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Abstract. Distances are fundamental primitives whose choice signifi-
cantly impacts the performances of algorithms in applications. However
selecting the most appropriate distance for a given task is an endeavor.
Instead of testing one by one the entries of an ever-expanding dictionary
of ad hoc distances, one rather prefers to consider parametric classes of
distances that are exhaustively characterized by axioms derived from first
principles. Bregman divergences are such a class. However fine-tuning a
Bregman divergence is delicate since it requires to smoothly adjust a
functional generator. In this work, we propose an extension of Bregman
divergences called the Bregman chord divergences. This new class of
distances bypasses the gradient calculations, uses two scalar parameters
that can be easily tailored in applications, and generalizes asymptotically
Bregman divergences.

Keywords: Csiszár’s f -divergence · Bregman divergence ·
Jensen divergence · Skewed divergence

1 Introduction

Distances are at the heart of many signal processing tasks [6,14], and the per-
formance of algorithms solving those tasks heavily depends on the chosen dis-
tances. Historically, many ad hoc distances have been proposed and empirically
benchmarked on different tasks in order to improve the state-of-the-art per-
formances. However, getting the most appropriate distance for a given task is
often an endeavour. Thus principled classes of distances1 have been proposed

1 Here, we use the word distance to mean a dissimilarity (or a distortion, a deviance,
a discrepancy, etc.), not necessarily a metric distance [14]. A distance between
arguments θ1 and θ2 satisfies D(θ1, θ2) ≥ 0 with equality if and only if θ1 = θ2.
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and studied. Among those generic classes of distances, three main generic classes
have emerged:

– The Bregman divergences [5,7,22] defined for a strictly convex and differen-
tiable generator F ∈ B : Θ → R (where B denotes the class of strictly convex
and differentiable functions defined modulo affine terms):

BF (θ1 : θ2) := F (θ1) − F (θ2) − (θ1 − θ2)�∇F (θ2), (1)

measure the dissimilarity between parameters θ1, θ2 ∈ Θ, where Θ ⊂ R
d is a

d-dimensional convex set. Bregman divergences have also been generalized to
other types of objects like matrices [26].

– The Csiszár f -divergences [1,11,12] defined for a convex generator f ∈ C
satisfying f(1) = 0 and strictly convex at 1:

If [p1 : p2] :=
∫

X
p1(x)f

(
p2(x)
p1(x)

)
dμ(x) ≥ f(1) = 0, (2)

measure the dissimilarity between probability densities p1 and p2 that are
absolutely continuous with respect to a base measure μ (defined on a sup-
port X ).

– The Burbea-Rao divergences [9] also called Jensen differences or Jensen diver-
gences because they rely on the Jensen’s inequality [16] for a strictly convex
function F ∈ J : Θ → R:

JF (θ1, θ2) :=
F (θ1) + F (θ2)

2
− F

(
θ1 + θ2

2

)
≥ 0, (3)

where θ1 and θ2 belong to a parameter space Θ.

These three fundamental classes of distances are not mutually exclusive, and
their pairwise intersections (e.g., B ∩ C or J ∩ C) have been studied in [2,17,27].
The ‘:’ notation between arguments of distances emphasizes the potential asym-
metry of distances (oriented distances with D(θ1 : θ2) �= D(θ2 : θ1)), and the
brackets surrounding distance arguments indicate that it is a statistical distance
between probability densities, and not a distance between parameters. Using
these notations, we express the Kullback-Leibler distance [10] (KL) as

KL[p1 : p2] :=
∫

p1(x) log
p1(x)
p2(x)

dμ(x). (4)

The KL distance/divergence between two members pθ1 and pθ2 of a parametric
family F of distributions amount to a parameter divergence

KLF (θ1 : θ2) := KL[pθ1 : pθ2 ]. (5)

For example, the KL statistical distance between two probability densities
belonging to the same exponential family or the same mixture family amounts
to a (parameter) Bregman divergence [3,23]. When p1 and p2 are finite discrete



The Bregman Chord Divergence 301

distributions of the d-dimensional probability simplex Δd, we have KLΔd
(p1 :

p2) = KL[p1 : p2]. This explains why sometimes we can handle loosely distances
between discrete distributions as both a parameter distance and a statistical
distance. For example, the KL distance between two discrete distributions is a
Bregman divergence BFKL for FKL(x) =

∑d
i=1 xi log xi (Shannon negentropy)

for x ∈ Θ = Δd. Extending Θ = Δd to positive measures Θ = R
d
+, this Bregman

divergence BFKL yields the extended KL distance:

eKL[p : q] =
d∑

i=1

pi log
pi

qi
+ qi − pi. (6)

Notice that the KL divergence of 4 between non-probability positive distributions
may yield potential negativity of the measure (e.g., Example 2.1 of [28] and [8]).
This case also happens when doing Monte Carlo stochastic integrations of the
KL divergence integral.

Whenever using a functionally parameterized distance in applications, we
need to choose the most appropriate functional generator, ideally from first prin-
ciples [3,4,13]. For example, Non-negative Matrix Factorization (NMF) for audio
source separation or music transcription from the signal power spectrogram can
be done by selecting the Itakura-Saito divergence [15]2 that satisfies the require-
ment of being scale invariant:

BFIS(λθ : λθ′) = BFIS(θ : θ′) =
∑

i

(
θi

θ′
i

− log
θi

θ′
i

− 1
)

, (7)

for any λ > 0. When no such first principles can be easily stated for a task [13],
we are left by choosing manually or by cross-validation a generator. Notice that
the convex combinations of Csiszár generators is a Csiszár generator (idem for
Bregman divergences):

∑d
i=1 λiIfi

= I∑
i i=1dλifi

for λ belonging to the standard
(d − 1)-dimensional standard simplex Δd.

In this work, we propose a novel class of distances, termed Bregman chord
divergences. A Bregman chord divergence is parameterized by a Bregman gener-
ator and two scalar parameters which make it easy to fine-tune in applications,
and matches asymptotically the ordinary Bregman divergence.

The paper is organized as follows: In Sect. 2, we describe the skewed Jensen
divergence, show how to bi-skew any distance by using two scalars, and report
on the Jensen chord divergence [20]. In Sect. 3, we first introduce the univariate
Bregman chord divergence, and then extend its definition to the multivariate
case, in Sect. 4. Finally, we conclude in Sect. 5.

2 Geometric Design of Skewed Divergences

We can geometrically design divergences from convexity gap properties of the
graph plot of the generator. For example, the Jensen divergence JF (θ1 : θ2) of
2 A Bregman divergence for the Burg negentropy FIS(x) = −

∑
i log xi.
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Eq. 3 is visualized as the ordinate (vertical) gap between the midpoint of the
line segment [(θ1, F (θ1)); (θ2, F (θ2))] and the point ( θ1+θ2

2 , F ( θ1+θ2
2 )). The non-

negativity property of the Jensen divergence follows from the Jensen’s midpoint
convex inequality [16]. Instead of taking the midpoint θ̄ = θ1+θ2

2 , we can take
any interior point (θ1θ2)α := (1 − α)θ1 + αθ2, and get the skewed α-Jensen
divergence (for any α ∈ (0, 1)):

Jα
F (θ1 : θ2) := (F (θ1)F (θ2))α − F ((θ1θ2)α) ≥ 0. (8)

A remarkable fact is that the scaled α-Jensen divergence 1
αJα

F (θ1 : θ2) tends
asymptotically to the reverse Bregman divergence BF (θ2 : θ1) when α → 0,
see [21,30].

By measuring the ordinate gap between two non-crossing upper and lower
chords anchored at the generator graph plot, we can extend the α-Jensen diver-
gences to a tri-parametric family of Jensen chord divergences [20]:

Jα,β,γ
F (θ : θ′) := (F (θ)F (θ′))γ − (F ((θθ′)α)F ((θθ′)β)) γ−α

β−α
, (9)

with α, β ∈ [0, 1] and γ ∈ [α, β]. The α-Jensen divergence is recovered when
α = β = γ (Fig. 1).

Upper chord U

θ θ′(θθ′)α (θθ′)β

Lower chord L

(θθ′)γ
=

((θθ′)α(θθ′)β)λ

Jα,β,γ
F (θ : θ′)

Jα,β,γ
F (θ : θ′)

Jλ
F ((θθ

′)α : (θθ′)β)

Jγ
F (θ : θ′)

F

vertical
chord gap

Fig. 1. The Jensen chord gap divergence.
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For any given distance D : Θ × Θ → R+ (with convex parameter space Θ),
we can bi-skew the distance by considering two scalars γ, δ ∈ R (with δ �= γ) as:

Dγ,δ(θ1 : θ2) := D((θ1θ2)γ : (θ1θ2)δ). (10)

Clearly, (θ1θ2)γ = (θ1θ2)δ if and only if (δ−γ)(θ1−θ2) = 0. That is, if (i) θ1 = θ2
or if (ii) δ = γ. Since by definition δ �= γ, we have Dγ,δ(θ1 : θ2) = 0 if and only if
θ1 = θ2. Notice that both (θ1θ2)γ = (1−γ)θ1 +γθ2 and (θ1θ2)δ = (1−δ)θ1 +δθ2
should belong to the parameter space Θ. A sufficient condition is to ensure that
γ, δ ∈ [0, 1] so that both (θ1θ2)γ ∈ Θ and (θ1θ2)δ ∈ Θ. When Θ = R

d, we may
further consider any γ, δ ∈ R.

3 The Scalar Bregman Chord Divergence

Let F : Θ ⊂ R → R be a univariate Bregman generator with open convex
domain Θ, and denote by F = {(θ, F (θ))}θ its graph. Let us rewrite the ordinary
univariate Bregman divergence [7] of Eq. 1 as follows:

BF (θ1 : θ2) = F (θ1) − Tθ2(θ1), (11)

where y = Tθ(ω) denotes the equation of the tangent line of F at θ:

Tθ(ω) := F (θ) + (ω − θ)F ′(θ), (12)

Let Tθ = {(θ, Tθ(ω)) : θ ∈ Θ} denote the graph of that tangent line. Line Tθ is
tangent to curve F at point Pθ := (θ, F (θ)). Graphically speaking, the Bregman
divergence is interpreted as the ordinate gap (gap vertical) between the point
Pθ1 = (θ1, F (θ1)) ∈ F and the point of (θ1, Tθ2(θ1)) ∈ Tθ, as depicted in Fig. 2.

Now let us observe that we may relax the tangent line Tθ2 to a chord line (or
secant) Cα,β

θ1,θ2
= C(θ1θ2)α,(θ1θ2)β

passing through the points ((θ1θ2)α, F ((θ1θ2)α))
and ((θ1θ2)β , F ((θ1θ2)β)) for α, β ∈ (0, 1) with α �= β (with corresponding Carte-
sian equation C(θ1θ2)α,(θ1θ2)β

), and still get a non-negative vertical gap between
(θ1, F (θ1)) and (θ1, C(θ1θ2)α,(θ1θ2)β

(θ1)) (because any line intersects a convex
body in at most two points). By construction, this vertical gap is smaller than
the gap measured by the ordinary Bregman divergence. This yields the Bregman
chord divergence (α, β ∈ (0, 1], α �= β):

Bα,β
F (θ1 : θ2) := F (θ1) − C

(θ1θ2)α,(θ1θ2)β

F (θ1) ≤ BF (θ1 : θ2), (13)

illustrated in Fig. 3. By expanding the chord equation and massaging the equa-
tion, we get the following formula:

Bα,β
F (θ1 : θ2) := F (θ1) − Δα,β

F (θ1, θ2)(θ1 − (θ1θ2)α) − F ((θ1θ2)α), (14)

= F (θ1) − F ((θ1θ2)α) +
α {F ((θ1θ2)α) − F ((θ1θ2)β)}

β − α
,

where

Δα,β
F (θ1, θ2) :=

F ((θ1θ2)α) − F ((θ1θ2)β)
(θ1θ2)α − (θ1θ2)β

(15)
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Fig. 2. Bregman divergence as the vertical gap between the generator graph F and
the tangent line Tθ2 at θ2.

Fig. 3. The Bregman chord divergence Bα,β
F (θ1 : θ2).
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is the slope of the chord, and since (θ1θ2)α − (θ1θ2)β = (β − α)(θ1 − θ2) and
θ1 − (θ1θ2)α = α(θ1 − θ2).

Notice the symmetry Bα,β
F (θ1 : θ2) = Bβ,α

F (θ1 : θ2). We have

lim
α→1,β→1

Bα,β
F (θ1 : θ2) = BF (θ1 : θ2). (16)

When α → β, the Bregman chord divergences yields a subfamily of Bregman
tangent divergences:

Bα
F (θ1 : θ2) = lim

β→α
Bα,β

F (θ1 : θ2) ≤ BF (θ1 : θ2). (17)

We consider the tangent line T(θ1θ2)α
at (θ1θ2)α and measure the ordinate gap

at θ1 between the function plot and this tangent line:

Bα
F (θ1 : θ2) := F (θ1) − F ((θ1θ2)α) − (θ1 − (θ1θ2)α)� ∇F ((θ1θ2)α) ,

= F (θ1) − F ((θ1θ2)α) − α(θ1 − θ2)�∇F ((θ1θ2)α) , (18)

for α ∈ (0, 1]. The ordinary Bregman divergence is recovered when α = 1. Notice
that the mean value theorem yields Δα,β

F (θ1, θ2) = F ′(ξ) for ξ ∈ (θ1, θ2). Thus
Bα,β

F (θ1 : θ2) = Bξ
F (θ1 : θ2) for ξ ∈ (θ1, θ2). Letting β = 1 and α = 1 − ε (for

small values of 1 > ε > 0), we can approximate the ordinary Bregman divergence
by the Bregman chord divergence without requiring to compute the gradient:

BF (θ1 : θ2) 
ε→0 B1−ε,1
F (θ1 : θ2). (19)

4 The Multivariate Bregman Chord Divergence

When the generator is separable [3], i.e., F (x) =
∑

i Fi(xi) for univariate gener-
ators Fi, we extend easily the Bregman chord divergence as:

Bα,β
F (θ : θ′) =

∑
i

Bα,β
Fi

(θi : θ′
i). (20)

Otherwise, we have to carefully define the notion of “slope” for the multivariate
case. An example of such a non-separable multivariate generator is the Legendre
dual of the Shannon negentropy: The log-sum-exp function [24,25]:

F (θ) = log(1 +
∑

i

eθi). (21)

Given a multivariate (non-separable) Bregman generator F (θ) with Θ ⊆
R

D and two prescribed distinct parameters θ1 and θ2, consider the following
univariate function, for λ ∈ R:

Fθ1,θ2(λ) := F ((1 − λ)θ1 + λθ2) = F (θ1 + λ(θ2 − θ1)) , (22)

with Fθ1,θ2(0) = F (θ1) and Fθ1,θ2(1) = F (θ2).
The functions {Fθ1,θ2}θ1 �=θ2 are strictly convex and differentiable univariate

Bregman generators.
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Proof. To prove the strict convexity of a univariate function G, we need to show
that for any α ∈ (0, 1), we have G((1 − α)x + αy) < (1 − α)G(x) + αG(y).

Fθ1,θ2((1 − α)λ1 + αλ2) = F (θ1 + ((1 − α)λ1 + αλ2)(θ2 − θ1)) ,

= F ((1 − α)(λ1(θ2 − θ1) + θ1) + α((λ2(θ2 − θ1) + θ1))),
< (1 − α)F (λ1(θ2 − θ1) + θ1) + αF ((λ2(θ2 − θ1) + θ1)),
< (1 − α)Fθ1,θ2(λ1) + αFθ1,θ2(λ2).

Then we define the multivariate Bregman chord divergence by applying the
definition of the univariate Bregman chord divergence on these families of uni-
variate Bregman generators:

Bα,β
F (θ1 : θ2) := Bα,β

Fθ1,θ2
(0 : 1), (23)

Since (01)α = α and (01)β = β, we get:

Bα,β
F (θ1 : θ2) = Fθ1,θ2(0) +

α(Fθ1,θ2(α) − Fθ1,θ2(β))
β − α

− Fθ1,θ2(α),

= F (θ1) − F ((θ1θ2)α) − α (F ((θ1θ2)β) − F ((θ1θ2)α))
β − α

,

in accordance with the univariate case. Since (θ1θ2)β = (θ1θ2)α−(β−α)(θ2−θ1),
we have the first-order Taylor expansion

F ((θ1θ2)β) 
β�α F ((θ1θ2)α) − (β − α)(θ2 − θ1)�∇F ((θ1θ2)α) . (24)

Therefore, we have:

α (F ((θ1θ2)β) − F ((θ1θ2)α))
β − α


 −α(θ2 − θ1)�∇F ((θ1θ2)α) . (25)

This proves that
lim
β→α

Bα,β
F (θ1 : θ2) = Bα

F (θ1 : θ2). (26)

Notice that the Bregman chord divergence does not require to compute
the gradient ∇F The “slope term” in the definition is reminiscent to the q-
derivative [18] (quantum/discrete derivatives). However the (p, q)-derivatives [18]
are defined with respect to a single reference point while the chord definition
requires two reference points.

5 Conclusion

In this paper, we geometrically designed a new class of distances using a Breg-
man generator and two additional scalar parameters, termed the Bregman chord
divergence, and its one-parametric subfamily, the Bregman tangent divergences
that includes the ordinary Bregman divergence. This generalization allows one
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to easily fine-tune Bregman divergences in applications by adjusting smoothly
one or two (scalar) knobs. Moreover, by choosing α = 1 − ε and β = 1 for
small ε > 0, the Bregman chord divergence B1−ε,1

F (θ1 : θ2) lower bounds closely
the Bregman divergence BF (θ1 : θ2) without requiring to compute the gradi-
ent (a different approximation without gradient is 1

ε Jε
F (θ2 : θ1)). We expect

that this new class of distances brings further improvements in signal processing
and information fusion applications [29] (e.g., by tuning Bα,β

FKL
or Bα,β

FIS
). While

the Bregman chord divergence defines an ordinate gap on the exterior of the epi-
graph, the Jensen chord divergence [20] defines the gap inside the epigraph of the
generator. In future work, the dualistic information-geometric structure induced
by the Bregman chord divergences shall be investigated from the viewpoint of
gauge theory [19] and in contrast with the dually flat structures of Bregman
manifolds [3].
Source code in JavaTM is available for reproducible research.3
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