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Abstract. We investigate and computationally solve a shape optimiza-
tion problem constrained by a variational inequality of the first kind,
a so-called obstacle-type problem, with a gradient descent and a BFGS
algorithm in the space of smooth shapes. In order to circumvent the
numerical problems related to the non-linearity of the shape derivative,
we consider a regularization strategy leading to novel possibilities to
numerically exploit structures, as well as possible treatment of the regu-
larized variational inequality constrained shape optimization in the con-
text of optimization on infinite dimensional Riemannian manifolds.
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1 Introduction

Shape optimization is a classical topic in mathematics which is of high impor-
tance in a wide range of applications, e.g., acoustics [23], aerodynamics [19]
and electrostatics [6]. Qualitative properties of optimal shapes such as mini-
mum surfaces are investigated in classical shape optimization. In select cases, an
analytical solution can be derived. In contrast, modern and application-oriented
questions in shape optimization are concerned with specific calculations of shapes
which are optimal with respect to a process which is mostly described by partial
differential equations (PDE) or variational inequalities (VI). Consequently, the
area of shape optimization builds a bridge between pure and applied mathemat-
ics. Recently, shape optimization gained new interest due to novel developments
such as the usage of volumetric/weak formulations of shape derivatives. This
paper, which focuses on VI constrained shape optimization problems, is based
on recent results in the field of PDE constrained shape optimization and carries
the achieved methodology over to shape optimization problems with constraints
in the form of VIs. Thus, this paper can be seen as an extension of the Rieman-
nian shape optimization framework for PDEs formulated in [24] to VI. Note that
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VI constrained shape optimization problems are very challenging because of the
two main reasons: One needs to operate in inherently non-linear, non-convex and
infinite-dimensional shape spaces and—in contrast to PDEs—one cannot expect
the existence of shape derivatives for an arbitrary shape functional depending
on solutions to variational inequalities.

So far, there are only very few approaches in the literature to the problem
class of VI constrained shape optimization problems. In [12], shape optimiza-
tion of 2D elasto-plastic bodies is studied, where the shape is simplified to a
graph such that one dimension can be written as a function of the other. In
[22, Chap. 4], shape derivatives of elliptic VI problems are presented in the form
of solutions to again VIs. In [18], shape optimization for 2D graph-like domains
are investigated. Also [14] presents existence results for shape optimization prob-
lems which can be reformulated as optimal control problems, whereas [4,7] show
existence of solutions in a more general set-up. In [18], level-set methods are pro-
posed and applied to graph-like two-dimensional problems. Moreover, [8] presents
a regularization approach to the computation of shape and topological deriva-
tives in the context of elliptic VIs and, thus, circumventing the numerical prob-
lems in [22, Chap. 4]. However, all these mentioned problems have in common
that one cannot expect for an arbitrary shape functional depending on solutions
to VIs to obtain the shape derivative as a linear mapping (cf. [22, Example in
Chap. 1]). E.g., in general, the shape derivative for the obstacle problems fails
to be linear with respect to the normal component of the vector field defined
on the boundary of the domain under consideration. In order to circumvent the
numerical problems related to the non-linearity of the shape derivative (cf., e.g.,
[22, Chap. 4]) and in particular the non-existence of the shape derivative of a VI
constrained shape optimization problem, [8] presents a regularization approach
to the computation of shape and topological derivatives in the context of elliptic
VIs. In this paper, we consider this regularization strategy, leading to novel pos-
sibilities to numerically exploit structures, as well as possible treatment of the
regularized VI constrained shape optimization in the context of optimization on
infinite dimensional manifolds.

This paper is structured as follows. In Sect. 2, we give a brief overview of the
VI constrained shape optimization model class and regularization techniques
on which we focus in this paper. Section 3 presents a way to solve the VI con-
strained shape model problem in the space of smooth shapes based on gradient
representations via Steklov-Poincaré metrics. Finally, numerical results of the
gradient descent and a Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
are presented in Sect. 4.

2 VI Constrained Model Problem

Let Ω ⊂ R
2 be a bounded domain equipped with a sufficiently smooth boundary

∂Ω, which we will specify in more detail after stating the model problem. This
domain is assumed to be partitioned in a subdomain Ωout ⊂ Ω and an interior
domain Ωint ⊂ Ω with boundary Γint := ∂Ωint such that Ωout � Ωint � Γint
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= Ω, where � denotes the disjoint union. We consider Ω depending on Γint, i.e.,
Ω = Ω(Γint). In the following, the boundary Γint of the interior domain is called
the interface. In contrast to the outer boundary ∂Ω, which is fixed, the inner
boundary Γint is variable. The interface is an element of an appropriate shape
space. In this paper, we focus on the space of one-dimensional smooth shapes
(cf. [16]) characterized by Be := Be(S1,R2) := Emb(S1,R2)/Diff(S1), i.e., the
orbit space of Emb(S1,R2) under the action by composition from the right by the
Lie group Diff(S1). Here, Emb(S1,R2) denotes the set of all embeddings from
the unit circle S1 into R2, which contains all simple closed smooth curves in R2.
Note that we can think of smooth shapes as the images of simple closed smooth
curves in the plane of the unit circle because the boundary of a shape already
characterizes the shape. The set Diff(S1) is the set of all diffeomorphisms from S1

into itself, which characterize all smooth reparametrizations. These equivalence
classes are considered because we are only interested in the shape itself and
images are not changed by reparametrizations. More precisely, shapes that have
been translated represent the same shape. In contrast, shapes with different
scaling are not equivalent in this shape space. In [13], it is proven that the shape
space Be(S1,R2) is a smooth manifold. For the sake of completeness it should
be mentioned that the shape space Be(S1,R2) together with appropriate inner
products is even a Riemannian manifold. In [17], a survey of various suitable
inner products is given. In the following, we assume Γint ∈ Be.

Let ν > 0 be an arbitrary constant, ȳ ∈ L2(Ω) and y solving the VI formu-
lated in (3). For the objective function

J(y,Ω) := J (y,Ω) + Jreg(Ω) :=
1
2

∫
Ω(Γint)

|y − ȳ|2 dx + ν

∫
Γint

1 ds (1)

we consider the following VI constrained shape optimization problem:

min
Γint∈Be

J(y,Ω) (2)

with y solving the following obstacle type variational inequality:

a(y, v − y) ≥ 〈f, v − y〉 ∀v ∈ K := {θ ∈ H1
0 (Ω) : θ(x) ≤ ψ(x) in Ω}, (3)

where f ∈ L2(Ω) dependents on the shape, 〈·, ·〉 denotes the duality pairing and
a(·, ·) is a general bilinearform a : H1

0 (Ω)×H1
0 (Ω) → R, (y, v) �→

∑
ij aijyxi

vxj
+

byv defined by coefficient functions aij , b ∈ L∞(Ω), b ≥ 0.
With the tracking-type objective J the model is fitted to data measurements

ȳ ∈ L2(Ω). The second term Jreg in the objective function J is a perimeter
regularization, which is frequently used to overcome ill-posedness of shape opti-
mization problems. In (3), ψ denotes an obstacle which needs to be an element
of L1

loc(Ω) such that the set of admissible functions K is non-empty (cf. [22]).
Then smoothness of the boundary ∂Ω, where C1,1 regularity or polyhedricity is
sufficient, and ψ ∈ H2(Ω) ensure that the solution to (3) satisfies y ∈ H1

0 (Ω),
see, e.g., [9, Remark 2.3]. Further, (3) can be equivalently expressed as a PDE
with complementary constraints (cf. [11]):
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a(y, v) + (λ, v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ H1
0 (Ω) (4)

λ ≥ 0, y ≤ ψ, λ(y − ψ) = 0 in Ω (5)

The existence of solutions of any shape optimization problem is a non-trivial
question. Shape optimization problems constrained by VIs are especially chal-
lenging because, in general, the shape derivative of VI constrained shape opti-
mization problems is not linear (cf. [8,22]). This potential non-linearity of the
shape derivative complicates its use in algorithms. In order to circumvent the
problems related to the non-linearity, we consider a regularized version of (2)
constrained by (4)–(5). For convenience, we focus on a special bilinearform: We
assume the bilinearform a(·, ·) of the state equation to correspond to the Lapla-
cian −Δ. In this setting, a regularized version is given by:

min
Γint∈Be

J(yγ,c, Ω) (6)

s.t. − �yγ,c + λγ,c = f in Ω (7)
yγ,c = 0 on ∂Ω (8)

with λγ,c = maxγ(0, λ + c(yγ,c − ψ)), where γ, c > 0, 0 ≤ λ ∈ L2(Ω) fixed
and

maxγ(x) :=

{
max(0, x) for x ∈ R\[− 1

γ , 1
γ ]

γ
4 x2 + 1

2x + 1
4γ else

(9)

being a smoothed max-function. The convergence yγ,c → y in H1
0 (Ω) of the

regularized solution yγ,c to the unregularized solution y of (4) is guaranteed by
a result in [15, Proposition 1]. Furthermore, the smoothness of the regularized
PDE (7) guarantees the existence of adjoints, which in turn gives possibility to
characterize a corresponding shape derivative of (6). In [8], it is mentioned that
for a large parameter c the associated solution of the regularized state equation
(7)–(8) using the unsmoothed max-function is an excellent approximation of the
solution to the unregularized VI. Moreover, it is shown in [8] that the shape
derivative for the regularized problem converges to the solution of a linear prob-
lem which depends linearly on a perturbation vector field. Numerical tests in
[8] show the efficiency of the approach to introduce a regularization of the VI,
which allows to apply the usual theory for obtaining shape derivatives. We refer
to [15] for the shape derivative of (6)–(8) and the adjoint equation to (6)–(8),
as well as the limiting objects and equations for γ, c → ∞. However, we want
to point out that a proof of convergence of the optimal shapes generated by the
steepest descent or BFGS method using the regularization parameters γ, c > 0
for γ, c → ∞ is yet to be done.

3 Algorithmic Details

This section presents a way to solve (6)–(8) computationally in the Riemannian
manifold of smooth shapes. If we want to optimize on a Riemannian shape man-
ifold, we have to find a representation of the shape derivative with respect to
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the Riemannian metric under consideration, called the Riemannian shape gradi-
ent, which is required to formulate optimization methods on a shape manifold.
In [21], the authors present a metric based on the Steklov-Poincaré operator,
which allows for the computation of the Riemannian shape gradient as a repre-
sentative of the shape derivative in volume form. Besides saving analytical effort
during the calculation process of the shape derivative, this technique is compu-
tationally more efficient than using an approach which needs the surface shape
derivative form. For example, the volume form allows us to optimize directly over
the hold-all domain Ω containing one or more elements Γint ∈ Be, whereas the
surface formulation would give us descent directions (in normal directions) for
the boundary Γi only, which would not help us to move mesh elements around
the shape. Additionally, when we are working with a surface shape derivative,
we need to solve another PDE in order to get a mesh deformation in the hold-all
domain Ω as outlined for example in [24].

We denote the shape derivative of J in direction of a vector field U which can
be given in volume or surface form by DJ(·)[U ]. In order to distinguish between
surface and volume formulation, we use the notation DJ surf(·)[U ], DJvol(·)[U ].
Following the ideas presented in [21], we choose the Steklov-Poincaré metric

GS : H1/2(Γint) × H1/2(Γint) → R, (α, β) �→
∫

Γint

α(s) · [(Spr)−1β](s) ds,

where Spr : H−1/2(Γint) → H1/2(Γint), α �→ (γ0V )T n denotes the projected
Poincaré-Steklov operator with tr : H1

0 (Ω,R2) → H1/2(Γint,R
2) denoting the

trace operator on Sobolev spaces for vector-valued functions and V ∈ H1
0 (X,R2)

solving the Neumann problem

adeform(U, V ) =
∫

Γint

α · (tr(U))T n ds ∀U ∈ H1
0 (Ω,R2), (10)

where adeform : H1
0 (Ω,R2)×H1

0 (Ω,R2) → R is a symmetric and coercive bilinear
form. If r ∈ L1(Γint) denotes the L2-shape gradient given by the surface formula-
tion of the shape derivative DJsurf(yγ,c, Ω)[V ] =

∫
Γint

r 〈V, n〉 ds with n denoting
the normal vector field and yγ,c denoting the solution of the regularized state
equation (7)–(8), then a representation h ∈ TΓintBe

∼= C∞(Γint) of the shape gra-
dient in terms of GS is determined by GS(φ, h) = (r, φ)L2(Γint)

∀φ ∈ C∞(Γint).
From this we get that the mesh deformation vector V ∈ H1

0 (Ω,R2) can be
viewed as an extension of a Riemannian shape gradient to the hold-all domain
Ω because of the identities

GS(v, u) = DJ(yγ,c, Ω)[U ] = adeform(V,U) ∀U ∈ H1
0 (Ω,R2), (11)

where v = (tr(V ))T n, u = (tr(U))T n ∈ TΓintBe with TΓintBe
∼= C∞(Γint).
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One option to choose the operator adeform(·, ·) is the bilinear form associated
with the linear elasticity problem, i.e., aelas(V,U) :=

∫
Ω

(λtr(ε(V ))id + 2με(V )) :
ε(U) dx, where ε(U) := 1

2 (∇U + ∇UT ), A : B denotes the Frobenius inner
product for two matrices A,B and λ, μ denote the so-called Lamé parameters.
To summarize, we need to solve the following deformation equation: find V ∈
H1

0 (Ω,R2) s.t.

aelas(V,U) = DJ(yγ,c, Ω)[U ] ∀U ∈ H1
0 (Ω,R2). (12)

In this equation, we need the solution yγ,c of the regularized state equa-
tion (7)–(8), and the solution pγ,c of the corresponding adjoint equation (cf.
[15, Chapter 3]) in order to construct DJ(yγ,c, Ω)[·]. An alternative strategy to
the regularization outlined is the linearized modified primal-dual active set (lmP-
DAS) algorithm formulated in [5, Algorithm 2]. The lmPDAS algorithm is based
on the primal-dual active set (PDAS) algorithm given in [10] and on a lineariza-
tion technique inspired by the concept of internal numerical differentiation [3].

The Riemannian shape gradient is required to formulate optimization meth-
ods in the shape space Be. In the setting of constrained shape optimization prob-
lems, a Lagrange-Newton method is obtained by applying a Newton method to
find stationary points of the Lagrangian of the optimization problem. In con-
trast to this method, which requires the Hessian in each iteration, quasi-Newton
methods only need an approximation of the Hessian. Such an approximation is
realized, e.g., by a limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS)
update. In the Steklov-Poincaré setting, such an update can be computed with
the representation of the shape gradient with respect to GS and a suitable vector
transport (cf. [21]). The limited memory BFGS method (l-BFGS) for iteration
j is summarized in Algorithm 1, where l ∈ {2, 3, . . . } is the memory-length,
Vi ∈ H1

0 (Ω,R2) are the volume representations of the gradients in TΓintiBe as
by (12), Si ∈ H1

0 (Ω) are the BFGS deformations generated in iteration i, TSj−1

denotes the vector transport associated to the update Ωj = expΩj−1
(tr(Sj−1)T n)

and Yi := Vi+1 − TSi
Vi ∈ H1

0 (Ω,R2).

Remark 1. In general, we need the concept of the exponential map and vec-
tor transports in order to formulate optimization methods on a shape manifold.
The calculations of optimization methods have to be performed in tangent spaces
because manifolds are not necessarily linear spaces. This means points from a
tangent space have to be mapped to the manifold in order to get a new shape-
iterate, which can be realized with the help of the exponential map as used in
Algorithm 1. However, the computation of the exponential map is prohibitively
expensive in the most applications because a calculus of variations problem must
be solved or the Christoffel symbols need be known. It is much easier and much
faster to use a first-order approximation of the exponential map. In [1], it is
shown that a so-called retraction is such a first-order approximation and suf-
ficient in most applications. We refer to [20], where a suitable retraction and
vector transport on Be are given.
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4 Numerical Results

We focus on a numerical experiment which is selected in order to demonstrate
challenges arising for VI constrained shape optimization problems. To be more
precise, we move and magnify a circle in the domain Ω = (0, 1)2.

Algorithm 1. Inverse limited memory BFGS update in terms of the metric GS .
q ← Vj

Yj−1 ← Vj − TSj−1Vj−1

for i = j − 2, . . . , j − l do
Yi ← TSj−1Yi

end for
for i = j − 1, . . . , j − l do

Si ← TSj−1Si

ρi ← GS(tr(Yi)
T n, tr(Si)

T n)−1 = adeform(Yj , Sj)
−1

αi ← ρiG
S(tr(Si)

T n, tr(q)T n) = ρia
deform(Si, q)

q ← q − αiYi

end for

q ← GS(tr(Yj−1)
T n,tr(Sj−1)

T n)

GS(tr(Yj−1)T n,tr(Yj−1)T n)
q =

adeform(Yj−1,Sj−1)

adeform(Yj−1,Yj−1)
q

for i = j − l, . . . , j − 1 do
z ← Uj

q ← GS((γ0Yj−1)
T n,(γ0Sj−1)

T n)
GS((γ0Yj−1)T n,(γ0Yj−1)T n)

Uj =
adeform(Yj−1,Sj−1)

adeform(Yj−1,Yj−1)
Uj

end for
for i = j − l, . . . , j − 1 do

βi ← ρiG
S(tr(Yi)

T n, tr(q)T n) = ρia
deform(Yi, q)

q ← q + (αi − βi)Si

end for
Sj ← q

The right-hand side of (7), f ∈ L2(Ω), is chosen as a shape dependent piece-
wise constant function f(x) = 100 for x ∈ Ωint and f(x) = −10 for x ∈ Ω\Ω̄int.
Further, the perimeter regularization in Eq. (1) is weighted by ν = 0.00001. The
constants γ, c > 0 in the regularized state equation are set to γ = 100, c = 25.
The obstacle is given by

ψ : (0, 1)2 → R, (x, y) �→
{

0.25 if (x, y) ∈ (0.75, 1) × (0, 1)
100 if (x, y) ∈ (0, 0.75] × (0, 1)

. (13)

For our numerical test, we build artificial data ȳ by solving the state equation
without obstacle for the setting that Γint := {(x, y) ∈ (0, 1)2 : (x − 0.6)2 + (y −
0.5)2 = 0.22}. Then, we add noise to the measurements ȳ, which is i.i.d. with
N (0.0, 0.5) for each mesh node. The Lamé parameter are chosen by λ = 0 and
μ as the solution of the following Laplace equation:

−Δμ = 0 in Ω with μ = 20 on Γint and μ = 5 on ∂Ω
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Fig. 1. Left: Ω with the initial (small circle) and expected shape (dashed circle) and the
shape iterates of the gradient descent method. Right: Values of the objective function
and the shape distance in each iteration of the gradient descent method.

In order to solve our model problem formulated in Sect. 2, we focus on the
strategy described in Sect. 3. This means after solving the state and adjoint
equation, we compute a mesh deformation vector field by solving the defor-
mation equation. The regularized state and adjoint equations are solved using
the following discretizition. We use a Finite Element Method (FEM) with con-
tinuous Galerkin ansatz functions of first order and perform computations on
unstructured meshes with up to approx. 2 300 vertices and 4 300 cells. All lin-
ear systems are solved with the preconditioned conjugate gradient solver of the
software PETSc, which is used as a backend to the open source Finite Element
Software FEniCS, see [2].

First, we focus on a steepest descent strategy. This means we add the mesh
deformation vector field, which we get by solving the deformation equation, to
all nodes in the finite element mesh. We implemented also a full BFGS strategy
as described in Algorithm 1. Figures 1 and 2 present the results of the gradient
and the BFGS method. The left pictures show the domain Ω together with the
initial shape (small circle), the expected shape (dashed circle) and the shape
iterates. One can see that the expected shape is only achieved with the BFGS
method an not with the gradient method. This is due to some loss of shape
information in (0.75, 1) × (0, 1). This could be explained by the structure of the
limiting object p ∈ H1

0 (Ω) of the adjoints to the regularized problem, which is
given by

−Δp = −(y − ȳ) in Ω\A with p = 0 in A and p = 0 on ∂Ω, (14)

where A := {x ∈ Ω : y(x) ≥ ψ(x)} denotes the active set of the variational
inequality (4) (cf. [15, Theorem 1]). Due to the low obstacle ψ in (0.75, 1) ×
(0, 1), see (13), and the target ȳ being above ψ in (0.75, 1) × (0, 1), we have
(0.75, 1) × (0, 1) ⊂ A. Hence we have p|(0.75,1)×(0,1) = 0 for the sensitivities,
leaving no information in this area, resulting in shape derivatives which are 0
for directions V ∈ H1

0 (Ω,R2) with supp(V ) ⊂ (0.75, 1) × (0, 1). In this sense,
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Fig. 2. Left: Ω with the initial (small circle) and expected shape (dashed circle) and
the shape iterates of the BFGS method. Right: Values of the objective function and
the shape distance in each iteration of the BFGS method.

only target shapes Ω that correspond to solutions ȳ ∈ H1
0 (Ω) which are below

0.25 = ψ|(0.75,1)×(0,1) can be reached. This creates “blind areas” in the space
of shapes Be for the shapes not fulfilling this correspondence, which, due to
the Laplace equation regarded, is mostly the case for shapes that partly lie in
(0.75, 1)× (0, 1). The BFGS method only manages to reach the globally optimal
shape since it generates a large step while the current shape iterate is still outside
the blind area (0.75, 1) × (0, 1) ⊂ A.

The right pictures of Figs. 1 and 2 show the decrease of the objective function
and the mesh distance. In both methods, the shape distance between two shapes
Γ 1

int, Γ
2
int is approximated by the integral

∫
x∈Γ 1

int
maxy∈Γ 2

int
‖x − y‖2 dx, where

‖ ·‖2 denotes the euclidean norm. One sees that the BFGS method is superior to
the gradient method: 5 iterations (BFGS) vs. 12 iterations (gradient method).
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