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Abstract. Variations of the curves and trajectories in 1D can be anal-
ysed efficiently with functional data analysis tools. The main sources
of variations in 1D curves have been identified as amplitude and phase
variations. Dealing with the latter gives rise to the problem of curve
alignment and registration problems. It has been recognised that it is
important to incorporate geometric features of the curves in develop-
ing statistical approaches to address such problems. Extending these
techniques to multidimensional curves is not obvious, as the notion of
multidimensional amplitude can be defined in multiple ways. We pro-
pose a framework to deal with the curve alignment in multidimensional
curves as 3D objects. In particular, we propose a new distance between
the curves that utilises the geometric information of the curves through
the Frenet-Serret representation of the curves. This can be viewed as
a generalisation of the elastic shape analysis based on the square root
velocity framework. We develop an efficient computational algorithm to
find an optimal alignment based on the proposed distance using dynamic
programming.

Keywords: Curve registration · Functional data analysis ·
Frenet-Serret frames

1 Introduction

We consider the general problem of aligning multidimensional curves as 3D
objects. The curve alignment and registration problems are well studied for
scalar curves (1D) under functional data analysis framework [7,10]. The richness
of the registration problem comes from the variety of the criterion for compar-
ing and measuring the similarity between the curves, which may also depend
on the context. Nevertheless, in practice, good registration techniques aim to
align significant features of the curves, called landmarks, such as peaks and
valleys, and more generally geometric patterns of the curves. Many statistical
approaches have been developed to automate this process, without the need of
manually identifying the landmarks. As the geometric information is contained
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in the derivatives, it is often better to align the curves based on the derivatives.
A related problem is to identify the sources of variations, in particular, decou-
pling amplitude and phase variations has been the main framework to study the
variations of 1D curves [6].

While the notion of amplitude is univocally defined for scalar curves, the
generalisation to curves in Euclidean space R

d can be done in multiple ways
[5]. Among possible approaches, the use of geometric features is shown to be
effective for registering curves. This idea is formalised within the framework of
elastic shape analysis [9], by considering significant landmarks and looking for
invariant properties through group actions such as isometries or invariance by
re-parametrisation. The basis of shape analysis is provided by the definition of
proper spaces for representing objects, and the definition of an adapted dis-
tance. One of the successful applications of shape analysis for curves in general
Euclidean spaces or more exotic ones is found with the use of the square root
velocity transform (SRVT, [9]). The geometric feature is embedded in the first
order derivative of the curves, the tangent of the curves.

In this article, we generalise the methodology based on the SRVT for the
registration of two curves. Instead of using only the tangent information, we
use an exhaustive description of the geometry of curves given by the so-called
Frenet frame, which corresponds to the higher order information. This moving
frame gives an explicit link to the complete geometric characterisation of a curve
(curvature and torsion) through the Frenet-Serret formula. We propose a new
distance between the curves based on the Frenet frame and demonstrates that the
registration of the curves based on the Frenet frames is equivalent to stretching
the curvatures and torsions. We show how to find an optimal solution using
dynamic programming.

The article is organised as follows. In Sect. 2, we introduce the Frenet frame-
work and review the square root velocity framework. Section 3 present our pro-
posed methodology of curve alignment under the Frenet framework. Section 4
develops a computational algorithm.

2 Preliminaries

2.1 Frenet-Serret Framework

We consider regular curves x, i.e, functions such that the derivatives x(k)(·), k =
0, . . . 3 exist, are continuous, and for all t in [0, T ], we have ẋ(t) = x(1)(t) �= 0
and det

(
x(1)(t), x(2)(t), x(3)(t)

) �= 0. Consequently, we can write x(t) = X (s(t))
where s �→ X(s) is the arclength parametrised curve and t �→ s(t) is the curvi-
linear speed ṡ(t) = ‖ẋ(t)‖ and s(t) =

∫ t

0
‖ẋ(u)‖ du. The length of the curve is

L = s(T ). For clarity, we write d
dtx = ẋ(t) for differentiation with respect to time

and d
dsX = X ′(s) for differentiation with respect to the curvilinear abscissa s.

We denote the space of warping functions as

W+
T,L =

{
h : [0, T ] → [0, L] |h, h−1 ∈ C1, ḣ > 0

}

which corresponds to the space of increasing diffeormorphisms.
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The parametrised curve {s �→ X(s), s ∈ [0, L]} is the geometric curve associ-
ated with x. For each s ∈ [0, L], the tangent vector T(s) = X ′(s) is normalised,
and we can define additional normalised vectors N and B such that N(s) ∝ T′(s)
and B(s) ∝ T(s) × N(s). Then, the matrix Q(s) = [T(s)|N(s)|B(s)] is an
orthonormal frame, which can be obtained by Gram-Schmidt orthonormalisa-
tion of the frame [X ′(s)|X ′′(s)|X ′′′(s)]. Quite remarkably, the Frenet frames are
shown to be the solution of the following ODE:

⎧
⎨

⎩

T′(s) = κ(s)N(s) ,
N′(s) = −κ(s)T(s) + τ(s)B(s) ,
B′(s) = −τ(s)N(s) ,

(1)

where the functions s �→ κ(s), τ(s) are respectively the curvature and torsion
(with a positivity condition for the curvature κ). In the rest of the paper, we
will denote θ : s �→ (κ(s), τ(s)) the corresponding R

2-valued function, and θ
will be called the generalised curvature. An alternative interpretation of this
Frenet-Serret formula is that it defines an ODE in the Lie group SO(3) as:

Q̇(s) = Q(s)Aθ (s) (2)

where the matrix

Aθ (s) �

⎡

⎣
0 −κ(s) 0

κ(s) 0 −τ(s)
0 τ(s) 0

⎤

⎦ , (3)

is in the Lie algebra of skew-symmetric matrices, with the generalised curvature
θ and the initial condition Q(0) = Q0.

The fundamental theorem of Differential Geometry of curves [2] is based
on the Frenet-Serret Eq. (2) and claims that two curves x0, x1 with the same
generalised curvature θ (hence L0 = L1) differ only by a rigid (Euclidean) trans-
formation and a re-parametrisation: there exists a unique (a,O) ∈ R

3 × SO(3)
and h ∈ W+

T,L such that

x1(t) = a + Ox0 ◦ h(t) .

Obviously this means that the Frenet frames Q0 and Q1 satisfy Q1(s) =
OQ0(γ(s)) for all s ∈ [0, L], and an appropriate diffeomorphism γ. It is clear
then that Qi or θi represent the shape of the curves xi, for i = 0, 1.

2.2 Elastic Shape Analysis

The shapes X0,X1 are what is left invariant under the actions of the rigid
group and the group of re-parametrisations. We now focus on the development
of an elastic shape analysis framework for the comparison of two different shapes
through the action of specific groups of local (and nonlinear) deformations. This
is motivated by finding the most appropriate warping h : [0, T ] −→ [0, T ] ∈ W+

T,T

such that the two curves x1 (h(t)) = X1 (s1 (h(t))) and x0(t) = X0 (s0(t)) looks
similar. This is the standard alignment or registration problem, which has been
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studied in various ways, in particular based on geometric features through the
geodesic distance between curves, [1,4,7,11]. We focus here on the geometric
features of the curves described by Frenet frames that can be seen as an exten-
sion of the Square Root Velocity Transform (SRVT) [9]. For each curve x, the
square root velocity function is defined as

qx(t) =
ẋ(t)

√‖ẋ(t)‖ =
√

ṡ(t)T (s(t)) ,

which can be viewed as a representation of the shape of the curve. The dis-
tance between two curves is then defined as the L2 distance between qx and is
parametrisation-independent.

The SRVF transformation F : x �→ ẋ(t)/
√‖ẋ(t)‖ helps defining a pre-shape

space that is used for characterising the underlying shape of a given function. In
order to align the curves x0, x1 with SRVF, we solve the following minimisation
problem that defines at the same time a geodesic distance:

dsrvf (x0, x1) = inf
O∈SO(3),h∈W+

T,T

∫ T

0

∥
∥
∥
∥q0(t) − O

√
ḣ(t)q1(h(t))

∥
∥
∥
∥

2

dt. (4)

As the distance dsrvf is invariant under re-parametrisation (and translation
and rotation), it can be conveniently re-written by using the increasing diffeo-
morphisms γ : [0, L0] → [0, L1] ∈ W+

L0,L1
such that s1◦h = γ◦s0 and by defining

the discrepancy

R(O, γ) =
∫ L0

0

∥
∥
∥T0(s) −

√
γ̇(s)OT1(γ(s))

∥
∥
∥
2

2
ds . (5)

The distance dsrvf and the corresponding optimal registration is obtained
by solving the following program (O∗, γ∗) = minγ,O R(O, γ) for γ ∈ W+

L0,L1
.

The optimal registration h∗ ∈ W+
T,T is then decomposed as h∗ = s−1

1 ◦ γ∗ ◦ s0.
While the warping functions si, i = 0, 1 are related to curvilinear speeds along
the shapes Xi, i = 0, 1, the diffeomorphism γ∗ is a non-linear curve stretching
that induces a deformation of the shape X1 towards the shape X0. We elaborate
on this analysis for defining a distance and the corresponding alignment problem
that fully exploit the geometry of the curve.

3 Elastic Shape Analysis and Curvature Stretching

3.1 Geometry Stretching

The previous section shows the alignment of x0, x1 is not done by changing
the curvilinear speed but by changing the geometry of the curves. Indeed, the
elastic distance induces a specific family of transformations on the geometry of
the curves. We have seen that the warping γ∗ permits to transform a curve of
length L0 to a curve of length L1 by a non-linear (diffeomorphic) stretching.
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The two Frenet paths Q0 : [0, L0] −→ SO(3) and Q1 : [0, L1] −→ SO(3)
are stretched with γ ∈ W+

L0,L1
. From Sect. 2.1, we know that the Frenet path

s �→ Q̃1(s) = Q1(γ(s)) is the solution to a new Frenet-Serret ODE:

d

ds
Q̃1(s) = Q′

1(γ(s))γ′(s) ,

= Q1 (γ(s)) Aθ (γ(s))γ′(s) ,

= Q̃1(s)Aθ̃ (s) ,

This means that the shape X1 is stretched to a new shape X̃1 that possesses
a generalised curvature θ̃(s) � θ(γ(s))γ′(s). In the case of equal length curves
(L0 = L1 = L), the standard group of non-linear stretching W+

L,L defines a family
of deformations that corresponds to a group action on the set of generalised
curvatures Θ = {θ = (κ, τ), κ > 0}: for any γ ∈ W+

L,L, we have θ �→ γ · θ =
γ′θ ◦ γ. Indeed, we can check that for γ1, γ2 ∈ W+

L,L, we have

(γ2 ◦ γ1) · θ = γ2 · (γ1 · θ) .

In general, the problem of finding a proper stretching γ between θ0 and θ1

can be expressed as solving the boundary value problem of finding γ such that
θ1(γ(s))γ′(s) = θ0(s) for all s ∈ [0, L0] with the constraint γ(0) = 0, γ(L0) = L1

and γ′ > 0. Nevertheless, it is easy to see that there is no solution in general for
stretching any geometry into another: if θ0 and θ1 are two generalised curvatures
such that the torsions are τ0 > 0 and τ1 < 0, then we cannot find γ such that
γ′τ1(γ) = τ0.

A relaxation of that problem can be turned into the standard registration
problem considered by SRVF, where we introduce a distance d defined on SO(3)
and we aim at solving the problem of calculus of variations

⎧
⎪⎨

⎪⎩

minγ

∫ L0

0
d (Q0(s),Q1(γ(s)))

√
γ′(s)ds

γ(0) = 0, γ(L0) = L1

γ′ > 0

,

This problem might be solved with the corresponding Euler-Lagrange equation,
but we will focus instead on a dynamic programming algorithm that solves effi-
ciently a discretised version of the problem, adapted to sampled curves.

3.2 Registration with Frenet-Serret Frames

We define in this section precisely our Frenet-Serret framework for the registra-
tion of two curves. We aim at finding a warping h : [0, T ] −→ [0, T ] that min-
imises the discrepancy between the moving frames Q1 (s1 (h(t))) to Q0 (s0(t)).
Similarly to the elastic distance, we propose the following distance between the
curves

D(x0, x1) =
∫ T

0

d (Q0 (s0(t)) ,Q1 (s1(t)))
√

ṡ0(t)ṡ1(t)dt , (6)
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where d(Q0,Q1) is a distance between the frames in SO(3). Standard choices

are the Frobenius distance ‖Q0 − Q1‖2F or the geodesic distance
∥
∥
∥log Q�

1 Q0

∥
∥
∥
2

F
,

where log is the matrix logarithm. More generally, we can consider a distance
based on the weighted norms such as ‖Q‖2W,F = Trace(Q�WQ), indicating
preferred directions in the frame.

If we introduce the non-linear stretching diffeomorphism s1 ◦ s−1
0 = γ ∈

W+
L0,L1

, this leads to

D(x0, x1) =
∫ L0

0

d (Q0 (s) ,Q1 (γ (s)))
√

γ′(s)ds .

The distance between curves can be seen as a weighted distance between
the Frenet path D (Q0,Q1; γ) =

∫ L0

0
d (Q0 (s) ,Q1 (γ (s)))

√
γ′(s)ds. A direct

extension of the distance dsrvf is then the elastic Frenet-Serret distance

DFS (x0, x1) = min
h∈W+

T,T ,O∈SO(3)
D(x0, Ox1 ◦ h). (7)

We can also consider a distance that does not respect rotation invariance,
but only reparametrisation, defined by

D0
FS (x0, x1) = min

h∈W+
T,T

D(x0, x1 ◦ h). (8)

As with elastic distance based on the SRVF, the registration problem is the
computation of the distance function:

γ∗ = arg min
γ∈W+

L0,L1

∫ L0

0

d (Q0 (s) ,Q1 (γ (s)))
√

γ′(s)ds . (9)

The optimal warping h ∈ W+
T,T for aligning x1 (h(t)) to x0(t) is given by

h∗ = s−1
1 ◦ γ∗ ◦ s0, where γ∗ is the optimal non-linear stretching. Similarly,

we can find the best reparametrisation and rotation (γ∗, O∗) that solves the
optimisation problem (7), and the curve O∗x1 (h∗(t)) is aligned to x0(t) with
h∗ = s−1

1 ◦ γ∗ ◦ s0.

Remark 1. D0
FS is a direct generalisation of the standard elastic distance. If

d (Q0,Q1) = ‖Q0 − Q1‖2F =
(
‖Q0‖2F + ‖Q1‖2F − 2Trace

(
Q�

0 Q1

))
, the min-

imisation of
∫ L0

0
d (Q0 (s) ,Q1 (γ (s)))

√
γ′(s)ds is then equivalent to the maximi-

sation of
∫ L0

0
Trace

(
Q�

0 (s)Q1 (γ (s))
) √

γ′(s)ds. In the same way, the minimi-

sation of
∫ L0

0

∥
∥
∥T0(s) − √

γ′(s)OT1(γ(s))
∥
∥
∥
2

2
ds is equivalent to the maximisation

of
∫ L0

0
T�
0 (s)OT1 (γ (s))

√
γ′(s)ds. This demonstrates that warping Frenet-Serret

frames requires a higher degree of agreement between the geometries of x0 and x1.

Remark 2. We put emphasis on the fact that registering two curves x0 and x1

with an elastic distance (based on SRVF or Frenet-Serret) is not equivalent to
aligning the curvatures and torsions.
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4 Algorithm for Pairwise Alignment

Our objective is to obtain an algorithm that computes the optimal stretching and
rotation by minimising

∫ L0

0
d (Q0 (s) , OQ1 (γ (s)))

√
γ′(s)ds in O, γ. We derive

an iterative algorithm that works with discretely sampled data from Q0 and Q1.
It starts by finding the best rotation O[0] that minimises the distance between
the normalised Frenet paths

∫ L0

0
d (Q0 (s) , OQ1 (s)) ds (with same length L0).

Then it implements an alternate optimisation based on a discretised criterion
denoted by DN0 (Q0, OQ1; γ): Repeat steps 1 and 2 until convergence for m ≥ 0

1. γ[m] = arg minγ DN0

(
Q0, O

[m]Q1; γ
)

computed by dynamic programming.
2. O[m+1] = arg minO DN0

(
Q0, OQ1; γ[m]

)
computed by weighted averaging of

rotations.

4.1 Discretisation and Dynamic Programming

We consider two regular grids Gi, i = 0, 1 defined on [0, Li], i = 0, 1, with stepsize
hi = Li

Ni
, i = 0, 1 and N0, N1 are the number of points used. The points of the

grid G0 are denoted sk = kh0, k ≤ N0, and the point of the grid G1 are denoted
xj = jh1, j ≤ N1. We use a quadrature formula for approximating the integrals∫ sk+1

sk
d (Q0(s),Q1 (γ(s)))

√
γ′(s)ds and we use a piece-wise linear approximation

of the function γ on the same grid G0, with values in G1. The function values
are denoted xk = γ(sk), and the derivatives are piece-wise constant on ]sk, sk+1[
and are denoted uk = γ′(sk). Consequently, we have xk+1 = xk + h0uk, for
k = 0, . . . , N0 − 1, and we must have xN0 = γ(sN0) = L1. As the boundary
conditions are fixed and known, the computation of γ is equivalent to optimising
with respect to u = (uk)k=0,...,N0−1. Moreover, the state dynamics is xk+1 =
xk + h0uk, which means that there exists ik ∈ 1, . . . , N1, such that ikh1 = ukh0,
i.e. the possible values of the derivatives uk are multiple of h1/h0.

On each segment [sk, sk+1], our approximation of the integral is gk(xk, uk)
and is obtained by using the trapezoidal rule

gk(xk, uk) = h0
d (Q0(sk),Q1 (xk)) + d (Q0(sk+1),Q1 (xk+1))

2
× √

uk.

where we have made use of the fact that γ′ = uk is constant on the segment.
Finally, our approximation of the integral criterion is the following sum

DN0 (Q0,Q1; γ) � DN0 [u] =
N0−1∑

k=0

gk(xk, uk) + gN0(xN0).

The terminal cost gN (xN ) is such that gN0(xN0) = +∞ if xN0 �= L1 and
gN0(xN0) = 0 if xN0 = L1. We need to solve the following program with con-
straints on the state and the control variables:

⎧
⎪⎪⎨

⎪⎪⎩

minu

∑N0−1
k=0 gk(xk, uk) + gN0(xN0)

s.t. xk+1 = xk + h0uk

x0 = 0, xN0 = L1, 0 < xk < L1,∀k ∈ [1, . . . , N0 − 1]
∀k ≤ N0 − 1, uk > 0
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We use Dynamic Programming for computing the criterion and optimising
in u. This is based on the backward computation of the value function Jk(x)
(k = 0, . . . , N0) defined on the state space, i.e the grid G1. For every initial state
x, the optimal cost is given by

{
JN0(x) = gN0(x),∀x ∈ G1

Jk(xk) = minu∈Uk(xk) gk(xk, u) + Jk+1 (xk + h0u) , k = 0, 1, . . . , N0 − 1 ,

where Uk(xk) is the set of admissible control at time k and state xk. For com-
putation speed, we may impose a more stringent constraint on the control such
as h0uk ≤ ΔMax. The optimal control found at each time k is denoted by u∗

k,
and is computed during the forward pass. The optimal alignment function γ∗ is
sampled on the grid G0, such that x∗

k = γ∗(sk) is obtained by starting at x∗
0 = 0

and by using the optimal decision u∗
k, k = 0, . . . , N0 − 1.

Remark 3. In practice we use this Dynamic Programming algorithm for com-
puting warping functions defined on [0, 1]. A straightforward change of variable
gives

D (Q0,Q1; γ) =
∫ 1

0

d
(
Q̃0(u), Q̃1 (γ̃(s))

) √
γ̃′(s)

√
L0L1ds (10)

where γ̃ : [0, 1] −→ [0, 1] is the warping function defined for all u ∈ [0, 1] such
as γ̃(u) = L1γ(uL0). The Frenet path Q̃0, Q̃1 have been defined by normalizing
the paths by their length, i.e Q̃i(u) = Qi(uLi), i = 0, 1.

Remark 4. We deal with two grids defined on [0, 1]: G0 = {i 1
N0

, i = 0, . . . , N0}
and G1 = {j 1

N1
, j = 0, . . . , N1}. It is important to resample the data and to

interpolate the data of the Frenet Path Q̃1 such that N1 = 2×N0. This is needed
because the warping function is piece-wise linear, and we control only the slope
uk on the interval [sk, sk+1]. We impose uk > 0, but the slope is quantified and
is proportional to h1

h0
, consequently if we want a good approximation of the exact

warping function γ we need a fine grid G1. In practice, doubling and interpolating
the number of points in Q̃1 is sufficient. On the other side, the trapezoid approx-
imation might be significantly biased, hence refining the grid G0 by interpolating
the data Q̃0(sk) is sometimes needed.

Remark 5. We use linear interpolation in the Lie Algebra: let A,B ∈ SO(3),
we define the smooth path ϕ : [0, 1] −→ SO(3) such that ϕ(0) = A and ϕ(1) = B,
by ϕ(s) = exp

(
s log(BA�)

)
A.

4.2 Optimal Rotation

The computation of the minimum depends on the type of the distance function
used. For the standard Frobenius distance, the solution is found by solving

min
O

N0−1∑

k=0

h0

√
u∗

k

2
Trace

( (
Q1(x

∗
k1

)Q�
0 (sk+1) + Q1(x

∗
k)Q�

0 (sk)
)

O
)
. (11)
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The solution is the polar part of the weighted mean
∑N0−1

k=0

h0
√

u∗
k

2 Q1(x∗
k1

)
Q�

0 (sk+1)+Q1(x∗
k)Q�

0 (sk). If we use the geodesic distance, the problem is equiv-
alent to computing a weighted geodesic, which can be computed by gradient
descent in SO(3), see [3,8].

5 Examples and Simulations

We show that our DP algorithm can estimate properly the warping function. In
our simulations, we define a reference generalised curvature θ0 and the associated
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Fig. 1. Alignement of two shapes X0 and X1, when θ1 = w∗ ·θ0 and estimation of the
warping function γ∗.
First Row: No rotation. Top Left: The two curves X0 (in blue) and X1 (in red). Top
Right: the estimates of γ∗: the truth γ∗ (dark blue), γ̂fs (red), and γ̂srvf (magenta).
The red and magenta are superimposed.
2nd Row: With a random rotation. Bottom Left: The two curves X0 (in blue) and X1

(in red). X1 is a stretched and rotated version of X0. Bottom Right: the estimates of
γ∗: the truth γ∗ (dark blue), γ̂fs (red), and γ̂srvf (magenta). The estimate γ̂fs is closer
to the truth blue line than γ̂srvf . The rotations are both estimated by SRVF and FS,
and we obtain also more precise results with Frenet-Serret, which might be natural
because we use more information. Finally, we should notice that the convergence is
much faster for the Frenet-Serret version than for the SRVF (less than 5 iterations
against more than 50 iterations) (color figure online).
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Frenet path Q0 and curve X0 of length L0. The curve X1 is obtained from X0

by applying the elastic deformation given by w∗, i.e θ1 = w∗ · θ0, and the
Frenet paths are such that ∀s ∈ [0, L1],Q1(s) = Q0

(
w∗(s)

)
. Our objective is

then to estimate w∗(−1) = γ∗ by minimizing our criteria DN0 (Q0,Q1; γ). We
denote γ̂fs the estimate obtained by Frenet-Serret frames and γ̂srvf obtained by
standard SRVF. We consider a warping functions defined in [0, 1] (see remark
3) w(s) = log(s+1)

log(2) with γ(s) = exp
(
log(2)s

) − 1. We consider that we observe
directly the Frenet paths Q0,Q1 on grids G0, G1, with L0 = 2, N0 = 100 and
L1 = 3, N0 = 150. The curves have a shape defined by a curvature κ0(s) =
exp(θ sin(s)) and a torsion τ0(s) = ηs − 0.5. We consider a simple registration
case without any rotation O, and we consider also the case of a additional random
rotation i.e Q1 = OQ0 ◦ w∗. The results are available in Fig. 1.
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