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Abstract. This paper develops Sobolev variants of the non-parametric
statistical manifolds appearing in [10] and [11]. The manifolds are mod-
elled on a particular class of weighted, mixed-norm Sobolev spaces,
including a Hilbert-Sobolev space. Densities are expressed in terms of
a deformed exponential function having linear growth, which lifts to a
continuous nonlinear superposition (Nemytskii) operator. This property
is used in the construction of finite-dimensional mixture and exponential
submanifolds, on which approximations can be based. The manifolds of
probability measures are developed in their natural setting, as embedded
submanifolds of those of finite measures.

Keywords: Banach manifold · Fisher-Rao metric · Hilbert manifold ·
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1 Introduction

This paper develops non-parametric statistical manifolds modelled on spaces
of Sobolev type. It applies some of the results of [12] to a particular class of
manifolds, and develops smoothly embedded finite-dimensional exponential sub-
manifolds. The non-parametric manifolds are natural refinements of those in [10]
and [11]; they employ charts that are “balanced” between the density function
and its log. The inverses of the charts are expressed in terms of a deformed
exponential function having linear growth, a property shared by other deformed
exponentials (notably the Kaniadakis exponential with parameter κ = 1). (See
[8] and the discussion in [12]). The linear growth property is highly advantageous
in the Sobolev context because the deformed exponential then “lifts” to a non-
linear superposition (Nemytskii) operator that acts continuously on particular
classes of model spaces.

For some d ∈ N, let X be the σ-algebra of Lebesgue measurable subsets of Rd,
and let μ be a probability measure on X that is mutually absolutely continuous
with respect to Lebesgue (volume) measure. X is a very rich collection of subsets,
A ⊂ R

d, for which the Lebesgue measure dx(A) is well defined. Each A ∈ X has a
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well-defined probability μ(A), which can be expressed in terms of the probability
density function r : Rd → [0,∞) as follows:

μ(A) =
∫

A

r(x) dx. (1)

The simplest example of a statistical manifold over the sample space R
d is the

finite-dimensional exponential model [1,3]. This is based on a finite set of lin-
early independent random variables η1, . . . ηn defined on (Rd,X , μ). Let B be
an open subset of R

n such that, for any y ∈ B, Eμ exp(
∑

i yiηi) < ∞, where
Eμ is expectation (integration) with respect to μ. Any y ∈ B represents the
probability measure Py, defined by

Py(A) =
∫

A

exp
(∑

i

yiηi − c

)
μ(dx), (2)

where c = logEμ exp(
∑

i yiηi). The set N := {Py : y ∈ B} is a manifold of prob-
ability measures, with a differentiable structure in terms of which the important
statistical divergences of estimation theory are suitably smooth.

The first fully successful infinite-dimensional (non-parametric) statistical
manifold was constructed in [14], and further developed in [2,5,13]. This is the
natural extension of exponential models such as N to the non-parametric set-
ting. The chart is a centred version of the log of the probability density function
p := dP/dμ, and so, as in (2), p is represented in terms of the exponential of
the model space variable. The model space used is the exponential Orlicz space,
which has a stronger topology than the Lebesgue Lλ(μ) spaces for 1 ≤ λ < ∞.

A central requirement of a chart in a statistical manifold is that it should
induce a topology with respect to which statistical divergences, such as the
Kullback-Leibler (KL)-divergence, are appropriately smooth. The KL-divergence
between finite measures P and Q on X is defined as follows [1,3]:

D(P |Q) := Q(Rd) − P (Rd) + Eμp log(p/q). (3)

It is of class C∞ on the exponential Orlicz manifold. As (3) shows, the KL-
divergence is bilinear in the density p and its log, and so its smoothness properties
are closely connected with those of p and log p considered as elements of dual
function spaces. This is why the following deformed logarithm logd : (0,∞) → R

was introduced in the Hilbert setting of [10]:

logd(y) = y − 1 + log y. (4)

This is composed with probability density functions to realise a chart on a
manifold of finite measures that maps into the Lebesgue space Lλ(μ), for any
2 ≤ λ < ∞ [10,11]. A centred version of this can be used as a chart on the
submanifold of probability measures. The inverse of logd can be thought of as
a deformed exponential function. It has linear growth, as a result of which the
density, p, and its log both belong to the same space as logd(p) (i.e. the model
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space Lλ(μ)). This property is not shared by the exponential Orlicz manifold.
Reference [12] shows that it is retained when the sample space is R

d and the
model space Lλ(μ) is replaced by particular spaces of Sobolev type.

The natural domain of statistical divergences, such as the KL-divergence,
is a space of measures defined on an abstract measurable space (Ω,F). Since
the primary concern of “raw” information geometry is the smoothness of these
divergences, the exponential Orlicz and Lλ(μ) manifolds of [14] and [11], in their
general form, make no reference to any other structures that the sample space
Ω may possess. However, in the special case that Ω = R

d, the topology and
linear structure of Rd play important roles in many applications. For example,
the Fokker-Planck equation makes direct reference to the linear structure of
R

d through a differential operator. For this reason, it is of interest to develop
“hybrid” information manifolds, in which the topology of the sample space is
somehow incorporated into the model space. One way of achieving this is to use
model spaces of Sobolev type. This approach is taken here, in the context of
the Lλ(μ) manifolds of [10,11]. For the development of Sobolev variants of the
exponential Orlicz manifold, the reader is referred to [7].

The paper is structured as follows. Section 2 introduces the spaces on which
the manifolds are modelled. Section 3 presents the principal results on the non-
parametric manifolds constructed from these spaces; it discusses both manifolds
of finite measures and submanifolds of probability measures. Finally Sect. 4 devel-
ops a class of smoothly embedded finite-dimensional exponential manifolds that
are of potential use in applications.

2 The Model Spaces

For some t ∈ (1, 2], let θt : [0,∞) → [0,∞) be a strictly increasing, convex
function that is twice continuously differentiable on (0,∞), such that −√

θt is
convex, limz↓0 θ′

t(z) < ∞, and

θt(z) =
{

0 if z = 0
ct + zt if z ≥ zt

}
, where zt ≥ 0, and ct ∈ R. (5)

Examples, including some for which R 	 z 
→ θt(|z|) ∈ R is of class C2 are
given in [12], which also develops variants for which t ∈ (0, 1]. (The restriction
t ∈ (1, 2], used here, simplifies the presentation in what follows while retaining
a useful subset of the manifolds developed in [12]). For each t ∈ (1, 2], we define
a reference probability measure, μ = μt, as follows.

μt(dx) = exp(lt(x))dx, where lt(x) :=
∑

i(Ct − θt(|xi|)), (6)

and Ct ∈ R is such that
∫

exp(Ct −θt(|z|))dz = 1. For any 1 ≤ λ < ∞, let Lλ(μ)
be the Banach space of (equivalence classes of) measurable functions u : Rd → R

for which ‖u‖Lλ(μ) := (
∫ |u|λdμ)1/λ < ∞.

For k ∈ N0, let S := {0, . . . , k}d be the set of d-tuples of integers in the
range 0 ≤ si ≤ k. For s ∈ S, we define |s| =

∑
i si, and denote by 0 the d-

tuple for which |s| = 0. For any 0 ≤ i ≤ k, Si := {s ∈ S : i ≤ |s| ≤ k} is
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the set of d-tuples of weight at least i and at most k. Let Λ = (λ0, λ1, . . . , λk),
where λi ∈ [1,∞) for 0 ≤ i ≤ k, and let W k,Λ(μ) be the mixed-norm, weighted
Sobolev space comprising functions a ∈ Lλ0(μ) that have weak partial derivatives
Dsa ∈ Lλ|s|(μ), for all s ∈ S1. For a ∈ W k,Λ(μ) we define the mixed norm

‖a‖W k,Λ(μ) :=
( ∑

s∈S0

‖Dsa‖λ0

L
λ|s| (μ)

)1/λ0

< ∞. (7)

W k,Λ(μ) is a Banach space with respect to this norm. (See Theorem 2.1 in [12]).
We shall confine our attention here to the following special class of model

spaces, parametrised by k ∈ N and λ ∈ [k,∞):

Gk,λ
m = W k,Λ(μ) with λ0 = λ and λi = λ/i for 1 ≤ i ≤ k. (8)

This includes the Hilbert-Sobolev space G1,2
m . Let ψ = expd : R → (0,∞) be

the inverse of the deformed logarithm of (4). The following is proved as part of
Proposition 2 in [12].

Proposition 1. (i) For any a ∈ Gk,λ
m , ψ(a) ∈ Gk,λ

m .
(ii)The nonlinear superposition (Nemytskii) operator Ψk,λ

m : Gk,λ
m → Gk,λ

m ,
defined by Ψk,λ

m (a)(x) = ψ(a(x)), is continuous.

This is rare property in the theory of nonlinear maps between Sobolev spaces,
and has its origins in the boundedness of the derivatives of ψ. It is useful in the
construction of finite-dimensional mixture or exponential submanifolds. Nor-
mally the Sobolev space forming the domain of a continuous nonlinear superpo-
sition operator would need a stronger topology than that forming its range [15].
This would require it to have larger Lebesgue exponents, or to control a greater
number of derivatives.

Remark 1. It is shown in [12] that the continuity of Ψ between identical Sobolev
spaces is also true of the fixed-norm space W 2,(1,1,1)(μ), but of no other fixed-
norm spaces (except for G1,λ

m with λ ∈ [1,∞)).

3 The Nonparametric Manifolds

Let G = Gk,λ
m be the mixed-norm Sobolev space as defined in (8). Let Ψ := Ψk,λ

m

be as defined in Proposition 1. We consider the set M of finite measures on X
satisfying the following:

(M1) P is mutually absolutely continuous with respect to μ;
(M2) p, log p ∈ G, where p = dP/dμ.

This is equipped with the global chart φ : M → G, defined by

φ(P ) = logd p = p − 1 + log p. (9)
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In view of Proposition 1, it is not difficult to show that φ is a bijection onto G.
(See Proposition 1 in [12]). For any P ∈ M , let P̃a ∈ M have density dP̃a/dμ =
ψ(1)(a), where a = φ(P ) and ψ(1) = ψ/(1 + ψ) is the first derivative of ψ. We
define a tangent vector, U at P ∈ M , to be a signed measure on X of finite total
variation such that

(T1) U is mutually absolutely continuous with respect to P̃a;
(T2) dU/dP̃a ∈ G, where a = φ(P ).

The tangent space TP M is the linear space of all such signed measures, and the
tangent bundle is the disjoint union TM = ∪P∈M (P, TP M). This admits the
global chart Φ : TM → G × G, defined by

Φ(P,U) = (φ(P ), dU/dP̃φ(P )). (10)

The derivative of a (Fréchet) differentiable, Banach-space-valued map f : M →
Y (at P and in the “direction” U) is defined as follows: (clearly u = Uφ).

Uf = (f ◦ φ−1)(1)a u, where (a, u) = Φ(P,U). (11)

Let mλ, eλ : M → Lλ(μ) be the nonlinear superposition operators defined by

mλ(P )(x) = p(x) − 1 and eλ(P )(x) = log p(x). (12)

The map mλ is the composition of Ψk,λ
m −1 with the inclusion map ı : G → Lλ(μ).

It is smoother than Ψk,λ
m since its range has a weaker topology. The following is

a corollary of Lemma 4 in [12].

Lemma 1. mλ, eλ ∈ C1(M ;Lλ(μ)).

The smoothness properties of the KL-divergence on manifolds modelled on
Lλ(μ) is investigated in detail in [11]. Its derivatives can be used to construct
the Fisher-Rao metric and Amari-Chentsov tensor on M by the Eguchi method
[4]. The Fisher-Rao metric is the covariant 2-tensor field defined, for λ ≥ 2, by

〈U, V 〉P = EμUmλV eλ = EμUeλV mλ = Eμ
p

(1 + p)2
UφV φ. (13)

The Amari-Chentsov tensor is the covariant 3-tensor field defined, for λ ≥ 3, by

τP (U, V,W ) = EμUmλV eλWeλ = Eμ
p

(1 + p)3
UφV φWφ (14)

Corollary 1. (i) If λ ≥ 2 then the Fisher-Rao metric is a continuous covariant
2-tensor field on M .

(ii) If λ ≥ 3 then the Amari-Chentsov tensor is a continuous covariant 3-tensor
field on M .

Proof. Both parts follows from the first representations in (13) and (14), Lemma
1 and the chain rule of Fréchet derivatives. ��
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In the raw (non-Sobolev) Hilbert manifold of [10], the composition map M 	
P 
→ 〈U(P ),V(P )〉P ∈ R is continuous for all continuous vector fields U, V.
However, the metric is not continuous in the stronger “operator topology” of
Corollary 1(i). The extra regularity here arises from the log-Sobolev embedding
theorem, and is not retained if t ∈ (0, 1]. (See Lemma 4 in [12]). Similarly, in
the raw Banach manifold of [11] with λ ≥ 3, the composition map M 	 P 
→
τP (U(P ),V(P ),W(P )) ∈ R is continuous for all continuous vector fields U, V,
W, but not continuous in the sense of Corollary 1(ii) unless λ > 3.

Let M0 ⊂ M be the subset of M whose members are probability measures.
These satisfy the additional hypothesis:

(M3) Eμp = 1.

The co-dimension 1 subspace of G whose members, a, satisfy Eμa = 0 will be
denoted G0. Let φ0 : M0 → G0 be defined by

φ0(P ) = φ(P ) − Eμφ(P ) = logd p − Eμ logd p. (15)

The following is a special case of parts of Propositions 5 and 6 in [12].

Proposition 2. (i) (M0, G0, φ0) is a C�λ�-embedded submanifold of (M,G, φ).
(ii) In terms of the charts φ0 and φ, the inclusion map ρ : G0 → G has the

following form
ρ(a) = a + Z(a), (16)

where Z : G0 → R is an (implicitly defined) normalisation function.
(iii) The first and (if λ ≥ 2) second derivatives of ρ are as follows:

ρ(1)a u = u − EPa
u,

(17)

ρ(2)a (u, v) = −Eμψ(2)(ρ(a))(u − EPa
u)(v − EPa

v)
Eμψ(1)(ρ(a))

,

where Pa := P̃a/P̃a(Rd), P̃a is the finite measure defined after (9) and ψ(i) is
the ith derivative of ψ.

For any P ∈ M0, tangent vectors U ∈ TP M0 are distinguished from those
only in TP M by the fact that U(Rd) = 0. The pushforward of the inclusion map
ı : M0 → M splits TP M into TP M0 and the complementary subspace of signed
measures {yP̃a, y ∈ R}.

Remark 2. The probability measure Pa in (17) is the escort probability in the
interpretation of M0 as a deformed exponential model [9].
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4 Finite-Dimensional Exponential Models

The α-divergences (and their derivatives such as the Fisher-Rao metric) are at
least as smooth on the Sobolev manifolds of Sect. 3 as they are on their non-
Sobolev counterparts (as developed in [10,11]) because the Sobolev manifolds
have stronger topologies. When it comes to embedded submanifolds, however,
this benefit is reversed. Theorem 5.1 in [10] shows that any finite dimensional
exponential manifold that is contained in the raw Hilbert manifold of [10] is
smoothly embedded in that manifold. That this is not so of the Hilbert-Sobolev
manifold M modelled on G1,2

m is demonstrated by the following example.

Example 1. Let d = 1, let μ be the standard Gaussian measure, k = 1 and λ = 2.
For i = 0, 1, let pi := exp(ηi) where η0 = 3x2/16 and η1 = sin(exp(3x2/16)).
Then P0 and P1 are both in M , but the measure with density exp((η0 + η1)/2)
is not, since its derivative is not square integrable.

Nevertheless, the smooth embedding property can be recovered under addi-
tional hypotheses. Let G = Gk,λ

m be the general mixed-norm space of Sect. 2,
and let M be the associated manifold of finite measures. Since the Fisher-Rao
metric is positive definite on M , it is a (strong) Riemannian metric on any finite-
dimensional, smoothly embedded submanifold, N , and the full geometry of dual
±α-covariant derivatives (for α ∈ [−1, 1]) is realised on N .

For some n ∈ N, let 1, η1, . . . , ηn be linearly independent members of G, and
for any y ∈ R

n+1 let P (y) be the measure on X with density

p(y) := exp γ(y), where γ(y) =
n∑

j=0

yjηj and η0 ≡ 1. (18)

The function γ : Rn+1 → G is clearly injective. Let B ⊂ R
n be open and such

that P (y) ∈ M for every y ∈ R × B, and let N := {P (y) : y ∈ R × B}. As well
as being a subset of M , N is a finite-dimensional exponential model with chart
θ : N → R × B, defined by θ = γ−1 ◦ eλ ◦ ı, where eλ is as defined in (12) and
ı : N → M is the inclusion map.

Theorem 1. Suppose that λ ≥ max{2, k} and that, for every y ∈ B, 1 ≤ j ≤ n
and s ∈ S1,

Eμ |p(y)Dsηj |λ/|s|
< ∞; (19)

then N is a C∞-embedded submanifold of M .

Proof. A partition of s ∈ S1 is a set π = {σ1, . . . , σn ∈ S1} such that
∑

i σi = s.
Let Π(s) denote the set of partitions of s. According to the Faá di Bruno formula,
for any s ∈ S1,

Ds
xp(y) = p(y)

∑
π∈Π(s)

Kπ

∏
σ∈π

Dσ
xγ(y), (20)

where the Kπ < ∞ are combinatoric constants, and x is made explicit in Ds
x for

the sake of clarity.
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As in the proof of Theorem 5.1 in [10], we define a local coordinate system
around a generic y ∈ R×B. Let ε > 0 be such that the ball of centre y and radius
ε is contained in R×B, and let B(y, r) be the ball of centre y and radius r. For any
ỹ ∈ B(y, ε/2n) let ζ ∈ (1/4, 3/4)n+1 be defined by ζj = (1+(n+1)ε−1(ỹ−y)j)/2;
then

ỹ =
1

n + 1

n∑
j=0

(
(1 − ζj)(y − εej) + ζj(y + εej)

)
,

where (ej ∈ R
n+1, 0 ≤ j ≤ n) is the coordinate orthonormal basis. Differentiat-

ing p with respect to y, for any α ∈ N
n+1
0 ,

Dα
y p(ỹ) = (2ε)−|α|

n∏
j=0

(
p
1−ζj

j− p
ζj

j+ log(n+1)αj (pj+/pj−)
)1/(n+1)

, (21)

where pj± = p(y±εej). The product rule now shows that, for any ỹ ∈ B(y, ε/2n),

Dα
y Ds

xp(ỹ) =
∑
β≤α

KβDα−β
y p(ỹ)

∑
π∈Π(s)

KπDβ
y

∏
σ∈π

Dσ
xγ(ỹ), (22)

where the Kβ < ∞ are combinatoric constants. For any m ∈ N0 there is a
Km < ∞ such that, for all q, r ∈ (0,∞) and all δ ∈ (1/4, 3/4),

q1−δrδ| log(q/r)|m =
q + r

(q/r)δ + (r/q)1−δ
| log(q/r)|m ≤ Km(q + r).

Applying this to (21) and (22), we obtain the bound

∣∣Dα
y Ds

xp(ỹ)
∣∣ ≤ K

∑
β≤α

∑
π∈Π(s)

n∏
j=0

∣∣∣∣(pj− + pj+)Dβ
y

∏
σ∈π

Dσ
xγ(ỹ)

∣∣∣∣
1/(n+1)

,

for some K < ∞. It follows from (19) and Hölder’s inequality that the term,
whose absolute value is taken on the right-hand side here, belongs to Lλ/|s|(μ),
and a further application of Hölder’s inequality shows that

Eμ sup
ỹ∈B(y,ε/2n)

∣∣Dα
y Ds

xp(ỹ)
∣∣λ/|s|

< ∞. (23)

A Taylor expansion of Dα
y Ds

xpy about y, in the direction ej , yields

Dα
y Ds

xp(y + tej) = Dα
y Ds

xp(y) + Dα+ej
y Ds

xp(y)t + Dα+2ej
y Ds

xp(y + δtej)t2/2,

for some δ = δ(y, t, j, x) ∈ [0, 1]. Together with (23) and the dominated conver-
gence theorem, this shows that (−ε/2n, ε/2n) 	 t 
→ Dα

y Ds
xp(y + tej) ∈ Lλ|s|(μ)

is differentiable at t = 0, with derivative D
α+ej
y Ds

xp(y). An inductive argument
thus establishes the infinite differentiability of R × B ∈ y 
→ Ds

xp(y) ∈ Lλ|s|(μ).
The same is clearly true of R × B ∈ y 
→ p(y) ∈ Lλ(μ), and so we have shown
that the inclusion map ı is of class C∞.
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Expressed in terms of the charts, ı takes the form f = φ ◦ e−1
λ ◦ γ. Let

g : G → R
n+1 be defined by g = π ◦ eλ ◦ φ−1, where π : Lλ(μ) → R

n+1 is the
L2(μ)-projection onto the subspace spanned by (1, η1, . . . , ηn). It follows from
Lemma 1 that g is of class C1. Now g ◦ f is the identity function of R × B, and
so f is a homeomorphism onto its image (endowed with the subspace topology),
and its derivative, f (1), is a toplinear isomorphism onto its image. So f (1)

R
n+1

is a finite-dimensional closed linear subspace of both G and L2(μ). Let Hc be
its orthogonal complement in L2(μ); then f (1) splits G into the components
f (1)

R
n+1 and G∩Hc. So f is an immersion and an embedding. (See Proposition

2.3 in [6]). This completes the proof. ��
Condition (19) is clearly satisfied if p(y) ∈ L∞(μ) for all y ∈ R × B; this

is so, for example, if N is the exponential manifold of all non-singular (scaled)
Gaussian measures on X , and t < 2. However, there are other possibilities, for
example that in which γ(y), p(y) and their x derivatives have sub-exponential
growth in x for all y ∈ B.

Let N0 := M0 ∩ N be the subset of probability measures. This is, itself,
a finite dimensional exponential manifold with chart θ0 : N → B defined by
θ0(P ) = (θ(P )1, . . . , θ(P )n).

Corollary 2. Under the hypotheses of Theorem 1:

(i) N0 is a C∞-embedded submanifold of N ;
(ii) N0 is a C∞-embedded submanifold of M0.

Proof. The map R × B 	 y 
→ Eμp(y) ∈ (0,∞) was shown, in the proof of
Theorem 1, to be of class C∞. Its first derivative with respect to y0 is Eμp(y).
Since this is strictly positive on R×B, the implicit function theorem shows that
f : B → R, defined by exp(f(z)+

∑n
j=1 zjηj) = 1, is of class C∞. In terms of the

charts θ and θ0, the inclusion map ı : N0 → N takes the form ϕ(z) = (f(z), z).
This is clearly a C∞-embedding, which proves part (i).

Let τ : G → G0 be defined by τ(a) = a − Eμa. This is of class C∞, and so
the same is true of the map g := τ ◦ φ ◦ ı ◦ θ−1

0 : B → G0, where ı : N0 → M is
the inclusion map. Now g is injective and, since τ (1)ρ(1) is the identity map of
G0, the same is true of its first derivative, at all points in B. The latter clearly
splits G0, and so the inclusion map ı : N0 → M0 (which is expressed in charts
by g) is an embedding. This completes the proof of part (ii). ��
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