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Abstract. Due to the increasing demands for modeling large-scale and
complex systems, designing optimal controls, and conducting optimiza-
tion tasks, many real-world applications require sophisticated models.
Geometric methods are designed to capture the underlying structure of
the system at hand and to preserve the global qualitative or geomet-
ric properties of the flow, such as symplecticity, volume preservation
and symmetry. A survey on three of such structure preserving numerical
methods is proposed in the present article. Testing the validity of such
simulations is achieved by exhibiting analytically solvable models and
comparing the result of simulations with their exact behavior.
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1 Introduction

It is today well established that geometrical methods connected to powerful
numerical tools (i.e. Runge-Kutta, Butcher series) can be applied to equations
on the Lie algebra to design high order methods and determine their numerical
convergence. Beyond these structure preservations, approaches for integration
algorithms based on variational principles give a unified treatment of many sym-
plectic numerical schemes. In this context, the Noether theorem [10] allows for
a numerical formulation that preserves symmetries and conservation laws.

In the case of homogeneous spaces (smooth manifold on which a Lie group
acts transitively), the so-called Lie group integrators, comprising Runge-Kutta-
Munthe-Kaas [12] methods is presented shortly in Sect. 2. The main preoccupa-
tion is to ensure that discrete solutions are guaranteed to stay on the given man-
ifold. However in this case no particular preservation of symmetries is obtained
without further constraints. This is why variational methods are revisited in
Sect. 3 to be compared to Lie-Poisson Hamilton-Jacobi algorithm based on gen-
erating function for which higher order designs are also available (Sect. 4).
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2 Lie Group Integrators, Runge-Kutta-Munthe-Kaas
Methods

The Runge-Kutta-Munhe-Kaas methods (RKMK) developed in a serie of arti-
cles [12], are an example of Lie group methods. Let Y (t) be a curve in a matrix
Lie group G verifying

Ẏ = A(t, Y )Y, Y (0) = Y0 (1)

where A(t, Y ) ∈ g for all t, Y ∈ R × G. The starting point is to describe the
solution of (1) as Y (t) = exp(Ω(t))Y0 and to deduce an ODE on Ω. Computing
the derivative of Y we get

Ẏ (t) =
d

dt
exp(Ω(t))Y0 = dexpΩ(t)(Ω̇(t))Y0 = dRexpΩ(t)(Ω̇(t))Y (t),

where the right trivialized derivative dRexpΩ := dRexp(Ω)−1 ◦ dexpΩ is intro-
duced. Using this expression in (1) and inverting1 dRexpΩ a differential equation
is obtained for Ω lying on the Lie algebra g

Ω̇(t) = dRexp−1
Ω(t)

(
A(t, Y (t))

)
, Ω(0) = 0. (2)

The advantage is that the non linear invariants defining the Lie group become
linear invariants on the Lie algebra, and will be preserved by any numerical
method [7]. This ensures that the solution stays on the Lie group.

The idea behind RKMK methods is to approximate the solution Y of Eq. (1)
with a discrete solution (Yn) by approximately solving Eq. (2) with a general
Runge-Kutta method Ω̇ = f(Ω) with f = dRexp−1

Ω and updating the position
via the exponential map. Knowing that dRexp−1

Ω (Θ) = Θ +
∑∞

k=1
Bk

k! adk
Ω(Θ)

where Bk are Bernouilli numbers, a truncated sum up to order q is used in
Eq. (2). If the Runke-Kutta method is order p and the truncature order is such
that q ≥ p − 2, then the associated RKMK method is order p [12].

Application to the Rigid Body Problem. We consider here the free rigid
body problem. Let π ∈ so(3)∗ ≈ R

3 be the angular momentum in the body
frame and J = diag(J1, J2, J3) the inertia tensor, it verifies the Euler-Poincaré
equation π̇ = π ∧ ξ, π(0) = π0 where ξ = J

−1π ∈ so(3) and π0 is the initial
angular momentum. In terms of matrix product, this yields

π̇ =

⎡

⎢
⎣

0 π3
J3

−π2
J2−π3

J3
0 π1

J1
π2
J2

−π1
J1

0

⎤

⎥
⎦π, π(0) = π0. (3)

This is in the form of Eq. (1), hence π can be approximately solved using a
RKMK method where SO(3) is the acting group. The Lie group SO(3) leaves
1 Here we made the assumption that dRexpΩ : g → g is invertible, which is the case

for SO(3) whenever ‖Ω‖ < π.
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the vector space so(3)∗ invariant, reflecting the conservation of ‖π(t)‖ in time.
Applying a Lie group method guarantees the preservation of that constraint,
ensuring that the angular momentum π(t) lies on the sphere of radius ‖π0‖ for
all t.

Defining Ω with π(t) = exp(Ω(t))π0, the following expression is obtained for
Eq. (2)

Ω̇ =
∞∑

k=0

Bk

k!
adk

Ω(J−1 exp(Ω)π0), Ω(0) = 0. (4)

We build an order 4 RKMK method by truncating the sum (4) up to order 2 and
a applying a classical order 4 RK method. The results shown in Fig. 1, outputting
the expected behaviour, have been computed for the following parameters:

J = diag
(
2/3, 1, 2

)
, π0 =

[
cos

(
π
3

)
0 sin

(
π
3

)]T

, h = 0.5s, N = 200.

3 Covariant Variational Methods

Here we build a covariant variational method based on the Hamilton principle
associated to a discrete Lagrangian following a similar approach to [5]. We take
the case where the configuration space of the system is a Lie group G together
with a reduced Lagrangian � : g → R.

Let a time step h divide equally the time interval, the set of discrete paths
is defined by Cd(G) =

{
gd : {tk}0≤k≤N → G

}
where ∀k, tk = kh. To determine

an approximate trajectory gd ∈ Cd(G) such that gk := gd(k) ≈ g(tk), we define
a discrete reduced Lagrangian �d approximating the action

�d(ξ0) ≈
∫ t1

t0

�(ξ) dt

where ξ(0) = ξ0 and ξ = g−1ġ such that g is an action extremum on [t0, t1]. To
discretize the relation ξ = g−1ġ we introduce a local diffeomorphism τ : g → G
defined on an open set containing the identity and such that τ(0) = eG (the
exponential map is an example of such a diffeomorphism). Starting from the
reconstruction formula

gi+1 = giτ(h ξi), (5)

we define ξi := 1
hτ−1(g−1

i gi+1)
The discrete action is approximated from the classical action by the sum

Sd(gd) =
∑N−1

i=0 �d(ξi). Applying the Hamilton principle on Sd evaluated on

a discrete path gd yields δSd(gd) =
∑N−1

i=0

〈
∂�d
∂ξ (ξi), δξi

〉
. The variation δξi is

expressed using (5) as

δξi =
1
h

dτ−1

g−1
i gi+1

(
−g−1

i δgig
−1
i gi+1 + g−1

i δgi+1

)

=
1
h

dτ−1
τ(hξi)

((
−ζi + Adτ(hξi) ζi+1

)
τ(hξi)

)
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where ζi = g−1
i δgi. Here the right trivialized differential dRτ−1 : g → g defined

by dRτ−1
ξ := Tτ(ξ)τ

−1 ◦ TRτ(ξ) is introduced, allowing us to write

δξi =
1
h

dRτ−1
hξi

(
−ζi + Adτ(hξi) ζi+1

)

Using the definition of the adjoint 〈π,Aξ〉 = 〈A∗π, ξ〉 where π ∈ g∗ and ξ ∈ g,
the variation of the action functional now reads

δSd(gd) =
N−1∑

i=0

〈
1
h

(
dRτ−1

hξi

)∗ ∂�d

∂ξ
(ξi),Adτ(hξi) ζi+1 − ζi

〉
.

Introducting the momentum μi associated to ξi via the formula

μi :=
(
dRτ−1

hξi

)∗ ∂�d

∂ξ
(ξi) (6)

and changing the indexes in the sum (discrete integration by part), we finally get,
by the independence of ζi for all i ∈ {1, . . . , N − 1}, the discrete Euler-Poincaré
equations

μi − Ad∗
τ(hξi−1) μi−1 = 0. (7)

This allows us to define the general formulation of a covariant method in
Algorithm 1 for given boundary conditions g0 et ξ0. The momentum μi is com-
puted from (7), and the associated ξi ∈ g is then deduced from (6). This equation
being implicit, it is typically solved using a numerical solver such as a Newton
method. Finally, the position is updated via the reconstruction formula (5).

Algorithm 1. General implementation of the covariant variational
method.
Data: g0, ξ0

g1 = g0τ (hξ0) , μ0 = h
(
dRτ−1

hξ0

)∗
∂�d
∂ξ

(ξ0)

for i = 1 to N − 1 do
Compute μi = Ad∗

τ(hξi−1)
μi−1 (equation (7))

Find ξi solution of
(
dRτ−1

hξi

)∗
∂�d
∂ξ

(ξi) − hμi = 0 (equation (6))

Update gi+1 = giτ (hξi) (equation (5))

end

Application to the Rigid Body Problem. A rigid body is represented by an
element of the rotation group SO(3). The reduced Lagrangian for this system is
defined for ξ ∈ so(3) as the rotation kinetic energy �(ξ) := 1/2 〈Jξ, ξ〉. We chose
to approximate this Lagrangian with �d defined by �d(ξ0) := h�(ξ0) = h

2 〈Jξ0, ξ0〉
and choose the local diffeomorphism τ to be defined as the Cayley map τ :=
cay : so(3) → SO(3) (details can be found in [4]).

The results of the application of Algorithm1 for the parameters given in
Sect. 2 are also plotted on Fig. 1 for comparison.
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Fig. 1. Numerical angular momentum of the rigid body problem computed for RKMK4
(left) and covariant method (right); both exactly lie one the sphere. Exact solutions
have been plotted for comparison.

4 Methods Based on Generating Functions,
Hamilton-Jacobi Equation

4.1 Classical Case

The Hamilton Jacobi equation plays an important role in the development of
numerical integrators that preserve the symplectic structure. In this section
Hamilton-Jacobi theory is approached from the point of view of extended phase
space as it is presented by Marsden [11] (p 206) and Arnold [1] (chapter 9). A
link between Hamilton-Jacobi integrators and variational integrators could also
be find in ([10]).

By definition, canonical transformations preserve the (pre)-symplectic
2-form, which can be deduced from the differential of the Poincaré-Cartan
form. Let us consider a canonical transformation in the extended phase space
(t, q, p) �→ (T,Q, P ) depicted in Fig. 2. Let (t, q, p) be coordinate functions in
some chart of extended phase space considered as a manifold M . The Poincaré-
Cartan form θ = p dq − H dt is a differential 1-form on M for which H(t, q, p)
is a Hamiltonian function. The coordinates (t,Q, P ) can be considered as giving
another chart on M associated to the 1-form Θ = P dQ − K dt with a corre-
sponding Hamiltonian function K(T,Q, P ).

As it is well-know, it is possible to find four2 generating functions depending
of all mixes of old and new variables: (q,Q), (q, P ), (p,Q), or (p, P ). It appears
that the second kind (q, P ) of generating function is easily used to generate
an infinitesimal transformation closed to the identity. And in turn, defines, by
construction, a structure preserving numerical method. The mixed coordinates
system (t, q, P ) may be related to the previous ones through two mappings h
and f : such that

h : (t, q, P ) �→ p(t, q, P ) and f : (t, q, P ) �→ Q(t, q, P )

2 At least four since many generating functions can be constructed.
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Fig. 2. Canonical transformation (t, q, p) �→ (T, Q, P ). Independent variables (q, P ) are
used to construct the second kind of generating function G(t, q, P ).

If each the (pre-)symplectic forms ωθ = −dθ and ΩΘ = −dΘ are invariantly
associated to one another, their pull-back should agree: h∗ωθ = f∗ΩΘ. Since the
operator (d) and ( ∗) commute, that means d(h∗θ) = d(f∗Θ). Consequently, h∗θ
and f∗Θ differ from a closed form dS = h∗θ − f∗Θ which is

dS(t, q, P ) = h∗ (p dq − H dt) − f∗ (P dQ − K dT ) .

Replacing P dQ = d(QP )−QdP and introducing G = (f∗Q)P+S, one computes

∂G

∂t
dt +

∂G

∂q
dq +

∂G

∂P
dP = h∗ (p dq − H dt) − f∗ (QdP − K dT )

and obtains
⎧
⎪⎪⎨

⎪⎪⎩

f∗K = h∗H + ∂G
∂t

f∗Q = ∂G
∂P

h∗p = ∂G
∂q

�→

⎧
⎪⎪⎨

⎪⎪⎩

K(t,Q(t, q, P ), P ) = H(t, q, p(t, q, P )) + ∂G
∂t

Q(t, q, P ) = ∂G
∂P

p(t, q, P ) = ∂G
∂q

(8)
Now suppose that G(t, q, P ) satisfies the so-called Hamilton-Jacobi equation,

H(t, q,
∂G

∂q
),+

∂G

∂t
= 0 (9)

for a given time dependent Hamiltonian H. This equation is obtained by taking
K ≡ 0 in (8-a). The generating function G generates a time dependent canonical
transformation ψ that transforms the Hamiltonian vector fields XH to equilib-
rium: ψ∗XH = XK=0. That means that the integral curves of XK are represented
by straight lines in the image space. The vector field has been ”integrated” by
the transformation (see Fig. 2).

The choice of the second kind of generating function is convenient to easily
generate the identity transformation. Choosing G = qP in (8b) and (8c) reads
Q = ∂G

∂P = q and p = ∂G
∂q = P . So, a canonical (infinitesimal) transformation is

obtained by plugging the ansatz
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G(t, q, P ) = qP +
∞∑

m=1

tm

m!
Gm(q, P ) = qP + tG1(q, P ) +

t2

2
G2(q, P ) + . . . (10)

into the Hamilton-Jacobi Eq. (9). Equating coefficients of equal powers of t gives

G1 = −H(t, q, P ), G2 = −∂H

∂p

∂G1

∂q
, G3 = −∂H

∂p

∂G2

∂q
− ∂2H

∂p2
∂G1

∂q
G4 = . . .

A numerical method of the order k is obtained by truncating the serie (10) to a
certain order k (see also [2]). The remaining variables (p,Q) are computed using
the generating function G in (8b) and (8c): Q = ∂G

∂P and p = ∂G
∂q . Putting (q, p)

in the left-hand size, the numerical algorithm is finally
{

q = Q − ∑k
m=1

tm

m!
∂Gm

∂P (q, P )
p = P +

∑k
m=1

tm

m!
∂Gm

∂q (q, P )

As it can be seen, the first step may be implicit for the variable q. But when it
is solved, the second step is explicit for p. The symplectic Euler method is an
example of such methods of order 1 with G1 = −H(q, P ) given by

{
q = Q + t∂H

∂P (q, P )
p = P − t∂H

∂q (q, P )

for which the “discrete Hamiltonian structure” is easily recognizable.

4.2 Lie-Poisson Hamilton-Jacobi Integrators

Following the same approach as the preceding section, the Hamilton-Jacobi the-
ory is reduced from T ∗G to g∗, the dual Lie algebra. Let (t, q0, π0) be coordi-
nate functions in some chart of extended phase space considered as a manifold
M = R × G × g∗ (see Fig. 3). The 1-form

θ = π0λq0 − H dt

Fig. 3. Canonical transformation using the dual Lie algebra (t, q0, π0) �→ (t, q1, π1).
Independent variables (q1, π1) are used to construct the first kind of generating function
S(t, q1, π1).
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is the reduced Poincaré-Cartan for which the Maurer-Cartan form is defined
by λq0(v) = (Lq−1

0
)∗(v). The coordinates (t, q1, π1) can be considered as giv-

ing another chart in M associated to the 1-form Θ = π1λq1 − K dt with
λq1(v) = (Lq−1

1
)∗(v). The mixed coordinates system (t, q0, q1) may be related

to the previous ones through two mappings h : (t, q0, q1) �→ π0(t, q0, q1) and
f(t, q0, q1) �→ π1(t, q0, q1).

For the left invariant system, the Hamiltonian function is left invariant. It is
then natural to seek for left invariant generating functions satisfying St(q0, q1) =
St(hq0, hq1), ∀h ∈ G. Choosing h = q−1

0 we can construct a left invariant function
S̄t given by

St(q0, q) = St(e, q−1
0 q) = St(e, g) = S̄t(g), g = q−1

0 q1.

The invariance of the (pre-)symplectic forms ωθ = −dθ and ΩΘ = −dΘ gives
now rise to a function S̄t(g) such that

dS̄t = f∗Θ − h∗θ = f∗ (
πλq1 − K dt

) − h∗ (
π0λq0 − H dt

)
(11)

So computing dS̄t = ∂S̄t

∂t dt + ∂S̄t

∂g dg, it appears that dg must also be computed
in term of λq0 and λq,

dg = d(q−1
0 q1) = dq−1

0 q1 + q−1
0 dq1 = −q−1

0 dq0q
−1
0 q1 + q−1

0 q1q
−1
1 dq1

= −λq0g + gλq1 = −(Rg)∗λq0 + (Lg)∗λq1 .

So, comparing the expression dS̄t = ∂S̄t

∂t dt − ∂S̄t

∂g (Rg)∗λq0 + ∂S̄t

∂g (Lg)∗λq1

with (11), one obtains
⎧
⎪⎪⎨

⎪⎪⎩

h∗H = f∗K + ∂S̄t

∂t

f∗π1 = (Lg)∗ ∂S̄t

∂g

h∗π0 = (Rg)∗ ∂S̄t

∂g

�→

⎧
⎪⎪⎨

⎪⎪⎩

H(t, π0(t, g)) = K(t, π1(t, g)) + ∂S̄t

∂t

π1(t, g) = (Lg)∗ ∂S̄t

∂g

π0(t, g) = (Rg)∗ ∂S̄t

∂g

(12)

For H ≡ 0, this yields the Lie-Poisson Hamilton-Jacobi equation

K

(

t, (Lg)∗ ∂S̄t

∂g

)

+
∂S̄t

∂t
= 0, g = q−1

0 q1 (13)

So Eq. (12c)

π0(t, g) = (Rg)∗ ∂S̄t

∂g
(14)

plugged into Eq. (12b) gives

π1(t, g) = Ad∗
gπ0(t, g) (15)

Marsden [6,9], Li [8] and de Degio [3] obtained a slightly different result
using the convention g = q−1

1 q0. Nevertheless, one can obtain a Lie-Poisson inte-
grator by approximately solving the Lie-Poisson Hamilton-Jacobi Eq. (13) and



Geometric Numerical Methods with Lie Groups 83

then using (14) and (15) to generate the algorithm. This last Eq. (15) mani-
festly preserves the co-adjoint orbit Oπ0 = {π ∈ g∗|π = Ad∗

gπ0,∀g ∈ G}. As in
the classical case, one can generate algorithms of arbitrary accuracy by approx-
imating the generative function by an ansatz such as the one given by (10),
i.e S̄t(g) = S0(g) +

∑∞
m=1

tm

m!Sm(g) The main difficulty is to determine S0

that can generate the identity map. Marsden propose to use in [6] the function
S0 = trace(Ad∗

g) and astoundingly, de Diego [3], approximating the solution by
taking the Taylor series in t of S up to order k, mention S0 = 0.

Li [8] propose to reformulate the above theory of a generating function on
TG∗ by the exponential mapping in terms of algebra variable. For g ∈ G, choose
ξ ∈ g so that g = exp ξ. He use Channel and Scovel’s [2] results for which
S0 = (ξ, ξ)/2).

4.3 Conclusions and Future Research

In our case, our perspective is to relate the Lie-Poisson Hamilton-Jacobi algo-
rithm to the Euler-Poincaré algorithm developed in Sect. 3 based on the Cayley
map. In particular, since Eqs. (15) and (7) are the same in both algorithm, it will
be instructive to compare the approximation of the Lie-Poisson Hamilton-Jacobi
Eq. (13) to the relationship between μ and ξ given by Eq. (6).
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