
Toeplitz Hermitian Positive Definite
Matrix Machine Learning Based

on Fisher Metric

Yann Cabanes1,2(B), Frédéric Barbaresco1, Marc Arnaudon2,
and Jérémie Bigot2

1 Thales Surface Radar, Advanced Radar Concepts, Limours, France
yann.cabanes@gmail.com, frederic.barbaresco@thalesgroup.com
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Abstract. Here we propose a method to classify radar clutter from
radar data using an unsupervised classification algorithm. The data will
be represented by Positive Definite Hermitian Toeplitz matrices and clus-
tered using the Fisher metric. Once the clustering algorithm dispose of
a large radar database, new radars will be able to use the experience
of other radars, which will improve their performances: learning radar
clutter can be used to fix some false alarm rate created by strong echoes
coming from hail, rain, waves, mountains, cities; it will also improve the
detectability of slow moving targets, like drones, which can be hidden in
the clutter, flying close to the landform.
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1 Introduction

Our aim is to classify the radar clutter cell by cell. The idea is to classify each
cell according to its autocorrelation matrix. In [1] this autocorrelation matrix
is said to be equivalent to coefficients of an autoregressive model, called reflec-
tion coefficients, which will be estimated thanks to Burg algorithms. We will
then classify the cells according to these reflection coefficients. Finally we will
present a classification algorithm called k-means, and test it on simulated data.
The unsupervised classification of radar data is dealt in [2] with a mean-shift
algorithm. Here we will present another classification algorithm called k-means,
and test it on simulated data, showing promising results.

2 Introduction to Signal Processing Theory

2.1 From Radar Data to Complex Matrices

In this study, the input data will be taken on a single burst, for a single elevation
corresponding to the horizontal beam.
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Therefore, the radar provides us a 2D complex matrix of size (#impulses)×
(#cells):

U =

⎡
⎢⎢⎢⎢⎣

u0,0 u0,1 u0,2 . . . u0,p−1

u1,0 u1,1 u1,2
. . . u1,p−1

...
...

...
. . .

...
un−1,0 un−1,1 un−1,2 . . . un−1,p−1

⎤
⎥⎥⎥⎥⎦

(1)

where n denotes the number of pulses of the burst, p the number of cells.
The complex coefficient uij represents the amplitude and phase after pulse

compression of the echo beam at distance index i from the radar, at time index
j (jth impulse).

The data to classify are the cells, each cell being represented by a column of
the matrix U .

2.2 Model and Hypothesis

In this section, we will focus on a single column of the matrix U defined in
Eq. 1. We will define its autocorrelation matrix and explain how to estimate an
equivalent formulation of this autocorrelation matrix.

We denote by ·T the matrix transposition, ·H the complex matrix conjugate
transpose and ·∗ the complex scalar conjugate.

We denote:
u = [u(0), u(1), ..., u(n − 1)]T (2)

the one dimensional complex signal registered in a cell.
We assume this signal to be stationary with zero mean:

E[u(n)] = 0 for all n (3)

We also assume that this signal can be modeled as an autoregressive Gaussian
process.

Interested readers may refer to [3] for a comprehensive course on complex
signal processing theory.

2.3 From Input Vector to Autocorrelation Matrix

We define the autocorrelation matrix:

R = E[u uH ] (4)

ri,j = E[u(k + i)u(k + j)∗] (5)

We define the lag: t = i − j.
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Proposition 1 (autocorrelation and stationarity). The signal is supposed
to be stationary, so ri,j depends only of the lag t.

ri,j = E[u(k + i)u(k + j)∗]
= E[u(k + i − j)u(k)∗]
= E[u(k + t)u(k)∗]
= rt

(6)

Proposition 2 (autocorrelation and conjugation).

r−t = E[u(k − t)u(k)∗]
= E[u(k)u(k + t)∗]
= E[u(k + t)u(k)∗]∗

= r∗
t

(7)

Consequence R is a Toeplitz Hermitian Positive Definite matrix.

R =

⎡
⎢⎢⎢⎢⎢⎣

r0 r∗
1 r∗

2 . . . r∗
n−1

r1 r0 r∗
1 . . . r∗

n−2

r2 r1 r0 . . . r∗
n−3

...
...

...
. . .

...
rn−1 rn−2 rn−3 . . . r0

⎤
⎥⎥⎥⎥⎥⎦

(8)

Note that the assumptions made in Sect. 2.2 that the signal can be modeled
as a complex stationary autoregessive Gaussian process with zero mean has
the following equivalent formulation: u = R1/2x with R a Toeplitz Hermitian
Positive Definite matrix and x a standard complex Gaussian random vector
which dimension is equal to the number of pulses.

2.4 Autocorrelation Matrix Estimation

In our classification problem, the autocorrelation matrix Ri will be estimated
independently for each cell ui:

U =

⎡
⎢⎢⎢⎢⎣

u0,0 u0,1 u0,2 . . . u0,p−1

u1,0 u1,1 u1,2
. . . u1,p−1

...
...

...
. . .

...
un−1,0 un−1,1 un−1,2 . . . un−1,p−1

⎤
⎥⎥⎥⎥⎦

↓ ↓ ↓ ↓
R̂0 R̂1 R̂2 R̂n−1

(9)
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Empirical Covariance Matrix. To estimate the Toeplitz autocorrelation matrix
R from the data vector u, we can estimate each coefficient rt by the following
empirical mean:

r̂t =
1

n − t

n−1−t∑
k=0

u(k + t)u(k)∗ t = 0, ..., n − 1 (10)

Note that this method is unprecise when the vector length n is small, espe-
cially when the lag t is close to n − 1. We now propose a more robust method
to estimate the autocorrelation matrix with few data, based on an autoregessive
model.

Burg Algorithm. The Burg algorithm principle is to minimize the forward and
the backward prediction errors. The regularised Burg algorithm of order M and
regularization coefficient γ is described in Algorithm 1 and detailed in [4,5].

The regularized Burg algorithm allows us to transform the original data into
a power factor in R

∗
+ and reflection coefficients in D

n−1, where D represents the
complex unit disk.

According to [1], the following transformation is a bijection:

T +
n → R

∗
+ × D

n−1

Rn �→ (p0, μ1, ..., μn−1) (18)

where T +
n denotes the set of Toeplitz Hermitian Positive Definite matrices of

size n.
It is therefore equivalent to estimate the coefficients (p0, μ1, ..., μn−1) and the

autocorrelation matrix Rn.

2.5 The Kähler Metric

Each data vector ui is now represented by an estimation of its autocorrelation
matrix R̂i which is a Toeplitz Hermitian Positive Definite matrix. We define the
metric on the set T +

n of Toeplitz Hermitian Positive Definite matrices as coming
from the Fisher metric on the manifold of complex Gaussian distributions with
zero means, Toeplitz Hermitian Positive Definite covariance matrices and null
relation matrices.

According to the previous bijection, we will represent a Toeplitz Hermitian
Positive Definite matrix Ti by the corresponding coefficients (p0,i, μ1,i, ..., μn−1,i).
The following distance has been introduced by Barbaresco in [6] on the set
R

∗
+ × D

n−1 to make this bijection an isometry. In the Encyclopedia of Distance
by Deza [7], this distance is called Barbaresco distance:

d2T +
n

(T1, T2) = d2T +
n

((p0,1, μ1,1, ..., μn−1,1), (p0,2, μ1,2, ..., μn−1,2))

= n log2
(

p0,2
p0,1

)
+

n−1∑
l=1

n − l

4
log2

⎛
⎝1 + µl,1−µl,2

1−µl,1µ∗
l,2

1 − µl,1−µl,2
1−µl,1µ∗

l,2

⎞
⎠ (19)



Toeplitz Hermitian Positive Definite Matrix Machine Learning 265

Algorithm 1. regularised Burg algorithm
Initialization:

f0,k = b0,k = uk k = 0, ..., n − 1 (11)

a0,k = 1 k = 0, ..., n − 1 (12)

p0 =
1

n

n−1∑

k=0

|uk|2 (13)

for i = 1, ..., M : do

μi = −

(
2

n−i

n−1∑
k=i

fi−1,k b̄i−1,k−1 + 2
i−1∑
k=1

βk,iak,i−1ai−k,i−1

)

(
1

n−i

n−1∑
k=i

|fi−1,k|2 + |bi−1,k−1|2 + 2
i−1∑
k=0

βk,i|ak,i−1|2
) (14)

where:

βk,i = γ(2π)2(k − i)2 (15)

{
ak,i = ak,i−1 + μiāi−k,i−1 k = 1, ..., i − 1
ai,i = μi

(16)

and

{
fi,k = fi−1,k + μibi−1,k−1 k = i, ..., n − 1
bi,k = bi−1,k−1 + μ̄ifi−1,k k = i, ..., n − 1

(17)

end for
return (p0, μ1, ..., μn−1)

The equations of the geodesics of the set R
∗
+×D

n−1 endowed with the Kähler
metric are described in [4].

2.6 The Kähler Mean

The Kähler mean of (T0, ..., Tm−1) is defined as the point Tmean such that the

following function f(T ) =
m−1∑
i=0

d2(T, Ti), sum of the squared distances from T to

Ti, reaches its unique minimum.
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The Kähler mean algorithm is performed in [4,8] as a gradient descent on
the function f . The gradient expression of f is:

−→∇f(T ) =
m−1∑
i=0

2
−→∇d(T, Ti) d(T, Ti) = 2

m−1∑
i=0

−
−−→
T Ti

d(T, Ti)
d(T, Ti) = −2

m−1∑
i=0

−−→
T Ti

(20)
where

−→∇ denotes the gradient operator and
−−→
T Ti, also written exp−1

T (Ti), denotes
the element of the tangent space of the manifold R

∗
+ × D

n−1 at T such that the
geodesic starting at T at time 0 with inital tangent vector

−−→
T Ti arrives at Ti at

time 1.
Note that the squared distance between two matrices T1 and T2 is a linear

combination of squared distances between the coordinates (p0,1, μ1,1, ..., μn−1,1)
and (p0,2, μ1,2, ..., μn−1,2). Hence the coordinates can be averaged independently:

T0 �→ ( p0,0, μ1,0, · · · , μn−1,0 )
...

...
...

...
Tm−1 �→ ( p0,m−1, μ1,m−1, · · · , μn−k,m−1 )

↓ ↓ ↓
T ← ( p0, μ1, · · · , μn−1 )

(21)

The gradient descent on the function f is therefore equivalent to a gradient
descent on each coordinate. At each step of the algorithm, once the gradient is
computed, we move on R

∗
+ × D

n−1 following its geodesics.

3 Simulation Model

Each cell is simulated independently from the others. For each cell, we simulate
a complex vector using a SIRV (Spherically Invariant Random Vectors) model:

Z =
√

τR1/2x︸ ︷︷ ︸
information coming from the environment

+ bradar︸ ︷︷ ︸
noise coming from the radar itself

(22)

with:

τ : clutter texture coefficient (positive real random variable).
R: scaled autocorrelation matrix (Toeplitz Hermitian Positive Definite).
x, bradar: independent standard complex Gaussian random vectors which dimen-

sion is equal to the number of pulses.

The radar noise bradar is assumed to be small enough in comparaison with
the information coming from the environment

√
τR1/2x for estimating the auto-

correlation matrix τR using the methods described in Sect. 2.4.
To choose the matrix R, we learn experimentally from radar measures the

spectrum shape of the clutter we want to simulate. The scaled autocorrelation
coefficients of the matrix R can then be computed from the spectrum using the
inverse Fourier transform.

See [9,10] for more details about the clutter modeling.
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4 Classification Problem

4.1 Methodology

Using the previous model, we simulate 100 vectors with the model parameters
(τ1, R1) and 100 vectors with the model parameters (τ2, R2). Then for each vector
we try to recover the parameters used to simulate it thanks to Burg algorithm.
In this paper, we classify the data only on the scaled autocorrelation matrix R,
represented by the reflection coefficients (μ1, ..., μn−1). Future work might also
use the texture parameter τ , influencing the power coefficient p0, to classify the
data.

Each vector is now represented by its reflection coefficients in the metric
space D

n−1 endowed with the Kähler metric. We classify these vectors using
a k-means algorithm described in the next section. The k-means algorithm is
a classical clustering algorithm in Euclidean spaces, the main difficulty was to
adapt it to the Riemannian manifold D

n−1 endowed with the Kähler metric. In
Fig. 1, we plot the FFT of each simulated vector on the left graphic, each FFT
being drawn horizontally; the vertical axis represents the different cells along
the distance axis. On the graphic in the middle of Fig. 1, we plot the result of
the corresponding k-means clustering. We present in Fig. 2 a visualization of the
clustering on the first coefficients of reflection.

Once the clustering is done, we compute the F1 score of the classification.
The F1 score is a way to measure the performance of a supervised classification
algorithm. We adapted it to our unsupervised classification algorithm by doing
all possible permutations in the classification results labels in order to find the
best matching with the expected results. Finally we plot on Fig. 3 the normalized
confusion matrix using the labels corresponding to this best matching.

4.2 k-means on D
n−1 with the Kähler Metric

Fig. 1. FFT and classification results, k-means on D
n−1, Kähler metric
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Fig. 2. First coefficients of reflection, k-means on D
n−1, Kähler metric

Fig. 3. Confusion matrix and F1 score, k-means on D
n−1, Kähler metric
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The Algorithm. The k-means algorithm is described in Algorithm 2.

Algorithm 2. k-means algorithm for N clusters
Initialization:
Pick randomly N points in the dataset. They now represent the barycenters of each
class.
for i = 1 to loop number do

Assign each point of the dataset to the closest barycenter.
Compute the new barycenter of each class.

end for
return Each point is labeled according to the closest barycenter.

Predictions. Once an effective k-means algorithm is developed, we can easily
predict the class of the new radar data: they will be assigned to the cluster
having the closest barycenter.

4.3 Median Averaging

During all this study, we classified the data cell by cell, regardless of the spatial
positioning of the data, each cell being considered independently from its neigh-
bours. If we assume that each cell is correlated to the neighbouring cells, we can
avoid missclassification due to outliers by associating to each data an average of
its neigbouring cells, and performing the classification on the averaged data.

In Fig. 1, the graphic on the right represents the classification result given
by a sliding window of size 9 (the classification result was perfect). In each
window, we compute a median of the data in D

n−1. The median of a set of
points (x1, x2, ..., xn) in a metric space (E, d) is defined as follows:

median(x1, x2, ..., xn) = argminx∈E

n∑
i=1

d(x, xi) (23)

The median is more robust to outliers than the mean, the mean being the
point minimizing the sum of squared distances. We then select the closest points
of the barycenter to get rid of outliers, keeping half of the points, and compute
the new median of these selected points. The center cell of the sliding window
is now represented by this last median. Interested reader will find in [11] an
algorithm to compute the median of several points in D

n−1.

5 Conclusion

We developed a k-means algorithm to classify the radar clutter. This algorithm
has been adapted to the Kähler metric and has given promising results. Future
work may also take into account the texture coefficient τ ; the normalized Burg
algorithm presented in [12] might help to take this texture coefficient τ into
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consideration. More clustering algorithms will be adapted to the Kähler met-
ric to deal with clusters of unusual interlaced shapes, like the mean-shift algo-
rithm presented in [2,13]. These clustering algorithms will also be used to cluster
groups of neighbouring cells: we will use a multidimensional spatial autoregres-
sive model to represent the data (the autocorrelation matrices will be Positive
Definite Block-Toeplitz matrices) and adapt our clustering algorithms to this
higher dimensional space [1,14].
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