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Abstract. We revisit the natural gradient method for learning in sta-
tistical manifolds. We consider the proximal formulation and obtain a
closed form approximation of the proximity term over an affine subspace
of functions in the Legendre dual formulation. We consider two impor-
tant types of statistical metrics, namely the Wasserstein and Fisher-Rao
metrics, and introduce numerical methods for high dimensional param-
eter spaces.
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1 Introduction

Learning algorithms often proceed by minimizing a loss function that measures
the discrepancy between a data distribution and a model distribution. Given a
parametric model and a metric in probability space, the loss can be minimized
by the Riemannian gradient descent method, also known as the natural gradient
method. An important metric in this context is the Fisher-Rao information met-
ric [4,18], which induces the Fisher-Rao natural gradient [1]. Another important
metric is the Wasserstein metric [15,20], which induces the Wasserstein natural
gradient [8,9,12,14]. Natural gradient methods have numerous applications in
learning; see, e.g., [2,3,10,13,16,17].

In spite of having numerous theoretical advantages, applying natural gradient
methods is often challenging. In particular, machine learning models usually have
many parameters, making the direct computation of the parameter updates too
costly. Each update requires to compute the Jacobi matrix of the model and the
inverse of the metric tensor in parameter space. An alternative, implicit, way to
formulate the update is via a proximal operator. Recently [11] proposed proximal
methods as an approach to natural gradients and demonstrated their viability
in state of the art generative modeling. The idea is to compute the proximity
penalty in closed form over an approximation space. This results in a tractable
iterative regularization for the parameter updates.

We develop this idea to obtain a general natural proximal method, and pro-
vide explicit formulas for the Fisher-Rao and the Wasserstein metrics. These
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serve three purposes: (i) The proximal operator and its approximation can enable
efficient and effective expressions for the time discretized parameter updates of
the natural gradient flow. (ii) The proximal method, as an implicit method,
naturally regularizes the objective function, and can be used to optimize non-
smooth objective functions. (iii) The metric regularization is expressed in terms
of statistics, such as mean and variance, and can be estimated from samples.

2 Natural Proximal Gradient

We review the natural gradient flow in a statistical manifold with Wasserstein
and Fisher-Rao metrics, present the natural proximal operators, and introduce
a systematic approximation which is suitable for estimation from samples.

2.1 Natural Gradients Flows

Learning problems are often formulated as the minimization of a loss func-
tion, as minθ∈Θ F (θ), where Θ ∈ R

d is the parameter of the hypothesis class,
and F : Θ → R is the loss function. As the hypothesis class, we consider a
parametrized probability model ρ : Θ → P(Ω), where Ω is the sample space,
which is a discrete or continuous set on which the distributions are supported.
The loss is usually a divergence (sometimes distance) function between the
empirical data distribution ρ̂data and the model distribution ρθ.

To find a minimizer, the gradient flow approach is often considered. This flow
follows the steepest descent direction of the loss function with respect to a given
Riemannian metric. In general, this is defined by

θ̇(t) = −G(θ(t))−1∇θF (θ(t)), (1)

where G(θ) ∈ R
d×d is the matrix representation of the Riemannian metric ten-

sor (for our choice of coordinates), and ∇θ = ( ∂
∂θ1

, . . . , ∂
∂θd

)� is the standard
(Euclidean) gradient operator. In the context of probability distributions, the
metric G(θ) is pulled back from a natural metric structure on probability space.
This implies that for any choice of the parametrization, (1) defines the same flow
of probability distributions. Hence it is said to be parametrization invariant.

We will focus on two important statistical metrics on probability space: the
Wasserstein metric and the Fisher-Rao metric. These metrics induce the follow-
ing metric tensors in parameter space. We write (·, ·) for the Euclidean or L2

inner product on the sample space Ω (which might be continuous or discrete).

Definition 1 (Statistical metric tensor on parameter space). Consider
the probability space (P(Ω), g) with metric tensor g, and a smoothly parametrized
probability model ρθ with parameter θ ∈ Θ. Then the pull-back G of g is given
by

G(θ) =
(
∇θρθ, g(ρθ)∇θρθ

)
.
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(i) If gθ = −(Δρθ
)−1, with Δρθ

= ∇ · (ρθ∇) being the weighted elliptic operator
[6,7,15], then G(θ) is the Wasserstein metric tensor, given by

GW (θ)ij =
(
∇θi

ρθ, (−Δρθ
)−1∇θj

ρθ

)
,

(ii) If gθ = 1
ρθ

, then G(θ) is the Fisher-Rao metric tensor, given by

GFR(θ)ij =
(
∇θi

ρθ,
1
ρθ

∇θj
ρθ

)
.

Given a metric tensor on parameter space, the standard approach for numerical
computation of the gradient flow (1) is the forward Euler method, i.e.,

θk+1 = θk − hG(θk)−1∇θF (θk),

where h > 0 is a step-size. This is known as the natural gradient descent
method [2]. In practice, we need to compute the matrix G(θ) and its inverse at
each parameter update, which is difficult in high dimensional parameter spaces.

2.2 Natural Proximal Operators

We next present another way to approximate the gradient flow, known as the
backward Euler or proximal operator method. The proximal operator refers to

θk+1 = ProxhF (θk) = arg min
θ

F (θ) +
D(θ, θk)

2h
, (2)

where D is a proximity term that penalizes the distance from the current point,
and h adjusts the strength. When h is infinity, the proximal operator returns
the global minimizer of F . The proximity term is given by the metric function:

D(θ, θk) = inf
θ(t)

{∫ 1

0

θ̇(t)�G(θ(t))θ̇(t)dt : θ0 = θ, θ1 = θk
}

= inf
θ(t)

{∫ 1

0

(∂tρθ(t), g(ρθ(t))∂tρθ(t))dt : θ0 = θ, θ1 = θk
}

.

(3)

In rare cases, the proximal operator (2) can be written explicitly.
We shall approximate D in a way that allows for a more friendly computation

of the proximal operator. Consider the iterative proximal update

θk+1 = arg min
θ

F (θ) +
1
2h

(
ρθ − ρθk , g(ρθ̃)(ρθ − ρθk)

)
, (4)

where θ̃ = θ+θk

2 . Here the D term in (2) is replaced by a mid-point expression,
which is exact up to the order o(‖θ − θk‖2). This new proximal operator corre-
sponds to a numerical method known as the semi-backward Euler method. Both
(2) and (4) are time discretizations of (1) with first order accuracy. We shall
focus on (4), and derive a tractable approximation of the regularization term.
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3 Affine Space Approximation of the Metric

Consider the proximity term (similar to a squared Mahalanobis distance)

D̃(θ, θk) =
(
ρθ − ρθk , g(ρθ̃)(ρθ − ρθk)

)
. (5)

In the following we derive an explicit and computer friendly approximation. To
this end, we first consider the variational formulation

1
2
D̃(θ, θk) = sup

Φ : Ω→R

(Φ, ρθ − ρθk) − 1
2

(
Φ, g(ρθ̃)

†Φ
)
, (6)

where † is the pseudo-inverse operator and the maximizer Φ = g(ρθ̃)(ρθ − ρθk)
recovers the previous formula. This corresponds to a expressing (5) in terms
of its Legendre dual between tangent space and cotangent space in probability
space; for a discussion see [7].

Now we restrict the optimization domain (i.e., the set of functions Φ : Ω → R)
to an affine space of functions of the form

FΨ =
{

Φ(x) =
n∑

j=1

ξjψj(x) = ξ�Ψ(x) : ξ ∈ R
n
}

,

where ξ = (ξj)n
j=1 is a parameter vector and Ψ = (ψj)n

j=1 collects a choice of
basis functions ψj : Ω → R. This results in following optimization problems:

(i) For the Wasserstein metric, we have

1
2
D̃W

Ψ (θ, θk) = sup
Φ=ξ�Ψ

Eθ[Φ] − Eθk [Φ] − 1
2
Eθ̃[‖∇Φ‖2];

(ii) For the Fisher-Rao metric, we have

1
2
D̃FR

Ψ (θ, θk) = sup
Φ=ξ�Ψ

Eθ[Φ] − Eθk [Φ] − 1
2
Eθ̃

[
(Φ − Eθ̃[Φ])2

]
.

These are quadratic semi-definite programs in ξ. In practice, if using small sample
estimates for the expectations, one can add a regularization −λ‖ξ‖2, with a small
λ > 0, to ensure strict definiteness and existence of a solution. We proceed to
solve these problems. We write Eθ[ψ] = Ex∼ρθ

[ψ(x)] and ∂l = ∂
∂xl

for the partial
derivative w.r.t. the lth sample space variable.1

Theorem 1 (Affine space approximation). Given a basis Ψ , the proximity
term D̃ within the affine function space FΨ = {ξ�Ψ : ξ ∈ R

n} is given by

D̃Ψ (θ, θk) = (Eθ[Ψ ] − Eθk [Ψ ])�
(
Ψ, g(ρθ)†Ψ

)†
(Eθ[Ψ ] − Eθk [Ψ ]).

1 If the sample space is discrete, we use the discrete differential operator. For an
edge weighted graph G = (V, E, ω), the gradient of Φ ∈ R

|V | is ∇Φ = (
√

ωijΦi −
Φj)(i,j)∈E ∈ R

|E|, and Eθ[‖∇Φ‖2] = 1
2

∑
i∈V pi(θ)

∑
j∈V ωij(Φi − Φj)

2. For details
see [8].
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(i) For the Wasserstein metric, we have

D̃W
Ψ (θ, θk) = (Eθ[Ψ ] − Eθk [Ψ ])�

(
CW (θ̃)

)−1

(Eθ[Ψ ] − Eθk [Ψ ]),

where CW (θ̃) = Eθ̃[
∑

l

(
∂lΨ

)(
∂lΨ

)�
].

(ii) For the Fisher-Rao metric, we have

D̃FR
Ψ (θ, θk) = (Eθ[Ψ ] − Eθk [Ψ ])�

(
CFR(θ̃)

)−1

(Eθ[Ψ ] − Eθk [Ψ ]),

where CFR(θ̃) = Eθ̃[
(
Ψ(x) − Eθ̃[Ψ ]

)(
Ψ(x) − Eθ̃[Ψ ]

)�
].

Fig. 1. Illustration of the proximity term over an affine space. Intuitively, the metric
between two distributions is measured along a chosen set of statistics.

Remark 1. The matrix C has size n×n, corresponding to the dimension of Ψ . For
the Fisher-Rao metric, it is the covariance of the basis functions Ψ w.r.t. ρθ̃. This
corresponds to the Fisher-Rao matrix when the basis is a sufficient statistics of
the model. See Fig. 1. The resulting metric bears a similarity with the Relative
Fisher Information Metric approach proposed in [19]. Similar observations apply
for the Wasserstein metric.

Remark 2. In the case of implicit generative models (used in GANs), where ρθ is
expressed as the push-forward measure of a latent variable z by a parametrized
family of functions gθ, we obtain

D̃(θ, θk) = (Ez [Ψ(gθ(z))]− Ez [Ψ(gθk (z))])
�
Ez [C(gθ̃(z))]

−1(Ez [Ψ(gθ(z))]− Ez [Ψ(gθk (z))]),

where C is the corresponding term inside the expectation in Theorem 1.

Proof. (i) For the constrained Wasserstein metric, the gradient of Φ w.r.t. the
sample space variable x is ∇Φ(x) = (

∑n
i=1 ξi∂lψi(x))l. The squared norm is then

‖∇Φ(x)‖2 =
∑

l

(
∑

i

ξi∂lψi(x))2 =
∑

l

∑
i

ξi∂lψi(x)
∑

j

ξj∂lψj(x) = ξ�CW (x)ξ,
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where CW
ij (x) =

∑
l ∂lψi(x)∂lψj(x). Now we consider the distance

1
2
D̃W

Ψ (θ, θk) = sup
Φ=ξ�Ψ

(
Φ, ρθ − ρθk

)
− 1

2

(
(∇Φ)2, ρθ̃

)

= sup
ξ

ξ�(Eθ[Ψ ] − Eθk [Ψ ]) − 1
2
ξ�

Eθ̃[C
W ]ξ.

In turn, by first order optimality conditions, at the maximizer we have

ξ∗ = (Eθ̃[C
W ])−1(Eθ[Ψ ] − Eθk [Ψ ]).

Thus D̃W
Ψ (θ, θk) = (Eθ[Ψ ] − Eθk [Ψ ])(Eθ̃[C

W ])−1(Eθ[Ψ ] − Eθk [Ψ ]).

(ii) For the Fisher-Rao metric, the term ‖Φ(z) − Eθ̃[Φ]‖2 equals

‖ξ�Ψ(z) − ξ�
Eθ̃[Ψ ]‖2 = ξ�(Ψ(z) − Eθ̃[Ψ ])(Ψ(z) − Eθ̃[Ψ ])�ξ = ξ�CFR(z)ξ,

where CFR(z) = (Ψ(z) − Eθ̃[Ψ ])(Ψ(z) − Eθ̃[Ψ ])�. ��
Example 1 (Order 1 approximation). For the metric approximation with the
space of linear functions, F1 =

{
Φ(x) = a�x + b : a ∈ R

m, b ∈ R

}
, we have:

(i)
D̃W

1 (θ, θk) = (Eθ[x] − Eθk [x])�(Eθ[x] − Eθk [x]).

(ii)
D̃FR

1 (θ, θk) = (Eθ[x]−Eθk [x])�
(
Eθ̃

[
(x−Eθ̃x)(x−Eθ̃x)�

])−1

(Eθ[x]−Eθk [x]).

Example 2 (Order 2 approximation). For the space of quadratic functions,
F2 =

{
Φ(x) = 1

2x�Qx + a�x + b : Q ∈ R
m×m, a ∈ R

m, b ∈ R

}
, we have:

(i)
D̃W

2 (θ, θk) =
(
Eθ

[
x

x⊗x
2

]
−Eθk

[
x

x⊗x
2

] )�
Eθ̃

[
Im x�⊗Im

x⊗Im Im⊗xx�

]−1 (
Eθ

[
x

x⊗x
2

]
−Eθk

[
x

x⊗x
2

] )
.

(ii)
D̃FR

2 (θ, θk) =
(
Eθ

[
x

x⊗x
2

]
−Eθk

[
x

x⊗x
2

] )�(
CFR(θ̃)

)−1(
Eθ

[
x

x⊗x
2

]
−Eθk

[
x

x⊗x
2

] )
,

where ⊗ is the Kronecker product (e.g., x ⊗ x is an m2 × 1 vector), and

CFR = Eθ̃

[( [
x

x⊗x
2

]
− Eθ̃

[
x

x⊗x
2

] )( [
x

x⊗x
2

]
− Eθ̃

[
x

x⊗x
2

] )�
]

.

4 Numerical Examples

The optimization loop can be implemented as shown in Algorithm 1. Here the
proximal operator is computed by a short gradient iteration. In practice we
can replace the expectations by sample averages, Eθ[f ] ≈ 1

N

∑N
i=1 f(x(i)), with

x(i) i.i.d. from ρθ. For the basis Ψ we can choose low order polynomials, as in
Examples 1 and 2, but even random functions worked well in our experiments.
The optimal choice will balance low dimension and relevant statistics for the
model under consideration. Orthogonality tends to be beneficial.
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Algorithm 1. Natural gradient with affine space proximal approximation.
Require: Loss F , basis of affine space Ψ , proximal step-size h, step-size α

for t = 0 to max outer iterations do
C(θ) = covθ[Ψ ]−1 (Fisher-Rao); C(θ) = Eθ[

∑
l

(
∂lΨ

)(
∂lΨ

)�
]−1 (Wasserstein)

for t′ = 0 to max inner iterations do
∇θ′D(θ, θ′) ← 1

2
∇θ′Eθ′ [Ψ�]C(θ)(Eθ′ [Ψ ] − Eθ[Ψ ])

θ′ ← θ′ − α(∇θ′F (θ′) + 1
2h

∇Dθ′(θ, θ′))
θ ← θ′

4.1 Maximum Likelihood Estimation for Hierarchical Models

We consider binary k-interaction models, which are exponential families ρθ(x) =
exp(θ�A(x))/Z(θ), x ∈ {0, 1}m, with sufficient statistics Aλ(x) =

∏
i∈λ(−1)xi ,

for λ ⊆ {1, . . . ,m}, |λ| � k. We use Ψj(x) = (−1)xj , j ∈ {1, . . . , m}, which are
sufficient statistics for the 1-interaction model (independence model). We draw
target distributions uniformly from the simplex and compute the MLEs. We
compare Euclidean, Fisher-Rao, Wasserstein, and proximals. For each problem
and method we run grid search over the step size α and proximal strength h,
which are kept fixed during optimization. The results are shown in Fig. 2.

4.2 Classification on CIFAR-10

Here we present an image classification task on the CIFAR-10 dataset [5] using
the Wasserstein proximal method. We use a simple CNN with two convolutional
layers followed by two fully-connected layers, with ReLU activations. In this
experiment F is the categorical cross-entropy loss and D = D̃W

Ψ is the Order 1
or Order 2 Wasserstein approximation. The specific details of our experiments
can be found in Appendix A. Figure 2 provides the results, where we give curves

Eucl FR FR prox W W prox
Optimization method

10-2

10-1

100

W
al

lc
lo

ck
 ti

m
e 

(s
)

100 101 102 103

Iterartions

0

0.1

0.2

0.3

0.4

K
L 

di
ve

rg
en

ce

Eucl, t=0.0129, =0.0562
FR, t=0.00352, =0.1
FR prox, t=0.00725, =0.1, 1/2h=0.599, TT=50
W, t=0.22, =0.001
W prox, t=0.00614, =0.215, 1/2h=2.78e-08, TT=50

Fig. 2. Left: MLE wall-clock computation times until the KL-divergence is within
10−9 of optimal, for 4 binary variables and Ψ the independence model, and typical
optimization curves. Right: The learning curves for the image classification task on
CIFAR-10. Each experiment was averaged over 5 runs. The bold lines represent the
average, and the envelopes are the minimum and maximum achieved.
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for the validation error per epoch. As a baseline, we also give results when
performing SGD many times per epoch, but without regularization. We see that
the best result comes from the Order 2 Wasserstein distance approximation.

5 Discussion

We studied sampling–friendly implementations of the natural gradient based
on the proximal operator. We approximate the proximity penalty by an affine
space restriction in the Legendre dual formulation. This gives rise to a lower
dimensional metric, expressed in expectation parameters, which can be estimated
from samples. We cover both Fisher-Rao and Wasserstein metrics. Especially for
the Wasserstein proximal, our method offers significant savings in computation
time and provide improvement in validation error (in CIFAR-10 classification).

Acknowledgement. This project has received funding from AFOSR MURI FA9550-
18-1-0502 and the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement no 757983).

A Appendix for image classification on CIFAR-10

Here is the detailed version of our experiments, for image classification on
CIFAR-10. We use a simple CNN with two convolutional layers (each with 32
filters, with a kernel size of 3×3, a stride of 1, and zero padding), followed by two
fully-connected layers each having 512 nodes. For the optimizer, we use standard
stochastic gradient descent (SGD) with momentum value 0.95 and learning rate
of 0.001.

For the Wasserstein distance, if we denote the (deterministic) output of
our neural network as f(x, θ) (the log probability vector), the loss function as
L(y, f(x, θ)) where x is the image and y the label, and the dataset as D, then
the Order 1 and Order 2 approximations for the Wasserstein distance on image
classification on CIFAR-10 are: Order 1 approximation:

D̃W
1 (θ, θk) = ‖Ex∼D[f(x, θ)] − Ex∼D[f(x, θk)]‖2, (7)

and the Order 2 approximation:

D̃W
2 (θ, θk) = ‖Ex∼D[f(x, θ)] − Ex∼D[f(x, θk)]‖2

+ tr
(

varx∼D[f(x, θ)] + varx∼D[f(x, θk)]

− 2
(
varx∼D[f(x, θk)]1/2 varx∼D[f(x, θ)] varx∼D[f(x, θk)]1/2

))
.

(8)
We present our experiments on 5 different settings: (1) Standard learning

with no regularization, (2) performing SGD 3 times per batch, (3) performing
SGD 5 times per batch, (4) using the Order 1 Wasserstein Proximal (with m = 3
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and h = 2), (5) and using the Order 2 Wasserstein proximal (with m = 5 and
h = 1). From Fig. 2, we see that using the Order 2 Wasserstein proximal provides
the best results. We note that performing SGD a number of times per batch is
presented as a baseline, as we experimentally found that they also provided
improvements in validation error per epoch (but they are not the best as we can
see from Fig. 2).

Algorithm 2. Wasserstein Proximal Natural Gradient for Neural Networks
Require: Loss function L, neural network f(x, θ), Order 1 or 2 Wasserstein distance

approximation D, and data-label pairs {(x, y)} from dataset D.
Require: m number of gradient descent steps, and h strength of the proximal term

while stopping criteria not met do
Sample a mini-batch of image-label pairs {(xb, yb)}B

b=1 ∈ D
Approximately solve (by performing SGD m times)

θk+1 ← argminθ

{
1

B

B∑

b=1

L(y, f(x, θ)) +
1

2h
D(θ, θk)

}
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