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Abstract. We present a framework for shape matching in computa-
tional anatomy allowing users control of the degree to which the match-
ing is diffeomorphic. The control is a function defined over the domain
describing where to violate the diffeomorphic constraint. The location
can either be specified from prior knowledge of the growth location
or learned from data. We consider landmark matching and infer the
distribution of a finite dimensional parameterisation of the control via
Markov chain Monte Carlo. Preliminary analytical and numerical results
are shown and future paths of investigation are laid out.

Keywords: LDDMM · Computational anatomy · Metamorphosis ·
MCMC

1 Introduction

In computational anatomy [10,11] one of the most fundamental problems is to
continuously deform an image or shape into another and thereby obtain a natural
notion of distance between them as the energy required for such a deformation.
Common methods to compute image deformations are based on diffeomorphic
deformations which assume that the images are continuously deformed into one
another with the additional property that the inverse deformation is also con-
tinuous. This is a strong requirement for images which implies that the ‘mass’
of any part of the image is conserved: we cannot create or close ‘holes’. This is
also a crucial property in fluid mechanics and in fact the theory of diffeomorphic
matching carrying the moniker Large Deformation Diffeomorphic Metric Map-
ping (LDDMM) [5,23] has been inspired by fluid mechanics. Indeed, Arnold [4]
made the central observation that the geodesic equations for the diffeomorphism
group induced by divergence-free vector fields corresponded to that of incom-
pressible flows. If a strictly diffeomorphic matching is not possible or necessary,
an extension of LDDMM called metamorphosis [14,25] is available which intro-
duces a parameter σ2 parameterising the deviation from diffeomorphic matching
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allowing for topological variations e.g. growth via image intensity. In particular,
if σ2 = 0 the deformation is purely diffeomorphic as in LDDMM. See [18,22,24]
for technical details pertaining to the construction of the metamorphosis prob-
lem. While diffeomorphic paths always exist for landmark problems [12] this
theory allows one to match images of shapes with different topological features,
which is ill-conditioned for standard LDDMM. Indeed, even inexact matching in
LDDMM for such problems yields large energies and spurious geodesics that do
not contribute to an intuitive matching, see Fig. 1. As observed here, introducing
σ2 > 0 regularises the problem and qualitative improves the matching.

Fig. 1. This figure illustrates landmark matching with classical LDDMM (left column),
metamorphosis (right column) and our selective metamorphosis approach (middle col-
umn). We perform a matching between two landmark configurations q0 (circles) and
q1 (crosses), with the continuous lines between them describing trajectories. LDDMM
fails to perform the matching and we observe unnatural landmark trajectories whereas
metamorphosis achieves a more intuitive matching. Selective metamorphosis has the
additional advantage of only breaking the diffeomorphic property where needed in
along the matching, thus preserving more of the desired diffeomorphic property of the
matching. These simulations where done for landmarks with Gaussian kernel of vari-
ance 0.5, 100 timesteps from t = 0 to t = 1, and a metamorphosis kernel of variance
0.2.

In this work, we modify metamorphosis to include a spatially dependent con-
trol parameter x �→ ν(x) in order to selectively allow non-diffeomorphic (meta-
morphic) matching in parts of the domain. For ν(·) = σ2 our theory recovers
the standard metamorphosis model. However, with a localised control (e.g. a
Gaussian centred at a point in R

d), we can selectively introduce metamorphosis
in an image and model local topological effects such as growth phenomena. The
difficulty of this problem is to infer the function ν without prior knowledge of
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the location of the topological effects. This problem is similar to the one treated
in [3], where such functions were parameterising the randomness in LDDMM
matching of shapes. We will use a Markov chain Monte Carlo (MCMC) app-
roach to infer appropriate functions ν, such that the topological effects are well
described and a large part of the matching remains diffeomorphic. In this paper
we focus on landmark matching but aim to extend the theory to data images.

2 Metamorphosis for Landmarks

In this paper we are concerned with diffeomorphometric approaches to shape
matching. To this end, we use time-dependent velocity fields ut ∈ V , where the
Hilbert space V is continuously embedded in Ck

0(R
d), k ≥ 1. It induces a curve

ϕt on a subgroup DiffV (Rd) of diffeomorphisms [4,26] via the equation

ϕ̇t = ut ◦ ϕt, ϕ0 = id. (1)

This is used in the matching problem of two images I0 and I1 with cost

S(u) =
∫ 1

0

1
2
‖ut‖2V dt +

1
2λ2

F (I0 ◦ ϕ−1
1 , I1) −→ min. subject to (1), (2)

where F denotes a similarity measure between the deformed initial image I0 ◦
ϕ1 and the target image I1 to allow inexact matching parameterised by λ2.
The LDDMM approach takes F as an L2 norm of the difference between its
arguments. In this work, we will consider singular solutions for M landmarks
with positions qi

t ∈ R
d and momenta pi

t ∈ R
d for i = 1..M so that the velocity is

ut(x) =
M∑
i=1

pi
tK(x − qi

t) , (3)

where K : Rd × R
d → R is the kernel associated to the norm ‖ · ‖V . For meta-

morphosis, we follow the notation of [14, Definition 1], and in addition to the
deformation ϕt, we introduce a template variable ηt such that the positions qt

of a set of landmarks and the template velocity zt are given by z as

qt = ϕtηt and zt = ϕtη̇ . (4)

We then extend the action functional (2) to account for the template variable as

Sm(qt,pt, zt) =
∫ 1

0

1
2

(
‖ut‖2V +

1
σ2

M∑
i=1

|zi
t|2

)
dt, (5)

where now the reconstruction relation is

q̇t = ut(qt) + zt, (6)

see [14,25] for more details. By taking variations carefully, we obtain the equa-
tions of motion

ṗt = −∇ut(qt)Tpt

q̇t = ut(qt) + σ2pt,
(7)

where zt = σ2pt and ut is defined in (3).
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3 Selective Metamorphosis for Landmarks

We can now extend the metamorphosis setting to be able to locally control
the amount of non-diffeomorphic evolution. For this, we introduce a function
ν : Rd → R replacing the parameter σ2 such that ν(x) = σ2 corresponds to the
classic landmark metamorphosis. The action for selective metamorphosis thus
becomes

Sν
sm(qt, ut, zt) =

∫ 1

0

1
2

(
‖ut‖2V +

M∑
i=1

1
ν(qi

t)
|zi

t|2
)

dt, (8)

which we minimise subject to the reconstruction Eq. (4) and the boundary con-
ditions q0 and q1 at time t = 0, 1. In the case of landmarks we have as before
that zt = ν(qt)pt so we can eliminate the template variable zt and write

Sν
sm(qt, ut,pt) =

∫ 1

0

1
2

(
‖ut‖2V +

M∑
i=1

ν(qi
t)|pi

t|2
)

dt. (9)

The problem defined by (9) yields the following equations for selective metamor-
phosis for landmarks:

ṗt = −∇ut(qt)Tpt − 1
2
∇ν(qt)|pt|2

q̇t = ut(qt) + ν(qt)pt,
(10)

with q0, q1 fixed. Again, the velocity is fully described by p and q via (3). As
we see from these equations, our approach offers a granularity not attainable
via classical inexact landmark matching or metamorphosis. Namely, with ν it
is possible to specify where in the image growth is allowed. As an example, a
medical expert may want to allow for metamorphic growth near a tumour-prone
area of the brain whilst allowing for purely diffeomorphic growth of the skull of
the patient.

A practical procedure for solving (10) with the velocity defined in (3) is
called shooting, where we replace the end-point condition q1 with a guess for p0,
and iteratively update p0 using automatically computed adjoint (or backward)
equations until q1 compares to q(1) below a certain tolerance. We will perform
this procedure directly with an automatic differentiation package Theano [21],
see [16,17] for more details on the implementation.

Theorem 1. Let ν be bounded from below away from zero by νinf ∈ R and from
above by 0 < σ2 ∈ R. Then there exists a minimiser of (9) admissible to (6).

Proof. The functional in (9) is not convex so we work with a reformulation to
ensure the required lower semi-continuity. Define a variable wi

t =
√

ν(qi
t)pi

t in
the problem:
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inf
u∈L2([0,1], V )

q∈H1([0,1],Rd×M )

w∈L2([0,1],Rd×M )

∫ 1

0

1
2

(
‖ut‖2V +

M∑
i=1

|wi
t|2

)
dt

q̇i
t = ut(qt) +

√
ν(qt)wt

q0, q1 fixed

First, note that owing to the constraint effectively being a boundary value prob-
lem, we cannot always find a q for arbitrary pairs of (u, w). We define a bounded
operator (q, ut) �→ q̇t−ut(qt)√

ν(qt)
� w:

( M∑
i=1

|wi
t|2

) 1
2

= ‖w‖2 = ‖ q̇t − ut(qt)√
ν(qt)

‖2 � ν−1
inf

(
‖q̇t‖2 + ‖ut(qt)‖V

)
.

From this we generate a minimising sequence (qn, un,wn)n≥0 admissible to (11).
The rest of the proof is standard, see e.g. [26]. We show the constraint equation
is continuous with respect to the weak topology on X � H1([0, 1], Rd×M ) ×
L2([0, 1], V ) × L2([0, 1], Rd×M ) i.e. e(qn

t , wn
t , un

t ) ⇀ e(qt, wt, ut) where
e(q, w, u) � q̇ − u(q) − √

ν(q)w. Then,

〈
√

ν(qt)wt −
√

ν(qn
t )wn

t , φ〉 � νinf〈wt − wn
t , φ〉 → 0 , ∀φ ∈ L2([0, 1], Rd×M ) .

Further, for φ ∈ L2([0, 1], V ),

〈ut(qt) − un
t (qn

t ), φ〉 = 〈ut(qt) − un
t (qt), φ〉 + 〈un

t (qt) − un(qn
t ), φ〉 .

The first term vanishes trivially, while for the second we see

〈un
t (qt) − un

t (qn
t ), φ〉 ≤ Lip(un

t )〈qt − qn
t , φ〉 → 0

Since linear operators are naturally compatible with the weak topology the
required continuity follows. Passing to subsequences where necessary we can by
classic results extract bounded subsequences converging to weak limits where
necessary to obtain a minimiser. Convexity of S implies weak lower semi-
continuity concluding the proof. �

Theorem 2. Assume ν ∈ W 2,∞(Rd) and V is embedded in Ck
0(R

d), k ≥ 1 (con-
tinuous functions with continuous derivatives to order k vanishing at infinity).
Then, given p0, q0,∈ R

d×M , (10) with (3) are integrable for all time.

Proof. Establishing appropriate Lipschitz conditions implies integrability of the
system akin to [6, Theorem 5]. We note that the kernel in (3) is Lipschitz in
(pt, qt) by assumption, so the composition (p, q) �→ u◦q is also Lipschitz. u(q) �→
∇u(q)T consider v, w ∈ V and x, y ∈ R

d:

‖∇v(x) − ∇w(y)‖2 � ‖v‖V ‖x − y‖2 + ‖v − w‖V ‖y‖2 (11)
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so the mapping is Lipschitz in both the position and velocity. Given the condi-
tions on ν the mappings

(q, p) �→ ν(q)p

(q, p) �→ ∇ν(q)|p|2 (12)

are locally Lipschitz. Consequently we verify that for any (p0, q0) ∈ B(0, r) ⊂
R

d×M ×R
d×M , the system (10) is locally Lipschitz with constant Lr,t0 for some

t0 > 0. By the conservation of the Hamiltonian we can extend the existence of
solutions to arbitary t > t0. �

4 Bayesian Framework

We now place a stochastic model on ν inspired by the approach taken in [6]
to infer most probable such functions. See also [1,2,20] for similar Bayesian
approaches in computational anatomy. The goal is to develop an algorithm to
infer ν from a given set of localised functions. We refer to [7,8] for an exposition
of function space MCMC but we will consider a simpler case here. We consider
ν as a sum of time-independent Gaussian functions

νh(x) =
K∑

k=1

e−σ−2
k ‖hk−x‖2

. (13)

This means that metamorphosis permitted in the neighbourhood of a point x
(determined by the radius σk and centroids hk ∈ R

2 selected on the template) is
proportional to the value of νh(x). As described in (10), νh follows the trajectory
of the landmarks in the dynamics of q. Note the number of landmarks, M , differ
from the number of centroids K. For instance, we selected K = 1 in Fig. 1 due to
our a priori knowledge of the trajectories (e.g. there is only a single point where
landmarks cross or intersect).

Defining a density psm ∝ e−Sν
sm over the space of triples (ν, qν , pν) leads to

the preconditioned Crank-Nicholson Algorithm1, see e.g. [13]. The parameter β
has to be set such that the samples are un-correlated, which corresponds to an
acceptance rate in the range 0.5–0.8.

In general, ν should accommodate the granularity of the deformation between
two shapes and be able to resolve the topological changes necessary. This consti-
tutes an interesting problem in and of itself, as it is a priori difficult to say what
constitutes a good ν simply by inspecting the template and targets. Here we use
Gaussians for their smoothness and simplicity, but we comment on extensions
in Sect. 6.

5 Numerical Examples

This section displays some numerical results for our method to infer a distribu-
tion for the growth location using the landmark configurations seen in Fig. 1.
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Algorithm 1. MCMC for selective metamorphosis
procedure mcmcSM(N , K, q0, q1, β ∈ (0, 1])

j ← 1
νj ← initial guess in R

d×K

Solve (10) with νj and q0, q1 to obtain ωj = (qj , pj , uj)
while j < N do

Sample a random point ξ ∈ N (0, Id
Rd)K

ν ← βξ +
√

1 − β2νj

Solve (10) with ν and q0, q1 to obtain ω = (q, p, u)

if randomUnit()< min(1, e−Sνj

sm(ωj)+Sν
sm(ω)) then

νj+1 ← ν
ωj+1 ← ω

else
νj+1 ← νj

ωj+1 ← ωj

j ← j + 1
return {νj , ωj}N

j=1

Fig. 2. We display the result of the MCMC Algorithm 1 applied to the inverted land-
marks example of Fig. 1. (a) shows the analytical values for the functional (8) obtained
for various positions of a single Gaussian ν. We observe a bimodal minimum near (0, 0),
which depends on the choice of the model parameters, and in particular on the land-
mark interaction length corresponding to the Gaussian kernel K and σν . (b) displays
a heat map for the sampled positions of the centroid from the MCMC method, where
the bimodality is not clearly visible. (c) is histogram of the sampled values of the func-
tional which rapidly decays, indicating a good sampling of the minimum value of the
functional. (d) shows the autocorrelation function of the Markov chain, which decays
rapidly to reach an un-correlated state after 50 iterations. (e) shows one of the MAP
estimators where the centroid is near on the edge of one of the wells of the top left
panel. The simulations parameters are set to σν = 0.2, and 0.7 for the velocity kernel,
K = 1 and β = 0.2 across 5000 samples.
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The parameters and results for the first configuration is shown in Fig. 2. These
preliminary results demonstrate that even for a small number of samples the
density of accepted samples corresponds at least heuristically to the analyti-
cal density histogram obtained by computing the value of the metamorphosis
functional in (8).

We arrive at the same conclusion for the second example, for which the results
are shown in Fig. 3. Moreover, we note that the geodesic equations for p and q
are time-reversible meaning that the configuration in Fig. 3 corresponds to both
particle collapse as well as hole creation. It is numerically relatively simple to
control the behaviour of ν by simple scaling or by adding regularisation terms to
(8) to e.g. penalise having ν’s far away from the support of the images. Such cost
can easily be added to the MCMC algorithm, depending on the prior information
one can have on the shape matching problem.

Fig. 3. Here we display the results for the second example (landmark collapse) of
Fig. 1. Again, (a) shows the analytical values for a single ν field (8), which has also
a bimodal structure, but in the other direction. For the MCMC we choose K = 2
Gaussian ν fields, and (b) and (c) displays two heat maps for the sampled positions of
these centroids. (d) is a histogram of the sampled values of the functional, which has a
peak at slightly higher values, possibly due to the redundant choice of two ν functions.
(e) shows the autocorrelation function of the Markov chain which shows decorrelation
after 100 steps. (f) shows the geodesics yielding one of the lowest functional values,
where the two ν fields are close to each other, demonstrating the fact that only 1 would
have been enough for this landmark configuration. The simulation parameters are the
same as in Fig. 2 with the exception of K = 2.
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6 Conclusion

We have presented a preliminary approach for selectively allowing photometric
variation in a diffeomorphic image matching. We analysed the selective meta-
morphosis problem, the associated geodesic equations and demonstrated a proof
of concept MCMC algorithm inferring a simple parameterisation of ν. This gen-
eralises LDDMM and metamorphosis and could provide a first-order exploratory
tool for physicians to see if the development of a biological feature stems from a
few violations of diffeomorphic evolution. This paper paves the way towards sur-
gically investigating growth phenomena between topologically different images.

For future works we aim at extending the equations of Sect. 3 to images
e.g. using the kernel framework in [19] or developing a space-time method.

In addition, there are many aspects of the probabilistic framework for the
estimation of ν that need rigorous treatment and improvements. First, already in
this simple setting, one would need to add additional penalties for the position of
the centroids hk to force them to remain for example near the centre of the image
during the MCMC evolution. Second, natural extensions of our probabilistic
approach by treating ν as a function could be considered and thus interpreting
the resulting inverse problem through the appropriate measure-theoretical lens.
Adding a time-dependency to ν can also be explored. Determining a truncated
Fourier series of ν could lead to efficient numerical methods. Finally, we only
used a simple MCMC algorithm, but a Metropolis-adjusted Langevin algorithm
or Hamiltonian Monte-Carlo algorithm may be more appropriate to solve this
problem.

To conclude, we hope that this framework could be used to model growth,
in the spirit of the approaches of [15] or [9].
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5. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation
metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2),
139–157 (2005)

6. Cotter, C.J., Cotter, S.L., Vialard, F.-X.: Bayesian data assimilation in shape
registration. Inverse Probl. 29(4), 045011 (2013)



48 A. Bock et al.

7. Cotter, S.L., Roberts, G.O., Stuart, A.M., White, D.: MCMC methods for func-
tions: modifying old algorithms to make them faster. Stat. Sci. 28, 424–446 (2013)

8. Dashti, M., Stuart, A.M.: The Bayesian approach to inverse problems. In: Ghanem,
R., Higdon, D., Owhadi, H. (eds.) Handbook of Uncertainty Quantification, pp.
311–428. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-12385-1 7

9. Goriely, A.: The Mathematics and Mechanics of Biological Growth, vol. 45.
Springer, New York (2017). https://doi.org/10.1007/978-0-387-87710-5

10. Grenander, U., Miller, M.I.: Representations of knowledge in complex systems. J.
R. Stat. Society. Ser. B (Methodol.) 56, 549–603 (1994)

11. Grenander, U., Miller, M.I.: Computational anatomy: an emerging discipline. Q.
Appl. Math. 56(4), 617–694 (1998)

12. Guo, H., Rangarajan, A., Joshi, S.: Diffeomorphic point matching. In: Paragios,
N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Com-
puter Vision, pp. 205–219. Springer, Boston (2006). https://doi.org/10.1007/0-
387-28831-7 13

13. Hairer, M., Stuart, A.M., Vollmer, S.J., et al.: Spectral gaps for a metropolis-
hastings algorithm in infinite dimensions. Ann. Appl. Probab. 24(6), 2455–2490
(2014)
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