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Abstract. In this paper, we define α-power sums of two or more ele-
ments on symmetric cones. For two elements, α-power sums, which are
generalized parallel sums, are defined on our previous paper. We men-
tion interpolation for α-power sums, which is not defined on our previous
paper. It is shown that the synthesized resistances of α-series parallel
circuits naturally correspond to α-power sums. We also mention rela-
tions with power sums and arithmetic, geometric, harmonic and α-power
means, where α is a parameter of dualistic structure on information
geometry.
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1 Introduction

Arithmetic, geometric and harmonic mean are well known means on positive
operators [1–3]. α-power mean (or power mean) is a generalized geometric mean,
and corresponds to arithmetic, geometric and harmonic mean for α = 1, 0 and
−1, respectively [4–7]. On a symmetric cone, the α-power mean is the midpoint
on the α-geodesic connecting two points, where α is a parameter of dualistic
structure on information geometry [8,9].

Parallel sum is the half of harmonic mean [10,11]. However, it seems that few
literatures treat sums related to geometric and α-mean for reasons of difficulty
of convergence. Then, we define α-power means which are continuous for α and
are arithmetic sum, parallel sum for α = 1,−1, respectively.

First, we recall definitions and properties on symmetric cones. In Sect. 3,
means and monotone functions are mentioned. In Sect. 4, we show definitions of
α-power sums and the operator monotone function generating α-power sums. In
Sect. 5, we define interpolation for α-power sums. Finally, we show a continuous
deformation of the series circuit into the parallel circuit in which resistance
elements have fixed resistivity and fixed volumes. The circuits realize arithmetic
sum and parallel sum for α = 1,−1, respectively.

Applications of α-power mean appear in fields of functional analysis, quan-
tum mechanics, nonextensive statistical mechanics, optimization and informa-
tion geometry. We expect to find applications of α-power sum as α-power mean.
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2 Symmetric Cones

A vector space V is called a Jordan algebra if a product ∗ defined on V satisfies

x ∗ y = y ∗ x, x ∗ (x2 ∗ y) = x2 ∗ (x ∗ y) (1)

for all x, y ∈ V by setting x2 = x ∗x. Let V be an n-dimensional Jordan algebra
over R with an identity element e, i.e., x ∗ e = e ∗ x = x. An element x ∈ V is
said to be invertible if there exists y ∈ R[x] such that x ∗ y = e, where R[X]
is polynomials of X over R. Since R[x] is an associative algebra, y is unique,
called the inverse of x and denoted by x−1 = y [8,12,13].

For x in V , let L(x) and P (x) be endomorphisms of V defined by

L(x)y = x ∗ y, y ∈ V (2)

P (x) = 2L(x)2 − L(x2). (3)

The following results, about P the quadratic representation of V , are known.

Proposition 1. ([12]) (i) An element x is invertible if and only if P (x) is
invertible, and

P (x)x−1 = x, P (x)−1 = P (x−1). (4)

(ii) If x and y are invertible, so is P (x)y and

(P (x)y)−1 = P (x−1)y−1. (5)

(iii) For all x and y,
P (P (y)x) = P (y)P (x)P (y). (6)

Let Ω be an open convex cone on a vector space V . We denote by G the
identity component of the linear automorphism group of Ω. If G acts on Ω
transitively, Ω is said to be homogeneous. The dual cone of Ω is defined by

Ω∗ = {y ∈ V | (x, y) > 0,∀x ∈ Ω̄\{0}}, (7)

where ( , ) is an inner product on V , Ω̄ the closure of Ω. If Ω = Ω∗, a cone Ω
is said to be self-dual. A cone Ω is called symmetric if it is homogeneous and
self-dual.

3 Means and Operator Monotone Functions

We consider a symmetric cone Ω a set of positive operators.
Let x =

∑r
i=1 λipi be a spectral decomposition of x ∈ V , where r and

{p1, . . . , pr} are the rank and a Jordan frame of V , respectively, and λ1, . . . , λr

are eigenvalues of x [12]. For a function f(t) on an interval I ⊆ R, f(x) is defined
by

f(x) =
r∑

i=1

f(λi)pi (8)
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if λ1, . . . , λr ∈ I. A function f(t) on an interval I ⊆ R satisfying Inequation ()
is called an operator monotone function on I.

a ≤ b ⇒ f(a) ≤ f(b), (9)

where a and b ∈ Ω have eigenvalues on I, respectively.
A binary operation σ : (a, b) ∈ Ω̄ × Ω̄ �→ aσb ∈ Ω̄ is called an operator

connection if the following requirements are fulfilled.

(i) Monotonicity; a ≤ c and b ≤ d imply aσb ≤ cσd,
(ii) Transformer inequality; P (c)(aσb) ≤ (P (c)(a))σ(P (c)(b)),
(iii) Semi-continuity; an ↓ a and bn ↓ b imply (anσbn) ↓ aσb,

where a ≤ b (resp. a < b) is b − a ∈ Ω̄ (resp. in Ω) [1,8].
On transformer inequality, it holds that P (c)(aσb) = (P (c)(a))σ(P (c)(b)) for

Ω. If satisfying normalization eσe = e, an operator connection σ is called an
operator mean (or a mean).

It is known that α-power mean on Ω is generated by

aσ(α)b = P (a
1
2 )f (α)(P (a− 1

2 )b), −1 ≤ α ≤ 1, (10)

where f is an operator monotone function defined by

f (α)(t) =
(

1 + tα

2

) 1
α

(α �= 0), f (0)(t) =
√

t (11)

[6,8]. Arithmetic, geometric and harmonic mean are described by aσ(1)b, aσ(0)b
and aσ(−1)b, respectively. In particular, for positive definite matrices A and B,
they are

(i) arithmetic mean; Aσ(1)B = (A + B)/2,
(ii) geometric mean; Aσ(0)B = A#B = A

1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 ,

(iii) harmonic mean; Aσ(−1)B = ((A−1 + B−1)/2)−1,
(iv) α-power mean; Aσ(α)B = ((Aα + Bα)/2)1/α.

For scalar A and B, the geometric mean is A#B =
√

AB.

4 α-power Sums and Operator Monotone Functions

In our previous paper, we defined α-power sum via an operator monotone func-
tion, which interpolates generalized sum between arithmetic sum and parallel
sum [14].

For −1 ≤ α ≤ 1, a function

f (α)(t) =
(1 + t)1+α

1 + tα
, t > 0 (12)

is an operator monotone function on {t|tα − αtα−1 + α + 1 > 0}. Function (12)
is obviously monotone increasing and operator monotone with α.
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Definition 1. ([14]) Let f (α)(t) be a function defined by Eq. (12). For −1 ≤
α ≤ 1, we define the α-power sum :(α) of a and b ∈ Ω by

a :(α) b = P (a
1
2 )f (α)(P (a− 1

2 )b). (13)

Theorem 1. ([14]) The α-power sum :(α) of a and b ∈ Ω corresponds to arith-
metic sum a+b for α = 1, and to parallel sum a : b = (a−1+b−1)−1 for α = −1.
The 0-power sum a :(0) b is arithmetic mean (a + b)/2.

Corollary 1. ([14]) For positive definite matrices A and B, α-power sums are

(i) arithmetic sum; A :(1) B = A + B,
(ii) 0-power sum; A :(0) B = (A + B)/2 (arithmetic mean),
(iii) parallel sum; A :(−1) B = (A−1 + B−1)−1 (the half of harmonic mean),
(iv) α-power sum; A :(α) B = (Aα + Bα)−1/2(A + B)1+α(Aα + Bα)−1/2

= (A + B)(1+α)/2(Aα + Bα)−1(A + B)(1+α)/2.

For scalar A and B, the α-power sum is

A :(α) B =
(A + B)1+α

Aα + Bα
. (14)

If defined by (Aα + Bα)1/α which is α-power mean without normalization
property, generalized sum diverges to ±∞ as α = 0. The α-power sum by
Eqs. (12), (13) possesses continuity at α = 0. It satisfies (i) Monotonicity for
elements with eigenvalues on an interval {t|tα − αtα−1 + α + 1 > 0}. It satisfies
(ii) Transformer inequality and (iii) Semi-continuity on Ω̄ (resp. Ω).

The α-power sum of a1, . . . , an ∈ Ω for n ≥ 2 is defined as follows.

Definition 2. For −1 ≤ α ≤ 1, we define the α-power sum of a1, . . . , an ∈ Ω
for n ≥ 2 by

a1 :(α) · · · :(α) an = P (a
1
2
1 )P ((e +

n∑

i=2

P (a− 1
2

1 )ai)
1+α
2 )(e +

n∑

i=2

(P (a− 1
2

1 )ai)α)−1.

(15)

If n = 2, the α-power sum a1 :(α) a2 defined by Definition 2 coincides with
a1 :(α) a2 defined by Definition 1 for a1 and a2 ∈ Ω . In general, it holds that
(a1 :(α) a2) :(α) a3 �= a1 :(α) a2 :(α) a3 for a1, a2 and a3 ∈ Ω .

We obtain the next theorem similar to Corollary 1.

Theorem 2. For positive definite matrices A1, . . . , An, n ≥ 2, α-power sums
are

(i) arithmetic sum; A1 :(1) · · · :(1) An = A1 + · · · + An,
(ii) 0-power sum; A1 :(0) · · · :(0) An = (A1 + · · · + An)/n,
(iii) parallel sum; A1 :(−1) · · · :(−1) An = (A−1

1 + · · · + A−1
n )−1,

(iv) α-power sum; A1 :(α) · · · :(α) An

= (Aα
1 + · · · + Aα

n)−1/2(A1 + · · · + An)1+α(Aα
1 + · · · + Aα

n)−1/2

= (A1 + · · · + An)(1+α)/2(Aα
1 + · · · + Aα

n)−1(A1 + · · · + An)(1+α)/2.
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For scalar A1, . . . , An, n ≥ 2, the α-power sum is

A1 :(α) · · · :(α) An =
(A1 + · · · + An)1+α

Aα
1 + · · · + Aα

n

. (16)

Proof. The theorem is proved by calculations similar to techniques on the proof
of Corollary 1.

Remark 1. For scalar A1, . . . , An, n ≥ 2, the α-power sum (16) is the arithmetic
sum A1 + · · · + An multiplied by the ratio of the α-coordinate for A1 + · · · + An

and the arithmetic sum for the α-coordinates Aα
i , i = 1, . . . , n.

5 Interpolation for α-power Sums

Uhlmann’s interpolation for an α-power mean σ(α) (−1 ≤ α ≤ 1) is defined by
an operator monotone function

f (α)
s (t) = (1 − s + stα)

1
α (α �= 0), f (0)

s (t) = ts, 0 ≤ s ≤ 1 (17)

[4,5]. We define interpolation for α-power sums as follows.

Definition 3. For −1 ≤ α ≤ 1, we define interpolation :(α)
s for an α-power sum

:(α) on a symmetric cone Ω by a :(α)
s b = P (a

1
2 )f (α)(P (a− 1

2 )b), a, b ∈ Ω, where

f (α)
s (t) =

(2(1 − s) + 2st)1+α

2(1 − s) + 2stα
=

2α(1 − s + st)1+α

1 − s + stα
(18)

We have the next theorem via simple calculations.

Theorem 3. For −1 ≤ α ≤ 1 and a, b ∈ Ω, they hold that

a :(α)
0 b = 2αa, a :(α)

1
2

b = a :(α) b, a :(α)
1 b = 2αb. (19)

Proof. For a function (18), they hold that

f
(α)
0 (t) = 2α, f

(α)
1
2

(t) =
(1 + t)1+α

1 + tα
, f

(α)
1 (t) = 2αt. (20)

Thus, we obtain Eq. (19).

Corollary 2. For α = 1, 0 and −1, interpolation :(α)
s between a and b ∈ Ω is

described as follows, respectively.

(i) a :(1)s b = 2((1 − s)a + sb) (interpolation for arithmetic sum)

a :(1)0 = 2a, a :(1)1
2

= a + b, a :(1)1 = 2b (21)
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(ii) a :(0)s b = (1 − s)a + sb (interpolation for arithmetic mean)

a :(0)0 = a, a :(0)1
2

=
1
2
(a + b), a :(0)1 = b (22)

(iii) a :(−1)
s b = (2((1 − s)a−1 + sb−1))−1 (interpolation for the half of harmonic

mean)

a :(−1)
0 =

1
2
a, a :(−1)

1
2

= (a−1 + b−1)−1, a :(−1)
1 =

1
2
b (23)

Corollary 3. For −1 ≤ α ≤ 1 and for scalar A and B, it holds that

A :(α)
s B =

2α((1 − s)A + sB)1+α

(1 − s)Aα + sBα
. (24)

6 Series Parallel Circuits Realizing α-power Sums

In our previous paper, we show series parallel circuits realizing α-power sums
of two positive numbers [14]. In this section, we show series parallel circuits
realizing α-power sums of two or more positive numbers.

Let the symbol of a parallel sum A1 : · · · : An be also one of the circuit
connecting resistances A1, . . . , An in parallel. We suppose that electric resis-
tances Rj , j = 1, . . . , n consist of element with fixed resistivity 1 and fixed cross-
sectional areas 1, and that lengths of resistances Rj , j = 1, . . . , n are Rj > 0,
respectively. Then, the synthetic resistance of the parallel circuit connecting
n resistances with resistivity 1 and length Rj and with cross-sectional areas
R1/(R1+· · ·+Rn), . . . , Rn/(R1+· · ·+Rn) is Rj for each j. We give a continuous
deformation of R1 + · · ·+Rn into R1 : · · · : Rn, using resistances Rij with cross-
sectional areas (Ri/(R1+· · ·+Rn))(1+α)/2, lengths (Ri/(R1+· · ·+Rn))(1−α)/2Rj

and volumes RiRj/(R1 + · · · + Rn), i, j = 1, . . . , n, respectively (Fig. 1). Note
that, for each i, j, the volume RiRj/(R1+· · ·+Rn) is constant for all −1 ≤ α ≤ 1.

Theorem 4. Let Rj > 0, j = 1, . . . , n be constant real numbers, and for −1 ≤
α ≤ 1,

Rij =
(

R1 + · · · + Rn

Ri

)α

Rj , i, j = 1, . . . , n (25)

be resistances in an electric circuit. Then, the synthetic resistance of the series
circuit connecting parallel circuits R1j : · · · : Rnj, j = 1, . . . , n, which we call the
α-series parallel circuit, is the α-power sum of R1, . . . , Rn, i. e.,

R1 :(α) · · · :(α) Rn =
(R1 + · · · + Rn)1+α

Rα
1 + · · · + Rα

n

. (26)
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Proof. It follows from Eq. (25) that the synthetic resistance of the series circuit
connecting R1j : · · · : Rnj , j = 1, . . . , n is

(R11 : · · · : Rn1) + · · · + (R1n : · · · : Rnn)

= (R−1
11 + · · · + R−1

n1 )−1 + · · · + (R−1
1n + · · · + R−1

nn)−1

= ((R1 + · · · + Rn)−αRα
1 R−1

1 + · · · + (R1 + · · · + Rn)−αRα
nR−1

1 )−1 + . . .

+ ((R1 + · · · + Rn)−αRα
1 R−1

n + · · · + (R1 + · · · + Rn)−αRα
nR−1

n )−1

= (R1 + · · · + Rn)α(Rα
1 + · · · + Rα

n)−1(R1 + · · · + Rn)

= (R1 + · · · + Rn)1+α(Rα
1 + · · · + Rα

n)−1 = R1 :(α) · · · :(α) Rn .

Remark 2. For α = 1, it holds that

R1j : · · · : Rnj = (R−1
1j + · · · + R−1

nj )−1 = Rj , j = 1, . . . , n .

Then, the 1-series parallel circuit is equivalent to series circuit R1 + · · · + Rn

(Fig. 2).

Remark 3. For α = 0, it holds that

Rij = Rj , i, j = 1, . . . , n

(Fig. 3).
If n = 2, the 0-series parallel circuit is equivalent to the balanced Wheatstone

bridge connecting two R1 in parallel and two R2 in parallel [15].

Remark 4. For α = −1, it holds that

Ri1 + · · · + Rin = (R1 + · · · + Rn)−1RiR1 + · · · + (R1 + · · · + Rn)−1RiRn = Ri ,

i = 1, . . . , n . Then, the (−1)-series parallel circuit is equivalent to parallel circuit
R1 : · · · : Rn (Fig. 4).

Fig. 1. The α-series parallel circuit (n = 3).

Fig. 2. The series circuit (α = 1) (n = 3).
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Fig. 3. The 0-series parallel circuit (n = 3).

Fig. 4. The parallel circuit (α = −1) (n = 3).

7 Conclusions

In this paper, we defined α-power sums of two or more elements on symmetric
cones. They are generalized sums for arithmetic and parallel sums. We compared
monotone functions of α-power sums and means. We also mentioned interpola-
tion describing weighted sums for each α-power sum.

It was shown that the synthesized resistances of α-series parallel circuits
naturally correspond to α-power sums. An α-series parallel circuit is the series
circuit and the parallel circuit for α = 1,−1, respectively.

The assumed medium of the resistances is free to deform. The results may
be applicable to the comparison of the electrical properties of metal elements.
In addition, characteristics such as fluid and blood flow may be compared with
characteristics of the electrical circuit. Applications to fluid in tubes that com-
bine in series and parallel in complexity are also conceivable.

It is a future subject to investigate these through α-power sum and informa-
tion geometry.

References

1. Kubo, F., Ando, T.: Means of positive linear operators. Math. Ann. 246, 205–224
(1980)

2. Bernstein, D.S.: Matrix Mathematics; Theory, Facts, and Formulas. Princeton Uni-
versity Press, New Jersey (2009)



134 K. Uohashi

3. Bhatia, R.: Positive Definite Matrices. Princeton University Press, New Jersey
(2007)

4. Uhlmann, A.: Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in
an interpolation theory. Commun. Math. Phys. 80, 21–32 (1977)

5. Fujii, J., Kamei, E.: Uhlmann’s interpolational method for operator means. Math.
Jap. 34, 541–547 (1989)

6. Kamei, E.: Paths of operators parametrized by operator means. Math. Jap. 39,
395–400 (1994)

7. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge Uni-
versity Press, Cambridge (1952)

8. Ohara, A.: Geodesics for dual connections and means on symmetric cones. Integr.
Eq. Oper. Theory 50, 537–548 (2004)

9. Amari, S.: Information Geometry and Its Applications. Springer, Tokyo, Japan
(2016)

10. Morley, T.D.: An alternative approach to the parallel sum. Adv. Appl. Math. 10,
358–369 (1989)

11. Berkics, P.: On parallel sum of matrices. Linear Multilinear A. 65, 2114–2123
(2017)
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