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Abstract. We present a latent space factorization that controls a gener-
ative neural network for shapes in a semantic way. Our method uses the
segmentation data present in a collection of shapes to explicitly factorize
the encoder of a pointcloud autoencoder network, replacing it by several
sub-encoders. This allows to learn a semantically-structured latent space
in which we can uncover statistical modes corresponding to semantically
similar shapes, as well as mixing parts from several objects to create
hybrids and quickly explore design ideas through varying shape combi-
nations. Our work differs from existing methods in two ways: first, it
proves the usefulness of neural networks to achieve shape combinations
and second, adapts the whole geometry of the object to accommodate
for its different parts.
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1 Introduction

Design ideas exploration is a necessary step for creative modeling. Building tools
that help quickly prototyping ideas can significantly improve designers’ workflow.
Given the tremendous size of 3D shape repositories, scanning all previously exist-
ing models can be cumbersome. This is why we propose, in this work, a first step
to building such a tool: a shape composer that allows to combine parts coming
from different objects into a single and coherent new object. Unlike other works
that extract and snap different parts into new positions, we explore the possi-
bility of holistic composition with the use of generative neural networks.

This paper presents a semantically-rich way of controlling generative net-
works for 3D shapes, without limiting the user to predefined labels. On the
contrary, our approach is essentially data-driven in two ways. First, because we
rely on a large collection of shapes to train our generative model; second, because
the dataset itself is used by the user to tweak the output. More specifically, the
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dataset contains various shapes along with their segmentations into meaningful
object parts. Our generative network is then trained to produce shapes in a way
that is compatible with the segmentation. This is achieved by factorizing the
latent space of the generative model according to the different possible shape
parts. Thanks to this, a user can edit any given shape and decide to only change
part of it, by picking the desired geometry within the dataset. Moreover, the
network automatically adapts the final shape in a holistic way to make sure the
new part fits naturally. This leads to an inherent ambiguity in our task. On the
one hand, if we want to change the wings of a plane (for instance), we do not
want too much change in the other parts of the plane. On the other hand, we
still want the rest of the plane to adapt for the change. This is why we propose
an asymmetry in the design of our model.

As a matter of fact, our method relies on the Variational Auto Encoder
(VAE) framework (Sect. 3.1), but where the encoder is subdivided in several
partial encoders, one for each semantical part, that are mixed into a global code
which is then given to the decoder (Sect. 3.3). The decoder is structure-agnostic:
it only knows to transform a general code into a plausible shape, so that when
codes are manipulated and changed, the reconstruction should still look like a
plausible shape.

2 Related Work

Our method is related to different research efforts in 3D shapes analysis and
generation. We separate our review in three categories: generative modeling,
shapes neural networks, and data-driven shapes editing.

Generative Neural Networks. Generative models suchs as Generative Adver-
sarial Networks (GANs) [6] and Variational Auto Encoders (VAEs) [10] both
offer ways to sample from a distribution that matches a given dataset. VAEs rely
on an autoencoder scheme, where a network is asked to project data samples to
a subspace of much lower dimensionality (encode), while being able to recon-
struct the original data (decode). Adding a variational constraint that imposes
a prior (e.g. gaussian) on the latent distribution makes sure that the model gen-
eralizes well. Their compression-like behavior can then be used for several tasks
among which unsupervised learning, sampling, interpolation and denoising [4].
One drawback is that the output is typically blurred, because their loss does
not account for a perceptual term. On the contrary, GANs aim at mimicking
a given distribution by generating samples that are indistinguishable from the
original dataset; they can hence generate much sharper results, to the cost of
harder training and difficulty to control for mode collapse [12]. Conditioning on
the likelihood [3,16] allows to have a finer control on their outputs. Our work
aims at the same property by means of imposing a specific factorization on an
autoencoder latent space.
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Shape Neural Networks. As opposed to images, 3D shapes do not natu-
rally fit in a neural network framework. The main issue is to represent them
in a fixed-size Euclidian domain. The most direct way to do so is to use voxel
grids and directly transpose Convolutional Neural Networks in 3D [7]. However,
even if this approach can yield good results, generated shapes quality is limited
by the grid discretization and the O(n3) complexity. To overcome these limits,
Pointnet [18] introduced a neural network architecture based on pointclouds and
permutation-invariant operators, which characterizes well an unordered set such
as a pointcloud. It has successfully shown its usefulness for tasks such as classi-
fication and segmentation, and even has an extension that exploits hierarchical
analysis [19]. This architecture can also be used to generate pointclouds from
photographs [5]. Lastly, [2] has replaced the permutation invariance constraint by
imposing a lexicographic order on the pointset, leading to pointcloud GANs with
high reconstruction accuracy. Using shapes segmented into semantical parts, [17]
learns the joint probability for structure and geometry – for instance, the pres-
ence or absence of engines on a plane will constraint the profile of the wings.
While producing good quality results, their method does not allow to exchange
parts between shapes. Our method relies on a variation of such a shape neural
network, tailored at being used for shape combinations.

Data-Driven Shape Editing. Many existing methods give automated tools
for shapes editing and design exploration. Existing works range from shape cor-
respondences [7] to style similarity and transfer [13,14]. Others focus on gener-
ating diversity, by extracting and snapping parts together [8], or by hierchical
shape analysis and synthesis [11]. While [8] creates a combinatorial diversity, our
method focuses on the geometric prior for the whole shape, as contained in the
computed latent space. We also share a common usage as [14], but while they
use an example to guide the overall style of the reconstruction, we use multiple
examples, each one guiding a specific part of the shape.

3 Method

3.1 Autoencoder Foundation

Our goal is to create new object shapes, by generating variations within their
different parts, in a data-driven process. The first step is to be able to recreate
objects from the dataset. A natural choice is to use a generative model, we chose
autoencoders. Formally, the goal is to learn the two functions E (encoder) and
D (decoder) such that, for all X in the dataset:

X = D(E(X)) (1)

These two functions are implemented as neural networks that operate on point-
clouds, either taken as a source (for E) or as a target (for D). The key specificity
of our method is our factorization of E based on the available segmentation data.
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The architecture of our foundational autoencoder is the following (N = 1024
points):

Input: a minibatch of 32 pointclouds, each represented as a N × 3 matrix,
accompanied by their segmentation data (see part 3.2);

Encoder: based on Pointnet [18] but in a much simpler version, with successive
layers of per-point filters followed by ReLU layers;

Code mixer: the latent space factorization step, as explained in part 3.3;
Decoder: three fully connected layers with biases, except on the last layer;
Output: the last layer is ultimately reshaped to a N × 3 matrix.

3.2 Consistent Segmentation data

To demonstrate our method, we use the airplane category from ShapenetCore
and its segmentation obtained from [20], comprising of the four following parts:
body, wings, engine, tail. We restricted our analysis only to models containing
the four parts, but these parts need not have the same number of points. Since
all models are aligned in a consistent manner (the plane body is aligned with
the Z axis), our neural networks does not need any rotational invariance, and
can leverage from the strong spatial relations of the models’ parts for both the
encoder and decoder. Note that the value of K depends on the given dataset:
for the airplane category, K = 4.

3.3 Semantic Latent Space factorization

We use pointclouds to represent surfaces, a choice that leads to the following
remark: any subset of a pointcloud is a pointcloud. Although this may seem
trivial, note that this is not a property that usually holds in a machine learning
setting: for instance, a segmented region in an image is not typically rectangular.
This allows us to replace the encoder by K encoders, each for a part, which yields
the following factorization:

E = E1 ∗ E2 ∗ ... ∗ EK (2)

E(X) = C = [c1, c2, ..., cn], ci = Ei(X) (3)

where each Ei represents a partial encoder for part i, and evaluates what we call
a subcode. The above product corresponds to vector concatenation. In this form,
the factorization of the latent space simply corresponds to assigning parts to
dedicated coordinates. Figure 1 shows a diagram of the corresponding pipeline.
Note that for a given part i, the corresponding partial encoder Ei will take as
input pointclouds of different sizes, since one should not assume equal parts sizes
across the dataset. This limitation can be lifted thanks to the Pointnet [18] max-
pooling operation. Since part i is included in the whole shape of size N = 1024,
we know its size has to be smaller than 1024, so we can add zeros until we fill
a 1024 × 3 matrix. Then, one just has to make sure these padded zeros remain
through all the layers of the network, until the final max-pooling discards them.
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Fig. 1. Structure of our hybrid encoder model, illustrated for simplicity with K = 2
parts

3.4 Loss and Training

When it comes to pointclouds, two reconstruction losses can be considered: Earth
Mover’s Distance (EMD) and Chamfer Distance (CD). The former solves the
optimal transport problem of transporting S1 (where each point is seen as a
Dirac delta function) onto S2, and computing the optimal bijection φ:

dEMD(S1, S2) = min
φ:S1→S2

∑

x∈S1

‖x − φ(x)‖2 (4)

Relaxing the global optimality of the assignment, Chamfer Distance com-
putes the squared distance between each point of one pointcloud to its nearest
neighbor in the other pointcloud:

dCD(S1, S2) =
∑

x∈S1

min
y∈S2

‖x − y‖22 +
∑

y∈S2

min
x∈S1

‖x − y‖22 (5)

Chamfer distance is easier to implementat, has a shorter computation time,
and produces acceptable results for our usecase, so we chose to use it over EMD.
The interested reader will find a comparison of generation results for both losses
in [5].

This reconstruction loss becomes the objective function that is to be min-
imized. The reconstruction itself depends on the partial encoders and decoder
networks, which are simply non-linear parametric functions. So, the learning task
ultimately consists of finding the values for these parameters that minimize the
objective function. As typically in machine learning, this is done by a stochastic
gradient descent.

4 Experiments

We implemented our architecture using Tensorflow [1] and ran it on an Nvidia
Gti1080 GPU. We trained over 40 epochs using Adam optimizer [9] with learning
rate of 0.9 and a batchsize of 32.
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4.1 Basic Autoencoder Mode

Since our network is based on an autoencoder, we first demonstrate its ability to
reconstruct objects from the training set. Figure 2 shows examples of reconstruc-
tions, chosen to be representative of the type of objects present in our dataset.
We can notice that the reconstruction quality highly depends on the sub category
(not available) of the object: the typical plane present in the dataset is similar
to the second column, so this is where the autoencoder concentrated most of its
capacity.

Fig. 2. Example of some reconstructions. Top row: original. Bottom row: reconstructed.
The pairs of colored arrows point at errors in the predictions (Color figure online)

Clustering. The latent codes computed by E can be explored using standard
dimensionality reduction techniques, such as PCA and tSNE [15]. Figure 3 shows
the tSNE projection of our latent space over 2 dimensions, and snapshots of
certain blobs with their corresponding shapes. Note how similar shapes live in
the same blob. As with any tSNE projection, we remind the reader that distances
between blobs are not significant.

Continuous Part Transfer. Thanks to the factorization of E, by simply inter-
polating on a given Ei, we can easily transfer a part of an object to another one
while keeping the rest of the object unchanged. Let S be a source object, T
the target and i the index of the part we wish to transfer from S to T . This
is done with E(T ) = E1(T ) ∗ E2(T ) ∗ ... ∗ EK(T ), replacing Ei(T ) by Ei(S). A
linear interpolation between Ei(T ) and Ei(S) effectively realizes the continuous
morphing of the part. Figure 4 shows the results of selectively transfering parts
of a plane onto another one.
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(a) Blob from the left (b) Latent space (c) Blob from the middle
right

Fig. 3. tSNE projection of the encoder latent space, with close-ups of two blobs

(a) Interpolation of the whole plane

(b) Interpolation only on: wing

(c) Interpolation only on: body

(d) Interpolation only on: engine

(e) Interpolation only on: tail

Fig. 4. Selective part transfer, compared to the global interpolation from a source to
a target plane
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5 Limitations and Discussion

An inherent limitation of our model is that of the autoencoder it is based on.
Indeed, it suffers from a problem slightly similar to mode collapse, as shown in
Fig. 2: it focuses all its reconstruction capacity towards the most frequent shapes
from the dataset. In these reconstructions – running in simple autoencoder mode
– see how the secondary engines (blue arrows) are just partially recovered: points
that should be dedicated to them stayed on the wings. This is because such planes
belong to a rare class. During training, the decoder converged to a state that
favors the majority of wings, to the detriment of a minority of engines. It also
means that our model cannot be suited for part transfer when one part belongs
to an atypical object. Another consequence of lost small details is when they
belong to a discriminative part. Let us consider once again the example of the
plane with four engines: overall, the engines only have a mild contribution to the
reconstruction loss. Adopting a part-specific loss could be a way of circumventing
this problem.

As for part transfer, the ambiguity of our holistic design choice yields results
which are sometimes hard to predict. Since we want the whole model to adapt
for the new shape, we do not want to limit the geometry changes to the region
of the transferred part. We are still able to swap parts but this process does not
work for all parts. For several shapes, only one part – say the body of the plane
– determines the geometry of the other parts, at least in the learnt latent space.
So, swapping the body of such a plane with another one might lead to undesired
changes in the other parts of the plane.

Moreover, our autoencoder foundation suffers the same unbalanced latent
activation as reported in [17]: only a fraction of the latent dimensions have a
significant contribution to the reconstruction. All these aforementioned effects,
combined together, limit the current predictability of our part transfers. Further
investigations are required to improve this point.
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