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Abstract. We study the local truncation error of the so-called fractional
variational integrators, recently developed in [1,2] based on previous
work by Riewe and Cresson [3,4]. These integrators are obtained through
two main elements: the enlarging of the usual mechanical Lagrangian
state space by the introduction of the fractional derivatives of the dynam-
ical curves; and a discrete restricted variational principle, in the spirit
of discrete mechanics and variational integrators [5]. The fractional vari-
ational integrators are designed for modelling fractional dissipative sys-
tems, which, in particular cases, reduce to mechanical systems with linear
damping. All these elements are introduced in the paper. In addition, as
original result, we prove (Sect. 3, Theorem 2) the order of local trunca-
tion error of the fractional variational integrators with respect to the
dynamics of mechanical systems with linear damping.
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1 Preliminaries

1.1 Local Truncation Error

Let z : [a, b] → R
d and f : Rd → R

d a smooth curve and a smooth vector field,
respectively, for d ∈ N and [a, b] ⊂ R. Using the usual dot notation as time
derivative we can define the initial value problem:

ż = f(z), z(a) = z0, (1)

z0 ∈ R
d, with smooth solution z(t) ⊂ R

d. On the other hand, we define an
implicit one-step numerical method:

zk+1 = zk + h fh(zk, zk+1, h), (2)
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where h ∈ R+ is the time step, fh : Rd ×R
d ×R+ → R

d is smooth, and zk is con-
sidered an approximation of z(tk) for the time grid tk = {a + hk | k = 0, · · · , N},
with N = (b − a)/h. We say that the local truncation error order of the
method (2) with respect to (1) is p if

||z(tk+1) − zk+1|| = O(hp+1), (3)

when h → 0 and where || · || is the Euclidean norm in R
d [6].

1.2 Conservative Mechanical Systems

The dynamics of conservative simple mechanical systems, subject to a potential
force [7], is described by the second-order differential equation:

mẍ = −∇U(x), x(a) = x0, ẋ(a) = v0, (4)

where x0, v0 ∈ R, m ∈ R+ is the mass of the system (for simplicity, we will
set m = 1), x : [a, b] → R

1 is the dynamical curve and the potential energy
U : R → R is a smooth function. This equation can be transformed into a
first-order differential equation:

ẋ = v,

v̇ = −∇U(x), x(a) = x0, v(a) = v0.
(5)

The dynamical equation (4) can be obtained as a critical condition for extremals
from the Hamilton’s principle [8], given the action integral

S(x) =
∫ b

a

L(x(t), ẋ(t)) dt (6)

for a Lagrangian function L : TR → R (we shall consider the tangent bundle TR,
i.e. the state space, as the space locally isomorphic to R × R, with coordinates
(x, ẋ)) defined by

L(x, ẋ) =
1
2
ẋ2 − U(x). (7)

Remarkable geometric properties of the flow generated by (4) (equivalently (5))
are its symplecticity (it preserves the symplectic form ΩL := dx∧dẋ = dx∧dv ∈∧2(TR)) and the preservation of symmetries (Noether’s theorem) [8].

Remark 1. Observe that we are choosing a “Lagrangian version” (5) of Hamilton
equations for simple mechanical systems. In the picked setup, i.e. the configura-
tion manifold is the real space and the particular Lagrangian function (7), both
Lagrangian and Hamiltonian pictures are equivalent. Therefore, the theorems
about the local truncation error order of variational integrators in [5,9], apply
for (5).
1 We will restrict to the real space R for sake of simplicity, but all results in these

paper are straightforwardly extended to R
d.
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1.3 Variational Integrators

A natural way of obtaining integrators preserving the symplectic form ΩL and
the symmetries of the system is to construct variational integrators [5]. For
that, we replace the continuous curves x(t) by discrete ones xd = {xk}0:N :=
{x0, x1, · · · , xN} ∈ R

N+1. Moreover, we define the discrete Lagrangian Ld :
R × R → R as an approximation in one time step of the action integral (6), say

Ld(xk, xk+1, h) �
∫ tk+h

tk

L(x(t), ẋ(t)) dt, (8)

where we shall omit the h dependence of the discrete Lagrangian unless needed.
Given this, we define the discrete action sum Sd(xd) =

∑N−1
k=0 Ld(xk, xk+1); the

discrete Hamilton’s principle applied upon this action sum provides the so-called
discrete Euler-Lagrange equations:

D1Ld(xk, xk+1) + D2Ld(xk−1, xk) = 0, k = 1, ..., N − 1, (9)

which, under the condition [D12Ld] is regular, define a discrete flow FLd
: R ×

R → R × R; (xk, xk+1) �→ (xk+1, xk+2), that we call variational integrator.
Alternatively, the transformation2:

v−
k = −D1Ld(xk, xk+1),

v+
k+1 = D2Ld(xk, xk+1),

(10)

defines an alternate discrete flow F̃Ld
: R×R → R×R; (xk, vk) �→ (xk+1, vk+1),

which, when we pick the Lagrangian (7), will be a variational integrator for (5)
(observe that, in the general case, the “velocity matching” condition v−

k = v+
k

reproduces the discrete Euler-Lagrange equations (9)). As mentioned above, F̃Ld

is symplectic and momentum preserving. Moreover, the symplecticity ensures
a bounded energy behaviour in the long-term, which is explained by Back-
ward Error Analysis [6]. Another advantage of the variational approach is that
the local truncation error order of the integrators can be determined from the
approximation in (8). In particular, we can establish the following result, which
is a direct application of the order theorems in [5] and [9]:

Theorem 1. Given the Lagrangian L(x(t), ẋ(t)) (7) and Ld(xk, xk+1) an order
p approximation of the action integral (8), then the local truncation error of the
variational integrator F̃Ld

determined by (10) with respect to (5) is of order p.

Low-order integrators (up to 2)3 can be obtained through a first order quadrature
and the following linear interpolation between the points [xk, xk+1]: ẋ(tk) �
(xk+1 − xk)/h and x(tk) � γxk + (1 − γ)xk+1, where γ ∈ [0, 1] ⊂ R. Namely:

Ld(xk, xk+1) =
1
2h

(xk+1 − xk)2 − hU(γxk + (1 − γ)xk+1).

2 Naturally, this transformation is nothing but the discrete Legendre transform [5],
which is shown here in a Lagrangian version.

3 High-order variational integrators can be obtained via the use of inner discrete nodes
and more involved interpolations, see [10].
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From this discrete Lagrangian, the discrete Euler-Lagrange equations read:

xk+1 − 2xk + xk−1

h2
= −γ∇U(γxk +(1−γ)xk+1)−(1−γ)∇U(γxk−1+(1−γ)xk),

which are a discretization in finite differences of (4); whereas the flow F̃Ld
defined

by (10) reads:

xk+1 = xk + hvk − h2γ∇U(γxk + (1 − γ)xk+1),
vk+1 = vk − h∇U(γxk + (1 − γ)xk+1).

(11)

Using the Taylor expansion and the definition in Sect. 1.1, it is easy to see that
the order 2 of this integrator w.r.t. (5) is achieved when γ = 1/2, i.e. for the
midpoint rule, circumstance which is consistent with Theorem 1.

1.4 Linearly Damped Mechanical Systems

The dynamical equations of a mechanical system subject to linear damping are:

ẍ = −∇U(x) − ρ ẋ, x(a) = x0, ẋ(a) = v0, (12)

with ρ ∈ R+. In the first-order version:

ẋ = v,

v̇ = −∇U(x) − ρ v, x(a) = x0, v(a) = v0.
(13)

There is no Lagrangian function such that (12) are its Euler-Lagrange equations
[11]. With our fractional approach [1,2], explained in Sect. 2, we have designed
a restricted variational principle surpassing this issue.

2 Fractional Variational Integrators

2.1 Continuous and Discrete Fractional Derivatives

Given a smooth function g : [a, b] → R, the α-fractional derivatives (Riemann-
Liouville version), with α ∈ [0, 1] are:

Dα
−g(t) =

1

Γ (1 − α)

d

dt

∫ t

a

(t−τ)−αg(τ)dτ, Dα
+g(t) = − 1

Γ (1 − α)

d

dt

∫ b

t

(τ−t)−αg(τ)dτ,

where Γ (z) is the Gamma function [12]. Relevant properties in our approach are
∫ b

a
h(t)Dα

σ g(t)dt =

∫ b

a

(
Dα

−σh(t)
)
g(t)dt, D

1/2
− D

1/2
− g(t) = ġ(t), D

1/2
+ D

1/2
+ g(t) = −ġ(t),

(14)
with σ = {−,+}. On the other hand, for a discrete curve {xk}0:N and the time
step h ∈ R+, we can define the following discrete α-fractional derivatives [4]:

Δα
−xk :=

1

hα

k∑
n=0

αnxk−n, Δα
+xk :=

1

hα

N−k∑
n=0

αnxk+n, (15)

where αn := −α(1 − α)(2 − α) · · · (n − 1 − α)/n! and α0 := 1. It is proven in
[13] (Theorem 2.4) that Δα

±xk is an order 0 approximation (i.e. consistent) of
Dα

±x(t).
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2.2 Continuous Restricted Variational Principle

In [1,2], the fractional state space T R is defined, which is a vector bundle over
R × R with coordinates (x, y, ẋ, ẏ, Dα

−x,Dα
+y) over the point (x, y). This is an

extension of the usual tangent bundle, including the fractional derivatives after
doubling the space of curves (note that we are considering an extra curve y(t)).
The necessity of this doubling comes out of the assymetric integration by parts
rule in (14). Given this fractional phase space, we define a Lagrangian function
L : T R → R and the action integral:

S((x, y)) =
∫ b

a

L(x(t), y(t), ẋ(t), ẏ(t),Dα
−x(t),Dα

+y(t)) dt. (16)

Using a particular set of varied curves (x(t), y(t))ε := (x(t), y(t)) + ε(δx(t),
δx(t)) (observe that we are “restricting” the variations of both curves to be
equal), where ε ∈ R+ and δx : [a, b] → R is smooth and defined such that
δx(a) = δx(b) = 0, and considering the extremal condition of the action as
d/dε

∣∣
ε=0

S((x, y)ε) = 0, we obtain the next result.

Proposition 1. Given the Lagrangian function

L(x, y, ẋ, ẏ, Dα
−x,Dα

+y) =
(

1
2
ẋ2 − U(x)

)
+

(
1
2
ẏ2 − U(y)

)
− ρDα

−xDα
+y, (17)

then, a sufficient condition for the extremals of (16) subject to restricted varia-
tions (x, y)ε are the equations:

ẍ = −∇U(x) − ρDα
−Dα

−x → (α = 1/2) → ẍ = −∇U(x) − ρ ẋ,

ÿ = −∇U(y) − ρDα
+Dα

+y → (α = 1/2) → ÿ = −∇U(y) + ρ ẏ.
(18)

The previous equations are the so-called restricted fractional Euler-
Lagrange equations in [1,2] (see these references for the proof) for the particu-
lar Lagrangian (17). It can be rigorously proven that the y-system is nothing but
the x-system in reversed time (even for more general Lagrangians), and there-
fore these equations do not imply extra physics. For a general α we obtain the
equations of a mechanical system subject to fractional damping. When α → 1/2,
according to (14), we recover the dynamics of systems with linear damping (12).

2.3 Discrete Restricted Variational Principle

Given discrete sequences xd = {xk}0:N and yd = {yk}0:N and defining ẋk :=
(xk+1 −xk)/h; equiv. yk; xk+1/2 := (xk+1 +xk)/2 and xk−1/2 := (xk +xk−1)/2;
equiv. yk±1/2; (we pick the midpoint rule because it provides the maximum order
of (11) w.r.t. (5)), the discrete action sum for the fractional problem is

Sd((xd, yd)) =
N−1∑
k=0

hL(xk+1/2, yk+1/2, ẋk, ẏk,Δα
−xk,Δα

+yk), (19)
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where the discrete fractional derivatives are defined in (15). As in the con-
tinuous case, we pick a particular set of restricted discrete variations, namely
(xd, yd)ε := ({xk}0:N , {yk}0:N )+ ε({δxk}0:N , {δxk}0:N ), where {δxk}0:N is such
that δx0 = δxN = 0. Considering the extremal condition of the discrete action
as d/dε

∣∣
ε=0

Sd((xd, yd)ε) = 0, we get the next result:

Proposition 2. Given the Lagrangian L (17), a sufficient condition for the
extremals of (19) subject to restricted variations (xd, yd)ε is

xk+1 − 2xk + xk

h2
= −1

2
∇U(xk+1/2) − 1

2
∇U(xk−1/2) − ρ Δα

−Δα
−xk,

yk+1 − 2yk + yk

h2
= −1

2
∇U(yk+1/2) − 1

2
∇U(yk−1/2) − ρ Δα

+Δα
+yk,

(20)

for k = 1, · · · , N − 1.

The previous equations are the so-called discrete restricted fractional Euler-
Lagrange equations in [1,2] for the particular Lagrangian (17). In (20) we
recognize a discretization in finite differences of (18) for a general α. More-
over, it can be also rigorously proven that the discrete y-system is the discrete
x-system in reversed (discrete) time.

3 Order Result

As original result, we explore the local truncation error order of (20) with respect
to (13). With that aim, we need to establish an equivalent to (10) in the fractional
case. Based on [1,2], we pick (restricting to the x-system):

v−
k =

xk+1 − xk

h
+

h

2
∇U(xk+1/2) + hρΔα

−Δα
−xk, (21a)

v+
k+1 =

xk+1 − xk

h
− h

2
∇U(xk+1/2). (21b)

Note that the first two terms in the right hand side of both equations corresponds
to (10) for Ld(xk, xk+1) = (xk+1 − xk)/2h − hU(xk+1/2). In addition, observe
that the “velocity matching” condition v−

k = v+
k reproduces the discrete dynam-

ics (20). Finally, according to (15) it can be proven [1,2] that

Δ1/2
− Δ1/2

− xk = (xk − xk−1)/h, k = 1, · · · , N. (22)

With these elements, we can establish the following order result

Theorem 2. The local truncation order of the fractional variational integrators
for simple mechanical systems (21) when α = 1/2, with respect to the continuous
dynamics (13), is one.
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Proof. First, using Taylor expansions and setting the notation x(tk) := xk,
ẋ(tk) := vk, v(tk) := vk, we deliver expressions for x(tk+1) and v(tk+1) in terms
of the dynamics (13), namely:

x(tk + h) = xk + hvk − h2

2
∇U(xk) − h2

2
ρ vk + O(h3), (23a)

v(tk + h) = vk − h∇U(xk) − hρvk − h2

2
ΔU(xk)vk (23b)

+
h2

2
ρ∇U(xk) +

h2

2
ρ2vk + O(h3).

On the other hand, from (21) we get the integrator:

xk+1 = xk + hvk+1 +
h2

2
∇U(xk+1/2), (24a)

vk+1 = vk − h∇U(xk+1/2) − hρΔ1/2
− Δ1/2

− xk. (24b)

Replacing (24b) into (24a) we get

xk+1 = xk + hvk − h2

2
∇U(xk+1/2) − h2ρΔ1/2

− Δ1/2
− xk

=1 xk + hvk − h2

2
∇U(xk+1/2) − h2ρ

(
xk − xk−1

h

)

=2 xk + hvk − h2

2
∇U(xk) − h2ρ vk + O(h3),

where in =1 we have used (22) and in =2 we have used xk+1/2 = xk + hvk/2 +
O(h2) and (xk −xk−1)/h = vk +h∇U(xk−1/2)/2, according to (21b). Thus, from
the last expression and (23a), it follows that ||x(tk+1) − xk+1|| = O(h2). From
(24b) we get

vk+1 = vk − h∇U(xk+1/2) − hρ Δ1/2
− Δ1/2

− xk = vk − h∇U(xk+1/2) − hρ
(xk − xk−1

h

)

= vk − h∇U(xk) − hρvk − h2

2
ΔU(xk)vk − h2

2
ρ∇U(xk−1/2) + O(h3)

= vk − h∇U(xk) − hρvk − h2

2
ΔU(xk)vk − h2

2
ρ∇U(xk) + O(h3),

where we have taken into account that xk−1/2 = xk + O(h) and used the same
expressions as above for xk+1/2 and (xk − xk−1)/h. From this last expression
and (23b), we obtain that ||v(tk+1)−vk+1|| = O(h2), and the result follows from
the definition of local truncation error in Sect. 1.1. �

Remark 2. The alternate integrator:

v−
k =

xk+1 − xk

h
+

h

2
∇U(xk+1/2), v+

k+1 =
xk+1 − xk

h
−h

2
∇U(xk+1/2)−hρ Δα

−Δα
−xk+1,

which also reproduces (20) via velocity matching v−
k = v+

k , delivers the same
result.
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4 Conclusions

We prove that the local truncation error order of the fractional variational inte-
grators (21), with respect to the dynamics of linearly damped mechanical sys-
tems (13), is one. These integrators are designed in the spirit of variational
integrators [5], i.e. by means of the discretization of variational principles, in
our case the Hamilton’s principle with restricted variations. Thus, we expect
similar behaviour in terms of Theorem 1, i.e. the order of the approximation of
the action is equal to the order of the integrator. Our result is not coherent
in the fractional case. On the one hand, we pick the midpoint rule approxima-
tion x(tk) � (xk + xk+1)/2, which is the case where the maximum order (2) is
achieved for the usual variational integrators and conservative mechanical sys-
tems. On the other, the approximation of the fractional derivative that we use,
Δα

−xk, is only consistent (order 0) w.r.t. Dα
−x(t) ([13], Theorem 2.4). Thus,

the approximation of the action (16) is limited to O(h), whereas the integra-
tor is O(h2). This represents an improvement from the expected result, and its
numerical demonstration can be found in ([2],§5) through several simulations.
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