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Abstract. Quantum information geometry studies families of quantum
states by means of differential geometry. A new approach is followed. The
emphasis is shifted from a manifold of strictly positive density matrices
to a manifold M of faithful quantum states on a von Neumann algebra of
bounded linear operators working on a Hilbert space. In order to avoid
technicalities the theory is developed for the algebra of n-by-n matrices.
A chart is introduced which is centered at a given faithful state ωρ. It
maps the manifold M onto a real Banach space of self-adjoint operators
belonging to the commutant algebra. The operator labeling any state
ωσ of M also determines a tangent vector in the point ωρ along the
exponential geodesic in the direction of ωσ. A link with the theory of
the modular automorphism group is worked out. Explicit expressions for
the chart can be derived in terms of the modular conjugation and the
relative modular operators.
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1 Introduction

In quantum information theory [1] the state of the system is described either by
a wave function, which is a normalized element of a Hilbert space, or, more gen-
erally, by a density matrix. Density matrices are also used in quantum statistical
physics. The equilibrium state of a quantum system at the inverse temperature
β is given by the density matrix

ρβ =
1

Z(β)
exp(−βH).

Here, H is a Hermitian matrix, called the Hamiltonian, and Z(β) =
Tr exp(−βH) is the normalizing factor and is called the partition sum. The
expression is the quantum analogue of a Boltzmann-Gibbs distribution. It is the
prototype of a model belonging to the quantum exponential family.
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Information geometry deals with the application of differential geometry to
statistical models. A quantum version of Amari’s dually flat geometry [2] was
studied by Hasegawa [3,4], Jenčová [5] and others. The approach of Pistone and
Sempi [6] was transferred to the quantum setting by Streater [7,8].

In [9], the present author proposes to shift the emphasis from manifolds of
density matrices to manifolds of states on a von Neumann algebra. The intention
of this move is to get rid of tracial states and, by doing so, to facilitate further
generalizations. However, both [9] and the present work are limited to the case of
a finite-dimensional Hilbert space in order to avoid technicalities. A first attempt
to advance with the general case is found in [10].

The next three sections review the mathematical formalism, the notion of
a manifold of quantum states and some elements of the theory of the modular
automorphism group. Section 5 derives an explicit expression for the positive
operators wich belong to the commutant algebra and characterize the states
of the manifold. In Sect. 6 the vectors tangent to an exponential geodesic are
characterized. The paper finishes with a short discussion in Sect. 7.

2 The GNS Representation

The space of n-by-n matrices forms a Hilbert space HHS for the Hilbert-Schmidt
inner product

〈A,B〉HS = Tr B∗A.

Here, B∗ is the adjoint matrix, i.e. the Hermitian conjugate of the matrix B.
Operators on HHS are sometimes called superoperators because the matrices are
themselves already operators on the Hilbert space C

n. An alternative view is
offered by the Gelfand-Naimark-Segal (GNS) representation. It is more powerful
and very general. The starting point is the remark that the Hilbert-Schmidt
inner product can be written as

〈A,B〉HS = nTr ρ0B
∗A,

where the density matrix ρ0 is the identity matrix I divided by n.
By definition, a density matrix ρ is positive and has trace equal to one:

Tr ρ = 1. By the GNS theorem there exists a Hilbert space H, a vector Ωρ in
H and a *-representation of the algebra A of n-by-n matrices as operators on H
such that

Tr ρA = (AΩρ, Ωρ) for all A ∈ A.

The map A �→ ωρ(A) = (AΩρ, Ωρ) belongs to the dual A∗ of A and is called
a state. Its defining properties are that ωρ(A∗A) ≥ 0 for all A (positivity) and
ωρ(I) = 1 (normalization). The state is said to be faithful if ωρ(A∗A) = 0 implies
A = 0. This is the case if the density matrix ρ is non-degenerate.

In the case of a non-degenerate density matrix ρ the GNS representation can
be made explicit as follows. The Hilbert space H is the tensor product Cn ⊗C

n.
Each matrix A is replaced by the matrix A ⊗ I, which has dimension n2-by-n2.
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Choose an orthonormal basis ψj , j = 1, 2, · · · , n of eigenvectors of ρ. One has
ρψj = pjψj with eigenvalues pj > 0. Let

Ωρ =
∑

j

√
pjψj ⊗ ψj .

A short calculation then shows that for any n-by-n matrix A one has ωρ(A) =
Tr ρA = (AΩρ, Ωρ).

The main advantage of this representation of the state ω is that the commu-
tant A′ of the algebra A is explicitly present. It consists of all matrices of the
form I ⊗ A. They clearly commute with all matrices of the form A ⊗ I. In par-
ticular, with any density matrix σ there corresponds a unique positive operator
Xσ in the commutant A′ such that

ωσ(A) ≡ Tr σA = (AX1/2
σ Ωρ,X

1/2
σ Ωρ) for all A ∈ A. (1)

3 The Manifold

The manifold M consists of all states ωσ on the von Neumann algebra A, where
σ is any non-degenerate density matrix of dimension n-by-n. Guided by recent
works of Pistone et al. [11,12] a chart χρ is introduced which is centered at
a state ωρ, corresponding with an arbitrary chosen but fixed non-degenerate
density matrix ρ. For any state ωσ in M the chart defines an element χρ(ωσ) of
the commutant A′. Its construction follows later on in Sect. 6.

If t �→ ωt ∈ M is a smooth curve then tangent vectors ft are defined by

ft(A) =
d
dt

ωt(A), A ∈ A. (2)

They belong to the dual A∗ of the algebra A and satisfy ft(I) = 0 and ft(A∗) =
ft(A). The tangent plane at the point ωρ is denoted TρM and consists of all
linear functionals fK of the form

fK(A) = (AΩρ,KΩρ), A ∈ A,

where K belongs to the Banach space Bx of all self-adjoint elements of the
commutant algebra A′ and satisfies (Ωρ,KΩρ) = 0.

The metric chosen on the tangent plane is that of Bogoliubov (see for instance
[1,2,13,14]). It can be derived from Umegaki’s relative entropy [15]

D(σ||τ) = Trσ [log σ − log τ ] .

by taking twice a derivative. The metric is not discussed in the present paper.
Details can be found in [9].

A geodesic corresponding to the exponential connection and connecting the
state ωσ ∈ M to the state ωρ at the center is of the form t �→ ωσ,t, where

ωσ,t(A) = TrσtA, A ∈ A, with
log σt = log ρ + tHσ − ζ(tHσ)

Hσ = log σ − log ρ,

ζ(tHσ) = log Tr exp(log ρ + tHσ). (3)
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The chart χρ is constructed in such a way that the tangent in the point ωρ equals
the linear functional fK with K = χρ(ωσ).

4 Relative Modular Operators

In [9] the chart χρ is constructed in an indirect manner. A more direct construc-
tion is given below in Sect. 6. It is based on Araki’s notion of relative modular
operators [16,17].

Let S denote the modular conjugation operator [18] determined by the vector
Ωρ. It is the anti-linear operator defined by SAΩρ = A∗Ωρ for all A in A. The
modular operator Δ equals S∗S and does not depend on the specific choice of
the vector Ωρ representing the state ωρ. The polar decomposition of S reads
S = JΔ1/2. The operator J satisfies J∗ = J , J2 = I. An important result
of Tomita-Takesaki theory, needed further on, states that JAJ belongs to the
commutant algebra A′ if and only if A belongs to A.

Given any vector Ξ in the Hilbert space H the relative modular conjugation
operator SΞ,Ωρ

is defined by

SΞ,Ωρ
AΩρ = A∗Ξ, A ∈ A.

For convenience, let us introduce the notation Sσ ≡ SΞ,Ωρ
when Ξ = X

1/2
σ Ωρ.

The relative modular operator Δσ is then given by

Δσ = S∗
σSσ = S∗XσS = Δρ−1σ.

Consider now the geodesic t �→ ωσ,t given by (3). Because Δρ−1 commutes
with σt it follows from Δσ,t = Δρ−1σt that

log Δσ,t = log Δρ−1 + log ρ + tHσ − ζ(tHσ)
= log Δ + tHσ − ζ(tHσ). (4)

One concludes that the operator Hσ which generates the exponential geodesic
also describes the relative modular operator Δσ,t for all states ωσ,t along the
geodesic.

5 Explicit Expressions

In [9] the operator Xσ, which characterizes the state ωσ via (1) is defined in an
indirect manner by requiring that

XσΩρ = σρ−1Ωρ.

An explicit expression is given by the following proposition.

Proposition 1. The operator Xσ satisfies Xσ = Sρ−1σS. The relative modular
operator Δσ satisfies

Δσ = S∗XσS and Δ1/2
σ = (ρ−1Δ)1/2σ1/2.
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Proof. One has for all A in A
XσAΩρ = AXσΩρ = Aσρ−1Ωρ = Sρ−1σSAΩρ

Because Ωρ is cyclic for A this implies that Xσ = Sρ−1σS. Next use that
ρ−1Δ = Δρ−1 belongs to the commutant A′ to obtain

Xσ = JΔ1/2ρ−1σS = JΔ−1/2[Δρ−1]σS = S∗
(
[Δρ−1]1/2σ1/2

)2

S.

Finally, one has for all A in A
SσAΩρ = A∗X1/2

σ Ωρ = X1/2
σ A∗Ωρ = X1/2

σ SAΩρ.

This implies Sσ = X
1/2
σ S and hence

Δσ = S∗
σSσ = S∗XσS =

(
[Δρ−1]1/2σ1/2

)2

.

�

6 The Chart

In [9] the operator χρ(ωσ) belonging to the commutant A′ is defined by the
relation

χρ(ωσ)Ωρ =
∫ 1

0

du ρu [log σ − log ρ + D(ρ||σ)] ρ−uΩρ. (5)

Its main property is that, given an exponential geodesic t �→ ωσ,t of the form
(3), the tangent vector at t = 0 satisfies

d
dt

∣∣∣∣
t=0

ωσ,t(A) = (AΩρ, χρ(ωσ)Ωρ) , A ∈ A. (6)

There is a one-to-one correspondence between the tangent vectors of TρM

and the elements of the Banach space Bx.

Alternative proof of (6)

Starting point is the following relation between any state ωσ in the manifold M

and the corresponding relative modular operator Δσ

ωσ(A) = (AΩρ,XσΩρ) = (AΩρ, S
∗ΔσSΩρ), A ∈ A. (7)

Consider a geodesic t �→ ωσ,t of the form (3). The relative modular operator
Δσ,t satisfies

d
dt

Δσ,t =
d
dt

exp (log Δ + tHσ − ζ(tHσ)) .
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Use the identity

d
dt

∣∣∣∣
t=0

eAH+tH =
∫ 1

0

du euAHe(1−u)A

to obtain

d
dt

∣∣∣∣
t=0

Δσ,t =
∫ 1

0

duΔu

(
Hσ − d

dt
ζ(tHσ)

∣∣∣∣
t=0

)
Δ1−u

=
[∫ 1

0

du ρuHσρ−u − d
dt

ζ(tHσ)
∣∣∣∣
t=0

]
Δ. (8)

From (5) one obtains

χρ(ωσ) = S

(∫ 1

0

du ρu [H + D(ρ||σ)] ρ−u

)∗
S.

Combine this with
d
dt

∣∣∣∣
t=0

ζ(tHσ) = −D(ρ||σ).

and (8) to obtain

d
dt

∣∣∣∣
t=0

Δσ,t = S∗χρ(ωσ)S. (9)

Putting the pieces together one obtains (6) from (7) and (9)

7 Discussion

The manifold M of faithful states on the von Neumann algebra A of n-by-n
matrices is studied. An arbitrary state ωρ in M is selected as the reference state.
Other states in M are labeled with operators in the commutant of the G.N.S.-
representation of the selected state. Tangent vectors are linear functionals on
the von Neumann algebra. They are also labeled with operators belonging to the
commutant algebra. In particular, the vectors tangent to an exponential geodesic
are characterized. By the use of the theory of the modular automorphism group
[18] and the relative modular operators [16,17] explicit expressions are obtained
for operators which were introduced already in a previous paper [9]. The explicit
expressions should help in generalizing the present approach to manifolds of
states on arbitrary σ-finite von Neumann algebras.

The expression (4) for the logarithm of the relative modular operator is affine
along the exponential geodesic, up to a scalar function which is due to normaliza-
tion. It resembles the similar expression (3) for the density matrix. Both use the
operator Hσ = log σ − log ρ as the generator of the geodesic connecting the state
ωσ to the state ωρ. The map ωσ �→ Hσ labels the states of the manifold with
operators belonging to the algebra A. On the other hand, the chart χρ, defined
in Sect. 6, uses operators belonging to the commutant algebra A′. This chart
determines in a direct manner the vectors tangent to the exponential geodesics
at the state ωρ.
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