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Abstract. In this paper, we derive a statistical version of B. Y. Chen
inequality for statistical submanifolds in the Sasakian statistical mani-
folds with constant curvature and discuss the equality case of the inequal-
ity. We also give some applications of the inequalities obtained.
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1 Introduction

In 1989, the notion of statistical submanifolds was introduced and studied by
Vos [10]. Though, till the date it has made very little progress due to the hard-
ness to find classical differential geometric approaches for study of statistical
submanifolds. Furuhata [6], studied statistical hypersurfaces in the space of
Hessian curvature zero and provided some examples as well. In 2017, Furuhata
et al. [5] studied Sasakian statistical manifolds and obtained some results. Geom-
etry of statistical submanifolds is still young and efforts are on, so it is growing
[1–3,6–9].

In 1993 Chen [4] has obtained a sharp inequality for the sectional curvature
of a submanifold in a real space forms in term of the scalar curvature (intrinsic
invariant) and squared mean curvature (extrinsic invariant). Afterward, several
geometers obtained similar inequality for various submanifolds in various ambi-
ent spaces due to its rich geometric importance.

In the present article, we obtain B. Y. Chen inequality for statistical subman-
ifolds in Sasakian statistical manifold with constant curvature and obtain the
equality case of the inequality. We also give some applications of the inequalities
we derived.
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2 Preliminaries

Let (N, g) be a Riemannian manifold and ∇ and ∇∗
be torsion-free affine con-

nections on N such that

Gg(E, F) = g(∇GE, F) + g(E,∇∗
GF), (1)

for E, F, G ∈ Γ (TN). Then Riemannian manifold (N, g) is called a statistical man-
ifold. It is denoted by (N, g,∇,∇∗

). The connections ∇ and ∇∗
are called dual

connections. The pair (∇, g) is said to be a statistical structure.
If (∇, g) is a statistical structure on N, then (∇∗

, g) is also statistical structure
on N.

For the dual connections ∇ and ∇∗
we have

2∇◦
= ∇ + ∇∗

, (2)

where ∇◦
is Levi-Civita connection for g.

Let N be a (2m + 1)-dimensional manifold and let N be an n-dimensional
submanifolds of N. Then, the Gauss formulae are [10]

{∇EF = ∇EF + ζ(E, F),
∇∗

EF = ∇∗
EF + ζ∗(E, F),

(3)

where ζ and ζ∗ are symmetric, bilinear, imbedding curvature tensors of N in N
for ∇ and ∇∗

, respectively.
The R and R

∗ be Riemannian curvature tensor fields of ∇ and ∇∗
, respectively.

Then [10]

g(R(E, F)G, W) = g(R(E, F)G, W) + g(ζ(E, G), ζ∗(F, W))
− g(ζ∗(E, W), ζ(F, G)), (4)

and

g(R∗(E, F)G, W) = g(R∗(E, F)G, W) + g(ζ∗(E, G), ζ(F, W))
− g(ζ(E, W), ζ∗(F, G)), (5)

where

g(R∗(E, F)G, W) = −g(G, R(E, F)W). (6)

Let us denote the normal bundle of N by TN⊥. The linear transformations
AN and A∗

N are defined by
{
g(ANE, F) = g(ζ(E, F), N),
g(A∗

NE, F) = g(ζ∗(E, F), N), (7)
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for any N ∈ Γ (TN⊥) and E, F ∈ Γ (TN). The corresponding Weingarten formulas
are [10]

{∇EN = −A∗
NE + ∇⊥

E N,

∇∗
EN = −ANE + ∇∗⊥

E N,
(8)

where N ∈ Γ (TN⊥), E ∈ Γ (TN) and ∇⊥
E and ∇∗⊥

E are Riemannian dual connec-
tions with respect to the induced metric on Γ (TN⊥).

Let N be an odd dimensional manifold and φ be a tensor of type (1, 1), ξ a
vector field, and a 1-form η on N satisfying the conditions

η(ξ) = 1,
φ2E = −E + η(E)ξ,

for any vector field E on N, then N is said to have an almost contact structure
(φ, ξ, η).

Definition 1. An almost contact structure (φ, ξ, g) on N is said to be a Sasakian
structure if

(∇◦
Eφ)F = g(F, ξ)E − g(F, E)ξ,

holds for any E, F ∈ TN.

Definition 2 ([5]). A quadruple (∇, g, φ, ξ) is called a Sasakian statistical struc-
ture on N if (∇, g) is a statistical structure, (g, φ, ξ) is a Sasakian structure on
N and the formula

KEφF + φKEF = 0

holds for any E, F ∈ TN, where KEF = ∇EF − ∇◦
EF.

Definition 3 ([5]). Let (N,∇, g, φ, ξ) be a Sasakian statistical manifold and
c ∈ R. The Sasakian statistical structure is said to be of constant φ-sectional
curvature c if the curvature tensor S is given by

S(E, F)G =
c + 3

4
{g(F, G)E − g(E, G)F} +

c − 1
4

{g(φF, G)φE − g(φE, G)φF

− 2g(φE, F)φG − g(F, ξ)g(G, ξ)E + g(E, ξ)g(G, ξ)F + g(F, ξ)g(G, E)ξ
− g(E, ξ)g(G, F)ξ}, where E, F, G ∈ TN (9)

and

2S(E, F)G = R(E, F)G + R
∗(E, F)G. (10)

We denote a Sasakian statistical manifold with constant φ-sectional curvature c
by N(c).
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Let ξ be tangent to the submanifolds N and let {e1, . . . , en = ξ} and
{en+1, . . . , e2m+1} be tangent orthonormal frame and normal orthonormal frame,
respectively, on N. Then, the mean curvature vector fields H, H∗, H◦ are given by

H =
1
n

n∑
i=1

ζ(ei, ei), (11)

H∗ =
1
n

n∑
i=1

ζ∗(ei, ei), (12)

and

H◦ =
1
n

n∑
i=1

ζ◦(ei, ei). (13)

We also set

‖ζ‖2 =
n∑

i,j=1

g(ζ(ei, ej), ζ(ei, ej)), (14)

‖ζ∗‖2 =
n∑

i,j=1

g(ζ∗(ei, ej), ζ∗(ei, ej)), (15)

and

‖ζ◦‖2 =
n∑

i,j=1

g(ζ◦(ei, ej), ζ◦(ei, ej)). (16)

The second fundamental form ζ◦ (resp. ζ, or ζ∗) has several geometric properties
due to which we got following different classes of the submanifolds.

– A submanifold is said to be totally geodesic submanifold with respect to ∇◦

(resp. ∇, or ∇∗
), if the second fundamental form ζ◦ (resp. ζ, or ζ∗) vanishes

identically, that is ζ◦ = 0 (resp. ζ = 0, or ζ∗ = 0).
– A submanifold is said to be minimal submanifold with respect to ∇◦

(resp.∇,
or ∇∗

), if the mean curvature vector H◦ (resp.H, or H∗) vanishes identically,
that is H◦ = 0 (resp. H = 0, or H∗ = 0).

Let K(π) denotes the sectional curvature of a Riemannian manifold N of the
plane section π ⊂ TpN at a point p ∈ N. If {e1, . . . , en} be the orthonormal basis
of TpN and {en+1, . . . , e2m+1} be the orthonormal basis of T⊥

p N at any p ∈ N,
then

τ(p) =
∑

1≤i<j≤n

K(ei ∧ ej), (17)
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where τ is the scalar curvature. The normalized scalar curvature ρ is defined as

2τ = n(n − 1)ρ. (18)

We also put
ζγ
ij = g(ζ(ei, ej), eγ), ζ∗γ

ij = g(ζ∗(ei, ej), eγ),

i, j ∈ 1, . . . , n, γ ∈ {n + 1, . . . , 2m + 1}.

3 B. Y. Chen Inequalities

In this section, we obtain statistical version of well known B. Y. Chen inequality
for statistical submanifolds of Sasakian statistical manifolds with constant φ-
sectional curvature.

Theorem 1. Let N be a statistical submanifold in a Sasakian statistical manifold
N(c) with

∑
α

[
ζ∗α
11 ζα

22+ζα
11ζ

∗α
22

]
= 2

∑
α ζ∗α

12 ζα
12 such that the structure vector field

ξ of N(c) is tangent to N. Then

K(π) ≤ τ +
c + 3

4
(1 + n − n2) +

c − 1
4

{
3(Θ(π) − ‖P‖2) − Φ(π) − 2(1 − n)

}

+
n2

2
(‖H‖2 + ‖H∗‖2) − 2n2‖H◦‖2 + ‖ζ‖‖ζ∗‖, (19)

where Θ(π) = g2(φe1, e2), Φ(π) = η2(e1) + η2(e2), π = e1 ∧ e2 and ||P ||2 =
g2(φei, ej)

}
. Moreover, the equality holds if ζ and ζ∗ are parallel. That is

ζ = kζ∗, k ∈ R
+. (20)

Proof. From (4), (5), (9) and (10), we have

g(R(E, F)G, W) + g(R∗(E, F)G, W) =
c + 3

2
{g(F, G)g(E, W) − g(E, G)g(F, W}

+
c − 1

2
{g(φF, G)g(φE, W) − g(φE, G)g(φF, W) − 2g(φE, F)g(φG, W)

− g(F, ξ)g(G, ξ)g(E, W) + g(E, ξ)g(G, ξ)g(F, W) + g(F, ξ)g(G, E)g(ξ, W)
− g(E, ξ)g(G, F)g(ξ, W)} − g(ζ(E, G), ζ∗(F, W)) + g(ζ∗(E, W), ζ(F, G))
− g(ζ∗(E, G), ζ(F, W)) + g(ζ(E, W), ζ∗(F, G)). (21)

Putting F = W = ei and E = G = ej , in (21), we get

g(R(ei, ej)ej , ei) + g(R∗(ei, ej)ej , ei) =
c + 3

2
{g(ej , ej)g(ei, ei) − g(ei, ej)g(ej , ei}

+
c − 1

2
{g(φej , ej)g(φei, ei) − g(φei, ej)g(φej , ei)

− 2g(φei, ej)g(φej , ei) − g(ej , ξ)g(ej , ξ)g(ei, ei)
+ g(ei, ξ)g(ej , ξ)g(ej , ei) + g(ej , ξ)g(ej , ei)g(ξ, ei)



B. Y. Chen Type Inequalities for Statistical Submanifolds 403

− g(ei, ξ)g(ej , ej)g(ξ, ei)} − g(ζ(ei, ej), ζ∗(ej , ei))
+ g(ζ∗(ei, ei), ζ(ej , ej)) − g(ζ∗(ei, ej), ζ(ej , ei))
+ g(ζ(ei, ei), ζ∗(ej , ej)). (22)

Applying summation 1 ≤ i, j ≤ n and using (11)–(16) in (22), we obtain

∑
1≤i,j≤n

[g(R(ei, ej)ej , ei) + g(R∗(ei, ej)ej , ei)] =
c + 3

2
n(n − 1) + 2n2g(H, H∗)

+
c − 1

2
{2(1 − n) + 3g2(φei, ej)} − g(ζ(ei, ej), ζ∗(ej , ei))

− g(ζ∗(ei, ej), ζ(ej , ei))

=
c + 3

2
n(n − 1) + n2

{
g(H∗ + H, H∗ + H) − g(H, H) − g(H∗, H∗)

}

+
c − 1

2
{
2(1 − n) + 3g2(φei, ej)

}
− {

g(ζ(ei, ej) + ζ∗(ej , ei), ζ∗(ei, ej) + ζ(ej , ei))

− g(ζ(ei, ej), ζ(ei, ej)) − g(ζ∗(ej , ei), ζ∗(ej , ei))
}
. (23)

Since from Eq. (2) 2H◦ = H + H∗, it follows from the above equation that

2τ =
c + 3

2
n(n − 1) +

c − 1
2

{
2(1 − n) + 3‖P‖2}

+ 4n2‖H◦‖2 − n2(‖H‖2 + ‖H∗‖2) + 4‖ζ◦‖2 − (‖ζ‖2 + ‖ζ∗‖2). (24)

On the other hand we know that

K(π) =
1
2
[
g(R(e1, e2)e2, e1) + g(R∗(e1, e2)e2, e1)

]

=
1
2
[
g(R(e1, e2)e2, e1) + g(R∗(e1, e2)e2, e1)

− 2g(ζ∗(e1, e2), ζ(e2, e1)) + 2g(ζ(e1, e1), ζ∗(e2, e2))
]

= g(S(e1, e2)e2, e1) +
∑
α

[1
2
ζ∗α
11 ζα

22 +
1
2
ζα
11ζ

∗α
22 − ζ∗α

12 ζα
12

]
. (25)

Taking inner product of (9) with W and setting E = W = e1 and F = G = e2, we
find

g(S(e1, e2)e2, e1) =
c + 3

4

{
g(e2, e2)g(e1, e1) − g(e1, e2)g(e2, e1)

}

+
c − 1

4

{
g(φe2, e2)g(φe1, e1) − g(φe1, e2)g(φe2, e1)

− 2g(φe1, e2)g(φe2, e1) − g(e2, ξ)g(e2, ξ)g(e1, e1)

+ g(e1, ξ)g(e2, ξ)g(e2, e1) + g(e2, ξ)g(e2, e1)g(ξ, e1)

− g(e1, ξ)g(e2, e2)g(ξ, e1)
}

=
c + 3

4
+

c − 1

4

{
g(φe2, e2)g(φe1, e1) + 3g2(φe1, e2)
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− g
2(e2, ξ) − g

2(e1, ξ)
}

=
c + 3

4
+

c − 1

4

{
g(φe2, e2)g(φe1, e1) + 3Θ(π) − Φ(π)

}
. (26)

From (25) and (26), we get

2K(π) =
c + 3

2
+

c − 1

2

{
3Θ(π) − Φ(π)

}
+

∑

α

[
ζ∗α
11 ζα

22 + ζα
11ζ

∗α
22 − 2ζ∗α

12 ζα
12

]
. (27)

Taking into account (24) and (27), we have

2K(π) − 2τ =
c + 3

2
+

c − 1
2

{
3Θ(π) − Φ(π)

}
+

∑
α

[
ζ∗α
11 ζα

22 + ζα
11ζ

∗α
22 − 2ζ∗α

12 ζα
12

]

− c + 3
2

n(n − 1) − c − 1
2

{
2(1 − n) + 3‖P‖2} − 4n2‖H◦‖2

+ n2(‖H‖2 + ‖H∗‖2) + 4nC◦ − n(C + C∗)

=
c + 3

2
(1 + n − n2) +

c − 1
2

{
3Θ(π) − Φ(π) − 2(1 − n) − 3‖P‖2}

+
∑
α

[
ζ∗α
11 ζα

22 + ζα
11ζ

∗α
22 − 2ζ∗α

12 ζα
12

] − 4n2‖H◦‖2

+ n2(‖H‖2 + ‖H∗‖2) + 4‖ζ◦‖2 − (‖ζ‖2 + ‖ζ∗‖2). (28)

On the other hand,

‖ζ + ζ∗‖2 = g(ζ + ζ∗, ζ + ζ∗)
= ‖ζ‖2 + g(ζ, ζ∗) + g(ζ∗, ζ) + ‖ζ∗‖2
= ‖ζ‖2 + 2g(ζ, ζ∗) + ‖ζ∗‖2
≤ ‖ζ‖2 + 2‖ζ‖‖ζ∗‖ + ‖ζ∗‖2, (29)

and the equality holds if

ζ = kζ∗, k ∈ R
+ (30)

Equation (29) implies

‖ζ‖2 + ‖ζ∗‖2 ≥ ‖ζ + ζ∗‖2 − 2‖ζ‖‖ζ∗‖ (31)

Using (31) in (28), we obtain

2K(π) − 2τ ≤ c + 3
2

(1 + n − n2) +
c − 1

2
{
3Θ(π) − Φ(π) − 2(1 − n) − 3‖P‖2}

+
∑
α

[
ζ∗α
11 ζα

22 + ζα
11ζ

∗α
22 − 2ζ∗α

12 ζα
12

] − 4n2‖H◦‖2 + n2(‖H‖2 + ‖H∗‖2)

+ 4‖ζ◦‖2 − ‖ζ + ζ∗‖2 + 2‖ζ‖‖ζ∗‖
=

c + 3
2

(1 + n − n2) + n2(‖H‖2 + ‖H∗‖2) + 2‖ζ‖‖ζ∗‖
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+
c − 1

2
{
3Θ(π) − Φ(π) − 2(1 − n) − 3‖P‖2}

+
∑
α

[
ζ∗α
11 ζα

22 + ζα
11ζ

∗α
22 − 2ζ∗α

12 ζα
12

] − 4n2‖H◦‖2. (32)

Using the hypothesis of the theorem in (32), we have

2K(π) − 2τ ≤ c + 3
2

(1 + n − n2) +
c − 1

2
{
3Θ(π) − Φ(π) − 2(1 − n) − 3‖P‖2}

− 4n2‖H◦‖2 + n2(‖H‖2 + ‖H∗‖2) + 2‖ζ‖‖ζ∗‖. (33)

Moreover, equality holds if and only if it satisfies (30). Hence we have the required
result.

The following result is immediate consequence of Theorem 1.

Corollary 1. Let N be a statistical submanifold in a Sasakian statistical mani-
fold N(c) with

∑
α

[
ζ∗α
11 ζα

22+ζα
11ζ

∗α
22

]
= 2

∑
α ζ∗α

12 ζα
12 such that the structure vector

field ξ of N(c) is tangent to N. Then

K(π) − τ ≤ c + 3

4
(1 + n − n2) +

c − 1

4

{
3(Θ(π) − ‖P‖2) − Φ(π) − 2(1 − n)

}
, (34)

if N is totally geodesic with respect to ∇ or N is totally geodesic with respect to
∇∗

.

Further, we state similar result when the structure vector field ξ of N(c) is
normal to N.

Theorem 2. Let N be a statistical submanifold in a Sasakian statistical manifold
N(c) with

∑
α

[
ζ∗α
11 ζα

22+ζα
11ζ

∗α
22

]
= 2

∑
α ζ∗α

12 ζα
12 such that the structure vector field

ξ of N(c) is Normal to N. Then

K(π) ≤ τ +
c + 3

4
(1 + n − n2) +

c − 1
4

{
3Θ(π) − 3‖P‖2}

+
n2

2
(‖H‖2 + ‖H∗‖2) − 2n2‖H◦‖2 + ‖ζ‖‖ζ∗‖. (35)

From the above result we deduce the following corollary.

Corollary 2. Let N be a statistical submanifold in a Sasakian statistical mani-
fold N(c) with

∑
α

[
ζ∗α
11 ζα

22+ζα
11ζ

∗α
22

]
= 2

∑
α ζ∗α

12 ζα
12 such that the structure vector

field ξ of N(c) is Normal to N. Then

K(π) ≤ τ +
c + 3

4
(1 + n − n2) +

c − 1
4

{
3Θ(π) − 3‖P‖2}, (36)

if N is totally geodesic with respect to ∇ or N is totally geodesic with respect
to ∇∗

.
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4 Conclusion and Future work

We obtained the B. Y. Chen inequality for the statistical submanifolds in
Sasakian statistical manifolds having constant curvature. In fact, this is the
first such attempt for any statistical case. Therefore, I hope it will open the
door for the researcher to obtain such inequality, which has the great geo-
metric importance, for different ambient such as Holomorphic statistical
manifolds, Kenmotsu Statistical manifolds, Cosymplectic statistical
manifolds, Quaternion Kaehler-like statistical manifolds etc. with con-
stant curvatures. The forthcoming challenge is to improve the result by weaken-
ing the condition.
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