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Abstract. The notion of composite system made up of distinguishable
parties is investigated in the context of arbitrary convex spaces.
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1 Introduction

When dealing with composite systems, one of the most striking features of quan-
tum theories is undoubtedly the existence of non-classical correlations between
subsystems of the given system, a phenomenon known under the name of ‘entan-
glement’.

In the context of standard quantum mechanics [10,24,29], where a physical
system is described by means of a Hilbert space H and the physical states are
density operators on H, entanglement is associated with the fact that the Hilbert
space of a composite system is not the Cartesian product of the Hilbert spaces
of the subsystems as it happens for the phase space of a classical composite
system, but, rather, it is taken to be the tensor product of the Hilbert spaces of
the subsystems.

A more refined formalism for quantum theories is the algebraic formulation
in terms of C∗-algebras [1,12,13,18,26,27]. In this context, a physical system
is described in terms of the C∗-algebra A of (bounded) observables and the
physical states are the mathematical states on A , that is, the positive linear
functionals on A normalized to 1.

The reformulation of quantum theories in terms of C∗-algebras also helps to
clearly see the link between quantum theories and classical probability theory.
Indeed, the space of quantum states and the space of probability distributions on
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a topological/measure space may be described by means of the “same object”,
namely the space of mathematical states on a C∗-algebra. When this algebra is
Abelian (commutative) we obtain the case of classical probability theory, while
when the algebra is non-Abelian, we enter in the quantum realm. Analogously
to what happens in the Hilbert-space formalism of quantum theories, the entan-
glement content of the theory comes from the fact that the C∗-algebra of a
composite system is taken to be a suitable tensor product of the C∗-algebras of
some subsystems.

In this contribution, we want to understand the mathematical requirements
we should impose on the description of the notion of composite system in a
given theoretical framework in order for the tensor product of suitable objects to
necessarily come out. What we have in mind is a rather elementary discussion on
the mathematical features characterizing the relation between composite systems
and tensor products. Accordingly, in order to avoid as much as we can to rely on
the specific traits of some given theoretical framework, we will not focus much
on the technical and interpretational details.

Essentially, we will model the space of states of a physical system by means
of a real, convex space S . This is a very broad theoretical framework of which
the spaces of states of both classical probability theory and quantum theories
are a particular instance. From the operational point of view, this perspective is
motivated by the idea that the states of a physical system are associated with
equivalence classes of preparation procedures yielding the same measurement
statistics, and that inequivalent preparation procedures may be “mixed in arbi-
trary proportions” resulting in operations that may be considered as admissible
preparation procedures (see [9,11,14–16,19–23]). Mathematically speaking, this
instance is then translated in the possibility of taking arbitrary convex combi-
nations of elements in S describing physical states.

From the purely mathematical point of view, the fact that S is a convex
set implies the existence of the vector space S ∗ of real-valued, affine linear
functionals on S , and this space will be the only ingredient, beside S , we will
need in our discussion. Note that S ∗ coincides with the dual space V ∗ of the
vector space V generated by formal linear combinations of elements in S . For
the sake of linguistic simplicity, we define S ∗ to be the dual space of the
convex set S with an evident abuse of nomenclature.

We want to stress that, by focusing only on the convex structure of S and its
dual space S ∗, our analysis clearly applies to both the space of quantum states
and the space of classical probability distributions on a topological/measure
space, while maintaining open the possibility of considering different types of
theories like those considered in the so-called generalized probabilistic theo-
ries (see [2,3,5,17]).

2 Composite Systems and Tensor Products

When describing composite systems from a theoretical point of view, there are,
essentially, two possible perspectives: either we start from the total system and
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then proceed in determining a suitable notion of subsystem, or we start from
the subsystems and then proceed in determining a suitable notion of composite
system. Here, we will investigate the latter case in the context of composite
systems made of distinguishable parties (we refer to [4] for a modern approach
to the former case).

For the purpose of this contribution, we represent a composite system by
means of the family {Sj}j∈[1,...n] of spaces of states of the n subsystems together
with the space S of states of the total system. As said before, we consider
the spaces of states of the subsystems as given, and we want to characterize
the admissible candidates for the convex set of the total system on the basis
of additional constraints associated with the notion of composite system. We
shall not deal with indistinguishable “particles”, i.e., neither Bosons, Fermions
or other parastatistics. These additional aspects would only add complications
without helping in addressing the core problem. If needed, we can include other
types of “statistics” at later time.

First of all, we want to implement a notion of “independence” among the
states (preparation procedures) of the subsystems. Roughly speaking, we want
to formalize the idea according to which there are no constraints among the
preparation procedures of the subsystems, that is, each party is free to prepare
its associated subsystem in any of the possible states independently from the
preparations of the other parties. Mathematically speaking, we implement this
idea by assuming the existence of an injective map

I : S1 × · · · × Sn −→ S (1)

so that for every n-tuple (ρ1, ..., ρn) ∈ S1 × · · · × Sn of states there is a cor-
responding ρ ∈ S representing the n-tuple of independent states (preparation
procedures) as a state of the total system. The notion of independence among
the states of the subsystems (see Eq. (1)) appears also in the context of alge-
braic quantum field theory. For instance, in [25], this condition, together with
a commutativity assumption, is used to prove that the algebra A generated by
the algebras A1 and A2 of observables associated with two space-like separated
spacetime regions is isomorphic with the algebraic tensor product A1⊗A2. Here,
we will obtain a similar result in the framework of convex spaces (of which the
spaces of states of C∗-algebras typical of algebraic quantum field theory form a
subfamily) by replacing the commutativity assumption with an interdependence
condition among the dual spaces of the subsystems (see below).

Before proceeding further, we note that the choice S = S1×· · ·×Sn, where
S is endowed with the convex sum obtained by the component-wise application
of the convex sums of the Sj ’s, is clearly the minimal choice compatible with
the assumption of independence among the states of the subsystems. In this
case, denoting by Vj the vector space canonically generated by Sj by means of
formal linear combinations of elements in Sj , it is clear that S = S1 ×· · ·×Sn

is a subset of the vector space V = ⊕n
j=1Vj . Consequently, the dual space S ∗

of S = S1 × · · · × Sn is just the dual space of V , that is, V ∗ = ⊕n
j=1V

∗
j . In

particular, this means that, for every n-tuple (fa1 , · · · , fan
) with faj

∈ S ∗
j for
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j ∈ [1, ..., n], there is an element fa1,...,an
∈ S ∗ such that

fa1,...,an
(ρ1, · · · , ρn) =

n∑

j=1

faj
(ρj). (2)

Clearly, fa1,...,an
vanishes on the product space S1 × · · · × Sn representing

independent equivalence classes of preparation procedures if and only if faj
= 0

for all j ∈ [1, ..., n]. Intuitively speaking, we may say that the dual spaces of
the subsystems do not “compose” with each other. This means that the system
described by S = S1 × · · · × Sn endowed with the component-wise convex
sum should be interpreted more as a juxtaposition rather than a composition of
systems, and, in general, we want to avoid the possibility of this convex set as
an admissible space of states.

At this point we may say that this is exactly what happens in the groupoid
interpretation of Quantum Mechanics [6–8]. There are two natural operations
with groupoids: disjoint union and direct product. The first corresponds to jux-
taposition (the corresponding algebra and space of states are direct sums) and
the second is the proper composition (tensor product).

A possible way to overcome this instance and force the subsystems to “com-
pose” is to implement a notion of interdependence for the dual spaces of the
subsystems. Before introducing this notion of interdependence, we want to point
out that there is no clear and unambiguous physical interpretation for it at
this moment because the theoretical framework of arbitrary convex spaces does
not allow a clear and unambiguous physical interpretation for the dual spaces.
Having cleared this point, we proceed by introducing the interdependence con-
dition among the dual spaces of the subsystems. First of all, we consider the
injective map we introduced in Eq. (1) implementing the notion of independence
among the states of the subsystems. Then, we should implement the idea that,
while a dual space possesses a “linearity” property, our “composite” objects are
“multilinear”. Accordingly, we assume the existence of an injective map

I∗ : S ∗
1 × · · · × S ∗

n −→ S ∗ (3)

such that, introducing the notation

fa1,...,an
:= I∗(fa1 , · · · , fan

), (4)

we have

fa1,...,an
(ρ) =

n∏

j=1

faj
(ρj), (5)

for every ρ = I(ρ1, · · · , ρn) ∈ I(S1 × · · · × Sn) ⊂ S . We define elements of
this type in S ∗ to be simple . The simple element fa1,...,an

defined by Eq. (5)
vanishes on (the injective image of) S1 ×· · ·×Sn whenever there is at least one
j ∈ [1, ..., n] for which faj

= 0. This is in sharp contrast with what happens in the
case S = S1×· · ·×Sn (see Eq. (2)) where we need faj

= 0 to be true for all j ∈
[1, ..., n] in order for the associated element in S ∗ to vanish on S1×· · ·×Sn. It is
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in this sense that we interpret Eq. (5) as an interdependence relation among the
dual spaces of the subsystems. There is a fully mature theory of non-commutative
measure spaces called “free probability theory” (essentially, C∗-algebras with a
tracial state), where it is introduced the notion of independence in a genuine non-
commutative way and, what is more important, the notion of freeness (see [28]).
We believe that there is a connection between the notion of independence and
freeness as defined in the context of free probability theory and the notions of
independence and interdependence introduced above, however, we will analyse
this connection elsewhere.

Now, we note that the existence of simple elements allows us to introduce the
notion of separable and entangled states as follows. First of all, consider the set
Sfs composed by all those ρ ∈ S such that, for every simple element fa1,...,an

∈
S ∗, there is a finite N , there are n-tuples (ρj1, ..., ρ

j
n) with j = 1, ..., N and ρjk

in Sk for every k ∈ [1, ..., n], and there is a probability vector p = (p1, ..., pN )
such that

(fa1,...,an
) (ρ) =

N∑

j=1

pj

n∏

k=1

fak
(ρjk). (6)

Elements in Sfs are called finitely-separable . Then, the space of separable
elements Ss is given by the closure of Sfs in S with respect to a suitable
topology that, in general, will depend on the specific situation considered. For
instance, if S is the space of states of a C∗ algebra A (i.e., the space of positive,
normalized linear functionals on A ), the closure of Sfs in S is taken with
respect to the weak* topology on S induced by A when thought of as a subset
of its double dual A ∗∗. It is not hard to see that the space of separable elements
is a convex cone in S . An element in S which is not separable will be called
entangled , and, in general, composite systems admit entangled states. In finite
dimensions, classical probability theory is the only case in which there are no
entangled states.

Below, we will show that the product convex set S = S1×· · ·×Sn considered
above is ruled out as a valid candidate because the interdependence condition
among the dual spaces of the subsystems forces S ∗ to “contain” a copy of the
tensor product ⊗n

j=1 S
∗
j of the dual spaces of the single subsystems. For this

purpose, we define W ⊆ S ∗ to be the vector space obtained taking arbitrary
but finite linear combinations of simple elements in S ∗, and we prove that W is
isomorphic, as a vector space, with the (algebraic) tensor product ⊗n

j=1 S
∗
j by

exploiting the universal property of the (algebraic) tensor product. Essentially,
we will see that, given any vector space X, and any multilinear map

φ : S ∗
1 × · · · × S ∗

n −→ X, (7)

there is a unique linear map

Φ : W −→ X (8)

such that
φ = Φ ◦ I∗. (9)
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Recall that the range of I∗ is in W because it coincides with the set of simple
elements generating W . We start defining Φ on the simple elements in W by
setting

Φ(fa1,...,an
) := φ(f1

a1
, · · · , fn

an
). (10)

Since the set of simple elements is a generating set for W , we can extend Φ
to the whole W by linearity so that, by construction, we have that Eq. (9) holds.
Furthermore, again because the set of simple elements is a generating set for W ,
the map Φ is unique by construction. Consequently, the universal property of
the algebraic tensor product implies the existence of a vector space isomorphism
between W and ⊗n

j=1 S
∗
j . It is important to note that, in general, W is only a

proper subspace of S ∗.
Now, it is not hard to see that a convex set S generating a vector space

V which is isomorphic with the tensor product ⊗n
j=1Vj of the vector spaces

generated by the single Sj ’s may always be interpreted as the convex set of a
composite system implementing the independence condition among states of
the subsystems (see Eq. (1)) and with the interdependence condition among
the dual spaces of the subsystems (see Eq. (5)). Indeed, we can define the map
I : S1 × · · · × Sn −→ S given by

(ρ1, · · · , ρn) 	→ I(ρ1, · · · , ρn) = ρ1 ⊗ · · · ⊗ ρn, (11)

and a general result from linear algebra assures us that ⊗n
j=1 S

∗
j is always a

subset of S ∗ (recall that we defined the dual space of a convex set to be the
dual space of the vector space generated by the convex set itself). Furthermore,
in the finite-dimensional case where dim(Vj) < ∞ for all j ∈ [1, ..., n], we have
that

W ∼= ⊗n
j=1 S

∗
j

∼= (⊗n
j=1Vj

)∗
, (12)

where Vj is the vector space generated by Sj . Consequently, choosing the vector
space V generated by S to be the tensor product ⊗n

j=1Vj is equivalent to impose
the minimality condition S ∗ = W for the dual space of S . Note that this
is no longer true in the infinite-dimensional case because the dual space of a
tensor product need not be the tensor product of the dual spaces. However, it is
reasonable to say that the subleties associated with infinite dimensions requires
more structures to be handled, and the framework of arbitrary convex spaces is
too broad to provide these structures.

As a final comment, let us point out that, even if we consider the finite-
dimensional case with the minimality condition S ∗ = W , there is no way to sin-
gle out unambiguously an explicit candidate for S without introducing further
assumptions. Again, this should not come as a surprise because the theoretical
framework of arbitrary convex spaces considered here is too broad.

3 Conclusions

We investigated the notion of composite system made of distinguishable parties
in the context of physical theories for which the admissible spaces of states are
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real, convex spaces. Essentially, we modelled a composite system by means of
the family {Sj}j∈[1,...n] of spaces of states of the n subsystems together with
the space S of states of the total system “endowed” with two mathematical
constraints. First of all, we imposed an independence relation among the states
of the subsystems in terms of an injective linear map I : S1 × · · · × Sn −→ S ,
where S is the space of states of the total system, and S1 × · · · × Sn is the
Cartesian product of the spaces of states of the subsystems. From the operational
point of view, the existence of the map I should be thought of as guaranteeing
that each party of the system is free to prepare its associated subsystem in any
of the possible states independently from the preparations of the other parties.
Then, we introduced an interdependence condition among the dual spaces of the
subsystems (see Eq. (5)). We saw that these two mathematical conditions are
enough to introduce the notion of separable and entangled states in the context
of arbitrary convex spaces, and to prove that the dual space S ∗ of a composite
system must contain a copy of the tensor product ⊗n

j=1S
∗
j of the dual spaces of

the single subsystems. Furthermore, in the finite-dimensional case, S generates
a vector space V which is isomorphic with the tensor product ⊗n

j=1Vj of the
vector spaces generated by the single subsystems if and only if S ∗ satisfies a
minimality condition.

We must stress that the interdependence condition expressed by Eq. (5) has
not yet a clear physical interpretation, but its mathematical expression points
toward a connection with the notions of independence and freeness as defined in
the context of free probability theory (see [28]) which will be explored elsewhere.
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