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Abstract. Signatures provide a succinct description of certain features
of paths in a reparametrization invariant way. We propose a method
for classifying shapes based on signatures, and compare it to current
approaches based on the SRV transform and dynamic programming.
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1 Introduction

Shape analysis is a broad and growing subject addressing the analysis of different
types of data ranging from surfaces, landmarks, animation data etc. In this paper
shapes are unparametrized curves. Mathematically a shape is an equivalence
class of curves under reparameterization, that is, two curves c0, c1 : [0, 1] → M
are equivalent and determine the same shape if there exists a strictly increasing
smooth bijection ϕ : [0, 1] → [0, 1] such that c1 = c0 ◦ ϕ. For a given curve c we
denote by [c] the corresponding shape.

The similarity between two shapes [c0], [c1] is then defined by creating a
distance function dS on the space of shapes S,

dS([c0], [c1]) := inf
ϕ

dP(c0, c1 ◦ ϕ) (1)

where dP is a suitable reparameterization invariant Riemannian distance on the
manifold of parametrized curves.

Finding the optimal reparameterization ϕ is however computationally
demanding, and in many applications simply unnecessary. This is specifically
the case of applications where the optimal parametrization is not explicitly used
for further calculations, e.g. problems of identification and classification. Ways
of circumventing this step are therefore of great interest.

In recent years, after extensive work by Terry Lyons and collaborators, the
theory of rough paths has gained considerable importance as a toolbox for mathe-
matical analysis and for mathematical modeling in applications. In this context,
the signature map provides a faithful representation of paths, capturing their
essential global properties. A fundamental property of the signature is its invari-
ance under reparameterization, surmising its importance for shapes.
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In this paper, we define a measure of similarity between shapes in S by
means of the signature. We define a distance directly on S. We test the viability
of this approach and use it to classify motion capture animations from the CMU
motion capture database [7]. Indeed, this leads to an efficient technique that
delivers results comparable to what is obtainable with methodologies based on
the SRV transform, but at a much lower computational cost.

2 Shape Analysis on Lie Groups

In the following, G will denote a finite-dimensional Lie group under multiplica-
tion with identity element denoted by e. We let g denote the corresponding right
Lie algebra g := LR(G). For a fixed g ∈ G, left and right translation by g will
be denoted Lg(h) = g · h and Rg(h) = h · g respectively.

2.1 Shape Space

We consider the space C∞([0, 1], G) of parameterized smooth curves on G, i.e.
smooth maps c : [0, 1] → G. To model the curves as unparameterized, or inde-
pendent of parameterization, we define the shape space S as the quotient space

S = C∞([0, 1], G)/Diff+, (2)

where Diff+ is the group of orientation preserving diffeomorphisms of the param-
eter space [0, 1]. The elements of S are equivalence classes of curves. The elements
of the same class are curves which can be mapped to one another by changing
their parameterization, that is, two curves c0, c1 ∈ C∞(I,G) are equal in shape
space if there exists ϕ ∈ Diff+ such that c1 = c0 ◦ ϕ.

In the setting of our application, the search for optimal time parametrizations
can be viewed as syncing up the animations, removing disturbances due to small
pauses, different periodicity, or asynchronous starting and stopping, by shifting
the movement of one character to match the other as closely as possible.

2.2 Geodesic Distances on Shape Space

Our goal is to introduce a meaningful and computable distance dS on S to
estimate the similarity between two shapes. This area of research started with
the efforts of Younes [16]. We will restrict the space of curves to the space of
immersions, i.e. curves with non-vanishing first derivative, which we denote by

P = Imm([0, 1], G). (3)

Let dP be a pseudo-metric on P. We define dS , for two elements [c0], [c1] ∈ S,
by

dS([c0], [c1]) := inf
ϕ∈Diff+

dP(c0, c1 ◦ ϕ). (4)
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As shown in [3, Lemma 3.4], dS will be a pseudo-metric on S if dP is a repa-
rameterization invariant or, in other words, if for any two c0, c1 ∈ P and any
ϕ ∈ Diff+ we have that

dP(c0 ◦ ϕ, c1 ◦ ϕ) = dP(c0, c1). (5)

An obvious choice of metric on P is the familiar L2-metric. However, as shown
by Michor and Mumford [13], this metric leads to vanishing geodesic distance
which renders it useless. They further show in [14] that one solution to this
problem is to consider metrics based on arc-length derivatives, creating a class
of Sobolev-type metrics.

There are multiple possible metrics in this class. One option is based on
what is usually referred to as the Square Root Velocity Transform (SRVT). This
transform and accompanying metric was first introduced, in the context of shape
analysis, by Srivastava et al. [15], who used the transformation when working
with curves in Euclidian spaces. The transformation has later been adopted to
more general shapes. Of particular interest is the formulation for shapes that are
represented as Lie-group valued curves [3].

We define the SRVT R : P → C∞([0, 1], g \ {0}) by

R(c)(t) :=
R−1

c(t)∗(ċ(t))√‖ċ(t)‖ . (6)

This transformation has the following useful properties [3, Lemma 3.6]:

1. For every c ∈ P and ϕ ∈ Diff+, the following equivariant property holds:

R(c ◦ ϕ) = R(c) ◦ ϕ ·
√

ϕ̇. (7)

2. It is translation invariant: for all c ∈ P and g ∈ G

R(Rg(c)) = R(c).

A similar result is true for shapes with values in Euclidean spaces [15].
Further, one can obtain a Riemannian metric dP∗ that coincides with the

geodesic distance on a submanifold P∗ ⊂ P by using the SRVT to pull back
the L2-metric on C∞(I, g \ {0}) [3]. Further restricting the immersion space to
P∗ = {c ∈ P : c(0) = e}, where e is the identity element in G, the distance dP∗
turns out to be reparameterization invariant.

This invariance implies, in particular, that it will also yield a geodesic distance
on S∗ := P∗/Diff+ [2]. The restriction to P∗ isn’t very troublesome as any curve
can be transferred to this space by right translation by the inverse of its initial
value, that is Rc(0)−1 [3].

Using the equivariant property for the SRVT from Eq. (7) and defining qi =
R(ci) for i = 0, 1, the problem of calculating the metric for the shape space S∗
in Eq. (4) can be written as

dS∗(c0, c1) = inf
ϕ∈Diff+(I)

√∫

I

‖q0(t) − q1(ϕ(t)) ·
√

ϕ̇‖2dt. (8)
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Finding this infimum will generally be very difficult. The usual approach is
therefore to discretize the curves and solve instead a finite dimensional optimiza-
tion problem. The most common methods used to solve this problem in shape
analysis [15] are based on either the gradient descent method or a dynamic pro-
gramming algorithm (DP). In our experiments we use the DP approach described
in [1].

3 Signatures

Signatures, introduced by Chen [4] for smooth paths and later generalized by
Lyons [11] under the name of geometric rough paths, are an important tool
for the study of the solutions of controlled differential equations, but have also
proved useful for solving classification problems of time series, Machine Learning
and Topological Data Analysis [6].

In the usual framework, signatures are defined for paths taking values in a
Banach space. From a geometric point of view, and in light of our purposes, this
setting has to be adapted. Luckily, Chen also considered signatures for curves
taking values on a smooth manifold [4]. This definition is quite general and relies
on the selection of a frame bundle. For Lie groups there is a canonical choice: the
Maurer–Cartan form. This is the unique right-invariant one form ω such that
ωe = idg, i.e. ω(v) = (R−1

g )∗v for v ∈ Tg(G) [8, p. 311].
Below we denote, for a finite-dimensional vector space V of dimension d =

dim V , the tensor algebra over V ,

T (V ) :=
⊕

n≥0

V ⊗n.

We observe that T (V ) is always infinite-dimensional. Its dual space is denoted
by T ((V )) := T (V )∗, and it may be identified with the ring of formal power series
in d noncommuting variables {e1, . . . , ed}.

Definition 1. Let G be a d-dimensional Lie group and α ∈ C∞([0, 1], G) be a
smooth curve and ω the Maurer-Cartan form on G. The signature S(α) of α is
the family of linear maps on T (Rd) recursively defined by 〈S(α)s,t, 1〉 := 1 and

〈S(α)s,t, ei1···ip〉 :=
∫ t

s

〈S(α)s,u, ei1···ip−1〉ω
ip
α(u)(α̇(u)) du.

In this definition, the notation ωj
g(v) denotes the j-th component of the vector

ωg(v) ∈ g in a basis of the Lie algebra g of G.
The signature provides a compact description of certain features of a path [5].

One of its main advantages in our context is its reparameterization invariance:
for any orientation-preserving diffeomorphism ϕ on [s, t] we have that

S(α ◦ ϕ)s,t = S(α)s,t.
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Other fundamental properties include:

1. For each 0 ≤ s < t ≤ 1, the signature S(x)s,t belongs to the set of group-like
elements of T ((Rd)), and for any 0 ≤ s ≤ 1, S(x)s,s = 1, the neutral element
in the group.

2. Chen’s rule: For any three 0 ≤ s < u < t ≤ 1 we have

S(x)s,u ⊗ S(x)u,t = S(x)s,t.

Using these properties, signatures may be efficiently computed for some
restricted classes of paths. For example, if x is a straight line in R

d with base
point a ∈ R

d direction b ∈ R
d, i.e. xt = a + tb for t ∈ [0, 1], then

S(x)s,t = exp⊗((t − s)b)

= 1 + (t − s)b +
(t − s)2

2
b ⊗ b +

(t − s)3

6
b ⊗ b ⊗ b + · · · .

(9)

A similar statement is true for geodesic curves on a finite-dimensional compact
Lie group.

We may think of signatures as an infinite vector indexed by words over the
alphabet {1, . . . , d}. In particular, for a piecewise linear path the above formula
means that if we want to know the component in (9) corresponding to the word
w = i1 · · · ik then

〈S(x)s,t, ew〉 =
(t − s)k

k!

k∏

j=1

bij

For a general piecewise linear path x, we may use the above formula and
Chen’s rule to deduce that

S(x)s,t = exp⊗(Δt1b1) ⊗ exp⊗(Δt2b2) ⊗ · · · ⊗ exp⊗(Δtmbm)

where Δtk = tk − tk−1 are the length of the time intervals where the path
is sampled and b1, . . . , bk are the slopes of the path in each of these intervals.
The entries of this expression may be computed by using a Baker–Campbell–
Hausdorff-type formula, for example.

Finally, we remark that the signature possesses another interesting property,
namely it is an homomorphism from path space with concatenation to the tensor
algebra T ((Rd)). This means that if we are given two paths x : [0, 1] → G and
y : [0, 1] → G, and we concatenate them to form a new path x · y, then

S(x · y)0,1 = S(x)0,1 ⊗ S(y)0,1.

Moreover, if we reverse the path x, i.e. we define ←−x (t) := x(1 − t) then

S(←−x )0,1 = S(x)−1
0,1

where the inverse is taken in the group-like elements of the tensor algebra.
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It can be shown that actually, as a function of time the signature satisfies
the differential equation

d
dt

S(x)s,t = S(x)s,t ⊗ ẋt, S(x)s,s = 1

in the tensor algebra. From this point of view, the signature map corresponds
to the flow map of the vector field given by the base path. Thus, the signature
belongs to an infinite-dimensional Lie group whose Lie algebra is the free Lie
algebra over R

d which we denote by L(Rd). It does not, however, constitute a
one-parameter subgroup. Therefore, for each fixed time interval [s, t] we can map
the signature to the free Lie algebra via a logarithm map, and we define

Λ(x)s,t = log(S(x)s,t) ∈ L(Rd).

This element, called the log-signature in the literature, provides a minimal
description of the path, which is equivalent to the full signature.

There are many ways in which signatures can be used to compare shapes,
but the essential feature is that since the map S is reparameterization invariant,
one obtains a way of directly comparing shapes instead of parameterized curves.
For our experiments we chose a particular distance on T ((Rd)) (see next section
for the precise formula), but this is by no means the only possible choice.

In making this choice one has to truncate the signature to obtain a finite-
dimensional object. Due to the factorial decay of iterated integrals little informa-
tion is lost in the process; still, some level has to be chosen and usually this done
by running experiments. Once the truncation level is chosen, several choices of
metric are available: the truncated tensor algebra becomes finite-dimensional so
it has a nice linear structure and we are free to choose norms on it subject to
some compatibility restrictions. There is also the notion of homogeneous norm
on group-like elements, which takes into account the geometry of this group.
Finally, the logarithm in this group maps signatures into a linear space (the free
Lie algebra) in a bijective way, so no information is lost, but there is a substantial
dimensional reduction.

According to our observations, is the last option which represents the most
robust choice in terms of noise sensitivity, while also providing an accurate way
of comparing signatures.

4 Experiments

Motion capture animations are usually recorded as the angle of every joint in a
skeleton for every frame in an animation. A natural setting for the rotating joints
is the Lie group of 3D rotations, SO(3). Every frame consists of d independently
rotating joints so the frame can be modeled as an element in SO(3)d, where
SO(3)d is the Cartesian product of d copies of SO(3). Interpolating between the
frames will then allow us to model the animation as a parameterized curve.

We use an interpolation scheme in which one uses the log map to linearly
interpolate on the Lie algebra, and then pull back to the Lie group with the
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exponential map. Let A,B ∈ SO(3), we define the interpolation κ : [0, 1] →
SO(3) between A and B as

κ(s) := exp
(
s log

(
B · AT

)) · A.

Notice that κ(0) = A and κ(1) = B. Applying this interpolation component-wise
to the frames in SO(3)d will enable us to construct a piece-wise interpolation
between the frames of the animation. The Maurer–Cartan form along the inter-
polation is piece-wise constant, making it easy to compute SRV representations,
dP∗ -metrics, and signatures.

To test the effectiveness of the proposed frameworks we check whether they
are able to identify different types of character motion. We have selected ani-
mations from the CMU motion capture database with descriptions “walk”,
“run/jog” and “forward jump”. These are similar in length, and should pro-
duce results that conform with human intuition.

The test will calculate a distance matrix using the proposed similarity mea-
sures. From the distance matrix we produce a multidimensional scaling plot
(MDS), depicting how similar, or dissimilar, the animations are. MDS tries to
place the data points in 2-dimensional scatter plot while preserving the dis-
tances given by the distance matrix. See Kruskal [9] for more information on
this method.

In Fig. 2a we calculate the distance matrix using the metric dP∗ on interpo-
lation curves in P∗, and in Fig. 2b we use the metric dS∗ , Eq. (8), on the shapes
generated by the curves in S∗, where the optimal reparameterization is calcu-
lated with a DP algorithm. There are little to no patterns when projecting to the
space (P∗, dP∗), as seen in Fig. 2a. In Fig. 2b however, we observe that modelling
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Fig. 1. Multi dimensional scaling plot of distance matrix calculated from by projecting
animations to the space S∗ equipped with the distance function dsig. In this plot we
have taken animation with descriptions “run/jog”, “forward jump” and “walk” from
the CMU Motion Capture Database [7].
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the curves as being parameterization invariant yields three easily distinguishable
clusters of animations. Compared to Fig. 2a we see a big benefit from this model
assumption.
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(a) Animations projected to P∗ with distance matrix calculated
with the metric dP∗ .
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(b) Animations projected to S∗ with distance matrix calculated
with metric dS∗ using a DP algorithm.

Fig. 2. Multi dimensional scaling plots of distance matrix based on geodesic distances
calculated in P∗ and S∗, figure (a) and (b) respectively. In this plot we have taken
animation with descriptions “run/jog”, “forward jump” and “walk” from the CMU
Motion Capture Database [7].
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In Fig. 1 the animations are projected to the shape space S equipped with
the distance function dsig(c0, c1) =

∥∥∥ log S(c0)
‖log S(c0)‖ − log S(c1)

‖log S(c1)‖
∥∥∥. While this figure

does reveal the same structure as seen in Fig. 2b, the clusters exhibit both a
higher internal and a lower external variability. An important take away from
this experiment is that this distance function in fact does preserve some of the
structure of the shape space.

5 Concluding Remarks

Our preliminary experiments, show that classifying animations using a distance
function on S∗ based on signatures produces very encouraging results. The pro-
posed method is computationally very efficient, even though somewhat less accu-
rate than known methods in shape analysis.

The Riemannian metric (4) requires calculating the optimal reparameteriza-
tions between every pair of animations. The proposed signature method instead
only requires calculating the signature once for every animation, and then com-
pares animations by computing inexpensive norms. The optimisation procedure
is no longer necessary.1

In our experiments, the signature method outperformed the optimal repa-
rameterization metric by a factor of ∼2000 when classifying animations. A more
precise comparison with the SRVT approach and other methods, see e.g. [10]
goes beyond the scope of this work and will be considered in future work. Still
our preliminary experiments give an idea of the possible performance benefits
gained with the signature approach.

Increasing the accuracy of the signature method might also be possible by
defining a more precise similarity measure. Nonetheless, our results can be seen
as proof of concept for using signatures as an efficient way of classifying shapes.
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