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1 Introduction

One of the most useful methods for the localization of positive solutions to nonlinear
boundary value problems and to prove the existence of multiple positive solutions is
Krasnoselskii’s cone fixed point theorem [4–6]. There are known several versions of
this result that we present shortly.

Let X be a Banach space, K ⊂ X a cone and r, R two numbers with 0 < r < R.

Denote
Kr = {u ∈ K : ‖u‖ ≤ r} , ∂Kr = {u ∈ K : ‖u‖ = r} ,

and consider the conical shell

KrR = {u ∈ K : r ≤ ‖u‖ ≤ R} .

Let N : KrR → K be a continuous and compact mapping and consider the fixed
point equation
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u = N (u) , u ∈ KrR .

The original Krasnoselskii’s cone fixed point theorem makes use of the strict order
relation < in X, with u < v if v − u ∈ K \ {0} :
Theorem 1 (Order version) The mapping N has a fixed point in Kr R if it satisfies
one of the following conditions:

(a) N (u) ≮ u for u ∈ ∂Kr and N (u) ≯ u for u ∈ ∂KR (compression
condition);

(b) N (u) ≯ u for u ∈ ∂Kr and N (u) ≮ u for u ∈ ∂KR (expansion condition).

Some other versions are the following ones:

Theorem 2 (Norm version) The mapping N has a fixed point in Kr R if it satisfies
one of the following conditions:

(a) ‖N (u)‖ > ‖u‖ for u ∈ ∂Kr and ‖N (u)‖ < ‖u‖ for u ∈ ∂KR (compres-
sion condition);

(b) ‖N (u)‖ < ‖u‖ for u ∈ ∂Kr and ‖N (u)‖ > ‖u‖ for u ∈ ∂KR (expansion
condition).

Theorem 3 (Homotopy version) The mapping N has a fixed point in Kr R if it sat-
isfies one of the following conditions:

(a) N (u) �= μu for u ∈ ∂Kr , μ < 1, N (u) �= μu for u ∈ ∂KR, μ > 1 and
infu∈∂Kr ‖N (u)‖ > 0 (compression condition);

(b) N (u) �= μu for u ∈ ∂Kr , μ > 1, N (u) �= μu for u ∈ ∂KR, μ < 1 and
infu∈KR ‖N (u)‖ > 0 (expansion condition).

In many cases, the fixed point equation has a variational structure in the sense
that it is equivalent to the problem of finding critical points of a certain functional
F : X →R , that is to the equation

F ′ (u) = 0, u ∈ KrR . (1)

This clearly happens if X is a Hilbert space identified to its dual and

N (u) = u − F ′ (u) ,

when the critical points of F coincide with the fixed points of N .

A simple example is given by the following two-points boundary value problem
for Newton’s second law of motion,

mu′′ + f (t, u) = 0, t ∈ [0, T ] (2)

u (0) = u (T ) = 0.
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This can be expressed as a fixed point problem for the integral operator
N : C [0, T ] → C [0, T ] ,

N (u) (t) =
∫ T

0
G (t, s) f (s, u (s)) ds,

where G is the Green’s function of the differential operator −mu′′ under the condi-
tions u (0) = u (T ) = 0, and also as a critical point problem related to the functional
F : H 1

0 (0, T ) → R,

F (u) =
∫ T

0

(m
2
u′ (t)2 − g (t, u (t))

)
dt where g (t, u) =

∫ u

0
f (t, y) dy,

for which (1) holds. Physically, F (u) is the total energy (kinetic + potential), and
the kinetic energy (energy of motion) (m/2)

∫ T
0 u′ (t)2 dt introduces the so called

“energetic” norm in the function space H 1
0 (0, T ) ,

‖u‖ =
(∫ T

0
u′ (t)2 dt

)1/2

.

Thus, a localization of a solution/state u in terms of the energetic norm automatically
gives bounds of the kinetic energy.

Compared to the fixed point approach, the variational methods have as benefice,
the use of the energy functional allowing to obtain characterizations of solutions as
extrema or saddle points. In addition, some specific techniques such as Ekeland’s
variational principle and deformation lemmas [17] are available. In this paperwe only
deal with the direct variational method which exclusively uses Ekeland’s variational
principle [18].

Lemma 1 (Ekeland’s principle—strong form) Let D be a complete metric space
withmetric d, and let F : D → R be lower semicontinuous and bounded from below.
Then for any ε, δ > 0, and any w ∈ D with

F (w) ≤ inf
D

F + ε,

there is an element u ∈ D such that

F (u) ≤ F (w) , d (w, u) ≤ δ

and
F (u) ≤ F (v) + ε

δ
d (u, v) for all v ∈ D.

As a consequence, one has the following weak form of Ekeland’s variational
principle:
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Lemma 2 (Ekeland’s principle—weak form) Let D be a complete metric space with
metric d,and let F : D → Rbe lower semicontinuous andbounded frombelow.Then
for each ε > 0, there is u ∈ D such that

F (u) ≤ inf
D

F + ε

and
F (u) ≤ F (v) + εd (u, v) for all v ∈ D.

2 Variational Analogue of the Compression Krasnoselskii’s
Cone Fixed Point Theorem

In what follows, for simplicity, we only consider the case where X is a Hilbert space,
with inner product 〈·, ·〉 and norm ‖·‖ , and we identify X to its dual.

Theorem 4 Let F ∈ C1 (X) be bounded from bellow on KrR, I − F ′ be continuous
and compact on KrR, and let the positivity condition

(
I − F ′) (KrR) ⊂ K (3)

be satisfied. If

F ′ (u) + λu �= 0 for all u ∈ ∂KR, λ > 0, (4)

F ′ (u) + λu �= 0 for all u ∈ ∂Kr , λ < 0,

and
inf

u∈∂Kr

∥∥(
I − F ′) (u)

∥∥ > 0, (5)

then there exists u ∈ KrR such that

F (u) = inf
KrR

F and F ′ (u) = 0.

Proof Step 1: Applying Ekeland’s variational principle—weak form to F, on KrR,

with ε = 1/n, gives un ∈ KrR such that

F (un) ≤ inf
KrR

F + 1

n
, (6)

F (un) ≤ F (v) + 1

n
‖un − v‖ for all v ∈ KrR . (7)
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Obviously, from (6), (un) is a minimizing sequence for F on KrR, i.e., F (un) →
infKrR F as n → ∞. Next using (7) we shall estimate F ′ (un) . To this aim we
approach un making suitable choices of v in KrR . The choices of v in (7) depend on
the location in the conical shell of each element un. The following cases are possible:

(a) r < ‖un‖ < R; or ‖un‖ = R and
〈
F ′ (un) , un

〉
> 0; or ‖un‖ = r and〈

F ′ (un) , un
〉
< 0;

(b) ‖un‖ = R and
〈
F ′ (un) , un

〉 ≤ 0;
(c) ‖un‖ = r and

〈
F ′ (un) , un

〉 ≥ 0.

Case (a): If un is in case (a) then we may choose v of the form

v = un − t F ′ (un) ,

with t > 0 sufficiently small. Indeed, for t ∈ (0, 1) , one has

v = (1 − t) un + t
(
un − F ′ (un)

)
,

which, due to the positivity condition (3), belongs to K . In case that r < ‖un‖ < R,

we also have v ∈ KrR for small enough t. If ‖un‖ = R and
〈
F ′ (un) , un

〉
> 0, then

from

‖v‖2 = ‖un‖2 + t2
∥∥F ′ (un)

∥∥2 − 2t
〈
F ′ (un) , un

〉
= t2

∥∥F ′ (un)
∥∥2 − 2t

〈
F ′ (un) , un

〉 + R2,

we derive that ‖v‖ ≤ R for 0 < t ≤ 2
〈
F ′ (un) , un

〉
/
∥∥F ′ (un)

∥∥2
.Hence v ∈ KrR for

every sufficiently small t > 0. The same happens if ‖un‖ = r and
〈
F ′ (un) , un

〉
< 0.

Replacing v in (7) gives

F
(
un − t F ′ (un)

) − F (un) ≥ − t

n

∥∥F ′ (un)
∥∥ .

From the definition of the Fréchet derivative one has

F
(
un − t F ′ (un)

) − F (un) = 〈
F ′ (un) , −t F ′ (un)

〉 + o (t) .

Then 〈
F ′ (un) , −t F ′ (un)

〉 + o (t) ≥ − t

n

∥∥F ′ (un)
∥∥ ,

and dividing by t and letting t → 0 gives

∥∥F ′ (un)
∥∥2 ≤ 1

n

∥∥F ′ (un)
∥∥ ,
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or ∥∥F ′ (un)
∥∥ ≤ 1

n
. (8)

Case (b): Let ε > 0 and let

v = un − t
(
F ′ (un) + λnun + εun

)
,

where t > 0 and
λn = − 〈

F ′ (un) , un
〉
/R2 ≥ 0.

From v = (1 − t − tλn − tε) un + t
(
un − F ′ (un)

)
we see that v ∈ K for small

t > 0, while from

〈
F ′ (un) + λnun + εun, un

〉 = εR2 > 0

and
‖v‖2 = t2

∥∥F ′ (un) + λnun + εun
∥∥2 − 2tεR2 + R2,

we have ‖v‖ ≤ R, and finally that v ∈ KrR for small enough t > 0. Replacing v in
(7) and proceeding as above we find

〈
F ′ (un) , F ′ (un) + λnun + εun

〉 ≤ 1

n

∥∥F ′ (un) + λnun + εun
∥∥ .

Letting ε → 0 yields

〈
F ′ (un) , F ′ (un) + λnun

〉 ≤ 1

n

∥∥F ′ (un) + λnun
∥∥ ,

and since
〈
F ′ (un) + λnun, un

〉 = 0,

∥∥F ′ (un) + λnun
∥∥ ≤ 1

n
. (9)

Case (c) is analogous and leads to the same inequality (9), where now λn ≤ 0.
Step 2: Passing if necessary to a subsequence, we may assume without lost of

generality that all the terms of the minimizing sequence (un) are either in case (a),
or in case (b), or in case (c). Then in view of (8) and (9), the minimizing sequence is
in one of the following situations:

(a) F ′ (un) → 0;
(b) F ′ (un) + λnun → 0,where ‖un‖ = R and λn = − 〈

F ′ (un) , un
〉
/R2 ≥ 0 for

all n;
(c) F ′ (un) + λnun → 0, where ‖un‖ = r and λn = − 〈

F ′ (un) , un
〉
/r2 ≤ 0 for

all n.
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Step 3: Since un and F ′ (un) = un − N (un) are bounded sequences, we may
assume (passing if necessary again to a subsequence) that (λn) converges to some
λ, where λ ≥ 0 in case (b), and λ ≤ 0 in case (c). Also, using the compactness of
N , the above convergences lead to a convergent subsequence un → u. We show
this for the cases (b) and (c). To this aim we denote vn = F ′ (un) + λnun. Then
(1 + λn) un = vn + N (un) and since vn → 0 and N is compact, the sequence

vn + N (un) is compact. If 1 + λ �= 0, this clearly implies the compactness of the
sequence un. The situation 1 + λ = 0 is only possible in case (c), but is excluded
by hypothesis (5).

Finally, passing to limit we obtain one of the following situations:

(a) F ′ (u) = 0;
(b) F ′ (u) + λu = 0, where ‖u‖ = R and λ ≥ 0;
(c) F ′ (u) + λu = 0, where ‖u‖ = r and λ ≤ 0.

The cases λ > 0 in (b) and λ < 0 in (c) being excluded by the compression
boundary conditions (4), it remains that in all cases F ′ (u) = 0, which finishes the
proof. �

3 Variational Analogue of the Expansion Krasnoselskii’s
Cone Fixed Point Theorem

In this section, we give a variational analogue of Krasnoselskii’s fixed point theorem
of expansion.Recall that for provingKrasnoselskii’s fixedpoint theoremof expansion
it suffices to pass from the operator N satisfying the expansion conditions, to the
operator Ñ : KrR → K ,

Ñ (u) = 1

θ (u)
N (θ (u) u) ,

where

θ (u) = R + r

‖u‖ − 1.

It is easy to check that θ (u) u ∈ KrR for every u ∈ KrR, ‖θ (u) u‖ = r if ‖u‖ = R,

‖θ (u) u‖ = R if ‖u‖ = r, and that for Ñ the compression conditions hold. We
shall use the same idea in order to prove the variational analogue of the expansion
fixed point result. More exactly, we shall pass from the functional F, assumed to be
bounded from above on KrR, to the functional

H (u) = −F (θ (u) u) , u ∈ X \ {0} ,

bounded from below on KrR . We shall need the following result about the Fréchet
derivative of the new functional.
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Lemma 3 One has H ∈ C1 (X \ {0}) and

H ′ (u) = F ′ (θ (u) u) + A (u) ,

where

A (u) = R + r

‖u‖

[〈
F ′ (θ (u) u) , u

〉
‖u‖2 u − F ′ (θ (u) u)

]
.

Proof We first compute the derivative of the mapping u/ ‖u‖ in direction v. By
definition,

〈(
u

‖u‖
)′

, v

〉
= lim

t→0+
1

t

(
u + tv

‖u + tv‖ − u

‖u‖
)

= 1

‖u‖2 lim
t→0+

1

t
(‖u‖ (u + tv) − ‖u + tv‖ u)

= 1

‖u‖2 lim
t→0+

1

t
(‖u‖ − ‖u + tv‖) u + v

‖u‖ .

Furthermore

lim
t→0+

1

t
(‖u‖ − ‖u + tv‖) u = lim

t→0+
1

t

‖u‖2 − ‖u + tv‖2
‖u‖ + ‖u + tv‖ u = −〈u, v〉

‖u‖ u.

Hence 〈(
u

‖u‖
)′

, v

〉
= −〈u, v〉

‖u‖3 u + v

‖u‖ .

Next,

〈
(θ (u) u)′ , v

〉 = (R + r)

[
−〈u, v〉

‖u‖3 u + v

‖u‖
]

− v

= θ (u) v − R + r

‖u‖3 〈u, v〉 u.

Finally, using the formula for computing the derivative of the composition of two
mappings, we obtain

〈
H ′ (u) , v

〉 = − 〈
F ′ (θ (u) u) ,

〈
(θ (u) u)′ , v

〉〉

= −
〈
F ′ (θ (u) u) , θ (u) v − R + r

‖u‖3 〈u, v〉 u
〉
.
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Therefore

H ′ (u) = −θ (u) F ′ (θ (u) u) + R + r

‖u‖3
〈
F ′ (θ (u) u) , u

〉
u

= F ′ (θ (u) u) + R + r

‖u‖

[〈
F ′ (θ (u) u) , u

〉
‖u‖2 u − F ′ (θ (u) u)

]
,

as claimed. �

Theorem 5 Let F ∈ C1 (X) be bounded from above on KrR, I − F ′ be compact on
KrR, the positivity condition

(
I − F ′) (KrR) ⊂ K

be satisfied, and assume in addition that for every two sequences un and vn in Kr R,

un − vn → 0 implies (via subsequences) N (un) − N (vn) → 0. (10)

If

F ′ (u) + λu �= 0 for all u ∈ ∂KR, λ < 0, (11)

F ′ (u) + λu �= 0 for all u ∈ ∂Kr , λ > 0,

and
inf

u∈∂KR

∥∥(
I − F ′) (u)

∥∥ > 0,

then there exists u ∈ KrR such that

F (u) = sup
KrR

F and F ′ (u) = 0.

Proof Notice a useful property of A, namely

〈A (u) , u〉 = 0 for every u ∈ X \ {0} .

Let us fix a minimizing sequence (vn) of H in KrR, with

H (vn) ≤ inf
KrR

H + 1

n2
.

For each n ≥ 1, consider the functional

Gn (u) = H (u) − 〈A (vn) , u〉 , u ∈ X \ {0} .
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One has

G ′
n (u) = H ′ (u) − A (vn) = F ′ (θ (u) u) + A (u) − A (vn) , u ∈ X \ {0} .

Now apply Ekeland’s variational principle—strong form to Gn on KrR, with the
given point vn and for ε = n−2, δ = n−1. Hence, there exists un ∈ KrR such that

‖un − vn‖ ≤ δ = 1

n
,

Gn (un) ≤ Gn (vn) = H (vn) ≤ inf
KrR

H + 1

n2
,

Gn (un) ≤ Gn (v) + ε

δ
‖un − v‖ (12)

= Gn (v) + 1

n
‖un − v‖ for all v ∈ KrR .

First we show that, passing if necessary to a subsequence, we may assume that

A (un) − A (vn) → 0 as n → ∞. (13)

Indeed, since un and vn are bounded and N is compact on KrR, passing to a subse-
quence we have that

‖un‖ → l1, ‖vn‖ → l2, N (θ (un) un) → w1, N (θ (vn) vn) → w2.

From |‖un‖ − ‖vn‖| ≤ ‖un − vn‖ ≤ 1/n,wefind that l1 = l2 =: l.Then θ (un) un −
θ (vn) vn → 0, and from (10), we deduce that w1 = w2 =: w. It remains to prove
that αn → 0, where

αn : =
〈
F ′ (θ (un) un) , un

〉
‖un‖2

un − F ′ (θ (un) un)

−
〈
F ′ (θ (vn) vn) , vn

〉
‖vn‖2

vn + F ′ (θ (vn) vn) .

One has

αn = N (θ (un) un) − N (θ (vn) vn) − 〈N (θ (un) un) , un〉
‖un‖2

un + 〈N (θ (vn) vn) , vn〉
‖vn‖2

vn

and since N (θ (un) un) − N (θ (vn) vn) → 0, it remains to show that
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βn := 〈N (θ (un) un) , un〉
‖un‖2

un − 〈N (θ (vn) vn) , vn〉
‖vn‖2

vn → 0.

This, via

βn = 〈N (θ (un) un) , un〉
‖un‖2 (un − vn)

+
[ 〈N (θ (un) un) , un〉

‖un‖2
− 〈N (θ (vn) vn) , vn〉

‖vn‖2
]

vn

reduces to 〈N (θ (un) un) , un〉
‖un‖2

− 〈N (θ (vn) vn) , vn〉
‖vn‖2

→ 0.

But this immediately follows if again we pass to a subsequence in order to assume
the weak convergence un ⇀ u, vn ⇀ u. Thus (13) is proved.

Next, as in the proof of Theorem 4, we discuss several cases depending on the
location of each element of the minimizing sequence un.

(a) In each one of the cases: r < ‖un‖ < R; ‖un‖ = R and
〈
F ′ (θ (un) un) , un

〉
> 0; ‖un‖ = r and

〈
F ′ (θ (un) un) , un

〉
< 0, we may apply (12) to the element

v = un − t F ′ (θ (un) un)

which belongs to KrR for all sufficiently small t > 0. Replacing into (12), dividing
by t and then letting t go to zero it yields

〈
G ′

n (un) , F ′ (θ (un) un)
〉 ≤ 1

n

∥∥F ′ (θn (un) un)
∥∥ ,

or equivalently

∥∥F ′ (θn (un) un)
∥∥2 + 〈

A (un) − A (vn) , F ′ (θ (un) un)
〉 ≤ 1

n

∥∥F ′ (θn (un) un)
∥∥ .

This implies ∥∥F ′ (θn (un) un)
∥∥ ≤ 1

n
+ ‖A (un) − A (vn)‖ . (14)

(b) Assume that ‖un‖ = R and
〈
F ′ (θ (un) un) , un

〉 ≤ 0. Then we choose

v = un − t
(
F ′ (θ (un) un) + λnun + εun

)
,

where ε > 0 and λn = − 〈
F ′ (θ (un) un) , un

〉
/R2 ≥ 0. We deduce

∥∥F ′ (θ (un) un) + λnun
∥∥ ≤ 1

n
+ ‖A (un) − A (vn)‖ . (15)
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(c) Similarly, if ‖un‖ = r and
〈
F ′ (θ (un) un) , un

〉 ≥ 0, we derive inequality (15),
where this time λn ≤ 0.

If there is a subsequence of un whose elements are all in case (a), then from (14)
and (13) we have

F ′ (θ (un) un) → 0.

If there is a subsequence whose elements are all in case (b), or all in case (c), then

F ′ (θ (un) un) + λnun → 0.

As in the proof of Theorem4wemay assume that un → u for some u ∈ KrR .Then
vn → u, and passing to the limit we obtain: F ′ (θ (u) u) = 0; or F ′ (θ (u) u) + λu =
0 with ‖u‖ = R and λ ≥ 0; or F ′ (θ (u) u) + λu = 0 with ‖u‖ = r and λ ≤ 0.
Denote u = θ (u) u. Then

F ′ (u) = 0; or

F ′ (u) + μu = 0 with ‖u‖ = r and μ = λR/r ≥ 0; or

F ′ (u) + μu = 0 with ‖u‖ = R and μ = λr/R ≤ 0.

The case μ �= 0 being excluded by the expansion conditions (11), it remains that in
any case, F ′ (u) = 0.

Finally, from

H (un) = Gn (un) + 〈A (vn) , un〉 ≤ inf
KrR

H + 1

n2
+ 〈A (vn) , un〉 ,

and 〈Avn), un〉 → 〈A (u) , u〉 = 0, we have H (u) = infKrR H, that is F (u) =
supKrR

F. �

Remark 1 Most of the assumptions of Theorems 4 and 5 may be expressed in terms
of operator N , as in Theorem 3. There is however an additional hypothesis of
Theorems 4 and 5, namely the representation of the operator N under the form
N = I − F ′, with some functional F bounded from below or from above on KrR .

As a result, we have a stronger conclusion: the existence of a fixed point of N which
is an extremum point of the functional F.

4 A General Scheme of Application to Semilinear
Equations

Krasnoselskii’s cone fixed point theorem have been applied to numerous classes of
boundary value problems. Also, in the last years, there have been given applications
of critical point results in conical shells [1–3, 7, 11–13]. Thus, a natural question
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is which are the essential proprieties that allow applicability of this technique. We
now present a general scheme of applicability of the variational analogue of Kras-
noselskii’s theorem, by which we give an answer to that question. To this aim, we
use Mikhlin’s variational theory for positive symmetric linear operators [8].

Consider a semilinear equation of the form

Lu = J ′ (u) , (16)

where L : D (L) ⊂ H → H is a positive symmetric densely defined linear operator
in the Hilbert space H with inner product (·, ·) and norm |·|, while the nonlinear term
is the Fréchet derivative of a C1 functional J : H → R.

Recall that the operator L is said to be symmetric if (Lu, v) = (u, Lv) for every
u, v ∈ D(L), and positive if there exists a constant c > 0 such that

(Lu, u) ≥ c2 |u|2 for every u ∈ D (L) .

For such a linear operator, we endow the dense linear subspace D(L) of H with the
bilinear functional

〈u, v〉 := (Lu, v) (u, v ∈ D (L)) .

The completion of (D (L) , 〈·, ·〉) is denoted by X and is called the energetic space
of L . By the construction, D(L) ⊂ X ⊂ H with dense inclusions. We use the same
symbol 〈·, ·〉 to denote the extended inner product on X . The corresponding norm
‖u‖ = √〈u, u〉 is called the energetic norm associated to L . If u ∈ D(L), then in
view of the positivity of L , one has the Poincaré inequality

|u| ≤ c−1 ‖u‖ for every u ∈ D(L).

By density the above inequality extends to the whole X. Let X ′ be the dual space of
X. If we identify the dual H ′ with H, via Riesz’s representation theorem, then from
X ⊂ H, we have H ⊂ X ′. We attach to the operator L the following problem

Lu = f, u ∈ X, (17)

where f ∈ X ′. By a weak solution of the problem we mean an element u ∈ X with

〈u, v〉 = ( f, v) for every v ∈ X,

where the notation ( f, v) stands for the value of the functional f on the element
v. In case that f ∈ H, then ( f, v) is the inner product in H of f and v.Notice that,
if the weak solution u belongs to D(L), then it is a classical solution of the problem.
Using Riesz’s representation theorem and the Poincaré inequality one has that for
every f ∈ X ′ there exists a unique weak solution u ∈ X of the problem (17). Thus
we may speak about the inverse of L , as the operator L−1 : X ′ → X attaching to
each f ∈ X ′, the unique weak solution u ∈ X of the corresponding Eq. (17). Thus,
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〈
L−1 f, v

〉 = ( f, v) for all v ∈ X.

Note that the operator L−1 is an isometry between X ′ and X.

We look for weak solutions of (16), namely, for u ∈ X such that

〈u, v〉 = (
J ′ (u) , v

)
for all v ∈ X,

that is for solutions of the fixed point equation

u = L−1 J ′ (u) , u ∈ X.

We associate to the Eq. (16) the energy functional

F : X → R, F (u) = 1

2
‖u‖2 − J (u) .

One can check that F ∈ C1 (X) ,

F ′ (u) = Lu − J ′ (u) (u ∈ X) ,

and, if we identify X ′ to X via L−1, one has

F ′ = I − N , where N = L−1 J ′.

Our first hypothesis is a compactness condition:

(H1) The embedding X ⊂ H is compact.

Next we consider a cone K0 in H, the partial order relation ≤ in H induced
by K0, and we assume that

(u, v) ≥ 0 for every u, v ∈ K0,

or equivalently, that the norm of H is monotone. In addition assume that

(H2) J is bounded on every bounded subset of H ; J ′ is positive and increasing
on H with respect to the order, i.e.,

0 ≤ u ≤ v implies 0 ≤ J ′ (u) ≤ J ′ (v) .

Also consider a cone K1 in H with

L−1 (K0) ⊂ K1 ⊂ K0 (18)

and assume that the following conditions are satisfied:

(H3) J ′ (K1 ∩ X) ⊂ K1, and there existsϕ ∈ K0 \ {0} such that for everyu ∈ K1,
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∥∥L−1u
∥∥ϕ ≤ L−1u (Harnack type inequality);

(H4) There is an element ψ ∈ K0 \ {0} such that for every u ∈ K1 ∩ X,

u ≤ ‖u‖ ψ.

Now, define a subcone of K1 ∩ X,

K := {u ∈ K1 ∩ X : ‖u‖ ϕ ≤ u} .

Note that the cone K does not reduce to the origin. To show this, let σ be any element
of K1 \ {0} . For example, such an element is L−1(ϕ). Then L−1σ �= 0, and using
(18) and (H3), L−1σ ∈ K1 ∩ X, and

∥∥L−1σ
∥∥ϕ ≤ L−1σ, that is L−1σ ∈ K \ {0} .

Theorem 6 Assume that (H1)–(H4) hold. If for two positive numbers α and β
with α �= β, the following conditions are satisfied

(
J ′ (αψ) ,ψ

) ≤ α, (19)

β ≤ (
J ′ (βϕ) ,ϕ

)
,

then Eq. (16) has a weak solution u ∈ KrR, an extremum point of F in Kr R, where
r = min {α,β} and R = max {α,β} .

Proof We shall apply Theorem 4 in case that β < α, and Theorem 5 if α < β.

First note that N maps K into K . Indeed, if u ∈ K , then u ∈ K1 ∩ X and
by (H3), J ′ (u) ∈ K1 and

∥∥L−1 J ′ (u)
∥∥ϕ ≤ L−1 J ′ (u) , which means that N (u) =

L−1 J ′ (u) ∈ K .

Clearly the operator N is continuous. Furthermore, KrR being bounded in X, it is
relatively compact in H by (H1), and the continuity of J ′ from H to H guarantees
that J ′ (KrR) is relatively compact in H. Then N (KrR) = L−1 J ′ (KrR) is relatively
compact in X. Hence N is continuous and compact from KrR to K . Also, the addi-
tional compactness condition (10) is satisfied as a consequence of (H1). Indeed,
if

un, vn ∈ KrR and un − vn → 0 in X,

then in view of (H1), passing if necessary to subsequences, we may assume that un
and vn converge in H to some element u. Then J ′ (un) , J ′ (vn) converge in H to
J ′ (u) , and next N (un) , N (vn) converge in X to N (u) . Consequently,

N (un) − N (vn) → 0 in X,

which proves (10).
The functional J being bounded on the bounded set KR, one has that F is bounded

from above and from below on KrR .
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Next we check the boundary conditions. Let u ∈ ∂Kα, λ > 0, and assume that
F ′ (u) + λu = 0.Then N (u) = (1 + λ) u. From (H4), 0 ≤ u ≤ αψ, and themono-
tonicity of J ′ yields to 0 ≤ J ′ (u) ≤ J ′ (αψ) . Then

α2 < (1 + λ)α2 = (1 + λ) ‖u‖2 = 〈N (u) , u〉
= 〈

L−1 J ′ (u) , u
〉 = (

J ′ (u) , u
) ≤ (

J ′ (αψ) ,αψ
)

= α
(
J ′ (αψ) ,ψ

)
.

Hence α <
(
J ′ (αψ) ,ψ

)
, which is in contradiction with (19). Next, assume that

u ∈ ∂Kβ, λ < 0, and F ′ (u) + λu = 0, that is N (u) = (1 + λ) u. Since both u and
N (u) are in K0, this equality is possible only if 1 + λ ≥ 0. Hence 0 ≤ 1 + λ < 1.
Consequently,

β2 > (1 + λ)β2 = (
J ′ (u) , u

)
,

and since u ≥ ‖u‖ϕ = βϕ gives J ′ (u) ≥ J ′ (βϕ) ≥ 0, and the norm in H is mono-
tone, (

J ′ (u) , u
) ≥ (

J ′ (βϕ) ,βϕ
)
.

Hence we derive β >
(
J ′ (βϕ) ,ϕ

)
, contrary to our hypothesis.

It remains to show that infu∈∂Kβ
‖N (u)‖ > 0. Assume the contrary. Then there

is a sequence un ∈ ∂Kβ with N (un) → 0 in X and also in H. From un ≥
βϕ ≥ 0, we obtain that N (un) ≥ N (βϕ) ≥ 0. Passing to limit as n → ∞ yields
N (βϕ) = 0, whence J ′ (βϕ) = 0 which makes impossible the second inequality
in (19). �

Remark 2 The inequality L−1 (K0) ⊂ K0 can be seen as a weak maximum princi-
ple, while by the use of a second cone K1, the Harnack inequality is not required
on the whole cone K0, but only on its subcone K1. This is useful in applications
as shown by the following Example 2.

Example 1 In the simple case of problem (2), for m = 1, we have H = L2 (0, 1) ,

X = H 1
0 (0, 1) with inner product 〈u, v〉 = ∫ 1

0 u′v′, K0 = K1 is the cone of positive
functions in L2 (0, 1) ,

ψ = 1 and ϕ = ηχ[a,b],

where η = min {a, 1 − b} , 0 < a < b < 1 and χ[a,b] is the characteristic function
of the interval [a, b] . Here J ′ (u) (t) = f (t, u (t)) , where f ≥ 0 on [0, 1] × R+
and f is increasing in the second variable on R+. Then, condition (19) reduces to

∫ 1

0
f (t,α) dt ≤ α,

β ≤ η

∫ b

a
f (t, ηβ) dt.
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For more general examples wemay consider semilinear boundary value problems
with a linear part of the form

Lu =
m∑

k=0

(−1)k
dk

dtk

[
pk (t)

dku

dtk

]
+ q (t) u.

Such an example is considered in the paper [3]:

Example 2 Consider the boundary value problem

{
u(4)(t) = f (t, u(t)), 0 < t < 1
u(0) = u′(0) = u′′(1) = u′′′(1) = 0.

Here H = L2(0, 1), Lu = d4/dt4, X = {
u ∈ H 2(0, 1) : u(0) = u′(0) = 0

}
,

〈u, v〉 =
∫ 1

0
u′′v′′dt, J (u) =

∫ 1

0

∫ u(t)

0
f (t, s)dsdt, J ′(u) = f (·, u),

K0 = {
u ∈ L2(0, 1) : u ≥ 0

}
, K1 = {u ∈ K0 : u - nondecreasing} ,

ψ = 2

3
t
3
2 , ϕ =

√
2

6
(1 − t) t3 (see [3]).

Assuming that f is nonnegative and nondecreasing in each of its variables on
[0, 1] × R+, inequalities (19) reduce to

∫ 1

0
ψ (t) f (t,ψ (t)α) dt ≤ α,

β ≤
∫ 1

0
ϕ (t) f (t,ϕ (t)β) dt.

The application of the general scheme to concrete classes of boundary value
problems mainly depends on the possibility to obtain a Harnack type inequality
in terms of the energetic norm, as required by the abstract condition (H3). In many
cases, including elliptic boundary value problems, Harnack type inequalities are only
known with respect to a norm different from the energetic one. This was the reason
in [9] to consider conical shells defined by two norms. Even more general, for the
definition of conical shells, one may consider functionals which are not norms any
more, like in [14]. Of course, in such situations, the conditions required on the shell
boundary have to be adapted accordingly.

Finally, we mention that analogous results in conical shells, of mountain pass
type, can be found in [9, 10]. For some extensions to Banach spaces and related
topics we refer the reader to the papers [7, 15, 16].
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