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Abstract. We provide an alternative differential geometric framework
of the manifold M of parametric statistical models. While adopting the
Fisher-Rao metric as the Riemannian metric g on M, we treat the origi-
nal parameterization of the statistical model as affine coordinate chart on
the manifold endowed with a flat connection, instead of using a pair of
torsion-free affine connections with generally non-vanishing curvature.
We then construct its g-conjugate connection which, while necessarily
curvature-free, carries torsion in general. So instead of associating a sta-
tistical structure to M, we construct a statistical manifold admitting
torsion (SMAT). We show that M is dually flat if and only if torsion of
the conjugate connection vanishes.
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1 Introduction

Recall that in the now-classic information geometry, a parametric family of den-
sity functions, p(·|x), called a parametric statistical model, is the association
x �→ p(·|x) of a point x = [x1, · · · , xn] in a connected open subset of Rn to p,
such that x serves as a local coordinate chart of p ∈ M [Ama85,AN00]. The
Fisher-Rao metric and the α-connections are given by

gij(x) =
∫

Ω

dω

{
p(ω|x)

∂ log p(ω|x)
∂xi

∂ log p(ω|x)
∂xj

}
;

Γ
(α)
ij,k(x) =

∫
Ω

dω
∂p(ω|x)

∂xk

(
1 − α

2
∂ log p(ω|x)

∂xi

∂ log p(ω|x)
∂xj

+
∂2 log p(ω|x)

∂xi∂xj

)
.

The α- and (−α)-connection are conjugate to each other with respect to the
Fisher-Rao metric g. Note that all α-connections are torsion-free; yet generally
they have non-zero curvatures, with curvature of (±α)-connections equal but
opposite sign of each other. When the curvatures of (±1)-connections vanish, g
takes the form of a Hessian metric. It is important to keep in mind that each
member of the α-connection is Codazzi-coupled to the Fisher-Rao metric g.
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In this paper, we take a different perspective about the manifold M of para-
metric statistical models p(·|x). We take the parameter x to be the local coordi-
nates of a parallelizable manifold after trivialization of its tangent bundle TM,
i.e, x is taken to be the affine coordinates of a flat connection ∇∗ on M. We
continue to take Fisher-Rao metric g as the Riemannian metric on M. Denote
∇ to be the g-conjugate of this flat connection ∇∗. Though ∇ is necessarily
curvature-free, in general, ∇ will not be torsion-free. This connection is adapted
to the g-conjugate frame, and we call it “pseudo-Weitzenböck connection.” In
the literature, a manifold (M, g,∇,∇∗) for which ∇∗ is flat is called a “statistical
manifold admitting torsion” or SMAT [Kur07,HM11], and ∇ and g are coupled
by

(∇Zg)(X,Y ) − (∇Xg)(Z, Y ) = g(T∇(Z,X), Y ).

Below, we actually describe parametric statistical model as SMAT by construct-
ing the biorthogonal frame B based on g being the Fisher-Rao metric. ∇ is
torsion-free, and hence becomes “flat”, if and only if g is Hessian. For more
details including proofs, see [ZK19].

2 Theoretical Foundation

2.1 g-Conjugate Connection

We recall that given any connection ∇ and an arbitrary Riemannian metric g,
the g-conjugate connection ∇∗ is defined as the (unique) connection that jointly
preserves g with ∇:

Z(g(X,Y )) = g(∇ZX,Y ) + g(X,∇∗
ZY ), (1)

where X,Y,Z are all vector fields on M.
The curvature and torsion of conjugate connections ∇ and ∇∗ are related:

(i) their curvature tensors R∇, R∇∗
satisfy

g(R∇(Z,W )X,Y ) + g(R∇∗
(Z,W )Y,X) ≡ 0; (2)

(ii) their torsion tensors T∇, T∇∗
satisfy

g(T∇∗
(Z,X) − T∇(Z,X), Y ) ≡ (∇Zg)(X,Y ) − (∇Xg)(Z, Y ). (3)

A consequence of (2) is that if ∇ is curvature-free, then so is ∇∗. The consequence
of (3) is that ∇ and ∇∗ carry the same amount of torsion if and only if

(∇Zg)(X,Y ) = (∇Xg)(Z, Y ),

which is known as the “Codazzi coupling” of (g,∇). It is easily verified that
(g,∇) is Codazzi-coupled if and only if (g,∇∗) is Codazzi-coupled. Both (2) and
(3) are well-known facts in information geometry. A connection is called flat
when it is both curvature-free and torsion-free. A manifold is called dually flat
when it carries two flat connections ∇ and ∇∗ that form a conjugate pair with
respect to the (necessarily) Hessian metric constructed from either ∇ or ∇∗.
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2.2 Connection Adapted to a Frame

Let us start by defining a local frame on a parallelizable manifold M. A frame
B = {b1, · · · , bn} with n = dim(M) is a collection of n locally linearly indepen-
dent vector fields {bi}n

i=1 on M. Under local coordinate system x = {xi}n
i=1, the

expression of a frame B is bi = Bj
i ∂xj , where ∂xj is the shorthand for ∂/∂xj ,

and Bj
i is an n × n matrix, assumed to be of full rank and hence invertible:

(B−1)i
l Bl

j = δi
j = Bi

l (B−1)l
j .

Here, and in the rest of the paper, B−1 denotes the matrix inverse of Bi
j , and

Einstein summation notation is in effect.
When the B-matrix is taken to be the Jacobian matrix of coordinate trans-

form: x −→ y

(B−1)α
j =

∂yα

∂xj
←→ Bj

α =
∂xj

∂yα
, (4)

then the frame {bi}n
i=1 forms a coordinate frame:

bi =
∂xα

∂yi

∂

∂xα
=

∂

∂yi
:= ∂yi .

The necessary and sufficient condition for (4) is

∂xi(B−1)α
j = ∂xj (B−1)α

i . (5)

Necessity is obvious. As for sufficiency, note that when Eq. 5 is satisfied, then
for each α there exists a function yα = yα(x) such that

(B−1)α
j =

∂yα

∂xj
.

Definition 1 (Adapted connection). Given any frame B, the adapted con-
nection ∇B is defined by ∇B = B ∂(B−1) or in component forms:

Γ β
kα = Bβ

j (∂xα(B−1)j
k) = −(B−1)j

k(∂xαBβ
j ). (6)

∇B as constructed is known as the “connection of parallelization” [BG80], since
they always exist on a parallelizable manifold after trivialization of its tangent
bundle with a global frame B. The following is well-known [BG80, p.223].

Proposition 1. Given a frame B = {b1, · · · , bn}, then

(i) ∇B
bi
bj ≡ 0, ∀i, j;

(ii) R∇B

= 0 ;
(iii) T∇B

= 0 iff B is a coordinate frame, i.e., [bi, bj ] = 0.

Definition 2 (g-Biorthogonal frame). Given any frame B = {bi}n
i=1, the

g-biorthogonal frame is defined as the (unique) frame B� = {b�
i }n

i=1 that is
biorthogonal with respect to the given g:

g(bi, b
�
j ) ≡ δij .
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We have the following nice property

Theorem 3 [ZK19, Theorem 10]. With respect to any Riemannian metric g,
the g-conjugation of a connection induced by a frame B equals the connection
indued by the g-biorthogonal frame B�:

(∇B
)∗

= ∇(B�).

Historically, an affine connection adapted to an orthonormal frame is called
the Weitzenböck connection, and has been used in theoretical physics to describe
an alternative theory to Einstein’s general relativity. Here this construction is
extended to an arbitrary frame, and hence the terminology “pseudo-Weitzenböck
connections.” Theorem 3 shows that the notion of biorthogonal frames is com-
patible with the notion of conjugate connections when the pair of connections
are both adapted connections.

2.3 Dually Flat Versus Partially-Flat Manifolds

Recall that the Hessian operator (second derivative) on a function Φ on a man-
ifold is a bilinear form sometimes denoted as (∇dΦ)(X,Y ). Operating on the
coordinate base (X = ∂xi , Y = ∂xj ) it takes the form

Hess∇(Φ)(∂xi , ∂xj ) =
∂2Φ

∂xi∂xj
− Γ k

ij

∂Φ

∂xk
.

Torsion-freeness of ∇ is reflected as Γ k
ij = Γ k

ji. When ∇ is further curvature-free
(and hence ∇ is flat), Γ k

ij = 0 using x as affine coordinates, so that

Hess∇(Φ)(∂xi , ∂xj ) =
∂2Φ

∂xi∂xj
.

It is established in Zhang and Khan [ZK19] that

Proposition 2 [ZK19, Theorem 3]. Given a torsion-free connection ∇ and a
smooth function Φ on a manifold, then (∇,Hess∇(Φ)) is Codazzi coupled iff
dΦ(R∇) = 0.

A consequence is that any flat connection ∇ is always Codazzi coupled to
Hess∇(Φ), as [Shi07] observed. Denote ∇∗ the conjugate connection with respect
to the symmetric bilinear form Hess∇(Φ) induced from a flat ∇. Then ∇∗ is
also flat (both curvature- and torsion-free). Assuming Φ is convex, then we have
the standard Hessian manifold with

g = Hess∇(Φ) = Hess∗
∇(Φ∗),

where Φ∗ is the convex conjugate function of Φ.
The above analysis also tells us that given (M, g,∇) with a flat connection

∇, then whenever g 	= Hess∇(Φ), then (∇, g) is in general not a Codazzi pair, as
[Shi07] pointed out, so the g-conjugate connection ∇∗ is not torsion-free. This is
the situation of the so-called “partially-flat” manifold [Hen17]. Next, we apply
this concept to the manifold of parametric statistical models.
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3 Parametric Statistical Models as Partially-Flat
Geometry

3.1 Riemannian Manifold of Parametric Statistical Models

Take x = [x1, · · · , xn], the parameter of a parametric statistical model p(·|x), to
be the affine coordinates on a parallelizable manifold with flat connection ∇∗,
i.e., the Christoffel symbol Γ ∗i

jk vanishes. Writing out the equation of conjugate
connections ∇,∇∗ under this coordinate chart

∂gij

∂xk
= gljΓ

l
ki + gilΓ

∗l
kj = gljΓ

l
ki .

Therefore, the pseudo-Weitzenböck connection ∇ of the parametric statistical
model is (written as its Christoffel symbol Γ i

jk)

Γ j
ki = gjl ∂gil

∂xk
, (7)

with gij denoting the elements of the matrix inverse of g, the Fisher-Rao metric.
It is well-known [BG80] that such a connection is always curvature-free., but
carries torsion

T j
ik = gjl

(
∂gkl

∂xi
− ∂gil

∂xk

)
.

In general, T 	= 0, unless ∂gil

∂xk is totally symmetric, i.e., g is Hessian. Other-
wise, from any connection ∇ with torsion T∇, we can construct a torsion-free
connection ∇ − 1

2T∇; in the present case,

Γ j
ki − 1

2
T j

ki =
gjl

2

(
∂gkl

∂xi
+

∂gil

∂xk

)

is always torson-free, and differs from the Levi-Civita connection of g by
1
2gjl∂xlgik.

Even though Γ j
ki given by (7) may carry torsion, its geodesic equation

d2xj

ds2
+ gjl ∂gil

∂xk

dxi

ds

dxk

ds
= 0

or equivalently
d

ds

(
gij

dxj

ds

)
= 0

still yields the same solution as given by

gij
dxj

ds
= const, i = 1, 2, · · · , n.

Torsion of Γ j
ki is not captured in the geodesic curves themselves; it describes

the “screw” component of the motion with axis of rotation precisely the tangent
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direction of the curve. When two connections differ only by torsion, then their
associated geodesic equations are the same, since the anti-symmetric part of Γ

is canceled after summation with dxi

ds
dxk

ds .
The associated frame, which we call “canonical frame” of M and denote by

upper script {bi}n
i=1, is

B = {bi}n
i=1 = {gij∂xj , i = 1, 2, · · · , n} .

This frame is nothing but the “natural gradient” vector popularly known to the
machine learning community after Amari [Ama98].

3.2 Pre-contrast Function and α-Connections

Just as a statistical structure may be induced by a contrast function, a SMAT
may be induced by a pre-contrast function ρ [HM11] which, in the partially-flat
case, has a canonical expression [Hen17]. We show that

Proposition 3. The canonical pre-contrast function M × TM → R is

ρ(∂xi , x, x′) = −g(∂xi , (x′j − xj)∂xj ) = (xj − x′j) gij(x).

This can be seen from

− ∂ρ

∂x′j

∣∣∣∣
x′=x

= gij(x),

− ∂2ρ

∂x′k∂x′j

∣∣∣∣
x′=x

= 0,

− ∂ρ

∂xk∂x′j

∣∣∣∣
x′=x

=
∂gij

∂xk
= Γki,j .

where the canonical connection Γ carries torsion, Γki,j 	= Γik,j , in general.
The family of α-connections, ∇̃(α) = 1+α

2 ∇ + 1−α
2 ∇∗ = 1+α

2 ∇ all carry
torsion (except α = −1)

Γ̃
(α)
ki,j(x) =

1 + α

2

(∫
Ω

dω

{
∂2 log p(ω|x)

∂xk∂xi

∂p(ω|x)
∂xj

+
∂2 log p(ω|x)

∂xk∂xj

∂p(ω|x)
∂xi

}

+
∫

Ω

dω p(ω|x)
∂ log p(ω|x)

∂xi

∂ log p(ω|x)
∂xj

∂ log p(ω|x)
∂xk

)
,

with torsion given by

T̃
(α)j
ik =

1 + α

2
gjl

∫
Ω

dω

{
∂2 log p(ω|x)

∂xi∂xl

∂p(ω|x)
∂xk

− ∂2 log p(ω|x)
∂xk∂xl

∂p(ω|x)
∂xi

}
.
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3.3 Univariate Normal Distribution: An Example

We consider the univariate normal family on the real line (−∞ < ω < ∞)

N (ω|μ, σ) =
1√

2πσ2
exp

(
− (ω − μ)2

2σ2

)

with parameters m =
√

2 μ and σ (the factor of
√

2 is for later convenience).
Reparametrizing, it is possible to consider N (ω|μ, σ) as an exponential family
with natural coordinates x = (x1, x2) and expectation coordinates u = (u1, u2):

x1 =
μ

σ2
, x2 = − 1

2σ2
;

u1 = μ, u2 = μ2 + σ2.

When treating x (or u) as affine coordinates for the dually flat connections, the
Fisher-Rao metric g becomes the Hessian metric with potential Φ

Φ(x) = −x1 · x1

4x2
+

1
2

log
(
− π

x2

)
.

As the mean μ and variance σ parameters of the univariate normal model
are intrinsically meaningful in statistics, it is desirable to treat (μ, σ) as affine
coordinates for some flat connection. As such, if we consider the coordinate frame{

∂

∂m
,

∂

∂σ

}
,

its biorthogonal frame with respect to the Fisher-Rao metric

g =
2
σ2

(dm2 + dσ2)

is {
σ2

2
∂

∂m
,
σ2

2
∂

∂σ

}
.

By computing the Lie bracket of the biorthogonal frame, we find that[
σ2

2
∂

∂m
,
σ2

2
∂

∂σ

]
= −σ3

2
∂

∂m
.

This is the torsion of the pseudo-Weitzenböck connection adapted to the
g-biorthogonal frame. It is not a coordinate frame and the torsion of the
g-conjugate connection is non-zero.

Note that the Fisher-Rao metric, when expressed in the (m,σ)-coordinates,
is not Hessian. The pseudo-Weitzenböck connection derived above has geodesics
which are reparametrizations of straight lines in the upper half-plane. This fact
does not hold in general, but turns out in the present case because the Fisher-Rao
metric, though not Hessian, is so simple for our choice of parametrization.

To summarize, we have constructed a presentation of the univariate normal
family (as a manifold of upper half-plane), not as a manifold of dual flatness
(Hessian manifold) in the conventionally-adopted natural and expectation coor-
dinates, but as a partially-flat statistical manifold admitting torsion (SMAT) in
the original (m,σ)-coordinates.
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4 Discussions

Classical information geometry involves statistical manifolds, with two equiva-
lent definitions as follows:

(i) Lauritzen’s [Lau87] viewpoint: (M, g,∇,∇∗) where the pair of g-conjugated
connections ∇ and ∇∗ are both torsion-free;

(ii) Kurose’s [Kur90] viewpoint: (M, g,∇) where ∇ is torsion-free and Codazzi-
coupled to g.

With application to parametric statistical models, the Riemannian metric is
the Fisher-Rao metric and the pair of conjugate connections are the (±1)-
connections, generated by divergence (contrast) functions. These are “canoni-
cal” objects once the parametric statistical model p(·|x) is specified, canonical
because they are unique second- and third-order invariants for parametric sta-
tistical models (see [Dow18] and [AJVLS15]). Here we provide another “canon-
ical” construction of a parametric statistical model as a parallelizable manifold
with a “partially-flat” geometry [Hen17] under which both conjugate connec-
tions are curvature-free. A partially-flat structure (of a parallelizable manifold)
is a slightest relaxation to the dually flat Hessian structure, by allowing one of
the connections (say, ∇∗) to be torsion-free. The metric g need not be Hessian,
nor is the flat connection required to be Codazzi coupled to g. In other words,
our construction of this manifold (M, g,∇,∇∗) is such that ∇∗ is flat and ∇ is
curvature-free but usually carries torsion, while g is still the Fisher-Rao metric.
This is a special case of a statistical manifold admitting torsion (SMAT, [Kur07])
that can be generated by “pre-contrast functions” [HM11]. Compared to statis-
tical manifold (M, g,∇,∇∗) à la Lauritzen, our alternative approach selects a
pair of connections both of which are, instead of torsion-free, curvature-free.
Compared to statistical manifold (M, g,∇) à la Kurose, our alternative app-
roach selects a connection that is, instead of Codazzi-coupled, SMAT-coupled
to g. The switch of emphasis from curvature to torsion may lead to interesting
reformulation of information geometry.
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