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Abstract. We consider the problem of interpolating a finite set of obser-
vations at given time instant. In this paper, we introduce a new method
to compute the optimal intermediate control points that define a C2

interpolating Bézier curve. We prove this concept for interpolating data
points belonging to a Riemannian symmetric spaces. The main property
of the proposed method is that the control points minimize the mean
square acceleration. Moreover, potential applications of fitting smooth
paths on Riemannian manifold include applications in robotics, anima-
tions, graphics, and medical studies.
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1 Introduction

The problem of constructing smooth interpolating curves in non-linear spaces, or
manifolds plays an important role in a wide variety of applications. For instance,
interpolation in the rotation group SO(3) has immediate application not only in
computer graphics and animation of 3D objects [1–3], but also in applications
ranging from robot motion planning to machine vision [4–6]. Such applications
encourage us to further search for some efficient methods to generate smooth
interpolating curves on non-linear spaces.

Motivated by potential applications in engineering science and technology,
our goal is to develop a new framework for generating C2 Bézier curves on
Riemannian manifolds that interpolate a given ordered set of points at spec-
ified time instants. While quite general, we will focus on a special class of
Riemannian symmetric spaces. The task of constructing interpolating curve on
SO(n) has attracted the attention of several authors. One of the most widely
cited approaches is the work of Shoemake [7] on SO(3), who adopts a re-
parametrization of the rotation matrices based on unit quaternion represen-
tation. Shoemake’s approach can essentially be viewed as a generalization of
the de Casteljau’s algorithm for Bézier curves to SU(2) in which two elements
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of SO(3) are interpolated by the geodesic that joins them. Although this algo-
rithm seems computationally efficient, unfortunately the resulting curve depends
on the choice of local system coordinates. A few years later, taking into account
the Shoemake algorithm, a more careful geometric analysis of unit-quaternion-
based method was introduced by Barr et al. [1], Hart et al. [8], Ge and Ravani [9],
and Nielson et al. [10]. Despite the fact of producing an intrinsic curves, these
approaches does not generalize to higher-dimensional manifold.

In this paper, we present a novel framework to treat the interpolation problem
in the setting of Riemannian geometry and Bézier curve approach. We show
that it makes sense to define a C2 interpolating Bézier curve on Riemannian
symmetric spaces as the result of a least squares minimization and a recursive
algorithm. In particular, we will focus on a special class of Riemannian symmetric
spaces: the special orthogonal group SO(n). Indeed, working in such Riemannian
manifold allows nice properties to solve the issues above. The key point to give
explicit solution for the interpolation problem and ensures the C2 differentiability
condition at joint points is the use of global symmetries in these last points.
In fact, we will first derive equations for control points of a C2 Bézier curve
on the Euclidean space R

m. Then, building upon prior works [6,11], we use
these equations to find the control points of a C1 interpolating Bézier curve
on Riemannian manifolds as a generalization of the Bézier based fitting in the
Euclidean space and by means of methods of Riemannian geometry. These results
are sufficient to give explicit formula for control points of the C2 interpolating
Bézier curve on SO(n). The proposed method will be shown to enjoy a number
of nice properties and the solution is unique in many common situations.

The rest of the paper is organized as follows. In Sect. 2, we present our new
algorithm to construct a C2 Bézier curve on the Euclidean space. This will help
with the visualization of its main features and motivate its generalization on
SO(n). In Sect. 3, the generalization of our approach on the Lie group SO(n) is
prescribed. We conclude the paper with numerical examples and a conclusion.

2 C2 Interpolating Bézier Curves on R
m

In this section, we first describe our approach on the Euclidean space R
m. For

simplicity we will assume that the time instants are ti = i. In this work, we only
use Bézier curves of degree 2 and 3 such that the segment joining p0 and p1, as
well as the segment joining pN−1 and pN are Bézier curves of order two, while all
the other segments are Bézier curves of order three. Explicitly, the Bézier curve
βk of degree k ∈ {2, 3} are expressed in R

m with a number of control points bi,
represented as their coefficients in the Bernstein basis polynomials by:

β2(t; b0, b1, b2) = b0(1 − t)2 + 2b1(1 − t)t + b2t
2,

β3(t; b0, b1, b2, b3) = b0(1 − t)3 + 3b1t(1 − t)2 + 3b2t
2(1 − t) + b3t

3.

Moreover, we assume that there exists two artificial control points (̂b−
i ,̂b+i ) on the

left and on the right hand side of the interpolation point pi for i = 1, ..., (N −1).
Consequently, the Bézier curve β on R

m is given by:
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β(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

β2(t; p0,̂b−
1 , p1), if t ∈ [0, 1]

β3(t − (i − 1); pi−1,̂b
+
i−1,

̂b−
i , pi), if t ∈ [i − 1, i], i = 2, ..., N − 1

β2(t − (N − 1); pN−1,̂b
+
N−1, pN ), if t ∈ [N − 1, N ]

Then β is C∞ on [ti, ti+1], for i = 0, ..N − 1. To ensure that β is C1 at knots
pi, for i = 1, ..N − 1, we shall make the following assumption:

β̇ki(bi
0, ..., b

i
ki ; t − i + 1)|t=i = β̇ki+1(bi+1

0 , ..., bi+1
ki+1 ; t − i)|t=i i = 0, ..., N − 2.

(1)

This differentiability condition allows us to express ̂b+i in terms of ̂b−
i as:

̂b+1 =
5
3
p1 − 2

3
̂b−
1 , (2)

̂b+i = 2pi −̂b−
i , i = 2, ..., N − 2 (3)

̂b+N−1 =
5
2
pN−1 − 3

2
̂b−

N−1, (4)

We are left with the task of computing the control points ̂b−
i , for i = 1, ..., N −1,

that generate the C1 Bézier curve β. In [11], we have shown that solutions of the
problem of minimization of the mean square acceleration of the Bézier curve β
are exactly the control points of the curve:

min
̂b
−
1 ,...,̂b

−
N−1

E(̂b
−
1 , ...,̂b

−
N−1) := min

̂b
−
1 ,...,̂b

−
N−1

∫ 1

0
‖β̈0

2(t; p0,̂b
−
1 , p1)‖2

+

N−2
∑

i=1

∫ 1

0
‖β̈i

3(t; pi,̂b
−
i ,̂b

−
i+1, pi+1)‖2

+

∫ 1

0
‖ ¨
βN−1
2 (t; pN−1,̂b

−
N−1, pN )‖2 (5)

It turns out that the optimal solution Y = [̂b−
1 , ...,̂b−

N−1]
T ∈ R

(N−1)×m of (5)
is the unique solution of a tridiagonal linear system

Y = A−1CP = DP with
j=N+1
∑

j=0

dij = 1. (6)

where A is a tridiagonal sparse square matrix of size (N − 1) × (N − 1) with a
dominant diagonal, C a matrix of size (N − 1) × (N + 1) and P the matrix of
pi’s of size (N + 1) × m given by:

A(1,1:2) = [16 6] (7)
A(2,1:3) = [6 36 9] (8)

A(i,i−1:i+1) = [9 36 9], (9)
A(n−1,n−2:n−1) = [9 36] (10)

C(1,1:2) = [16 6] (11)
C(2,2:3) = [6 36 9] (12)

C(i,i:i+1) = [9 36 9], i = 3, ..., n− 2 (13)
C(n−1,n−1:n+1) = [9 36] (14)
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Now, let us assume that β is C1, so that (1) is met and the solution Y given
by (6) is obtained. The additional C2 condition for a C1 curve is the equality of
the second derivative at the joint point pi, for i = 1, ..., N − 1:

β̈ki(bi
0, ..., b

i
ki ; t − i + 1)|t=i = β̈ki+1(bi+1

0 , ..., bi+1
ki+1 ; t − i)|t=i i = 0, ..., N − 2.

It is obvious that with this C2 condition the position of the control points ̂b−
i and

̂b+i that generate the curve β will be modified. Therefore, it is more convenient to
use another notation. Let us denote by b−

i and b+i the new control points on the
left and on the right hand side of the interpolation point pi, for i = 1, ..., N − 1.
Computing the acceleration of β on respective intervals and taking into account
that β is C1, we shall replace b+1 by (2), b+i by (3), and b+N−1 by (4). We deduce
that:

b−
2 =

1
3
p0 − 1

2
b−
1 +

8
3
p1, (15a)

b−
i+1 = b+i−1 + 4pi − 4b−

i , i = 2, ..., N − 2 (15b)

pN = 2pN−1 + 2b+N−1 − 6b−
N−1 + 3b+N−2, (15c)

We see at once that points that will be modified by the additional C2 condition
are ̂b−

i and hence ̂b+i , for i = 2, ..., N − 1. The point ̂b−
1 remains invariant and

consequently it will be the case for ̂b+1 . We thus get b−
1 = ̂b−

1 , with ̂b−
1 is the

first row of the matrix Y obtained as a solution of the optimization problem
(5). However, the endpoint pN is affected as we can deduce from Eq. (15c).
Nevertheless, it follows that giving the control point b−

1 allows us to find all the
other control points including b−

2 with Eq. (15a) and hence b+2 with (3), then
b−
i+1 for i = 2, ..., N − 2 with (15b) and therefore b+i , for i = 3, ..., N − 2 with (3)

and b+N−1 with (4).

3 C2 Interpolating Bézier Curves On SO(n)

Our objective in this section is to work out concretely the extension of our app-
roach used to find control points that define a C2 Bézier curve in the Euclidean
space to the Riemannian manifold SO(n). In other words, given R0, ..., RN a set
of (N +1) distinct points in SO(n) and 0 = t0 < t1 < ... < tN = N an increasing
sequence of time instants, we present a conceptually simple framework to con-
struct a C2 Bézier curve γ : [0, N ] → SO(n) such that γ(tk) = Rk, k = 0, ..., N .
For the most part of Riemannian manifolds, the generalization of our approach
is not straightforward. For the case treated here, of the Lie group SO(n), since it
is a symmetric space and all the important geometric functions have nice, closed-
form expressions, the problem of finding a C2 Bézier curve that interpolates a
given set of points in such space can be completely solved.

Let us start by briefly sketch the differential structure of SO(n). We illustrate
this with the geometric toolbox described in Table 1. For more details concerning
the differential geometry of SO(n), see [12,13].
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Table 1. Geometric toolbox for the Riemannian manifold SO(n)

Set SO(n) = {R ∈ R
n×n | RTR = In and det(R) = 1}

Tangent spaces TRSO(n) = {H ∈ R
n×n | RHT + HRT = 0}

Inner product <H1, H2>R = trace(HT
1 H2)

Exponential ExpR(H) = ExpI(R
TH) = R exp(RTH)

Logarithm LogR1
(R2) = R1 log(RT

1 R2)

The shortest geodesic arc joining R1 to R2 in SO(n) can be parameterized
explicitly by:

α(t, R1, R2) = R1 exp(t log(RT
1 R2)), t ∈ [0, 1]. (16)

and we write:
α̇(t, R1, R2) :=

∂

∂u
|u=t α(t, R1, R2).

Furthermore, for each R1 ∈ SO(n), there exists a symmetry

ϕR1 : SO(n) −→ SO(n), R2 −→ R1R
T
2 R1

that reverses geodesics through R1. It is easy to check that ϕR1 is an isometry
and thus SO(n) turns into a Riemannian symmetric space. For R1, R2 ∈ SO(n),
let us denote by (dExpR1

)H the derivative of ExpR1
at H ∈ TR1SO(n) and by

(dϕR1)R2 the derivative of the geodesic symmetry ϕR1 at R2. Then, the following
result can be easily proved and will be very important for the derivation of the
results presented along this section.

Lemma 1. Let R1 ∈ SO(n).

(i) (dϕR1)
−1
R2

= (dϕR1)ϕR1 (R2), for all R2 ∈ SO(n)
(ii) (dExpR1

)−1
H = −(dExpR1

)−H ◦ (dϕR1)ExpR1
(H), for all H ∈ TR1SO(n)

Let us now denote by γk(t, V0, ..., Vk) the Bézier curve of order k ∈ {2, 3} on
SO(n) with a number of control points Vi for i = 0, ..., k. Furthermore, similar to
the Euclidean case, we will suppose that there exists two artificial control points
( ̂Z−

i , ̂Z+
i ) on the left and on the right hand side of the interpolation point Ri for

i = 1, ..., (N − 1). Hence, the Bézier Curve γ : [0, N ] −→ SO(n) is defined by:

γ(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ2(t;R0, ̂Z−
1 , R1), if t ∈ [0, 1]

γ3(t − (i − 1);Ri−1, ̂Z+
i−1,

̂Z−
i , Ri), if t ∈ [i − 1, i], i = 2, ..., N − 1

γ2(t − (N − 1);RN−1, ̂Z+
N−1, RN ), if t ∈ [N − 1, N ]

In order to obtain equations that govern the control points of the C2 Bézier curve
on SO(n), one should begin to compute ( ̂Z−

i , ̂Z+
i ), for i = 1, ..., N − 1, control



594 C. Samir and I. Adouani

Algorithm 1. Construction of the C1 interpolating Bézier curve on SO(n).
Input: N ≥ 3, R = [R0, ..., RN ]T a matrix of size n(N +1)×n containing the (N +1)

interpolation points on SO(n).

Output: ̂Z and R̃.
1: for i = 1 : N − 1 do
2: Calculate Q = [Qi

0, ..., Q
i
N ]T a matrix of size n(N +1)×n containing the (N +1)

interpolation points on TRiSO(n):
3: for k = 0 : N do
4: Qi

k = LogRi
(Rk) = Ri log(RT

i Rk)

5: Calculate Xi = [(Bi
1)

−, ..., (Bi
N−1)

−]T a matrix of size n(N − 1) × n con-
taining the (N − 1) control points of the C2 Bézier curve βi on TRiSO(n), and
Q̃ = [Q̃i

0, ..., Q̃
i
N ]T a matrix of size n(N + 1) × n containing the new interpolation

points on TRiSO(n) using the prescribed method on section 2.

6: Calculate control point ̂Z−
i with ̂Z−

i = ExpRi
((Bi

i)
−)

7: Calculate the new interpolation points R̃k = ExpRi
(Q̃i

k).
8: end for
9: end for

10: return ̂Z and R̃,

points of the Bézier curve γ that ensure the C1 differentiability condition of γ
at knots Ri on SO(n). To do this, our main idea is to treat the fitting problem
on the tangent space TRi

SO(n) at a point Ri ∈ SO(n) as for the Euclidean
case. Consequently, for each i = 1, ..., N − 1, we would like to transfer the data
R0, ..., RN in each tangent space TRi

SO(n) using Riemannian logarithmic map.
The mapped data are then given by Q = (Qi

0, ..., Q
i
N ) with Qi

k = LogRi
(Rk)

for k = 0, ..., N . Applying our approach used to define a C2 Bézier curve on
the Euclidean space R

m in each tangent space TRi
SO(n), for i = 1, ..., N − 1,

provides a natural and intrinsic method to compute control points ( ̂Z−
i , ̂Z+

i ) of
the desired C1 Bézier curve γ on SO(n).

Theorem 1. Let R0, ..., RN be a finite sequence of distinct points in the special
orthogonal group SO(n) with RT

i Rk, i �= k, sufficiently close to In. For each
i = 1, ..., N − 1, Q = (Qi

0, ..., Q
i
N ) are the corresponding mapped data in the

tangent space TRi
SO(n) at Ri defined by Qi

k = LogRi
(Rk) for k = 0, ..., N . Set

t0 = 0 < ... < tN = N a sequence of time instants. Then, there exists a unique
matrix Xi = [(B1

1)
−, ..., (B1

N−1)
−]T ∈ R

n(N−1)×n containing the (N − 1) control
points that generate the C2 Bézier curve βi, in each tangent space TRi

SO(n)
and a matrix Q̃ = [Q̃i

0, ..., Q̃
i
N ]T of size n(N +1)×n containing the new (N +1)

interpolation points in each tangent space TRi
SO(n).

Proposition 1. Under the same hypotheses of Theorem1, there exists a unique
matrix Z = [ ̂Z−

1 , ..., ̂Z−
N−1]

T ∈ R
n(N−1)×n, containing the (N − 1) control points

that generate the Bézier curve γ interpolating the points Ri at ti on SO(n), for
i = 0, ..., N . The rows of ̂Z are given by:

̂Z−
i = ExpRi

(x̃i), i = 1, ..., N − 1. (17)
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where x̃i, represent the row i of Xi in TRi
SO(n), for i = 1, .., N − 1. Moreover,

the new (N + 1) interpolation points in SO(n) are given by:

R̃k = ExpRi
(Q̃i

k), k = 0, ..., N ; i = 1, ..., N − 1. (18)

Algorithm 1 provides a detailed exposition of the steps of the proof of Theorem1
and Proposition 1.

Corollary 1. The Bézier path γ : [0, 1] → SO(n) is C1 on SO(n).

Proof. The following result may be proved in much the same way as Corollary
3.3. in [11].

We are now in a position to formulate the main theorem of this section,
which contains the counterpart of the equations derived in the last section that
generate control points of a C2 Bézier curve on R

m. Let us assume that γ is
C1, so that the solution ̂Z is obtained. Let us denote by Z−

i and Z+
i the new

control points on the left and on the right side of the interpolation point R̃i

that generate the C2 Bézier curve γ on SO(n). The key point to find the control
points Z−

i , for i = 1, ..., N −1 is similar to the Euclidean case. That is, we might
know Z−

1 (and therefore Z+
1 by the C1 differentiability condition on SO(n)) and

wish to define iteratively Z−
i for i = 2, ..., N − 1 (and obviously Z+

i in much the
same way as Z+

1 ).

Algorithm 2. Construction of the C2 interpolating Bézier curve on SO(n).
Input: N ≥ 3, R̃ = [R̃0, ..., R̃N ]T a matrix of size n(N +1)×n containing the (N +1)

interpolation points on SO(n).
Output: Z.
1: Calculate ̂Z = [ ̂Z−

1 , ..., ̂Z−
N−1]

T using Algorithm 1.

2: Set Z−
1 = ̂Z−

1 .
3: Calculate control point Z+

1 :
4: Z+

1 = ExpR̃1
(− 2

3
Exp−1

R̃1
(Z−

1 ))

5: Calculate control point Z−
2 :

6: Z−
2 = Exp

Z+
1

(

1
3

(

(dϕR̃1
)
Z−

1

(

α̇(1, R̃0, Z
−
1 )

)

− 4α̇(0, Z−
1 , R̃1)

))

7: for i = 2 : N − 2 do do
8: Z+

i = ExpR̃i
(−Exp−1

R̃1
(Z−

i ))

9: Z−
i+1 = Exp

Z+
i

((

(dϕR̃i
)
Z−

i

(

α̇(1, Z+
i−1, Z

−
i )

) − 2α̇(0, Z−
i , R̃i)

))

10: end for
11: Calculate control point Z+

N−1:

12: Z+
N−1 = ExpR̃N−1

(− 2
3
Exp−1

R̃N−1
(Z−

N−1))

13: return Z,
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Theorem 2. Let R̃0, ..., R̃N be a set of distinct points in the special orthog-
onal group SO(n) given by Eq. (18) and α(t) the shortest geodesic arc join-
ing control points of the curve γ on SO(n) given by Eq. (16). Let X1 =
[(B1

1)
−, ..., (B1

N−1)
−]T be the matrix of size n(N − 1) × n containing the con-

trol points of the C2 Bézier curve β1 in TR1SO(n). Then, there exists a unique
matrix Z = [Z−

1 , ..., Z−
N−1]

T ∈ R
n(N−1)×n, containing the (N − 1) control points

that generate the C2 Bézier curve γ interpolating the points R̃i at ti on SO(n),
for i = 0, ..., N . The rows of Z are given by:

Fig. 1. Example of an interpolating path on SO(3) applied to rotate a 12 sided dice
at given time instants (1, 5, 9, 13).
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(i) Z−
1 = ExpR1

((B1
1)

−).

(ii) Z−
2 = ExpZ+

1

(

1
3

(

(dϕR̃1
)Z−

1

(

α̇(1, R̃0, Z
−
1 )

)

− 4α̇(0, Z−
1 , R̃1)

))

.

(iii) Z−
i+1 = ExpZ+

i

((

(dϕR̃i
)Z−

i

(

α̇(1, Z+
i−1, Z

−
i )

) − 2α̇(0, Z−
i , R̃i)

))

,
i = 2, ..., N − 2.

We illustrate the proposed method to construct a smooth interpolating path
on SO(3) from four rotation matrices R1, R2, R3, and R4. We display the result
in Fig. 1 where rotations are applied to rotate a 12 sided dice and the given time
instants are displayed in a box. We can easily check that the resulting curve path
is smooth including at the interpolation points.

4 Conclusion

In this paper, we have introduced a new framework and algorithms to study the
fitting problem of C2 Bézier curves to a finite set of time-indexed data points on
the special orthogonal group SO(n). The proposed method takes into account the
global symmetries defined in the joint points. Therefore, the presented approach
is valid on any locally symmetric space and other Riemannian symmetric spaces.
In the future, we intend to extend the theory and then apply it to more general
nonlinear manifolds.
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