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Abstract. Dirac structures are geometric objects that generalize Pois-
son structures and presymplectic structures on manifolds. They naturally
appear in the formulation of constrained mechanical systems and play
an essential role in the understanding of the interrelations between sys-
tem elements in implicit dynamical systems. In this paper, we show how
nonequilibrium thermodynamic systems can be naturally understood in
the context of Dirac structures, by mainly focusing on the case of open
systems, i.e., thermodynamic systems exchanging heat and matter with
the exterior.
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1 Introduction

Nonequilibrium thermodynamics is a phenomenological theory which aims to
identify and describe the relations among the observed macroscopic properties
of a physical system and to determine the macroscopic dynamics of this system
with the help of fundamental laws, see [15]. A novel Lagrangian variational app-
roach for nonequilibrium thermodynamic has been proposed by the authors [4,5]
for both finite dimensional (discrete) and infinite dimensional (continuum) sys-
tems. This variational formulation was extended to the case of open systems as in
[6]. The authors have also shown that, in the case of adiabatically closed systems,
the variational formulation leads to an associated geometric formulation in terms
of Dirac structures [7]. Recall that Dirac structures are geometric objects that
extend both Poisson structures and presymplectic structures on manifolds [2].
Such structures play an essential role in formulating constrained systems such
as electric circuits and nonholonomic mechanical systems (e.g., [16,17]). On the
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other hand, for equilibrium thermodynamics, the geometric formulations have
been mainly given by using contact geometry, see [1,8,9,11–13]. In this geomet-
ric setting, the thermodynamic properties are encoded by Legendre submanifolds
of the thermodynamic phase space. It was shown by [3] that a geometric formu-
lation of irreversible processes can be made by lifting port-Hamiltonian systems
to the thermodynamic phase space. The underlying geometric structure is again
given in the context of contact geometry.

In this paper, we show that the equations of evolutions for an open sys-
tem exchanging matter with the exterior can be geometrically formulated by
using Dirac structures. This geometric formulation is associated to the varia-
tional formulation given in [6]. To achieve this goal, we first recall below the
first and second laws as they apply to an open system. Then, we develop a
general Dirac formulation for a class of systems with time-dependent nonlinear
nonholonomic constraints. In particular, we introduce a time-dependent Dirac
structure on the covariant Pontryagin bundle over a thermodynamic configura-
tion manifold. Finally, we apply our Dirac formulation of systems with nonlinear
time-dependent constraints to the case of open thermodynamic systems and we
show that the system of evolution equations of the open system can be directly
formulated as a Dirac dynamical system.

2 A Fundamental Setting for Open Systems

2.1 The First Law for Open Thermodynamic Systems

The first law of thermodynamics, following [15], asserts that for every system
there exists an extensive state function, the energy, which satisfies

d

dt
E = P ext

W + P ext
H + P ext

M ,

where t denotes time, P ext
W is the power associated to the work done on the

system, P ext
H is the power associated to the transfer of heat into the system,

and P ext
M is the power associated to the transfer of matter into the system. In

particular, a system in which P ext
M �= 0 is called open. For such an open system,

matter can flow into or out of the system through several ports, a = 1, ..., A. We
suppose, for simplicity, that the system involves only one chemical species and
denote by N the number of moles of this species. In this case, the mole balance
equation is

d

dt
N =

A∑

a=1

Ja,

where Ja is the molar flow rate into the system through the a-th port, so that
Ja > 0 for flow into the system and Ja < 0 for flow out of the system.

As matter enters or leaves the system, it carries its internal, potential, and
kinetic energy. This energy flow rate at the a-th port is the product EaJa of the
energy per mole (or molar energy) Ea and the molar flow rate Ja at the a-th
port. In addition, as matter enters or leaves the system it also exerts work on



Dirac Structures in Open Thermodynamics 201

the system that is associated with pushing the species into or out of the system.
The associated energy flow rate is given at the a-th port by paVaJa, where pa

and Va are the pressure and the molar volume of the substance flowing through
the a-th port. In this case, the power exchange due to the mass transfer is

P ext
M =

A∑

a=1

Ja(Ea + paVa).

A system is called adiabatically closed if P ext
H = P ext

M = 0.

2.2 The Second Law for Open Thermodynamic Systems

Following [15], the evolution part of the second law of thermodynamics asserts
that for every adiabatically closed system, there exists an extensive state func-
tion, the entropy, which satisfies

d

dt
S = I ≥ 0,

where I is the entropy production of the system. Let us deduce the expression
of the entropy production in an open system of one chemical component, with
constant volume and an internal energy given by U = U(S,N). The balance of
mole and the balance energy, i.e., the first law, are respectively given by

d

dt
N =

A∑

a=1

Ja,
d

dt
U =

A∑

a=1

Ja(Ua + paVa) =
A∑

a=1

JaHa,

where Ha = Ua + paVa is the molar enthalpy at the a-th port and where Ua, pa,
and Va are respectively the molar internal energy, the pressure and the molar
volume at the a-th port, see [10,14]. From these equations and the second law,
one obtains the equations for the rate of change of the entropy of the system as

d

dt
S = I +

A∑

a=1

SaJa,

where Sa is the molar entropy at the a-th port and I is the rate of internal
entropy production of the system given by

I =
1
T

A∑

a=1

[
Ja

S(T a − T ) + Ja(μa − μ)
]
,

where T = ∂U
∂S denotes the temperature and μ = ∂U

∂N the chemical potential.
The entropy flow rate is given by Ja

S := SaJa and we also have the relation
Ha = Ua + paVa = μa + T aSa. The thermodynamic quantities known at the
ports are usually the pressure and the temperature pa, T a, from which the other
thermodynamic quantities, such as μa = μa(pa, T a) or Sa = Sa(pa, T a) are
deduced from the state equations of the gas.
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3 Dirac Formulation of Time-Dependent Nonlinear
Nonholonomic Systems

3.1 Variational and Kinematic Time Dependent Constraints

In order to formulate an open thermodynamic system in the context of Dirac
structures, we first introduce two different constraints CV and CK which depend
explicitly on time t. For a thermodynamic configuration manifold Q which is the
space of the thermodynamic variables as well as the mechanical variables, we
define the extended configuration manifold as Y := R× Q � (t, x), which can be
seen as a trivial vector bundle Y = R × Q → R, (t, x) �→ t, over the space of
time R. Consider the vector bundle (R× TQ) ×Y TY → Y over Y , whose vector
fiber at y = (t, x) is given by TxQ × T(t,x)Y = TxQ × (R × TxQ). An element
in the fiber at (t, x) is denoted (v, δt, δx). In general, by definition a variational
constraint is a subset CV ⊂ (R × TQ) ×Y TY, such that CV (t, x, v), defined by
CV (t, x, v) := CV ∩ ({(t, x, v)} × T(t,x)Y

)
, is a vector subspace of T(t,x)Y , for all

(t, x, v) ∈ R×TQ. In general, a kinematic constraint is a submanifold CK ⊂ TY.
More concretely, given functions Ar : R × TQ → T ∗Q and Br : R × TQ → R,
r = 1, ...,m, the variational constraint CV is given by

CV =
{
(t, x, v, δt, δx) ∈ (R × TQ) ×Y TY |

Ar
i (t, x, v)δxi + Br(t, x, v)δt = 0, r = 1, ...,m

} (1)

and the associated kinematic constraint CK of thermodynamic type is

CK =
{
(t, x, ṫ, ẋ) ∈ TY | Ar

i (t, x, ẋ)ẋi + Br(t, x, ẋ)ṫ = 0, r = 1, ...,m
}
. (2)

We will see later how CV and CK are concretely given in thermodynamics.

3.2 Covariant Pontryagin Bundles and the Generalized Energy

Associated to the extended configuration manifold Y = R × Q for the time-
dependent system, we define the covariant Pontryagin bundle by

π(P,Y ) : P = (R × TQ) ×Y T ∗Y = (R × TQ) ×R×Q T ∗(R × Q) → Y = R × Q.

An element in the fiber at (t, x) is denoted (v, p, p). Given the Lagrangian L :
R × TQ → R, the covariant generalized energy is defined on P as

E : P → R, E(t, x, v, p, p) = p + 〈p, v〉 − L(t, x, v). (3)

3.3 Dirac Structures on the Covariant Pontryagin Bundle

Given a variational constraint CV ⊂ (R× TQ) ×Y TY , we consider the distribu-
tion ΔP on the covariant Pontryagin bundle defined by

ΔP(t, x, v, p, p) :=
(
T(t,x,v,p,p)π(P,Y )

)−1(CV (t, x, v)) ⊂ T(t,x,v,p,p)P.
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From the expression of CV in (1), we get

ΔP(t, x, v, p, p) =
{
(δt, δx, δv, δp, δp) ∈ TP |

Ar
i (t, x, v)δxi + Br(t, x, v)δt = 0, r = 1, ...,m

}
.

(4)

Consider the canonical symplectic form on T ∗Y given by ΩT ∗Y = −dΘT ∗Y ,
where ΘT ∗Y is the canonical one-form on T ∗Y . In local coordinates, we have
ΘT ∗Y = pidxi+pdt and ΩT ∗Y = dxi∧dpi+dt∧dp. Using the projection π(P,T ∗Y ) :
P → T ∗Y , (t, x, v, p, p) �→ (t, x, p, p) onto T ∗Y , we get the presymplectic form
on the covariant Pontryagin bundle given by ΩP = π∗

(P,T ∗Y )ΩT ∗Y . The local
expression is given by ΩP = dxi ∧ dpi + dt ∧ dp.

Given the distribution ΔP in (4) and the presymplectic form ΩP, the Dirac
structure DΔP

on P is given by

DΔP
(x) =

{
(ux, ax) ∈ TxP × T ∗

xP | ux ∈ ΔP(x),

〈ax, vx〉 = ΩP(x)(ux, vx), ∀ vx ∈ ΔP(x)
}
,

(5)

for all x ∈ P.

3.4 Dirac Dynamical Systems

Using the Dirac structure DΔP
on P in (5), we can define a Dirac dynamical

system for a curve x(t) in P as follows:
(
ẋ,dE(x)

) ∈ DΔP
(x). (6)

Equivalently, condition (6) gives the equations of motion

iẋΩP − dE (x) ∈ ΔP(x)◦, ẋ ∈ ΔP(x). (7)

Using coordinates, we can now explicitly express these equations as follows. The
differential of E is given by

dE(t, x, v, p, p) =
(

−∂L

∂t
,−∂L

∂x
, p − ∂L

∂v
, 1, v

)

and the tangent vector ẋ to Tx(t)P is given by (t, x, ṫ, ẋ). We deduce that the
Dirac dynamical system (7) gives the following conditions on the curve x(t) ∈ P,

ẋ = v, ṫ = 1, p =
∂L

∂v
,

(t, x, ṫ, ẋ) ∈ CV (t, x, v),
(
ṗ − ∂L

∂t
, ṗ − ∂L

∂x

)
∈ CV (t, x, v)◦.

(8)

In local expressions, these evolution Eq. (8) read
⎧
⎪⎨

⎪⎩

ẋi = vi, ṫ = 1, pi − ∂L

∂vi
= 0, Ar

i (t, x, v)q̇i + Br(t, x, v) = 0,

ṗi − ∂L

∂xi
= λrA

r
i (t, x, v), ṗ − ∂L

∂t
= λrB

r(t, x, v).

(9)
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3.5 Energy Balance Equations

One immediately notices that the covariant generalized energy E(t, x, v, p, p)
defined in (3) is preserved along the solution curve x(t) = (t, x(t), v(t), p(t), p(t))
of the Dirac dynamical system (9),

d

dt
E(t, x, v, p, p) = 0. (10)

Note that E does not represent the total energy of the system. The total energy
is represented by the generalized energy E : R × TQ × T ∗Q → R defined as

E(t, x, v, p) = 〈p, v〉 − L(t, x, v)

and Eq. (10) yields

d

dt
E(t, x, v, p) = − d

dt
p =

∂L

∂t
(t, x, v) − λrB

r(t, x, v).

This is the balance of energy for the Dirac system. Note that d
dtp is interpreted

as the power flowing out of the system. The first term on the right hand side is
essentially due to the explicit dependence of the Lagrangian on time. The second
term is due to the affine character of the constraint and will be interpreted later
as the energy flowing in or out of the systems through its ports.

4 Dirac Formulation of Open Thermodynamics

4.1 Geometric Setting

Consider a simple open finite dimensional system with a single entropy S and a
single chemical species with number of moles N in a single compartment. The
system has a constant volume V = V0, it has A external ports, through which
matter can flow into or out of the system as well as B ports, through which
heat can flow in or out of the system. Let U(S,N) be the internal energy of
the system. Let Ja(t), Sa(t), T a(t), μa(t) be given functions of time associated
to the external flow of matter into the system through the a-port and define
Ja

S(t) = Ja(t)Sa(t). We assume that there exist external heat sources at the
b-port with entropy flow rate Jb(t), molar entropy Sb(t) and temperature T b(t).

The thermodynamic configuration space is Q = R
5 � x = (S,N, Γ,W,Σ),

with Γ , W , Σ the thermodynamic displacements, see [6]. As in Sect. 3.1, let
Y = R × Q be the trivial bundle over R and consider the thermodynamic
phase space R × TQ over Y with coordinates (t, x, v) ∈ R × TQ, where
v = (vS , vN , vΓ , vW , vΣ) ∈ TqQ. Let us employ the local coordinates for
(t, x, δt, δx) ∈ TY and (t, x, p, p) ∈ T ∗Y , where δx = (δS, δN, δΓ, δW, δΣ) ∈ TqQ

and p = (pS , pN , pΓ , pW , pΣ) ∈ T ∗
xQ.
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4.2 Nonholonomic Constraints in Thermodynamics

For open thermodynamic systems, the constraint (1) reads

CV =
{
(t, x, v, δt, δx) ∈ (R × TQ) ×Y TY

∣∣∣

− ∂U

∂S
δΣ =

A∑
a=1

[
J
aδW + J

a
SδΓ − (μa

J
a + T a

J
a
S) δt

]
+

B∑
b=1

J
b
S(δΓ − T bδt)

}
.

Hence the nonlinear kinematic constraint (2) becomes

CK =
{

(t, x, ṫ, ẋ) ∈ TY
∣∣∣

− ∂U

∂S
Σ̇ =

A∑

a=1

[
JaẆ + Ja

SΓ̇ − (μaJa + T aJa
S) ṫ

]
+

B∑

b=1

Jb
S(Γ̇ − T bṫ)

}
,

where we have denoted ẋ = (Ṡ, Ṅ , Γ̇ , Ẇ , Σ̇).

4.3 Dirac Structures on P for Open Thermodynamic Systems

As in Sect. 3.2, let P = (R × TQ) ×Y T ∗Y be the covariant Pontryagin bundle
over Y , whose coordinates are given by x = (t, x, v, p, p) ∈ P. The canonical one
form ΘT ∗Y and the canonical symplectic form ΩT ∗Y = −dΘT ∗Y are expressed
as

ΘT ∗Y = pidxi + pdt

= pSdS + pNdN + pΓ dΓ + pW dW + pΣdΣ + pΣdΣ + pdt,

ΩT ∗Y = dxi ∧ dpi + dt ∧ dp

= dS ∧ dpS + dW ∧ dpW + dN ∧ dpN + dΓ ∧ dpΓ + dΣ ∧ dpΣ + dt ∧ dp.

Recall that the presymplectic form on P is defined by ΩP = π∗
(P,T ∗Y )ΩT ∗Y .

Associated with P, we have the natural projection π(P,Y ) : P → Y , given by
(t, x, v, p, p) �→ (t, x), and we can lift the constraint subspace CV (t, x, v) ⊂ TY
to get the constraint distribution ΔP on P defined as

ΔP = (Tπ(P,Y ))−1(CV (t, x, v)) ⊂ TP.

As shown in (5), from the distribution ΔP and the presymplectic form ΩP, we
can define the induced Dirac structure DΔP

⊂ TP ⊕ T ∗P on P.

4.4 Dirac Thermodynamic Systems on P = (R × TQ) ×Y T ∗Y

For each x = (t, x, v, p, p) ∈ P, we write the vector and the covector in (5) as

ux = (ṫ, ẋ, v̇, ṗ, ṗ) ∈ TxP and ax = (π, α, β, u, w) ∈ T ∗
xP,



206 H. Yoshimura and F. Gay-Balmaz

where v̇ = (v̇S , v̇N , v̇Γ , v̇W , v̇Σ), ṗ = (ṗS , ṗN , ṗΓ , ṗW , ṗΣ), α = (αS , αN , αΓ ,
αW , αΣ), β = (βS , βN , βΓ , βW , βΣ), and w = (wS , wN , wΓ , wW , wΣ). From (6)
the Dirac system reads

(
(ṫ, ẋ, v̇, ṗ, ṗ), (π, α, β, u, w)

) ∈ DΔP
(t, x, v, p, p).

Using the definition of the Dirac structure in terms of CV , we get

ẋ = w, ṫ = u, β = 0, (t, x, ṫ, ẋ) ∈ CV (t, x, v), (ṗ + π, ṗ + α) ∈ CV (t, x, v)◦.

Following [6], the Lagrangian is given by L(t, x, v) = −U(S,N)+vW N +vΓ (S −
Σ). The covariant generalized energy is here given by

E(t, x, v, p, p) = p + 〈p, v〉 − L(t, x, v)
= p + pSvS + pNvN + (pΓ + Σ − S)vΓ + (pW − N)vW + pΣvΣ + U(S,N).

The differential of dE is obtained as

dE (t, x, v, p, p) =
(

−∂L

∂t
,−∂L

∂x
, p − ∂L

∂v
, 1, v

)
= (π, α, β, γ, w),

where π = −∂L
∂t = 0, α = −∂L

∂x =
(−vΓ + ∂U

∂S ,−vW + ∂U
∂N , 0, 0, vΓ

)
, β = p −

∂L
∂v = (pS , pN , pΓ + Σ − S, pW − N, pΣ) , w = v = (vS , vN , vΓ , vW , vΣ).

By using this, the Dirac dynamical system

((ṫ, q̇, v̇, ṗ, ṗ),dE (t, q, v, p, p)) ∈ DΔP
(t, q, v, p, p)

is equivalent to the following evolution equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ = −
A∑

a=1

(μaJa + T aJa
S) −

B∑

b=1

Jb
ST b, Γ̇ =

∂U

∂S
, Ẇ =

∂U

∂N
,

ṫ = 1, Ṅ =
A∑

a=1

Ja, Ṡ = Σ̇ +
A∑

a=1

Ja
S +

B∑

b=1

Jb
S ,

−∂U

∂S
Σ̇ =

A∑

a=1

[
Ja(Ẇ − μa) + Ja

S(Γ̇ − T a)
]
+

B∑

b=1

Jb
S(Γ̇ − T b).

Making arrangements, this system yields the equations of evolution as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ṅ =
A∑

a=1

Ja,

Ṡ = I +
A∑

a=1

Ja
S +

B∑

b=1

Jb
S =

diS

dt
+

deS

dt
,

(11)

where I = 1
T

∑A
a=1

[
Ja(μa − μ) + Ja

S(T a − T )
]
+ 1

T

∑B
b=1 J

b
S(T b − T ) and diS

dt :=
I ≥ 0 denotes the internal entropy production due to the mixing of matter
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flowing into the system and deS
dt is the entropy flow. The system of equation also

gives the definition of the thermodynamic displacement as Γ̇ = T , Ẇ = μ, and
Σ̇ = I. The momentum p represents the part of the energy associated to the
interaction of the system with exterior through its ports. In fact, it follows

− d

dt
E =

d

dt
p = −

A∑

a=1

(Jaμa + Ja
ST a) −

B∑

b=1

Jb
ST b = −P ext

M − P ext
H ,

where E is the total energy of the system, defined by

E(t, x, v) =
∂L

∂vi
vi − L(t, x, v).

Example: A Piston Device with Ports and Heat Sources. As illustrated
in Fig. 1, we consider an open chamber containing a species with internal energy
U(S,N), where we assume that the cylinder has two external heat sources with
entropy flow rates Jbi , i = 1, 2, the volume of the chamber is constant V0 and
two ports through which the species is injected into or flows out of the cylinder
with molar flow rates Jai , i = 1, 2. The entropy flow rates at the ports are given
by Jai

S = JaiSai .

Fig. 1. An open chamber with ports and heat sources.

Recall that the Lagrangian is given by

L(t, x, v) = −U(S,N) + vW N + vΓ (S − Σ).

The equations of evolution of the Dirac open thermodynamic system (11) read

Ṅ =
A∑

a=1

Ja, Ṡ = I +
2∑

i=1

Jai

S +
2∑

j=1

J
bj
S ,

where I = Σ̇ is the internal entropy production given by

I =
1
T

2∑

i=1

[
(μai − μ) + Sai(T ai − T )

]
Jai +

1
T

2∑

j=1

J
bj
S (T bj − T ).
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The first term represents the entropy production associated to the mixing of gas
flowing into the cylinder at the two ports a1, a2, and the third term denotes the
entropy production due to the external heating. The second law requires that
each of these terms is positive. The first law, i.e., the energy balance holds as

d

dt
E =

2∑

j=1

J
bj
S T bj

︸ ︷︷ ︸
=P ext

H

+
2∑

i=1

(Jaiμai + Jai

S T ai)

︸ ︷︷ ︸
=P ext

M

.
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