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Abstract. In optimization, the natural gradient method is well-known
for likelihood maximization. The method uses the Kullback—Leibler
(KL) divergence, corresponding infinitesimally to the Fisher—-Rao metric,
which is pulled back to the parameter space of a family of probability
distributions. This way, gradients with respect to the parameters respect
the Fisher-Rao geometry of the space of distributions, which might dif-
fer vastly from the standard Euclidean geometry of the parameter space,
often leading to faster convergence. The concept of natural gradient
has in most discussions been restricted to the KL-divergence/Fisher—
Rao case, although in information geometry the local C? structure of
a general divergence has been used for deriving a closely related Rie-
mannian metric analogous to the KL-divergence case. In this work, we
wish to cast natural gradients into this more general context and provide
example computations, notably in the case of a Finsler metric and the
p-Wasserstein metric. We additionally discuss connections between the
natural gradient method and multiple other optimization techniques in
the literature.
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1 Introduction

The natural gradient method [2] in optimization originates from information geom-
etry [4], which utilizes the Riemannian geometry of statistical manifolds (the
parameter spaces of model families) endowed with the Fisher—Rao metric. The
natural gradient is used for minimizing the Kullback—Leibler (KL) divergence, a
similarity measure between a model distribution and a target distribution, that
can be shown to be equivalent to maximizing model likelihood of given data.
The success of natural gradient in optimization stems from accelerating likelihood
maximization and providing infinitesimal invariance to reparametrizations of the
model, providing robustness towards arbitrary parametrization choices.

In the modern formulation of the natural gradient, a Riemannian metric
on the statistical manifold is chosen, with respect to which the gradient of the
given similarity is computed [4, Sec. 12]. The choice of the Riemannian met-
ric should, however, relate closely to the similarity measure being minimized.
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We have illustrated this in Fig. 1, where model selection for Gaussian process
regression is carried out by maximizing the prior-likelihood of the data with nat-
ural gradients stemming form different metrics. Clearly, the Fisher-Rao metric—
which infinitesimally corresponds to the KL-divergence—achieves the fastest
convergence.

An example of an approach to choose a related Riemannian metric is the
classical Newton’s method that derives a metric from the Hessian of a convex
objective function, or its absolute value in the non-convex case [7]. Unfortu-
nately, evaluating the Hessian is not feasible in some cases. Instead, we can
compute a local Hessian, which corresponds to a local second order expansion of
the similarity measure [3]. This approach generalizes the natural gradient from
the KL-divergence case to general similarity measures, and to avoid confusion
with the well-known KL-divergence setting, we refer to this approach as the for-
mal natural gradient. We furthermore discuss the similarities between the trust
region, proximal, and natural gradient methods in Sect. 3 and provide example
computations in Sect. 4.
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Fig. 1. Maximizing prior likelihood for Gaussian process regression using natural gra-

dients under different metrics on Gaussian distributions. Convergence plots on left.
Data and model fit, with optimal exponentiated quadratic kernel parameters, on right.

2 Useful Metrics via Formalizing the Natural Gradient

The natural gradient is computed with respect to a chosen metric on the statis-
tical manifold, which often results from pulling back a metric between distribu-
tions. This way, the gradient takes into account how the metric on distributions
penalizes movement into different directions. We will now review how the nat-
ural gradient is computed given a Riemannian metric. Then, we introduce the
formal natural gradient, which derives this metric from the similarity measure.

Statistical Manifold. Let AC(X) denote the set of absolutely continuous prob-
ability distributions on some manifold X. A statistical manifold is defined by a
triple (X, 0, p), where X is called the sample space and @ C R"™ the param-
eter space. Then, p: ©® — AC(X) maps a parameter to a density, given by
p: 60— po(-), for any 6 € ©. Abusing terminology, we also call © the statistical
manifold.



Formal Natural Gradient 601

Cost Function. Let a similarity measure ¢*: AC(X) x AC(X) — Rxq (e.g. a
metric or an information divergence) be defined on AC(X) satisfying ¢*(p, p’) = 0
if and only if p = p’. Assume ¢* to be strictly convex in p. Given a target
distribution p € AC(X) and a statistical manifold (X, ©, p), we wish to minimize
the cost function ¢ — O x AC(X) — R>¢ given by

c(0,p) =c*(po, p). (2.1)

If p = py for some 0" € O, then by abuse of notation we write ¢(6,0"). We finally
assume that 0 — c(6,6) is C? whenever 6 # ¢'.

Natural Gradient. Assume a Riemannian structure (0, ¢g®) on the statistical
manifold. The Riemannian metric ¢© induces a metric tensor G©, given by
g8 (u,v) = uT'G§v and a distance function which we denote by dg. The vectors
u,v belong to the tangent space Ty©® at 6. It is common intuition that the
negative gradient v = —Vyc(6, p) gives the direction of maximal descent for c.
However, this is only true on a FEuclidean manifold. Consider

0= arg min c(0 4 v, p), (2.2)
vETHO:de (0,0+v)=A

where 6 + v is to be understood in a chart of @, and A > 0 defines the radius of
the trust region. Linearly approximating the objective and quadratically approx-
imating the constraint, this is solved using Lagrangian multipliers, giving the
natural gradient

0= —% [G?]_l Voc(8, p), (2.3)

for some Lagrangrian multiplier A > 0, which we refer to as the learning rate.
Below, a similar derivation is carried out in more detail.

Formal Natural Gradient. Traditionally, the natural gradient uses the Fisher—
Rao metric when the similarity measure used is the KL-divergence. We will
now show, how a trust region formulation with respect to the chosen similarity
measure can be used to derive a natural metric under which the natural gradient
can be computed, resulting in the formal natural gradient. Thus, consider the
minimization task

0= arg min c(@+v,p). (2.4)

vETHO, c(0+v,0)=A

We approximate the constraint by the second degree Taylor expansion
1
c(0+v,0)~ §UT (Vfﬁec(n, 9)) v, (2.5)

where the 0" and 1% degree terms disappear as c¢(6 + v,6) has a minimum 0
at v = 0. We call the symmetric positive definite matrix H§ := Vfwoc(n, 0) the
local Hessian. Then, we further approximate the objective function

(0 +v,p) = c(0, p) + Voc(8, p)Tv. (2.6)
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Writing the approximate Langrangian £(v) of (2.4) with a multiplier A > 0, we
get

A
L) = e(0, p) + Vo0, p) v + ST (V5 _ge(1,0)) v. (2.7)
Thus by the method of Langrangian multipliers, (2.4) is solved as
1 _
o=~ [Hg] ' Voc(8, p). (2.8)

We refer to ¢ as the formal natural gradient with respect to c.

Remark 1. We could have just substituted 7 = 6 in the local Hessian if V%c(n, 0)
was continuous at 7. However, when studying Finsler metrics later in this work,
the expression has a discontinuity at n = 6. Therefore, a direction for a limit has
to be chosen, and as a straight-forward candidate we compute the limit from the
direction of the gradient.

Metric Interpretation. The local Hessian G can be seen as a metric tensor
at any 0 € O, inducing an inner product gg: Tp© x Ty© — R given by g5(v,u) =
vTng. This imposes a pseudo-Riemannian structure on @, forming the pseudo-
Riemannian manifold (0, ¢°). Therefore, G provides us a natural metric under
which to compute the natural gradient for a general c¢*. If p has a full rank
Jacobian everywhere, then a Riemannian metric is retrieved. Also, there is an
obvious pullback structure at play. Recall, that the cost is defined by ¢(6,6") =
c*(pe, por). Then, computing the local Hessian yields

H§ = J{ H, Jy, (2.9)
where Hg; = V%_)pe c*(p, pg). Thus, H€ results from pulling back the ¢* induced
metric tensor H°" on AC(X) to the statistical manifold ©. In information geom-
etry, this Riemannian metric is said to be induced by the corresponding diver-

gence (similarity measure) [3]. Therefore, the formal natural gradient is just the
Riemannian gradient under the aforementioned induced metric.

Asymptotically Newton’s Method. We provide a straightforward result,
stating that the local Hessian approaches the actual Hessian in the limit, thus
the formal natural gradient method approaches Newton’s method. This is well
known in the Fisher—-Rao case, but for completeness we provide the result for
the formal natural gradient.

Proposition 1. Assume c(0,p) = c(0,0') for some §' € O, and that ¢ is C? in
0. Then, the natural gradient yields asymptotically Newton’s method.

Proof. The Hessian at 6 is given by V2c(6,60). Then, as ¢ is C? in the first
argument, passing the limit 6 — 6’ yields

c 0—6’
H9 = vg;—ﬂc(na 9) - V?]—ﬁ’c(n’ 9/) = v?]:@’c(nv 9/)7 (210)

where the last expression is the Hessian at 6.
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3 Loved Child has Many Names — Related Methods

In this section, we discuss connections between seemingly different optimization
methods. Some of these connections have already been reported in the literature,
some are likely to be known to some extent in the community. However, the
authors are unaware of previous work drawing out these connections in their full
extent. We provide such a discussion, and then present other related connections.
As discussed in [14], prozimal methods and trust region methods are equiva-
lent up to learning rate. Trust region methods employ an [?-metric constraint

Ty = argmin  f(z), A >0, (3.1)

zi||z—z¢|[2<A

whereas proximal methods include a [?-metric penalization term

1
1 =g min { £(2) + ollo — 2B |, A0 (3.2)

The two can be shown to be equivalent up to learning rate via Lagrangian duality.

Instead of the I? metric penalization, mirror gradient descent [13] employs a
more general prozimity function ¥: R™ x R™ — Ry, that is strictly convex in
the first argument. Then, the mirror descent step is given by

Tyr1 = argmmin {<I —x, Vf(xy)) + %W(x, It)} . (3.3)

Commonly, ¥ is chosen to be a Bregman divergence Dy, defined by choosing a
strictly convex C? function g and writing

Dy(x,2") = g(x) — g(a') = (Vg(a'),z — 2'). (3.4)

To explain how these methods are related to the natural gradient, assume that we
are minimizing a general similarity measure ¢(z, y) with respect to x, as in Sect. 2.
Recall, that we first defined the natural gradient as a trust region step. In order to
derive an analytical expression for the iteration, we approximated the objective
function with the first order Taylor polynomial and the constraints by the local
Hessian and then used Lagrangian duality to yield a proximal expression, which
yields the formal natural gradient when solved. In Sect. 4, we will show how this
workflow indeed corresponds to known examples of the natural gradient.

Further Connections. Raskutti and Mukherjee [16] showed, that Bregman
divergence proximal mirror gradient descent is equivalent to the natural gradient
method on the dual manifold of the Bregman divergence. Khan et al. [8], consider
a KL divergence proximal algorithm for learning conditionally conjugate expo-
nential families, which they show to correspond to a natural gradient step. For
exponential families, the KL-divergence corresponds to a Bregman divergence,
and so the natural gradient step is on the primal manifold of the Bregman diver-
gence. Thus the result seems to conflict with the resut in [16]. However, this can
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be explained, as the gradient is taken with respect to a different argument of the
divergence, i.e., they consider V,D,4(2’, z) and not V,Dg4(x,z’). It is intriguing
how two different geometries are involved in this choice.

Pascanu and Bengio [15] remarked on the connections between the natural
gradient method and Hessian-free optimization [11], Krylov Subspace Descent
[17], and TONGA [9]. The main connection between Hessian-free optimization
and Krylov subspace descent is the use of extended Gauss—Newton approximation
of the Hessian [18], which gives a similar square form involving the Jacobian as
the pullback Fisher—-Rao metric on a statistical manifold. The connection was
further studied by Martens [12], where an equivalence criterion between the
Fisher-Rao natural gradient and extended Gauss—Newton was given.

4 Example Computations

We will now provide example computations for the local Hessian H®¢ of differ-
ent similarity measures c, as it is the essential object in computing the natu-
ral gradient given in (2.8). We first show that in the cases of KL-divergence
and a Riemannian metric, the definition of the formal natural gradient matches
the classical definition, as expected. Furthermore, we contribute local Hessians
for general f-divergences and Finsler metrics, specifically for the p-Wasserstein
metrics.

Natural Gradient of f-Divergences. Let p,p’ € AC(X) and f: Ryg — R
be a convex function satisfying f(1) = 0. Then, the f-divergence from p’ to p is

Dy(olle) = [ ole)f (’; g;) dz. (4.1)

Now, consider the statistical manifold (R%, @, p), and compute the local Hessian

/ 0 log pg(x) 0log pg(x)
< 06 a0,

;7] =2

iJ

po(z)dz. (4.2)

Substituting f = —log in (4.1) results in the KIL-divergence, denoted by
Dxr(p||p'). Noticing that V2 f(1) = 1 with this substitution, we can write (4.2)

as HeDf = V2f(1)H} ", where the local Hessian Hy¥" is also the Fisher-Rao
metric tensor at 6§, and thus the natural gradient of Amari [2] is retrieved.

Natural Gradient of Riemannian Distance. Let (M, g) be a Riemannian
manifold with the induced distance function dy, and the metric tensor at p € M
denoted by Gf‘)/[ . Finally, denote by py a submanifold of M parametrized by

1
0 € ©. Then, when ¢ = %d2, we compute Gy 4 as follows

[He%dz]ij :% <5a9jp9>T [V?}n_)pedz(pn,f)ﬁ)} <£iﬁe)

(4.3)
1] & ,
+ B mﬂa [Vpnapsd (Pmpeﬂ )
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as 6/ — 0, the second term vanishes. Finally, Vp _,ped (Pn,po) = G%, thus

3% = JTGM g, (4.4)

where Jy = a%pg denotes the Jacobian. Therefore, the formal natural gradi-
ent corresponds to the traditional coordinate-free definition of a gradient on a
Riemannian manifold, when the metric is given by the pullback.

Natural Gradient of Finsler Distance. Let (M, F) denote a Finsler mani-
fold, where Fj,: T,M — Rx, for any p € M, is a Finsler metric, satisfying the
properties of strong convexity, positive 1-homogeneity and positive definiteness.
Then, a distance dp is induced on M by

1
dr(p, p') = int / Eyy(3(t))dt, p,p' € M (4.5)
0

where « is any continuous, unit-parametrized curve with y(0) = p and v(1) = p'.

The fundamental tensor G¥ of F at (p,v) is defined as G¥ (v) = 3V2F2(v).
Then, GF is 0-homogeneous as the second differential of a 2-homogeneous func-
tion. Therefore GE (M) = GF (v) for any A > 0. Furthermore, G (v) is positive-

definite when v # O Now, let u=—JpVeds(pg, p'), and as we can locally write
dE(p, p') = F(v) for a suitable v, then

1d2
H92 f= vn—>9dF(p7]7p9) =35 hm vv Au /)9( ) = J9TG59 (U)JG (46)

Coordinate-free gradient descent on Finsler manifolds has been studied by
Bercu [5]. The formal natural gradient differs slightly from this, as we use v =
—JoVed%(pe, p') in the preconditioning matrix G¥ (00,) (see Remark 1), where as
in [5], v is chosen to maximize the descent. Thus the natural gradient descent
in the Finsler case approximates the geometry in the direction of the gradient
quadratically to improve the descent, but fails to take the entire local geometry
into account.

p-Wasserstein Metric. Let X =R" and p € P,(X) if
/ d5(xg,x)p(x)dx, for some x € X, (4.7)
b's

where dj is the Euclidean distance. Then, the p-Wasserstein distance W), between
p,p' € Pp(X) is given by

1
Wy(p, p') = ( inf / d5(z, 2")dy(x, 2’ >p, 4.8
o) = (nt [ e (1)

where ADM(p, p') is the set of joint measures with marginal densities p and p’.
The p-Wasserstein distance is induced by a Finsler metric [1], given by

0=(/ ||v¢v|§dp)‘l”, (19)
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where v € T, Pp(X) and @, satisfies v(z) = =V - (p(x) VP, (x)) for any = € X,
where V- is the divergence operator. Now, choose v = —JyVoW7(pg, p). Then,
through a cumbersome computation, we compute how the local Hessian acts on
two tangent vectors df,df; € TyO

a2 (d6y, db)
=@ - PP () ( /. |v¢v|§2<v¢del,v¢v>dpe)
< ([ 1901 T, V00 (4.10)
+FET) [ 90,157 (Va0 T o
+ 0= DFE70) [ 19815 TP, V8N (TP, Vo,

where Jypdf; = =V - (pgVPap,) for ¢ = 1,2. The case p = 2 is special, as the
2-Wasserstein metric is induced by a Riemannian metric, whose pullback can be
recovered by substituting p = 2 in (4.10), yielding

HE"2 (dby, d6,) = / (V®ag,, Vg, )dpy. (4.11)
X

This yields the natural gradient of W# as introduced in [6,10].
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