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Abstract. The purpose of this work is to optimize an affine functional
over positive measures. More precisely, we deal with a probability of
failure (p.o.f). The optimization is realized over a set of distributions
satisfying moment constraints, called moment set. The optimum is to be
found on an extreme point of this moment set. Winkler’s classification
of those extreme points states they are finite discrete measures. The set
of the support points of all discrete measures in the moment set is a
manifold over which the p.o.f is optimized. We characterize the mani-
fold’s structure by proving it is an algebraic variety. It is the zero locus
of polynomials defined thanks to the canonical moments. This reduces a
highly constrained optimization over the moment set onto a constraint
free manifold.

Keywords: Canonical moments · Optimal uncertainty quantification ·
Robustness

1 Introduction

1.1 Probability of Failure Inference

Computer codes are increasingly used to measure safety margins, especially in
nuclear accident management analysis. In this context, it is essential to evaluate
the accuracy of the numerical model results, whose uncertainties come mainly
from the lack of knowledge of the underlying physic and the model input param-
eters. Methods were developed in safety analyses to quantify those uncertainties
[6]. Their common principle relies mainly on a probabilistic modeling of the
model input uncertainties, on Monte Carlo sampling for running the computer
code on sets of input, and on the application of statistical tools to infer proba-
bilities of failure (p.o.f) of the scalar output variables of interest [13].

This takes place in a more general setting, known as Uncertainty Quantifi-
cation (UQ) methods [10]. Quantitative assessment of the uncertainties tainting
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the results of computer simulations is a major topic of interest in both industrial
and scientific communities.

p.o.f inference is tainted by the uncertainty of the input modeling. More
specifically, the inputs probability densities are usually chosen in parametric
families (uniform, normal, log-normal, etc.), and their parameters are estimated
using available datas and/or the opinion of an expert. However, they may differ
from the reality. This uncertainty on the input probability densities is propagated
to the p.o.f. As a consequence, different choices of distributions will lead to
different p.o.f values, thus different safety margins.

1.2 Optimal Uncertainty Quantification

In this work, we propose to gain robustness on the quantification of this measure
of risk. We aim to account for the uncertainty on the input distributions by
evaluating the minimal p.o.f over a class of probability measures A. In this
optimization problem, the set A must be large enough to effectively represent
our uncertainty on the inputs, but not too large in order to keep the estimation of
the quantile representative of the physical phenomena. For example, the minimal
p.o.f over the very large class A = {all distributions}, proposed in [5], will
certainly be too conservative to remain physically meaningful. Several articles
which discuss possible choices of classes of distributions can be found in the
literature of Bayesian robustness (see [11]). Deroberts et al. [2] consider a class
of measures specified by a type of upper and lower envelope on their density.
Sivaganesan et al. [12] study the class of unimodal distributions. In more recent
work, Owhadi et al. [9] propose to optimize the measure of risk over a class of
distributions specified by constraints on their generalized moments. They call
their work Optimal Uncertainty Quantification (OUQ). However, in practical
engineering cases, the available information on an input distribution is often
reduced to the knowledge of its mean and/or variance. This is why in this paper,
we are interested in a specific case of the framework introduced in [9]. We consider
the class of measures known by some of their classical moments, we refer to it
as the moment class:

A =
{

μ = ⊗μi ∈
d⊗

i=1

M1([li, ui]) | Eμi
[xj ] = c

(i)
j , (1)

c
(i)
j ∈ R, for 1 ≤ j ≤ Ni and 1 ≤ i ≤ d

}
,

where M1([li, ui]) denotes the set of scalar probability measures on the interval
[li, ui]. The tensorial product of measure set traduces the mutual independence
of the d-components of the input vector μ.

1.3 Reduction Theorem

The solution of our optimization problem is numerically computed thanks to
the OUQ reduction theorem [9,14]. This theorem states that the measure
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corresponding to the minimal p.o.f is located on the extreme points of the
distribution set. In the context of the moment class, the extreme distributions
are located on the d-fold product of finite convex combinations of Dirac masses:

AΔ =

{
μ ∈ A | μi =

Ni+1∑
k=1

w
(i)
k δ

x
(i)
k

for 1 ≤ i ≤ d

}
, (2)

To be more specific it holds that when n pieces of information are available on
the moments of a scalar measure μ, it is enough to pretend that the measure
is supported on at most n + 1 points. This powerful theorem gives the basis
for practical optimization of our optimal quantity of interest. In this matter,
Semi-Definite-Programming [4] has been already explored in [1] and [7], but
the deterministic solver used rapidly reaches its limitation as the dimension of
the problem increases. One can also find in the literature a Python toolbox
developed by McKerns [8] called Mystic framework that fully integrates the
OUQ framework. However, it was built as a generic tool for generalized moment
problems and the enforcement of the moment constraints is not optimal.

By restricting the work to our moment class, we propose an original and
practical approach based on the theory of canonical moments [3]. Canonical
moments of a measure can be seen as the relative position of its moment sequence
in the moment space. They are inherent to the measure and therefore present
many interesting properties. Our main contribution is in the proof that the
optimization set AΔ is an algebraic manifold, more specifically it is the zero
locus of polynomials whose coefficients are function of canonical moments. This
geometric approach replaces the optimization on the constrained space in Eq. (2)
into a constraint free optimization.

This paper proceeds as follows. In Sect. 2 we develop the reduction theorem
and the parameterization of the optimization space, we present the manifold
over which the optimization takes place. Section 3 is dedicated to the canonical
moments and the construction of the polynomials of interest. We show that the
zero locus of those polynomials constitute the optimization space. Section 4 gives
some conclusions and perspectives.

2 Problem Reduction

2.1 OUQ Theorem

In this work, we consider a p.o.f on the output of a computer code G : Rd → R,
seen as a black box function. In order to gain robustness on our safety margin
choice, our goal is to find the minimal p.o.f over the moment set A described
in Eq. (1). For a given threshold h, it reads:

inf
μ∈A

Pμ(G(X) ≤ h) (3)

The OUQ reduction theorem applies (Theorem 1). It states that the optimal
solution of the optimization problem (3) is a product of discrete measures. A
general form of the theorem reads as follows:
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Theorem 1 (OUQ reduction [9]). Suppose that X := X1 × · · · × Xd is a
product of Radon spaces. Let

A :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(G,μ)

G : X → Y, is a real valued measurable function,

μ = μ1 ⊗ · · · ⊗ μd ∈ ⊗d
i=1 M1(Xi),

for some integers N0, . . . , Nd, and measurable functions
ϕl : X → R and ϕ

(i)
j : Xi → R,

• Eμ[ϕl] ≤ 0 for l = 1, . . . , N0,

• Eμi
[ϕ(i)

j ] ≤ 0 for j = 1, . . . , Ni and i = 1, . . . , d

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Let Δn(X ) be the set of all discrete measures supported on at most n + 1 points
of X , and

AΔ := {(G,μ) ∈ A | μi ∈ ΔN0+Ni
(Xi)} .

Let q be a measurable real function on X × Y. Then

sup
(G,μ)∈A

Eμ[q(X,G(X))] = sup
(G,μ)∈AΔ

Eμ[q(X,G(X))].

This theorem derives from the work of Winkler [14], who has shown that the
extreme measures of moment class {μ ∈ M1(X ) | Eμ[ϕ1] ≤ 0, . . . ,Eμ[ϕn] ≤ 0}
are the discrete measures that are supported on at most n+1 points. The strength
of Theorem 1 is that it extends the result to a tensorial product of moment sets.
The proof relies on a recursive argument using Winkler’s classification on every
set Xi. A remarkable fact is that, as long as the quantity to be optimized is an
affine function of the underlying measure μ, this theorem remains true whatever
the function G and the quantity of interest q are.

Now, by taking ϕ
(i)
j (x) = xj for 1 ≤ i ≤ Ni, we enforced Ni moment con-

straints to μi, as in Eq. (1). Applying Theorem1 to the function q(X,G(X))
= −1{G(X)≤h}, the p.o.f reaches its optimum on the reduced set AΔ, such that
for a fixed threshold h we have:

inf
μ∈A

Fμ(h) = inf
μ∈AΔ

Eμ[1{G(X)≤h}],

= inf
μ∈AΔ

Pμ(G(X) ≤ h),

= inf
μ∈AΔ

N1+1∑
i1=1

· · ·
Nd+1∑
id=1

ω
(1)
i1

. . . ω
(d)
id

1{G(x
(1)
i1

,...,x
(d)
id

)≤h}, (4)

2.2 Parameterization Simplification

The optimization problem in Eq. (4) shows that the weights and the positions
of the input distributions provide a natural parameterization for the computation
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of the p.o.f. However, we now highlight the fact that the knowledge of the
support points of a discrete measure (Eq. (5)) fully determines the corresponding
weights. Hence, the support points are sufficient to compute the p.o.f (Eq. (4)).
Indeed, we recall that in the optimization set AΔ (Eq. (2)), Ni constraints are
enforced on the moment of the ith input. The measure μi is therefore supported
on at most Ni + 1 points, which reads:

μi =
Ni∑
i=1

w
(i)
j δ

x
(i)
j

(5)

The Ni + 1 Vandermonde system holds⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω
(i)
1 + . . . + ω

(i)
Ni+1 = 1

ω
(i)
1 x

(i)
1 + . . . + ω

(i)
Ni+1x

(i)
Ni+1 = c

(i)
1

...
...

...

ω
(i)
1 x

(i)
1

Ni

+ . . . + ω
(i)
Ni+1x

(i)
Ni+1

Ni

= c
(i)
Ni

(6)

where the Ni last equations derive from the constraints and the first one is the
expression of the measure mass equals to one. Because every support points
(x(i)

j )j are distinct, when they are set, the corresponding weights are uniquely
determined.

The optimization problem in Eq. (4) is therefore parameterized only with
the position of the support points of every input, so that the optimization takes
place on the following manifold:

V =
d∏

i=1

Vi,

=
d∏

i=1

⎧⎨
⎩xi =

(
x
(i)
1 , . . . , x

(i)
Ni+1

)
∈ R

Ni+1, s.t μi =
Ni+1∑
j=1

ω
(i)
j δ

x
(i)
j

∈ A(i)
Δ

⎫⎬
⎭ , (7)

where A(i)
Δ is such that AΔ =

⊗d
i=1 A(i)

Δ , this reads

A(i)
Δ =

{
μi =

Ni+1∑
k=1

ω
(i)
k δ

x
(i)
k

| Eμi
[xj ] = c

(i)
j , for 1 ≤ j ≤ Ni

}
. (8)

Vi is simply the set of support points of all measures in A(i)
Δ respecting the

constraints. Our main contribution in this work is to show that Vi is an algebraic
manifold, meaning it is the zero locus of some well defined polynomials.

3 Optimization Space Seen as a Variety

3.1 Canonical Moments

We define the moment space M := M(a, b) = {c(μ) | μ ∈ M1([a, b])} where
c(μ) denotes the sequence of all moments of some measure μ. The nth moment
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space Mn is defined by projecting M onto its first n coordinates, Mn = {cn(μ)
= (c1, . . . , cn) | μ ∈ M1([a, b])}. We now define the extreme values,

c+n+1 = max {c ∈ R : (c1, . . . , cn, c) ∈ Mn+1} ,

c−
n+1 = min {c ∈ R : (c1, . . . , cn, c) ∈ Mn+1} ,

which represent the maximum and minimum values of the (n + 1)th moment
that a measure can have, when its moments up to order n are fixed. The nth
canonical moment is then defined recursively as

pn = pn(c) =
cn − c−

n

c+n − c−
n

. (9)

Note that the canonical moments are defined up to the degree N = N(c)
= min {n ∈ N | cn ∈ ∂Mn}, and pN is either 0 or 1. Indeed, we know from
[3, Theorem 1.2.5] that cn ∈ ∂Mn implies that the underlying μ is uniquely
determined, so that, c+n = c−

n . We also introduce the quantity ζn = (1− pn−1)pn

that will be of some importance in the following. The very nice properties of
canonical moments are that, by construction, they belong to [0, 1] and are invari-
ant under linear transformation of the measures, y = a + (b − a)x. Hence, we
may restrict ourselves to the case a = 0, b = 1.

3.2 Support Points and Canonical Moments

From a given sequence of canonical moments, one wishes to reconstruct the
support of a discrete measure. This link arises through the following theorem

Theorem 2 ([3, Theorem3.6.1]). Let μ denote a measure on the interval [a, b]
supported on n + 1 points with canonical moments p1, p2, . . . . Then the support
of μ consists of the zeros of P ∗

n+1(x) where

P ∗
k+1(x) = (x − a − (b − a)(ζ2k + ζ2k+1))P ∗

k (x) − (b − a)2ζ2k−1ζ2kP ∗
k−1, (10)

with P ∗
−1(x) = 0, P ∗

0 (x) = 1 and ζk = (1 − pk−1)pk

The polynomial P ∗
n+1 is defined with the sequence of canonical moments up to

order 2n + 1. In the following, we consider a fixed sequence of moments cn =
(c1, . . . , cn) ∈ Mn, let μ be a measure supported on at most n + 1 points, with
classical moments cn. Hence, μ has canonical moments equal to pn = (p1, . . . , pn)
the corresponding sequence of canonical moments related to cn, as described in
Sect. 3.1. We define the set Θn+1 = {x ∈ [0, 1]n+1 | xi ∈ {0, 1} ⇒ xk = 0, k > i}
and the functional:

φpn
: Θn+1 → R[X]
(pn+1, . . . , p2n+1) �→ P ∗

n+1, (11)

The function φ computes, from a sequence of canonical moments (p1, . . . , p2n+1),
a polynomial P ∗

n+1 in regards of Theorem2. Therefore, the roots of P ∗
n+1 corre-

spond to the support of a measure with moments cn. We derive the following
Theorem, it is the geometric version of Theorem 2.
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Theorem 3. The set Vi of (Ni+1)-tuples corresponding to the support points of
a discrete measure with prescribed first Ni moments (c(i)1 , . . . , c

(i)
Ni

) is an algebraic
manifold of RNi+1. It is the zeros locus of the set of polynomials:

Si =
{
P ∗

Ni+1 = φpNi
(pNi+1, . . . , p2Ni+1), (pNi+1, . . . , p2Ni+1) ∈ ΘNi+1

}
(12)

In order to optimize our quantity of interest in Eq. (3), one need to explore
the space of admissible measures AΔ. More precisely, the p.o.f in Eq. (4) is
computed over the space V. This space corresponds to the support points of all
discrete measures respecting the constraints in AΔ. What is interesting is that
Θn+1 provides a very simple parameterization of V through the computation of
roots of some well defined polynomial.

An optimization over the highly constrained space AΔ is therefore simplified
into a constraint free optimization program over the space Θn+1.

4 Conclusion

This work aims to evaluate the maximum quantile over a class of distributions
constrained by some of their moments. We used the theory of canonical moments
into an improved methodology for solving OUQ problems. The set of optimiza-
tion corresponds to the support points of the discrete measures in the moment
set. We have successfully shown it is the zero locus of a set of polynomials
defined with canonical moments. The knowledge of the shape of this manifold
allows a computational constraint free optimization program, instead of a highly
constrained optimization over the moment set.
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