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2 Université Claude Bernard Lyon 1, UMR CNRS 5007 LAGEP,

Villeurbanne, France
bernhard.maschke@univ-lyon1.fr

Abstract. Recently a class of Hamiltonian control systems was intro-
duced for geometric modeling of open irreversible thermodynamic pro-
cesses. These systems are defined as ordinary Hamiltonian input-output
systems on a symplectic manifold, with the special property that the
Hamiltonian is homogeneous in the generalized momentum variables,
and that there is an invariant homogeneous Lagrangian submanifold
characterizing the state properties of the thermodynamic system. After
recalling the basic framework we study the passivity, controllability and
observability properties of such systems.
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1 Port-Thermodynamic Systems

It was argued in [2] that the phase space of thermodynamic systems can be
defined as the projectivization of a symplectic manifold, and that reversible and
irreversible thermodynamic processes can be expressed as Hamiltonian dynam-
ics with respect to a Hamiltonian that is homogeneous of degree one in the
generalized momentum variables. In this section, we will recall the recently pro-
posed generalization of this framework to non-isolated thermodynamic systems,
summarizing the definition of homogeneous Hamiltonian control systems and
port-thermodynamic systems as given in [13,22,23].

1.1 Homogeneous Hamiltonian Control Systems

Consider an (n + 1)-dimensional manifold Qe, with elements denoted by qe (the
vector of extensive variables in thermodynamics). Consider its cotangent bundle,
denoted by T ∗Qe, with generalized momentum variables pe ∈ T ∗

qeQe, equipped
with the canonically defined Liouville one-form α and symplectic form ω = dα.
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In natural cotangent bundle coordinates (qe, pe) = (qe
0, . . . , qe

n, pe
0, . . . , pe

n) for
T ∗Qe the Liouville form α has the expression

α =
n∑

i=0

pe
i dqe

i , (1)

while the symplectic form ω is given as ω =
∑n

i=0 dpe
i ∧ dqe

i . On the symplec-
tic manifold T ∗Qe we consider Hamiltonian vector fields which are generated
by Hamiltonian functions that are homogeneous of degree 1 in the momentum
variables pe. Such vector fields are characterized in the following proposition.

Proposition 1. [22, Prop. A.1] If the function h : T ∗Qe → R is homogeneous
of degree 1 in pe, then the Hamiltonian vector field X = Xh satisfies

LXα = 0, (2)

where LX denotes the Lie derivative with respect to the vector field X. Con-
versely, if a vector field X satisfies (2) then X = Xh for some locally defined
Hamiltonian h that is homogeneous of degree 1 in pe. 1

Hamiltonian vector fields Xh with h homogeneous of degree 1 in pe will be
referred to as homogeneous Hamiltonian vector fields.

By Gibbs’ relation the state properties of any thermodynamic system are
specified by a Lagrangian submanifold of the cotangent bundle T ∗Qe with the
following additional homogeneity property [22].

Definition 1. A homogeneous Lagrangian submanifold L ⊂ T ∗Qe is a
Lagrangian submanifold L ⊂ T ∗Qe (i.e., ω|L = 0 and L is maximal with respect
to this property) satisfying (qe, pe) ∈ L ⇒ (qe, λpe) ∈ L, for every λ ∈ R

∗.

Equivalently, in [22] homogeneous Lagrangian submanifolds are geometrically
characterized as maximal submanifolds satisfying α|L = 0.

Motivated by thermodynamics we require that the dynamics specified by a
homogeneous Hamiltonian vector field is compatible with the state properties
defined by a homogeneous Lagrangian submanifold, in the sense of leaving this
submanifold invariant. This is characterized as follows.

Proposition 2. [11,23] A homogeneous Hamiltonian vector field Xh leaves
invariant the homogeneous Lagrangian submanifold L ⊂ T ∗Qe if and only if
h|L = 0.

This leads to the following definition of a class of Hamiltonian control systems.

1 Note that (2) is stronger than the standard condition that the vector field X is
(locally) Hamiltonian, i.e., LXω = 0 [11, p. 97].
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Definition 2. [23] Consider an (n + 1)-dimensional manifold Qe. A homoge-
neous Hamiltonian control system on T ∗Qe is defined as a pair (L, K), composed
of a homogeneous Lagrangian submanifold L ⊂ T ∗Qe and a nonlinear control
system

ẋ = XKa(x) + XKc(x)u, x =
(

qe

pe

)
, (3)

generated by the control dependent Hamiltonian function K := Ka + Kcu :
T ∗Qe → R, u ∈ R

m, where Ka and the elements of the m-dimensional row
vector Kc are functions which are homogeneous of degree 1 in pe, and satisfy the
invariance conditions Ka|L = Kc|L = 0.

Hence homogeneous Hamiltonian control systems leave invariant the homoge-
neous Lagrangian submanifold L characterizing the state properties of the sys-
tem; in particular energy-storage. In the control-theoretic sense, this homoge-
neous Lagrangian submanifold is the actual state space of the system and only
the restriction of the homogeneous Hamiltonian control system to this subman-
ifold is relevant. Thus the state space is defined as a submanifold of a covering
manifold, similarly to approaches to differential-algebraic equation systems such
as described in [3,4,21].

1.2 Relation with Irreversible Thermodynamic Systems

The Thermodynamic Phase Space. In the thermodynamic case the (n+1)-
dimensional manifold Qe consists of the space of all extensive variables. For
simple thermodynamic systems, the extensive variables are volume, number of
moles of chemical species, as well as entropy and internal energy. Following [2],
the thermodynamic phase space is the (2n + 1)-dimensional manifold P (T ∗Qe),
called the projectivization of T ∗Qe, the (2n + 2)-dimensional cotangent bundle
T ∗Qe without its zero-section. The projectivization P (T ∗Qe) is defined as the
fiber bundle over Qe with fiber at any point qe ∈ Qe given by the projective
space P

(
T ∗

qeQe
)
, with projection map π : T ∗Qe → P

(
T ∗

qeQe
)
.

It is a classical result, see e.g. [11, chap. V], [1, Appendix 4], that the (2n+1)-
dimensional manifold P (T ∗Qe) is a contact manifold, endowed with a locally
defined canonical contact form, denoted by θ. In fact, in a neighborhood where
p0 �= 0, the contact form θ is given as

θ = dqe
0 −

n∑

i=1

γidqe
i ,

where γi = − pi

p0
, i = 1, . . . , n, are the homogeneous coordinates correspond-

ing to the condition p0 �= 0. For a thermodynamic system, the n coordinates
γi , i = 1, . . . , n, are called the intensive variables. Whenever p1 �= 0 we may
define different homogeneous coordinates γ̂i = − pi

p1
, i = 0, 2, . . . , n, corre-

sponding to the contact form θ̂ = dqe
1 − γ̂0dq0 −

∑n
i=2 γ̂idqe

i , and so on for
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p2 �= 0, p3 �= 0, . . .. In thermodynamics this reflects the choice of different inten-
sive variables corresponding to, e.g., the energy or entropy representation of the
thermodynamic system.

The formulation of the thermodynamic phase space as a contact manifold
is well-known [1,9,15]. The covering symplectization of the contact manifold
P (T ∗Qe) by the symplectic manifold T ∗Qe, together with the resulting different
choices of intensive variables, unifies the different representations of the ther-
modynamic phase space; in particular, the energy and entropy representations
[2,22,23]. In the same vein, the description of the state properties of the thermo-
dynamic system by a Legendre submanifold of the thermodynamic phase space,
see e.g. [15], is extended to a covering homogeneous Lagrangian submanifold. In
this way, the formulation of reversible and irreversible processes of thermody-
namic systems using contact vector fields as given before in [7,8,16,17], and for
open thermodynamic systems as control contact systems in [5,6,14,19], is now
replaced by ordinary, but homogeneous, Hamiltonian dynamics on the symplec-
tization T ∗Qe of the thermodynamic phase space P (T ∗Qe). Apart from unifying
different representations as mentioned above, this covering has other advantages
as well. From a computational point of view, Hamiltonian dynamics is more easy
than contact dynamics. More importantly, as we will see in the next subsection,
the homogeneous Hamiltonian formulation admits to define in a natural way the
outputs of the thermodynamic system. For further details on the mathematical
relation between the symplectic, but homogeneous, and the contact representa-
tions we refer to [22].

Port-Thermodynamic Systems. In order to ensure the compatibility with
the First and Second Law of thermodynamics, and to define natural outputs
which are conjugate to the inputs, we first recall Euler’s theorem for homoge-
neous functions. Since the Hamiltonian functions Ka and the elements of the
row vector Kc are homogeneous of degree 1 in the momenta pe, Euler’s theorem
yields the identities

Ka = peT ∂Ka

∂pe
and Kc = peT ∂Kc

∂pe
, (4)

where ∂Ka

∂pe and ∂Kc

∂pe are homogeneous of degree 0 in the pe variables, and
thus project to well-defined functions on the thermodynamic phase space
P (T ∗Qe). Furthermore, by definition of Hamiltonian vector fields, ∂Ka

∂pe equals
the autonomous drift dynamics, and ∂Kc

∂pe the input-dependent dynamics, of the
extensive variables qe ∈ T ∗Qe. In view of the First and Second Law of thermo-
dynamics this leads to the following additional requirements on the autonomous
Hamiltonian function Ka, and to the following definition of natural outputs,
which combined with the previous definition of homogeneous Hamiltonian con-
trol systems culminates in the definition of port-thermodynamic systems.

Definition 3. [22] Port-thermodynamic systems are homogeneous Hamiltonian
control systems (L,K) (as in Definition 2) for which the set of extensive vari-
ables contains a coordinate qe

0 corresponding to the total energy of the system
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and qe
1 corresponding to the total entropy of the system, and the autonomous

Hamiltonian Ka satisfies the following additional conditions in relation to the
homogeneous Lagrangian submanifold

∂Ka

∂pe
0

∣∣∣∣
L

= 0,
∂Ka

∂pe
1

∣∣∣∣
L

≥ 0 (5)

Furthermore, the power-conjugate outputs of the thermodynamic system are
defined by the row vector

yp =
∂Kc

∂pe
0

∣∣∣∣
L

(6)

while the entropy flow-conjugate outputs are defined as the row vector

ye =
∂Kc

∂pe
1

∣∣∣∣
L

(7)

The above definition of the outputs yp and ye of a port-thermodynamic sys-
tem, together with the conditions (5) , imply the following balance laws for the
dynamics restricted to the invariant manifold L:

d
dtE = ypu

d
dtS ≥ yeu

(8)

As an illustrative example we discuss the gas-piston-damper system. (Com-
pare with the treatment of this example in a contact geometry setting in [5].)

Example 1 (Actuated gas-piston-damper system). Consider extensive variables
V (volume of the gas), π (momentum of the piston with mass m), entropy S
and total energy E. The state properties of the system are described by the
homogeneous Lagrangian submanifold L with generating function (in energy
representation) −pE

(
U(V, S) + π2

2m

)
, where U(V, S) is the internal energy of

the gas (expressed as a function of volume and entropy):

L = {(V, π, S,E, pV , pπ, pS , pE) | E = U(V, S) + π2

2m ,

pV = −pE
∂U
∂V , pπ = −pE

π
m , pS = −pE

∂U
∂S }

(9)

The dynamics of the system is defined by the homogeneous Hamiltonian

K = Ka + Kcu

=
[
pV A π

m + pπ

(
− ∂U

∂V − d π
m

)
+ pS

d( π
m )2

∂U
∂S

]
+

(
pπ + pE

π
m

)
u,

(10)

where A is the area of the piston, and u the external force applied to the piston.
The power-conjugate output yp = π

m is the velocity of the piston. The entropy-
conjugate output ye is identically zero, implying d

dtS ≥ 0 for every u.
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2 System-Theoretic Properties of Port-Thermodynamic
Systems

In the first part of this section we make some observations regarding the passivity
properties of port-thermodynamic systems, while in the second part we study
their observability in relation with the controllability properties as treated before
in [22].

2.1 Passivity Properties of Port-Thermodynamic systems

Throughout this subsection we will denote qe = (q, S,E), with E the energy, S
the entropy (previously denoted by, respectively, qe

0 and qe
1), and q the remaining

extensive variables.
Following passivity theory [20,24] the equations (8) imply that port-thermo-

dynamic systems restricted to their invariant Lagrangian submanifold L are
cyclo-lossless with respect to the supply rate ypu and the storage function E
(expressed as a function of the extensive variables (q, S)), and cyclo-passive with
respect to the supply rate −yeu and the storage function −S (expressed as a
function of the extensive variables (q, E)). Here, ’cyclo’ [20,24] refers to the fact
that in general the storage function E need not be bounded from below, nor S
is bounded from above.

Let us in particular concentrate on the dissipation inequality d
dt (−S) ≤ −yeu

corresponding to the Second Law of thermodynamics. If the entropy S happens
to be bounded from above, and thus −S is bounded from below, then the port-
thermodynamic system is truly passive with respect to the supply rate −yeu.
Furthermore, see [20,24], in this case the available storage given as

V (q, E) := sup
τ≥0,u:[0,τ ]→Rm

∫ τ

0

ye(t)u(t)dt, (11)

where ye(t) is the output time-function corresponding to an input time-function
u(t) and initial condition (q, E) at time 0, is well-defined (i.e., finite for all (q, E)),
while obviously V ≥ 0. Furthermore, V is itself a storage function, and actually
the minimal one among all other non-negative storage functions.

Interpreting minus the entropy as ’information’, it follows that V as defined in
(11) can be interpreted as the maximally extractable information of the system,
where ye(t)u(t) is the rate of extracted information from the system at time t.

Alternatively, −V is maximal among all functions S ≤ 0 satisfying the
inequality

d

dt
S ≥ yeu (12)

In this sense, −V can be interpreted as the maximal entropy function for the
thermodynamic system. (Obviously, this relates to the question of identifying
the entropy function from the external behavior of the system.)
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However, as mentioned before, in general the entropy function S need not
be bounded from above. A possible approach to resolve this problem, as already
discussed in [25], is to consider an exergy function

E(q, S) := E(q, S) − T0S, (13)

with T0 a constant temperature. Indeed, by combining the energy and entropy
balance laws (8) one obtains

d

dt
(E − T0S) ≤ ypu − T0yeu = (yp − T0ye) u, (14)

showing that for every T0 ≥ 0 the system is cyclo-passive with respect to the
output yp − T0ye, with storage function E(q, S) given by (13).

Furthermore, in monophase thermodynamic systems E is a convex function
of S. This implies that under additional conditions the exergy function is actually
bounded from below; in this case yielding true passivity. For example, if E(q, S)
only depends on S then convexity yields that for any constant S0 the function

A(S) := E(S) − E′(S0)(S − S0) − E(S0) (15)

is non-negative. This function is known as the Bregman divergence in convex
analysis, or availability function [10] in thermodynamics. Denoting the temper-
ature T0 := E′(S0) ≥ 0 this function equals the exergy function (13) modulo a
constant, implying that the exergy is bounded from below.

2.2 Controllability and Observability Properties

First we recall from [22], with some extensions, how the controllability properties
of a port-thermodynamic system (L,K) can be directly studied in terms of
the homogeneous Hamiltonians Ka and Kc

j , j = 1, · · · ,m, and their Poisson
brackets. First note the following property proved in [22].

Proposition 3. Consider the Poisson bracket {h1, h2} of functions h1, h2 on
T ∗Qe defined with respect to the symplectic form ω = dα. Then

(a) If h1, h2 are both homogeneous of degree 1 in pe, then also {h1, h2} is homo-
geneous of degree 1 in pe.

(b) If h1 is homogeneous of degree 1 in pe, and h2 is homogeneous of degree 0
in pe, then {h1, h2} is homogeneous of degree 0 in pe.

(c) If h1, h2 are both homogeneous of degree 0 in pe, then {h1, h2} is zero.

In particular, Poisson brackets of the homogeneous (degree 1 in pe) Hamiltonians
Ka and Kc

j , j = 1, · · · ,m, are again homogeneous of degree 1 in pe. Secondly, we
recall the well-known correspondence [11] between Poisson brackets of Hamilto-
nians h1, h2, and Lie brackets of their corresponding Hamiltonian vector fields

[Xh1 ,Xh2 ] = X{h1,h2} (16)
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In particular, this property implies that if the homogeneous Hamiltonians
h1, h2 are zero on the homogeneous Lagrangian submanifold L, and thus the
homogeneous Hamiltonian vector fields Xh1 ,Xh2 are tangent to L, then also
[Xh1 ,Xh2 ] is tangent to L, and therefore the Poisson bracket {h1, h2} is also zero
on L. Furthermore, with respect to the projection to the corresponding Legendre
submanifold L, we note the following property of homogeneous Hamiltonians

̂{h1, h2} = {ĥ1, ĥ2} (17)

where ĥ is the contact Hamiltonian of the contact vector field obtained by projec-
tion of the Hamiltonian vector field Xh corresponding to a homogeneous Hamil-
tonian h. This leads to the following characterization of the accessibility algebra
of a port-thermodynamic system characterizing controllability, cf. [22].

Proposition 4. Consider a port-thermodynamic system (L,K) on P(T ∗Qe)
with homogeneous K := Ka +

∑m
j=1 Kc

j uj : T ∗Qe → R, zero on L. Consider
the algebra P (with respect to the Poisson bracket) generated by Ka,Kc

j , j =
1, · · · ,m, consisting of homogeneous functions that are zero on L, and the cor-
responding algebra P̂ generated by K̂a, K̂c

j , j = 1, · · · ,m, on the corresponding
Legendre submanifold L. The accessibility algebra [18] of the port-thermodynamic
system is spanned by all contact vector fields X

̂h on L, with ĥ in the algebra P̂.
It follows that the thermodynamic system (L,K) is locally accessible [18] if

the dimension of the co-distribution dP̂ on L defined by the differentials of ĥ,
with h in the Poisson algebra P, is equal to the dimension of L. Conversely, if
the system is locally accessible then the co-distribution dP̂ on L has dimension
equal to the dimension of L on an open and dense subset of L.

Similar statements can be made with respect to local strong accessibility [18]
of port-thermodynamic systems. In this case the same conditions need to be
satisfied for the algebra Ps, which is equal to P minus the drift Hamiltonian
Ka. (Thus, possibly repeated, Poisson brackets with Ka are taken into account,
but not the function Ka itself.)

With regard to observability we proceed as follows. First, let us consider the
observability properties with respect to the power-conjugate output yp = ∂Kc

∂pe
0

∣∣∣
L

as in (6), with qe
0 and pe

0 corresponding to the energy variable E. Note that

∂Kc
j

∂pe
0

= {Kc
j , qe

0} (18)

Recall (cf. [18] for further information) the definition of the observation space O
as given by the linear span of functions of the form

LX1LX2 · · · LXk
{Kc

j , qe
0}, j = 1, · · · ,m, (19)

with Xi, i = 1, · · · , k, taken from the set {XKa ,XKc
j
, j = 1, · · · ,m}. Using

the equality LXh
K = {h,K} it follows that the observation space O of the
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port-thermodynamic system with power-conjugate outputs yp is given by the
linear span of all expressions

{h1, {h2, {· · · , {hk, {Kc
j , qe

0}} · · · }}}, j = 1, · · · ,m, (20)

with hi, i = 1, · · · , k, taken from the set {Ka,Kc
j , j = 1, · · · ,m}.

Furthermore, since by (5) {Ka, qe
0} = 0 the following results.

Proposition 5. The observation space O of a port-thermodynamic system
(L,K) with power-conjugate outputs yp is equal to the linear span of all functions

{h1, {h2, {· · · , {hk, {hk+1, q
e
0}} · · · }}}, j = 1, · · · ,m, (21)

with hi, i = 1, · · · , k + 1, taken from the set {Ka,Kc
j , j = 1, · · · ,m}.

Furthermore, analogously to [18, Proposition 3.8], O is equal to the linear
span of all functions (21) with hi, i = 1, · · · , k + 1, taken from the accessibility
algebra P.

Since the functions hi in (21) are all homogeneous of degree 1 in pe, and
clearly the function qe

0 is homogeneous of degree 0 in pe, it follows by Proposition
3 that all functions in O are homogeneous of degree 0, and therefore project to
functions ĥ on the thermodynamic phase space P (T ∗Qe). As a result, we obtain
the following proposition.

Proposition 6. Consider the thermodynamic system with power-conjugate out-
puts yp. It is locally observable if dim dÔ = dim L(= n + 1), where Ô is the set
of all functions on L ⊂ P (T ∗Qe) obtained by projection of the functions in O.
Conversely, if the system is locally observable then dim dÔ = dim L(= n+1) on
an open and dense subset of L.

Comparing Proposition 6 with Proposition 4 we notice a close relation between
the two conditions. In fact, the situation is similar to the relation between con-
trollability and observability of lossless port-Hamiltonian systems as discussed
in [12].

More or less the same story holds for the entropy flow -conjugate output
ye = ∂Kc

∂pe
1

∣∣∣
L

as in (7), with the difference that in this case {Ka, qe
1} �= 0, and

hence in this case the observation space is slightly smaller than the linear span
of all functions (21), with qe

0 replaced by qe
1.

3 Conclusion

In this paper we have considered homogenous Hamiltonian control systems,
which are generated by Hamiltonian drift and control Hamiltonian functions that
are all homogeneous of degree one in the momentum variables, and leave invari-
ant a homogeneous Lagrangian submanifold representing the actual state space
of the system. They represent open thermodynamic systems once additional
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conditions are satisfied corresponding to the First and Second Law of thermody-
namics, leading to the definition of port-thermodynamic systems. The ’symplec-
tization’ point of view also enables the definition of outputs which are conjugate
in the sense of external energy or entropy flow, and leads to elegant results
concerning controllability and observability. Furthermore, we have made some
initial observations regarding the passivity properties of port-thermodynamic
systems, and on the use of exergy functions; thus suggesting further research on
passivity-based control of port-thermodynamic systems.
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