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Abstract. Let M be a simply-connected compact Riemannian symmet-
ric space, and U a twice-differentiable function on M , with unique global
minimum at x∗ ∈ M . The idea of the present work is to replace the prob-
lem of searching for the global minimum of U , by the problem of finding
the Riemannian barycentre of the Gibbs distribution PT ∝ exp(−U/T ).
In other words, instead of minimising the function U itself, to minimise
ET (x) = 1

2

∫
d2(x, z)PT (dz), where d(·, ·) denotes Riemannian distance.

The following original result is proved: if U is invariant by geodesic sym-
metry about x∗, then for each δ < 1

2
rcx (rcx the convexity radius of

M), there exists Tδ such that T ≤ Tδ implies ET is strongly convex on
the geodesic ball B(x∗, δ) , and x∗ is the unique global minimum of ET .
Moreover, this Tδ can be computed explicitly. This result gives rise to a
general algorithm for black-box optimisation, which is briefly described,
and will be further explored in future work.
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It is common knowledge that the Riemannian barycentre x̄, of a probability
distribution P defined on a Riemannian manifold M , may fail to be unique.
However, if P is supported inside a geodesic ball B(x∗, δ) with radius δ < 1

2rcx

(rcx the convexity radius of M), then x̄ is unique and also belongs to B(x∗, δ).
In fact, Afsari has shown this to be true, even when δ < rcx (see [1,2]).

Does this statement continue to hold, if P is not supported inside B(x∗, δ),
but merely concentrated on this ball? The answer to this question is positive,
assuming that M is a simply-connected compact Riemannian symmetric space,
and P = PT ∝ exp(−U/T ), where the function U has unique global minimum
at x∗ ∈ M . This is given by Proposition 2, in Sect. 2 below.

Proposition 2 motivates the main idea of the present work: the Riemannian
barycentre x̄T of PT can be used as a proxy for the global minimum x∗ of U .
In general, x̄T only provides an approximation of x∗, but the two are equal if U
is invariant by geodesic symmetry about x∗, as stated in Proposition 3, in Sect. 4
below.
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The following Sect. 1 introduces Proposition 2, which estimates the Rieman-
nian distance between x̄T and x∗, as a function of T .

1 Concentration of the Barycentre

Let P be a probability distribution on a complete Riemannian manifold M . A
(Riemannian) barycentre of P is any global minimiser x̄ ∈ M of the function

E(x) =
1
2

∫
M

d2(x, z)P (dz) for x ∈ M (1)

The following statement is due to Karcher, and was improved upon by
Afsari [1,2]: if P is supported inside a geodesic ball B(x∗, δ), where x∗ ∈ M
and δ < 1

2rcx (rcx the convexity radius of M), then E is strongly convex on
B(x∗, δ), and P has a unique barycentre x̄ ∈ B(x∗, δ).

On the other hand, the present work considers a setting where P is not
supported inside B(x∗, δ), but merely concentrated on this ball. Precisely, assume
P is equal to the Gibbs distribution

PT (dz) = (Z(T ))−1 exp
[
−U(z)

T

]
vol(dz); T > 0 (2)

where Z(T ) is a normalising constant, U is a C2 function with unique global
minimum at x∗, and vol is the Riemannian volume of M . Then, let ET denote
the function E in (1), and let x̄T denote any barycentre of PT .

In this new setting, it is not clear whether ET is differentiable or not. There-
fore, statements about convexity of ET and uniqueness of x̄T are postponed to
the following Sect. 2. For now, it is possible to state the following Proposition 1.
In this proposition, d(·, ·) denotes Riemannian distance, and W (·, ·) denotes the
Kantorovich (L1-Wasserstein) distance [3,4]. Moreover, (μmin , μmax) is any open
interval which contains the spectrum of the Hessian ∇2U(x∗), considered as a
linear mapping of the tangent space Tx∗M .

Proposition 1. Assume M is an n-dimensional compact Riemannian manifold
with non-negative sectional curvature. Denote δx∗ the Dirac distribution at x∗.
The following hold,
(i) for any η > 0,

W (PT , δx∗) <
η2

(4 diam M)
=⇒ d(x̄T , x∗) < η (3)

(ii) for T ≤ To (which can be computed explicitly)

W (PT , δx∗) ≤
√

2 (π/2)n−1
B−1

n (μmax/μmin)
n/2 (T/μmin)

1/2 (4)

where Bn = B(1/2, n/2) in terms of the Beta function.
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Proposition 1 is motivated by the idea of using x̄T as an approximation of
x∗. Intuitively, this requires choosing T so small that PT is sufficiently close to
δx∗ . Just how small a T may be required is indicated by the inequality in (4).
This inequality is optimal and explicit, in the following sense.

It is optimal because the dependence on T 1/2 in its right-hand side cannot
be improved. Indeed, by the multi-dimensional Laplace approximation (see [5],
for example), the left-hand side is equivalent to L · T 1/2 (in the limit T → 0).
While this constant L is not tractable, the constants appearing in Inequality (4)
depend explicitly on the manifold M and the function U . In fact, this inequality
does not follows from the multi-dimensional Laplace approximation, but rather
from volume comparison theorems of Riemannian geometry [6].

In spite of these nice properties, Inequality (4) does not escape the curse of
dimensionality. Indeed, for fixed T , its right-hand side increases exponentially
with the dimension n (note that Bn decreases like n−1/2). On the other hand,
although To also depends on n, it is typically much less affected by dimension-
ality, and decreases slower that n−1 as n increases.

2 Convexity and Uniqueness

Assume now that M is a simply-connected, compact Riemannian symmetric
space. In this case, for any T , the function ET turns out to be C2 throughout
M . This results from the following lemma.

Lemma 1. Let M be a simply-connected compact Riemannian symmetric space.
Let γ : I → M be a geodesic defined on a compact interval I. Denote Cut(γ)
the union of all cut loci Cut(γ(t)) for t ∈ I. Then, the topological dimension
of Cut(γ) is strictly less than n = dim M . In particular, Cut(γ) is a set with
volume equal to zero.

Remark: The assumption that M is simply-connected cannot be removed, as the
conclusion does not hold if M is a real projective space.

The proof of Lemma 1 uses the structure of Riemannian symmetric spaces,
as well as some results from topological dimension theory [7] (Chapter VII).
The notion of topological dimension arises because it is possible Cut(γ) is not a
manifold. The lemma immediately implies, for all t,

ET (γ(t)) =
1
2

∫
M

d2(γ(t), z)PT (dz) =
1
2

∫
M−Cut(γ)

d2(γ(t), z)PT (dz)

Then, since the domain of integration avoids the cut loci of all the γ(t), it
becomes possible to differentiate under the integral. This is used in obtaining
the following (the assumptions are the same as in Lemma 1).

Corollary 1. For x ∈ M , let Gx(z) = ∇fz(x) and Hx(z) = ∇2fz(x), where fz

is the function x 	→ 1
2 d2(x, z). The following integrals converge for any T

Gx =
∫

M−Cut(x)

Gx(z)PT (dz); Hx =
∫

M−Cut(x)

Hx(z)PT (dz)
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and both depend continuously on x. Moreover,

∇ET (x) = Gx and ∇2ET (x) = Hx (5)

so that ET is C2 throughout M .

With Corollary 1 at hand, it is possible to obtain Proposition 2, which is con-
cerned with the convexity of ET and uniqueness of x̄T . In this proposition, the
following notation is used

f(T ) = (4/π) (π/8)n/2 (μmax/T )n/2 exp (−Uδ/T ) (6)

where Uδ = inf{U(x)−U(x∗) ; x /∈ B(x∗, δ)} for positive δ. The reader may wish
to note the fact that f(T ) decreases to 0 as T decreases to 0.

Proposition 2. Let M be a simply-connected compact Riemannian symmetric
space. Let κ2 be the maximum sectional curvature of M , and rcx = κ−1 π

2 its
convexity radius. If T ≤ To (see (ii) of Proposition 1), then the following hold
for any δ < 1

2rcx.
(i) for all x in the geodesic ball B(x∗, δ),

∇2ET (x) ≥ Ct(2δ) (1 − vol(M)f(T )) − πAMf(T ) (7)

where Ct(2δ) = 2κδ cot(2κδ) > 0 and AM > 0 is a constant given by the struc-
ture of the symmetric space M .
(ii) there exists Tδ (which can be computed explicitly), such that T ≤ Tδ

implies ET is strongly convex on B(x∗, δ) , and has a unique global minimum
x̄T ∈ B(x∗, δ). In particular, this means x̄T is the unique barycentre of PT .

Note that (ii) of Proposition 2 generalises the statement due to Karcher [1],
which was recalled in Sect. 1.

3 Finding To and Tδ

Propositions 1 and 2 claim that To and Tδ can be computed explicitly. This means
that, with some knowledge of the Riemannian manifold M and the function U ,
To and Tδ can be found by solving scalar equations. The current section gives
the definitions of To and Tδ .

In the notation of Proposition 1, let ρ > 0 be small enough, so that,

μmin d2(x, x∗) ≤ 2 (U(x) − U(x∗)) ≤ μmax d2(x, x∗)

whenever d(x, x∗) ≤ ρ , and consider the quantity

f(T,m, ρ) = (2/π)1/2 (μmax/T )m/2 exp (−Uρ/T )

where Uρ is defined as in (6). Note that f(T,m, ρ) decreases to 0 as T decreases
to 0, for fixed m and ρ. Now, it is possible to define To as

To = min
{
T 1

o , T 2
o

}
where (8)



Riemannian Barycentres for Global Optimisation 661

T 1
o = inf

{
T > 0 : f(T, n − 2, ρ) > ρ2−n An−1

}
T 2

o = inf
{

T > 0 : f(T, n + 1, ρ) > (μmax/μmin)
n/2

Cn

}

Here, An = E|X|n for X ∼ N(0, 1), and Cn = ωn An/(diam M × vol M), where
ωn is the surface area of a unit sphere Sn−1 .

With regard to Proposition 2, define Tδ as follows,

Tδ = min
{
T 1

δ , T 2
δ

} − ε (9)

for some arbitrary ε > 0. Here, in the notation of (4), (6) and (7),

T 1
δ = inf

{
T ≤ To :

√
2π (T/μmin)1/2 > δ2 (μmin/μmax)

n/2
Dn

}

T 2
o = inf

{
T ≤ To : f(T ) > Ct(2δ) (Ct(2δ) vol M + πAM )−1

}

where Dn = (2/π)n−1 Bn/(4 diam M).

4 Black-Box Optimisation

Consider the problem of searching for the unique global minimum x∗ of U .
In black-box optimisation, it is only possible to evaluate U(x) for given x ∈ M ,
and the cost of this evaluation precludes numerical approximation of derivatives.
Then, the problem is to find x∗ using successive evaluations of U(x) (hopefully,
as few of these evaluations as possible).

Here, a new algorithm for solving this problem is described. The idea of this
algorithm is to find x̄T using successive evaluations of U(x), in the hope that x̄T

will provide a good approximation of x∗. While the quality of this approximation
is controlled by Inequalities (3) and (4) of Proposition 1, in some cases of interest,
x̄T is exactly equal to x∗, for correctly chosen T , as in the following proposition 3.

To state this proposition, let sx∗ denote geodesic symmetry about x∗ (see [7]).
This is the transformation of M , which leaves x∗ fixed, and reverses the direction
of geodesics passing through x∗.

Proposition 3. Assume that U is invariant by geodesic symmetry about x∗ , in
the sense that U ◦ sx∗ = U . If T ≤ Tδ (see (ii) of Proposition 2), then x̄T = x∗

is the unique barycentre of PT .

Proposition 3 follows rather directly from Proposition 2. Precisely, by (ii) of
Proposition 2, the condition T ≤ Tδ implies ET is strongly convex on B(x∗, δ),
and x̄T ∈ B(x∗, δ). Thus, x̄T is the unique stationary point of ET in B(x∗, δ).
But, using the fact that U is invariant by geodesic symmetry about x∗, it is
possible to prove that x∗ is a stationary point of ET , and this implies x̄T = x∗.
The two following examples verify the conditions of Proposition 3.
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Example 1. Assume M = Gr(k,Cn) is a complex Grassmann manifold. In par-
ticular, M is a simply-connected, compact Riemannian symmetric space. Identify
M with the set of Hermitian projectors x : Cn → C

n such that tr(x) = k, where
tr denotes the trace. Then, define U(x) = − tr(C x) for x ∈ Gr(k,Cn), where
C is a Hermitian positive-definite matrix with distinct eigenvalues. Now, the
unique global minimum of U occurs at x∗, the projector onto the principal k-
subspace of C. Also, the geodesic symmetry sx∗ is given by sx∗ · x = rx∗x rx∗ ,
where rx∗ : C

n → C
n denotes reflection through the image space of x∗. It is

elementary to verify that U is invariant by this geodesic symmetry.

Example 2. Let M be a simply-connected, compact Riemannian symmetric
space, and Uo a function on M with unique global minimum at o ∈ M . Assume
moreover that Uo is invariant by geodesic symmetry about o. For each x∗ ∈ M ,
there exists an isometry g of M , such that x∗ = g ·o. Then, U(x) = Uo(g−1 ·x) has
unique global minimum at x∗, and is invariant by geodesic symmetry about x∗.

Example 1 describes the standard problem of finding the principal subspace
of the covariance matrix C. In Example 2, the function Uo is a known tem-
plate, which undergoes an unknown transformation g, leading to the observed
pattern U . This is a typical situation in pattern recognition problems.

Of course, from a mathematical point of view, Example 2 is not really an
example, since it describes the completely general setting where the conditions
of Proposition 3 are verified. In this setting, consider the following algorithm.

Description of the algorithm:
– input : T ≤ Tδ % to find such T , see Section 3

Q(x, dz) = q(x, z)vol(dz) % symmetric Markov kernel
x̂0 = z0 ∈ M % initial guess for x∗

– iterate : for n = 1, 2, . . .

(1) sample zn ∼ q(zn−1, z)

(2) compute rn = 1 − min {1, exp [(U(zn−1) − U(zn))/T ]}
(3) reject zn with probability rn % then, zn = zn−1

(4) x̂n = x̂n−1 # 1
n

zn % see definition (10) below

– until : x̂n does not change sensibly
– output : x̂n % approximation of x∗

The above algorithm recursively computes the Riemannian barycentre x̂n of
the samples zn generated by a symmetric Metropolis-Hastings algorithm (see [8]).
Here, The Metropolis-Hastings algorithm is implemented in lines (1)--(3).
On the other hand, line (4) takes care of the Riemannian barycentre. Precisely,
if γ : [0, 1] → M is a length-minimising geodesic connecting x̂n−1 to zn, let

x̂n−1 # 1
n

zn = γ (1/n) (10)

This geodesic γ need not be unique.
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The point of using the Metropolis-Hastings algorithm is that the generated
zn eventually sample from the Gibbs distribution PT . The convergence of the
distribution Pn of zn to PT takes place exponentially fast. Indeed, it may be
inferred from [8] (see Theorem 8, Page 36)

‖Pn − PT ‖T V ≤ (1 − p T )n (11)

where ‖ · ‖T V is the total variation norm, and p T ∈ (0, 1) verifies

p T ≤ (vol(M)) inf
x,z

q(x, z) exp(− sup
x

U(x)/T )

so the rate of convergence is degraded when T is small.
Accordingly, the intuitive justification of the above algorithm is the following.

Since the zn eventually sample from the Gibbs distribution PT , and the desired
global minimum x∗ of U is equal to the barycentre x̄T of PT (by Proposition 3),
then the barycentre x̂n of the zn is expected to converge to x∗.

It should be emphasised that, in the present state of the literature, there is
no rigorous result which confirms this convergence zn → x∗ . It is therefore an
open problem, to be confronted in future work.

For a basic computer experiment, consider M = S2 ⊂ R
3, and let

U(x) = −P9(x3) for x = (x1, x2, x3) ∈ S2 (12)

where P9 is the Legendre polynomial of degree 9 [9]. The unique global minimiser
of U is x∗ = (0, 0, 1), and the conditions of Proposition 3 are verified, since U is
invariant by reflection in the x3 axis, which is geodesic symmetry about x∗.
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1

Fig. 1. graph of −P9(x
3)
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Fig. 2. x̂3
n versus n

Figure 1 shows the dependence of U(x) on x3, displaying multiple local min-
ima and maxima. Figure 2 shows the algorithm overcoming these local min-
ima and maxima, and converging to the global minimum x∗ = (0, 0, 1), within
n = 5000 iterations. The experiment was conducted with T = 0.2, and the
Markov kernel Q obtained from the von Mises-Fisher distribution (see [10]).
The initial guess x̂0 = (0, 0,−1) is not shown in Fig. 2.

In comparison, a standard simulated annealing method offered less robust
performance, which varied considerably with the choice of annealing schedule.
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Proofs

The proofs of all results stated in this work are detailed in the extended version,
available online: https://arxiv.org/abs/1902.03885
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