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Abstract. It is often difficult to estimate parameters of discrete mod-
els because of the computational cost for calculation of normalization
constant, which enforces the model to be probability. In this paper, we
consider a computationally feasible estimator for discrete probabilistic
models using a concept of generalized empirical localization, which cor-
responds to the generalized mean of distributions and homogeneous γ-
divergence. The proposed estimator does not require the calculation of
the normalization constant and is asymptotically efficient.

Keywords: Unnormalized model · Asymptotic efficiency ·
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1 Introduction

In this paper, we focus on a problem of parameter estimation of discrete prob-
abilistic models. A typical way for the estimation is the Maximum Likelihood
Estimation (MLE) and the MLE is a “good” estimator which asymptotically sat-
isfies the Cramér-Rao bound and is asymptotically efficient. In general, explicit
solutions for the MLE cannot be obtained and then gradient-based optimization
methods is usually required. But the calculation of the gradient includes the
calculation of the normalization constant which makes the model to be in the
probability space, and the calculation of the normalization constant is sometimes
computationally intractable when the model is in a high-dimensional space. A
typical example is the Boltzmann machine on X = {+1,−1}p,

exp
(
θ1x + 1

2xT θ2x
)

∑
x∈X exp

(
θ1x + 1

2xT θ2x
) (1)

and a calculation of the normalization constant of requires 2p summation, which
is hard to calculate as p is large. Other estimators derived from minimization of
divergence measures [2] also suffer the computational problem. To tackle with the
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problem associated with the normalization constant, various kinds of approaches
have been researched. Some methods are based on the Markov Chain Monte
Carlo (MCMC) sampling and the contrastive divergence [7] is a well-known
example. Another approach approximate the targeted probabilistic model by a
tractable model by the mean-field approximation assuming independence of vari-
ables [11]. In this paper, we focus on an approach which considers an unnormal-
ized model rather than the (normalized) probabilistic model. [8] defines informa-
tion of “neighbor” by contrasting probability with that of a flipped variable and
makes it possible to omit the calculation of normalization constant. [4] proposed
a generalized local scoring rules on discrete sample spaces and [6] avoids the
calculation of the normalization constant using a trick with auxiliary examples.
[13] proposes an asymptotically efficient estimator without the calculation of the
normalization constant, which consists of a concept of empirical localization and
a homogeneous γ-divergence [5,10]. In this paper, we extend the concept of the
empirical localization and propose a novel estimator which does not require the
calculation of normalization constant. We investigate statistical properties of the
proposed estimator and verify its validity with small experiments.

2 Settings

Let x be a d-dimensional vector in discrete space X such as {+1,−1}d or
{1, 2, . . .}d, and a bracket 〈f〉 for a function f on X denotes a sum of f over X ,
〈f〉 =

∑
x∈X f(x). For a given dataset D = {xi}n

i=1, the empirical distribution
p̃(x) is defined as

p̃(x) =

{
nx

n x is observed,
0 otherwise,

(2)

where nx is number of examples x is observed. We consider a probabilistic model

q̄θ (x) =
qθ (x)
Zθ

(3)

where qθ (x) is a unnormalized model expressed as

qθ (x) = exp(ψθ (x)) (4)

with a function ψθ (x) parameterized by θ and Zθ is a normalization constant
defined as Zθ = 〈qθ 〉 which enforces the (3) to be a probability function. Note
that the unnormalized model (4) is not a probability function and 〈qθ 〉 = 1
does not hold in general, and calculation of the normalization constant Zθ often
requires a high computational cost. Then calculation of the Maximum Likelihood
Estimator (MLE)

θ̂MLE = argmax
θ

n∑

i=1

log q̄θ (xi) (5)
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or maximization process of the log-likelihood using its gradient

n∑

i=1

{ψθ (xi) − 〈q̄θψθ 〉} (6)

involves difficulty of computational cost derived from Zθ . To overcome the dif-
ficulty of the computation of Zθ , we consider combination of the γ-divergence
and generalized mixture model.

2.1 γ-divergence

For two positive measure f, g, the γ-divergence [5] is defined as follows.

Dγ(f, g) =
1

1 + γ
log

〈
fγ+1

〉
+

γ

1 + γ
log

〈
gγ+1

〉 − log 〈fgγ〉 (7)

where γ is a positive constant. Note that Dγ(f, g) is non-negative and is said
to be homogeneous divergence because Dγ(f, g) = 0 holds if and only if f ∝ g,
rather than f = g. In the limit of γ → 0, the γ-divergence reduces to the usual
KL-divergence, 〈

f log
f

g
− f + g

〉
. (8)

Note that a combination of the γ-divergence and the unnormalized model does
not solve the problem of computational cost because a term Dγ(p̃, qθ ) includes〈
qγ+1
θ

〉
whose computation also requires the same order with the normalization

constant Zθ .

2.2 Empirical Localization

Firstly, we briefly introduce a concept of empirical localization of the (unnor-
malized) model q̄θ (x)(or qθ (x)) with the empirical distribution p̃(x) [13]. The
empirical localization is interpreted as a generalized mean of qθ and p̃, and lies
in e-flat subspace [1] as

r̃α,θ (x) =
p̃(x)αq̄θ (x)1−α

〈
p̃αq̄1−α

θ

〉 =
p̃(x)αqθ (x)1−α

〈
p̃αq1−α

θ

〉 . (9)

Note that the normalization constant Zθ in q̄θ is canceled out and r̃α,θ (x) does
not depend on Zθ , except for α = 0. Also note that the denominator

〈
p̃αq̄1−α

〉

(or r̃α,θ (x) itself) can be easily calculated because the empirical distribution
p̃(x) has some values only on observed x in the dataset and is always 0 on the
unobserved subset of X . This implies the model qθ (x) is empirically localized to
the observed subset of domain X of dataset D and we can ignore the unobserved
subset of X , which leads to a drastic reduction of computational cost. We observe
r̃0,θ (x) = q̄(x) and r̃1,θ (x) = p̃(x), and (9) connects the empirical distribution
p̃ and the normalized model q̄ with the parameter α.
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2.3 Estimator by Homogeneous Divergence and Empirical
Localization

In [13], an estimator which does not require calculation of the normalization
constant, was proposed by combining (7) and (9). The estimator is defined as

θ̂ = argmin
θ

Dγ(r̃1/(1+γ)
α,θ , r̃

1/(1+γ)
α′,θ ) (10)

Dγ(r̃
1/(1+γ)
α,θ , r̃

1/(1+γ)
α′,θ ) =

1

1 + γ
log

〈
p̃αq1−α

θ

〉
+

γ

1 + γ
log

〈
p̃α′

q1−α′
θ

〉
− log

〈
p̃βq1−β

θ

〉

(11)

where α �= α′ and β = (α + γα′)/(1 + γ). We observe that a setting with
α = 1, α′ = 0 and γ → 0 corresponds to the conventional MLE. Note that the
empirical risk (11) does not include the calculation of the normalization constant
Zθ and can be easily calculated.

The estimator (10) has the following good statistical properties.

Proposition 1 ([13]). Let us assume that ψθ (x) is written as θT φ(x) with a
fixed vector function ψ(x). Then the risk function (10) is convex with respect to
θ when β = 1 holds.

Proposition 2 ([13]). The estimator (10) is Fisher consistent and asymptoti-
cally efficient.

3 Proposed Estimator

The empirical localization (9) can be interpreted as a generalized mean of a
constant 1 and a distribution ratio qθ/p̃, and is rewritten as

r̃α,θ (x) ∝ p̃(x)αqθ (x)1−α = p̃(x)
(

qθ (x)
p̃(x)

)1−α

= p̃(x) exp
(

α log 1 + (1 − α) log
qθ (x)
p̃(x)

)
. (12)

We can extend the concept of (12) to the quasi-arithmetic mean, with a mono-
tonically increasing function u and its inverse function ξ, as follows.

r̃u,α,θ (x) = p̃(x)u
(

αξ(1) + (1 − α)ξ
(

qθ (x)
p̃(x)

))
. (13)

By transforming the function u(z) to u(z − a), we can set ξ(1) = 0 without loss
of generality. The generalized version of empirical localization (13) is rewritten
as

r̃u,α,θ (x) ∝
{

nxu
(
(1 − α)ξ

(
nqθ(x)

nx

))
x is observed

0 otherwise,
(14)
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and the model can be easily calculated because we can omit the unob-
served domain. We show two examples associated with β-divergence and η-
divergence [3] which are employed for the purpose of robust estimation [9,12].

Example 1. For u(z) = (1 + βz)1/β and ξ(z) = zβ−1
β , we have

r̃u,α,θ (x) = p̃(x)

(

(1 − α)
(

qθ (x)
p̃(x)

)β

+ α

)1/β

(15)

Example 2. For u(z) = (1 + η)ez − η and ξ(z) = log z+η
1+η , we have

r̃u,α,θ (x) = p̃(x)

⎧
⎪⎨

⎪⎩
(1 + η)

⎛

⎝
qθ (x)
p̃(x) + η

1 + η

⎞

⎠

1−α

− η

⎫
⎪⎬

⎪⎭
(16)

Example 3. For u(z) = − 1
z and ξ(z) = − 1

z , we have

r̃u,α,θ (x) =
p̃(x)qθ (x)

αqθ (x) + (1 − α)p̃(x)
(17)

We propose a novel estimator for discrete probabilistic model, which can be
constructed without calculation of the normalization constant Zθ . The proposed
estimator is defined by combining the (13) and γ-divergence with two hyper-
parameters α, α′(α �= α′), as follows.

θ̂ = argmin
θ

Dγ((r̃u,α,θ )1/(1+γ), (r̃u,α′,θ )1/(1+γ)) (18)

Note that when qθ (x) ∝ p̃(x) holds, we observe that r̃u,α,θ (x) ∝ r̃u,α′,θ (x)
and Dγ((r̃u,α,θ )1/(1+γ), (r̃u,α′,θ )1/(1+γ)) = 0 holds.

4 Statistical Property

In this section, we investigate statistical property of the proposed estimator.
Firstly, we show the Fisher consistency of the proposed estimator.

Proposition 3. Let θ0 be a true parameter of the underlying distribution, i.e.,
p(x) = q̄θ0(x). Then

θ0 = argmin
θ

Dγ(ru,α,θ , ru,α′,θ ) (19)

holds for arbitrary γ, α, α′(α �= α′) and θ0.

Proof. The proposed estimator satisfies the equilibrium equation

0 =
∂Dγ((r̃u,α,θ )1/(1+γ), (r̃u,α′,θ )1/(1+γ))

∂θ

∣
∣
∣
∣
θ=θ̂

(20)

implying the Fisher consistency.
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Secondly, we investigate the asymptotic distribution of the proposed
estimator.

Proposition 4. Let θ0 be a true parameter of the underlying distribution. Then,
under mild regularity condition, the proposed estimator asymptotically follows

√
n(θ̂ − θ0) ∼ N (0, I(θ0)−1) (21)

where N is the Normal distribution and I(θ0) = Vq̄θ 0
[ψ′

θ0
] is the Fisher infor-

mation matrix.

Proof. Let us assume that the empirical distribution is written as p̃(x) =
q̄θ0(x) + ε(x). By expanding the equilibrium condition (20) around θ = θ0

and ε(x) = 0, we have

0 	 ∂Dγ((r̃u,α,θ )1/(1+γ), (r̃u,α′,θ )1/(1+γ))
∂θ

∣
∣
∣
∣
θ=θ0

+
∂2Dγ((r̃u,α,θ )1/(1+γ), (r̃u,α′,θ )1/(1+γ))

∂θ∂θT

∣
∣
∣
∣
θ=θ0

(θ̂ − θ0). (22)

Using the delta method [14], we have

∂Dγ((r̃u,α,θ )
1/(1+γ), (r̃u,α′,θ )

1/(1+γ))

∂θ

∣∣∣∣∣
θ=θ0

− ∂Dγ((ru,α,θ )
1/(1+γ), (ru,α′,θ )

1/(1+γ))

∂θ

∣∣∣∣∣
θ=θ0

(23)

� C
〈
ψ′

θ0
ε
〉

(24)

where C is a constant, and from the central limit theorem, we observe
√

n
〈
ψ′

θ0
ε
〉

asymptotically follows the normal distribution with mean 0 and variance I(θ0) =
Vq̄θ 0

[ψ′
θ0

]. From the law of large number, we observe that the second term in the
rhs of (22) converges to −CI(θ0) in the limit of n → ∞, which concludes the
proposition.

The asymptotic variance in (21) implies that the proposed estimator is
asymptotically efficient and has the same efficiency with the MLE, which asymp-
totically attains the Cramér-Rao bound. Also note that the asymptotic variance
of the proposed estimator does not depend on choice of α, α′, γ.

5 Experiments

We numerically investigated properties of the proposed estimator with a small
synthetic dataset. Let q̄θ (x) be a 5-dimensional Boltzmann machine

q̄θ (x) =
exp

(
1
2xT θx

)

Zθ
(25)

whose parameter θ follows the normal distribution with mean 0 and variance
1. We generated 20 sets of datasets including 4000 examples and compared the
following method.
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1. MLE: Maximum likelihood estimator
2. gamma: The proposed estimator with u(z) = exp(z) [13]
3. IS: The proposed estimator with u(z) = − 1

z
4. eta: The proposed estimator with u(z) = (1 + η) exp(z) − η
5. beta: The proposed estimator with u(z) = (1 + βz)1/β

Figure 1(a) shows a box plot of MSEs of parameters, ||θ̂−θ||2 in a logarithmic
scale, with various deformation function u in (13). Figure 1(b) shows a box plot
of computational times for each estimator in a logarithmic scale. We observe
that some of the proposed estimator is comparable with the MLE, while the
computational time of the proposed estimator is drastically reduced compared
with that of the MLE.

A reason of why the proposed estimator with some functions u are inferior
to the MLE is a shortage of examples. The theoretical result shown in Sect. 4 is
based on assumptions of asymptotics and requires a lot of examples to assure

●

MLE gamma IS eta beta

−5
0

5

lo
g(
M
S
E
)

●
●

MLE gamma IS eta beta

−3
−2

−1
0

lo
g(
TI
M
E
)

Fig. 1. n = 4000. (a) Box plot of estimation errors, ||θ̂ − θ||2 of each method. (b) Box
plot of computational time of each method.
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5
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MLE gamma IS eta beta
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−2

−1
0

lo
g(
M
S
E
)

Fig. 2. n = 16000. (a) Box plot of estimation errors, ||θ̂−θ||2 of each method. (b) Box
plot of computational time of each method.
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the asymptotic efficiency. We executed an another experiment with the same
setting except for the number n of examples. Figure 2(a), (b) show results for
n = 16000 and we observe that performance of the proposed estimator (IS, eta,
beta) is improved at the same level as the MLE while required computational
cost is still drastically fewer.

6 Conclusion

We proposed the novel estimator for discrete probabilistic model, which does
not require calculation of the normalization constant. The proposed estimator
is constructed by a combination of the γ-divergence and generalized empirical
localization, which can be interpreted as the generalized mean of distributions.
We investigated statistical properties of the proposed estimator and showed that
the proposed estimator asymptotically has the same efficiency with the MLE and
demonstrated the asymptotic efficiency with the small experiment.
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