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Abstract. The textile plot is a tool for data visualisation proposed by
Kumasaka and Shibata (2008). The textile set is a geometric object con-
structed to understand the textile plot outputs. In this study, we find
additional facts on a proper subset called the strict textile set. Further-
more, we investigate differential and analytical geometric properties of
the textile set.
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1 Introduction

The textile plot is a useful tool for data visualisation proposed by Kumasaka
and Shibata [3]. The method transforms a given dataset consisting of continuous
and/or categorical variables into a real matrix and draws a parallel coordinate
plot based on it. The order of variables is determined using some variance criteria
or clustering methods. We refer readers to [2] for a comprehensive study on
parallel coordinate plots and [6] for geometric observation of parallel coordinate
plots.

We first briefly review the textile plot (see [3] for details). We only consider
continuous variables and fix the order of variables for simplicity. Suppose that
a real matrix X = (xti) = (x1, . . . ,xp) ∈ R

n×p is given. Let yti = ai + bixti

for each t and i, where each ai and bi are determined as follows. Let ȳt· =
p−1

∑p
i=1 yti be the ‘horizontal’ mean. Then each ai and bi are determined in

such a way that the deviation

n∑

t=1

p∑

i=1

(yti − ȳt·)2

is minimised under the restrictions of yti = ai + bixti and
∑

t

∑
i y2

ti = 1.
The textile plot draws a line graph of (yti)

p
i=1 for each t. Figure 1 explains the

construction of the textile plot when p = 5.
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Fig. 1. Construction of the textile plot. The sum of deviations of yti against the hori-
zontal average ȳt· is minimised under the restrictions yti = ai + bixti and

∑
t,i y

2
ti = 1.

The obtained matrix Y = (yti) satisfies a set of conditions. A set of such
matrices is called the textile set (see also [5]). In [5], we have shown that a
canonical part of the textile set can be written as a union of submanifolds.

A visualisation method of linkage disequilibrium in genetic studies, where
multiple-single nucleotide polymorphism (SNP) genotype data are considered,
has been developed as an application of the textile plot [4]. Since the data con-
sidered in [4] are categorical, they are first quantified by dummy variables and
then the textile plot is applied. See [3] and [4] for details.

In this study, we derive some geometric properties of the textile set that have
not been explored in [5]. Furthermore, we define a proper subset called the strict
textile set in order to fill the gap between the textile set and the textile plot.

The rest of this paper is organised as follows. In Sect. 2, we provide the
definition of the textile set and represent it as an inverse image of a differentiable
map. In Sect. 3, we define the strict textile set and investigate its representations.
In Sect. 4, we investigate the textile set from the viewpoint of differential and
analytic geometry. Section 5 concludes the paper.

2 The Textile Set

The matrix Y ∈ R
n×p constructed for the textile plot as described in Sect. 1

satisfies the following two conditions:

∃λ ∈ R, ∀i ∈ {1, . . . , p},

p∑

j=1

y�
i yj = λ‖yi‖2 (1)
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and
p∑

j=1

‖yj‖2 = 1. (2)

The two conditions are necessary for Y to be an output of the textile plot but
not sufficient. Indeed, two data matrices Y = (v,v) and Ỹ = (v,−v) for any
vector v ∈ R

n with ‖v‖2 = 1/2 satisfy the conditions (1) and (2) for λ = 2 and
λ = 0, respectively, but only the former is the output of the textile plot.

The textile set is defined as follows (see also [5]).

Definition 1. A set of all matrices Y ∈ R
n×p satisfying Eqs. (1) and (2) is

called the textile set and denoted by Tn,p.

We point out that the textile set is an inverse image of a differentiable map.
Let S+(p) be a set of all positive semi-definite matrices. For a data matrix
Y ∈ R

n×p, we denote the Gram matrix as g(Y ) = Y �Y ∈ S+(p). Then, g is a
function from R

n×p to S+(p). Let T+(p) be the image of Tn,p by g. Explicitly,
T+(p) consists of positive semi-definite matrices S satisfying the following two
conditions:

∃λ ∈ R, ∀i ∈ {1, . . . , p},
∑

j

Sij = λSii,

and
∑

j

Sjj = 1.

The following theorem is important for understanding the structure of Tn,p.

Theorem 1. The textile set is given by Tn,p = g−1(T+(p)).

Proof. The proof is straightforward.

Figure 2 shows the relation of these objects. Note that T+(p) does not depend
on n.

Fig. 2. The textile set Tn,p as an inverse image.
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3 The Strict Textile Set

In this section, we define the strict textile set as a proper subset of the textile
set and characterise it.

The quantity λ in Eq. (1) is one of the eigenvalues of the correlation matrix
rij = y�

i yj/(‖yi‖‖yj‖), where ‖yi‖ �= 0 is assumed for simplicity. However, in
the original definition of the textile plot (see [3]), λ is the maximum eigenvalue
of the correlation matrix. The following lemma characterises the condition of
maximality.

Lemma 1. Let Y = (y1, . . . ,yp) be an element of Tn,p and assume that ‖yi‖
�= 0 for all i. Then λ in Eq. (1) is the maximal eigenvalue of rij = y�

i yj/‖yi‖‖yj‖
if and only if a matrix

Qij = y�
i

(
p∑

k=1

yk

)

δij − y�
i yj (3)

is positive semi-definite.

Proof. The maximality condition is equivalent to

∑

i

∑

j

ai
y�

i yj

‖yi‖‖yj‖aj − λ
∑

i

a2
i ≤ 0

for all a ∈ R
p. Let bi = ai/‖yi‖. Then we have

∑

i

∑

j

bi(y�
i yj)bj − λ

∑

i

b2i ‖yi‖2 ≤ 0.

Since Eq. (1) holds, this is further equivalent to

∑

i

∑

j

bi

(

y�
i yj − y�

i

(
∑

k

yk

)

δij

)

bj ≤ 0,

and the proof is completed.

Now we define the strict textile set.

Definition 2. The strict textile set T 1
n,p consists of matrices Y ∈ Tn,p such that

the matrix Q = (Qij) defined by Eq. (3) is positive semi-definite.

The matrix Q is a function of the Gram matrix S = g(Y ) = Y �Y . For the
dependence, we can write

Qij(S) =
∑

k

Sikδij − Sij

or
Q(S) = diag(S1p) − S,
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where 1p is the all-ones vector and diag(v) is the diagonal matrix with the
diagonal part v. We also define

T 1
+(p) := T+(p) ∩ {S ∈ S+(p) | Q(S) ∈ S+(p)}. (4)

Recall that S+(p) is the set of positive semi-definite matrices. From the defini-
tion, we obtain the following lemma.

Lemma 2. The strict textile set is given by T 1
n,p = g−1(T 1

+(p)).

In what follows, we study the set T 1
+(p) instead of T 1

n,p.
For example, if p = 2, then

Q(S) =
(

S12 −S12

−S12 S12

)

= S12

(
1 −1

−1 1

)

.

The condition Q 	 0 is obviously equivalent to S12 ≥ 0.
If p = 3, then

Q(S) =

⎛

⎝
S12 + S13 −S12 −S13

−S12 S12 + S23 −S23

−S13 −S23 S13 + S23

⎞

⎠

= S12

⎛

⎝
1 −1 0

−1 1 0
0 0 0

⎞

⎠ + S13

⎛

⎝
1 0 −1
0 0 0

−1 0 1

⎞

⎠ + S23

⎛

⎝
0 0 0
0 1 −1
0 −1 1

⎞

⎠ .

A sufficient condition for positive semi-definiteness of Q is

S12 ≥ 0, S13 ≥ 0, S23 ≥ 0.

This is not necessary: a counter-example is

S =

⎛

⎝
100 −1 10
−1 100 10
10 10 100

⎞

⎠ .

It is directly shown that Q is positive semi-definite if and only if S12+S13+S23 ≥
0 and S12S13 + S12S23 + S13S23 ≥ 0.

Now let us consider general p. We denote the set appearing in the defini-
tion (4) as

A := {S ∈ S+(p) | Q(S) ∈ S+(p)}.

Theorem 2. The set A is a convex cone, which has an interior point.

Proof. First, we show that A is a convex cone. Let S1,S2 ∈ A and c1, c2 ≥ 0.
Then c1S1 + c2S2 ∈ S+(p) and

Q(c1S1 + c2S2) = c1Q(S1) + c2Q(S2) ∈ S+(p).
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Hence c1S1 + c2S2 ∈ A. Next, we prove that A has an interior point. Observe
that if Sij > 0 for all pairs i �= j, then Q(S) ∈ S+(p). Hence, we obtain

S++(p) ∩ {S | Sij > 0, i �= j} ⊂ A,

where S++(p) denotes a set of all positive definite matrices. Since the two sets
in the left-hand side are open, it is sufficient to show that their intersection is
not empty. Indeed, a matrix

S =

⎛

⎜
⎜
⎜
⎜
⎝

2 1 · · · 1

1 2
...

...
. . . 1

1 · · · 1 2

⎞

⎟
⎟
⎟
⎟
⎠

belongs to the two sets. This completes the proof.

We return to the space of Y . Define

B := g−1(A)

= {Y ∈ R
n×p | Q(Y �Y ) ∈ S+(p)}.

The strict textile set is given by T 1
n,p = Tn,p ∩ B. Indeed, we have

T 1
n,p = g−1(T 1

+)

= g−1(T+ ∩ A)

= g−1(T+) ∩ g−1(A)
= Tn,p ∩ B.

Corollary 1. If n ≥ p, then B has an interior point.

Proof. Note that g(Y ) = Y �Y is continuous. If n ≥ p, then g is also surjective.
Indeed, for a given S ∈ S+(p), a matrix

Y =
(
S1/2

0

)

with the matrix square root S1/2 satisfies g(Y ) = S. Since A has an interior
point, B also has an interior point.

Figure 3 summarises the relations we obtained. Here we denote a set of all
p × p symmetric matrices as S(p).
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Fig. 3. The strict textile set T 1
n,p and related objects.

4 Geometric Properties of the Textile Set from the
Viewpoint of Differential and Analytic Geometry

In this section, we demonstrate that the textile set Tn,p is a regular submanifold
of Rn×p with codimension p + 1. The result is independent from the preceding
study presented in [5], where a canonical part of Tn,p was studied. Furthermore,
we obtain an envelope of the textile set and a canonical form of the envelope
under the hypothesis that n = p ≥ 2. Inselberg [1] has discussed the parallel
coordinate from the analytical geometric point of view, which motivates our
study.

Our observation starts with the quantity λ in Eq. (1).

Lemma 3. Let Y ∈ Tn,p. Then λ is bounded as follows:

0 ≤ λ ≤ p.

Proof. For the lower bound, take the summation of Eq. (1) with respect to i and
use Eq. (2) to obtain λ = ‖∑

i yi‖2 ≥ 0. For the upper bound, first consider the
case ‖yi‖ > 0 for all i. Then Eq. (1) is equivalent to the condition that λ is an
eigenvalue of the correlation matrix rij = y�

i yj/‖yi‖‖yj‖ because
∑

j rij‖yj‖ =
λ‖yi‖. Since the trace of (rij) is p, we have λ ≤ p. If ‖yi‖ is zero for some i,
consider a submatrix (rij)i,j∈I , where I := {i | ‖yi‖ > 0}. Note that I is not
empty due to Eq. (2). It is shown that λ is an eigenvalue of the submatrix and
therefore λ ≤ |I| ≤ p.

Remark 1. From the proof, we observe that λ = 0 if and only if
∑

i yi = 0, and
that λ = p if and only if y1 = · · · = yp.

For each λ ∈ [0, p], define a map fλ : Rn×p → R
p+1 as

fλ(y1, . . . ,yp) :=

⎛

⎝
p∑

j=1

y�
1 yj − λ‖y1‖2, . . . ,

p∑

j=1

y�
p yj − λ‖yp‖2,

p∑

j=1

‖yj‖2 − 1

⎞

⎠ .
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Remark 2. { fλ
−1(0) | 0 ≤ λ ≤ p } yields a classification of the textile set, i.e.,

Tn,p =
⊔

0≤λ≤p

fλ
−1(0). (5)

The following theorem is a result of the textile set from the viewpoint of
differential geometry. This theorem shows that each fλ

−1(0) is an np − (p + 1)-
dimensional differentiable manifold.

Theorem 3. Suppose that

0 < λ (≤ p), y11 �= 0, (6)
y11yjj − y1jyj1 �= 0, j = 2, . . . , p, (7)

∃� ∈ { 2, . . . , p };
p∑

j=2

yij + yi�(1 − 2λ) �= 0, i = 1, . . . , n. (8)

We call the above equations the regularity condition, which implies that a natural
inclusion map ι : fλ

−1(0) ↪→ R
n×p is a homeomorphism onto its image. Then

fλ
−1(0) is a regular submanifold of Rn×p with codimension p + 1.

Proof. We outline the proof. We derive the sufficient condition for the Jacobi
matrix of fλ over fλ

−1(0) to be of full rank (= p + 1). Each of Eqs. (6)–(8)
establishes the desired conclusion.

The following theorem shows an application of Theorem3.

Theorem 4. Assume that in Eq. (5), Tn,p is given by the finitely disjoint union
of fλ

−1(0) in addition to the regularity condition. Then, Tn,p is an np− (p+1)-
dimensional compact differentiable manifold, where its differential structure is
induced from the disjoint union of open sets of the differential manifold fλ

−1(0).

Proof. We outline the proof. We have observed that Tn,p is compact (see [5] for
details). Combining Theorem 3 with the assumption of the finiteness leads to the
conclusion.

The remainder of this section is devoted to the study of the textile set from
the viewpoint of analytic geometry. Let n = p ≥ 2. The following lemma shows
an envelope of Tn,n.

Lemma 4. Fix λ ∈ [0, n], n ≥ 2. Let Fλ : Rn×n → R be a quadratic form defined
as

Fλ(y1, . . . ,yn) :=
n∑

i=1

n∑

j=1

yij

⎛

⎝
∑

k �=j

yik

⎞

⎠ − (λ − 1).

Then Tn,n ⊂ Fλ
−1(0).
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Proof. We deduce that Eqs. (1) and (2) yield the following quadric: for all
y1, . . . ,yn ∈ Tn,n,

Fλ(y1, . . . ,yn) = 0, 0 ≤ λ ≤ n. (9)

This completes the proof.

We proceed with the study on the canonical form of the quadric given by
(9). The following theorem is a result of the textile set from the viewpoint of
analytic geometry.

Theorem 5. Let Fλ be defined as in Lemma 4. Then, the canonical form of the
quadric defined from Fλ is given as follows:

− 1
λ − 1

z1
2 − · · · − 1

λ − 1
zn(n−1)

2

+
n − 1
λ − 1

zn(n−1)+1
2 + · · · +

n − 1
λ − 1

zn2
2 = 1, λ �= 1,

−z1
2 − · · · − zn(n−1)

2 + (n − 1)zn(n−1)+1
2 + · · · + (n − 1)zn2

2 = 0, λ = 1,

where each zi, i = 1, . . . , n2, denotes a transformed coordinate to obtain the
stated canonical form.

Proof. We outline the proof. For each i, j = 1, . . . , n, identifying yij with
y(i−1)n+j (∈ R

n2
), we can rewrite (9) as following:

Fλ(y1, . . . , yn2) = (y1, . . . , yn2)A (y1, . . . , yn2)�−(λ−1) = 0, 0 ≤ λ ≤ n, (10)

where

A :=

⎛

⎜
⎝

A1 0
. . .

0 An

⎞

⎟
⎠ , Ak :=

⎛

⎜
⎜
⎜
⎝

0 1 . . . 1
1 0 . . . 1
...

...
. . .

...
1 1 . . . 0

⎞

⎟
⎟
⎟
⎠

, k = 1, . . . , n.

It can be noticed that the eigenvalues of A are given by −1 and n− 1 with their
multiplicities n(n−1) and n, respectively. Hence, we have det A = ((−1)n−1(n−
1))n �= 0 because n ≥ 2, from which it can be derived that Fλ given by Eq. (10)
is a central quadric. Consequently, a proper coordinate transformation gives us
the desired conclusion.

5 Conclusions

In this study, we have obtained geometric properties of the textile and strict tex-
tile sets as follows: The textile set can be characterised as an inverse image of the
map g (Theorem 1). We have also defined the strict textile set and demonstrated
its relation to a convex cone (Theorem 2). Furthermore, we have investigated the
textile set from the viewpoint of differential geometry (Theorems 3 and 4) and
analytic geometry (Lemma 4 and Theorem 5).
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In the future, we plan to practically apply the results reported here and
describe the intrinsically differential and analytical geometric structure of
employed datasets. In fact, R. Shibata, who proposed the textile plot in [3],
has suggested this direction to us. We are also concerned with defining a proper
metric for the textile set Tn,p and its class fλ

−1(0) as a differentiable manifold
(stated in Theorems 3 and 4), and a quadric of the textile set Tn,n itself as well
as its envelop.

We could not investigate probabilistic properties of Y and g(Y ) defined in
Sect. 2 when the data matrix X is distributed according to some multivariate dis-
tributions. The distribution of Y should be studied to understand the behaviour
of the textile plot. For instance, the variable selection based on the norm ‖yi‖
has to be justified in the framework of sampling distributions.
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