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Abstract. We discuss some modern perspectives about the mathemat-
ical formalization of colorimetry, motivated by the analysis of a ground-
breaking, yet poorly known, model of the color space proposed by H.L.
Resnikoff and based on differential geometry. In particular, we will under-
line two facts: the first is the need of novel, carefully implemented,
psycho-physical experiments and the second is the role that Jordan
algebras may have in the development of a more rigorously founded
colorimetry.
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1 Introduction

In 1974, H.L. Resnikoff published a revolutionary paper about the geometry of
the space of perceived colors P [12]. Starting from the axiomatic set for col-
orimetry provided by Schrödinger [15], he added a new axiom, the homogeneity
of P with respect to a suitable group of transformations, and proved that only
two geometrical structures were coherent with the new set of axioms: the first is
isomorphic to the well-known tristimulus flat space R

+ × R
+ × R

+ ≡ P1, while
the second, totally new, is isomorphic to R

+ × SL(2,R)/SO(2) ≡ P2, thus con-
firming the interest about hyperbolic geometry in colorimetry, already pointed
out by Yilmaz in [21].

Resnikoff was also able to single out a unique Riemannian metric on the
two geometrical structures by requiring it to be invariant with respect to the
group transformations: the resulting metric on P1 coincides with the well-known
Helmholtz-Stiles flat metric [20], while that on P2 is constant negative curvature
Rao-Siegel metric, which is analogous to the Fisher metric in the geometric
theory of information [1].
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Finally, Resnikoff provided an elegant framework to treat the two cases P1

and P2 as special instances of a unique theory based on Jordan algebras. In
spite of its elegance and innovative character, Resnikoff’s and Yilmaz’s paper
remained practically ignored until today, receiving only a few quotation since
their publication.

With this contribution, we would like to share our ideas about the influence
that these pioneers might have for the development of a modern, geometry-based,
colorimetry. The aim is both to overcome the lack of mathematical rigor that
affects the foundation of this discipline and to create a theory more suited for
color image processing applications.

2 Description of Resnikoff’s Model of Color Space

As we said in the introduction, in the paper [12], Resnikoff analyzed the geomet-
rical properties of the space of perceived colors P with a high level mathematical
rigor. He started from Schrödinger’s axioms [15] for P:

Axiom 1 (Newton 1704): if x ∈ P and α ∈ R
+, then αx ∈ P.

Axiom 2: if x ∈ P then it does not exist any y ∈ P such that x + y = 0.
Axiom 3 (Grassmann 1853, Helmholtz 1866): for every x, y ∈ P and for every
α ∈ [0, 1], αx + (1 − α)y ∈ P.
Axiom 4 (Grassmann 1853): every collection of more than three perceived
colors is a linear dependent family in the vector space V spanned by the
elements of P.

The axioms imply that P is a convex cone embedded in a vector space V of
dimension 3, for standard observers non affected by color blindness, as it will be
implicitly assumed in the following part of the paper.

Resnikoff added another axiom, that of local homogeneity of P with respect
to changes of background. To correctly introduce this axiom, it is worthwhile
showing the observational arrangement that he considered, which is depicted in
Fig. 1: a standard observer is watching a simple color stimulus embedded in a
uniform background.

Fig. 1. The observational arrangement considered by Resnikoff.
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When the background of the color stimulus is modified, our perception of the
stimulus changes. Resnikoff identified the change of background transformations
B with the following group:

GL+(P) := {B ∈ GL(V ) : det(B) > 0, and B(x) ∈ P ∀x ∈ P},

where GL(V ) is the group of invertible linear operators on V , the requirements
det(B) > 0 and B(x) ∈ P guarantee that these transformations preserve the
orientation of the cone and that P is stable under their action.

The previous observation about how a change of background modifies the
perception of the colors stimulus can thus be formalized by saying that P is
locally homogeneous with respect to GL+(P). However, thanks to the convex
nature of P, it is clear that local homogeneity implies global homogeneity.

For this reason, Resnikoff postulates a fifth axiom on the structure of the
color space:

Axiom 5 (Resnikoff 1974): P is globally homogeneous with respect to the
group of background transformations GL+(P).

Starting from the set of axioms 1–5 and by using standard results from the
theory of Lie groups and algebras, Resnikoff managed to show that the only two
geometrical structures compatible with these axioms are:

P1 � R
+ × R

+ × R
+, (1)

or
P2 � R

+ × SL(2,R)/SO(2), (2)

where SL(2,R) is the group of 2 × 2 matrices with real entries and determinant
+1 and SO(2) is the group of matrices that perform rotations in the plane R

2.
The first geometrical structure, P1 agrees with the usual trichromatic space,

such as RGB, XYZ, and so on. The second one, P2, on the contrary, is a totally
new geometrical structure for the space P.

If a Riemannian metric on P existed, then the difference between the per-
ceived colors x, y ∈ P would be calculated with the integral

d(x, y) =
∫

γ

ds, γ(0) = x, γ(1) = y, (3)

where γ is the unique geodesic arc between x and y.
Resnikoff proved that the only Riemannian GL+(P)-invariant metric on P1 is

precisely the Helmholtz-Stiles metric (obtained with a totally different method),
i.e.,

ds2 = α1

(
dx1

x1

)2

+ α2

(
dx2

x2

)2

+ α3

(
dx3

x3

)2

, (4)

where xj ∈ R
+ and αj are positive real constants for j = 1, 2, 3.
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Turning his attention to P2, he showed that the only Riemannian GL+(P)-
invariant metric on it can be written like this:

ds2 = tr(x−1dxx−1dx), (5)

which is equivalent to the Rao-Siegel metric [4,17].
Resnikoff concluded his paper by showing that the models P1 and P2 are

particular instances of a unified framework based on the use of Jordan algebras.
We recall that a Jordan algebra A is an algebra over a field whose multiplication ◦
is commutative but non-associative and it satisfies the so-called Jordan’s identity:

(x ◦ y) ◦ x2 = x ◦ (y ◦ x2), (6)

for all x and y in A. Such an algebra is power-associative in the sense that the
sub-algebra generated by any of its element is associative.

In the Sect. 3 we will underline some problems that remained opened since the
appearance of Resnikoff’s paper, while in Sect. 4 we will discuss how Resnikoff’s
use of Jordan algebras was ahead of his time and it can be rescued from oblivion
and used to define the colorimetric attributes of a color.

3 Missing Pieces in Resnikoff’s Model from the
Viewpoint of Modern Colorimetry

Resnikoff’s paper remains, after more than 40 years since its publication, an
example of elegance, originality and independent research. However, in the light
of nowadays knowledge about color perception, there are three issues that must
be discussed carefully.

The first, and more delicate, one is the hypothesis of linearity for the back-
ground transformations B ∈ GL+(P). Resnikoff himself, in a subsequent paper
[13] recognized that this hypothesis is a very strong one with the sentence: ‘the
least verified aspect of Axiom 5 is its assertion of the linearity of transitive group
of changes of background ’.

Without linearity, the whole mathematical structure built by Resnikoff to
arrive to the identification of P1 and P2 as the only two possible geometrical
representations of P loses its foundation. Thus, a carefully developed psycho-
physical experiment based on color matching [6] is needed to check the linearity
of background transformations B ∈ GL+(P).

An original experiment to check additivity, i.e. the fact that B(x + y) color
matches B(x) + B(y), would be the following: on one side, we superpose the
lights x and y which generate the perceived colors x and y, respectively, with
respect to the same background b, then we perform a change of background
with the transformation B and we call b′ the new background. Finally, we color
match what we obtain, this will give us the perceived color B(x + y) ∈ P which
represents x + y in the context b′.

On the other side, we separately perform the change of context B on x and y
and we color match the results, obtaining B(x) ∈ P and B(y) ∈ P, respectively.
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We then match B(x) with the physical light x′ and B(y) with the physical light
y′. If the color sensations produced by x + y in the background b′ matches that
of x′ + y′ in the same background, then the change of context is additive.

To test homogeneity, i.e. the fact that B(αx) color matches αB(x), we must
use a similar procedure for at least a sufficiently large range of coefficients α ∈ R.

The question about how large this range of coefficients must be leads us
directly to the second issue, which is shared by any model of visual perception.
We are referring to the fact that Axiom 1, i.e. the fact that P is an infinite
cone, is only an idealization: for any x ∈ P and very large α, αx will cease
to be perceived, and this it will not belong to P anymore, because the retinal
photoreceptors will be firstly saturated and then permanently damaged [16].
Similarly, for α �= 0, but α � 0, αx will firstly switch the human visual system
to mesopic and then scotopic vision via the Purkinje effect [8], and then it will
fall below the threshold limit to be perceived. Thus, more than an infinite cone,
P has the structure of a truncated cone. In classical colorimetry, one bypasses
this last observation by working far from these limits, however, in order to build
a modern theory of colorimetry we must start taking into account more seriously
the lower and upper perceptual bound.

The third issue about Resnikoff’s model is the lack of locality, i.e. the fact the
observational configuration considered, that of Fig. 1 is a over-simplified version
of a real-world visual condition. Everyday vision deals with what is commonly
called ‘color in context’, i.e. the fact that a non-uniform background strongly
influences color perception, this phenomenon is referred to as color induction
[18]. Actually, many papers has been emphasized the role of context for color
vision to the point that a standalone definition of the color of a surface, without
the specification of the context in which the surface is embedded does not make
sense anymore: color is color in context [7,10,11,14].

This observation implies that the Resnikoff model, and any other color per-
ception model based on the observational configuration of Fig. 1, can only be
viewed as a first step towards a local theory of color, mathematically similar to a
field theory. A more thorough understanding of the color induction phenomenon
and properties as color constancy, i.e. the robustness of color perception with
respect to changes of illumination [10] or the invariance of saturation perception
for monochromatic light stimuli [21], are likely to play a fundamental role in the
construction of this kind of color field theory.

4 On the Role of Jordan Algebras in Colorimetry

The second part of [12] devoted to Jordan algebras may suggest that Resnikoff
had already a quantum interpretation of his new hyperbolic model. Jordan alge-
bras are non-associative commutative algebras that have been classified by Jor-
dan, Von Neumann and Wigner [9] under the assumptions that they are of finite
dimension and formally real. They are considered as a fitting alternative to the
usual associative non-commutative framework for the geometrization of quan-
tum mechanics. One of the main motivation to introduce Jordan algebras in
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our context is Koecher-Vinberg theorem which states that every open convex
regular homogeneous and self-dual cone is the interior of the positive domain of
a Jordan algebra [5]. From a quantum viewpoint, this means that such a cone is
the set of positive observables of a quantum system.

Contrary to Resnikoff, one may postulate at first that P can be described
from the state space of a quantum system characterized by a formally real Jordan
algebra A of real dimension 3, according to the dimension of P. Such an algebra
A is necessarily isomorphic to one of the following two: either R ⊕ R ⊕ R or
H(2,R), which is the algebra of real symmetric 2 × 2 matrices, with Jordan
product given by

x ◦ y =
1
2
(xy + yx). (7)

The classification by Resnikoff can be simply recovered by taking the symmetric
cone of the positive elements of A [5].

Let us, in particular, concentrate on the geometrical structure P2 of the color
space: the algebra H(2,R) is isomorphic to the so-called spin factor R ⊕ R

2 via
the transformation defined by

(α + v) 	−→
(

α + v1 v2
v2 α − v1

)
, (8)

with α ∈ R and v = (v1, v2) ∈ R
2, where v1 and v2 are the components of v with

respect to the canonical basis of R2. One may consider the spin factor R ⊕ R
2

as a 3-dimensional Minkowski space-time equipped with the metric

(α + v) · (β + w) = αβ − 〈v, w〉, (9)

where α and β are reals and v and w are vectors of R2. Let us also recall that
the light-cone C of R ⊕ R

2 is the set of elements x = (α + v) that satisfy

x · x = 0, (10)

and that a light ray is a 1-dimensional subspace of R⊕R
2 spanned by an element

of C. It is clear that every light ray is spanned by a unique element of the form
(1 + v) with v a unit vector of R

2 and, therefore, that the space of light rays
coincides with the projective real space P1(R). In other words, we have the
following result.

Proposition 1. There is a one to one correspondence between the light rays of
the spin factor R⊕R

2 and the rank 1 projections of the Jordan algebra H(2,R).

The correspondance is given by

(1 + v) 	−→ 1
2

(
1 + v1 v2

v2 1 − v1

)
. (11)

This correspondence has a meaningful interpretation: the light rays of the
spin factor R ⊕R

2, as a Minkowski space-time of dimension 3, are precisely the
pure states of the algebra H(2,R), as a quantum system over R

2.
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A state of A is a linear functional 〈·〉 : A −→ R that is nonnegative and
normalized, i.e. 〈1〉 = 1. It can be shown that the states of A are given by
density matrices, namely by the elements of H(2,R) that are non-negative and
have trace 1 [2]. They correspond precisely to the elements x = (1 + v)/2 of the
spin factor with ‖v‖ ≤ 1. The pure states, i.e those which can be characterized
as projections, form the boundary of this disk since, for pure states, it holds that
‖v‖ = 1. It is clear that this boundary can be identified with P1(R). Contrary
to the usual context of quantum mechanics, the system that we consider is real,
i.e. the algebra H(2,C) is replaced by H(2,R).

This system is a so-called rebit, a real qubit [2], that has no classic physical
interpretation because there is no space with a rotation group of dimension
two. As explained in the sequel, it appears that this kind of system is relevant to
explain color perception. We refer also to [19] for information on real-vector-space
quantum theory and its consistency regarding optimal information transfer.

An element ρ of H(2,R) is a state density matrix if and only if it can be
written as:

ρ(v1, v2) =
1
2
(Id2 + v · σ), (12)

where σ = (σ1, σ2) with:

σ1 =
(

1 0
0 −1

)
σ2 =

(
0 1
1 0

)
, (13)

and v = v1e1 + v2e2 is a vector of R2 with ‖v‖ ≤ 1. The matrices σ1 and σ2 are
Pauli-like matrices. In the usual framework of quantum mechanics, the Bloch
body [2], is the unit Bloch ball in R

3. It represents the states of the two-level
quantum system of a spin-12 particle, also called a qubit. In the present context,
the Bloch body is the unit disk of R2 associated to a rebit.

More precisely, let us consider the four state vectors:

|u1〉 =
(

1
0

)
, |d1〉 =

(
0
1

)
, |u2〉 =

1√
2

(
1
1

)
, |d2〉 =

1√
2

(−1
1

)
. (14)

We have:
σ1 = |u1〉〈u1| − |d1〉〈d1|, σ2 = |u2〉〈u2| − |d2〉〈d2|. (15)

The state vectors |u1〉 and |d1〉, resp. |u2〉 and |d2〉, are eigenstates of σ1, resp.
σ2, with eigenvalues 1 and −1. Using polar coordinates v1 = r cos θ, v2 = r sin θ,
we can write ρ(v1, v2) as:

ρ(r, θ) =
1
2

(
1 + r cos θ r sin θ

r sin θ 1 − r cos θ

)

=
1
2

{(1 + r cos θ)|u1〉〈u1| + (1 − r cos θ)|d1〉〈d1|
+ (r sin θ)|u2〉〈u2| − (r sin θ)|d2〉〈d2|} .

(16)

In particular, every pure state density matrix can be written as:

ρ(1, θ) = |(1, θ)〉〈(1, θ)|, (17)
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with:
|(1, θ)〉 = cos(θ/2)|u1〉 + sin(θ/2)|d1〉. (18)

This means that we can identify the pure state density matrices ρ(1, θ) with
the state vectors |(1, θ)〉 and also with the points of the unit disk boundary of
coordinate θ. More generally, every state density matrix can be written as a
mixture:

ρ(r, θ) = ρ0 +
r cos θ

2
(ρ(1, 0) − ρ(1, π)) +

r sin θ

2
(ρ(1, π/2) − ρ(1, 3π/2)) , (19)

with:

ρ0 =
1
2

(
1 0
0 1

)
. (20)

Such a mixture is given by the point of the unit disk of polar coordinates (r, θ).
It is important to notice that the four state density matrices ρ(1, 0), ρ(1, π),

ρ(1, π/2) and ρ(1, 3π/2) correspond to two pairs of state vectors (|u1〉, |d1〉),
(|u2〉, |d2〉), the state vectors |ui〉 and |di〉, for i = 1, 2, being linked by the “up
and down” Pauli-like matrix σi. It can be shown that this Bloch disk coincides
with Hering’s disk given by the color opponency mechanism. Details will appear
elsewhere [3].

Among all the states, the normalized identity ρ0 = (1 + 0)/2 = 1/2I2 plays
a significant role: it is the state of maximal von Neumann entropy. It is charac-
terized by:

ρ0 = argmax
ρ

(−Trace(ρ log ρ)). (21)

Actually, −Trace(ρ0 log ρ0) = log 2 and −Trace(ρ log ρ) = 0 for a pure state ρ.
This quantum interpretation allows us to define the three main attributes of

a color, without any reference to physical colors or even to an observer. In fact,
we can define a perceived color as a non-negative normalized element (α + v)/2
of the spin factor R ⊕ R

2. Nonnegativity is equivalent to α2 ≥ ‖v‖2, so that a
perceived color can be identified with a time-like element of the 3-dimensional
Minkowski space-time.

The real value α is naturally interpreted as the ‘luminance’ of the perceived
color, so that (α + v)/2α is a ‘chromatic’ state. Pure ‘chromatic’ states are
primary, monochromatic, colors and form the ‘hue’ circle P1(R) equipped with
the projective metric. Finally, since 0 ≤ −Trace(ρ log ρ) ≤ log 2, for all states ρ,
the entropy measure −Trace(x log x) provides the description of the ‘saturation’,
the state of maximal entropy ρ0 being perceived as ‘achromatic’.

5 Conclusions

A critical analysis of the mathematically elegant and theoretically avant-garde
model of Resnikoff for the space of perceived colors led us to propose a psycho-
physical experiment to verify one of the fundamental hypothesis on which the
model is based.
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We have also underlined that the finite threshold and saturation limit of reti-
nal photoreceptors should be taken into account in a moder rigorous description
of the color space geometry.

Moreover, we have motivated through the very important (and often under-
valued) phenomenon of color induction, why a color theory should be constructed
with the building blocks of local field theories.

Finally, we have sketched our ideas about how Jordan algebras can be used to
define the colorimetric attributes by pointing out the similarities to the formal-
ism of quantum mechanics. The quantum description that we propose creates a
deep connection between the pioneering works of Yilmaz and Resnikoff. A more
detailed study shows that the above mentioned rebit makes it possible to recover
Hering’s disk and thus to obtain a mathematical justification of the coherence
between trichromatic and color opponency theories [3].
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