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Abstract. We introduce a differential complex of local observables given
a set of random variables covered by subsets. Its boundary operator ∂
allows us to define a transport equation u̇ = ∂Φ(u) equivalent to Belief
Propagation. This definition reveals a maximal set of conserved quan-
tities under Belief Propagation and gives new geometric insight on the
relationship of its equilibria with the critical points of Bethe free energy.

1 Introduction

A common feature of statistical physics and statistical learning is to consider
a very large number of random variables, each of them mostly interacting with
only a small subset of neighbours. Both lead to the effort of extracting relevant
information about collective phenomena in spite of intractable global computa-
tions, hence motivating the development of local techniques where only small
enough subsets of variables are simultaneously considered.

In the present note, we work with a collection of local algebras of observables,
on which a boundary operator describes relations between intersecting subsys-
tems. The construction of this differential complex is exposed in Sect. 2. It allows
for a homological interpretation of the equivalence established by Yedidia et al.
between critical points of the Bethe free energy approximation and fixed points
of the Belief Propagation algorithm. We review this beautiful theorem bridging
statistical learning and thermodynamics1 in Sect. 3.

This is part of a PhD work done under the kind supervision of Daniel Ben-
nequin. I wish to thank him as well as Grégoire Sergeant-Perthuis and Juan-
Pablo Vigneaux, for their sustained collaboration and many fruitful discussions.

1 See the longer version of this note for more context and historical background.
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2 Differential and Combinatorial Structures

2.1 Statistical System

Regions. We call system a finite set Ω equipped with a covering X ⊆ P(Ω) by
subsets such that:

– the empty set ∅ is in X,
– if α ∈ X and β ∈ X, then α ∩ β is also in X.

We view X as a subcategory of the partial order P(Ω) having an arrow α → β
whenever β ⊆ α. We call α ∈ X a region2 of Ω and denote by Λα ⊆ X the
subsystem of those regions contained in α.

Chains and Nerve. A p-chain ᾱ is a totally ordered sequence α0 → . . . → αp

in X, it is said non-degenerate when all inclusions are strict. A p-chain ᾱ may be
viewed as a p-simplex, whose p+1 faces are the chains ᾱ(k) obtained by removing
αk, for 0 ≤ k ≤ p. The nerve of X is the simplicial complex NX =

⊔
p NpX

formed by all non-degenerate chains.

Microscopic States. For each i ∈ Ω, suppose given a finite set Ei. A micro-
scopic state of a region α ⊆ Ω is an element of the cartesian product3:

Eα =
∏

i∈α

Ei

We denote by πβα : Eα → Eβ the canonical projection of Eα onto Eβ whenever
β is a subregion of α.

2.2 Scalar Fields

Differentials. We call scalar field a collection λ ∈ R(X) of scalars indexed by
the nerve of X. We denote by Rp(X) = R

NpX the space of p-fields, vanishing
everywhere but on the p-simplices of NX.

Through the canonical scalar product of R(X), scalar fields can be identified
with chains or cochains with real coefficients in NX eitherwise. We denote by ∂
the boundary operator of R(X) and by d its adjoint differential:

∂ : R0(X) ← R1(X) ← . . .
d : R0(X) → R1(X) → . . .

2 The term refers to the notion of region-graphs in Yedidia et al.
3 The configuration space E∅ is thus a point, unit for the cartesian product and

terminal element in Set.
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Convolution. Let R̃1(X) = R0(X) ⊕ R1(X). Identifying the degenerate 1-
chain α → α with α, an element of R̃1(X) is indexed by general 1-chains in X.
Equipped with Dirichlet convolution, R̃1(X) is the incidence algebra4 of X:

(ϕ ∗ ψ)αγ =
∑

α→β′→γ

ϕαβ′ · ψβ′γ

The unit of ∗ is 1 ∈ R0(X), sometimes viewed as a Kronecker symbol in R̃1(X).
The space of 0-fields R0(X) also has a R̃1(X)-bimodule structure, where the

left action of ϕ ∈ R̃1(X) on λ ∈ R0(X) is given by:

(ϕ · λ)α =
∑

α→β′
ϕαβ′λβ′

Möbius Inversion. The Dirichlet zeta function ζ ∈ R̃1(X) is defined by ζαβ = 1
for every α → β in X. When X is locally finite5, ζ is invertible. Its inverse μ,
known as the Möbius function, satisfies:

μαβ =
∑

k≥0

(−1)k(ζ − 1)∗k
αβ

where (ζ − 1)∗k
αβ counts the number of non-degenerate k-chains from α to β.

The coefficients c = (1 · μ) ∈ R0(X) contain all the combinatorics of Bethe
approximations. They satisfy the following «inclusion-exclusion» formula:

(c · ζ)β =
∑

α′→β

cα′ = 1

2.3 Observables, Densities and Statistical States

Observable Fields. Denote by aα = R
Eα the commutative algebra of observ-

ables on α ⊆ Ω. For every subregion β ⊆ α, an observable uβ ∈ aβ , as a real
function on Eβ , admits a cylindrical extension jαβ(uβ) on Eα.

For every ᾱ ∈ NpX, let aᾱ denote a copy of the algebra aαp
of observables on

its smallest region. There is an injection jβ̄ᾱ : aᾱ → aβ̄ whenever β̄ is a subchain
of ᾱ.6 We define the graded vector space a(X) of observable fields by:

ap(X) =
⊕

ᾱ∈NpX

aᾱ

4 See Rota [12] for a deeper treatment of these combinatorial structures.
5 X is locally finite if for any α, β ∈ X there is only a finite number of non-degenerate

chains from α to β.
6 Observable fields form a simplicial algebra a(X) : Ordop → Alg. To relate to this

more general theory, see Segal’s note on classifying spaces [14] for instance.



A Homological Approach to Belief Propagation and Bethe Approximations 221

It is equipped with a boundary7 operator ∂ : ap+1(X) → ap(X). When p = 0,
we have for instance8:

∂βϕ =
∑

α′→β

ϕα′β −
∑

β→γ′
ϕβγ′

Belief Propagation is essentially a dynamic up to a boundary term ∂ϕ in a0(X),
although it is usually viewed in the multiplicative group G0(X) =

∏
α∈X Gα

with Gα = (R∗
+)

Eα .

Density Fields. We call density on α ⊆ Ω a linear form on observables ωα ∈ a∗
α.

Denote by Σβα(ωα) ∈ a∗
β the partial integration of ωα along the fibers of πβα:

Σβα(ωα)(xβ) =
∑

x′∈Eα\β

ωα(xβ , x′)

It satisfies 〈Σβα(ωα) |uβ 〉 = 〈ωα | jαβ(uβ) 〉 for every uβ ∈ aβ .
The complex a∗(X) is equipped with a differential d : a∗

p(X) → a∗
p+1(X),

adjoint of ∂. For p = 0, we have for instance:

(dω)αβ = ωβ − Σβα(ωα)

A field ω ∈ a∗
0(X) is said consistent if dω = 0. The notion of consistent densities

will replace that of a global measure on EΩ .

Statistical Fields. Denote by Δα ⊆ a∗
α the convex subset of probability mea-

sures. It consists of all the positive densities ωα satisfying ωα(1α) = 1, and any
non-trivial positive density ωα ∈ a∗

α defines a normalised density [ωα] ∈ Δα.
Its interior Δ̊α admits a natural Lie group structure, as it is diffeomorphic

to the quotient of Gα by scalings of R
∗
+, itself isomorphic to the quotient of aα

by the action of additive constants. We denote by [e−Uα ] ∈ Δ̊α the Gibbs state
associated to Uα ∈ aα and by [e−]α : aα → Δ̊α this surjective group morphism.

We denote by Δ(X) ⊆ a∗(X) the convex subset of statistical fields, by Δ̊(X)
its interior, and by Δ̊d ⊆ Δ̊0(X) the subset of consistent ones.

2.4 Homology

Gauss Formulas. For every region α ∈ X, let us define the coboundary of the
subsystem Λα as the subset of arrows δΛα ⊆ N1X that meet Λα but are not
contained in Λα:

δΛα = {α′ → β′ | α′ �∈ Λα and β′ ∈ Λα}

7 A boundary ∂ satisfies ∂2 = ∂ ◦ ∂ = 0.
8 We will generally drop the injection in our notation.
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The following proposition may then be thought of as a Gauss formula on Λα:

Proposition 1. For every ϕ ∈ a1(X) and α ∈ X we have:
∑

β′∈Λα

∂β′ϕ =
∑

α′β′∈δΛα

ϕα′β′

In particular, the above vanishes if ϕ is supported in Λα.

A similar formula holds on the cone Vβ over β in X, formed by all the
regions containing β with coboundary the set δVβ of arrows leaving Vβ . The
sums however need to be embedded in the space of global observables.

Proposition 2. For every ϕ ∈ a1(X) and β ∈ X we have:
∑

α′∈Vβ

∂α′ϕ = −
∑

α′β′∈δVβ

ϕα′β′

as global observables of aΩ.

Interaction Decomposition. We call boundary observable on a region α ∈ X
any observable generated by observables on strict subregions of α in X. Suppose
chosen for every α a supplement zα of boundary observables, so that:

aα = zα ⊕
( ∑

α>β′
aβ′

)

We may inductively continue this procedure, as illustrated by the following well
known9 theorem.

Theorem 1 (Interaction Decomposition). Given supplements (zα) of boundary
observables for every α ∈ X, we have the decompositions:

aα =
⊕

α→β′
zβ′

They induce a projection P of a0(X) onto z0(X) =
⊕

α zα defined by:

P β(u) =
∑

α′→β

P βα′
(uα′)

where P βα denotes the projection of aα onto zβ for all α → β in X.

Given a field u ∈ a0(X), define the global observable ζΩ(u) ∈ aΩ by:

ζΩ(u) =
∑

α∈X

uα

Corollary 1. For any u ∈ a0(X), we have the equivalence:

P (u) = 0 ⇔ ζΩ(u) = 0

In particular, z0(X) is isomorphic to the image of ζΩ in aΩ
10.

9 The first appearance of this now very common result in statistics seems to be in
Kellerer [4]. See also [7] for a proof via harmonic analysis.

10 They both represent the inductive limit of a over X.
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Homology Groups. The complex of observable fields a(X) is acyclic11 and we
only focus on the first homology group.

Theorem 2. The interaction decomposition P induces an isomorphism on the
first homology group of observable fields:

a0(X)/∂a1(X) ∼ z0(X)

Proof. The Gauss formula on the cone Vβ above β in X first ensures that P
vanishes on boundaries:

P β(∂ϕ) =
∑

α′→β

P β(∂α′ϕ) =
∑

α′→β

∑

β′ �→β

P β(ϕα′β′) = 0

as P β(aβ′) is non-zero if and only if β′ contains β. Let us denote by [P ] the
quotient map induced by P . Given u ∈ a0(X), consider the flux ϕ defined by
ϕαβ = P βα(uα):

∂βϕ =
∑

α′→β

ϕα′β −
∑

β→γ′
ϕβγ′ = P β(u) − uβ

When P (u) = 0 this gives u = −∂ϕ, hence [P ] is injective.

Corollary 2. Let V = ζ · v in a0(X). We have the equivalence:

cV ∈ Im(∂) ⇔ v ∈ Im(∂)

Proof. According to the theorem, it suffices to show that P (v) = P (cV ) and:

P γ(v) = P γ(μ · V ) =
∑

α′→β′→γ

P γβ′
(μα′β′Vβ′) =

∑

β′→γ

P γβ′
(cβ′Vβ′) = P γ(cV )

3 First Applications

3.1 Critical Points of Bethe Free Energy

Gibbs Free Energy. For every α ⊆ Ω, denote by Fα its local Gibbs free energy,
viewed as the functional on Δα × aα defined by:

Fα(pα,Hα) = Epα
[Hα] − S(pα)

where S(pα) = −∑
pα ln(pα) denotes Shannon entropy.

Given a global hamiltonian HΩ ∈ aΩ , the global Gibbs state [e−HΩ ] ∈ ΔΩ is
the global minimum of FΩ( · ,HΩ). This definition being hardly computable in
practice, we shall seek to estimate its marginals ΣαΩ(pΩ) by an approximation
on the global Gibbs free energy FΩ.
11 We do not provide a proof here, a treatment of higher degrees shall be given in later

work.
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Bethe Approximation. The Bethe-Peierls approach and its refinements12
essentially consist in writing an approximate decomposition of FΩ as a sum
of local free energy summands fβ , for β ∈ X. This localisation procedure can be
made exact on any α ∈ X by Möbius inversion:

Fα =
∑

α→β′
fβ′ ⇔ fβ =

∑

β→γ′
μβγ′ Fγ′

The approximation only comes when Ω is not in X and we may then write the
error FΩ − F̌ as a global free energy summand fΩ . One should expect fΩ to be
small when sufficiently large regions are taken in X, by extensivity of the global
Gibbs free energy13.

The Bethe free energy F̌ is thus defined for p ∈ Δ0(X) and H ∈ a0(X) by:

F̌(p,H) =
∑

β∈X

cβ · Fβ(pβ ,Hβ)

Given H ∈ a0(X), we denote by F̌H the induced functional on Δ0(X).

Critical Points. Because of the Möbius numbers cβ appearing in its definition,
the Bethe free energy F̌ is no longer convex in general, and F̌H might have a
great multiplicity14 of consistent critical points in Δ̊d.

Theorem 3. A non-vanishing consistent statistical field p ∈ Δ̊d is a critical
point of the Bethe free energy F̌H constrained to Δ̊d if and only if there exists a
flux ϕ ∈ a1(X) such that:

− ln(p) � H + ζ · ∂ϕ mod R0(X)

Proof. To describe the normalisation constraints, we may look at the quotient
a0(X)/R0(X) as the cotangent space of Δ̊0(X) at p, and write the differential
of F̌H as:

∂F̌
∂p

�
∑

β∈X

cβ

(
Hβ + ln(pβ)

)
mod R0(X)

The flux term comes as a collection of Lagrange multipliers for the consistency
constraints. Whenever p is a critical point, the differential of F̌H vanishes on
Ker(d) = Im(∂)⊥ and we have:

c
(
H + ln(p)

) ∈ Im(∂) + R0(X)

The corollary of Theorem2 is crucial15 to state that this implies:

H + ln(p) ∈ ζ · Im(∂) + R0(X)
12 For reference see [2,5,8,11].
13 Schlijper [13] proved this procedure convergent to the true free energy per lattice

point for the infinite Ising 2D-model.
14 For numerical studies see [6,9,15], A first mathematical proof of multiplicity is given

by Bennequin in [1].
15 The proof given in [17] is problematic when there exists β such that cβ = 0.
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3.2 Belief Propagation as a Transport Equation

Effective Energy. For every α → β in X, call effective energy the smooth
submersion F

βα of aα onto aβ defined by:

F
βα(Uα) = − ln

(
Σβα(e−Uα)

)

Physically F
βα(Uα)(xβ) can be thought of as the conditional free energy of Λα

given xβ . It is functorial in the category of smooth manifolds and we have the
commutative diagram: Σβα ◦ [e−]α = [e−]β ◦ F

βα.
Let us call effective gradient the smooth functional ∇F from a0(X) to a1(X)

defined by:
∇F(H)αβ = Hβ − F

βα(Hα)

The hamiltonian H is related to a field of local potentials h by H = ζ ·h. Letting
Φ = −∇F ◦ ζ, we have:

Φαβ(h) = F
βα

( ∑

β′∈Λα\Λβ

hβ′

)

which is the effective contribution of Λα \ Λβ to the energy of Λβ .

Belief Propagation. Consider the following transport equation:

u̇ = ∂Φ(u)

and denote by Ξ = ∂Φ the induced vector field on a0(X). In absence of normal-
isation, Belief Propagation16 is equivalent to the naive Euler scheme17 approxi-
mating the flow of Ξ by:

enτΞ � (1 + τΞ)n

The beliefs are given by q = e−U with U = ζ · u.
This new perspective reveals the strong homological character of Belief Prop-

agation. Denote by Th(ϕ) the transport of h by a flux ϕ ∈ a1(X):

Th(ϕ) = h + ∂ϕ

With initial condition h, the potentials u remain in the image of Th. This yields
a maximal set of conserved quantities in light of Theorem 2.

Theorem 4. Let q ∈ G0(X)N denote a sequence of belief fields obtained by
iterating BP. The following quantity remains constant:

qΩ =
∏

α∈X

(qα)cα

16 For reference and the algorithm formula see [3,9,10,15–17].
17 BP is actually for τ = 1, a different time scale would appear as exponent in the

multiplicative formulation.
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Proof. The fact that u ∈ Im(Th) is equivalent to P (u) = P (h). According to
Corollary 1, this is also equivalent to ζΩ(u) = ζΩ(h) where:

ζΩ(u) =
∑

α∈X

uα =
∑

β∈X

cβUβ

Letting u = h + ∂ϕ, BP can also be viewed as a dynamic over messages:

ϕ̇ = Φ
(
Th(ϕ)

)

Although it converges on trees, this algorithm is generally divergent in presence
of loops, and beliefs need to be normalised in order to attain projective equilibria.

Normalisation. Because the effective gradient ∇F is additive along constants
and both ζ and ∂ preserve scalar fields, Ξ induces a vector field on the quotient
a0(X)/R0(X). Normalised belief are given by q = [e−U ] with U = ζ · u.

Given an initial hamiltonian H = ζ · h, a belief field q ∈ Δ̊0(X) obtained by
iterating BP satisfies:

− ln(q) � H + ζ · ∂ϕ mod R0(X)

In virtue of Theorem 3, this implies that q is a critical point of the Bethe free
energy F̌H constrained to Δ̊d if and only if q is a consistent statistical field.
Considering all beliefs that may be obtained by such a choice of messages, let:

Δ̊H =
{
[e−U ] | U ∈ H + ζ · Im(∂)

} ⊆ Δ̊0(X)

Following Yedidia et al., call any consistent q ∈ Δ̊H ∩ Δ̊d a fixed point of Belief
Propagation18. With this terminology, we can rephrase their initial claim [17]:

Theorem 5. Fixing a reference hamiltonian field H, fixed points of Belief Prop-
agation are in one to one correspondence with critical points of the Bethe free
energy.

References

1. Bennequin, D., Peltre, O., Sergeant-Perthuis, G., Vigneaux, J.P.: Informations,
Energies and Messages. Preprint (2019)

2. Bethe, H.A., Bragg, W.L.: Statistical theory of superlattices. Proc. R. Soc. Lond.
Ser. Math. Phys. Sci. 150(871), 552–575 (1935)

3. Gallager, R.G.: Low-Density Parity-Check Codes. MIT Press, New York (1963)
4. Kellerer, H.G.: Maßtheoretische Marginalprobleme. Mathematische Annalen

153(3), 168–198 (1964)
5. Kikuchi, R.: A theory of cooperative phenomena. Phys. Rev. 81, 988–1003 (1951)

18 This terminology is somewhat ambiguous as it does not mean that q may be obtained
by iterating BP from [e−H ].



A Homological Approach to Belief Propagation and Bethe Approximations 227

6. Knoll, C., Pernkopf, F.: On loopy belief propagation - local stability analysis for
non-vanishing fields. In: Uncertainty in Artificial Intelligence (2017)

7. Matúš, F.: Discrete marginal problem for complex measures. Kybernetika 24, 36–
46 (1988)

8. Morita, T.: Cluster variation method of cooperative phenomena and its general-
ization I. J. Phys. Soc. Jpn. 12(7), 753–755 (1957)

9. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate
inference: an empirical study. In: UAI (1999)

10. Pearl, J.: Networks of plausible inference. In: Probabilistic Reasoning in Intelligent
Systems (1988)

11. Peierls, R.: On Ising’s model of ferromagnetism. Math. Proc. Camb. Philos. Soc.
32(3), 477–481 (1936)

12. Rota, G.-C.: On the foundations of combinatorial theory - I. Theory of Möbius
functions. Z. Warscheinlichkeitstheorie 2, 340–368 (1964)

13. Schlijper, A.G.: Convergence of the cluster-variation method in the thermodynamic
limit. Phys. Rev. B 27, 6841–6848 (1983)

14. Segal, G.: Classifying spaces and spectral sequences. Publications Mathématiques
de l’IHÉS 34, 105–112 (1968)

15. Weiss, Y.: Belief propagation and revision in networks with loops. Technical report,
MIT (1997)

16. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Bethe free energy, Kikuchi approxima-
tions, and belief propagation algorithms. Technical Report TR2001-16, MERL -
Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, May 2001

17. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free energy approximations
and generalized belief propagation algorithms. IEEE Trans. Inf. Theory 51(7),
2282–2312 (2005)


	A Homological Approach to Belief Propagation and Bethe Approximations
	1 Introduction
	2 Differential and Combinatorial Structures
	2.1 Statistical System
	2.2 Scalar Fields
	2.3 Observables, Densities and Statistical States
	2.4 Homology

	3 First Applications
	3.1 Critical Points of Bethe Free Energy
	3.2 Belief Propagation as a Transport Equation

	References




