equal.

5 I-Surprisingness Framed as Reasoning and Beyond

The proposition to infer in order to calculate surprisingness is defined as

surp(P,D, s)
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where surp is a predicate relating the pattern P and the database D to its
surprisingness s, defined as

s := dst(emp(P,D), est(P,D))

where dst is the Jensen-Shannon Distance, emp is the empirical second order
distribution of P , and est its estimate. The calculation of emp(P,D) is easily
handled by a direct evaluation rule that uses the support of P and the size
of D to obtain the parameters of the beta-binomial-distribution describing its
second order probability. However, the mean by which the estimate is calculated
is let unspecified. This is up to the reasoning engine to find an inference path
to calculate it. Below is an example of inference tree to calculate surp based on
I-Surprisingness

P D

P D (DE)
emp(P,D)

P D (IS)
est(P,D)

(JSD)
dst(emp(P,D), est(P,D))

(S)
surp(P,D, dst(emp(P,D), est(P,D)))

where

– (S) is a rule to construct the surp predicate,
– (JSD) is a rule to calculate the Jensen-Shannon Distance,
– (DE) is the direct evaluation rule to calculate the empirical second order

probability of P according to D,
– (IS) is a rule to calculate the estimate of P based on I-Surprisingness described

in Sect. 4.1.

That inference tree uses a single rule (IS) to calculate the estimate. Most rules
are complex, such as (JSD), and actually have the heavy part of the calculation
coded in C++ for maximum efficiency. So all that the URE must do is put
together such inference tree, which can be done reasonably well given how much
complexity is encapsulated in the rules.

As of today we have only implemented (IS) for the estimate. In general,
however, we want to have more rules, and ultimately enough so that the esti-
mate can be inferred in an open-ended way. In such scenario, the inference tree
would look very similar to the one above, with the difference that the (IS) rule
would be replaced by a combination of other rules. Such approach naturally
leads to a dynamic surprisingness measure. Indeed, inferring that some pattern
is I-Surprising requires to infer its empirical probability, and this knowledge can
be further utilized to infer estimates of related patterns. For instance, if say an
I-Surprising pattern is discovered about pets and food. A pattern about cats and
food might also be measured as I-Surprising, however the fact that cat inherits
pet may lead to constructing an inference that estimates the combination of cat
and food based on the combination of pet and food, possibly leading to a much
better estimate, and thus decreasing the surprisingness of that pattern.
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6 Discussion

The ideas presented above have been implemented as open source C++ code in
the OpenCog framework, and have been evaluated on some initial test datasets,
including a set of logical relationships drawn from the SUMO ontology [10]. The
results of this empirical experimentation are omitted here for space reasons and
will be posted online as supplementary information1. These early experiments
provide tentative validation of the sensibleness of the approach presented: using
inference on a hypergraph based representation to carry out pattern mining that
weaves together semantics and syntax and is directed toward a sophisticated
version of surprisingness rather than simpler objective functions like frequency.

Future work will explore applications to a variety of practical datasets, includ-
ing empirical data and logs from an inference engine; and richer integration of
these methods with more powerful but more expensive techniques such as pred-
icate logic inference and evolutionary learning.
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Abstract. There is substantial interest in the research community for a map of
the paths to artificial general intelligence (AGI), however, no effort toward these
ends has been entirely successful. This paper identifies an alternative technique
called scenario network mapping that is well suited for the difficulties posed in
mapping the paths to AGI. The method is discussed, and a modified version of
scenario network mapping is proposed which is intended specifically for the
purpose of mapping the paths to AGI. Finally, a scenario network mapping
workshopping process is proposed to utilize this method and develop a map of
the paths to AGI. This will hopefully lead to discussion and action in the
research community for using it in a new effort to map the paths to AGI.

Keywords: AGI � Scenario analysis � Scenario mapping � Technology roadmap

1 Introduction

Technology roadmaps are a technology management technique that have been used
with a large degree of success in a number of different technology research areas [24].
Primarily employed for informing resource allocation, they can also be used to
structure and streamline the innovation process, to set targets and expectations, and to
identify possible risks or potential roadblocks [27]. Technology roadmaps are perhaps
even more valuable for developing artificial general intelligence (AGI) [25]. They can
be used to: elucidate biases leading to research for near-term gains, illuminate dead
ends in ongoing research, identify hidden problems or prizes in research plans, compare
alternate paths, introduce young researchers to the field, align the community, etc. In
short, technology roadmaps offer a powerful technology management tool for opti-
mizing the development of AGI.

While many benefits could come from a roadmap to AGI, there are likely many
paths to it rather than just one [11]. This poses a major challenge [1], and previous
attempts have indicated that traditional technology roadmaps are insufficient for
mapping the paths to AGI [10]. Consequently, the technique presented here does not
generate merely a single path, but rather a lattice-like structure of interconnected
possible paths to AGI. Specifically, this method produces a directed graph that includes
two layers of nodes: one for AGI’s technological components and another for its
milestones. Unlike traditional roadmaps, this approach can enable comparison of the
many possible paths to AGI. This would allow researchers to compare the required
resources, risks, technological challenges and other crucial factors for developing AGI.
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2 Background

A decade has passed since the first attempt to map the path to AGI was conceived [9].
This idea, intended to align the community, would lead to a small workshop in 2009
which built on work from earlier workshops [15, 16] to produce the first roadmap to
AGI [1]. Organizers were disappointed that the resulting roadmap was not a straight-
forward, road-like path, but rather like climbing the peak of a mountain range, with
many possible paths, the easiest of which is difficult to tell from the bottom [11].
Although the results were not what organizers had hoped for [10], much progress has
been made toward the milestones that were proposed as a result of the roadmap. In fact,
some of the most impressive advances in the past ten years have been in general video-
game learning [6, 21, 26], reading and grade school level tasks [23] – domains that
represent over 50% of that roadmap. However, the amount of true progress that has
been made in these domains is debatable, and progress made on the roadmap is
uncertain. What is clear is that while the 2009 roadmap has proved to be a much better
guide for AGI progress than forecasts [4], further improvements are still desirable.

Another roadmap toward AGI (or machine intelligence) was proposed in 2016 [20].
This roadmap did not use a structured group process like the 2009 workshop, but rather
proposed a full training environment as well as the only end-to-end description of a
process for training an AGI agent. However, it lacked concrete proposals for the more
challenging tasks that were described, some of which would be critical to the agent.
Other intelligence frameworks that have been proposed in the AGI research commu-
nity, such as NARS, OpenCog or MicroPsi 2 could also be seen as roadmaps to AGI as
envisioned by their developers [3, 14, 28]. In fact, one of the challenges that organizers
of the 2009 workshop found was the difficulty to get participants to agree on a common
direction because they each advocated their own roadmap since it was well suited for
their own AGI framework [11]. Although neither a roadmap nor a framework, a 2017
study on creating human-like machines constitutes a significant contribution to the
roadmap-oriented literature [17]. Rather than mapping the milestones or specifying a
path, this study surveyed the requisite components for a brain-inspired AGI agent.
The AI Roadmap Institute1 has also created a roadmap, however, it is less technical and
focuses more on the exploration of an AI Race. While this map was simply a flow chart
of possible future scenarios during the development process of AGI, it may be the
closest example to the output of this proposed workshopping technique.

All of the relevant previous studies on mapping the paths to AGI have one thing in
common: none resulted in a map in the sense discussed here2. Technology roadmapping
[7] is an established and widely used technique from technology management literature
that is useful for supporting strategic planning [22]. It has been used successfully by
numerous organizations and consortiums, including Philips Medical Systems [27] and

1 The AI Roadmap Institute has also thoroughly identified the benefits and uses for roadmaps to AGI
[25]. (www.roadmapinstitute.com).

2 The notion of a map here more closely resembles a lattice than a flowchart or a technology
roadmap. The following section discusses this further, and a generic map of this sort is depicted in
Fig. 1.
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the Semiconductor Industry Association [24], to foster innovation and to align industry
innovation goals. However, the technology roadmapping process is not rigorous, is
heavily reliant on visual aids and was considered unsuccessful in the previous attempt to
use it for mapping the paths to AGI [10, 11]. Recent work has proposed a new class of
scenario analysis techniques, called scenario mapping techniques, due to the common
mapping properties they share [12]. These techniques are more suitable for mapping the
paths to AGI. Generally, scenario analysis techniques are considered to be a powerful
family of techniques that are commonly used by organizations to illuminate blind spots
in strategic plans [5]. Their use may be able to identify blind spots in existing AGI
frameworks that are difficult for the developers to see. Scenario network mapping
(SNM) is a comprehensive, flexible approach for anticipating plausible futures in
environments with high levels of uncertainty [2]. Recent work has suggested this
technique to be better suited for mapping the paths to AGI than the technology
roadmapping procedure or other scenario mapping processes due to its unique workshop
style and its ability to model numerous entangled possible paths [13].

Given the progress in AI research over the past ten years and the promise of a new
mapping process, we argue that a workshop should be held with AGI experts3 to
conduct an updated mapping of the paths to AGI. To these ends, this paper proceeds by
first introducing the SNM technique. Then, the outlines a modified SNM process that is
specifically tailored for the mapping of the paths to AGI. The paper concludes by
urging members of the AGI research community to participate in a workshop for
developing a new map of the paths to AGI.

3 Scenario Network Mapping

SNM was first proposed in 2005 to improve upon standard scenario analysis techniques
by enabling the use of a large number of possible scenarios, each representing a
component of one possible pathway to a particular outcome [19]. Scenario network
mapping is intended for scenario planning purposes, however, the technique can also
be extended to concepts or ideas for new technologies. The map resulting from SNM is
easily modified as the future unfolds by updating it with new events and repositioning
the existing components and connections to accommodate the new events4. SNM is
conducted via four half-day workshops, each ideally with 15–20 participants.

The result of SNM is a directed graph wherein the nodes are components of the
pathways and the edges are the causal links between these components. SNM utilizes
event trees and the holonic principle (explained below) to enable the generation of a large
number of interconnected scenarios. Event trees are comprised of a hierarchy of ante-
cedents (the roots), the central event (the trunk) and a hierarchy of outcomes (the

3 A development workshop has been conducted with early career AGI researchers which was used in
the development of the method proposed here. More details can be found at www.rossgritz.com/
snm-development-workshop. Further development workshops are recommended for refinement of
the technique proposed here.

4 In the adapted technique that is the focus of this paper we are concerned with mapping future
technologies rather than events.
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branches). SNMmaps are laid out horizontally so that the depiction of timemayflow from
left to right, improving readability when stacking these event trees with complex inter-
actions. The holonic principle is another essential feature of SNM that means each node in
the resulting graph is simultaneously both a component of the larger system and itself
comprised of smaller systems. This principle implies that, if necessary, each component
can be broken down further into its constituents for analyzing the relationships with other
components in the graph. This is well suited for complex technologies that are poorly
understood, and which may be best anticipated through their subcomponents.

The workshopping process is well-documented and includes a user manual for
facilitators [18]. A slightly altered process has been developed and widely used for
mapping complex networks of components involving interactions between micro and
macro level system innovation for sustainability [8]. For the specific purpose proposed
here, an altered process has also been developed. Figure 1 below is adapted from a
figure of a generic SNM structure in [8]. We have recreated this figure with modifi-
cations consistent with the adaptations for the purposes of this study.

The structure depicted in Fig. 1 can be seen to demonstrate the lattice-like structure
that has been described earlier. It can be seen that there is both a technology layer as
well as a milestone layer. Figure 1 depicts a generic map for demonstration purposes
only; an actual map would be expected to have many more nodes for technologies as
well as milestones. The following section outlines a similar altered SNM process for
the purpose of mapping the paths to AGI.

4 AGI Scenario Network Mapping

The original SNM workshopping process involves four half-day workshops that are
intended to be conducted over the span of up to four weeks, allowing one week
in-between each workshop [19]. This is only reasonable for organizations, and

Fig. 1. This figure depicts an example of the lattice-like output from the scenario network
mapping workshop that is proposed.
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consequently, the proposed AGI-SNM workshopping process proposed here is
designed to be suitable for four consecutive half-day workshops over two days.
However, the half-day workshops could also be spread out over as many as four weeks
for organizations. A single AGI-SNM development workshop has been conducted with
early career AGI researchers. The experience from this workshop has helped to develop
the workshopping process described here.

The SNM workshopping process requires some specific resources in order to be
conducted effectively. The most important resource is the experts. At least 10 are
needed for diversity but larger groups can take longer and become more chaotic. Thus,
it is recommended to stay between 15 and 20 experts5 [19]. Another important resource
is the venue; a single room large enough for breakout groups is necessary to maintain
an efficient process during breakout sessions. The process also requires a large amount
of wall space and freedom from interruptions. Other equipment and materials include
size A3 paper, multicolored fine tip markers, multicolored sticky notes, ribbon,
masking tape, colored circular stickers (dots for voting), recording equipment (if
desired) and a projector for the facilitator [18].

The original workshopping technique uses the first half-day exploring historical
antecedents to the current state of events [18]. In general, a substantial amount of
content in the original workshop manual had to be adapted for the unique purposes of
mapping the paths to AGI6. Such variations are often necessary dependent on the use
case. The original SNM component workshops from the SNM manual are below7.

• Workshop 1: Influences from past and present
– Introduction
– Unfinished business
– Prouds and sorries
– Scenarios of the recent past
– Stakeholder map
– Leaf of goals

• Workshop 2: Generating possibilities
– Futures wheel
– Defining paths
– Backcasting
– Midcasting

• Workshop 3: Mapping paths to the future
– Introduction and review
– Grouping the event trees
– Linking the event trees
– Reviewing and digitizing the scenario map

5 For organizations, it is suggested that well-informed outsiders are also included to give a diversity
of perspectives.

6 For more details regarding the original technique, interested readers are encouraged to read the
scenario network mapping manual found in [18].

7 This outline lacks implementation details because it is intended to serve for comparison.
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• Workshop 4: Revealing the underlying layers
– From event trees to scenarios
– Finding the influences
– Grouping the stakeholders
– Finding the visions
– Finding the worldviews
– Review

The proposed modified SNM workshopping process for mapping the paths to AGI
is designed to take place over as little as two days through four separate half-day
workshop sessions. It roughly follows the process laid out in the SNM manual,
however, the individual workshops have been modified significantly for the specific
task of mapping the paths to AGI. The process is very tactile and utilizes post-its,
colored ribbon, various sizes of paper, colored stickers for voting and other items that
were described earlier8. The outcome is lattice-like map with a technology layer as well
as a milestone layer. The outline below depicts the four independent workshops in this
process. It includes more detail than the outline for the standard process so that it may
be used for implementation9.

• Workshop 1: Identifying the present and future (approximately 3 h)
– Introduction to the workshopping process and supporting techniques
– Mapping the core technologies that have led to the current state of AI

• Identify the core technologies driving AI research
• Split into groups for each of these research areas
• List recent milestones in AI research for each technology group10

• Vote on milestones using stickers11

• Create event trees for the most important of the milestones12

• Link and combine the most important event trees
– Results are pasted to wall

• The facilitator guides the group in connecting the event trees13

• Workshop 2: Identifying paths to the future (approximately 5 h)
– Identify the different visions for arriving at AGI

• Split into groups for identifying different visions
• Assign different visions to groups to explore further

– Forward-flow and backward-flow analysis

8 See www.rossgritz.com/snm-development-workshop for examples.
9 A complete manual for use of the modified method requires further research and is beyond the
scope of this introduction to the technique.

10 Milestones are written on a large sticky note.
11 A fixed number of stickers is given to each participant to vote. Participants may use one or more

sticker for each item they vote on.
12 To create event trees, each large sticky note is placed at the center of a blank A3 sized sheet of

paper. Smaller sticky notes are placed on the left and right for the antecedents and the outcomes,
respectively. Different yet consistent colors are used for the left and right sticky notes.

13 The event trees are connected with ribbon.
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• Split into two groups (one for forward-flow and another for backward-flow)
• Forward-flow group identifies technologies that will likely be part of the

development of AGI starting from the current state14

• Begins from the results of Workshop 1
• Backward-flow group identifies technologies that will likely lead to AGI

• working backward from the different visions for AGI identified earlier
• These results are pasted to the wall and duplicates or overlaps are condensed
• Each technology is assigned by facilitator to a group for event tree creation
• Each group creates event trees15 for these technologies

• Groups can split further if needed (groups of 3–5 are ideal)
– Results are pasted to wall (from left to right) building on those from Workshop 1

• Workshop 3: Connecting the present and future (approximately 5 h)
– Introduction and facilitator notes from first two workshops
– Reassess previous workshops’ work

• Technology groups split away to reassess their work
• Modifications and updates are made if necessary

• Split into forward-flow and backward-flow groups
• Each group reassesses their previous work

• Modifications and updates are made if necessary
– The event trees are connected

• The facilitator guides the group in connecting the event trees16

– The most important elements are determined and the map is condensed
• Each participant votes on the most important elements using stickers

• Voting is done for the event trees as a whole and the subcomponents17

• As a group, the facilitator goes through the event trees to determine what to
combine and what to remove

– Gaps and items for expansion are identified
• As a group the facilitator helps to identify gaps between paths and the items

in the current map that need breaking down further (using the holonic
principle)

– Groups split into breakout groups (size of 3–5 is ideal)
• Gaps and items are assigned to each breakout group
• Each breakout group develops event trees for the items and gaps assigned

– Results are pasted to the wall (in-between the event trees they are intended to
connect or adjacent to the items they breakdown)18

• Workshop 4: Mapping the paths and milestones (approximately 3 h)

14 Technologies are written on a large sticky note.
15 Event trees are created in the same way as for Workshop 1.
16 Different colored ribbon can be used for more complex mappings.
17 Different colored stickers are used for low and high priority items. A limited number of stickers is

given to each participant. Stickers are to be placed directly on either the large or small sticky notes
for each of the event trees. Stickers may be placed to overlap due to constraints on the size of sticky
notes as long as the total number of votes is still clear. Sticky notes can also be rewritten and
replaced in order to make room for stickers for voting if necessary.

18 Connections are self-evident and the facilitator connects the event trees without the group’s input.
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– The most important links are determined and the map is finalized
• Each participant votes on the most relevant event trees that were added

• Participants also vote on whether certain elements need further attention
• Entire group discusses the votes the facilitator guides discussion to condense

the map
• If necessary entire group or subgroups can address any elements that need

further attention
• When group is content then finalize map

– Add milestones layer
• Identify core future technology groups and split into subgroups for each

• Each subgroup identifies potential milestones for their technology
domain19

• Milestones associated with technology paths are added
• Participants vote on most relevant and plausible milestones
• The facilitator guides the group in removing the unnecessary or unpop-

ular milestones
– Conduct concluding discussion about the process and outcome.

Participants are encouraged to keep notes of their personal experience throughout
the process in order to help to improve future efforts. In general, participants are
encouraged to be creative and to not be conservative in suggesting technologies or
milestones, or in creating the event trees. Irrelevant or unnecessary items will always be
removed in the process of voting and condensing. It may be helpful for the facilitator to
be familiar with brainstorming and creativity techniques in order to assist the group or
breakout groups and to improve the overall outcome. It can also be beneficial to have a
co-facilitator for the entire process due to the size of the ideal group. Particularly, a co-
facilitator is highly recommended for Workshop 2, where groups need to split into
forward-flow and backward-flow groups.

Following the workshop, it is necessary to digitize the results. The easiest way to do
this is using a spreadsheet application [18]. More advanced techniques can include the
use of visualization software packages. In order to create a map of the sort that is
depicted in Fig. 1, this would be necessary. Such a visualization may have to be created
manually due to the lack of automated software for digitizing scenario maps.

5 Conclusion

This study presented an adapted scenario network mapping (SNM) workshopping
process for mapping the paths to AGI (AGI-SNM). SNM is a comprehensive and
flexible approach that comes from the family of scenario analysis techniques com-
monly used in technology forecasting and management. It is more rigorous and
methodical than technology roadmapping which was used in an earlier coordinated
effort to map the paths to AGI. Furthermore, it sufficiently addresses some of the

19 Milestones and technologies are both written on large sticky notes – these sticky notes should each
be of a distinctive and consistent color for the entire process.
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challenges mentioned by organizers of the earlier attempt a decade ago. Specifically, it
is intended to accommodate many intersecting paths and large numbers of scenarios.

Many may think the pursuit of a roadmap to AGI to be useless due to the results of
previous efforts. Perhaps this is correct, but SNM does not produce a roadmap like
previous efforts, rather, it produces a lattice-like map of intersecting possible paths. It
does this by utilizing a powerful combination of group facilitation techniques for
identifying things that may be difficult for independent researchers or researchers in
standard group meetings to foresee on their own. Thus, SNM has the potential to aid all
active members of the AGI research community by illuminating blind spots, hidden
problems and hidden prizes that couldn’t be found otherwise. It can also help in ways
such as aligning the research community, providing a useful overview of the field to
young researchers and refocusing research efforts on longer-term goals rather than
goals for near-term gains. Simply participating in the AGI-SNM workshopping process
can be a valuable experience to researchers as well20. Future work should continue to
refine and apply the process. We intend for this paper to foster discussion within the
community about an effort to use it to conduct an updated mapping of the paths to AGI
with leading experts in the field.
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Abstract. This paper describes Adaptive Neuro-Symbolic Network
Agent, a new design of a sensorimotor agent that adapts to its envi-
ronment by building concepts based on Sparse Distributed Represen-
tations of sensorimotor sequences. Utilizing Non-Axiomatic Reasoning
System theory, it is able to learn directional correlative links between
concept activations that were caused by the appearing of observed
and derived event sequences. These directed correlations are encoded
as predictive links between concepts, and the system uses them for
directed concept-driven activation spreading, prediction, anticipatory
control, and decision-making, ultimately allowing the system to oper-
ate autonomously, driven by current event and concept activity, while
working under the Assumption of Insufficient Knowledge and Resources.

Keywords: Non-Axiomatic Reasoning · Sensorimotor ·
Artificial general intelligence · Procedure learning · Autonomous agent

1 Introduction

Adaptive Neuro-Symbolic Network Agent (ANSNA), is a new design of a sen-
sorimotor agent derived from Non-Axiomatic Reasoning System (NARS) theory
proposed by Pei Wang (see [1]). It adapts to its environment by building con-
cepts based on Sparse Distributed Representations [2] of sensorimotor sequences,
rather than based on Compound Terms that are typical for NARS. It does so by
taking theory of compositionality of bit vectors as proposed by [3] into account,
which not only captures union and difference operations between bit vectors,
but also ways to encode hierarchical structure within them.

Making use of Non-Axiomatic Reasoning System theory, ANSNA is able to
learn directional correlative links between concept activations that were caused
by the appearing of observed and derived event sequences. These directed cor-
relations are encoded as predictive links between concepts, and the system uses
them for directed concept-driven activation spreading, prediction, anticipatory
control and decision-making. All that allows the system to operate autonomously
under the Assumption of Insufficient Knowledge and Resources, driven by cur-
rent context, determined by event and concept activity.

c© Springer Nature Switzerland AG 2019
P. Hammer et al. (Eds.): AGI 2019, LNAI 11654, pp. 80–90, 2019.
https://doi.org/10.1007/978-3-030-27005-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27005-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-27005-6_8


Adaptive Neuro-Symbolic Network Agent 81

2 Similar Work and Philosophical Differences

ANSNA borrows most of its theory from the Non-Axiomatic Reasoning Sys-
tem proposed by Pei Wang (see [1]), while using the inference control theory of
ALANN [4], which is a NARS-variant designed by Tony Lofthouse. What makes
ANSNA really different from NARS is however the complete absence of Terms
and explicit Inheritance relationships, coming from a philosophically very dif-
ferent path: while NARS tries to model a general-purpose thinking process with
highly flexible ways to compare, transform, and generally deal with any kind of
information that can somehow be expressed in Narsese (NARS’s formal internal
and I/O language), ANSNA concentrates completely on sensorimotor.

For NARS, sensorimotor capability, which consists mainly of procedural and
temporal inference on sensor & motor events, is just a special case of rich rea-
soning abilities its Non-Axiomatic Logic (NAL) supports. NAL also includes
declarative reasoning abilities about sets, arbitrary relations, and inheritance-
relationships that are all there to support dealing with conceptual knowledge
that doesn’t necessarily have any grounding in actual sensorimotor experience.
ANSNA takes the position where knowledge that has no possible grounding
in the system’s sensorimotor experience is not necessarily meaningless (as it
can clearly relate to other knowledge), but surely was so far useless to a goal-
driven decision-maker, as it would mean that the meaning of that knowledge is
completely orthogonal to everything ANSNA has ever experienced through its
sensors so far, both external and internal. In NARS this situation is by far not
unusual, a user entering a new Inheritance relationship (term123 → term242)
consistent only of new terms, term123 and term242, leaves the system’s memory
with a floating pair of concepts that have so far no relation to any other concepts
whatsoever, meaning also no relation to sensorimotor concepts, and how such a
relation should be established through correlations is a difficult problem. Such a
problem does not exist in ANSNA, as it is assumed that all information is con-
sumed through external (vision, touch, sound, temperature, other modalities...)
and internal sensors (battery level, structural integrity, etc.).

According to ANSNA philosophy, relating new user-given abstract terms to
sensorimotor experience is not something an AGI has to do, but that building
compositions of sensorimotor patterns is everything necessary. That is, because
in ANSNA every composition simply cannot even be “not grounded”, since every
information, without exception, ultimately is forced to enter ANSNA through
the system’s sensors. Also in a NARS operating in a robot without Narsese-
communication channel, it is usually not happening, and not at all necessary,
that new atomic terms will be created, in such a case the set of atomic terms are
pre-defined by the designer, consisting of pre-defined sensor encodings and prob-
ably revisable background knowledge that was loaded on the robot beforehand.
In that sense, a semantic code is inevitable, meaning the universe of mental dis-
course will be spanned by possible compositions of events following pre-defined
encodings of sensory data (plus combinations with background knowledge, in
NARS). Even though NARS itself does not assume a fixed semantic code, in
that case it is undeniably present. This is however no contradiction with that
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such a system can acquire the meaning of observed events, where the meaning
of an event has both structural and empirical aspects.

Structural meaning is determined by the composition following the semantic
code, which encodes how the pattern is observed/composed from sensorimotor
experience. For instance there is no way for the system to see the observation of a
red ball as structurally identical to an observed blue ball. However, it needs to be
possible for the system to learn that a blue ball carries overlapping meaning, not
only by being a similar structural composition/semantic code word, but also that
nudging a blue ball in similar circumstances, will have similar consequences like
nudging a red ball in similar contexts. And that can be done without having the
user entering an explicit Inheritance relationship into the system, and without
an explicit Inheritance altogether, as whether experienced event a is a special
case of another event b can implicitly be represented by sensorimotor relations,
that is, if a leads to the consequences we expect from b, it is naturally a special
case of the former even though it may structurally differ.

Of course, the semantic code needs to be rich, not in quantity, but in quality.
Same as a set of lego technic pieces needs to be rich in variety and fit together
nicely to support the construction of a large variety of machines, the semantic
code needs to be rich in variety and fit together in such a way, that the agent
is able to conceptualize experienced aspects of its environment in an effective
way. This can happen through a large variety of perceptual attributes, such as,
for example, Color, PositionX, PositionY, Pitch, Frequency, Temperature, Pres-
sure and Battery Level. Color, PositionX and PositionY can encode information
from a visual field, for instance. Once a basic semantic code is in place, the
encoders are present, everything the system experiences will be seen in terms
of the attributes these encoders present, by ANSNA. The more comprehensive,
the richer the context will be, and the better will ANSNA be able to make sense
of its environment through compositions of sensorimotor events. This leads to
the last key difference to OpenNARS and ANSNA, the usage of Sparse Dis-
tributed Representations (long, sparse bit vectors, SDR’s), and usage of Pentti
Kanerva’s [3] insights about how hierarchical structure can be encoded in them.
Clearly, differently than Sparse Distributed Memory (SDM) [5], ANSNA is not
just a model of memory, and thus, as we will see, its event-based design require-
ments make its memory architecture different than SDM, while preserving some
of SDM’s key properties. For instance, mapping events with similar SDR’s to
similar concepts, supporting content-addressable memory.

3 Data Structures

ANSNA’s memory consists of two priority queues, one contains concepts and the
other current events (Events Buffer).

Event: Each Event consists of a SDR with a NAL Truth Value, an Occur-
rence Time, and a Attention Value that consists of the priority of the event and
a durability value that indicates the decay rate of the priority over time.

A SDR is a large bit-vector with most bits being zero, in ANSNA all SDR’s
are of equal length n.
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SDR structure: With a, b being SDR’s we can now define the following
functions calculating a new SDR based on a existing one, using theory bor-
rowed from Kanerva [3]: SDRSet(a, b) := a|b where | is the bitwise or operation.
SDRTuple(a, b) := ΠS(a) ⊕ ΠP (b) where ΠS and ΠP are two random permuta-
tions selected when ANSNA starts up, they remain the same after that.

Additionally encoding functions E as proposed in [6] are used to encode
similar numbers to similar SDR’s, and terms are encoded into random SDR’s
deterministically. This way, arbitrary hierarchical compositions can be encoded
into ANSNA, and as we will see later, effectively compared with each other
based on a per-bit basis. For now it is sufficient to see that two input
encodings SDRTuple(E(brightness), E(3.23)) and SDRTuple(E(brightness),
E(3.5)) will lead to similar SDR’s, meaning most 1-bits will overlap. We will
omit E from now on, and see that SDRSet(green, light) will have more 1-bits
in common with light than sound. Of course SDRTuple and SDRSet can be
arbitrary nested with each other, essentially forming a tree which leafs are for
instance SDR-encoded terms or numbers, and structurally similar trees will lead
to similar SDR’s.

Concept: Concepts in ANSNA are summarized sensorimotor experience,
they are the components of ANSNA’s content-addressable memory system and
are named by interpolations of the events SDR’s that matched to it (described in
more detail in the next section). Processed events can match to different concepts
with various degree, but in a basic implementation a winner-takes-all approach
can be taken, matching the event only to the most specific matching case that
was kept in memory, and processing it as such.

Each concept has a SDR (its identifier), and Attention value consisting of a
priority and a durability value, a Usage value, indicating when the concept was
last used (meaning it won the match competition for an event, as we will see
later) and how often it was used since its existence. Also it has a table of pre-
and post-condition implications that are essentially predictive links, specifying
which concepts activate which others, and a FIFO for belief and goal events, and
has multiple responsibilities:

To categorize incoming events by matching them to its SDR: to become
good representatives, concepts have to encode useful and stable aspects of a
situation, conceptual interpolation, explained in the next section, helps here;
To support revision, prediction and explanation for native events, events for
which this concept wins the matching competition; To maintain how relevant
the concept is currently and how useful it was in total so far; Learning and
revising preconditions and consequences by interacting with an for temporal
inference incoming event.

Matching events to concepts: An event can match to multiple concepts
with a truth value “penalty” according to the match. Let S and P be a SDR. We
want that S can be said to be a special case of P , or can stand for P , denoted by
S → P , if most of the bits in P also occur in S, but not necessarily vice versa.
So S = SDRSet(red, ball) should be a special case of P = SDRSet(ball). It has
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most the features of ball, but also has the redness feature, meaning a red ball
can effectively stand for, or be treated as a ball too.

We will now formalize this idea using a NAL truth value, which is a frequency-
confidence tuple (f, c) = ( w+

w++w−
, w++w−
w++w−+1 ) where w+ is positive evidence and

w− negative evidence. The truth value of S → P can be established as follows:
Let’s define each 1-bit in the SDR to be a NAL sentence (see [7]), where each of
these 1-bits, at position i, in S, encode biti = 1.

One case of positive evidence for S → P , is a common property S and P both
share. Such as the fact that bit5 is a 1-bit. On the other hand, a case of negative
evidence would be a property possessed by P that S does not possess. Given
that, we can define the positive evidence as: w+ := |{i ∈ {1, ..., n}|Si = Pi = 1}|
and the negative evidence as w− := |{i ∈ {1, ..., n}|Si = 1 ∧ Pi = 0}|.

If the event E has truth value TE , to apply the penalty of “treating it as
concept C”, the truth value becomes Truth Deduction(Tmatch, TE), which will
then be used in the inference rule within the concept for deriving further events.

That is motived by that if event E is a special case of the pattern it is encoded
by, SDRE, and SDRE is a special case of SDRC, as the match determined,
then we have E → SDRE with truth value TE and SDRE → SDRC with truth
value Tmatch := SDR Inheritance(S, P ). Using the deduction rule as specified
in [7], we end up with E → SDRC, allowing to treat the event as if it would
have the SDR SDRC.

Please note there is also a symmetric match defined by Truth Intersection
(SDR Inheritance(a,b), SDR Inheritance(b,a)) as we will need later. For a tuple
of truth values ((f, c), (f2, c2)) Truth Intersection leads to (f ∗ f2, c ∗ c2) and
Truth Deduction to (f ∗ f2, f ∗ f2 ∗ c ∗ c2), for the other truth functions we will
use, please see [7], they have all been described by Pei Wang in detail.

Event FIFO and Revision: While pushing a new event to the first position
when a matched event enters a concept’s FIFO, to resolve goal conflicts in respect
to a current decision, in the goal event FIFO, revision with the highest confident
element when projected to the goal occurrence time (where projected means
multiplicatively penalized for occurrence time difference dt according to αdt,
where α is a truth projection decay parameter) has to happen, the result will
then be pushed to the first FIFO position. Of course, the revision (which sums
up the positive, and negative evidence of both premises) can also happen in
the belief event FIFO, this make sure that two conflicting sensory signals that
happen concurrently, will be merged, allowing to better deal with contradicting
sensory information.1

Implication Table and Revision: In NARS terms, Implications in
ANSNA are eternal beliefs of the form a ⇒ b, which essentially becomes a predic-
tive link for a and a retrospective link in b, each going to a separate implication
table (preconditions and postconditions).

1 A detail: As in [8], only revise if the evidential base does not overlap, and only if
the revised element when projected to the occurrence-time middle between both
elements is higher than the premises’s.
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An implication table combines different implications, for instance a ⇒ b and
a ⇒ c to describe the different consequences of a in the postcondition table of
concept a. Implication tables are ranked by the truth expectations of the beliefs,
which for a given truth value (f, c) is defined as (c ∗ (f − 1

2 ) + 1
2 ).

Different than in OpenNARS, where it is clear whether revision can happen
dependent on whether the terms are equal, two items in ANSNA can have differ-
ent degree of SDR overlap. To deal with this, both revision premises are penalized
with symmetric SDR match SDR Similarity, leading to Truth1 and Truth2 using
Truth Intersection, and revision will only occur if revision(Truth1, Truth2) has
a higher confidence than both Truth1 and Truth2. When a new item enters the
table, it is both revised with the closest SDR candidate (the revised result will
be added to the table, if it was a proper result), and also the original Implication
will be added to the table.

Conceptual Interpolation: Conceptual interpolation, inspired by [5], is
the process by which concept’s SDR adapts to the SDR’s of the matched events,
in such a way that the SDR of the concept becomes the average case among
the matched event SDR’s. This allows the concepts to become useful “proto-
types” under the presence of noise, useful in the sense that a newly seen noisy
pattern can be reconstructed. A way to implement this is idea is to add a
counter for each bit in the SDR. Each 1-bit of the matched event increases
the corresponding counter by 1 * u, and each 0-bit decreases it by 1 * u, where
u = Truth Expectation(SDR Inheritance(e,c)), meaning an event that better
matches to the concept will have a stronger influence on it. If the counter is
0 or smaller, the corresponding concept SDR’s bit will be 0, else 1. This effec-
tively means that iff there is more positive evidence for the bit in the matched
event SDR’s to be 1 than 0, it will be 1 in the concept SDR they were matched
to too.

4 Attentional Control

While on a conceptual level Attentional Control in ANSNA allows the processing
of different items with individual speeds (as also NARS [1,10] and Hofstadter’s
group’s creations [9]), the details in ANSNA mostly follow the Adaptive Logic
and Neural Network (ALANN) control model by Tony Lofthouse, which was
developed for a NARS implementation over the last two decades, based on exper-
tise about Spiking Neural Networks. Although a convincing prototype exists [4],
unfortunately this model was not published in a scientific publication yet, so its
background is explained in addition to implementation details.

Every NARS, and AGI in general, faces the problem of fulfilling practically
infinite resource-demands with a finite amount of resources [10] which are ulti-
mately limited by the processor speed and the RAM available on the machine
it runs on. An Attention model [11] can solve this problem as it allows to selec-
tively perform inferences based on contextual cues, which primary importance
the ALANN model stresses. It does so by building an analogy to the brain, which
is known to be able to save energy by keeping only a tiny proportion of neu-
rons active at the same time [12]. In biological neural networks, spike cascades
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appear, where spikes are sent from one neuron to the next, and, potentially even
further, if the action potential threshold of the source neuron is overcome ([13]),
while avoiding re-activations through cyclic connections by enforcing a certain
refractory/latency period. The priority value of the spike sent to the target neu-
ron depends on the synapse strength and the current action potential, the latter
we will call concept priority. In ALANN, the synapse strength is assumed to
correspond to the strength of a certain experienced pattern, which is summa-
rized by a NAL [7] truth value corresponding to a belief that is related to the
concept the neuron represents. Using NAL as a foundation, this is natural, as
concept node Lighting can have related beliefs like Lighting ⇒ Thunder, in
that sense, the belief acts like a link connecting concept Lighting to Thunder,
making the Lighting concept emit Thunder events that are received by the
latter, and whenever that happens, also the concept priority of Thunder will
be increased naturally due to the spike derivation, based on the priority value
of the spike, and will decrease quickly. From now on, we will refer to spikes as
events, neurons as concepts, synapse strength as belief truth, also to take a safe
distance from actual claims of how the wetware actually functions. In ANSNA,
action potential thresholds are never fixed, instead it is realized by enforcing a
fixed number of active events to be selected from a global priority queue that
is ranked by the event priorities, and where the topmost k items are selected.
Using this model, ANSNA consists of the following attention update functions:

Attention forgetEvent: Forget an event using exponential decay. To make
lazy update possible, the decay is stronger the longer it wasn’t selected anymore.
Also this one needs to be radical, there is only a very small window in time in
which it is likely for the target concept to generate further derivations, to make
sure derivations are still contextually relevant.

Attention forgetConcept: Forget a concept with exponential decay, again,
the more, the longer it wasn’t selected anymore, additionally a lower “priority
threshold” is established, that is dependent on the concept’s usefulness. This
threshold hampers useful concepts to be forgotten. Usefulness is calculated in
the following way: age = currentTime - lastUsed, v = useCount/age, usefulness
= v/(v + 1.0); Additionally the neural-network-motivated activation spreading
functions applied to event derivations are:

Attention activateConcept: Activates a concept because an event was
matched to it, proportional to the priority of the event. The idea here is that the
concept sums up the appearing event priorities while leaking priority over time,
this way the active concepts tend to be currently contextually relevant ones.

Attention deriveEvent: The derived event gets higher priority if the
involved concept had a high priority (the derivation was contextually relevant),
and also gets higher priority if the truth expectation of the for the derivation
used belief (a belief event of belief event FIFO, or an Implication from a pre-
or post-condition table, as we will see later) was high (the synapse had high
strength).

Attention inputEvent: Priority positively correlated with the truth expec-
tation of the input event.
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5 Operating Cycle

Inference Schemas: The following describes all types of inference that can
happen in the operating cycle introduced next, and the truth functions that
apply are defined in [7], where a leading “!” means goal, and “.” means belief:

– Revision, in Event FIFO, and in Implication Table (Link growth):
{Implication/Event a, Implication/Event a} � Implication/Event a

– Deduction (Prediction):
{Event a., Implication (a ⇒ b).} � Event b.
{Event b!, Implication (a ⇒ b).} � Event a!

– Induction (Link formation):
{Event a., Event b.} � Implication (a => b).

– Abduction (Prediction):
{Event b., Implication (a ⇒ b).} � Event a.
{Event a!, Implication (a ⇒ b).} � Event b!

– Intersection (Concept formation):
{Event a., Event b., after(b, a)} � Event SDRTuple(a, b).
{Event a., Event b., concurrent(b, a)} � Event SDRSet(a, b).
where concurrent and after are excluding each other: when the occurrence time of a and b is
closer than a global system parameter, concurrent(a, b) is true, else either after(b, a) or after(a, b)
is true.

Operating Cycle: In each cycle, a fixed number of events (input or derived)
get taken out from Events Buffer and processed: a concept will be created for
them (if one with exact same SDR doesn’t already exist), and they match the
best asymmetrically matched concept available (not including the created one),
also increasing its priority using Attention activateConcept. The event (which
truth value was reduced consistent with the asymmetric match explained previ-
ously) then interacts with the events within the concepts FIFO for revision, as
explained previously. Also it interacts with the postcondition implication table
(the highest truth-expectation elements, a choice rule), triggering a Deduction2

if it is a belief event, and an abduction if it is a goal event. And it interacts with
the precondition implication table, triggering an Abduction if it is a belief event,
and a deduction if it is a goal event, both consistent with the Schemas.

Also the event gets sent to the k highest-priority concepts (not including the
matched one) as a “foreign concept”, not reducing its truth value (this interac-
tion is not a match, just a correlation in activity between event and concept!).
The only purpose of that interaction is to compose new, more complex tempo-
ral sequences that are themselves events to be processed, consistent with the
Intersection Schema in the table, using Attention deriveEvent to determine the
derived event’s Attention value. Additionally, sequence (a, b) leads to the for-
mation of hypothesis a ⇒ b which directly enters the postcondition implication
table of a as a “predictive link” and precondition implication table of b as a
“retrospective link” (Time durations are stored too, and averaged on revision).

All derived sequences enter the global Event Buffer, of which all elements
taken out from re-enter with adjusted Attention value as defined by Atten-
tion forgetEvent. Note that also the k used concepts get their priority reduced
by Attention forgetConcept. This means that all the attention updates are driven
by event processing. All summarized (Fig. 1):
2 Which generates an Anticipation, that if it won’t get confirmed, adds negative evi-

dence to the implication (predictive link) that generated the prediction (as AERA).
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Fig. 1. Overview with Event Buffer and concepts, plus their predictive links. Operating
cycle selects events from Event Buffer (priority-biased), lets them interact with the
matched concept for Intersection, Deduction and Abduction, and with high-priority
concepts for Temporal Induction, and as result derives further events that end up in
Event Buffer, and predictive links that end up in the implication tables.

Decision Making: Decision Making in ANSNA was taken from NARS [14]
and adjusted to fit well to ANSNA’s memory model:

Operations: These are a (SDR, Action) tuple, Action is a software procedure
without arguments, expected to finish in constant time. They are registered using
ANSNA RegisterOperation(SDR sdr, Action procedure) method. For now the
SDR serves mostly as an ID, but formats for motor operations allow the system
to see similar parametrizations as similar, for instance the SDR encoding of
(motor1,0.7) will naturally be more similar to (motor1,0.8) than to (motor1,0.2),
which opens interesting opportunities for fine-grained control.

Decision Making Rule: When a goal event gets matched to a concept and
added to its FIFO as described earlier, the goal event, or instead the revised
one in case that revision happened, if of form (SDR,Op SDR i), determines the
operation (Op SDR i, Action i) stored in the system. In that case, the event
gets projected to the current moment, leading to a certain truth value TP . Now
the system retrieves the next event b from belief event FIFO that has no associ-
ated operation and has the highest truth confidence of its truth value Tb when
projected to the current time and calculates TResult = Deduction(TP , Tb). If this
truth value’s expectation is above the system’s decision threshold parameter, the
corresponding procedure Actioni gets called, capturing context and intention,
and the truth of the procedure knowledge is considered by goal-derivation.

Procedure Learning: To make the system aware of the execution of an
action, for each of the k highest priority-concepts (that are selected in each cycle,
as described previously), the first belief event FIFO element gets “copied”, This
copy receives a new SDR, being SDRSet(OldSDR, Op SDRi) (also allows for
compound operations), and is then added to the FIFO without revision, making
the system effectively re-interpret the event as being a precondition under which
the operation was executed, so that when a next event with SDR c interacts with
the concept for temporal inference, ((OldSDR,Op SDR i) ⇒ c) will naturally be
formed with temporal induction, a piece of procedure knowledge, specifying that
the execution of Opi leads to c under the condition of OldSDR.
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Motor Babbling: To trigger executions at the beginning where no proce-
dure knowledge exists yet, the system invokes random motor operations from
time to time, a process called Motor Babbling. Without any initial operations,
the system couldn’t learn how it can affect the environment, so this serves as
an initial trigger for procedure learning. The same idea is used in [15]. Initial
reflexes are also a potentially helpful, similar ones like the grab reflex in humans
are possible too, but these are more domain-specific.

6 Conclusion

A new autonomous sensorimotor agent architecture, Adaptive Neuro-Symbolic
Network Agent, is proposed. Differently than NARS from Pei Wang, which it is
derived from, it uses SDR’s for knowledge representation, and a inference control
mechanism inspired by spiking neural network derived from Tony Lofthouse’s
easily parallelizable ALANN model. Its key benefits, besides being more concise
than NARS, lie in the ability to process a large quantity of information effectively,
and to mine temporal-spatial patterns in its experience that allow it to predict
what will happen next, and make decisions accordingly, to realize its goals.
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Abstract. Ability to use language is an essential requirement for
human-level intelligence. For artificial general intelligence, the ability to
learn and to create language is even more important [1]. Most previous
models of learning and emergence of language took successful communi-
cation itself as the task target. However, language, or communication in
general, should have evolved to improve certain fitness of the population
of agents. Here we consider whether and how a population of reinforce-
ment learning agents can learn to send signals and to respond to signals
for the sake of maximizing their own rewards. We take a communication
game tested in human subjects [2,3,6], in which the aim of the game
is for two players to meet together without knowing exact location of
the other. In our decentralized reinforcement learning framework with
communicative and physical actions [4], we tested how the number N of
usable symbols affects whether the meeting task is successfully achieved
and what kind of signaling and responding are learned. Even though
N = 2 symbols are theoretically sufficient, the success rate was only
1 to 2%. With N = 3 symbols, success rate was more than 60% and
three different signaling strategies were observed. The results indicate
the importance of redundancy in signaling degrees of freedom and that
a variety of signaling conventions can emerge in populations of simple
independent reinforcement learning agents.

Keywords: Multi-agent system · Reinforcement learning ·
Communication · Meeting task

1 Introduction

While communication is ubiquitous among animals and plants, unique features
of human language are that the mapping between the signals and meanings, or
appropriate responses, is not genetically fixed but learned by each individual and
that a variety of vocabularies and syntactic conventions emerge through cultural
evolution in different populations. How such capability is realized by evolution
and learning [1] is a major question in artificial general intelligence.
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Many models of learning and emergence of language have been proposed,
but most of them took successful communication itself as the task target. From
evolutionary viewpoint, however, language, or communication in general, should
have emerged for the sake (or outcome) of improving certain fitness of the popu-
lation of agents. Here we consider whether and how a population of reinforcement
learning (RL) [9] agents can learn to send signals and to respond to signals for
the sake of maximizing their own rewards.

Previous research [8] examined whether and how a simple form of commu-
nication emerges between reinforcement learning agents in an intrusion game,
where positive reward is acquired by stepping into the other’s territory while
negative reward is incurred by collision of the two. Agents with light signaling
capability learned a variety of policies of signaling and responding to signals to
realize coordination, dominance, and complex behaviors. Another study in [5]
introduced goal-directed utterance selection through learned internal models of
how others respond to utterance. Agents were able to decide when to use lan-
guage or not and select the appropriate utterance to achieve their specific goals
of obtaining a certain type of food. More recently, Mordatch and Abbeel [7]
demonstrated grounded compositional languages can emerge among deep rein-
forcement learning agents. In this work, however, all agents shared the same
policy, which is closer to genetically shared communication scheme like in bees,
rather than to human language learned independently by each individual.

Galantucci [2] developed a “meeting” task in which a pair of human par-
ticipants learn to exchange graphic symbols to meet in the same room while
not explicitly knowing the other’s location. Different pairs converged to dif-
ferent conventions of what each symbol means and how to respond to them.
Konno and colleagues [6] reproduced the experiment [2] in and further proposed
a learning model based on the Adaptive Control of Thought-Rational (ACT-R)
architecture.

In this paper, we propose a decentralized multi-agent RL framework for sig-
naling and physical actions and test its performance with the meeting task [2,6].
Our previous work [4] tested the framework in a simpler task where agents get a
reward by simultaneously arriving a fixed position in a grid-world. We test how
the number N of usable symbols affects whether the meeting task is success-
fully achieved and what kind of signaling and responding are learned. We show
that simple RL agents are able to create different signaling patterns for commu-
nication to guide the actions of each other. Analysis of the learned policies of
signaling and corresponding movements shows that a variety of “meanings” can
emerge through interactions of RL agents.
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2 Methods

2.1 Learning Framework

Fig. 1. Learning framework.

We proposed a split-Q state-action function
framework [4] which separates the physical mov-
ing actions and communication signal actions.
The learning framework could be explained with
Fig. 1. In this framework, each agent possesses two
state-action function pairs which are for state-
moving action and state-signaling (Qp

i and Qc
i ,

where i = 1, 2), respectively. In each episode, the
agent will select a signaling action (i.e. a message
that will be shared with the other agent), send to the other agent and take a phys-
ical movement afterwards. The environment would therefore generate reward and
the next states which would feedback to both agents.

2.2 Problem Formulation

The setting of the experiment is a “meeting” task based on [2,6], which could
be viewed as a Partially Observable Markov game. In the present study, we
utilized two reinforcement learning agents to see whether they could learn the
meaning of the signaling from each other to enter the same slot within only
one step move. The game field is a 4-rooms environment (Fig. 2). Agents are
initialized in different rooms and have no prior knowledge of where the other
agent is. Each agent possesses 5 possible movements (up, down, left, right, and
stand), and several numbers of signals that they could utilize to send to the other
agent. Agents can choose which signal they would like to use to send to the other
agent before the move and will receive a score after each movement. Moreover, no
predefined meanings are postulated for the signals. If they met in the same room
after one movement, both agents receive a reward = 2; otherwise, they will both
receive a reward = −1. Once they met in the same room or reached maximum
steps in per round, they will be reset with new random starting positions, i.e.,
different separate rooms. To simplify the symbols, here we used numeric numbers
to represent the signals. The goals are to explore whether agents can learn to
move to meet in the same room within one move after learning, how agents
utilize the signals, and what kind of factors are influencing this process.

Fig. 2. Game field. Cir-
cle and rectangle denotes
different agents.

In this environment, we assumed that the two learn-
ing agents (i = 1, 2) each has its own physical state set
Sp
i , a communication state set Sc

i , a moving action set
Ap

i , and a communication action set Ac
i . Each agent i

has two state-action pair value functions which stand
for the moving and communication respectively. One
state-action pair function is Qp

i (s
p
i , s

c
i , a

p
i ) which eval-

uates a moving action ap
i ∈ Ap

i at a physical state
spi ∈ Sp

i and a communication state sci ∈ Sc
i . The other
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state-action pair function is Qc
i (s

p
i , a

c
i ) which evaluates a communication signal

ac
i ∈ Ac

i at a physical state spi . The communication action of the agent therefore
changes the communication state of the other agent. The communication state
satisfies the following formula Sc

i = f(ac
j) = ac

j where i and j denotes different
agent.

Actions are selected from the following conditional probability functions:
πp
i (a

p
i | spi , s

c
i ) ∝ eQ

p
i
(s

p
i

,sc
i ,a

p
i
)/τ

p
i

∑
b eQ(s

p
i

,sc
i

,b)/τ
p
i
, and πc

i (a
c
i | spi ) ∝ e(Qc

i (s
p
i

,ac
i )/τc

i

∑
b eQ(s

p
i

,b)
τc

i
, where τp

i and

τ c
i are temperatures which control randomness. Algorithm 1 describes how the

learning rules are updated.

Algorithm 1. Updating rule with split Q-learning framework.
Initialize Qp

i (sp
i , sc

i , a
p
i ) and Qc

i (s
p
i , ac

i ) arbitrarily
repeat

for all agents i do
Initialize sp

i

take ac
i update sc

i = ac
� (� �= i)

repeat
choose ap

i , observe new states s′p
i ,and ri

for all agents i update
Qp

i (sp
i , sc

i , a
p
i ) ← (1 − α)Qp

i (sp
i , sc

i , a
p
i ) + α(ri + γmaxbQ

p
i (s

′p
i , s′c

i , b)),
Qc

i (s
p
i , ac

i ) ← (1 − α)Qc
i (s

p
i , ap

i ) + α(ri + γmaxbQ
c
i (s

′p
i , b)),

sp
i ← s′p

i , sc
i ← s′c

i

until Termination Conditions
where α is the learning rate and γ is the discount factor

3 Result and Discussion

3.1 Cases with Different Number of Signals

In our experiments, number of symbols N varies from 2 to 5. And we performed
100 groups of agents with 10,000 runs for each group and repeat for 5 times.
Each agent also has separated learning rate αp

i , αc
i and temperature τp

i , τ c
i . Here

the incremental in the inverse temperature with an annealing equation follows
τp,c
i = 1/(1 + τp,c

i × epi), where epi is the number of learning episode.
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(i) N = 2

Agent A Agent B

Fig. 3. Signaling pattern and
motion policy pairs agents learned
in successful groups when N = 2.
Agent A and agent B is represented
in box and circle, respectively. The
signaling policies are showed by
the edge color of the agent, and
the motion policies are showed by
arrow/dot for the received signal.

When agents have 2 symbols to choose
to forward to the other agent, there are very
rare cases that they can learn to meet in the
same room after communication. Among all
100 groups of agents, there were only 1 or 2
groups which succeed in meeting each other
within one step move. The signaling that
agents learned to use (while there are only 2
possible signals, we used green and red color
to represent the utilization of the signals) and
signaling pattern paired with the successful
case (the optimal solution) are listed in Fig. 3.
The motion policies are colored in the same
color of signals received from the other agent.
For agent A, the signal it received in one
room is as the pattern on the right side of
Fig. 3 (i.e., agent B’s signaling) and its neigh-
borhood signal is the same whichever room it
starts. For agent A, when agent A received the same signal from its neighborhood
rooms, it chose actions which allow it to stay in its current position; when agent
A received the other signal, it will take other actions to move to an adjacent
room. On the other hand, for agent B, the signal it received is as the pattern
on the left side of Fig. 3 (i.e., agent A’s signaling) and its neighborhood signal
is always different. As we can see from Fig. 3, when agent B receives the same
signal in one position, it chose actions to move towards the same side of the
signals. In this case, agent A’s signaling guides the action of agent B and tells it
the room it shall goes to. Noticing that agent has three possible next state based
on its current position, when it received the same signal based on its current
position, it would take the same action.
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(ii) N = 3 Agent A Agent B

Group A

Group B

Group C

Fig. 4. Signaling patterns of agent A and agent B
when N = 3, where different colors (green, cyan and
red) represent for different signals agent learned after
experimentation. Examples of the motion policies are
showed by arrow/dot for the received signal. (Color
figure online)

When agents have 3
optional signals they could
use for communication, com-
pared with case (i), they
have much higher proba-
bilities to learn to enter
the same room within one
step move, and their sig-
naling patterns also possess
more diversity. With meta-
parameter tuning, we found
an optimal group of param-
eters αp = 0.28, αc =
0.24, τp = 0.0012, and
τ c = 0.0021. The probability
of successfully meet in the
same room is 63.4 ± 2.7%.
There are mainly 3 groups of
combined signaling patterns
pairs from the overall suc-
cessful groups, and a visualized signaling pattern is represented in Fig. 4 as
follows:

– Group A: agents show the same signal on the same side of the game field.
– Group B: agents show the same signal on one side of the game field and have

one grid overlap of the same signal.
– Group C: one agents show the same signal in diagonal rooms of the game

field.

Table 1 shows the number of each category (group). Group A and B are two
most common signaling patterns in this case.

The moving policies that agents learned at the end in the well-learned groups
also comply with certain rules. If one agent receives one specific signal, it will
move accordingly to this signal, and vice versa for the other agent. In this situ-
ation, the signal received from the other agent guides the action of the present
agent. As the agents are not in the same grid at the beginning, there exists an
optimal solution in this environment when the number of signals is 3. Figure 5
is an example of successful communication policy learned by agent A and agent
B in this premise, in which signaling patterns of Group B pairs are listed. As
shown in Fig. 5, all 12 possible starting positions conditions are listed with their
learned moving policies. For example, column 5–6 and line 2–3 shows the case
that agent A sent the same message (colored in green) in the upper and bottom
left rooms, and the message sending to agent B directs the direction in which it
shall move (moving to the left). While agent A’s moving action alters according
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Table 1. Numbers of different groups when N = 3.

Groups

Group A Group B Group C

Numbers 26 34 5

to the message it apprehends from the other agent in this 2 rooms, eventually
they could meet in the same room under this signaling pattern within one-step
move.

(iii) N = 4

agent B

agent A

NAN

NAN

NAN

NAN

Fig. 5. One example of moving policy between agents when N = 3 (Group B). Three
signals are colored in green, red and cyan, respectively. Orange box is the room agents
meet after one step move. Arrows represent the directions agents move to, and dot is
stand action. (Color figure online)

In this case, agents have 4 potential signals they could choose for communi-
cation, and the probability for agents to enter the same room within one step
move keeps increasing compared with case (ii). Likewise, there are more patterns
of signaling. With meta-parameter tuning, we found a group of optimal param-
eters where αp = 0.3, αc = 0.25, τp = 0.001, and τ c = 0.002. The probability
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of successfully meet in the same room is 86 ± 2.2%. Here we list one experimen-
tal result where the number of successful groups is 87 (out of 100 groups), and
patterns of the signaling are in 6 categories as follows:

– A1: Using pure 4 signals (e.g., 2, 3, 1, 4 in four rooms).
– B1: Using all 4 signals but have ambiguity in one position (e.g., 3, [1,4], 2, 1

in four rooms).
– B2: Using all 4 signals, have ambiguity, and 2 signals from the rest 3 positions

(e.g., 4, [1,2], 4, 3 in four rooms).
– C1: Using all 4 signals and have ambiguity in two positions (e.g., [1,3], [1,3],

2, 4 in four rooms).
– D1: Using pure 3 signals (e.g., 2, 1, 3, 3 in four rooms).
– E1: Using 3 signals and have ambiguity in one positions (e.g., [1,4], 3, 3, 4 in

four rooms).

Fig. 6. The signaling pattern overall
87 successful learned groups.

The numbers of different groups are
shown in Fig. 6. As agents have more choices
of signaling (N = 4), agents not only
shows the similar signaling pattern as they
emerged in case (iii), but also have more
variety of choices of signaling they could
use. For example, in pattern A1, agents
use 4 signals to represents different rooms,
which is similar to a pattern found in [2] as
human pairs.

(iv) N = 5

Similar results occurred when numbers of signaling is 5 compared with 4
signals. With meta-parameter tuning, we further found an optimal group of
parameters where αp = 0.25, αc = 0.28, τp = 0.0011, and τ c = 0.0023.

Fig. 7. The signaling pattern overall
83 successful learned groups.

The probability of successfully meeting
in the same room is 86.2 ± 2.3%. In addi-
tion, besides the same signaling pattern as
listed above in case (iii), there is another
category F1 where agents uses 5 signals and
have ambiguity in at least one room. Figure 7
shows the number of different patterns.

3.2 Meta-Parameter Tuning

During implementation, we further noticed that the learning rate α and temper-
ature τ are the two most contributing factors among other parameters which sig-
nificantly influence the performance of the adaptive learners. We carried out grid
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search with learning rate (from 0.10 to 0.30 with step length of 0.01) and temper-
ature (from 0.0010 to 0.0030 with step length of 0.0001) for optimal parameters
in this experiment, and we further noticed that both temperatures for moving
and communication are not supposed annealing to 0 at the end of each runs,
otherwise the success rate will decline significantly.

4 Conclusion

This paper presented an experimental study of the emergence of communication
in decentralized reinforcement learning agents with a split-Q learning framework.
By the learning framework, RL agents could learn to use signals to enter the same
spot in one-step move under message exchange without knowing the position
of the other agent, as human participants did in [2,6]. We found that meta-
parameter tuning was crucial for descrying the optimal parameters for learning,
in which learning rate α and temperature τ are the two contributing factors in
determining agents’ optimal behavior.

The minimal solution with N = 2 was rare found, possibly because the
actions are highly depended on the positions of the agent. In [2], a common
pattern for signaling found with N = 4 in experimental subjects were to use
different symbols to represent different positions. In our experiment with N ≥ 4,
besides the clean coding A1, other patterns also emerged for agents to achieve
an optimal behavior.

Future work will extend the framework to scenarios where emergence of com-
positional coding of multiple states, goals, actions, and objects can be investi-
gated, as in [7]. Exploration of the roles of internal models [5] and the theory of
mind is also an important future direction.
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Abstract. The purpose of this paper is to introduce how contemporary
behavioral psychology approaches intelligence and higher-order cognitive
tasks, as instances of so-called arbitrarily applicable relational responding
(AARR). We introduce the contemporary theory Relational Frame The-
ory (RFT), that suggests that key properties of AARR are mutual entail-
ment, combinatorial entailment, and transformation of stimulus function.
Furthermore, AARR are contextually controlled and developed through
multiple-exemplar training. We explain these concepts and provide exam-
ples of how RFT uses this framework to explain complex cognitive tasks
such as language, analogies, a sense of Self, and implicit cognition. Appli-
cations of RFT are surveyed. Finally, the relevance of RFT for the AGI
audience is discussed.

Keywords: Relational Frame Theory · Behavioral psychology ·
Cognition · Intelligence · Language · Higher-order cognition · Self

1 Introduction

In 1971, Murray Sidman was working with language comprehension with severely
developmentally disabled individuals. Unexpectedly, he discovered that if sub-
jects were successfully taught to match pictures and printed words to dictated
words (AB and AC relations, respectively; Fig. 1), and to name pictures (BD),
they would without explicit training learn how to match printed words to pic-
tures (BC), match pictures to printed words (CB) and to “read” (i.e., name
words; CD). From a behavioral psychology point of view, this was very interest-
ing, as it demonstrated a clear example of emitted behavior without a history
of reinforcement.

2 Stimulus Equivalence and Derived Stimulus Relations

The above discovery has resulted in over 40 years of research in stimulus equiv-
alence [10]. Stimulus equivalence is a behavioral phenomenon that (with one
c© Springer Nature Switzerland AG 2019
P. Hammer et al. (Eds.): AGI 2019, LNAI 11654, pp. 101–110, 2019.
https://doi.org/10.1007/978-3-030-27005-6_10
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Fig. 1. The relations taught and tested by Sidman in 1971. Trained relations are
depicted by solid arrows and derived relations with dashed arrows. Subjects were taught
to match pictures and printed words to dictated words (AB and AC, respectively), and
to name pictures (BD). Without explicit training they then could match printed words
to pictures (BC), match pictures to printed words (CB) and to name words (CD).

possible exception) seems to be limited to humans with verbal abilities. The
possible exception is a california sea lion “Rio”, that seems to have demon-
strated stimulus equivalence [9]. One way to study stimulus equivalence is with
the help of matching-to-sample experiments. In such experiments, participants
are exposed to series of arbitrary stimuli (e.g., nonsense symbols) where the task
is to match a certain symbol to a given sample stimuli. Such experiment is an
example of relational responding. That is, the task for a participant is not to
emit a response in relation to a certain stimulus. It is rather to respond to the
relation between symbols.

A formal definition of stimulus equivalence follows. Assume three nonsense
symbols, which we for simplicity will refer to as A, B and C (they might be
nonsense words, pictures, or something else). Within a given experiment (like the
matching- to-sample), participants are taught to select B rather than some other
option in the presence of a sample A (i.e., the relation A → B will be established
through training). In the same way C is trained as the correct response in the
presence of B (B → C). After these relations have been trained, without training
in other relations, participants demonstrate an increased probability of selecting
A from a set of options when B is presented as a sample (B → A; symmetry),
selecting C when A is displayed (A → C; transitivity), selecting A when C is
displayed (C → A; equivalence), and also the trivial case of selecting A when A
is displayed (A → A; reflexivity).

Demonstrating symmetry and equivalence are examples of derived relational
responding, as these stimulus relations are not directly taught but instead
derived. Prior to the research by Sidman and colleagues [11] the emergence of
these derived stimulus relations was not expected in similar experimental setups.
As mentioned above, stimulus equivalence has been very difficult to demon-
strate in nonhuman animals (except for the single sea lion). However, there exist
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research that has demonstrated symmetry in pigeons, monkeys and rats, but the
results are somewhat inconclusive [7].

The stimulus equivalence phenomenon opened up for a new way of studying
symbolic relations (i.e., how a word “represents” an object in language), and sup-
ported the idea that derived stimulus relations were an important component in
language and cognition. Importantly though, the idea is not new. William James
did already in 1890 regard the abstract concepts of sameness or equivalence as
“the very keel and backbone of our thinking” [6, p. 459].

3 Arbitrarily Applicable Relational Responding

In the late 1980’s, the developers of Relational Frame Theory (RFT) [5] started
to ask questions on what was beyond equivalence, for example: What kind
of derived relational responding based on other relations than equivalence are
human beings capable of? And if so, would such responding also be reflexive,
symmetrical, and transitive? For example, consider a situation where someone is
showed three identically sized coins, and being told that “A is worth more than
B, and B is worth more than C”. Not only are the AB and BC relations spec-
ified, the BA, CB, AC, and CA relations will immediately be derived. Hence,
a question such as “Is C worth more than A?” will be possible to answer (The
answer would be “No”). Not only is this an example of responding to another
relation than equivalence (a comparative relation), this is, according to RFT,
an example of arbitrarily applicable relational responding (AARR), as A, B and
C are related along an arbitrary dimension of worth. In RFT terms, stimulus
equivalence (as defined above) could be said to be a special case of AARR [15].
RFT has introduced more generic terms to describe features of derived rela-
tional responding, than the ones used to describe stimulus equivalence: Mutual
entailment, Combinatorial entailment, and Transformation of stimulus function.

3.1 Mutual Entailment

Like symmetry, mutual entailment refers to the fact that arbitrarily applicable
relations are always bidirectional. If A is related to B, than a second relation BA
is automatically entailed. The type of relation entailed depends on the relation
between the two stimuli. For example, as illustrated above, if A is worth more
than B, then the novel relation “B is worth less than A” is entailed. Another
example would be, if A is the opposite to B, then B is also the opposite to A.
In the latter case the same relation as the one trained would be entailed.

3.2 Combinatorial Entailment

In line with transitivity, if A is taught to be related to B, and B to C, then
a relation between A and C is combinatorially entailed. This was illustrated
above where the “A is worth more than C” statement was derived. Once again,
the type of relation entailed doesn’t need to be the same as the one trained.
For example, if someone is taught that “A is the opposite to B” and “B is the
opposite to C”, then “A is the same as C” is combinatorially entailed.
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3.3 Transformation of Stimulus Function

If A and B are taught to be related, and a response function (such as appetitive
or aversive) is established for A, then the function of B will be transformed
in accordance with the AB relation. For example, if someone fears dogs and
learns that the word “hund” means “dog”, then the aversive stimulus function
of “dog” is predicted to transfer through the sameness relation of “means”.
Another example of non-equivalence follows. If someone learns that two nonsense
stimuli are related A < B, and A then is paired with a mild electric shock, then
the stimulus function of A will be transformed from neutral (as for a nonsense
symbol) to aversive. Importantly though, B is predicted to be transformed to
even more aversive. Similar effects have been demonstrated experimentally, using
skin conductance equipment [3].

3.4 Contextual Control over AARR

Consider the example above, with a person seeing three identically sized coins,
learning that “A is worth more than B, and B is worth more than C”. Imagine
that the person instead learned that “A is worth the same as B, and B is worth
the same as C”. In the two situations, two different forms of AARR would be
triggered, for example as part of a decision-making scenario involving money.
More specifically, the “more than” and “same as” are two different forms of
contextual cues. This highlights the contextual nature of AARR.

3.5 Multiple-exemplar Training

How is arbitrarily applicable relational responding developed during lifetime?
RFT assumes this is due to a history of multiple exemplar training. Imagine for
example a small child who hasn’t learned to apply the concept of comparison.
Through interaction with the environment, the child might hear that “the horse
is larger than the duck, and the duck is smaller than the horse”, and “the man is
longer than the child, and the child is shorter than the man”, etc. RFT assumes
that these multiple examples over time leads to the applicable abstract pattern
of comparison that fulfills the properties of relational frames mentioned above.

3.6 AARR and Relational Frames

In summary, arbitrarily applicable relational responding (AARR) is defined as
abstract response patterns, that have the properties of mutual entailment, combi-
natorial entailment and transformation of stimulus functions, that are controlled
by contextual cues and learned through a history of multiple exemplar training.

Specific instances of AARR (for example sameness and comparison), are
referred to as different types of relational frames. The term is based on a
metaphor of a picture frame. Just as a picture frame can hold many pictures,
a response frame can include many different features while still being a specific
instance of an overall pattern.
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4 Families of Relational Frames

In this section, we will elaborate further on RFT by describing the most common
types of relational frames. Importantly, RFT is not limited to these frames. These
are overall patterns that have been found useful to distinguish from one another.

Coordination. A frame of coordination is essentially a relation of sameness. If
someone is taught that “A is the same as B”, and “B is the same as C”, then the
BA, CB, AC, and CA relations of sameness will be entailed. This is essentially
the same as stimulus equivalence. Furthermore, if the person is taught “C tastes
disgusting”, then the aversive stimulus function of C will transfer to A and B,
both being about equally aversive. RFT research has suggested that sameness
is the earliest relational frame to develop, and arguably the most fundamental.
This seems related to the fact that children early in their development tend to
learn that words “refers” to things and events, that is, being the “same as”.

Opposition. A more complex relational frame is that of opposition, that is
relating stimuli in the presence of cues such as “is opposite of ”. For example,
a statement such as “If Aaron (who is very tall) is opposite to Bill, and Bill is
opposite to Charlie, then what is Charlie like?” involves this frame. The state-
ment needs to involve explicit or implicit information on which dimension along
with the stimuli may be differentiated. These dimensions could be physical such
as size, temperature, and brightness, but also arbitrary dimensions, as for exam-
ple in the following statements: “easy is the opposite of hard”, “valuable is the
opposite of worthless”, and “A is opposite to B, and B is opposite to C. A is
funny. Is C funny? Is B?”.

Distinction. The frames of distinction are controlled by cues such as “is differ-
ent from” and “is not the same as”. For example, if A is taught to be of different
color from B, then it is entailed that B is of different color from A. However, the
frame of distinction doesn’t have the same specificity as the previously described
frames when the relational networks grow, as shown in the following example:
“A has a different color from B, and C has a different color from B. A is green.
Is B green? (No) Is C green? (Don’t know)”.

Comparison. Comparative frames involve responding to stimuli or events in
terms of a quantitative or qualitative relation along some specified dimension.
For example, “If a dime is worth more than a nickel, and a nickel is worth more
than a penny, is a dime worth more or less than a penny?” is a statement which
would require a person to derive the comparative relation between a dime and
a penny. More specifically, the cue “is worth more” signals that the frame of
comparison could be applied. Other examples of cues that control this kind of
relating are “heavier/lighter”, “better/worse”, and “larger/smaller”.
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Hierarchy. These are frames involving membership, attributes, class contain-
ment, etc. For example, “If an object A is a type of object B and an object B is
a type of object C, then is an object A a type of object C?”. Also consider this
example: “If coffee is a type of drink, and tea is a type of drink, is then coffee a
type of tea?” In that example, the relationship isn’t specified.

Temporal Frames. Responding to events in terms of temporal displacement
from other events represents an example of responding in accordance with tem-
poral relations, such as “before/after”. For example, “If Tuesday comes before
Thursday, and Thursday comes before Friday, does Friday come before or after
Tuesday?”

Spatial Frames. These frames involve relating along a spatial dimension, and
may be triggered by cues such as “above/below”, “left/right of ”, “here/there”,
“front/back”, etc. For example, given that “If A is above B, and B is above C”,
a person will derive that “C is below A”, “A is above C”, “B is above A”, and
“C is above B”.

Deictic Frames. Finally, deictic frames are those that specify a relation
between stimuli from the perspective of the speaker. RFT suggests that
these deictic frames are a combination of three types of relations: spatial
(“here/there”), temporal (“now/then”), and interpersonal (“me/you”). An
example of a statement involving deictic framing is “If I am here and you are
there, and if I were you and you were me, where would you be? Where would I
be?”. Another example is “If I feel sad and you feel happy, and if I were you and
you were me, how would you feel? How would I feel?”. The latter could be said
to be an example of how something such as empathy could be analyzed through
RFT.

5 Cognition and Intelligence from an RFT Perspective

From an RFT perspective, cognition is not a mental event that mediates between
environment and behavior. It is rather a behavioral event (AARR), and hence,
it can be studied and understood within a behavioral psychology framework,
using experiments such as the matching-to-sample task described above. Another
way to put it: arbitrarily applicable relational responses are what “minds” are
full of, and when we speak of “cognitive” phenomena (such as thinking, plan-
ning, remembering, decision making) we are referring to complex instances of
relational framing that are more or less evident under different environmental
conditions [15].

Regarding intelligence, the core idea from RFT is that AARR represents
the basic functional “building block” of cognitive and linguistic skills, such as
deductive and inductive reasoning, communication, etc., all of which underpin
intelligent behavior. In essence, intelligent acts involve the ability to elaborate
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networks of derived stimulus relations fluently and flexibly, to transform stim-
ulus functions through entire networks, and to bring relational responses under
increasingly subtle forms of contextual control, by abstracting relevant contex-
tual features with high precision.

6 Higher-Order Cognitive Tasks and Complex Relational
Responding

In this section, we will provide some examples on how RFT approaches various
complex cognitive skills given the framework introduced above.

6.1 Language

RFT approaches language as verbal behavior [15]. A person learns “how to
language” by learning how to respond relationally to stimuli and events. Hence,
verbal behavior and language from an RFT perspective is really about the act
of “framing events relationally”. Stimuli such as words (spoken or written) or
pictures become “verbal stimuli” when they participate in relational networks
with contextual cues. It is this process that enables “meaning” to something as
the stimuli acquire various stimulus functions. Someone speaks “with meaning”
when they frame events relationally and produce sequences of verbal stimuli as
a result. Someone else will “listen with understanding” whenever they respond
as a result of framing events relationally. In essence, understanding something
is not an outcome of an “inner/mediating” mental event, but is rather a type of
contextually controlled behavior.

6.2 Analogies

All of the examples above have focused on how stimuli or events can be related.
However, sets of relations can also be related. Relating relations is, from an
RFT perspective, the basis of how analogies are developed and used [12]. For
example, a quite simple analogy might be “Apples are to oranges as dogs are
to sheep”. This can be described as an equivalence relation between equiva-
lence relations. More specifically, apples and oranges participate in a relation
of equivalence (fruits), while dogs and sheep also participate in a relation of
equivalence (animals). An example of analogical reasoning given this is deriving
these two equivalence relations and the derivation of another equivalence relation
between the relations. In other words, apples are equivalent to oranges in the
same way that dogs are equivalent to sheep, because they are members of the
same respective class). A further example could be someone who already knows
about the solar system, and is learning physics. The statement “An electron is
to the nucleus as a planet is to the sun” involves an equivalence relation between
spatial relations. Given that the person knows this relation between planets and
the sun, he/she could then derive a new spatial relation between electrons and
nuclei.
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6.3 The Self and Perspective Taking

As described previously, deictic frames involve temporal (“now/then”), spatial
(“here/there”), as well as interpersonal relations (“Me/You”). While coordina-
tion, distinction and comparative relations (see above) develop based on what
people learn about stimuli that are physically similar, dissimilar, or quantita-
tively different along some dimension, deictic frames are typically not. Instead,
they develop based on the invariance of the speaker’s perspective throughout
time and location. A child might learn this by being asked questions such as
“Who are you?”, “What are you doing here?”, “What will you do there?”, and
“What will I do tomorrow?”, with many variations, in several different contexts.
By taking part of a constant relating of “Me/You”, “here/there”, “now/then”,
a child learns about itself, as something being different from others, and being
“here and now” as compared to “there and then”. Hence, in line with how RFT
provides an understanding of “languaging” as framing events relationally, “self-
ing” is approached similarly. Understanding how it is possible to take someone
else’s perspective also follows naturally from this analysis [8].

6.4 Implicit Cognition

To account for both “thinking fast and slow”, RFT introduces dimensions to
AARR such as levels of complexity, derivation, and coherence [1]. Complexity
refers to the number of stimuli or events involved, with for example a mutually
entailed response being “less complex” than a relating of relations. Levels of
derivation is a continuum from a relating with very few new derivations on
one end, and a response involving a large amount of new derivations on the
other end. A response that is low is coherence is very little in agreement with a
larger relational network that the response is taking place in. On the contrary,
a response with high overlap with previous experience, is said to be high in
coherence.

In an experimental task that studies implicit cognition from an RFT perspec-
tive, there is an assumption that responses that requires low levels of complexity
and derivation, and being high in coherence, will be very quickly emitted. How-
ever, responses that require a high level of complexity and derivation, and/or
being low in coherence, are assumed to be slower emitted, and therefore lead to
longer response times.

7 Applications of RFT

Below, we will provide examples of how RFT can be used in applied settings,
outside experimental psychology.

7.1 Education

It follows naturally from the above description, how teaching based on sameness,
opposition, comparison, etc, could be conducted. The importance of multiple-
exemplar training is highlighted by RFT. Furthermore, RFT provides the tools
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on how various new relational networks could be established, set in relation to
existing networks, affected by transformation of function, etc. RFT provides the
details on how analogies could be used as part of education, and provides an
account of experiential learning through transformation of stimulus function.
Furthermore, skills training involving perspective taking, such as training in
empathy, could be understood through the lens of RFT [13].

7.2 Clinical Applications

Human suffering seems to be very much related to our capacity for language
[2]. Statements such as “Deep down I’m a bad person” or “I am not worthy of
love” or “Everybody else is much better than me in most aspects” are common
in depression and related problem presentations. For anxiety disorders, simple
statements such as “Spider” can trigger a whole host of physiological reactions.
Similarly, when other terms are taught to be in equivalence with “Spider”, then
these terms are predicted to trigger similar reactions. Furthermore, RFT provides
an understanding of how other stimuli and events can become closely related to
spiders, which could result in that the fear will generalize to other similarly
looking things [4]. In summary, RFT provides accounts of a whole range of
clinical phenomena, and provides tools on how to resolve these issues.

7.3 Prejudices

Today’s society undoubtedly face massive problems related to hate, discrimina-
tion and violence due to prejudice. From an RFT perspective, prejudice could
be defined as objectification and dehumanization of individuals because of their
participation in verbal evaluative categories [14]. A major challenge seems to be
due to the fact that prejudice and related processes seem to stem from the same
source as our most successful problem-solving processes. RFT might be able to
provide the means to deal with this verbal entanglement.

8 How Could RFT Be Relevant for AGI Researchers?

One could argue that RFT is essentially a behavioral psychology approach to
general intelligence. While the AGI field has benefited from theories from diverse
fields such as computer science and neuroscience, we believe that behavioral psy-
chology also has something to offer. In the complex task of building thinking
machines, clear definitions of cognitive phenomena are likely to be very help-
ful. RFT suggests that AARR is a necessity for intelligence and higher-order
cognitive tasks. Possibly, RFT could provide a roadmap based on a science of
derived stimulus relations, starting with symmetry and stimulus equivalence,
going up to relations between relational networks, with models of language devel-
opment, higher-order cognitive tasks, and the Self, with potential applications
within diverse fields such as education, psychological treatments, and prejudices.
We hope by writing this text that the AGI field finds such roadmap potentially
helpful.
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Abstract. Although natural (i.e. human) languages do not seem to follow a
strictly formal grammar, their structure analysis and generation can be approx-
imated by one. Having such a grammar is an important tool for programmatic
language understanding. Due to the huge number of natural languages and their
variations, processing tools that rely on human intervention are available only
for the most popular ones. We explore the problem of unsupervisedly inducing a
formal grammar for any language, using the Link Grammar paradigm, from
unannotated parses also obtained without supervision from an input corpus. The
details of our state-of-the-art grammar induction technology and its evaluation
techniques are described, as well as preliminary results of its application on both
synthetic and real world text-corpora.

Keywords: Categorization � Clustering � Computational linguistics �
Dimensionality reduction � Formal grammar � Grammar induction �
Natural language processing � Unsupervised learning � Vector space

1 Introduction

This work is grounded on the premise that the grammar of any language may be
derived (at least to some extent) in an unsupervised way from statistical evidence of
word co-occurrences observed in large unannotated corpora [1]. Following this idea,
Vepstas and Goertzel [2] proposed to use such learned grammar for programmatic
unlabeled dependency text parsing and part-of-speech tagging of raw text, for further
extraction of semantics. The Link Grammar (LG) formalism [3] is proposed to rep-
resent the learned grammars, while parses are built by a maximum spanning tree
(MST) algorithm [2].

In earlier work [4] we have described the implementation of the software frame-
work capable to solve the described unsupervised language learning problem (to some
extent) for synthetic English corpora, and approach the solution for real-world English
corpora. The major components of our research pipeline (see Fig. 1) are: text tok-
enization, word-sense disambiguation (WSD), parsing, and grammar learning, with
subsequent indirect evaluation of the produced grammar (by producing LG parses for a
test corpus using the synthetic grammar and comparing them against expected parses).
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Although text tokenization is a problem that can be attacked in an unsupervised
manner [5], our current work has not attempted this seriously; for now, we rely on a
rule-based English tokenizer. The WSD part of pipeline has shown promising results in
earlier works [4, 6], providing noticeable improvement in the quality of the learned
grammars and it is not discussed herein.

The MST-parser has proved to be a critical component of our pipeline, as it provides
input to the grammar induction process. Ongoing development in this area is worth
separate discussion, but its importance is confirmed by the findings presented below.

This paper focuses on the part of the pipeline responsible for induction of a Link
Grammar dictionary from input parses, on the process for evaluation of such grammars,
as well as on the results obtained from our research efforts.

The fundamental importance of this research is based on the assumption that
understanding natural human language acquisition is one of the keys to decipher the
nature of human intelligence [7] and unlock the path to artificial general intelligence
(AGI) [8]. Unlike other approaches to unsupervised language acquisition [9], our
framework creates a language model that, in contrast to a neural network “black box”,
consists of a human-comprehensible formal grammar contained in a LG dictionary file.
Such file lists grammar rules that can be further reviewed, edited and extended by
human computational linguists, or used by the Link Parser software (https://github.
com/opencog/link-grammar) to parse previously unseen text in the target language. The
latter possibility is compliant with latest trend in artificial intelligence domain called
“explainable artificial intelligence” (XAI) [10].

Fig. 1. Overall architecture of the unsupervised language learning pipeline, composed of a Pre-
Cleaner responsible for tokenization, Text Parser (using either MST-Parser, or Link Grammar
Parser or Hybrid Parser combining results of the previous two), Grammar Learner which induces
a grammar from parses, and Grammar Tester that evaluates the learned grammar.
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From a practical standpoint, the goal of the unsupervised language learning
(ULL) project is to automate the process of building, or extending, formal grammars of
human languages. These grammars could then be applied on the comprehension and
production of text and speech in computer software, and artificial intelligence appli-
cations involving natural language processing.

2 Grammar Induction Architecture and Implementation

Our proposed method for grammar induction, part of the open-source OpenCog
Unsupervised Language Learning (ULL) project, is implemented as its Grammar
Learner (GL) component and is represented on Fig. 2 (code can be found at https://
github.com/singnet/language-learning). This section dissects the steps necessary for
this process.

The Grammar Learner component takes as input a set of dependency parses with
undirected unlabeled links, which are used to create a word-vector space. Inspired by
representations using a Shifted Positive Pointwise Mutual Information word-context
matrix [11], the created word space is described by a sparse matrix M in which each
row i corresponds to a word, each column j to a context in which the word appeared,
and each matrix entry Mij corresponds to some association measure between the word
and the context. From a given input parse, we extract each word’s connectors as those
context-words linked to it, as well as a label “-” if the context-word appears to the left
of the reference word in the sentence, or a label “+” otherwise. A connector-set for a
word (also called a “disjunct” [4]) is composed of all the connectors it has in a given
parse tree. We then build the word-vector space matrix using either connectors-sets (for
smaller corpora) or plain connectors (for the larger “Gutenberg Children Books”
dataset) as the words contexts.

A variety of interaction metrics can be used as association measures: mutual
information [12] and co-occurrence frequency were implemented, resulting in dense
and sparse matrix representations, respectively.

The Space Formation sub-component implements cleanup options for the sparse
word space, filtering low frequency words and links. Further development suggests
pruning words, connector sets, and word-context links based on mutual information or
other interaction information criteria.

Singular Value Decomposition (SVD) [13] can be applied to the sparse vector space
to produce dimensionally-reduced dense vector representations (word embeddings).
However, this approach provided unstable results when applying K-means clustering, so
totally different distributions of words across clusters were formed with different random
seeds. Using other clustering algorithms, no clusters were obtained at all.

An alternative approach was to project the filtered word space onto a vector space
similar to multivariate Bernoulli distribution [14], with each word represented as a
sparse j-dimensional vector of binary variables. In this space, each variable describes
the interaction between a word and a context (connector or connector-set), taking the
values 1 if a word appears in a given context, or 0 otherwise. Exploring the properties
of the resulting word space and whether these variables are correlated or dependent is
an objective of further exploration. This approach smooths the influence of word
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frequencies and the distribution of interaction metrics on word vector similarities.
However, preliminary studies have shown that rarely occurring words may have
negative impact on the quality of space and consistency of the following results
obtained from it. That means, more research is required to suppress such “noise” based
on frequency filters.

The Clustering component may use various algorithms: beyond common K-means,
the present research effort implemented and studied mean shift and agglomerative
(ALE) clusterings, as well as grouping Identical Lexical Entries (ILE).

K-means clustering [15] of word embeddings used in our previous studies [4]
turned out to introduce instability during the optimization of the entire pipeline
parameters, so it was used only during earlier phases of the research. Also, our first
results for mean shift clustering [16] were not significantly better than ALE. Hence,
results for K-means and mean-shift clustering are not presented in the next section.

Agglomerative clustering in sparse vector space (implementation from https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html), fur-
ther referred to as “ALE” (Agglomerating Lexical Entries), proved to be the best fit for
larger datasets.

While testing similarity metrics for ALE, Euclidean distance provided better results
for larger datasets than cosine and Manhattan distances. The clustering quality was
evaluated with the Silhouette index for cosine, Jaccard, Euclidean, and Chebyshev

Fig. 2. Detailed architecture of the Grammar Learner component of the ULL pipeline. Grayed
(dimmed) components of the architecture are designed but not currently implemented, and
“TBD” blocks specify that new algorithms for a given stage of the process may be added in the
future. Dashed lines indicate reverse flow direction, introducing loops in the pipeline.
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similarities; cosine distance was preferred for smaller datasets. For larger corpora, all
tested variations of the Silhouette index were close to zero, so no programmatic
determination of the optimal number of clusters to create was possible (as opposed to
our earlier work with K-means [4]). Therefore, we explored the target-clusters parameter
space using 20, 50, 500, 1000, and 2000 clusters.

The ILE algorithm introduced in our previous work [2, 4] actually implements
lossless compression of a vector space by grouping words with the same sets of
associated connectors or connector-sets into grammatical categories. The resulting
space can be considered a straight projection of a fine-grained LG dictionary with the
maximum number of word categories onto the space of connectors or connector-sets.
However, ILE clustering creates very sparse LG dictionaries that could not be pro-
cessed by the LG parser in its current version, due to combinatorial explosions and
stack overflow issues in run-time.

Further development suggests iterative clustering process, involving incrementally
increasing volume of input data from smaller amount of high-frequency words to larger
amounts of less frequency words. In such case, the dimmed Classification component
in Fig. 2 could be used to attempt to classify newly experienced words to some of the
categories learned from the previous iterations. Then, if some of words are not clas-
sified, they can be used to learn new clusters to be added to set of the categories. Still,
exploration of the described flow has been not included in this study.

Category Generalization can be applied after Clustering for further aggregation of
the learned word categories, based on Jaccard similarities of sets of connectors or
connector-sets associated with them. Similarity thresholds can be set as generalization
parameters; by gradually decreasing the threshold from the maximum found in the
category distribution to a desired value, an iterative generalization process can be set up
to provide hierarchical category trees showing the inner structure of categories
agglomeration. Category Generalization results are not presented below, as Grammar
Rules Generalization with the same algorithm demonstrated more efficiency.

The Grammar Induction component infers a grammar in the LG formalism [3] by
processing links from input parses and replacing words with their corresponding
learned word categories. Sets of links corresponding to each word, expressed in terms
of word categories, form Link Grammar disjuncts for the category of the word. Link
Grammar rules are sets of disjuncts associated with word categories.

Finally, the Grammar Rule Generalization component may be used to further
cluster the learned word categories based on Jaccard similarities of sets of Link
Grammar disjuncts associated with the categories in the Link Grammar rules. This
component also adds an “upper layer” to the grammatical category tree on top of the
“middle” layer representing word categories, which is anticipated to correspond to
higher-level grammatical and semantic categories.

Optionally, the grammar learning process may be run in an iterative loop, using
word categories from grammar rules found in a previous iteration as input to categorize
words in subsequent iterations. The Category Tagging component replaces the words in
input parses with learned categories (when available) so that more and more dense
vector spaces may be created on subsequent iterations. The same iterative approach
may be employed for incremental grammar learning, where the scope of the input
parses gradually increases by adding previously unseen data to the training corpus.
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3 Grammar Testing and Evaluation Metrics

The Grammar Tester (GT) component of the ULL pipeline implements a quality
assurance procedure on the induced grammar obtained by the Grammar Learner. Two
metrics are employed for this purpose: parse-ability and F1-score, as shown in Fig. 4.

The first quality criterion determines the extent to which the reference corpus is
parsed at all – it is called “parse-ability” (PA) and computes the average percentage of
words in a sentence recognized by the GT: PA ¼ ðRðki=niÞÞ=N, where N is the number
of evaluated sentences, ki is the number of words in the i-th sentence recognized by the
GT, and ni is the total number of words in i-th sentence.

As a second metric, we use the conventionally defined F-measure or F-score (F1), a
function of recall (R) and precision (P): F1 = 2 *R * P/(R + P). Recall is defined as
R ¼ ðRðci=eiÞÞ=N, and precision as P ¼ ðRðci=liÞÞ=N, where ci is the number of
correctly identified links in i-th sentence, ei is the number of expected links and li is the
number of identified links, including false positives. That is, for recall we take the
average per-sentence number of overlapping links in test and reference parses divided
by the total number of links in the reference parses. Respectively, for precision we take
the same overlapping number, divided by the total number of links in the test parses.

4 Methodology of Studies and Intermediate Results

Our experiments for the ULL pipeline were performed with the three English text
corpora referenced in earlier work [4] and presented on Fig. 3: (1) an artificial corpus
created for basic testing purposes, the Proof-of-Concept English (POCE) corpus;
(2) the Child Directed Speech (CDS) corpus obtained from subsets of the CHILDES
corpus – a collection of English communications directed to children with limited
lexicon and grammar complexity (https://childes.talkbank.org/derived/) [17–19];
(3) the Gutenberg Children (GC) corpus – a compendium of books for children con-
tained within Project Gutenberg (https://www.gutenberg.org), following the selection
used for the Children’s Book Test of the Babi CBT corpus [14] (https://research.fb.
com/downloads/babi/).

For each of these corpora, we ran our Grammar Learner using two different kinds of
parses as input: first, our “standard” parses created either manually (for the POCE
corpus), or parsed by the LG parser using the standard human-crafted Link Grammar

Corpus Total 
words

Unique
words

Occurrences 
per word

Total 
sentences

Average 
sentence length

POC-English 388 55 7 88 4

Child-Directed Speech 124185 3399 37 38181 4

Gutenberg Children 2695151 54054 50 207130 13

Fig. 3. Some features of the English text corpora used for studies. See [4] for more details.
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Dictionary for the English language – further called LG-Parses. The second type of
parses used are MST-Parses created by the previous segment of the ULL pipeline,
including parses with WSD applied [4]. The human-knowledge-based LG-parses were
used as a reference to asses the quality of MST-parses, as well as to create a baseline
input for the GL to gauge its ability to induce grammar from “ideal” parses.

Based on the study of the various configurations of the Grammar Learner with
different parses for each given corpora, and having generated approximately 100
induced grammars and evaluated them as specified before, we present the best results
obtained in Fig. 4. From this experience, the following observations can be made:

1. It is possible to perform grammar learning using a non-dimensionally-reduced
discrete vector space of lexical entries (Link Grammar “disjuncts”) without
dimension reduction, based on identical lexical entries (ILE clustering) and using
agglomerative clustering for English corpora of different scales, achieving reason-
able scores for parse-ability and F-measure (PA/F1), using either parses obtained
with English Link-Grammar dictionary (LG-parses) or MST-parses, as shown on
Fig. 4.

2. It has been found that for real-world corpora such as CDS and GC, better PA/F1
scores are obtained if the evaluation of the grammar is performed only for sentences

Corpus Parses Parses F1 Clustering Grammar PA Grammar F1

POC-English Manual 1.0 ILE 100% 1.0

POC-English Manual 1.0 ALE-400 100% 1.0

POC-English MST 0.71 ILE/G 100% 0.72

POC-English MST 0.71 ALE-400 100% 0.73

Child-Directed Speech LG 1.0 ILE 99% 0.98

Child-Directed Speech LG 1.0 ALE-400 99% 0.97

Child-Directed Speech MST 0.68 ILE/G 71% 0.45

Child-Directed Speech MST 0.68 ALE-400/G 82% 0.50

Gutenberg Children LG 1.0 ALE-50 90% 0.61

Gutenberg Children LG 1.0 ALE-500 56% 0.55

Gutenberg Children MST 0.52 ALE-50 N/A N/A

Gutenberg Children MST 0.52 ALE-500 81% 0.48

Fig. 4. Best scores for F-measure (F1) and parse-ability (PA) for different corpora and parse
types using different clustering algorithms: ILE – Identical Lexical Entries, ILE/G – ILE with
Grammar Rule Generalization, ALE-400 – Agglomerative clustering for 400 target categories,
ALE-400/G – same with Grammar Rule Generalization, ALE-50 and ALE-500 – Agglomerative
clustering for 50 and 500 target categories, respectively.
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for which the LG-parses are complete (the LG parser is allowed to ignore some
words from a parse if a “cheaper” parse tree is found with an incomplete sentence).
This way, the comparison is less likely to be done against originally incorrect
parses.

3. We found a large Pearson correlation (93–100%) between the distributions of
F-scores of MST-parses against LG-parses, and that of the parses obtained based on
the grammar induced from these MST-parses against the same LG-parses. This
effectively means that the quality of a learned grammar is linearly related to the
quality of its input parses.

4. No reliable correlation between PA and F1 was found across corpora: in some cases
(POCE, cleaned version of CDS and raw GC) it is positive, for another one it is
close to zero (raw CDS), and for a third one it is negative (cleaned version of GC).
That means PA can not be used as a metric for hyper-parameters optimization when
we lack a standard (like LG-parses) to measure F1.

5. It has been shown that applying word-sense disambiguation before MST-parsing
can improve the parses, providing higher F1 against their LG-parses standard. For
the POCE corpus, F1 (on MST-parses only, not from grammar induction) improves
from 0.70 to 0.75; in the case of the GC corpus, it grows from 0.50 to 0.52. As
predicted by the point 3 above, the quality of the learned grammar increases as well.

6. The results shown in Fig. 5 were achieved by either grouping identical lexical
entries (ILE) or agglomerative clustering (ALE), both starting from a discrete vector
space of lexical entries (Link Grammar disjuncts) without dimension reduction.
These results replace the ones from previously-used dimension reduction with
singular value decomposition (SVD) and K-means clustering. Such changes provide
higher F-scores and reproducibility, allowing optimization of the pipeline’s hyper-
parameters.

7. It has been found that the number of clusters, representing grammatical categories,
that provides the best F1 for produced parses is about 500 for the real-world English
corpora (CDS and GC). A decrease in the number of clusters/categories tends to
increase PA and decrease F1 rapidly; using more clusters tends to reduce both PA
and F1 slowly. Also, inducing grammars with less than 50 categories on the GC
corpus causes exponential run-time growth for the LG parser using them, as well as
segmentation faults on particular sentences.

8. We noticed that removing parses with low-frequency words from the GL input may
decrease the grammar induction run-time, but never increase quality (either PA or
F1) given our corpora; literally “the more words, the better”.

9. Figure 5 shows that it is possible to use generalization of the learned grammatical
categories into hierarchical trees to unravel the grammatical and semantic nature of
their vocabulary in a reasonable way, corresponding to the context of the training
corpora. These categorical trees can be useful for feature engineering in NLP
applications, as well as for studies of new languages or domains by computational
linguists.
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5 Conclusion

We can conclude that it is generally possible to perform programmatic unsupervised
induction of formal grammars from unannotated sentence parses for tiny, small and
large text corpora, using the Link Grammar formalism and parser. We have found that
quality of the grammar is linearly correlated with quality of the input parses used to
induce the grammar. That is, the quality of the input parses seems to be the major
obstacle for obtaining high quality grammars.

Future plans for our work include searching for ways to improve the quality of the
input parses obtained in an unsupervised way from unannotated text corpora, as well as
enhancing the grammar-induction technology itself. For the latter, we intend to
improve the GL component to learn generalized parts of speech and grammatical
relationships through better clustering.

Acknowledgements. We appreciate contributions by Linas Vepstas, including insightful dis-
cussions and critique on our research. We thank Amir Plivatsky for valuable feedback and
maintenance and incremental improvements of the LG parser technology used in our work.

Fig. 5. Fragment of a category tree learned from the Gutenberg Children corpus in an
unsupervised way, showing subgraphs matching the word “day”. Visualized with the Aigents
Graphs framework (https://github.com/aigents/aigents-java/blob/master/html/graphs.html).
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Abstract. The article expounds the functional of a cognitive architecture Sign-
Based World Model (SBWM) through the algorithm for the implementation of a
particular case of reasoning. The SBWM architecture is a multigraph, called a
semiotic network with special rules of activation spreading. In a semiotic net-
work, there are four subgraphs that have specific properties and are composed of
constituents of the main SBWM element – the sign. Such subgraphs are called
causal networks on images, significances, personal meanings, and names. The
semiotic network can be viewed as the memory of an intelligent agent. It is
proposed to divide the agent’s memory in the SBWM architecture into a long-
term memory consisting of signs-prototype, and a working memory consisting
of signs-instance. The concept of elementary mental actions is introduced as an
integral part of the reasoning process. Examples of such actions are provided.
The performance of the proposed reasoning algorithm is considered by a model
example.

Keywords: Cognitive agent � Sign-based world model � Semiotic network �
Modeling of reasoning

1 Introduction

Cognitive architectures as a way to model the higher mental functions of a person to
this day remain the main tool for creating global models of thinking, activity and
decision making. On the one hand, this approach uses research materials in neuro-
science and psychology. On the other hand, it allows combining a variety of methods
and techniques to achieve the goal. For example, in [1–3] the cognitive architecture of
the DSO based on the Paul McLean model of the triune brain [4] and extended by using
Bernard Baars’ global workspace theory [5, 6] is presented. In [7] several formal
models are proposed, each of which can be considered as a cognitive architecture. The
proposed models are organized in a hierarchy, starting with a basic RL agent capable of
observing, exploring the environment, as well as performing actions affecting this
environment, and ending with PrimeAGI agent [8, 9], implemented on top of OpenCog
platform, which is capable of selecting cognitive actions through the process PGMC
[10]. Recently, there has been a process of “equipping” cognitive architectures with the
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latest advances in machine learning, which often do not simulate any mental process at
all. For example, in [11], an approach to generate a description of an image (semantic
image retrieval) is proposed, using deep convolutional networks for detecting objects
and the cognitive architecture OpenCog for semantic analysis and query processing.
Another approach to developing cognitive architectures is to use data derived from
neurobiological research. Obvious examples are the HTM [12, 13] and eBICA [14]
architectures.

Of particular interest is the above paper [7], which uses the graph approach. The
agent’s memory is represented by a large hypergraph, called Atomspace. Atoms in such
a model are called both vertices and edges of the graph. Moreover, Atoms are
accompanied by labels which can mean “variable”, “or”, “implication”, etc. Then an
atomic cognition, called “cognit”, is an Atom or a set of Atoms. Activation of the
cognit, depending on the label, can lead to such results as the creation of a new cognit,
activation of one or more cognits, etc. This allows us to consider “graph programs”
embedded in a common hypergraph. Additionally, the following hypothesis is applied:
most of the operations performed by cognitive processes are a composition of ele-
mentary homomorphisms. This approach is close to the SBWM architecture, since the
world model, as it will be described in detail below, in SBWM is a complex semiotic
network formed by several semantic networks and transition functions between them.
However, an important distinction of the model described below presents a process of
activity propagation on the network, which allows to model unconscious processes.

2 Cognitive Architecture SBWM

In a broad sense, cognitive architecture is said to specify a computational infrastructure
that defines various regions/functions working as a whole to produce human-like
intelligence [15]. Such a definition in practice is expressed in the fact that cognitive
architectures are built on the block principle, where each block performs a specific
function, and partial modeling of human intelligence is achieved by the interaction of
these blocks.

However, this approach has its drawbacks. For instance, modern works on neu-
rophysiology speak of a uniform structure of the brain and the absence of an exact
localization of the processes occurring in it. Also, most architectures are limited to
modeling the memory of the agent and the set of some actions on this memory and do
not use developments in the field of activity theory of behavior. As another drawback,
one can point out a situation where a group of agents operates acting as carriers of
cognitive architecture. In this case, the agents will be identical, copies of one system,
up to the data loaded in them, which does not allow to model the individual charac-
teristics of the agents obtained in the process of functioning. There are approaches to
the development of so-called lifelong learning systems, in which it supports an iterative
process of additional training due to which individual characteristics can arise, how-
ever, this has not yet become widespread in the construction of cognitive architectures.

The sign-based world model (SBWM) architecture is based on principles of the
cultural-historical approach of L.S. Vygotsky and activity theory of A.N. Leontiev,
which allow to eliminate these shortcomings. The main element of architecture is a
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sign, a distinctive feature of which is the presence of a personal meaning component.
This component allows to store and use the individual characteristics of the agent,
obtained in the course of activities in the environment and, as a result of processing the
experience is gained. The main idea of the approach is that the agent acting in the
environment keeps its own view on this environment. Moreover, on the one hand, this
view represents the assimilation of well-known rules and patterns of behavior (the
cultural and historical heritage of the collective), and on the other hand, is the result of
accumulated experience gained in the process of performing any actions in this envi-
ronment. Thus, the agent’s view on the environment is subjective, depends on expe-
rience, and may be different for different agents. In contrast to the classical approach to
cognitive architectures, in which the resulting system is a collection of individual
blocks, the SBWM uses a uniform representation of knowledge and processes: on the
semantic level, in the form of signs, and on the structural, in the form of distinct
networks on a set of causal matrices. Such an approach shows its expediency in the
tasks of cognitive hierarchical planning [16, 17] and anomaly detection [18], etc. In this
paper, SBWM architecture is used to model a particular case of reasoning with a
cognitive agent. The ability to reason is one of the most important tools necessary for
functioning in a partially observable and/or non-deterministic environment. With the
help of reasoning, the agent is able to generate new knowledge that is not in their world
model, using available knowledge, known patterns, and connections between them.
Although the processes of reasoning and planning are often considered separately, in
essence, they complement each other. In [17], an alternating approach is considered for
planning and reasoning. The updated agent’s world model, obtained at the stage of
reasoning, is used at the subsequent planning stage.

Further, we will describe the principles of SBWM in more detail, following
[18, 19], originally described in [20, 21]. The main element of the system is the sign,
which corresponds with the agent’s view on an object, action or situation. Further, for
simplicity, an object, action or situation will be called an entity. The sign consists of
four components: image p, significance m, personal meaning a, and name n. The image
component corresponds to the characteristic feature of the described entity. In the
simplest case, the image refers to signals from the agent’s sensors that is consistent with
an entity. In general, one can say that the image of the sign is relative to the set of
characteristic features of the entity which the sign corresponds with. The significance of
the sign describes the standard application of the entity, taken from cultural and his-
torical experience. In practice, this is expressed in a priori knowledge obtained by an
agent from outside, for example, when processing a corpus of texts, and not depending
on experience. The meaning of a sign is understood as a relation of the agent to the
entity or experience of the agent’s interaction with this entity. Thus meanings are
formed in the interaction process of the agent with the environment.

To describe the components of the sign, we introduce a special structure – the
causal matrix. A causal matrix is a tuple z ¼ he1; e2; . . .; eti of length t where events ei
are represented by a binary vector (column) of length h. For each index j of the event
vector ei (row of the matrix z), we will associate a tuple, possibly empty, of causal
matrices Zj, such that z 62 Zj. We divide the set of columns indices of the causal matrix z
into two disjoint subsets Ic and Ie. The set Ic for the matrix z will be called the indexes
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of the condition columns, and the set Ie – the indexes of the effect columns of the
matrix z. If there are no effect columns in the matrix, then we will say that such a matrix
corresponds with the object. The presence of effect columns in the matrix means that
such a matrix corresponds with an action or process. It is also worth noting that the
matrix cannot consist only of effect columns. Thus, the structure of the causal matrix
makes it possible to encode uniformly both static information and features of an object,
as well as dynamic processes. The ability to specify causes and effects allows to
represent a causal relationship.

A sign means a quadruple s ¼ hn; p;m; ai, where the name of a sign n expressed by
a word in some finite alphabet, p ¼ Zp, m ¼ Zm, a ¼ Za are tuples of causal matrices,
which are respectively called the image, significance, and meaning of the sign s. Based
on this, the whole set of causal matrices Z can be divided into three disjoint subsets:
images Zp, significances Zm, and meanings Za which are organized into semantic
networks, which we will call causal.

A causal network on images will be a labeled directed graphWp ¼ hV ;Ei, in which
each node v 2 V is assigned a causal matrices tuple ZpðsÞ of the image of a certain sign
s, an edge e ¼ ðv1; v2Þ 2 E, if the sign s1 is an element of the image s2.

Causal networks on significances and meanings are defined in a similar way. The
network on names is a semantic network whose vertices are the names of signs, and the
edges correspond to special relationships. Thus, each component of the sign forms a
causal network with a specific set of relationships. These four causal networks are
connected by using transition functions W j

i ; i; j 2 p;m; a; nf g to the semiotic network.
The transition function W allows to switch from one component of the sign to another,
for instance. A semiotic network can be considered an agent’s knowledge base of the
environment, taking into account the experience. In other words, the semiotic network
is a sign-based world model of an agent.

Formally, we will call the semiotic network X ¼ Wm;Wa;Wp;Wn;R;H
� �

a sign-
based world model, where Wm;Wa;Wp;Wn are causal networks of significances,
meanings, images, and names, respectively, R ¼ Rm;Ra;Rp;Rnh i is a family of rela-
tions on sign components, H is a family of operations on a set of signs. Operations H
include such actions on signs as unification, image comparison, updating while
learning, etc.

An important element of the SBWM is the concept of the spread of activity on the
semantic network. By the activation level of the sign component ki; i 2 p;m; af g will
be called a real number 0� k� 1 where 0 corresponds to the absence of activation, and
1 is the maximum possible activation. The activation threshold hSi ; i 2 p;m; af g sets
the activation level so that when k� hS, i.e. activation of a component is equal to or
exceeds the threshold, the sign component becomes active and is assigned an activity
label a. The component of the sign, the activation level of which is not zero, but less
than the threshold, i.e. 0\k\hS, considered pre-activated. A sign becomes active and
an activity label is assigned to it if its components are active. Thus, the activation of the
sign components corresponds to replenishment of the sets of active causal matrices
Z�
i ; i 2 p;m; af g, and the activation of the sign corresponds to replenishment of the set

of active signs S�. Activation of components and signs occurs in the process of
spreading activity on a semiotic network. It is worth noting that in the simplest case, the
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activity of the components can only increase with time, however, situations are possible
when signs and their components are no longer active, excluded from the sets Z� and
S�, then the attenuation coefficient of the activity ci; i 2 p;m; af g can be entered at
which the activity will decrease at each step: kt ¼ kt�1 � c. The need for the attenu-
ation coefficient of the activity may arise, for example, when the power of the sets Z�

and S� greatly increases in the course of the agent activity in the environment.
Spreading activity on a semiotic network is subject to global and local rules

(ascending, predicting, descending, causal) for spreading activity listed in Table 1.

The process of spreading activity is iterative, i.e. at each i step, new active matrices
and signs are added to the sets of active matrices and signs for the step i� 1.

3 Reasoning in SBWM

We introduce some concepts that we need in the future.
A semiotic network expressing the agent’s knowledge of the environment can be

divided into long-term and working memory. The conditionality of such a division
arises because of impossibility to localize a region in a semiotic network that would be
responsible only for one of them. They differ only in the types of signs they may
contain. Abstract knowledge of an agent of a certain entity, its characteristics and
possible interactions with this entity, obtained as a result of the assimilation in which
cultural and historical experience are integrated or the experience of the agent, will be
called a sign-prototype _S.

By a sign-instance Ŝ, we mean the specific implementation of the sign-prototype.
The sign-instance does not reflect all the properties available to the sign-prototype, but
only those that are important at the moment. At the same time, the connection with the

Table 1. Local and global rules

Rule name Description

Ascending If at some point in time the component of the sign becomes active, then all
occurrences of this component in the causal matrix of other signs become
active

Predicting If at the time moment t an event et is active in any component of the sign s,
then the events etþ 1 of the same component are pre-activated

Descending If at some point in time each event in the tuple of causal matrices of some
component of the sign is active, then these components of all signs included in
the event are pre-activated

Causal If an event is active at some point in time, then predictive and descending rules
are consistently applied to all event-effects, with the amendment that the
maximum activity applies

Global If one of the components of the sign becomes active at some point in time, the
other components become pre-activated, i.e. their activity level is changed by a
certain value determined for each component
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prototype through the name component is retained, which allows updating the
description of the sign-instance as necessary. Updating occurs due to the removal
(forgetting) of the current sign-instance and the creation (recall) of the sign-instance
with an extended set of properties. The fact that the sign Ŝ is an instance of the sign-
prototype _S will be denoted as Ŝ ’ _S.

Long-term memory ML, or simply memory, will be called a part of the agent’s sign-
based world model, expressed with the help of signs-prototype. Although structurally
long-term memory is a network, it can be described as the set of all signs-prototype.

Working memory MW is part of the agent’s sign-based world model in which
information that is actively processed is stored. Such information is expressed by
means of signs-instance. As well as long-term memory, working memory can be
represented as a set of all signs-instances.

By active edges, we will mean edges, which are currently spreading activity. The
activation of the edge corresponds to the beginning of the spread of activity along this
edge.

We proceed directly to the formalization of reasoning. To begin with, we define
that a binary predicate Pðx; yÞ can be regarded as a binary relation, then the predicate
Pðx; yÞ is true if and only if the pair ðx; yÞ belongs to the relation P. We will use the
terms binary predicate or, simply, the predicate and relations interchangeably.

We define a situation as any fixed state of the environment. Then, the configuration
of the environment in which the agent operates is generally specified by listing the
objects in the situation and the relations between them. We denote Df the set of all
possible relationships between all objects presented in the situation. Such a set will call
a complete description of the situation. Obviously, such a complete description of the
situation is redundant, for example, if it is known that “object A to the left of object B”,
using the interrelation between relationships, can be inferred that “object B to the right
of object A”. We will say that D is a description of a situation if D�Df .

We formulate the problem solved by the agent as follows: the agent is given a
description of the situationD and asked a questionQ in the form of predicate conjunction
P1ðx1; y1Þ � P2ðx2; y2Þ � . . . � Pnðxn; ynÞ. The agent must determine whether the question is
fulfilled (the predicate conjunction takes the value true) in the given description. The task
of the agent is to replenish the description D to some description D0, in which the
question is solved or to establish the impossibility of its implementation.

At the initial moment of time, the agent has access to a set of active signs S�0, from
which they can choose one of the signs to start the reasoning. We will assume that the
signs are chosen randomly and equally likely. Having chosen a sign, the agent gets
access to the incoming and outgoing edges of this sign. With the selected sign, the
agent can perform one of the available elementary mental actions. An elementary
mental action corresponds to a transition along one of the edges of a chosen sign, as a
result of which a sign is activated at the other end of the edge. Depending on the types
of signs connecting the edge, different elementary actions arise listed in Table 2.

For signs corresponding to some objects or other agents, an elementary action
“transition to action/relation” occurs, in which the entity described by the sign plays
the role of an object obj2actðSÞ or a subject subj2actðSÞ. Formally, actions obj2actðSÞ
and subj2actðSÞ are written in the same way as actions act2subjðSÞ and act2objðSÞ.
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Despite the fact that edges can connect different components of signs, information
about available mental actions is recorded on a network of names. This allows to
shorten the chain of actions with a sign.

Elementary mental actions can be organized in chains, such a chain will be called a
compound mental action, or simply, amental action. For example, the transition from one
sign-instance to another sign-instance of the same sign-prototype is carried out as follows:
abstraction followed by concretization to an instance. Thus, mental action can be under-
stood as any stable sequence of elementary mental actions. A stable sequence means a
sequence of elementary actions, which is often repeated when the agent solves problems.

If we denote si the active sign chosen by the agent in the i-th step, ai is the mental
action is chosen at the same step, and the application of this action ai to the sign si is
denoted as m si; aið Þ, then m si; aið Þ ¼ si where si is the sign activated in the i-th
step. Then the set of active signs on the iþ 1-th step will be equal to S�iþ 1 ¼ S�i [ si. To
simplify writing, we will denote m si; aið Þ as siai, and the set S�iþ 1 as ri, i.e. as a result of
applying a mental action at the i-th step. Then the sequence s1a1r1s2a2r2. . .snanrn will
be called reasoning.

The process described above corresponds to the perceived or verbalized part of the
reasoning. However, this is not the only way to replenish the set ri. The set ri can also
be replenished by spreading the activity using the rules for spreading activities.

Let us replenish rules for spreading activity by the following list:

• on the significance network, the activity spreads both in the direction of the edge
and against the direction;

• on networks of images, personal meanings and names, the activity spreads only in
direction of the edge.

Let us add the rules for activating the sign components and the sign itself with the
following rules:

• on the significance network, the sign component becomes active if at least one
outgoing or incoming edge is active;

Table 2. Types of elementary mental actions

Name Label Description

Abstraction inst2protðŜÞ A transition along an edge from the sign-instance to the
corresponding sign-prototype

Concretization to
the instance

prot2instð _SÞ A transition along the edge from the sign-prototype to
the corresponding sign-instance

Generalization cl2supclð _SÞ A transition along the edge from the sign-prototype of
the class to the sign-prototype of the superclass

Concretization to
a subclass

cl2subclð _SÞ A transition along the edge from a sign-prototype of a
class to a sign-prototype of a subclass

Transition to the
action subject

act2subjðSÞ Records that the sign Sj is a subject for the action
corresponding to the sign Si

Transition to the
action object

act2objðSÞ Records that the sign Sj is an object for the action
corresponding to the sign Si
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• on the network of images and personal meanings the sign component becomes
active if all incoming arcs are active;

• if the name of the sign s is activated at the step t, then, regardless of the activation
level of the components of the sign s at the step t � 1, the sign s is activated, and all
its components are activated accordingly.

We denote the set of signs that were activated at the i-th step by spreading the
activity as rsai , then the set of all active signs after the i-th step r0i can be written as
r0i ¼ ri [ rsai .

It is worth noting that in order to proceed and lead to any results in the reasoning
process, it is necessary that the agent’s long-term memory stores information about the
interrelation of the relationships presented in the situation (such as “left”, “right”, etc.).
Such information can be obtained in several ways: (1) from a priori knowledge of an
agent, for example, as a result of processing a corpus of texts, where these connections
are clearly indicated; (2) obtained during the processing of the agent’s experience;
(3) be part of the input information along with the relationship itself, information about
the situation and the question. These interrelations are also represented as causal
matrices.

Also, in the working memory, a sign is created corresponding the reflection of the
agent over their own reasoning, and a sign corresponding to the stage of reasoning. The
agent begins the reasoning “by focusing attention” on the active sign-instance in the
working memory.

The algorithm for implementing the mechanism of reasoning in the sign-based
world model listed in Table 3. Currently, this algorithm is being implemented on the
basis of the library “map-core” developed at FRC CSC RAS [22].

Table 3. Algorithm for implementing the mechanism of reasoning in SBWM

Algorithm 
0 INPUT: Description of the situation D , question Q
1 Creation of signs-instance of the objects and relations specified by D
2 Creation of signs-instance of question and answers “Yes”, “No”
3 Activation of signs in working memory
4 WHILE question sign is not active AND

(there are not considered active signs OR not applied actions)
5 Choose one of the sign from set of active signs
6 Choose one of the possible mental actions for the sign and apply to it
7 Update set of active signs due to the spread of activity
8 END
9 IF question sign is active THEN
10 Activate the “Yes” sign
11 ELSE
12 Activate the “No” sign
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4 Model Example

We briefly illustrate the above algorithm without following formalities and omitting the
technical details. We will consider the problem of modeling reasoning in a modified
world “World of cubes”. The objects will be cubes and tables with specified identifiers.
An example of the environment configuration is shown in Fig. 1.

The environment has the following relationships: On (x, y), Left (x, y), Right (x, y),
Above (x, y), Below (x, y), Near (x, y), Far (x, y). A complete description of the
situation depicted in Fig. 1, as mentioned above, will be redundant.

Two obvious extreme cases where the question is contained in the description or
when the description does not contain the object of the question are not considered.

The following example is of greater interest: a description D ¼ OnðA; TÞ;f
OnðB; TÞ; LeftðA;BÞ;OnðC;BÞg is given and a question Q ¼ RightðB;AÞ � AboveðC; TÞ
is asked – the answer is not presented clearly in the description, but all objects
appearing in the question are contained in it.

In this case, at some stage of the reasoning, the agent will select a sign-instance of
block “A”, denote it ŜA, apply a mental action obj2actðSÞ to it: obj2actðŜAÞ ¼ ŜLeft1 and
proceed to the sign-instance of the corresponding relation “Left”, we denote it as ŜLeft1.
Next, applying to the ŜLeft1 action inst2protðŜÞ will go to the sign-prototype of the
relationship “Left”: inst2protðŜLeft1Þ ¼ _SLeft. On the significance network at the sign
_SLeft there is a causal matrix ZLeft$Right, encoding that if the object X is to the left of the
object Y , then the object Y to the right of the object X, i.e. if LeftðX; YÞ, then
RightðY ;XÞ. Using this interrelation of relations, the agent will replenish the descrip-
tion of the situation with a new fact: D :¼ D[RightðB;AÞ. The relation AboveðC; TÞ is
derived in a similar way using the rule: if OnðX; YÞ and OnðY ; ZÞ, then AboveðX; ZÞ.
Thus, the final description of the situation will be D ¼ OnðA; TÞ;OnðB; TÞ;f
LeftðA;BÞ;OnðC;BÞ;RightðB;AÞ;AboveðX; ZÞ; . . .g where the dots correspond to other
facts obtained in the course of the reasoning. This description contains a question and,
therefore, the agent will give a “Yes” answer.

Fig. 1. Possible configuration of the “World of cubes” environment.
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5 Conclusion

The article considers the cognitive architecture SBWM and proposes an algorithm that
simulates a particular case of reasoning in it. The concept of long-term and working
memory, as well as signs-prototype and signs-instance are introduced. A model
example of the use of reasoning in a modified world “World of cubes” is given.
However, all the capabilities of this algorithm will be fully revealed in more complex
examples, which will be considered in subsequent works. The results will form the
basis for the further development of reasoning algorithms in the SBWM.
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Abstract. This paper presents the most important neuroscientific find-
ings relevant to embodiment, including findings relating to the impor-
tance of embodiment in the development of higher-order cognitive func-
tioning, including language, and discusses these findings in relation to
Artificial General Intelligence (AGI). Research strongly suggests the
necessity of embodiment in the individual development of advanced cog-
nition. Generalizing from this body of literature, conclusions focus on
the importance of incorporating a physical body in the development of
AGI in a meaningful and profound way in order for AGI to be achieved.

1 Introduction

Work conducted in the field of neuroscience suggests the presence of a physical
body may be necessary for the development of advanced cognitive functions,
including language, and it has been argued that embodiment may be neces-
sary for abstract and symbolic thought. Despite this, a focus on robotics, or
more specifically, embodiment within AGI remains rare, with theoretical and
philosophical discussion pertinent to embodiment and its importance also being
uncommon. This paper presents a summary of evidence drawn from neuroscience
suggesting the necessity of embodiment in achieving advanced cognitive func-
tioning, along with the importance of real experience, and how embodiment
may solve the symbol grounding problem. All of the above produces a num-
ber of important implications in relation to AGI, and by extension, general
intelligence.

2 The Neuroscientific Basis Behind Embodiment

There exists a substantial body of evidence from the field of neuroscience sug-
gesting the importance, or more strongly, necessity of embodiment in the achieve-
ment of advanced cognitive functions in humans. Within this and related fields,
theories of embodied cognition suggest no separation between cognitive process-
ing considered more rudimentary, such as perception and action, and what are
considered higher-level processes, including language and thought [7]. According
to this view, cognition associated with these “high” and “low” level processes is
c© Springer Nature Switzerland AG 2019
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not processed in different domains. Similarly, language comprehension is thought
to recruit the same sensorimotor areas as are recruited when interacting with
the environment [3,4,7,11] and the state of the world described using language
is thought to be simulated when this language is comprehended [5,16]. The key
issue here is grounding; theories of embodied cognition suggest not only that the
same neural units ground both actions as well as the language which refers to
actions, but within this sensorimotor basis for cognition [12,14], the sensorimotor
system also provides the grounding for abstract concepts [7]. Various proposals
have been put forth within this school of thought with regard to how these
abstractions might work [6]. Additionally, the embodied view of cognition is fur-
ther supported by thoughts being composed of modality-specific representations,
and with perception, thought, and action being co-constituted, or constitutively
interdependent [12].

In particular, visio-motor processing, and specifically, manipulation, have
been cited as necessary for higher cognitive development - which includes abil-
ities such as social behavior and language [10]. Within the context of language
comprehension, sensorimotor areas in the brain have been found to be closely
linked to language processing, and with the motor system having an important
role in language comprehension [7]. All of this suggests sensorimotor capabilities
and relevant components of the brain are necessary for the achievement of our
language abilities, and that mechanical or electronic counterparts of these may
be necessary for language acquisition in machines, along with other advanced
cognitive functions.

3 The Necessity of Embodiment and Sense Experience

An issue rarely discussed is the potential necessity of a body for the purposes of
achieving general intelligence. One question that has been raised is the extent to
which the body influences the brain, whether it impacts the way in which we think,
and if the world must be experienced in order to be understood [15]. Work in the
field of embodied cognition suggests that cognition is much more dependent on a
physical body as has been assumed [12,15], with some stating that interactions
are imperative for shaping the rapidly growing brain [10], and others arguing that
the body is intimately connected with learning, even the learning of abstract con-
cepts, such as mathematics [1], and that even symbol manipulation is embodied,
activating “naturalistic perceptuomotor schemes that come from being corporeal
agents operating in spatial-dynamical realities” [1, p. 2].

Evolutionarily, brains have always developed within the context of a body
that interacts with the world to survive [15], while the vast majority of the work
done in AGI has ignored this fact. Some have cited the necessity of machines
acquiring their own experiences if human-level intelligence is a goal - and the
fact that memories relate to something done with the body, or some real experi-
ence [15]. Without embodiment, agents cannot learn through experience, while
approaches not incorporating embodiment assume that representations of physi-
cal objects can be sufficiently constructed through only theoretical measures [15].
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However, simulations are inherently limited, while goal-oriented behavior derives
its success from experience: even the simple task of picking up an object is easily
accomplished only due to our past physical experiences with such objects.

All of this suggests that intelligence requires a physical body that interacts
with the world, and that intelligence needs to grow and develop over time con-
comitant with experience, as opposed to being pre-programmed, with embod-
iment and sense experience being intimately connected with cognition. It has
been argued that even abstract thought is rooted in our physical experiences
with the world - that we have a large set of basic concepts which relate to our
body and how we move in space, and that more advanced and abstract concepts
build upon these [8,9]. It has even been suggested that conceptions like happi-
ness would differ in different bodies [8,9] - which implies that all emotions, and
maybe all concepts, as well as the nature and form of consciousness, may vary
on the basis of the physical form of the agent.

Additionally, embodiment also assists with the symbol grounding problem
[12]. In humans, meaning is imbued in objects and the words that represent
them through our experiences with these objects, our history with them, our
memories, and so forth. Grounding even a single concept is thought to require
a set of physical skills and experiences which are very specific; for example,
grounding the word “chair” involves reliable detection of these objects, as well as
responding appropriately to them [2]. Incorporating physicality in agents should
allow them to gain similar experiences to ours, which should allow for grounding
by attaching meaning to physical objects as well as their representation of these
objects. This grounding would allow for a connection to the real world which,
so far, has not been attained by any artificial agent, while also allowing for
cooperation and communication, which have been said require symbolic thought
[10]. This is also highlights the importance of the extent to which this physicality
may need to be similar to ours, and with all forms of sensory perception being
active processes, with sensory experiences being tied to movement, this would
suggest the insufficiency of simply adding sensors to a robot [15].

4 Conclusions

Searle argues that machines cannot understand, as they simply operate on the
level of symbol manipulation [13]. Agreeing that an agent that only manipu-
lates meaningless symbols is qualitatively different from one whose symbols are
grounded and are linked to other grounded symbols, the question then becomes
how to imbue meaning in the symbols used by machines. With the literature
suggesting that meaning is imbued through embodied experience, if this is not
the only way in which machines can be created whose symbols are meaningful
to themselves, it may at least be an efficient approach to creating such an entity.

While those in AGI have realized the probable errors of the approaches used
in AI in the attempt to create general intelligence, the work done in the field
still largely encapsulates the view that cognition can be reduced to a series of
algorithms; input, processing, and output. Furthermore, the idea that knowledge
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of how intelligence develops may be necessary in order to replicate it has largely
been ignored. All of this would suggest an embodiment-focused approach to
AGI, which, as stated, would not simply involve the addition of sensors to a
robotic body, but would allow for a richer and fuller qualitative experience,
akin to the qualitative deepness of the sensory experience and the nature of
embodiment experienced by humans. In addition, this would further suggest a
strong focus on the use of learning algorithms similar to those manifested in the
human brain, and that through extensive and continuous interaction with the
environment, AGI would be achieved. AGI may not be expected to bootstrap
from nothing; in the case of many artificial agents, some innate abilities as those
manifested in babies are pre-programmed [10]; this may at least be conducive to
the bootstrapping process without impeding the path to AGI. Similar arguments
could be made for our other innate abilities such as language.

In sum, strong evidence exists for the necessity of embodiment in grounding
and the development of advanced cognitive functions, including language, and
this evidence likely applies to all agents, which suggests that embodiment and
experience is a necessary a priori for AGI. An embodiment approach should allow
machines to think about and understand concepts in a manner which is no less
in quality than that of a human. This suggests the great importance of those in
AGI to not simply put their system in a robotic body or to add sensors, but for
the entire process of development to be intimately connected with embodiment;
great detail should be afforded to the body from the earliest planning stages, and
with no detail planned or made without consideration of the body, and for the
artificial body to be as similar as possible to a human body. This then suggests
the importance of those in AGI to be working closely with those in the field
of robotics; associations should be made, and these two groups of researchers
should be closely collaborating on AGI projects as partners.
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Abstract. We try to predict the next bit from a given finite binary
string when the sequence is sampled from a computable probability mea-
sure on the Cantor space. There exists the best betting strategy among a
class of effective ones up to a multiplicative constant, the induced predic-
tion from which is called algorithmic probability or universal induction
by Solomonoff. The prediction converges to the true induced measure
for sufficiently random sequences. However, the prediction is not com-
putable.

We propose a framework to study the properties of computable pre-
dictions. We prove that all sufficiently general computable predictions
also converge to the true induced measure. The class of sequences along
which the prediction converges is related to computable randomness. We
also discuss the speed of the convergence. We prove that, even when a
computable prediction predicts a computable sequence, the speed of the
convergence cannot be bounded by a computable function monotonically
decreasing to 0.

Keywords: Algorithmic probability · Universal induction ·
Computable randomness

1 Introduction

Given data, one finds regularity and predicts the future. This is what all living
things are doing and what we want to make machines do. Is there a universal
way of doing this? If so, what properties should the prediction have?

Solomonoff’s algorithmic probability or universal induction answers. For sim-
plicity, consider the case of infinite binary sequences, that is, the Cantor space
2ω. We try to predict the next bit from a given finite binary string. It is known
that there is an optimal c.e. semi-measure M on the Cantor space. Here, a func-
tion is c.e. if it can be computably approximated from below and optimality
means that it dominates all c.e. semi-measures up to a multiplicative constant.
See the definition in Sect. 2.1. By the usual correspondence between measures
and martingales (or semi-measures and supermartingales), this roughly means
that the prediction by M behaves at least as well as one by any c.e. semi-measure.
The prediction induced from an optimal c.e. semi-measure is called algorithmic
probability or universal induction.
c© Springer Nature Switzerland AG 2019
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Algorithmic probability has some desirable properties. One of them is the
convergence to the true induced measure (Theorem 2.3 below). This roughly
means that algorithmic probability can find any computable regularity unknown
in advance.

In this paper, we propose a framework showing that all sufficiently general
prediction should have some properties. That a program has a property does
not mean that the program is general enough, however, that a program does not
have a property means that the program can be modified to a more general one.
By evaluating computational complexity that a function with a property should
have, we can also discuss how difficult to add the property although we do not
discuss much this in this paper.

We focus on the speed of the convergence. One of our results (Theorem 4.4)
says that, for all sufficiently general computable predictions, the speed of the con-
vergence to the true measure cannot be bounded by a computable function. Thus,
incomputability of the rate of the convergence is not by the incomputability of
algorithmic probability. Rather than that, it is by the existence of computable
measures that are “close” to each other.

The structure of the paper as follows. In Sect. 2 we review some notions
and results on algorithmic randomness and algorithmic probability. In Sect. 3
we prove the convergence result for computable predictions along computably
random sequences. In Sect. 4 we consider the case of Dirac measures and show
the incomputability of the rate of the convergence.

2 Preliminaries

2.1 Algorithmic Randomness

We follow the notation in computability theory (see e.g. [10]) or the theory of
algorithmic randomness (see e.g. [1,8]).

The Cantor space 2ω is the class of all infinite binary sequences equipped
with the topology generated by the base elements of the cylinders [σ] = {X ∈
2ω : σ ≺ X} where ≺ denotes the prefix relation. A function f : ω → ω is
computable if it is computable by a Turing machine. The computability on Q

or 2<ω is naturally induced by their natural representation by ω. A real x ∈ R

is called computable if there exists a computable sequence (an)n∈ω of rationals
such that |x − an| ≤ 2−n for all n. A real x ∈ R is called left-c.e. if there exists
an increasing computable sequence (an)n∈ω of rationals.

A function f : 2<ω → R is called computable or c.e. if f(σ) is computable
or left-c.e. uniformly in σ ∈ 2<ω, respectively. A measure μ on 2ω is computable
if the function σ �→ μ([σ]) =: μ(σ) is computable. A semi-measure is a function
μ : 2<ω → [0, 1] such that μ(λ) ≤ 1 and μ(σ) ≥ μ(σ0)+μ(σ1) for every σ ∈ 2<ω

where λ denotes the empty string. A measure μ with μ(λ) = μ(2ω) = 1 is called
a probability measure. Notice that each semi-measure μ satisfying μ(λ) = 1 and
μ(σ) = μ(σ0) + μ(σ1) for every σ ∈ 2<ω can be seen as a probability measure.

Let μ, ν be measures or semi-measures on 2ω. We say μ multiplicatively dom-
inates (or m-dominates) ν if, there exists C ∈ ω such that ν(σ) ≤ Cμ(σ) for all
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σ ∈ 2<ω. A c.e. semi-measure μ is called optimal if μ m-dominates every c.e.
semi-measure. An optimal c.e. semi-measure exists.

Fix a computable probability measure μ. Martin-Löf randomness (or
ML-randomness) is an important concept to talk about randomness of individual
sequences. ML-randomness is usually defined by tests, but we give an equivalent
characterization to compare it with the definition of computable randomness
below. Let X≤n = X1X2 · · · Xn be the initial segment of X with length n.

Theorem 2.1 ([6]). A sequence X ∈ 2ω is ML-random w.r.t. μ (or μ-ML-
random) if and only if there exists a constant C ∈ ω such that ξ(X≤n) ≤
Cμ(X≤n) for all n, where ξ is an optimal c.e. semi-measure.

By the optimality, this is equivalent to the following statement: For every c.e.
semi-measure ξ, there exists a constant C ∈ ω such that ξ(X≤n) ≤ Cμ(X≤n) for
all n.

The central notion in this paper is computable randomness. Computable
randomness for the uniform measure is defined by martingales. However, Rute
[9] has suggested the following definition for a general computable probability
measure.

Definition 2.2. A sequence X ∈ 2ω is computably random w.r.t. μ (or
μ-computably random) if μ(X≤n) > 0 for all n and lim supn ξ(X≤n)/μ(X≤n) <
∞ for all computable measures ξ.

It is not difficult to see that this is equivalent to the following statement: For
every computable measure ξ, there exists a constant C ∈ ω such that ξ(X≤n) ≤
Cμ(X≤n) for all n. ML-randomness implies computable randomness, but the
converse does not hold in general.

2.2 Algorithmic Probability

We review some results from algorithmic probability. For details, see e.g. [2].
Let μ be an optimal c.e. semi-measure. Fix a sequence X ∈ 2ω. We are

interested in the ratio

μ(k|X<n) =
μ(X<nk)
μ(X<n)

,

where X<n = X1 · · · Xn−1 and k ∈ {0, 1}. Notice that X0 denotes the empty
string. The function k �→ μ(k|X<n) is a measure on {0, 1} but the measure
of the whole space {0, 1} need not be 1. The ratio can be understood as the
conditional probability of the n-th bit given the initial (n − 1) bits of X, and is
called algorithmic probability.

One of the desirable properties of algorithmic probability is the following
convergence to the true induced measure.
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Theorem 2.3. Let μ be a computable probability measure on 2ω and ξ be an
optimal c.e. semi-measure. Suppose X ∈ 2ω is sampled from μ. Then,

ξ(k|X<n) − μ(k|X<n) → 0 as n → ∞ (1)

for both k ∈ {0, 1} and

ξ(Xn|X<n)
μ(Xn|X<n)

→ 1 as n → ∞ (2)

with μ-probability 1.

The convergence (1) is called the convergence in difference by Solomonoff [11].
The convergence (2) is called the convergence in ratio in Li-Vitányi’s book
[7, Theorem 5.2.2, p. 433]. Remark the difference between on-sequence and off-
sequence. The speed of the convergence is one of our interest, which has been
discussed briefly in [3] but has not been established.

2.3 Distance Measures Between Probability Measures

The following notions are important in the proof of the convergence. For proba-
bility measures μ, ξ on {0, 1}, we define the squared Hellinger distance H2(ν, ξ)
by

H2(μ, ξ) =
1
2

∑

k∈{0,1}
(
√

μ(k) −
√

ξ(k))2 = 1 −
∑

k∈{0,1}

√
μ(k)ξ(k).

From the equalities above, 0 ≤ H2(μ, ξ) ≤ 1. We also use the Kullback-Leibler
divergence (or KL-divergence) of μ with respect to ξ defined by

D(μ||ξ) =
∑

k∈{0,1}
μ(k) ln

μ(k)
ξ(k)

where ln is the natural logarithm and 0 · ln 0
z = 0 for z ≥ 0 and y ln y

0 = ∞ for
y > 0. The two notions are related by the following inequality:

2H2(μ, ξ) ≤ D(μ||ξ). (3)

One can check this by direct calculation or see Hutter [2, Lemma 3.11h].

3 Convergence Along Computable Random Sequences

3.1 Convergence Results

Algorithmic probability is computably approximable or Δ0
2 but not computable

while all the functions we can implement are computable. The correct or ideal
prediction may have some properties that algorithmic probability has, however,
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implementing a program with one of such properties may be impossible. Thus,
this does not say anything about whether our implementable prediction should
have the properties. That a program does not have one of such properties does
not say that the program is not general enough.

The goal of this paper is to give a framework to study the properties of
computable measures or predictions. Algorithmic probability uses an optimal
c.e. semi-measure while no computable measure m-dominates all computable
measures. We abandon to pursue the unique correct prediction. Instead, we ask
the following:

Which properties do all sufficiently general predictions have?

Notice that this statement is about a prediction that can be implemented in
reality.

As a definition of the “generality” above, we use m-domination inspired by
the definition of optimality. More concretely, we construct a computable measure
ν such that a property P holds for all computable measures m-dominating ν.
This means that P holds for all sufficiently general predictions. There are many
quantifiers, and we will see that their order is important.

Suppose that, a property P is witnessed by a computable measure νP , that is,
all computable measures ξ m-dominating νP have the properties P . Similarly,
suppose that a property Q is witnessed by a computable measure νQ. Then,
the property P ∧ Q is witnessed by the computable measure (νP + νQ)/2. The
composition of properties can be extended into computable countable sum.

Some property P may be witnessed by a measure μ executable in feasible
time. If some good prediction induced from ν does not have the property P ,
then the prediction by εμ+(1− ε)ν for a positive rational ε is more general than
ν in the sense above, and the computation cost may be still reasonable.

Now, we give computable versions of Theorem 2.3 as follows.

Theorem 3.1. Let μ be a computable probability measure on 2ω. For all com-
putable probability measures ξ m-dominating μ and for all μ-computably random
sequence X ∈ 2ω, we have

∞∑

n=1

D(μ(·|X<n) ||ξ(·|X<n)) < ∞.

In particular,

ξ(k|X<n) − μ(k|X<n) → 0 as n → ∞
for both k ∈ {0, 1}.
Theorem 3.2. Let μ be a computable probability measure. For all computable
probability measure ξ m-dominating μ and for all μ-computably random sequence
X ∈ 2ω, we have

ξ(Xn|X<n)
μ(Xn|X<n)

→ 1 as n → ∞.
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Notice that both Theorems 3.1 and 3.2 claim the existence of a computable
measure ν(= μ) such that for all computable measures ξ m-dominating ν have
some properties, that is, all sufficiently general computable measures have some
properties.

Hutter and Muchnik [3] has shown that “μ-probability 1” in Theorem2.3
cannot be replaced by “for all μ-ML-random sequences X.” The above theorem
says that, for a computable probability measure, we only need μ-computable
randomness.

3.2 Martingale Characterization and Convergence

We use a martingale characterization of computable randomness and a conver-
gence theorem of martingales. The following characterization is due to [9].

Definition 3.3. Let μ be a computable probability measure. A martingale M
with respect to μ is a partial function M :⊆ 2<ω → R+ such that the following
two conditions hold:

(i) (Impossibility condition) If M(σ) is undefined, then μ(σ) = 0.
(ii) (Fairness condition) For all σ ∈ 2<ω, we have

M(σ0)μ(σ0) + M(σ1)μ(σ1) = M(σ)μ(σ)

where undefined · 0 = 0 and R+ is the set of all non-negative reals.

We say M is an almost-everywhere computable martingale (or a.e. com-
putable martingale) if M is a partial computable function. We say M succeeds
on X ∈ 2ω if lim supn→∞ M(X≤n) = ∞.

Proposition 3.4. Let μ be a computable probability measure on 2ω. Then, X ∈
2ω is μ-computably random if and only if μ(X≤n) > 0 for all n and there is no
a.e. computable martingale M which succeeds on X.

Computable randomness with respect to the uniform measure can be char-
acterized as the existence of the limit along the sequence for all computable
martingales (see, e.g. [1, Theorem 7.1.3]) by using Doob’s upcrossing argument.
The same method can be applied for any computable measure.

Proposition 3.5. Let μ be a computable probability measure on 2ω. Then, X ∈
2ω is μ-computably random if and only if limn→∞ M(X≤n) exists for all a.e.
computable martingales M .

3.3 Proof of Theorem3.1

Proof. Since ξ m-dominates μ, there exists a constant C ∈ ω such that

μ(σ) ≤ Cξ(σ) (4)
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for all σ ∈ 2<ω. Let D(σ) be the KL-divergence of μ w.r.t. ξ at σ, that is,

D(σ) = D(μ(·|σ) || ξ(·|σ)).

We define a function M :⊆ 2<ω → R+ by

M(σ) = lnC − ln
μ(σ)
ξ(σ)

+
|σ|∑

t=1

D(σ<t)

for every σ ∈ 2<ω.
We claim that M is an a.e. computable martingale w.r.t. μ. The function M is

non-negative because of (4) and the non-negativeness of D. For the impossibility
condition of Definition 3.3, notice that, if μ(σ) > 0, then ξ(σ) > 0 because ξ
m-dominates μ, thus M(σ) is defined. Then, the a.e. computability of M follows
from the computability of μ, ξ, and D. For the fairness condition,

∑

k∈{0,1}
μ(σk)M(σk) − μ(σ)M(σ) = −

∑

k∈{0,1}
μ(σk) ln

μ(k|σ)
ξ(k|σ)

+ μ(σ)D(σ) = 0.

Since X is μ-computably random, we have lim supn M(X≤n) < ∞. Since both
ln C − ln μ(σ)

ξ(σ) and D(σ) are always non-negative,
∑∞

n=1 D(X≤n) also converges.
Finally, the last claim of the theorem follows by (3). ��

3.4 Proof of Theorem3.2

Proof. Suppose that ξ is a computable measure m-dominating the measure μ.
We define a function M : 2<ω → R+ by

M(σ) =
ξ(σ)
μ(σ)

.

Then, M is a a.e. computable martingale w.r.t. μ. Hence, limn M(X≤n) = α
exists for all μ-computably random sequences X ∈ 2ω.

Since ξ m-dominates μ, there exists C ∈ ω such that μ(σ) ≤ Cξ(σ) for every
σ ∈ 2<ω. Then,

M(X≤n) =
ξ(X≤n)
μ(X≤n)

≥ 1
C

for every n. Thus, α ≥ 1
C .

Fix ε > 0. Then, there exists N ∈ ω such that
∣∣∣∣
ξ(X≤n)
μ(X≤n)

− α

∣∣∣∣ = |M(X≤n) − α| ≤ ε

3C

for all n ≥ N . Thus,

ξ(Xn|X≤n)
μ(Xn|X≤n)

=
ξ(X≤n)
μ(X≤n)

· μ(X<n)
ξ(X<n)

≤ α + ε/(3C)
α − ε/(3C)

= 1 + ε · 2
3αC − ε

< 1 + ε

for all n ≥ N + 1 if ε is sufficiently small. Similarly, ξ(Xn|X≤n)

μ(Xn|X≤n) > 1 − ε for all
n ≥ N + 1. Since ε is arbitrary, the claim follows. ��
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4 Non-computability of the Convergence

From now on, we only consider the case that μ is the Dirac measure on a point
A ∈ 2ω. If μ is computable, then A should be computable. Theorem3.1 in this
case can be written as follows.

Corollary 4.1. Let A ∈ 2ω be a computable sequence. There exists a computable
measure ν such that

∑

n

(1 − ξ(An|A<n)) < ∞ (5)

for all computable measures ξ m-dominating ν. In particular, ξ(An|A<n) → 1
as n → ∞.

Proof. Let μ be the Dirac measure on the point A ∈ 2ω. Then, A is μ-computably
random. By Theorem 3.1, we have

∑∞
n=1 ln 1

ξ(An|A<n) < ∞. Finally, notice that

∑

n

ln(1 − (1 − ξ(An|A<n))) > −∞ ⇐⇒
∑

n

(1 − ξ(An|A<n)) < ∞.

��
All sufficiently general computable measures can detect the pattern of a com-

putable sequence A while no computable measure can detect the pattern of all
computable sequences. One needs to pay attention to the order or quantifiers.

Remark 4.2. For each computable measure ξ, there exists a computable
sequence A such that ξ(An|A<n) does not converge to 1.

This claim is essentially the same as a famous fact in algorithmic learning
theory that the class of all computable sequences is not BC-learnable. See e.g.
[12] for a survey on algorithmic learning theory. A stronger result in the context
of universal induction is in [4, Lemma 5.2.4]. For the sake of self-containedness,
we give a short proof here in our terminology.

Proof. Let (εn)n be a computable sequence of positive rationals such that εn < 1
2

for all n and
∏

n(1 + εn) < ∞. For each σ, at least one of i ∈ {0, 1} satisfies
ξ(σi) <

1+ε|σ|
2 ξ(σ). This is a c.e. relation and one can compute such i from σ

uniformly. By iterating this, one can compute a sequence A such that ξ(A≤n) <
1+εn

2 ξ(A<n) for all n. Since εn → 0, we have

lim sup
n

ξ(An|A<n) ≤ lim sup
n

1 + εn

2
≤ 1

2
.

��
The following theorem says that all sufficiently general predictions ξ(An|A<n)

are not too close to 1; they have almost the same convergence speed (5) up to
a multiplicative constant. The convergence speed ξ(An|A<n) to 0 is the slowest
one among the sequences whose sum converge. Let k = 1 − k for k ∈ {0, 1}.
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Theorem 4.3. Let A ∈ 2ω be a computable sequence and (an)n be a computable
sequence of positive rationals such that

∑
n an < ∞. Then, there exists a com-

putable measure ν with the following property: For each computable measure ξ
m-dominating ν, there exists a natural number C ∈ ω such that

ξ(An|A<n) ≥ an

C

for all n.

Notice that (an)n need not be monotone.

Proof. Without loss of generality, we can assume that s =
∑

n an < 1. Define a
measure ν by

ν =
∑

n

an1A<nAn0ω + (1 − s)1A

where 1X is the point-mass measure on X ∈ 2ω.
We claim that this measure ν is computable. It suffices to show that ν(σ) is

computable uniformly in σ ∈ 2<ω. If σ ≺ A, then

ν(σ) =
∑

n≥|σ|
an + 1 − s = 1 −

∑

n<|σ|
an.

If σ = A<kAk0i for some k, i ∈ ω, then

ν(σ) = ak.

If σ = A<kAk0i1τ for some k, i ∈ ω and τ ∈ 2<ω, then

ν(σ) = 0.

In any case, ν(σ) is computable from n.
Suppose that a computable measure ξ m-dominates ν. Then, there exists

C ∈ ω such that ν(σ) ≤ Cξ(σ) for all σ ∈ 2<ω. Then,

ξ(An|A<n) = 1 − ξ(A≤n)
ξ(A<n)

=
ξ(A<nAn)
ξ(A<n)

≥ ν(A<nAn)
C

=
an

C
.

��
The rate of convergence of ξ(An|A<n) to 0 is not monotone. In fact, it cannot

be bounded by a decreasing computable function converging to 0.

Theorem 4.4. Let A ∈ 2ω be a computable sequence. Then, there exists a com-
putable measure ν such that no decreasing computable sequence (bn)n converging
to 0 m-dominates ξ(An|A<n) for all computable measures ξ m-dominating ν.
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Proof. Let U :⊆ 2<ω → 2<ω be a universal prefix-free machine. By the usual
convention, U(σ)[s] ↑ for each s < |σ|. For all n, let

an =
∑

σ

{2−|σ| : U(σ) ↓ at stage n}.

Note that (an)n is a computable sequence because the possible σ should satisfy
|σ| ≤ n by the convention. Furthermore,

∑

n

an =
∑

σ∈dom(U)

2−|σ| < 1.

Then, by Theorem 4.3, there exists a computable measure ν such that ν(An|A<n)
m-dominates (an)n.

Suppose that there exists a decreasing computable (bn)n such that bn → 0
as n → ∞ and (bn)n m-dominates ν(An|A<n). Then, (bn)n also m-dominates
(an)n, and let C ∈ ω such that an ≤ 2Cbn for all n.

For each σ, search the least n ∈ ω such that bn < 2−|σ|−C . If U(σ)[n] ↑ and
U(σ)[s] ↓ for some s > n, then as ≥ 2−|σ| by the definition of (an)n, and

as ≤ 2Cbs ≤ 2Cbn < 2−|σ|,

which is a contradiction. Thus, U(σ) ↓ if and only if U(σ)[n] ↓. Since n is com-
putable from σ uniformly, this means that the halting problem is computable,
which is a contradiction. Hence, such (bn)n does not exist. ��

It may be interesting to compare the above result to Laplace’s answer to
the sunrise problem. The answer n

n+1 is slightly slower than (5). Theorem 4.4
means that all sufficiently general prediction violates Nicod’s criterion as the
usual Solomonoff induction does [5].
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Abstract. The necessity for neural-symbolic integration becomes evident as
more complex problems like visual question answering are beginning to be
addressed, which go beyond such limited-domain tasks as classification. Many
existing state-of-the-art models are designed for a particular task or even
benchmark, while general-purpose approaches are rarely applied to a wide variety
of tasks demonstrating high performance. We propose a hybrid neural-symbolic
framework, which tightly integrates the knowledge representation and symbolic
reasoning mechanisms of the OpenCog cognitive architecture and one of the
contemporary deep learning libraries, PyTorch, and show how to implement
some existing particular models in our general framework.

Keywords: Grounded reasoning � Cognitive architectures �
Neural module networks � Visual question answering

1 Introduction

Most contemporary cognitive architectures (CAs) are considered as hybrid [1]. How-
ever, it is difficult to find an architecture that tightly integrates a powerful symbolic
reasoning with modern deep neural networks (DNNs). At the same time, such neural-
symbolic integration of learning and reasoning constitutes a separate important field of
research1. Unfortunately, there are just a few attempts to create a general framework,
within which neural-symbolic models for solving different tasks can be developed.
Moreover, conceptually sound approaches usually don’t rely on the contemporary
frameworks and practical models of deep learning and efficient engines of symbolic
reasoning, but implement a particular type of models with specific inference proce-
dures, for which mapping between neural networks and logical expressions is estab-
lished (e.g. [2]).

Some general-purpose neural-symbolic frameworks, which combine contemporary
DNN and symbolic reasoning tools, do exist. DeepProbLog [3] is one such frame-
works. Unfortunately, examples of its applications are mostly limited to such toy

1 http://www.neural-symbolic.org/.

© Springer Nature Switzerland AG 2019
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problems as recognizing a pair of MNIST digits conditioned on their known sum.
Other works on a hybrid neural-symbolic approach based on deep probabilistic pro-
gramming (e.g. [4]) also don’t show how state-of-the-art models for various bench-
marks can be created within them. At the same time, one can encounter a variety of
modern individual solutions to specific problems based on ad hoc hybrid models,
which are quite efficient, but narrowly applicable (e.g. the Transparency by Design,
TbD, model [5]).

One of the prominent examples of this situation can be found in the field of visual
reasoning, in particular, Visual Question Answering (VQA) that requires explicit
reasoning capabilities. In particular, VQA implies variable binding, handling which is
considered as a classical problem for connectionist models [6]. Although contemporary
attention models incorporated into DNNs (in particular, in VQA [7]) partially address
this problem, but without compositionality featured by symbolic approach.

On the one hand, DNNs achieve state-of-the-art results on some VQA datasets
containing real-world images, and the use of contemporary DNN models and frame-
works in visual processing seems essential. However, it is convincingly argued [8] that
pure neural models tend to learn statistical biases in datasets (in particular, strong
language priors, e.g. [9]) and to map inputs to outputs directly instead of explicitly
modeling the underlying reasoning processes that results in a considerable decrease of
performance on specially designed datasets (such as CLEVR [10] or GQA [11]). On
the other hand, application of pure symbolic reasoning systems, which supposes that
the input images are preliminarily processed by a vision subsystem and converted into
symbolic form, is not robust and has low performance.

Apparently, hybrid solutions are desirable in order to account for all aspects of
VQA. However, state-of-the-art VQA models frequently use narrow imperative pro-
gram executors instead of general declarative reasoning systems (see, e.g. [5, 8]).

In this work, we propose a framework of hybridization of the integrative cognitive
architecture OpenCog with symbolic inference engine operating on declarative
knowledge bases with modern deep learning libraries supporting gradient descent
optimization of differentiable functions over real-valued (subsymbolic) parameters.

Attempts to bridge the symbolic/subsymbolic gap via such hybridization of sym-
bolic reasoning and deep neural networks in OpenCog has been done before [12, 13].
However, they were aimed at specific DNN architectures (a version of DeSTIN system
and a hierarchical attractor neural network), and didn’t support end-to-end training of
the DNN model as a component of a pipeline that includes symbolic reasoning.

The proposed framework enables integration of OpenCog with arbitrary DNN
models providing means to backpropagate errors from conclusions to DNNs through
symbolic inference trees. This allowed us not only to reproduce the example used to
illustrate DeepProbLog [3], but also to re-implement the TbD model [5] with the use of
the general symbolic reasoning engine operating over declarative knowledge instead of
imperative program executor specifically design for CLEVR VQA dataset.
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2 Motivation: Grounded Reasoning

As it is shown in [14], the OpenCog’s language Atomese suits well to express queries
about image content, for example, in the task of semantic image retrieval. These queries
are executed by OpenCog’s reasoning subsystems such as the Unified Rule Engine
(URE), in particular, with the Probabilistic Logic Networks (PLN) rule set, and the
Pattern Matcher over the labels assigned by DNNs to the detected objects.

For example, the following query in Atomese can retrieve a video frame that
contains a bounding box recognized as a helicopter (and easily can be extended to more
complex queries):

BindLink
VariableList
VariableNode “$Frame”
VariableNode “$BB”

AndLink
InheritanceLink
VariableNode “$Frame”
ConceptNode “Frame”

InheritanceLink
VariableNode “$BB”
ConceptNode “Helicopter”

MemberLink
VariableNode “$BB”
VariableNode “$Frame”

ListLink
VariableNode “$Frame”
VariableNode “$BB”

Here, BindLink specifies the rule with three parts: a variable declaration, a pattern
to be found in Atomspace, a graph to be formed for each matched subgraph (for
different variable groundings). InheritanceLink is used to indicate that some
bounding box (which is distinguished by its name, e.g. ConceptNode “BB-03-11”) is
recognized as an object of some specific class, and MemberLink is used to indicate that
the bounding box belongs to a certain frame. In order to successfully retrieve infor-
mation, OpenCog will just need inheritance and member links for frames and bounding
boxes (each of which is represented as an atom, e.g. ConceptNode) to be stored in
Atomspace.

However, the simplest way to perform visual reasoning, which consists in pre-
liminary processing images with DNNs and inserting the descriptions of the images
into Atomspace with consequent pure symbolic reasoning, is far from enough even in
the case of image retrieval. One may want to find images with either a happy child or a
jumping boy, which can be the same. This means that assigning one label per object or
bounding box in image is not enough.
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The problem is even more obvious if we consider the task of VQA, in which more
complex questions are frequent, e.g. “are the people looking in the same direction?” or
“are the chairs similar?” Apparently, to answer these questions, one should not simply
reason over symbolic labels, but should go down to the level of image features that
implies a deeper neural-symbolic integration. Although complete disentanglement of
reasoning from vision and language understanding can work for such datasets as
CLEVR [15], we consider such disentanglement not as an achievement, but as over-
simplification, which is not scalable to real-world reasoning.

Thus, what we want to make our system to reason about is not mere symbols, but
symbols with their groundings (e.g. grounded predicates), which are calculated by
demand in the course of reasoning.

Let us assume for example that we have a VQA system, which detects a number of
bounding boxes (BBs) in the image and describes them with some high-level features
(that is quite typical for models developed for some benchmarks [7]). A naïve neural-
symbolic system will apply a multinomial classifier to these features to produce most
probable labels for bounding boxes (maybe a few such classifiers to recognize objects
and their attributes). Each output neuron of such classifier can be considered as a
grounded predicate corresponding to a certain concept (e.g. “boy”, “happy”, etc.).

Instead of precomputing truth values of all these predicates, the system can com-
pute only those predicates, which are necessary. For example, the question “Is the boy
happy?” requires to check predicates “boy” and “happy”, while the question “What
color is the car?” can use a symbolic knowledge base to select predicates corresponding
to concepts inherited from the concept “color”.

Of course, this requires using a one-class classifier for each concept instead of a
multinomial classifier, which can only calculate truth values of all predicates simul-
taneously. However, this is not really a drawback, because no two concepts are pre-
cisely mutually exclusive. A boy is also a child (and interestingly, we can frequently
recognize children without recognizing them as boys or girls, so it is more likely that
we use different grounded predicates to recognize classes and subclasses instead of
recognizing subclasses only and inferring classes symbolically). Even more, an object
can be simultaneously black and white, and even a boat can have a shape of a banana.

One can argue that all these predicates can still be pre-calculated before reasoning
without too large overhead. However, it is not really the case, when we are talking
about relations between objects in images, especially those, which require descending
on the level of image features or even pixels.

Moreover, the reasoning system can influence the sequence of operations per-
formed by the vision system or influence the output of different levels of the vision
system by imposing priors dependent on the current state of the cognitive system (e.g.
in neural-symbolic generative models). For example, in the TbD model, a sequence of
applications of DNN modules is constructed in a symbolic (although not declarative)
way (see Fig. 1).

Here, grounded predicates or functions are applied to the whole image instead of
bounding boxes, and they produce attention maps and features that are fed to the next
DNN modules, although one can imagine that modules are selected by the reasoning
system dynamically depending on the already obtained results and background
knowledge.
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Here, we aim not at discussing, what models better fit to visual (or, more generally,
grounded) reasoning, but at designing a framework, which allows combining dynam-
ically arbitrary DNN models with knowledge-based symbolic reasoning. Since one of
the main motivations for this is to replace an ad hoc hand-coded imperative “reasoner”
(program executor) in Neural Module Networks with an entire cognitive architecture,
we call this approach Cognitive Module Networks.

3 Cognitive Module Networks

The best way to achieve the stated above goal would be to keep the possibility of using
the DNN modules in the existing Neural Module Networks while replacing only hard-
coded program executors with a general reasoning engine. Thus, what we need from
OpenCog is to chain forward applications of DNN modules in a similar way as the
program executors do. Technically important issue is the necessity to construct this
chain of applications as an uninterrupted computation graph that supports error
backpropagation by the corresponding DNN library.

On the side of OpenCog, such application can be carried out by executing
GroundedSchemaNodes and GroundedPredicateNodes (which differ in that the
former returns Atoms while the latter returns TruthValues). Some restrictions of the
existing API for GroundedSchemaNode were to be overcome to achieve the necessary
functionality. In particular, execution of methods of dynamically created objects rather
than static objects, and passing tensors (data structures specific to a certain DNN
library) between calls to GroundedSchemaNodes without conversion are desirable.
Different solutions to these problems are possible. However, we will not go into
technical detail here and focus more on a conceptual level.

Consider the following code in Atomese that corresponds to the question “Is the
zebra fat?” (or more precisely, “Is there a fat zebra in the image?”).

Fig. 1. Module network answering, “How many blocks are tiny blue objects or big purple
metallic objects” (Color figure online)
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SatisfactionLink
VariableNode “$X”
AndLink
InheritanceLink
VariableNode “$X”
ConceptNode “BoundingBox”

EvaluationLink
GroundedPredicateNode “py:runNN”
ListLink(VariableNode(“$X”), ConceptNode(“zebra”))

EvaluationLink
GroundedPredicateNode “py:runNN”
ListLink(VariableNode(“$X”), ConceptNode(“fat”))

Its execution by Pattern Matcher will cause the enumeration of all ConceptNodes
that inherit from “BoundingBox” and pass them to the wrapper function runNN, which
will take visual features for the given bounding box (e.g. attached as Values to
ConceptNodes) and pass them to the DNN that corresponds to the provided class to
be recognized (e.g. “zebra” or “fat”). Depending on implementation, it can be one
DNN that accepts word embeddings as input, or there can be many small classifiers
over high-level visual features (e.g. taken from ResNet or such) – each classifier for
each concept. Then, runNN should convert the DNN output to OpenCog’s Truth-
Value, over which AndLink acts. Thus, all bounding boxes will be retrieved that
classified simultaneously as “zebra” and “fat”.

This simple code already does a sort of variable grounding for neural networks and
use of declarative knowledge, which neural networks lack otherwise. However, this
solution didn’t allow for training DNNs based on conclusions made by the reasoner,
and it has an ad hoc interface to run particular networks.

In the companion paper [16], we describe how differentiable rules for URE can be
constructed that enables both learning tensor truth values and learning formulas for
rules themselves by gradient descent. In this paper, we extend this approach by using
predicates and schemas grounded in DNN models. More precisely, we focus more on a
DNN-centered framework, which can be adopted by the deep learning community.
Current implementation supports PyTorch backend, although Tensorflow and other
backends can be added in the future.

As described in [16], if formulas attached to URE rules are implemented as
operations on PyTorch tensors, application of a sequence of formulas corresponding to
the chain of reasoning steps found by URE will yield a PyTorch computation graph,
over which errors from final conclusions to PyTorch variables can be backpropagated.
For example, PLN rule set for URE can help us to infer the truth value of the
conclusion.
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using modus ponens from the truth values of premises:

ImplicationLink
PredicateNode “apple”
PredicateNode “green”

EvaluationLink
PredicateNode “apple”
ConceptNode “apple-001”

With the use of tensor truth values and PyTorch implementation of the formula for
modus ponens, the error can be propagated from the truth value of the conclusion to the
truth values of the premises.

If we replace PredicateNode in the above example with GroundedPredi-
cateNode, which can in particular execute a DNN that outputs the probability that
some object in an image can be recognized as an apple, then the PyTorch computation
graph will include this DNN as a subgraph, and error will be propagated through the
truth value (probability) produced by it to its weights. Instead of just adjusting truth
values, we will train neural networks to output such values that lead to correct con-
clusions inferred by the reasoning system. Since the OpenCog reasoning subsystems
perform the process of rewriting subgraphs of a (hyper)graph composed of Atoms, they
can compose and execute an arbitrary graph (architecture) of neural modules.

In order to make this possible, DNN modules should be attached to atoms, to which
variables in queries can be bound. CogNets library (its experimental implementation
can be found here2) provides class CogModule that inherits from torch.nn.Module.
On the one hand, CogModule objects can behave as ordinary torch.nn.Module
objects implying that if we take some module network and change the inheritance of its
modules to CogModule, it will continue working correctly. On the other hand, each
CogModule object also attaches itself (through Values) to the specified Atom in
Atomspace. Execution of neural modules attached to Atoms is done through a special
GroundedSchemaNode that extracts CogModule objects from Atoms and passes
arguments to them.

The basic application of CogNets will be to just inherit all modules in the TbD
model from CogModule. Then, we will be able to use OpenCog to execute queries
represented in the form of BindLinks. One question, which we don’t consider in
detail here, is how to obtain such queries from question in natural language. OpenCog
contains natural language processing components, in particular RelEx, that can be used
to parse questions and then convert them to Atomese queries. However, these com-
ponents have some limitations. Another possibility is to reuse the pre-trained LSTM-
based program generator from [8] (used in the TbD model also), which produces

EvaluationLink
PredicateNode “green”
ConceptNode “apple-001”

2 https://github.com/singnet/semantic-vision/tree/master/experiments/opencog/cog_module.
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programs from questions, which they can be easily translated into Atomese. This
approach works well for CLEVR, although cannot be applied to the COCO VQA
benchmark in contrast to RelEx.

“Reasoning” in the TbD model is performed by executing an imperative program,
composed of a sequence of applications of DNN modules. For example, the question
“What color is the cylinder?” will be transformed to the consequent application of
filter_shape[cylinder] module and query_color module. The query_color
module will take as input the image features masked by the attention map produced by
filter_shape[cylinder] module and outputs new feature map, which is then
passed to the final classifier. The multinomial classifier will calculate the probabilities
of all answers.

Thus, if we directly apply the TbD model just replacing its program executor with
OpenCog, we will gain not too much, because these Atomese queries will be nested
applications of GroundedSchemaNodes. Although these GroundedSchemaNodes
will be presented in Atomspace knowledge base, OpenCog’s reasoning capabilities will
not be involved.

However, we can explicitly introduce the query variable $X, replace the query
module with the corresponding filter module filter_color[$X], and ask the rea-
soning engine to find such value of $X which will produce a non-empty final attention
map. Therefore, the question “What color is the cylinder?” can be represented
declaratively in Atomese:

InheritanceLink
VariableNode “$X”
ConceptNode “color”

EvaluationLink
GroundedPredicateNode “py:filter”
ConceptNode “cylinder”

EvaluationLink
GroundedPredicateNode “py:filter”
VariableNode “$X”

AndLink

if we use a specially coded static Python function filter, which executes a corre-
sponding DNN module depending on the name of the given argument. Here, we will
need to add to Atomspace such facts as

Pattern Matcher will be able to enumerate different colors and call different
filter_color modules, for which PLN will infer the truth value of the given
AndLink.

CogNets provide a general wrapper function CogModule.callMethod to extract
Python objects attached to Atoms and call their method with automatic unwrapping of

InheritanceLink(ConceptNode(“red”),ConceptNode(“color”))
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their arguments from Atoms and wrapping their results back into Atoms in such a way
that, in particular, forward methods of torch.nn.Module objects can be used as is.
Thus, the above code with the use of CogNets will look like

AndLink
InheritanceLink
VariableNode “$X”
ConceptNode “color”

EvaluationLink
GroundedPredicateNode “py:CogModule.callMethod”
ListLink
ConceptNode “cylinder”
ConceptNode “call_forward_tv”
ConceptNode “image”

EvaluationLink
GroundedPredicateNode “py:CogModule.callMethod”
ListLink
VariableNode “$X”
ConceptNode “call_forward_tv”
ConceptNode “image”

CogModule.callMethod will extract the Python object (which will be a DNN
module as CogModule object here) attached to ConceptNode “cylinder” and
execute its call_forward_tv method (which is the method of CogModule inherited
from torch.nn.Module), which will extract Python object (PyTorch tensor here)
from ConceptNode “image” and execute forward method of the DNN module
reducing its output to the tensor truth value. CogNets library provides a syntactic sugar
in Python to form the necessary Atomese expressions concisely.

One can see that this allows for assembling modules in neural module networks
using symbolic knowledge and reasoning over (probabilistic) logic expressions with
variable grounding. This opens the path to real visual reasoning. For example,
Atomspace can contain the fact that left(X, Y) :– right(Y, X). Applying this fact
during the chain of reasoning performed by URE will result in transforming the module
network and using relation[right] module instead of relation[left] module
of TbD. In particular, given the question “To the left of what object is the green
pyramid?” humans will most likely find the green pyramid first and then look to the
right of it. Direct conversion of the question into the imperative program cannot rep-
resent such visual reasoning, while it can appear naturally within our approach.

In contrast to the TbD model with its hard-coded program executor, our approach
can naturally be applied not to CLEVR, but also to COCO VQA and even to the
example given in the paper on ProbLog [3], namely to recognize digits on a pair of
MNIST digits conditioned on their sum. The premise for the query (requiring the sum
to be 7) with two VariableNodes of NumberNode type will look like
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4 Conclusion

We have considered an approach to neural-symbolic integration, within which
knowledge-based reasoning is carried out over symbols grounded in perception
through deep neural networks, that, in particular, allows the symbolic reasoner to
interoperate with execution of neural modules and to assemble a neural module net-
work on fly depending on the current input and background knowledge.

We have implemented a framework, which embodies this approach with the use of
the contemporary cognitive architecture and deep learning library, namely OpenCog
and PyTorch. This implementation enables such integration of OpenCog with arbitrary
DNN models that allows for error backpropagation from conclusions to DNNs through
symbolic inference trees.

On example of neural-symbolic models widely used for the CLEVR benchmark,
we have shown how a domain-specific program executor, which assembles neural
module networks using given linear sequences of imperative commands, can be
replaced with a general-purpose reasoning engine operating over a declarative
knowledge base that can equally be used to reproduce models implemented within
other frameworks, in particular, ProbLog.
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Abstract. Symbolic reasoning systems have leveraged propositional
logic frameworks to build diagnostics tools capable of describing complex
artifacts, while also allowing for a controlled and efficacious search over
failure modes. These diagnostic systems represent a complex and varied
context in which to explore general intelligence. This paper explores the
application of a different reasoning system to such frameworks, specif-
ically, the Non-Axiomatic Reasoning System. It shows how statements
can be built describing an artifact, and that NARS is capable of diag-
nosing abnormal states within examples of said artifact.

Keywords: Diagnostics · Model Based Diagnostics ·
Abductive inference

1 Introduction

The task of diagnosis highlights many of the core issues in general intelligence.
It is a process that works from insufficient knowledge, building hypotheses and
testing them to explain an observed state. These steps, each of which encom-
passes a wide body of work on their own, are combined into a process that feels
uniquely human. As such, the field of Artificial Intelligence (AI) has made many
attempts to understand these elements, and to compose their understanding into
methods of automated diagnosis [1,3,13].

The general approach is to somehow encode a description of the artifact
under diagnosis into a logic or model. Then, compare observations about the
true artifacts behaviour, with observations of the predicted output of the model.
The differences between the output are then the starting point to understand,
or diagnose the physical artifact. This forms the basis of the Model Based Diag-
nostic Framework [12].

The goal of this paper is to show that the Non-Axiomatic Reasoning Logic,
and associated reasoning system, can be used to build descriptions of systems,
and similarly encode examples of the artifact for diagnosis. It will also show that
the resulting descriptions can be fed into an “off the shelf” implementation of
NARS, which yields expected results.
c© Springer Nature Switzerland AG 2019
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2 Prior Work

Prior to the work of Reiter, these attempts were largely separate, context depen-
dant endeavours. Reiters work took these varied symbolic approaches, and create
a generalized abstraction he referred to as Model Based Diagnostics. MBD could
be considered the first formal ‘consistency based’ diagnostic method. The gen-
eral approach is to encode a description of the artifact under diagnosis into a
logical model. Then, compare observations about the true artifacts behaviour,
with observations of the predicted output of the model. The differences between
the output are then the starting point to understand, or diagnose the physical
artifact [8]. Model Based Diagnosis describes a way to encode a model of an
artifact in a predicate logic. This system description consists of predicate state-
ments that connect components of the system. These components are encoded
with their proper behaviour using the language of the predicate logic. Then,
these component descriptions are conjuncted with the negation of a reserved
predicate; “AB(x)”, intuitively meaning “if the situation is abnormal”.

This system description can then be combined with observations of the work-
ings of a physical realization of the model. Again, such observations are also writ-
ten in the language of the predicate logic used to describe the system. If these
observations include statements that produce contradictions in the system, then
it can be assumed that some subset of the components are behaving abnormally.
In other words, there is a set of components, where if the predicate “AB(X)”
is no longer negated, then the system description, along with the observations,
becomes consistent [10].

Various methods have been developed to search for the resolution of these
contradictory statements [2,5,9].

Extensions of the consistency based methods have been proposed. These
incorporate more information into the system description. Instead of limiting
the state of components to either normal or abnormal, abductive systems allow
for a richer set of “failure states” that could be applied to a component [7]. These
states relate failure to specific behaviours of the components. For instance, in the
canonical example of the adder system, a gate component could be in a failure
mode corresponding to “always outputs a value of true”. The resolution of a
diagnosis is then the minimal set of failure modes that must be applied in order
for the system to be brought into a consistent state.

In addition to these new failure modes, abductive based systems also make
new distinctions between the types and kinds of observations the system can
have made on it. [11] introduces two main classes of observation. First, the set
of observations that describe the context of the problem, yet do not require an
‘explanation’ via the diagnosis. Second, the set of observations that require an
explanation. These two sets are referred to as CONTEXT and SYMPTOMS,
respectively. This distinction is required to ensure that the resulting diagnosis is
truly parsimonious, and does not include unnecessary explanations of contextual
observations.
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A unique approach to diagnosis comes from [8] extending the work of Reiter
to handle multiple-fault diagnosis. In this, de Kleer develops an extension of
truth maintenance systems that allows for tracking and tagging of assumptions.

Truth maintenance systems are a two part system. First, a problem solver,
working in the language of some logic. The statements it derives and operates on
are passed to the second component, a truth-maintenance system. This compo-
nent views the logical statements on their own, and attempts to identify, correct,
and isolate the inconsistencies that may develop in the running of the problem
solver [4].

De Kleers system applies these notions to the arena of diagnosis. The problem
solver sees the logical description of the artifact, its components, their relations,
and then the observations of physical instances of the artifact. If the statements
regarding an instance of the artifact bring the problem solver into an inconsis-
tency, then the working of the truth maintenance system will isolate the minimal
sets of components that need be labeled abnormal to bring the system back to
‘working’ order.

This combination of truth maintenance system with a system description
most closely matches the approach presented in this work. While a truth main-
tenance system solely works by inducing consistency amongst observed state-
ments, NARS would also include its additional methods of inference with prior
knowledge to find conclusions.

3 NARS Overview

NARS (Non-Axiomatic Reasoning System) is a general purpose AI built in the
framework of a reasoning system. It operates under a definition of intelligence
that includes a notion of insufficient resources, specifically: “Intelligence” in
NARS is defined as the ability for a system to adapt to its environment and
to work with insufficient knowledge and resources. Detailed discussions can be
found in many publications, including two main books [14,15], describing the
full logic. The following will highlight the elements of the logic that are used by
this paper to encode the system description of an artifact under diagnosis.

Narsese is the formal language which is used by NARS for its knowledge
representation, defined using a formal grammar in [14]. The logic is developed
from the traditional “term logic”, where a “term” is the smallest element of each
statements. Statements in this logic have the form subject-copula-predicate.

Inheritance statements are the most basic statement in Narsese, with the
form “S → P”, where S is the subject, and P is the predicate term. The “→”
is the inheritance copula, defined in ideal situations as a reflexive and transitive
relation from one term to another term. The intuitive meaning of S → P is “S is
a special case of P” and “P is a general case of S”. For example, the statement
“CRV → Honda” intuitively means “CRV is a type of Honda vehicle”.

A compound term (con, C1, C2...Cn) is formed by a term connector, “con”
and one or more components terms (C1, C2, ...Cn). The term connector is a log-
ical constant with predefined meaning in the system. Major types of compound
terms in Narsese include the following:
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– Sets: Term {Honda, Toyota} is an extensional set specified by enumerating
its instances; term [coupe, SUV ] is an intensional set specified by enumerating
its properties.

– Products and images: The relation “Mike is the patient of Dylan” is rep-
resented as “({Mike} × {Dylan}) → patient-of”, “{Mike} → (uncle-of / �
{Dylan})”, and “{Dylan} → (patient-of / {Mike} �)”, equivalently.

– Statement: “Bill notices check engine light is on” can be represented as
a higher-order statement “{Bill} → (notice / � {check engine light →
[on, off ]})”, where the statement “check engine light → [on]” is used as
a term.

– Compound statements: Statements can be combined using term connec-
tors for disjunction(‘∨’), conjunction(‘∧’), and negation(‘¬’), which are intu-
itively similar to those in propositional logic, but not defined using truth-
tables [14].

4 System Descriptions in NAL

Artifacts can typically be described as a hierarchical set of components, along
with some type of indication, or feedback about the state of an artifact. That is,
we can break apart an artifact into components, which themselves can be com-
posed of other components. The relations between these entities must account
for relationships that would cause the ‘parent’ to behave abnormally, if any of
their children were to behave abnormally.

In addition, it is assumed that there are classes of components that provide
feedback to an observer. These are essentially the set of “senseable” components.
They are the manner in which an example artifact can be described, because it
is assumed that an example is simply a list of values, corresponding to a set of
‘sensor readings’.

Encoding a system description then requires a representation for the com-
ponents, a representation of the possible states of the senseable nodes, and a
representation of the possible relations between the sensable values, and rele-
vant components.

The relationship between parent components and their constituent parts can
be expressed with the following inheritance statement.

ComponentP → (∗, C1, C2, . . . , CN )

This roughly translates to “ComponentP inherits from the set of components:
C1, C2,. . . , CN .”

The relationship between components and their sensors is slightly more com-
plicated. We need to encode the possible states sensors can be in, then describe
the relationship between these states and the working state of components. The
sensor states are encoded as possible properties for each sensor.

SensorX → (‖, [on, off])
SensorY → (‖, [state1, state2, . . . , staten])
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An implication is used to describe the relation between these sensor proper-
ties and the possible ‘not working’ property of components.

(SensorX → [on]) =⇒ (ComponentY → [Not Working])
(Check Engine Light → [on]) =⇒ (Engine → [Not Working])

This simplifies the method in which an instance of an object is presented
to the system. We want to find the components that have a high frequency of
having the property “Not Working”, after listing the set of sensor properties for
a particular object. For the example of a car, we would provide a conjunction
of statements, where each statement is describing the properties of the car’s
components.

(&,SX → [PA],SY → [PB], . . . ,SN → [PQ]) =⇒ (? → [Not Working])

The above roughly translates to “Given a conjunction of properties, what
Components have the property ‘Not Working”’.

Two types of inference are typically involved in a complete diagnostic process;
forward and backward inference. The goal of forward inference is to apply the
current knowledge to the problem directly. An example of this is the simple chain
of logic that starts with a cars ‘check engine light’. The fact that the engine light
is on, can be carried forward with the fact that ‘engine light implies the engine
is not working’ to arrive at the fact that the engine is indeed not functioning.

In contrast, backward inference is used when the system does not have com-
plete information, or a complete set of rules to use to arrive at a ‘straight for-
ward’ inference. This typically occurs when different components of the system
have an overlap in symptoms, or when the rules describing the system do not
explicitly contain a mention of a particular combination of symptoms. In these
situations, the system must ‘work backwards’ from what it knows to determine
where it lacks appropriate information. In these situations, the system may need
to prompt for additional rules.

Consider the car example. In our formulation, the engine itself is comprised of
multiple sub components. The indicator for these components have some overlap;
the check engine light could indicate a ‘general’ engine problem, or a ‘specific’
problem with the alternator. If the system assumes there are some cases, say
the presence of smoke, that could be applied to only one of these sub compo-
nents, then asking the clarifying question “is smoke observed?” is an example of
backward inference.
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Fig. 1. Senseables

5 Automotive Example

The detailed car use case breaks down the object to be diagnosed, the car,
according to the following diagram. In this diagram, two types of nodes exist,
one denoting a component, and one denoting a facet of the system that can
be sensed. These nodes represent items that would be ‘sensed’ by a user of the
vehicle. This list was created from the point of view of a lay user describing
issues to a mechanic, and try to reflect the high level indicators that exist on
common dashboards.
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The goal with this graph is to capture enough complexity for the system
to have fodder for interesting and useful derived inferences. A key part of this
complexity is ensuring that there are many-to-one relationships between compo-
nents and the indicators. In addition, there is a deeper hierarchy of components,
where the relationships with indicator nodes can span multiple levels.

The links between components (solid lines) indicate the relevant “required
by” or “composed of” relations. These are implemented with the inheri-
tance operator. A higher level component inherits its lower level constituent
components.

There is a second type of edge/relationship in the graph; the relation between
a component and a sensible thing (dashed lines). These represent the possible
relations between an indicator and the components it might ‘indicate’ a problem
for. Figure 1 shows the set of senseables exposed to the system, and the possible
values they can take.

The actual NAL statements that encode the relations above are as follows.

//Engine, Transmission and Wheels are main components of the car

<{Engine, Transmission, Wheels} --> Main_Component>.

//Alternator, Air_Filter and so on are sub-components of the car

<{Alternator, Air_Filter} --> Sub_Component>.

<{Gas_Pump, Oil_Filter, Oil_Pump} --> Sub_Component>.

<{Gearing, Brakes, Tires} --> Sub_Component>.

<{Pads, Discs, Fluids, Balances_Weights} --> Sub_component>.

//Alternator, Air_Filter, Gas_Pump, Oil_Filter are parts of Engine

<{Alternator, Air_Filter, Gas_Pump, Oil_Filter} --> Engine>.

//Oil_Filter, Oil_Pump, Gearing are parts of Transmission

<{Oil_Filter, Oil_Pump, Gearing} --> Transmission>.

//Brakes and tires are components of wheel

<{Brakes, Tires} --> Wheels>.

//Pads, Discs and fluids are components of brakes

<{Pads, Discs, Fluids} --> Brakes>.

//Balance weights is component of tire

<{Balances_Weights} --> Tires>.

//Check engine light has no stage, ON or Off

<{CE} --> (||, [ON, OFF])>.

<{TG} --> (||, [LOW, HIGH])>.

<{OL} --> (||, [LOW, MIDDLE, HIGH])>.

<{TP} --> (||, [ON,OFF])>.

<{NO} --> (||, [NONE, HIGH, LOW])>.

<{OR} --> (||, [LOW, MIDDLE, HIGH])>.

// If check engine light is on, then alternator might not working

<<{CE} --> [ON]> ==> <Alternator --> [Not_Working]>>.

<<{CE} --> [ON]> ==> <Engine --> [Not_Working]>>.

<<{TG} --> [High]> ==> <Air_Filter --> [Not_Working]>>.

<<{TG} --> [High]> ==> <Engine --> [Not_Working]>>.
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<<{OL} --> [High]> ==> <Oil_Filter --> [Not_Working]>>.

<<{OL} --> [low]> ==> <Oil_Pump --> [Not_Working]>>.

<<{TP} --> [ON]> ==> <Tires --> [Not_Working]>>.

<<{TP} --> [ON]> ==> <Wheels --> [Not_Working]>>.

<<{NO} --> [High]> ==> <Engine --> [Not_Working]>>.

<<{NO} --> [High]> ==> <Wheels --> [Not_Working]>>.

<<{NO} --> [High]> ==> <Brakes --> [Not_Working]>>.

<<{NO} --> [High]> ==> <Balances_Weights --> [Not_Working]>>.

<<{OR} --> [High]> ==> <Transmission --> [Not_Working]>>.

<<{OR} --> [High]> ==> <Engine --> [Not_Working]>>.

6 Results

The encoded system description was provided to an off-the-shelf version of the
OpenNARS implementation of the NARS [6]. The system was run with its stock
control mechanisms and parameters, and allowed to settle on answers to simple
diagnostic queries. The resulting output is as follows.

// Car1’s check engine light is on

<{Car1} ==> <CE --> [ON]>>.g

<{Car1} ==> <TG --> [High]>>.

<{Car1} ==> <NO --> [High]>>.

<{Car1} ==> <OR --> [High]>>.

// Car1 has a diagnosis on main components

<{Car1} --> [Diagnosis_On_Main_Component]>.

<{Car1} --> [Diagnosis_On_Sub_Component]>.

<{Diagnosis_On_Main_Component} --> Main_Component>.

<{Diagnosis_On_Sub_Component} --> Sub_component>.

//Which main component is not working?

<Diagnosis_On_Main_Component <-> ?x>?

<Diagnosis_On_Sub_Component <-> ?y>?

// Transmission is not working

Answer: <Diagnosis_On_Main_Component <-> Transmission>. %1.00;0.42%

// Alternator is not working

Answer: <Alternator <-> Diagnosis_On_Sub_Component>. %1.00;0.42%

// Engine is not working

Answer: <Engine <-> Diagnosis_On_Main_Component>. %1.00;0.59%

Answer: <Alternator <-> Diagnosis_On_Sub_Component>. %1.00;0.56%

7 Conclusion

This work shows that a separate logical framework can indeed solve the same
problems covered by Model Based Diagnosis. However, this simplified represen-
tation does not leverage the full set of language levels, and mental operations
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available in the NARS. Future work will include a closer inspection of the dif-
ferent types of operations that could be beneficial to automated diagnosis, while
also developing a more robust control mechanism for generalized diagnostics. In
addition, it would be useful to test the framework on more complex artifacts,
such as models of human biological systems, or complex circuit designs.
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Abstract. Brain-machine integration is a new intelligent technology and system,
which is a combination of natural intelligence and artificial intelligence. In order
to make this integration effective and co-adaptive biological brain and machine
should work collaboratively. A cognitive model of brain-machine integration will
be proposed. Environment awareness and collaboration approaches will be
explored in the paper.
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1 Introduction

Machines have advantages that humans can’t match in terms of search, computing,
memory, etc. However, machines are far less intelligent and efficient than human
intelligence in terms of perception, reasoning and learning. In order to realize artificial
intelligence with common attributes, it is necessary to combine the advantages of
machine intelligence and human intelligence to achieve deep integration of brain with
machine. Brain-machine integration is a new intelligent technology and system gen-
erated by the interaction of human and machine. It combines the advantages of human
and machines, and is the next generation of intelligent systems [1].

At present, brain-machine integration is an active research area in intelligence
science. In 2009, DiGiovanna et al. developed the mutually adaptive brain computer
interface system based on reinforcement learning [2], which regulates brain activity by
the rewards and punishment mechanism. The machine adopts the reinforcement
learning algorithm to adapt motion control of mechanical arm, and has the optimized
performance of the manipulator motion control. In 2010, Fukayarna et al. control a
mechanical car by extraction and analysis of mouse motor nerve signals [3]. In 2011,
Nicolelis team developed a new brain-machine-brain information channel bidirectional
closed-loop system reported in Nature [4], turn monkey’s touch information into the
electric stimulus signal to feedback the brain while decoding to the nerve information
of monkey’s brain, to realize the brain computer cooperation. In 2013, Zhaohui Wu
team of Zhejiang University developed a visual enhanced rat robot [5]. Compared with
the general robot, the rat robot has the advantage in the aspects of flexibility, stability
and environmental adaptability.
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Brain-machine integration system has three remarkable characteristics: (a) More
comprehensive perception of organisms, including behavior understanding and
decoding of neural signals; (b) Organisms also as a system of sensing, computation
body and executive body, and information bidirectional exchange channel with the rest
of the system; (c) Comprehensive utilization of organism and machine in the multi-
level and multi-granularity will achieve system intelligence greatly enhanced.

Supported by the project of National Program on Key Basic Research we are
engaging in the research on Computational Theory and Method of Perception and
Cognition of Brain-machine Integration. The main goal of the project is the exploration
of cyborg intelligence through brain-machine integration, enhancing strengths and
compensating for weaknesses by combining the biological cognition capability with the
computer computational capability. In order to make this integration effective and co-
adaptive, brain and computer should work collaboratively. We mainly focus on four
aspects, environment awareness, cognitive modeling, joint intention and action plan-
ning, to carry out the research of cognitive computational model.

In this paper, a model of brain-machine integration is proposed. Environment
awareness is an important for brain-machine integration and will be explored. The
collaboration methods between brain and machine will be explored by motivation and
joint intention. The conclusions and future works are given at the end.

2 A Model of Brain-Machine Integration

An effective approach to implementing engineering systems and exploring research
problems in cyborg intelligence is based on brain-machine integration methods [6].
Using these methods, computers can record neural activity at multiple levels or scales,
and thus decode brain representation of various functionalities, and precisely control
artificial or biological actuators. In recent decades, there have been continuous scien-
tific breakthroughs regarding the directed information pathway from the brain to
computers. Meanwhile, besides ordinary sensory feedback such as visual, auditory,
tactile, and olfactory input, computers can now encode neural feedback as optical or
electrical stimulus to modulate neural circuits directly. This forms the directed infor-
mation pathway from the computer to the brain. These bidirectional information
pathways make it possible to investigate the key problems in cyborg intelligence.

How to interact between brain and computer is a critical problem in brain-machine
integration. On the basis of the similarity between brain function partition and corre-
sponding computing counterparts, a hierarchical and conceptual framework for brain-
machine integration is proposed. The biological part and computing counterparts are
interconnected through information exchange, and then cooperate to generate percep-
tion, awareness, memory, planning, and other cognitive functions.

For the brain part, abstracted the biological component of cyborg intelligence into
three layers: perception and behavior, decision making, memory and consciousness
shown in Fig. 1. We also divided the computer functional units into three corre-
sponding layers: awareness and actuator, planning, motivation and belief layers. We
also defined two basic interaction and cooperation operations: homogeneous interaction
(homoraction) and heterogeneous interaction (heteraction). The former represents
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information exchange and function recalls occurring in a single biological or com-
puting component, whereas the latter indicates the operations between the function
units of both biological and computing parts. Homoraction is also modeled as the
relationship between units within the same part. In the case of a single part in a brain-
machine integration system, it will reduce to a biological body or computing device just
with homoraction inside. Consequently, verifying the existence of heteraction is nec-
essary for cyborg intelligent systems.

As typical Brain-machine integration system of “animal as the actuators”, rat
cyborgs [7, 8], were developed to validate how the animals can be enhanced by the
artificial intelligence. Ratbots are based on the biological platform of the rat with
electrodes implanted in specific brain areas, such as the somatosensory cortex and
reward area [9]. These electrodes are connected to a backpack fixed on the rat, which
works as a stimulator to deliver electric stimuli to the rat brain.

3 Environment Awareness

For brain-machine bidirectional information perception characteristics, the integration
of visual features of the Marr visual theory and Gestalt whole perception theory in the
wide range, research on the environment group awareness model and method by
combination of brain and machine. The discriminative, generative and other methods
are applied to analyze the features of environment perception information, mine per-
ception information patterns and knowledge, generate high-level semantics, and
understand well the environment awareness.

In 1995, Endsley proposed a classic theory of situational awareness, which is a
three-level model. It is defined as the ability of people to perceive, comprehend and
predict the various elements in the environment in a certain space and time [10]. In the
three-level model of situational awareness, perception acquires information, and under
high-load cognitive conditions, information acquisition mainly depends on the sensor
of the machine, and then is presented to the operator through computer processing. The
machine plays an important role in the perception phase in the three-level model. In the

Fig. 1. Cognitive model of BMI
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decision-making stage after the forecast, the collaborative judgment and analysis
between machines and people is also needed. The integration of brain and machines in
dynamic situational awareness is the key to achieving good performance in under-
standing the environment.

Awareness is the state or ability to perceive, to feel events, objects or sensory
patterns, and cognitive reaction to a condition or event. Awareness has four basic
characteristics:

– Awareness is knowledge about the state of a particular environment.
– Environments change over time, so awareness must be kept up to date.
– Agents maintain their awareness by interacting with the environment.
– Awareness establishes usually an event.

Based on the integration of Marr visual theory and Gestalt whole perception theory,
applying statistic and deep learning and other methods to analyze environment infor-
mation and generate high-level semantics, we can build the brain-machine awareness
model.

The brain-machine awareness model is defined as 2-tuples: {Element, Relation},
where Element of awareness is described as follows:

(a) Who: describes the existence of agent and identity the role, answer question who
is participating?

(b) What: shows agent’s actions and abilities, answer question what are they doing?
And what can they do? Also can show intentions to answer question what are they
going to do?

(c) Where: indicates the location of agents, answer question where are they?
(d) When: shows the time point of agent behavior, answer question when can action

execute?

Basic relationships contain task relationship, role relationship, operation relation-
ship, activity relationship and cooperation relationships.

(a) Task relationships define task decomposition and composition relationships. Task
involves activities with a clear and unique role attribute.

(b) Role relationships describe the role relationship of agents in the multi-agent
activities.

(c) Operation relationships describe the operation set of agent.
(d) Activity relationships describe activity of the role at a time.
(e) Cooperation relationships describe the interactions between agents. A partnership

can be investigated through cooperation activities relevance between agents to
ensure the transmission of information between different perception of the role
and tasks for maintenance of the entire multi-agent perception.

Agent can be viewed as perceiving its environment information through sensors
and acting environment through effectors. As an internal mental model of agent, BDI
model has been well recognized in philosophical and artificial intelligence area. As a
practical agent existing in real world should consider external perception and internal
mental state of agents. In terms of these considerations we propose a cognitive model
through 4-tuple <Awareness, Belief, Goal, Plan>, and the cognitive model can be
called ABGP model [11].
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There are several methods developed for visual awareness. Here we describe how
CNN is used for visual awareness. Convolutional neural networks (CNN) is a multiple-
stage of globally trainable artificial neural networks. CNN has a better performance in 2
dimensional pattern recognition problems than the multilayer perceptron, because the
topology of the two-dimensional model is added into the CNN structure, and CNN
employs three important structure features: local accepted field, shared weights, sub-
sampling ensuring the invariance of the target translation, shrinkage and distortion for
the input signal. CNN mainly consists of the feature extraction and the classifier. The
feature extraction contains the multiple convolutional layers and sub-sampling layers.
The classifier is consisted of one layer or two layers of fully connected neural networks.
For the convolutional layer with the local accepted field and the sub-sampling layer
with sub-sampling structure, they all have the character of sharing the weights.

The architecture of ABGP-CNN agent is shown in Fig. 2. In the ABGP-CNN, the
awareness module has been implemented by CNN, which is completely different from
the original single pre-defined rule implementation. The parameters of CNN will
become the knowledge in the belief library, and other modules have not changed. In
Fig. 2, the ABGP-CNN based agent implements behavior planning through
motivation-driven intentions, and the motivation drive adopts a series of internal
events. Interesting to achieve planning choices. Each internal mental action of ABGP-
CNN must be transformed into an event that drives introspective search to select the
most interesting event planning method using novelty and interest. Events consist
primarily of internal events (which occur inside the agent) and external events (from
external scene perception or other agents). Often, the formation of motivation is
motivated by demand and curiosity, but is primarily motivated by curiosity in the
ABGP-CNN agent. A goal consisting of a motivational position drives an agent. Unlike
most traditional BDI systems, ABGP-CNN does not simply target the target as a
special set of events, nor does it assume that all targets must be consistent.

Fig. 2. ABGP-CNN agent
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4 Collaboration

Collaborations occur over time as organizations interact formally and informally
through repetitive sequences of negotiation, development of commitments, and exe-
cution of those commitments. Both cooperation and coordination may occur as part of
the early process of collaboration, collaboration represents a longer-term integrated
process. Gray describes collaboration as a process through which parties who see
different aspects of a problem can constructively explore their differences and search
for solutions that go beyond their own limited vision of what is possible [12].

In this project we propose multi-level collaboration for brain-machine integration
[13]. Here we only introduce motivation-based collaboration and joint-intention based
collaboration.

4.1 Motivation Based Collaboration

Motivation is defined by psychologists as an internal process that activates, guides, and
maintains behavior over time. Maslow proposed hierarchy of needs which was one of
first unified motivation theories [14]. Since it introduced to the public, the Maslow’s
theory has a significant impact to the every life aspect in people’s life. Various attempts
have been made to either classify or synthesize the large body of research related to
motivation.

Curiosity is a form of motivation that promotes exploratory behavior to learn more
about a source of uncertainty, such as a novel stimulus, with the goal of acquiring
sufficient knowledge to reduce the uncertainty. In fact, most of curiosities are caused by
novelty. Novelty detection is useful technology to find curiosity. Novelty detection is
the identification of new or unknown data or signal.

Detecting novel events is an important ability of any signal classification scheme.
Given the fact that we can never train a machine learning system on all possible object
classes whose data is likely to be encounter by the system, it becomes important to
differentiate between known and unknown object information during testing.

Interestingness is defined as novelty and surprise. It depends on the observer’s
current knowledge and computational abilities. The interestingness of a situation is a
measure of the importance of the situation with respect to an agent’s existing knowl-
edge. Interestingness will make attention to an event, leading to collaborative work of
brain and machine.

4.2 Joint Intention Based Collaboration

The abstraction concept of the joint intention is convenient to support describe and
analyze the social behavior among the agents. A joint intention to perform a particular
action is a joint commitment to enter a future state wherein the agents mutually believe
the collaborative action is imminent just before they perform it.

In 1990, Bratman’s philosophical theory was formalized by Cohen and Levesque
[15]. In their formalism, intentions are defined in terms of temporal sequences of
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agent’s beliefs and goals. In 1992, Jennings claimed the need to describe collectives as
well as individuals [16]:

• Agents must agree on a common goal.
• Agents must agree they wish to collaborate to achieve their shared objective.
• Agents must agree a common means of reaching their objective.
• Action inter-dependencies exist and must be catered for in general terms.

In multi-agent systems, agents achieve a formula together. Joint intention embody
all agents’ joint activity selection, so the selective and joint are the basic factors.
Intuitively, joint intention has the list properties:

• Selective: Intention is the choice of the agent about the future, it will have effect on
its activities.

• Joint: Joint intention is that which all the team member want to achieve. As a team
member, each one knows it specifically and needs collaboration to achieve.

• Satisfaction: The satisfaction makes the notion of a formula being true under an
interpretation. Then intention is satisfiable means the intention is achievable.

• Consistency: Joint intention is the same as the single agent’s intention. Different
intentions among the team will make the joint intention conflict. What’s more, one
agent’s belief and intention should be consistent.

• Continuity: Continuity is one of the properties of joint intention. All the agents will
keep their intention until it is impossible to achieve or achieved.

Agent joint intention means agent wants to achieve a formula, which corresponds to
agent’s goal. For the joint intention, each agent has three basic knowledge: first each
one should select / as its intention; second, each one knows its neighbors who also
select the intention /; third, each one knows they are on the same team. Distributed
dynamic description logic (D3L) is adopted to describe joint intention [17].

Since the brain-machine integration is a multi-agent system as a distributed system,
the dynamic description logic is only suitable for processing isomorphic information,
and can’t provide a reasonable logical basis for multi-agent system. For this reason,
D3L is proposed to extend the dynamic description logic for distributed, heterogeneous
information integration. Distributed dynamic description logic is a unified represen-
tation and reasoning mechanism for studying multi-agent systems.

Distributed dynamic description logic propagates knowledge through bridge rules,
but it only deals with the case where two local DDL ontology are connected by bridge
rules, and the propagation of knowledge between ontology is not used for distributed
reasoning. Knowledge dissemination is the main feature of D3L that is different from
traditional dynamic description logic. In the case that multiple DDL agents form a chain
between bridge rules, they do not always propagate in the expected way, so the com-
bination consistency is introduced and distributed dynamic description logic supporting
chain bridge rules is proposed (CD3L). The CD3L component is divided into three
parts: a distributed TBox, a distributed ABox, and a distributed ActBox. Therefore, it
can better provide a logic basis for multi-agent systems.
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5 Simulation Experiment

ABGP-CNN as the detailed implementation for the conceptual framework of brain-
machine integration, here we give a simulation application to significantly demonstrate
feasibility of conceptual framework of brain-machine integration based ABGP-CNN
Agent model. The following will mainly represent the actual design of the rat agent
based on ABGP-CNN supported by the conceptual framework of brain-machine
integration.

Under belief knowledge conditions, the goals (here mainly visual information)
constantly trigger the awareness module to capture environment visual information,
and the event module converts the visual information into the unified internal moti-
vation signal events which are transferred to action plan module. Then the action plan
module will select proper actions to response the environment.

In simulation application, we construct a maze and design a rat agent based on
ABGP-CNN to move in the maze depending on the guidepost of maze path in Fig. 3.
The task of the rat agent is to start moving at the maze entrance (top-left of maze), and
finally reach the maze exit (bottom right of maze) depending on all guideposts.

In order to fulfill the maze activity shown in Fig. 3, the rat agent is implemented all
the three basic modules, <Awareness>, <Motivation>, <Action Plan>. In the rat maze
activity experiment, the rat agent is designed to have 3 basic behaviors moving on,
turning left and turning right in the maze. In order to guide rat’s behaviors we construct
a true traffic guidepost dataset means 3 different signals, moving on, turning left and
turning right. The different signal corresponds to different guidepost images like in
Fig. 4.

Fig. 3. Rat agent activities in maze
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When rat agent moves on the path, its goals constantly drive awareness module to
capture environment visual information (here guideposts in the maze) and generate the
motivation signal events to drive its behaviors plan selection. In the experiment, there
are 3 motivation signals, moving on, turning left and turning right according to the
guideposts in the maze path, which means the agent can response 3 types of action
plans to finish the maze activities.

6 Conclusions

At present, brain-machine integration is an active research area in intelligence science.
A cognitive model of brain-machine integration has been presented in this paper. The
paper explained environment awareness. Motivation is the cause of action and plays
important roles in collaboration. The motivation based collaboration has been explored
in terms of event curiosity, which is useful for sharing common interest situations. Joint
intention based collaboration is also discussed in terms of a sharing goal.

The future of brain-machine integration may lead towards many promising appli-
cations, such as neural intervention, medical treatment, and early diagnosis of some
neurological and psychiatric disorders. The goal of artificial general intelligence
(AGI) is the development and demonstration of systems that exhibit the broad range of
general intelligence. The brain-machine integration is one approach to reach AGI. A lot
of basic issues of brain-inspired intelligence are explored in details in the book [1].
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Abstract. This paper evaluates two new strategies for investigating
artificial animals called animats. Animats are homeostatic agents with
the objective of keeping their internal variables as close to optimal as pos-
sible. Steps towards the optimal are rewarded and steps away punished.
Using reinforcement learning for exploration and decision making, the
animats can consider predetermined optimal/acceptable levels in light of
current levels, giving them greater flexibility for exploration and better
survival chances. This paper considers the resulting strategies as eval-
uated in a range of environments, showing them to outperform com-
mon reinforcement learning, where internal variables are not taken into
consideration.
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Multi-objective reinforcement learning · Exploration strategies ·
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1 Introduction

One way to approach artificial general intelligence (AGI) is to construct arti-
ficial animals, or animats, endowed with sensors and motors: i.e., sensorimotor
capabilities. These agents act to satisfy predefined needs [11]. By simulation
of more and more complex agents and environments, one can hope to obtain
progressively better insight into the general nature of intelligence [12].

The notion of a homeostatic agent comes from physiology [2]. Through home-
ostasis, the agent attempts to minimize deviation of some number of key internal
variables from their optimal levels [1], thus satisfying basic “needs”; for many
animals, these are things like food and water. All living organisms are homeo-
static agents. That said, the concept of homeostasis can be extended in careful,
limited fashion to non-living systems that require balancing of multiple parame-
ters: e.g., a hydroelectric power plant that “needs” to balance energy generation
with water levels.
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While the notion of a homeostatic animat addresses the “what” and “why” of
intelligent behaviour, it provides no clear answers concerning the “how”. Rein-
forcement learning (RL) fills this gap by providing a framework for sequential
decision making. RL maps states (sensory perceptions) to actions (motor actions)
via the feedback of a reward signal.

A crucial task for agents operating in any environment is to balance explo-
ration with exploitation. This paper evaluates exploration strategies that use
internal variables to help agents survive longer by responding more robustly to
parametric changes: i.e., adapting dynamically to the environment.

Section 2 describes how the homeostatic agent is modeled and how its explo-
ration strategies take advantage of changes in its internal variables. Section 3
explains how those strategies are best evaluated. Finally, Sect. 5 discusses the
results to conclude that RL as traditionally carried out can, indeed, be improved
upon.

2 Homeostatic Agents

While the techniques used for RL share many similarities with those used for
designing animats – notably those for observation and control – there is one key
difference. The homeostatic animat must satisfy its needs and balance its internal
variables by considering multiple objectives simultaneously. RL as traditionally
conceived is only concerned with one objective: optimizing a single scalar return
[10]. The problem of balancing internal variables must be imported into RL.

A homeostatic agent can be modeled in many ways [3,5–7,9]. For present
purposes, two things are key: determining a scalar reward from the internal
variables and, consequently, giving the agent access to those variables. This can
be accomplished with a simple computational model known as homeostatic drive
reduction [3].

First, one must convert the homeostatic problem into a single objective maxi-
mization problem appropriate for RL. Then, one must consider how the informa-
tion gained from the internal variables can be applied to an exploration strategy.

2.1 Homeostatic RL

In our homeostatic agent, internal variables h are scaled −1 ≤ hi ≤ 1 with
optimal value h∗

i = 0. They are applied in three ways. First, they are fed into
the drive-reduction framework [3] to calculate drive using Eq. 1. The “reward”
is based on the change in drive at each time step, as seen in Eq. 2. This reward
is what the reinforcement learning algorithm tries to maximize.

d(ht) = m

√
√
√
√

N∑

i=1

|h∗
i − hi,t|n (1)

rt = d(ht) − d(ht+1) = d(ht) − d(ht + kt) (2)
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Vector k represents the outcome at a given time step: i.e., the change that has
occurred in the internal variables. Hyper-parameters n > m > 1 push drive
away from the optimum. By analogy, eating when hungry is more rewarding
than eating when full. This creates an incentive to fulfill needs that lie further
from the optimum, as a change in these needs will have a larger effect on reward.

Second, the internal variables are used as input to the RL algorithm along
with observations from the environment. This increases the state space by
enabling the algorithm to be “aware” of the agent’s internal state. We chose
to use a deep Q network (DQN) architecture [8]. Within the drive reduction
framework, the Q-values for each action depend on internal state and external
observations. An action indicating “eat” should have higher Q-value if the agent
is hungry.

Third, the internal variables are fed into the agent’s exploration strategy,
becoming a part of the action decision process: the focus of this paper.

The resulting transformation of the traditional RL agent can be seen in Fig. 1.
Note that the animat receives no explicit reward from its environment; instead,
reward is calculated using drive reduction on the internal variables, which are
perturbed but not determined by the environment.
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Fig. 1. Diagram visualizing the difference between a traditional RL agent, left, and a
multi-objective homeostatic RL agent, right.

2.2 Homeostatic Exploration

The typical exploration strategy used in RL is ε-greedy [10]. It takes a random
action with probability ε or, otherwise, the action with highest Q-value. It is
typically implemented as annealed ε-greedy, where ε decays over time toward
some lower bound. While this strategy has proven successful in numerous set-
tings, it has drawbacks – the most obvious being that it is often a function of t.
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That requires the hyper-parameters to be manually tuned for every environment
to find the right amount of exploration. If the environment changes, the agent
requires retraining with human intervention. Ideally, the agent should be capable
of adapting – retraining itself – without such intervention.

By contrast, we apply a simple heuristic to the agent’s internal variables to
create two exploration strategies: explore when good (EWG) and explore when
bad (EWB). These are dynamic strategies capable of balancing exploration with
exploitation continuously, based on how the agent performs over the course of
its lifetime. They operate similarly to ε-greedy but calculate ε’s value at each
time step based on Eqs. 3 and 4, where θ is the hyper-parameter threshold. The
values of ε are represented for the agent by two internal variables, as shown in
Fig. 2. It should be clear that, for EWG, the value of ε is highest when both
variables are near optimal, whilst for EWB it is highest when they are furthest
away.

EWG: ε = max

(

0, 1 +
max

i
|hi|

θ − 1

)

(3)

EWB: ε = max

(

0,
θ − max

i
|hi|

θ − 1

)

(4)

Threshold parameter 0 ≤ θ < 1 defines an interval for which the agent should be
maximally greedy, selecting only the best possible actions for itself. For EWG,
this threshold is set near the limit of the internal variables’ acceptable levels,
while for EWB it is set near the optimum. In consequence, EWG will stop
exploring when any internal variable approaches the acceptable limits, while
EWB will only start exploring when one or more variables are no longer close
to optimum. These strategies are not dependent on time but instead change the
rate of exploration dynamically, moment by moment, based on how the agent is
performing in relation to optimal levels of its internal variables.

3 Method

The EWG and EWB strategies are compared to annealed ε and constant ε in a
number of environments designed to evaluate various properties of the strategies.
The agent balances two internal variables both of which decay when an action is
performed, simulating energy usage. The variables increase or decrease according
to actions in certain states. In all, thirteen environments are used, at three levels
of complexity.

3.1 Environments

First are the simple worlds having no observable external state, though the agent
still observes its internal state: “Greed”, “Random” and “Dual”. “Greed” is a
static world where action outcomes are predetermined: i.e., all actions modify



182 P. Andersson et al.

Fig. 2. A visual representation of ε as a function of internal variables under the EWG
and EWB strategies. Threshold θ creates a buffer zone in which the agent only exploits
and does not explore.

internal variables in a strictly predictable manner. “Greed” tests the strategies’
ability to adopt a greedy policy quickly. “Random” randomly determines the
outcome of an action once the action has been selected. This tests the strategies’
ability to adapt to a highly stochastic world. “Dual” is a combination of “Greed”
and “Random”. Every fifty time steps, the world switches its behaviour. This
tests the strategies’ ability to adapt to temporal instability.

Next are grid-world variants that give the agent access to its coordinate
position. The action set allows movement in the cardinal directions as well as the
option of not moving, with the benefit of reduced resource decay. Four variants of
a 3×3 grid world and two corridor worlds – “Corridor A” (10×1) and “Corridor
B” (20 × 1) – are implemented.

The 3 × 3 grid worlds are designed to test the same properties as the simple
environments, using both static and dynamic environments. Food sources change
position when consumed. The agent’s ability to balance its internal variables is
evaluated by means of a “hostile” tile (coordinate position) that reduces one of
the variables, whereas the safe environment lacks this tile. The corridor envi-
ronments are designed to favour the annealed ε strategies. A successful agent
initially explores to find both ends of the corridor, then uses this knowledge to
be “greedy”. The hyper-parameters are chosen so that too many exploratory
actions will cause the agent’s premature death.

The final set of worlds are grid-world variants adding observations of the
RGB color triplets for the 3 × 3 set of tiles (coordinate positions) centered on
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the agent. The same properties as in the smaller grid worlds are evaluated in four
environmental variants. As these worlds are more complex, their size is limited
to a 5×5 grid initially, gradually expanded every 10,000 time steps with one tile
in each cardinal direction.

The environments are non-trivial and survival is not guaranteed. The
dynamic variants require exploration throughout the simulations, while the static
variants promote greedy policies. The hostile environments increase environmen-
tal complexity and reduce internal variable symmetry. For subsequent discus-
sion, the environment names are shortened to G for “grid world” and ECG for
“expanding color grid world” followed by a suffix: SS for “static safe”, SH for
“static hostile”, DS for “dynamic safe” and DH for “dynamic hostile”.

3.2 Agent

The agent uses the DQN architecture [8] with one of two configurations, the
difference being the size of the underlying network. A larger network with three
dense layers of 64 units is used for the color grid worlds and corridor worlds, a
smaller dense network with two layers of four units for the remaining environ-
ments. The agents have the hyper-parameters drive m = 3 and n = 4; discount
factor γ = 0.9; and optimizer Adam [4], with learning rate 0.001, batch size
32, and experience-replay size 106. Online and target network switch after 200
steps; training starts after 500 steps. To speed up learning, a random, uniform
initializer in the range (−10−6, 10−6) is used for the output layer.

3.3 Exploration Strategies

Multiple hyper-parameter settings of both annealed ε and constant ε are used
as baselines to ensure that the best possible baseline is found for each environ-
ment. ε ∈ {0, 0.01, 0.1, 0.2, 0.3, 0.4, 1} is tested for constant ε. For annealed ε, all
combinations of εmin ∈ {0.1, 0.01} and εΔ ∈ {0.001, 0.0001, 0.00001} are tested.
In similar fashion, the EWG and EWB strategies are evaluated with levels of
θ ∈ {0, 0.2, 0.4, 0.6, 0.8}.

The agent structure is held constant for all evaluations in each environment,
the only differences being the exploration strategy and random seed. Conse-
quently, all agents have the same potential to learn about their environment.
How well and how quickly they do so depends on how they explore that envi-
ronment.

3.4 Evaluation

Each simulation lasts 1,000,000 steps. The primary metric for the strategies’
success is the number of deaths they accumulate in each environment. Ten trials
are made for each possible combination of strategy and environment. A death
(i.e., terminal state) occurs when an internal variable exceeds 1 or falls below
−1. Upon death, environment and agent-internal variables are reset, and the
simulation continues.
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The number of non-optimal actions serves as a secondary metric for gauging
the number of exploratory actions [10]. This highlights any differences in strategic
behaviour.

4 Results

The results indicate that EWG and EWB outperform the baseline strategies, the
agents dying less often over the course of 1,000,000 steps. The agents find equiv-
alent or better policies, faster, which they maintain throughout the simulation
despite often having a higher rate of exploratory actions.

Fig. 3. The average number of deaths under the best-performing strategies of each type,
relative to the best annealed baseline strategy (εmin = 0.1, εΔ = 0.0001). Lower values
are better; a value below zero indicates better than annealed baseline performance.

Figure 3 shows the best hyper-parameter settings of the EWG, EWB, and
constant ε strategies compared to the best annealed ε baseline, with εmin =
0.1, εΔ = 0.0001. One can see that, without human interaction, the EWG strat-
egy adapts to environments better than any of the other strategies. This holds
even when each strategy is tuned to the environment, as shown in Fig. 4.

Taking a closer look at the effects of the hyper-parameter θ on the EWG
strategy, Fig. 5 shows that adding a small threshold makes the strategy more
stable across environments. Making the threshold value too high may cause
the agent not to explore enough: the internal variables quickly drop below the
threshold and the agent becomes greedy, as the corridor environments reveal.
However, the strategy appears fairly robust to changes in the threshold, with
θ ∈ {0.2, 0.4, 0.6} performing well in almost all environments.

The EWG and EWB strategies prove capable of quite different levels of explo-
ration depending on environment, without any need for human intervention – as
can be seen in Fig. 6. The different environments afford a varying range of pos-
sible actions, which changes the number of non-optimal actions slightly. EWG
and EWB change rate even within environments of the same type even as the
constant ε and annealed ε do not. This reduces the need for human intervention
when the agent is introduced to new or dynamic environments.
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Fig. 4. Even when all strategies are tuned to find the optimal settings, EWG still
performs best overall. EWB performs slightly better than EWG in “Random” and
“Dual”; however it performs worse than EWG in all others.

Fig. 5. Comparison of all EWG strategies to the best annealed baseline strategy (εmin =
0.1, εΔ = 0.0001). A small value of θ makes the EWG strategy more robust across
environments, while a too-high value increases the risk of the agent not exploring
enough.

Fig. 6. The percentage of exploratory actions taken in each environment for the best
performing hyper-parameter setting of each strategy type. The number changes slightly
based on the number of available actions. Both EWG and EWB change their rates of
exploration dynamically within the same environment type, based on how well they
perform.
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5 Discussion

The EWG and EWB exploration strategies take advantage of the information
provided by the agent’s internal variables. These provide an approximate metric
for the agent’s well-being and current performance. In contrast to traditional
RL strategies, which typically do not have access to information regarding per-
formance, these strategies prove better able to choose when to take exploratory
actions – despite being very simple. Indeed, more sophisticated strategies might
perform even better.

One of the proposed strategies, EWG, outperforms the others under a range
of hyper-parameter configurations, apparently fueled by the additional informa-
tion it is able to exploit. Simply adding a small threshold to EWG improves
performance across most environments. The EWB strategy also performs well,
but falls short in some of the environments.

We can extrapolate from the results to a more general insight: the value
of internal variables need not be constrained to animats. As mentioned in the
introduction, these variables might as well be the energy production and water
level of a hydroelectric power plant. In any case – living system, artificial agent
modeling a living system, or virtually any other, sufficiently complex non-living
system – deviation from optimal levels may successfully be used to facilitate
exploration.

6 Conclusion

We introduce two simple strategies for exploration of the homeostatic reinforce-
ment learning problem. These dynamic strategies outperform traditional RL
exploration strategies.
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Abstract. We present a deep neural-network model for lifelong learning
inspired by several forms of neuroplasticity. The neural network devel-
ops continuously in response to signals from the environment. In the
beginning the network is a blank slate with no nodes at all. It develops
according to four rules: (i) expansion, which adds new nodes to memorize
new input combinations; (ii) generalization, which adds new nodes that
generalize from existing ones; (iii) forgetting, which removes nodes that
are of relatively little use; and (iv) backpropagation, which fine-tunes the
network parameters. We analyze the model from the perspective of accu-
racy, energy efficiency, and versatility and compare it to other network
models, finding better performance in several cases.

Keywords: Lifelong learning · Deep learning · Dynamic architectures

Animals need to respond rapidly and appropriately to all kinds of changes in their
environment. To stay alive, they must make sufficiently good decisions at every
moment. With few exceptions, they learn from experience; their decision-making
improves over time. That requires effective mechanisms for adding, modifying,
removing, and using memories.

Memories are arguably only useful to the extent they contribute to better
decision-making in future: e.g., memories of vital resources that can be exploited
again; memories of dangers that need to be avoided; memories formed recently;
and memories used relatively often.

The ability to learn continuously by incorporating new knowledge is called
lifelong learning [24]: sensory data is available via a continuous data stream;
that data comes without any division into e.g. training set and test set; it comes
without division into tasks; and sensory input at two consecutive time steps tends
to be similar. Within computer science, lifelong learning is often contrasted with
learning in batch mode where the entire data set is available from the start.

Today, deep-learning models can outperform humans on a number of tasks;
see e.g. [13]. When it comes to lifelong learning and general intelligence, how-
ever, the success of deep learning has been modest at best. In contrast, insects
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like the honeybee and fruit fly excel at lifelong learning and adaptation to new
environments [10]. These animals have several mechanisms of neuroplasticity for
altering their nervous systems in response to changes in the environment [25].

The present research was guided by the idea that neural networks with static
architectures lack the flexibility needed for effective lifelong learning. Section 1
summarizes research in lifelong learning based on neural networks. Section 2
presents our dynamic model LL0. Section 3 analyzes LL0 from the perspective of
accuracy, energy consumption, and versatility. Section 4 draws some conclusions.

1 Related Work

Lifelong learning constitutes a long-standing, central problem in machine learn-
ing [12,24]. Many current neural-network-based learning methods assume that
all training data is available from the beginning and do not consider lifelong
learning. That said, several models for lifelong learning are based on neural net-
works. Catastrophic forgetting is a crucial aspect of lifelong learning [8,19,27]
that can lead to abrupt deterioration in performance. To get around it, biologi-
cally inspired computational methods integrate new knowledge while preventing
it from dominating old knowledge [4,20]. The consequent trade-off is referred to
as the stability-plasticity dilemma [11].

Various solutions have been proposed. As the network sequentially learns
multiple tasks, weight protection [15] counteracts catastrophic forgetting by safe-
guarding weights that have been important previously. Regularization techniques
[9] constrain the update of neural networks to prevent catastrophic forgetting
[18]. Pruning can be used toward the same end [28,29]. Both regularization
techniques and pruning reduce network size while improving generalization. The
neural-network models developed for these purposes can have fixed or dynamic
architectures. With fixed architectures, adaptation to new knowledge is achieved
via parameter updates that penalize parameter updates to avoid catastrophic for-
getting. [30] presents an example of such a model with “synaptic” intelligence.

Among the earliest dynamic models is the cascade-correlation architecture
[7], which adds one hidden neuron at a time while freezing the network to avoid
catastrophic forgetting. Progressive neural networks [26] add new layers of neu-
rons progressively while blocking changes to those parts of the network trained on
earlier data. Other incremental methods exist, based e.g. on incremental training
of an auto-encoder; new neurons are added in response to a high rate of failure
with the new data [31] or based on reconstruction error [5]. AdaNet [3] gradually
extends its network by evaluation and selection among candidate sub-networks.
A dynamically expandable network [17] expands via network split/duplication
operations, retraining the old network only when necessary. Lifelong learning
has been applied to such domains as autonomous learning and robotics. Learn-
ing agents are continuously exposed to new data from the environment [1,16]
in a strategy markedly different from classical learning performed on finite, pre-
pared data. Lifelong learning is in no way limited to deep neural-network models:
consider the methods used for language [21] and topic modeling [2].
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2 The LL0 Model

The supervised-learning model LL0 adds and removes nodes and connections
dynamically through four network-modification mechanisms, each inspired by
a different form of neuroplasticity: (i) backpropagation which adjusts parame-
ters, inspired by synaptic plasticity [6]; (ii) extension, which adds new nodes,
inspired by neurogenesis [14]; (iii) forgetting, which removes nodes, inspired by
programmed cell death [22]; and (iv) generalization, which abstracts from exist-
ing nodes, inspired by synaptic pruning [23]. LL0 thus models four forms of
neuroplasticity rather than one (i), as in standard deep learning, or two (i+ii),
as in the dynamic approaches mentioned above.

LL0 receives a continuous stream of data points (x, y), where x and y are
vectors of real numbers with fixed dimensions. The model maintains a neural
network that starts without any nodes or connections and develops continuously.
Algorithm 1 shows the main loop; the following subsections add details.

Algorithm 1. Main loop of LL0.
receive the first data point (x, y)
form |x| input nodes and |y| output nodes
while true do

compute network output ŷ produced by input x
if prediction(ŷ) �= y then

generalization
extension

else
backpropagation

end
forgetting
receive a new data point (x, y)

end

LLO’s neural network consists of four node types:

input nodes with the identity function as their activation function;
output nodes with softmax as their activation function;
value nodes with a Gaussian activation function and two parameters, (μ, σ),

used for storing values; and
concept nodes with a sigmoid activation function and one bias parameter,

used for forming the neural counterparts of conjunctions (though training
can turn them into something quite different!).

All concept nodes are directly connected to all output nodes. Concept nodes
may also have any number of outgoing connections to value nodes. All incoming
connections to concept nodes are from value nodes. Each value node has one
incoming connection, which originates from either a concept or input node. They
have one outgoing connection, always to a concept node.
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2.1 Extension

When LL0 makes an incorrect classification, the extension rule is triggered. Then
an extension set is formed. This set consists of all concept nodes and input nodes,
whose activation is above a certain threshold and whose position in the network
is as deep as possible. Thus no node in the extension set has a downstream node
that is also in the extension set. The extension rule essentially connects each
node of the extension set to a value node and then connects those value nodes
to a concept node, as illustrated in Fig. 1.
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Fig. 1. Illustration of the extension rule. Yellow diamonds represent value nodes, blue
circles other nodes. Assuming that nodes 2 and 3 are in the extension set, a new concept
node 4 is added along with two new value nodes. (Color figure online)

The parameters are set so that each value node stores the present activation
of its parent node and the concept node resembles an AND-gate. The concept
node is then connected to all output nodes and the weights of those connections
are set so that one-shot learning is ensured.

Imagine an agent learning to distinguish blueberries from blackberries based
on taste. Suppose the data points it receives have the form (sweetness, sourness,
bitterness; blueberry, blackberry). Suppose the first data point is (0.6, 0.4, 0.2; 1, 0).
Then LL0 constructs the network shown in Fig. 2.

0.6

0.4

0.2

1

Sweet

Bitter

Sour

Blueberry 1

0

Fig. 2. The network shown is created following receipt of the first data point. The node
in the center can be viewed as a conjunction node that “remembers” the taste of the
first berry. Here the numbers represent approximate node activation.

2.2 Generalization

The generalization rule is used for feature extraction. Whenever the extension
rule is triggered, LL0 checks whether it can generalize before adding the new
node. A concept node c gets generalized if it has enough parent value nodes that
are activated above a certain threshold. This is done by detaching the activated
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parents from c and attaching them to a new intermediate concept node c′ that
is inserted into the network and connected back to c, as illustrated in Fig. 3. The
parameters of c′ are set so that the original functionality of c is preserved.
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Fig. 3. Illustration of the generalization rule. Presuppose the network to the left. Sup-
pose that the value nodes of nodes 1 and 2 are activated, while that of node 0 is not
activated. Generalization inserts a new concept node, node 4, as shown to the right.

2.3 Forgetting

The forgetting rule is used for removing relatively unimportant nodes. Forgetting
can be done in either of two ways: (i) setting a fixed limit to the network size
and removing the worst performing nodes when the network reaches this limit,
or (ii) observing how a node performs and removing it if its performance drops
below a certain threshold. In the case of (i), it can clearly be catastrophic not
to forget and leave room for new memories. The performance pc(t) of concept
node c at time t can be characterized as

pc(t) =

∑t
i=t0

ai

t − t0
,

where t0 is the time at which c was added and ai is the activation of c at time i.

2.4 Backpropagation

The backpropagation step uses the cross-entropy cost function. The partial
derivatives are calculated as usual by using the chain rule. Each concept node
can be connected to hidden layers further down in the network and to output
nodes. The derivative for the concept nodes needs to take all these incoming
derivatives into consideration. Three parameters are updated:

– bias for the concept node: ∂E
∂θc

;
– weights that are not frozen: ∂E

∂wi
; and

– (σ, μ) for the value nodes’ Gaussian activation function: ∂E
∂σ , ∂E

∂μ .

These parameters are multiplied by the learning rate δ and updated using the
gradient-descent algorithm.
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3 Results

LL0 was compared to four fully connected, layered networks:

FC0: No hidden layer.
FC10: One hidden layer with 10 nodes.
FC10*2: Two hidden layers with 10 + 10 nodes.
FC10*3: Three hidden layers with 10 + 10 + 10 nodes.

The hyperparameters of all models were optimized for good overall performance
and then fixed. The baseline models were trained using stochastic gradient
descent with mini-batch size 10, learning rate 0.01, ReLU nodes in the hidden
layers, softmax at the output nodes, and the cross-entropy loss function.

Despite their simplicity, these static baselines are highly useful. Dynamic
models that construct fully connected layered architectures generally learn more
slowly and consume more energy, since they must search for architectures in
addition to undergoing the standard training procedure.

Performance of LL0 and the four baseline models was analyzed with respect
to four data sets adapted from playground.tensorflow.org and scikit-learn.org:
spirals, digits, radiology, and wine, in relation to accuracy and energy consump-
tion on previously unseen test sets. An average over ten runs was calculated for
each of the baseline models. Energy consumption for the baseline models was
calculated as the number of parameters times the number of forward and back-
ward passes. For LL0 it was calculated similarly and then multiplied by three.
For the other LL0 rules, energy consumption was estimated conservatively as
the number of network parameters times ten.

3.1 Spirals

The spirals data set consists of 2,000 two-dimensional data points in the form
of two intertwined spirals as shown in Fig. 4 (right). Figure 5 shows the results
obtained.

3.2 Digits

The digits data set consists of 1,797 labeled 8 × 8 pixel grayscale images of
hand-written digits. Figure 6 shows the results obtained.

3.3 Radiology

The radiology data set consists of 569 data points, each a 30-dimensional vector
describing features of a radiology image labeled benign or malignant. Figure 7
shows the result obtained.

3.4 Wine

The wine data set consists of 178 data points, each a 13-dimensional vector
describing taste features of a wine identified by one of three regions of origin.
Figure 8 shows the results obtained.

http://playground.tensorflow.org
http://scikit-learn.org
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Fig. 4. Left: The network produced by LL0 on the spirals data set, with the two
output nodes and their connections omitted for sake of readability. The architecture
converged after less than one epoch with about 160 nodes, depth six, and max fan-in
five. The yellow node was created by the generalization rule. Right: The spirals data
set with the generated decision boundary. Input points that triggered the extension
rule are marked by triangles. (Color figure online)

Fig. 5. Results on the spirals data set. Left: LL0 reaches 100% accuracy on the test
set after less than one epoch. By contrast, the best baseline model FC10*3 reaches
80% accuracy after about 350 epochs. Right: FC10*3 consumes over 1000 times more
energy than LL0 to reach 80% accuracy.

Fig. 6. Results on the digits data set. Left: All models eventually reach approximately
the same accuracy. LL0 learns relatively fast. Right: The energy curves converge.
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Fig. 7. Results on the radiology data set. Left: LL0 learns about ten times faster than
the baselines. Right: LL0 consumes about 10% as much energy.

Fig. 8. Results on the wine data set. Left: LL0 learns much more quickly, but peaks
at an accuracy level slightly below the best baseline. Right: Energy consumption.

4 Conclusion

This paper has presented a model for lifelong learning inspired by four types
of neuroplasticity. The LLO model can be used for constructing networks auto-
matically instead of manually. It starts from a blank slate and develops its deep
neural network continuously. It uses no randomization, builds no fully connected
layers, and engages in no search among candidate architectures: properties that
set it apart from the dynamic models surveyed in Sect. 1.

The results obtained indicate that LL0 is versatile. The four data sets consid-
ered stem from completely different sources: i.e., mathematical functions, hand-
writing, clinical judgment, and chemical measurements. Still, for each data set,
LL0 performs at the level of the best baseline model or better. The reason might
be that LL0 uses a form of one-shot learning that counteracts catastrophic for-
getting and leads to relatively fast learning and low energy consumption. The
fact that LL0 builds sparse networks that are continuously being generalized and
trimmed might also play an important role.

The present implementation is a prototype that scales poorly to large data
sets although the runtime of the underlying algorithm is linear in the number of
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nodes. Future plans include improving the scalability and extending the model
to dynamic deep Q-networks and dynamic recurrent networks.
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Abstract. An important feature of human learning is the ability to
continuously accept new information and unify it with existing knowl-
edge, a process that proceeds largely automatically and without catas-
trophic side-effects. A generally intelligent machine (AGI) should be able
to learn a wide range of tasks in a variety of environments. Knowl-
edge acquisition in partially-known and dynamic task-environments can-
not happen all-at-once, and AGI-aspiring systems must thus be capa-
ble of cumulative learning: efficiently making use of existing knowledge
while learning new things, increasing the scope of ability and knowl-
edge incrementally—without catastrophic forgetting or damaging exist-
ing skills. Many aspects of such learning have been addressed in arti-
ficial intelligence (AI) research, but relatively few examples of cumula-
tive learning have been demonstrated to date and no generally accepted
explicit definition exists of this category of learning. Here we provide a
general definition of cumulative learning and describe how it relates to
other concepts frequently used in the AI literature.

Keywords: Cumulative learning ·
Autonomous knowledge acquisition · Knowledge representation ·
Artificial general intelligence

1 Introduction

To be autonomous, any learner in the physical world must be able to learn incre-
mentally over time, as it is impossible to be in multiple places at once; equally
importantly, one cannot know up front everything that may be relevant in the
future (in which case learning would be mostly unnecessary). A learning mecha-
nism that avoids putting acquired experience in silos, through generalization and
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old-new unification, will always be more parsimonious, and thus more effective,
than the alternatives. We consider such cumulative learning a hallmark of human
cognition, and of central importance to artificial general intelligence (AGI).

The concept of cumulative learning offers an integrated view of numerous cog-
nitive processes that largely have been treated in isolation in the AI literature to
date, including, in one form or another, pattern matching, reasoning, continuous
information acquisition, and old-new integration or unification (which has mostly
been ignored outside of [16]). While a fragmented approach to learning may be
sufficient for narrow AI research, we consider the current state of fragmentation
to be detrimental to AGI research, and call for a more integrated perspective to
help the field avoid obscuring important phenomena and slowing down progress
towards artificial general intelligence. This paper attempts to bring all relevant
concerns into one place and set the stage for a long-term vision for cumulative
learning in AGI systems.

At the heart of cumulative learning is a process of unification: New informa-
tion enters by default into a process of being integrated with already-acquired
knowledge—whether it is in agreement with it or not. This is compression under
requirements of incrementality, realtime,1 and generalization: Replacing incor-
rect knowledge and extending current knowledge frequently, while generalizing
when possible, prepares knowledge to be efficiently applicable to the largest pos-
sible class of situations, tasks, topics, and domains—as soon as possible during
the learner’s lifetime.

Several aspects of cumulative learning as formulated here2 have been cov-
ered in the machine learning literature, but its many necessary-but-not-sufficient
features have invariably been addressed in isolation. As any student of systems
engineering knows, it is infeasible to join disparate mechanisms, based on incom-
patible theoretical foundations, into a single coherent system. Due to the lack of a
coherent, comprehensive theory of learning, research on this topic in various fields
has yielded a number of ontologically inconsistent terms for the various aspects
of the phenomenon, and the almost complete ignorance of the importance of
incremental knowledge unification. Always-on learning has for instance variously
appeared under the headings ‘lifelong’, ‘perpetual’, ‘never-ending’, ‘incremental’,
‘online’, and ‘continual’ learning [8,15,20,29,30], most of which only have partial
overlap. Other examples of concepts prevalent in the literature of varying rel-
evance to cumulative learning include ‘learning to learn,’ ‘multi-task learning,’
‘metalearning,’ ‘transfer learning,’ ‘domain adaptation,’ ‘inductive/knowledge
transfer,’ ‘knowledge consolidation,’ ‘knowledge-based inductive bias,’ ‘context-
sensitive learning,’ ‘catastrophic forgetting/interference,’ and ‘semi-supervised
learning’ [5,11,18,24]. Few systems have proposed to address the full scope
of cumulative learning as formulated here. Two systems that explicitly have,
and presented empirical evidence of progress towards it, are the Non-Axiomatic

1 Unification must happen frequently, relative to the learner’s lifetime, lest we’d be
hard-pressed to call it ‘cumulative.’.

2 The term itself has appeared in the AI literature with some overlap of its sense here
(cf. [2,6,7]), as well as in AGI research (cf. [23]).
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Reasoning System (NARS) [26,27] and Auto-Cataytic Endogenous Reflective
Architecture (AERA) [16,17].

In addition to insufficient focus on old-new unification, few of the above
concepts have been conceived in the context of (artificial) general intelligence
and are thus in one or more aspects at odds with the larger, more complete
picture of learning that we find needed for AGI. Here we attempt to present a
coherent picture by ‘defragmenting’ the conceptual space surrounding learning,
painting instead a coherent picture more suited as a step towards a theory of
cumulative learning.

2 Dimensions of (Cumulative) Learning

Learning is necessary for goal achievement in a changing, novel environment.
All learning machines, whether natural or artificial, are limited by the time and
energy they have available; the outermost constraint on any learning mechanism
is the assumption of insufficient knowledge and resources (AIKR) [9]. However,
there is a large number of ways to interpret these constraints when implement-
ing learning mechanisms, and thus there are numerous dimensions along which
any learning ability may vary. We have identified 14 dimensions whose settings
determine the performance characteristics of any particular cumulative learning
implementation. These naturally form three sets: (1) Memory management, (2)
temporal capacity and granularity, and (3) generality. In each group there are
between four and six different dimensions that we will now outline. While these
are not perfectly orthogonal to each other (which would require a proper theory
of learning), the breakdown allows us to better place prior work in the context
of the present focus. Note that our focus in this paper is not so much on learn-
ing methods but primarily on externally measurable factors and characteristics
of the cumulative learning process as a whole, and related learner performance
characteristics.

[A] Memory Management. Operational characteristics of processes related
to memory and knowledge management. These can of course also be learned,
i.e. improved with experience. Having to do with quality, these range from
catastrophic at one end to highly effective at the other.
(a) Storage: Storing relevant aspects of experience in memory.
(b) Remembrance: Bringing relevant knowledge to bear on a task or prob-

lem.
(c) Forgettance: Removing the least relevant and necessary knowledge, if

needed.
(d) Compression: “Cleaning up” knowledge in ways that can improve the

learner in some way, w.r.t. storage, forgettance, remembrance, general-
ity, etc.

(e) Old-New Unification: Integrating new information with existing
knowledge so that it becomes more coherent and parsimonious.

(f) Defeasibility: Replacing less correct, less useful and/or less detailed
knowledge with new more correct, more useful and/or more detailed
knowledge.



Cumulative Learning 201

[B] Temporal Capacity & Granularity. When and how the learner can
accept new information. This group contains four important characteristics
that define temporal measures of cumulative learning:
(g) Concurrent capacity: How many things3 can be learned concurrently.
(h) Consecutive capacity: How many things can be learned consecutively.
(i) Temporal granularity of information acceptance/storage.
(j) Temporal granularity of old-new information unification.4

The range of dimensions Bg and Bh starts with one thing once at the lower
end, meaning that a single learner can only learn one thing at one (particular)
time, and extends towards many things at any time, concurrently/simultaneously
and/or consecutively/sequentially at the other end, meaning the learner can at
any time learn new things, no matter how large or small (ignoring learning time
and materials). Bi and Bj at the lower end range from a single two-step learn-
then-apply pair (e.g. artificial neural nets), to concurrently and/or consecutively
and continuously (non-discretized) at the other end.

[C] Generality of the learning, with respect to task, goal, domain, etc. These
parameters range from one at the lower end, to any at the other.
(k) Data Flexibility: Flexibility in the kind of data that learner can accept

(as dictated by cognitive – not sensing – capabilities).
(l) Knowledge Flexibility: Flexibility in what knowledge is leveraged.

(m) Knowledge Transfer: Using knowledge acquired for one purpose in
one context to other purposes and contexts.

(n) Learning to Learn: Using acquired knowledge to improve learning
ability.

(o) Inverse Defeasibility: New information improves existing knowledge.
The more generally a learner can do this (i.e. the less directly the new
information is related to current knowledge) the better a learner it is.

3 Functions of Cumulative Learning

A cumulative learner in our conceptualization is a learning controller [23] that,
guided by one or more top-level internalized goals (or drives), implements a
cumulative modeling process whereby regularities are recursively extracted from
the learner’s experience (of self and environment) to construct integrated models
useful for achieving goals [3,23]. The collection of models form a unified body
of knowledge that can be used, by a set of additional and appropriate man-
agement processes (see Aa-f above), as the basis for making predictions about,
and achieving goals with respect to, an environment, and that can be used to
3 A “thing” can be a task, environment, goal, domain, phenomenon, process, etc.—

it does not matter so much here which, as long as there is some way to compare
systems on these features.

4 ‘Learning’ here means the acquisition of knowledge applicable to achieving goals the
learner might face, now or in the future; this view does not address “non-actionable
knowledge”.
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improve future learning—in speed, quality, efficiency, or all of these [28]. At the
risk of oversimplification, a compact definition of cumulative learning might read
something like “using a unified body of knowledge to continually and recursively
integrate new information from many contexts into that body.” A learner whose
models capture in this way an actionable description of measurable, verifiable
entities in the environment and their relations, and tends over time towards the
pragmatically simplest (interrelated) set of such descriptions, is in some sense
an ideal cumulative learner.

We will now turn to the central features of this conceptualization of cumu-
lative learning in light of notable related work. We emphasize that our inter-
est in cumulative learning is limited to a learner that embodies and unifies all
of the following learning-related functions in a single coordinated system,
throughout its lifetime, as is necessary for making progress towards AGI.

3.1 Temporal Capacity and Granularity

An important dimension of learning concerns how and when the learner is open
to accepting, storing and integrating new information into its knowledge base.

Learning Multiple Things. A cumulative learner must, by definition, be able
to learn multiple things – tasks, goals, environmental factors, techniques, rules
of thumb, generalizations, modes of reasoning, etc. – cumulatively over time:
It must not be restricted to a single function, task, domain or phenomenon.
Aspects of this capability have been studied under the term ‘multitask learning’
(MTL) [4] where the learner learns multiple tasks concurrently (cf. Bg). MTL
assumes the input representation for each task is the same, and concurrent learn-
ing requires predefined and pre-programmed knowledge of the number of tasks,
and (ideally) access to a data set where each input is associated with a target
output label (in the supervised learning setting for which it was conceived). Fei
et al. [7] use the term ‘cumulative learning’ to describe a variation of this type
of MTL, where tasks are added one after the other (cf. Bh).

MTL can be extended to control tasks in a reinforcement learning setting
[22] by assuming the tasks are encountered consecutively (rather than assuming
a single agent simultaneously acting in multiple task-environments; cf. Bh). In
this setting MTL research often makes use of hierarchical reinforcement learning
(HRL), which also involves learning multiple (sub)tasks that together constitute
a top-level task. When the top-level task is removed, leaving just the subtasks,
this is closely related to both multitask learning and multi-objective reinforce-
ment learning (MORL) where an agent has multiple active goals. This kind of
process can happen organically in NARS [26].

An ideal cumulative learner should be capable of learning multiple things
both concurrently and consecutively, as appropriate, without constraints on the
order of encountered phenomena and task revisitation. NARS [25] can accept
input data of any content at any time (cf. Bi, Bj), as long as they can be
expressed in a format that the system can recognize (cf. Ck, Cl). This means
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NARS has the ability to solve any problems expressible in its language instead
of being limited to a specific type of problems. When solving a problem, all
accumulated evidence matters, though different pieces may contribute differently
(cf. Ab, Ae, Af). In AERA [16] any digital data can become a source of learning
(cf. Ck, Cl), and the simplest basis on which it can learn is correlation between
data types, variables or values (cf. Aa). To learn, AERA must from the outset
have a drive in its seed that references one or more observable environment
variables.

Always-On Learning. An ideal cumulative learner can learn at any time—
there are no pre-designated periods where its learning is turned off, no required
dedicated special training phase (although it is of course not prevented), and the
learning process does not converge to an attractor (cf. Bi, Bj). Thus, learning
occurs perpetually throughout the operational lifetime of a cumulative learner.

Lifelong machine learning (LML) [6,20], continual learning [19], perpetual
learning [30] and never-ending learning [15] all focus on sequentially learning an
unknown number of tasks.5 As a result, learning in these settings never truly
ends. However, this does not necessarily mean that learning is always on. For
instance, Zhang’s perpetual learner [30] only enters a new learning phase when
a “learning stimulus” is encountered (i.e. an inconsistency, anomaly or surprise)
during each (learning-free) application phase. Furthermore, many lifelong learn-
ers consider learning on the current task “done” before starting the new one and
it is typically not clear when the learned knowledge is supposed to be applied
(and what can be learned from that application), suggesting that even here there
is a separation between training/learning and application phases.

The temporal granularity at which incoming information can be accepted,
stored and added to the knowledge base are important dimensions of learning
(cf. Bi, Bj). While many ML systems can only learn in a single designated phase
at the beginning of their lifetime followed by a phase in which this knowledge
is applied, other systems can alternate between these modes (e.g. Zhang’s per-
petual learner [30]), while yet others learn constantly with or without explicit
learning/application phases (e.g. NARS [25] and AERA [16]). The rate at which
new information can be accepted and stored, and the rate at which it can be
usefully unified into the knowledge base, are separate dimensions.

Assessing temporal granularity of a learner involves examining how much
information it needs before learning can occur. Offline or batch learning assumes
constant on-demand access to all data, no restrictions on time and space
for training, and a fixed (often i.i.d.) distribution from which the data is
pulled, while online or incremental learning removes these assumptions [8]. In
online/incremental learning information is encountered sequentially and there
are often restrictions placed on the ability to revisit old data. In the most
extreme case, upon encountering some new datum d the learner’s model m must

5 While the terms ‘lifelong learning’ and ‘lifelong machine learning’ are not always
used entirely consistently, they can be considered approximately interchangeable
with ‘perpetual learning’ and ‘never-ending learning,’ respectively.
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be updated based only on m and d, without considering any previously encoun-
tered data. A continuum of incrementality could be considered based on how
much previous data can be used to update m, where offline/batch learning is at
the other extreme because it uses all data.

Incrementality in LML can be evaluated at multiple levels: While e.g. tasks
are often encountered sequentially, and data from previous tasks may or may not
be available, it is often the case that each individual task is trained offline when
it is encountered. Online learning is common in forecasting, sequence prediction,
and sequential decision making. Many reinforcement learning algorithms learn
online (e.g. Q-learning), although other algorithms (e.g. policy gradient) and
function approximations (e.g. using deep learning) may require batches of data.

3.2 Memory Management

For an implemented system, neither memory nor computation speed is infinite
[9]. This means all learners must make choices on what knowledge can and
should be retained (cf. Aa). Systems that cannot forget will inevitably run into
memory limits at some point and break down, or demand human intervention,
either of which are sub-optimal because processing an ever increasing amount of
knowledge will become prohibitive due to the limitation on computation speed
(cf. Ab, Ac).

When learning a new task causes forgetting of critical or all parts of pre-
viously learned tasks, this is called catastrophic forgetting [12]. Workarounds
include e.g. “freezing” of knowledge obtained for previously encountered tasks,
and retaining training data to engage in task rehearsal (i.e. continuously retrain-
ing on old tasks as well as new ones), but this runs into aforementioned limits
of space and time. An important challenge to address in cumulative learning is
thus the stability-plasticity balance [14], wherein sufficient plasticity is needed
to incorporate new knowledge while retaining old knowledge requires sufficient
stability.

Forgetting sensibly is bound to involve several processes, such as replacing
wrong or worse knowledge with correct or better knowledge, respectively, when-
ever possible (cf. Af). There should be multiple ways of compressing the knowl-
edge (with or without loss; cf. Ad)—induction (generalization) is one way to do
so, forgetting permanently is another one (based on empirically-evaluated use-
fulness). Numerous combinations of various mechanisms are possible, achieving
various trade-offs between memory requirements, applicability, manageability,
and so on. In addition to selective forgetting, AERA’s rewriting rules reduces
redundancies and storage requirements through increased generality whereby
values are replaced with variables coupled with ranges [16]. In NARS, forgetting
has two related senses: (1) relative forgetting: decrease priority to save time, (2)
absolute forgetting: remove from memory to save space and time [9].



Cumulative Learning 205

3.3 Generality

The last set of learning dimensions considered here concerns the generality and
generalization ability of the learning system. Ideal cumulative learners can accu-
mulate knowledge of any type and in any situation, and generalize it for use in
both unseen future contexts and previously encountered situations. As with the
other dimensions, the focus here is not on learning methods, i.e. how generality
is achieved, but rather on externally measurable characteristics of cumulative
learners and performance.

Domain-, Task- & Goal-Generality. A domain-general (domain-
independent) cumulative learner will model any relevant experience, including
its own sensors, the quality of data they produce (in relation to other sen-
sors), as well as the quality of data acquired from outside sources (cf. Ck, Cl]),
and even its own cognitive processes. An ideal artificial cumulative learner, in
our conceptualization, can therefore acquire knowledge and skills through both
experience [21] and explicit teaching [3]. Goal-generality means that knowledge
and goal(s) are not fused together (in particular situations and constraints) but
can be re-purposed when task- and domain-related parameters change [10].

It is worth pointing out that paradigms like transfer learning, MTL and LML
tend to focus on the task as a distinct unit (cf. Bi, Bj): It is assumed that tasks
are explicitly separated from the point of view of the learner, who is typically
notified when learning on a new task starts, or of the task that should currently
be performed. In the general case of the real physical world, task boundaries are
not this clear. (Is playing tennis against well-known tennis player Roger Federer
a different task than playing against Rafael Nadal? What about playing dou-
bles? Or against a child? What about playing squash or badminton?) Correctly
recognizing contexts and knowing what prior knowledge to bear (and how) is a
key part of the challenge that cumulative learning solves: Boundaries between
tasks and domains for autonomous learners in the real world are inexplicit. Ani-
mals learn continuously, cumulatively adding new knowledge to their current
knowledge, as needed. NARS [25] accepts input data and task of any contents,
as far as they can be expressed in a recognizable format (cf. Ck, Cl). AERA
[16] is data-general as its learning methods are data-agnostic (while its learning
is not) (cf. Ck, Cl).

Unlike transfer learning, with its explicit focus on the learning period itself,
cumulative learning assumes a continually running process of unification—
irrespective of how or whether the new knowledge can be, or was, useful in
learning the new information (cf. Bi, Bj). An extreme case of this is using
analogies to deepen or broaden knowledge of a set of phenomena. In NARS, for
instance, learning involves not only tasks but also effective (re-)organization of
knowledge, without respect to specific problems, so that it may later be used on
any relevant task [28] (cf. Ae, Af). The idea of such meta-learning (‘super-task
learning’ or ‘task-free learning’) is naturally only a challenge in a context where
multiple things are actually learned, and has only recently received some atten-
tion [1,9]. In AERA [16] models are by themselves general in that they are not
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attached to any particular task (this is always computed on a case-by-case basis
on the fly), and each model is thus in principle applicable to any part of any
task, as long as its preconditions are met (cf. Ck, Cl).6

Knowledge Transfer. Cumulative modeling, to achieve effective compression
and old-new unification for any new context or situation, needs to find ways of
dealing with similar input at different points in time, and note its similarity and
differences, so that old knowledge acquired at time t1 for situation S1 can be
successfully used for a new situation S2 at time t2. This can be done by e.g.
making analogies [25] (cf. Cm). New information should be integrated with old
information, at a low level of detail (as low as possible, in each case), producing
a growing set of interrelated (fine-grained) models of the task-environment [16]
(cf. Ae).

Similarly, the goal of transfer learning and domain adaptation is to use knowl-
edge obtained in a set (typically of size one) of previously learned source tasks
in order to facilitate learning and/or performance on a target task [18] (cf. Cm,
Cn). Perhaps more generally, it deals with the situation where (some or all of)
the training is obtained in a situation different from the one in which it is to be
applied. Making use of existing knowledge (‘inductive bias’) can enable faster
learning from one or a few observations that would otherwise not contain enough
information (‘one-shot’ or ‘few-shot’ learning), possibly even without ever direct
observation (‘zero-shot learning’) [13].

To make knowledge transfer between tasks and situations positive (helping
instead of hurting learning and performance), it is important to consider what,
when, and how relevant knowledge is transferred. Most work to date has focused
on “how,” while relevance of prior knowledge is already assumed, and assumed
that most transfer happens right before the learner starts learning a target task.
Work on task similarity and transferability is rarer, as is the question of when
to transfer. An ideal cumulative learner will always treat new information in
a way that makes it generally applicable to future tasks, so there is no explicit
knowledge transfer step or stage—just the future application of the most relevant
available knowledge in each instance. This is how knowledge transfer and learning
works in NARS [25] and AERA [16]. Furthermore, at the present time what we
might call “forward transfer” – the effect of current learning on future learning –
is considered more important than “backward transfer” (the effects that learning
the new task has on the ability to perform the previously learned tasks). In
practice, backward transfer in much of current machine learning is typically
extremely negative, as catastrophic interference/forgetting [12] occurs where the
previous tasks are forgotten almost entirely or performance drops dramatically
(cf. Bc).

6 Still, if some models are often used together they may be compiled for faster future
use, which may be comparable to detecting “tasks” that are meaningful to the learn-
ing system).
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4 Conclusions

Artificial generally intelligent (AGI) systems will need to handle unknown
dynamic environments, where required information cannot be known fully up
front and many skills must be acquired. Cumulative learning, as we conceive
of it, is important for AGI for numerous reasons, including: (1) Knowledge is
created incrementally, matching the needs of partially-known, changing environ-
ments, (2) knowledge is built up and improved in small increments, avoiding
pitfalls of catastrophic forgetting and errors, (3) new knowledge is immediately
available to the learner, and (4) knowledge consisting of fine-grained (low-level)
explicit models provides explicitness necessary for comparing, managing, rea-
soning, etc. To be useful for AGI systems these skills must all exist in a unified
manner in one and the same learner. In this paper we have tried to clarify why
and how the various aspects of cumulative learning relate to key AGI require-
ments, and place it in the context of prior work. More work is clearly needed
to realize true artificial cumulative learning in a single system on par with that
found in nature. The systems developed by the authors, NARS [26] and AERA
[16], demonstrate some important steps in this direction by bringing several of
its features together in single unified systems.
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A., Rzepka, R., Goertzel, B. (eds.) AGI 2018. LNCS (LNAI), vol. 10999, pp. 77–86.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97676-1 8

11. Jiang, J.G., Su, Z.P., Qi, M.B., Zhang, G.F.: Multi-task coalition parallel formation
strategy based on reinforcement learning. Acta Automatica Sinica 34(3), 349–352
(2008)

12. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc.
Natl. Acad. Sci. 114(13), 3521–3526 (2017)

13. Lake, B., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple
visual concepts. In: Proceedings of the Annual Meeting of the Cognitive Science
Society, vol. 33 (2011)

14. Mermillod, M., Bugaiska, A., Bonin, P.: The stability-plasticity dilemma: investi-
gating the continuum from catastrophic forgetting to age-limited learning effects.
Front. Psychol. 4, 504 (2013)

15. Mitchell, T., et al.: Never-ending learning. Commun. ACM 61(5), 103–115 (2018)
16. Nivel, E., et al.: Bounded recursive self-improvement. Technical RUTR-SCS13006,

Reykjavik University Department of Computer Science, Reykjavik, Iceland (2013)
17. Nivel, E., et al.: Autocatalytic endogenous reflective architecture. Technical RUTR-

SCS13002, Reykjavik University School of Computer Science, Reykjavik, Iceland
(2013)

18. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010). https://doi.org/10.1109/TKDE.2009.191

19. Ring, M.B.: CHILD: a first step towards continual learning. Mach. Learn. 28(1),
77–104 (1997)

20. Silver, D.L., Yang, Q., Li, L.: Lifelong machine learning systems: beyond learning
algorithms. In: AAAI Spring Symposium: Lifelong Machine Learning (2013)
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Abstract. Learning from few samples is a major challenge for
parameter-rich models such as deep networks. In contrast, people can
learn complex new concepts even from very few examples, suggesting
that the sample complexity of learning can often be reduced. We describe
an approach to reduce the number of samples needed for learning using
per-sample side information. Specifically, we show how to speed up learn-
ing by providing textual information about feature relevance, like the
presence of objects in a scene or attributes in an image. We also give
an improved generalization error bound for this case. We formulate the
learning problem using an ellipsoid-margin loss, and develop an algorithm
that minimizes this loss effectively. Empirical evaluation on two machine
vision benchmarks for scene classification and fine-grain bird classifica-
tion demonstrate the benefits of this approach for few-shot learning.

Keywords: Few-shot learning · Side information · Machine teaching

1 Introduction

People can learn to recognize new classes from a handful of examples. In contrast,
deep networks need large labeled datasets to match human performance in object
recognition. This gap in performance suggests that there are fundamental factors
that could reduce the sample complexity of our current learning algorithms. From
the practical point of view, few-shot learning becomes a real challenge in domains
where collecting labeled samples is hard or costly. For example, when the number
of classes is large, tail-concepts often have too few samples for effective training.
Also, in numerous applications where the data is non-stationary, classifiers have
to learning in an online manner, continuously suffering a cost for every wrong
decision. In these cases, it is important to learn quickly from a few samples.

Many approaches to few-shot learning and zero-shot learning (ZSL) are based
on learning a representation using well-sampled classes and then using that rep-
resentation to learn new classes with few samples [1,2,10,18,19]. In a second line
of approaches, meta-learning, a learner is trained to find an inductive bias over
the set of model architectures that benefits FSL [9,15]. Unfortunately, these
approaches may not be feasible in the online learning setup where a cost is
incurred for every prediction made.
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This paper proposes a complementary approach, inspired by how people learn
faster by integrating side information about samples, classes and features. Specif-
ically, when people learn new concepts from few labeled samples xi, yi, they can
also effectively use additional per-sample information zi which provides an induc-
tive bias about the model to be learned. We name this source of side information:
Rich supervision (RS).

Learning with rich human supervision has to address two major challenges.
First, one has to collect rich supervision from human raters, which may be hard
to scale. Second, one needs to find ways to integrate the rich supervision into
the model effectively. Most previous approaches focused on providing localiza-
tion information as side information. Here we focus on a specific type of RS
and address these two challenges. We study a learning architecture that has
an intermediate representation with named entities, like attributes or detected
objects. In this setup, we show that it is possible to use open-world tags pro-
vided by raters by mapping them to the intermediate entities. This approach
also addresses the second challenge, collecting sparse information about features
at scale [3]. We demonstrate two different datasets where such information is
available, and show how the text tags can be mapped onto an internal network
representation.

We formulate the problem in the context of online learning. We design a
new ellipsoid-margin loss that takes into account the side-information available,
and describe an online algorithm for minimizing that loss efficiently. We test the
algorithm with two datasets and find that it improves over two baselines. First,
with visual scene classification using object occurrence as RS. Second, with bird
species recognition using visual attributes as RS.

The novel contributions of this paper are as follows: (1) First, we describe
the general setup of learning with per-sample side-information and discuss the
special case of learning with per-sample information about feature uncertainty
and relevance as a special case; (2) We prove a theorem showing how per-sample
information can reduce the sample complexity; (3) We then describe Ellipsotron,
an online learning algorithm for learning with rich supervision about feature
uncertainty, which efficiently uses per-class and per-sample information; (4) We
demonstrate empirically how rich supervision can help even in a case of strong-
transfer, where expert feedback is provided in an unrestricted language, and that
feedback is transferred without learning to a pretrained internal representation
of the network; (5) Finally, we demonstrate the benefit of empirical supervi-
sion at the sample level and class level on two standard benchmarks for scene
classification and fine-grained classification.

2 Related Work

Learning with Feature Feedback. A special case of rich supervised learning
occurs when feedback is available about the accuracy or confidence of given fea-
tures. This setup was studied for batch learning. [7] incorporated user-provided
information about feature-label relations into the objective. [17] augmented SVM
using a set of order constraints over weights, e.g., the weight of one feature should
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be larger than another. [4] described a large-margin approach to handle struc-
turally missing features, which in the current context can be viewed as features
with infinite uncertainty. [3] describes a visual recognition method with a human-
in-the-loop at inference time. [14] studied an active learning setup where raters
are asked about relevance of features. Other approaches provided localization
information as a source of side information, see references in [20].

Most relevant to this paper is the recent work by [13]. They studied user-
provided feedback about features for binary classification and proposed an algo-
rithm based SVM applied to rescaled features (Algorithm 4, SVM-FF). It dif-
fers from the Ellipsotron algorithm described here in several important ways.
First, the fundamental difference is that SVM-FF rescales all data using a single
shared matrix, while our approach is class-specific or sample-specific. Second,
we present an online algorithm. Third, our loss is different, in that samples are
only scaled to determine if the margin constraint is obeyed, but the loss is taken
over non-scaled samples. This is important since rescaling samples with different
matrices may change the geometry of the problem. Indeed, our evaluation of
an online-variant of SVM-FF performed poorly (see Sect. 7.1 below) compared
to the approach proposed here. Also relevant is the work of [6], which address
learning a multi-class classifier using simple explanations viewed as “discrimina-
tive features”, and analyze learning a particular subclass of DNF formulas with
such explanations.

3 Rich Supervised Learning

The current paper considers using information about features per-sample. It is
worth viewing it in the more general context of rich supervision (RS). As in
standard supervised learning, in RS we are given a set of n labeled samples (x ∈
X , y ∈ Y) drawn from a distribution D, and the goal is to find a mapping fW :
X → Y to minimize the expected loss ED[loss(fW (xi), yi)]. In RS, at training
time, each labeled sample is also provided with an additional side information
z ∈ Z. Importantly, z is not available at test time, and only used as an inductive
bias when training f . Rich supervision can have many forms. It can be about
a class (hence zi = zj iff yi = yj ∀ samples i, j), as with a class description
in natural language (“zebras have stripes”). It can be about a sample, e.g.,
providing information about the uncertainty of a label yi, about the importance
of a sample xi (“this sample is important”), or the importance of features per
sample (“look here”). Here we study zi about the per-sample detection of high-
level concepts characterized using natural language terms.

4 Learning with Per-Sample Feature Information

We focus here on the online learning setting for multiclass classification. An
online learner repeatedly receives a labeled sample xi (with i = 1, . . . , n), makes
a prediction ŷi = fW (xi) and suffers a cost loss(w;xi, yi). We explore a spe-
cific type of rich supervision zi, providing feedback about features per samples.
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Specifically, in many cases it is easy to collect information from raters about
high-level features being present and important in an image. For instance, raters
could easily point out that an image of a bathroom contains a sink, and that
side information can be added to pre-trained detectors of a sink in images.

The key technical idea behind our approach is to define a sample-
dependent margin for each sample whose multidimensional shape is based on
the known information about the uncertainty about features for that particular
sample. Importantly, this is fundamentally different from scaling the samples.
This point is often overlooked because when all samples share the same uncer-
tainty structure, the two approaches become equivalent. Unfortunately, when
each sample has its own multidimensional uncertainty scale, scaling samples
might completely change the geometry of the problem. We show how to avoid
this issue by rescaling the margins, rather than the data samples.

To take this information into account, we treat each sample i as if it is sur-
rounded by an ellipsoid centered at a location xi. The ellipsoid is parametrized by
a matrix zi = Si ∈ Rd×d

+ , and represents the set of points where a sample might
have been if there was no measurement noise. It can also be thought of as reflect-
ing a known noise covariance around a measurement. When that covariance
has independent features, Si is a positive diagonal matrix Si = diag(s1, ..., sd)
(s > 0, j = 1, . . . , d) that represents the uncertainty in each dimension of the
sample xi. In this case, linearly transforming the space using S−1

i makes the
uncertainty ellipsoid Si a symmetric sphere.

We first define an ellispoid loss for the binary classification case and later
extend it to the multiclass case:

loss(w;x, y) =

{
0 min

x̂∈XS
ywT x̂ > 0

1 − ywTx otherwise
(1)

where XS = {x̂ : ||x̂ − x||S−∞ ≤ ∞/||w||S} and ||x||2S = xTSTSx is the Maha-
lanobis norm corresponding to the matrix STS, hence minimization is over the
set of points x̂ that are ”inside”, or S-close to, the centroid x. Intuitively, the
conditions in the loss mean that if all points inside the ellipsoid are correctly
classified, no loss is incurred.

This definition extends the standard margin hinge loss. When S is the identity
matrix, we have min||x̂−x||≤1/||w|| ywT x̂ = min||u||≤1/||w|| ywT (x+u) = ywTx+
min||u||≤1/||w|| ywTu. The 2nd term is minimized when u = −w/||w||, yielding
ywTx − 1, hence the loss of Eq. (1) becomes equivalent to the standard margin
loss: loss(w;x, y) = 0 when ywTx > 1 and 1 − ywTx otherwise.

For the multiclass case, we have k weight vectors, corresponding to k classes,
together forming a matrix W ∈ Rd×k. We follow [5] and consider a weight vector
that is the difference between the positive class and the hardest negative class
Δw = wpos − wneg, and define a loss

lossEl(W ;x, y) =

{
0 min

x̂∈XS
ΔwT x̂ > 0

1 − ΔwTx otherwise.
(2)
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Algorithm 1.
1: inputs: A dataset {xi, yi, Si}N

i=1 of samples, labels and rich-supervision about
feature uncertainty; A constant C. xi ∈ Rd, yi from k classes.

2: initialize: Set W ← 0, a matrix of size d × k.
3: for each sample i ∈ [1 . . . N ] do
4: Set pos ← yi; index of the true label.
5: Set neg ← argmax

n�=pos
wT

nxi; index of hardest negative label.

6: Update wpos, wneg using Eq. (4)
7: end for

In the spherical case, where the per-sample uncertainty matrix is the identity
matrix Si = I, this loss also becomes equivalent to the standard hinge loss.

5 Ellipsotron

We now describe an online algorithm for learning with the loss of Eq. (2).
Since it is hard to tune hyper parameters when only few samples are avail-

able, we chose here to build on the passive-aggressive algorithm [PA, 5], which
is generally less sensitive to tuning the aggressiveness hyper parameter. Our
approach is also related to the Ballseptron [16]. The idea is to transform each
sample to a space where it is spherical, then apply standard PA steps in the
scaled space. The algorithm solves the following optimization problem for each
sample:

min
W

∥∥W − W t−1
∥∥2

S−1
i

+ C lossEl(W ;x, y). (3)

Similar to PA, it searches for a set of weights W that minimize the loss, while
keeping the weights close to the previous W t−1. As opposed to PA, the metric
it uses over W is through the S matrix of the current example. This reflects the
fact that similarity over W should take into account which features are more
relevant for the sample x.

Proposition: The solution to Eq. (3) is obtained by the following updates:

(wnew
pos )T ← wpos

T + ηS−1
i

T
S−1
i xi, (wnew

neg )T ← wneg
T − ηS−1

i

T
S−1
i xi. (4)

where η = lossEl

2||S−1
i xi||2+ 1

2C
. The proof is based on transforming each xi using

the matrix S−1
i , then applying a PA update step [5] for each sample in its

own transformed space. Specifically, we use wTxi = wTSiS
−1
i xi to rewrite the

loss for new variables vT = wTSi, ui = S−1
i xi, so wTxi = vTui. With this

transformation, the loss of Eq. (2) becomes equivalent to a standard PA loss
over v and ui. Taking a PA update step and transforming the variables back
completes the proof. The proof is provided in details in [20].
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6 Generalization Error Bound

We prove a generalization bound for learning linear classifiers from a hypothesis
family F for a set of n i.i.d. labeled samples (xi, yi). Each sample has its own
uncertainty matrix S−1

i . Let L be the empirical loss L̂ =
∑

i=1 loss(wTxi, yi),
and the true loss L = Ep(x,y)loss(wTxi, yi). The following relation holds:

Theorem: For a loss function that is upper bounded by a constant Ml and is
Lipschitz in its first argument, for the family of linear separators F = {w :∑

i ||w||S−1
i

≤ ∑
i ||w∗||S−1

i
}, and for any positive δ we have with probability

≥ 1 − δ and ∀f ∈ F :

L(f) ≤ L̂(f) + 2||w∗||2 max
xi∈X

√
||xi||S−1

i

√
2
n

+ Ml

√
1
2n

log(
1
δ
), (5)

where w∗ is the target classifier and the maximization is taken over the space
of samples, with each sample having its predefined corresponding uncertainty
matrix S−1

i .
The meaning of this theorem is as follows: Consider a case where some dimen-

sions of xi are more variable, for example if contaminated with noise that has
different variance across different features. Also assume that the uncertainty
matrix S−1

i matches the dimensions of xi such that higher-variance dimensions
correspond to smaller magnitude S−1

i entries. In this case, |xi|S−1 < |xi|2, hence
the theorem leads to a tighter generalization bound, reducing the sample com-
plexity. As a specific example, for a diagonal S−1

i with k non-zero values on
the diagonal, the effective dimension of the data is reduced from d to
k, even if these k values vary from one sample to another. This can
dramatically reduce sample complexity in practice, because very often, even if
a dataset occupies a high dimensional manifold, a handful of features are suffi-
cient for classifying each sample, and these features vary from one sample
to another.

Proof: The proof is based on the case of a single uncertainty matrix [13], and is
provided in [20].

7 Experiments

We evaluate the Ellipsotron using two benchmark datasets and compare its
performance with two baseline approaches. First, in a task of scene classification
using SUN [22], a dataset of visual scenes accompanied by list of present objects.
Second, in a task of recognizing fine-grained bird classes using CUB [21], a
dataset of bird images annotated with semantic attributes.
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7.1 Compared Methods

(1) Ellipsotron. Algorithm 1 above. We used a diagonal matrix S−1
i , obtain-

ing a value of 1 for relevant features and ε = 10−10 for irrelevant features.
(2) Lean supervision (LS). No rich supervision signal, linear online clas-
sifier with hinge loss trained using the standard passive-aggressive algorithm
[5] with all input features.
(3) Feature scaling (FS). Rescale each sample xi using its S−1

i , then train
with the passive-aggressive algorithm [5] with the standard hinge loss. For-
mally, the loss in this approach is lossFS = 0 when (wpos−wneg)TS−1

i xi > 1
and lossFS = 1 − (wpos − wneg)TS−1

i xi otherwise. The update steps are:
wpos ← wpos + ηS−1

i xi and, wneg ← wneg − S−1
i xi, with η = lossFS

2||S−1
i xi||2+ 1

2C
.

Comparing this loss with the Ellipsotron, Eq. (2), reveals two main differ-
ences. First, the margin criteria in the FS loss is w.r.t. to the scaled samples
S−1
i xi, while in the Ellipsotron loss the criteria is that the ellipsoid surrounding

xi would be correctly classified. Second, when a loss is suffered, the Ellipsotron
loss is w.r.t. the original sample xi while the FS loss is w.r.t. the scaled samples
S−1
i xi. In the case of “hard” focus, namely setting S−1

i to 1 for relevant features
and 0 for irrelevant features, this is equivalent to setting to zero the irrelevant
features during learning. In this case, weights corresponding to irrelevant features
are not updated when a sample is presented.

7.2 Visual Scene Classification

SUN [22] is a large-scale dataset for visual scene recognition. Each SUN image
is accompanied by human-annotated objects visible in the scene and marked
with free-text tags like “table” or “person” (for a total of 4,917 unique tags). We
removed suffixes and duplicates and fixed tag typos, yielding 271,737 annotations
over a vocabulary of 3,772 unique object tags. Typically, object tags appear more
than once in an image (the median object count over images is 2).

Representing Images with Textual Terms. Object tags in SUN used free-
form tags and were not restricted to a predefined vocabulary. To match them
with images we used an intermediate representation. Specifically, we used visual
concepts (VC), a vocabulary of 1000 terms inferred from images by [8]. The VC
network was originally trained on MS-COCO images and captions [12], yielding
a vocabulary that differs from SUN vocabulary of object tags, and we did a
simple mapping of stemmed SUN tags to VC concepts.

Importantly, the feature representation was never trained to predict the iden-
tity of a scene. In this sense, we perform a strong-transfer from one task (pre-
dicting MS-COCO terms) to a different task (scene classification) on a different
dataset (SUN). This differs from the more common transfer learning setup where
classifiers trained over a subset of classes are transferred to other classes in the
same task. Such a strong transfer is a hallmark of high-level abstraction that
people exhibit, and is typically hard to achieve.
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Rich Supervision. We used the objects detected for each image as rich super-
vision. The intuition is that any object marked as present in a scene can be
treated more confidently as being detected in any specific image. Importantly,
this rich supervision is weak, because the raters were not instructed to mark
objects that are discriminative or particularly relevant. Indeed, some objects
(“people”) commonly appear across many scenes.

The set of SUN objects was mapped to VC terms using string matching after
stemming. Objects without a matching VC term were removed. Overall 1631
SUN objects were matched to 531 VC terms. The rich-supervision is viewed as a
sample-based binary signal, indicating if an object is present in an image sample.
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Fig. 1. SUN dataset. Mean over 5 random-seed data splits. Left: Percent test error
as a function of training samples observed. 100 classes. Right: Percent test error vs
number of samples per class. Analyzed classes with 40 to 100 samples (41 classes).
Error bars denote the standard error deviation.

Evaluation. For each scene we used 50% of samples for testing and the rest for
training. Accuracy was stable for a wide range of the complexity parameter C
in early experiments, so we used C = 1. Weights were initialized to zero.

Results. We first tested Ellipsotron and baselines in a standard online setup
where samples are drawn uniformly at random from the training set. Here we
used classes that had at least 20 samples and at most 100 samples, yielding
100 classes. Figure 1 (left) shows the accuracy as a function of the number of
samples (and updates) for SUN data, showing that Ellipsotron outperforms the
two baselines when the number of samples is small.

SUN classes differ by their number of samples, so averaging across classes
unfairly mixes heavy-sampled and poorly-sampled classes. For a more controlled
analysis, Fig. 1 (right) shows the accuracy as a function of the number of samples
per class. Ellipsotron is consistently more accurate than baselines for all training-
set sizes tested, with a larger gap for smaller training sets. Results were not
sensitive to the number of scenes, details in [20].
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7.3 Bird Species Classification

We further tested Ellipsotron using CUB [21] - a dataset with 11K images of 200
bird species, accompanied by 312 predefined attributes like “head is red” and
“bill is short”. Attribute annotations were made by non-experts and are often
missing or incorrect. We used the attributes as a source of rich supervision for
training a bird classifier, on top of a set of attribute predictors. At test time, the
classifier maps images to bird classes without the need to specify attributes.

Mapping Pixels to Attributes. We used 150 species to learn a map from
pixels to attributes, yielding a representation that interacts with the rich super-
vision. The remaining 50 classes (2933 images) were used for evaluation.

Each image is represented using a predefined set of 312 attributes, predicted
using a trained attribute detector, based on a resNet50 [11] trained on Ima-
geNet. We replaced its last, fully-connected, layer with a new fully-connected
layer having sigmoid activation. The new layer was trained with a multilabel
binary cross-entropy loss, keeping the weights of lower layers fixed. We used 100
bird species drawn randomly to train the attribute predictors, and 50 classes
for validation to tune early stopping and hyper parameters. Final models were
retrained on all 150 (training and validation) classes with best hyper parameters

Fig. 2. Percent error on CUB data.
Test error for 50 classes as a function
of the number of training samples. Error
bars denote the standard error of the
mean over 5 repetitions.

Rich Supervision. We use attribute
annotations as a signal about confi-
dence, because when a rater notes an
attribute, it can be treated with more
confidence if detected in the image.
In practice, attribute annotations vary
across same-class images. This happens
due to variance in appearance across
images in view point and color, or due
to different interpretations by different
raters.

Experimental Setup. We randomly
selected 25 samples of each class for
training, and the rest was used as
a fixed test set making evaluation
more stable. Hyper-parameters were
set based on the experiments above
with SUN data, setting the aggressive-
ness at c = 1.

Results. Figure 2 depicts percent error as a function of the number of training
samples on CUB. Ellipsotron consistently improves over lean supervision and
feature scaling. With 10 samples, the accuracy over both baselines improves by
44% (from 18% to 26%).
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8 Summary

We presented an online learning approach where labeled samples are also accom-
panied with rich-supervision. Rich-supervision entails knowledge a teacher has
about class features or image features, which in our setup is given in the form
of feature uncertainty. The crux of our online approach is to define a sample-
dependent margin for each sample, whose multidimensional shape is based on the
given information about the uncertainty of features for that particular sample.
Experiments on two fine-grained classification benchmarks of real-world complex
images demonstrate the benefits of the approach.
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