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Abstract. We produce a coordinate free presentation of some con-
cepts usually involved in incremental mechanics (tangent linear stiffness
matrix, stability, loading paths for example) but not always well founded.
Thanks to the geometric language of vector bundles, a well defined geo-
metrical object may be associated to each of these tools that allows us
to understand some latent difficulties linked with these tools due to the
absence of a natural connection and also to extend some of our recent
results of linear stability to a non linear framework.
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1 Motivations

1.1 Kinematic Structural Stability

For the last ten years, we developed tools to tackle an old question regard-
ing the conflict between two criteria of stability involved in rate-independent
mechanical systems. We call these two criteria the divergence Lyapounov cri-
terion (it is the usual one) and the Hill criterion also called the second order
work criterion. These two criteria are identical for elastic conservative or for
piece-wise rate-independent mechanical systems but they give different critical
divergence stability values for elastic non conservative systems or for non linear
rate-independent mechanical systems like non associate plastic materials. The
usual language in mechanics characterizes these last systems by a non symmet-
ric tangent stiffness matrix K(p) whereas for the first class of system K(p) is
symmetric.

Thanks to the new concept of Kinematic Structural Stability (KISS) and
an original variational formulation on all the possible kinematic constraints, we
proved, in the discrete linear elastic nonconservative framework, that the two
criteria become again equivalent ([4] for example). The most elegant proof of
this result involves the geometric concept of compression of operator which can
be extended to Hilbert spaces and which allowed us to extend the result to
continuous linear elastic systems [6]: all the compressions of the operator are
one-to-one if and only if the symmetric part of the operator is definite.
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1.2 Geometric Degree of Nonconservativity

In parallel to these stability issues, we also investigated the dual problem which
questions the minimal number of kinematic constraints necessary to make con-
servative the elastic mechanical system. In a linear discrete framework, this
number called the geometric degree of nonconservativity (GDNC) is the half
of the rank of the skew symmetric part Ka(p) of K(p) [3]. The extension of the
GDNC to infinite dimension Hilbert space involved for continuous systems is
not obvious whereas the extension to the differentiable non linear framework is
possible. Indeed, the skew-symmetric part Ka(p) must be replaced by the exte-
rior derivative dωF of the 1-form ωF defining the corresponding force system
on the mechanical system. ωF is a section of the cotangent bundle T ∗

M of the
configuration manifold M and the GDNC is then the half of the class of the
2-form dωF [5].

1.3 Main Issue

The problem investigated in this paper is to provide such a non linear extension
but for the original KISS issue. Whereas the exterior derivative dωF provides
a “natural” non linear extension of the skew symmetric part Ka(p) of K(p), it
appears that there is no such natural extension for K(p) nor for its symmetric
part Ks(p).

Indeed the incremental point of view necessitates to make a derivative of ωF .
However there is no natural connection on M to do it. To solve this problem, we
will use the fact that the incremental quasi-static evolution of the mechanical
system lies on the nil section of T ∗

M (which represents the equilibrium manifold)
and we will use this canonical and global section of T ∗

M as a horizontal space
for the derivative of ωF . It allows for example to provide an intrinsic meaning
of the common concept of tangent stiffness matrix of a system. We have to
stress that we stay here within the differentiable framework which means that
only hypoelasticity and not plasticity is investigated even if it is the long-term
goal of these investigations. We also have to stress that the tools used in these
investigations are usual (see [2] or [1] for example) in classical mechanics for so-
called Lagrangian or Hamiltonian mechanics or even multisymplectic mechanics.
However, here, by principle we do not suppose an Hamiltonian or Lagrangian
functions to describe the evolution of the mechanical systems.

2 Some Results

We now present three intrinsic objects or results that geometrically extend more
or less usual concepts of the linear framework to the not linear case. A large
part of these developments are in [7]. In all these developments, the mechanical
system is called Σ and is described by a finite number n of parameters which
means that the configuration space is a n dimension manifold M. With this
language, any system of forces is represented by a section of the cotangent bundle
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T ∗
M. As usual, we sometimes identify the nil section of T ∗

M with M itself
(0T ∗M(M) � M). We also note π : T ∗

M → M the natural projection so that
T ∗

mM = π−1{m} ∀m ∈ M.

2.1 Tangent Stiffness Operator

Let F be a force system described by a section ωF of T ∗
M and me ∈ M an

equilibrium configuration of Σ subjected to F . Then, considering the derivative
dωF of ωF (and NOT the exterior derivative dωF as above), we have

dωF (me) : Tme
M → T(me,0)T

∗
M = Txe

M ⊕ π−1
me

u �→ u + dωF (me)ver(me)(u) (1)

where dωF (me)ver(me) is a linear map and then belongs to L(Tme
M, T ∗

me
M).

Then, we are led to put the

Definition 1. The above linear map dωver
F (me) ∈ L(Tme

M, T ∗
me

M) is called the
tangent stiffness operator or the tangent stiffness tensor of Σ at me. Because
of the involved spaces, it is a covariant 2-tensor on the vector space Tme

M. It
obviously depends on me and on the force system F .

In local coordinates on the manifold M, this tensor is represented by a square
matrix of Mn(R): it is the “usual” tangent stiffness matrix K at the equilibrium
me and for the force system F .

2.2 T-Stability

We adopt the following

Definition 2. Let F be a force system described by a section ωF of T ∗
M and

me ∈ M an equilibrium configuration of Σ subjected to F . Thus ωF (me) = 0 =
0T ∗M(me). me is then called Transervality-stable or T-stable if ωF intersects or
cuts transversally the nil section 0T ∗M.

This definition is then purely geometric and does not involves the tangent stiff-
ness. The infinitesimal characterization of the transversality of the intersection
of manifolds leads to the following property:

Proposition 1. me is T-stable if and only if dωver
F (me) is an invertible map.

The T-transversality leads then to the usual characterization of the divergence
Lyapounov stability.

2.3 KISS Issue

The KISS issue necessitates to consider all the submanifolds V of (embedded
in) M and also the definition of loading paths L = (M, ωL) on M. The above



54 J. Lerbet et al.

T-stability can be extended to loading paths which are then called regular load-
ing paths (see [7] for more precisions). Then, for any embedded submanifold
j : V → M of M we may define by a pullback j∗ the induced loading path LV

on V and is called the subloading path LV = (V, ωLV
) of L. We then have the

following extension of the KISS result to the non linear framework:

Theorem 1. Let L be a regular loading path and me,σ = π(ωL(σ)) ∈ M. If
the symmetric part dωL(σ)ver,s(me,σ) of dωL(σ)ver(me,σ) is a degenerated (0, 2)
symmetric tensor then there is a submanifold V � me,σ of M such that LV =
(V, ωLV

) is singular at σ.

3 Some Open Questions

For future works, the fundamental open problem is to establish such a geometric
framework to tackle similar questions for plastic evolutions. Two main issues
are then to describe the internal irreversibility and to take into account the non
differentiability along the incremental evolutions.
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