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Abstract. We introduce a geometric variational discretization frame-
work for geophysical flow models. The numerical scheme is obtained by
discretizing, in a structure-preserving way, the Lie group formulation of
fluid dynamics on diffeomorphism groups and the associated variational
principles. Being based on a discrete version of the Euler-Poincaré vari-
ational method, this discretization approach is widely applicable. We
present an overview of structure-preserving variational discretizations of
various equations of geophysical fluid dynamics, such as the Boussinesq,
anelastic, pseudo-incompressible, and rotating shallow-water equations.
We verify the structure-preserving nature of the resulting variational
integrators for test cases of geophysical relevance. Our framework applies
to irregular mesh discretizations in 2D and 3D in planar and spherical
geometry and produces schemes that preserve invariants of the equations
such as mass and potential vorticity. Descending from variational princi-
ples, the discussed variational schemes exhibit a discrete version of Kelvin
circulation theorem and show excellent long term energy behavior.

Keywords: Anelastic and pseudo-incompressible equations ·
Rotating shallow-water equations ·
Soundproof and compressible fluids · Variational principle ·
Euler-Poincaré equations · Structure-preserving discretizations

1 Introduction

Variational methods are a powerful tool to derive consistent models from Hamil-
ton’s principle of least action. The equations of motion follow by computing the
critical curve of the action functional associated to the Lagrangian of the sys-
tem. When derived from a discrete version of variational principles, the resulting
discretizations preserve important geometric properties of their underlying con-
tinuous equations, such as long term stability, consistency in statistical properties
and conservation of stationary solutions, see e.g. [9,12,14].
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Given the generality of the approach, variational methods are applied in
various fields of interest. While most of the literature covers variational integra-
tors for ordinary differential equations (ODEs), in recent years they have been
developed also for partial differential equations (PDEs), in particular for fluid
and geophysical fluid dynamics (GFD), see e.g. [13] and [1–3,6]. The numerical
schemes descend from discretizing the Lie group formulation of fluid dynamics
on diffeomorphism groups and the associated variational principles.

In the field of GFD, variational integrators are of particular interest given
their conservation of invariants which is a crucial property for long time integra-
tions to guarantee accurate representation of the statistical properties of these
models [4,7]. In this context, the rotating shallow-water (RSW) equations, both
in the plane and on the sphere, have received considerable attention because
they allow us to study the essential features of the full 3D equations in an ideal-
ized setting. Another interesting approximation of the Euler equations is to filter
out sound waves as they are assumed to be negligible for atmospheric models.
In this context, mostly anelastic and pseudo-incompressible approximations are
studied, cf. [8,11].

Here, we present a unified variational discretization framework that covers
both the soundproof approximations of the Euler equations [2,3] and the com-
pressible rotating shallow-water case [1,5]. As shown in Sect. 2, this framework
will allow us to stress differences in the description of compressible and incom-
pressible flows. Naturally, the Lie groups approximations describing the different
flow models differ from each other, but the derivation of the corresponding Lie
algebras and fluid’s vector fields follows for all cases the same procedure. In
contrast, the treatment of advected quantities differs between soundproof and
compressible models. For some of these models, we present in Sect. 3 some numer-
ical results of the schemes from Sect. 2.4 focusing again on the similarities and
differences between them. Finally, in Sect. 4 we draw some conclusions.

2 Variational Discretization Framework

The discretization procedure mimics the continuous variational principle step by
step. In Table 1 the corresponding continuous definitions are given that have to
be suitably approximated.

Recall that in the Lagrangian representation, the variational principle is the
Hamilton principle δ

∫
L(ϕ, ϕ̇)dt = 0 written on the appropriate diffeomorphism

group of the fluid domain M. For instance for the RSW equations the group
Diff(M) of all diffeomorphisms is used, whereas for soundproof models, one
chooses the group Diff σ̄μ(M) that preserve a weighted volume σ̄dx, with σ̄ = 1,
σ̄ = ρ̄, or σ̄ = ρ̄θ̄, for the Boussinesq, anelastic, or pseudo-incompressible model,
in which ρ̄(z) and θ̄(z) characterize vertically varying reference states for density
and potential temperature, respectively, in hydrostatic balance [2].

The variational principle inherited from the Hamilton principle in Eule-
rian (spatial) representation is the Euler-Poincaré principle ([10]). The spatial
Lagrangian is expressed in terms of the Eulerian velocity u, the fluid depth
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h, and/or the potential temperature θ, and the fluid equations follow from
δ
∫ T

0
�dt = 0 with respect to constrained variations δu, δh or δθ, see Table 1.

2.1 Discrete Diffeomorphism Groups

The discretization procedure starts with the choice of a discrete version of the
diffeomorphism group, [1,13], obtained by first discretizing the space of functions
F(M) on which the group acts by composition on the right, and then identifying
a finite dimensional group acting by matrix multiplication on the finite dimen-
sional space of discrete functions, while preserving some properties of the action
by diffeomorphisms (constant functions are preserved). Given a mesh M of M
and choosing as discrete functions the space R

N of piecewise constant functions
on M, this results in the following matrix groups:

– for compressible flow: D(M) = {q ∈ GL(N)+ | q · 1 = 1}, with 1 = (1, ..., 1)T,
in which the condition q · 1 = 1 encodes, at the discrete level, the fact that
constant functions are preserved under composition by a diffeomorphism;

– for soundproof flow: Dσ̄(M) =
{
q ∈ GL(N)+ | q · 1 = 1 and qT Ωσ̄q = Ωσ̄

}
,

with Ωσ̄
i :=

∫
Ci

σ̄(z)dx, for a cell Ci, and where the additional constraint
imposes the preservation of the weighted volume at the discrete level.

The action of the groups D(M) and Dσ̄(M) by matrix multiplication on dis-
crete functions F ∈ R

N is denoted as

F ∈ R
N �→ qF = F ◦ q−1 ∈ R

N , q ∈ D(M), (1)

where the suggestive notation F ◦ q−1 for the multiplication of the vector F by
the matrix q is introduced to indicate that this action is understood as a discrete
version of the action of Diff(M) and Diff σ̄(M) by composition on F(M). The
situation is formally illustrated by the diagram

2.2 Discrete Lie Algebra and Discrete Vector Fields

By taking the derivative of continuous and discrete actions at the identity, we
get d

dt

∣
∣
t=0

f ◦ ϕ−1
t = −df · u and d

dt

∣
∣
t=0

F ◦ q−1
t = AF , where d

dt

∣
∣
t=0

ϕt = u
and d

dt

∣
∣
t=0

qt = A. Hence AF , with A an element of the Lie algebra of D(M) or
Dσ̄(S) is a discretization of (minus) the derivative of f in the direction u. The
Lie algebras of D(M) and Dσ̄(S) are:

– for compressible flow: d(M) = {A ∈ Mat(N) | A · 1 = 0},
– for soundproof flow: dσ̄(M) =

{
A ∈ Mat(N)

∣
∣ A · 1 = 0, ATΩσ̄ + Ωσ̄A = 0

}
.
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However, not all A ∈ d(M) or dσ̄(M) can be interpreted as discrete vector fields.
This induces nonholonomic constraints on the Lie algebras which have to be
appropriately taken into account in the variational principle.

Nonholonomic Constaints. For both soundproof and compressible fluids it is
required that fluxes are nonzero only between neighboring cells, hence we have
the linear constraint S =

{
A ∈ d(M)/dσ̄(M) | Aij = 0, ∀ j /∈ N(i)

}
where N(i)

is the set of indices of those cells adjacent to cell i.
For the compressible case, we have the additional constraint, ΩiiAij =

−ΩjjAji, for all j �= i, where Ω = Ωσ̄ with σ̄ = 1. This gives the additional lin-
ear constraint R =

{
A ∈ d(M) | ATΩ + ΩA is diagonal

}
. These nonholonomic

constraints are taken into account by using the Euler–Poincaré–d’Alembert prin-
ciple, which is the nonholonomic version of the Euler–Poincaré principle.

Fig. 1. Flux associ-
ated to Aij .

Discrete Vector Fields. Taking into account these non-
holonomic constraints, it can be shown that if a matrix A
approximates a vector field u, then,

– for compressible flow: matrix elements of A ∈ S ∩
R satisfy Aij 	 − 1

2Ωii

∫
Dij

(u · nij)dS, Aii 	
1

2Ωii

∫
Ci

(div u)dx,
– for soundproof flow: matrix elements of A ∈ S satisfy

Aij 	 − 1
2Ωσ̄

ii

∫
Dij

(σ̄ u · nij)dS,

for all j ∈ N(i), j �= i, with Dij the hyperface common to cells Ci and Cj and
nij is the normal vector on Dij pointing from Ci to Cj , cf. Fig. 1.

Discrete Advected Quantities. To formulate the discrete Euler–Poincaré–
d’Alembert principle, we need to define appropriate actions of D(M) on discrete
fluid depth D for RSW and of Dσ̄(M) on discrete potential temperature Θ for
SP. In both cases, the action results from the definition in (1), namely

– for compressible flow: D is a discrete density so the action, D �→ D • q, is dual
to the action on discrete functions: 〈D • q, F 〉 = 〈D,F ◦ q−1〉 for all F ∈ R

N ,
with respect to the discrete L2 pairing. It results in D • q = Ω−1qTΩD.

– for soundproof flow: Θ is a discrete function so the action is qΘ = Θ ◦ q−1 as
in (1). Then, Θ(t) = q(t)Θ0.

2.3 Euler–Poincaré–d’Alembert (EPA) Variational Principle

Consider the spatial discrete Lagrangian �d = �d(A,Q) : d(M)/dσ̄(M)×R
N → R

with Q ∈ R
N an advected quantity, (D or Θ). The discrete EPA principle reads:

δ
∫ T

0
�d(A,Q)dt = 0 for variations δA = ∂tB + [B,A], B(0) = B(T ) = 0, and

– for compressible flow: δQ = −Q • B, with A,B ∈ S ∩ R,
– for soundproof flow: δQ = BQ, with A,B ∈ S.
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Case 1: soundproof model. The discrete EPA principle, with Q = Θ, yields
the following semidiscrete equations for (A(t), Θ(t)) ∈ dσ̄(M) × R

N , [2]:

( d

dt

δ�d

δA
+

[δ�d

δA
Ωσ̄, A

]
(Ωσ̄)−1 +

(
Θ

δ�d

δΘ

T)(A)

+ dP
)

ij
= 0, for all i ∈ N(j) (2)

for some discrete function P (the discrete pressure). Here (dP )ij = Pj − Pi and
( )(A) denotes the skew-symmetric part of a matrix.
Case 2: compressible model. The discrete EPA principle, with Q = D, yields
the following semidiscrete equations for (A(t),D(t)) ∈ d(M) × R

N , [1]:

P
( d

dt

δ�

δA
+ Ω−1

[
AT, Ω

δ�

δA

]
+ D

δ�

δD

T)

ij
= 0, for all i ∈ N(j), (3)

where P is the projection associated to the nonholonomic constraint, [1]. These
equations are accompanied with the discrete continuity equation d

dtD+D•A = 0.
We provide in Table 1 a summary that enlightens the correspondence between

the continuous and discrete objects. Note that in both cases, the resulting equa-
tions of motion for soundproof and compressible flows are valid on any reasonable
mesh (e.g. not degenerated cells [1]). To result in implementable code, we have
to choose a mesh and a suitable discrete flat operators such as in [13].

Table 1. Continuous and discrete objects for soundproof (SP) and compressible (CP)
discretizations. The divergence is denoted by div and the Jacobian by J .

Continuous diffeomorphisms Discrete diffeomorphisms
Diff(M) � ϕ D(M) � q

Group action on functions Group action on discrete functions
f �→ f ◦ ϕ−1 F �→ F ◦ q−1 =: qF

Group action on densities Group action on discrete densities
CP: h �→ h • ϕ = (h ◦ ϕ)Jϕ CP: D �→ D • q = Ω−1qTΩD

Eulerian velocity and advected quantity Disc. Eulerian veloc. and advec. quantity

u = ϕ̇ ◦ ϕ−1,

{
SP: θ = Θ0 ◦ ϕ−1

CP: h = (h0 ◦ ϕ−1)Jϕ−1 A = q̇q−1,

{
SP: Θ = qΘ0

CP: D = Ω−1q−TΩD0

Euler-Poincaré principle Euler-Poincaré-d’Alembert principle
δ

∫ T
0 �(u, h/θ)dt = 0, δu = ∂tv + [v,u] δ

∫ T
0 �(A, D/Θ)dt = 0, δA = ∂tB + [B, A]{

SP: δθ = −dθ · v
CP: δh = − div(hv)

{
SP: δΘ = BΘ, A, B ∈ S
CP: δD = −Ω−1BTΩD, A, B ∈ S ∩ R

2.4 Numerical Schemes on Irregular Simplicial Meshes

The numerical schemes are obtained from (2) and (3), by specializing them to the
chosen mesh and the chosen discrete Lagrangian, which requires the construction
of a discrete “flat” operator A ∈ S ∩ R �→ A� associated to the given mesh, see
[13]. For instance, for the RSW case the discrete Lagrangian is

�d(A,D) =
1
2

N∑

i,j=1

DiA
�
ijAijΩii +

N∑

i,j=1

DiR
�
ijAijΩii − 1

2

N∑

i=1

g(Di +Bi)2Ωii. (4)
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The discrete flat operator is defined from the two conditions A�
ij = 2Ωii

hij

fij
Aij ,

and A�
ij +A�

jk +A�
ki = Ke

j

〈
ω(A�), ζe

〉
, for i, k ∈ N(j), k /∈ N(i), with e the node

common to cells Ci, Cj , Ck, where Ke
k := |ζe∩Ck|

|ζe| ,
〈
ω(A�), ζe

〉
:=

∑
hmn∈∂ζe

A�
mn,

and where |ζe ∩ Ck| is the area of the intersection of Ck with the dual cell ζe,
fij is the length of the triangle edge between Ci and Cj , and hij is the length
of the dual edge connecting the circumcenters of Ci and Cj .

The numerical scheme is then obtained by applying a variational discretiza-
tion in time, [6].

3 Numerical Results

On a small selection of test cases of fluid and geophysical fluid dynamics on
an f -plane or the sphere, we show the performance of the variational integra-
tors developed in [1,2]. We focus here on illustrating similarities and differences
between the models and their variational discretizations.

Consider first the RSW scheme on both an f -plane and the sphere. We
study the scheme’s capability to conserve steady state solutions, cf. [1,5], and
invariants such as mass, energy, potential vorticity and enstrophy. Figure 2 shows
that for long term integrations, the total energy (kinetic + potential energy) is
well preserved for simulations on a regular (left) and irregular (middle) f-plane
mesh, but also rather well on the sphere (right).

0 100 200 300
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 / 
E
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-1
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0 100 200 300
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-2

0
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t in days

-2

0

2

10 -7

Fig. 2. Relative errors in total energy for the RSW scheme over 1 year. Left and middle:
isolated vortex solutions [1] on uniform, resp. non-uniform meshes (642 triangles) on
an f -plane; right: TC 2 solutions [5] on the sphere (10242 Voronoi cells).

Note that mass and potential vorticity are preserved at machine precision
for all cases. Although not by construction, potential enstrophy is well preserved
too on both f -plane and the sphere: for 50 days run of TC 2 of [15] at 10−7 and
for TC 5 at 10−3. In general we notice that the solutions on the f-plane and on
the sphere behave very similarly.

Consider further the convergence plots for the RSW scheme on a regular
and irregular f-plane mesh (left) and on the sphere (right) of Fig. 3. The plots
show the convergence of the numerical results after 1 day, resp. 12 days of sim-
ulations against the corresponding steady state solutions. On the f -plane, our
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Fig. 3. Convergence of RSW scheme. Left: on the sphere for steady state solution
(WTC2) after 12 days. Right: on an f -plane for steady state solutions after 1 day.

scheme shows at least 1st order convergence rates, while on the sphere, given the
additional curvature, it reduces to the order of about 0.5.

Figure 4 shows the fluid depth after a simulation of 14 days for TC 2 (left)
and a Rossby wave [5]. A comparison to literature confirms that these solutions
are accurately represented by our RSW integrator.

Fig. 4. RSW scheme on the sphere. Left: Williamson test case 5 (flow over a mountain)
after 14 days. Right: Rossby wave test case. Colorbars indicate fluid depth in [m]. (Color
figure online)

Finally, Fig. 5 shows solutions of the cold bubble test case [3], i.e. a falling
cold bubble in a warm environment. The left panel presents the solution of the
anelastic model with a linearized buoyancy term, the right one the corresponding
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Fig. 5. Potential temperature θ on regular meshes: comparison of results of the anelas-
tic (left) and pseudo-incompressible schemes (right) for the falling cold air bubble with
θmin/θmax = 90 K/300K. Colorbar indicates [θ] in K.
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solution for the pseudo-incompressible (PI) scheme applying a nonlinear buoy-
ancy approximation. Our PI captures well the physical meaningful nonlinear
effect that prevents the bubble from stretching [3,11], in contrast to the anelas-
tic scheme. Matching well the results from literature, this confirms the accuracy
of the variational schemes for the soundproof models.

4 Conclusions

We presented a variational discretization framework for geophysical flow mod-
els. This framework unifies the integrators for soundproof and compressible flow
models developed in [1,2]. In particular, we could illustrate that the method-
ology of deriving discrete velocity fields as elements of discrete Lie algebras of
the fluid models has many steps in common, while the discrete Lie groups that
approximate the configuration space and the advection of either buoyancy or the
fluid density of soundproof or compressible fluids, respectively, naturally differ.
We illustrated on some selected numerical results simularities and differences
between these variational integrators while confirming their excellent conserva-
tion properties.
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