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Foreword

On behalf of both the Organizing and the Scientific Committees, it is our great pleasure
to welcome you to the proceedings of the 4th International SEE Conference on
Geometric Science of Information (GSI 2019), hosted at ENAC in Toulouse, during
August 27–29, 2019.

GSI 2019 benefited from the following scientific and financial sponsors: SMF,
SMAI, GDR CNRS ISIS & MIA, ENAC, THALES, Ecole Polytechnique, Mines
ParisTech, Sony Computer Science Laboratories Inc (Sony CSL). GSI 2019 was the
opening event of the CIMI labex trimester on “Statistics with Geometry and Topology”:
https://perso.math.univ-toulouse.fr/statistics-geometry-and-topology/.

The three-day conference was also organized in the framework of the relations set
up between SEE and scientific institutions or academic laboratories: ENAC, Institut
Mathématique de Bordeaux, Ecole Polytechnique, Ecole des Mines ParisTech, Inria,
CentraleSupélec, Institut Mathématique de Bordeaux, Sony Computer Science
Laboratories.

We would like to express all our thanks to the local organizers (ENAC, IMT and
CIMI Labex) for hosting this event at the interface between geometry, probability, and
information geometry.

The GSI conference cycle was initiated by the Brillouin Seminar Team as early as
2009. The GSI 2019 event was motivated in the continuity of the first initiatives
launched in 2013 (https://www.see.asso.fr/gsi2013) at Mines ParisTech, consolidated in
2015 (https://www.see.asso.fr/gsi2015) at Ecole Polytechnique, and opened up to new
communities in 2017 (https://www.see.asso.fr/gsi2017) at Mines ParisTech. We
mention that in 2011, we organized an Indo-French workshop on “Matrix Information
Geometry” that yielded an edited book in 2013, and in 2017, we collaborated with the
CIRM seminar in Luminy TGSI 2017 “Topological and Geometrical Structures of
Information” (http://forum.cs-dc.org/category/94/tgsi2017). The last GSI 2017
proceedings were published by Springer in their Lecture Notes in Computer Science
series (https://www.springer.com/fr/book/9783319684444) and the most important
contributions to the GSI 2017 conference are collected in the Springer volumeGeometric
Structures of Information (https://www.springer.com/us/book/9783030025199).

The technical program of GSI 2019 covered all the main topics and highlights in the
domain of “geometric science of information” including information geometry
manifolds of structured data/information and their advanced applications. These
proceedings consist solely of original research papers that were carefully peer-reviewed
by two or three experts and revised before acceptance.

The GSI 2019 program included a renowned honorary speaker, one guest honorary
speaker, and three keynote distinguished speakers, as well as a history session with a
talk on “Fermat, Pascal, and the Geometry of Chance” and a “Tribute to Jean-Louis
Koszul” (who passed away in January 2018).

https://perso.math.univ-toulouse.fr/statistics-geometry-and-topology/
https://www.see.asso.fr/
http://repmus.ircam.fr/brillouin/home
https://www.see.asso.fr/gsi2013
https://www.see.asso.fr/gsi2015
https://www.see.asso.fr/gsi2017
https://www.springer.com/us/book/9783642302312
http://forum.cs-dc.org/category/94/tgsi2017
https://www.springer.com/fr/book/9783319684444
https://www.springer.com/us/book/9783030025199


As with GSI 2013, GSI 2015, and GSI 2017, GSI 2019 addressed inter-relations
between different mathematical domains like shape spaces (geometric statistics on
manifolds and Lie groups, deformations in shape space, etc.), probability/optimization
and algorithms on manifolds (structured matrix manifold, structured data/Information
etc.), relational and discrete metric spaces (graph metrics, distance geometry, relational
analysis, etc.), computational and Hessian information geometry, geometric structures
in thermodynamics and statistical physics, algebraic/infinite dimensional/Banach
information manifolds, divergence geometry, tensor-valued morphology, optimal
transport theory, manifold and topology learning, and applications such as geometries
of audio-processing, inverse problems, and signal/image processing. The GSI 2019
topics were enriched with contributions on Lie group machine learning, harmonic
analysis on Lie groups, geometric deep learning, geometry of Hamiltonian Monte
Carlo, geometric and (poly)symplectic integrators, contact geometry and Hamiltonian
control, geometric and structure preserving discretizations, probability density esti-
mation and sampling in high dimension, geometry of graphs and networks and
geometry in neuroscience and cognitive sciences.

At the turn of the century, new and fruitful interactions were discovered between
several branches of science: information science (information theory, digital commu-
nications, statistical signal processing), mathematics (group theory, geometry and
topology, probability, statistics, sheaves theory) and physics (geometric mechanics,
thermodynamics, statistical physics, quantum mechanics). The GSI conference cycle is
an attempt to discover joint mathematical structures to all these disciplines by elabo-
ration of a “general theory of information” embracing physics, information science, and
cognitive science in a global scheme.

GSI 2019 addressed the following sessions with associated chairs:

• Probability on Riemannian Manifolds – Marc Arnaudon, Ana Bela Cruzeiro
• Optimization on Manifold – Salem Said, Rodolphe Sepulchre
• Shape Space – Nicolas Charon, Pietro Gori
• Statistics on Non-linear Data – Xavier Pennec, Stefan Sommer
• Lie Group Machine Learning – Elena Celledoni, Frédéric Barbaresco
• Statistical Manifold and Hessian Information Geometry – Michel Nguiffo Boyom,

Hiroshi Matsuzoe
• Monotone Embedding and Affine Immersion of Probability Models – Jun Zhang,

Atsumi Ohara
• Non-parametric Information Geometry – Lorenz Schwachhöfer, John Armstrong
• Divergence Geometry – Frank Nielsen, Wolfgang Stummer
• Computational Information Geometry – Frank Nielsen, Olivier Schwander
• Wasserstein Information Geometry/Optimal Transport – Guido Montufar, Wuchen

Li
• Geometric Structures in Thermodynamics and Statistical Physics – Goffredo

Chirco, François Gay-Balmaz
• Geometric and Structure-Preserving Discretizations – François Gay-Balmaz, Joël

Bensoam
• Geometry of Quantum States – Florio Maria Ciaglia, Giuseppe Marmo
• Geometry of Tensor-Valued Data – Jesús Angulo, Geert Verdoolaege
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• Geometric Mechanics – Géry de Saxcé, Jean Lerbet
• Geometric Science of Information Libraries – Nina Miolane, Alice Le Brigant
• Poster Session – Pierre Baudot

We were also honored to have the following keynote talks:

• Invited Honorary Speaker

– Alain Chenciner (Université Paris 7, Observatoire de Paris), “N-body Relative
Equilibria in Higher Dimensions”

• Guest Honorary Speaker

– Karl Friston (Wellcome Trust Centre for Neuroimaging), “Markov Blankets and
Bayesian Mechanics”

• Keynote Speakers

– Elena Celledoni (Norwegian University of Science and Technology), “Structure
preserving algorithms for geometric numerical integration”

– Gabriel Peyré (CNRS, Ecole Normale Supérieure), “Optimal Transport for
Machine Learning”

– Jean-Baptiste Hiriart-Urruty (Université de Toulouse), “Fermat, Pascal:
Geometry and Chance”

August 2019 Frank Nielsen
Frédéric Barbaresco
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Abstract. The textile plot is a tool for data visualisation proposed by
Kumasaka and Shibata (2008). The textile set is a geometric object con-
structed to understand the textile plot outputs. In this study, we find
additional facts on a proper subset called the strict textile set. Further-
more, we investigate differential and analytical geometric properties of
the textile set.

Keywords: Textile plot · Textile set · Strict textile set ·
Submanifold · Canonical form

1 Introduction

The textile plot is a useful tool for data visualisation proposed by Kumasaka
and Shibata [3]. The method transforms a given dataset consisting of continuous
and/or categorical variables into a real matrix and draws a parallel coordinate
plot based on it. The order of variables is determined using some variance criteria
or clustering methods. We refer readers to [2] for a comprehensive study on
parallel coordinate plots and [6] for geometric observation of parallel coordinate
plots.

We first briefly review the textile plot (see [3] for details). We only consider
continuous variables and fix the order of variables for simplicity. Suppose that
a real matrix X = (xti) = (x1, . . . ,xp) ∈ R

n×p is given. Let yti = ai + bixti

for each t and i, where each ai and bi are determined as follows. Let ȳt· =
p−1

∑p
i=1 yti be the ‘horizontal’ mean. Then each ai and bi are determined in

such a way that the deviation

n∑

t=1

p∑

i=1

(yti − ȳt·)2

is minimised under the restrictions of yti = ai + bixti and
∑

t

∑
i y2

ti = 1.
The textile plot draws a line graph of (yti)

p
i=1 for each t. Figure 1 explains the

construction of the textile plot when p = 5.
c© Springer Nature Switzerland AG 2019
F. Nielsen and F. Barbaresco (Eds.): GSI 2019, LNCS 11712, pp. 3–12, 2019.
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yt1

yt2

yt3

yt4

yt5

yt.

Fig. 1. Construction of the textile plot. The sum of deviations of yti against the hori-
zontal average ȳt· is minimised under the restrictions yti = ai + bixti and

∑
t,i y

2
ti = 1.

The obtained matrix Y = (yti) satisfies a set of conditions. A set of such
matrices is called the textile set (see also [5]). In [5], we have shown that a
canonical part of the textile set can be written as a union of submanifolds.

A visualisation method of linkage disequilibrium in genetic studies, where
multiple-single nucleotide polymorphism (SNP) genotype data are considered,
has been developed as an application of the textile plot [4]. Since the data con-
sidered in [4] are categorical, they are first quantified by dummy variables and
then the textile plot is applied. See [3] and [4] for details.

In this study, we derive some geometric properties of the textile set that have
not been explored in [5]. Furthermore, we define a proper subset called the strict
textile set in order to fill the gap between the textile set and the textile plot.

The rest of this paper is organised as follows. In Sect. 2, we provide the
definition of the textile set and represent it as an inverse image of a differentiable
map. In Sect. 3, we define the strict textile set and investigate its representations.
In Sect. 4, we investigate the textile set from the viewpoint of differential and
analytic geometry. Section 5 concludes the paper.

2 The Textile Set

The matrix Y ∈ R
n×p constructed for the textile plot as described in Sect. 1

satisfies the following two conditions:

∃λ ∈ R, ∀i ∈ {1, . . . , p},

p∑

j=1

y�
i yj = λ‖yi‖2 (1)
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and
p∑

j=1

‖yj‖2 = 1. (2)

The two conditions are necessary for Y to be an output of the textile plot but
not sufficient. Indeed, two data matrices Y = (v,v) and Ỹ = (v,−v) for any
vector v ∈ R

n with ‖v‖2 = 1/2 satisfy the conditions (1) and (2) for λ = 2 and
λ = 0, respectively, but only the former is the output of the textile plot.

The textile set is defined as follows (see also [5]).

Definition 1. A set of all matrices Y ∈ R
n×p satisfying Eqs. (1) and (2) is

called the textile set and denoted by Tn,p.

We point out that the textile set is an inverse image of a differentiable map.
Let S+(p) be a set of all positive semi-definite matrices. For a data matrix
Y ∈ R

n×p, we denote the Gram matrix as g(Y ) = Y �Y ∈ S+(p). Then, g is a
function from R

n×p to S+(p). Let T+(p) be the image of Tn,p by g. Explicitly,
T+(p) consists of positive semi-definite matrices S satisfying the following two
conditions:

∃λ ∈ R, ∀i ∈ {1, . . . , p},
∑

j

Sij = λSii,

and
∑

j

Sjj = 1.

The following theorem is important for understanding the structure of Tn,p.

Theorem 1. The textile set is given by Tn,p = g−1(T+(p)).

Proof. The proof is straightforward.

Figure 2 shows the relation of these objects. Note that T+(p) does not depend
on n.

Fig. 2. The textile set Tn,p as an inverse image.
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3 The Strict Textile Set

In this section, we define the strict textile set as a proper subset of the textile
set and characterise it.

The quantity λ in Eq. (1) is one of the eigenvalues of the correlation matrix
rij = y�

i yj/(‖yi‖‖yj‖), where ‖yi‖ �= 0 is assumed for simplicity. However, in
the original definition of the textile plot (see [3]), λ is the maximum eigenvalue
of the correlation matrix. The following lemma characterises the condition of
maximality.

Lemma 1. Let Y = (y1, . . . ,yp) be an element of Tn,p and assume that ‖yi‖
�= 0 for all i. Then λ in Eq. (1) is the maximal eigenvalue of rij = y�

i yj/‖yi‖‖yj‖
if and only if a matrix

Qij = y�
i

(
p∑

k=1

yk

)

δij − y�
i yj (3)

is positive semi-definite.

Proof. The maximality condition is equivalent to

∑

i

∑

j

ai
y�

i yj

‖yi‖‖yj‖aj − λ
∑

i

a2
i ≤ 0

for all a ∈ R
p. Let bi = ai/‖yi‖. Then we have

∑

i

∑

j

bi(y�
i yj)bj − λ

∑

i

b2i ‖yi‖2 ≤ 0.

Since Eq. (1) holds, this is further equivalent to

∑

i

∑

j

bi

(

y�
i yj − y�

i

(
∑

k

yk

)

δij

)

bj ≤ 0,

and the proof is completed.

Now we define the strict textile set.

Definition 2. The strict textile set T 1
n,p consists of matrices Y ∈ Tn,p such that

the matrix Q = (Qij) defined by Eq. (3) is positive semi-definite.

The matrix Q is a function of the Gram matrix S = g(Y ) = Y �Y . For the
dependence, we can write

Qij(S) =
∑

k

Sikδij − Sij

or
Q(S) = diag(S1p) − S,
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where 1p is the all-ones vector and diag(v) is the diagonal matrix with the
diagonal part v. We also define

T 1
+(p) := T+(p) ∩ {S ∈ S+(p) | Q(S) ∈ S+(p)}. (4)

Recall that S+(p) is the set of positive semi-definite matrices. From the defini-
tion, we obtain the following lemma.

Lemma 2. The strict textile set is given by T 1
n,p = g−1(T 1

+(p)).

In what follows, we study the set T 1
+(p) instead of T 1

n,p.
For example, if p = 2, then

Q(S) =
(

S12 −S12

−S12 S12

)

= S12

(
1 −1

−1 1

)

.

The condition Q 	 0 is obviously equivalent to S12 ≥ 0.
If p = 3, then

Q(S) =

⎛

⎝
S12 + S13 −S12 −S13

−S12 S12 + S23 −S23

−S13 −S23 S13 + S23

⎞

⎠

= S12

⎛

⎝
1 −1 0

−1 1 0
0 0 0

⎞

⎠ + S13

⎛

⎝
1 0 −1
0 0 0

−1 0 1

⎞

⎠ + S23

⎛

⎝
0 0 0
0 1 −1
0 −1 1

⎞

⎠ .

A sufficient condition for positive semi-definiteness of Q is

S12 ≥ 0, S13 ≥ 0, S23 ≥ 0.

This is not necessary: a counter-example is

S =

⎛

⎝
100 −1 10
−1 100 10
10 10 100

⎞

⎠ .

It is directly shown that Q is positive semi-definite if and only if S12+S13+S23 ≥
0 and S12S13 + S12S23 + S13S23 ≥ 0.

Now let us consider general p. We denote the set appearing in the defini-
tion (4) as

A := {S ∈ S+(p) | Q(S) ∈ S+(p)}.

Theorem 2. The set A is a convex cone, which has an interior point.

Proof. First, we show that A is a convex cone. Let S1,S2 ∈ A and c1, c2 ≥ 0.
Then c1S1 + c2S2 ∈ S+(p) and

Q(c1S1 + c2S2) = c1Q(S1) + c2Q(S2) ∈ S+(p).
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Hence c1S1 + c2S2 ∈ A. Next, we prove that A has an interior point. Observe
that if Sij > 0 for all pairs i �= j, then Q(S) ∈ S+(p). Hence, we obtain

S++(p) ∩ {S | Sij > 0, i �= j} ⊂ A,

where S++(p) denotes a set of all positive definite matrices. Since the two sets
in the left-hand side are open, it is sufficient to show that their intersection is
not empty. Indeed, a matrix

S =

⎛

⎜
⎜
⎜
⎜
⎝

2 1 · · · 1

1 2
...

...
. . . 1

1 · · · 1 2

⎞

⎟
⎟
⎟
⎟
⎠

belongs to the two sets. This completes the proof.

We return to the space of Y . Define

B := g−1(A)

= {Y ∈ R
n×p | Q(Y �Y ) ∈ S+(p)}.

The strict textile set is given by T 1
n,p = Tn,p ∩ B. Indeed, we have

T 1
n,p = g−1(T 1

+)

= g−1(T+ ∩ A)

= g−1(T+) ∩ g−1(A)
= Tn,p ∩ B.

Corollary 1. If n ≥ p, then B has an interior point.

Proof. Note that g(Y ) = Y �Y is continuous. If n ≥ p, then g is also surjective.
Indeed, for a given S ∈ S+(p), a matrix

Y =
(
S1/2

0

)

with the matrix square root S1/2 satisfies g(Y ) = S. Since A has an interior
point, B also has an interior point.

Figure 3 summarises the relations we obtained. Here we denote a set of all
p × p symmetric matrices as S(p).
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Fig. 3. The strict textile set T 1
n,p and related objects.

4 Geometric Properties of the Textile Set from the
Viewpoint of Differential and Analytic Geometry

In this section, we demonstrate that the textile set Tn,p is a regular submanifold
of Rn×p with codimension p + 1. The result is independent from the preceding
study presented in [5], where a canonical part of Tn,p was studied. Furthermore,
we obtain an envelope of the textile set and a canonical form of the envelope
under the hypothesis that n = p ≥ 2. Inselberg [1] has discussed the parallel
coordinate from the analytical geometric point of view, which motivates our
study.

Our observation starts with the quantity λ in Eq. (1).

Lemma 3. Let Y ∈ Tn,p. Then λ is bounded as follows:

0 ≤ λ ≤ p.

Proof. For the lower bound, take the summation of Eq. (1) with respect to i and
use Eq. (2) to obtain λ = ‖∑

i yi‖2 ≥ 0. For the upper bound, first consider the
case ‖yi‖ > 0 for all i. Then Eq. (1) is equivalent to the condition that λ is an
eigenvalue of the correlation matrix rij = y�

i yj/‖yi‖‖yj‖ because
∑

j rij‖yj‖ =
λ‖yi‖. Since the trace of (rij) is p, we have λ ≤ p. If ‖yi‖ is zero for some i,
consider a submatrix (rij)i,j∈I , where I := {i | ‖yi‖ > 0}. Note that I is not
empty due to Eq. (2). It is shown that λ is an eigenvalue of the submatrix and
therefore λ ≤ |I| ≤ p.

Remark 1. From the proof, we observe that λ = 0 if and only if
∑

i yi = 0, and
that λ = p if and only if y1 = · · · = yp.

For each λ ∈ [0, p], define a map fλ : Rn×p → R
p+1 as

fλ(y1, . . . ,yp) :=

⎛

⎝
p∑

j=1

y�
1 yj − λ‖y1‖2, . . . ,

p∑

j=1

y�
p yj − λ‖yp‖2,

p∑

j=1

‖yj‖2 − 1

⎞

⎠ .
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Remark 2. { fλ
−1(0) | 0 ≤ λ ≤ p } yields a classification of the textile set, i.e.,

Tn,p =
⊔

0≤λ≤p

fλ
−1(0). (5)

The following theorem is a result of the textile set from the viewpoint of
differential geometry. This theorem shows that each fλ

−1(0) is an np − (p + 1)-
dimensional differentiable manifold.

Theorem 3. Suppose that

0 < λ (≤ p), y11 �= 0, (6)
y11yjj − y1jyj1 �= 0, j = 2, . . . , p, (7)

∃� ∈ { 2, . . . , p };
p∑

j=2

yij + yi�(1 − 2λ) �= 0, i = 1, . . . , n. (8)

We call the above equations the regularity condition, which implies that a natural
inclusion map ι : fλ

−1(0) ↪→ R
n×p is a homeomorphism onto its image. Then

fλ
−1(0) is a regular submanifold of Rn×p with codimension p + 1.

Proof. We outline the proof. We derive the sufficient condition for the Jacobi
matrix of fλ over fλ

−1(0) to be of full rank (= p + 1). Each of Eqs. (6)–(8)
establishes the desired conclusion.

The following theorem shows an application of Theorem3.

Theorem 4. Assume that in Eq. (5), Tn,p is given by the finitely disjoint union
of fλ

−1(0) in addition to the regularity condition. Then, Tn,p is an np− (p+1)-
dimensional compact differentiable manifold, where its differential structure is
induced from the disjoint union of open sets of the differential manifold fλ

−1(0).

Proof. We outline the proof. We have observed that Tn,p is compact (see [5] for
details). Combining Theorem 3 with the assumption of the finiteness leads to the
conclusion.

The remainder of this section is devoted to the study of the textile set from
the viewpoint of analytic geometry. Let n = p ≥ 2. The following lemma shows
an envelope of Tn,n.

Lemma 4. Fix λ ∈ [0, n], n ≥ 2. Let Fλ : Rn×n → R be a quadratic form defined
as

Fλ(y1, . . . ,yn) :=
n∑

i=1

n∑

j=1

yij

⎛

⎝
∑

k �=j

yik

⎞

⎠ − (λ − 1).

Then Tn,n ⊂ Fλ
−1(0).
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Proof. We deduce that Eqs. (1) and (2) yield the following quadric: for all
y1, . . . ,yn ∈ Tn,n,

Fλ(y1, . . . ,yn) = 0, 0 ≤ λ ≤ n. (9)

This completes the proof.

We proceed with the study on the canonical form of the quadric given by
(9). The following theorem is a result of the textile set from the viewpoint of
analytic geometry.

Theorem 5. Let Fλ be defined as in Lemma 4. Then, the canonical form of the
quadric defined from Fλ is given as follows:

− 1
λ − 1

z1
2 − · · · − 1

λ − 1
zn(n−1)

2

+
n − 1
λ − 1

zn(n−1)+1
2 + · · · +

n − 1
λ − 1

zn2
2 = 1, λ �= 1,

−z1
2 − · · · − zn(n−1)

2 + (n − 1)zn(n−1)+1
2 + · · · + (n − 1)zn2

2 = 0, λ = 1,

where each zi, i = 1, . . . , n2, denotes a transformed coordinate to obtain the
stated canonical form.

Proof. We outline the proof. For each i, j = 1, . . . , n, identifying yij with
y(i−1)n+j (∈ R

n2
), we can rewrite (9) as following:

Fλ(y1, . . . , yn2) = (y1, . . . , yn2)A (y1, . . . , yn2)�−(λ−1) = 0, 0 ≤ λ ≤ n, (10)

where

A :=

⎛

⎜
⎝

A1 0
. . .

0 An

⎞

⎟
⎠ , Ak :=

⎛

⎜
⎜
⎜
⎝

0 1 . . . 1
1 0 . . . 1
...

...
. . .

...
1 1 . . . 0

⎞

⎟
⎟
⎟
⎠

, k = 1, . . . , n.

It can be noticed that the eigenvalues of A are given by −1 and n− 1 with their
multiplicities n(n−1) and n, respectively. Hence, we have det A = ((−1)n−1(n−
1))n �= 0 because n ≥ 2, from which it can be derived that Fλ given by Eq. (10)
is a central quadric. Consequently, a proper coordinate transformation gives us
the desired conclusion.

5 Conclusions

In this study, we have obtained geometric properties of the textile and strict tex-
tile sets as follows: The textile set can be characterised as an inverse image of the
map g (Theorem 1). We have also defined the strict textile set and demonstrated
its relation to a convex cone (Theorem 2). Furthermore, we have investigated the
textile set from the viewpoint of differential geometry (Theorems 3 and 4) and
analytic geometry (Lemma 4 and Theorem 5).
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In the future, we plan to practically apply the results reported here and
describe the intrinsically differential and analytical geometric structure of
employed datasets. In fact, R. Shibata, who proposed the textile plot in [3],
has suggested this direction to us. We are also concerned with defining a proper
metric for the textile set Tn,p and its class fλ

−1(0) as a differentiable manifold
(stated in Theorems 3 and 4), and a quadric of the textile set Tn,n itself as well
as its envelop.

We could not investigate probabilistic properties of Y and g(Y ) defined in
Sect. 2 when the data matrix X is distributed according to some multivariate dis-
tributions. The distribution of Y should be studied to understand the behaviour
of the textile plot. For instance, the variable selection based on the norm ‖yi‖
has to be justified in the framework of sampling distributions.

Acknowledgements. We would like to thank two referees for their helpful comments.
This work was supported by JSPS KAKENHI Grant Numbers JP26108003,
JP17K00044 and JP19K11865.

References

1. Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1(2), 69–91 (1985).
https://doi.org/10.1007/BF01898350

2. Inselberg, A.: Parallel Coordinates: Visual Multidimensional Geometry and
Its Applications. Springer, New York (2009). https://doi.org/10.1007/978-0-387-
68628-8

3. Kumasaka, N., Shibata, R.: High-dimensional data visualisation: the textile plot.
Comput. Stat. Data Anal. 52(7), 3616–3644 (2008). https://doi.org/10.1016/j.csda.
2007.11.016

4. Kumasaka, N., Nakamura, Y., Kamatani, N.: The textile plot: a new linkage dise-
quilibrium display of multiple-single nucleotide polymorphism genotype data. PLoS
One 5(4), e10207 (2010). https://doi.org/10.1371/journal.pone.0010207

5. Sei, T., Tanaka, U.: Geometric properties of textile plot. In: Nielsen, F., Barbaresco,
F. (eds.) GSI 2015. LNCS, vol. 9389, pp. 732–739. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25040-3 78

6. Wegman, E.: Hyperdimensional data analysis using parallel coordinates. J. Am.
Stat. Assoc. 85(411), 664–675 (1990). https://doi.org/10.2307/2290001

https://doi.org/10.1007/BF01898350
https://doi.org/10.1007/978-0-387-68628-8
https://doi.org/10.1007/978-0-387-68628-8
https://doi.org/10.1016/j.csda.2007.11.016
https://doi.org/10.1016/j.csda.2007.11.016
https://doi.org/10.1371/journal.pone.0010207
https://doi.org/10.1007/978-3-319-25040-3_78
https://doi.org/10.1007/978-3-319-25040-3_78
https://doi.org/10.2307/2290001


Inexact Elastic Shape Matching in the
Square Root Normal Field Framework

Martin Bauer1 , Nicolas Charon2(B) , and Philipp Harms3

1 Florida State University, Tallahassee, FL 32304, USA
bauer@math.fsu.edu

2 John Hopkins University, Baltimore, MD 21218, USA
charon@cis.jhu.edu

3 Albert-Ludwig-University Freiburg, 79104 Freiburg, Germany
philipp.harms@stochastik.uni-freiburg.de

Abstract. This paper puts forth a new formulation and algorithm for
the elastic matching problem on unparametrized curves and surfaces.
Our approach combines the frameworks of square root normal fields and
varifold fidelity metrics into a novel framework, which has several poten-
tial advantages over previous works. First, our variational formulation
allows us to minimize over reparametrizations without discretizing the
reparametrization group. Second, the objective function and gradient are
easy to implement and efficient to evaluate numerically. Third, the ini-
tial and target surface may have different samplings and even different
topologies. Fourth, texture can be incorporated as additional information
in the matching term similarly to the fshape framework. We demonstrate
the usefulness of this approach with several numerical examples of curves
and surfaces.

Keywords: Square root normal field · Varifold metrics ·
Functional data analysis · Shape analysis

1 Introduction

Context. The statistical analysis of datasets of curves and surfaces is an active
research field with many applications in e.g. computer vision, robotics, and med-
ical imaging; see [4,20,24] and references therein. A recurring and fundamental
task is finding optimal point correspondences between given shapes (i.e., the
matching or registration problem), where optimality is typically expressed in
terms of an elastic deformation energy. Solving the elastic matching problem in
a numerically efficient way, which scales well to high-dimensional data encoun-
tered in real-world applications, remains a major challenge to date.
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Relation to Previous Work. This paper draws on two lines of work: square
root normal fields (SRNFs) [11,12,14,19], which allow one to efficiently calculate
elastic distances between parametrized shapes, and varifold distances [7,9,13,
18,22], which are distances between unparametrized shapes without any elastic
interpretation. For each of these frameworks, efficient numerical implementations
have been developed.

Contribution. We propose a new algorithm which combines SRNFs with var-
ifold distances and inherits many advantages of both approaches. The key idea
is to use varifold distances to relax the terminal constraint in the elastic match-
ing problem. This bypasses the discretization of the reparametrization group,
thereby eliminating the main computational burden in previous implementations
of SRNF-based elastic shape matching. The resulting optimization problem is
easy to implement and yields good results on some preliminary experiments on
curves and surfaces. Moreover, the varifold distances allow one to match shapes
with different meshes and even different topologies and to use texture informa-
tion as in the fshape framework.

2 Shape Analysis of Curves and Surfaces

Elastic Shape Analysis. Elastic shape analysis operates in a Riemannian
framework where infinitesimal shape deformations are measured by a Rieman-
nian metric, which is often related to an elastic (or plastic) deformation energy;
see the surveys [4,12]. We consider parameterized shapes as elements of the
Fréchet manifold Imm(M,Rd) of immersed hypersurfaces of a (d−1)-dimensional
compact manifold M into R

d. The corresponding space of unparameterized
shapes is the quotient space Bi(M,Rd) = Imm(M,Rd)/Diff(M), whose ele-
ments are denoted by [f ] = {f ◦ ϕ;ϕ ∈ Diff(M)}. Given a Diff(M)-invariant
weak Riemannian metric G on Imm(M,Rd), one defines a pseudo-distance
between any two immersions f0, f1 ∈ Imm(M,Rd) and their equivalence classes
[f0], [f1] ∈ Bi(M,Rd) by

distImm(f0, f1)2 = inf
f∈C∞([0,1],Imm(M,Rd))

f(0)=f0,f(1)=f1

∫ 1

0

Gf (∂tf, ∂tf)dt, (1)

distBi
([f0], [f1]) = inf

ϕ∈Diff(M)
distImm(f0, f1 ◦ ϕ). (2)

Symmetry of the pseudo-distance on Bi(M,Rd) follows from the invariance of
the metric G with respect to reparametrizations. Under suitable conditions on
G the pseudo-distance is a distance, i.e., it separates points in the shape space
of curves [16,17] or surfaces [5].

From a numerical perspective, the challenge is to calculate the above dis-
tances and the corresponding optimizers efficiently. This minimization can
be solved numerically by path straightening and geodesic shooting methods
(see e.g. [2,10]) or as in the next section by exploiting isometries to simpler
spaces.
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Square Root Normal Fields. Problem (1) simplifies considerably for cer-
tain first order Sobolev metrics [3,11,14,19,21,23,25]. One class of such met-
rics is defined using square root normal fields (SRNFs), which were intro-
duced by Srivastava et al. [14,19] for planar curves and later generalized to
surfaces by Jermyn et al. [11]. The SRNF of an oriented immersed hypersur-
face f ∈ Imm(M,Rd) is defined as ñf = nf vol1/2

f , where nf is the unit nor-
mal field and vol1/2

f the half density of f . For example, the SRNF of a planar
curve f ∈ Imm(S1,R2) is given in coordinates θ ∈ S1 by ñf = ifθ‖fθ‖−1/2

R2 ,
where i denotes rotation by 90◦ and coordinates in subscripts denote deriva-
tives. Similarly, the SRNF of a surface f ∈ Imm(S2,R3) is given in coordinates
(u, v) ∈ S2 as ñf = (fu × fv)‖fu × fv‖−1/2

R3 . In general, one obtains an elastic
pseudo-Riemannian metric on Imm(M,Rd) by setting

Gf (h, k) =
∫

M

〈D(f,h)ñf ,D(f,k)ñf 〉Rd ,

where D(f,h)ñf denotes the directional derivative of ñf at f in the direction h.
This pseudo-Riemannian metric G is Diff(M)-invariant, and by construction the
map f �→ ñf is a Riemannian isometry into the flat space of square integrable
vector-valued half densities. For curves one obtains a Riemannian metric by
modding out translations. For surfaces the situation is more complicated, as
described in [11], and the kernel of the pseudo-metric may be larger than only
translations. The metric belongs to the class of first order Sobolev metrics, which
have been studied in great detail [5,16,17].

The advantage of this construction is that the Riemannian distance of G on
Imm(M,Rd) can be approximated efficiently as follows:

distImm(f0, f1) ≈ ‖ñf0 − ñf1‖L2 . (3)

Equality holds whenever the straight line between ñf0 and ñf1 is contained in
the range of the map f �→ ñf . In general, equality holds up to first order for f0

close to f1 because the map f �→ ñf is a Riemannian isometry.
The approximate distance (3) descends to the quotient space Bi(M,R3) as

described in (2). However, (2) involves a minimization over the reparametrization
group, which is computationally costly. For curves this can be solved by dynamic
programming [19] or using an explicit formula [15]. For surfaces in spherical
coordinates, Jermyn et al. [11] proposed to discretize the diffeomorphism group
of the two-dimensional sphere using spherical harmonics. This article puts forth
an alternative method for minimization over the reparametrization group, which
is based on varifold distances.

Varifold Distances. Geometric measure theory provides several embeddings
of shape spaces into Banach spaces of distributions [7,9,13,18,22] with corre-
sponding metrics. Varifold embeddings are one instance of this construction and
are defined as follows (cf. [13] for details). Given a reproducing kernel Hilbert
space W of real-valued functions on R

d ×Sd−1, one associates to any immersion



16 M. Bauer et al.

f ∈ Imm(M,Rd) the varifold μf ∈ W ∗ which satisfies

∀w ∈ W : (μf |w)W ∗,W =
∫

M

w(f(x), n(x)) volf (dx).

The map f �→ μf is reparametrization-invariant and, under suitable assumptions
on the kernel of W , injective [13]. Thus, one obtains a well-defined distance
on the quotient space Bi(M,Rd) by defining for any two immersions f0, f1 ∈
Imm(M,Rd):

distVar([f0], [f1]) = ‖μf0 − μf1‖W ∗ .

From a computational point of view, these distances have explicit expressions in
terms of the kernel function of W and are easy to implement for discrete curves
or surfaces. We will use such distances to relax the terminal constraint in the
boundary value problem for geodesics on shape space, as described next.

Combining SRNFs and Varifold Distances. Square root normal fields
and varifold distances can be combined in an efficient matching algorithm for
unparametrized shapes. This idea has been previously used in combination with
large deformation models in [7,13] and with H2 metrics on the space of curves
in [1]. The boundary value problem (2) for geodesics on Bi(M,Rd) can be for-
mulated as the program

minimize
f

dist(f0, f) subject to distVar([f ], [f1]) = 0. (4)

Relaxation using a (large) Lagrange multiplier λ and approximation of the elastic
distance as in (3) yields

minimize
f

‖ñf0 − ñf‖2
L2 + λ distVar([f ], [f1])2. (5)

This program has several advantages over previous alternative formulations of
the SRNF matching problem [11,14,19]. First, the objective function and its gra-
dient are easy to implement and can be computed efficiently. Second, the initial
and target surface may have different discretizations and even different topolo-
gies. Third, texture information can be incorporated into the varifold matching
term similarly to the fshape framework [6,8].

3 Numerical Implementation and Results

Algorithm. Given a pair (f0, f1) of curves or surfaces, the program (5) looks for
a minimizer f with distBi

([f0], [f1]) = distImm(f0, f) and [f ] = [f1]. Thus, the
algorithm solves the registration problem and calculates the distance between
the unparametrized shapes [f0] and [f1]. Note that it does, however, not provide
a geodesic homotopy between these shapes. Such a homotopy can be obtained
from the linear homotopy between ñf0 and ñf1 by (approximate) inversion of
the SRNF map f �→ ñf . For open curves this inversion is exact and easy
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Fig. 1. Distances and clusters produced by our algorithm are comparable to state-of-
the-art curve matching using dynamic programming [19] when tested on curves in the
Kimia database. Left: our SRNF-varifold algorithm; right: dynamic programming; top:
distance-based multi-dimensional scaling; bottom: symmetrized distance matrix.

to implement. For closed curves, the range of the SRNF map is not convex,
and an approximate inverse has to be used [19]. For surfaces, this is a delicate
issue [11], and to the best of our knowledge there exists no publicly available
implementation for general triangulated surfaces.

Implementation. To implement the program (5) numerically, one has to dis-
cretize the space of parametrized shapes. An advantage over [11] is that the
reparametrization group does not need to be discretized. Piecewise linear curves
and triangular meshes are suitable discretizations in our context, the reason
being that square root normal fields and kernel-based varifold distances extend
naturally to these spaces. The minimization is performed using an L-BFGS
method. The gradient of the discretized energy functional (5), which is needed
by the L-BFGS method, has an explicit form and can be implemented efficiently.

Curves. For curves, our algorithm is comparable to state of the art methods.
On the Kimia dataset1 it produces distances and clusters which are similar to
those based on dynamic programming, as shown in Fig. 1. A nice feature of our
1 Computer Vision Group at LEMS at Brown University: Database of 99 binary

shapes. https://vision.lems.brown.edu/content/available-software-and-databases.

https://vision.lems.brown.edu/content/available-software- and-databases
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Fig. 2. Our algorithm can be used to compare shapes with different topologies. Left
to right: geodesic interpolation (colored) between a single circle and a pair of circles
(black, dashed); top: small distance between the pair of circles; bottom: large distance
between the pair of circles. (Color figure online)

Fig. 3. Elastic matching of curves with functional data. Left: source and target curves
with binary functional data in red/cyan. Middle: matching using functional data. Right:
purely geometrical matching without functional data. (Color figure online)

algorithm, which stems from the use of varifold distances, is that the initial
and target shapes are allowed to have different topologies. For example, one can
match a single circle to a pair of circles, as demonstrated in Fig. 2. This is not
possible using previous methods for shape matching using SRNFs. There are
potential applications in cell division and removal of topological noise. Another
feature of our algorithm is that it can account for functional data on the given
shapes, as demonstrated in Fig. 3. To this aim, the varifold distance in (5) is
replaced by a functional shape distance, as developed in [6,8]. This has several
applications. The functional data may be dictated by the application at hand, as
e.g. in the case of texture information. An interesting alternative to be explored
in future work is to use shape descriptors as functional data to guide the matching
algorithm.

Surfaces. For surfaces, we obtain some promising first results and see a high
potential of improvement over alternative methods. An example is presented
in Fig. 4, where the optimal point correspondences between two hand postures
were calculated. As the two triangulated surfaces in this experiment had dif-
ferent mesh connectivities, and no point-to-point correspondences were initially
available, we had to initialize the optimization procedure with the template sur-
face. After optimization using an adaptive choice of Lagrange multiplier λ in
(5), we obtained an excellent fit of the deformed template onto the target with
anatomically correct point correspondences.
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Fig. 4. Anatomically correct correspondences obtained by elastic matching of two sur-
faces. Left: template f0 (blue, 2322 vertices) and target f1 (red, 2829 vertices). Right:
output f of the matching algorithm (green) and a linear homotopy between f0 and f .
(Color figure online)
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Abstract. Signatures provide a succinct description of certain features
of paths in a reparametrization invariant way. We propose a method
for classifying shapes based on signatures, and compare it to current
approaches based on the SRV transform and dynamic programming.
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1 Introduction

Shape analysis is a broad and growing subject addressing the analysis of different
types of data ranging from surfaces, landmarks, animation data etc. In this paper
shapes are unparametrized curves. Mathematically a shape is an equivalence
class of curves under reparameterization, that is, two curves c0, c1 : [0, 1] → M
are equivalent and determine the same shape if there exists a strictly increasing
smooth bijection ϕ : [0, 1] → [0, 1] such that c1 = c0 ◦ ϕ. For a given curve c we
denote by [c] the corresponding shape.

The similarity between two shapes [c0], [c1] is then defined by creating a
distance function dS on the space of shapes S,

dS([c0], [c1]) := inf
ϕ

dP(c0, c1 ◦ ϕ) (1)

where dP is a suitable reparameterization invariant Riemannian distance on the
manifold of parametrized curves.

Finding the optimal reparameterization ϕ is however computationally
demanding, and in many applications simply unnecessary. This is specifically
the case of applications where the optimal parametrization is not explicitly used
for further calculations, e.g. problems of identification and classification. Ways
of circumventing this step are therefore of great interest.

In recent years, after extensive work by Terry Lyons and collaborators, the
theory of rough paths has gained considerable importance as a toolbox for mathe-
matical analysis and for mathematical modeling in applications. In this context,
the signature map provides a faithful representation of paths, capturing their
essential global properties. A fundamental property of the signature is its invari-
ance under reparameterization, surmising its importance for shapes.
c© Springer Nature Switzerland AG 2019
F. Nielsen and F. Barbaresco (Eds.): GSI 2019, LNCS 11712, pp. 21–30, 2019.
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In this paper, we define a measure of similarity between shapes in S by
means of the signature. We define a distance directly on S. We test the viability
of this approach and use it to classify motion capture animations from the CMU
motion capture database [7]. Indeed, this leads to an efficient technique that
delivers results comparable to what is obtainable with methodologies based on
the SRV transform, but at a much lower computational cost.

2 Shape Analysis on Lie Groups

In the following, G will denote a finite-dimensional Lie group under multiplica-
tion with identity element denoted by e. We let g denote the corresponding right
Lie algebra g := LR(G). For a fixed g ∈ G, left and right translation by g will
be denoted Lg(h) = g · h and Rg(h) = h · g respectively.

2.1 Shape Space

We consider the space C∞([0, 1], G) of parameterized smooth curves on G, i.e.
smooth maps c : [0, 1] → G. To model the curves as unparameterized, or inde-
pendent of parameterization, we define the shape space S as the quotient space

S = C∞([0, 1], G)/Diff+, (2)

where Diff+ is the group of orientation preserving diffeomorphisms of the param-
eter space [0, 1]. The elements of S are equivalence classes of curves. The elements
of the same class are curves which can be mapped to one another by changing
their parameterization, that is, two curves c0, c1 ∈ C∞(I,G) are equal in shape
space if there exists ϕ ∈ Diff+ such that c1 = c0 ◦ ϕ.

In the setting of our application, the search for optimal time parametrizations
can be viewed as syncing up the animations, removing disturbances due to small
pauses, different periodicity, or asynchronous starting and stopping, by shifting
the movement of one character to match the other as closely as possible.

2.2 Geodesic Distances on Shape Space

Our goal is to introduce a meaningful and computable distance dS on S to
estimate the similarity between two shapes. This area of research started with
the efforts of Younes [16]. We will restrict the space of curves to the space of
immersions, i.e. curves with non-vanishing first derivative, which we denote by

P = Imm([0, 1], G). (3)

Let dP be a pseudo-metric on P. We define dS , for two elements [c0], [c1] ∈ S,
by

dS([c0], [c1]) := inf
ϕ∈Diff+

dP(c0, c1 ◦ ϕ). (4)
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As shown in [3, Lemma 3.4], dS will be a pseudo-metric on S if dP is a repa-
rameterization invariant or, in other words, if for any two c0, c1 ∈ P and any
ϕ ∈ Diff+ we have that

dP(c0 ◦ ϕ, c1 ◦ ϕ) = dP(c0, c1). (5)

An obvious choice of metric on P is the familiar L2-metric. However, as shown
by Michor and Mumford [13], this metric leads to vanishing geodesic distance
which renders it useless. They further show in [14] that one solution to this
problem is to consider metrics based on arc-length derivatives, creating a class
of Sobolev-type metrics.

There are multiple possible metrics in this class. One option is based on
what is usually referred to as the Square Root Velocity Transform (SRVT). This
transform and accompanying metric was first introduced, in the context of shape
analysis, by Srivastava et al. [15], who used the transformation when working
with curves in Euclidian spaces. The transformation has later been adopted to
more general shapes. Of particular interest is the formulation for shapes that are
represented as Lie-group valued curves [3].

We define the SRVT R : P → C∞([0, 1], g \ {0}) by

R(c)(t) :=
R−1

c(t)∗(ċ(t))√‖ċ(t)‖ . (6)

This transformation has the following useful properties [3, Lemma 3.6]:

1. For every c ∈ P and ϕ ∈ Diff+, the following equivariant property holds:

R(c ◦ ϕ) = R(c) ◦ ϕ ·
√

ϕ̇. (7)

2. It is translation invariant: for all c ∈ P and g ∈ G

R(Rg(c)) = R(c).

A similar result is true for shapes with values in Euclidean spaces [15].
Further, one can obtain a Riemannian metric dP∗ that coincides with the

geodesic distance on a submanifold P∗ ⊂ P by using the SRVT to pull back
the L2-metric on C∞(I, g \ {0}) [3]. Further restricting the immersion space to
P∗ = {c ∈ P : c(0) = e}, where e is the identity element in G, the distance dP∗
turns out to be reparameterization invariant.

This invariance implies, in particular, that it will also yield a geodesic distance
on S∗ := P∗/Diff+ [2]. The restriction to P∗ isn’t very troublesome as any curve
can be transferred to this space by right translation by the inverse of its initial
value, that is Rc(0)−1 [3].

Using the equivariant property for the SRVT from Eq. (7) and defining qi =
R(ci) for i = 0, 1, the problem of calculating the metric for the shape space S∗
in Eq. (4) can be written as

dS∗(c0, c1) = inf
ϕ∈Diff+(I)

√∫

I

‖q0(t) − q1(ϕ(t)) ·
√

ϕ̇‖2dt. (8)
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Finding this infimum will generally be very difficult. The usual approach is
therefore to discretize the curves and solve instead a finite dimensional optimiza-
tion problem. The most common methods used to solve this problem in shape
analysis [15] are based on either the gradient descent method or a dynamic pro-
gramming algorithm (DP). In our experiments we use the DP approach described
in [1].

3 Signatures

Signatures, introduced by Chen [4] for smooth paths and later generalized by
Lyons [11] under the name of geometric rough paths, are an important tool
for the study of the solutions of controlled differential equations, but have also
proved useful for solving classification problems of time series, Machine Learning
and Topological Data Analysis [6].

In the usual framework, signatures are defined for paths taking values in a
Banach space. From a geometric point of view, and in light of our purposes, this
setting has to be adapted. Luckily, Chen also considered signatures for curves
taking values on a smooth manifold [4]. This definition is quite general and relies
on the selection of a frame bundle. For Lie groups there is a canonical choice: the
Maurer–Cartan form. This is the unique right-invariant one form ω such that
ωe = idg, i.e. ω(v) = (R−1

g )∗v for v ∈ Tg(G) [8, p. 311].
Below we denote, for a finite-dimensional vector space V of dimension d =

dim V , the tensor algebra over V ,

T (V ) :=
⊕

n≥0

V ⊗n.

We observe that T (V ) is always infinite-dimensional. Its dual space is denoted
by T ((V )) := T (V )∗, and it may be identified with the ring of formal power series
in d noncommuting variables {e1, . . . , ed}.

Definition 1. Let G be a d-dimensional Lie group and α ∈ C∞([0, 1], G) be a
smooth curve and ω the Maurer-Cartan form on G. The signature S(α) of α is
the family of linear maps on T (Rd) recursively defined by 〈S(α)s,t, 1〉 := 1 and

〈S(α)s,t, ei1···ip〉 :=
∫ t

s

〈S(α)s,u, ei1···ip−1〉ω
ip
α(u)(α̇(u)) du.

In this definition, the notation ωj
g(v) denotes the j-th component of the vector

ωg(v) ∈ g in a basis of the Lie algebra g of G.
The signature provides a compact description of certain features of a path [5].

One of its main advantages in our context is its reparameterization invariance:
for any orientation-preserving diffeomorphism ϕ on [s, t] we have that

S(α ◦ ϕ)s,t = S(α)s,t.
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Other fundamental properties include:

1. For each 0 ≤ s < t ≤ 1, the signature S(x)s,t belongs to the set of group-like
elements of T ((Rd)), and for any 0 ≤ s ≤ 1, S(x)s,s = 1, the neutral element
in the group.

2. Chen’s rule: For any three 0 ≤ s < u < t ≤ 1 we have

S(x)s,u ⊗ S(x)u,t = S(x)s,t.

Using these properties, signatures may be efficiently computed for some
restricted classes of paths. For example, if x is a straight line in R

d with base
point a ∈ R

d direction b ∈ R
d, i.e. xt = a + tb for t ∈ [0, 1], then

S(x)s,t = exp⊗((t − s)b)

= 1 + (t − s)b +
(t − s)2

2
b ⊗ b +

(t − s)3

6
b ⊗ b ⊗ b + · · · .

(9)

A similar statement is true for geodesic curves on a finite-dimensional compact
Lie group.

We may think of signatures as an infinite vector indexed by words over the
alphabet {1, . . . , d}. In particular, for a piecewise linear path the above formula
means that if we want to know the component in (9) corresponding to the word
w = i1 · · · ik then

〈S(x)s,t, ew〉 =
(t − s)k

k!

k∏

j=1

bij

For a general piecewise linear path x, we may use the above formula and
Chen’s rule to deduce that

S(x)s,t = exp⊗(Δt1b1) ⊗ exp⊗(Δt2b2) ⊗ · · · ⊗ exp⊗(Δtmbm)

where Δtk = tk − tk−1 are the length of the time intervals where the path
is sampled and b1, . . . , bk are the slopes of the path in each of these intervals.
The entries of this expression may be computed by using a Baker–Campbell–
Hausdorff-type formula, for example.

Finally, we remark that the signature possesses another interesting property,
namely it is an homomorphism from path space with concatenation to the tensor
algebra T ((Rd)). This means that if we are given two paths x : [0, 1] → G and
y : [0, 1] → G, and we concatenate them to form a new path x · y, then

S(x · y)0,1 = S(x)0,1 ⊗ S(y)0,1.

Moreover, if we reverse the path x, i.e. we define ←−x (t) := x(1 − t) then

S(←−x )0,1 = S(x)−1
0,1

where the inverse is taken in the group-like elements of the tensor algebra.
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It can be shown that actually, as a function of time the signature satisfies
the differential equation

d
dt

S(x)s,t = S(x)s,t ⊗ ẋt, S(x)s,s = 1

in the tensor algebra. From this point of view, the signature map corresponds
to the flow map of the vector field given by the base path. Thus, the signature
belongs to an infinite-dimensional Lie group whose Lie algebra is the free Lie
algebra over R

d which we denote by L(Rd). It does not, however, constitute a
one-parameter subgroup. Therefore, for each fixed time interval [s, t] we can map
the signature to the free Lie algebra via a logarithm map, and we define

Λ(x)s,t = log(S(x)s,t) ∈ L(Rd).

This element, called the log-signature in the literature, provides a minimal
description of the path, which is equivalent to the full signature.

There are many ways in which signatures can be used to compare shapes,
but the essential feature is that since the map S is reparameterization invariant,
one obtains a way of directly comparing shapes instead of parameterized curves.
For our experiments we chose a particular distance on T ((Rd)) (see next section
for the precise formula), but this is by no means the only possible choice.

In making this choice one has to truncate the signature to obtain a finite-
dimensional object. Due to the factorial decay of iterated integrals little informa-
tion is lost in the process; still, some level has to be chosen and usually this done
by running experiments. Once the truncation level is chosen, several choices of
metric are available: the truncated tensor algebra becomes finite-dimensional so
it has a nice linear structure and we are free to choose norms on it subject to
some compatibility restrictions. There is also the notion of homogeneous norm
on group-like elements, which takes into account the geometry of this group.
Finally, the logarithm in this group maps signatures into a linear space (the free
Lie algebra) in a bijective way, so no information is lost, but there is a substantial
dimensional reduction.

According to our observations, is the last option which represents the most
robust choice in terms of noise sensitivity, while also providing an accurate way
of comparing signatures.

4 Experiments

Motion capture animations are usually recorded as the angle of every joint in a
skeleton for every frame in an animation. A natural setting for the rotating joints
is the Lie group of 3D rotations, SO(3). Every frame consists of d independently
rotating joints so the frame can be modeled as an element in SO(3)d, where
SO(3)d is the Cartesian product of d copies of SO(3). Interpolating between the
frames will then allow us to model the animation as a parameterized curve.

We use an interpolation scheme in which one uses the log map to linearly
interpolate on the Lie algebra, and then pull back to the Lie group with the
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exponential map. Let A,B ∈ SO(3), we define the interpolation κ : [0, 1] →
SO(3) between A and B as

κ(s) := exp
(
s log

(
B · AT

)) · A.

Notice that κ(0) = A and κ(1) = B. Applying this interpolation component-wise
to the frames in SO(3)d will enable us to construct a piece-wise interpolation
between the frames of the animation. The Maurer–Cartan form along the inter-
polation is piece-wise constant, making it easy to compute SRV representations,
dP∗ -metrics, and signatures.

To test the effectiveness of the proposed frameworks we check whether they
are able to identify different types of character motion. We have selected ani-
mations from the CMU motion capture database with descriptions “walk”,
“run/jog” and “forward jump”. These are similar in length, and should pro-
duce results that conform with human intuition.

The test will calculate a distance matrix using the proposed similarity mea-
sures. From the distance matrix we produce a multidimensional scaling plot
(MDS), depicting how similar, or dissimilar, the animations are. MDS tries to
place the data points in 2-dimensional scatter plot while preserving the dis-
tances given by the distance matrix. See Kruskal [9] for more information on
this method.

In Fig. 2a we calculate the distance matrix using the metric dP∗ on interpo-
lation curves in P∗, and in Fig. 2b we use the metric dS∗ , Eq. (8), on the shapes
generated by the curves in S∗, where the optimal reparameterization is calcu-
lated with a DP algorithm. There are little to no patterns when projecting to the
space (P∗, dP∗), as seen in Fig. 2a. In Fig. 2b however, we observe that modelling
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Fig. 1. Multi dimensional scaling plot of distance matrix calculated from by projecting
animations to the space S∗ equipped with the distance function dsig. In this plot we
have taken animation with descriptions “run/jog”, “forward jump” and “walk” from
the CMU Motion Capture Database [7].
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the curves as being parameterization invariant yields three easily distinguishable
clusters of animations. Compared to Fig. 2a we see a big benefit from this model
assumption.
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(a) Animations projected to P∗ with distance matrix calculated
with the metric dP∗ .
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(b) Animations projected to S∗ with distance matrix calculated
with metric dS∗ using a DP algorithm.

Fig. 2. Multi dimensional scaling plots of distance matrix based on geodesic distances
calculated in P∗ and S∗, figure (a) and (b) respectively. In this plot we have taken
animation with descriptions “run/jog”, “forward jump” and “walk” from the CMU
Motion Capture Database [7].
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In Fig. 1 the animations are projected to the shape space S equipped with
the distance function dsig(c0, c1) =

∥∥∥ log S(c0)
‖log S(c0)‖ − log S(c1)

‖log S(c1)‖
∥∥∥. While this figure

does reveal the same structure as seen in Fig. 2b, the clusters exhibit both a
higher internal and a lower external variability. An important take away from
this experiment is that this distance function in fact does preserve some of the
structure of the shape space.

5 Concluding Remarks

Our preliminary experiments, show that classifying animations using a distance
function on S∗ based on signatures produces very encouraging results. The pro-
posed method is computationally very efficient, even though somewhat less accu-
rate than known methods in shape analysis.

The Riemannian metric (4) requires calculating the optimal reparameteriza-
tions between every pair of animations. The proposed signature method instead
only requires calculating the signature once for every animation, and then com-
pares animations by computing inexpensive norms. The optimisation procedure
is no longer necessary.1

In our experiments, the signature method outperformed the optimal repa-
rameterization metric by a factor of ∼2000 when classifying animations. A more
precise comparison with the SRVT approach and other methods, see e.g. [10]
goes beyond the scope of this work and will be considered in future work. Still
our preliminary experiments give an idea of the possible performance benefits
gained with the signature approach.

Increasing the accuracy of the signature method might also be possible by
defining a more precise similarity measure. Nonetheless, our results can be seen
as proof of concept for using signatures as an efficient way of classifying shapes.
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Abstract. We propose in this work the use of Dilation theory for non-
stationary signals and their time/Doppler spectra to embed the underly-
ing spectral measure on the Special Unitary group SU(n). The Dilation
theory gives access to rotation-like matrices built in with partial correla-
tion coefficients. Due to the non-stationary condition, the time/Doppler
spectra is associated with a path on SU(n). We use next the Square root
Velocity Transform which has been proven to be equivalent to a first
order Sobolev metric on the space of shapes. Because the metric in the
space of curves naturally extends to the space of shapes, this enables a
comparison between curves’ shapes and allows then the classification of
time/Doppler spectra.

Keywords: Time/Doppler · SU(n) · Dilation theory · Shape space ·
Elastic metric · SRV transform

1 Introduction

The analysis and/or representation of non-stationary processes has been
approached for four or five decades now by time-scale/time-frequency analysis,
or by the Fourier representation when processes belong to the class of peri-
odically correlated processes (PC), or finally by the use of partial correlation
coefficients (parcors). One of the advantages of the parcors utilization is their
strong relationship with process measure through the point-to-point relation-
ship with correlation coefficients [23]. They consequently appear explicitly in
the Orthogonal Polynomial on the Real Line/Unit Circle decomposition of the
measure [6,19], on the Matrices Orthogonal Polynomials on the Unit Circle [12]
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and its applications [4], are the elements for the construction of dilation matri-
ces that appear in the Cantero Moral, and Velazquez (CMV)/Geronimus, Gragg,
and Teplyaev (GGT) matrices [20], for the Schur flows problem with upper Hes-
senberg matrices [1] that are also seen in the literature as evolution operators
[19] or shift operator [15], and finally appear in the state-space representation
[9,10]. The Dilation theory is inspired by the theory of operators [21], which
links the measure and unit operators of the process. In its simplest version, the
dilation theory corresponds to the Naimark [21] dilation, and states that given
a sequence of correlation coefficients {Ri}i∈N, there is a unit matrix W such
that Ri � (1 0 0 . . . )W i(1 0 0 . . . )T where ·T denotes transposition. When the
process is not stationary, its associated correlation matrix is no longer struc-
tured Toeplitz, a set of matrices is then required [9] and the previous expression
becomes Ri,j � (1 0 0 . . . )Wi+1Wi+2 · · · Wj(1 0 0 . . . )T . The matrices Wi are
theoretically understood as matrices of infinite rotation, which become finite
when the sequence of the correlation coefficients is itself finite. In this particular
case, the matrices Wi belong to SO(n) or SU(n), the orthogonal or unit special
group, respectively, and the measure of the process is fully described by the set
of Wi. As a result, the spectral measure of the process is characterized for the
non-stationary case, by a sampled trajectory induced by the Dilation matrices
on a Lie group.

In this work, we propose to analyse Time/Doppler spectra given by drones.
This topic has been already tackled by the use of parcors but results were not as
strong as expected [2,4]. The curve distance or their related shapes concerned
only one parcor at a time and not the whole associated spectral measure. This
is why in this work we analyse the curves of Dilation matrices associated with
Time/Doppler spectra on the Special Unitary Group, SU(n).

We will first recall how to obtain dilation matrices and then remind how
to compare the associated curve on SU(n), through the Square Root Velocity
Transform. Finally, results will be given based on real Time/Doppler spectra
and a conclusion will follow.

2 Building the Dilations

The idea, mainly explained in [9] consists in the parametrization of correlation
matrices by one or more sequences of numbers, called choice sequence, Geron-
imo or Verblunsky coefficients, Schur parameters or partial reflection coefficients
(parcors) according to the context. To simplify the study, we place ourselves
within the framework of positive definite matrices. There is in fact a bijection
between the set of positive definite matrices and the parcors, as Levinson, Burg,
and more recently Barbaresco [2–4,23] have noted, in the case of stationary
signals. This parameterization in its simplest form associates the partial corre-
lation coefficients that we will call {Γi,j}i<j , to the correlation matrix. In fact,
the partial correlation coefficients appeared to be the elementary angles in the
Gramm-Schmidt orthogonalization procedure which orthogonalizes the canoni-
cal basis of Rn in the basis in which the non-stationary kernel of the process is
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represented. This is a consequence of the semi positive definite property of the
correlation matrix.

With this idea in mind, (more explanations shall be obtained in [7,9,13]), the
first orthogonalization step is therefore associated with an elementary rotation
of the first canonical vector of Rn with angle arccos(Γ1,1), the second orthogo-
nalization step is the composition of two rotations and so on. We briefly give the
procedure as follows.

From the sequence of {Γi,j}i<j we build Givens rotation in such a way that:

Gj−k(Γk,k+l) = I ⊕
(

Γk,k+l DΓ ∗
k,k+l

DΓk,k+l
−Γ ∗

k,k+l

)
⊕ I (1)

with I the identity matrix and DΓi,j
= (I − Γ ∗

(i,j)Γi,j) the defect operator of the
contraction Γi,j . By noting:

Wi = Gj−i(Γi,i+1)Gj−i(Γi,i+2) . . . Gj−i(Γi,j) (2)

we can therefore write:

Ri,j = P1WiWi−1 · · · Wj−1 |H1 (3)

where P1 = (1 0 · · · )T that is, the orthogonal projection on the first line, and H1

is the restriction to the first column. We then find the relation previously stated
Ri,j = (1 0 · · · )Wi+1Wi+2 · · · Wj(1 0 · · · )T , corresponding to the Kolmogorov
decomposition of a non-stationary process [9]. It is the extension of the Naimark
Dilation operator theorem. The structure of a Dilation matrix Wi is such that

Wi =

⎛
⎜⎜⎜⎜⎜⎜⎝

Γ1 D1∗Γ2 D1∗D2∗Γ3 · · ·
D1 −Γ ∗

1 Γ2 −Γ ∗
1 D2∗Γ3 · · ·

0 D2 −Γ ∗
2 Γ3 · · ·

0 0 D3 · · ·
0 0 0 · · ·
0 0 0 · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Wi belongs to the class of so-called higher Hessenberg matrices with positive sub-
diagonal coefficients. Of course, when the process is stationary, the calculations
are greatly simplified. We have in that case W = Wi, ∀i, Γi,j = Γj−i.

3 Comparison of PC Processes

3.1 Shape Space

We are therefore interested in curves based on a variety, and more precisely
on a Lie group. Let c be such a curve, c : [0, 1] ∈ SO(n). To study the geo-
metric structure of these objects, consider the set of curves of SO(n) defined
by M = {c ∈ C∞([0, 1], SU(n)) : c′(t) �= 0 ∀t}. When comparing two curves, it
is natural to define a distance between these curves that do not depend on
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their parameterizations or their rotations. This amounts to reparametrizing the
curves by an increasing diffeomorphism φ → D : [0, 1] → [0, 1] and imposes that
the metric on M be invariant by reparametrization. This property leads to the
equivalence relation

co ∼ c1 ⇔ ∃ φ ∈ D : c0 = c1 ◦ φ. (4)

for two curves c0, c1 of M. From this relation we naturally get a definition of a
quotient space of M, usually called the shape space and

S = M/∼, or S = M/D. (5)

We deduce a distance on the space of forms from that defined on M

dS ([c0], [c1]) = inf
φ∈D

dM (c0, c1 ◦ φ) , (6)

where [c0], [c1] are respectively the representatives of the equivalence classes of
c0 et c1.

3.2 Metric and Distance on S then M
We now propose to give some information on the choice of a relevant metric on
M in order to compare the different closed curves. Since the base space is a Lie
group, we use the Celledoni et al. [8] approach, but many other works have been
proposed to take into account the homogeneous (or not) structure of the basic
variety.

In [5,16,17] it is shown that unfortunately we can not use the simple metric
L2 on M because it leads to a null metric on the space of forms S. In this
case it is impossible to differentiate two different curve shapes. To overcome this
difficulty, the family of elastic metrics, derived from the Sobolev metric, has been
studied. In the case of an Euclidean space R

n, it admits the expression:

ga,b
c (u, v) =

∫ (
a2〈Dlu

N ,Dlv
N 〉 + b2〈Dlu

T ,Dlv
T 〉) ||c′||dt,

where Dlu = h′/ || c′ ||, Dlu
T = 〈Dlu,w〉w, avec w = c′/ || c′ || and

Dlu
N = Dlu − Dlu

T . In our case it is shown that a, b = 1, 1/2 allows to have an
equivalence with a transformation at the same time simple interpretation and
implementation, the TSRV. The TSRV, adapted to our case, sets the curve c
by its velocity vector and its anchor point and then transports the new curves
belonging to the successive tangent spaces by translation on the right, all at
the same point of reference, which will be the identity element e of SU(n). Its
definition is

FLie : M −→ SU(n) × L2([0, 1], g) (7)

FLie(c)(t) = (e, q(t)) =

(
e,

T
c(t)→e
c (c′(t))√|| c′(t) ||

)
(8)
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where g is the Lie algebra, || · || a norm induced by a right invariant metric on
SU(n), and where T

c(t)→e
c is the transport of c(t) to the identity following the

curve c. With this transformation, which corresponds to a first-order Sobolev
metric, the desired distance in (6) leads to solving the optimization problem:

dS([c0], [c1]) = inf
φ∈D

(∫ 1

0

||q0(t) − q1(φ(t))
√

φ′(t)||2
)1/2

,

which is solved by a traditional gradient descent algorithm or dynamic linear
programming [8]. We also get a familiar expression for the geodetic interpolation
between two curves c0 and c1, expressed in their TSRV domain:

Q(s) = F−1
Lie ((1 − s)FLie(c0) + sFLie(c1)) pour s ∈ [0, 1].

We now have all the ingredients to describe the steps to characterize and compare
non-stationary processes:

1. Input: A set of rotation matrices {Wi}i associated with the Time/Doppler
spectra;

2. Inject the set of matrices {Wi} into their respective Lie algebras {Vi} via the
inverse exponential application;

3. Use Spline to interpolate between the matrices Vi [14,18];
4. Come back to the base manifold SU(n) via the exponential application;
5. Shift the curve in order to fulfil the condition c(0) = e and then perform the

SRV transform, given by (7);
6. Compute the distance defined by Sect. 3.2.

The optimisation problem (non-crossing matching graph) is solved by
dynamic programming;

7. Output: Distance between the curves on M, and geodesic interpolation
between the curves.

4 Application on Time/Doppler

This section is devoted to show how the approach proposed can help in deciding
through Time Doppler whether a target is detected. For this scenario, we have
used a Time/Doppler of a drone and computed the sequence of parcors for two
different time instants. The periodically correlated property of the Time/Doppler
signal is showed in Fig. 1, which is used for estimating the periodicity (with the
lowest frequency) of the second order statistics. Here, the periodicity has been
estimated to be roughly 50 samples. There will be consequently 50 sequences
of parcors for each of the two signals analyzed. In order to illustrate the tra-
jectory made of the dilation matrices associated with each sequence of parcors,
we propose to use only two parcors. The dilation matrices will belong to SU(4)
so. The next step is to take a suitable parametrization in order to display the
trajectories on R

3.
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4.1 Representation of SU(4)

We propose here to briefly explain the parametrization we have chosen. It is
based on [22] which states that the vector of the Lie algebra eigenvalues for
SU(4) belongs to the 2-sphere. Actually, the eigenvalues of the Lie algebra are
paramertized by two angles and a radius in the following way:

Tr(H) =
4∑

k=1

λk = 0, T r(H2) =
4∑

k=1

λ2
k = r2

Tr(H3) =
4∑

k=1

λ3
k =

3
4
r3 sin(θ) sin(2θ) cos(φ)

det(H) =
4∏

k=1

λk =
1
8

((
Tr(H2)

)2 − 2Tr(H4)
)

with H the Lie algebra of SU(4), Tr() and det, the trace and the determinant
respectively and λk the k−th eigenvalue of H. Once r, θ, φ are estimated, we are
in position to represent the trajectory made of the dilation matrices.

4.2 Results

Curiously enough, the angle φ estimated has a value which is very closed to π
2

for all the SU(4) matrices. Then, the 2-sphere representation of SU(4) reduces
here to a plan. This represented by Fig. 2. This figure allows us to clearly see
a trajectory difference between a detected target or not. When no target is
detected, Fig. 2-(a), the set of dilation matrices concentrates around a closed area
which is obviously not the case for Fig. 2-(b) where the dilation matrices spread
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Fig. 1. Square Coherence Statistics for two different time instants, showing the peri-
odically correlated property of the Time/doppler. (a) when there is no target detected
by the Time/Doppler, (b) when a target is detected by the Time/Doppler
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Fig. 2. Trajectory made of the Dilation matrices belonging to SU(4) for two differ-
ent time instants and represented here inside a ball (Sect. 4.1). (a) when there is no
target detected by the Time/Doppler spectra, (b) when a target is detected by the
Time/Doppler spectra

off much more, providing a closed curve with much more amplitude variations.
The SRV next applied to these two trajectories gave a distance of 80.

5 Conclusion

In this paper, a new representation of Time/Doppler spectra associated with
non-stationary processes has been proposed through the theory of Dilation. It
allows to represent the spectral measure of the RADAR process on a Lie group
by drawing a curve on SU(n). The comparison of the processes, and then their
associated spectra, can then be carried out directly by comparing these curves
using tools coming from the differential geometry. In particular, an adapted met-
ric is proposed in order to obtain a fast distance calculation and a simple geodesic
interpolation. We note that the theory remains valid for real signals and that
work in progress shows that it is possible to classify the processes by topological
characteristics of the spectral measure of the processes. Finally, the formalism of
the differential geometry makes it possible to interpolate between the rotation
matrices and thus to interpolate the spectral measure of the process. Going a
step further, the sequences of Time/Doppler cells might then be interpolated
yielding to more accurate spectra.
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Abstract. We present a framework for shape matching in computa-
tional anatomy allowing users control of the degree to which the match-
ing is diffeomorphic. The control is a function defined over the domain
describing where to violate the diffeomorphic constraint. The location
can either be specified from prior knowledge of the growth location
or learned from data. We consider landmark matching and infer the
distribution of a finite dimensional parameterisation of the control via
Markov chain Monte Carlo. Preliminary analytical and numerical results
are shown and future paths of investigation are laid out.

Keywords: LDDMM · Computational anatomy · Metamorphosis ·
MCMC

1 Introduction

In computational anatomy [10,11] one of the most fundamental problems is to
continuously deform an image or shape into another and thereby obtain a natural
notion of distance between them as the energy required for such a deformation.
Common methods to compute image deformations are based on diffeomorphic
deformations which assume that the images are continuously deformed into one
another with the additional property that the inverse deformation is also con-
tinuous. This is a strong requirement for images which implies that the ‘mass’
of any part of the image is conserved: we cannot create or close ‘holes’. This is
also a crucial property in fluid mechanics and in fact the theory of diffeomorphic
matching carrying the moniker Large Deformation Diffeomorphic Metric Map-
ping (LDDMM) [5,23] has been inspired by fluid mechanics. Indeed, Arnold [4]
made the central observation that the geodesic equations for the diffeomorphism
group induced by divergence-free vector fields corresponded to that of incom-
pressible flows. If a strictly diffeomorphic matching is not possible or necessary,
an extension of LDDMM called metamorphosis [14,25] is available which intro-
duces a parameter σ2 parameterising the deviation from diffeomorphic matching
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allowing for topological variations e.g. growth via image intensity. In particular,
if σ2 = 0 the deformation is purely diffeomorphic as in LDDMM. See [18,22,24]
for technical details pertaining to the construction of the metamorphosis prob-
lem. While diffeomorphic paths always exist for landmark problems [12] this
theory allows one to match images of shapes with different topological features,
which is ill-conditioned for standard LDDMM. Indeed, even inexact matching in
LDDMM for such problems yields large energies and spurious geodesics that do
not contribute to an intuitive matching, see Fig. 1. As observed here, introducing
σ2 > 0 regularises the problem and qualitative improves the matching.

Fig. 1. This figure illustrates landmark matching with classical LDDMM (left column),
metamorphosis (right column) and our selective metamorphosis approach (middle col-
umn). We perform a matching between two landmark configurations q0 (circles) and
q1 (crosses), with the continuous lines between them describing trajectories. LDDMM
fails to perform the matching and we observe unnatural landmark trajectories whereas
metamorphosis achieves a more intuitive matching. Selective metamorphosis has the
additional advantage of only breaking the diffeomorphic property where needed in
along the matching, thus preserving more of the desired diffeomorphic property of the
matching. These simulations where done for landmarks with Gaussian kernel of vari-
ance 0.5, 100 timesteps from t = 0 to t = 1, and a metamorphosis kernel of variance
0.2.

In this work, we modify metamorphosis to include a spatially dependent con-
trol parameter x �→ ν(x) in order to selectively allow non-diffeomorphic (meta-
morphic) matching in parts of the domain. For ν(·) = σ2 our theory recovers
the standard metamorphosis model. However, with a localised control (e.g. a
Gaussian centred at a point in R

d), we can selectively introduce metamorphosis
in an image and model local topological effects such as growth phenomena. The
difficulty of this problem is to infer the function ν without prior knowledge of
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the location of the topological effects. This problem is similar to the one treated
in [3], where such functions were parameterising the randomness in LDDMM
matching of shapes. We will use a Markov chain Monte Carlo (MCMC) app-
roach to infer appropriate functions ν, such that the topological effects are well
described and a large part of the matching remains diffeomorphic. In this paper
we focus on landmark matching but aim to extend the theory to data images.

2 Metamorphosis for Landmarks

In this paper we are concerned with diffeomorphometric approaches to shape
matching. To this end, we use time-dependent velocity fields ut ∈ V , where the
Hilbert space V is continuously embedded in Ck

0(R
d), k ≥ 1. It induces a curve

ϕt on a subgroup DiffV (Rd) of diffeomorphisms [4,26] via the equation

ϕ̇t = ut ◦ ϕt, ϕ0 = id. (1)

This is used in the matching problem of two images I0 and I1 with cost

S(u) =
∫ 1

0

1
2
‖ut‖2V dt +

1
2λ2

F (I0 ◦ ϕ−1
1 , I1) −→ min. subject to (1), (2)

where F denotes a similarity measure between the deformed initial image I0 ◦
ϕ1 and the target image I1 to allow inexact matching parameterised by λ2.
The LDDMM approach takes F as an L2 norm of the difference between its
arguments. In this work, we will consider singular solutions for M landmarks
with positions qi

t ∈ R
d and momenta pi

t ∈ R
d for i = 1..M so that the velocity is

ut(x) =
M∑
i=1

pi
tK(x − qi

t) , (3)

where K : Rd × R
d → R is the kernel associated to the norm ‖ · ‖V . For meta-

morphosis, we follow the notation of [14, Definition 1], and in addition to the
deformation ϕt, we introduce a template variable ηt such that the positions qt

of a set of landmarks and the template velocity zt are given by z as

qt = ϕtηt and zt = ϕtη̇ . (4)

We then extend the action functional (2) to account for the template variable as

Sm(qt,pt, zt) =
∫ 1

0

1
2

(
‖ut‖2V +

1
σ2

M∑
i=1

|zi
t|2

)
dt, (5)

where now the reconstruction relation is

q̇t = ut(qt) + zt, (6)

see [14,25] for more details. By taking variations carefully, we obtain the equa-
tions of motion

ṗt = −∇ut(qt)Tpt

q̇t = ut(qt) + σ2pt,
(7)

where zt = σ2pt and ut is defined in (3).
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3 Selective Metamorphosis for Landmarks

We can now extend the metamorphosis setting to be able to locally control
the amount of non-diffeomorphic evolution. For this, we introduce a function
ν : Rd → R replacing the parameter σ2 such that ν(x) = σ2 corresponds to the
classic landmark metamorphosis. The action for selective metamorphosis thus
becomes

Sν
sm(qt, ut, zt) =

∫ 1

0

1
2

(
‖ut‖2V +

M∑
i=1

1
ν(qi

t)
|zi

t|2
)

dt, (8)

which we minimise subject to the reconstruction Eq. (4) and the boundary con-
ditions q0 and q1 at time t = 0, 1. In the case of landmarks we have as before
that zt = ν(qt)pt so we can eliminate the template variable zt and write

Sν
sm(qt, ut,pt) =

∫ 1

0

1
2

(
‖ut‖2V +

M∑
i=1

ν(qi
t)|pi

t|2
)

dt. (9)

The problem defined by (9) yields the following equations for selective metamor-
phosis for landmarks:

ṗt = −∇ut(qt)Tpt − 1
2
∇ν(qt)|pt|2

q̇t = ut(qt) + ν(qt)pt,
(10)

with q0, q1 fixed. Again, the velocity is fully described by p and q via (3). As
we see from these equations, our approach offers a granularity not attainable
via classical inexact landmark matching or metamorphosis. Namely, with ν it
is possible to specify where in the image growth is allowed. As an example, a
medical expert may want to allow for metamorphic growth near a tumour-prone
area of the brain whilst allowing for purely diffeomorphic growth of the skull of
the patient.

A practical procedure for solving (10) with the velocity defined in (3) is
called shooting, where we replace the end-point condition q1 with a guess for p0,
and iteratively update p0 using automatically computed adjoint (or backward)
equations until q1 compares to q(1) below a certain tolerance. We will perform
this procedure directly with an automatic differentiation package Theano [21],
see [16,17] for more details on the implementation.

Theorem 1. Let ν be bounded from below away from zero by νinf ∈ R and from
above by 0 < σ2 ∈ R. Then there exists a minimiser of (9) admissible to (6).

Proof. The functional in (9) is not convex so we work with a reformulation to
ensure the required lower semi-continuity. Define a variable wi

t =
√

ν(qi
t)pi

t in
the problem:
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inf
u∈L2([0,1], V )

q∈H1([0,1],Rd×M )

w∈L2([0,1],Rd×M )

∫ 1

0

1
2

(
‖ut‖2V +

M∑
i=1

|wi
t|2

)
dt

q̇i
t = ut(qt) +

√
ν(qt)wt

q0, q1 fixed

First, note that owing to the constraint effectively being a boundary value prob-
lem, we cannot always find a q for arbitrary pairs of (u, w). We define a bounded
operator (q, ut) �→ q̇t−ut(qt)√

ν(qt)
� w:

( M∑
i=1

|wi
t|2

) 1
2

= ‖w‖2 = ‖ q̇t − ut(qt)√
ν(qt)

‖2 � ν−1
inf

(
‖q̇t‖2 + ‖ut(qt)‖V

)
.

From this we generate a minimising sequence (qn, un,wn)n≥0 admissible to (11).
The rest of the proof is standard, see e.g. [26]. We show the constraint equation
is continuous with respect to the weak topology on X � H1([0, 1], Rd×M ) ×
L2([0, 1], V ) × L2([0, 1], Rd×M ) i.e. e(qn

t , wn
t , un

t ) ⇀ e(qt, wt, ut) where
e(q, w, u) � q̇ − u(q) − √

ν(q)w. Then,

〈
√

ν(qt)wt −
√

ν(qn
t )wn

t , φ〉 � νinf〈wt − wn
t , φ〉 → 0 , ∀φ ∈ L2([0, 1], Rd×M ) .

Further, for φ ∈ L2([0, 1], V ),

〈ut(qt) − un
t (qn

t ), φ〉 = 〈ut(qt) − un
t (qt), φ〉 + 〈un

t (qt) − un(qn
t ), φ〉 .

The first term vanishes trivially, while for the second we see

〈un
t (qt) − un

t (qn
t ), φ〉 ≤ Lip(un

t )〈qt − qn
t , φ〉 → 0

Since linear operators are naturally compatible with the weak topology the
required continuity follows. Passing to subsequences where necessary we can by
classic results extract bounded subsequences converging to weak limits where
necessary to obtain a minimiser. Convexity of S implies weak lower semi-
continuity concluding the proof. �

Theorem 2. Assume ν ∈ W 2,∞(Rd) and V is embedded in Ck
0(R

d), k ≥ 1 (con-
tinuous functions with continuous derivatives to order k vanishing at infinity).
Then, given p0, q0,∈ R

d×M , (10) with (3) are integrable for all time.

Proof. Establishing appropriate Lipschitz conditions implies integrability of the
system akin to [6, Theorem 5]. We note that the kernel in (3) is Lipschitz in
(pt, qt) by assumption, so the composition (p, q) �→ u◦q is also Lipschitz. u(q) �→
∇u(q)T consider v, w ∈ V and x, y ∈ R

d:

‖∇v(x) − ∇w(y)‖2 � ‖v‖V ‖x − y‖2 + ‖v − w‖V ‖y‖2 (11)
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so the mapping is Lipschitz in both the position and velocity. Given the condi-
tions on ν the mappings

(q, p) �→ ν(q)p

(q, p) �→ ∇ν(q)|p|2 (12)

are locally Lipschitz. Consequently we verify that for any (p0, q0) ∈ B(0, r) ⊂
R

d×M ×R
d×M , the system (10) is locally Lipschitz with constant Lr,t0 for some

t0 > 0. By the conservation of the Hamiltonian we can extend the existence of
solutions to arbitary t > t0. �

4 Bayesian Framework

We now place a stochastic model on ν inspired by the approach taken in [6]
to infer most probable such functions. See also [1,2,20] for similar Bayesian
approaches in computational anatomy. The goal is to develop an algorithm to
infer ν from a given set of localised functions. We refer to [7,8] for an exposition
of function space MCMC but we will consider a simpler case here. We consider
ν as a sum of time-independent Gaussian functions

νh(x) =
K∑

k=1

e−σ−2
k ‖hk−x‖2

. (13)

This means that metamorphosis permitted in the neighbourhood of a point x
(determined by the radius σk and centroids hk ∈ R

2 selected on the template) is
proportional to the value of νh(x). As described in (10), νh follows the trajectory
of the landmarks in the dynamics of q. Note the number of landmarks, M , differ
from the number of centroids K. For instance, we selected K = 1 in Fig. 1 due to
our a priori knowledge of the trajectories (e.g. there is only a single point where
landmarks cross or intersect).

Defining a density psm ∝ e−Sν
sm over the space of triples (ν, qν , pν) leads to

the preconditioned Crank-Nicholson Algorithm1, see e.g. [13]. The parameter β
has to be set such that the samples are un-correlated, which corresponds to an
acceptance rate in the range 0.5–0.8.

In general, ν should accommodate the granularity of the deformation between
two shapes and be able to resolve the topological changes necessary. This consti-
tutes an interesting problem in and of itself, as it is a priori difficult to say what
constitutes a good ν simply by inspecting the template and targets. Here we use
Gaussians for their smoothness and simplicity, but we comment on extensions
in Sect. 6.

5 Numerical Examples

This section displays some numerical results for our method to infer a distribu-
tion for the growth location using the landmark configurations seen in Fig. 1.
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Algorithm 1. MCMC for selective metamorphosis
procedure mcmcSM(N , K, q0, q1, β ∈ (0, 1])

j ← 1
νj ← initial guess in R

d×K

Solve (10) with νj and q0, q1 to obtain ωj = (qj , pj , uj)
while j < N do

Sample a random point ξ ∈ N (0, Id
Rd)K

ν ← βξ +
√

1 − β2νj

Solve (10) with ν and q0, q1 to obtain ω = (q, p, u)

if randomUnit()< min(1, e−Sνj

sm(ωj)+Sν
sm(ω)) then

νj+1 ← ν
ωj+1 ← ω

else
νj+1 ← νj

ωj+1 ← ωj

j ← j + 1
return {νj , ωj}N

j=1

Fig. 2. We display the result of the MCMC Algorithm 1 applied to the inverted land-
marks example of Fig. 1. (a) shows the analytical values for the functional (8) obtained
for various positions of a single Gaussian ν. We observe a bimodal minimum near (0, 0),
which depends on the choice of the model parameters, and in particular on the land-
mark interaction length corresponding to the Gaussian kernel K and σν . (b) displays
a heat map for the sampled positions of the centroid from the MCMC method, where
the bimodality is not clearly visible. (c) is histogram of the sampled values of the func-
tional which rapidly decays, indicating a good sampling of the minimum value of the
functional. (d) shows the autocorrelation function of the Markov chain, which decays
rapidly to reach an un-correlated state after 50 iterations. (e) shows one of the MAP
estimators where the centroid is near on the edge of one of the wells of the top left
panel. The simulations parameters are set to σν = 0.2, and 0.7 for the velocity kernel,
K = 1 and β = 0.2 across 5000 samples.
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The parameters and results for the first configuration is shown in Fig. 2. These
preliminary results demonstrate that even for a small number of samples the
density of accepted samples corresponds at least heuristically to the analyti-
cal density histogram obtained by computing the value of the metamorphosis
functional in (8).

We arrive at the same conclusion for the second example, for which the results
are shown in Fig. 3. Moreover, we note that the geodesic equations for p and q
are time-reversible meaning that the configuration in Fig. 3 corresponds to both
particle collapse as well as hole creation. It is numerically relatively simple to
control the behaviour of ν by simple scaling or by adding regularisation terms to
(8) to e.g. penalise having ν’s far away from the support of the images. Such cost
can easily be added to the MCMC algorithm, depending on the prior information
one can have on the shape matching problem.

Fig. 3. Here we display the results for the second example (landmark collapse) of
Fig. 1. Again, (a) shows the analytical values for a single ν field (8), which has also
a bimodal structure, but in the other direction. For the MCMC we choose K = 2
Gaussian ν fields, and (b) and (c) displays two heat maps for the sampled positions of
these centroids. (d) is a histogram of the sampled values of the functional, which has a
peak at slightly higher values, possibly due to the redundant choice of two ν functions.
(e) shows the autocorrelation function of the Markov chain which shows decorrelation
after 100 steps. (f) shows the geodesics yielding one of the lowest functional values,
where the two ν fields are close to each other, demonstrating the fact that only 1 would
have been enough for this landmark configuration. The simulation parameters are the
same as in Fig. 2 with the exception of K = 2.
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6 Conclusion

We have presented a preliminary approach for selectively allowing photometric
variation in a diffeomorphic image matching. We analysed the selective meta-
morphosis problem, the associated geodesic equations and demonstrated a proof
of concept MCMC algorithm inferring a simple parameterisation of ν. This gen-
eralises LDDMM and metamorphosis and could provide a first-order exploratory
tool for physicians to see if the development of a biological feature stems from a
few violations of diffeomorphic evolution. This paper paves the way towards sur-
gically investigating growth phenomena between topologically different images.

For future works we aim at extending the equations of Sect. 3 to images
e.g. using the kernel framework in [19] or developing a space-time method.

In addition, there are many aspects of the probabilistic framework for the
estimation of ν that need rigorous treatment and improvements. First, already in
this simple setting, one would need to add additional penalties for the position of
the centroids hk to force them to remain for example near the centre of the image
during the MCMC evolution. Second, natural extensions of our probabilistic
approach by treating ν as a function could be considered and thus interpreting
the resulting inverse problem through the appropriate measure-theoretical lens.
Adding a time-dependency to ν can also be explored. Determining a truncated
Fourier series of ν could lead to efficient numerical methods. Finally, we only
used a simple MCMC algorithm, but a Metropolis-adjusted Langevin algorithm
or Hamiltonian Monte-Carlo algorithm may be more appropriate to solve this
problem.

To conclude, we hope that this framework could be used to model growth,
in the spirit of the approaches of [15] or [9].
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2. Allassonnière, S., Kuhn, E., Trouvé, A.: Map estimation of statistical deformable
templates via nonlinear mixed effects models: deterministic and stochastic
approaches. In: 2nd MICCAI Workshop on Mathematical Foundations of Com-
putational Anatomy, pp. 80–91 (2008)

3. Arnaudon, A., Holm, D.D., Sommer, S.: A geometric framework for stochastic
shape analysis. Found. Comput. Math. 19, 653–701 (2018)
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Abstract. We produce a coordinate free presentation of some con-
cepts usually involved in incremental mechanics (tangent linear stiffness
matrix, stability, loading paths for example) but not always well founded.
Thanks to the geometric language of vector bundles, a well defined geo-
metrical object may be associated to each of these tools that allows us
to understand some latent difficulties linked with these tools due to the
absence of a natural connection and also to extend some of our recent
results of linear stability to a non linear framework.

Keywords: Vector bundles · Transversality · Vertical derivative

1 Motivations

1.1 Kinematic Structural Stability

For the last ten years, we developed tools to tackle an old question regard-
ing the conflict between two criteria of stability involved in rate-independent
mechanical systems. We call these two criteria the divergence Lyapounov cri-
terion (it is the usual one) and the Hill criterion also called the second order
work criterion. These two criteria are identical for elastic conservative or for
piece-wise rate-independent mechanical systems but they give different critical
divergence stability values for elastic non conservative systems or for non linear
rate-independent mechanical systems like non associate plastic materials. The
usual language in mechanics characterizes these last systems by a non symmet-
ric tangent stiffness matrix K(p) whereas for the first class of system K(p) is
symmetric.

Thanks to the new concept of Kinematic Structural Stability (KISS) and
an original variational formulation on all the possible kinematic constraints, we
proved, in the discrete linear elastic nonconservative framework, that the two
criteria become again equivalent ([4] for example). The most elegant proof of
this result involves the geometric concept of compression of operator which can
be extended to Hilbert spaces and which allowed us to extend the result to
continuous linear elastic systems [6]: all the compressions of the operator are
one-to-one if and only if the symmetric part of the operator is definite.
c© Springer Nature Switzerland AG 2019
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1.2 Geometric Degree of Nonconservativity

In parallel to these stability issues, we also investigated the dual problem which
questions the minimal number of kinematic constraints necessary to make con-
servative the elastic mechanical system. In a linear discrete framework, this
number called the geometric degree of nonconservativity (GDNC) is the half
of the rank of the skew symmetric part Ka(p) of K(p) [3]. The extension of the
GDNC to infinite dimension Hilbert space involved for continuous systems is
not obvious whereas the extension to the differentiable non linear framework is
possible. Indeed, the skew-symmetric part Ka(p) must be replaced by the exte-
rior derivative dωF of the 1-form ωF defining the corresponding force system
on the mechanical system. ωF is a section of the cotangent bundle T ∗

M of the
configuration manifold M and the GDNC is then the half of the class of the
2-form dωF [5].

1.3 Main Issue

The problem investigated in this paper is to provide such a non linear extension
but for the original KISS issue. Whereas the exterior derivative dωF provides
a “natural” non linear extension of the skew symmetric part Ka(p) of K(p), it
appears that there is no such natural extension for K(p) nor for its symmetric
part Ks(p).

Indeed the incremental point of view necessitates to make a derivative of ωF .
However there is no natural connection on M to do it. To solve this problem, we
will use the fact that the incremental quasi-static evolution of the mechanical
system lies on the nil section of T ∗

M (which represents the equilibrium manifold)
and we will use this canonical and global section of T ∗

M as a horizontal space
for the derivative of ωF . It allows for example to provide an intrinsic meaning
of the common concept of tangent stiffness matrix of a system. We have to
stress that we stay here within the differentiable framework which means that
only hypoelasticity and not plasticity is investigated even if it is the long-term
goal of these investigations. We also have to stress that the tools used in these
investigations are usual (see [2] or [1] for example) in classical mechanics for so-
called Lagrangian or Hamiltonian mechanics or even multisymplectic mechanics.
However, here, by principle we do not suppose an Hamiltonian or Lagrangian
functions to describe the evolution of the mechanical systems.

2 Some Results

We now present three intrinsic objects or results that geometrically extend more
or less usual concepts of the linear framework to the not linear case. A large
part of these developments are in [7]. In all these developments, the mechanical
system is called Σ and is described by a finite number n of parameters which
means that the configuration space is a n dimension manifold M. With this
language, any system of forces is represented by a section of the cotangent bundle
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T ∗
M. As usual, we sometimes identify the nil section of T ∗

M with M itself
(0T ∗M(M) � M). We also note π : T ∗

M → M the natural projection so that
T ∗

mM = π−1{m} ∀m ∈ M.

2.1 Tangent Stiffness Operator

Let F be a force system described by a section ωF of T ∗
M and me ∈ M an

equilibrium configuration of Σ subjected to F . Then, considering the derivative
dωF of ωF (and NOT the exterior derivative dωF as above), we have

dωF (me) : Tme
M → T(me,0)T

∗
M = Txe

M ⊕ π−1
me

u �→ u + dωF (me)ver(me)(u) (1)

where dωF (me)ver(me) is a linear map and then belongs to L(Tme
M, T ∗

me
M).

Then, we are led to put the

Definition 1. The above linear map dωver
F (me) ∈ L(Tme

M, T ∗
me

M) is called the
tangent stiffness operator or the tangent stiffness tensor of Σ at me. Because
of the involved spaces, it is a covariant 2-tensor on the vector space Tme

M. It
obviously depends on me and on the force system F .

In local coordinates on the manifold M, this tensor is represented by a square
matrix of Mn(R): it is the “usual” tangent stiffness matrix K at the equilibrium
me and for the force system F .

2.2 T-Stability

We adopt the following

Definition 2. Let F be a force system described by a section ωF of T ∗
M and

me ∈ M an equilibrium configuration of Σ subjected to F . Thus ωF (me) = 0 =
0T ∗M(me). me is then called Transervality-stable or T-stable if ωF intersects or
cuts transversally the nil section 0T ∗M.

This definition is then purely geometric and does not involves the tangent stiff-
ness. The infinitesimal characterization of the transversality of the intersection
of manifolds leads to the following property:

Proposition 1. me is T-stable if and only if dωver
F (me) is an invertible map.

The T-transversality leads then to the usual characterization of the divergence
Lyapounov stability.

2.3 KISS Issue

The KISS issue necessitates to consider all the submanifolds V of (embedded
in) M and also the definition of loading paths L = (M, ωL) on M. The above
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T-stability can be extended to loading paths which are then called regular load-
ing paths (see [7] for more precisions). Then, for any embedded submanifold
j : V → M of M we may define by a pullback j∗ the induced loading path LV

on V and is called the subloading path LV = (V, ωLV
) of L. We then have the

following extension of the KISS result to the non linear framework:

Theorem 1. Let L be a regular loading path and me,σ = π(ωL(σ)) ∈ M. If
the symmetric part dωL(σ)ver,s(me,σ) of dωL(σ)ver(me,σ) is a degenerated (0, 2)
symmetric tensor then there is a submanifold V � me,σ of M such that LV =
(V, ωLV

) is singular at σ.

3 Some Open Questions

For future works, the fundamental open problem is to establish such a geometric
framework to tackle similar questions for plastic evolutions. Two main issues
are then to describe the internal irreversibility and to take into account the non
differentiability along the incremental evolutions.
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Abstract. We propose a multi-symplectic generalisation of Souriau’s
Lie group thermodynamics for first order parametrised classical field the-
ories. A new notion of general covariant Gibbs state functional is defined
in terms of the multi-momentum map associated to the lifted action of
the diffeomorphisms group on the fields extended phase space. We elabo-
rate on the use of such functional toward a covariant statistical mechanic
description of fully constrained field theories, at the crossroad between
geometrical methods and information theory.

Keywords: Lie group thermodynamics · Covariant moment map ·
Parametrised field theories

1 Introduction

In the covariant, or multi-symplectic framework, for first order parametrised field
theories, canonical initial value constraints have been shown to coincide with the
vanishing of the instantaneous reduction of the covariant momentum map [1–3],
associated to the action of the gauge group of the theory on its extended phase-
space. Remarkably, such an induced energy-momentum map appears to encode
all the dynamical information carried by a given classical field theory [1].

Besides classical field theory, the notion of momentum map provides a nat-
ural higher-dimensional generalization of the Hamiltonian function, comprising
all conserved charges associated to the symplectic action of some dynamical
group on a given phase space. In this terms, the momentum map can be used to
generalize the standard Maxwell-Boltzmann-Gibbs approach to thermodynam-
ics [4], to the case where the energy function is vector-valued. In the 70’s Souriau
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was the first to explore such an epistemic perspective by proposing a symplec-
tic reformulation of statistical mechanics [5–7]. In short, consider a connected
2n-dimensional symplectic manifold (M, ω) and a connected Lie group G acting
on M by a Hamiltonian action Φ. Let g be the Lie algebra of G, g∗ be its dual
space and J : M → g∗ be a momentum map of the G-action [8]. A statisti-
cal state on (M, ω) is a probability measure μ on M defined by the product
of the Liouville density of M with a classical distribution function ρ(x) ∈ M
[5,6]. For a given constant mean value of the equivariant momentum map J ,
thermodynamic equilibria are states

ρeq(b) =
1

Z(b)
e−〈J(x),b〉, with Z(b) =

∫
M

e−〈J(x),b〉 ωn(x), b ∈ g (1.1)

which are invariant under the action of any one-parameter subgroup of G on
M, which maximize the Shannon entropy S(ρ) [4–7], and such that S(ρeq) is
stationary w.r.t. all infinitesimal smooth variations of the probability density.

The (co)momentum map 〈J(x), b〉, with b ∈ g, provides a natural vector-
valued generalisation of the Hamiltonian function, retaining the operational
information of all conserved charges associated to the symplectic action of a
dynamical group on a given system’s phase space. In particular, as first shown
by Souriau [5,6], this leads to a remarkable covariant generalization of Gibbs’s
equilibrium as soon as we consider the action of the symmetry group of the
system (e.g. Galileo, Poincaré) on its manifold of motions.

In this short contribution, we explore a radical conceptual extension of
Souriau Lie group thermodynamics to the case where the covariant symme-
try group of the system is gauge and the symplectic phase space consists of the
full extended phase space of the system. In particular, building on the notion
of covariant (multi)momentum map in the multi-symplectic framework for first
order parametrised field theories, we aim at an off-shell, spacetime (diffeomor-
phism) covariant notion of equilibrium state for fully constrained field theories.

2 Multi-symplectic Formulation of Generally Covariant
Field Theories

The first step in our construction consists in recalling a suitable covariant Hamil-
tonian framework for our approach, where the key momentum map construc-
tion can be generalized in spacetime covariant terms, for the case of first order
parametrised field theories. Seminal works on this topic are [1] and references
within to which we refer for a more detailed exposition.

2.1 Parametrization and Covariant Multiphase Space

Let X be an oriented (n + 1)-dimensional manifold, which in many examples
is spacetime, and let Y πXY−−−→ X be a finite-dimensional fiber bundle over X
whose fibers Yx over x ∈ X have dimension N . This is called the configuration
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bundle and is the field theoretic analogue of the configuration space in classical
mechanics. Physical fields correspond to sections of this bundle. A set of local
coordinates (xμ, yA) on Y is provided by the n+1 local coordinates xμ, μ =
0, . . . , n, on X and the N fiber coordinates yA, A = 1, . . . , N , which represent
the field components at a given point x ∈ X . Let then L : J1(Y) → Λn+1(X ) be
the Lagrangian density for a first order classical field theory, where J1(Y) is the
first jet bundle of Y and Λn+1(X ) is the space of (n + 1)-forms on X . The first
jet bundle J1(Y) of Y here plays the role of the field-theoretic analogue of the
tangent bundle of classical mechanics1. Local coordinates (xμ, yA) on Y induce
coordinates vA

μ on the fibers of J1(Y) so that the first jet prolongation j1φ of
a section φ of the bundle Y πXY−−−→ X is given by j1φ : xμ �−→ (xμ, yA, vA

μ ) =
(xμ, yA(x), yA

,μ(x)), where yA
,μ = ∂μyA and ∂μ = ∂/∂xμ. The Lagrangian then

reads L (j1φ) = L
(
xμ, yA(x), yA

,μ(x)
)
dn+1x, where dn+1x = dx0 ∧ · · · ∧ dxn is

the volume form on X .
As it is well known from the pioneering work of Dirac [9], further developed

by Kuchař and Isham [10,11], field theories with a fixed background metric
can be made generally covariant, i.e., with the spacetime diffeomorphism group
as symmetry group, by means of the so-called parametrisation procedure. A
precise geometric reformulation of such a procedure within the context of multi-
symplectic field theories was developed by Castrillón López, Gotay and Marsden
in [12,13]. The main steps of the construction are the following: (1) (oriented)
diffeomorphisms of X , reinterpreted as sections η : X → X̃ of the bundle X̃ ×
X π̃−→ X over X , with (X̃ , g) a copy the base manifold, are introduced as new
dynamical fields called covariance fields; (2) the configuration bundle Y is then
replaced by the fibered product Ỹ = Y ×X (X̃ × X ) whose sections are thought
of as pairs (φ, η); (3) the Lagrangian density of the starting theory is modified
by introducing the new Lagrangian density L̃ (j1φ, j1η) := L (j1φ, η∗g) which,
denoting coordinates on J1(Ỹ) by (xμ, yA, vA

μ , ua, ua
μ) with ua

μ the jet coordinates
associated to ua on X̃ , reads

L̃ (xμ, yA, vA
μ , ua, ua

μ) = L (xμ, yA, vA
μ ;Gμν), (2.2)

where Gμν ≡ (η∗g)μν = ηa
,μ ηb

,ν gab ◦ η = ua
μ ub

ν gab ◦ η. Let then αX ∈ Diff(X ),
we denote by αY ∈ Aut(Y) its lift to Y. This can be extended to an action by
bundle automorphisms on Ỹ by requiring that Diff(X ) acts trivially on X̃ , i.e.

αX̃ : X̃ × X −→ X̃ × X by (u, x) �−→ (u, αX (x)). (2.3)

The induced action on the space Ỹ ≡ Γ (X , Ỹ) of sections of Ỹ is then given by

αỸ (φ, η) = (αY (φ), αX̃ (η)), (2.4)

where
αY (φ) = αY ◦ φ ◦ α−1

X , φ ∈ Y ≡ Γ (X ,Y) (2.5)

1 In this case Y = R× Q is the extended configuration space regarded as an R-bundle
over Q, and J1(Q × R) is isomorphic to the bundle TQ × TR.
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generalizes the usual push-forward action on tensor fields, and

αX̃ (η) = η ◦ α−1
X , (2.6)

is the (left) action by composition on sections of the trivial bundle X̃ × X . The
modified field theory on J1(Ỹ) is Diff(X )-covariant, i.e., the Lagrangian density
(2.2) is Diff(X )-equivariant [12,13]:

L̃
(
j1(αY (φ)), j1(αX̃ (η))

)
= (α−1

X )∗
[
L̃ (j1φ, j1η)

]
. (2.7)

The fixed background metric g is then no longer thought of as living on X , but
rather just as a geometric object on the copy X̃ in the fiber of the extended
configuration bundle Ỹ. On the other hand, the metric variable G = η∗g on X
inherits a dynamical character via the covariance field η. The true dynamical
fields of the parametrised theory are thus provided by φ and η, the latter not
modifying the physical content of the original theory thus providing an efficient
way of parametrizing it [12,13].

By introducing the covariant Hamiltonian p̃ and the multimomenta pμ
A, �μ

a

(respectively conjugate to the multivelocities vA
μ and ua

μ) defined via Legendre
transformation as

p̃ = L̃ − ∂L̃

∂vA
μ

vA
μ − ∂L̃

∂ua
μ

ua
μ, pμ

A =
∂L̃

∂vA
μ

=
∂L

∂vA
μ

, �μ
a =

∂L̃

∂ua
μ

= T μνub
νgab,

(2.8)
with T μν = 2 ∂L

∂Gμν
the so-called Piola-Kirchhoff stress-energy-momentum tensor

density [12,13], a covariant Hamiltonian formalism for (first order) parametrised
field theories can be now developed. The field-theoretic analogue of the phase
space of classical mechanics is provided by the so-called covariant or parametrised
multiphase space Z̃ ∼= J1(Ỹ)∗ equipped with a canonical Poincaré-Cartan (n+1)-
form

Θ̃ = p̃ dn+1x + pμ
AdyA ∧ dnxμ + �μ

adua ∧ dnxμ, (2.9)

and the multisymplectic (n + 2)-form

Ω̃ = dyA ∧ dpμ
A ∧ dnxμ + dua ∧ d�μ

a ∧ dnxμ − dp̃ ∧ dn+1x. (2.10)

Let now G be a Lie group (perhaps infinite-dimensional) realizing the gauge
group of the theory and denote by g its Lie algebra. In the case of generally
covariant field theories, G is a subgroup of Aut(Ỹ) covering diffeomorphisms on
X . Given an element ξ ∈ g, we denote by ξX , ξY , ξỸ , and ξZ̃ the infinitesimal
generators of the corresponding transformations on X ,Y, Ỹ , and Z̃, i.e., the
infinitesimal generators on X ,Y, Ỹ , and Z̃ of the one-parameter group generated
by ξ. The group G is said to act on Z̃ by covariant canonical transformation
if the G-action corresponds to an infinitesimal multi-symplectomorphism, i.e.
LξZ̃ Ω̃ = 0, while it is said to act by special covariant canonical transformations
if Θ̃ is G-invariant, that is LξZ̃ Θ̃ = 0. This is the Hamiltonian counterpart of the
G-equivariance property (2.7) of the Lagrangian.
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In analogy to the definition of momentum maps in symplectic geometry [8],
a covariant momentum map (or a multimomentum map) associated to the G-
action on Z̃ by covariant canonical transformations is given by

J̃ : Z̃ −→ g∗ ⊗ Λn(Z̃) , dJ̃ (ξ) = iξZ̃ Ω̃, (2.11)

where J̃ (ξ) is the n-form on Z̃ whose value at z̃ ∈ Z̃ is 〈J̃ (z̃), ξ〉 with 〈·, ·〉 being
the pairing between the Lie algebra g and its dual g∗. Let then α ∈ G be the
transformation associated to ξ ∈ g, the covariant momentum map J̃ is said to
be Ad∗-equivariant if

J̃ (Ad−1
α ξ) = α∗

Z̃ [J̃ (ξ)]. (2.12)

For special covariant canonical transformations, the momentum map (2.11)
admits an explicit expression given by J̃ (ξ) = iξZ̃ Θ̃ that, when the G-action
on Z̃ is the lift of an action of G on Ỹ, reads

〈J̃ (z̃), ξ〉 =
(
p̃ ξμ + pμ

AξA
)
dnxμ − pμ

AξνdyA ∧ dn−1xμν − �μ
aξνdua ∧ dn−1xμν ,

(2.13)
where dn−1xμν = i∂ν

i∂μ
dn+1x, dnxμ = i∂μ

dn+1x accordingly.

2.2 Canonical Phase Space and Energy-Momentum Map

To construct the canonical formulation of a field theory we need to introduce a
foliation of spacetime and consequently of the bundles over it2. Let then Σ be a
compact, oriented, connected, boundaryless 3-manifold and let EmbG(Σ,X ) be
the set of all space-like embeddings of Σ in X . A foliation sX : Σ × R → X of
X then corresponds to a 1-parameter family of space-like embeddings τ ≡ τλ :
Σ → X by τ(x) ≡ τλ(x) := sX (x, λ), where x is a shorthand notation for the
spatial coordinates on the space-like hypersurface Στ = τ(Σ). A foliation sX of
X induces a compatible slicing of bundles over it whose generating vector fields
project onto the generating vector field ζX = ∂

∂λsX (x, λ) of sX . The flow of such a
generating vector field defines a one-parameter group of bundle automorphisms.

For parametrised field theories, we are interested in a so-called G-slicing in
which case the one-parameter group of automorphisms of the extended configu-
ration bundle is induced by a one-parameter subgroup of the gauge group G, i.e.
ζỸ = ξỸ for some ξ ∈ g. The corresponding slicing sZ̃ of Z̃ is then generated by
the canonical lift ζZ̃ = ξZ̃ of ξỸ to Z̃ whose flow defines a one-parameter group
of special canonical transformations on Z̃. Spatial fields will then be identified
with smooth sections of the pull-back bundle Yτ → Στ over a Cauchy surface
given by ϕ := φτ = τ∗φ. According to the parametrization procedure discussed
in Sect. 2.1, the space-like embedding τ ∈ EmbG(Σ,X ) acquires a dynamical
character through the covariance fields. Indeed, we have τ = η−1 ◦ τ̃ for a given
space-like embedding τ̃ ∈ Embg(Σ, X̃ ) of Σ into X̃ associated to the slicing of
X̃ w.r.t. the fixed metric g.

2 In what follows, we assume spacetime to be globally hyperbolic, i.e. X ∼= Σ × R.
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The canonical parametrised configuration space then consists of the pairs
(ϕ, τ) of spatial fields defined over a Cauchy slice and the space-like embedding
identifying a G-slicing of spacetime w.r.t. one-parameter subgroups of diffeomor-
phisms. Let then (x0, x1, . . . , xn) be a chart on X adapted to τ , i.e. such that
Στ is locally a level set of x0. Denoting by (ϕ,Π, τ, P ) a point in the canon-
ical parametrised phase space T ∗Ỹτ = T ∗Yτ × T ∗EmbG(Σ,X ), the canonical
symplectic structure ω̃τ on T ∗Ỹτ reads as [14]

ω̃τ (ϕ,Π, τ, P ) =
∫

Στ

(
dϕA ∧ dΠA + dτμ ∧ dPμ

)
⊗ dnx0. (2.14)

Following the construction of [1] (cfr. Ch. 5), the multisymplectic structure
on Z̃ induces a presymplectic structure on the space Z̃τ of sections of the bundle
Z̃τ → Στ given by

Ω̃τ (σ)(V,W ) =
∫

Στ

σ∗(iW iV Ω̃), σ ∈ Z̃τ , V,W ∈ TσZ̃τ (2.15)

which in turn is related to ω̃τ via Ω̃τ = R∗
τ ω̃τ , where Rτ is the bundle map

Rτ : Z̃τ → T ∗Ỹτ relating in adopted coordinates the momenta ΠA and Pa

respectively to the temporal components of the multimomenta pμ
A and �μ

a as

ΠA = p0
A ◦ σ, Pa = �0

a ◦ σ. (2.16)

Let now σ ∈ Z̃ ≡ Γ (X , Z̃) be a section of the bundle Z̃ over X , and let
αZ̃ : Z̃ → Z̃ be a covariant canonical transformation covering a diffeomorphism
αX : X → X whose induced action on sections is given by αZ̃ (σ) = αZ̃ ◦ σ ◦ α−1

X
(cfr. Eq. (2.5)). The corresponding transformation on Z̃τ ≡ Γ (Στ , Z̃ ) given by

αZ̃τ
: Z̃η−1◦τ̃ → Z̃αX̃ (η)−1◦τ̃ , σ �→ αZ̃τ

(σ) = αZ̃ ◦ σ ◦ α−1
τ (2.17)

with αX̃ (η) defined in (2.6) and ατ := αX |Στ
is a (special) covariant canon-

ical transformation relative to the presymplectic 2-form (2.15) if αZ̃ is a
(special) covariant canonical transformation [1]. The covariant multimomen-
tum map (2.11) associated to the G-action on Z̃ will then induce a so-called
(parametrised) energy-momentum map on Z̃τ defined by

Ẽτ : Z̃τ −→ g∗, Ẽτ (σ, η) = Ẽη−1◦τ̃ (σ) :=
∫

Στ

σ∗ 〈J̃ , ξ〉 , (2.18)

which is Ad∗-equivariant w.r.t. the action (2.17), namely 〈Ẽτ (σ, η),Ad−1
α ξ〉 =

〈α∗
Z̃τ

[
Ẽτ (σ, η)

]
, ξ〉 [18]. Now, let P̃τ = Rτ (Ñτ ) ⊂ T ∗Ỹτ be the primary con-

straint submanifold in T ∗Ỹτ with Ñτ = FL((j1Ỹ )τ ) ⊂ Z̃τ , FL being the
Legendre transform. For any σ holonomic lift of (ϕ,Π, τ, P ) to Ñτ , that is
σ ∈ R−1

τ {(φ,Π, τ, P )} ∩ Ñτ , we have

σ∗(iζZ̃ Θ̃) = −
(
ΠAϕ̇A + Paζμηa

,μ − L̃(σ)ζ0
)

dnx0, (2.19)
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with L̃(σ)ζ0dnx0 = τ∗iζX L̃ (j1φ, j1η) = iζX L̃ (j1ϕ, ϕ̇, j1ητ , η̇τ ), and we used the
expression (2.13) for lifted actions [18]. Therefore, for lifted actions (and this is
the case for a G-slicing), the parametrised energy-momentum map (2.18) induces
a functional J̃H : P̃τ → g∗ on P̃τ given by

〈J̃H(ϕ,Π, τ, P ), ζ〉 = −
∫

Στ

dnx0(ζμH(ϕ)
μ + ζμPμ), (2.20)

where Pμ = ηa
,μPa is the pull-back of Pa to Σ along η. The functional (2.20)

is nothing but the total Hamiltonian whose components in the tangential
and transversal direction to the spatial slice yields the super-momenta and
Hamiltonian constraints.

2.3 Representation of Spacetime Diffeomorphisms

Let G = Diff(X ) be the group of diffeomorphisms of X . The Lie algebra g =
diff(X ) can be realized as the set of all (complete) vector fields on X . To any
element ξ ∈ diff(X ), we associate a vector field ξX ∈ X(X ) generating a one-
parameter group of diffeomorphisms. In the instantaneous canonical formalism,
the generating vector field is decomposed into “lapse” and “shift” components

ξμ
X (x) = N(x)nμ(τ(x)) + Nk(x)τμ

,k(x) (2.21)

where nμ = Gμνnν is the future-pointing normal such that τ∗n = 0 for any
x ∈ Στ and Gμνnνnν = −1. The so called lapse function N ∈ C∞(Σ,X ) and
shift vector N ∈ TΣ of the foliation [2] respectively specify the magnitude of
the normal and tangential deformation at every point on a spatial hypersurface
and play the role of arbitrary Lagrange multipliers in the action implement-
ing the first-class constraints of the theory. The “space+time” decomposition
however deforms the algebra of spacetime diffeomorphisms with the result that
only the subalgebra diff(Σ) of spatial diffeomorphisms can be represented in the
canonical formalism [9,15]. This reflects into the non-Diff(X )-equivariance of the
(instantaneous) energy-momentum map Eτ : T ∗EmbG(Σ,X ) × T ∗Yτ → Λ0

d × Λ1
d

Eτ [N,N ] =
∫

Σ

dnx0

(
NH + NkHk

)
, (2.22)

Λ0
d and Λ1

d spaces of function densities and 1-form densities on Σ.
The spacetime equivariance can be recovered by considering the Diff-action

on the embeddings induced by the action (2.6) on the covariance fields η. Specif-
ically, the left action of Diff(X ) on X induces a natural left action on the space
Emb(Σ,X ) of all embeddings of Σ in X

Ψ : Emb(Σ,X ) × Diff(X ) −→ Emb(Σ,X ) by (τ, αX ) �−→ αX ◦ τ . (2.23)

The corresponding generating vector field

ξτ (x) = ξX (τ(x)) = ξμ
X (τ(x))

∂

∂xμ

∣∣∣∣
τ(x,λ)

(2.24)
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yields a representation of the algebra diff(X ) by vector fields on EmbG(Σ,X ).
Such a vector field restricted to the embeddings can be again decomposed into
the corresponding lapse and shift components which now are not freely specifi-
able but are some definite functionals of τ [11]. By taking this dependence into
account, for any ξ ∈ diff(X ), it is possible to define a new Hamiltonian func-
tional on the parametrised phase space related to the equivariant momentum
map (2.20) via

H(ξ)(ϕ,Π, τ, P ) = − 〈ξ, J̃H(ϕ,Π, τ, P )〉 =
∫

Σ

dnx0 ξμ
X (τ(x))

(
H(ϕ)

μ + Pμ

)
.

(2.25)
The complete derivation of the equivariance property of (2.25) is given in [18].

Eventually, the total Hamiltonian (2.25) is constructed in such a way that
the constraints are preserved along the flow generated by H(ξ). Moreover, as any
functional of the embedding commutes with H(ϕ), we have τ̇μ(x) = ξμ

X (τ(x)),
i.e., ξX (τ(x)) is the deformation vector of the foliation which can be decomposed
into its transversal ξ‖(τ(x)) and normal ξ⊥(τ(x)) components which, unlike the
Lagrange multipliers N and N entering the parametrised action, are now specific
functionals of the embedding. On the other hand, since P (ξ) commutes with the
field variables, the rates of change of the field ϕ and its conjugate momentum
Π yield the Hamiltonian field equations with deformation vector ξX (τ(x)). In
other words, the canonical action of Diff(X ) represented by H(ξ) generates a
displacement of the spatial hypersurface embedded in spacetime and also set the
correctly evolved Cauchy data for fields on the deformed hypersurface.

3 Multisymplectic Lie Group Thermodynamics

We can finally proceed to extend the generalized notion of thermodynamic equi-
librium states á la Souriau to parametrised field theories in which the Hamilto-
nian action we are interested in is that of the spacetime diffeomorphism group.

Denoting the canonical parametrised phase space by Υ ≡ T ∗Yτ ×
T ∗EmbG(Σ,X ), a statistical state ρ : Υ → R([0,+∞[) on Υ is a smooth proba-
bility density on Υ such that, for any Borel subset A of Υ, the integral

μ(A ) =
∫
A

D[ϕ,Π, τ, P ] ρ(ϕ,Π, τ, P ) (3.26)

defines a probability measure on Υ with the normalization condition

Z(ρ) =
∫

Υ

D[ϕ,Π, τ, P ] ρ(ϕ,Π, τ, P ) = 1, (3.27)

where D[ϕ,Π, τ, P ] formally denotes the integration measure on Υ. In complete
analogy to Sect. 1, we consider the mean value Eρ(J̃H) of the momentum map
(2.20) such that, for ξ ∈ g = diff(X ), we have

〈ξ,Eρ(J̃H)〉 =
∫

Υ

D[ϕ,Π, τ, P ]ρ(ϕ,Π, τ, P ) 〈ξ, J̃H(ϕ,Π, τ, P )〉 . (3.28)
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Stationarity of the entropy functional

S(ρ) = −
∫

Υ

D[ϕ,Π, τ, P ] ρ(ϕ,Π, τ, P ) log ρ(ϕ,Π, τ, P ), (3.29)

under an infinitesimal smooth variation ρs(ϕ,Π, τ, P ) with s ∈] − ε, ε[, ε > 0 of
the statistical state ρ with fixed mean value of J̃H can be therefore implemented
by introducing two Lagrange multipliers b ∈ g = diff(X ), a ∈ R respectively
associated to the constraint Eρ(J̃H(b)) = const. and the normalization condition
(3.27) via

S(ρs) = S(ρs) − 〈b,Eρs
(J̃H)〉 − aZ(ρs) s.t.

δS(ρs)
δs

∣∣∣∣
s=0

= 0 ∀ ρs (3.30)

from which it follows that

ρ
(eq)
b (ϕ,Π, τ, P ) =

1
Z(b)

exp
(
− 〈b, J̃H(ϕ,Π, τ, P )〉

)

=
1

Z(b)
exp

(
−

∫
Σ

dnx0 ξμ
(b)(τ(x))

(
H(ϕ)

μ (x) + Pμ(x)
))

, (3.31)

where ξ(b) denotes the vector field on X associated to b ∈ diff(X ) generating a
one-parameter family of spacetime diffeomorphisms. The statistical state (3.31)
is now a functional of (ϕ,Π, τ, P ) through the comomentum map 〈b, J̃H〉. In
particular, the dependence from the spacetime coordinates occurs only through
the dynamical variables thus respecting the coordinate-independence of rela-
tivistic theories. Moreover, being a functional of the embeddings, the statisti-
cal state (3.31) is generally covariant in the sense that the momentum map is
evaluated on any space-like hyper-surface without fixing the slicing a priori. The
one-parameter group of automorphisms of the extended configuration space gen-
erated by b ∈ diff(X ) identifies a generalized concept of “time evolution” w.r.t.
which the Gibbs state is of equilibrium.

4 Conclusions

The application of Souriau’s Lie group thermodynamic formalism to the multi-
symplectic framework of parametrised field theory leads to a new notion of
spacetime covariant Gibbs-like state. Such a state is of equilibrium w.r.t. the
one-parameter group of diffeomorphisms generated by the first-class constraints
vector field ξX associated to ξ ∈ g = diff(X ) and, in this sense, it defines a consis-
tent spacetime covariant notion of thermodynamical equilibrium. Remarkably,
the replacing of a dynamical symmetry with a gauge one moves our analysis
from the fully reduced symplectic space of motions (on-shell) to the uncon-
strained extended phase space of the constrained theory (off-shell). While being
defined off-shell, the covariant Gibbs state is by construction an observable of
the theory, and it encodes, via the covariant momentum map functional, all the
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dynamical information carried by the given parametrised field theory: its canon-
ical Hamiltonian, its initial value constraints, its gauge freedom and its stress
energy-momentum tensor.

The proposed result points to a deep connection between geometrical meth-
ods, information theory and field theories. We expect our approach to open
the road for a spacetime covariant formulation of statistical mechanics, possibly
capable of describing the fluctuations of the gravitational field in a general rela-
tivistic context (see e.g. [16,17]). From an information-geometric viewpoint, we
further expect the derived covariant Gibbs state functional to provide a useful
tool for exploring a statistical generalisation of symplectic reduction in field the-
ory [18], as well as a further support to the use of momentum map and Lie group
formalism in the study of covariant generative models in machine learning.
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Euler-Poincaré Equation for Lie Groups
with Non Null Symplectic Cohomology.
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Univ. Lille, CNRS, Centrale Lille, FRE 2016 – LaMcube – Laboratoire de mécanique
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Abstract. Let G be a symplectic group on a symplectic manifold N . To
any momentum map ψ : N → g∗, one can associate a class of symplectic
cohomology cocs. It does not depend on the choice of the momentum
map but only on the structure of the Lie group G. It forwards an affine
left action μ = a · μ′ = Ad∗(a) μ′ + cocs(a) of G on g∗.

If G is a Lie subgroup of the affine group, one can define an associated
affine connection as a field of g-valued 1-forms Γ̃ on a G-principal bundle
of affine frames π : F → M. Let ω be a smooth field of 2-form on g∗ ×F
defined by: (μ, f) �→ 1

2
dμ ∧ Γ̃ .

On each orbit µ, ω is the pull-back of Kirillov-Kostant-Souriau sym-
plectic form by the projection ψµ : (μ, f) �→ μ. The G-principal bundle
g∗×F is a presymplectic bundle of symplectic form ω and ψµ is a momen-
tum map.

The equation of motion d(μ, f) ∈ Ker(ω) expresses the fact that the
momentum is parallel-transported. It generalizes Euler-Poincaré equa-
tion when the class of symplectic cohomology of the group is not null,
especially for the important case of Galileo’s group.

Keywords: Symplectic geometry · Lie group ·
Connection on a manifold

1 Symplectic Cohomology

Let (N , ω) be a symplectic manifold. A Lie group G smoothly left acting on
N and preserving the symplectic form ω is said to be symplectic. The interior
product of a vector

−→
V and a p-form ω is denoted ι(

−→
V )ω. A map ψ : N → g∗

such that:
∀η ∈ N , ∀Z ∈ g, ι(Z · η)ω = −d(ψ(η)Z),

is called a momentum map of G. It is the quantity involved in Noether’s
theorem that claims ψ is constant on each leaf of N .
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We call symplectic cocycle of a Lie group G a smooth map cocs from G
into the dual g∗ of its Lie algebra such that:

(i) cocs(a′a) = cocs(a′) + Ad∗(a′) cocs(a),
(ii) dcocs = D cocs (e) is skew-symmetric.

Formula (i) is called the symplectic cocycle identity.
Let μ0 ∈ g∗. We call symplectic coboundary of G a smooth map cobsμ0

of G into g∗ such that:

cobsμ0(a) = Ad∗(a)μ0 − μ0.

As maps valued in the linear space g∗, the symplectic cocycles form a linear
space and the symplectic coboundaries form a linear subspace thereof. The rela-
tion “cocs1 and cocs2 differs by a coboundary” is an equivalence relation and the
set of equivalence classes is a linear space called the space of classes of sym-
plectic cohomology. The class of symplectic cohomology does not depend on
the choice of the momentum map but only on the structure of the Lie group G.

The reason why one introduces this definition is that Souriau proved in ([8]
(Theorem (11.17), page 109, or its English translation [9]) that the smooth map
cocs from G into g∗:

cocs(a) = ψ(a · η) − Ad∗(a)ψ(η), (1)

is a symplectic cocycle.
Replacing η by a−1 · η in (1), this formula reads:

ψ(η) = Ad∗(a)ψ′(η) + cocs(a),

where ψ �→ ψ′ = a · ψ is the induced action of the one of G on N . It is worth
observing it is just the action on g∗:

μ = a · μ′ = Ad∗(a)μ′ + cocs(a), (2)

with μ = ψ(η) and μ′ = ψ′(η). Because cocs is a symplectic cocycle, (2) is
an affine representation of G. Hence G may be seen as a Lie subgroup of the
affine group of Rn. Let g be the Lie algebra of G, that is the set of infinitesimal
generators Z = da = (dC, dP ) with a ∈ G. Let us identify the space of the
momentum components μ = (F,L) to the dual g∗ of the Lie algebra thanks to
the dual pairing:

μZ = μda = (F,L) (dC, dP ) = F dC + Tr(LdP ) (3)

For convenience, we represent the affine transformations X = P X ′ + C of
R

n by linear relationships in R
n+1:

X̃ =
(

1
X

)
=

(
1 0
C P

) (
1

X ′

)
= P̃ X̃ ′ (4)
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Galileo’s group GAL is the set of affine transformations of the space-time R
4

of the form:

X̃ =

⎛
⎝ 1

t
x

⎞
⎠ , P̃ =

⎛
⎝ 1 0 0

τ0 1 0
k u R

⎞
⎠ .

where t is the time, x ∈ R
3 is the position, u ∈ R

3 is a Galilean boost, R ∈ SO(3)
is a rotation, k ∈ R

3 is a spatial translation and τ0 ∈ R is a clock change. Hence
Galileo’s group is a Lie group of dimension 10. In [3] (Theorem 17.4, page 374),
we proved:

Theorem 1. The most general symplectic cohomology of Galileo’s group is
defined by:

cocs(a)Z ′ = l(a) · d�′ − q(a) · du′ + p(a) · dk′ − e(a) dτ ′
0, (5)

where the components are:

p(a) = mu, e(a) =
1
2

m ‖ u ‖2, (6)

q(a) = m (k − τ0u), l(a) = mk × u. (7)

The space of symplectic cohomology of Galileo’s group is of dimension 1. More-
over one has:

dcocs (Z,Z ′) = m (du · dk′ − dk · du′) (8)

Proof. The condition (i) of the definition of the symplectic cocycles means that
the action (2) is an affine representation of G in g∗. In [3] (Theorem 16.3, page
329), it is proved that, for Galileo’s group, the most general affine representation
of this form is, modulo a symplectic coboundary:

p(a) = mu, e(a) =
1
2

m ‖ u ‖2 +e1 τ0,

q(a) = m (k − τ0u), l(a) = mk × u + s u.

where s, e1 ∈ R. By differentiation, the components of D coc (e) are:

dp = mdu, de =
1
2

mu · du + e1 dτ0,

dq = m (dk − τ0 du − dτ0 u), dl = m (dk × u + k × du) + s du.

that leads to:

dcocs (Z,Z ′) = m (du · dk′ − dk · du′) + s du · d�′ − e1dτ0 dτ ′
0,

As the 2-form is skew-symmetric, s = e1 = 0, that achieves the proof. �
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In the sequel, we need an important result, Kirillov-Kostant-Souriau the-
orem, revealing the orbit symplectic structure:

Theorem 2. Let G be a Lie group and an orbit of the coadjoint representation
orb (μ) ⊂ g∗. Then:

(i) The inclusion map orb (μ) → g∗ is a regular imbedding. A vector dμ ∈ Tμg
∗

is tangent to the orbit if there exists Zd ∈ g such that:

dμ = μ ◦ ad (Zd) + dcocs (Zd) = −ad∗(Zd)μ + dcocs (Zd).

(ii) The orbit orb (μ) is a symplectic manifold of which the symplectic form is
defined by:

ωKKS(dμ, δμ) = μ [Zd, Zδ] + dcocs (Zd, Zδ),

The dimension of the orbit is even.
(iii) G is a symplectic group and any μ ∈ g∗ is its own momentum.

2 Affine Connections

Let π : F → M be a G-principal bundle of affine frames with the free action
(a, f) �→ f ′ = a · f on each fiber. We built the associated G-principal bundle:

π̂ : g∗ × F → (g∗ × F)/G : (μ, f) �→ µ = orb(μ, f),

for the free action:

(a, (μ, f)) �→ (μ′, f ′) = a · (μ, f) = (a · μ, a · f),

where the action on g∗ is (2). Clearly, (2) is the transformation law of the com-
ponents µ of a momentum tensor in the frame f . The tensor may be identified
to the orbit µ = orb(μ, f). The orbit space (g∗ × F)/G is sometimes denoted
g∗ ×G F .

Let verf = Ker (Dπ) the vertical space at f . An Ehresmann connection
on the G-principle bundle F is a field of supplementary subspaces horf in TfF :

TfF = verf ⊕ horf .

The decomposition df = dfv +dfh is unique and the map hor : TfF → horf :
df �→ dfh is called the horizontal projection.

Alternatively, a connection can be defined by a field of g-valued 1-forms Γ̃
on F such that horf = Ker Γ̃ and:

– Γ̃ is vertical: ∀dfh ∈ horf , Γ̃ (dfh) = 0,
– Γ̃ (Z · f) = Z,
– Γ̃ is Ad-equivariant: LaΓ̃ = Ad(a) Γ̃ where Ad(a) is the adjoint represen-

tation.
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The covariant derivative ∇̃−→
dX

µ of a momentum field X �→ µ(X) in a moving
frame X �→ f(X) is defined by:

∇̃dXμ = dμ − (Γ̃ (df)) · μ, (9)

that can reads:

∇̃−→
dX

µ = orb(∇̃dXμ, f) = orb(dμ − (Γ̃ (df)) · μ, f). (10)

As G is a subgroup of Aff(n), the connection is decomposed as Γ̃ = (ΓA, Γ )
where:

– The gl(n)-valued 1-form Γ is a classical linear connection describing the
infinitesimal motion of the basis of the affine frame f . In general relativity, it
represents the gravitation.

– the R
n-valued 1-form ΓA is the affine part of the connection describing the

infinitesimal motion of the origin of the affine frame f . Its physical meaning
is not so strong as the gravitation but it represents the observer.

It is worth to remark that usual connections are defined for a right action of
G on the components: μ · a = a−1 · μ and, differentiating around the identity,
there is a sign change in the infinitesimal action of g: μ · Z = −Z · μ. Hence the
rule to swap the usual connections Γ̃ ′ for the corresponding ones Γ̃ considered
here is:

Γ̃ ′ = −Γ̃ . (11)

For more details on connections and in particular on affine connections, the
reader is referred for instance to Kobayashi’s book [5].

We call Galilean connections the symmetric connections associated to
Galileo’s group [6]. In a Galilean chart, they are given by the 4 × 4 connection
matrix:

Γ (dX) =
(

0 0
j (Ω) d x − g d t j (Ω) d t

)
(12)

where g ∈ R
3 is identified to the gravity [4], while j(Ω) is the unique skew-

symmetric matrix associated to Ω ∈ R
3 that can be interpreted as representing

Coriolis’ effects.
In ([1,3]), we proved that the affine connexion is given by:

ΓA(dX) = dX − ∇dXC, (13)

which gives for a galilean connexion ([2,3]):

ΓA(dX) = d

(
t
x

)
−d

(
0
x

)
−

(
0 0

j(Ω) dx − g dt j(Ω) dt

) (
0
x

)
=

(
dt

−Ω × x dt

)
.

(14)
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3 Factorized Symplectic Form

According to the dual pairing (3), we can put momenta and connections into
duality:

μ Γ̃ = F ΓA + Tr (LΓ ).

This suggests to introduce the factorized 2-form:

ω = 1
2 dμ ∧ Γ̃ (15)

exterior product of the g∗-valued 1-form dμ and the g-valued 1-form Γ̃ , hence a
scalar valued 2-form.

We begin with a preliminary result.

Theorem 3. Let f �→ Γ̃ be a field of connection 1-form on a G-principal bundle
π : F → M. The group G left acts on the dual g∗ of the Lie algebra of G and on
the associated G-principal bundle: π̂ : g∗ ×F → (g∗ ×F)/G by: a ·η = a ·(μ, f) =
(a · μ, a · f). Then:

– The tangent space to g∗ × F at η is a direct sum:

Tη(g∗ × F) = verη ⊕ horη,

where verη = Ker (Dπ̂) is the space of vertical vectors and horη = g∗ × horf

is the space of horizontal vectors.
– Any tangent vector dη = (dμ, df) can be decomposed in an unique way as

dη = dηv + dηh, where:
dηv = (Γ̃ (df)) · η,

dηh = (∇dX μ, hor (df)), with: Dπ(df) =
−→
dX.

We can now state the main result:

Theorem 4. Let f �→ Γ̃ be a field of connection 1-form on a G-principal bundle
π : F → M. The group G left acts on g∗ by the affine representation (2) and on
the G-principal bundle π̂ : g∗ ×F → (g∗ ×F)/G by: a ·η = a ·(μ, f) = (a ·μ, a ·f).
Let η → ω be a smooth field of 2-form on g∗ × F defined by:

ω =
1
2

dμ ∧ Γ̃ .

Then:

(i) Let µ = orb(μ, f) be an orbit in g∗ × F , and ψµ be the projection on the
first component η = (μ, f) �→ μ, restricted to the orbit. Then the smooth
map ψµ is a submersion.
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(ii) One has:

ω(δη, δη) =
1
2

(dμZδ − δ μZd) with: Zd = Γ̃ (df), Zδ = Γ̃ (δf).

On each orbit, ω is the pull-back of Kirillov-Kostant-Souriau symplectic
form ωKKS by ψµ :

ω = ψ∗
µ (ωKKS),

and is invariant by left action:

L∗
a ω = ω.

The G-principal bundle g∗ ×F is a presymplectic bundle of symplectic form
ω.

(iii) ψµ is a momentum map and:

ψµ ◦ La = Ad∗(a)ψµ + cocs(a).

(iv) The equation of motion is:

dη ∈ Ker(ω) ⇔ ∇̃dXμ = dμ + ad∗(Γ̃ )μ − dcocs (Γ̃ ) = 0, (16)

and the momentum µ = orb(μ, f) is parallel-transported:

∇̃−→
dX

µ = 0.

Using the swap rule (11), Eq. (16) reads:

∇dX μ = dμ − ad∗(Γ̃ ′)μ + dcocs (Γ̃ ′) = 0 (17)

It is worth to remark that, if dcocs = 0, it is nothing else Euler-Poincaré
equation [7]. In fact, (17) generalizes this equation when the class of symplectic
cohomology of the group is not null, especially for the important case of Galileo’s
group.

4 Application to Classical Mechanics

Considering the representation of a Galilean transformation a by a 5 × 5 matrix
(4), we have by differentiation around the identity:

Zd = dP̃ =

⎛
⎝ 0 0 0

dτ0 0 0
dk du j(d�)

⎞
⎠ .

The Lie bracket of two infinitesimal Galilean transformations is:

[Zd, Zδ] = ZδZd − ZdZδ =
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⎛
⎝ 0 0 0

0 0 0
dτ0 δu − δτ0 du + δ� × dk − d� × δk δ� × du − d� × δu j(δ� × d�)

⎞
⎠ .

Owing to:
(ad∗(Y )μ) (Z) = −μ (Ad (Y ) Z) = −μ[Y,Z],

we obtain the infinitesimal coadjoint representation of Galileo’s group μ′ =
ad∗(Zd)μ represented by:

e′ = −du · p, p′ = −d� × p,

q′ = −d� × q + dτ0p, l′ = −d� × l + du × q − dk × p.

On the other hand, dcocs is given for Galileo’s group by (8). Hence, applying
(17), and combining with the expressions (12) and (14) of the Galilean connec-
tion, the equation of motion (16) reads:

∇̃e = de + p · (Ω × dx − g dt) = de − p · g dt = 0

∇̃p = dp + Ω × p dt + m (Ω × dx − g dt) = dp − m (g − 2Ω × v) dt = 0.

∇̃q = dq + Ω × (q − mx) dt − p dt = 0

∇̃l = dl + Ω × l dt − q × (g dt − Ω × dx) + p × (Ω × x) dt = 0.

The terms resulting from the non null class of symplectic cohomology of
Galileo’s group are underlined and absolutely necessary to find the expected
equation fitting the experiments of classical dynamics. After dividing by dt and
some simplifications, we can recast them as:

– balance of energy: ė = g · p
– balance of linear momentum: ṗ = m (g − 2Ω × v)
– balance of passage: q̇ = p
– balance of angular momentum: l̇ + Ω × l0 = x × m (g − 2Ω × v)

These equations are full covariant. The right hand member of the second
equation takes into account both Newton’s gravity and Coriolis’ force, allowing
to understand the experience of Foucault’s pendulum. The last equation allows
for instance to explain the motion of a satellite or Lagrange’s top.
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Abstract. Due to the increasing demands for modeling large-scale and
complex systems, designing optimal controls, and conducting optimiza-
tion tasks, many real-world applications require sophisticated models.
Geometric methods are designed to capture the underlying structure of
the system at hand and to preserve the global qualitative or geomet-
ric properties of the flow, such as symplecticity, volume preservation
and symmetry. A survey on three of such structure preserving numerical
methods is proposed in the present article. Testing the validity of such
simulations is achieved by exhibiting analytically solvable models and
comparing the result of simulations with their exact behavior.

Keywords: Geometric integrators ·
Structure preserving numerical methods · Variational methods

1 Introduction

It is today well established that geometrical methods connected to powerful
numerical tools (i.e. Runge-Kutta, Butcher series) can be applied to equations
on the Lie algebra to design high order methods and determine their numerical
convergence. Beyond these structure preservations, approaches for integration
algorithms based on variational principles give a unified treatment of many sym-
plectic numerical schemes. In this context, the Noether theorem [10] allows for
a numerical formulation that preserves symmetries and conservation laws.

In the case of homogeneous spaces (smooth manifold on which a Lie group
acts transitively), the so-called Lie group integrators, comprising Runge-Kutta-
Munthe-Kaas [12] methods is presented shortly in Sect. 2. The main preoccupa-
tion is to ensure that discrete solutions are guaranteed to stay on the given man-
ifold. However in this case no particular preservation of symmetries is obtained
without further constraints. This is why variational methods are revisited in
Sect. 3 to be compared to Lie-Poisson Hamilton-Jacobi algorithm based on gen-
erating function for which higher order designs are also available (Sect. 4).
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2 Lie Group Integrators, Runge-Kutta-Munthe-Kaas
Methods

The Runge-Kutta-Munhe-Kaas methods (RKMK) developed in a serie of arti-
cles [12], are an example of Lie group methods. Let Y (t) be a curve in a matrix
Lie group G verifying

Ẏ = A(t, Y )Y, Y (0) = Y0 (1)

where A(t, Y ) ∈ g for all t, Y ∈ R × G. The starting point is to describe the
solution of (1) as Y (t) = exp(Ω(t))Y0 and to deduce an ODE on Ω. Computing
the derivative of Y we get

Ẏ (t) =
d

dt
exp(Ω(t))Y0 = dexpΩ(t)(Ω̇(t))Y0 = dRexpΩ(t)(Ω̇(t))Y (t),

where the right trivialized derivative dRexpΩ := dRexp(Ω)−1 ◦ dexpΩ is intro-
duced. Using this expression in (1) and inverting1 dRexpΩ a differential equation
is obtained for Ω lying on the Lie algebra g

Ω̇(t) = dRexp−1
Ω(t)

(
A(t, Y (t))

)
, Ω(0) = 0. (2)

The advantage is that the non linear invariants defining the Lie group become
linear invariants on the Lie algebra, and will be preserved by any numerical
method [7]. This ensures that the solution stays on the Lie group.

The idea behind RKMK methods is to approximate the solution Y of Eq. (1)
with a discrete solution (Yn) by approximately solving Eq. (2) with a general
Runge-Kutta method Ω̇ = f(Ω) with f = dRexp−1

Ω and updating the position
via the exponential map. Knowing that dRexp−1

Ω (Θ) = Θ +
∑∞

k=1
Bk

k! adk
Ω(Θ)

where Bk are Bernouilli numbers, a truncated sum up to order q is used in
Eq. (2). If the Runke-Kutta method is order p and the truncature order is such
that q ≥ p − 2, then the associated RKMK method is order p [12].

Application to the Rigid Body Problem. We consider here the free rigid
body problem. Let π ∈ so(3)∗ ≈ R

3 be the angular momentum in the body
frame and J = diag(J1, J2, J3) the inertia tensor, it verifies the Euler-Poincaré
equation π̇ = π ∧ ξ, π(0) = π0 where ξ = J

−1π ∈ so(3) and π0 is the initial
angular momentum. In terms of matrix product, this yields

π̇ =

⎡

⎢
⎣

0 π3
J3

−π2
J2−π3

J3
0 π1

J1
π2
J2

−π1
J1

0

⎤

⎥
⎦π, π(0) = π0. (3)

This is in the form of Eq. (1), hence π can be approximately solved using a
RKMK method where SO(3) is the acting group. The Lie group SO(3) leaves
1 Here we made the assumption that dRexpΩ : g → g is invertible, which is the case

for SO(3) whenever ‖Ω‖ < π.
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the vector space so(3)∗ invariant, reflecting the conservation of ‖π(t)‖ in time.
Applying a Lie group method guarantees the preservation of that constraint,
ensuring that the angular momentum π(t) lies on the sphere of radius ‖π0‖ for
all t.

Defining Ω with π(t) = exp(Ω(t))π0, the following expression is obtained for
Eq. (2)

Ω̇ =
∞∑

k=0

Bk

k!
adk

Ω(J−1 exp(Ω)π0), Ω(0) = 0. (4)

We build an order 4 RKMK method by truncating the sum (4) up to order 2 and
a applying a classical order 4 RK method. The results shown in Fig. 1, outputting
the expected behaviour, have been computed for the following parameters:

J = diag
(
2/3, 1, 2

)
, π0 =

[
cos

(
π
3

)
0 sin

(
π
3

)]T

, h = 0.5s, N = 200.

3 Covariant Variational Methods

Here we build a covariant variational method based on the Hamilton principle
associated to a discrete Lagrangian following a similar approach to [5]. We take
the case where the configuration space of the system is a Lie group G together
with a reduced Lagrangian � : g → R.

Let a time step h divide equally the time interval, the set of discrete paths
is defined by Cd(G) =

{
gd : {tk}0≤k≤N → G

}
where ∀k, tk = kh. To determine

an approximate trajectory gd ∈ Cd(G) such that gk := gd(k) ≈ g(tk), we define
a discrete reduced Lagrangian �d approximating the action

�d(ξ0) ≈
∫ t1

t0

�(ξ) dt

where ξ(0) = ξ0 and ξ = g−1ġ such that g is an action extremum on [t0, t1]. To
discretize the relation ξ = g−1ġ we introduce a local diffeomorphism τ : g → G
defined on an open set containing the identity and such that τ(0) = eG (the
exponential map is an example of such a diffeomorphism). Starting from the
reconstruction formula

gi+1 = giτ(h ξi), (5)

we define ξi := 1
hτ−1(g−1

i gi+1)
The discrete action is approximated from the classical action by the sum

Sd(gd) =
∑N−1

i=0 �d(ξi). Applying the Hamilton principle on Sd evaluated on

a discrete path gd yields δSd(gd) =
∑N−1

i=0

〈
∂�d
∂ξ (ξi), δξi

〉
. The variation δξi is

expressed using (5) as

δξi =
1
h

dτ−1

g−1
i gi+1

(
−g−1

i δgig
−1
i gi+1 + g−1

i δgi+1

)

=
1
h

dτ−1
τ(hξi)

((
−ζi + Adτ(hξi) ζi+1

)
τ(hξi)

)
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where ζi = g−1
i δgi. Here the right trivialized differential dRτ−1 : g → g defined

by dRτ−1
ξ := Tτ(ξ)τ

−1 ◦ TRτ(ξ) is introduced, allowing us to write

δξi =
1
h

dRτ−1
hξi

(
−ζi + Adτ(hξi) ζi+1

)

Using the definition of the adjoint 〈π,Aξ〉 = 〈A∗π, ξ〉 where π ∈ g∗ and ξ ∈ g,
the variation of the action functional now reads

δSd(gd) =
N−1∑

i=0

〈
1
h

(
dRτ−1

hξi

)∗ ∂�d

∂ξ
(ξi),Adτ(hξi) ζi+1 − ζi

〉
.

Introducting the momentum μi associated to ξi via the formula

μi :=
(
dRτ−1

hξi

)∗ ∂�d

∂ξ
(ξi) (6)

and changing the indexes in the sum (discrete integration by part), we finally get,
by the independence of ζi for all i ∈ {1, . . . , N − 1}, the discrete Euler-Poincaré
equations

μi − Ad∗
τ(hξi−1) μi−1 = 0. (7)

This allows us to define the general formulation of a covariant method in
Algorithm 1 for given boundary conditions g0 et ξ0. The momentum μi is com-
puted from (7), and the associated ξi ∈ g is then deduced from (6). This equation
being implicit, it is typically solved using a numerical solver such as a Newton
method. Finally, the position is updated via the reconstruction formula (5).

Algorithm 1. General implementation of the covariant variational
method.
Data: g0, ξ0

g1 = g0τ (hξ0) , μ0 = h
(
dRτ−1

hξ0

)∗
∂�d
∂ξ

(ξ0)

for i = 1 to N − 1 do
Compute μi = Ad∗

τ(hξi−1)
μi−1 (equation (7))

Find ξi solution of
(
dRτ−1

hξi

)∗
∂�d
∂ξ

(ξi) − hμi = 0 (equation (6))

Update gi+1 = giτ (hξi) (equation (5))

end

Application to the Rigid Body Problem. A rigid body is represented by an
element of the rotation group SO(3). The reduced Lagrangian for this system is
defined for ξ ∈ so(3) as the rotation kinetic energy �(ξ) := 1/2 〈Jξ, ξ〉. We chose
to approximate this Lagrangian with �d defined by �d(ξ0) := h�(ξ0) = h

2 〈Jξ0, ξ0〉
and choose the local diffeomorphism τ to be defined as the Cayley map τ :=
cay : so(3) → SO(3) (details can be found in [4]).

The results of the application of Algorithm1 for the parameters given in
Sect. 2 are also plotted on Fig. 1 for comparison.
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π1
π2

π3

π1
π2

π3

Fig. 1. Numerical angular momentum of the rigid body problem computed for RKMK4
(left) and covariant method (right); both exactly lie one the sphere. Exact solutions
have been plotted for comparison.

4 Methods Based on Generating Functions,
Hamilton-Jacobi Equation

4.1 Classical Case

The Hamilton Jacobi equation plays an important role in the development of
numerical integrators that preserve the symplectic structure. In this section
Hamilton-Jacobi theory is approached from the point of view of extended phase
space as it is presented by Marsden [11] (p 206) and Arnold [1] (chapter 9). A
link between Hamilton-Jacobi integrators and variational integrators could also
be find in ([10]).

By definition, canonical transformations preserve the (pre)-symplectic
2-form, which can be deduced from the differential of the Poincaré-Cartan
form. Let us consider a canonical transformation in the extended phase space
(t, q, p) �→ (T,Q, P ) depicted in Fig. 2. Let (t, q, p) be coordinate functions in
some chart of extended phase space considered as a manifold M . The Poincaré-
Cartan form θ = p dq − H dt is a differential 1-form on M for which H(t, q, p)
is a Hamiltonian function. The coordinates (t,Q, P ) can be considered as giving
another chart on M associated to the 1-form Θ = P dQ − K dt with a corre-
sponding Hamiltonian function K(T,Q, P ).

As it is well-know, it is possible to find four2 generating functions depending
of all mixes of old and new variables: (q,Q), (q, P ), (p,Q), or (p, P ). It appears
that the second kind (q, P ) of generating function is easily used to generate
an infinitesimal transformation closed to the identity. And in turn, defines, by
construction, a structure preserving numerical method. The mixed coordinates
system (t, q, P ) may be related to the previous ones through two mappings h
and f : such that

h : (t, q, P ) �→ p(t, q, P ) and f : (t, q, P ) �→ Q(t, q, P )

2 At least four since many generating functions can be constructed.
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Fig. 2. Canonical transformation (t, q, p) �→ (T, Q, P ). Independent variables (q, P ) are
used to construct the second kind of generating function G(t, q, P ).

If each the (pre-)symplectic forms ωθ = −dθ and ΩΘ = −dΘ are invariantly
associated to one another, their pull-back should agree: h∗ωθ = f∗ΩΘ. Since the
operator (d) and ( ∗) commute, that means d(h∗θ) = d(f∗Θ). Consequently, h∗θ
and f∗Θ differ from a closed form dS = h∗θ − f∗Θ which is

dS(t, q, P ) = h∗ (p dq − H dt) − f∗ (P dQ − K dT ) .

Replacing P dQ = d(QP )−QdP and introducing G = (f∗Q)P+S, one computes

∂G

∂t
dt +

∂G

∂q
dq +

∂G

∂P
dP = h∗ (p dq − H dt) − f∗ (QdP − K dT )

and obtains
⎧
⎪⎪⎨

⎪⎪⎩

f∗K = h∗H + ∂G
∂t

f∗Q = ∂G
∂P

h∗p = ∂G
∂q

�→

⎧
⎪⎪⎨

⎪⎪⎩

K(t,Q(t, q, P ), P ) = H(t, q, p(t, q, P )) + ∂G
∂t

Q(t, q, P ) = ∂G
∂P

p(t, q, P ) = ∂G
∂q

(8)
Now suppose that G(t, q, P ) satisfies the so-called Hamilton-Jacobi equation,

H(t, q,
∂G

∂q
),+

∂G

∂t
= 0 (9)

for a given time dependent Hamiltonian H. This equation is obtained by taking
K ≡ 0 in (8-a). The generating function G generates a time dependent canonical
transformation ψ that transforms the Hamiltonian vector fields XH to equilib-
rium: ψ∗XH = XK=0. That means that the integral curves of XK are represented
by straight lines in the image space. The vector field has been ”integrated” by
the transformation (see Fig. 2).

The choice of the second kind of generating function is convenient to easily
generate the identity transformation. Choosing G = qP in (8b) and (8c) reads
Q = ∂G

∂P = q and p = ∂G
∂q = P . So, a canonical (infinitesimal) transformation is

obtained by plugging the ansatz
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G(t, q, P ) = qP +
∞∑

m=1

tm

m!
Gm(q, P ) = qP + tG1(q, P ) +

t2

2
G2(q, P ) + . . . (10)

into the Hamilton-Jacobi Eq. (9). Equating coefficients of equal powers of t gives

G1 = −H(t, q, P ), G2 = −∂H

∂p

∂G1

∂q
, G3 = −∂H

∂p

∂G2

∂q
− ∂2H

∂p2
∂G1

∂q
G4 = . . .

A numerical method of the order k is obtained by truncating the serie (10) to a
certain order k (see also [2]). The remaining variables (p,Q) are computed using
the generating function G in (8b) and (8c): Q = ∂G

∂P and p = ∂G
∂q . Putting (q, p)

in the left-hand size, the numerical algorithm is finally
{

q = Q − ∑k
m=1

tm

m!
∂Gm

∂P (q, P )
p = P +

∑k
m=1

tm

m!
∂Gm

∂q (q, P )

As it can be seen, the first step may be implicit for the variable q. But when it
is solved, the second step is explicit for p. The symplectic Euler method is an
example of such methods of order 1 with G1 = −H(q, P ) given by

{
q = Q + t∂H

∂P (q, P )
p = P − t∂H

∂q (q, P )

for which the “discrete Hamiltonian structure” is easily recognizable.

4.2 Lie-Poisson Hamilton-Jacobi Integrators

Following the same approach as the preceding section, the Hamilton-Jacobi the-
ory is reduced from T ∗G to g∗, the dual Lie algebra. Let (t, q0, π0) be coordi-
nate functions in some chart of extended phase space considered as a manifold
M = R × G × g∗ (see Fig. 3). The 1-form

θ = π0λq0 − H dt

Fig. 3. Canonical transformation using the dual Lie algebra (t, q0, π0) �→ (t, q1, π1).
Independent variables (q1, π1) are used to construct the first kind of generating function
S(t, q1, π1).
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is the reduced Poincaré-Cartan for which the Maurer-Cartan form is defined
by λq0(v) = (Lq−1

0
)∗(v). The coordinates (t, q1, π1) can be considered as giv-

ing another chart in M associated to the 1-form Θ = π1λq1 − K dt with
λq1(v) = (Lq−1

1
)∗(v). The mixed coordinates system (t, q0, q1) may be related

to the previous ones through two mappings h : (t, q0, q1) �→ π0(t, q0, q1) and
f(t, q0, q1) �→ π1(t, q0, q1).

For the left invariant system, the Hamiltonian function is left invariant. It is
then natural to seek for left invariant generating functions satisfying St(q0, q1) =
St(hq0, hq1), ∀h ∈ G. Choosing h = q−1

0 we can construct a left invariant function
S̄t given by

St(q0, q) = St(e, q−1
0 q) = St(e, g) = S̄t(g), g = q−1

0 q1.

The invariance of the (pre-)symplectic forms ωθ = −dθ and ΩΘ = −dΘ gives
now rise to a function S̄t(g) such that

dS̄t = f∗Θ − h∗θ = f∗ (
πλq1 − K dt

) − h∗ (
π0λq0 − H dt

)
(11)

So computing dS̄t = ∂S̄t

∂t dt + ∂S̄t

∂g dg, it appears that dg must also be computed
in term of λq0 and λq,

dg = d(q−1
0 q1) = dq−1

0 q1 + q−1
0 dq1 = −q−1

0 dq0q
−1
0 q1 + q−1

0 q1q
−1
1 dq1

= −λq0g + gλq1 = −(Rg)∗λq0 + (Lg)∗λq1 .

So, comparing the expression dS̄t = ∂S̄t

∂t dt − ∂S̄t

∂g (Rg)∗λq0 + ∂S̄t

∂g (Lg)∗λq1

with (11), one obtains
⎧
⎪⎪⎨

⎪⎪⎩

h∗H = f∗K + ∂S̄t

∂t

f∗π1 = (Lg)∗ ∂S̄t

∂g

h∗π0 = (Rg)∗ ∂S̄t

∂g

�→

⎧
⎪⎪⎨

⎪⎪⎩

H(t, π0(t, g)) = K(t, π1(t, g)) + ∂S̄t

∂t

π1(t, g) = (Lg)∗ ∂S̄t

∂g

π0(t, g) = (Rg)∗ ∂S̄t

∂g

(12)

For H ≡ 0, this yields the Lie-Poisson Hamilton-Jacobi equation

K

(

t, (Lg)∗ ∂S̄t

∂g

)

+
∂S̄t

∂t
= 0, g = q−1

0 q1 (13)

So Eq. (12c)

π0(t, g) = (Rg)∗ ∂S̄t

∂g
(14)

plugged into Eq. (12b) gives

π1(t, g) = Ad∗
gπ0(t, g) (15)

Marsden [6,9], Li [8] and de Degio [3] obtained a slightly different result
using the convention g = q−1

1 q0. Nevertheless, one can obtain a Lie-Poisson inte-
grator by approximately solving the Lie-Poisson Hamilton-Jacobi Eq. (13) and
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then using (14) and (15) to generate the algorithm. This last Eq. (15) mani-
festly preserves the co-adjoint orbit Oπ0 = {π ∈ g∗|π = Ad∗

gπ0,∀g ∈ G}. As in
the classical case, one can generate algorithms of arbitrary accuracy by approx-
imating the generative function by an ansatz such as the one given by (10),
i.e S̄t(g) = S0(g) +

∑∞
m=1

tm

m!Sm(g) The main difficulty is to determine S0

that can generate the identity map. Marsden propose to use in [6] the function
S0 = trace(Ad∗

g) and astoundingly, de Diego [3], approximating the solution by
taking the Taylor series in t of S up to order k, mention S0 = 0.

Li [8] propose to reformulate the above theory of a generating function on
TG∗ by the exponential mapping in terms of algebra variable. For g ∈ G, choose
ξ ∈ g so that g = exp ξ. He use Channel and Scovel’s [2] results for which
S0 = (ξ, ξ)/2).

4.3 Conclusions and Future Research

In our case, our perspective is to relate the Lie-Poisson Hamilton-Jacobi algo-
rithm to the Euler-Poincaré algorithm developed in Sect. 3 based on the Cayley
map. In particular, since Eqs. (15) and (7) are the same in both algorithm, it will
be instructive to compare the approximation of the Lie-Poisson Hamilton-Jacobi
Eq. (13) to the relationship between μ and ξ given by Eq. (6).
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Souriau Exponential Map Algorithm
for Machine Learning on Matrix Lie Groups
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Abstract. Jean-Marie Souriau extended Urbain Jean Joseph Leverrier algo-
rithm to compute characteristic polynomial of a matrix in 1948. This Souriau
algorithm could be used to compute exponential map of a matrix that is a
challenge in Lie Group Machine Learning. Main property of Souriau Expo-
nential Map numerical scheme is its scalability with highly parallelization.

Keywords: Souriau algorithm � Matrix characteristic polynomial �
Exponential map � Lie group machine learning

1 From Le Verrier to Souriau Algorithm

The algorithm to compute characteristic polynomial of a matrix was discovered by
Urbain Jean Joseph Leverrier in 1840, and was rediscovered in 1948 by Jean-Marie
Souriau and modified to its present form, but published only in French. Other authors,
P. Horst, D. K. Faddejew and Sominski, J. S. Frame, U. Wegner and L. Csanky, were
credited with rediscovering the technique. As soon as 1955, Souriau algorithm was
tested and benchmarked by the National Bureau of Standards, Los Angeles, under the
sponsorship of the Wright Air Development Center, U. S. Air Force, and the Office of
Naval Research, and was concluded at the University of California, by the Office of
Naval Research. As observed and illustrated by Souriau, for n = 10, his algorithm uses
only 8 thousands of additions and multiplications, compared to 37 million of additions
and 62 million of multiplications for classical approach (Gaussian elimination). Main
drawback of most efficient classical algorithm based on Krylov iterates cannot be
parallelized. Souriau algorithm has a complexity O(n4) or O(nx+1) in sequential
computation, and so cannot compete with Krylov-based algorithm, but Souriau algo-
rithm has been parallelized by L. Csanky, proving that characteristic polynomial
computation could be solved in parallel time log2n with a polynomial number of
processors. Souriau algorithm parallelization by Czansky has been improved more
recently by Preparata and Sarwate using fast matrix product, and by Keller-Gehrig
using matrix reduction. Reduction to complexity O(nx) is given for generic matrices,
but for non-generic ones, only O(nxlogn) complexity could be achieved. A disadvan-
tage of both algorithms (Le verrier and Gaussian elimination) is the presence of
divisions.

The computation of the matrix exponential is a classical problem in numerical
mathematics as explained in 1978 paper of Moler and van Loan and many efficient

© Springer Nature Switzerland AG 2019
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algorithms described in 1998 paper Hochbruck, Lubich and Selhofer 1998. But this
problem is very far from being fully solved, especially to approximate an exponential
of a matrix which resides in a Lie algebra, a central problem in geometric integration as
studied by Iserles, Munthe-Kaas, Nørsett, Zanna and Celledoni.

2 Souriau Matrix Characteristic Polynomial Computation

Jean-Marie Souriau introduced his algorithm in the framework of his lecture on
Multilinear Algebra by consideration on volume form. In a vector space E of dimension
n, we can prove that vector space of n-forms (n-form as an anti-symmetric n-linear
operator with scalar value). After Selecting a frame e1; e2; . . .; enð Þ of E, we can define
an n-form called “volume form” with:

vol e1ð Þ e2ð Þ. . . enð Þ ¼ 1 ð1Þ

Volume of parallelepiped generated by vectors x1; x2; . . .; xnð Þ is given by:

vol x1ð Þ x2ð Þ. . . xnð Þj j ð2Þ

Souriau called “espace jaugé (jauged space)”, all vector space E, of finite size,
where we have selected a “unit-jauge” defined by vol. If we define a linear operator
A : E ! E, considered as “affiner” in a jauged space, we can then give definition of:

• Determinant of A, det Að Þ by:

det Að Þvol v1ð Þ v2ð Þ. . . vnð Þ ¼ vol Av1ð Þ Av2ð Þ. . . Avnð Þ ð3Þ

• Adjoint linear operator of A, adj Að Þ, by:

vol adjðAÞv1ð Þ v2ð Þ. . . vnð Þ ¼ vol v1ð Þ Av2ð Þ. . . Avnð Þ ð4Þ

• Trace number of A, tr Að Þ, by:

tr Að Þvol v1ð Þ v2ð Þ. . . vnð Þ ¼ vol Av1ð Þ v2ð Þ. . . vnð Þþ vol v1ð Þ Av2ð Þ. . . vnð Þ
. . .þ vol v1ð Þ v2ð Þ. . . Avnð Þ ð5Þ

By using the following relation deduced from previous equations:

vol adjðAÞAv1ð Þ v2ð Þ. . . vnð Þ ¼ vol Av1ð Þ Av2ð Þ:: Avnð Þ ¼ det Að Þvol v1ð Þ v2ð Þ. . . vnð Þ ð6Þ

If A is invertible, we recover classical equations:

adj Að ÞA ¼ det Að ÞI andA�1 ¼ det Að Þ½ ��1adj Að Þ ð7Þ
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Using these formulas, we can try to invert kI � A½ � assuming that det kI � Að Þ 6¼ 0.
If we use previous determinant definition, we have:

det kI � Að Þvol v1ð Þ v2ð Þ. . . vnð Þ ¼ vol kv1 � Av1ð Þ kv2 � Av2ð Þ. . . kvn � Avnð Þ
¼ knvol v1ð Þ v2ð Þ. . . vnð Þþ . . .

ð8Þ

where det kI � Að Þ is the characteristic polynomial of A, a polynomial in k of degree n,
with:

adj kI � Að Þ kI � A½ � ¼ det kI � Að ÞI , A:Q kð Þ ¼ kQ kð Þ � P kð ÞI ð9Þ

(if k is an eigenvalue of A, the nonzero columns of Q kð Þ are corresponding
eigenvectors). We can then observe that adj kI � Að Þ is a polynomial of degree n − 1.
We can then define both P kð Þ and Q kð Þ by polynomials:

P kð Þ ¼ det kI � Að Þ ¼
Xn
i¼0

kik
n�i and Q kð Þ ¼ adj kI � Að Þ ¼

Xn�1

i¼0

kn�i�1Bi ð10Þ

with

k0 ¼ 1; kn ¼ �1ð Þndet Að Þ;B0 ¼ I and Bn�1 ¼ �1ð Þn�1adj Að Þ ð11Þ

By developing equation adj kI � Að Þ kI � A½ � ¼ det kI � Að ÞI, we can write:

Xn
i¼0

kik
n�iI ¼

Xn�1

i¼0

kn�i�1Bi kI � A½ � ¼ kBn�1 þ
Xn�1

i¼1

kn�i Bi � Bi�1A½ � � Bn�1A ð12Þ

By identification term by term, we find the expression of matrices Bi:

B0 ¼ I
Bi ¼ Bi�1Aþ kiI; i ¼ 1; . . .; n� 1
Bn�1Aþ knI ¼ 0

8<
: ð13Þ

We can observe that A�1 ¼ � Bn�1
kn

and also the Cayley-Hamilton theorem:

k0A
n þ k1A

n�1 þ . . .þ kn�1Aþ knI ¼ 0 ð14Þ

To go further, we have to use this classical result from analysis on differentiation
given by d det Gð Þ½ � ¼ tr adj Gð ÞdGð Þ. If we set G ¼ ðkI � AÞ and d ¼ d

dk, we then obtain
tr adj kI � Að Þð Þ ¼ d

dk det kI � Að Þ providing:

Xn�1

i¼0

kn�i�1tr Bið Þ ¼ d
dk

Xn
i¼0

kik
n�i

 !
¼
Xn�1

i¼0

ðn� iÞkikn�i�1 ð15Þ
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We can then deduce that tr Bið Þ ¼ n� ið Þki ; i ¼ 0; . . .; n� 1.
As

Bi ¼ Bi�1Aþ kiI; tr Bið Þ ¼ tr Bi�1Að Þþ n:ki; and then ki ¼ � tr Bi�1Að Þ
i

ð16Þ

We finally obtain the Souriau Algorithm:

k0 ¼ 1 and B0 ¼ I
Ai ¼ Bi�1A; ki ¼ � 1

i tr Aið Þ; i ¼ 1; . . .; n� 1
Bi ¼ Ai þ kiI or Bi ¼ Bi�1A� 1

i tr Bi�1Að ÞI
�
An ¼ Bn�1A and kn ¼ � 1

n tr Anð Þ
ð17Þ

3 Souriau Algorithm to Compute Exponential Map of Matrix

Souriau approach of Exponential computation is based on algebraic analogy:

kI � A½ ��1¼ Q kð Þ
P kð Þ , kI � A½ �Q kð Þ ¼ P kð ÞI ð18Þ

and the differential property (with k ¼ d
dt):

I
d
dt

� A

� �
Q

d
dt

� �
¼ P

d
dt

� �
I ð19Þ

If a numeric function c verifies P d
dt

� �
c ¼ 0, then:

P
d
dt

� �
c ¼

Xn
i¼0

kic
n�ið Þ ¼ k0c

ðnÞ þ k1c
ðn�1Þ þ . . .þ kn�1c

ð1Þ þ knc ¼ 0 ð20Þ

with cðnÞ ¼ dncðtÞ
dtn n-th derivative of function c, with initial conditions:

cð0Þ ¼ cð1Þð0Þ ¼ . . . ¼ cðn�2Þ ¼ 0 and cðn�1Þð0Þ ¼ 1 ð21Þ

In this case, the matrix function U ¼ Q d
dt

� �
c is solution of the differential equation

dUðtÞ
dt ¼ AUðtÞ, with initial condition U 0ð Þ ¼ I:

U ¼ Q
d
dt

� �
c ¼

Xn�1

i¼0

cðn�i�1ÞBi ¼ cðn�1ÞB0 þ cðn�2ÞB1 þ . . .þ cBn�1 ð22Þ
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We can then observe that the exponential map of matrix tA is given by:

etA ¼ Pn�1

i¼0
cðn�i�1ÞBi ¼ cðn�1ÞB0 þ cðn�2ÞB1 þ . . .þ cBn�1

with B0 ¼ I and Bi ¼ Bi�1A� tr Bi�1Að Þ
i I

8><
>: ð23Þ

c such that k0cðnÞ þ k1cðn�1Þ þ . . .þ kn�1cð1Þ þ knc ¼ 0
with ki ¼ � tr Bi�1Að Þ

i ; cð0Þ ¼ . . . ¼ cðn�2Þ ¼ 0 and cðn�1Þð0Þ ¼ 1

�
ð24Þ

The solution cðtÞ of characteristic ordinary differential equation is obtained in 0; h½ �
of the spectral interval of integration. In the remaining part, the exponential function
UðtÞ is computed by:

UðphÞ ¼ UðhÞð Þp ð25Þ

Souriau Algorithm for Exponential Map of Matrix is given by:

ð1Þ B0 ¼ I and Bi ¼ Bi�1A� tr Bi�1Að Þ
i I

k0 ¼ 1; ki ¼ � tr Bi�1Að Þ
i i ¼ 1; . . .; n

(

ð2Þ
c integrated on 0; h½ � such that
k0cðnÞ þ k1cðn�1Þ þ . . .þ kn�1cð1Þ þ knc ¼ 0
with cð0Þ ¼ . . . ¼ cðn�2Þ ¼ 0 and cðn�1Þð0Þ ¼ 1

8<
:

ð3Þ Computation of UðtÞ ¼ etA ¼ Pn�1

i¼0
cðn�i�1ÞðtÞBi on 0; h½ �

ð4Þ Extension of Computation on 0; ph½ � by U ptð Þ ¼ UðtÞð Þp
ð5Þ XðtÞ ¼ UðtÞX0 with X0 ¼ Xð0Þ

ð26Þ

If we observe that lnðAÞ ¼ R0
�1

sI � A½ ��1� sI � I½ ��1ds, this algorithm could be

used also to compute As ¼ es lnðAÞ such as A1=2. This Souriau algorithm to solve dUðtÞ
dt ¼

AUðtÞ by computation of exponential UðtÞ ¼ etA could be extended to solve

L d2UðtÞ
dt2 þM dUðtÞ

dt þNUðtÞ ¼ 0 by substituting k
2
Lþ kMþN

h i
Q kð Þ ¼ P kð ÞI to

kI � A½ �Q kð Þ ¼ P kð ÞI through the following algebraic relations:

k
2
Lþ kMþN

	 

adj k

2
Lþ kMþN

	 

¼ det k

2
Lþ kMþN

	 

I ð27Þ

P kð Þ ¼ det k
2
Lþ kMþN

	 

¼
X2n
i¼0

kik
2n�i;Q kð Þ ¼ adj k

2
Lþ kMþN

	 


¼
X2n�2

i¼0

k2n�i�2Bi
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4 Examples of Souriau Exponential Map Algorithm

We can illustrate Souriau algorithm with:

J ¼ 0 �1
1 0

� �
and etJ ¼ cosðtÞIþ sinðtÞJ ¼ cosðtÞ � sinðtÞ

sinðtÞ cosðtÞ
� �

2 SOð2Þ ð28Þ

B0 ¼ I and k0 ¼ 1
B1 ¼ B0J � tr B0Jð ÞI ¼ J and k1 ¼ �tr B0Jð Þ ¼ 0

B2 ¼ B1J � tr B1Jð Þ
2 I ¼ J2 � tr J2ð Þ

2 I ¼ �1 0
0 �1

� �
þ 1 0

0 1

� �
¼ 0 0

0 0

� �

k2 ¼ � tr J2ð Þ
2 ¼ 1

�����������
ð29Þ

c on 0; h½ � such that d2cðtÞ
dt2 þ c ¼ 0

with cð0Þ ¼ 0 and cð1Þð0Þ ¼ 1
) cðtÞ ¼ sinðtÞ

(
ð30Þ

UðtÞ ¼ dcðtÞ
dt B0 þ cðtÞB1 ¼ cosðtÞIþ sinðtÞJ on 0; h½ �

dU
dt ¼ JUðtÞ

�
ð31Þ

Another example is given by harmonic oscillator:

d
dt

p
q

� �
¼ �q

p

� �
¼ 0 �1

1 0

� �
p
q

� �
¼ J

p
q

� �
with J2 ¼ �I ð32Þ

then etJ
p
q

� �
¼ cos t � sin t

sin t cos t

� �
p
q

� �
; rotation in

p
q

� �
-plane: ð33Þ

Next example, is given for skew-symmetric matrix, corresponding to exponential
map for soð3Þ; the Lie Algebra of Lie group SOð3Þ ¼ R=R�1 ¼ RT

� 
:

x� ¼
0 �x3 x2

x3 0 �x1

�x2 x1 0

0
@

1
A ¼ x1L1 þx2L2 þx3L3 2 soð3Þ and x

¼ x1;x2;x3ð Þ 2 R
3 ð34Þ

The generators of soð3Þ correspond to the derivatives of rotation around the each of
the standard axes, evaluated at identity. The exponential map that takes skew sym-
metric matrices to rotation matrices is simply the matrix exponential over a linear
combination of the generators. We compute this exponential map by Souriau
algorithm:

ex� ¼ cð2ÞB0 þ cð1ÞB1 þ cB2 ð35Þ
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Souriau algorithm provides:

B0 ¼ I and k0 ¼ 1 ð36Þ

B1 ¼ I:x� � Tr I:x�ð Þ
1

I ¼ x� and k1 ¼ � Tr Ix�ð Þ
1

¼ 0 ð37Þ

B2 ¼ B1:x� � Tr x�:x�ð Þ
2

I ¼ x�:x� þ xk k2I and k2 ¼ � Tr x�:x�ð Þ
2

¼ xk k2

ð38Þ

We can observe that B2 ¼ x�:x� þ xk k2I ¼ x� xT and k3 ¼ 0, and we obtain:

ex� ¼ cð2ÞIþ cð1Þx� þ cx� xT ð39Þ

The function cðtÞ should verify:

k0c
ð3ÞðtÞþ k1c

ð2ÞðtÞþ k2c
ð1ÞðtÞþ k3cðtÞ ¼ 0 with k0 ¼ 1; k1 ¼ 0; k2 ¼ xk k2; k3¼ 0

ð40Þ

cð3ÞðtÞþ xk k2cð1ÞðtÞ ¼ 0 with cð2Þð0Þ ¼ 1; cð1Þð0Þ ¼ 0; cð0Þ ¼ 0 ð41Þ

We can then deduce that:

cð1ÞðtÞ ¼ 1
xk k sin xk ktð Þ and cðtÞ ¼ 1

xk k2 1� cos xk ktð Þð Þ ð42Þ

We can then deduce the exponential map of soð3Þ :

et:x� ¼ cos xk ktð ÞIþ 1
xk k sin xk ktð Þx� þ 1� cos xk ktð Þ

xk k2 x� xT ð43Þ

But using the relation x� xT ¼ x�:x� þ xk k2I, we recover Rodrigues formula:

et:x� ¼ Iþ 1
xk k sin xk ktð Þx� þ 1� cos xk ktð Þ

xk k2 x2
� ð44Þ

Souriau Exponential Map Algorithm for Machine Learning 91



The exponential map from seð3Þ to SEð3Þ ¼ C=C ¼ R t
0 1

� �
;

�
R 2 SOð3Þ; t 2

R
3g is the matrix exponential on a linear combination of the generators:

d ¼ x� u
0 0

� �
¼ u1G1 þ u2G2 þ u3G3 þx1G4 þx2G5 þx3G6

d ¼ u xð Þ 2 seð3Þ and u xð ÞT2 R
6

ð45Þ

ed ¼ exp
x� u
0 0

� �
¼ ex� Vu

0 1

� �
with V ¼ Iþ 1

2!
x� þ 1

3!
x�ð Þ2 þ . . . ð46Þ

By using the identity, x�ð Þ3¼ � xTxð Þ:x� ¼ � xk k2x�:

V ¼ Iþ
X1
i¼0

x2iþ 1
�

2iþ 2ð Þ! þ
x2iþ 2

�
2iþ 3ð Þ!

� �
¼ Iþ

X1
i¼0

�1ð Þih2i
2iþ 2ð Þ!

 !
x� þ

X1
i¼0

�1ð Þih2i
2iþ 3ð Þ!

 !
x2

�

ð47Þ

V ¼ Iþ 1� cos xk kð Þ
xk k2

 !
x� þ xk k � sin xk kð Þ

xk k3
 !

x2
� ð48Þ

We can apply Souriau formula for exponential map of suð2Þ; the Lie Algebra of
Lie group SUð2Þ through a linear combination of the generators given by the Pauli spin
matrices:

a:Iþ i c:rx þ b:ry þ d:rz
� � ¼ aþ id bþ ic

�bþ ic a� di

� �
with a; b; c; dð Þ 2 R

4 ð49Þ

Last example deals with “Geodesic Shooting” for multivariate Gaussian densities
@ m;Rð Þ. Information Geometry provides an invariant Koszul-Fisher metric and geo-
desic by Euler-Lagrange equations:

€Rþ _m _mT � _RR�1 _R ¼ 0
_m� _RR�1 _m ¼ 0

�
ð50Þ

Using Souriau theorem of moment map (geometrization of Noether theorem):

) R�1 _RþR�1 _mmT ¼ B ¼ cste
R�1 _m ¼ b ¼ cste

�
ð51Þ
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This moment map could be computed if we consider the following Lie group action
in case of Gaussian densities:

Y
1

� �
¼ R1=2 m

0 1

� �
X
1

� �
¼ R1=2X ¼ m

1

� �
;

m;Rð Þ 2 Rn � Symþ nð Þ
M ¼ R1=2 m

0 1

� �
2 Gaff

8<
:

X � @ 0; Ið Þ ! Y � @ m;Rð Þ
ð52Þ

With R1=2, square root of R, is given by Cholesky decomposition of R:R1=2 is the
Lie group of triangular matrix with positive elements on the diagonal. Euler-Poincaré
equations, reduced equations from Euler-Lagrange equations, are then given by:

_m ¼ Rb
_R ¼ R B� bmTð Þ

�
ð53Þ

Geodesic shooting is obtained by using equations established by Eriksen for “ex-
ponential map” using the following change of variables:

DðtÞ ¼ R�1ðtÞ
dðtÞ ¼ R�1ðtÞmðtÞ

�
)

_D ¼ �BDþ bmT

_d ¼ �Bdþ 1þ dTD�1d
� �

b
Dð0Þ ¼ Ip; dð0Þ ¼ 0

8<
: with

_Dð0Þ ¼ �B
_dð0Þ ¼ b

�
ð54Þ

The method based on geodesic shooting consists in iteratively approaching the

solution by geodesic shooting in direction _d 0ð Þ; _D 0ð Þ
	 


, using Souriau exponential

map:

KðtÞ ¼ exp tAð Þ ¼ P1
n¼0

ðtAÞn
n! ¼

D d U
dT e cT

UT c C

0
@

1
A

with A ¼
�B b 0
bT 0 �bT

0 �b B

0
@

1
A

ð55Þ

A2 ¼
�B b 0
bT 0 �bT

0 �b B

0
@

1
A

2

¼
B2 þ bbT �Bb �bbT

�bTB 2bTb �bTB
�bbT �Bb B2 þ bbT

0
@

1
A ð56Þ

k0 ¼ 1;B0 ¼ I and k1 ¼ 0;B1 ¼ A because tr Að Þ ¼ 0

B2 ¼ A2 � tr A2ð Þ
2 I; k2 ¼ � tr A2ð Þ

2 ;Bi ¼ Bi�1A� tr Bi�1Að Þ
i I; ki ¼ � tr Bi�1Að Þ

i

ð57Þ

k0cðnÞ þ k1cðn�1Þ þ . . .þ kn�1cð1Þ þ knc ¼ 0 with cð0Þ ¼ . . . ¼ cðn�2Þ ¼ 0; cðn�1Þð0Þ ¼ 1

etA ¼ Pn�1

i¼0
cðn�i�1ÞðtÞBi

ð58Þ
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Abstract. In this article information geometry is applied to the models
of linear discrete time-invariant systems MLTI

S with external input and
zeros outside the unit disc of the z-plane. A new information geometry of
manifolds of systems based R-Complex Finsler spaces with three metric
tensors is presented. First, two metric tensors in Hermitian spaces Hδ

where H−1 corresponds to the zeros outside the unit disc (exogenous
zeros) and H+1 to the zeros and poles inside the unit disc (endogenous
zeros-poles). Then, one metric tensor as a mixing of exogenous zeros
and endogenous zeros-poles in a non-Hermitian space H. Experimental
results are presented from a semi-finite acoustic waves guide.

Keywords: Manifolds of systems · R-Complex Finsler spaces ·
System-model structure · Exogenous zeros

1 Introduction

Information geometry has links with many engineering domains such as robotic,
acoustic, mechanical, signal processing or automatic control [14,16,17,19]. These
authors applied information geometries to AR, MA, ARMA or ARFIMA mod-
els with success to their analyzes and different points of view. But Amari in
[5] introduced the differential geometry of a parametric family of invertible lin-
ear systems with Riemannian metric, dual affine connections, divergences and
the differential-geometrical methods to statistics in [6]. Chapter 5 in [7] devel-
oped the geometry of time series and linear systems. Information properties of
parameter estimation in spectral analysis of stationary time series based geo-
metrical framework have been studied in ARMA models [12]. Using linear and
nonlinear observation models, in [2] the authors developed fundamental sample
complexity bounds in order to recover sparse and structured signals. In the same
vein, based on high-dimensional data applied to generalized linear models, the
author in [1] proposed a wide class of model selection criteria based on penal-
ized maximum likelihood. Among manifolds in information geometry, there exist
Kahlerian manifolds as an interesting topic in many domains. On a Kahlerian
manifold, the tensor metric and the Levi-Civita connection are determined from
a Kahlerian potential [20] and the Ricci tensor is yielded from the determinant
c© Springer Nature Switzerland AG 2019
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of the metric tensor. It is well known that every Kahlerian metric tensor can
be written as aμν(Z,Z) = ∂2K(Z ,Z )

∂Zμ∂Z̄ν with respect to local complex coordinates
Z = (Zμ), (μ, ν = 1, ..., n), where K(Z,Z) is a real valued function as Kahler
potential. Kahlerian manifolds are present in many domains such as mathemat-
ics and theoretical physics, and its applications to information geometry for time
series models have been introduced by Barbaresco [8]. A fundamental work in
[9] has been carried out related to Kahlerian information geometry for signal
processing. The authors proved that information geometry of a signal filter with
a finite complex cepstrum norm was a Kahlerian manifold but only focused on a
signal filter with minimum-phase (mP), that is all zeros/poles of AR and ARMA
discrete transfer functions inside the unit disc.

In this paper, the study is extended and focused on the models of linear
discrete time-invariant systems MLTI

S with external input and zeros outside the
unit disc of the z-plane in discrete transfer functions. Indeed after identification,
many estimated system-models present a non null probabality to have some zeros
outside the unit disc. Such a system is considered as a maximum-phase (MP) sys-
tem [11]. Only one zero outside the unit disc changes Kahler information geome-
try into R-Complex Finsler spaces denoted R

C(F) = Hδ ⊕ H, where Hδ are Her-
mitian spaces (δ = ±1) with square metric tensors and H a non-Hermitian space
with a non-square metric tensor. Let M be a complex manifold with dimCM= n,
(Zμ) be a local complex coordinates in a chart (U,ϕ) and T’M its holomorphic
tangent bundle. Let Eo = {1o, ..., no} and Eip = {1i, ...,mi, 1p, ..., sp} be two sets
such that in Hδ square metric tensors are

c
(δ)
μν̄ (Z,Z) =

α
(δ)
μν̄ (SM)

1 − (ZμZ̄ν)δ
, |Zt| < 1, δ = ±1 (1)

where (μ, ν) run over Eo for δ = −1 and Eip for δ = +1. Likewise the non-square
metric tensor in H is

aμν(Z,Z) =
βμν(SM)

Zμ (Zμ − Zν)
, |Zμ| > 1, |Zν | < 1 (2)

where (μ, ν) run over Eo ∪ Eip. Here SM is a system-model structure with α
(δ)
μν̄

and βμν depending on SM.
The remainder of this article is structured as follows. Section 2 describes the

R-Complex Finsler spaces. Manifolds of systems in these spaces are presented
in Sect. 3. Section 4 focuses on experimental results on a real acoustic system.
Conclusions and perspectives are drawn in Sect. 5.

2 R-Complex Finsler spaces

In order to extend the general relativity to electromagnetic field, Finsler was

inspired to define a metric form as F (X,Y ) =
√

gμν(X,Y )dXμ

dt
dXν

dt with

Y = (Y μ), Y μ = dXμ

dt , μ = 1...n where dimRM= n. A direct consequence is the
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dependence of gμν(X,Y ) of the parameter t ∈ R. An additional condition was
required on the homogeneity of F in Y , meaning that F (X, λY ) = λF (X,Y )
for any λ ∈ R. Rizza in [18] extended to the complex case where F :T’M→ R+

with the homogeneity property F (Z, λΩ) = |λ|F (Z,Ω) for any λ ∈ C. In this
approach (Z,Ω) are the coordinates in holomorphic tangent bundle T’M. In
complex Finsler geometry the arc length is determinated for the curves which
depend on a real parameter c : t → (Zμ) and Ωμ = dZμ

dt and the invari-
ance of the integral to the change of parameters is ensured only for the real
parameters. Subsequently there exists a homogeneity condition F :T’M→ R+

to the real scalars where F (Z, λΩ) = |λ|F (Z,Ω) for any λ ∈ R+ and
L(Z,Ω) = F 2(Z,Ω) satisties the so called R-homogeneity condition by pro-
ducing two metric tensors gμν(Z) = ∂2L(Z ,Ω )

∂Ωμ∂Ων and gμν̄(Z) = ∂2L(Z ,Ω )
∂Ωμ∂Ω̄ν [4,15].

Let M be a complex manifold with dimCM= n, (Zμ) be a local complex coor-
dinates in a chart (U,ϕ) and T’M its holomorphic tangent bundle. There exists
a natural structure of complex manifold, dimCM= 2n and the induced coor-
dinates in a local chart on u ∈ T’M are given by u = (Zμ, Ωμ). Here will
be considered a continuous function F :T’M→ R+ depending on (Z,Ω) and
(Z̄, Ω̄) as the holomorphic and antiholomorphic coordinates on tangent bundle
T’M, respectively. A R-Complex Finsler metric on M is a continuous function
F :T’M → R+ satisfying (i) L(Z,Ω, Z̄, Ω̄) = F 2(Z,Ω, Z̄, Ω̄) (smooth on T’M),
(ii) F (Z,Ω, Z̄, Ω̄) ≥ 0 and (iii) F (Z, λΩ, Z̄, λΩ̄) = λF (Z,Ω, Z̄, Ω̄), λ ∈ R+.
It follows that L(Z,Ω, Z̄, Ω̄) is (2, 0) homogeneous with respect to λ. On the
other hand the function L satisfies Hessian and Levy forms introducing met-
ric tensors gμν = ∂2L

∂Ωμ∂Ων ; gμν̄ = ∂2L
∂Ωμ∂Ω̄ν ; gμ̄ν̄ = ∂2L

∂Ω̄μ∂Ω̄ν . Consider now Z ∈
M and Ω ∈ T’Z M such that Ω = Ωμ ∂

∂Ωμ a section in a holomorphic tangent
space where R-Complex Finsler spaces (M, F ) are named (α, β)-metrics if F is
homogeneous by means of the functions (α, β) investigated in [3] from Randers
(F = α + β) and Kropina metrics (F = α2/β). Therefore metric tensors are
defined as aμν = ∂2α2

∂Ωμ∂Ων , c
(−1)
μν̄ = ∂2α2

∂Ωμ
∗ ∂Ω̄ν∗

and c
(+1)
μν̄ = ∂2α2

∂Ωμ∂Ω̄ν .

3 Manifolds of Systems with External Input
and Exogenous Zeros

Consider that a linear discrete time-invariant system MLTI
S with external input

u(t) and additive disturbance e(t) (Ee(t) = 0,Ee2(t) = λ) can be described as a
linear time-invariant parameter model

s(t) = G(q,θ)u(t) + H(q,θ)e(t) (3)

where q is the lag operator such that q−1u(t) = u(t − 1) and θ the parameter
vector belongs to a compact DM as a set of values over which θ ranges in a
linear system model structure MLTI

S . Using z-transformation with z = eiωTs

(Ts sampling period), transfer functions G (process model) and H (noise model)
become discrete transfer functions G(z,θ) and H(z,θ), respectively. Let Vo and
Wip be two compacts such that Vo = {Zμ/|Zμ| > 1, μ = 1o, 2o, ..., no} and
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Wip = {Zν/|Zν | < 1, ν = 1i, 2i, ...,mi, 1p, 2p, ..., sp}. Let GVo,b(z,Z) and
GWip,b(z,Z) be two discrete transfer functions defined as a backward (MP
property) and forward (mP property) system-model filters [11]. For a system
with a MP property, transfer function G(z,Z) can be written as G(z,Z) =
GVo,b(z,Z)GWip,f (z,Z) with a general form

G(z,Z) = |b1|z−1
n∏

μ=1

(
1 − Zμoz−1

) m∏
μ=1

(
1 − Zμiz−1

) s∏
μ=1

(
1 − Zμpz−1

)−1
(4)

For ARX(Auto Regressive with eXternal input) and OE (Output Error)
system-model structures H(z,Z) =

∏s
μ=1

(
1 − Zμpz−1

)−1 and H(z,Z) = 1,
respectively. See [13]. Now the main order is to transform GVo,b(z,Z) into
GVo,f (z,Z) with the same frequency response by GVo,b(z,Z) = z−nḠVo,f ( 1z̄ ,Z)
to keep the mP property. After straightforward calculations

GVo,f (z,Z) = |b1|z1−n
n∏

μ=1

(
1 − Z̄μoz

)
(5)

The previous expression is fundamental to explain and justify R-Complex
Finsler spaces information geometry. Transfer function G(z,Z) is then a function
of Z and Z̄ and becomes G(z,Z, Z̄). Its associated natural logarithm transfer
function is

lnG =ln|b1| + (1 − n)lnz + nln(−z) +
n∑

μ=1

ln(Z̄μo) +
n∑

μ=1

ln(1 − (
Z̄μo

)−1
z−1)

+
m∑

μ=1

ln(1 − Zμiz−1) −
s∑

μ=1

ln(1 − Zμpz−1) (6)

Therefore lnG = f
(
Z̄μo , Zμi , Zμp

)
, lnḠ = f

(
Zμo , Z̄μi , Z̄μp

)
, lnH = f (Zμp)

and lnH̄ = f
(
Z̄μp

)
. For short notations ∂

∂Zμ = ∂μ and ∂
∂Z̄μ = ∂μ̄. Now define

the Ψ -function by Ψμ = ∂μlnΦX
j where ΦX

j is the joint-power spectral density (j-
psd) and μ run over Eo ∪ Eip (resp. Ēo ∪ Ēip). Here X = P (process) and X = N
(noise). Indeed for a signal-model G ≡ 0 and the psd is Φsig = ΦN = λHH̄
where λ is the variance of e(t). For a system-model given by (3) Φsys = ΦP +
ΦN = GḠΦu + λHH̄ where Φu is the psd of the external u(t) and independent
of zeros-poles. Consider a general form of the psd as ΦX = αX

(
ΦA

2 + ΦB

2

)

and the j-psd as ΦX
j =

√
ΦAΦB . For a signal-model A = N,B = N , αX = 1

leading to Φsig = ΦN and Φsig
j =

√
ΦNΦN = ΦN . Likewise for a system-model

A = P,B = N , αX = 2 leading to Φsys = ΦP + ΦN and Φsys
j =

√
ΦP ΦN .

From ΦP = GḠΦu and ΦN = λHH̄ the Ψ -functions for process and noise in
holomorphic and anti-holomorphic coordinates are

ΨP
μ = ∂μlnG+∂μ̄lnG+∂μlnḠ+∂μ̄lnḠ;ΨN

μ = ∂μlnH +∂μ̄lnH +∂μlnH̄ +∂μ̄lnH̄
(7)
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and the Ψ -function is Ψsys
μ = 1

2ΨP
μ + 1

2ΨN
μ . Three conditions on the transfer

function of a system-filter are necessary for defining the information geometry
of a linear system, that is stability, minimum phase and 1

2iπ

∮
D

|ln F |2 dz
z < ∞

where F = (G,H) and D the unit disc. Now define the fundamental metric
tensor as hμν = 1

2iπ

∮
D

Ψsys
μ Ψsys

ν
dz
z with (μ, ν) run over Eo ∪ Eip (resp. Ēo ∪ Ēip)

and given by

hμν =
1

8iπ

∮

D

(
ΨP

μ ΨP
ν + ΨP

μ ΨN
ν + ΨN

μ ΨP
ν + ΨN

μ ΨN
ν

) dz

z
(8)

For ARX model the metric tensor is equal to (8) and for OE model
hμν = 1

8iπ

∮
D

ΨP
μ ΨP

ν
dz
z . Equation (7) leads to thirty six expressions gathering

nine non-zero terms with their respective conjugates and eighteen zero terms.
Five Hermitian metric tensors in H−1 and H+1 and four non-Hermitian in H
are given respectively by

c
(−1)
μoν̄o

=
α
(−1)
μoν̄o

(SM)
1 − (Zμo∗ Z̄νo∗ )−1

; c(+1)
μiν̄i

=
α
(+1)
μiν̄i

(SM)
1 − ZμiZ̄νi

; c(+1)
μpν̄p

=
α
(+1)
μpν̄p

(SM)
1 − ZμpZ̄νp

c
(+1)
μiν̄p

=
α
(+1)
μiν̄p

(SM)
1 − ZμiZ̄νp

; c(+1)
μpν̄i

=
α
(+1)
μpν̄i

(SM)
1 − ZμpZ̄νi

, Zx
∗ = (Zx)−1, |Zx

∗ | < 1 (9)

and

aμoνi
=

βμoνi
(SM)

Zμo (Zμo − Zνi)
; aμiνo

=
βμiνo

(SM)
Zνo (Zνo − Zμi)

aμoνp
=

βμoνp
(SM)

Zμo (Zμo − Zνp)
; aμpνo

=
βμoνo

(SM)
Zνo (Zνo − Zμp)

(10)

Equation (9) leads to (1) in Hδ where square matrices C−1 and C+1 are

C−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

c
(−1)

1o1̄o
c
(−1)

1o2̄o
· · · c

(−1)
1on̄o

c
(−1)

2o1̄o
c
(−1)

2o2̄o
· · · c

(−1)
2on̄o

...
...

. . .
...

c
(−1)

no1̄o
c
(−1)

no2̄o
· · · c

(−1)
non̄o

⎞
⎟⎟⎟⎟⎟⎟⎠

;C+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
(+1)

1i1̄i
· · · c

(+1)
1im̄i

c
(+1)

1i1̄p
· · · c

(+1)
1is̄p

...
. . .

...
...
. . .

...

c
(+1)

mi1̄i
· · · c

(+1)
mim̄i

c
(+1)

mi1̄p
· · · c

(+1)
mis̄p

c
(+1)

1p1̄i
· · · c

(+1)
1pm̄i

c
(+1)

1p1̄p
· · · c

(+1)
1ps̄p

...
. . .

...
...
. . .

...

c
(+1)

sp1̄i
· · · c

(+1)
spm̄i

c
(+1)

sp1̄p
· · · c

(+1)
sps̄p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)
Likewise Eq. (10) leads to (2) in H where the non-square matrix Ā is

Ā =

⎛
⎜⎝

a1o1i
· · · a1omi

a1o1p
· · · a1osp

...
. . .

...
...
. . .

...
ano1i

· · · anomi
ano1p

· · · anosp

⎞
⎟⎠ (12)
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For ARX model α
(−1)
μν̄ (SARX

M ) = −1/4 for (μν) = (μoνo), α
(+1)
μν̄ (SARX

M ) =
(1/4; 1;−1/2;−1/2) for (μν) = (μiνi;μpνp;μiνp;μpνi) and βμν(SARX

M ) = (−1/4;
−1/4; 1/2; 1/2) for (μν) = (μoνi;μiνo;μoνp;μpνo), respectively. For OE model
α
(−1)
μν̄ (SOE

M ) = −1/4 for (μν) = (μoνo), α
(+1)
μν̄ (SOE

M ) = (1/4; 1/4;−1/4;−1/4)
for (μν) = (μiνi;μpνp;μiνp;μpνi) and βμν(SOE

M ) = (−1/4;−1/4; 1/4; 1/4) for
(μν) = (μoνi;μiνo;μoνp;μpνo), respectively.

Fig. 1(left) shows the real part of the square metric tensor c
(−1)
μoν̄o

for Zμo =
xμo + iyμo with xμo and yμo varying in the interval range [−3,+3] × [−4,+4]
when Z ν̄o is fixed. In the same vein Fig. 1(right) shows the real part of the
square metric tensor c

(+1)
μν̄ for Zμ = xμ + iyμ with xμ and yμ varying in the

interval range [−1,+1] × [−1,+1] when Z ν̄ is fixed. These tensorial manifolds
are fundamendal to see all zeros-poles dynamical and trajectories in time for a
complex dynamical system. Indeed all system in time has a zeros-poles motion.
Their trajectories on tensorial metric manifolds will provide informations of the
behavior of the R-Complex Finsler metric L = F 2, for example the distance in
time between zeros, poles or between them.
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Fig. 1. (left): Tensorial metric manifold of c
(−1)
μoν̄o

for OE model in [−3, +3] × [−4, +4].

(right): Tensorial metric manifold of c
(+1)
μν̄ for OE model in [−1, +1] × [−1, +1].

4 Experimental Results

R-Complex Finsler information geometry is applied on a semi-finite acous-
tic waves guide from system identification using mixed Lp estimators.
See [10] for more detail. Figure 2 shows experimental setup including sec-
ondary loudspeaker, amplifier, acoustic secondary path, measurement micro-
phone and its amplifier/anti-aliasing filter. This identification has been car-
ried out from a PRBS (Pseudo Random Binary Sequence) as external
input signal. Best system-models have been obtained for an OE model
structure (G = B/F ) where parameter vector is θ = (θBθF )T with
θB = (−0.0927,−0.1415, 0.1829, 0.1553, 0.0447, 0.0412,−0.1857) and θF =
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(−0.0699,−0.7319, 0.0578, 0.0387,−0.0021, 0.3249,−0.2332). A zeros-poles anal-
ysis shows that there are three exogenous zeros, three endogenous zeros and
seven poles leading to no = 3, mi = 2 and sp = 4. Such a complex dynam-
ical system presents a R-Complex Finsler information geometry where Vo =
{Z1o = −2.06, Z2o = −1.18, Z3o = 1.08}, Wip = {Z1i = −0.16 + i0.87, Z2i =
0.96, Z1p = −0.9 + i0.34, Z2p = −0.09 + i0.75, Z3p = 0.65 + i0.36, Z4p = 0.76}.
Subsequently the matrix C−1 is

C−1 =

⎛
⎝

0, 0765 0, 1741 −0, 0772
0, 1741 0, 6416 −0, 1098

−0, 0772 −0, 1098 1, 4617

⎞
⎠ (13)

Each component of C−1 is a point of the tensorial metric manifold as depicted
in Fig. 1 (left). For example c

(−1)

1o1̄o
= 0, 0765 is on this tensorial manifold with

Z1o = x1o + iy1o = −2.06 and Z̄1o = x1o − iy1o = −2.06.

Fig. 2. Experimental setup of acoustic duct for identification.

5 Conclusions and Perspectives

In this paper a new information geometry based R-Complex Finsler spaces on
manifolds of systems has been shown from a specific characteristic of discrete
transfer functions when some zeros are outside the unit disc. Square and non-
square metric tensors have been established and this theory has been applied
on a real complex dynamical system. Tensorial metric manifolds have been pre-
sented in order to provide informations on trajectories in time t of the zeros-
poles. Indeed in the future, their motions in time will give space informations
on manifolds from a time (α, β)-metric such that

α2(t) =
1
2

(
aμν(t)Ωx(t)Ωy(t) + aμ̄ν̄(t)Ω̄μ(t)Ω̄ν(t) + 2c(δ)μν̄ (t)Ωμ(t)Ω̄ν(t)

)

and
β(t) =

1
2

(
Sμ(t)Ωμ(t) + Sμ̄(t)Ω̄μ(t)

)
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where Sμ(t) is the differential entropy in time of each zeros-poles and Ωμ(t) =
dZμ(t)

dt . Each time metric tensor will be inserted in a Randers metric to calculate
gμν(t), their inverse and associated α-connections and curvatures.
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Abstract. The Minkowski sum and difference of two ellipsoidal sets are
in general not ellipsoidal. However, in many applications, it is required
to compute the ellipsoidal set which approximates the Minkowski opera-
tions in a certain sense. In this study, an approach based on the so-called
ellipsoidal calculus, which provides parameterized families of external
and internal ellipsoids that tightly approximate the Minkowski sum and
difference of ellipsoids, is considered. Approximations are tight along
a direction l in the sense that the support functions on l of the ellip-
soids are equal to the support function on l of the sum and difference.
External (resp. internal) support function-based approximation can be
then selected according to minimal (resp. maximal) measures of vol-
ume or trace of the corresponding ellipsoid. The connection between the
volume-based approximations to the Minkowski sum and difference of
two positive definite matrices and their mean using their Euclidean or
Riemannian geometries is developed, which is also related to their Bures-
Wasserstein mean.

Keywords: Minkowski sum · Ellipsoid calculus ·
Positive definite matrices

1 Introduction

For any pair of sets X and Y , X,Y ⊂ R
n, their Minkowski sum (or addition) ⊕

and Minkowski difference (or subtraction) � are defined as follows:

X ⊕ Y =
⋃

y∈Y

Xy = {x + y : x ∈ X, y ∈ Y } =
{
p ∈ E : X ∩ Y̌p �= ∅}

, (1)

X � Y =
⋂

y∈Y

X−y = {p ∈ E : Yp ⊂ X} =
{
x : ∀p ∈ Y̌ , x ∈ Xp

}
. (2)

These set operations are fundamental in mathematical morphology [5], since set
dilation and erosion of set X by structuring element B are just defined respec-
tively as δB(X) = X ⊕ B and εB(X) = X � B. The space of convex sets is
closed under Minkowski sum and difference. In this paper, we deal with the
c© Springer Nature Switzerland AG 2019
F. Nielsen and F. Barbaresco (Eds.): GSI 2019, LNCS 11712, pp. 107–115, 2019.
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particular covex case of ellipsoids and the Minkowski sum and difference of two
ellipsoidal sets are in general not ellipsoidal. However, in many applications, we
are interested in computing the ellipsoidal set which approximates in a certain
sense the Minkowski operations between them since the ellipsoids represent a
positive (semi-)definite symmetric, a matrix covariance matrix, a Riemannian
metric, etc. Indeed, ellipsoidal sets appear nowadays in different imaging tech-
niques, e.g., structure tensor images or DTI. In data analysis, the dispersion of
a scatter set of points can be described by a multivariate Gaussian distribution
where the covariance matrix may be seen as an ellipsoidal shape centered at the
mean position. Ellipsoids are usually taken as canonical sets because they: (i)
can be concisely described using matrices interpretable as covariance matrices;
(ii) provide a satisfactory approximation of convex sets in most applications; (iii)
are invariant under affine transformations.

A classical way to solve the problem will be to, firstly, to compute convex
set S corresponding to the Minkowski sum (resp. difference) of two ellipsoids;
secondly, to compute the minimum volume ellipsoid that contains S, also called
the Löwner-John ellipsoid (resp. maximum volume ellipsoid that lies inside a
bounded convex set). Both constrained sets are convex semidefinite program-
ming problems which therefore can be solved using classical techniques from
convex optimization. Using this approach, little can be said about the set prop-
erties of such an approximation to Minkowski sum and difference. In this study,
a different approach based on the so-called ellipsoidal calculus [4] is adopted,
which is a method for solving problems in control and estimation theory, having
unknown but bounded errors in terms of sets of approximating ellipsoidal-value
functions. From ellipsoidal calculus (explicit) parameterized families of exter-
nal and internal ellipsoids that tightly approximate the Minkowski sum and
difference of ellipsoids are well formulated. It is also possible to select optimal
approximations according to a given criterium. Here we focus in particular on
those optimal ellipsoids according to volume.

There are classical results on the topological equivalence between the space
of ellipsoids endowed with the Hausdorff metric and the space of their shape
matrices endowed with the spectral metric. The goal of this paper is to state
another more explicit connection between some particular approximations to
the Minkowski sum and difference of ellipsoids and some means between their
shape matrices.

2 Basic Notions on Elipsoidal Space

Let us assume that everything takes place in the Euclidean space R
n. Let P(n)

be the set of positive semidefinite (psd) matrices of size n×n. An ellipsoid, noted
by E(c,Q), in R

n, with center c ∈ R
n and shape matrix Q ∈ P(n) is the set

E(c,Q) =
{
x ∈ R

n : 〈(x − c), Q−1(x − c)〉 ≤ 1
}

.
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Geometrically, an ellipsoid can also be defined as a translated and deformed ver-
sion of the unit sphere B1 of Rn, i.e., E(c,Q) = c+Q1/2B1. By this parametriza-
tion, it is obvious that there is a one-to-one correspondence between ellipsoids
and points of the product space (c,Q) ∈ R

n × P(n).

Hausdorff Distance and Support Function of Ellipsoids. The set of sub-
sets of Rn can be metrized by the Hausdorff distance. More precisely, given two
non-empty sets X,Y ⊂ R

n, their Hausdorff distance dH(X,Y ) can be defined by
means of the Minkowski sum as

dH(X,Y ) = inf{λ ≥ 0 : X ⊆ Y ⊕ Bλ and Y ⊆ X ⊕ Bλ},

where Br is the ball of radius r of Rn.
The support function hA is a tool for a dual representation of the set as the

intersection of half-spaces. The support function hA : Rn → R of a non-empty
closed convex set A ∈ R

n is given by

hA(x) = sup{〈x, a〉, a ∈ A}, x ∈ R
n,

and it is a real valued, continuous and convex function, satisfiying many relevant
properties. In particular, one has:

hαA+b(x) = αhA(x) + 〈x, b〉, α ≥ 0;x, b ∈ R
n.

The Hausdorff distance dH(A,B) of two nonempty compact convex sets A and
B can be expressed in terms of their support functions:

dH(A,B) = sup {|hA(x) − hB(x)| : ‖x‖ = 1} ,

which uses the uniform norm on the unit sphere.
For our particular case, the support function of an ellipsoid E(c,Q) is just

given by
hE(c,Q)(x) = 〈x, c〉 + 〈x,Qx〉1/2.

Therefore, given two ellipsoids, E(c1, Q1) and E(c2, Q2), the Hausdorff distance
between them is

dH(E(c1, Q1), E(c2, Q2)) = sup
‖x‖=1

{|hE(c1,Q1)(x) − hE(c2,Q2)(x)|
}

= sup
‖x‖=1

{
|〈x, c1〉 − 〈x, c2〉 + 〈x,Q1x〉1/2 − 〈x,Q2x〉1/2|

}
.

It seems clear that for metric purposes, it will be sufficient to study ellipsoids
centered at the origin.

Remark on the Topology of the Space of Ellipsoids. Let us review the
main result by Goffin and Hoffman [3] on the relationship between the Hausdorff
distance and the matrix distance of ellipsoids. Firstly, in order to simplify the
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notation and avoding the term 1/2 in later expressions, we introduce the follow-
ing change of variable: Q �→ P = Q1/2, P ∈ P(n). Let E(c1, P1) and E(c2, P2) be
two ellipsoids in P

n. Then, define the so-called spectral distance as follows

dSpectral(E(0, P1), E(0, P2)) = ‖P1 − P2‖S ,

where ‖ · ‖S is the matrix spectral norm, i.e.,

‖A‖S = sup{‖Ax‖ : x ∈ R
n with ‖x‖ = 1} =

√
λmax(AT A).

As discussed above on Hausdorff distance, it is sufficient to study ellipsoids
centered at the origin. In that case, one has

dSpectral(E(0, P1), E(0, P2)) = sup
‖x‖=1

{‖(P1 − P2)x‖} ,

dHausdorff (E(0, P1), E(0, P2)) = sup
‖x‖=1

{| ‖P1x‖ − ‖P2x‖ |} .

Now, the fundamental result is as follows,

Theorem 1 (Goffin and Hoffman, 1983 [3]). Let E(0, P1) and E(0, P2) be
two centred ellipsoids in R

n, with P1, P2 ∈ P(n). Then

k−1
n dS(E(0, P1), E(0, P2)) ≤ dH(E(0, P1), E(0, P2)) ≤ dS(E(0, P1), E(0, P2))

dH(E(0, P1), E(0, P2)) ≤ dS(E(0, P1), E(0, P2)) ≤ kndH(E(0, P1), E(0, P2))

where kn = 2
√

(2)n(n + 2).

Inequalities from Theorem 1 imply that the two metrics define the same
topology on the space of ellipsoids, but, more strongly, the rates of convergence
of a sequence of ellipsoids may be studied within a space of sets, or within a space
of matrices. In fact, both rates are identical. Additionally, that means that the
Hausdorff distance for ellipsoids is essentially a spectral matrix distance.

3 Ellipsoidal Approximations to Minkowski Sum
and Difference of Ellipsoids

Let parameter l be a direction in R
n, l ∈ S

n−1. Given two ellipsoids E(c1, Q1) and
E(c2, Q2), the external and internal ellipsoidal approximation to their Minkowski
sum according to direction l, noted respectively by E(c⊕, Q⊕,+

l ) and E(c⊕, Q⊕,−
l ),

are tight along the direction l in the sense that the value of support functions
at l are equal:

hE(c⊕,Q⊕,−
l )(±l) = hE(c1,Q1)⊕E(c2,Q2)(±l) = hE(c⊕,Q⊕,+

l )(±l).

The center of both approximations is just the vector sum, i.e., c⊕ = c1 + c2.
In the case of the internal ellipsoid, the shape matrix is given by [4]:

Q⊕,−
l =

(
Q

1/2
1 + SQ

1/2
2

)T (
Q

1/2
1 + SQ

1/2
2

)
,
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with matrix S being orthogonal and vectors Q
1/2
1 l and SQ

1/2
2 l are parallel. The

shape matrix of the external ellipsoid is given by [4]

Q⊕,+
l =

(
1 + p−1

)
Q1 + (1 + p)Q2, p > 0,

where p = 〈l, Q1l〉1/2/〈l, Q2l〉1/2.
Unlike the Minkowski sum, ellipsoidal approximations for the Minkowski dif-

ference do not exist for every direction l. Similar internal and external approxi-
mation for valid directions can be defined in the context of ellipsoidal calculus.
See [4] for the expressions.

3.1 Volume-Based Optimal Approximations

From these expressions, it is possible to find the direction l such as the corre-
sponding ellipsoids will be optimal according to a given criterion, typically the
trace or the volume (i.e., related to the determinant), minimal for the external
or maximal for the internal approximations [4]. Let us focus in particular on
the approximations of optimal volume. There is a unique ellipsoid of maximal
volume contained in the Minkowski sum and its shape matrix is given by [4]

Q⊕,−
max vol = Q1 + Q2 + 2Q1/2

2

[
Q

−1/2
2 Q1Q

−1/2
2

]1/2

Q
1/2
2 . (3)

Similarly, there is a unique ellipsoid of minimal volume contained in the
Minkowski difference and its shape matrix is given by

Q�,+
min vol = Q1 + Q2 − 2Q1/2

2

[
Q

−1/2
2 Q1Q

−1/2
2

]1/2

Q
1/2
2 . (4)

4 Means on Space of P(n) and Minkowski Sum
and Difference

We discuss in this section an interpretation of the approximations to Minkowski
sum and difference in terms of the means of the corresponding shape matrices.

4.1 Means in Two Riemannian Geometries on P(n)

The standard Riemannian metric distance for any A,B in P(n) is given by [1]

dRiemannian(A,B) =
∥∥∥log

(
A−1/2BA−1/2

)∥∥∥
2
.

Associated to this distance, the space
(
P(n), ds2Riem

)
is a Riemannian manifold

where the local metric is the natural metric in the cone:

ds2Riem = Tr
(
Q−1dQQ−1dQ

)
.
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Any two points A,B ∈ P(n) can be joined by a unique geodesic with respect to
this metric:

γRiem
A,B (t) = A1/2

(
A−1/2BA−1/2

)t

A1/2, 0 ≤ t ≤ 1.

The geometric mean MRiemannian(A,B) between matrices A and B is evi-
dently the midpoint of this geodesic, i.e.,

MRiemannian(A,B) = γRiem
A,B (0.5) = A1/2

(
A−1/2BA−1/2

)1/2

A1/2. (5)

This geometry and the mean for the case of two covariance matrices are
well known in information geometry. It corresponds to that of the Fisher metric
for the case of Gaussian densities of zero-mean and covariance given by the psd
matrix. This mean is symmetric in A and B. In fact, it is a kind of symmetrization
of the equivalent geometric mean (ab)1/2 for matrices, since in general AB �= BA.
In P(n), the matrix AB has positive eigenvalues and it has a unique square root
(AB)1/2 that has positive eigenvalues. The eigenvalues of AB are the same as
those of BA One has MRiemannian(A,B) = A

(
A−1B

)1/2 =
(
AB−1

)1/2
B. Thus,

one also has [2]

(AB)1/2 = AMRiemannian(A−1, B) = A1/2
(
A1/2BA1/2

)1/2

A−1/2. (6)

Given A,B in P(n), the Bures metric distance (in quantum information) and
the Wasserstein metric distance (in optimal transport) is

dBures−Wasser(A,B) =
[
TrA +TrB − 2Tr

(
A1/2BA1/2

)1/2
]1/2

.

If A and B are diagonal matrices (vectors), then dBures−Wasser(A,B) reduces
to the Hellinger distance between probability distributions. In quantum theory,
a density matrix (or state) is a psd matrix A with TrA = 1. Bures distance for
density matrices is the particular case of dBures−Wasser(A,B). It corresponds to
the 2−Wasserstein distance between two Borel probability measures μ and ν in
R

n, when μ and ν are zero-mean Gaussian measures with covariance matrices A
and B.

Bures–Wasserstein distance and the underlying Rieamannian geometry has
been recently studied in a deep and illuminating perspective in [2]. The geodesic
joining A and B in the Bures-Wassertein metric space is:

γB−W
A,B (t) = (1 − t)2A + t2B + t(1 − t)

[
(AB)1/2 + (BA)1/2

]

= A−1/2
[
(1 − t)A + t(A1/2BA1/2)1/2

]2
A−1/2, 0 ≤ t ≤ 1.
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Therefore, using t = 0.5 in this geodesic and the equality (6), the Bures–
Wassertein mean of A and B is

MBures−Wasser(A,B) =
1
4

[
A + B + (AB)1/2 + (BA)1/2

]

=
1
2

[
MEuclidean(A,B) +

1
2

[
AMRiemannian(A−1, B)

+BMRiemannian(A,B−1)
] ]

where MEuclidean(A,B) = A+B
2 is just the Euclidean (Frobenious norm-based)

mean of two matrice in the flat space.

4.2 Optimal Approximations to Minkowski Sum and Difference
in Terms of Means

Using the notation of the Euclidean and Riemannian means, it obvious that the
internal approximation to the Minkowski sum of maximal volume (3) can be just
rewritten as:

Q⊕,−
max vol = 2 [MEuclidean(Q1, Q2) + MRiemannian(Q1, Q2)] ,

and similarly for the external approximation to the Minkowski difference of min-
imal volume (4):

Q�,+
min vol = 2 [MEuclidean(Q1, Q2) − MRiemannian(Q1, Q2)] .

Therefore, one has

MEuclidean(Q1, Q2) =
1
4

[
Q⊕,−

max vol + Q�,+
min vol

]
, (7)

MRiemannian(Q1, Q2) =
1
4

[
Q⊕,−

max vol − Q�,+
min vol

]
. (8)

Euclidean and Riemannian means of covariance matrices are consequently
related to the Minkowski sum and difference of the corresponding ellipsoids. This
result is not surprising since as we have discussed, the topology of both spaces
are equivalent. However, we can observe that the relationship is straightforward
in this very particular case.

Furthermore, we can notice that in the case where the matrix product com-
mute, i.e., AB = BA, which involves (AB)1/2 = MRiemannian(A,B), one just
has

Q⊕,−
max vol = 4MBures−Wasser(A,B).

A sufficient condition for product commutation is that two matrices are simulta-
neously diagonalizable. In the case of ellipsoids, it corresponds to the case when
they are aligned, i.e., they have the same orientation axis.
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4.3 A Riemannian Product Space

For the sake of understanding, let us precise that Q⊕,−
max vol does not correspond

to the midpoint on a geodesic space product of two copies of P(n) with the
Euclidean and Riemannian metrics. Let us consider the Riemannian manifolds(
P(n), ds2Euclid

)
and

(
P(n), ds2Riem

)
, where the flat metric is just ds2Euclid = dQ2.

Let us consider now the space P(2n), where, on the one hand, for each matrix
Q ∈ P(n), a map associates it to the matrix Q× ∈ P(2n) and, on the other
hand, the Riemannian metric g× = αgEuclid ⊗ βgRieman, α, β > 0, which are
respectively given by

Q �→ Q× =
(

Q 0n×n

0n×n Q

)
g× =

(
αgEuclid 0

0 βgRieman

)
.

Note that one has ds2× = αds2Euclid + βds2Riem. Let A× and B× be two different
points in this product manifold

(
P(2n), ds2×

)
. In this manifold, the Riemannian

distance between two points A× and B× is given by

d×(A×, B×)2 = αdEuclidean(A,B)2 + βdRiemannian(A,B)2,

where dEuclidean(A,B)2 = ‖A−B‖22. In the product manifold, the geodesic from
A× and B× is given by

γ×
A,B(t) = diag

(
γEuclid
A,B

(
βdRiemannian(A, B)

d×(A, B)
t

)
, γRiem

A,B

(
αdEuclidean(A, B)

d×(A, B)
t

))
,

the scaling of the arc lenght is evident since the lenght of both geodesics is
different. In conclusion, the geometry of the space associtated to Q⊕,−

max vol as
the midpoint of a geodesic is not the trivial product of Euclidean and Rieman-
nian geometry. In any case, since the tangent space of the product manifold
TQ×P(2n) = TQ,EuclidP(2) ⊗ TQ,RiemanP(2), the exponential maps of the corre-
sponding spaces can be used to deal with the tangent spaces.

5 Conclusions and Perspectives

Ellipsoidal approximations to Minkowski sum and difference are based on the
approximation in terms of the support function, which is merely related to
approximation in terms of Hausdorff distance. The corresponding metric space
of ellipsoids is equivalent to the spectral space of their shape matrices. For a
very particular case of optimal approximated ellipsoids in terms of their volume,
this equivalence leads to an explicit interpretation based on the mean of the
two ellipsoids in two different geometries. Some questions about the underlying
Riemannian geometry are still open and deserves additional work. The interest
of these approximations to Minkowski sum and difference of ellipsoids in tensor-
valued image processing tasks, typically regularization and interpolation, will be
explored in ongoing work.
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Abstract. Hyperquaternions being defined as a tensor product of
quaternion algebras (or a subalgebra thereof), they constitute Clifford
algebras endowed with an associative exterior product providing an
efficient mathematical formalism for differential geometry. The paper
presents a hyperquaternion formulation of pseudo-euclidean rotations
and the Poincaré groups in n dimensions (via dual hyperquaternions).
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1 Introduction

Clifford algebras allow an excellent representation of pseudo-euclidean rotations
which are important symmetry groups of physics [1–4]. A decomposition of these
groups into orthogonal, commuting planar rotations is called a canonical decom-
position. Various canonical decompositions have been developed which deal with
either specific rotations or dimensions and are often expressed in terms of matri-
ces [5,6]. In a recent paper, we have introduced a hyperquaternion formulation of
Clifford algebras and applied them to the unitary and unitary symplectic groups
[7]. Here, we consider pseudo-euclidean rotations and the Poincaré groups in
n dimensions (via dual hyperquaternions). A canonical decomposition of these
groups is developed within that framework as an extension of an euclidean for-
malism introduced by Moore [8,9]. After a short presentation of hyperquater-
nions and multivectors, we derive the pseudo-euclidean rotations and the canon-
ical decomposition. Then we go on to the Poincaré groups and a 5D example.
Potential applications are moving reference frames and machine learning [10].
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Table 1. Biquaternion multivector structure

1 i = e3e2 j = e1e3 k = e2e1

I = e1e2e3 Ii = e1 Ij = e2 Ik = e3

2 Background: Quaternions, Hyperquaternions
and Multivectors

In this section, we briefly introduce quaternions, hyperquaternions and multivec-
tors [7,11–15]. The quaternion algebra H which contains R and C as particular
cases is constituted by quaternions

a = a1 + a2i + a3j + a4k (ai ∈ R) (1)

where i, j, k multiply according to

i2 = j2 = k2 = ijk = −1, ij = −ji = k, etc. (2)

The product of two quaternions a, b is given by

ab = (a1b1 − a2b2 − a3b3 − a4b4) + (a1b2 + a2b1 + a3b4 − a4b3) i (3)
+ (a1b3 + a3b1 + a4b2 − a2b4) j + (a1b4 + a4b1 + a2b3 − a3b2) k. (4)

The conjugate of a quaternion is ac = a1 − a2i − a3j − a4k with

aac = a2
1 + a2

2 + a2
3 + a2

4, (ab)c = bcac (5)

The hyperquaternion algebra (over R) is defined as the tensor product of
quaternion algebras (or a subalgebra thereof). Examples of hyperquaternion
algebras are the quaternions H, tetraquaternions H ⊗ H and so on H ⊗ H⊗...⊗H;
subalgebras are the complex numbers C, biquaternions H ⊗ C, Dirac algebra
H ⊗ H ⊗ C, etc.

Calling (i, j, k) the first quaternionic system, (I, J,K) the second one and
(l,m, n) the third one, all systems commuting with each other, one has

i ⊗ i ⊗ i = iIl, i ⊗ j ⊗ k = iJn, etc. (6)

which uniquely defines the multiplication.
Hyperquaternions having n generators ei such that eiej + ejei = 0 (i �= j),

e2i = ±1 constitute Clifford algebras Cn. The choice of the generators entails a
multivector structure as shown, in the case of biquaternions, in Table 1. The 2n

elements of the algebra are composed of scalars, vectors ei , bivectors eiej , trivec-
tors eiejek etc. yielding respectively the multivector spaces V0, V1, V2, V3, ...Vn.
C+ is the subalgebra constituted by products of an even number of ei, C− is the
rest of the algebra. The multivector structure allows to define basic operations
like conjugation, duality and the interior and exterior products.
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Considering a general element A of the algebra, the conjugate Ac is obtained
by replacing the ei by their opposite −ei and reversing the order of the elements

(Ac)c = A, (AB)c = (Bc) (Ac) . (7)

The dual of A is A∗ = idA where id = e1 ∧ e2... ∧ en (to be defined below)
and the commutator of two hyperquaternions is

[A,B] =
1
2

(AB − BA) . (8)

The interior and exterior products of two vectors a, b are obtained as follows.
From the identity

2ab = λλ−1 [(ab + ba) + (ab − ba)] (9)

where λ = ±1 is a given coefficient (allowing to eventually change the sign of
the metric), one defines

2a.b = λ−1 (ab + ba) , 2a ∧ b = λ−1 (ab − ba) (10)

which are respectively a scalar and a bivector. A multivector Ap = a1∧a2∧...∧ap

(2 ≤ p < n) where ap are vectors, is then defined by recurrence

2a.Ap = λ−p [aAp − (−1)p
Apa] ∈ Vp−1 (11)

2a ∧ Ap = λ−p [aA2 + (−1)p
A2a] ∈ Vp+1 (12)

By definition, we take

Ap.a ≡ (−1)p−1
a.Ap, Ap ∧ a ≡ (−1)p

a ∧ Ap. (13)

An important property of the exterior product is its associativity.
Interior and exterior products between multivectors are defined by

Ap ∧ Bq = a1 ∧ (a2 ∧ ... ∧ ap ∧ Bq) (14)
Ap.Bq = (a1 ∧ ... ∧ ap−1) . (ap.Bq) , (p ≤ q) (15)

with Ap.Bq = (−1)p(q+1)
Bq.Ap [16]. In particular, we have the following useful

formulas where Bi are bivectors and Vp[A] the multivector part Vp of A

B1B2 = B1.B2 + B1 ∧ B2 + [B1, B2] (16)
B1 ∧ B2 = V4 [B1B2] (17)

B1 ∧ B2 ∧ B3 = V6 [B1 (B2 ∧ B3)] (18)
B1. (B2 ∧ B3) = V2 [B1 (B2 ∧ B3)] (19)

(B1 ∧ B2) . (B3 ∧ B4 ∧ B5) = V2 [(B1 ∧ B2) (B3 ∧ B4 ∧ B5)] . (20)

Hyperquaternions yield all real, complex and quaternionic square matrices
as well as the transposition, adjunction and transpose quaternion conjugate via
a hyperconjugation defined as Hc⊗Hc⊗...⊗Hc as indicated in Table 2.
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Table 2. Hyperquaternions and matrices

H ⊗ H � m(4,R) Hc⊗Hc� [m(4,R)]t

H ⊗ H ⊗ C � m(4,C) Hc⊗Hc⊗Cc� [m(4,C)]†

H ⊗ H ⊗ H � m(4,H) Hc⊗Hc⊗Hc� [m(4,H)]tc .

(21)

3 Pseudo-Orthogonal Rotations

Here, we derive a hyperquaternion formulation of pseudo-euclidean rotations and
develop a canonical decomposition. Historically, the formula of n dimensional
euclidean rotations x′ = axa−1 (a ∈ C+

n ) was given by Lipschitz [17] and Moore
developed a canonical decomposition thereof [8,9]. We introduce, as an extension
of Moore’s method, within the hyperquaternion Clifford algebra framework, a
canonical decomposition of pseudo-euclidean rotations and the Poincaré groups.
After a brief review of the basic definitions and the Cartan theorem, we develop
the canonical decomposition.

3.1 Definitions and Theorem

Let Cp,q be a hyperquaternion algebra having n = p + q generators ei and the
quadratic form

x.y = x1y1 + ... + xpyp − (xp+1yp+1... − xp+qyp+q) (22)
= λ−1 (xy + yx) /2 (23)

where x, y are vectors (x = xiei) . A vector x is timelike if x.x > 0, spacelike if
x.x < 0 and isotropic if x.x = 0.

An orthogonal symmetry with respect to a plane going through the origin
and perpendicular to a unit vector a

(
a2 = ±1

)
is given by [12,13]

x′ = ±axa (24)

with x′x′ = (±axa) (±axa) = xx .

Definition 1. The pseudo-orthogonal group O(p, q) is the group of linear oper-
ators which leave invariant the form x · y.

Theorem 1. Every rotation of O(p, q) is the product of an even number 2m ≤ n
of symmetries.

Definition 2. The special orthogonal group SO+(p, q) is constituted by rota-
tions which preserve the orientation of the space of positive norm vectors and
the space of negative norm vectors.

A rotation of SO+(p, q) can thus be expressed as

x′ = axac (aac = 1) (25)
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with a = a1a2...a2m,∈ C+, where ai are unit vectors (with an even number of
timelike and spacelike vectors). Developing the product (with λ = 1)

aiaj = ai.aj + ai ∧ aj (26)

one sees that it contains a simple plane B = ai ∧ aj such that B2 = B.B+
B ∧ B is a scalar since B ∧ B = 0. Hence, a rotation involves at most m ≤ n/2
simple planes. A canonical decomposition of rotations is obtained by choosing
these simple planes to be orthogonal.

3.2 Canonical Decomposition

A rotation of SO+(p, q) can be decomposed as

a = e
Φ1
2 B1e

Φ2
2 B2 ...e

Φm
2 Bm (aac = 1) (27)

where Bi are m simple orthogonal commuting planes such that B2
i = ±1 together

for i �= j
Bi.Bj = 0, BiBj = BjBi, BiBj = Bi ∧ Bj ; (28)

Φi are the angles of rotation within the planes Bi. According to whether B2
i = −1

or B2
i = 1, one has respectively

e
Φi
2 Bi = cos

Φi

2
+ sin

Φi

2
Bi, e

Φi
2 Bi = cosh

Φi

2
+ sinh

Φi

2
Bi. (29)

The rotation can be developed as

a = S (1 + b1B1) (1 + b2B2) ... (1 + bmBm) (30)

with bi = tan Φi

2 (or tanh Φi

2 ). Since aac = 1 one has

S2
(
1 + b21

) (
1 − b22

) (
1 − b23

)
= 1 (31)

S =
1

√
(1 ± b21) ... (1 ± b2m)

(32)

which shows that S is determined by the bi. Writing

B = b1B1 + b2B2 + b3B3 (33)

one can express a as

a = S

(
1 + B +

B ∧ B

2!S2
+ ...

B ∧ B ∧ B ∧ ... (m terms)
m!Sm

)
(34)

which shows that the bivector B determines completely the rotation.
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If the scalar is nil, for example if (Φ1 = ±π, B2
1 = −1), then a is proportional

to B1

a = B1e
Φ2
2 B2e

Φ3
2 B3 ; (35)

one then computes B−1
1 a and comes back to the general expression to evaluate

the remaining bi and Bi.
To determine the bi and Bi, one makes a change of variable Xi = biBi, xi =

X2
i = ±b2i and considers the linear system of equations in Xi [9]

P1 = B =
m∑

i=1

Xi (36)

P2 = (B ∧ B) .B = 2
m∑

i,j=1

Xixj (i �= j) (37)

P3 = (B ∧ B ∧ B) . (B ∧ B) = 3!2!
m∑

i,j,k=1

Xixj xk (i �= j, j < k) (38)

...... (39)
Pm = (B ∧ B ∧ ...m factors) . (B ∧ B... (m − 1) factors) (40)

= m! (m − 1)!
m∑

i=1

x1x2...xi−1xi+1...xmXi. (41)

The determinant Δ is the product

Δ =
{

m! [(m − 1)!]2 [(m − 2)!]2 ...1
} m∏

i,j=1

(xi − xj) (i �= j, i < j) . (42)

If Δ �= 0, one obtains the bivectors Xi as a function of Pm and xi. To determine
the xi, one writes the equations

S1 = P1.P1 =
m∑

i=1

xi (43)

S2 = P2.P1 = 2!
m∑

i,j=1

xixj (i �= j) (44)

S3 = P3.P1 = (3!)2
m∑

i,j,k=1

xixjxk (i �= j, j < k) (45)

...... (46)

Sm = Pm.P1 = (m!)2 (x1x2...xm) . (47)

The solutions yield xi = ±b2i , thus one obtains bi and Bi

bi =
√

|xi|, Bi =
Xi

bi
. (48)
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If Δ = 0, the Eqs. (36–41) are not independent, the B bivector can never-
theless be decomposed in m mutually orthogonal simple planes but this decom-
position is not unique.

4 Poincaré Group in n Dimensions
(via Dual Hyperquaternions)

Much of physics being covariant with respect to the 4D Poincaré group, we
provide here a hyperquaternion representation of the nD Poincaré groups in
terms of dual hyperquaternions. Thereby one comes back to a (n+1)D rotation
which one can be decomposed canonically. The procedure is illustrated by a 5D
case (for example a color image with 2 spatial and 3 color dimensions) which
might be of interest in machine learning [10].

4.1 General Formalism

The Poincaré group of the pseudo-euclidean space associated with the Clifford
algebra Cp,q (n = p + q) is constituted by the isometries of the metric

ds2 =
(
dx2

1 + ... + dx2
p

) − (
dx2

p+1 + ... + dx2
p+q

)
. (49)

It includes the rotations SO+ (p, q), translations and reflections (time or space-
like). The reflections having already been dealt with above, we shall focus on
the rotations and translations.

Consider a hyperquaternion algebra H ⊗ H...⊗H (or a subalgebra thereof)
with n + 1 generators e1, e2, ...en, en+1 and let X be a dual vector such that

X = en+1 + εx (50)

where x belongs to the vector space V1 with x =
∑n

i=1 eixi (xi ∈ R) and ε2 = 0
(ε commuting with ei) . An nD hyperbolic rotation in V1 leaves the last variable
unchanged. Hence,

X ′ = aXac = en+1 + εx′ (51)

with x′ = axac, x
′x′

c = xxc, aac = 1. A translation in V1 can be expressed as

X ′ = bXbc (52)

with

b = eεen+1
t
2 = 1 + εen+1

t

2
, (t =

n∑

i=1

eiti , ti ∈ R) (53)

and bbc = 1. Developing Eq. (52), one obtains, assuming e2n+1 = −1

X ′ =
(

1 + εen+1
t

2

)
(en+1 + εx)

(
1 − εen+1

t

2

)
(54)

= en+1 + εx − εen+1en+1
t

2
− εen+1en+1

t

2
(55)

= en+1 + ε (x + t) (56)
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which is a translation on the variables 1...n (if e2n+1 = 1, one simply takes
b = eε t

2 en+1). A combination of an nD rotation and translation gives with f = ab
(or ba)

X ′ = fXfc

(
ffc = 1, f ∈ C+

)
(57)

which can be viewed as a a particular (n + 1) D rotation. One thus obtains a
hyperquaternion representation of the Poincaré groups, distinct from the matrix
one. A canonical decomposition leads to simple dual planes as will be illustrated
in the following example.

4.2 Example: 5D Poincaré Group

As application consider a 5D-space (for example a 2D color image) imbedded in
the 6D hyperquaternion algebra H⊗H⊗H having six generators (see Appendix)

e1 = kI, e2 = kJ, e3 = kKl, e4 = kKm, e5 = kKn, e6 = j (58)

with the generic vector X = e6 + εx (x =
∑5

i=1 eixi). The transformation
X ′ = fXfc with

f = e
Φ2
2 Jleεi(2I+Kn)e

Φ1
2 I(m+n) (59)

=
(
2 +

√
3Jl

)
[1 + εi (2I + Kn)]

[√
3 +

√
2I

(
m√
2

+
n√
2

)]
(60)

and tanhΦ1
2 =

√
2
3 (= b1) , tanhΦ2

2 =
√
3
2 (= b2) is a 5D -Poincaré transform.

Applying the canonical decomposition presented above, one obtains

f = e
Φ2
2 B2eX3e

Φ1
2 B1 (61)

with the same values of Φ1, Φ2 as above and the following simple commuting
orthogonal dual planes B1, B2,X3

B1 =
1√
2
I (m + n) + ε

1√
2

[√
3

2
K (m + n) − iJ

]

(62)

B2 = Jl + 2εi

(
2√
3
I − Kl

)
(63)

X3 =
ε

2
iK (−m + n) . (64)

with (B1)
2 = (B2)

2 = 1, (X3)
2 = 0.

5 Conclusion

The paper has given a hyperquaternion representation of pseudo-euclidean rota-
tions and the Poincaré groups in n dimensions, distinct from the matrix one.
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A canonical decomposition of these groups was introduced, as an extension of
an euclidean formalism, within a hyperquaternion Clifford algebra framework
and illustrated by a 5D example. Potential geometric applications include in
particular, moving reference frames and machine learning.
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A Multivector Structure of H ⊗ H ⊗ H

⎡

⎢
⎢
⎣

1 l = e4e5 m = e5e3 n = e3e4
I = e2e3e4e5 I l = e3e2 I m = e4e2 I n = e5e2
J = e3e1e4e5 J l = e1e3 J m = e1e4 J n = e1e5
K = e2e1 Kl = e2e1e4e5 Km = e1e2e3e5 Kn = e2e1e3e4

⎤

⎥
⎥
⎦

+i

⎡

⎢
⎢
⎣

1 = e1e2e3e4e5e6 l = e2e1e3e6 m = e2e1e4e6 n = e2e1e5e6
I = e6e1 I l = e4e1e5e6 I m = e5e1e3e6 I n = e3e1e4e6
J = e6e2 J l = e4e2e5e6 J m = e5e2e3e6 J n = e3e2e4e6
K = e3e4e5e6 Kl = e6e3 Km = e6e4 Kn = e6e5

⎤

⎥
⎥
⎦

+j

⎡

⎢
⎢
⎣

1 = e6 l = e4e5e6 m = e6e5e3 n = e3e4e6
I = e2e3e4e5e6 I l = e3e2e6 I m = e6e4e2 I n = e6e5e2
J = e4e3e5e6e1 J l = e1e3e6 J m = e1e4e6 J n = e1e5e6
K = e2e1e6 Kl = e2e1e4e5e6 Km = e1e2e3e5e6 Kn = e2e1e3e4e6

⎤

⎥
⎥
⎦

+k

⎡

⎢
⎢
⎣

1 = e2e1e3e4e5 l = e1e2e3 m = e1e2e4 n = e1e2e5
I = e1 I l = e1e4e5 I m = e3e1e5 I n = e1e3e4
J = e2 J l = e2e4e5 J m = e3e2e5 J n = e2e3e4
K = e4e3e5 Kl = e3 Km = e4 Kn = e5

⎤

⎥
⎥
⎦
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α-power Sums on Symmetric Cones

Keiko Uohashi(B)

Tohoku Gakuin University, Tagajo, Miyagi 985-8537, Japan
uohashi@mail.tohoku-gakuin.ac.jp

Abstract. In this paper, we define α-power sums of two or more ele-
ments on symmetric cones. For two elements, α-power sums, which are
generalized parallel sums, are defined on our previous paper. We men-
tion interpolation for α-power sums, which is not defined on our previous
paper. It is shown that the synthesized resistances of α-series parallel
circuits naturally correspond to α-power sums. We also mention rela-
tions with power sums and arithmetic, geometric, harmonic and α-power
means, where α is a parameter of dualistic structure on information
geometry.

Keywords: Parallel sum · Power sum · Mean ·
Operator monotone function · Symmetric cone · Series parallel circuit

1 Introduction

Arithmetic, geometric and harmonic mean are well known means on positive
operators [1–3]. α-power mean (or power mean) is a generalized geometric mean,
and corresponds to arithmetic, geometric and harmonic mean for α = 1, 0 and
−1, respectively [4–7]. On a symmetric cone, the α-power mean is the midpoint
on the α-geodesic connecting two points, where α is a parameter of dualistic
structure on information geometry [8,9].

Parallel sum is the half of harmonic mean [10,11]. However, it seems that few
literatures treat sums related to geometric and α-mean for reasons of difficulty
of convergence. Then, we define α-power means which are continuous for α and
are arithmetic sum, parallel sum for α = 1,−1, respectively.

First, we recall definitions and properties on symmetric cones. In Sect. 3,
means and monotone functions are mentioned. In Sect. 4, we show definitions of
α-power sums and the operator monotone function generating α-power sums. In
Sect. 5, we define interpolation for α-power sums. Finally, we show a continuous
deformation of the series circuit into the parallel circuit in which resistance
elements have fixed resistivity and fixed volumes. The circuits realize arithmetic
sum and parallel sum for α = 1,−1, respectively.

Applications of α-power mean appear in fields of functional analysis, quan-
tum mechanics, nonextensive statistical mechanics, optimization and informa-
tion geometry. We expect to find applications of α-power sum as α-power mean.

c© Springer Nature Switzerland AG 2019
F. Nielsen and F. Barbaresco (Eds.): GSI 2019, LNCS 11712, pp. 126–134, 2019.
https://doi.org/10.1007/978-3-030-26980-7_14
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2 Symmetric Cones

A vector space V is called a Jordan algebra if a product ∗ defined on V satisfies

x ∗ y = y ∗ x, x ∗ (x2 ∗ y) = x2 ∗ (x ∗ y) (1)

for all x, y ∈ V by setting x2 = x ∗x. Let V be an n-dimensional Jordan algebra
over R with an identity element e, i.e., x ∗ e = e ∗ x = x. An element x ∈ V is
said to be invertible if there exists y ∈ R[x] such that x ∗ y = e, where R[X]
is polynomials of X over R. Since R[x] is an associative algebra, y is unique,
called the inverse of x and denoted by x−1 = y [8,12,13].

For x in V , let L(x) and P (x) be endomorphisms of V defined by

L(x)y = x ∗ y, y ∈ V (2)

P (x) = 2L(x)2 − L(x2). (3)

The following results, about P the quadratic representation of V , are known.

Proposition 1. ([12]) (i) An element x is invertible if and only if P (x) is
invertible, and

P (x)x−1 = x, P (x)−1 = P (x−1). (4)

(ii) If x and y are invertible, so is P (x)y and

(P (x)y)−1 = P (x−1)y−1. (5)

(iii) For all x and y,
P (P (y)x) = P (y)P (x)P (y). (6)

Let Ω be an open convex cone on a vector space V . We denote by G the
identity component of the linear automorphism group of Ω. If G acts on Ω
transitively, Ω is said to be homogeneous. The dual cone of Ω is defined by

Ω∗ = {y ∈ V | (x, y) > 0,∀x ∈ Ω̄\{0}}, (7)

where ( , ) is an inner product on V , Ω̄ the closure of Ω. If Ω = Ω∗, a cone Ω
is said to be self-dual. A cone Ω is called symmetric if it is homogeneous and
self-dual.

3 Means and Operator Monotone Functions

We consider a symmetric cone Ω a set of positive operators.
Let x =

∑r
i=1 λipi be a spectral decomposition of x ∈ V , where r and

{p1, . . . , pr} are the rank and a Jordan frame of V , respectively, and λ1, . . . , λr

are eigenvalues of x [12]. For a function f(t) on an interval I ⊆ R, f(x) is defined
by

f(x) =
r∑

i=1

f(λi)pi (8)
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if λ1, . . . , λr ∈ I. A function f(t) on an interval I ⊆ R satisfying Inequation ()
is called an operator monotone function on I.

a ≤ b ⇒ f(a) ≤ f(b), (9)

where a and b ∈ Ω have eigenvalues on I, respectively.
A binary operation σ : (a, b) ∈ Ω̄ × Ω̄ �→ aσb ∈ Ω̄ is called an operator

connection if the following requirements are fulfilled.

(i) Monotonicity; a ≤ c and b ≤ d imply aσb ≤ cσd,
(ii) Transformer inequality; P (c)(aσb) ≤ (P (c)(a))σ(P (c)(b)),
(iii) Semi-continuity; an ↓ a and bn ↓ b imply (anσbn) ↓ aσb,

where a ≤ b (resp. a < b) is b − a ∈ Ω̄ (resp. in Ω) [1,8].
On transformer inequality, it holds that P (c)(aσb) = (P (c)(a))σ(P (c)(b)) for

Ω. If satisfying normalization eσe = e, an operator connection σ is called an
operator mean (or a mean).

It is known that α-power mean on Ω is generated by

aσ(α)b = P (a
1
2 )f (α)(P (a− 1

2 )b), −1 ≤ α ≤ 1, (10)

where f is an operator monotone function defined by

f (α)(t) =
(

1 + tα

2

) 1
α

(α �= 0), f (0)(t) =
√

t (11)

[6,8]. Arithmetic, geometric and harmonic mean are described by aσ(1)b, aσ(0)b
and aσ(−1)b, respectively. In particular, for positive definite matrices A and B,
they are

(i) arithmetic mean; Aσ(1)B = (A + B)/2,
(ii) geometric mean; Aσ(0)B = A#B = A

1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 ,

(iii) harmonic mean; Aσ(−1)B = ((A−1 + B−1)/2)−1,
(iv) α-power mean; Aσ(α)B = ((Aα + Bα)/2)1/α.

For scalar A and B, the geometric mean is A#B =
√

AB.

4 α-power Sums and Operator Monotone Functions

In our previous paper, we defined α-power sum via an operator monotone func-
tion, which interpolates generalized sum between arithmetic sum and parallel
sum [14].

For −1 ≤ α ≤ 1, a function

f (α)(t) =
(1 + t)1+α

1 + tα
, t > 0 (12)

is an operator monotone function on {t|tα − αtα−1 + α + 1 > 0}. Function (12)
is obviously monotone increasing and operator monotone with α.
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Definition 1. ([14]) Let f (α)(t) be a function defined by Eq. (12). For −1 ≤
α ≤ 1, we define the α-power sum :(α) of a and b ∈ Ω by

a :(α) b = P (a
1
2 )f (α)(P (a− 1

2 )b). (13)

Theorem 1. ([14]) The α-power sum :(α) of a and b ∈ Ω corresponds to arith-
metic sum a+b for α = 1, and to parallel sum a : b = (a−1+b−1)−1 for α = −1.
The 0-power sum a :(0) b is arithmetic mean (a + b)/2.

Corollary 1. ([14]) For positive definite matrices A and B, α-power sums are

(i) arithmetic sum; A :(1) B = A + B,
(ii) 0-power sum; A :(0) B = (A + B)/2 (arithmetic mean),
(iii) parallel sum; A :(−1) B = (A−1 + B−1)−1 (the half of harmonic mean),
(iv) α-power sum; A :(α) B = (Aα + Bα)−1/2(A + B)1+α(Aα + Bα)−1/2

= (A + B)(1+α)/2(Aα + Bα)−1(A + B)(1+α)/2.

For scalar A and B, the α-power sum is

A :(α) B =
(A + B)1+α

Aα + Bα
. (14)

If defined by (Aα + Bα)1/α which is α-power mean without normalization
property, generalized sum diverges to ±∞ as α = 0. The α-power sum by
Eqs. (12), (13) possesses continuity at α = 0. It satisfies (i) Monotonicity for
elements with eigenvalues on an interval {t|tα − αtα−1 + α + 1 > 0}. It satisfies
(ii) Transformer inequality and (iii) Semi-continuity on Ω̄ (resp. Ω).

The α-power sum of a1, . . . , an ∈ Ω for n ≥ 2 is defined as follows.

Definition 2. For −1 ≤ α ≤ 1, we define the α-power sum of a1, . . . , an ∈ Ω
for n ≥ 2 by

a1 :(α) · · · :(α) an = P (a
1
2
1 )P ((e +

n∑

i=2

P (a− 1
2

1 )ai)
1+α
2 )(e +

n∑

i=2

(P (a− 1
2

1 )ai)α)−1.

(15)

If n = 2, the α-power sum a1 :(α) a2 defined by Definition 2 coincides with
a1 :(α) a2 defined by Definition 1 for a1 and a2 ∈ Ω . In general, it holds that
(a1 :(α) a2) :(α) a3 �= a1 :(α) a2 :(α) a3 for a1, a2 and a3 ∈ Ω .

We obtain the next theorem similar to Corollary 1.

Theorem 2. For positive definite matrices A1, . . . , An, n ≥ 2, α-power sums
are

(i) arithmetic sum; A1 :(1) · · · :(1) An = A1 + · · · + An,
(ii) 0-power sum; A1 :(0) · · · :(0) An = (A1 + · · · + An)/n,
(iii) parallel sum; A1 :(−1) · · · :(−1) An = (A−1

1 + · · · + A−1
n )−1,

(iv) α-power sum; A1 :(α) · · · :(α) An

= (Aα
1 + · · · + Aα

n)−1/2(A1 + · · · + An)1+α(Aα
1 + · · · + Aα

n)−1/2

= (A1 + · · · + An)(1+α)/2(Aα
1 + · · · + Aα

n)−1(A1 + · · · + An)(1+α)/2.
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For scalar A1, . . . , An, n ≥ 2, the α-power sum is

A1 :(α) · · · :(α) An =
(A1 + · · · + An)1+α

Aα
1 + · · · + Aα

n

. (16)

Proof. The theorem is proved by calculations similar to techniques on the proof
of Corollary 1.

Remark 1. For scalar A1, . . . , An, n ≥ 2, the α-power sum (16) is the arithmetic
sum A1 + · · · + An multiplied by the ratio of the α-coordinate for A1 + · · · + An

and the arithmetic sum for the α-coordinates Aα
i , i = 1, . . . , n.

5 Interpolation for α-power Sums

Uhlmann’s interpolation for an α-power mean σ(α) (−1 ≤ α ≤ 1) is defined by
an operator monotone function

f (α)
s (t) = (1 − s + stα)

1
α (α �= 0), f (0)

s (t) = ts, 0 ≤ s ≤ 1 (17)

[4,5]. We define interpolation for α-power sums as follows.

Definition 3. For −1 ≤ α ≤ 1, we define interpolation :(α)
s for an α-power sum

:(α) on a symmetric cone Ω by a :(α)
s b = P (a

1
2 )f (α)(P (a− 1

2 )b), a, b ∈ Ω, where

f (α)
s (t) =

(2(1 − s) + 2st)1+α

2(1 − s) + 2stα
=

2α(1 − s + st)1+α

1 − s + stα
(18)

We have the next theorem via simple calculations.

Theorem 3. For −1 ≤ α ≤ 1 and a, b ∈ Ω, they hold that

a :(α)
0 b = 2αa, a :(α)

1
2

b = a :(α) b, a :(α)
1 b = 2αb. (19)

Proof. For a function (18), they hold that

f
(α)
0 (t) = 2α, f

(α)
1
2

(t) =
(1 + t)1+α

1 + tα
, f

(α)
1 (t) = 2αt. (20)

Thus, we obtain Eq. (19).

Corollary 2. For α = 1, 0 and −1, interpolation :(α)
s between a and b ∈ Ω is

described as follows, respectively.

(i) a :(1)s b = 2((1 − s)a + sb) (interpolation for arithmetic sum)

a :(1)0 = 2a, a :(1)1
2

= a + b, a :(1)1 = 2b (21)
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(ii) a :(0)s b = (1 − s)a + sb (interpolation for arithmetic mean)

a :(0)0 = a, a :(0)1
2

=
1
2
(a + b), a :(0)1 = b (22)

(iii) a :(−1)
s b = (2((1 − s)a−1 + sb−1))−1 (interpolation for the half of harmonic

mean)

a :(−1)
0 =

1
2
a, a :(−1)

1
2

= (a−1 + b−1)−1, a :(−1)
1 =

1
2
b (23)

Corollary 3. For −1 ≤ α ≤ 1 and for scalar A and B, it holds that

A :(α)
s B =

2α((1 − s)A + sB)1+α

(1 − s)Aα + sBα
. (24)

6 Series Parallel Circuits Realizing α-power Sums

In our previous paper, we show series parallel circuits realizing α-power sums
of two positive numbers [14]. In this section, we show series parallel circuits
realizing α-power sums of two or more positive numbers.

Let the symbol of a parallel sum A1 : · · · : An be also one of the circuit
connecting resistances A1, . . . , An in parallel. We suppose that electric resis-
tances Rj , j = 1, . . . , n consist of element with fixed resistivity 1 and fixed cross-
sectional areas 1, and that lengths of resistances Rj , j = 1, . . . , n are Rj > 0,
respectively. Then, the synthetic resistance of the parallel circuit connecting
n resistances with resistivity 1 and length Rj and with cross-sectional areas
R1/(R1+· · ·+Rn), . . . , Rn/(R1+· · ·+Rn) is Rj for each j. We give a continuous
deformation of R1 + · · ·+Rn into R1 : · · · : Rn, using resistances Rij with cross-
sectional areas (Ri/(R1+· · ·+Rn))(1+α)/2, lengths (Ri/(R1+· · ·+Rn))(1−α)/2Rj

and volumes RiRj/(R1 + · · · + Rn), i, j = 1, . . . , n, respectively (Fig. 1). Note
that, for each i, j, the volume RiRj/(R1+· · ·+Rn) is constant for all −1 ≤ α ≤ 1.

Theorem 4. Let Rj > 0, j = 1, . . . , n be constant real numbers, and for −1 ≤
α ≤ 1,

Rij =
(

R1 + · · · + Rn

Ri

)α

Rj , i, j = 1, . . . , n (25)

be resistances in an electric circuit. Then, the synthetic resistance of the series
circuit connecting parallel circuits R1j : · · · : Rnj, j = 1, . . . , n, which we call the
α-series parallel circuit, is the α-power sum of R1, . . . , Rn, i. e.,

R1 :(α) · · · :(α) Rn =
(R1 + · · · + Rn)1+α

Rα
1 + · · · + Rα

n

. (26)
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Proof. It follows from Eq. (25) that the synthetic resistance of the series circuit
connecting R1j : · · · : Rnj , j = 1, . . . , n is

(R11 : · · · : Rn1) + · · · + (R1n : · · · : Rnn)

= (R−1
11 + · · · + R−1

n1 )−1 + · · · + (R−1
1n + · · · + R−1

nn)−1

= ((R1 + · · · + Rn)−αRα
1 R−1

1 + · · · + (R1 + · · · + Rn)−αRα
nR−1

1 )−1 + . . .

+ ((R1 + · · · + Rn)−αRα
1 R−1

n + · · · + (R1 + · · · + Rn)−αRα
nR−1

n )−1

= (R1 + · · · + Rn)α(Rα
1 + · · · + Rα

n)−1(R1 + · · · + Rn)

= (R1 + · · · + Rn)1+α(Rα
1 + · · · + Rα

n)−1 = R1 :(α) · · · :(α) Rn .

Remark 2. For α = 1, it holds that

R1j : · · · : Rnj = (R−1
1j + · · · + R−1

nj )−1 = Rj , j = 1, . . . , n .

Then, the 1-series parallel circuit is equivalent to series circuit R1 + · · · + Rn

(Fig. 2).

Remark 3. For α = 0, it holds that

Rij = Rj , i, j = 1, . . . , n

(Fig. 3).
If n = 2, the 0-series parallel circuit is equivalent to the balanced Wheatstone

bridge connecting two R1 in parallel and two R2 in parallel [15].

Remark 4. For α = −1, it holds that

Ri1 + · · · + Rin = (R1 + · · · + Rn)−1RiR1 + · · · + (R1 + · · · + Rn)−1RiRn = Ri ,

i = 1, . . . , n . Then, the (−1)-series parallel circuit is equivalent to parallel circuit
R1 : · · · : Rn (Fig. 4).

Fig. 1. The α-series parallel circuit (n = 3).

Fig. 2. The series circuit (α = 1) (n = 3).
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Fig. 3. The 0-series parallel circuit (n = 3).

Fig. 4. The parallel circuit (α = −1) (n = 3).

7 Conclusions

In this paper, we defined α-power sums of two or more elements on symmetric
cones. They are generalized sums for arithmetic and parallel sums. We compared
monotone functions of α-power sums and means. We also mentioned interpola-
tion describing weighted sums for each α-power sum.

It was shown that the synthesized resistances of α-series parallel circuits
naturally correspond to α-power sums. An α-series parallel circuit is the series
circuit and the parallel circuit for α = 1,−1, respectively.

The assumed medium of the resistances is free to deform. The results may
be applicable to the comparison of the electrical properties of metal elements.
In addition, characteristics such as fluid and blood flow may be compared with
characteristics of the electrical circuit. Applications to fluid in tubes that com-
bine in series and parallel in complexity are also conceivable.

It is a future subject to investigate these through α-power sum and informa-
tion geometry.

References

1. Kubo, F., Ando, T.: Means of positive linear operators. Math. Ann. 246, 205–224
(1980)

2. Bernstein, D.S.: Matrix Mathematics; Theory, Facts, and Formulas. Princeton Uni-
versity Press, New Jersey (2009)



134 K. Uohashi

3. Bhatia, R.: Positive Definite Matrices. Princeton University Press, New Jersey
(2007)

4. Uhlmann, A.: Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in
an interpolation theory. Commun. Math. Phys. 80, 21–32 (1977)

5. Fujii, J., Kamei, E.: Uhlmann’s interpolational method for operator means. Math.
Jap. 34, 541–547 (1989)

6. Kamei, E.: Paths of operators parametrized by operator means. Math. Jap. 39,
395–400 (1994)

7. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge Uni-
versity Press, Cambridge (1952)

8. Ohara, A.: Geodesics for dual connections and means on symmetric cones. Integr.
Eq. Oper. Theory 50, 537–548 (2004)

9. Amari, S.: Information Geometry and Its Applications. Springer, Tokyo, Japan
(2016)

10. Morley, T.D.: An alternative approach to the parallel sum. Adv. Appl. Math. 10,
358–369 (1989)

11. Berkics, P.: On parallel sum of matrices. Linear Multilinear A. 65, 2114–2123
(2017)
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Packing Bounds for Outer Products
with Applications to Compressive Sensing
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Abstract. In order to obtain good reconstruction guarantees for typical
compressive sensing scenarios, we translate the search for good compres-
sion matrices into a ball packing problem in a suitable projective space.
We then derive such reconstruction guarantees for two relevant scenarios,
one where the matrices are unstructured and one where they have to be
Khatri-Rao products. Finally, we demonstrate how the proposed method
can be implemented with a physically motivated numerical optimization
scheme, and how it compares to a conventional scheme of random com-
pression matrices.

Keywords: Compressive sensing · Packing bounds ·
Khatri-Rao products · Outer products · Projective spaces

1 Motivation

In compressive sensing one starts from some input vector y ∈ RN which can be
represented as y = B · x for a sparse x ∈ RN where B ∈ RN×N is a full rank
matrix. One then observes m some so-called linear samples φi(y) of the vector
y which can be written concisely as

z = Φ · y = Φ · B · x, (1)

where z ∈ Rm, Φ ∈ Rm×N and m < N . In the model above, one generally
assumes that x, and thus also y, are unknown, i.e. we only have access to z,
whereas B and Φ are known. Theoretical results on compressive sensing now
specify conditions on x, B and Φ under which one is able to recover x (and thus
y) from z. Normally, we assume B to be given and fixed, and we allow Φ to
be chosen freely. Generally, if the above system of linear equations has at least
one solution, there are infinitely many, since Φ · B has non-trivial kernel. The
main condition in compressive sensing is that the vector x is sparse. To make
this notion precise, we consider the so-called �0-norm of x which is given by
x �→ ‖x‖0 = |{i ∈ N | xi �= 0}| (though this is not a norm in the usual sense as
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it is not homogeneous). Now, x is sparse, or in other words y possesses a sparse
representation in the basis given by B, if ‖x‖0 � N . This additional assumption
on x may suffice such that the solution of

min
x∈RN

‖x‖0 s.t. Φ · B · x = z (2)

allows us to recover x from z. The combinatorial problem above essentially
searches for the sparsest solution in the affine subspace of the solutions to the
linear system Φ · B · x = z. For simplicity, we will from now on assume that
B = IN ; this is no restriction as B may be incorporated into Φ.

It can be shown that (2) is an NP hard problem (see e.g. [3, Theorem 2.17]),
which motivates the search for a proxy problem that allows us to efficiently
recover x in at least some situations. One popular approach is basis pursuit
which may be viewed as the convex relaxation of (2) given by

min
x∈RN

‖x‖1 s.t. Φ · x = z, (3)

where ‖x‖p
p =

∑N
i=1 |xi|p denotes the �p-norm of x for p � 1. Indeed, it can be

shown that (3) is equivalent to a linear program [2, Sect. 1.5] and as such can
be tackled by efficient algorithms like interior point methods. Now the natural
question is under which circumstances a solution x∗ of (3) is also a solution to
(2), and in fact equal to x – the original problem of interest. To this end we
consider the following a quantity associated to the matrix Φ; note that for the
matrix Φ ∈ Rm×N we denote its i-th column of by φi ∈ RN , 1 � i � m, and
analogously for other matrices.

Definition 1 (Coherence). For Φ ∈ Rm×N its coherence is given by

Φ �→ μ(Φ) = max
1�i<j�N

|φt
i · φj |

‖φi‖2‖φj‖2
.

From a geometric point of view, the coherence μ(Φ) is given by the largest
correlation between pairs of columns. The coherence 0 ≤ μ(Φ) ≤ 1 now allows
to pose a sufficient condition such that basis pursuit recovers the solution we
desire.

Theorem 1 (see e.g. [2, Theorem 4.5]). If the columns of Φ are �2-normalized,
i.e. ‖φi‖2 = 1 for i = 1, . . . , N , further let x �= 0 and

μ(Φ) <
1

2‖x‖0 − 1
,

then the unique solution x∗ of (3) is equal to x which simultaneously is the
unique solution of (2).

Theorem 1 tells us how many non-zeros x∗ is allowed to possess before we no
longer can guarantee that (3) recovers x. But since we are able to design Φ
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freely there is room for optimization. Since in practice each row of Φ generates
one element of z we can think of m as the measurement effort one has to take.
One question immediately arising asks for the maximal s given m such that basis
pursuit recovers the correct solution for every x with ‖x‖0 � s, or conversely,
how large m – the measurement effort – has to be in order to recover all x with
‖x‖0 ≤ s for some pre-specified s.

In a probabilistic setting, this question has already been answered. If the
entries of Φ are sampled i.i.d. from a centered subgaussian distribution with
appropriate variance factor γ, then Φ has a sufficiently low coherence with high
probability for all x with ‖x‖0 � s, if m � s ln(s/N), see e.g. [3, Theorem
9.2]. However, in practice randomly sampled matrices behave unpredictably for
varying x and as such a more deterministic approach should be followed in order
to avoid this irregular behavior.

Taking a closer look at μ(Φ) for some column normalized Φ, we see that
it is determined by the pair of columns, now being points on the unit sphere
Sm−1 = {x ∈ Rm | ‖x‖2 = 1}, which enclose the smallest angle between each
other. To make things more specific let us define the real projective space and
equip it with a metric as follows.

Definition 2 (Projective space). Call x and y equivalent, x ∼ y, iff there
exists a λ ∈ {−1, 1} such that x = λy for x, y ∈ Sm−1. Now we define the
(m − 1)-dimensional projective space via P

m−1 = Sm−1/ ∼. Further, for the
geodesic distance dS on Sm−1 where (x, y) �→ dS(x, y) = arccos(xTy) we define
the corresponding metric on P

m−1 as

(x, y) �→ dP(x, y) = min
x′∈[x],y′∈[y]

dS(x′, y′).

With this definition at hand, we can rephrase the coherence of a column-
normalized matrix Φ as

μ(Φ) = min
1≤i<j≤N

cos(dP([φi], [φj ])).

This embeds the notion of the coherence μ(Φ) into a setting where one has packed
a fixed number of points, i.e. the equivalence classes of columns of Φ, into the
right projective space, where one considers these points’ distances in that space.
Thus the question whether there is a matrix Φ with a coherence lower than a
certain specified μ̂ transforms into the problem of showing the existence of a
packing in P

m−1 where the points have distance at least arccos(μ̂), i.e. open
balls of radii 1

2 arccos(μ̂) centered at these points are disjoint. The following
result originally stated in [1] can trivially be extended to state packing bounds
on P

m−1 instead of Sm−1. As such it relates all the quantities of interest with
each other and allows to address the mentioned questions.

Theorem 2. For ν < π/4 the maximum number N(m, ν) of open balls with
radii at least 2ν that can be packed in P

m−1 equipped with the geodesic distance
satisfies

√
2π sin(2ν)1−m < 2N(m, ν) < 23(m − 1)3/2

(√
2 sin(ν)

)1−m
.
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Note that this result merely states the existence of such a packing, and its
proof is not constructive, so the actual question how to construct such a packing
has to be postponed.

But, we can estimate an upper bound on the minimum number of measure-
ments m one has to acquire in z such that basis pursuit recovers the correct
solution of (2).

Theorem 3. If x �= 0 is s-sparse, then for

m >
ln

(√
π

2N2

)

ln
(
sin

(
arccos

(
1

2s−1

))) + 1

there is a matrix Φ ∈ Rm×N such that (3) has x as its unique solution.

Proof. Solving for ν in the lower bound in Theorem 2, we find that

ν >
1
2

arcsin
(( π

2N2

) 1
2m−2

)

Now, requiring that cos(2ν) < 1/(2s−1) as demanded by Theorem 1 we find
the requirement on m as stated.

The derivation of the above theorem can be viewed as a general procedure
to derive the minimum number of measurements required. This is of great use
when imposing structural requirements on the measurement matrix Φ which
generally can be stated as Φ ∈ T � Sm−1 for some set T describing the structural
constraints.

2 Packings of Outer Products and Coherence Bounds

We now shift our focus to a more complicated measurement process of the form

H = Ψ · B1 · Γ · B2 · Σ (4)

for known B1 ∈ RM1×N1 , B2 ∈ RN2×M2 , sparse and unknown Γ ∈ RN1×N2

and arbitrary but fixed matrices Ψ ∈ Rm1×M1 , Σ ∈ RM2×m1 such that H ∈
Rm1×m2 . To formulate this as a compressive sensing problem we vectorize the
matrix H ∈ Rm1×m2 , i.e. we consider

vec(H) = [HT
1 , . . . , HT

m2
]T = h = (Ψ � ΣT) · (B1 � BT

2 ) · γ ∈ Rm1m2 (5)

where γ = vec(Γ ) ∈ RN1N2 is now a sparse vector and � denotes the Khatri-Rao
product or column-wise Kronecker product defined by

Θ � Λ = [vec(θ1λT
1 ), . . . , vec(θNλT

N )]

for Θ ∈ Rm1×N and Λ ∈ Rm2×N .
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In fact, it has recently been suggested to apply the compressive sensing
paradigm to the task of bi-static channel sounding [5] where one aims to estimate
the propagation paths taken by a few planar waves through an environment of
interest. In this case, the sparsity of Γ stems from the physical properties of high
frequency electro-magnetic planar waves. In another application one is interested
in estimating the sparsity order ‖x‖0 = s directly from z in (1) without esti-
mating x first; for this it has been shown in [9] that this is possible if Φ is a
Khatri-Rao product. In both cases one ends up with a model of the form (5),
where Φ = (Ψ �ΣT) still has to be a good compression matrix in the sense that it
allows an efficient recovery of γ. So, one is again interested in estimating a lower
bound for the minimal number of measurements necessary in order to recover Γ
from H.

To this end, we proceed as before and derive this bound by first estimating
packing sizes in the right projective space. In this case it is the projective space
of matrices of the form a · bT for a ∈ Rm1 and b ∈ Rm2 which we collect in the
set Tm1,m2 . The following result sheds some light on the structure of Tm1,m2 .
Since the proof consists of straightforward calculations, we omit it here.

Lemma 1. Let a1, a2 ∈ Rm1 and b1, b2 ∈ Rm2 be arbitrary vectors. Further-
more, let 〈·, ·〉 be the inner product on Rm1×m2 defined as 〈A,B〉 = tr(AT · B)
and ‖·‖ the induced (Frobenius) norm. Let further t1 = a1b

T
1 and t2 = a2b

T
2 .

Then:

1. 〈t1, t2〉 = 〈a1, a2〉 · 〈b1, b2〉.
2. For t ∈ Tm1,m2 with ‖t‖ = 1, there exist a ∈ Sm1−1 and b ∈ Sm2−1 such that

t = abT.
3. For ‖a1‖ = ‖a2‖ = ‖b1‖ = ‖b2‖ we have

(a) ‖t1 − t2‖2 = ‖a1 − a2‖2 + ‖b1 − b2‖2 + 1
2‖a1 − a2‖2‖b1 − b2‖2.

(b) ‖t1 − t2‖ � ‖a1 − a2‖ + ‖b1 − b2‖.
(c) max{‖a1 − a2‖2, ‖b1 − b2‖2} � ‖t1 − t2‖2 � ‖a1 − a2‖2 + ‖b1 − b2‖2

We now use this to derive bounds on the packing numbers for T =
vec(Tm1,m2) ∩ Sm1m2−1 which is the set of unit norm columns of a Khatri-Rao
product. Since we ultimately want to derive coherence bounds, we construct the
projective space P

m1m2−1 as before and consider the equivalence classes of the
elements in T .

Let PA and PB be packings of open balls with radii ν in P
m1−1 and P

m2−1

respectively. Then for arbitrary but fixed a1, a2 ∈ PA and b1, b2 ∈ PB we
have by (3c) from Lemma 1 and the properties of the geodesic distance that∥
∥a1b

T
1 − a2b

T
2

∥
∥ � ‖a1 − a2‖ � 2 sin(ν) and

∥
∥a1b

T
1 − a2b

T
2

∥
∥ � ‖b1 − b2‖ �

2 sin(ν). Now, if we use each pair (ai, bj) ∈ P1 × P2 as an element t = vec(aib
T
j ),

this results in a packing with geodesic distance 2ν on T that contains |PA| · |PB|
elements. So, given two matrices Ψ and Σ, each obeying the bound in Theorem
2, we consider the matrix Φ = Ψ ⊗ Σ with columns vec(ψiσ

T
j ) where ⊗ denotes

the Kronecker product obtained by vectorizing the outer products of all possible
combinations of columns of its factors, i.e. Φ is in fact a (special) Khatri-Rao
product. This immediately leads to the following theorem.
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Theorem 4. For ν < π/4 the maximum number N(m1,m2, ν) of points that
can be packed into [T ] ∩ P

m1m2−1 satisfies

π sin(2ν)2−m1−m2 < N(m1,m2, ν).

Now we are in the position to state the main result of this paper which
estimates the number of measurements needed in order to recover x by solving
(3) for Φ = Ψ ⊗ Σ.

Theorem 5. There is a matrix Φ = Ψ � Σ ∈ Rm×N such that for any s-sparse
x �= 0 the unique solution to (3) is in fact x, if

m >

⌈
ln

(
π
N

)

2 · ln (sin(arccos(1/(2s − 1))))
+ 1

⌉2

where �·� denotes the ceiling function.

Proof. From Theorem 4 we know that

m1 + m2 >
ln

(
π
N

)

ln (sin(arccos(1/(2s − 1))))
+ 2 = c,

which suggests to choose m1,m2 > �c/2�, and since this implies m = m1 · m2 >
�c/2�2 we get the statement.

Clearly the above procedure of first deriving packing bounds in a suitable
projective space is a general way of attaining reconstruction guarantees in com-
pressive sensing, because the coherence of the measurement matrix is tightly
related to the packing distance.

3 Simulations

To remedy the shortcoming that there is no explicit construction of a packing
with the desired density, we present a physically motivated algorithm to approxi-
mate a sufficiently separated configuration in the projective space P

m−1, namely
a variant of a spring embedding algorithm [7] adapted to the problem at hand. In
light of Theorem 4 we only need an algorithm constructing unstructured matri-
ces of low coherence. To this end, we consider for a set of points x1, . . . , xN ∈ Rm

the function V : Rm×N → R where

(x1, . . . , xN ) �→ V (x1, . . . , xN ) =
∑

i�=j

1
‖xj − xi‖22

+
1

‖xj + xi‖22
The function V essentially defines a potential at each point of the xi given by
the current configuration in such a way that points and antipodal points repel
each other. Then we simply run a gradient descent algorithm to find a local
minimum of V with respect to the (x1, . . . , xN ) with step size Δt = 10−5 for a
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Fig. 1. Achieved median coherence of random matrices of 2500 trials and optimized
matrices trials compared to the upper bounds derived from Theorems 2 and 4.

maximum number of 104 steps, where we sampled the initial xi i.i.d. from the
uniform distribution on the appropriate sphere Sm−1.

The first simulation (Fig. 1) demonstrates that the optimization outlined
above actually yields good compression matrices in two ways. Firstly, they sub-
stantially improve upon the coherence obtained by simply generating them ran-
domly from a centered and properly scaled element-wise i.i.d. Gaussian distri-
bution. Secondly, the numerical results indicate that the iterative optimization
above also produces packings which are actually better than the upper bounds
derived in Theorems 2 and 4. In Fig. 1 we vary the number of measurements m
and calculate the achieved coherence after optimization, the median coherence
of 2500 trials for the random generation and the corresponding upper bounds.
We do this for both the unstructured and Khatri-Rao structured case. Note that
we select the number of measurements according to m = k2 for k ∈ {2, . . . , 7}
such that each factor in the Khatri-Rao product has k rows.

Finally, we present numerical results in Fig. 2 to show how the optimized
coherences influence the actual reconstruction performance. This was estimated
by calculating the relative frequency for the solution of (3) to match x (up to
numerical inaccuracies) for several trials, i.e. instances of x, while Φ was kept
fixed for each m. (3) was solved by reformulating it as an equivalent linear pro-
gram which in turn was optimized with the standard solver for linear programs
provided by SciPy [6], a standard Python [4] package for scientific computing.
The underlying ground truth x of sparsity s for the 2500 trials was generated
by first drawing the indices J where x is non-zero from the uniform distribution
over all subsets of the set {1, . . . , N} of magnitude |J | = s, then drawing the cor-
responding entries of x from the standard normal distribution. As we can see,
the structured matrices perform significantly worse compared to the unstruc-
tured ones, which is expected since the imposed structure reduces the degrees
of freedom and as such the achievable coherence. Moreover, the optimization
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Fig. 2. Empirical probability of successful recovery depending on the number of mea-
surements m over 2500 trials for various sparsity orders s.

routine results in an overall slightly better reconstruction performance. In the
case s = 3 we observe a slight decrease in performance for m = 49, which is due
to the fact that the numerical optimization routine got unstable from too many
side constraints. Further experiments (not shown) suggest that this difference is
even larger in a setting where one observes only noisy measurements z or when
one uses a faster approximate algorithm, like Orthogonal Matching Pursuit [8],
instead of solving (3) exactly.

4 Conclusion

Summarizing, we proposed a scheme to obtain coherence bounds for structured
matrices by deriving packing bounds in the corresponding projective space. We
applied this to the the standard unstructured case as well as the case where
the packed points are columns of a Khatri-Rao product. Finally we showed that
random compression matrices which serve as a theoretical benchmark in com-
pressive sensing are far from the derived packing bounds whereas our proposed
numerical optimization produces even better point configurations. Moreover, the
compression matrices from this packing procedure result in a slightly superior
reconstruction performance compared to the random compression ensemble.



Packing Bounds for Outer Products with Applications 143

References
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Abstract. Exponential family plays an important role in information
geometry. In [TY18], we introduced a method to construct an exponential
family P = {pθ}θ∈Θ on a homogeneous space G/H from a pair (V, v0).
Here V is a representation of G and v0 is an H-fixed vector in V . Then the
following questions naturally arise: (Q1) when is the correspondence θ �→
pθ injective? (Q2) when do distinct pairs (V, v0) and (V ′, v′

0) generate the
same family? In this paper, we answer these two questions (Theorems 1
and 2). Moreover, in Sect. 3, we consider the case (G, H) = (R>0, {1})
with a certain representation on R

2. Then we see the family obtained
by our method is essentially generalized inverse Gaussian distribution
(GIG).

Keywords: Exponential family · Representation theory ·
Homogeneous space · Generalized inverse Gaussian distribution

1 Introduction

Let G be a Lie group and H its closed subgroup. In [TY18], we introduced a
method to construct an exponential family P = {pθ}θ∈Θ on the homogeneous
space X := G/H from (V, v0). In this paper, we answer two natural questions
on our method.

1.1 Correspondence Parameters and Probability Measures

In the theory of exponential family, “minimal representation” is important
[BN70]. If an exponential family is realized by “minimal representation”, then we
obtain one-to-one correspondence between the parameter space and the family
of probability measures, which enable us to make use of the family. Moreover,
from the perspective of information geometry, the correspondence is used as a
coordinate. Then we would like to consider the following:
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Question 1. When is the following correspondence injective?

Θ � θ �→ pθ ∈ P. (1.1)

We want to answer this question for families obtained by our method. We give
a necessary and sufficient condition for the injectivity of (1.1) in Theorem 1. It
is, however, a little bit difficult to check. So, we will see the following easier
equivalent conditions (A) and (B) are necessary.

(A) The orbit Gv0 is not contained in any proper affine subspace of V .
(B) (1) v0 is cyclic,

(2) V ∨ has no nonzero G-fixed vector.

In the case where G is compact or connected semisimple, they are also sufficient
(see Remark 2).

1.2 Equivalence Relation

Our method in [TY18] constructs an exponential family from a pair (V, v0). In
some cases, the same exponential family comes from distinct pairs (V, v0) and
(V ′, v′

0). To reduce the choice of (V, v0), it is useful to give an answer to the
following question.

Question 2. When do distinct pairs (V, v0) and (V ′, v′
0) generate the same

family?

We give an answer to this question in Theorem 2. More precisely, we introduce
an equivalence relation on the set of pairs {(V, v0)} and show that two families
obtained by (V, v0), (V ′, v′

0) coincide if (V, v0) ∼ (V ′, v′
0).

2 Main Theorems

2.1 Method Introduced in [TY18]

Before stating our main results, we recall the method introduced in [TY18]. Let
G be a Lie group and H its closed subgroup. Then the quotient space X := G/H
naturally equips manifold structure, which is called the homogeneous space of G.

Let V be a finite dimensional real vector space, and ρ : G → GL(V ) a Lie
group homomorphism. Then the pair V := (ρ, V ) is called a representation of
G. We often use simpler notation gv := ρ(g)v for g ∈ G and v ∈ V .

A vector v0 ∈ V is said to be H-fixed if hv0 = v0 for any h ∈ H. We denote
by V H the linear subspace consisting of all H-fixed vectors. Let (V, v0) be a pair
of representation of G and an H-fixed vector.

We put

Ω0(G, H) := {χ : G → R>0 | χ is a continuous group homomorphism, χ|H = 1}, (2.1)
logΩ0(G, H) := {logχ : G → R | χ ∈ Ω0(G, H)}. (2.2)
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Take a relatively G-invariant measure μ on X. Then we define a measure p̃θ

on X parameterized by V ∨ × Ω0(G,H) as follows:

dp̃θ(x) = dp̃ξ,χ(x) := exp(−〈ξ, xv0〉)χ(x)dμ(x) (x ∈ X), (2.3)

where θ = (ξ, χ) ∈ V ∨ × Ω0(G,H).

Remark 1. Since v0 is H-fixed, the notion xv0 in (2.3) is well-defined. Owing to
χ|H = 1, the notion χ(x) is also well-defined for χ ∈ Ω0(G,H).

Then we consider the normalization of the measures above. Put

Θ := {θ = (ξ, χ) ∈ V ∨ × Ω0(G,H) |
∫

X

dp̃θ < ∞}, (2.4)

ϕ(θ) := log
∫

X

dp̃θ (θ ∈ Θ), (2.5)

dpθ := e−ϕ(θ)dp̃θ. (2.6)

Then we obtain a family of distributions on X as follows:

P := {pθ}θ∈Θ. (2.7)

This is an exponential family if Θ 
= ∅ [TY18].

2.2 Correspondence

In this section, we give an answer to Question 1. Namely, we state a criterion
of the injectivity of the correspondence (1.1). Moreover, we also give necessary
conditions, which one can easily check (Proposition 1)

Theorem 1. In the setting as in Sect. 2.1, the following three conditions are
equivalent:

(i) The correspondence Θ � θ �→ pθ ∈ P is injective.
(ii) There does not exist ξ ∈ V ∨ \ {0} such that fξ ∈ log Ω0(G,H).
(iii) There does not exist a triple (ξ, χ, c) ∈ (V ∨ \{0})×Ω0(G,H)×R satisfying

〈ξ, gv0〉 = log χ(g) + c for any g ∈ G.

Here, fξ(g) := 〈ξ, gv0 − v0〉 for g ∈ G.

We prove this theorem in Sect. 4.2.
Moreover, we also give necessary conditions for the injectivity of (1.1). To

state them, we prepare the notion of cyclic.

Definition 1 (cyclic). We say a vector v ∈ V is cyclic if span{gv | g ∈ G} = V .

Proposition 1. If the correspondence (1.1) is injective, then the following
equivalent conditions (A) and (B) are satisfied. Namely, ((1.1) is injective) ⇒
(A) ⇔ (B).
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(A) The orbit Gv0 is not contained in any proper affine subspace of V .
(B) (1) v0 ∈ V is cyclic,

(2) ρ∨ : G → GL(V ∨) has no nonzero G-fixed vector.

Here ρ∨ is the contragredient representation of G. Moreover, in the case where
Ω0(G,H) = {1}, the converse implication also holds.

We prove this proposition in Sect. 4.3

Remark 2. In the case where G is compact or connected semisimple, we have
Ω0(G,H) = {1}. See [TY18] for the details.

2.3 Equivalence

We use the same notation as in Sect. 2.1. In this subsection, we give an answer
to Question 2. To state it, we introduce the notations Ṽ(G) and Ṽ(G,H).

Definition 2. We put
Ṽ(G) := {(V, v0) | V is a finite dimensional real representation of G, v0 ∈ V is cyclic},

Ṽ(G, H) := {(V, v0) ∈ Ṽ(G) | v0 ∈ V H}.

We say elements (V, v0) and (V ′, v′
0) in Ṽ(G) are equivalent if there exists a

G-equivariant linear isomorphism ψ : V → V ′ such that ψ(v0) = v′
0 and denote

it by (V, v0) ∼ (V ′, v′
0). This is an equivalence relation on Ṽ(G). By definition,

this is also an equivalence relation on Ṽ(G,H).

Theorem 2. Equivalent elements in Ṽ(G,H) generate the same family by our
method.

We prove this theorem in Sect. 4.4.

Remark 3. From Theorem 2, in the special case dim V H = 1, the choice of v0
is essentially unique. In the next section, we also see an example in which the
choice of v0 is essentially unique even if dimV H > 1.

3 Generalized Inverse Gaussian Distribution

Throughout this section, we put G = R>0, H = {1} and V = R
2, and consider

a representation ρ : G → GL(V ) given by ρ(g) =
(

g
g−1

)
for g ∈ G. We answer

Questions 1 and 2 for this case.
We consider the following two cases.

(Case 1) In the case where
(

r
s

)
∈ V H = V with r = 0 or s = 0:

Vectors
(

r
0

)
,
(

0
s

)
are not cyclic. Therefore the obtained families have “unessen-

tial parameters”.

(Case 2) In the case where
(

r
s

)
∈ V H with r 
= 0 and s 
= 0:
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Proposition 2. The pairs (V,

(
r
s

)
) with r 
= 0 and s 
= 0 are equivalent each

other. Moreover, we obtain the family {dpa,b,λ}(a,b,λ)∈Θ of GIG (3.1) by applying

our method to (V,

(
r
s

)
), where Θ = {(a, b, λ) ∈ R

3 | (a, b, λ) satisfies (3.2)}.

Definition 3 (Generalized inverse Gaussian distribution. See [J82] for
the details). The following distribution on R>0 is called generalized inverse
Gaussian distribution.

ca,b,λxλ−1e−(ax+b/x)/2dx (x ∈ R>0), (3.1)

where dx denotes Lebesgue measure on R>0, and (a, b, λ) satisfies one of the
following three conditions:

(i) a > 0, b > 0, (ii) a > 0, b = 0, λ > 0, (iii) a = 0, b > 0, λ < 0. (3.2)

Here ca,b,λ is the normalizing constant given as follows, respectively.

(i)
(a/b)

λ
2

2Kλ(
√

ab)
, (ii)

1
Γ (λ)

(a

2

)λ

, (iii)
1

Γ (−λ)

(
b

2

)−λ

, (3.3)

where Kλ is the modified Bessel function of the second kind with index λ.

Proof (Proposition 2). Put v0 := 1
2

(
1
1

)
. For r, s 
= 0, a G-linear isomorphism(

2r 0
0 2s

)
∈ GL(V ) gives (V, v0) ∼ (V,

(
r
s

)
), which implies the former part.

For the latter part, it is enough to show the case (V, v0) by Theorem 2. It is
easily checked that Ω0(G,H) = {x �→ xλ | λ ∈ R}. Take a relatively invariant
measure dx

x on R>0. We identify (R2)∨ with R
2 by taking the standard inner

product. Then we have

dp̃a,b,λ(x) := exp(−〈
(

a
b

)
,

(
x

x−1

)
v0〉)xλ dx

x
(
(

a
b

)
∈ R

2)

= exp(−(ax + bx−1)/2)xλ−1dx.

We get Θ = {θ = (a, b, λ) ∈ R
3 | (a, b, λ) satisfies (3.2)}. By normalizing these

distributions, we obtain the desired family of GIG (3.1).

Finally, let us check the injectivity of the correspondence (1.1). For
(a, b, c, λ) ∈ R

4,

axg + byg−1 = λ log g + c for any g ∈ G

holds only if (a, b, c, λ) = 0. Thus, the condition (iii) of Theorem1 is satisfied.

4 Proof of Main Theorems

In this section, we give proofs to Theorems 1 and 2 and Proposition 1.
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4.1 Preliminary

In this subsection, we prepare some notations for proofs in the following sections.
Let G be a Lie group, H a closed subgroup of G and V a finite dimensional real
vector space.

Notation 3. We denote by C(G) the vector space consisting of all R-valued con-
tinuous functions on G. The constant function 1 is an element of C(G). The space
C(G) admits the left and right regular representations L, R : G → GL(C(G)),
respectively. We put C(G)H := {f ∈ C(G) | Rhf = f for any h ∈ H}.
Remark 4. The set log Ω0(G,H) is a subspace of C(G) (see (2.2)). For f ∈
C(G), the condition f ∈ log Ω0(G,H) is equivalent to the pair of the following
conditions:

(a) f(h) = 0 for any h ∈ H,
(b) f(gg′) = f(g) + f(g′) for any g, g′ ∈ G.

Notation 4. We denote by ev the evaluation map. We identify V with (V ∨)∨

canonically as follows:

V → (V ∨)∨, x �→ evx . (4.1)

Let W be a subspace of V . Then we put

W⊥ := {f ∈ V ∨ | 〈f, w〉 = 0 for any w ∈ W}. (4.2)

Notation 5. For a representation ρ : G → GL(V ), we denote the contragredient
representation by ρ∨ : G → GL(V ∨). We often use simpler notation g∨ξ :=
ρ∨(g)ξ for g ∈ G and ξ ∈ V ∨. Then, the following equality holds:

〈g∨ξ, v〉 = 〈ξ, g−1v〉 (g ∈ G, v ∈ V, ξ ∈ V ∨). (4.3)

4.2 Proof of Theorem1

Proof (Theorem 1). We are enough to show ¬(ii)⇒ ¬(iii)⇒ ¬(i)⇒ ¬(ii).
First, we see ¬(ii)⇒ ¬(iii). Take ξ ∈ V ∨ \ {0} such that fξ ∈ log Ω0(G,H).

Then there exists χ ∈ Ω0(G,H) such that 〈ξ, gv0 − v0〉 = 〈ξ, gv0〉 − 〈ξ, v0〉 =
log χ(g) for any g ∈ G, so ¬(iii) is proved.

Next, we see ¬(iii)⇒ ¬(i). Assume there exist ξ ∈ V ∨ \ {0}, c ∈ R and χ ∈
Ω0(G,H) satisfying 〈ξ, gv0〉 = log χ(g)+c for any g ∈ G. Take any θ1 = (ξ1, χ1) ∈
Θ and put θ2 := (ξ1 + ξ, χ1χ) ∈ V ∨ × Ω0(G,H). It is enough to show that
θ2 ∈ Θ and pθ1 = pθ2 . This comes from dp̃θ2(x) = e−〈ξ1+ξ,xv0〉χ1(x)χ(x)dμ(x) =
e−〈ξ,xv0〉+log χ(x)e−〈ξ1,xv0〉χ1(x)dμ(x) = e−cdp̃θ1(x).

Finally, we see ¬(i)⇒ ¬(ii). Assume two distinct elements θ1 = (ξ1, χ1) and
θ2 = (ξ2, χ2) ∈ Θ satisfy pθ1 = pθ2 . Put ξ := ξ2 − ξ1. It is enough to show the
following:
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Claim. ξ 
= 0 and fξ ∈ log Ω0(G,H).

From pθ1 = pθ2 , we have for almost every x ∈ X,

exp(−〈ξ1, xv0〉 + logχ1(x) − ϕ(θ1) + 〈ξ2, xv0〉 − logχ2(x) + ϕ(θ2)) =
dpθ1

dpθ2

(x) = 1.

Therefore we have

〈ξ, gv0〉 + ϕ(θ2) − ϕ(θ1) = log χ2(g) − log χ1(g) ∈ log Ω0(G,H). (4.4)

From Remark 4(a), we have ϕ(θ2)−ϕ(θ1) = −〈ξ, v0〉, that is, fξ ∈ log Ω0(G,H).
Moreover, from (4.4) and θ1 
= θ2, we obtain ξ 
= 0.

4.3 Proof of Proposition 1

In this subsection, we prove Proposition 1 by using Lemma 1 below.

Lemma 1. For ξ ∈ V ∨ \ {0}, we consider the following three conditions:

(i) g∨ξ = ξ for any g ∈ G,
(ii) fξ = 0 (see Theorem1 for the definition of fξ),
(iii) there exists c ∈ R satisfying Gv0 ⊂ {v ∈ V | 〈ξ, v〉 = c}.
Then, we have (i)⇒(ii)⇔(iii). Moreover, under the assumption that v0 is cyclic,
the implication (iii)⇒(i) also holds.

Proof. Since the implications (i)⇒(ii)⇔(iii) are easy, we prove only the impli-
cation (iii)⇒(i) under the assumption that v0 is cyclic. Take any g ∈ G. It is
enough to show that 〈g∨ξ, g′v0〉 = 〈ξ, g′v0〉 for any g′ ∈ G. From (4.3), we have

〈g∨ξ, g′v0〉 = 〈ξ, g−1g′v0〉 = c = 〈ξ, g′v0〉.

Proof (Proposition 1). First, note that we have the following three easy implica-
tions (a), (b) and (c):

(a) ¬(A) ⇐⇒ there exists ξ ∈ V ∨ \ {0} satisfying Lemma 1(iii),
(b) ¬(B)(2) ⇐⇒ there exists ξ ∈ V ∨ \ {0} satisfying Lemma 1(i),
(c) (A) =⇒ v0 is cyclic.

Therefore, the equivalence (A)⇔(B) comes from Lemma 1.
Next, the implication ((1.1) is injective)⇒(A) follows from (a). In fact, the

condition Theorem 1(ii) fails if there exists ξ ∈ V ∨ \ {0} satisfying Lemma 1(ii).
Finally, assume Ω0(G,H) = {1}. The converse implication above also holds.

So, (A) implies the injectivity of (1.1).
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4.4 Proof of Theorem2

We show Theorem 2 by using Lemmas 2 and 3 below. We prove Lemma 2 in the
next subsection.

Proof (Theorem 2). It is enough to show that {g �→ 〈ξ, gv0〉 | ξ ∈ V ∨} = {g �→
〈ξ′, gv′

0〉 | ξ′ ∈ V ′∨} as a subspace of C(G)H if (V, v0), (V ′, v′
0) ∈ Ṽ(G,H) are

equivalent. This follows from Lemmas 2 and 3 below.

Lemma 2. Put

V(G) := Ṽ(G)/ ∼,

W(G) := {W ⊂ C(G) | W is a finite dimensional LG-invariant subspace}.

The following map gives a one-to-one correspondence.

V(G) → W(G), (V, v0) �→ η(V ∨), (4.5)

where

η := ηV,v0 : V ∨ → C(G), ξ �→ (g �→ 〈ξ, gv0〉). (4.6)

Lemma 3. Let H be a closed subgroup of G. Suppose (V, v0) ∈ V(G) corresponds
to W ∈ W(G) in Lemma 2. Then v0 is H-fixed if and only if any element w ∈ W
is RH-fixed.

Proof. We have

the function η(ξ) : G → R is RH -fixed for any ξ ∈ V ∨,

⇐⇒ 〈ξ, ghv0〉 = 〈ξ, gv0〉 for any g ∈ G,h ∈ H and ξ ∈ V ∨,

⇐⇒ ghv0 = gv0 for any g ∈ G and h ∈ H,

⇐⇒ v0 is H-fixed.

4.5 Proof of Lemma 2

In this subsection, we prove Lemma 2. To show this lemma, we use Lemmas 4
and 5 below.

Lemma 4 (property of η). The map η : V ∨ → C(G) defined in (4.6) satisfies
the following:

(1) η is a G-equivariant linear map,
(2) v0 is cyclic if and only if η is injective,
(3) (V, v0) ∼ (V ′, v′

0) ⇒ η(V ∨) = η′(V ′∨), where η = ηV,v0 and η′ = ηV ′,v′
0
.

We give a proof of this lemma at the end of this subsection.

Lemma 5. Let W ⊂ C(G) be a finite dimensional LG-invariant subspace. Then
v0 := eve |W ∈ W∨ is L∨

G-cyclic in W∨.
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Proof. Put E := span{L∨
g v0 | g ∈ G} ⊂ W∨. It is enough to show E⊥ = {0}.

Take any function f ∈ E⊥, then we have f(g) = (Lg−1f)(e) = 〈v0, Lg−1f〉 =
〈L∨

g v0, f〉 = 0. Therefore, we obtain f = 0.

Proof (Lemma 2). From Lemmas 4(1) and 5, the following maps are well-defined:

Φ : Ṽ(G) → W(G), (V, v0) �→ η(V ∨), (4.7)

Ψ : W(G) → Ṽ(G), W �→ (W∨, eve |W ). (4.8)

Then it is enough to show the following:

(a) (V, v0) ∼ (V ′, v′
0) in Ṽ(G) ⇒ Φ(V, v0) = Φ(V ′, v′

0),
(b) Φ ◦ Ψ = idW(G),
(c) Ψ ◦ Φ(V, v0) ∼ (V, v0) in Ṽ(G) for (V, v0) ∈ Ṽ(G).

First, the condition (a) follows from Lemma4(3).
Next, we show the condition (b). Let W be an element of W(G). Since we have

Ψ(W ) = (W∨, eve |W ), we get Φ ◦ Ψ(W ) = {g �→ 〈ξ, L∨
g (eve |W )〉 | ξ ∈ (W∨)∨}.

Then, we have

〈ξ, L∨
g (eve |W )〉 = (L∨

g (eve |W ))(ξ) = (eve |W )(Lg−1ξ) = (Lg−1ξ)(e) = ξ(g).

Therefore, we obtain Φ ◦ Ψ(W ) = W .
Finally, we show the condition (c). Let (V, v0) be an element of Ṽ(G). Put

W := η(V ∨) and (V ′, v′
0) := Ψ ◦ Φ(V, v0) = Ψ(W ) = (W∨, eve |W ). Since η∨ :

W∨ → (V ∨)∨ is a G-linear isomorphism by Lemma 4(1) and (2), it is enough to
show that η∨(eve |W ) = v0. For any ξ ∈ V ∨, we have

〈ξ, η∨(eve |W )〉 = 〈η(ξ), eve |W 〉 = η(ξ)(e) = 〈ξ, v0〉. (4.9)

Therefore, we obtain η∨(eve |W ) = v0.

Proof (Lemma 4)

(1) Clearly, η is a linear map. The G-equivariance of η follows from the definition
of the contragredient representation.

(2) Since η is linear, it is enough to show that v0 is cyclic if and only if ker η = {0}.
The condition ker η = {0} means that for ξ ∈ V ∨, 〈ξ, gv0〉 = 0 for any g ∈ G
implies ξ = 0. Therefore this is equivalent to the condition v0 is cyclic.

(3) Take a G-equivariant linear isomorphism ψ : V → V ′ with ψ(v0) = v′
0.

Then it is enough to show η′ = η ◦ ψ∨ : V ′∨ → C(G). For any ξ′ ∈ V ′∨ and
g ∈ G,

η ◦ ψ∨(ξ′)(g) = 〈ψ∨ξ′, gv0〉 = 〈ξ′, ψ(gv0)〉 = 〈ξ′, gψ(v0)〉 = 〈ξ′, gv′
0〉 = η′(ξ′)(g).
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Lie Group Machine Learning and Gibbs
Density on Poincaré Unit Disk from Souriau
Lie Groups Thermodynamics and SU(1,1)

Coadjoint Orbits
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Abstract. In 1969, Jean-Marie Souriau has introduced a “Lie Groups Ther-
modynamics” in Statistical Mechanics in the framework of Geometric
Mechanics. This Souriau’s model considers the statistical mechanics of dynamic
systems in their “space of evolution” associated to a homogeneous symplectic
manifold by a Lagrange 2-form, and defines thanks to cohomology (non
equivariance of the coadjoint action on the moment map with appearance of an
additional cocyle) a Gibbs density (of maximum entropy) that is covariant under
the action of dynamic groups of physics (e.g., Galileo’s group in classical
physics). Souriau model is more general if we consider another Souriau theo-
rem, that we can associate to a Lie group, an homogeneous symplectic manifold
with a KKS 2-form on their coadjoint orbits. Souriau method could then be
applied on Lie Groups to define a covariant maximum entropy density by
Kirillov representation theory. We will illustrate this method for homogeneous
Siegel domains and more especially for Poincaré unit disk by considering
SU(1,1) group coadjoint orbit and by using its Souriau’s moment map. For this
case, the coadjoint action on moment map is equivariant.

Keywords: Lie groups thermodynamics � Lie group machine learning �
Kirillov representation theory � Coadjoint orbits � Moment map �
Covariant Gibbs density � Maximum entropy density � Souriau-Fisher metric

1 Lie Groups Thermodynamics and Covariant Gibbs Density

We identify the Riemanian metric introduced by Souriau based on cohomology, in the
framework of “Lie groups thermodynamics” as an extension of classical Fisher metric
introduced in information geometry. We have observed that Souriau metric preserves
Fisher metric structure as the Hessian of the minus logarithm of a partition function,
where the partition function is defined as a generalized Laplace transform on a sharp
convex cone. Souriau’s definition of Fisher metric extends the classical one in case of
Lie groups or homogeneous manifolds. Souriau has developed this “Lie groups ther-
modynamics” theory in the framework of homogeneous symplectic manifolds in
geometric statistical mechanics for dynamical systems, but as observed by Souriau,
these model equations are no longer linked to the symplectic manifold but equations
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only depend on the Lie group and the associated cocycle. This analogy with Fisher
metric opens potential applications in machine learning, where the Fisher metric is used
in the framework of information geometry, to define the “natural gradient” tool for
improving ordinary stochastic gradient descent sensitivity to rescaling or changes of
variable in parameter space. In machine learning revised by natural gradient of infor-
mation geometry, the ordinary gradient is designed to integrate the Fisher matrix.
Amari has theoretically proved the asymptotic optimality of the natural gradient
compared to classical gradient. With the Souriau approach, the Fisher metric could be
extended, by Souriau-Fisher metric, to design natural gradients for data on homoge-
neous manifolds. Information geometry has been derived from invariant geometrical
structure involved in statistical inference. The Fisher metric defines a Riemannian
metric as the Hessian of two dual potential functions, linked to dually coupled affine
connections in a manifold of probability distributions. With the Souriau model, this
structure is extended preserving the Legendre transform between two dual potential
function parametrized in Lie algebra of the group acting transentively on the homo-
geneous manifold. Classically, to optimize the parameter h of a probabilistic model,
based on a sequence of observations yt, is an online gradient descent:

ht  ht�1 � gt
@lt ytð ÞT
@h

ð1Þ

with learning rate gt, and the loss function lt ¼ � log p yt=ŷtð Þ. This simple gradient
descent has a first drawback of using the same non-adaptive learning rate for all
parameter components, and a second drawback of non invariance with respect to
parameter re-encoding inducing different learning rates. Amari has introduced the
natural gradient to preserve this invariance to be insensitive to the characteristic scale of
each parameter direction. The gradient descent could be corrected by IðhÞ�1 where I is
the Fisher information matrix with respect to parameter h, given by:

I hð Þ ¼ gij
� �

with gij ¼ �Ey� pðy=hÞ
@2 log p y=hð Þ

@hi@hj

� �� �
ij

ð2Þ

with natural gradient:

ht  ht�1 � gtIðhÞ�1
@lt ytð ÞT
@h

ð3Þ

Amari has proved that the Riemannian metric in an exponential family is the Fisher
information matrix defined by:

gij ¼ � @2U
@hi@hj

� �
ij

with UðhÞ ¼ � log
Z
R

e� h;yh idy ð4Þ
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and the dual potential, the Shannon entropy, is given by the Legendre transform:

SðgÞ ¼ h; gh i � UðhÞ with gi ¼
@UðhÞ
@hi

and hi ¼ @SðgÞ
@gi

ð5Þ

In geometric statistical mechanics, Souriau has developed a “Lie groups thermo-
dynamics” of dynamical systems where the (maximum entropy) Gibbs density is
covariant with respect to the action of the Lie group. In the Souriau model, previous
structures of information geometry are preserved:

IðbÞ ¼ � @2U

@b2
with UðbÞ ¼ � log

Z
M

e� b;UðnÞh idx and U : M ! g� ð6Þ

SðQÞ ¼ b;Qh i � UðbÞ with Q ¼ @UðbÞ
@b

2 g� and b ¼ @SðQÞ
@Q

2 g ð7Þ

In the Souriau Lie groups thermodynamics model, b is a “geometric” (Planck)
temperature, element of Lie algebra g of the group, and Q is a “geometric” heat,
element of dual Lie algebra g� of the group. Souriau has proposed a Riemannian metric
that we have identified as a generalization of the Fisher metric:

I bð Þ ¼ gb
� �

with gb b; Z1½ �; b; Z2½ �ð Þ ¼ ~Hb Z1; b; Z2½ �ð Þ ð8Þ

with ~Hb Z1; Z2ð Þ ¼ ~H Z1;Z2ð Þþ Q; adZ1ðZ2Þh i where adZ1ðZ2Þ ¼ Z1; Z2½ � ð9Þ

Souriau has proved that all co-adjoint orbit of a Lie Group given by OF ¼
Ad�gF ¼ g�1Fg; g 2 G
n o

subset of g�;F 2 g� carries a natural homogeneous sym-

plectic structure by a closed G-invariant 2-form. If we define K ¼ Ad�g ¼ Adg�1
� ��

K�ðXÞ ¼ � adXð Þ� with Ad�gF; Y
D E

¼ F;Adg�1Y
� 	

; 8g 2 G; Y 2 g;F 2 g� where if

X 2 g, AdgðXÞ ¼ gXg�1 2 g, the G-invariant 2-form is given by the following
expression rX K�XF;K�YFð Þ ¼ BF X; Yð Þ ¼ F; X; Y½ �h i;X; Y 2 g. Souriau Foundamen-
tal Theorem is that « every symplectic manifold is a coadjoint orbit ». We can observe
that for Souriau model (8), Fisher metric is an extension of this 2-form in non-
equivariant case gb b; Z1½ �; b; Z2½ �ð Þ ¼ ~H Z1; b; Z2½ �ð Þþ Q; Z1; b; Z2½ �½ �h i.

The Souriau additional term ~H Z1; b; Z2½ �ð Þ is generated by non-equivariance
through Symplectic cocycle. The tensor ~H used to define this extended Fisher metric is
defined by the moment map JðxÞ, application from M (homogeneous symplectic
manifold) to the dual Lie algebra g�, given by:

~HðX;YÞ ¼ J X;Y½ � � JX ; JYf g ð10Þ

with JðxÞ : M ! g� such that JXðxÞ ¼ JðxÞ;Xh i;X 2 g ð11Þ
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This tensor ~H is also defined in tangent space of the cocycle h gð Þ 2 g� (this cocycle
appears due to the non-equivariance of the coadjoint operator Ad�g , action of the group
on the dual lie algebra):

Q AdgðbÞ
� � ¼ Ad�gðQÞþ h gð Þ ð12Þ

~H X; Yð Þ :g� g! < with HðXÞ ¼ Teh XðeÞð Þ
X,Y 7! HðXÞ; Yh i ð13Þ

In Souriau’s Lie groups thermodynamics, the invariance by re-parameterization in
information geometry has been replaced by invariance with respect to the action of the
group. When an element of the group g acts on the element b 2 g of the Lie algebra,
given by adjoint operator Adg. Under the action of the group AdgðbÞ, the entropy S Qð Þ
and the Fisher metric I bð Þ are invariant:

b 2 g! AdgðbÞ )
S Q AdgðbÞ

� �� � ¼ S Qð Þ
I AdgðbÞ
� � ¼ I bð Þ

(
ð14Þ

In the framework of Lie group action on a symplectic manifold, equivariance of
moment could be studied to prove that there is a unique action a(.,.) of the Lie group G
on the dual g� of its Lie algebra for which the moment map J is equivariant, that means
for each x 2 M :

J UgðxÞ
� � ¼ aðg; JðxÞÞ ¼ Ad�g JðxÞð Þþ hðgÞ ð15Þ

When coadjoint action is not equivariant, the symmetry is broken, and new “co-
homological” relations should be verified in Lie algebra of the group. A natural
equilibrium state will thus be characterized by an element of the Lie algebra of the Lie
group, determining the equilibrium temperature b. The entropy sðQÞ, parametrized by
Q the geometric heat (mean of energy U, element of the dual Lie algebra) is defined by
the Legendre transform of the Massieu potential U bð Þ parametrized by b (U bð Þ is the
minus logarithm of the partition function wX bð Þ). Souriau has then defined a Gibbs
density that is covariant under the action of the group:

pGibbsðnÞ ¼ eUðbÞ� b;UðnÞh i ¼ e� b;UðnÞh iR
M
e� b;UðnÞh idx

, with UðbÞ ¼ � log
Z
M

e� b;UðnÞh idx

Q ¼ @UðbÞ
@b

¼

R
M
UðnÞe� b;UðnÞh idxR
M
e� b;UðnÞh idx

¼
Z
M

UðnÞpðnÞdx

ð16Þ

We will illustrate computation of this covariant Souriau-Gibbs density for the Lie
group SU(1,1) and the unit disk considered as an homogeneous symplectic manifold.
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2 Souriau Moment Map

iVx is the (p − 1)-form on M obtained by inserting VðxÞ as the first argument of x:

Interior product

iVx v2; � � � vp
� � ¼ x VðxÞ; v2; � � � ; vp

� � ð17Þ

h ^ x is the (p + 1)-form on X where x is a p-form and h is a 1-form on M:

Exterior product h ^ x v0; � � � ; vp
� � ¼Pp

i¼0
�1ð ÞihðviÞx v0; � � � ; v̂i; � � � ; vp

� �
(where

the hat indicates a term to be omitted).
LVx is a p-form on M, and LVx ¼ 0 if the flow of V consists of symmetries of x:

Lie derivative

LVx v1; � � � ; vp
� � ¼ d

dt
etV�x v1; � � � ; vp

� �




t¼0

ð18Þ

dx is the (p + 1)-form on M defined by taking the ordinary derivative of x and
then antisymmetrizing:

Exterior derivative

dx v0; � � � ; vp
� � ¼Xp

i¼0
�1ð Þi@x

@x
ðviÞðv0; � � � ; v̂i; � � � ; vpÞ ð19Þ

p ¼ 0; dx½ �i¼ @ix; p ¼ 1; dx½ �ij¼ @ixj � @jxi; p ¼ 2; dx½ �ijk¼ @ixjk þ @jxkiþ
@kxij. The properties of the exterior and Lie Derivative are the following:

LVx ¼ diVxþ iVdx E:Cartanð Þ; i U;V½ �x ¼ iVLUx� LUiVx H:Cartanð Þ ð20Þ

L U;V½ �x ¼ LVLUx� LULVx S:Lieð Þ ð21Þ

Let M; rð Þ be a connected symplectic manifold. A vector field g on M is called
symplectic if its flow preserves the 2-form: Lgr ¼ 0. If we use Elie Cartan’s formula,
we can deduce that Lgr ¼ digrþ igdr ¼ 0 but as dr ¼ 0 then digr ¼ 0. We observe
that the 1-form igr is closed. When this 1-form is exact, there is a smooth function
x 7!H on M with: igr ¼ �dH. This vector field g is called Hamiltonian and could be
defined as symplectic gradient g ¼ rSympH.

Let a Lie group G that acts on M and that also preserve r. A moment map exists if
these infinitesimal generators are actually hamiltonian, so that a map J : M ! g� exists
with iZXr ¼ �dHZ where
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HZ ¼ JðxÞ; Zh i ð22Þ

We define also the Poisson bracket of two functions H, H0 by:

H;H0f g ¼ r g; g0ð Þ ¼ r rSympH
0;rSympH

� �
with igr ¼ �dH and ig0r ¼ �dH 0 ð23Þ

3 Coadjoint Orbits and Moment Map for SU(1,1)

3.1 Poincaré Unit Disk and SU(1,1) Lie Group

The group of complex unimodular pseudo-unitary matrices SUð1; 1Þ, is the set of
elements u such that: uMuþ ¼ M with

M ¼ þ 1 0
0 �1

� �
ð24Þ

We can show that the most general matrix u belongs to the Lie group given by:

G ¼ SUð1; 1Þ ¼ a b
b� a�

� �
= aj j2� bj j2¼ 1; a; b 2 C

 �
ð25Þ

Its Cartan decomposition is given by:

a b
b� a�

� �
¼ aj j 1 z

z� 1

� �
a= aj j 0
0 a�= aj j

� �
with z ¼ b a�ð Þ�1; aj j ¼ 1� zj j2

� ��1=2
ð26Þ

a b
b� a�

� �
1 z
z� 1

� �
¼ a0j j 1 z0

z0� 1

� �
a0= a0j j 0

0 a0�= a0j j
� �

with
a0 ¼ bz� þ a

z0 ¼ azþ b
b�zþ a�

8<
:

ð27Þ

SU 1; 1ð Þ is associated to group of holomorphic automorphisms of the Poincaré unit
disk D ¼ z ¼ xþ iy 2 C= zj j\1f g in the complex plane, by considering its action on
the disk as gðzÞ ¼ azþ bð Þ= b�zþ a�ð Þ. The following measure on Unit disk:

dl0 z; z�ð Þ ¼ 1
2pi

dz ^ dz�

1� zj j2
� �2 ð28Þ
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is invariant under the action of SUð1; 1Þ captured by the fractional holomorphic
transformation:

dz0 ^ dz0�

1� z0j j2
� �2 ¼ dz ^ dz�

1� zj j2
� �2 ð29Þ

The complex unit disk admits a Kähler structure determined by potential function:

U z0; z�ð Þ ¼ � log 1� z0z�ð Þ ð30Þ

The invariant 2-form is:

X ¼ 1
i
@2U z; z�ð Þ
@z@z�

dz ^ dz� ¼ 1
i

dz ^ dz�

1� zj j2
� �2 ð31Þ

which is closed dX ¼ 0. This group SUð1; 1Þ is isomorphic to the group SLð2;RÞ as a
real Lie group, and the Lie algebra g ¼ su 1; 1ð Þ is given by:

g ¼ �ir g
g� ir

� �
=r 2 R; g 2 C

 �
ð32Þ

with the bases u1; u2; u3ð Þ 2 g: u1 ¼ 1
2

0 �i
i 0

� �
; u2 ¼ 1

2
0 1
1 0

� �
; u3 ¼ 1

2
�i 0
0 i

� �
with the commutation relation:

u3; u2½ � ¼ u1; u3; u1½ � ¼ �u2; u2; u1½ � ¼ �u3 ð33Þ

Dual base on dual Lie algebra is named u�1; u
�
2; u
�
3

� � 2 g�. The dual vector space
g� ¼ su�ð1; 1Þ can be identified with the subspace of slð2;CÞ of the form:

g� ¼ z xþ iy
�xþ iy �z

� �
¼ x

0 1
�1 0

� �
þ y

0 i
i 0

� �
þ z

1 0
0 �1

� �
=x; y; z 2 R

 �
ð34Þ

Coadjoint action of g 2 G on dual Lie algebra n 2 g� is written g:n.

3.2 Coadjoint Orbit of SU(1,1) and Souriau Moment Map

We will use results of Cishahayo and de Bièvre [7] and Cahen [8, 9] for computation of
moment map of SUð1; 1Þ. Let r 2 R

�þ , orbit O ru�3
� �

of ru�3 for the coadjoint action of
g 2 G could be identified with the upper half sheet x3 [ 0 of n ¼ x1u�1þ

�
x2u�2þ x3u�3=� x21 � x22þ x23 ¼ r2g, the two-sheet hyperboloid. The stabilizer of ru�3 for
the coadjoint action of G is torus K ¼ eih 0

0 e�ih

� �
; h 2 R

 �
. K induces rotations of
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the unit disk, and leaves 0 invariant. The stabilizer for the origin 0 of unit disk is
maximal compact subgroup K of SU(1,1). We can observe [8] that O ru�3

� � ’ G=K. On
the other hand O ru�3

� � ’ G=K is diffeomorphic to the unit disk D ¼ z 2 C= zj j\1f g,
then by composition, the moment map is given by:

J : D! O ru�3
� �

z 7! JðzÞ ¼ r
zþ z�

1� zj j2
� � u�1þ z� z�

i 1� zj j2
� � u�2þ 1þ zj j2

1� zj j2
� � u�3

0
@

1
A ð35Þ

J is linked to the natural action of G on D (by fractional linear transforms) but also
the coadjoint action of G on O ru�3

� � ’ G=K. J�1 could be interpreted as the stereo-
graphic projection from the two-sphere S2 onto C[1. In case r ¼ n

2 where n 2
N
þ ; n� 2 then the coadjoint orbit is given by On ¼ O fnð Þ with nn ¼ n

2 u
�
3 2 g�, with

stabilizer of nn for coadjoint action the torus K ¼ eih 0
0 e�ih

� �
; h 2 R

 �
with Lie

algebra Ru3. On ¼ O fnð Þ is associated with a holomorphic discrete series representation
pn of G by the KKS (Kirillov-Kostant-Souriau) method of orbits.

J : D! On

z 7! JðzÞ ¼ n
2

zþ z�

1� zj j2
� � u�1þ z� z�

i 1� zj j2
� � u�2þ 1þ zj j2

1� zj j2
� � u�3

0
@

1
A ð36Þ

Group G act on D by homography g:z ¼ a b

b� a�

� �
:z ¼ azþ b

b�zþ a�
. This action

corresponds with coadjoint action of G on On. The Kirillov-Kostant-Souriau 2-form of
On is given by:

Xn fð Þ X fð Þ; Y fð Þð Þ ¼ f; X; Y½ �h i;X; Y 2 g and f 2 On ð37Þ

and is associated in the frame by J with:

xn ¼ in

1� zj j2
� �2 dz ^ dz� ð38Þ

with the corresponding Poisson Bracket:

f ; gf g ¼ i 1� zj j2
� �2 @f

@z
@g
@z�
� @f
@z�

@g
@z

� �
ð39Þ
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It has been also observed that there are 3 basic observables generating the SUð1; 1Þ
symmetry on classical level:

D! R

z 7! k3ðzÞ ¼ 1þ zj j2
1� zj j2


;

D! R

z 7! k1ðzÞ ¼ 1
i
z�z�
1� zj j2


;

D! R

z 7! k2ðzÞ ¼ zþ z�

1� zj j2


ð40Þ

With the Poisson commutation rule:

k3; k1f g ¼ k2; k3; k2f g ¼ �k1; k1; k2f g ¼ �k3 ð41Þ

k1; k2; k3ð Þ vector points to the upper sheet of the two-sheeted hyperboloid in R
3

given by k23 � k21 � k22 ¼ 1, whose the stereographic projection onto the open unit
disk is:

k1; k2; k3ð Þ 2 Hþ ! D

z ¼ k2 þ ik1
1þ k3

¼
ffiffiffiffiffiffiffiffiffi
k3�1
k3 þ 1

q
ei arg z

8<
: ð42Þ

Under the action of g 2 G ¼ SUð1; 1Þ ¼ a b
b� a�

� �
= aj j2� bj j2¼ 1; a; b 2 C

 �
:

k� k3
k3 kþ

� �
¼ k2þ ik1 k3

k3 k2 � ik1

� �
¼ 1

1� zj j2
2z 1þ zj j2

1þ zj j2 2z�

 !
is trans-

form in:

k
0
� k

0
3

k
0
3 k

0
þ

 !
¼ k� g�1:zð Þ k3 g�1:zð Þ

k3 g�1:zð Þ kþ g�1:zð Þ

� �
¼ g�1

k� k3
k3 kþ

� �
g�1
� �t ð43Þ

This transform can be viewed as the co-adjoint action of SUð1; 1Þ on the coad-
joint orbit identified with k23 � k21 � k22 ¼ 1.

4 Covariant Gibbs Density by Souriau Thermodynamics

Representation theory studies abstract algebraic structures by representing their ele-
ments as linear transformations of vector spaces, and algebraic objects (Lie groups, Lie
algebras) by describing its elements by matrices and the algebraic operations in terms
of matrix addition and matrix multiplication, reducing problems of abstract algebra to
problems in linear algebra. Representation theory generalizes Fourier analysis via
harmonic analysis. The modern development of Fourier analysis during XXth century
has explored the generalization of Fourier and Fourier-Plancherel formula for non-
commutative harmonic analysis, applied to locally compact non-Abelian groups. This
has been solved by geometric approaches based on “orbits methods” (Fourier-
Plancherel formula for G is given by coadjoint representation of G in dual vector space
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of its Lie algebra) with many contributors (Dixmier, Kirillov, Bernat, Arnold, Berezin,
Kostant, Souriau, Duflo, Guichardet, Torasso, Vergne, Paradan, etc.).

For classical commutative harmonic analysis, we consider the following groups:

G ¼ Tn ¼ R
n=Zn for Fourier series, G ¼ R

n for Fourier Transform

G group character (linked to eikxÞ : v : G! U with U ¼ z 2 C= zj j ¼ 1f g
Ĝ ¼ v=v1:v2ðgÞ ¼ v1ðgÞv2ðgÞf g and Fourier transform is given by:

u : G! C

g 7!u gð Þ ¼ R
Ĝ

ûðvÞvðgÞ�1dv and
û : Ĝ! C

v 7! û vð Þ ¼ R
G
uðgÞvðgÞdg ð44Þ

For non-commutative harmonic analysis, Group unitary irreductible representation
is U : G! U Hð Þ with H Hilbert space and character by vUðgÞ ¼ trUg. Fourier
transform for non-commutative group is Uu ¼

R
G
uðgÞUgdg with character vUðgÞ ¼

trUu. If we describe group element with exponential map Uw ¼
R
g

wðXÞUexpðXÞdX, we

have:

trUw ¼ dim s:lG:f w:j�1
^� �

w:j�1
^

: g! g�; Four: Transf:

with

lG:f : Liouville meas: on O ¼ G:f ; f 2 g�

lG:f w:j�1
^� �

: Integral of w:j�1
^

wrt lG:f

8><
>:

ð45Þ

where

j Xð Þ ¼ det s adXð Þð Þ1=2 with sðxÞ ¼
X1
n¼0

1
ð2nþ 1Þ!

x
2

� �2n
¼ sh

x
2

� �. x
2

� �
ð46Þ

Kirillov Character formula is:

vU expðXÞð Þ ¼ trUexpðXÞ ¼ j Xð Þ�1
Z
O

ei f ;Xh idlOðf Þ ð47Þ

Z
O

ei f ;Xh idlOðf Þ ¼ jðXÞtrUexpðXÞ with j Xð Þ ¼ det
eadX=2 � e�adX=2

adX=2

� �� �1=2

ð48Þ

We will use Kirillov representation theory and his character formula [10–19] to
compute Souriau covariant Gibbs density in the unit Poincaré disk. For any Lie group
G, a coadjoint orbit O 	 g� has a canonical symplectic form xO given by KKS 2-form.
As seen, if G is finite dimensional, the corresponding volume element defines a
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G-invariant measure supported on O, which can be interpreted as a tempered distri-
bution. The Fourier transform (where d is the half of the dimension of the orbit O):

=ðxÞ ¼
Z

O	g�
e�i x;kh i 1

d!
dxOd with k 2 g� and x 2 g ð49Þ

is Ad G-invariant. When O 	 g� is an integral coadjoint orbit, Kirillov formula, given
previously, expresses Fourier transform =ðxÞ by Kirillov character vO:

=ðxÞ ¼ jðxÞvO exð Þ where jðxÞ ¼ det1=2
sinh ad x=2ð Þð Þ

ad x=2ð Þ
� �

ð50Þ

vO is, as defined previously, the “Kirillov character” of a unitary representation
associated to the orbit. We will consider the universal covering of PSUð1; 1Þ, the Lie
algebra is:

g� ¼ suð1; 1Þ� ¼ iE p�

p �iE
� �

=E 2 R; p 2 C

 �
ð51Þ

As observed in [8], the Ad-invariant form m2 ¼ E2 � pj j2 allows to identify the
following operator Ad and Ad�, m could be considered analogously as rest mass, E as
energy, and p ¼ p1þ ip2 as the momentum vector. The coadjoint orbits are the rest
mass shells. Let D ¼ w 2 C= wj j\1f g Poincaré unit disk, for any m[ 0, there is a
corresponding action of the universal covering of PSUð1; 1Þ on jm=2 (with j the
holomorphic cotangent bundle of unit disk), with the invariant symplectic form

x ¼ curv jð Þ ¼ �i@@� log dwj j2¼ 2i
dw ^ dw�

1� wj j2
� �2 ð52Þ

The moment map is an equivariant isomorphism (Oþm coadjoint orbit for m2 [ 0
and E[ 0):

J : w 2 D; curv jm=2
� �� �

7! p;Eð Þ ¼ m

1� wj j2
� � 2iw; 1þ wj j2

� �
2 Oþm ð53Þ

In case m[ 1, the Kirillov character formula is given by:

vm exp
x :
: �x

� �� �� �
¼ jðxÞ�1

Z
Oþm�1

e
�i x :

: �x
� �

;
iE p�

p �iE
� �� �

xOþm�1
ð54Þ
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where

jðxÞ ¼ det1=2 sinh ad
x=2

�x=2
� �� �

=ad
x=2

�x=2
� �� �

¼ sinhðxÞ
x

ð55Þ

which reduces to:

emx

1� e2x
jðxÞ ¼

Z
D

e
ðm�1Þx1þ wj j2

1� wj j2
1

1� wj j2
� �2 dw ^ dw� ð56Þ

Finally, the Souriau-Gibbs density is given by:

pGibbs wð Þ ¼ e

�
ix �g
�g� �ix

� �
;

im 1þ wj j2
1� wj j2 2m w

1� wj j2

2m w
1� wj j2 �im

1þ wj j2
1� wj j2

0
B@

1
CA

* +

jðxÞvm e

x ig

ig� �x

� �0
BB@

1
CCA

¼ e
2m x1þ wj j2

1� wj j2 þ
w gþ g�ð Þ
1� wj j2

� �

jðxÞvm e

x ig

ig� �x

� �0
BB@

1
CCA

ð57Þ

5 Extension from Poincaré to Siegel Homogeneous Domains

V. Bargmann has proposed the covering of the general symplectic group Sp 2N;Rð Þ:

Sp 2N;Rð Þ ¼ g ¼ A B
C D

� �
=gJ2Ng

T ¼ J2N ; J
T
2N ¼ �J2N ; J2N ¼

0 IN
�IN 0

� � �
ð58Þ

ABT ¼ BAT ;ACT ¼ CAT ;BDT ¼ DBT ;CDT ¼ DCT ;ADT � BCT ¼ IN ð59Þ

Bargmann has observed that although Sp 2N;Rð Þ is not isomorphic to any pseudo-
unitary group, its inclusion in U N;Nð Þ will display the connectivity properties through
its unitary U Nð Þ maximal compact subgroup, generalizing the role of U 1ð Þ ¼ SOð2Þ in
Sp 2;Rð Þ: WN ¼ W 
 IN ; 2N � 2N matrix
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where

W ¼ W1 ¼ 1ffiffiffi
2
p x�1p=4 x�1p=4

�xp=4 xp=4

 !
with x ¼ eip=4 ¼ 1ffiffiffi

2
p 1þ ið Þ ð60Þ

u gð Þ ¼ W�1N gWN ¼ 1
2

AþD½ � � i B� C½ � A� D½ � þ i BþC½ �
A� D½ � � i BþC½ � AþD½ � þ i B� C½ �

 !
¼ a b

b� a�

 !

ð61Þ

with

aaþ � bbþ ¼ IN ; a
þ a� bTb� ¼ IN and abT � baT ¼ 0; aTb� � bþ a ¼ 0 ð62Þ

The symplecticity property of g becomes:

uM2Nu
þ ¼ M2N ;M2N ¼ iW�1N J2NWN ¼ IN 0

0 �IN

� �
ð63Þ

A B

C D

 !
¼ gðuÞ ¼ WNuW

�1
N ¼

Re aþ bð Þ �Im a� bð Þ
Im aþ bð Þ Re a� bð Þ

 !
ð64Þ
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Abstract. It is well-known that irreversible MCMC algorithms con-
verge faster to their stationary distributions than reversible ones. Using
the special geometric structure of Lie groups G and dissipation fields
compatible with the symplectic structure, we construct an irreversible
HMC-like MCMC algorithm on G, where we first update the momen-
tum by solving an OU process on the corresponding Lie algebra g, and
then approximate the Hamiltonian system on G × g with a reversible
symplectic integrator followed by a Metropolis-Hastings correction step.
In particular, when the OU process is simulated over sufficiently long
times, we recover HMC as a special case. We illustrate this algorithm
numerically using the example G = SO(3).

Keywords: Hamiltonian Monte Carlo · MCMC ·
Irreversible diffusions · Lie Groups · Geometric mechanics ·
Langevin dynamics · Sampling

1 Introduction

In this work, we construct an irreversible MCMC algorithm on Lie groups, which
generalises the standard Hamiltonian Monte Carlo (HMC) algorithm on R

n. The
HMC method [13] generates samples from a probability density (with respect to
an appropriate reference measure) known up to a constant factor by generating
proposals using Hamiltonian mechanics, which is approximated by a reversible
symplectic numerical integrator and followed by a Metropolis-Hastings step to
correct for the bias introduced during the numerical approximations. The result-
ing time-homogeneous Markov chain is thus reversible, and allow distant pro-
posals to be accepted with high probability, which decreases the correlations
between samples (for a basic reference on HMC see [18], and for a geometric
description see [4,6]). However, it is well-known that ergodic irreversible diffu-
sions converge faster to their target distributions [14,21], and several irreversible
MCMC algorithms based on Langevin dynamics have been proposed [19,20].

From a mechanical point of view, diffusions on Lie groups are important
since they form the configuration space of many interesting systems, such as the
free rigid body. For example in [9] Euler-Poincaré reduction of group invariant
c© Springer Nature Switzerland AG 2019
F. Nielsen and F. Barbaresco (Eds.): GSI 2019, LNCS 11712, pp. 171–179, 2019.
https://doi.org/10.1007/978-3-030-26980-7_18
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symplectic diffusions on Lie groups are considered in view of deriving dissipative
equations from a variational principle, and in [1] Langevin systems on coadjoint
orbits are constructed by adding noise and dissipation to Hamiltonian systems
on Lie groups. The phase transitions of this system were analysed using a sam-
pling method [2]. In lattice gauge theory one typically uses the HMC algorithm
for semi-simple compact Lie groups which was originally presented in [15] and
extended to arbitrary Lie groups in [3], see also [10,11,16]. In [5], it was shown
how to construct HMC on homogeneous manifolds using symplectic reduction,
which includes sampling on Lie groups as a special case.

To construct an irreversible algorithm on Lie groups, we first extend Langevin
dynamics to general symplectic manifolds M based on Bismut’s symplectic dif-
fusion process [7]. Our generalised Langevin dynamics with multiplicative noise
and nonlinear dissipation has the Gibbs measure as the invariant measure, which
allows us to design MCMC algorithms that sample from a Lie group G when we
take M = T ∗G. In our Langevin system the irreversible component is deter-
mined by Hamiltonian vector fields which are compatible with the symplectic
structure, thus avoiding the appearance of divergence terms associated to the
volume distortion. We are then free to choose the noise-generating Hamiltonians
to best suit the target distribution. Choosing Hamiltonians that only depend
on position allows us to proceed with a Strang splitting of the dynamics into a
position-dependent OU process in the fibres which can be solved exactly, and a
Hamiltonian part which is approximated using a leapfrog scheme, followed by a
Metropolis-Hastings acceptance/rejection step in a similar fashion to [8,19,20].
Ideally one wants to choose these Hamiltonians to achieve the fastest convergence
to stationarity.

On a general manifold, it would be necessary to introduce local coordinates
in order to solve the OU process on the fibres, making it difficult to implement.
However, since our base manifold is a Lie group, the Maurer-Cartan form defines
an isomorphism between the cotangent bundle T ∗G and the trivial bundle G×g∗,
which, given an inner-product on g, may further be identified with G × g. As a
result, one may pull back the OU process on T ∗

g G to an OU process on g for
any g ∈ G, thus avoiding the problem of having to choose appropriate charts.
Hence on Lie groups, we obtain a practical irreversible MCMC algorithm which
generalises the R

n-version of the irreversible algorithm considered in [19,20].
Finally, we simulate this algorithm in the special case G = SO(3) and per-

form a Maximum Mean Discrepancy (MMD) test to show that on average, the
irreversible algorithm converges faster to the stationary measure than the cor-
responding reversible HMC on SO(3).

2 Diffusions on Symplectic Manifolds

We consider diffusion processes on symplectic manifolds (M, ω), where we have
a natural volume form ωn, and define the canonical Poisson bracket {g, f} :=
ω(Xf ,Xg) = Xgf , where Xg is the Hamiltonian vector field associated to the
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Hamiltonian g : M → R, i.e. dg = ιXg
ω. Given arbitrary functions H and Hi

for i = 1, . . . , m on M, we consider the SDE

dZt =
(
XH(Zt) − β

2

m∑
i=1

{Hi,H}XHi
(Zt)

)
dt +

m∑
i=1

XHi
(Zt) ◦ dW i

t , (1)

which has the generator, or forward Kolmogorov operator

Lf = −{f,H} − β

2

m∑
i=1

{H,Hi}{f,Hi} +
1
2

m∑
i=1

{{f,Hi},Hi} . (2)

To show that the Gibbs measure is an invariant measure for (1), we will need
the following lemma:

Lemma 1. For a symplectic manifold (M, ω) and two functions f, g ∈ C∞(M)
such that either ∂M = ∅ or g|∂M = 0, we have the following identity

∫

M
{f, g}ωn = 0 .

For the proof, see [12], Sect. 4.3. Hence (1) enables us to build MCMC algorithms
on any symplectic manifold, and in particular the cotangent bundle of Lie groups,
that converge to the Gibbs measure:

Theorem 1. Given a symplectic manifold (M, ω) without boundary, equation
(1) on M has the Gibbs measure

P∞(z) = p∞ωn :=
1
Z

e−βH(z)ωn, Z =
∫

M
e−βH(z)ωn ,

as its stationary measure for any choice of Hi : M → R where i = 1, . . . ,m.

Proof. Using the Leibniz rule {fg, h} = f{g, h} + g{f, h}, we have

g{f,Hi}{H,Hi} = {gf,Hi}{H,Hi} − f{g,Hi}{H,Hi}
= · · · = {gf{H,Hi},Hi} − f{g{H,Hi},Hi} ,

and similarly

g{{f,Hi},Hi} = {g{f,Hi},Hi} − {f{g,Hi},Hi} + f{{g,Hi},Hi} .

Hence one can compute the L2(M, ωn)-adjoint of the operator L as follows
∫

M
g(Lf)ωn =

∫
M

g

(
−{f, H} − β

2

m∑
i=1

{f, Hi}{H, Hi}+
1

2

m∑
i=1

{{f, Hi}, Hi}
)

ωn

=

∫
M

(
−{fg, H} − β

2

m∑
i=1

{fg{H, Hi}, Hi}+
1

2

m∑
i=1

({g{f, Hi}, Hi} − {f{g, Hi}, Hi})
)

ωn

+

∫
M

f

(
{g, H}+

β

2

m∑
i=1

{g{H, Hi}, Hi}+
1

2

m∑
i=1

{{g, Hi}, Hi}
)

ωn

=

∫
M

f

(
{g, H}+

β

2

m∑
i=1

{g{H, Hi}, Hi}+
1

2

m∑
i=1

{{g, Hi}, Hi}
)

ωn =

∫
M

f(L∗g)ωn ,
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where we have used Lemma 1 to integrate the Poisson brackets to 0. Hence, we
obtain the Fokker-Planck operator

L∗g = {g,H} +
β

2

m∑
i=1

{g{H,Hi},Hi} +
1
2

m∑
i=1

{{g,Hi},Hi} .

Now, by the derivation property of the Poisson bracket, {f◦g, h} = f ′◦g{g, h}
and noting that p′

∞(H) = −Z−1βe−βH = −βp∞(H), one can check that

L∗p∞ = p′
∞(H){H, H}+

β

2

m∑
i=1

{p∞(H){H, Hi}, Hi} − β

2

m∑
i=1

{p∞(H){H, Hi}, Hi} = 0 .

Therefore P∞(z) = p∞(z)ωn is indeed an invariant measure for (1).

If M = T ∗Q is the cotangent bundle of a manifold without boundary Q, we
define the marginal measure P

1
∞ on Q by

∫

A

P
1
∞ =

∫

T ∗A

ι∗P∞ , (3)

for any measurable set A ⊂ Q, where ι : T ∗A → T ∗Q is the inclusion map. In
addition, if (Q, γ) is a Riemannian manifold, we can consider the Hamiltonian
function H(q, p) = 1

2γq(p, p)+V (q), for (q, p) ∈ T ∗Q, and the marginal invariant
measure P

1
∞(dq) of the process (1) is simply

P
1
∞(dq) =

1
Z1

e−V (q)
√

|g|dq, Z1 =
∫

Q
e−V (q)

√
|g|dq ,

where
√|g|dq is the Riemannian volume form.

The MCMC algorithm which we will derive in Sect. 3 is based on a Strang
splitting of the dynamics (1) into a Hamiltonian part and a Langevin part.
Hereafter, we identify T ∗Q with TQ through the metric and just consider the
dynamics on TQ instead of T ∗Q.

3 Irreversible Langevin MCMC on Lie Groups

Consider a n dimensional Lie group G and let ei, θ
i, i = 1, . . . , n be an orthonor-

mal basis of left-invariant vector fields and dual one-forms respectively. We con-
sider H = V ◦ π + T : TG → R, where T is the kinetic energy associated to a
bi-invariant metric on G and V ∝ log χ : G → R is the potential energy (with
the projection π : TG → G), where χ is the distribution we want to sample from
on G. We let vi : TG → R be the fibre coordinate functions with respect to the
left-invariant vector fields, vi(g, ug) := θi

g(ug).
Vector fields tangent to TG (i.e., elements of Γ(TTG)) can be expanded in

terms of left-invariant vector fields ei and the fibre-coordinate vector fields ∂vi ,
(i.e., Γ(TTG) ∼= Γ(TG ⊕Tg)). We consider noise Hamiltonians that depend only
on position, Hi = Ui ◦ π where Ui : G → R, so the corresponding Hamiltonian
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vector fields can be written as XHi
= −ej(Ui)∂vj , (see [3]). Hence the stochastic

process (1) on TG can be split up into a Langevin part

dZt =
β

2

m∑
i=1

XH(Hi)XHi
(Zt)dt +

m∑
i=1

XHi
(Zt) ◦ dW i

t ,

= −β

2

m∑
i=1

vkek(Ui)ej(Ui)∂vj (Zt)dt −
m∑

i=1

ej(Ui)∂vj (Zt) ◦ dW i
t . (4)

and a Hamiltonian part

dZt

dt
= XH(Zt) . (5)

Note the geodesics are given by the one-parameter subgroups, with Hamil-
tonian vector field XT = vkek. Since XHi

only has components in the fibre
direction ∂vi (i.e., it has no ei components along G) the diffusion starting at any
point (g, v) ∈ TG remains in TgG, i.e., with the same base point g. When G = R

n

and we use the standard kinetic energy T = 1
2‖v‖2

Rn , then vector fields become
gradients, i.e. ej = ∂qj , and equation (4) becomes the space dependent Langevin
equation for (q, v) ∈ TR

n,

q̇ = 0, dvt = −β

2
∇qUi(q)∇qUi(q)T vtdt − ∇qUi(q) ◦ dW i

t . (6)

This equation has been considered for instance in [17] to construct MCMC algo-
rithm with space dependent noise.

Now let ξi := ei(1) be a basis of the Lie algebra g, where 1 is the identity.
Then ei(g) = ∂1Lgξ and we can identify TG with G × g through the relation
(g, viei(g)) ∼ (g, viξi). In other words, we may now think of vi as the Lie algebra
coordinate functions vi : G ×g → R with vi(g, u) = θi

1(u), and since g is a vector
space, we can identify ∂vi ∼ ξi and write

XHi
(g, v) = −ej |g(Ui)ξj =: σji(g)ξj . (7)

for i = 1, . . . , m and j = 1, . . . , n. For matrix Lie groups, this becomes

XHi
(g, v) = −Tr

(∇UT
i gξj

)
ξj = σji(g)ξj , (8)

where (∇Ui)ab := ∂xab
Ui, where xab are the matrix coordinates of g ∈ G. The

Langevin equation (4) can then be written as

ġ = 0, dvt = −β

2
(σ(g)σ(g)T )jkvk

t ξjdt + σji(g)ξjdW i
t , (9)

and if we identify g ∼ R
n, viξi ∼ v ∈ R

n, we get a standard OU process on R
n

dvt = −β

2
σσTvtdt + σdWt , (10)
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for the vector-valued Wiener process Wt = (W 1
t , . . . ,Wm

t ) ∈ R
m. Note that

the noise term can be interpreted as an Itô integral since the diffusion coeffi-
cient σ does not depend on v. We can solve this Langevin equation explicitly
if the matrix D = σσT is invertible. This is the case if the vectors ∇Ui form
an orthonormal basis of R

n, or more generally if they satisfy the Hörmander
condition. The explicit solution is then given by

vt+h = e− β
2 Dhvt + σ

∫ t+h

t

e− β
2 D(t+h−s)dWs , (11)

which has the transition probability

p(v0, v) =
1

(2π)n/2|detΣh| exp
(

−1
2

∥∥∥v − e− β
2 Dhv0

∥∥∥
2

Σ−1
h

)
,

where Σh =
1
β

(
Id − e−βDh

)
.

(12)

3.1 MCMC Algorithm on Lie Groups

From the Langevin system considered in the previous section, we can construct
the following MCMC algorithm to sample from the distribution χ := e− β

2 V on
G. Starting from (g0, v0) ∈ TG, we iterate the following

1. Solve equation (9) exactly until time h by sampling

v∗ � N
(
e− β

2 Dhv0,Σh

)
, (13)

to obtain (ḡ0, v̄0) = (g0, v
∗);

2. Approximate the Hamiltonian system (5) using N Leapfrog trajectories with
step size δ > 0. Starting at (ḡ0, v̄0) = (g0, v

∗):

For k = 0, . . . , N − 1:1

v̄k+ 1
2

= v̄k − δ

2
Tr

(
∂xV T ḡkξi

)
ξi

ḡk+1 = ḡk exp
(
δ v̄k+ 1

2

)

v̄k+1 = v̄k+ 1
2

− δ

2
Tr

(
∂xV T ḡk+1ξi

)
ξi

to obtain (ḡN , v̄N ). The time step δ and number of steps N are to be tuned
appropriately by the users.

3. Accept or reject the proposal by a Metropolis-Hastings step. We accept the
proposal (ḡN , v̄N ) with probability

α = min {1, exp (−H(ḡN , v̄N ) + H(ḡ0, v̄0))} ,

and set (g1, v1) = (ḡN , v̄N ). On the other hand, if the proposal is rejected, we
set (g1, v1) = (ḡ0,−v̄0).

1 For a non-matrix group, simply replace Tr
(
∂xV T ḡkξi

)
with ei|g(V ).
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Notice also that in the limit h → ∞, this algorithm becomes the standard
HMC algorithm, which is reversible, but for finite h, the algorithm is irreversible
(see [19] for a detailed discussion).

4 Example on SO(3)

As an example we will pick the rotation group G = SO(3), where the Lie algebra
so(3) consists of 3× 3 anti-symmetric matrices so that the kinetic energy on the
Lie algebra is T (v) = 1

2Tr(vT v), for v ∈ so(3). The potentials on SO(3) will be
defined by functions V,Ui : R

3×3 → R on matrices, which we choose to be of the
form V (g) = eαTr(g), and isotropic noise with

Ui(g) = εTr(e−ξig) for span(ξi) = so(3) . (14)

We then obtain samples gt on SO(3), which we can project onto the sphere by
simply letting the group act on a vector z = (0, 0, 1), to get xt = gtz, see panel
(a) of Fig. 1. From these samples gt, we can also estimate the convergence rate
of the MCMC algorithm by computing the maximum mean discrepancy (MMD)
between the set of first N samples and the whole sequence, using the values
on the diagonal of the matrices gt. We see that in Fig. 1, small values for h
give MCMC algorithms with a faster convergence rate than the HMC limit, i.e.,
h → ∞. This is a direct consequence from the irreversibility of the algorithm,
as explained in [14,21]. Even if a faster convergence is desirable, one has to
ensure that the correct distribution is sampled, and if h is taken too small, the
algorithm will be close to pure Hamiltonian dynamics, with additional reversal
steps v → −v when the proposed state is rejected. We observe this effect already
for h = 0.01 where the convergence is as fast as h = 0.1 for the first steps of the
chain, but then later slows down, as the distribution is not sampled correctly.

(a) MCMC samples (b) Convergence rate (c) Autocorrelations

Fig. 1. This figure illustrates the irreversible MCMC algorithm on Lie group with
G = SO(3). For each run, we sampled 5000 samples, shown in panel (a), along with the
first one it red and the next 50 in green. We ran several chains with several parameters
h, corresponding to the integration time of the Langevin dynamics. For large h, the
MCMC algorithm converges to the HMC algorithm, also displayed in black. Each line in
panel (b) and (c) are averages over 20 chains with the same parameters. For the leapfrog
integrator we use 5 timesteps with a total time δ = 0.5. The MMD computation on G
has been run with Gaussian kernel of variance σ = 1.
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Abstract. We investigate the possibility of predicting the bending
moment of slender structures based on a limited number of deflection
measurements. These predictions can help to estimate the wear and tear
of the structures. We compare linear regression and a recurrent neu-
ral network on numerically simulated Euler–Bernoulli beam and drilling
riser.

Keywords: Euler–Bernoulli beam · Drilling riser ·
Slender structures · Material fatigue · Machine learning

1 Introduction

Slender flexible structures like beams, pipes, and drilling risers are subjected
to repeated loads due to the environment, thus the material fatigue should be
assessed to guarantee performance and safety. Frequently, data which describe
the state of the structure are scarce because the possibility to install sensors
is limited. Moreover, the measurements are often noisy as it is not possible to
ensure that the sensors stay well-oriented with respect to the structure. For these
reasons, the problem of learning the wear from a large amount of data from few
sensors attracted considerable attention [1,8,9,13].

We consider two applications: estimating the maximal bending moment of
an Euler–Bernoulli beam and the fatigue of a marine drilling riser given a small
number of sensors.

2 Slender Structures

2.1 Euler–Bernoulli Beam

The first structure we consider is a one-dimensional Euler–Bernoulli beam which
has a unit length and a unit stiffness, is clamped at the ends, and is subjected
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to an external load:
d4w(x)

dx4
= q(x)

w(0) = w(1) = 0,
w′(0) = w′(1) = 0.

(1)

Here w : (0, 1) → R is the transverse deflection, and q : (0, 1) → R is the load
applied normally to the beam. As a measure of tear and wear we use the bending
moment M , which is proportional to the second derivative of the deflection:

M = − d2w(x)
dx2

. (2)

2.2 Drilling Riser

Our second, more advanced model is the drilling riser. It connects an offshore
oil platform to the wellhead which is on the seabed and, therefore, allows for
little movement. One of the reasons for the fatigue at the connection point is the
riser’s oscillations due to waves and currents. We aim to predict bending at the
wellhead to assess the remaining lifetime of the riser based on its stress cycles.

Riser Equations. The set of equations governing a one-dimensional riser arise
from the conservation of energy [6]. Assuming the oil rig to be directly above
the wellhead, we get the following partial differential equation [6,14]:

EI
∂4u(x, t)

∂x4
− T

∂2u(x, t)
∂x2

+ ρ
∂2u(x, t)

∂t2
+ c

∂u(x, t)
∂t

= f(x, t), (3)

where EI is the bending stiffness, T is the tension, ρ is the linear density of the
riser, and c is a damping constant, and f(x, t) represents external forces acting
on the riser. The riser is assumed to hang freely from the motionless oil rig
positioned at x = 0. At the seabed the riser is clamped to the wellhead, hence
the boundary conditions:

u(0, t) = 0, u(L, t) = 0
u′′(0, t) = 0, u′(L, t) = 0

(4)

where L is the length of the riser.

External Forces. We assume that the only forces acting on the riser come from
ocean currents and waves. This is a simplifying assumption since vortex-induced
vibrations (VIV) also occur in a real situation. VIV can be included in a three-
dimensional model with a significant increase in simulation complexity. We use
Morison’s equation [11] that describes the forces acting on a cylinder submerged
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in water. Then, the resulting force f on a body in an unsteady viscous flow is
the sum of a drag term fD and an inertial term fI [14]:

fD =
1
2
ρwCDR(v − u̇)|v − u̇|, (5)

fI = ρwCIAev̇ − ρw(CI − 1)Aeü, (6)

where ρw is the density of water, CD is the drag coefficient, R is the radius
of the riser, v is the flow speed, and u̇ is the speed of the riser in the direction
orthogonal to its axis; CI is the inertia coefficient, Ae is the external cross-section
area, and ü is it the derivative of the orthogonal velocity component of the riser.

In Eq. (5), we consider v that obey Airy theory, which describes gravity-
dominated surface waves [11,14]. It gives a sufficiently good approximation for
waves in a homogeneous fluid over a uniform seabed. In our model, the depth
is large enough to neglect the seabed variation after scaling. The fluid velocity
v(x, t) is given as

v(x, t) =
H

2
cosh(k(L − x))

sinh(kL)
ω cos(ωt) (7)

with k = 2π
λ , ω = 2π

Tλ
, where H is the wave amplitude, λ is the wave length, Tλ

is the wave period, and L is the length of the riser [14, p. 266].
Our riser has the following parameters: EI = 3.186 × 105 Nm2, T = 7.554 ×

106 N, c = 2, ρ = 1200 kg/m3; ρw = 1000 kg/m3, CD = 2, CI = 2, Ae =
π/100 m2, R = 1/10m; L = 100m. To calculate the forcing term, we use a
combination of waves with amplitudes 4.1 m, 8.5 m , and 14.8 m , which are
typical for the Norwegian continental shelf [15].

3 Measurements Simulation

Machine learning deals with large amounts of data. As we do not possess real-
world measurements of our structures, we use the mathematical models described
above to generate training and test sets. The approach is similar for both struc-
tures: given an external force, we solve numerically the corresponding equations
using a finite element method. Having obtained a solution, we “measure” dis-
placements at certain points, and in this way we get training examples. Then, we
calculate the bending moments to obtain corresponding targets for prediction.

3.1 Finite Element Method Solution

Numerical solutions are obtained with the finite elements method with Hermite
polynomials. To avoid the interference between discretization and predictions,
a sufficiently large number of finite elements is used.
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Beam. In case of our first structure, the discretization is rather simple. Four
Hermite interpolation polynomials ensure C1-continuity. As the basis functions
are 3rd-order polynomials, the second derivative is linear and attains maximum at
an endpoint. Since the solution is only C1, the second derivative is not necessarily
continuous at the nodes. Consequently, it is evaluated twice on each element, and
the largest absolute value is used as the target bending moment M in the training
set. On the spatial interval [0, 1] we use 21 FEs.

Riser. Riser (3) to (5) are discretized in the spatial domain using a finite element
method. Compared to the beam, here we use 5th-order Hermite elements because
it makes the boundary conditions easier to implement and the second derivative
of the solution in the nodes is instantly available:

uh(x, t) =
N∑

j=0

uj(t)φ3j(x) + θj(t)φ3j+1(x) + cj(t)φ3j+2(x). (8)

where uj(t), θj(t) and cj(t) are the value, the inclination and the curvature in
xj , respectively. The function φ3j+k(x) for k = 0, 1, 2 takes the value 1 in either
its 0th, 1st or 2nd derivative and 0 in the remaining two. This gives three active
basis functions in the jth node hence the subscript 3j +k. For the riser of length
L = 100m we use 100 FEs.

Eventually, we get a system of non-linear ODEs:

Du(t) + Au(t) + Mpü(t) + Mcu̇(t) = F (t,u), u(0) = 0, u̇(0) = 0, (9)

where the ith element on the right-hand side of (9) is written as

Fi = ρw

∫ L

0

1
2
CDR

⎛

⎝v −
N∑

j=0

u̇jφj

⎞

⎠

∣∣∣∣∣∣
v −

N∑

j=0

u̇jφj

∣∣∣∣∣∣
+ CMAev̇φi dx.

Transforming the equation into a system of first order ODEs by setting u0 =
u and u1 = u̇ gives the following system

[
u̇0(t)
u̇1(t)

]
+

[
0 −I

Mp
−1(A + D) Mp

−1Mc

] [
u0(t)
u1(t)

]
=

[
0

Mp
−1F (t, u)

]

which may be written as

u̇(t) + Bu = F (t,u(t)), u(0) = 0. (10)

The problem is stiff, so we use the exponential Euler method [7] with a sufficiently
small time step 0.01 to solve it for t ∈ [0, 100].

3.2 Beam Dataset

For the beam, we use the following procedure. First, we draw n values xi from a
uniform distribution on the interval [0, 1] and explicitly add the beam endpoints.



184 E. Celledoni et al.

At these n+2 gridpoints a random load is applied: we get n+2 samples from the
standard normal distribution which represent magnitudes q(xi), i = 1, . . . , n+2.
The load q(x) on the all the beam is then taken as the linear interpolation these
points. In the experiments we have used n = 2.

Once we have the numerical solutions for w(x), we calculate the maximum
bending moment M . We consider two setups: putting one deflection sensor at
equidistant points on the riser, and putting two symmetrically around x = 0.5.

3.3 Riser Dataset

We aim to predict the bending moment (and, consequently, the fatigue) at the
wellhead. Similarly to the beam, we use one and two sensors.

For installation, maintenance, and reliability of the signals, it would be ideal
to have only one sensor on the top of the riser. However, it is reasonable to
expect that the top position is not the optimal one. We simulate measurements
with the sensor placed in 9 distinct points at the riser (10m between them) and
compare how predictions change.

In the second case, we also take into account the inclination of the riser
which is relatively easy to measure. From the engineering point of view, the
corresponding equipment is cheaper and easier to maintain because the sensor
is not submerged. One may expect that the additional information will improve
prediction accuracy.

After placing a sensor at a certain point, we construct datasets in the fol-
lowing way. The vector of displacement measurements for t ∈ [0, 100] is sliced
with a moving window of size w = 50 with stride equal to one, and each of
these subvectors is treated as a training example. Its corresponding target is the
bending moment at the final time of each sliced subinterval. That is, we predict
the bending using the w = 50 preceding measurements of the displacement.

The model is tested with two sets: the first one corresponds to waves with
smaller amplitudes and the second set contains waves with larger amplitudes.

4 Machine Learning Prediction

4.1 Linear Regression for the Beam

With the procedure described above, 5000 simulations have been performed with
different loads. Linear regression from Scikit-learn [12] is used to predict the
maximal bending moment M . The coefficient of determination r2, describing
the amount of the variance in the data explained by the model, is chosen to
asses the goodness of fit. Results for one and two symmetrically put sensors
are summarized in Table 1. Although two sensors give a slightly better result,
one sensor seems to be sufficient. Additional sensors do not improve prediction
yielding r2 = 0.948 (3 symmetric points) and r2 = 0.964 (6 symmetric points),
however, in these cases we note that points which are closer to the ends are given
more weight. One may conclude that linear regression represents well the linear
Euler–Bernoulli beam.
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4.2 Recurrent Neural Network for the Riser

Since the riser is described by a time-dependent non-linear equation, we expect
that a more advanced machine learning should have advantages over linear
regression. As the measurements form a time series, we use a recurrent neu-
ral network to capture the temporal dynamics [2,4].

We have chosen the antisymmetric RNN [3], in which forward propagation
through l layers is defined as

a(0) = Δtσ(V (0)x(0) + b(0))

a(k) = a(k−1) + Δtσ(W (k−1)a(k−1) + V (k)x(k) + b(k)) for k = 1, . . . , l

a(l+1) = g(W (l)a(l) + b(l+1)).

The vector a(k) contains the value of the nodes in the hidden layer, b(k) is a vector
of the biases, x(k) is the features being passed to the kth layer, V (k) and W (k) are
weight matrices. The functions σ(x) and (output) g(x) are activation functions
applied elementwise. The latter is forced to be antisymmetric to enhance the
accuracy and the training properties of the NN [3,5].

Results for one accelerometer are presented in Table 2. We observe that the
RNN has a higher accuracy when the sensor is far form the wellhead, where
the bending is expected to be the greatest, while regression provides nearly the
same results with the sensor close to the connection point. A similar difference
between two models can be observed when an inclination sensor is added to the
top of the riser (Table 3). We attribute the improvement in prediction to the
ability of RNNs to capture non-linear behaviour of time-dependent systems.

Table 1. Coefficient of determination with one and two deflection sensors on the beam

Position of 1st sensor 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

One sensor 0.956 0.948 0.982 0.931 0.967 0.986 0.975 0.946 0.983

Two sensors 0.968 0.968 0.965 0.969 0.969 0.971 0.973 0.966 0.971

Table 2. Coefficient of determination with a displacement sensor in different positions
on the riser

Distance from the top, m 10 20 30 40 50 60 70 80 90

Training set LR 0.208 0.292 0.366 0.44 0.565 0.734 0.816 0.887 0.977

RNN 0.819 0.845 0.872 0.911 0.953 0.980 0.993 0.997 0.998

Test set 1 LR 0.197 0.271 0.357 0.434 0.584 0.742 0.822 0.912 0.986

RNN 0.294 0.335 0.392 0.532 0.713 0.825 0.925 0.962 0.982

Test set 2 LR 0.32 0.416 0.494 0.566 0.709 0.802 0.89 0.957 0.995

RNN 0.627 0.656 0.726 0.739 0.883 0.954 0.987 0.995 0.995
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Table 3. Coefficient of determination with an inclination sensor on the top and a dis-
placement sensor at the riser

Distance from the top, m 10 20 30 40 50 60 70 80 90

Training set LR 0.351 0.414 0.481 0.544 0.605 0.761 0.819 0.889 0.977

RNN 0.912 0.950 0.959 0.969 0.980 0.988 0.992 0.997 0.998

Test set 1 LR 0.296 0.374 0.449 0.535 0.63 0.767 0.822 0.914 0.986

RNN 0.436 0.481 0.563 0.650 0.727 0.876 0.895 0.963 0.983

Test set 2 LR 0.208 0.300 0.424 0.554 0.754 0.822 0.891 0.958 0.995

RNN 0.601 0.713 0.800 0.854 0.932 0.974 0.979 0.995 0.995

5 Discussion and Conclusion

In this work, using simulated data, we have showed how two machine learning
models can be used for fatigue estimation from sensors: predicting the bending
moment of a clamped Euler–Bernoulli beam and of a drilling riser. We have
demonstrated how sensors position affect the accuracy: the closer a sensor is
to the point with high stress the better is the model prediction. We note that,
although in certain setups linear regression can make predictions for non-linear
dynamics, the more advanced RNN is more accurate. Therefore, we expect that
including stronger non-linearities into the model may require more advanced
machine learning techniques than the RNN used in this work.

We see the presented experiments as a starting point for work on various
slender structures and consider several possible directions for developing the
results. A more complex model of a riser (e.g. with moving rig and vortex-
induced vibrations) should be considered in the absence of real measurements.
Concerning the beam, it is more favourable to utilize a model formulated with Lie
group SO(3), like Kirchhoff–Love or Simo–Reissner (for a review see, e.g. [10]).
When real data is available from industry, it is necessary to validate the modelled
results versus the actual behaviour of the structures considered in this work.
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Abstract. In this paper we discuss the exponential map in the case of
nilpotent superalgebras. This provides global coordinates for nilpotent
analytic supergroups, which are useful in the applications.

Keywords: Supergeometry · Lie theory · Representation theory

1 Introduction

In supersymmetry, originally introduced by Berezin (see [3] and also [4,21]),
the concept of a Lie supergroup is central and it is indeed the search for extra
symmetries of physical systems that let to the discovery of supersymmetry and
later on of supergeometry (see [25,26] and the comprehensive treatments [5,16,
17,23,24]).

First, the notion of Lie superalgebra was introduced and only later on, there
was a formalization of the notion of Lie and algebraic supergroup. The expo-
nential map plays an eminent role and was originally introduced and studied by
Koszul in [22] and later on the theory was further developed in [18].

In the algebraic setting, the recipe presented in [13–15] to construct an alge-
braic supergroup starting from a Lie superalgebra, uses in a implicit way the
notion of exponential (see also [6,22]).

In this paper we want to restrict our attention to a special case, which is
however important in the applications, namely the case of a nilpotent analytic
subsupergroup of an analytic complex matrix supergroup. We shall employ freely
the language of Super Harish-Chandra pair (SCHP) introduced in [21] and devel-
oped by Koszul in his fundamental work [22].

In Sect. 2, we present the construction of the exponential, while in the sub-
sequent sections we give applications, important in the study of the Harish-
Chandra representations of supergroups (see [7,8,11,19]).
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2 The Exponential Map

Let g be a complex contragredient Lie superalgebra, g �= A(n, n), g1 �= 0; hence
g will be one in the following list of Lie superalgebras (see [20] Prop. 1.1):

A(m,n) with m �= n , B(m,n) , C(n) , D(m,n) , D(2, 1;α) , F (4), G(3) (1)

g0 is either semisimple or with a one-dimensional center. Hence, by the ordi-
nary theory, we know that the simply connected Lie group ˜G, g0 = Lie( ˜G) is a
matrix complex analytic and algebraic group. Then, the super Harish-Chandra
pair SHCP G = ( ˜G, g) (see [5] Ch. 11 and [12]) can be viewed either as a com-
plex analytic or algebraic supergroup, via the theory of SHCP that establishes
an equivalence of categories between the categories of analytic supergroups and
SHCP (see [6]). We shall take the first point of view and regard G as a com-
plex analytic matrix supergroup, but later on we will also view G as a pair
G = ( ˜G,OG), OG a sheaf of superalgebras, (see [6]).

Fix h a CSA of g and fix P a positive system. Let us define b± and n± the
Borel and nilpotent subsuperalgebras:

g = h ⊕
⊕

α∈Δ

gα, b± := h ⊕
∑

α∈±P

gα, n± :=
∑

α∈±P

gα. (2)

We will call B± Borel subsupergroup and N± unipotent subsupergroup, their
corresponding analytic Lie supergroups in G. In particular, B±and N± are
connected and are algebraic subsupergroups of G. Let A be the torus with
Lie(A) = h.

We want to define the exponential diffeomorphism: exp : n− −→ N− for the
analytic supergroup N−. To ease the notation we shall drop the index “−”.

Our purpose in the construction of the exponential diffeomorphism is to
obtain global coordinates on the nilpotent supergroup N ; such coordinates are
going to be essential for some important applications, (see [7,8]).

We start with some general remarks on the functor of the Λ-points, we invite
the reader to consult [1] and [2] for the complete details.

Let M be a supermanifold. Instead of looking at the whole functor of points
M(·) : (smflds) → (sets), it is sometimes convenient to restrict the functor of
points from the category (smflds) to the subcategory (spts) consisting of just
the superpoints: k0|n. These are the supermanifolds ({∗}, Λn), where Λn denotes
the Grassmann algebra in n generators over k. In this approach the set M(k0|n)
can be endowed with the structure of an ordinary manifold, but with some pecu-
liarities. The tangent space at a point is a Λn

0 -module and the change of coordi-
nates induced by a change of coordinates in M must have Λn

0 -linear differential.
These are called Λ0-manifolds and we denote with (Λ0mflds) the corresponding
category. The functor

(spts) → (Λ0mflds) k0|n �→ M(k0|n) (3)

is a full and faithful embedding (see [1] Sec. 4, Theorem 4.5). We notice that, if
V is a vector superspace, we have the identification V (k0|n) � (V ⊗ Λn)0 and
the previous result is known as the even rules principle (see also [10]).
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Proposition 1. 1. If G is a complex matrix supergroup as above, the Λ0-
manifold G(k0|n) is a group object in the category (Λ0mflds) and in particular
it is an analytic Lie group. Similarly g(k0|n) is an ordinary Lie algebra.

2. The ordinary exponential expk0|n : g(k0|n) → G(k0|n) is a morphism of Λ0

manifolds.

Proof. (1) is a simple check. As for (2), one can readily see that the differential
of this map is Λ0-linear and the correspondence g(k0|n) → G(k0|n) is functorial.

Since the functoriality property of exp in Proposition 1 (refer also to [1,2] for
a thorough treatment of Λ-points), we can immediately define the exponential
morphism for an analytic supergroup G.

Definition 1. Let G and g as above. We define the exponential map as the mor-
phism of analytic supermanifolds given on the Λ-points as the ordinary exponen-
tial as in Proposition 1 (2).

Proposition 2. Let N be a nilpotent supergroup as above. Then the exponential
morphism exp: n → N is a global superdiffeomorphism.

Proof. In case N is a unipotent Lie supergroup as in (2), each G(Λ) is also a
unipotent Lie group and, by a classical result, each expk0|n is a diffeomorphism.
Hence exp is a superdiffeomorphism.

3 The Nilpotent Subsupergroup N−

In this section we give some applications of the global coordinates we have built in
the previous section. Let Γ = N−AN+ denote the big cell ; it is the open analytic
subsupermanifold Γ = ( ˜N−AN+,OG|

˜N−AN+) of the analytic supergroup G =

( ˜G,OG). We need some preliminary propositions.

Proposition 3. N− is a section for Γ → Γ/B+, the left action of A reads:

A × Γ/B+ −→ Γ/B+, (h, nB+(A)) �→ hnh−1B+(A),

where n ∈ N±(T ), h ∈ A(T ), T ∈ (smflds)
C

((smflds)
C

denoting the category of
analytic supermanifolds).

Proof. Since the big cell Γ ⊂ G is right B+-invariant and open, and the canonical
projection p : G → G/B+ is a submersion, we can define the open subsuperman-
ifold of G/B+:

Γ/B+ := ( ˜Γ/B+,OG/B+ |
˜Γ/B+

)

We have a N− equivariant diffeomorphism N− −→ Γ/B+, n− �→ n−B+(T ),
n− ∈ N−(T ), T ∈ (smflds)

C

. In fact, by the ordinary theory we have a diffeo-
morphisms of the underlying differentiable manifolds and the differential at the
identity is an isomorphism: n− ∼= g/b+.
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Clearly p−1(Γ/B+) = Γ . We are going to construct a section s : Γ/B+ → Γ .
The local splitting γ : N− × B+ → Γ is an holomorphic morphism such that
γ∗OΓ/B+ = ON− ⊗ 1. Hence we have an isomorphism N− → Γ/B+ given by
the composition of the “canonical” embedding i : N− ↪→ N− × B+ with γ and
p (which is essentially the same as considering p ◦ γ |N−×{e}). Its inverse is the
required section.

Proposition 4. The (ordinary) torus A normalizes N±.

Proof. We give the proof for N+ = N . We want to prove that the conjugation

conj(a) : G → G conj(a) = �a−1 ◦ ra, a ∈ ˜A

stabilizes N . Since N is connected and the exponential map exp: n → N is
surjective it is enough to prove that (dconj(a))1(n) ⊆ n We know from the
infinitesimal theory that ad(h)(n) = n. Hence, we have

Ad(etX)Y = etadX(Y ) ∀X ∈ h, Y ∈ n

so that Ad(etX)n = n. Since the exponential map of an abelian connected Lie
group is surjective we have that Ad(A)n = n.

By the simply connectedness of ˜N , we get a map ˜conj(a) : ˜N → ˜N . It is easy
to check that the pair

Ad(a) : n → n ˜conj(a) : ˜N → ˜N

is a SHCP morphism: ( ˜conj(a),Ad(a)) : ( ˜N, n) −→ ( ˜G, g), so that, by the equiv-
alence of categories between analytic SHCP and analytic supergroups, we have
a morphism of super Lie groups N → G. Since its differential coincides with the
differential of conj(a) : N −→ G and the reduced maps are the same, the two
morphisms coincide, hence conj(a)N = N .

Let us fix a character χ : A −→ C

× of the ordinary torus, that we can trivially
extend to a character (still denoted by χ) of the supergroup B+. Define:

Lχ(Γ ) := {f ∈ OG(Γ ) | f(gb) = χ(b)−1f(g)}

We can geometrically view this superspace as the superspace of sections of the
line bundle uniquely associated with χ. This superspace is the key for the con-
struction of the infinite dimensional representations of real forms of the analytic
supergroup G (see [7,8] for more details). The actions that we are going to
describe are absolutely essential for the realization of such representations.

Since A acts on N− by conjugation (see Proposition 4), we have a global
action of A on Γ defined as:

a · (n−b+) = (an−a−1)b+, a ∈ ˜A, n− ∈ N−(T ), b+ ∈ B+(T ).
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Since A also acts on B+ by left translation, we can define the left action of A
on Γ as:

a · (n−b+) = (an−a−1)a · b+.

Both actions commute with right translations by B+ and hence define represen-
tations of A on Lχ(Γ )

i, � : A × Lχ(Γ ) → Lχ(Γ )

where:

ia(f)(n−b+) = f((a−1n−a)b+), �a(f)(n−b+) = f((a−1n−a)a−1b+) (4)

and a ∈ ˜A, n− ∈ N−(T ), b+ ∈ B+(T ), f ∈ Lχ(Γ ).
Let tα denote the global homogeneous exponential coordinates on N−

obtained by Proposition 2.

Lemma 1. Let the notation be as above. Then

1. �af = χ(a)(iaf)
2. iatα = χα(a)tα ∀a ∈ ˜A

where χα is the character of the maximal torus A obtained by exponentiating the
root α ∈ h∗.

Proof. (1) follows immediately from the definitions. For (2) let n = exp(
∑

β∈P

yβX−β) be an element in N−, then the result comes from the following formal
calculation in the exponential global coordinates:

tα(a−1na) = tα
(

exp(
∑

β∈P

yβAd(a)X−β)
)

= tα(exp(
∑

β∈P

yβχβ(a)X−β)

= χα(a)tα(n), a ∈ ˜A, yβ ∈ C

4 The Action of U(g) and G on Lχ(Γ )

Now we want to use the theory developed so far and extend the action of the
maximal torus A ⊂ G to an action of the whole group on Lχ(Γ ). We start
by defining the natural action of U(g) on the holomorphic functions on any
neighbourhood W of the identity of the supergroup G.

Definition 2. Let W ⊂ G be an open neighbourhood of the identity 1G in G.
There are two well defined actions of g, hence of U(g), on OG(W ), that read as
follows:

�(X)f = (−X ⊗ 1)μ∗(f), ∂(X)f = (1 ⊗ X)μ∗(f), X ∈ g
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The actions � and ∂ commute with each other. Moreover, if ˜U is open in
˜G/B+, then � is a well defined action on Lχ(˜U).

We now want to show that the natural action � of U(g) on Lχ(N−B+) pre-
serves the polynomial sections on ˜N−. For this we need some preliminary nota-
tion. Since g = n− ⊕ b+, if we fix bases of n− and b+, by the PBW (Poincaré
Birkhoff Witt) theorem any X ∈ U(g) can be written as

X =
∑

I,J

cIJ (X)BINI , BI ∈ U(b+),NI ∈ U(n−) (5)

Lemma 2. Let φ ∈ OG(N−B+). In the SHCP notation, φ is in Lχ(N−B+) if
and only if

φ(X)(nb) = χ̃(b)−1
∑

IJ

cIJ (b.X)λ(BI)φ(NJ )(n), X ∈ U(g), λ = dχ

where b.X is the adjoint action of b ∈ ˜B+ on U(g) and as usual BI denotes the
antipode of BI in the Hopf superalgebra U(g).

Proof. By the very definition we have φ ∈ Lχ(N−B+) if

1. r∗
bφ = χ̃(b)−1φ, b ∈ ˜B+

2. DL
Y (φ) = λ(Y )φ, λ|g0 = dχ̃.

where as usual χ̃ denotes the reduced morphism. The result comes with a cal-
culation.

Notice that once the lemma is established, if p is a polynomial in the global
coordinates of N−, we can define p∼ ∈ Lχ(N−B+) as:

p∼(X)(nb) = χ̃(b)−1
∑

IJ

cIJ (b.X)λ(B+
I)p(NJ )(n)

Vice-versa we can recover p from p∼ restricting to N−. In the language of SHCP
this amounts to two restrictions: we impose b = 1 and X ∈ U(n−). We shall
denote the set of such p∼ with P∼.

Proposition 5. The actions � of U(g) on Lχ(˜U), p−1(˜U) ⊂ Γ leave P∼ invari-
ant.

Proof. We need to show that, given Z ∈ U(g) and X ∈ U(n−), (DR
Zp∼|N−)(X)

is a polynomial section. We have (see [5] Sec. 7.4):

(DR
Zp∼)(X)(g) = (−1)|Z||p|[p∼((g−1.Z)X)](g)

Hence if n ∈ N−, we have:

(DR
Zp∼)(X)(n) = (−1)|Z||p|[p∼((n−1.Z)X)](n)

= (−1)|Z||p| ∑

IJ

cIJ ((n−1.Z)X)[λ(BI)p∼(NJ )](n)

where BI and NJ are obtained as in (5) applied to (n−1.Z)X. The last equality
is true by Lemma 2.
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Once this is established, we have the following result.

Theorem 1. There is a non-singular U(g) invariant pairing between P∼ and
the Verma module Vλ:

〈, 〉 : P∼ × U(g) −→ C, 〈f, u〉 := (−1)|u||f |(∂(u)f)(1G)

Proof. In order for 〈, 〉 to be a U(g) invariant pairing, we need to verify:

〈�(c)f, u〉 = 〈f, (−1)|f ||c|cT u〉, c, u ∈ U(g), f ∈ P∼

where (·)T denotes the antiautomorphism of U(g) induced by X �→ −X with
X ∈ g. This is just a check.

Now let gr be a real form of g and define the real supergroup Gr = (˜Gr, gr),
where ˜Gr is a real form of ˜G, Lie(˜Gr) = gr,0. Since gr + b+ = g as real super-
algebras (see [9], Iwasawa decomposition), we have that S := GrB

+ is an open
subsupermanifold of G.

Theorem 2. Assume Lχ(S) �= 0 modulo J the submodule generated by the odd
part. Then Lχ(S) contains an element ψ which is an analytic continuation of
1∼ and

�(U(g))ψ = P∼ ∼= π−λ

where π−λ the irreducible representation with lowest weight −λ. Furthermore
Lχ(S) carries a Gr representation defined as:

{

(g · f) = l∗g−1f g ∈ ˜Gr

X.f = DR
X

f X ∈ g
C

where, as usual, X is the antipode of X ∈ U(g).

Proof. Direct check.

The closure of �(U(g))ψ in Lχ(S), with a Fréchet superspace structure is a
Harish-Chandra representation, with �(U(g))ψ as its Kr finite part, where Kr is
the supergroup corresponding to the subalgebra kr in the Cartan decomposition
of gr (see [9]). The proof of these facts is non trivial, we invite the reader to see
[7,8].

Acknowledgements. We are indebted to Prof. F. Gavarini for remarks and sugges-
tions.
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Abstract. Dirac structures are geometric objects that generalize Pois-
son structures and presymplectic structures on manifolds. They naturally
appear in the formulation of constrained mechanical systems and play
an essential role in the understanding of the interrelations between sys-
tem elements in implicit dynamical systems. In this paper, we show how
nonequilibrium thermodynamic systems can be naturally understood in
the context of Dirac structures, by mainly focusing on the case of open
systems, i.e., thermodynamic systems exchanging heat and matter with
the exterior.

Keywords: Dirac structures · Open systems ·
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1 Introduction

Nonequilibrium thermodynamics is a phenomenological theory which aims to
identify and describe the relations among the observed macroscopic properties
of a physical system and to determine the macroscopic dynamics of this system
with the help of fundamental laws, see [15]. A novel Lagrangian variational app-
roach for nonequilibrium thermodynamic has been proposed by the authors [4,5]
for both finite dimensional (discrete) and infinite dimensional (continuum) sys-
tems. This variational formulation was extended to the case of open systems as in
[6]. The authors have also shown that, in the case of adiabatically closed systems,
the variational formulation leads to an associated geometric formulation in terms
of Dirac structures [7]. Recall that Dirac structures are geometric objects that
extend both Poisson structures and presymplectic structures on manifolds [2].
Such structures play an essential role in formulating constrained systems such
as electric circuits and nonholonomic mechanical systems (e.g., [16,17]). On the
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other hand, for equilibrium thermodynamics, the geometric formulations have
been mainly given by using contact geometry, see [1,8,9,11–13]. In this geomet-
ric setting, the thermodynamic properties are encoded by Legendre submanifolds
of the thermodynamic phase space. It was shown by [3] that a geometric formu-
lation of irreversible processes can be made by lifting port-Hamiltonian systems
to the thermodynamic phase space. The underlying geometric structure is again
given in the context of contact geometry.

In this paper, we show that the equations of evolutions for an open sys-
tem exchanging matter with the exterior can be geometrically formulated by
using Dirac structures. This geometric formulation is associated to the varia-
tional formulation given in [6]. To achieve this goal, we first recall below the
first and second laws as they apply to an open system. Then, we develop a
general Dirac formulation for a class of systems with time-dependent nonlinear
nonholonomic constraints. In particular, we introduce a time-dependent Dirac
structure on the covariant Pontryagin bundle over a thermodynamic configura-
tion manifold. Finally, we apply our Dirac formulation of systems with nonlinear
time-dependent constraints to the case of open thermodynamic systems and we
show that the system of evolution equations of the open system can be directly
formulated as a Dirac dynamical system.

2 A Fundamental Setting for Open Systems

2.1 The First Law for Open Thermodynamic Systems

The first law of thermodynamics, following [15], asserts that for every system
there exists an extensive state function, the energy, which satisfies

d

dt
E = P ext

W + P ext
H + P ext

M ,

where t denotes time, P ext
W is the power associated to the work done on the

system, P ext
H is the power associated to the transfer of heat into the system,

and P ext
M is the power associated to the transfer of matter into the system. In

particular, a system in which P ext
M �= 0 is called open. For such an open system,

matter can flow into or out of the system through several ports, a = 1, ..., A. We
suppose, for simplicity, that the system involves only one chemical species and
denote by N the number of moles of this species. In this case, the mole balance
equation is

d

dt
N =

A∑

a=1

Ja,

where Ja is the molar flow rate into the system through the a-th port, so that
Ja > 0 for flow into the system and Ja < 0 for flow out of the system.

As matter enters or leaves the system, it carries its internal, potential, and
kinetic energy. This energy flow rate at the a-th port is the product EaJa of the
energy per mole (or molar energy) Ea and the molar flow rate Ja at the a-th
port. In addition, as matter enters or leaves the system it also exerts work on
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the system that is associated with pushing the species into or out of the system.
The associated energy flow rate is given at the a-th port by paVaJa, where pa

and Va are the pressure and the molar volume of the substance flowing through
the a-th port. In this case, the power exchange due to the mass transfer is

P ext
M =

A∑

a=1

Ja(Ea + paVa).

A system is called adiabatically closed if P ext
H = P ext

M = 0.

2.2 The Second Law for Open Thermodynamic Systems

Following [15], the evolution part of the second law of thermodynamics asserts
that for every adiabatically closed system, there exists an extensive state func-
tion, the entropy, which satisfies

d

dt
S = I ≥ 0,

where I is the entropy production of the system. Let us deduce the expression
of the entropy production in an open system of one chemical component, with
constant volume and an internal energy given by U = U(S,N). The balance of
mole and the balance energy, i.e., the first law, are respectively given by

d

dt
N =

A∑

a=1

Ja,
d

dt
U =

A∑

a=1

Ja(Ua + paVa) =
A∑

a=1

JaHa,

where Ha = Ua + paVa is the molar enthalpy at the a-th port and where Ua, pa,
and Va are respectively the molar internal energy, the pressure and the molar
volume at the a-th port, see [10,14]. From these equations and the second law,
one obtains the equations for the rate of change of the entropy of the system as

d

dt
S = I +

A∑

a=1

SaJa,

where Sa is the molar entropy at the a-th port and I is the rate of internal
entropy production of the system given by

I =
1
T

A∑

a=1

[
Ja

S(T a − T ) + Ja(μa − μ)
]
,

where T = ∂U
∂S denotes the temperature and μ = ∂U

∂N the chemical potential.
The entropy flow rate is given by Ja

S := SaJa and we also have the relation
Ha = Ua + paVa = μa + T aSa. The thermodynamic quantities known at the
ports are usually the pressure and the temperature pa, T a, from which the other
thermodynamic quantities, such as μa = μa(pa, T a) or Sa = Sa(pa, T a) are
deduced from the state equations of the gas.
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3 Dirac Formulation of Time-Dependent Nonlinear
Nonholonomic Systems

3.1 Variational and Kinematic Time Dependent Constraints

In order to formulate an open thermodynamic system in the context of Dirac
structures, we first introduce two different constraints CV and CK which depend
explicitly on time t. For a thermodynamic configuration manifold Q which is the
space of the thermodynamic variables as well as the mechanical variables, we
define the extended configuration manifold as Y := R× Q � (t, x), which can be
seen as a trivial vector bundle Y = R × Q → R, (t, x) �→ t, over the space of
time R. Consider the vector bundle (R× TQ) ×Y TY → Y over Y , whose vector
fiber at y = (t, x) is given by TxQ × T(t,x)Y = TxQ × (R × TxQ). An element
in the fiber at (t, x) is denoted (v, δt, δx). In general, by definition a variational
constraint is a subset CV ⊂ (R × TQ) ×Y TY, such that CV (t, x, v), defined by
CV (t, x, v) := CV ∩ ({(t, x, v)} × T(t,x)Y

)
, is a vector subspace of T(t,x)Y , for all

(t, x, v) ∈ R×TQ. In general, a kinematic constraint is a submanifold CK ⊂ TY.
More concretely, given functions Ar : R × TQ → T ∗Q and Br : R × TQ → R,
r = 1, ...,m, the variational constraint CV is given by

CV =
{
(t, x, v, δt, δx) ∈ (R × TQ) ×Y TY |

Ar
i (t, x, v)δxi + Br(t, x, v)δt = 0, r = 1, ...,m

} (1)

and the associated kinematic constraint CK of thermodynamic type is

CK =
{
(t, x, ṫ, ẋ) ∈ TY | Ar

i (t, x, ẋ)ẋi + Br(t, x, ẋ)ṫ = 0, r = 1, ...,m
}
. (2)

We will see later how CV and CK are concretely given in thermodynamics.

3.2 Covariant Pontryagin Bundles and the Generalized Energy

Associated to the extended configuration manifold Y = R × Q for the time-
dependent system, we define the covariant Pontryagin bundle by

π(P,Y ) : P = (R × TQ) ×Y T ∗Y = (R × TQ) ×R×Q T ∗(R × Q) → Y = R × Q.

An element in the fiber at (t, x) is denoted (v, p, p). Given the Lagrangian L :
R × TQ → R, the covariant generalized energy is defined on P as

E : P → R, E(t, x, v, p, p) = p + 〈p, v〉 − L(t, x, v). (3)

3.3 Dirac Structures on the Covariant Pontryagin Bundle

Given a variational constraint CV ⊂ (R× TQ) ×Y TY , we consider the distribu-
tion ΔP on the covariant Pontryagin bundle defined by

ΔP(t, x, v, p, p) :=
(
T(t,x,v,p,p)π(P,Y )

)−1(CV (t, x, v)) ⊂ T(t,x,v,p,p)P.
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From the expression of CV in (1), we get

ΔP(t, x, v, p, p) =
{
(δt, δx, δv, δp, δp) ∈ TP |

Ar
i (t, x, v)δxi + Br(t, x, v)δt = 0, r = 1, ...,m

}
.

(4)

Consider the canonical symplectic form on T ∗Y given by ΩT ∗Y = −dΘT ∗Y ,
where ΘT ∗Y is the canonical one-form on T ∗Y . In local coordinates, we have
ΘT ∗Y = pidxi+pdt and ΩT ∗Y = dxi∧dpi+dt∧dp. Using the projection π(P,T ∗Y ) :
P → T ∗Y , (t, x, v, p, p) �→ (t, x, p, p) onto T ∗Y , we get the presymplectic form
on the covariant Pontryagin bundle given by ΩP = π∗

(P,T ∗Y )ΩT ∗Y . The local
expression is given by ΩP = dxi ∧ dpi + dt ∧ dp.

Given the distribution ΔP in (4) and the presymplectic form ΩP, the Dirac
structure DΔP

on P is given by

DΔP
(x) =

{
(ux, ax) ∈ TxP × T ∗

xP | ux ∈ ΔP(x),

〈ax, vx〉 = ΩP(x)(ux, vx), ∀ vx ∈ ΔP(x)
}
,

(5)

for all x ∈ P.

3.4 Dirac Dynamical Systems

Using the Dirac structure DΔP
on P in (5), we can define a Dirac dynamical

system for a curve x(t) in P as follows:
(
ẋ,dE(x)

) ∈ DΔP
(x). (6)

Equivalently, condition (6) gives the equations of motion

iẋΩP − dE (x) ∈ ΔP(x)◦, ẋ ∈ ΔP(x). (7)

Using coordinates, we can now explicitly express these equations as follows. The
differential of E is given by

dE(t, x, v, p, p) =
(

−∂L

∂t
,−∂L

∂x
, p − ∂L

∂v
, 1, v

)

and the tangent vector ẋ to Tx(t)P is given by (t, x, ṫ, ẋ). We deduce that the
Dirac dynamical system (7) gives the following conditions on the curve x(t) ∈ P,

ẋ = v, ṫ = 1, p =
∂L

∂v
,

(t, x, ṫ, ẋ) ∈ CV (t, x, v),
(
ṗ − ∂L

∂t
, ṗ − ∂L

∂x

)
∈ CV (t, x, v)◦.

(8)

In local expressions, these evolution Eq. (8) read
⎧
⎪⎨

⎪⎩

ẋi = vi, ṫ = 1, pi − ∂L

∂vi
= 0, Ar

i (t, x, v)q̇i + Br(t, x, v) = 0,

ṗi − ∂L

∂xi
= λrA

r
i (t, x, v), ṗ − ∂L

∂t
= λrB

r(t, x, v).

(9)
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3.5 Energy Balance Equations

One immediately notices that the covariant generalized energy E(t, x, v, p, p)
defined in (3) is preserved along the solution curve x(t) = (t, x(t), v(t), p(t), p(t))
of the Dirac dynamical system (9),

d

dt
E(t, x, v, p, p) = 0. (10)

Note that E does not represent the total energy of the system. The total energy
is represented by the generalized energy E : R × TQ × T ∗Q → R defined as

E(t, x, v, p) = 〈p, v〉 − L(t, x, v)

and Eq. (10) yields

d

dt
E(t, x, v, p) = − d

dt
p =

∂L

∂t
(t, x, v) − λrB

r(t, x, v).

This is the balance of energy for the Dirac system. Note that d
dtp is interpreted

as the power flowing out of the system. The first term on the right hand side is
essentially due to the explicit dependence of the Lagrangian on time. The second
term is due to the affine character of the constraint and will be interpreted later
as the energy flowing in or out of the systems through its ports.

4 Dirac Formulation of Open Thermodynamics

4.1 Geometric Setting

Consider a simple open finite dimensional system with a single entropy S and a
single chemical species with number of moles N in a single compartment. The
system has a constant volume V = V0, it has A external ports, through which
matter can flow into or out of the system as well as B ports, through which
heat can flow in or out of the system. Let U(S,N) be the internal energy of
the system. Let Ja(t), Sa(t), T a(t), μa(t) be given functions of time associated
to the external flow of matter into the system through the a-port and define
Ja

S(t) = Ja(t)Sa(t). We assume that there exist external heat sources at the
b-port with entropy flow rate Jb(t), molar entropy Sb(t) and temperature T b(t).

The thermodynamic configuration space is Q = R
5 � x = (S,N, Γ,W,Σ),

with Γ , W , Σ the thermodynamic displacements, see [6]. As in Sect. 3.1, let
Y = R × Q be the trivial bundle over R and consider the thermodynamic
phase space R × TQ over Y with coordinates (t, x, v) ∈ R × TQ, where
v = (vS , vN , vΓ , vW , vΣ) ∈ TqQ. Let us employ the local coordinates for
(t, x, δt, δx) ∈ TY and (t, x, p, p) ∈ T ∗Y , where δx = (δS, δN, δΓ, δW, δΣ) ∈ TqQ

and p = (pS , pN , pΓ , pW , pΣ) ∈ T ∗
xQ.



Dirac Structures in Open Thermodynamics 205

4.2 Nonholonomic Constraints in Thermodynamics

For open thermodynamic systems, the constraint (1) reads

CV =
{
(t, x, v, δt, δx) ∈ (R × TQ) ×Y TY

∣∣∣

− ∂U

∂S
δΣ =

A∑
a=1

[
J
aδW + J

a
SδΓ − (μa

J
a + T a

J
a
S) δt

]
+

B∑
b=1

J
b
S(δΓ − T bδt)

}
.

Hence the nonlinear kinematic constraint (2) becomes

CK =
{

(t, x, ṫ, ẋ) ∈ TY
∣∣∣

− ∂U

∂S
Σ̇ =

A∑

a=1

[
JaẆ + Ja

SΓ̇ − (μaJa + T aJa
S) ṫ

]
+

B∑

b=1

Jb
S(Γ̇ − T bṫ)

}
,

where we have denoted ẋ = (Ṡ, Ṅ , Γ̇ , Ẇ , Σ̇).

4.3 Dirac Structures on P for Open Thermodynamic Systems

As in Sect. 3.2, let P = (R × TQ) ×Y T ∗Y be the covariant Pontryagin bundle
over Y , whose coordinates are given by x = (t, x, v, p, p) ∈ P. The canonical one
form ΘT ∗Y and the canonical symplectic form ΩT ∗Y = −dΘT ∗Y are expressed
as

ΘT ∗Y = pidxi + pdt

= pSdS + pNdN + pΓ dΓ + pW dW + pΣdΣ + pΣdΣ + pdt,

ΩT ∗Y = dxi ∧ dpi + dt ∧ dp

= dS ∧ dpS + dW ∧ dpW + dN ∧ dpN + dΓ ∧ dpΓ + dΣ ∧ dpΣ + dt ∧ dp.

Recall that the presymplectic form on P is defined by ΩP = π∗
(P,T ∗Y )ΩT ∗Y .

Associated with P, we have the natural projection π(P,Y ) : P → Y , given by
(t, x, v, p, p) �→ (t, x), and we can lift the constraint subspace CV (t, x, v) ⊂ TY
to get the constraint distribution ΔP on P defined as

ΔP = (Tπ(P,Y ))−1(CV (t, x, v)) ⊂ TP.

As shown in (5), from the distribution ΔP and the presymplectic form ΩP, we
can define the induced Dirac structure DΔP

⊂ TP ⊕ T ∗P on P.

4.4 Dirac Thermodynamic Systems on P = (R × TQ) ×Y T ∗Y

For each x = (t, x, v, p, p) ∈ P, we write the vector and the covector in (5) as

ux = (ṫ, ẋ, v̇, ṗ, ṗ) ∈ TxP and ax = (π, α, β, u, w) ∈ T ∗
xP,
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where v̇ = (v̇S , v̇N , v̇Γ , v̇W , v̇Σ), ṗ = (ṗS , ṗN , ṗΓ , ṗW , ṗΣ), α = (αS , αN , αΓ ,
αW , αΣ), β = (βS , βN , βΓ , βW , βΣ), and w = (wS , wN , wΓ , wW , wΣ). From (6)
the Dirac system reads

(
(ṫ, ẋ, v̇, ṗ, ṗ), (π, α, β, u, w)

) ∈ DΔP
(t, x, v, p, p).

Using the definition of the Dirac structure in terms of CV , we get

ẋ = w, ṫ = u, β = 0, (t, x, ṫ, ẋ) ∈ CV (t, x, v), (ṗ + π, ṗ + α) ∈ CV (t, x, v)◦.

Following [6], the Lagrangian is given by L(t, x, v) = −U(S,N)+vW N +vΓ (S −
Σ). The covariant generalized energy is here given by

E(t, x, v, p, p) = p + 〈p, v〉 − L(t, x, v)
= p + pSvS + pNvN + (pΓ + Σ − S)vΓ + (pW − N)vW + pΣvΣ + U(S,N).

The differential of dE is obtained as

dE (t, x, v, p, p) =
(

−∂L

∂t
,−∂L

∂x
, p − ∂L

∂v
, 1, v

)
= (π, α, β, γ, w),

where π = −∂L
∂t = 0, α = −∂L

∂x =
(−vΓ + ∂U

∂S ,−vW + ∂U
∂N , 0, 0, vΓ

)
, β = p −

∂L
∂v = (pS , pN , pΓ + Σ − S, pW − N, pΣ) , w = v = (vS , vN , vΓ , vW , vΣ).

By using this, the Dirac dynamical system

((ṫ, q̇, v̇, ṗ, ṗ),dE (t, q, v, p, p)) ∈ DΔP
(t, q, v, p, p)

is equivalent to the following evolution equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ = −
A∑

a=1

(μaJa + T aJa
S) −

B∑

b=1

Jb
ST b, Γ̇ =

∂U

∂S
, Ẇ =

∂U

∂N
,

ṫ = 1, Ṅ =
A∑

a=1

Ja, Ṡ = Σ̇ +
A∑

a=1

Ja
S +

B∑

b=1

Jb
S ,

−∂U

∂S
Σ̇ =

A∑

a=1

[
Ja(Ẇ − μa) + Ja

S(Γ̇ − T a)
]
+

B∑

b=1

Jb
S(Γ̇ − T b).

Making arrangements, this system yields the equations of evolution as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ṅ =
A∑

a=1

Ja,

Ṡ = I +
A∑

a=1

Ja
S +

B∑

b=1

Jb
S =

diS

dt
+

deS

dt
,

(11)

where I = 1
T

∑A
a=1

[
Ja(μa − μ) + Ja

S(T a − T )
]
+ 1

T

∑B
b=1 J

b
S(T b − T ) and diS

dt :=
I ≥ 0 denotes the internal entropy production due to the mixing of matter
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flowing into the system and deS
dt is the entropy flow. The system of equation also

gives the definition of the thermodynamic displacement as Γ̇ = T , Ẇ = μ, and
Σ̇ = I. The momentum p represents the part of the energy associated to the
interaction of the system with exterior through its ports. In fact, it follows

− d

dt
E =

d

dt
p = −

A∑

a=1

(Jaμa + Ja
ST a) −

B∑

b=1

Jb
ST b = −P ext

M − P ext
H ,

where E is the total energy of the system, defined by

E(t, x, v) =
∂L

∂vi
vi − L(t, x, v).

Example: A Piston Device with Ports and Heat Sources. As illustrated
in Fig. 1, we consider an open chamber containing a species with internal energy
U(S,N), where we assume that the cylinder has two external heat sources with
entropy flow rates Jbi , i = 1, 2, the volume of the chamber is constant V0 and
two ports through which the species is injected into or flows out of the cylinder
with molar flow rates Jai , i = 1, 2. The entropy flow rates at the ports are given
by Jai

S = JaiSai .

Fig. 1. An open chamber with ports and heat sources.

Recall that the Lagrangian is given by

L(t, x, v) = −U(S,N) + vW N + vΓ (S − Σ).

The equations of evolution of the Dirac open thermodynamic system (11) read

Ṅ =
A∑

a=1

Ja, Ṡ = I +
2∑

i=1

Jai

S +
2∑

j=1

J
bj
S ,

where I = Σ̇ is the internal entropy production given by

I =
1
T

2∑

i=1

[
(μai − μ) + Sai(T ai − T )

]
Jai +

1
T

2∑

j=1

J
bj
S (T bj − T ).
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The first term represents the entropy production associated to the mixing of gas
flowing into the cylinder at the two ports a1, a2, and the third term denotes the
entropy production due to the external heating. The second law requires that
each of these terms is positive. The first law, i.e., the energy balance holds as

d

dt
E =

2∑

j=1

J
bj
S T bj

︸ ︷︷ ︸
=P ext

H

+
2∑

i=1

(Jaiμai + Jai

S T ai)

︸ ︷︷ ︸
=P ext

M

.
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1. Carathéodory, C.: Untersuchungen über die Grundlagen der Thermodynamik.
Math. Ann. 67, 355–386 (1909)

2. Courant, T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631–661 (1990)
3. Eberard, D., Maschke, B.M., van der Schaft, A.J.: An extension of Hamiltonian

systems to the thermodynamic phase space: towards a geometry of nonreversible
processes. Rep. Math. Phys. 60(2), 175–198 (2007)

4. Gay-Balmaz, F., Yoshimura, H.: A Lagrangian variational formulation for nonequi-
librium thermodynamics. Part I: discrete systems. J. Geom. Phys. 111, 169–193
(2017a)

5. Gay-Balmaz, F., Yoshimura, H.: A Lagrangian variational formulation for nonequi-
librium thermodynamics. Part II: continuum systems. J. Geom. Phys. 111, 194–212
(2017b)

6. Gay-Balmaz, F., Yoshimura, H.: A variational formulation of nonequilibrium ther-
modynamics for discrete open systems with mass and heat transfer. Entropy 20(3),
1–26 (2018a). https://doi.org/10.3390/e20030163

7. Gay-Balmaz, F., Yoshimura, H.: Dirac structures in nonequilibrium thermodynam-
ics. J. Math. Phys. 59, 012701–29 (2018b)

8. Gibbs, J.W.: Graphical methods in the thermodynamics of fluids. Trans. Connecti-
cus Acad. 2, 309–342 (1873)

9. Hermann, R.: Geometry, Physics and Systems. Dekker, New York (1973)
10. Klein, S., Nellis, G.: Thermodynamics. Cambridge University Press, Cambridge

(2011)
11. Mrugala, R.: Geometrical formulation of equilibrium phenomenological thermody-

namics. Rep. Math. Phys. 14, 419–427 (1978)
12. Mrugala, R.: A new representation of thermodynamic phase space. Bull. Polish

Acad. Sci. 28, 13–18 (1980)
13. Mrugala, R., Nulton, J.D., Schon, J.C., Salamon, P.: Contact structure in thermo-

dynamic theory. Rep. Math. Phys. 29, 109–121 (1991)
14. Sandler, S.I.: Chemical, Biochemical, and Engineering Thermodynamics. Wiley,

Hoboken (2006)
15. Stueckelberg, E.C.G., Scheurer, P.B.: Thermocinétique Phénoménologique
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Abstract. A variational formulation for nonequilibrium thermodynam-
ics was recently proposed in [7,8] for both discrete and continuum
systems. This formulation extends the Hamilton principle of classical
mechanics to include irreversible processes. In this paper, we show that
this variational formulation yields a constructive and systematic way
to derive from a unified perspective several bracket formulations for
nonequilibrium thermodynamics proposed earlier in the literature, such
as the single generator bracket and the double generator bracket. In the
case of a linear relation between the thermodynamic fluxes and the ther-
modynamic forces, the metriplectic or GENERIC brackets are recovered.
A similar development has been presented for continuum systems in [6]
and applied to multicomponent fluids.

Keywords: Nonequilibrium thermodynamics ·
Variational formulation · Bracket formulation

1 Variational Formulation of Nonequilibrium
Thermodynamics

A Lagrangian variational approach for nonequilibrium thermodynamic has been
proposed in [7,8] for finite dimensional and continuum closed systems and for
open systems in [9]. This variational formulation extends the Hamilton principle
of classical mechanics to include irreversible processes such as friction, heat or
mass transfer in the equations of motion. It is a type of Lagrange-d’Alembert
principle with nonlinear constraints and it follows a very systematic construc-
tion from the given thermodynamic fluxes and forces of the irreversible processes.
This formulation is based on the concept of thermodynamic displacements, which
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are primitive in time of the thermodynamic forces. This variational formulation
naturally has an associated geometric description given in terms of Dirac struc-
tures [10].

Historically, the proposed general formalisms of nonequilibrium thermody-
namics have been mainly constructed via appropriate modifications of Poisson
brackets, as initiated by [11,13,14]. Since then, this approach has been devel-
oped for a large list of systems, see, e.g. [12]. Other classes of bracket have been
proposed, e.g. [3–5]. Unlike the variational formalism, most of these bracket
formalisms do not follow from a systematic construction and have often been
derived via a case-by-case approach, with slightly different axioms used in dif-
ferent situations.

In this paper, we shall show that the variational formalism directly yields the
two main bracket formalisms, namely, the single and double generator brackets.
Moreover, in the case of a linear relation between the thermodynamic fluxes
and the thermodynamic forces, the metriplectic ([16]) or GENERIC ([12,17])
brackets are recovered. We focus on the case of simple thermodynamic systems,
in which only one entropy variable is needed. The general case will be studied
elsewhere. The derivation of such brackets from the variational formulation for
continuum system has been illustrated in [6] in the context of multicomponent
fluids. We refer for instance to [1,2] for an introduction to the nonequilibrium
thermodynamics of continuum systems.

1.1 Variational Formulation for Mechanical Systems with Friction

Consider a thermodynamic system described only by a mechanical variable q ∈ Q
and an entropy variable S ∈ R. The Lagrangian of this thermodynamic system
is a function

L : TQ × R → R, (q, v, S) �→ L(q, v, S),

where TQ denotes the tangent bundle of the mechanical configuration manifold
Q. We assume that the system involves external and friction forces given by fiber
preserving maps F ext, F fr : TQ × R → T ∗Q, i.e., such that F fr(q, v, S) ∈ T ∗

q Q,
similarly for F ext. As stated in [7], the variational formulation for this system is
given as follows:

Find the curves q(t), S(t) which are critical for the variational condition

δ

∫ t2

t1

L(q, q̇, S)dt +
∫ t2

t1

〈
F ext(q, q̇, S), δq

〉
dt = 0, (1)

subject to the phenomenological constraint

∂L

∂S
(q, q̇, S)Ṡ =

〈
F fr(q, q̇, S), q̇

〉
, (2)
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and for variations subject to the variational constraint

∂L

∂S
(q, q̇, S)δS =

〈
F fr(q, q̇, S), δq

〉
, (3)

with δq(t1) = δq(t2) = 0.

This variational formulation yields the system of equations

d

dt

∂L

∂q̇
− ∂L

∂q
= F fr(q, q̇, S),

∂L

∂S
Ṡ = 〈F fr(q, q̇, S), q̇〉. (4)

The first equation is the balance of mechanical momentum, while the second one
gives the rate of entropy production of the system

Ṡ = − 1
T

〈F fr(q, q̇, S), q̇〉,

with T = −∂L
∂S (q, q̇, S) the temperature of the system. From the second law the

friction force F fr must satisfy 〈F fr(q, q̇, S), q̇〉 ≤ 0 for all (q, q̇, S). For instance,
for a friction force linear in velocities, we have

F fr
i = −λij q̇

j ,

where λij , i, j = 1, ..., n are functions of the state variables with the symmetric
part of the matrix λij positive semi-definite.

1.2 Variational Formulation for Systems with Internal Mass
Transfer

The previous variational formulation can be extended to systems experiencing
internal diffusion processes. Diffusion is particularly important in biology, where
many processes depend on the transport of chemical species through bodies. Con-
sider a thermodynamic system consisting of K compartments that can exchange
matter by diffusion across walls (or membranes) on their common boundaries.
We assume that the system has a single species and denote by Nk the num-
ber of moles of the species in the k-th compartment, k = 1, ...,K. We assume
that the thermodynamic system is simple; i.e., a uniform entropy S, the entropy
of the system, is attributed to all the compartments. The Lagrangian of this
thermodynamic system is thus a function

L : TQ × R
K+1 → R, (q, v, S,N1, .., NK) �→ L(q, v, S,N1, .., NK). (5)

We denote J�→k = −Jk→� the molar flow rate from compartment � to compart-
ment k due to diffusion of the species. In general, we have the dependence

J�→k = J�→k

(
S,Nk, N�,

∂L

∂Nk
,

∂L

∂N�

)
. (6)
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The variational formulation involves the new variables W k, k = 1, ...,K,
which are examples of thermodynamic displacements and play a central role in
our formulation. In general, we define the thermodynamic displacement asso-
ciated to a irreversible process as the primitive in time of the thermodynamic
force (or affinity) of the process. This force (or affinity) thus becomes the rate of
change of the thermodynamic displacement. In the case of matter transfer, Ẇ k

corresponds to the chemical potential of Nk. The variational formulation for a
simple system with internal diffusion process is stated as follows.

Find the curves q(t), S(t), W k(t), Nk(t), which are critical for the variational
condition

δ

∫ t2

t1

[
L (q, q̇, S,N1, ..., NK) + Ẇ kNk

]
dt +

∫ t2

t1

〈
F ext, δq

〉
dt = 0, (7)

subject to the phenomenological constraint

∂L

∂S
Ṡ =

〈
F fr, q̇

〉
+

K∑
k,�=1

J�→kẆ k, (8)

and for variations subject to the variational constraint

∂L

∂S
δS =

〈
F fr, δq

〉
+

K∑
k,�=1

J�→kδW k, (9)

with δq(t1) = δq(t2) = 0 and δW k(t1) = δW k(t2) = 0, k = 1, ...,K.

These conditions, combined with the phenomenological constraint (8), yield
the system of evolution equations for the curves q(t), S(t), and Nk(t):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d

dt

∂L

∂q̇
− ∂L

∂q
= F fr + F ext,

d

dt
Nk =

K∑
�=1

J�→k, k = 1, ...,K,

∂L

∂S
Ṡ = 〈F fr, q̇〉 −

∑
k<�

J�→k

(
∂L

∂Nk
− ∂L

∂N�

)
.

(10)

The last equation in (10) yields the rate of entropy production of the system as

Ṡ = − 1
T

〈F fr, q̇〉 − 1
T

∑
k<�

J�→k(μk − μ�), (11)

with μk = − ∂L
∂Nk

the chemical potentials. The two terms in (11) correspond,
respectively, to the rate of entropy production due to mechanical friction and to
matter transfer. From the second law, F fr and Jk→� must satisfy

〈F fr, q̇〉 ≤ 0 and J�→k(μk − μ�) ≤ 0. (12)
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When a linear relation is assumed between the forces and fluxes, we have relations

F fr
i = −λij q̇

j and J�→k = −Gk�(μk − μ�), (13)

where λij , i, j = 1, ..., n and Gk�, k, � = 1, ...,K are functions of the state vari-
ables, with the symmetric part of the matrix λij positive semi-definite and with
Gk� ≥ 0, for all k, �.

Note that in both variational formulations (1)–(3) and (7)–(9), the two con-
straints are related in a very systematic way, suggested by the relation

∑
α

JαΛ̇α �
∑
α

JαδΛα (14)

with Jα the thermodynamic flux and Λα the thermodynamic displacement of
the process α. This systematic correspondence holds for finite dimensional and
continuum closed systems, and is at the core of the formulation in terms of Dirac
structures, [7,8,10].

For simplicity, from now on we set the external forces F ext to zero. They can
be easily included in our developments below, and yield an additional term in
the bracket formalisms.

2 Single and Double Generator Brackets

In this section, we shall show that the variational formulation induces and unifies
several bracket formulations for nonequilibrium thermodynamics proposed ear-
lier in the literature, such as the single generator bracket, the double generator
bracket, and the metriplectic (or GENERIC) bracket.

2.1 Bracket Formulations in Nonequilbirium Thermodynamics

There are two main approaches to the bracket formulation for irreversible pro-
cesses in the literature: the single generator and double generator formulations.
In this paragraph, we quickly review the structure of these two brackets. Let M
be a Poisson manifold, with Poisson bracket { , }. We denote by H ∈ C∞(M)
the Hamiltonian and S ∈ C∞(M) the entropy. We assume that {H,S} = 0.

In the single generator formalism, [3–5], the evolution of an arbitrary func-
tional F ∈ C∞(M) is governed by

d

dt
F = {F,H} + [F,H], (15)

where the dissipation bracket [F,H] is linear and a derivation in F , it can be
nonlinear in H, and satisfies [H,H] = 0 and [S,H] ≥ 0. These last two require-
ments are consistent with the first and second laws of thermodynamics, respec-
tively. Since both the reversible (Poisson) and dissipation brackets use the same
generator H, this is referred to as the single generator formalism. The bracket
formulation (15) yields the dynamical system ṁ(t) = XH(m(t)) + DH(m(t)),
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where XH = JdH is the Hamiltonian vector field associated to H, with
J : T ∗M → TM the Poisson tensor, and the vector field DH is determined
from [F,H] = dF ·DH , for all F , which follows since F �→ [F,H] is a derivation.

In the double generator formalism, the evolution of an arbitrary functional
F ∈ C∞(M) is governed by

d

dt
F = {F,H} + (F, S), (16)

where the dissipation bracket (F,G) is symmetric, bilinear and satisfies the Leib-
niz rule, as well as (H,S) = 0 and (S, S) ≥ 0. These are precisely the axioms
given in [13]. Since the Poisson and dissipation brackets use different gener-
ators (H for Poisson and S for dissipation), this is referred to as the double
generator formalism. The bracket formulation (16) yields the dynamical system
ṁ(t) = JdH(m(t)) + KdS(m(t)), where as before JdH = XH is the Hamilto-
nian vector field associated to H, and the symmetric vector bundle linear map
K : T ∗M → TM , K∗ = K, is such that (F,G) = 〈dF,KdG〉, which follows
from the fact that (F,G) is symmetric and a derivation in each factor.

Sometimes, the stronger requirements that {G,S} = 0, (H,G) = 0, (G,G) ≥
0, for arbitrary G ∈ C∞(M) are imposed, in which case the system (16) is
termed metriplectic, [16]. For example, this is what is used in the GENERIC
formalism [12,17]. When considering macroscopic systems, typically only bilin-
earity, (H,S) = 0, and (S, S) ≥ 0 seem to be required on physical grounds.

2.2 Derivation of the Single Generator Bracket

Consider the system (10), assume that the Lagrangian L in (5) is hyperregular
with respect to the mechanical part and define the associated Hamiltonian H :
T ∗Q × R

K+1 → R. In terms of H, system (10) can be equivalently written as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
+ F fr

(
q,

∂H

∂p
, S

)
,

d

dt
Nk =

K∑
�=1

J�→k,

−∂H

∂S
Ṡ =

〈
F fr

(
q,

∂H

∂p
, S

)
,
∂H

∂p

〉
+

∑
k<�

J�→k

(
∂H

∂Nk
− ∂H

∂N�

)
.

(17)

In this system, the dependence of the fluxes in (6) is written in terms of H
by using ∂L

∂Nk
= − ∂H

∂Nk
. From (17), we directly deduce that the evolution of an

arbitrary function F ∈ C∞(T ∗Q×R
K+1) is of the form (15) with { , } the direct

sum of the canonical Poisson bracket on T ∗Q and the zero bracket on R
K+1,

where the dissipation bracket is computed as

[F,H] =
〈
F fr,

∂F

∂p

〉
+

∑
k<�

J�→k
( ∂F

∂Nk
− ∂F

∂N�

)

−
∂F
∂S
∂H
∂S

[〈
F fr,

∂H

∂p

〉
+

∑
k<�

J�→k
( ∂H

∂Nk
− ∂H

∂N�

)]
.

(18)
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In this expression, we recall that both F fr and J�→k may depend on H via their
dependence on (q, ∂H

∂p , S) and (S,Nk, ∂H
∂Nk

, N�,
∂H
∂N�

), respectively. One directly
checks that the conditions {H,S} = 0, [H,H] = 0 are satisfied. The condition
[S,H] ≥ 0 is satisfied if and only if (12) holds.

We have thus recovered the single generator formalism. This formulation
does not impose a specific dependence (such as a linear dependence) of the
thermodynamic fluxes F fr and J�→k on the thermodynamic forces.

2.3 Derivation of the Double Generator Bracket

Starting again from the system (10) obtained from the variational formulation,
we compute the evolution of an arbitrary function F . The expression (18) has
now to be interpreted as the bracket (F, S). Hence it suffices to multiply this
expression by 1 = ∂S

∂S , to symmetrize in F and S the resulting expression, and
finally to replace S by an arbitrary function G to finally get the symmetric
bracket

(F,G) =
〈
F fr,

∂F

∂p

〉∂G

∂S
+

〈
F fr,

∂G

∂p

〉∂F

∂S

+
∑
k<�

J�→k
( ∂F

∂Nk
− ∂F

∂N�

)∂G

∂S
+

∑
k<�

J�→k
( ∂G

∂Nk
− ∂G

∂N�

)∂F

∂S

− 1
∂H
∂S

[〈
F fr,

∂H

∂p

〉
+

∑
k<�

J�→k
( ∂H

∂Nk
− ∂H

∂N�

)]∂F

∂S

∂G

∂S
.

(19)

One directly checks that the bracket (F,G) is symmetric, bilinear and satisfies
the Leibniz rule, as well as (H,S) = 0. The condition (S, S) ≥ 0 is satisfied if
and only if (12) holds.

2.4 Derivation of the Metriplectic Bracket

In general the bracket (18) is not metriplectic, since one has

(F,H) =
〈
F fr,

∂F

∂p

〉∂H

∂S
+

∑
k<�

J�→k
( ∂F

∂Nk
− ∂F

∂N�

)∂H

∂S
	= 0. (20)

Let us assume as in (13) that the thermodynamic fluxes F fr and J�→k depend
linearly on their corresponding thermodynamic forces as

F fr
(
q,

∂H

∂p
, S,N

)
= −λ(q, S)· ∂H

∂p
and J�→k = −Gk�(S,Nk, N�)

( ∂H

∂Nk
− ∂H

∂N�

)
,

where λ(q, S) : TqQ → T ∗
q Q is symmetric positive semi-definite and where

Gk�(S,Nk, Nl) ≥ 0 for all k, �. Using these relations in the expression (20) by
writing them in terms of an arbitrary function G, and subtracting it from (F,G),
we get the symmetric bracket

(F,G)met = (F,G)+
〈
λ·∂G

∂p
,
∂F

∂p

〉∂H

∂S
+

∑
k<�

Gk�
( ∂G

∂Nk
− ∂G

∂N�

)( ∂F

∂Nk
− ∂F

∂N�

)∂H

∂S
.
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A direct computation using (19) and rearranging the terms finally yields the
expression

(F,G)met =
1

∂H
∂S

〈
∂F

∂p

∂H

∂S
− ∂H

∂p

∂F

∂S
, λ ·

(
∂G

∂p

∂H

∂S
− ∂H

∂p

∂G

∂S

)〉

+
1

∂H
∂S

∑
k<�

Gkl
[( ∂F

∂Nk
− ∂F

∂N�

)∂H

∂S
−

( ∂H

∂Nk
− ∂H

∂N�

)∂F

∂S

]

×
[( ∂G

∂Nk
− ∂G

∂N�

)∂H

∂S
−

( ∂H

∂Nk
− ∂H

∂N�

)∂G

∂S

]
.

(21)

From this, one directly checks that (H,G)met = 0, and (G,G)met ≥ 0, for arbi-
trary G ∈ C∞(T ∗Q × R

K+1) by (13), therefore (F,G)met is a metriplectic (or
GENERIC) bracket. We note that Ṡ = (S, S) = (S, S)met. The structure of the
bracket (21) is a finite dimensional analogue of that of the metriplectic bracket
for viscous heat conducting fluid presented in [15].
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Abstract. We introduce a differential complex of local observables given
a set of random variables covered by subsets. Its boundary operator ∂
allows us to define a transport equation u̇ = ∂Φ(u) equivalent to Belief
Propagation. This definition reveals a maximal set of conserved quan-
tities under Belief Propagation and gives new geometric insight on the
relationship of its equilibria with the critical points of Bethe free energy.

1 Introduction

A common feature of statistical physics and statistical learning is to consider
a very large number of random variables, each of them mostly interacting with
only a small subset of neighbours. Both lead to the effort of extracting relevant
information about collective phenomena in spite of intractable global computa-
tions, hence motivating the development of local techniques where only small
enough subsets of variables are simultaneously considered.

In the present note, we work with a collection of local algebras of observables,
on which a boundary operator describes relations between intersecting subsys-
tems. The construction of this differential complex is exposed in Sect. 2. It allows
for a homological interpretation of the equivalence established by Yedidia et al.
between critical points of the Bethe free energy approximation and fixed points
of the Belief Propagation algorithm. We review this beautiful theorem bridging
statistical learning and thermodynamics1 in Sect. 3.

This is part of a PhD work done under the kind supervision of Daniel Ben-
nequin. I wish to thank him as well as Grégoire Sergeant-Perthuis and Juan-
Pablo Vigneaux, for their sustained collaboration and many fruitful discussions.

1 See the longer version of this note for more context and historical background.
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2 Differential and Combinatorial Structures

2.1 Statistical System

Regions. We call system a finite set Ω equipped with a covering X ⊆ P(Ω) by
subsets such that:

– the empty set ∅ is in X,
– if α ∈ X and β ∈ X, then α ∩ β is also in X.

We view X as a subcategory of the partial order P(Ω) having an arrow α → β
whenever β ⊆ α. We call α ∈ X a region2 of Ω and denote by Λα ⊆ X the
subsystem of those regions contained in α.

Chains and Nerve. A p-chain ᾱ is a totally ordered sequence α0 → . . . → αp

in X, it is said non-degenerate when all inclusions are strict. A p-chain ᾱ may be
viewed as a p-simplex, whose p+1 faces are the chains ᾱ(k) obtained by removing
αk, for 0 ≤ k ≤ p. The nerve of X is the simplicial complex NX =

⊔
p NpX

formed by all non-degenerate chains.

Microscopic States. For each i ∈ Ω, suppose given a finite set Ei. A micro-
scopic state of a region α ⊆ Ω is an element of the cartesian product3:

Eα =
∏

i∈α

Ei

We denote by πβα : Eα → Eβ the canonical projection of Eα onto Eβ whenever
β is a subregion of α.

2.2 Scalar Fields

Differentials. We call scalar field a collection λ ∈ R(X) of scalars indexed by
the nerve of X. We denote by Rp(X) = R

NpX the space of p-fields, vanishing
everywhere but on the p-simplices of NX.

Through the canonical scalar product of R(X), scalar fields can be identified
with chains or cochains with real coefficients in NX eitherwise. We denote by ∂
the boundary operator of R(X) and by d its adjoint differential:

∂ : R0(X) ← R1(X) ← . . .
d : R0(X) → R1(X) → . . .

2 The term refers to the notion of region-graphs in Yedidia et al.
3 The configuration space E∅ is thus a point, unit for the cartesian product and

terminal element in Set.
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Convolution. Let R̃1(X) = R0(X) ⊕ R1(X). Identifying the degenerate 1-
chain α → α with α, an element of R̃1(X) is indexed by general 1-chains in X.
Equipped with Dirichlet convolution, R̃1(X) is the incidence algebra4 of X:

(ϕ ∗ ψ)αγ =
∑

α→β′→γ

ϕαβ′ · ψβ′γ

The unit of ∗ is 1 ∈ R0(X), sometimes viewed as a Kronecker symbol in R̃1(X).
The space of 0-fields R0(X) also has a R̃1(X)-bimodule structure, where the

left action of ϕ ∈ R̃1(X) on λ ∈ R0(X) is given by:

(ϕ · λ)α =
∑

α→β′
ϕαβ′λβ′

Möbius Inversion. The Dirichlet zeta function ζ ∈ R̃1(X) is defined by ζαβ = 1
for every α → β in X. When X is locally finite5, ζ is invertible. Its inverse μ,
known as the Möbius function, satisfies:

μαβ =
∑

k≥0

(−1)k(ζ − 1)∗k
αβ

where (ζ − 1)∗k
αβ counts the number of non-degenerate k-chains from α to β.

The coefficients c = (1 · μ) ∈ R0(X) contain all the combinatorics of Bethe
approximations. They satisfy the following «inclusion-exclusion» formula:

(c · ζ)β =
∑

α′→β

cα′ = 1

2.3 Observables, Densities and Statistical States

Observable Fields. Denote by aα = R
Eα the commutative algebra of observ-

ables on α ⊆ Ω. For every subregion β ⊆ α, an observable uβ ∈ aβ , as a real
function on Eβ , admits a cylindrical extension jαβ(uβ) on Eα.

For every ᾱ ∈ NpX, let aᾱ denote a copy of the algebra aαp
of observables on

its smallest region. There is an injection jβ̄ᾱ : aᾱ → aβ̄ whenever β̄ is a subchain
of ᾱ.6 We define the graded vector space a(X) of observable fields by:

ap(X) =
⊕

ᾱ∈NpX

aᾱ

4 See Rota [12] for a deeper treatment of these combinatorial structures.
5 X is locally finite if for any α, β ∈ X there is only a finite number of non-degenerate

chains from α to β.
6 Observable fields form a simplicial algebra a(X) : Ordop → Alg. To relate to this

more general theory, see Segal’s note on classifying spaces [14] for instance.
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It is equipped with a boundary7 operator ∂ : ap+1(X) → ap(X). When p = 0,
we have for instance8:

∂βϕ =
∑

α′→β

ϕα′β −
∑

β→γ′
ϕβγ′

Belief Propagation is essentially a dynamic up to a boundary term ∂ϕ in a0(X),
although it is usually viewed in the multiplicative group G0(X) =

∏
α∈X Gα

with Gα = (R∗
+)

Eα .

Density Fields. We call density on α ⊆ Ω a linear form on observables ωα ∈ a∗
α.

Denote by Σβα(ωα) ∈ a∗
β the partial integration of ωα along the fibers of πβα:

Σβα(ωα)(xβ) =
∑

x′∈Eα\β

ωα(xβ , x′)

It satisfies 〈Σβα(ωα) |uβ 〉 = 〈ωα | jαβ(uβ) 〉 for every uβ ∈ aβ .
The complex a∗(X) is equipped with a differential d : a∗

p(X) → a∗
p+1(X),

adjoint of ∂. For p = 0, we have for instance:

(dω)αβ = ωβ − Σβα(ωα)

A field ω ∈ a∗
0(X) is said consistent if dω = 0. The notion of consistent densities

will replace that of a global measure on EΩ .

Statistical Fields. Denote by Δα ⊆ a∗
α the convex subset of probability mea-

sures. It consists of all the positive densities ωα satisfying ωα(1α) = 1, and any
non-trivial positive density ωα ∈ a∗

α defines a normalised density [ωα] ∈ Δα.
Its interior Δ̊α admits a natural Lie group structure, as it is diffeomorphic

to the quotient of Gα by scalings of R
∗
+, itself isomorphic to the quotient of aα

by the action of additive constants. We denote by [e−Uα ] ∈ Δ̊α the Gibbs state
associated to Uα ∈ aα and by [e−]α : aα → Δ̊α this surjective group morphism.

We denote by Δ(X) ⊆ a∗(X) the convex subset of statistical fields, by Δ̊(X)
its interior, and by Δ̊d ⊆ Δ̊0(X) the subset of consistent ones.

2.4 Homology

Gauss Formulas. For every region α ∈ X, let us define the coboundary of the
subsystem Λα as the subset of arrows δΛα ⊆ N1X that meet Λα but are not
contained in Λα:

δΛα = {α′ → β′ | α′ �∈ Λα and β′ ∈ Λα}

7 A boundary ∂ satisfies ∂2 = ∂ ◦ ∂ = 0.
8 We will generally drop the injection in our notation.
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The following proposition may then be thought of as a Gauss formula on Λα:

Proposition 1. For every ϕ ∈ a1(X) and α ∈ X we have:
∑

β′∈Λα

∂β′ϕ =
∑

α′β′∈δΛα

ϕα′β′

In particular, the above vanishes if ϕ is supported in Λα.

A similar formula holds on the cone Vβ over β in X, formed by all the
regions containing β with coboundary the set δVβ of arrows leaving Vβ . The
sums however need to be embedded in the space of global observables.

Proposition 2. For every ϕ ∈ a1(X) and β ∈ X we have:
∑

α′∈Vβ

∂α′ϕ = −
∑

α′β′∈δVβ

ϕα′β′

as global observables of aΩ.

Interaction Decomposition. We call boundary observable on a region α ∈ X
any observable generated by observables on strict subregions of α in X. Suppose
chosen for every α a supplement zα of boundary observables, so that:

aα = zα ⊕
( ∑

α>β′
aβ′

)

We may inductively continue this procedure, as illustrated by the following well
known9 theorem.

Theorem 1 (Interaction Decomposition). Given supplements (zα) of boundary
observables for every α ∈ X, we have the decompositions:

aα =
⊕

α→β′
zβ′

They induce a projection P of a0(X) onto z0(X) =
⊕

α zα defined by:

P β(u) =
∑

α′→β

P βα′
(uα′)

where P βα denotes the projection of aα onto zβ for all α → β in X.

Given a field u ∈ a0(X), define the global observable ζΩ(u) ∈ aΩ by:

ζΩ(u) =
∑

α∈X

uα

Corollary 1. For any u ∈ a0(X), we have the equivalence:

P (u) = 0 ⇔ ζΩ(u) = 0

In particular, z0(X) is isomorphic to the image of ζΩ in aΩ
10.

9 The first appearance of this now very common result in statistics seems to be in
Kellerer [4]. See also [7] for a proof via harmonic analysis.

10 They both represent the inductive limit of a over X.
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Homology Groups. The complex of observable fields a(X) is acyclic11 and we
only focus on the first homology group.

Theorem 2. The interaction decomposition P induces an isomorphism on the
first homology group of observable fields:

a0(X)/∂a1(X) ∼ z0(X)

Proof. The Gauss formula on the cone Vβ above β in X first ensures that P
vanishes on boundaries:

P β(∂ϕ) =
∑

α′→β

P β(∂α′ϕ) =
∑

α′→β

∑

β′ �→β

P β(ϕα′β′) = 0

as P β(aβ′) is non-zero if and only if β′ contains β. Let us denote by [P ] the
quotient map induced by P . Given u ∈ a0(X), consider the flux ϕ defined by
ϕαβ = P βα(uα):

∂βϕ =
∑

α′→β

ϕα′β −
∑

β→γ′
ϕβγ′ = P β(u) − uβ

When P (u) = 0 this gives u = −∂ϕ, hence [P ] is injective.

Corollary 2. Let V = ζ · v in a0(X). We have the equivalence:

cV ∈ Im(∂) ⇔ v ∈ Im(∂)

Proof. According to the theorem, it suffices to show that P (v) = P (cV ) and:

P γ(v) = P γ(μ · V ) =
∑

α′→β′→γ

P γβ′
(μα′β′Vβ′) =

∑

β′→γ

P γβ′
(cβ′Vβ′) = P γ(cV )

3 First Applications

3.1 Critical Points of Bethe Free Energy

Gibbs Free Energy. For every α ⊆ Ω, denote by Fα its local Gibbs free energy,
viewed as the functional on Δα × aα defined by:

Fα(pα,Hα) = Epα
[Hα] − S(pα)

where S(pα) = −∑
pα ln(pα) denotes Shannon entropy.

Given a global hamiltonian HΩ ∈ aΩ , the global Gibbs state [e−HΩ ] ∈ ΔΩ is
the global minimum of FΩ( · ,HΩ). This definition being hardly computable in
practice, we shall seek to estimate its marginals ΣαΩ(pΩ) by an approximation
on the global Gibbs free energy FΩ.
11 We do not provide a proof here, a treatment of higher degrees shall be given in later

work.
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Bethe Approximation. The Bethe-Peierls approach and its refinements12
essentially consist in writing an approximate decomposition of FΩ as a sum
of local free energy summands fβ , for β ∈ X. This localisation procedure can be
made exact on any α ∈ X by Möbius inversion:

Fα =
∑

α→β′
fβ′ ⇔ fβ =

∑

β→γ′
μβγ′ Fγ′

The approximation only comes when Ω is not in X and we may then write the
error FΩ − F̌ as a global free energy summand fΩ . One should expect fΩ to be
small when sufficiently large regions are taken in X, by extensivity of the global
Gibbs free energy13.

The Bethe free energy F̌ is thus defined for p ∈ Δ0(X) and H ∈ a0(X) by:

F̌(p,H) =
∑

β∈X

cβ · Fβ(pβ ,Hβ)

Given H ∈ a0(X), we denote by F̌H the induced functional on Δ0(X).

Critical Points. Because of the Möbius numbers cβ appearing in its definition,
the Bethe free energy F̌ is no longer convex in general, and F̌H might have a
great multiplicity14 of consistent critical points in Δ̊d.

Theorem 3. A non-vanishing consistent statistical field p ∈ Δ̊d is a critical
point of the Bethe free energy F̌H constrained to Δ̊d if and only if there exists a
flux ϕ ∈ a1(X) such that:

− ln(p) � H + ζ · ∂ϕ mod R0(X)

Proof. To describe the normalisation constraints, we may look at the quotient
a0(X)/R0(X) as the cotangent space of Δ̊0(X) at p, and write the differential
of F̌H as:

∂F̌
∂p

�
∑

β∈X

cβ

(
Hβ + ln(pβ)

)
mod R0(X)

The flux term comes as a collection of Lagrange multipliers for the consistency
constraints. Whenever p is a critical point, the differential of F̌H vanishes on
Ker(d) = Im(∂)⊥ and we have:

c
(
H + ln(p)

) ∈ Im(∂) + R0(X)

The corollary of Theorem2 is crucial15 to state that this implies:

H + ln(p) ∈ ζ · Im(∂) + R0(X)
12 For reference see [2,5,8,11].
13 Schlijper [13] proved this procedure convergent to the true free energy per lattice

point for the infinite Ising 2D-model.
14 For numerical studies see [6,9,15], A first mathematical proof of multiplicity is given

by Bennequin in [1].
15 The proof given in [17] is problematic when there exists β such that cβ = 0.
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3.2 Belief Propagation as a Transport Equation

Effective Energy. For every α → β in X, call effective energy the smooth
submersion F

βα of aα onto aβ defined by:

F
βα(Uα) = − ln

(
Σβα(e−Uα)

)

Physically F
βα(Uα)(xβ) can be thought of as the conditional free energy of Λα

given xβ . It is functorial in the category of smooth manifolds and we have the
commutative diagram: Σβα ◦ [e−]α = [e−]β ◦ F

βα.
Let us call effective gradient the smooth functional ∇F from a0(X) to a1(X)

defined by:
∇F(H)αβ = Hβ − F

βα(Hα)

The hamiltonian H is related to a field of local potentials h by H = ζ ·h. Letting
Φ = −∇F ◦ ζ, we have:

Φαβ(h) = F
βα

( ∑

β′∈Λα\Λβ

hβ′

)

which is the effective contribution of Λα \ Λβ to the energy of Λβ .

Belief Propagation. Consider the following transport equation:

u̇ = ∂Φ(u)

and denote by Ξ = ∂Φ the induced vector field on a0(X). In absence of normal-
isation, Belief Propagation16 is equivalent to the naive Euler scheme17 approxi-
mating the flow of Ξ by:

enτΞ � (1 + τΞ)n

The beliefs are given by q = e−U with U = ζ · u.
This new perspective reveals the strong homological character of Belief Prop-

agation. Denote by Th(ϕ) the transport of h by a flux ϕ ∈ a1(X):

Th(ϕ) = h + ∂ϕ

With initial condition h, the potentials u remain in the image of Th. This yields
a maximal set of conserved quantities in light of Theorem 2.

Theorem 4. Let q ∈ G0(X)N denote a sequence of belief fields obtained by
iterating BP. The following quantity remains constant:

qΩ =
∏

α∈X

(qα)cα

16 For reference and the algorithm formula see [3,9,10,15–17].
17 BP is actually for τ = 1, a different time scale would appear as exponent in the

multiplicative formulation.
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Proof. The fact that u ∈ Im(Th) is equivalent to P (u) = P (h). According to
Corollary 1, this is also equivalent to ζΩ(u) = ζΩ(h) where:

ζΩ(u) =
∑

α∈X

uα =
∑

β∈X

cβUβ

Letting u = h + ∂ϕ, BP can also be viewed as a dynamic over messages:

ϕ̇ = Φ
(
Th(ϕ)

)

Although it converges on trees, this algorithm is generally divergent in presence
of loops, and beliefs need to be normalised in order to attain projective equilibria.

Normalisation. Because the effective gradient ∇F is additive along constants
and both ζ and ∂ preserve scalar fields, Ξ induces a vector field on the quotient
a0(X)/R0(X). Normalised belief are given by q = [e−U ] with U = ζ · u.

Given an initial hamiltonian H = ζ · h, a belief field q ∈ Δ̊0(X) obtained by
iterating BP satisfies:

− ln(q) � H + ζ · ∂ϕ mod R0(X)

In virtue of Theorem 3, this implies that q is a critical point of the Bethe free
energy F̌H constrained to Δ̊d if and only if q is a consistent statistical field.
Considering all beliefs that may be obtained by such a choice of messages, let:

Δ̊H =
{
[e−U ] | U ∈ H + ζ · Im(∂)

} ⊆ Δ̊0(X)

Following Yedidia et al., call any consistent q ∈ Δ̊H ∩ Δ̊d a fixed point of Belief
Propagation18. With this terminology, we can rephrase their initial claim [17]:

Theorem 5. Fixing a reference hamiltonian field H, fixed points of Belief Prop-
agation are in one to one correspondence with critical points of the Bethe free
energy.

References

1. Bennequin, D., Peltre, O., Sergeant-Perthuis, G., Vigneaux, J.P.: Informations,
Energies and Messages. Preprint (2019)

2. Bethe, H.A., Bragg, W.L.: Statistical theory of superlattices. Proc. R. Soc. Lond.
Ser. Math. Phys. Sci. 150(871), 552–575 (1935)

3. Gallager, R.G.: Low-Density Parity-Check Codes. MIT Press, New York (1963)
4. Kellerer, H.G.: Maßtheoretische Marginalprobleme. Mathematische Annalen

153(3), 168–198 (1964)
5. Kikuchi, R.: A theory of cooperative phenomena. Phys. Rev. 81, 988–1003 (1951)

18 This terminology is somewhat ambiguous as it does not mean that q may be obtained
by iterating BP from [e−H ].



A Homological Approach to Belief Propagation and Bethe Approximations 227

6. Knoll, C., Pernkopf, F.: On loopy belief propagation - local stability analysis for
non-vanishing fields. In: Uncertainty in Artificial Intelligence (2017)

7. Matúš, F.: Discrete marginal problem for complex measures. Kybernetika 24, 36–
46 (1988)

8. Morita, T.: Cluster variation method of cooperative phenomena and its general-
ization I. J. Phys. Soc. Jpn. 12(7), 753–755 (1957)

9. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate
inference: an empirical study. In: UAI (1999)

10. Pearl, J.: Networks of plausible inference. In: Probabilistic Reasoning in Intelligent
Systems (1988)

11. Peierls, R.: On Ising’s model of ferromagnetism. Math. Proc. Camb. Philos. Soc.
32(3), 477–481 (1936)

12. Rota, G.-C.: On the foundations of combinatorial theory - I. Theory of Möbius
functions. Z. Warscheinlichkeitstheorie 2, 340–368 (1964)

13. Schlijper, A.G.: Convergence of the cluster-variation method in the thermodynamic
limit. Phys. Rev. B 27, 6841–6848 (1983)

14. Segal, G.: Classifying spaces and spectral sequences. Publications Mathématiques
de l’IHÉS 34, 105–112 (1968)

15. Weiss, Y.: Belief propagation and revision in networks with loops. Technical report,
MIT (1997)

16. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Bethe free energy, Kikuchi approxima-
tions, and belief propagation algorithms. Technical Report TR2001-16, MERL -
Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, May 2001

17. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free energy approximations
and generalized belief propagation algorithms. IEEE Trans. Inf. Theory 51(7),
2282–2312 (2005)



About Some System-Theoretic Properties
of Port-Thermodynamic Systems

Arjan van der Schaft1(B) and Bernhard Maschke2

1 Bernoulli Institute for Mathematics, Computer Science and AI,
University of Groningen, Groningen, The Netherlands

a.j.van.der.schaft@rug.nl
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Abstract. Recently a class of Hamiltonian control systems was intro-
duced for geometric modeling of open irreversible thermodynamic pro-
cesses. These systems are defined as ordinary Hamiltonian input-output
systems on a symplectic manifold, with the special property that the
Hamiltonian is homogeneous in the generalized momentum variables,
and that there is an invariant homogeneous Lagrangian submanifold
characterizing the state properties of the thermodynamic system. After
recalling the basic framework we study the passivity, controllability and
observability properties of such systems.
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1 Port-Thermodynamic Systems

It was argued in [2] that the phase space of thermodynamic systems can be
defined as the projectivization of a symplectic manifold, and that reversible and
irreversible thermodynamic processes can be expressed as Hamiltonian dynam-
ics with respect to a Hamiltonian that is homogeneous of degree one in the
generalized momentum variables. In this section, we will recall the recently pro-
posed generalization of this framework to non-isolated thermodynamic systems,
summarizing the definition of homogeneous Hamiltonian control systems and
port-thermodynamic systems as given in [13,22,23].

1.1 Homogeneous Hamiltonian Control Systems

Consider an (n + 1)-dimensional manifold Qe, with elements denoted by qe (the
vector of extensive variables in thermodynamics). Consider its cotangent bundle,
denoted by T ∗Qe, with generalized momentum variables pe ∈ T ∗

qeQe, equipped
with the canonically defined Liouville one-form α and symplectic form ω = dα.
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In natural cotangent bundle coordinates (qe, pe) = (qe
0, . . . , qe

n, pe
0, . . . , pe

n) for
T ∗Qe the Liouville form α has the expression

α =
n∑

i=0

pe
i dqe

i , (1)

while the symplectic form ω is given as ω =
∑n

i=0 dpe
i ∧ dqe

i . On the symplec-
tic manifold T ∗Qe we consider Hamiltonian vector fields which are generated
by Hamiltonian functions that are homogeneous of degree 1 in the momentum
variables pe. Such vector fields are characterized in the following proposition.

Proposition 1. [22, Prop. A.1] If the function h : T ∗Qe → R is homogeneous
of degree 1 in pe, then the Hamiltonian vector field X = Xh satisfies

LXα = 0, (2)

where LX denotes the Lie derivative with respect to the vector field X. Con-
versely, if a vector field X satisfies (2) then X = Xh for some locally defined
Hamiltonian h that is homogeneous of degree 1 in pe. 1

Hamiltonian vector fields Xh with h homogeneous of degree 1 in pe will be
referred to as homogeneous Hamiltonian vector fields.

By Gibbs’ relation the state properties of any thermodynamic system are
specified by a Lagrangian submanifold of the cotangent bundle T ∗Qe with the
following additional homogeneity property [22].

Definition 1. A homogeneous Lagrangian submanifold L ⊂ T ∗Qe is a
Lagrangian submanifold L ⊂ T ∗Qe (i.e., ω|L = 0 and L is maximal with respect
to this property) satisfying (qe, pe) ∈ L ⇒ (qe, λpe) ∈ L, for every λ ∈ R

∗.

Equivalently, in [22] homogeneous Lagrangian submanifolds are geometrically
characterized as maximal submanifolds satisfying α|L = 0.

Motivated by thermodynamics we require that the dynamics specified by a
homogeneous Hamiltonian vector field is compatible with the state properties
defined by a homogeneous Lagrangian submanifold, in the sense of leaving this
submanifold invariant. This is characterized as follows.

Proposition 2. [11,23] A homogeneous Hamiltonian vector field Xh leaves
invariant the homogeneous Lagrangian submanifold L ⊂ T ∗Qe if and only if
h|L = 0.

This leads to the following definition of a class of Hamiltonian control systems.

1 Note that (2) is stronger than the standard condition that the vector field X is
(locally) Hamiltonian, i.e., LXω = 0 [11, p. 97].
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Definition 2. [23] Consider an (n + 1)-dimensional manifold Qe. A homoge-
neous Hamiltonian control system on T ∗Qe is defined as a pair (L, K), composed
of a homogeneous Lagrangian submanifold L ⊂ T ∗Qe and a nonlinear control
system

ẋ = XKa(x) + XKc(x)u, x =
(

qe

pe

)
, (3)

generated by the control dependent Hamiltonian function K := Ka + Kcu :
T ∗Qe → R, u ∈ R

m, where Ka and the elements of the m-dimensional row
vector Kc are functions which are homogeneous of degree 1 in pe, and satisfy the
invariance conditions Ka|L = Kc|L = 0.

Hence homogeneous Hamiltonian control systems leave invariant the homoge-
neous Lagrangian submanifold L characterizing the state properties of the sys-
tem; in particular energy-storage. In the control-theoretic sense, this homoge-
neous Lagrangian submanifold is the actual state space of the system and only
the restriction of the homogeneous Hamiltonian control system to this subman-
ifold is relevant. Thus the state space is defined as a submanifold of a covering
manifold, similarly to approaches to differential-algebraic equation systems such
as described in [3,4,21].

1.2 Relation with Irreversible Thermodynamic Systems

The Thermodynamic Phase Space. In the thermodynamic case the (n+1)-
dimensional manifold Qe consists of the space of all extensive variables. For
simple thermodynamic systems, the extensive variables are volume, number of
moles of chemical species, as well as entropy and internal energy. Following [2],
the thermodynamic phase space is the (2n + 1)-dimensional manifold P (T ∗Qe),
called the projectivization of T ∗Qe, the (2n + 2)-dimensional cotangent bundle
T ∗Qe without its zero-section. The projectivization P (T ∗Qe) is defined as the
fiber bundle over Qe with fiber at any point qe ∈ Qe given by the projective
space P

(
T ∗

qeQe
)
, with projection map π : T ∗Qe → P

(
T ∗

qeQe
)
.

It is a classical result, see e.g. [11, chap. V], [1, Appendix 4], that the (2n+1)-
dimensional manifold P (T ∗Qe) is a contact manifold, endowed with a locally
defined canonical contact form, denoted by θ. In fact, in a neighborhood where
p0 �= 0, the contact form θ is given as

θ = dqe
0 −

n∑

i=1

γidqe
i ,

where γi = − pi

p0
, i = 1, . . . , n, are the homogeneous coordinates correspond-

ing to the condition p0 �= 0. For a thermodynamic system, the n coordinates
γi , i = 1, . . . , n, are called the intensive variables. Whenever p1 �= 0 we may
define different homogeneous coordinates γ̂i = − pi

p1
, i = 0, 2, . . . , n, corre-

sponding to the contact form θ̂ = dqe
1 − γ̂0dq0 −

∑n
i=2 γ̂idqe

i , and so on for
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p2 �= 0, p3 �= 0, . . .. In thermodynamics this reflects the choice of different inten-
sive variables corresponding to, e.g., the energy or entropy representation of the
thermodynamic system.

The formulation of the thermodynamic phase space as a contact manifold
is well-known [1,9,15]. The covering symplectization of the contact manifold
P (T ∗Qe) by the symplectic manifold T ∗Qe, together with the resulting different
choices of intensive variables, unifies the different representations of the ther-
modynamic phase space; in particular, the energy and entropy representations
[2,22,23]. In the same vein, the description of the state properties of the thermo-
dynamic system by a Legendre submanifold of the thermodynamic phase space,
see e.g. [15], is extended to a covering homogeneous Lagrangian submanifold. In
this way, the formulation of reversible and irreversible processes of thermody-
namic systems using contact vector fields as given before in [7,8,16,17], and for
open thermodynamic systems as control contact systems in [5,6,14,19], is now
replaced by ordinary, but homogeneous, Hamiltonian dynamics on the symplec-
tization T ∗Qe of the thermodynamic phase space P (T ∗Qe). Apart from unifying
different representations as mentioned above, this covering has other advantages
as well. From a computational point of view, Hamiltonian dynamics is more easy
than contact dynamics. More importantly, as we will see in the next subsection,
the homogeneous Hamiltonian formulation admits to define in a natural way the
outputs of the thermodynamic system. For further details on the mathematical
relation between the symplectic, but homogeneous, and the contact representa-
tions we refer to [22].

Port-Thermodynamic Systems. In order to ensure the compatibility with
the First and Second Law of thermodynamics, and to define natural outputs
which are conjugate to the inputs, we first recall Euler’s theorem for homoge-
neous functions. Since the Hamiltonian functions Ka and the elements of the
row vector Kc are homogeneous of degree 1 in the momenta pe, Euler’s theorem
yields the identities

Ka = peT ∂Ka

∂pe
and Kc = peT ∂Kc

∂pe
, (4)

where ∂Ka

∂pe and ∂Kc

∂pe are homogeneous of degree 0 in the pe variables, and
thus project to well-defined functions on the thermodynamic phase space
P (T ∗Qe). Furthermore, by definition of Hamiltonian vector fields, ∂Ka

∂pe equals
the autonomous drift dynamics, and ∂Kc

∂pe the input-dependent dynamics, of the
extensive variables qe ∈ T ∗Qe. In view of the First and Second Law of thermo-
dynamics this leads to the following additional requirements on the autonomous
Hamiltonian function Ka, and to the following definition of natural outputs,
which combined with the previous definition of homogeneous Hamiltonian con-
trol systems culminates in the definition of port-thermodynamic systems.

Definition 3. [22] Port-thermodynamic systems are homogeneous Hamiltonian
control systems (L,K) (as in Definition 2) for which the set of extensive vari-
ables contains a coordinate qe

0 corresponding to the total energy of the system
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and qe
1 corresponding to the total entropy of the system, and the autonomous

Hamiltonian Ka satisfies the following additional conditions in relation to the
homogeneous Lagrangian submanifold

∂Ka

∂pe
0

∣∣∣∣
L

= 0,
∂Ka

∂pe
1

∣∣∣∣
L

≥ 0 (5)

Furthermore, the power-conjugate outputs of the thermodynamic system are
defined by the row vector

yp =
∂Kc

∂pe
0

∣∣∣∣
L

(6)

while the entropy flow-conjugate outputs are defined as the row vector

ye =
∂Kc

∂pe
1

∣∣∣∣
L

(7)

The above definition of the outputs yp and ye of a port-thermodynamic sys-
tem, together with the conditions (5) , imply the following balance laws for the
dynamics restricted to the invariant manifold L:

d
dtE = ypu

d
dtS ≥ yeu

(8)

As an illustrative example we discuss the gas-piston-damper system. (Com-
pare with the treatment of this example in a contact geometry setting in [5].)

Example 1 (Actuated gas-piston-damper system). Consider extensive variables
V (volume of the gas), π (momentum of the piston with mass m), entropy S
and total energy E. The state properties of the system are described by the
homogeneous Lagrangian submanifold L with generating function (in energy
representation) −pE

(
U(V, S) + π2

2m

)
, where U(V, S) is the internal energy of

the gas (expressed as a function of volume and entropy):

L = {(V, π, S,E, pV , pπ, pS , pE) | E = U(V, S) + π2

2m ,

pV = −pE
∂U
∂V , pπ = −pE

π
m , pS = −pE

∂U
∂S }

(9)

The dynamics of the system is defined by the homogeneous Hamiltonian

K = Ka + Kcu

=
[
pV A π

m + pπ

(
− ∂U

∂V − d π
m

)
+ pS

d( π
m )2

∂U
∂S

]
+

(
pπ + pE

π
m

)
u,

(10)

where A is the area of the piston, and u the external force applied to the piston.
The power-conjugate output yp = π

m is the velocity of the piston. The entropy-
conjugate output ye is identically zero, implying d

dtS ≥ 0 for every u.
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2 System-Theoretic Properties of Port-Thermodynamic
Systems

In the first part of this section we make some observations regarding the passivity
properties of port-thermodynamic systems, while in the second part we study
their observability in relation with the controllability properties as treated before
in [22].

2.1 Passivity Properties of Port-Thermodynamic systems

Throughout this subsection we will denote qe = (q, S,E), with E the energy, S
the entropy (previously denoted by, respectively, qe

0 and qe
1), and q the remaining

extensive variables.
Following passivity theory [20,24] the equations (8) imply that port-thermo-

dynamic systems restricted to their invariant Lagrangian submanifold L are
cyclo-lossless with respect to the supply rate ypu and the storage function E
(expressed as a function of the extensive variables (q, S)), and cyclo-passive with
respect to the supply rate −yeu and the storage function −S (expressed as a
function of the extensive variables (q, E)). Here, ’cyclo’ [20,24] refers to the fact
that in general the storage function E need not be bounded from below, nor S
is bounded from above.

Let us in particular concentrate on the dissipation inequality d
dt (−S) ≤ −yeu

corresponding to the Second Law of thermodynamics. If the entropy S happens
to be bounded from above, and thus −S is bounded from below, then the port-
thermodynamic system is truly passive with respect to the supply rate −yeu.
Furthermore, see [20,24], in this case the available storage given as

V (q, E) := sup
τ≥0,u:[0,τ ]→Rm

∫ τ

0

ye(t)u(t)dt, (11)

where ye(t) is the output time-function corresponding to an input time-function
u(t) and initial condition (q, E) at time 0, is well-defined (i.e., finite for all (q, E)),
while obviously V ≥ 0. Furthermore, V is itself a storage function, and actually
the minimal one among all other non-negative storage functions.

Interpreting minus the entropy as ’information’, it follows that V as defined in
(11) can be interpreted as the maximally extractable information of the system,
where ye(t)u(t) is the rate of extracted information from the system at time t.

Alternatively, −V is maximal among all functions S ≤ 0 satisfying the
inequality

d

dt
S ≥ yeu (12)

In this sense, −V can be interpreted as the maximal entropy function for the
thermodynamic system. (Obviously, this relates to the question of identifying
the entropy function from the external behavior of the system.)



234 A van der Schaft and B. Maschke

However, as mentioned before, in general the entropy function S need not
be bounded from above. A possible approach to resolve this problem, as already
discussed in [25], is to consider an exergy function

E(q, S) := E(q, S) − T0S, (13)

with T0 a constant temperature. Indeed, by combining the energy and entropy
balance laws (8) one obtains

d

dt
(E − T0S) ≤ ypu − T0yeu = (yp − T0ye) u, (14)

showing that for every T0 ≥ 0 the system is cyclo-passive with respect to the
output yp − T0ye, with storage function E(q, S) given by (13).

Furthermore, in monophase thermodynamic systems E is a convex function
of S. This implies that under additional conditions the exergy function is actually
bounded from below; in this case yielding true passivity. For example, if E(q, S)
only depends on S then convexity yields that for any constant S0 the function

A(S) := E(S) − E′(S0)(S − S0) − E(S0) (15)

is non-negative. This function is known as the Bregman divergence in convex
analysis, or availability function [10] in thermodynamics. Denoting the temper-
ature T0 := E′(S0) ≥ 0 this function equals the exergy function (13) modulo a
constant, implying that the exergy is bounded from below.

2.2 Controllability and Observability Properties

First we recall from [22], with some extensions, how the controllability properties
of a port-thermodynamic system (L,K) can be directly studied in terms of
the homogeneous Hamiltonians Ka and Kc

j , j = 1, · · · ,m, and their Poisson
brackets. First note the following property proved in [22].

Proposition 3. Consider the Poisson bracket {h1, h2} of functions h1, h2 on
T ∗Qe defined with respect to the symplectic form ω = dα. Then

(a) If h1, h2 are both homogeneous of degree 1 in pe, then also {h1, h2} is homo-
geneous of degree 1 in pe.

(b) If h1 is homogeneous of degree 1 in pe, and h2 is homogeneous of degree 0
in pe, then {h1, h2} is homogeneous of degree 0 in pe.

(c) If h1, h2 are both homogeneous of degree 0 in pe, then {h1, h2} is zero.

In particular, Poisson brackets of the homogeneous (degree 1 in pe) Hamiltonians
Ka and Kc

j , j = 1, · · · ,m, are again homogeneous of degree 1 in pe. Secondly, we
recall the well-known correspondence [11] between Poisson brackets of Hamilto-
nians h1, h2, and Lie brackets of their corresponding Hamiltonian vector fields

[Xh1 ,Xh2 ] = X{h1,h2} (16)
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In particular, this property implies that if the homogeneous Hamiltonians
h1, h2 are zero on the homogeneous Lagrangian submanifold L, and thus the
homogeneous Hamiltonian vector fields Xh1 ,Xh2 are tangent to L, then also
[Xh1 ,Xh2 ] is tangent to L, and therefore the Poisson bracket {h1, h2} is also zero
on L. Furthermore, with respect to the projection to the corresponding Legendre
submanifold L, we note the following property of homogeneous Hamiltonians

̂{h1, h2} = {ĥ1, ĥ2} (17)

where ĥ is the contact Hamiltonian of the contact vector field obtained by projec-
tion of the Hamiltonian vector field Xh corresponding to a homogeneous Hamil-
tonian h. This leads to the following characterization of the accessibility algebra
of a port-thermodynamic system characterizing controllability, cf. [22].

Proposition 4. Consider a port-thermodynamic system (L,K) on P(T ∗Qe)
with homogeneous K := Ka +

∑m
j=1 Kc

j uj : T ∗Qe → R, zero on L. Consider
the algebra P (with respect to the Poisson bracket) generated by Ka,Kc

j , j =
1, · · · ,m, consisting of homogeneous functions that are zero on L, and the cor-
responding algebra P̂ generated by K̂a, K̂c

j , j = 1, · · · ,m, on the corresponding
Legendre submanifold L. The accessibility algebra [18] of the port-thermodynamic
system is spanned by all contact vector fields X

̂h on L, with ĥ in the algebra P̂.
It follows that the thermodynamic system (L,K) is locally accessible [18] if

the dimension of the co-distribution dP̂ on L defined by the differentials of ĥ,
with h in the Poisson algebra P, is equal to the dimension of L. Conversely, if
the system is locally accessible then the co-distribution dP̂ on L has dimension
equal to the dimension of L on an open and dense subset of L.

Similar statements can be made with respect to local strong accessibility [18]
of port-thermodynamic systems. In this case the same conditions need to be
satisfied for the algebra Ps, which is equal to P minus the drift Hamiltonian
Ka. (Thus, possibly repeated, Poisson brackets with Ka are taken into account,
but not the function Ka itself.)

With regard to observability we proceed as follows. First, let us consider the
observability properties with respect to the power-conjugate output yp = ∂Kc

∂pe
0

∣∣∣
L

as in (6), with qe
0 and pe

0 corresponding to the energy variable E. Note that

∂Kc
j

∂pe
0

= {Kc
j , qe

0} (18)

Recall (cf. [18] for further information) the definition of the observation space O
as given by the linear span of functions of the form

LX1LX2 · · · LXk
{Kc

j , qe
0}, j = 1, · · · ,m, (19)

with Xi, i = 1, · · · , k, taken from the set {XKa ,XKc
j
, j = 1, · · · ,m}. Using

the equality LXh
K = {h,K} it follows that the observation space O of the
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port-thermodynamic system with power-conjugate outputs yp is given by the
linear span of all expressions

{h1, {h2, {· · · , {hk, {Kc
j , qe

0}} · · · }}}, j = 1, · · · ,m, (20)

with hi, i = 1, · · · , k, taken from the set {Ka,Kc
j , j = 1, · · · ,m}.

Furthermore, since by (5) {Ka, qe
0} = 0 the following results.

Proposition 5. The observation space O of a port-thermodynamic system
(L,K) with power-conjugate outputs yp is equal to the linear span of all functions

{h1, {h2, {· · · , {hk, {hk+1, q
e
0}} · · · }}}, j = 1, · · · ,m, (21)

with hi, i = 1, · · · , k + 1, taken from the set {Ka,Kc
j , j = 1, · · · ,m}.

Furthermore, analogously to [18, Proposition 3.8], O is equal to the linear
span of all functions (21) with hi, i = 1, · · · , k + 1, taken from the accessibility
algebra P.

Since the functions hi in (21) are all homogeneous of degree 1 in pe, and
clearly the function qe

0 is homogeneous of degree 0 in pe, it follows by Proposition
3 that all functions in O are homogeneous of degree 0, and therefore project to
functions ĥ on the thermodynamic phase space P (T ∗Qe). As a result, we obtain
the following proposition.

Proposition 6. Consider the thermodynamic system with power-conjugate out-
puts yp. It is locally observable if dim dÔ = dim L(= n + 1), where Ô is the set
of all functions on L ⊂ P (T ∗Qe) obtained by projection of the functions in O.
Conversely, if the system is locally observable then dim dÔ = dim L(= n+1) on
an open and dense subset of L.

Comparing Proposition 6 with Proposition 4 we notice a close relation between
the two conditions. In fact, the situation is similar to the relation between con-
trollability and observability of lossless port-Hamiltonian systems as discussed
in [12].

More or less the same story holds for the entropy flow -conjugate output
ye = ∂Kc

∂pe
1

∣∣∣
L

as in (7), with the difference that in this case {Ka, qe
1} �= 0, and

hence in this case the observation space is slightly smaller than the linear span
of all functions (21), with qe

0 replaced by qe
1.

3 Conclusion

In this paper we have considered homogenous Hamiltonian control systems,
which are generated by Hamiltonian drift and control Hamiltonian functions that
are all homogeneous of degree one in the momentum variables, and leave invari-
ant a homogeneous Lagrangian submanifold representing the actual state space
of the system. They represent open thermodynamic systems once additional
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conditions are satisfied corresponding to the First and Second Law of thermody-
namics, leading to the definition of port-thermodynamic systems. The ’symplec-
tization’ point of view also enables the definition of outputs which are conjugate
in the sense of external energy or entropy flow, and leads to elegant results
concerning controllability and observability. Furthermore, we have made some
initial observations regarding the passivity properties of port-thermodynamic
systems, and on the use of exergy functions; thus suggesting further research on
passivity-based control of port-thermodynamic systems.
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Abstract. Based on information and para-contact metric geometries,
in this paper a class of dynamical systems is formulated for describ-
ing time-development of expectation variables. Here such systems for
expectation variables are exactly derived from continuous-time master
equations describing nonequilibrium processes.

Keywords: Master equations · Para-contact manifolds ·
Nonequilibrium statistical mechanics · Information geometry

1 Introduction

Information geometry is a geometrization of mathematical statistics [1,2], and
its differential geometric aspects and applications in statistics have been inves-
tigated. Examples of applications of information geometry include thermody-
namics, and some links between equilibrium thermodynamics and information
geometry have been clarified. In addition, links between information geometry
and contact geometry have been argued [3,4]. In this context, it was found that
para-Sasakian geometry is suitable for describing thermodynamics [5,6], where
para-Sasakian manifolds are para-contact metric manifolds satisfying some addi-
tional condition. We then ask how para-contact metric manifolds describe ther-
modynamics.

In this paper a class of nonequilibrium thermodynamic processes are formu-
lated on a para-contact metric manifold. Most of discussions in this paper have
been in [7], and those involving an almost para-contact structure are given in
this contribution.

2 Preliminaries

In this paper manifolds are assumed smooth and connected. In addition tensor
fields are assumed smooth and real. The set of vector fields on a manifold M is
denoted by S TM, and the Lie derivative along X ∈ S TM by LX .
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In this section definitions and some existing statements are summarized. (see
[5,8]).

Let M be a (2n + 1)-dimensional manifold (n ≥ 1). An almost para-contact
structure on M is a triplet (φ, ξ, λ), where ξ is a vector field, λ a one-form,
φ : S TM → S TM a (1, 1)-tensor field such that

(i) : φ 2 = Id − λ ⊗ ξ, (ii) : λ(ξ) = 1, and (iii) : ker(λ) = Im(φ) = D+ + D −,

where ker(λ) := {X ∈ S TM |λ(X) = 0 }, Im(φ) := {φ(X,−) ∈ S TM|X ∈
S TM}, D ± are eigen-spaces whose eigenvalues are ±1, and Id is an identity
operator. A pseudo Riemannian metric tensor field g satisfying

g(φX, φY ) = − g(X,Y ) + λ(X)λ(Y ), ∀X,Y ∈ S TM
is referred to as a metric tensor compatible with an almost para-contact structure.
It is verified for non-compact manifolds that any almost para-contact structure
admits a metric tensor field compatible with an almost para-contact structure.
Then (M, φ, ξ, λ, g) is referred to as an almost para-contact metric manifold.

On almost para-contact metric manifolds, one can show that

λ φ = 0, φ ξ = 0, λ(X) = g(X, ξ), g(ξ, ξ) = 1, and g(φX, Y ) + g(X,φY ) = 0,

for ∀X,Y ∈ S TM. If g of an almost para-contact metric manifold satisfies

g(X,φY ) =
1
2
dλ(X,Y ), ∀X,Y ∈ S TM (1)

then, (M, φ, ξ, λ, g) is referred to as a para-contact metric manifold, where the
convention of the numerical factor dλ(X,Y ) = Xλ(Y ) − Y λ(X) − λ([X,Y ]),
([X,Y ] := XY − Y X) has been adopted. Para-Sasakian manifolds are para-
contact metric manifolds satisfying the so-called normality condition.

Coordinate expressions were given for a para-contact metric manifold (and
a para-Sasakian manifold) (M, φ, ξ, λ, g) in [5]. They are summarized here. Let
(x, y, z) be coordinates for M with x = {x 1, . . . , xn} and y = {y 1, . . . , yn} such
that λ = dz − y adx a where the Einstein convention has been used. Introduce
the pseudo-Riemannian metric tensor field, referred to as the Mruagala metric
tensor field [11],

g M =
1
2
dx a ⊗ dy a +

1
2
dy a ⊗ dx a + λ ⊗ λ, (2)

which is shown to induce a para-contact metric manifold. In what follows we
consider the case where y a > 0 for all a ∈ {1, . . . , n}. Introduce the co-frame
{̂θ 0, ̂θ 1

−, ̂θ 1
+, . . . , ̂θ n

−, ̂θ n
+} and frame {e 0, e

−
1 , e+

1 , . . . , e−
n , e+

n } with

̂θ 0 := λ, ̂θ a
± :=

1
2
√

y a
[ y adx a ± dy a] , (no sum over a),

e 0 := ξ, e±
a :=

√
y a

[

1
y a

(

∂

∂x a
+ y a

∂

∂z

)

± ∂

∂y a

]

, (no sum over a),
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so that

̂θ 0(e 0) = 1, ̂θ a
+(e+b ) = ̂θ a

−(e−
b ) = δ a

b , others vanish,

where δ a
b is the Kronecker delta, giving unity for a = b and zero otherwise. One

can then show that

g M = ̂θ 0⊗ ̂θ 0+
n

∑

a=1

̂θ a
+⊗ ̂θ a

+−
n

∑

a=1

̂θ a
−⊗ ̂θ a

−, ξ =
∂

∂z
, φ = − ̂θ a

−⊗e+
a − ̂θ a

+⊗e−
a .

Then, introducing the abbreviation φ(X) := φ(X,−) ∈ S TM for X ∈ S TM,
one has φ( e+

a ) = − e−
a , φ( e−

a ) = − e+
a , and φ( e 0 ) = 0.

In the context of geometry of thermodynamics, contact manifold is identified
with the so-called thermodynamic phase space [12]. This manifold is defined
as follows (see [9] for details). Let C be a (2n + 1)-dimensional manifold (n =
1, 2, . . .), and λ a one-form. If λ satisfies

λ ∧ dλ ∧ · · · ∧ dλ
︸ ︷︷ ︸

n

	= 0,

then the pair (C, λ) is referred to as a contact manifold, and λ a contact one-
form. It has been known as the Darboux theorem that there exists a special
set of coordinates (x, y, z) with x = {x 1, . . . , xn} and y = {y 1, . . . , yn} such
that λ = dz − y adx a. It follows from (1) that para-contact metric manifolds are
contact manifolds.

The Legendre submanifold A ⊂ C is an n-dimensional submanifold where
λ|A = 0 holds. One can verify that

A� =
{

(x, y, z)
∣

∣

∣

∣

y a =
∂�

∂x a
, and z = �(x)

}

, (3)

is a Legendre submanifold, where � : C → R is a function of x on C. The
submanifold A� is referred to as the Legendre submanifold generated by �, and
is used for describing equilibrium thermodynamic systems [12].

As shown in [3] and [6], a class of relaxation processes, initial states approach
to the equilibrium state as time develops, can be formulated as contact Hamil-
tonian vector fields on contact manifolds. This statement on a class of contact
Hamiltonian vector fields can be summarized as follows.

Proposition 1 (Legendre submanifold as an attractor, [3]). Let (C, λ) be a
(2n + 1)-dimensional contact manifold with λ being a contact form, (x, y, z)
its coordinates so that λ = dz − y adx a, and � a function depending only on x.
Then, one has

1. The contact Hamiltonian vector field associated with the contact Hamiltonian
h : C → R such that h(x, y, z) = �(x) − z, gives

d
dt

x a = 0,
d
dt

y a =
∂ �

∂x a
− y a,

d
dt

z = �(x) − z. (4)
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2. The Legendre submanifold generated by �, given by (3), is an invariant man-
ifold for the contact Hamiltonian vector field.

3. Every point on C\A� approaches to A� along an integral curve as time
develops. Equivalently A� is an attractor in C.

4. Let {x(0), y(0), z(0)} be a point on C\A�. Then for any t ∈ R,

h(x(t), y(t), z(t)) = exp(− t)h(x(0), y(0), z(0)).

3 Solvable Master Equations

In this section a set of master equations with particular Markov kernels is intro-
duced, and then its solvability is shown.

Let Γ be a set of finite discrete states, t ∈ R time, and p(j, t) dt a probability
that a state j ∈ Γ is found in between t and t + dt. The first objective is to
realize a given distribution function p eq

θ that can be written as

p eq
θ (j) =

π θ(j)
Z(θ)

, Z(θ) :=
∑

j∈Γ

πθ(j)

where θ ∈ Θ ⊂ R
n is a parameter set with θ = {θ 1, . . . , θ n}, and Z : Θ → R

the so-called partition function so that p eq
θ is normalized:

∑

j∈Γ p eq
θ (j) = 1.

In what follows, attention is focused on a class of master equations. Let
p : Γ × R → R≥0 be a time-dependent probability function. Then, consider the
set of master equations

∂

∂t
p(j, t) =

∑

j′( �=j)

[ w(j|j ′) p(j′, t) − w(j ′|j) p(j, t)] , (5)

where w : Γ ×Γ → I, (I := [ 0, 1 ] ⊂ R) is such that w(j|j ′) denotes a probability
that a state jumps from j ′ to j. With (5) and the assumptions

w θ(j|j ′) = p eq
θ (j), and p eq

θ (j) 	= 0, ∀j ∈ Γ,

one derives the solvable master equations:

∂

∂t
p(j, t) = p eq

θ (j) − p(j, t). (6)

An explicit form of p(j, t) is obtained by solving (6). Then the following propo-
sition can easily be shown.

Proposition 2 (Solutions of the master equations, [7]). The solution of (6) is

p(j, t) = e−t p(j, 0) + (1 − e−t)p eq
θ (j), from which lim

t→∞ p(j, t) = p eq
θ (j).

With this proposition, one notices that every solution p depends on θ. Taking
into account this, p(j, t) is denoted p(j, t; θ). Also notice that the equilibrium
state is realized with (6) as the time-asymptotic limit.
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4 Time-Development of Observables

In this section differential equations describing time-development of observables
are derived with the solvable master equations under some assumptions. Then,
the time-asymptotic limit of such observables is stated. Here observable in this
paper is defined as a function that does not depend on a random variable or a
state. Thus expectation values with respect to a probability distribution function
are observables.

Let O a : Γ → R be a function with a ∈ {1, . . . , n}, and p : Γ × R → R≥0 a
distribution function that follows (6). Then

〈 O a 〉 θ (t) :=
∑

j∈Γ

O a(j) p(j, t; θ), and 〈 O a 〉 eq
θ :=

∑

j∈Γ

O a(j) p eq
θ (j),

are referred to as the expectation variable of O a with respect to p, and that with
respect to p eq

θ , respectively.
If an equilibrium distribution function belongs to the exponential family, then

the function Ψ eq : Θ → R with

Ψ eq(θ) := ln

⎛

⎝

∑

j∈Γ

e θ bO b(j)

⎞

⎠ , (7)

plays various roles. Here and in what follows, (7) is assumed to exist. In the
context of information geometry, this function is referred to as a θ-potential.
Discrete distribution functions are considered in this paper and it has been
known that such distribution functions belong to the exponential family, then
Ψ eq in (7) also plays a role throughout this paper. The value Ψ eq(θ) can be
interpreted as the negative dimension-less free-energy. It follows from (7) that

〈 O a 〉 eq
θ =

∂Ψ eq

∂θ a
.

One then can generalize Ψ eq defined at equilibrium state to a function defined
in nonequilibrium states as Ψ : Θ × R → R,

Ψ(θ, t) :=

⎛

⎝

1
J 0

∑

j∈Γ

p(j, t; θ)
p eq

θ (j)

⎞

⎠ Ψ eq(θ), where J 0 :=
∑

j′∈Γ

1.

Since p eq
θ (j) 	= 0 and Ψ eq(θ) < ∞ by assumptions, the function Ψ exists. Gen-

eralizing the idea for the equilibrium case, the function Ψ may be interpreted as
a nonequilibrium negative dimension-less free-energy.

A set of differential equations for {〈 O a 〉 θ} and Ψ can be derived as follows.

Proposition 3 (Dynamical system obtained from the master equations, [7]).
Let θ be a time-independent parameter set characterizing a discrete distribution
function p eq

θ . Then {〈 O a 〉 θ} and Ψ are solutions to the differential equations
on R

2n+1

d
dt

θ a = 0,
d
dt

〈 O a 〉 θ = − 〈 O a 〉 θ +
∂ Ψ eq

∂θ a
, and

d
dt

Ψ = −Ψ + Ψ eq.
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Remark 1. The explicit time-dependence for this system is obtained as θ a(t) =
θ a(0), and Ψ(θ, t) = e− t [ Ψ(0) − Ψ eq(θ) ] + Ψ eq(θ), and

〈 O a 〉 θ (t) = e− t

[

〈 O a 〉 θ (0) − ∂Ψ eq

∂θ a

]

+
∂Ψ eq

∂θ a
.

From these, one can verify that the time-asymptotic limit of these variables are
those defined at equilibrium. In this paper this dynamical system is referred to
as the moment dynamical system.

5 Geometric Description of Dynamical Systems

Several geometrization of nonequilibrium states for some models and methods
have been proposed. Yet, suffice to say that there remains no general consen-
sus on how best to extend a geometry of equilibrium states to a geometry of
nonequilibrium states. In this section, a geometrization of nonequilibrium states
is proposed for the moment dynamical system.

5.1 Geometry of Equilibrium States

Equilibrium states are identified with the Legendre submanifolds generated by
functions in the context of geometric thermodynamics [10,12]. Besides, in the
context of information geometry, equilibrium states are identified with dually
flat spaces [1]. Combining these identifications, one has the following.

Proposition 4 (A contact manifold and a strictly convex function induce a
dually flat space, [3]). Let (C, λ) be a contact manifold, (x, y, z) a set of coordi-
nates such that λ = dz − y adx a with x = {x 1, . . . , xn} and y = {y 1, . . . , yn},
and � a strictly convex function depending only on x. Then, ((C, λ),�) induces
an n-dimensional dually flat space

To apply the proposition above to physical systems, the coordinate sets x
and y are chosen such that x a and y a form a thermodynamic conjugate pair for
each a. Here it is assumed that such thermodynamic variables can be defined
even for nonequilibrium states, and that they are consistent with those variables
defined at equilibrium. In addition to this, the physical dimension of � should
be equal to that of y a dx a. Also Ψ and its Legendre transform are chosen as �.

5.2 Geometry of Nonequilibrium States

So far geometry of equilibrium states have been discussed. One remaining issue
is how to give the physical meaning of the set outside A�, C \ A�. A natural
interpretation of C \ A� would be some set of nonequilibrium states. We make
this interpretation in this paper.

As shown in Proposition 2, initial states approach to the equilibrium state as
time develops. This can be reformulated on contact manifolds and para-contact
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metric manifolds. In the contact geometric framework of nonequilibrium thermo-
dynamics, the equilibrium state is identified with a Legendre submanifold. Then,
as found in [3] and [6], some dynamical systems expressing nonequilibrium pro-
cess can be identified with a class of contact Hamiltonian vector fields on a
contact manifold. The above claim also holds on para-contact metric manifolds.

Geometry of Moment Dynamical System. Proposition 3 is written in a
contact geometric language here. In what follows phase space is identified with
a (2n + 1)-dimensional para-contact metric manifold (C, φ, ξ, λ, g M).

As shown below, the moment dynamical system is a contact Hamiltonian
system.

Proposition 5 (Moment dynamical system as a contact Hamiltonian system,
[7]). The dynamical system in Proposition 3 can be written as a contact Hamil-
tonian system.

One is interested in how a (1, 1)-tensor field φ plays a role for geometric nonequi-
librium thermodynamics. To give an answer, one needs the following.

Lemma 1. Let {ẋ a}, {ẏ a}, ż be some functions, and X 0 the vector field

X 0 = ẋ a ∂

∂x a
+ ẏ a

∂

∂y a
+ ż

∂

∂z
.

Then, φ(X 0) and φ 2(X 0) are calculated as

φμ(X 0) = (−1)μ ẋ a

(

∂

∂x a
+ y a

∂

∂z

)

+ ẏ a
∂

∂y a
, μ = 1, 2.

Proof. Throughout this proof, the Einstein convention is not used. With the
local expressions shown in Sect. 2, one has

̂θ a
±(X 0) =

√
y a

2
ẋ a ± ẏ a

2
√

y a
,

e+
a + e−

a =
2√
y a

(

∂

∂x a
+ y a

∂

∂z

)

, and e+
a − e−

a = 2
√

y a
∂

∂y a
.

Combining these, one has

φ(X 0) =
∑

a

[

− ̂θ a
−(X 0) e+

a + ̂θ a
+(X 0) e−

a

]

=
∑

a

[

−
√

y a

2
ẋ a( e+

a + e−
a ) +

ẏ a

2
√

y a
( e+

a − e−
a )

]

=
∑

a

[

− ẋ a

(

∂

∂x a
+ y a

∂

∂z

)

+ ẏ a
∂

∂y a

]

.

For φ 2(X 0), substituting λ(X 0) = ż − ∑

a y aẋ a into φ 2(X 0) = X 0 − λ(X 0)ξ,
one has the desired expression. ��
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Applying this Lemma, one has the following.

Theorem 1 (Roles of φ of Xh for the moment dynamical system). Let Xh be
the contact Hamiltonian vector field in Proposition 1. Then

Lφ(X h)h = Lφ 2(X h)h = 0.

Proof. Substituting ẋ a = 0 into φμ(X 0) in Lemma 1, one has

φμ(Xh) = ẏ a
∂

∂y a
, where ẏ a =

∂�

∂x a
− y a, μ = 1, 2.

Then, with ∂h/∂y a = 0, one has

Lφ µ(X h)h = [φμ(Xh)] h = 0, μ = 1, 2.

��
This states that the h is preserved along φμ(Xh) ∈ S TC, which should be
compared with the case of LX h

h:

LX h
h = − ż = −(�(x) − z) = −h.

Curve Length from the Equilibrium State. In nonequilibrium statistical
physics, attention is often concentrated on how far a state is close to the equi-
librium state. In general, to define and measure such a distance in terms of
geometric language, length of a curve can be used. In Riemannian geometry,
length is a measure for expressing how far given two points are away, where
these points are connected with an integral curve of a vector field on a manifold.

The following can easily be proven.

Lemma 2 ([7]). The length between a state and the equilibrium state for the
moment dynamical system calculated with (2) is

l[XΨ ] t
∞ :=

∫ t

∞

√

g M(XΨ ,XΨ ) dt = |h(θ, 〈 O 〉 θ , Ψ) |, (8)

where 〈 O 〉 θ = {〈 O 1 〉 θ , . . . , 〈 On 〉 θ}, h is such that h(θ, 〈 O 〉 θ , Ψ) = Ψ eq(θ)−Ψ
(see Proposition 1), and XΨ its corresponding contact Hamiltonian vector field.
Then the convergence rate for (8) is exponential.

Combining Lemma 2 and discussions in the previous sections, one arrives at
the main theorem in this paper.

Theorem 2 (Geometric description of the expectation variables and its conver-
gence). The moment dynamical system derived from solvable master equations
are described on a para-contact metric manifold, and its convergence rate asso-
ciated with the metric tensor field (2) is exponential.
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6 Conclusions

This paper has offered a viewpoint that expectation variables of the moment
dynamical system derived from master equations can be described on a para-
contact metric manifold. To give a geometric description of these variables a
contact Hamiltonian vector field has been introduced on a para-contact met-
ric manifold. Also, roles of the (1, 1)-tensor field φ have been clarified in this
paper (Theorem 1). Then, with the Mrugala metric tensor field, the convergence
rate has been shown to be exponential on this para-contact metric manifold
(Theorem 2).
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Abstract. In a statistical manifold, we can naturally define submani-
folds that are simultaneously autoparallel with respect to both the primal
and the dual affine connections of the statistical manifold. We call them
doubly autoparallel submanifolds. The aim of this paper is to mainly
introduce doubly autoparallelism on positive definite matrices in linear
algebraic way and show its applicability to two related topics.

Keywords: Semidefinite program · Structured covariance estimation ·
Doubly autoparallelism · Jordan subalgebra

1 Introduction

Let us consider an information geometric structure [3] (g,∇,∇∗) on a manifold
M, where g,∇,∇∗ are, respectively, a Riemannian metric and a pair of torsion-
free affine connections satisfying

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗
XZ), ∀X,Y,Z ∈ X (M).

Here, X (M) denotes the set of all vector fields on M. Such a manifold with
the structure (g,∇,∇∗) is called a statistical manifold and we say ∇ and ∇∗ are
mutually dual with respect to g.

In a statistical manifold, we can naturally define a submanifold N that is
simultaneously autoparallel with respect to both ∇ and ∇∗.

Definition 1. Let (M, g,∇,∇∗) be a statistical manifold and N be its subman-
ifold. We call N doubly autoparallel in M when the followings hold:

∇XY ∈ X (N ), ∇∗
XY ∈ X (N ), ∀X,Y ∈ X (N ).

The concept of doubly autoparallelism has been investigated for symmet-
ric cones [19] and probability simplex [16] in algebraic ways, where Jordan or
Hadamard subalgebras play crucial roles. In addition, the concept plays impor-
tant roles in several applications of information geometry. The first purpose of
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the paper shows a tractable characterization of doubly autoparallel submani-
folds in particular for positive definite matrices using basic knowledges of linear
algebra.

Next, we consider two applications: the one is a statistical problem called
the maximum likelihood estimation of structured covariance matrix [1,5], and
the other is a convex optimization problem called semidefinite program [20]. We
show that solvabilities or difficulties of both problems are, in some sense, related
with the doubly autoparallelism.

2 Dually Flat Structure on Positive Definite Matrices

We summarize the facts given in [17].
Let Sym(n) denote the set of n by n real symmetric matrices, which is a

vector space on R of dimension N := n(n + 1)/2. We use the standard inner
product

〈X,Y 〉 := tr(XY ), X, Y ∈ Sym(n). (1)

In the following we show PD(n) is dually flat. Denote by TP PD(n) the
tangent vector space at P ∈ PD(n). Since each TP PD(n) is isomorphic to
Sym(n), we identify the tangent vector in TP PD(n) with the element in Sym(n).
In other words, for P (x) :=

∑N
i=1 xiEi ∈ PD(n) with arbitrary fixed basis

matrices {Ei}N
i=1 of Sym(n), we consider (∂/∂xi)P ≡ Ei.

Define a Riemannian metric at P for each tangent vector space TP PD(n) by

gP (X,Y ) := tr(P−1XP−1Y ), X, Y ∈ TP PD(n).

Next, consider two linear isomorphisms between TP1PD(n) and TP2PD(n):

Π : X ∈ TP1PD(n) �→ X ∈ TP2PD(n),
Π∗ : X ∈ TP1PD(n) �→ P2P

−1
1 XP−1

1 P2 ∈ TP2PD(n).

Regarding these isomorphisms as parallel shifts, we see that the correspond-
ing affine connections, respectively denoted by ∇ or ∇∗, have the following
properties:

(d1) For any P1, P2, it holds gP1(X,Y ) = gP2(Π(X),Π∗(Y )).
(d2) Both torsions and curvatures derived from ∇ and ∇∗ vanish.

Hence, the structure (PD(n), g,∇,∇∗) is dually flat. They are represented by

(∇∂i
∂j)P ≡ 0, ∂i := ∂/∂xi

(∇∗
∂i

∂j)P ≡ −EiP
−1Ej − EjP

−1Ei. (2)

Let P (t), t ∈ I ⊂ R be a smooth curve in PD(n) defined on a interval I,
and X(t) be its tangent vector at P (t). The curve satisfying

Π(X(t1)) = X(t2) Π∗(X(t1)) = X(t2), ∀t1, t2 ∈ I
are respectively called ∇- and ∇∗-geodesics.



Doubly Autoparallel Structure and Its Applications 253

The ∇-geodesic is nothing but the ordinary straight line, i.e,

P (t) = P + tX ∈ PD(n), P ∈ PD(n),X ∈ Sym(n).

The tangent vector is always X. On the other hand, the ∇∗-geodesic is repre-
sented by

P (t) = (P + tY )−1 ∈ PD(n), P ∈ PD(n), Y ∈ Sym(n).

Actually, the tangent vectors of this curve at P (t1) and P (t2) are, respectively,

X1 = −P (t1)−1Y P (t1)−1,X2 = −P (t2)−1Y P (t2)−1.

It would be easy to see Π∗(X1) = X2. Consequently, ∇∗-geodesic is the straight
line in the space of inverse matrices.

Finally we state the relation with Jordan algebras [7]. The Jordan product
on Sym(n) is defined by

X ∗ Y :=
1
2
(XY + Y X). (3)

The associated quadratic representation is

P(X)Y := XY X, X, Y ∈ Sym(n). (4)

Then we see that the logarithmic characteristic function on PD(n)

ψ(P ) = − log det P (5)

is the potential function of the dually flat structure (PD(n), g,∇,∇∗) as follows:
For P ∈ PD(n), there exists Q ∈ Sym(n) such that Q ∗ Q = P . We have

gP (X,Y ) = D2ψ(P )[X,Y ] = 〈P(Q−1)X,P(Q−1)Y 〉, (6)

where Dkψ(P )[•, . . . , •] denote k-th directional derivative of ψ(P ). Further,
∇∗-connection meets the following relation:

gP (∇∗
∂i

∂j , ∂k) = D3ψ(P )[Ei, Ej , Ek] = −2〈P(Q−1)Ei ∗ P(Q−1)Ej ,P(Q−1)Ek〉
In particular, the connection ∇∗ in (2) satisfies the definition of Jordan prod-

uct c1) and c2) when it is regarded as a binary operation of Ei and Ej . The
right-hand side of (2) is sometimes called mutation of the Jordan product. In
particular the connection ∇∗ at P = I corresponds to the standard Jordan prod-
uct (3) on Sym(n). These relations between information geometry and Jordan
algebra can be extended on general symmetric cones [19].

3 Related Topics in Applications

In this section, as application problems on PD(n), we present a brief introduction
to semidefinite programming (SDP) [20] and maximum likelihood estimation of
structured covariance matrix [1,5]. A certain common class of structured matri-
ces in PD(n) is featured in relation with the solvability or difficulties of these
mathematical problems.
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3.1 Semidefinite Programming

Let c ∈ Rm and Ei ∈ Sym(n), i = 0, . . . ,m be given vector and matrices, where
{Ei}m

i=1 are linearly independent. Semidefinite program is defined (in a dual
form) as the optimization problem:

min
x

cT x, s.t. P (x) = E0 +
m∑

i=1

xiEi � O. (7)

Since the correspondence between x and P (x) is one-to-one, we call the set of
P (x) satisfying (7) the feasible region. Define

V := span{Ei}m
i=1, E0 + V := {X|X − E0 ∈ V},

then the feasible region of semidefinite program is the closure of L, which is
defined by

L := PD(n) ∩ (E0 + V). (8)

From a computational viewpoint, semidefinite program can be solved via
a certain type of interior point algorithms [14]. In that case, computational
complexity depends on the choice of barrier functions for L, essentially for the
convex cone PD(n). It is proved that if a barrier function is self-concordant
[14], the interior point method works efficiently. The logarithmic characteristic
function ψ in (5) is an example of such functions on PD(n).

Several researchers [4,6,10,18] have introduced the differential geometric
point of view to analyze the mathematical structures behind the interior point
methodology. In [8,9,15] the authors discussed the relation between the second
fundamental form (or the embedding curvature) of L and computational complex-
ity (the number of Newton steps) by investigating the affine scaling trajectories.
In particular the following result was shown:

Proposition 1. Suppose the following two assumptions:

(i) the ∇∗-embedding curvature of L in PD(n) vanishes everywhere on the fea-
sible region L of semidefinite program,

(ii) one of any feasible points is known.

Then, the SDP with the arbitrary linear objective function can be explicitly solved
via the formula of the optimal solutions.

The specific geometric structure of L given in (i) would be of interest. The
condition (i) can be equivalently rewritten in terms of {Ei}m

i=1, which charac-
terize the linear subspace V, as follows:

(i) ⇐⇒ ∇∗
∂i

∂j ≡ −EiP
−1Ej − EjP

−1Ei ∈ V, i, j = 1, · · · ,m, ∀P ∈ L. (9)

However, note that it is practically difficult to check the condition (9) at all
P ∈ L. Another algebraic characterization of this class of matrices will be given
in the Sect. 4.1.

The above result suggests the close relation with geometric property such as
embedding curvature of the feasible region and the computational complexity.
It not only proposes the interesting theoretical problem but also give a clue to
consider efficiently-solved structures for large-scale SDP problems.
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3.2 Maximum Likelihood Estimation of Structured Covariance
Matrices

Suppose the finite observed data {z1, z2, ..., zn} obey to the p-dimensional mul-
tivariate normal distribution with zero-mean and covariance matrix P

p(z) = (2π)−p/2(det P )−1/2 exp{−1
2
zT P−1z}

and consider the problem to estimate P from the observed data. The structured
covariance estimation problem assumes that true P should lie in a certain subset,
denoted by L, in PD(n) depending on the mechanisms of data generations.

For example, several elements of P may be known beforehand. Or in signal
processing the data observed from the stationary time series or images involve
(block) Toeplitz or Hankel structure for covariance matrices. These are examples
of linear constraints of P .

On the other hand, in the field of statistical estimation called graphical Gaus-
sian modelling or covariance selection [11], the structure in which several ele-
ments of P−1 are specified to be zero, plays an important role. In this case
the constraints are inversely-linear, i.e., linear with respect to the elements of
P−1. Further, in the area of factor analysis, more complicated structures may
be possibly imposed on covariance matrices.

Thus, attention has been paid to structured covariance estimation as an
important problem in practice for a long time [1,5].

Now consider the maximum likelihood estimation for the case of linear con-
straints on covariance matrices, which is basic and important in practice, e.g,
factor analysis or Toeplitz structure in signal processing. In other words, we
consider the following general linear structure that is same as in SDP:

L = {P |P = E0 +
m∑

i=1

xiEi ∈ PD(n)}.

Since the likelihood function L(P ) for the observed data {z1, z2, ..., zn} is

L(P ) =
n∏

i=1

f(zi) = (2π)−np/2(det P )−n/2
n∏

i=1

exp{−1
2
zT
i P−1zi},

we have

log L(P ) = −np

2
log 2π +

n

2
{− log det P − 1

n

n∑

i=1

zT
i P−1zi}

= −np

2
log 2π +

n

2
{− log det P − tr(P−1S)},

where S is the sample covariance matrix calculated by

S =
1
n

n∑

i=1

ziz
T
i .

and it is not generally in L.
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Hence, solving the maximizer of log L(P ) on L, i.e, the maximum likelihood
estimation for covariance structure L is equivalent with the optimization:

min
P∈L

h(P ) s.t. h(P ) = − log det P−1 + tr(P−1S).

Unfortunately, the function h(P ) is not convex with respect to P . Hence, in
general we can only expect to solve local minimizers. However, note that the
first and second terms of h(P ) are, respectively, self-concordant and linear with
respect to P−1 as was shown previously, and thus, h(P ) is also self-concordant
with respect to not P but P−1. We can summarize as follows:

Proposition 2. If the inverses of all matrices in L are also equipped with linear
structure, then the MLE for L can be reduced to convex program for a self-
concordant function h(P ) and solved efficiently by interior point methodology.

The theoretical problem would be the characterization of such both linear
and inversely linear structure of positive definite matrices. This will be discussed
in the Sect. 4.

Unfortunately, it is shown that not so many general or useful linear structures
are in this nice class. For example, Toeplitz structure of order greater than three
is generally not. However, to tackle the problem the so-called EM (Expectation
Maximization) algorithm are often employed with combining the technique to
embed the general linearly structured matrix as a submatrix of the larger order
one in the nice class [12,13]. Hence, the characterization problem is of importance
in this sense, too (cf. the Sect. 4).

4 Doubly Autoparallel Submanifolds in Positive Definite
Matrices

In the previous sections we show that the class of semidefinite program whose
feasible region satisfies the condition (9) can be solved explicitly. In addition,
it is shown maximum likelihood estimation for structured covariance matrices
can be reduced to the self-concordant convex programming if the structure is
inversely linear.

Motivated by the special structure, we characterize, in this section, doubly
autoparallelism on PD(n) and discuss the relation with the Jordan algebra in
Sym(n). Further, we show examples of the doubly autoparallel submanifolds in
PD(n).

4.1 Doubly Autoparallelism

From the Definition 1 and the arguments in the Sect. 2, we see that the following
results hold:
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Theorem 1. For m < N := dim Sym(n) an m dimensional submanifold L
in PD(n) is doubly autoparallel if and only if it satisfies the following two
conditions:

(1) L is the intersection of an affine subspace of Sym(n) and the positive define
cone PD(n), i.e., there exist Ei ∈ Sym(n), i = 0, · · · ,m where {Ei}m

i=1 are
linearly independent and satisfy

L := PD(n)∩(E0+V), where V := span{Ei}m
i=1, E0+V := {X|X−E0 ∈ V}.

(2) For all {Ei}m
i=1 in the condition (1), it holds

EiP
−1Ej + EjP

−1Ei ∈ V, i, j = 1, . . . ,m, ∀P ∈ L, (10)

i.e., ∇∗-embedding curvature (the second fundamental form for ∇∗) vanishes
on L.

Remark. The definition of the doubly autoparallelism is equivalent with
autoparallelism in both ∇- and ∇∗-connections and the concept can be extended
to general statistical manifold. In the above definition (1) and (2) imply ∇- and
∇∗-autoparallelism, respectively.

Theorem 2. The following statements are equivalent:

1. L ⊂ PD(n) is doubly autoparallel,
2. there exist Ei, F

i ∈ Sym(n), i = 0, . . . ,m, where {Ei}m
i=1 and {F i}m

i=1 are
linearly independent sets of matrices and L is simultaneously represented
by

L = {P |P = E0 +
m∑

i=1

xiEi � O,∃x = (xi) ∈ Rm}

= {Q|Q−1 = F 0 +
m∑

i=1

yiF
i � O,∃y = (yi) ∈ Rm}.

Thus, from Proposition 2 we immediately see that MLE for structured covari-
ance matrices in L is cast to convex optimization with a self concordant function
if and only if L is doubly autoparallel in PD(n).

Next, we discuss on the structure and concrete examples of doubly autoparal-
lel submanifolds in PD(n). We have a simpler condition in the following special
case:

Proposition 3. Let E0 be in V = span{E}m
i=1 (L = V∩PD(n)) and the identity

matrix I be in L. Then, L is doubly autoparallel if and only if V is a Jordan
subalgebra of Sym(n), i.e., the following two conditions holds:

1. V is a subspace of Sym(n),
2. V is closed under the Jordan product, i.e., V is a Jordan subalgebra:

Ei ∗ Ej := (EiEj + EjEi)/2 ∈ V, ∀Ei, Ej , i, j = 1, . . . , m. (11)
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Remark. As examples of Jordan subalgebra in Sym(n), we have

(i) doubly symmetric matrices defined by

{X|X = (xij), xij = xji, xij = xn+1−j n+1−i}, (12)

i.e., the set of matrices that are symmetric with respect to both main and
anti-main diagonal elements,

(ii) matrices that have the prescribed eigenvectors

and so on. For more further information on Jordan subalgebras in Sym(n),
consult with [12].

The doubly autoparallel submanifolds characterized by Jordan subalgebras
in the above proposition are the intersections of PD(n) and linear but not affine
subspaces, i.e., they consist of subcones in PD(n) and contain the origin. Hence,
we give an example of doubly autoparallel submanifolds that are not subcones.

We denote by J S(k) one of the arbitrary Jordan subalgebras of Sym(k) that
contain the k-th order identity matrix Ik. When it is unnecessary to specify the
order k, we denote it simply by J S.

Example 1. Define the affine subspace as follows:

A1 :=
{(

X A
AT B

)∣
∣
∣
∣ X ∈ J S, det B �= 0, AB−1AT ∈ J S

}

,

where A and B are constant matrices. Then if L1 := A1 ∩ PD(n) is not empty,
it is doubly autoparallel.

4.2 Explicit Formula of the Optimal Solution for SDP

We only show an explicit formula of one of the optimal solutions P (x∗) of SDP
in the case when its feasible region L given by (8) is doubly autoparallel. Full
proofs can be found in [15].

Step 1: Let P (x0) be a given feasible point in L. Define

F i = −P (x0)−1EiP (x0)−1

and F 0 = P (x0)−1. Using these {F i}m
i=0 and that L is doubly autoparallel, any

P ∈ L can be represented by

P−1 = F 0 +
m∑

i=1

yiF
i.

Step 2: Solve the matrix C that satisfies

cT x = trCP (x) + constant, C ∈ span{F i}m
i=1.
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For this, solve the following linear equation

Hc̃ = c, H = (hij) :=
(
tr(EiF

j)
)
,

where H is ensured to be always nonsingular because the Hesse matrix of
ϕ(P ) is positive definite. Using the solution c̃ = (c̃i), the matrix C can be
constructed by

C =
m∑

i=1

c̃iF
i.

Step 3: Compute the singular decomposition of C:

C =
(
V1 V2

)
(

Σ1 O
O O

)(
V T
1

V T
2

)

= V1Σ1V
T
1

.
Step 4: The formula of the optimal solution P (x∗) is

P (x∗) = P (x0) − P (x0)V1{V T
1 P (x0)V1}−1V T

1 P (x0).

Each element of x∗ is obtained, by using Ei’s that satisfy tr(EiEj) = δi
j

(Kronecker’s delta), as follows:

x∗i = tr(EiP (x∗)) − tr(EiE0).

Thus, when the feasible region of SDP is doubly autoparallel, it can be solved
by only solving a linear equation and the singular decomposition.

5 Conclusions

We have discussed the structured positive definite matrices with both linear and
inversely linear constraints. We have shown such a structure is characterized by
information geometric concept, which we call doubly autoparallelism. Further,
we have also shown it is characterized algebraically by Jordan subalgebra under
a certain condition. Finally, it is demonstrated that this class of structure has
close relation with certain kinds of solvability of semidefinite program and the
maximum likelihood estimation of structured covariance matrices.
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Ay, N., Gibilisco, P., Matúš, F. (eds.) Information Geometry and Its Applications,
vol. 252, pp. 323–334. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
97798-0 12

17. Ohara, A., Suda, N., Amari, S.: Dualistic differential geometry of positive definite
matrices and its applications to related problems. Linear Algorithm Appl. 247,
31–53 (1996)

18. Tanabe, K., Tsuchiya, T.: New geometry for linear programming. Math. Sci. 303,
32–37 (1988). in Japanese

19. Uohashi, K., Ohara, A.: Jordan algebra and dual affine connections on symmetric
cones. Positivity 8, 369–378 (2004)

20. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite
Programming. Theory, Algorithms, and Applications. Kluwer, Boston (2000)

https://doi.org/10.1007/978-3-319-97798-0_12
https://doi.org/10.1007/978-3-319-97798-0_12


Toeplitz Hermitian Positive Definite
Matrix Machine Learning Based

on Fisher Metric

Yann Cabanes1,2(B), Frédéric Barbaresco1, Marc Arnaudon2,
and Jérémie Bigot2

1 Thales Surface Radar, Advanced Radar Concepts, Limours, France
yann.cabanes@gmail.com, frederic.barbaresco@thalesgroup.com
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Abstract. Here we propose a method to classify radar clutter from
radar data using an unsupervised classification algorithm. The data will
be represented by Positive Definite Hermitian Toeplitz matrices and clus-
tered using the Fisher metric. Once the clustering algorithm dispose of
a large radar database, new radars will be able to use the experience
of other radars, which will improve their performances: learning radar
clutter can be used to fix some false alarm rate created by strong echoes
coming from hail, rain, waves, mountains, cities; it will also improve the
detectability of slow moving targets, like drones, which can be hidden in
the clutter, flying close to the landform.

Keywords: Radar clutter · Machine learning ·
Unsupervised classification · k-means · Autocorrelation matrix ·
Burg algorithm · Reflection coefficients · Kähler metric

1 Introduction

Our aim is to classify the radar clutter cell by cell. The idea is to classify each
cell according to its autocorrelation matrix. In [1] this autocorrelation matrix
is said to be equivalent to coefficients of an autoregressive model, called reflec-
tion coefficients, which will be estimated thanks to Burg algorithms. We will
then classify the cells according to these reflection coefficients. Finally we will
present a classification algorithm called k-means, and test it on simulated data.
The unsupervised classification of radar data is dealt in [2] with a mean-shift
algorithm. Here we will present another classification algorithm called k-means,
and test it on simulated data, showing promising results.

2 Introduction to Signal Processing Theory

2.1 From Radar Data to Complex Matrices

In this study, the input data will be taken on a single burst, for a single elevation
corresponding to the horizontal beam.
c© Springer Nature Switzerland AG 2019
F. Nielsen and F. Barbaresco (Eds.): GSI 2019, LNCS 11712, pp. 261–270, 2019.
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Therefore, the radar provides us a 2D complex matrix of size (#impulses)×
(#cells):

U =

⎡
⎢⎢⎢⎢⎣

u0,0 u0,1 u0,2 . . . u0,p−1

u1,0 u1,1 u1,2
. . . u1,p−1

...
...

...
. . .

...
un−1,0 un−1,1 un−1,2 . . . un−1,p−1

⎤
⎥⎥⎥⎥⎦

(1)

where n denotes the number of pulses of the burst, p the number of cells.
The complex coefficient uij represents the amplitude and phase after pulse

compression of the echo beam at distance index i from the radar, at time index
j (jth impulse).

The data to classify are the cells, each cell being represented by a column of
the matrix U .

2.2 Model and Hypothesis

In this section, we will focus on a single column of the matrix U defined in
Eq. 1. We will define its autocorrelation matrix and explain how to estimate an
equivalent formulation of this autocorrelation matrix.

We denote by ·T the matrix transposition, ·H the complex matrix conjugate
transpose and ·∗ the complex scalar conjugate.

We denote:
u = [u(0), u(1), ..., u(n − 1)]T (2)

the one dimensional complex signal registered in a cell.
We assume this signal to be stationary with zero mean:

E[u(n)] = 0 for all n (3)

We also assume that this signal can be modeled as an autoregressive Gaussian
process.

Interested readers may refer to [3] for a comprehensive course on complex
signal processing theory.

2.3 From Input Vector to Autocorrelation Matrix

We define the autocorrelation matrix:

R = E[u uH ] (4)

ri,j = E[u(k + i)u(k + j)∗] (5)

We define the lag: t = i − j.
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Proposition 1 (autocorrelation and stationarity). The signal is supposed
to be stationary, so ri,j depends only of the lag t.

ri,j = E[u(k + i)u(k + j)∗]
= E[u(k + i − j)u(k)∗]
= E[u(k + t)u(k)∗]
= rt

(6)

Proposition 2 (autocorrelation and conjugation).

r−t = E[u(k − t)u(k)∗]
= E[u(k)u(k + t)∗]
= E[u(k + t)u(k)∗]∗

= r∗
t

(7)

Consequence R is a Toeplitz Hermitian Positive Definite matrix.

R =

⎡
⎢⎢⎢⎢⎢⎣

r0 r∗
1 r∗

2 . . . r∗
n−1

r1 r0 r∗
1 . . . r∗

n−2

r2 r1 r0 . . . r∗
n−3

...
...

...
. . .

...
rn−1 rn−2 rn−3 . . . r0

⎤
⎥⎥⎥⎥⎥⎦

(8)

Note that the assumptions made in Sect. 2.2 that the signal can be modeled
as a complex stationary autoregessive Gaussian process with zero mean has
the following equivalent formulation: u = R1/2x with R a Toeplitz Hermitian
Positive Definite matrix and x a standard complex Gaussian random vector
which dimension is equal to the number of pulses.

2.4 Autocorrelation Matrix Estimation

In our classification problem, the autocorrelation matrix Ri will be estimated
independently for each cell ui:

U =

⎡
⎢⎢⎢⎢⎣

u0,0 u0,1 u0,2 . . . u0,p−1

u1,0 u1,1 u1,2
. . . u1,p−1

...
...

...
. . .

...
un−1,0 un−1,1 un−1,2 . . . un−1,p−1

⎤
⎥⎥⎥⎥⎦

↓ ↓ ↓ ↓
R̂0 R̂1 R̂2 R̂n−1

(9)
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Empirical Covariance Matrix. To estimate the Toeplitz autocorrelation matrix
R from the data vector u, we can estimate each coefficient rt by the following
empirical mean:

r̂t =
1

n − t

n−1−t∑
k=0

u(k + t)u(k)∗ t = 0, ..., n − 1 (10)

Note that this method is unprecise when the vector length n is small, espe-
cially when the lag t is close to n − 1. We now propose a more robust method
to estimate the autocorrelation matrix with few data, based on an autoregessive
model.

Burg Algorithm. The Burg algorithm principle is to minimize the forward and
the backward prediction errors. The regularised Burg algorithm of order M and
regularization coefficient γ is described in Algorithm 1 and detailed in [4,5].

The regularized Burg algorithm allows us to transform the original data into
a power factor in R

∗
+ and reflection coefficients in D

n−1, where D represents the
complex unit disk.

According to [1], the following transformation is a bijection:

T +
n → R

∗
+ × D

n−1

Rn �→ (p0, μ1, ..., μn−1) (18)

where T +
n denotes the set of Toeplitz Hermitian Positive Definite matrices of

size n.
It is therefore equivalent to estimate the coefficients (p0, μ1, ..., μn−1) and the

autocorrelation matrix Rn.

2.5 The Kähler Metric

Each data vector ui is now represented by an estimation of its autocorrelation
matrix R̂i which is a Toeplitz Hermitian Positive Definite matrix. We define the
metric on the set T +

n of Toeplitz Hermitian Positive Definite matrices as coming
from the Fisher metric on the manifold of complex Gaussian distributions with
zero means, Toeplitz Hermitian Positive Definite covariance matrices and null
relation matrices.

According to the previous bijection, we will represent a Toeplitz Hermitian
Positive Definite matrix Ti by the corresponding coefficients (p0,i, μ1,i, ..., μn−1,i).
The following distance has been introduced by Barbaresco in [6] on the set
R

∗
+ × D

n−1 to make this bijection an isometry. In the Encyclopedia of Distance
by Deza [7], this distance is called Barbaresco distance:

d2T +
n

(T1, T2) = d2T +
n

((p0,1, μ1,1, ..., μn−1,1), (p0,2, μ1,2, ..., μn−1,2))

= n log2
(

p0,2
p0,1

)
+

n−1∑
l=1

n − l

4
log2

⎛
⎝1 + µl,1−µl,2

1−µl,1µ∗
l,2

1 − µl,1−µl,2
1−µl,1µ∗

l,2

⎞
⎠ (19)
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Algorithm 1. regularised Burg algorithm
Initialization:

f0,k = b0,k = uk k = 0, ..., n − 1 (11)

a0,k = 1 k = 0, ..., n − 1 (12)

p0 =
1

n

n−1∑

k=0

|uk|2 (13)

for i = 1, ..., M : do

μi = −

(
2

n−i

n−1∑
k=i

fi−1,k b̄i−1,k−1 + 2
i−1∑
k=1

βk,iak,i−1ai−k,i−1

)

(
1

n−i

n−1∑
k=i

|fi−1,k|2 + |bi−1,k−1|2 + 2
i−1∑
k=0

βk,i|ak,i−1|2
) (14)

where:

βk,i = γ(2π)2(k − i)2 (15)

{
ak,i = ak,i−1 + μiāi−k,i−1 k = 1, ..., i − 1
ai,i = μi

(16)

and

{
fi,k = fi−1,k + μibi−1,k−1 k = i, ..., n − 1
bi,k = bi−1,k−1 + μ̄ifi−1,k k = i, ..., n − 1

(17)

end for
return (p0, μ1, ..., μn−1)

The equations of the geodesics of the set R
∗
+×D

n−1 endowed with the Kähler
metric are described in [4].

2.6 The Kähler Mean

The Kähler mean of (T0, ..., Tm−1) is defined as the point Tmean such that the

following function f(T ) =
m−1∑
i=0

d2(T, Ti), sum of the squared distances from T to

Ti, reaches its unique minimum.
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The Kähler mean algorithm is performed in [4,8] as a gradient descent on
the function f . The gradient expression of f is:

−→∇f(T ) =
m−1∑
i=0

2
−→∇d(T, Ti) d(T, Ti) = 2

m−1∑
i=0

−
−−→
T Ti

d(T, Ti)
d(T, Ti) = −2

m−1∑
i=0

−−→
T Ti

(20)
where

−→∇ denotes the gradient operator and
−−→
T Ti, also written exp−1

T (Ti), denotes
the element of the tangent space of the manifold R

∗
+ × D

n−1 at T such that the
geodesic starting at T at time 0 with inital tangent vector

−−→
T Ti arrives at Ti at

time 1.
Note that the squared distance between two matrices T1 and T2 is a linear

combination of squared distances between the coordinates (p0,1, μ1,1, ..., μn−1,1)
and (p0,2, μ1,2, ..., μn−1,2). Hence the coordinates can be averaged independently:

T0 �→ ( p0,0, μ1,0, · · · , μn−1,0 )
...

...
...

...
Tm−1 �→ ( p0,m−1, μ1,m−1, · · · , μn−k,m−1 )

↓ ↓ ↓
T ← ( p0, μ1, · · · , μn−1 )

(21)

The gradient descent on the function f is therefore equivalent to a gradient
descent on each coordinate. At each step of the algorithm, once the gradient is
computed, we move on R

∗
+ × D

n−1 following its geodesics.

3 Simulation Model

Each cell is simulated independently from the others. For each cell, we simulate
a complex vector using a SIRV (Spherically Invariant Random Vectors) model:

Z =
√

τR1/2x︸ ︷︷ ︸
information coming from the environment

+ bradar︸ ︷︷ ︸
noise coming from the radar itself

(22)

with:

τ : clutter texture coefficient (positive real random variable).
R: scaled autocorrelation matrix (Toeplitz Hermitian Positive Definite).
x, bradar: independent standard complex Gaussian random vectors which dimen-

sion is equal to the number of pulses.

The radar noise bradar is assumed to be small enough in comparaison with
the information coming from the environment

√
τR1/2x for estimating the auto-

correlation matrix τR using the methods described in Sect. 2.4.
To choose the matrix R, we learn experimentally from radar measures the

spectrum shape of the clutter we want to simulate. The scaled autocorrelation
coefficients of the matrix R can then be computed from the spectrum using the
inverse Fourier transform.

See [9,10] for more details about the clutter modeling.
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4 Classification Problem

4.1 Methodology

Using the previous model, we simulate 100 vectors with the model parameters
(τ1, R1) and 100 vectors with the model parameters (τ2, R2). Then for each vector
we try to recover the parameters used to simulate it thanks to Burg algorithm.
In this paper, we classify the data only on the scaled autocorrelation matrix R,
represented by the reflection coefficients (μ1, ..., μn−1). Future work might also
use the texture parameter τ , influencing the power coefficient p0, to classify the
data.

Each vector is now represented by its reflection coefficients in the metric
space D

n−1 endowed with the Kähler metric. We classify these vectors using
a k-means algorithm described in the next section. The k-means algorithm is
a classical clustering algorithm in Euclidean spaces, the main difficulty was to
adapt it to the Riemannian manifold D

n−1 endowed with the Kähler metric. In
Fig. 1, we plot the FFT of each simulated vector on the left graphic, each FFT
being drawn horizontally; the vertical axis represents the different cells along
the distance axis. On the graphic in the middle of Fig. 1, we plot the result of
the corresponding k-means clustering. We present in Fig. 2 a visualization of the
clustering on the first coefficients of reflection.

Once the clustering is done, we compute the F1 score of the classification.
The F1 score is a way to measure the performance of a supervised classification
algorithm. We adapted it to our unsupervised classification algorithm by doing
all possible permutations in the classification results labels in order to find the
best matching with the expected results. Finally we plot on Fig. 3 the normalized
confusion matrix using the labels corresponding to this best matching.

4.2 k-means on D
n−1 with the Kähler Metric

Fig. 1. FFT and classification results, k-means on D
n−1, Kähler metric
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Fig. 2. First coefficients of reflection, k-means on D
n−1, Kähler metric

Fig. 3. Confusion matrix and F1 score, k-means on D
n−1, Kähler metric
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The Algorithm. The k-means algorithm is described in Algorithm 2.

Algorithm 2. k-means algorithm for N clusters
Initialization:
Pick randomly N points in the dataset. They now represent the barycenters of each
class.
for i = 1 to loop number do

Assign each point of the dataset to the closest barycenter.
Compute the new barycenter of each class.

end for
return Each point is labeled according to the closest barycenter.

Predictions. Once an effective k-means algorithm is developed, we can easily
predict the class of the new radar data: they will be assigned to the cluster
having the closest barycenter.

4.3 Median Averaging

During all this study, we classified the data cell by cell, regardless of the spatial
positioning of the data, each cell being considered independently from its neigh-
bours. If we assume that each cell is correlated to the neighbouring cells, we can
avoid missclassification due to outliers by associating to each data an average of
its neigbouring cells, and performing the classification on the averaged data.

In Fig. 1, the graphic on the right represents the classification result given
by a sliding window of size 9 (the classification result was perfect). In each
window, we compute a median of the data in D

n−1. The median of a set of
points (x1, x2, ..., xn) in a metric space (E, d) is defined as follows:

median(x1, x2, ..., xn) = argminx∈E

n∑
i=1

d(x, xi) (23)

The median is more robust to outliers than the mean, the mean being the
point minimizing the sum of squared distances. We then select the closest points
of the barycenter to get rid of outliers, keeping half of the points, and compute
the new median of these selected points. The center cell of the sliding window
is now represented by this last median. Interested reader will find in [11] an
algorithm to compute the median of several points in D

n−1.

5 Conclusion

We developed a k-means algorithm to classify the radar clutter. This algorithm
has been adapted to the Kähler metric and has given promising results. Future
work may also take into account the texture coefficient τ ; the normalized Burg
algorithm presented in [12] might help to take this texture coefficient τ into
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consideration. More clustering algorithms will be adapted to the Kähler met-
ric to deal with clusters of unusual interlaced shapes, like the mean-shift algo-
rithm presented in [2,13]. These clustering algorithms will also be used to cluster
groups of neighbouring cells: we will use a multidimensional spatial autoregres-
sive model to represent the data (the autocorrelation matrices will be Positive
Definite Block-Toeplitz matrices) and adapt our clustering algorithms to this
higher dimensional space [1,14].

Acknowledgments. We thank the French MoD DGA MRIS for funding (convention
CIFRE N◦2017.0008).
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Abstract. In this paper we consider the statistical manifold defined in
terms of a deformed exponential ϕ. For the non-atomic case we establish
a relation between the behavior of the deformed exponential function
and the Δ2-condition and analyze the comportment of the normalizing
function near to the boundary of its domain. In the purely atomic case
we find an equivalent condition to the behavior that characterizes the
deformed exponential discussed in this work. Moreover, we prove a con-
sequence from the fact the Musielak-Orlicz function does not satisfy the
δ2-condition.

Keywords: Deformed exponential ·
ϕ-Families of probability distribuitions · Musielak-Orlicz space ·
Normalizing function

1 Introduction

Consider (T, Σ, μ), a σ-finite, non-atomic measure space and Pμ the set of
μ-equivalent strictly positive probability densities. Let ϕ : R → (0,∞) be a
deformed exponential, which is a convex function such that limu→−∞ ϕ(u) = 0
and limu→∞ ϕ(u) = ∞. The ϕ-families were constructed based on the replace-
ment of the classical exponential function by a deformed exponential func-
tion [6,8], which satisfies the property that there exists a measurable function
u0 : T → (0,∞) such that [11]∫

T

ϕ(c + λu0)dμ < ∞, for all λ > 0, (1)
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for each measurable function c : T → R satisfying
∫

T
ϕ(c)dμ < ∞. The construc-

tion of a ϕ-families is based on Musielak-Orlicz spaces [5].
Another statement with respect to deformed exponential that satisfies con-

dition (1), is that two probability densities in Pμ can be connected by an open
arc [2,3,9,13]. This allows us to define the generalization of Rényi divergence
and consequently a family of α-connections [4,7].

In the non-atomic case, it was proved in [10] that if the Musielak-Orlicz func-
tion does not satisfy the Δ2-condition, then the boundary of the parametrization
domain is non-empty. Moreover, the authors considered that condition (1) occurs
and studied the behavior of the normalizing function near to the boundary of
their domain. In [1], it was considered that condition (1) does not occur and
analyzed the behavior of the normalizing function near to the boundary of its
domain in points that are not in the Musielak-Orlicz class.

In this work, we establish a relationship between condition (1) and the Δ2-
condition, which allows us to study points on the boundary of the parametriza-
tion domain. Furthermore, continuing the discussion initiated in [1], we analyse
the behavior of the normalizing function in the points that are in the Musielak-
Orlicz class. More precisely, we observe that regardless of the condition (1)
occurs, given a function in the Musielak-Orlicz class, we have that the normal-
izing function converges near the boundary of its domain. In the purely atomic
case, where μ is a counting measure on the set T = N, as in [5], the analogous
of the Δ2-condition will be denoted by δ2-condition. In this case, we find an
equivalent condition to (1) and a result related to a Musielak-Orlicz function Φc

which does not satisfy the δ2-condition.
This paper is organized as follows. In Sect. 2 we recall some important results

about ϕ-families of probability distributions. In Sects. 3 and 4 we develop our
main results regarding the condition described in Eq. (1) and for the purely
atomic case. Finally, in Sect. 5 we state our conclusions and future perspectives
for later works.

2 ϕ-Families of Probability Distribution:
Revisiting Some Results

In this section we recall some results and we fix notations that will be important
for the understanding of the text. The Musielak-Orlicz space LΦc and Musielak-
Orlicz class L̃Φc , when the Musielak-Orlicz function is Φc(t, u) = ϕ(t, c(t)+u)−
ϕ(t, c(t)) are denoted by Lϕ

c and L̃ϕ
c , respectively, and defined as [11]

Lϕ
c =

{
u ∈ L0 :

∫
T

ϕ(c + λu)dμ < ∞ for each λ ∈ (−ε, ε),∃ ε > 0
}

,

L̃ϕ
c =

{
u ∈ L0 :

∫
T

ϕ(c + u)dμ < ∞
}

,

are used to build the sets Bϕ
c =

{
u ∈ Lϕ

c ;
∫

T
uϕ′

+(c)dμ = 0
}
,

Kϕ
c =

{
u ∈ Lϕ

c ;
∫

T

ϕ(c + λu) < ∞ for each λ ∈ (−ε, 1 + ε), ∃ ε > 0
}
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and the parametrization ϕc : Bϕ
c → Fϕ

c , where ϕc(u) = ϕ(c + u − ψ(u)u0), for
each u ∈ Bϕ

c = Bϕ
c ∩ Kϕ

c . The mapping ψ : Bϕ
c → [0,∞) is called normalizing

function and is defined in such way that ϕc(u) = ϕ(c + u − ψ(u)u0) ∈ Pμ.
We say that the function Φc satisfies the Δ2-condition (Φc ∈ Δ2) if it can be

found a constant K > 0 and a non-negative function f belonging to Musielak-
Orlicz class L̃ϕ

c , such that Φc(t, u) ≤ KΦc(t, u), for all u > f(t) and μ-a.e.
t ∈ T . In [10] was proved that if Φc does not satisfy the Δ2-condition then the
boundary of Bϕ

c is non-empty. A function u ∈ Bϕ
c belongs to the boundary of

Bϕ
c (denoted by ∂Bϕ

c ) if, and only if,
∫

T
ϕ(c + λu)dμ < ∞ for all λ ∈ (0, 1) and∫

T
ϕ(c + λu)dμ = ∞, for each λ > 1.
In [10], supposing that (1) is satisfied and given u, w ∈ ∂Bϕ

c such that∫
T

ϕ(c + w)dμ < ∞ and
∫

T
ϕ(c + u)dμ = ∞, then ψ(αw) → β, with β ∈ (0,∞)

as α ↑ 1 and ψ′
+(αu) → ∞ as α ↑ 1. This last result was complemented by [1]

when it was proved that given u ∈ ∂Bϕ
c such that

∫
T

ϕ(c + u)dμ = ∞ we have
that limα↑1 ψ(αu) = ∞, as α ↑ 1.

Now, supposing that (1) does not occur, in [1] was shown that there exists
u ∈ ∂Bϕ

c such that
∫

T
ϕ(c+u)dμ = ∞ but ψ(αu) → β, with β ∈ (0,∞) as α ↑ 1.

In the next section we analyse the behavior of the normalizing function in the
points of the boundary of Bϕ

c such that
∫

T
ϕ(c + u)dμ < ∞.

3 The Condition (1) on the deformed exponential
and Its consequences

In this section, we notice that regardless of the occurence condition (1) if u ∈ ∂Bϕ
c

is such that
∫

T
ϕ(c+u)dμ < ∞, then the normalizing function converges near to

the boundary of its domain. Moreover, we relate condition (1) and condition Δ2.

Remark 1. Consider the deformed exponential function ϕ. Given u ∈ ∂Bϕ
c such

that
∫

T
ϕ(c + u)dμ < ∞, we have that ψ(αu) → β, with β ∈ (0,∞) as α ↑ 1. In

fact, since
∫

T
ϕ(c+ u)dμ < ∞, we have

∫
T

ϕ(c+ u − λu0)dμ < ∞ for all λ > 0.
Suppose that ψ(αu) ↑ ∞, as α ↑ 1. Then, for all A > 0, there exists δ > 0, such
that 0 < 1− α < δ ⇒ ψ(αu) > A. Since

∫
T

ϕ(c+ u − λu0)dμ < ∞ for all λ > 0,
we have that there exists γ > λ, such that

∫
T

ϕ(c+u−γu0)dμ < 1. In particular,
take A = γ. Then, from of the Dominated Convergence Theorem it follows that

1 = limα↑1
∫

T

ϕ(c + αu − ψ(αu)u0)dμ

≤ limα↑1
∫

T

ϕ(c + αu − γu0)dμ

=
∫

T

ϕ(c + u − γu0)dμ

< 1,

which is an absurd. Therefore, we obtain the desired result.
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From the previous remark, supposing that the deformed exponential function
ϕ does not satisfy the condition (1), we can find u ∈ ∂Bϕ

c , such that
∫

T
ϕ(c +

u)dμ < ∞ and ψ(αu) converges as α ↑ 1.
We have the following condition that is equivalent the condition (1).

Proposition 1. [1, Proposition 2] We say that a deformed exponential function
ϕ and a measurable function u0 : T → (0,∞) satisfy the condition (1) if and
only if, for some measurable function c : T → R such that ϕ(c) is μ-integrable,
we can find constants λ, α > 0 and a non-negative function f ∈ L̃Φc such that

αΦc(t, u) ≤ Φc−λu0
(t, u), for all u > f(t), (2)

where Φc(t, u) = ϕ(t, c(t) + u(t)) − ϕ(c(t)) is a Musielak-Orlicz function.

For what follows we will define IΦc
(u(t)) =

∫
T

Φc(t, |u(t)|)dμ for any u ∈ L0.

Lemma 1. [1, Lemma 3] Consider c : T → [0,∞) a measurable function such
that

∫
T

ϕ(c)dμ < ∞. Suppose that, for each λ > 0, we cannot find α > 0 and
f ∈ L̃Φc such that

αΦc(t, u) ≤ Φc−λu0(t, u), for all u > f(t). (3)

Then we can find a strictly decreasing sequence 0 < λn ↓ 0, a sequence {un}
of measurable functions finite-value and a sequence {An} of measurables sets
pairwise disjoint such that

IΦc
(unχAn

) = 1 and IΦc−λnu0
(unχAn

) ≤ 2−n, for all n ≥ 1. (4)

In the next corollary, we prove that there exists a relationship between the
condition (1) and the Δ2-condition. For this, we use the fact of that if Φc ∈ Δ2

then Lϕ
c = L̃ϕ

c , and consequently IΦc
(u) < ∞, for every u ∈ Lϕ

c .

Proposition 2. If the deformed exponential function ϕ does not satisfiy the
condition (1), then Φc /∈ Δ2.

Proof. Suppose that (1) does not occur. Take λ > 0. Then, there exists a n0 ∈ N,
such that λ > λn, for all n ≥ n0. By [1, Proposition 2] and Lemma1, we can
take u =

∑∞
n=n0

unχAn. Since u ∈ Lϕ
c and IΦc

(u) = ∞ it follows the result.

The reciprocal of the Proposition 2 is not valid, since the exponential function
satisfies the condition (1) but does not satisfy the Δ2-condition.

Proposition 3 Suposing that the deformed exponential ϕ does not satisfy (1)
and that u0 ∈ Eϕ

c , then there exists w ∈ ∂Bϕ
c such that

∫
T

ϕ(c + w)dμ < ∞,∫
T

ϕ(c + w + λu0)dμ = ∞, for all λ > 0 and ψ(αw) → β, with β ∈ (0,∞), as
α ↑ 1.



Deformed Exponential and the Behavior of the Normalizing Function 275

Proof. Let {λn}, {un} and {An} be defined as in Lemma1. Given α > 1, there
exists n1 ∈ N, such that α(un − λnu0) > un for all n ≥ n1. Given any λ > 0,
there exists n2 ∈ N such that λ > λn for all n ≥ n2. Take n0 = max{n1, n2}.
Consider B = ∪∞

n=n0
An and u =

∑∞
n=n0

(un − λnu0)χAn
. Then,

∫
T

ϕ(c + u)dμ =
∫

T

ϕ

(
c +

∞∑
n=n0

(un − λnu0)χAn

)
dμ

=
∫

T�B

ϕ(c)dμ +
∞∑

n=n0

{∫
An

ϕ(c)dμ + IΦc
(un − λnu0)χAn

}

≤
∫

T

ϕ(c)dμ +
∞∑

n=n0

{
IΦc−λnu0

(unχAn
)
}

< ∞.
(5)

For α ∈ (0, 1) we have
∫

T

ϕ(c + αu)dμ ≤ α

∫
T

ϕ(c + u − λu0)dμ + (1 − α)
∫

T
ϕ

(
c +

αλ

1 − α
u0

)
dμ

< ∞
and considering α > 1 we have

∫
T

ϕ(c + αu)dμ =
∫

T�B

ϕ(c)dμ +
∞∑

n=n0

∫
An

ϕ(c + α(un − λnu0))dμ

≥
∫

T

ϕ(c)dμ +
∞∑

n=n0

IΦc
(unχAn

)dμ

= ∞.

Then, since (5) occurs, it follows from Remark 1 that ψ(αu) → β, with
β ∈ (0,∞), as α ↑ 1. Take λ > 0, such that w =

∑∞
n=n0

α(un − λnu0) −
λu0χT�B ∈ Bϕ

c . Clearly,
∫

T
ϕ(c+w)dμ = ∞,

∫
T

ϕ(c+αw)dμ < ∞ for α ∈ (0, 1)
and

∫
T

ϕ(c + αw)dμ = ∞ for α > 1. Therefore, w ∈ ∂Bϕ
c and we obtain

∫
T

ϕ(c + w + λu0)dμ >

∫
T �B

ϕ(c − λu0)dμ +
∞∑

n=n0

∫
An

ϕ(c + un − λnu0 + λu0)dμ

>

∫
T �B

ϕ(c − λu0)dμ +
∞∑

n=n0

(
IΦc(un) −

∫
An

ϕ(c)dμ

)

= ∞

4 Purely Atomic Case

This section is devoted to present new results involving the condition (1) and the
δ2-condition in the purely atomic case. In this case, the integrals present in the
definition of condition (1) are replaced by sums and the functions be replaced
by sequences of functions.
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Given Φ = {Φi} a Musielak-Orlicz function, we define the Musielak-Orlicz
class in the purely atomic case as being �̃Φ =

{
u ∈ L0;

∑∞
i=1 Φi(c) < ∞}

.
In the next proposition, we find a condition equivalent to the sequence of

functions u0 = {u0,i} and a deformed exponential function ϕ satisfying the
condition (1). In order to provide such result we will need of the following lemma.

Lemma 2. Let Ψ and Φ be finite-valued Musielak-Orlicz functions. Then, the
inclusion �̃Φ ⊆ �̃Ψ holds if, and only if, there exist ε, α > 0 and a sequence of
non-negative real numbers f = {fi} ∈ �̃Φ such that

αΨi(u) ≤ Φi(u), for all u > fi with Φi(u) < ε. (6)

The proof of the Lemma2 is analogous to the proof provided in [5, Theorem
8.4].

Proposition 4. A sequence u0 = {u0,i} and a deformed exponential function ϕ
satisfy the condition (1) if, and only if, for some sequence c = {ci} of numbers
such that

∑∞
i=1 ϕ(ci) = 1, we can find constants ε, λ, α > 0 and a sequence

f = {fi} ∈ �̃Φc of non-negative real numbers such that

αΦc,i(u) ≤ Φc−λu0,i
(u), for all u > fi with Φc−λu0,i

(u) < ε. (7)

The proof of the Proposition 4 is analogous to the proof provided in
[1, Proposition 2].

The authors in [12] have proven that if a Musielak-Orlicz function Φ does not
satisfy the Δ2-condition then we can find sequences satisfying some conditions
and, from this, we obtain functions admitting the properties in (10).

The sequence Φ = {Φi} does satisfy the δ2-condition if, and only if, for every
λ ∈ (0, 1), there exist constants ε > 0, α ∈ (0, 1), and a non-negative sequence
f = {fi} with IΦ(f) < ∞ such that

αΦi(u) ≤ Φi(λu), for all u > fi with Φi(u) < ε. (8)

Lemma 3. Let Φ = {Φi} be a finite-valued Musielak-Orlicz function which does
not satisfy the δ2-condition. Then we can find a strictly increasing sequence {λn}
in (0, 1) converging upward to 1, and sequences {un} and {An} of finite-valued
real numbers, and pairwise disjoint sets in N, respectively, such that

1 − 2−n ≤ IΦ(unχAn
) ≤ 1 and IΦ(λnunχAn

) ≤ 2−n, (9)

for all n ≥ 1.

Proof. Suppose that the Musielak-Orlicz function Φ does not satisfy the δ2-
condition. Let {λn} be a strictly increasing sequence in (0, 1) such that λn ↑ 1.
For each n ≥ 1, we define the non-negative sequence un = {un,i} by

un,i = sup{u > 0; 2−nΦi(u) ≤ Φi(λnu) and Φi(u) < 2−n},
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where we adopt the convention sup ∅ = 0. Since (8) is not satisfied, we have that
IΦ(un) = ∞ for each n ≥ 1. Because Φi(un,i) ≤ 2−n, we can find an increasing
sequence {kn} ⊂ N such that

1 − 2−n ≤
kn∑

i=kn−1

Φi(un,i) ≤ 1.

The second inequality above in conjunction with 2−nΦi(un,i) ≥ Φi(λnun,i)
implies that

kn∑
i=kn−1

Φi(λnun,i) ≤ 2−n.

Thus, expression (9) follows with An = [kn−1, kn − 1] ∩ N.

Similar to what was done in [12, Remark 3.12], using Lemma3 let Φ = {Φi}
be a finite-valued Musielak-Orlicz function does not satisfying the δ2-condition.
Then we can find functions u∗ =

∑∞
n=1 λnunχAn

and u∗ =
∑∞

n=1 unχAn
in LΦ

such that
{

IΦ(λu∗) < ∞, for 0 ≤ λ ≤ 1,
IΦ(λu∗) = ∞, for 1 < λ,

{
IΦ(λu∗) < ∞, for 0 ≤ λ < 1,
IΦ(λu∗) = ∞, for 1 ≤ λ.

(10)

5 Conclusion

We conclude that in the case non-atomic regardless of the condition (1) occurs,
the normalizing function converges to a finite value near the boundary of its
domain in the case that the functions u belong to the Musielak-Orlicz class. We
prove that if the condition (1) does not occur, then the Musielak-Orlicz function
does not satisfy the Δ2-condition. Another important fact is that in the purely
atomic case we find an equivalence for the occurence of condition (1) and given
a Musielak-Orlicz function not satisfying the δ2-condition, we find functions
in Musielak-Orlicz space satisfying the equations in (10). The perspective for
future works is to study, in the case purely atomic, the possibility of relating the
condition (1) with the δ2-condition and the behavior of the normalizing function
near the boundary of Bϕ

c . We also want to investigate the behavior of normalizing
function, considering that the deformed exponential function is not injective in
all its domain.
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Abstract. In this study, after reviewing fundamental properties of
ordinary exponential families, we consider geometry of deformed expo-
nential families. We redefine a deformed logarithm function and a
deformed exponential function. In fact, by adjusting the initial condition
of deformed logarithm, we find that the α-representations in informa-
tion geometry and the rectified linear unit (ReLU) belong the class of
q-exponentials. Under the new definition of deformed exponential func-
tion, we discuss dually flat structures for deformed exponential families.
We also consider normalization problems for those families using the
ReLU.

Keywords: Deformed exponential family · Deformed logarithm ·
Information geometry · α-representation · Rectified linear function

1 Introduction

In anomalous statistics, observations have strong non-linear correlations, and
often contain outliers. To overcome these problems, a non-standard statistical
model, which is called a deformed exponential family, plays important roles.
Since such a statistical model may contain heavily tailed probability distribu-
tions, it is useful for robust statistics. However, such a model is not an ordinary
exponential family, standard statistical methods may not work efficiently.

In this study, after we review fundamental properties of ordinary exponential
families, we redefine a deformed logarithm function and a deformed exponen-
tial function. For these definitions, a choice of initial condition is important.
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In fact, by adusting the initial conditions, the α-representations in information
geometry and the ReLU can be regarded as q-deformed exponential functions.
Under the new definition of deformed exponential function, we discuss dually
flat structures for deformed exponential families. We also find that a choice of
initial condition affects the normalization of probability distribution. Therefore,
we consider normalization problems for deformed exponential families.

2 Exponential Families

We start with summarizing the geometry of exponential families. Throughout
this paper, we assume that the Lebesgue measure as a dominating measure since
we consider normalization properties of statistical models.

Let Ω be a total sample space. Suppose that θ̄ ∈ Θ ⊂ Rn is a parame-
ter of probability distributions. We define statistical models by the following
equations:

See :=

{
p(x; θ̄)

∣∣∣∣∣ p(x; θ̄) = exp

[
C(x) +

n∑
i=1

F̄i(x)θ̄i − ψ̄(θ̄)

]}
, (1)

Sem :=

{
p(x; θ̄)

∣∣∣∣∣ p(x; θ̄) =
1

Z(x)
exp

[
n∑

i=1

F̄i(x)θ̄i − ψ̄(θ̄)

]}
, (2)

where C,Z, F1, . . . , Fn are functions on Ω and ψ̄ is a function on Θ. The functions
C,Z and ψ̄ are normalizations of probability density. We say that See is an
exponential family of e-form or an exponential family of exponential form. On the
other hand, we say that Sem is an exponential family of m-form or an exponential
family of mixture form. In statistical physics, See and Sem are called a S-form
and a Z-form, respectively [3]. Obviously, two statistical models are equivalent
if C(x) = − ln Z(x). In particular, when C(x) = 0 or Z(x) = 1, we have

Se :=

{
p(x; θ)

∣∣∣∣∣p(x; θ) = exp

[
n∑

i=1

Fi(x)θi − ψ(θ)

]}
. (3)

This statistical model is called an exponential family of purely exponential form.

Proposition 1. Suppose that See is an exponential family of e-form defined (1).
Then it has a pure exponential form (3) if the normalization C(x) is linearly
dependent from F̄1(x), . . . , F̄n(x).

Proof. Suppose that C(x) is given by C(x) =
∑n

i=1 ciF̄i(x) for some constants
c1, . . . , cn ∈ R. By setting Fi(x) = (ci + 1)F̄i(x) (1 ≤ i ≤ n)(here we do not use
Einstein’s summation rule), See can be written as a pure exponential form. ��

We remark the ambiguity of affine transformations for exponential families.
For p(x; θ̄) ∈ See, we change an affine coordinate system θ̄ to θ̄ = Aθ̃ + b where
θ̄ is a natural parameter in e-form (1), A ∈ GL(n;R) and b ∈ Rn, then the
functions should be changed as follows
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(F̃1(x), . . . , F̃n(x)) = (F̄1(x), . . . , F̄n(x))A,

C̃(x) = C̄(x) + (F̄1(x), . . . , F̄n(x))b,

and the probability distribution p(x; θ̃) coincides with p(x; θ̄).
Let us consider the case of log-normal family. Suppose that S is the set of all

log-normal distributions, that is, the set of probability distributions on Ω = R++

such that

S =
{

p(x;μ, σ)
∣∣∣∣ p(x;μ, σ) =

1√
2πσx

exp
[
− (ln x − μ)2

2σ2

]}
,

where μ and σ are parameters defined on μ ∈ R and σ ∈ R++, respectively.
By setting t = lnx, a log-normal distribution is reduced to an ordinary normal
distribution. However, we now consider normalization functions.

By setting C(x) = − ln x, F̄1(x) = lnx, F̄2(x) = (lnx)2, θ̄1 = μ/σ2, θ̄2 =
−1/2σ2 and

ψ̄(θ̄) =
μ2

2σ2
+

1
2

ln(2πσ2) = − (θ̄1)2

4θ̄2
+

1
2

ln
(
− π

θ̄2

)
,

a log-normal distribution can be written by

p(x; θ̄) = exp
[
− ln x +

μ

σ2
lnx − 1

2σ2
(ln x)2 − μ2

2σ2
− 1

2
ln(2πσ2)

]
= exp

[
C(x) + F̄1(x)θ̄1 + F̄2(x)θ̄2 − ψ̄(θ̄)

]
.

This implies that the log-normal family is an exponential family of e-form. The
Fisher metric with respect to the natural coordinate {θ̄1, θ̄2} is given by

gF (θ̄) = − 1
2θ̄2

⎛
⎜⎜⎝

1 − θ̄1

θ̄2

− θ̄1

θ̄2
(θ̄1)2 − θ̄2

(θ̄2)2

⎞
⎟⎟⎠ . (4)

Recall that a log-normal distribution is obtained from a normal distribution with
a change of random variable x �→ ln x. The Fisher metric gF (θ̄) coincides with
the one of normal distributions [4], since they are invariant under the choice of
sufficient statistics,

On the other hand, set F1(x) = lnx, F2(x) = (ln x)2, θ1 = μ/σ2 − 1, θ2 =
−1/2σ2 (i.e., θ1 = θ̄1 − 1, θ2 = θ̄2) and

ψ(θ) = − (θ1 + 1)2

4θ2
+

1
2

ln
(
− π

θ2

)
.

Then we have a purely exponential form of log-normal distribution as follows

p(x; θ) = exp
[
F1(x)θ1 + F2(x)θ2 − ψ(θ)

]
.
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The Fisher metric with respect to the natural coordinate {θ1, θ2} is given by

gF (θ) = − 1
2θ2

⎛
⎜⎝ 1 −θ1 + 1

θ2

−θ1 + 1
θ2

(θ1 + 1)2 − θ2

(θ2)2

⎞
⎟⎠ .

Of course two Fisher metrics gF (θ̄) and gF (θ) are same Riemannian metrics.
The coordinate expressions are only different.

3 Deformed Exponential Families

In this section, we redefine deformed exponential functions and deformed expo-
nential families in order to discuss normalizations of statistical models. For foun-
dations of deformed exponential families, see [7] and [8].

Let χ be a non-decreasing function from R++ to R++. We call χ a deforma-
tion function. For a deformation function χ, we define a χc-logarithm function
by

lnc
χ s :=

∫ s

c

1
χ(t)

dt,

where c is a constant in R++. We assume that the integral of the RHS con-
verges. The function lnc

χ is also called a shifted deformed logarithm function or
just a deformed logarithm function for short. The inverse of lnχ s is called a
χc-exponential function, a shifted deformed exponential function, or a deformed
exponential function, which satisfies the following differential equation:

d

dx
χ(expc

χ x) = χ(expc
χ x)

with the initial condition expc
χ(0) = c. When c = 1, we omit the initial condition

and we denote the deformed logarithm by lnχ s and the deformed exponential
by expχ x.

If the deformation function is a power function χ(t) = tq (q > 0, q 
= 1), we
obtain a qc-logarithm function and a qc-exponential function by

lnc
q s :=

s1−q − c1−q

1 − q
, (s > 0),

expc
q t :=

(
c1−q + (1 − q)t

) 1
1−q , (c1−q + (1 − q)t > 0),

respectively. When c 
= 0, taking a limit q → 1, the ordinary logarithm function
ln(s/c) and the ordinary exponential function c exp t are recovered.

In particular, if c = 0, then the q0-logarithm function and the q0-exponential
function are given by

ln0
q s :=

1
1 − q

s1−q, (s > 0),

exp0
q t := ((1 − q)t)

1
1−q , ((1 − q)t > 0),
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respectively. The q0-logarithm ln0
q s is known as an α-representation or an α-

embedding (α = 2q − 1) in information geometry [1,9].
Since the qc-exponential function may not be defined entire R, we also define

a rectified qc-exponential function by

Rexpc
qx :=

[
c1−q + (1 − q)x

] 1
1−q

+
,

where [∗]+ is the cutoff function [x]+ := max{0, x}. In particular, if q = c =
0, then the rectified deformed exponential function coincides with the cutoff
function itself, that is, Rexp0

0x = [x]+ = max{0, x}. This function is also called
the rectified linear unit (ReLU).

Let us define a statistical model using a sifted deformed exponential function.
Suppose that C,F1, . . . , Fn are functions on Ω. For a deformation function χ and
a constant c, we define a χc-exponential family by

Sc
χ =

{
p(x, θ)

∣∣∣∣∣p(x; θ) = expc
χ

[
C(x) +

n∑
i=1

θiFi(x) − ψ(θ)

]
, θ ∈ Θ ⊂ Rn

}
,

where θ = t(θ1, . . . , θn) is a parameter, and ψ(θ) is the normalization with
respect to the parameter θ. The parameter {θ1, . . . , θn} is called a natural coor-
dinate of Sχ. We say that a statistical model is a qc-exponential family if the
deformed exponential function is a qc-exponential function.

Theorem 1 (discrete distributions). Suppose that Ω is the finite sample
space Ω = {x0, x1, . . . , xn}. Then a statistical model on Ω is defined by

Sn =

{
p(x, η)

∣∣∣∣∣ ηi > 0,

n∑
i=0

ηi = 1, p(x; η) =
n∑

i=0

ηiδi(x)

}
, (5)

where δi(x) equals one if x = i and zero otherwise. Then Sn is a qc-exponential
family for arbitrary q and c.

Proof. The proof is quite same as in the ordinary exponential case [1]. By setting
θi = lnc

q ηi − lnc
q η0 = ((ηi)1−q − (η0)1−q)/(1− q), and ψ(θ) = − lnc

q η0, we have

lnc
q p(x; θ(η)) =

1
1 − q

{
p1−q(x; η) − c1−q

}
=

1
1 − q

{
n∑

i=0

(ηi)1−qδi(x) − c1−q

}

=
1

1 − q

{
n∑

i=0

(
(ηi)1−q − (η0)1−q

)
δi(x) + (η0)1−q − c1−q

}

=
n∑

i=1

θiδi(x) − ψ(θ).

This implies that the set of discrete distributions is a qc-exponential family. ��
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In the q-exponential case, a qc-exponential distribution can be written as a
q-exponential distribution. That is, the following relation holds

p(x; θ) = expc
q

[
C(x) +

n∑
i=1

Fi(x)θi − ψ(θ)

]

= expq

[
lnq c + C(x) +

n∑
i=1

Fi(x)θi − ψ(θ)

]
.

This property also holds for another deformed exponential distribution.
In order to discuss geometric structures on deformed exponential family, let

us recall escort expectations.
Let χ be a deformation function. For p(x; θ) ∈ Sc

χ and a function f(x) on Ω,
we define the normalized escort expectation of f(x) with respect to p(x; θ) by

Eesc
χ,p[f(x)] :=

∫
Ω

f(x)
χ{p(x; θ)}

Zχ(p)
dx,

where Zχ(p) is the normalization defined by

Zχ(p) :=
∫

Ω

χ{p(x; θ)}dx.

Assuming that an integration and a differentiation are interchangeable, we obtain

Eesc
χ,p

[
∂

∂θi
lnc

χ p(x; θ)
]

= 0. (6)

Hence ∂/∂θi lnc
χ p(x; θ) is regarded as a generalization of a score function on

Sc
χ (cf. [5] and [7]). In this paper, we only discuss the normalized first escort

expectation. For further discussions of escort expectations, see [6].
Now we consider geometric structures on Sc

χ. Suppose that the normalization
ψ is strictly convex. Then we can define a χ-Fisher metric gχ and a χ-cubic form
Cχ by

gχ
ij(θ) := ∂i∂jψ(θ),

Cχ
ijk(θ) := ∂i∂j∂kψ(θ),

respectively. In Hessian geometry [10], the normalization ψ is called the potential
of gχ and Cχ with respect to {θi}.

Denote by ∇χ(0) be the Levi-Civita connection with respect to gχ. For a fixed
α ∈ R, we define an affine connection ∇χ(α) by

gχ(∇χ(α)
X Y,Z) := gχ(∇χ(0)

X Y,Z) − α

2
Cχ(X,Y,Z).

In particular, we denote ∇χ(e) = ∇χ(1) and ∇χ(m) = ∇χ(−1). Then we have the
following theorem, which generalizes the theorems in [2] and [7].
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Theorem 2. For a deformed exponential family Sc
χ, the following hold:

1. (Sc
χ,∇χ(e), gχ) and (Sc

χ,∇χ(m), gχ) are mutually dual Hessian manifolds, that
is, (Sc

χ, gχ,∇χ(e),∇χ(m)) is a dually flat space.
2. {θi} is a ∇χ(e)-affine coordinate system on Sc

χ.
3. ψ(θ) is the potential of gχ and Cχ with respect to {θi}.
4. Set ηi := Eesc

χ,p[Fi(x)]. Then {ηi} is a ∇χ(m)-affine coordinate system on Sc
χ

and the dual of {θi} with respect to gχ, that is, gχ(∂/∂θi, ∂/∂ηj) = δi
j holds.

5. Set φ(η) := Eesc
χ,p[logc

χ p(x; θ) − C(x)]. Then φ(η) is the potential of gχ with
respect to {ηi}.

Proof. The proof is quite same as [7]. Statements 1, 2 and 3 are obtained from
a well-known arguments of Hessian geometry [10] (See also [7]). Since ηi =
Eesc

χ,p[Fi(x)], we obtain

Eesc
χ,p[logc

χ p(x; θ) − C(x)] = Eesc
χ,p

[
n∑

i=1

θiFi(x) − ψ(θ)

]
=

n∑
i=1

θiηi − ψ(θ).

From the unbiasedness of generalized score function (6), using the Legendre
transformation on a dually flat space [1], we obtain the Statements 4 and 5. ��

4 Normalization Problems

In this section, we discuss how to normalize a given function to a probability
distribution. Such a normalization is not a trivial problem.

Let Ω be a sample space, and Θ be a parameter space. Suppose that F is
a function on Ω × Θ and f is a function on the image F (Ω × Θ). We say that
f(Fθ(x)) is e-normalizable or exponential normalizable if there exists a function
ψ on Θ such that f(Fθ(x) − ψ(θ)) ≥ 0 and∫

Ω

f(Fθ(x) − ψ(θ))dx = 1. (7)

On the other hand, we say that f(Fθ(x)) is m-normalizable or mixture normal-
izable if f(Fθ(x)) ≥ 0 and

0 <

∫
Ω

f(Fθ(x))dx < ∞. (8)

From (7) and (8), the functions

f(Fθ(x) − ψ(θ)), and
f(Fθ(x))∫

Ω
f(Fθ(x))dx

can be regarded as probability density functions on Ω, respectively. If f is the
ordinary exponential function, then two normalizations are equivalent. However,
they are different in general.
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Let us consider the difference to these two normalizations using the rectified
linear function Rexp0

0 x as an extreme case.
Suppose that Ω = {x0, . . . , xn} is a finite sample space, and Sn = {p(x; η)}

is the set of all probability distributions on Ω defined by (5). From Theorem 1,
Sn is a deformed exponential family.

By setting θi = ln0
0 p(xi) − ln0

0 p(x0) = ηi − η0, we obtain

ln0
0 p(x; θ(η)) =

n∑
i=1

(ηi − η0)δi(x) + η0 =

⎧⎪⎨
⎪⎩

ηi (x = xi),

1 −
n∑

i=1

ηi (x = x0).

Hence the e-normalization of p(x; η) with the rectified linear function deter-
mines a natural coordinate, and it is a parallel transport of a local coordinate
from {η1, . . . , ηn} to {θ1, . . . , θn} = {η1 − η0, . . . , ηn − η0}.

On the other hand, we set Ω′ = {x ∈ Ω | p(xi; η) > p(x0; η)} and

fη(x) = Rexp0
0

(
n∑

i=1

θiδi(x)

)
=
{

ηi − η0 ( xi ∈ Ω′ ),
0 ( xi /∈ Ω′ ).

Therefore the m-normalization of p(x; η) is given by

p̄m(x; η) =
∑n

i=1 Rexp0
0(θ

i)δi(x)∑
w∈Ω′ θiδi(w)

.

This normalization is that all the probabilities smaller than p(x0; η) = η0
make zero, that is, p̄m(xi; η) = 0 if xi ∈ Ω\Ω′. This normalization is meaningful
if we reduce parameters of statistical models.

5 Discussions

In any case, the procedure of normalization of a non-probability distribution to a
probability distribution is not a trivial problem. It affects the geometric structure
of the statistical model. It is necessary to discuss what is a good normalization
depending on the given problem.
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Abstract. We provide an alternative differential geometric framework
of the manifold M of parametric statistical models. While adopting the
Fisher-Rao metric as the Riemannian metric g on M, we treat the origi-
nal parameterization of the statistical model as affine coordinate chart on
the manifold endowed with a flat connection, instead of using a pair of
torsion-free affine connections with generally non-vanishing curvature.
We then construct its g-conjugate connection which, while necessarily
curvature-free, carries torsion in general. So instead of associating a sta-
tistical structure to M, we construct a statistical manifold admitting
torsion (SMAT). We show that M is dually flat if and only if torsion of
the conjugate connection vanishes.

Keywords: Torsion · Weitzenböck connection · Hessian manifold

1 Introduction

Recall that in the now-classic information geometry, a parametric family of den-
sity functions, p(·|x), called a parametric statistical model, is the association
x �→ p(·|x) of a point x = [x1, · · · , xn] in a connected open subset of Rn to p,
such that x serves as a local coordinate chart of p ∈ M [Ama85,AN00]. The
Fisher-Rao metric and the α-connections are given by

gij(x) =
∫

Ω

dω

{
p(ω|x)

∂ log p(ω|x)
∂xi

∂ log p(ω|x)
∂xj

}
;

Γ
(α)
ij,k(x) =

∫
Ω

dω
∂p(ω|x)

∂xk

(
1 − α

2
∂ log p(ω|x)

∂xi

∂ log p(ω|x)
∂xj

+
∂2 log p(ω|x)

∂xi∂xj

)
.

The α- and (−α)-connection are conjugate to each other with respect to the
Fisher-Rao metric g. Note that all α-connections are torsion-free; yet generally
they have non-zero curvatures, with curvature of (±α)-connections equal but
opposite sign of each other. When the curvatures of (±1)-connections vanish, g
takes the form of a Hessian metric. It is important to keep in mind that each
member of the α-connection is Codazzi-coupled to the Fisher-Rao metric g.

The project is supported by DARPA/ARO Grant W911NF-16-1-0383 (“Information
Geometry: Geometrization of Science of Information”, PI: Zhang).
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In this paper, we take a different perspective about the manifold M of para-
metric statistical models p(·|x). We take the parameter x to be the local coordi-
nates of a parallelizable manifold after trivialization of its tangent bundle TM,
i.e, x is taken to be the affine coordinates of a flat connection ∇∗ on M. We
continue to take Fisher-Rao metric g as the Riemannian metric on M. Denote
∇ to be the g-conjugate of this flat connection ∇∗. Though ∇ is necessarily
curvature-free, in general, ∇ will not be torsion-free. This connection is adapted
to the g-conjugate frame, and we call it “pseudo-Weitzenböck connection.” In
the literature, a manifold (M, g,∇,∇∗) for which ∇∗ is flat is called a “statistical
manifold admitting torsion” or SMAT [Kur07,HM11], and ∇ and g are coupled
by

(∇Zg)(X,Y ) − (∇Xg)(Z, Y ) = g(T∇(Z,X), Y ).

Below, we actually describe parametric statistical model as SMAT by construct-
ing the biorthogonal frame B based on g being the Fisher-Rao metric. ∇ is
torsion-free, and hence becomes “flat”, if and only if g is Hessian. For more
details including proofs, see [ZK19].

2 Theoretical Foundation

2.1 g-Conjugate Connection

We recall that given any connection ∇ and an arbitrary Riemannian metric g,
the g-conjugate connection ∇∗ is defined as the (unique) connection that jointly
preserves g with ∇:

Z(g(X,Y )) = g(∇ZX,Y ) + g(X,∇∗
ZY ), (1)

where X,Y,Z are all vector fields on M.
The curvature and torsion of conjugate connections ∇ and ∇∗ are related:

(i) their curvature tensors R∇, R∇∗
satisfy

g(R∇(Z,W )X,Y ) + g(R∇∗
(Z,W )Y,X) ≡ 0; (2)

(ii) their torsion tensors T∇, T∇∗
satisfy

g(T∇∗
(Z,X) − T∇(Z,X), Y ) ≡ (∇Zg)(X,Y ) − (∇Xg)(Z, Y ). (3)

A consequence of (2) is that if ∇ is curvature-free, then so is ∇∗. The consequence
of (3) is that ∇ and ∇∗ carry the same amount of torsion if and only if

(∇Zg)(X,Y ) = (∇Xg)(Z, Y ),

which is known as the “Codazzi coupling” of (g,∇). It is easily verified that
(g,∇) is Codazzi-coupled if and only if (g,∇∗) is Codazzi-coupled. Both (2) and
(3) are well-known facts in information geometry. A connection is called flat
when it is both curvature-free and torsion-free. A manifold is called dually flat
when it carries two flat connections ∇ and ∇∗ that form a conjugate pair with
respect to the (necessarily) Hessian metric constructed from either ∇ or ∇∗.
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2.2 Connection Adapted to a Frame

Let us start by defining a local frame on a parallelizable manifold M. A frame
B = {b1, · · · , bn} with n = dim(M) is a collection of n locally linearly indepen-
dent vector fields {bi}n

i=1 on M. Under local coordinate system x = {xi}n
i=1, the

expression of a frame B is bi = Bj
i ∂xj , where ∂xj is the shorthand for ∂/∂xj ,

and Bj
i is an n × n matrix, assumed to be of full rank and hence invertible:

(B−1)i
l Bl

j = δi
j = Bi

l (B−1)l
j .

Here, and in the rest of the paper, B−1 denotes the matrix inverse of Bi
j , and

Einstein summation notation is in effect.
When the B-matrix is taken to be the Jacobian matrix of coordinate trans-

form: x −→ y

(B−1)α
j =

∂yα

∂xj
←→ Bj

α =
∂xj

∂yα
, (4)

then the frame {bi}n
i=1 forms a coordinate frame:

bi =
∂xα

∂yi

∂

∂xα
=

∂

∂yi
:= ∂yi .

The necessary and sufficient condition for (4) is

∂xi(B−1)α
j = ∂xj (B−1)α

i . (5)

Necessity is obvious. As for sufficiency, note that when Eq. 5 is satisfied, then
for each α there exists a function yα = yα(x) such that

(B−1)α
j =

∂yα

∂xj
.

Definition 1 (Adapted connection). Given any frame B, the adapted con-
nection ∇B is defined by ∇B = B ∂(B−1) or in component forms:

Γ β
kα = Bβ

j (∂xα(B−1)j
k) = −(B−1)j

k(∂xαBβ
j ). (6)

∇B as constructed is known as the “connection of parallelization” [BG80], since
they always exist on a parallelizable manifold after trivialization of its tangent
bundle with a global frame B. The following is well-known [BG80, p.223].

Proposition 1. Given a frame B = {b1, · · · , bn}, then

(i) ∇B
bi
bj ≡ 0, ∀i, j;

(ii) R∇B

= 0 ;
(iii) T∇B

= 0 iff B is a coordinate frame, i.e., [bi, bj ] = 0.

Definition 2 (g-Biorthogonal frame). Given any frame B = {bi}n
i=1, the

g-biorthogonal frame is defined as the (unique) frame B� = {b�
i }n

i=1 that is
biorthogonal with respect to the given g:

g(bi, b
�
j ) ≡ δij .
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We have the following nice property

Theorem 3 [ZK19, Theorem 10]. With respect to any Riemannian metric g,
the g-conjugation of a connection induced by a frame B equals the connection
indued by the g-biorthogonal frame B�:

(∇B
)∗

= ∇(B�).

Historically, an affine connection adapted to an orthonormal frame is called
the Weitzenböck connection, and has been used in theoretical physics to describe
an alternative theory to Einstein’s general relativity. Here this construction is
extended to an arbitrary frame, and hence the terminology “pseudo-Weitzenböck
connections.” Theorem 3 shows that the notion of biorthogonal frames is com-
patible with the notion of conjugate connections when the pair of connections
are both adapted connections.

2.3 Dually Flat Versus Partially-Flat Manifolds

Recall that the Hessian operator (second derivative) on a function Φ on a man-
ifold is a bilinear form sometimes denoted as (∇dΦ)(X,Y ). Operating on the
coordinate base (X = ∂xi , Y = ∂xj ) it takes the form

Hess∇(Φ)(∂xi , ∂xj ) =
∂2Φ

∂xi∂xj
− Γ k

ij

∂Φ

∂xk
.

Torsion-freeness of ∇ is reflected as Γ k
ij = Γ k

ji. When ∇ is further curvature-free
(and hence ∇ is flat), Γ k

ij = 0 using x as affine coordinates, so that

Hess∇(Φ)(∂xi , ∂xj ) =
∂2Φ

∂xi∂xj
.

It is established in Zhang and Khan [ZK19] that

Proposition 2 [ZK19, Theorem 3]. Given a torsion-free connection ∇ and a
smooth function Φ on a manifold, then (∇,Hess∇(Φ)) is Codazzi coupled iff
dΦ(R∇) = 0.

A consequence is that any flat connection ∇ is always Codazzi coupled to
Hess∇(Φ), as [Shi07] observed. Denote ∇∗ the conjugate connection with respect
to the symmetric bilinear form Hess∇(Φ) induced from a flat ∇. Then ∇∗ is
also flat (both curvature- and torsion-free). Assuming Φ is convex, then we have
the standard Hessian manifold with

g = Hess∇(Φ) = Hess∗
∇(Φ∗),

where Φ∗ is the convex conjugate function of Φ.
The above analysis also tells us that given (M, g,∇) with a flat connection

∇, then whenever g 	= Hess∇(Φ), then (∇, g) is in general not a Codazzi pair, as
[Shi07] pointed out, so the g-conjugate connection ∇∗ is not torsion-free. This is
the situation of the so-called “partially-flat” manifold [Hen17]. Next, we apply
this concept to the manifold of parametric statistical models.
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3 Parametric Statistical Models as Partially-Flat
Geometry

3.1 Riemannian Manifold of Parametric Statistical Models

Take x = [x1, · · · , xn], the parameter of a parametric statistical model p(·|x), to
be the affine coordinates on a parallelizable manifold with flat connection ∇∗,
i.e., the Christoffel symbol Γ ∗i

jk vanishes. Writing out the equation of conjugate
connections ∇,∇∗ under this coordinate chart

∂gij

∂xk
= gljΓ

l
ki + gilΓ

∗l
kj = gljΓ

l
ki .

Therefore, the pseudo-Weitzenböck connection ∇ of the parametric statistical
model is (written as its Christoffel symbol Γ i

jk)

Γ j
ki = gjl ∂gil

∂xk
, (7)

with gij denoting the elements of the matrix inverse of g, the Fisher-Rao metric.
It is well-known [BG80] that such a connection is always curvature-free., but
carries torsion

T j
ik = gjl

(
∂gkl

∂xi
− ∂gil

∂xk

)
.

In general, T 	= 0, unless ∂gil

∂xk is totally symmetric, i.e., g is Hessian. Other-
wise, from any connection ∇ with torsion T∇, we can construct a torsion-free
connection ∇ − 1

2T∇; in the present case,

Γ j
ki − 1

2
T j

ki =
gjl

2

(
∂gkl

∂xi
+

∂gil

∂xk

)

is always torson-free, and differs from the Levi-Civita connection of g by
1
2gjl∂xlgik.

Even though Γ j
ki given by (7) may carry torsion, its geodesic equation

d2xj

ds2
+ gjl ∂gil

∂xk

dxi

ds

dxk

ds
= 0

or equivalently
d

ds

(
gij

dxj

ds

)
= 0

still yields the same solution as given by

gij
dxj

ds
= const, i = 1, 2, · · · , n.

Torsion of Γ j
ki is not captured in the geodesic curves themselves; it describes

the “screw” component of the motion with axis of rotation precisely the tangent
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direction of the curve. When two connections differ only by torsion, then their
associated geodesic equations are the same, since the anti-symmetric part of Γ

is canceled after summation with dxi

ds
dxk

ds .
The associated frame, which we call “canonical frame” of M and denote by

upper script {bi}n
i=1, is

B = {bi}n
i=1 = {gij∂xj , i = 1, 2, · · · , n} .

This frame is nothing but the “natural gradient” vector popularly known to the
machine learning community after Amari [Ama98].

3.2 Pre-contrast Function and α-Connections

Just as a statistical structure may be induced by a contrast function, a SMAT
may be induced by a pre-contrast function ρ [HM11] which, in the partially-flat
case, has a canonical expression [Hen17]. We show that

Proposition 3. The canonical pre-contrast function M × TM → R is

ρ(∂xi , x, x′) = −g(∂xi , (x′j − xj)∂xj ) = (xj − x′j) gij(x).

This can be seen from

− ∂ρ

∂x′j

∣∣∣∣
x′=x

= gij(x),

− ∂2ρ

∂x′k∂x′j

∣∣∣∣
x′=x

= 0,

− ∂ρ

∂xk∂x′j

∣∣∣∣
x′=x

=
∂gij

∂xk
= Γki,j .

where the canonical connection Γ carries torsion, Γki,j 	= Γik,j , in general.
The family of α-connections, ∇̃(α) = 1+α

2 ∇ + 1−α
2 ∇∗ = 1+α

2 ∇ all carry
torsion (except α = −1)

Γ̃
(α)
ki,j(x) =

1 + α

2

(∫
Ω

dω

{
∂2 log p(ω|x)

∂xk∂xi

∂p(ω|x)
∂xj

+
∂2 log p(ω|x)

∂xk∂xj

∂p(ω|x)
∂xi

}

+
∫

Ω

dω p(ω|x)
∂ log p(ω|x)

∂xi

∂ log p(ω|x)
∂xj

∂ log p(ω|x)
∂xk

)
,

with torsion given by

T̃
(α)j
ik =

1 + α

2
gjl

∫
Ω

dω

{
∂2 log p(ω|x)

∂xi∂xl

∂p(ω|x)
∂xk

− ∂2 log p(ω|x)
∂xk∂xl

∂p(ω|x)
∂xi

}
.
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3.3 Univariate Normal Distribution: An Example

We consider the univariate normal family on the real line (−∞ < ω < ∞)

N (ω|μ, σ) =
1√

2πσ2
exp

(
− (ω − μ)2

2σ2

)

with parameters m =
√

2 μ and σ (the factor of
√

2 is for later convenience).
Reparametrizing, it is possible to consider N (ω|μ, σ) as an exponential family
with natural coordinates x = (x1, x2) and expectation coordinates u = (u1, u2):

x1 =
μ

σ2
, x2 = − 1

2σ2
;

u1 = μ, u2 = μ2 + σ2.

When treating x (or u) as affine coordinates for the dually flat connections, the
Fisher-Rao metric g becomes the Hessian metric with potential Φ

Φ(x) = −x1 · x1

4x2
+

1
2

log
(
− π

x2

)
.

As the mean μ and variance σ parameters of the univariate normal model
are intrinsically meaningful in statistics, it is desirable to treat (μ, σ) as affine
coordinates for some flat connection. As such, if we consider the coordinate frame{

∂

∂m
,

∂

∂σ

}
,

its biorthogonal frame with respect to the Fisher-Rao metric

g =
2
σ2

(dm2 + dσ2)

is {
σ2

2
∂

∂m
,
σ2

2
∂

∂σ

}
.

By computing the Lie bracket of the biorthogonal frame, we find that[
σ2

2
∂

∂m
,
σ2

2
∂

∂σ

]
= −σ3

2
∂

∂m
.

This is the torsion of the pseudo-Weitzenböck connection adapted to the
g-biorthogonal frame. It is not a coordinate frame and the torsion of the
g-conjugate connection is non-zero.

Note that the Fisher-Rao metric, when expressed in the (m,σ)-coordinates,
is not Hessian. The pseudo-Weitzenböck connection derived above has geodesics
which are reparametrizations of straight lines in the upper half-plane. This fact
does not hold in general, but turns out in the present case because the Fisher-Rao
metric, though not Hessian, is so simple for our choice of parametrization.

To summarize, we have constructed a presentation of the univariate normal
family (as a manifold of upper half-plane), not as a manifold of dual flatness
(Hessian manifold) in the conventionally-adopted natural and expectation coor-
dinates, but as a partially-flat statistical manifold admitting torsion (SMAT) in
the original (m,σ)-coordinates.
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4 Discussions

Classical information geometry involves statistical manifolds, with two equiva-
lent definitions as follows:

(i) Lauritzen’s [Lau87] viewpoint: (M, g,∇,∇∗) where the pair of g-conjugated
connections ∇ and ∇∗ are both torsion-free;

(ii) Kurose’s [Kur90] viewpoint: (M, g,∇) where ∇ is torsion-free and Codazzi-
coupled to g.

With application to parametric statistical models, the Riemannian metric is
the Fisher-Rao metric and the pair of conjugate connections are the (±1)-
connections, generated by divergence (contrast) functions. These are “canoni-
cal” objects once the parametric statistical model p(·|x) is specified, canonical
because they are unique second- and third-order invariants for parametric sta-
tistical models (see [Dow18] and [AJVLS15]). Here we provide another “canon-
ical” construction of a parametric statistical model as a parallelizable manifold
with a “partially-flat” geometry [Hen17] under which both conjugate connec-
tions are curvature-free. A partially-flat structure (of a parallelizable manifold)
is a slightest relaxation to the dually flat Hessian structure, by allowing one of
the connections (say, ∇∗) to be torsion-free. The metric g need not be Hessian,
nor is the flat connection required to be Codazzi coupled to g. In other words,
our construction of this manifold (M, g,∇,∇∗) is such that ∇∗ is flat and ∇ is
curvature-free but usually carries torsion, while g is still the Fisher-Rao metric.
This is a special case of a statistical manifold admitting torsion (SMAT, [Kur07])
that can be generated by “pre-contrast functions” [HM11]. Compared to statis-
tical manifold (M, g,∇,∇∗) à la Lauritzen, our alternative approach selects a
pair of connections both of which are, instead of torsion-free, curvature-free.
Compared to statistical manifold (M, g,∇) à la Kurose, our alternative app-
roach selects a connection that is, instead of Codazzi-coupled, SMAT-coupled
to g. The switch of emphasis from curvature to torsion may lead to interesting
reformulation of information geometry.
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Abstract. Distances are fundamental primitives whose choice signifi-
cantly impacts the performances of algorithms in applications. However
selecting the most appropriate distance for a given task is an endeavor.
Instead of testing one by one the entries of an ever-expanding dictionary
of ad hoc distances, one rather prefers to consider parametric classes of
distances that are exhaustively characterized by axioms derived from first
principles. Bregman divergences are such a class. However fine-tuning a
Bregman divergence is delicate since it requires to smoothly adjust a
functional generator. In this work, we propose an extension of Bregman
divergences called the Bregman chord divergences. This new class of
distances bypasses the gradient calculations, uses two scalar parameters
that can be easily tailored in applications, and generalizes asymptotically
Bregman divergences.

Keywords: Csiszár’s f -divergence · Bregman divergence ·
Jensen divergence · Skewed divergence

1 Introduction

Distances are at the heart of many signal processing tasks [6,14], and the per-
formance of algorithms solving those tasks heavily depends on the chosen dis-
tances. Historically, many ad hoc distances have been proposed and empirically
benchmarked on different tasks in order to improve the state-of-the-art per-
formances. However, getting the most appropriate distance for a given task is
often an endeavour. Thus principled classes of distances1 have been proposed

1 Here, we use the word distance to mean a dissimilarity (or a distortion, a deviance,
a discrepancy, etc.), not necessarily a metric distance [14]. A distance between
arguments θ1 and θ2 satisfies D(θ1, θ2) ≥ 0 with equality if and only if θ1 = θ2.
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and studied. Among those generic classes of distances, three main generic classes
have emerged:

– The Bregman divergences [5,7,22] defined for a strictly convex and differen-
tiable generator F ∈ B : Θ → R (where B denotes the class of strictly convex
and differentiable functions defined modulo affine terms):

BF (θ1 : θ2) := F (θ1) − F (θ2) − (θ1 − θ2)�∇F (θ2), (1)

measure the dissimilarity between parameters θ1, θ2 ∈ Θ, where Θ ⊂ R
d is a

d-dimensional convex set. Bregman divergences have also been generalized to
other types of objects like matrices [26].

– The Csiszár f -divergences [1,11,12] defined for a convex generator f ∈ C
satisfying f(1) = 0 and strictly convex at 1:

If [p1 : p2] :=
∫

X
p1(x)f

(
p2(x)
p1(x)

)
dμ(x) ≥ f(1) = 0, (2)

measure the dissimilarity between probability densities p1 and p2 that are
absolutely continuous with respect to a base measure μ (defined on a sup-
port X ).

– The Burbea-Rao divergences [9] also called Jensen differences or Jensen diver-
gences because they rely on the Jensen’s inequality [16] for a strictly convex
function F ∈ J : Θ → R:

JF (θ1, θ2) :=
F (θ1) + F (θ2)

2
− F

(
θ1 + θ2

2

)
≥ 0, (3)

where θ1 and θ2 belong to a parameter space Θ.

These three fundamental classes of distances are not mutually exclusive, and
their pairwise intersections (e.g., B ∩ C or J ∩ C) have been studied in [2,17,27].
The ‘:’ notation between arguments of distances emphasizes the potential asym-
metry of distances (oriented distances with D(θ1 : θ2) �= D(θ2 : θ1)), and the
brackets surrounding distance arguments indicate that it is a statistical distance
between probability densities, and not a distance between parameters. Using
these notations, we express the Kullback-Leibler distance [10] (KL) as

KL[p1 : p2] :=
∫

p1(x) log
p1(x)
p2(x)

dμ(x). (4)

The KL distance/divergence between two members pθ1 and pθ2 of a parametric
family F of distributions amount to a parameter divergence

KLF (θ1 : θ2) := KL[pθ1 : pθ2 ]. (5)

For example, the KL statistical distance between two probability densities
belonging to the same exponential family or the same mixture family amounts
to a (parameter) Bregman divergence [3,23]. When p1 and p2 are finite discrete
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distributions of the d-dimensional probability simplex Δd, we have KLΔd
(p1 :

p2) = KL[p1 : p2]. This explains why sometimes we can handle loosely distances
between discrete distributions as both a parameter distance and a statistical
distance. For example, the KL distance between two discrete distributions is a
Bregman divergence BFKL for FKL(x) =

∑d
i=1 xi log xi (Shannon negentropy)

for x ∈ Θ = Δd. Extending Θ = Δd to positive measures Θ = R
d
+, this Bregman

divergence BFKL yields the extended KL distance:

eKL[p : q] =
d∑

i=1

pi log
pi

qi
+ qi − pi. (6)

Notice that the KL divergence of 4 between non-probability positive distributions
may yield potential negativity of the measure (e.g., Example 2.1 of [28] and [8]).
This case also happens when doing Monte Carlo stochastic integrations of the
KL divergence integral.

Whenever using a functionally parameterized distance in applications, we
need to choose the most appropriate functional generator, ideally from first prin-
ciples [3,4,13]. For example, Non-negative Matrix Factorization (NMF) for audio
source separation or music transcription from the signal power spectrogram can
be done by selecting the Itakura-Saito divergence [15]2 that satisfies the require-
ment of being scale invariant:

BFIS(λθ : λθ′) = BFIS(θ : θ′) =
∑

i

(
θi

θ′
i

− log
θi

θ′
i

− 1
)

, (7)

for any λ > 0. When no such first principles can be easily stated for a task [13],
we are left by choosing manually or by cross-validation a generator. Notice that
the convex combinations of Csiszár generators is a Csiszár generator (idem for
Bregman divergences):

∑d
i=1 λiIfi

= I∑
i i=1dλifi

for λ belonging to the standard
(d − 1)-dimensional standard simplex Δd.

In this work, we propose a novel class of distances, termed Bregman chord
divergences. A Bregman chord divergence is parameterized by a Bregman gener-
ator and two scalar parameters which make it easy to fine-tune in applications,
and matches asymptotically the ordinary Bregman divergence.

The paper is organized as follows: In Sect. 2, we describe the skewed Jensen
divergence, show how to bi-skew any distance by using two scalars, and report
on the Jensen chord divergence [20]. In Sect. 3, we first introduce the univariate
Bregman chord divergence, and then extend its definition to the multivariate
case, in Sect. 4. Finally, we conclude in Sect. 5.

2 Geometric Design of Skewed Divergences

We can geometrically design divergences from convexity gap properties of the
graph plot of the generator. For example, the Jensen divergence JF (θ1 : θ2) of
2 A Bregman divergence for the Burg negentropy FIS(x) = − ∑

i log xi.
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Eq. 3 is visualized as the ordinate (vertical) gap between the midpoint of the
line segment [(θ1, F (θ1)); (θ2, F (θ2))] and the point ( θ1+θ2

2 , F ( θ1+θ2
2 )). The non-

negativity property of the Jensen divergence follows from the Jensen’s midpoint
convex inequality [16]. Instead of taking the midpoint θ̄ = θ1+θ2

2 , we can take
any interior point (θ1θ2)α := (1 − α)θ1 + αθ2, and get the skewed α-Jensen
divergence (for any α ∈ (0, 1)):

Jα
F (θ1 : θ2) := (F (θ1)F (θ2))α − F ((θ1θ2)α) ≥ 0. (8)

A remarkable fact is that the scaled α-Jensen divergence 1
αJα

F (θ1 : θ2) tends
asymptotically to the reverse Bregman divergence BF (θ2 : θ1) when α → 0,
see [21,30].

By measuring the ordinate gap between two non-crossing upper and lower
chords anchored at the generator graph plot, we can extend the α-Jensen diver-
gences to a tri-parametric family of Jensen chord divergences [20]:

Jα,β,γ
F (θ : θ′) := (F (θ)F (θ′))γ − (F ((θθ′)α)F ((θθ′)β)) γ−α

β−α
, (9)

with α, β ∈ [0, 1] and γ ∈ [α, β]. The α-Jensen divergence is recovered when
α = β = γ (Fig. 1).

Upper chord U

θ θ′(θθ′)α (θθ′)β

Lower chord L

(θθ′)γ
=

((θθ′)α(θθ′)β)λ

Jα,β,γ
F (θ : θ′)

Jα,β,γ
F (θ : θ′)

Jλ
F ((θθ

′)α : (θθ′)β)

Jγ
F (θ : θ′)

F

vertical
chord gap

Fig. 1. The Jensen chord gap divergence.
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For any given distance D : Θ × Θ → R+ (with convex parameter space Θ),
we can bi-skew the distance by considering two scalars γ, δ ∈ R (with δ �= γ) as:

Dγ,δ(θ1 : θ2) := D((θ1θ2)γ : (θ1θ2)δ). (10)

Clearly, (θ1θ2)γ = (θ1θ2)δ if and only if (δ−γ)(θ1−θ2) = 0. That is, if (i) θ1 = θ2
or if (ii) δ = γ. Since by definition δ �= γ, we have Dγ,δ(θ1 : θ2) = 0 if and only if
θ1 = θ2. Notice that both (θ1θ2)γ = (1−γ)θ1 +γθ2 and (θ1θ2)δ = (1−δ)θ1 +δθ2
should belong to the parameter space Θ. A sufficient condition is to ensure that
γ, δ ∈ [0, 1] so that both (θ1θ2)γ ∈ Θ and (θ1θ2)δ ∈ Θ. When Θ = R

d, we may
further consider any γ, δ ∈ R.

3 The Scalar Bregman Chord Divergence

Let F : Θ ⊂ R → R be a univariate Bregman generator with open convex
domain Θ, and denote by F = {(θ, F (θ))}θ its graph. Let us rewrite the ordinary
univariate Bregman divergence [7] of Eq. 1 as follows:

BF (θ1 : θ2) = F (θ1) − Tθ2(θ1), (11)

where y = Tθ(ω) denotes the equation of the tangent line of F at θ:

Tθ(ω) := F (θ) + (ω − θ)F ′(θ), (12)

Let Tθ = {(θ, Tθ(ω)) : θ ∈ Θ} denote the graph of that tangent line. Line Tθ is
tangent to curve F at point Pθ := (θ, F (θ)). Graphically speaking, the Bregman
divergence is interpreted as the ordinate gap (gap vertical) between the point
Pθ1 = (θ1, F (θ1)) ∈ F and the point of (θ1, Tθ2(θ1)) ∈ Tθ, as depicted in Fig. 2.

Now let us observe that we may relax the tangent line Tθ2 to a chord line (or
secant) Cα,β

θ1,θ2
= C(θ1θ2)α,(θ1θ2)β

passing through the points ((θ1θ2)α, F ((θ1θ2)α))
and ((θ1θ2)β , F ((θ1θ2)β)) for α, β ∈ (0, 1) with α �= β (with corresponding Carte-
sian equation C(θ1θ2)α,(θ1θ2)β

), and still get a non-negative vertical gap between
(θ1, F (θ1)) and (θ1, C(θ1θ2)α,(θ1θ2)β

(θ1)) (because any line intersects a convex
body in at most two points). By construction, this vertical gap is smaller than
the gap measured by the ordinary Bregman divergence. This yields the Bregman
chord divergence (α, β ∈ (0, 1], α �= β):

Bα,β
F (θ1 : θ2) := F (θ1) − C

(θ1θ2)α,(θ1θ2)β

F (θ1) ≤ BF (θ1 : θ2), (13)

illustrated in Fig. 3. By expanding the chord equation and massaging the equa-
tion, we get the following formula:

Bα,β
F (θ1 : θ2) := F (θ1) − Δα,β

F (θ1, θ2)(θ1 − (θ1θ2)α) − F ((θ1θ2)α), (14)

= F (θ1) − F ((θ1θ2)α) +
α {F ((θ1θ2)α) − F ((θ1θ2)β)}

β − α
,

where

Δα,β
F (θ1, θ2) :=

F ((θ1θ2)α) − F ((θ1θ2)β)
(θ1θ2)α − (θ1θ2)β

(15)
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Fig. 2. Bregman divergence as the vertical gap between the generator graph F and
the tangent line Tθ2 at θ2.

Fig. 3. The Bregman chord divergence Bα,β
F (θ1 : θ2).
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is the slope of the chord, and since (θ1θ2)α − (θ1θ2)β = (β − α)(θ1 − θ2) and
θ1 − (θ1θ2)α = α(θ1 − θ2).

Notice the symmetry Bα,β
F (θ1 : θ2) = Bβ,α

F (θ1 : θ2). We have

lim
α→1,β→1

Bα,β
F (θ1 : θ2) = BF (θ1 : θ2). (16)

When α → β, the Bregman chord divergences yields a subfamily of Bregman
tangent divergences:

Bα
F (θ1 : θ2) = lim

β→α
Bα,β

F (θ1 : θ2) ≤ BF (θ1 : θ2). (17)

We consider the tangent line T(θ1θ2)α
at (θ1θ2)α and measure the ordinate gap

at θ1 between the function plot and this tangent line:

Bα
F (θ1 : θ2) := F (θ1) − F ((θ1θ2)α) − (θ1 − (θ1θ2)α)� ∇F ((θ1θ2)α) ,

= F (θ1) − F ((θ1θ2)α) − α(θ1 − θ2)�∇F ((θ1θ2)α) , (18)

for α ∈ (0, 1]. The ordinary Bregman divergence is recovered when α = 1. Notice
that the mean value theorem yields Δα,β

F (θ1, θ2) = F ′(ξ) for ξ ∈ (θ1, θ2). Thus
Bα,β

F (θ1 : θ2) = Bξ
F (θ1 : θ2) for ξ ∈ (θ1, θ2). Letting β = 1 and α = 1 − ε (for

small values of 1 > ε > 0), we can approximate the ordinary Bregman divergence
by the Bregman chord divergence without requiring to compute the gradient:

BF (θ1 : θ2) 
ε→0 B1−ε,1
F (θ1 : θ2). (19)

4 The Multivariate Bregman Chord Divergence

When the generator is separable [3], i.e., F (x) =
∑

i Fi(xi) for univariate gener-
ators Fi, we extend easily the Bregman chord divergence as:

Bα,β
F (θ : θ′) =

∑
i

Bα,β
Fi

(θi : θ′
i). (20)

Otherwise, we have to carefully define the notion of “slope” for the multivariate
case. An example of such a non-separable multivariate generator is the Legendre
dual of the Shannon negentropy: The log-sum-exp function [24,25]:

F (θ) = log(1 +
∑

i

eθi). (21)

Given a multivariate (non-separable) Bregman generator F (θ) with Θ ⊆
R

D and two prescribed distinct parameters θ1 and θ2, consider the following
univariate function, for λ ∈ R:

Fθ1,θ2(λ) := F ((1 − λ)θ1 + λθ2) = F (θ1 + λ(θ2 − θ1)) , (22)

with Fθ1,θ2(0) = F (θ1) and Fθ1,θ2(1) = F (θ2).
The functions {Fθ1,θ2}θ1 �=θ2 are strictly convex and differentiable univariate

Bregman generators.
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Proof. To prove the strict convexity of a univariate function G, we need to show
that for any α ∈ (0, 1), we have G((1 − α)x + αy) < (1 − α)G(x) + αG(y).

Fθ1,θ2((1 − α)λ1 + αλ2) = F (θ1 + ((1 − α)λ1 + αλ2)(θ2 − θ1)) ,

= F ((1 − α)(λ1(θ2 − θ1) + θ1) + α((λ2(θ2 − θ1) + θ1))),
< (1 − α)F (λ1(θ2 − θ1) + θ1) + αF ((λ2(θ2 − θ1) + θ1)),
< (1 − α)Fθ1,θ2(λ1) + αFθ1,θ2(λ2).

Then we define the multivariate Bregman chord divergence by applying the
definition of the univariate Bregman chord divergence on these families of uni-
variate Bregman generators:

Bα,β
F (θ1 : θ2) := Bα,β

Fθ1,θ2
(0 : 1), (23)

Since (01)α = α and (01)β = β, we get:

Bα,β
F (θ1 : θ2) = Fθ1,θ2(0) +

α(Fθ1,θ2(α) − Fθ1,θ2(β))
β − α

− Fθ1,θ2(α),

= F (θ1) − F ((θ1θ2)α) − α (F ((θ1θ2)β) − F ((θ1θ2)α))
β − α

,

in accordance with the univariate case. Since (θ1θ2)β = (θ1θ2)α−(β−α)(θ2−θ1),
we have the first-order Taylor expansion

F ((θ1θ2)β) 
β�α F ((θ1θ2)α) − (β − α)(θ2 − θ1)�∇F ((θ1θ2)α) . (24)

Therefore, we have:

α (F ((θ1θ2)β) − F ((θ1θ2)α))
β − α


 −α(θ2 − θ1)�∇F ((θ1θ2)α) . (25)

This proves that
lim
β→α

Bα,β
F (θ1 : θ2) = Bα

F (θ1 : θ2). (26)

Notice that the Bregman chord divergence does not require to compute
the gradient ∇F The “slope term” in the definition is reminiscent to the q-
derivative [18] (quantum/discrete derivatives). However the (p, q)-derivatives [18]
are defined with respect to a single reference point while the chord definition
requires two reference points.

5 Conclusion

In this paper, we geometrically designed a new class of distances using a Breg-
man generator and two additional scalar parameters, termed the Bregman chord
divergence, and its one-parametric subfamily, the Bregman tangent divergences
that includes the ordinary Bregman divergence. This generalization allows one
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to easily fine-tune Bregman divergences in applications by adjusting smoothly
one or two (scalar) knobs. Moreover, by choosing α = 1 − ε and β = 1 for
small ε > 0, the Bregman chord divergence B1−ε,1

F (θ1 : θ2) lower bounds closely
the Bregman divergence BF (θ1 : θ2) without requiring to compute the gradi-
ent (a different approximation without gradient is 1

ε Jε
F (θ2 : θ1)). We expect

that this new class of distances brings further improvements in signal processing
and information fusion applications [29] (e.g., by tuning Bα,β

FKL
or Bα,β

FIS
). While

the Bregman chord divergence defines an ordinate gap on the exterior of the epi-
graph, the Jensen chord divergence [20] defines the gap inside the epigraph of the
generator. In future work, the dualistic information-geometric structure induced
by the Bregman chord divergences shall be investigated from the viewpoint of
gauge theory [19] and in contrast with the dually flat structures of Bregman
manifolds [3].
Source code in JavaTM is available for reproducible research.3
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Abstract. In this paper, we propose a test procedure for the number of compo-
nents of mixture distributions in a parametric setting. The test statistic is based
on divergence estimators derived through the dual form of the divergence in para-
metric models. We provide a standard limit distribution for the test statistic under
the null hypothesis that holds for mixtures of any number of components k ≥ 2.

Keywords: Test procedure · Mixture model · Number of components ·
Divergence estimation

1 Introduction

Consider a k-component parametric mixture model Pθ (k ≥ 2) defined as follows:

Pθ :=
k

∑
i=1

wiP
(i)
ai (1)

where
{
P(1)
a1 ;a1 ∈ A1

}
, . . . ,

{
P(k)
ak ;ak ∈ Ak

}
are k parametric models and A1, . . . ,Ak are

k sets in Rd1 , . . . ,Rdk with d1, . . . ,dk ∈ N∗ and 0 ≤ wi ≤ 1, ∑wi = 1. Note that we
consider a nonstandard framework in which the weights wi are allowed to be equal
to 0. Note Θ the parameter space:

θ ∈ Θ :=

{
(w1, . . . ,wk,a1, . . . ,ak)T ∈ [0,1]k ×A1 ×·· ·×Ak such that

k

∑
i=1

wi = 1

}
,

(2)
and assume that the model is identifiable. Let k0 ∈ {1, . . . ,k−1}.

We are willing to test if (k−k0) components in (1) have null coefficients. We assume
that their labels are k0 +1, ...,k. Denote Θ0 the subset of Θ defined by

Θ0 :=
{

θ ∈ Θ such that wk0+1 = · · · = wk = 0
}

.

On the basis of an i.i.d sample X1, . . . ,Xn with distribution PθT , θT ∈ Θ , we intend to
perform tests of the hypothesis

H0 : θT ∈ Θ0 against the alternative H1 : θT ∈ Θ \Θ0. (3)

c© Springer Nature Switzerland AG 2019
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When considering the test (3), it is known that the generalized likelihood ratio test,
based on the statistic

2 logλ := 2log
supθ∈Θ ∏n

i=1 pθ (Xi)
supθ∈Θ0 ∏n

i=1 pθ (Xi)
, (4)

is not valid, since the asymptotic approximation by χ2 distribution does not hold in this
case; the problem is due to the fact that the null value of θT is not in the interior of the
parameter space Θ . We clarify now this problem.

For simplicity, consider a mixture of two known densities p0 and p1 with p0 �= p1:

pθ = (1−θ)p0 +θ p1 where θ ∈ Θ := [0,1]. (5)

Given data X1, . . . ,Xn with distribution PθT and density pθT , θT ∈ [0,1], consider the test
problem

H0 : θT = 0 against the alternative H1 : θT > 0. (6)

The generalized likelihood ratio statistic for this test problem is

Wn(0) := 2log
L(θ̂)
L(0)

, (7)

where θ̂ is the maximum likelihood estimator of θT .
Under suitable regularity conditions we can prove that the limit distribution of the

statistic Wn in (7) is 0.5δ0 +0.5χ2
1 , a mixture of the χ2-distribution and the Dirac mea-

sure at zero; see e.g. Titterington et al. [16], Self and Liang [15] and Ciuperca [9].
Moreover, in the case of more than two components and k− k0 ≥ 2, the limit dis-

tribution of the GLR statistic (4) under H0 is complicate, and not standard (not a χ2

distribution) which poses some difficulty in determining the critical value that will give
correct asymptotic size; see Self and Liang [15]. Azais et al. [1] proposes for instance
a likelihood ratio approach for mixtures and give the asymptotic properties of the test,
but its numerical application is extremely complicated, especially under non-Gaussian
mixtures. On the other hand, the likelihood ratio statistic can not be used to construct
an asymptotic confidence region for the parameter θT since its limit law is not the same
when θT = 0 and θT > 0.

The case where some parameter of the model belongs to the frontier of the domain
is a special case of power models, see for instance Castillo et al. [8] for related statistical
issues.

In the sequel, we propose a simple solution for testing the number of components
of a parametric mixture model. This method consists in constructing a test statistic
based on ϕ−divergences and their asymptotic properties. In the following section, we
provide the general framework that will be used to construct the test procedure, i.e. the
definitions, representation and properties of ϕ−divergences.

2 Some Definition and Notation in Relation with Minimum
Divergence Inference

Let P := {Pθ ,θ ∈ Θ} be an identifiable parametric model on Rs where Θ is a subset of
Rd . All measures in P will be assumed to be measure equivalent sharing therefore the
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same support. The parameter space Θ does not need to be open in the present setting.
It may even happen that the model includes measures which would not be probabil-
ity distributions; cases of interest cover the present setting, namely models including
unnormalized mixtures of probability distributions; see Broniatowski and Keziou [3].

The f -divergences were introduced by Csiszar [11] as convex non-negative dissim-
ilarities between two probability distributions. Let f be a convex function on R+, that
possibly takes infinite values at 0 and such that f (1) = 0. Denote by F the f -divergence
between two probability distributions P and Q:

F(Q,P) :=
∫

Rs
f

(
dQ
dP

(x)
)

dP(x).

Extensions to cases where Q is a finite signed measure and P a probability measure are
called ϕ−divergences.

Let ϕ be a proper closed convex function from ]− ∞,+∞[ to [0,+∞] with ϕ(1) =
0 and such that its domain domϕ := {x ∈ R such that ϕ(x) < ∞} is an interval with
endpoints aϕ < 1 < bϕ (which may be finite or infinite). For two measures Pα and Pθ
in P the ϕ-divergence between the two is defined by

φ(α,θ) :=
∫

Rs
ϕ

(
dPα
dPθ

(x)
)

dPθ (x).

The basic property of ϕ− divergences states that when ϕ is strictly convex on a
neighborhood of x= 1, then

φ(α,θ) = 0 if and only if α = θ .

We refer to Liese and Vajda [12] Chap. 1 for a complete study of those properties. See
also Pardo [13].

2.1 Examples of ϕ-divergences

The Kullback-Leibler (KL), modified Kullback-Leibler (KLm), χ2, modified χ2 (χ2
m),

Hellinger (H), and L1 divergences are respectively associated to the convex functions
ϕ(x) = x logx− x+ 1, ϕ(x) = − logx+ x− 1, ϕ(x) = 1

2 (x−1)2, ϕ(x) = 1
2 (x−1)2/x,

ϕ(x) = 2(
√
x−1)2 and ϕ(x) = |x−1|. All these divergences except the L1 one, belong

to the class of the so called “power divergences” introduced in Cressie and Read [10]
(see also Liese and Vajda [12] Chap. 2), a class which takes its origin from Rényi [14].
They are defined through the class of convex functions

x ∈]0,+∞[�→ ϕγ(x) :=
xγ − γx+ γ −1

γ(γ −1)
(8)

if γ ∈ R \ {0,1}, ϕ0(x) := − logx+ x− 1 and ϕ1(x) := x logx− x+ 1. So, the KL -
divergence is associated to ϕ1, the KLm to ϕ0, the χ2 to ϕ2, the χ2

m to ϕ−1 and the
Hellinger distance to ϕ1/2.
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Consider any ϕ-divergence except the likelihood divergence, with ϕ being a differ-
entiable function. When θT in intΘ is defined as the true parameter of the distribution
of the i.i.d. sample (X1, ..,Xn), it is convenient to assume that

There exists a neighborhood U of θT for which (A)

φ(θ ,θ ′) is finite whatever θ and θ ′ in U .

We will only consider divergences defined through differentiable functions ϕ , which
we assume to satisfy

(RC)
There exists a positive δ such that for all c in [1−δ ,1+δ ],
we can find numbers c1,c2, c3 such that
ϕ(cx) ≤ c1ϕ(x)+ c2 |x|+ c3, for all real x.

Condition (RC) holds for all power divergences including KL and KLm divergences.
For all divergences considered in this paper it will be assumed that for any α and θ

in U ∫ ∣∣∣∣ϕ ′
(
dPθ
dPα

)∣∣∣∣dPθ < ∞. (9)

We state the following lemma covering nearly all classical divergences (see Liese
and Vajda (1987) [12] and Broniatowski and Kéziou (2006) [2], Lemma 3.2).

Lemma 1. Assume that RC holds and φ(θ ,α) is finite. Then (9) holds.

2.2 Dual Form of the Divergence and Dual Estimators in Parametric Models

The following representation is the cornerstone of parametric inference through diver-
gence based methods.

Theorem 1. Let θ belong to Θ and let φ(θ ,θT ) be finite. Assume that RC holds
together with Condition (A) . Then

φ(θ ,θT ) = sup
α∈U

∫
ϕ ′

(
dPθ
dPα

)
dPθ −

∫
ϕ#

(
dPθ
dPα

)
dPθT

= sup
α∈U

∫
h(θ ,α,x)dPθT

(10)

Furthermore the sup is reached at θT and uniqueness holds.

From (10), simple estimators for φ(θ ,θT ) and θT can be defined, plugging any con-
vergent empirical measure in place of PθT and taking the infimum in θ in the resulting
estimator of φ(θ ,θT ).

In the context of simple i.i.d. sampling, introducing the empirical measure Pn :=
1
n ∑n

i=1 δXi where the Xi’s are i.i.d. r.v’s with common unknown distribution PθT in P,
the natural estimator of φ(θ ,θT ) is

φn(θ ,θT ) := sup
α∈U

{∫
h(θ ,α,x) dPn(x)

}

= sup
α∈U

∫
ϕ ′

(
dPθ
dPα

)
dPθ − 1

n

n

∑
i=1

ϕ#
(
dPθ
dPα

(Xi)
)

when (A) holds.
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As stated in Theorem 3.2 in Broniatowski and Keziou [3]:

Theorem 2. Under some derivability assumptions on ϕ
(

dPθ
dPα

)
(conditions A.0 to A.2

in Broniatowski and Keziou [3]),

If θ = θT , then
2n

ϕ ′′(1)
φn(θ ,θT )

d−→ χ2
(d) for d = dim(Θ). (11)

This last result of convergence of the estimated ϕ−divergence is of great interest in the
problem we are taking on and serves as the basis for the test procedure that we propose.

3 A Simple Solution for Testing Finite Mixture Models

3.1 Testing Between Mixtures of Fully Characterized Components

Let us consider a set of signed measures defined by

pθ = (1−θ)p0 +θ p1, θ ∈ R, (12)

where p0 and p1 are two known densities (belonging or not to the same parametric
family).

In relation with (5), the case θT = 0 is now an interior point of the parameter space.

We observe a random sample X1, . . . ,Xn of distribution pT . We are willing to test:

H0 : pT = p0 vs H1 : pT = pθ �= p0 (13)

which can be reduced to
H0 : θ = 0 vs H1 : θ �= 0 (14)

whenever p0 �= p1 is met. The latter condition ensures the identifiability of the model
and enables to consider different parametric families for p0 and p1. Conversely, Chen
et al. [7], for instance, assumes that 0 < θ < 1, and tests the equality of the parameters
of p0 and p1 inside a unique family F .

In the following, we thus assume that p0 �= p1.

3.2 Test Statistics

The choice of the test statistic is driven by the result given in Theorem 2. Accordingly,
let φ be any divergence associated with convex finite functions and such that 0 is an
interior point of the space parameter defined by:

Θ :=
{

α ∈ R :
∫

| ϕ ′
(
dP0

dPα

)
| dP0 < ∞

}
(15)

Then the statistic 2nφn(0,θT ) can be used as a test statistic for (14) and

2nφn(0,θT ) −→ χ2
(1) when H0 holds. (16)
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Also, (16) holds when testing whether the true distribution is a k0 component mix-
ture or a k component mixture as in (3). In this case, the test statistic 2nφn(Θ0,θT )
converges to a χ2

(k−k0)
distribution when H0 holds.

We restrict in the sequel to two generators.

Chi-Square Divergence
The first divergence that we consider is the χ2-divergence. The corresponding ϕ func-
tion ϕ2(x) := 1

2 (x− 1)2 is defined and convex on whole R; an example when P may
contain signed finite measures and not be restricted to probability measures is consid-
ered in Broniatowski and Keziou [2] in relation with a two components mixture model
defined in (12) and where θ is allowed to assume values in an open neighborhood Θ of
0, in order to provide a test for (14), with θ an interior point of Θ .

Extended Kullback-Leibler Divergence
The second divergence that we retain is generated by a function described below,
namely

ϕc(x) := (x+ ec −1) · log(x+ ec −1)+1− (x+ ec −1)+(1− c) · (ec −1)− c · x ≥ 0

x ∈]1− ec,∞[ , c ∈ R ,
(17)

which has been derived within the recent general framework of Broniatowski and Stum-
mer [6]. It is straightforward to see that ϕc is strictly convex and satisfies ϕc(1) = 0 =
ϕ ′
c(1). For the special choice c = 0, (17) reduces to the omnipresent Kullback-Leibler

divergence generator

ϕ0(x) := x logx− x+1 ≥ 0 , x ∈]0,∞[ .

According to (17), in case of c > 0 the domain ]1 − ec,∞[ of ϕc covers also negative
numbers (see Broniatowski and Stummer [5] for insights on divergence-generators with
general real-valued domain); thus, the same facts holds for the new generator than for
the χ2 and this opens the gate to considerable comfort in testing mixture-type hypothe-
ses against corresponding marginal-type alternatives, as we derive in the following.
We denote KLc the corresponding divergence functional for which KLc(Q,P) is well
defined whenever P is a probability measure and Q is a signed measure.

It can be noted that the convergence of I =
∫ | φ ′

(
p0
pθ

)
| dP0 is not always guar-

anteed. This kind of considerations may guide the choice of the test statistic. For
instance, in some cases, including scaling models, conditions that are required for the
χ2−divergence, do not apply to the KLc−divergence.

For instance, consider a Gaussian mixture model with different variances:

p0 ∼ N (μ ,σ2
0 ), p1 ∼ N (μ ,σ2

1 ).

The convergence of I with the χ2 requires either σ2
1 > σ2

0 or σ2
0 > σ2

1 > 1
2 σ2

0 . On the
other hand, the convergence is always ensured with the KLc−divergence.
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3.3 Generalization to Parametric Distributions with Unknown Parameters

In the previous section, the densities of each component were supposed to be known.
We now generalize to the case where the components belong to parametric families
with unknown parameter. We therefore deal with a way more complicate, issue and
consider a generalized test procedure which aggregates tests of simple hypotheses over
the components densities parameter spaces.

We present the generalization for a two component mixture, but it is valid as well
for k component mixtures with k ≥ 2. Let us assume p0 ∈ F0 = {p0(. | λ0) : λ0 ∈ Λ0}
and p1 ∈ F1 = {p1(. | λ1) : λ1 ∈ Λ1}, with Λ0 and Λ1 being compact subsets of Rd ,
d ≥ 1.

We consider aggregated tests of composite hypotheses.
For λ0 fixed, H0(λ0) is accepted if ∀λ1 ∈ Λ1, H0(λ0) is accepted against H1(λ0,λ1).

The aggregated hypothesis H0(Λ0) is accepted if ∀λ0 ∈ Λ0,λ1 ∈ Λ1, H0(λ0) is accepted
against H1(λ0,λ1).

Thus the null hypothesis of homogeneity of the population is rejected when there
exists at least one couple of parameters (λ ∗

0 ,λ ∗
1 ) ∈ Λ0 × Λ1 with λ ∗

1 �= λ ∗
0 for which

the simple hypothesis H0(λ ∗
0 ) is rejected in favor of H1(λ ∗

0 ,λ ∗
1 ). In other words, the

possibility that the underlying distribution is a mixture is enough for us to reject that
there is a unique component.

Another perspective would be to consider that the null hypothesis H0(Λ0) is rejected
when there is no λ0 ∈ Λ0 such that ∀λ1 ∈ Λ1, H0(λ0) is accepted against H1(λ0,λ1).

Note the condition {λ ∗
1 �= λ ∗

0 } is only required when p0 and p1 belong to the same
parametric family.

Let 2nφn(0,θT | λ0,λ1) be the test statistic of the test (13) of the simple hypotheses
H0(λ0) vs H1(λ0,λ1) when λ0 and λ1 are fixed. Recall that φn(0,θT | λ0,λ1) is the
estimated divergence between p0(. | λ0) and pθT (. | λ0,λ1). The test statistic for (14) is
derived from:

Φn(0,θT ) = sup
λ0∈Λ0

sup
λ1∈Λ1\λ0

φn(0,λT | λ0,λ1) (18)

where the parameter spaces Λ0 and Λ1 can be discretized in Λ0,n and Λ1,n for the sake
of computational complexity.

In order to facilitate the computation of the test statistic, the successive optimiza-
tions have been rearranged as follows:

Φn(0,θT ) = sup
α∈Θ

{
sup

λ0∈Λ0

sup
λ1∈Λ1\λ0

∫
ϕ ′

(
dP0,λ0

dPα,(λ0,λ1)

)
dP0,λ0

− 1
n

n

∑
i=1

ϕ#

(
dP0,λ0

dPα,(λ0,λ1)
(Xi)

)}
(19)

The critical region RΛ0,Λ1 associated with the aggregated test can be defined as
follows:

{
Φn(0,θT ) ∈ RΛ0,Λ1

}
= ∪λ0∈Λ0

∪λ1∈Λ1

{
φn(0,θT | λ0,λ1) ∈ Rλ0,λ1

(α)
}

(20)

where Rλ0,λ1
(α) is the critical region of risk α for the test of the simple hypotheses

H0(λ0) vs H0(λ0,λ1). α can then be tuned to ensure that the probability of (20) is of
the wanted first kind level of risk α� for the global test.
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Note that in this case, we do not have an equivalence to Theorem 2. Indeed, we do
not directly estimate the true parameters of the densities p0 and p1, but rather aggregate
the test over the parameter spaces Λ0 and Λ1. Thus, there is still no convergence result
on the test statistic Φn. In the following, we evaluate the performances of the proposed
test procedure through numerical simulations.

4 Numerical Simulations

4.1 Mixture of Fully Characterized Components

We here consider the simple case of a mixture between a Lognormal and a Weibull
distribution whose parameters are supposed to be known. Results in Table 1 show that
the test procedure of simple hypotheses performs well when the two components are
fully characterized.

Table 1. Power of the test for a Lognormal and Weibull mixture with fully characterized compo-
nents

Lognormal and Weibull Mixture lN(λ0,0.2) vs 0.8lN(λ0,0.2)+0.2W (λ1,2)

n = 250 observations

χ2 test statistic KLc test statistic

First kind risk 0.05 0.10 0.05 0.10

Power 0.98 1 0.99 1

4.2 Mixture of Unknown Components Within a Parametric Family

The performances of the test procedure are evaluated numerically on three two-
component mixtures. In the first two examples, both components belong to the same
parametric family, while in the third, p0 and p1 are from different models. In each case,
the distributions of the components are such that the resulting mixture is not bimodal.
The following results are used on an illustrative basis. The critical regions are deter-
mined as to guarantee the value of the first kind risk α� at 0.05 and 0.10.

Lognormal Mixture
We first consider a Lognormal mixture. The two components belonging to the same
parametric family, we can compare the performances of the divergence based test with
the modified likelihood ratio test proposed by Chen et al. [7].

The alternate hypotheses are the following:

H0 : pT = p0 ∼ lN(λ0,1) vs H1 : pT = pθ ∼ (1−θ)lN(λ0,1)+θ lN(λ1,1),

where λ0 ∈ Λ0 = [0.4,1.6] and λ1 ∈ Λ1 = [1.4,2.6].
The critical region is computed numerically through Monte Carlo simulations under

H0. The power of the test is also computed numerically when the realizations are drawn
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Table 2. Power of the tests for three types of mixtures whose components belong to a parametric
family

Lognormal Mixture lN(1,1) vs 0.8lN(1,1)+0.2lN(2,1)

n = 250 observations

χ2 test statistic KLc test statistic Chen’s modified lik ratio

First kind risk 0.05 0.10 0.05 0.10 0.05 0.10

Power 0.22 0.41 0.50 0.65 0.12 0.18

Gamma Mixture G (2,1) vs 0.8G (2,1)+0.2G (5,2)

n = 250 observations

χ2 test statistic KLc test statistic Chen’s modified lik ratio

First kind risk 0.05 0.10 0.05 0.10 0.05 0.10

Power 0.31 0.46 0.35 0.45 0.13 0.22

Lognormal and Weibull Mixture lN(λ0,0.2) vs 0.8lN(λ0,0.2)+0.2W (λ1,2)

n=250 observations

χ2 test statistic KLc test statistic

First kind risk 0.05 0.10 0.05 0.10

Power 0.28 0.47 0.34 0.57

from the mixture model with θ = 0.2,λ0 = 1 and λ1 = 2 for the χ2 and KLc test statistics
and Chen’s modified likelihood ratio.

The results in Table 2 show that both χ2 and KLc outperform the modified likelihood
ratio test and the test based on the KLc divergence achieves in this case the greatest
power.

Gamma Mixture
We test the following hypothesis

H0 : pT = p0 ∼ G (λ0,1) vs H1 : pT = pθ ∼ (1−θ)G (λ0,1)+θG (λ1,2),

where λ0 ∈ Λ0 = [1.4,2.6] and λ1 ∈ Λ1 = [4.4,5.6]. The realizations are drawn from the
mixture model with θ = 0.2,λ0 = 2 and λ1 = 5.

Here again, both divergence based statistics achieves higher power than the modified
likelihood ratio test (cf. Table 2).

Weibull and Lognormal Mixture
We here consider the case where the two components are from different parametric
families. We want to test

H0 : pT = p0 ∼ lN(λ0,0.2) vs H1 : pT = pθ ∼ (1−θ)lN(λ0,0.2)+θW (λ1,2),

where λ0 ∈ Λ0 = [0.4,1.6] and λ1 ∈ Λ1 = [2.4,3.6]. The realizations are drawn from the
mixture model with θ = 1,λ0 = 1 and λ1 = 3.

The results in Table 2 show that the test based on the KLc divergence performs better
than the χ2 statistic.
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Concerning the choice of the test statistic, we might note that the KLc performs
better when the two alternate distributions differ mainly in their central tendency, while
the χ2 might be prefered when the difference lays in the tails.
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Abstract. In contemporary data analytics, one often models
uncertainty-prone data as samples stemming from a sequence of indepen-
dent random variables whose distributions are non-identical but linked
by a common (scalar or multidimensional) parameter. For such a context,
we present in the current Part I a new robustness-featured parameter-
estimation framework, in terms of minimization of the scaled Bregman
power distances of Stummer and Vajda [23] (see also [21]); this leads
to a wide range of outlier-robust alternatives to the omnipresent (non-
robust) method of maximum-likelihood-examination, and extends the
corresponding method of Ghosh and Basu [7]. In Part II (see [20]),
we provide some applications of our framework to data from poten-
tially rare but dangerous events described by approximate extreme value
distributions.

1 Introduction

One of the most widely used procedures to obtain parameter estimates from
data is the celebrated maximum likelihood method, which is known to be
non-robust against outliers. In order to circumvent this deficiency, one can
start by noticing that within (“well-behaved”) frameworks of identically dis-
tributed (i.i.d.) observations, the maximum likelihood estimate MLE can
be equivalently derived as the parameter which minimizes the Kullback-
Leibler divergence KL (relative entropy) between the data-derived empiri-
cal distribution and a pregiven class of parametric candidate distributions
of interest. Correspondingly, robustness can be achieved by replacing the
KL by a more adequate density-based distribution-distance (divergence, dis-
parity, (dis)similarity measure, proximity measure). Prominent choices are,
amongst others, the “classical” Bregman distances CBD (see e.g. Pardo and
Vajda [18]); this includes e.g. the density power divergences DPD of Basu
et al. [4] (see also e.g. Basu et al. [5]), with the abovementioned KL and the
more robust but less efficient squared L2−norm as special cases. For indepen-
dent and i.i.d. data, the general robustness properties of parameter estimation
by means of minimizing DPDs (rather than KL) were studied by Basu et al. [4].
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Those results were extended by Ghosh and Basu [7] to the context of indepen-
dent but non-identically distributed data, and applied by Ghosh [9] to generate
a robustified generalization of the tail index (extreme value index) estimate of
Matthys and Beirlant [15].

Concerning some recent progress of divergences, Stummer [21] and Stum-
mer and Vajda [23] introduced the concept of scaled Bregman distances SBD,
which enlarges and flexibilizes the above-mentioned CBD divergence class; fur-
ther insights on them, including the explicit behaviour at density-zeros and sev-
eral connections to information geometry, can be found in the recent comprehen-
sive paper of Broniatowski and Stummer [6], within an even much wider frame-
work. A prominent SBD subclass are the scaled Bregman power distances SBPD
of Stummer and Vajda [23], which can also be interpreted as scaled extensions
of the DPDs. For the SBPD subcase of adaptive scalings, results on robustness
of minimum-distance parameter estimation, testing as well as applications can
be found in Kißlinger and Stummer [11–14], Roensch and Stummer [19].

In the light of the above-mentioned explanations, the main goals of this paper
are:

(i) To explicitly compute the SBPD for exponential families of distributions,
where the non-adaptive scaling measure is of the same type but with arbi-
trary (e.g., infinite) total mass. This extends some results of Stummer and
Vajda [23], Kißlinger and Stummer [11].

(ii) To develop a general parameter estimation method based on minimum
SBPD estimation with non-adaptive scalings, for the setup of indepen-
dent data observations from non-identical distributions linked by a com-
mon (scalar or multidimensional) parameter. In particular, we extend some
corresponding method of Ghosh and Basu [7].

To achieve this, in the current Part I we first present some basic facts about
scaled Bregman power distances, see Sect. 2. The goal (i) respectively (ii) is
achieved in Sect. 3 respectively Sect. 4. In the separate Part II (see [20]) we shall
employ (i), (ii) in order to derive a robustification of the tail index estimate of
Matthys and Beirlant [15].

2 Scaled Bregman Power Divergences

Let us assume that the modeled respectively observed (random) data take val-
ues in a state space X (with at least two distinct values), equipped with a
system A of admissible events (σ-algebra) and a fixed – maybe nonprobability –
distribution1 λ. On this we want to measure the dissimilarity between two prob-
ability distributions F,G which are described by their probability-λ-densities
x �→ f(x) ≥ 0, x �→ g(x) ≥ 0 via F [A] =

∫
A

f(x) dλ(x), G[A] =
∫

A
g(x) dλ(x)

(A ∈ A ), with normalizations
∫
X f(x) dλ(x) =

∫
X g(x) dλ(x) = 1. The set of

all such probability distributions will be denoted by M 1
λ . We also employ the

1 Sigma-finite measure.
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set Mλ of all general – maybe nonprobability – distributions M of the form
M [A] =

∫
A

m(x) dλ(x) (A ∈ A ) with λ−density x �→ m(x) > 0. For instance,
in the discrete setup where X = Xcount has countably many elements and
λ := λcount is the counting measure (i.e., λcount[{x}] = 1 for all x ∈ Xcount)
then f(·), g(·) are (e.g. binomial) probability mass functions and m(·) is a (e.g.
unnormalized-histogram-related) general mass function. If λ is the Lebesgue
measure on X = R (and hence, except for rare cases, the integrals turn into
Riemann integrals), then f(·), g(·) are classical (e.g. Gaussian) probability den-
sity functions and m(·) is a general classical (possibly unnormalized) density
function.

In such a setup, Stummer [21], Stummer and Vajda [23] (see also Bronia-
towski and Stummer [6]) introduced the following family {Dφ,M (G,F ) : φ ∈
Φ,M ∈ Mλ} of distances (divergences, measures of dissimilarities) between
two probability distributions G and F , where Φ is the class of functions
φ : (0,∞) �→ R which are continuously differentiable with derivative φ′, strictly
convex and continuously extended to the boundary points v = 0 and v = ∞:

Definition 1. Let φ ∈ Φ. Then the Bregman distance (divergence) of G,F ∈
M 1

λ scaled by M ∈ Mλ is defined by

0 ≤ Dφ,M (G, F ) := Bφ (G, F || M)

:=

∫

X

[
φ

(
g(x)

m(x)

)
− φ

(
f(x)

m(x)

)
− φ′

(
f(x)

m(x)

)
·
(

g(x)

m(x)
− f(x)

m(x)

)]
m(x) dλ(x). (1)

To guarantee the existence of the integral in (1), the zeros of f and g have to
be incorporated by appropriate limit-taking and conventions; this is indicated by
using

∫
instead of

∫
, see [6] (who even deal with a much more general framework)

for details.

Generalizations thereof can be found in [22] and [6]. From Definition 1, the
family {Dφα,M (G,F ) : α ∈ R,M ∈ Mλ} of scaled Bregman power divergences
SBPD (cf. Stummer and Vajda [23], see also [6,21]) with tuning parameter α
and (tuning) scale-distribution M is obtained by

0 ≤ Bφα (G, F || M)

=

∫

X

m(x)−α

α · (α + 1)
·
[
g(x)α+1 + α · f(x)α+1 − (α + 1) · g(x) · f(x)α

]
dλ(x), for α > 0,

0 ≤ Bφα (G, F || M)

=

∫

X

m(x)−α

(α + 1) · α
·
[
g(x)α+1+α·f(x)α+1−(α + 1)·g(x)·f(x)α

]
· 1]0,∞[

(
g(x)·f(x)) dλ(x)

+

∫

X

∞ · 1]0,∞[

(
g(x)

) · 1{0}
(
f(x)

)
dλ(x)

+

∫

X

m(x)−α ·
[

f(x)α+1

α + 1
· 1]−1,0[(α) + ∞ · 1]−∞,−1[(α)

]
· 1]0,∞[

(
f(x)

) · 1{0}
(
g(x)

)
dλ(x) ,

for α ∈] − ∞, −1[∪] − 1, 0[, (2)
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0 ≤ Bφ0 (G, F || M)

=

∫

X

[
g(x) · log

( g(x)

f(x)

)
+ f(x) − g(x)

]
· 1]0,∞[

(
g(x)·f(x)) dλ(x)

+

∫

X

∞ · 1]0,∞[

(
g(x)

) · 1{0}
(
f(x)

)
dλ(x) +

∫

X

f(x) · 1]0,∞[

(
f(x)

) · 1{0}
(
g(x)

)
dλ(x),

0 ≤ Bφ−1 (G, F || M)

=

∫

X

m(x) ·
[

− log
( g(x)

f(x)

)
+

g(x)

f(x)
− 1

]
· 1]0,∞[

(
g(x)·f(x))dλ(x)

+

∫

X

∞ · 1]0,∞[

(
g(x)

) · 1{0}
(
f(x)

)
dλ(x) +

∫

X

∞ · 1]0,∞[

(
f(x)

) · 1{0}
(
g(x)

)
dλ(x) , (3)

where we have employed the indicator function 1A(·) of the set A and the
generators

φα(v) :=
vα+1 − (α + 1) · v + α

α · (α + 1)
≥ 0, v ∈]0,∞[, α ∈ R\{−1, 0},

φ0(v) := lim
α→0

φα(v) = v · log v + 1 − v ≥ 0, v ∈]0,∞[,

φ−1(v) := lim
α→−1

φα(v) = − log v + v − 1 ≥ 0, v ∈]0,∞[,

and appropriately incorporated the zeros of f and g. It is straightforward to see
by construction, that for all α ∈ R there holds Bφα

(G,F ||M) ≥ 0, as well as,
Bφα

(G,F ||M) = 0 if and only if G = F . Notice that Bφ0 (G,F ||M) does not
depend on the scaling M . If f(x) > 0 for (λ−almost) all x ∈ X , then one gets
the following:

(ai) Bφ0 (G,F ||M) =
∫
X g(x) · log

( g(x)
f(x)

)
dλ(x) which is nothing but the well-

known Kullback-Leibler divergence (relative entropy);
(aii) all the integrals in (2) to (3), which involve 1{0}

(
f(x)

)
, become zero;

(aiii) if g is allowed to have zeros, one should only use α > −1.

In the special subcase for which α > 0 and m(x) = 1, the SBPD Bφα
(G,F ||M)

reduces to a multiple of the α−order density power divergence (DPD) of Basu
et al. [4].

3 Scaled Bregman Power Divergences for Exponential
Families

Let us consider the special sub-setup of exponential families which is important
e.g. for information geometry (see e.g. Amari and Nagaoka [2], Amari [1], Ay
et al. [3] and Nielsen and Garcia [16] for comprehensive overviews, and Nielsen
and Hadjeres [17] for an exemplary very recent application). To begin with,
suppose that the data come from a subspace of the d−dimensional Euclidean
space, i.e. (X ,A ) ⊆ (Rd,Bd), d ∈ N. Moreover, for fixed integer p ∈ N denote
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by E 1(p,a, a0, b, c,Θ, λ) the family of parametric probability distributions Fθ

with λ−densities given by

fθ (x) = exp
{
a(x)?c(θ) + a0(x) − b(c(θ))

}
> 0, x ∈ X , θ ∈ Θ,

where a0, a1, . . . , ap are real-valued functions on X , c1, . . . , cp are real-valued
functions on Θ, a(x) := (a1(x), . . . , ap(x))? respectively c(θ) := (c1(θ), . . . ,
cp(θ))? are corresponding column vectors, and a(x)?c(θ) =

∑p
i=1 ai(x) · ci(θ)

their scalar product; furthermore, Θ ⊂ R� for some � ∈ N such that

c(Θ) ⊂ Y := {y ∈ Rp :
∫

X

exp
{
a(x)?y + a0(x)

}
dλ(x) ∈ ]0,∞[ },

and b(y) := log
∫
X exp {a(x)?y + a0(x)} dλ(x) for y ∈ Y . In other words,

E 1(p,a, b, c,Θ, λ) is a p−parametric exponential family of probability distribu-
tions from which we chose F and G. For the scaling M we use a connected
exponential family E (p,a, b̃, c̃,Ξ, λ) of general – maybe nonprobability – distri-
butions Mη with λ−densities given by

mη (x) = exp
{

a(x)?c̃(η) + a0(x) − b̃(c̃(η))
}

∈]0,∞[, x ∈ X , η ∈ Ξ,

where Ξ ⊂ R� and b̃ is an arbitrary (measurable) real-valued function on Rp.
For such a setup, we obtain the following explicit SBPD representation:

Theorem 1. Let Fθ1 	= Fθ2 be from E 1(p,a, b, c,Θ, λ) with some θ1 	= θ2, and
Mη be from E (p,a, b̃, c̃,Ξ, λ) with some η ∈ Ξ. Furthermore, suppose that all
four quantities |c(θi)| (i = 1, 2), |c̃(η)|, |̃b(c̃(η))| are finite.

(a) If α · (α+1) 	= 0 and (α+1) ·c(θi)−α · c̃(η) ∈ Y (i = 1, 2), then one gets

Bφα
(Fθ1 , Fθ2 |Mη ) =

eρα(c(θ1),c̃(η))

α(α + 1)
+

eρα(c(θ2),c̃(η))

α + 1
− eσα(c(θ1),c(θ2),c̃(η))

α
, (4)

with (for i = 1, 2)

ρα(c(θi), c̃(η)) := b ((α + 1) · c(θi) − α · c̃(η)) − (α + 1) · b(c(θi)) + α · b̃(c̃(η)),

σα(c(θ1), c(θ2), c̃(η)) := b(c(θ1) + α · [c(θ2) − c̃(η)])

−b(c(θ1)) + α · [̃b(c̃(η)) − b(c(θ2))].

If additionally c(θ1) + α · [c(θ2) − c̃(η)] ∈ Y holds, then the SBPD in (4)
is finite.

(b) If α = 0 and c(θ1) ∈
◦
Y , then one obtains for the KL

Bφ0(Fθ1 , Fθ2 |Mη ) = b(c(θ2)) − b(c(θ1)) − [
c(θ2) − c(θ2)

]? ∇b(c(θ1)) < ∞,
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with ∇b (y) =
∫

X

exp
{
a(x)?y + a0(x) − b (y)

} · a(x) dλ(x), y ∈
◦
Y .

The special subcase of Theorem 1 with a(x) = x, Ξ = Θ, c̃(θ) = θ = c(θ),
b̃(·) = b(·), η = θ0 (i.e. Mη is chosen as probability distribution being a natural
exponential family member Fθ0) for some θ0 ∈ Θ, has been first treated in
Stummer and Vajda [23]; later on, Kißlinger and Stummer [11] have dealt with
the wider subcase of general a(·), Ξ = Θ, c̃(·) = c(·), b̃(·) = b(·), η = θ0 (i.e.
Mη is chosen as probability distribution Fθ0 from the underlying non-natural
exponential family) for some θ0 ∈ Θ.

We shall employ Theorem 1 in the separate Part II (see [20]), within an
extreme-values-modeling exponential regression setup for tail index estimation.
Another important potential field of application of Theorem1 is the nonhomoge-
neous-data concerning framework of the omnipresent generalized linear models
(GLM), which – e.g. for d = p = 1 – employs independent response (outcome)
variables Xi whose distribution stem from a natural exponential family with
a(x) = x, c(θi) = θi, arbitrary a0(x), and cumulant function b(c(θi)) = b(θi)
(i = 1, . . . , n), where for the sake of brevity we have set the typically involved
nuisance parameter to be one. Moreover, the natural parameters θi are supposed
to depend on a (for the sake of brevity) non-stochastic vector zi of m covari-
ates (features) in the following connected way: θi = g(h−1(β0 + β?zi)), where
g−1(θi) = b′(θi) = μi linking the mean μi of Xi to θi, and μi = h−1(β0 + β?zi)
linking the mean μi to the linear predictor β0 + β?zi, with the parameters β0,
β := (β1, . . . , βm)? to be estimated from the observed data. This has been used
– for the unscaled case mη ≡ 1 (called “density power divergences”), β0 = 0 and
for α ≥ 0 – by Ghosh and Basu [8] for the estimation of β, and by Ghosh and
Basu [10] for associated testing.

4 Robust Minimum SBPD Estimation

Let us now fix a general data space (X ,A ) and a general distribution λ on
it. Furthermore, for arbitrarily fixed sample size n ∈ N, suppose that our data
observations Y1, ..., Yn are independent and have – not necessarily identical but
somehow linked – “true” probability distributions Yi ∼ Gi ∈ M 1

λ with (for
the sake of brevity) strictly positive λ−density gi (i = 1, . . . , n). Such a non-
homogeneous setup we want to model by the parametric probability-distribution
family

F
(n)
Θ := {F

(n)
θ := F1,θ ⊗ · · · ⊗ Fn,θ

∣
∣ Fi,θ ∈ M 1

λ with strictly positive λ-density fi,θ

for each i = 1, . . . , n and each θ ∈ Θ},

where Θ ⊂ Rp for some fixed p ∈ N; notice the slight abuse of notation since
F

(n)
Θ need not be an exponential family. Accordingly, the model distributions

may be non-identical (i−dependent) but share a common parameter θ. We also
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suppose that each Gi ∈ M 1
λ respectively each Mi ∈ Mλ has strictly positive

λ−density mi respectively gi, as well as that for each i = 1, . . . , n, θ ∈ Θ and
each (for the sake of brevity) α ∈] − 1,∞[ one can separate the corresponding
SBPD into the finite integrals

Bφα
(Gi, Fi,θ ||Mi) =

∫

X

mi(x)−α

(α + 1) · α
· gi(x)α+1 dλ(x)

+
∫

X

mi(x)−α

α + 1
· fi,θ (x)α+1 dλ(x) +

∫

X

mi(x)−α

α
· fi,θ (x)α dGi(x),

for α ∈] − 1, 0[∪]0,∞[, (5)

Bφ0 (Gi, Fi,θ ||Mi) =
∫

X

gi(x) · log(gi(x)) dλ(x) −
∫

X

log(fi,θ (x)) dGi(x). (6)

Furthermore, we assume that the scaling densities mi(·) in (5), (6) do
not depend on fi,θ (·) and gi(·). Moreover, for G := (G1, . . . , Gn), M :=
(M1, . . . , Mn) we define the average-SBPD-minimizing functional Tα,M (G) via

1
n

n∑

i=1

Bφα
(Gi, Fi,Tα,M (G)|Mi) := inf

θ∈Θ

1
n

n∑

i=1

Bφα
(Gi, Fi,θ |Mi), (7)

and require that “the best-fitting parameter” θG := Tα,M (G) is contained in an
non-empty open subset Θ̃ of Θ such that for almost all x ∈ X , all θ ∈ Θ̃ and all
i ∈ {1, . . . , n} the λ−densities fi,θ (x) are thrice continuously differentiable in θ;
all θ−dependent integrals in (5), (6) are assumed to be thrice θ−differentiable
such that the derivatives can be taken under the integral sign. Notice that
θG = θtrue in case that Gi = Fi,θtrue for some θtrue ∈ Θ (i = 1, . . . , n).

By first removing from Bφα
(Gi, Fi,θ |Mi) all θ−independent terms (being

obsolete for the right-hand side of (7)), and afterwards in (7) plugging in
G(n) := (G(n)

1 , . . . , G
(n)
n ) := (δY1 , . . . , δYn

) instead of G (where δYi
is the one-

point (Dirac) distribution putting mass 1 to the observation Yi), we arrive at the
minimum SBPD estimator θ̂n,α,M := Tα,M (G(n)) to be the θ−minimizer of

Hn,α,M (θ) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

n

n∑
i=1

[ ∫

X

fi,θ (x)
1+α

(α + 1)·mi(x)α
dλ(x) − fi,θ (Yi)

α

α · mi(Yi)α

]
, if α ∈] − 1, 0[∪]0, ∞[,

− 1

n

n∑
i=1

log fi,θ (Yi), if α = 0.

(8)

Notice that Hn,α,M (θ) may become negative and hence does generally not
constitute a distance/divergence anymore. Clearly, θ̂n,0,M does not depend on
the scaling M and is nothing but the celebrated maximum-likelihood estimator,
and the corresponding estimating equation is

∇θ Hn,0,M (θ) =
n∑

i=1

ui,θ (Yi) = 0, (9)
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where ui,θ (·) := ∇θ log fi,θ (·) is the likelihood score function of the i−th density.
For the other tuning-parameter case α ∈]−1, 0[∪]0,∞[ we obtain the estimating
equation

∇θ Hn,α,M (θ) =
1

n

n∑
i=1

[∫
X

fi,θ (x)
1+α · ui,θ (x)

mi(x)α
dλ(x) − fi,θ (Yi)

α · ui,θ (Yi)

mi(Yi)α

]
= 0, (10)

which reduces to (9) for α → 0. In the special subsetup of unscaled SBPD
mi(x) = 1 (called DPD), (10) reduces to the estimating equations of Ghosh
and Basu [7]. Notice that another important subcase is the i.i.d. case fi,θ = fθ

together with i−independent scalings Mi = M (for which (8) and thus (10) can
be rewritten in terms of the usual empirical distribution).

In order to establish robustness measures, let us closer investigate the above-
mentioned functional θG = Tα,M (G) = Tα,M (G1, . . . , Gn) for α > −1. For
one-point contaminations at t0 ∈ X with degree ε ∈ [0, 1] in the i0−th data
observation (i0 ∈ {1, . . . , n}) we achieve by straightforward calculations the cor-
responding influence function

t0 −→ IF (t0; i0, Tα,M ,G) :=
∂

∂ε
T

(
G1, . . . , (1 − ε) · Gi0 + ε · δt0 , . . . , Gn

) ∣
∣
∣
ε=0

=

(
n∑

i=1

JM
i,α(θ)

)−1 (
fi0,θ (t0)α

mi0(t0)α
· ui0,θ (t0) − ξM

i0,α(θ)
)

, (11)

with matrix JM
i,α(θ) :=

∫

X

fi,θ (x)α+1

mi(x)α
· ui,θ (x) ui,θ (x)? dλ(x)

−
∫

X

fi,θ (x)α

mi(x)α
· (gi(x) − fi,θ (x)) · [∇ui,θ (x) + α · ui,θ (x) ui,θ (x)?

]
dλ(x)

and ξM
i,α(θ) :=

∫

X

fi,θ (x)αgi(x)
mi(x)α

· ui,θ (x) dλ(x).

Analogously, for contamination in all data observations we can deduce

t −→ IF (t; Tα,M ,G) :=
∂

∂ε
T

(
(1 − ε) · G1 + ε · δ1, . . . , (1 − ε) · Gn + ε · δn

) ∣
∣
∣
ε=0

=

(
n∑

i=1

JM
i,α(θ)

)−1 n∑

i=0

(
fi,θ (ti)α

mi(ti)α
· ui,θ (ti) − ξM

i,α(θ)
)

(12)

with t := (t1, ..., tn) ∈ X n. From (11) and (12), one can also derive other con-
nected robustness measures such as e.g. the gross-error sensitivity and the self-
standardized sensitivity. Breakdown-point analyses can be performed as well.
For the sake of brevity, these investigations will appear elsewhere, including
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many (α,M)−subcases which perform much more robust than the MLE esti-
mator (which corresponds to α = 0 with obsolete M and which has unbounded
influence function). In the subsetup of unscaled SBPD mi(x) = 1 (called DPD),
(11) and (12) reduce to the influence functions of Basu and Ghosh [7].

In order to derive asymptotic properties, for α > −1 we use the following
notations Hn,α,M (θ) =: 1

n

∑n
i=1 V

(i)
θ (Yi) (cf. (8)), ˜n := 1

n

∑n
i=1 J

M
i,α(θG ),

˙n :=
1

n

n∑
i=1

[ ∫
X

gi(x) · fi,θG (x)2α

mi(x)2α
ui,θG (x) ui,θG (x)? dλ(x) − ξM

i,α(θG ) ξM
i,α(θG )?

]
,

and employ the following additional assumptions for unlimited sample size
n ∈ N:

(AdA1) JM
i,α(θG ) is positive definite for each i ∈ N and infn∈N [min eigenvalue

of ˜n] > 0.
(AdA2) For each j, l, r ∈ {1, ..., p} there exists a function Z

(i)
jlr(·) with

1
n

n∑

i=1

EGi
[Z(i)

jlr(Yi)] = O(1), such that
∣
∣∇3

θ ,jlrV
(i)
θ (x)

∣
∣ ≤ Z

(i)
jlr(x) for all

θ ∈ Θ, i ∈ {1, . . . , n} and alm. all x ∈ X .
(AdA3) For all j, l ∈ {1, ..., p} we have for θ = θG

lim
N→∞

sup
n>1

{ 1

n

n∑
i=1

EGi

[∣∣∇θ ,jV
(i)

θ (Yi)
∣∣ · 1]N,∞[

(∣∣∇θ ,jV
(i)

θ (Yi)
∣∣)]} = 0, (13)

lim
N→∞

sup
n>1

{ 1

n

n∑
i=1

EGi

[ ∣∣∇2
θ ,jlV

(i)
θ (Yi) − EGi

[∇2
θ ,jlV

(i)
θ (Yi)

]∣∣

·1]N,∞[

(∣∣∇2
θ ,jlV

(i)
θ (Yi) − EGi

[∇2
θ ,jlV

(i)
θ (Yi)

]∣∣) ]}
= 0. (14)

(AdA4) For all ε > 0 we have for θ = θG

lim
n→∞

{ 1

n

n∑
i=1

EGi

[∣∣∣∣˙−1/2
n ∇θ V

(i)
θ (Yi)

∣∣∣∣2·1]ε√
n,∞[

(∣∣∣∣˙−1/2
n ∇θ V

(i)
θ (Yi)

∣∣∣∣) ]}
= 0.

Theorem 2. Under the above-mentioned assumptions, the following assertions
hold:

i. There exists a consistent sequence θn of roots to the estimating Eq. (10).
ii. The asymptotic distribution (for n → ∞) of

√
n · ˙−1/2

n ˜n

(
θn − θG

)
is

p-dimensional normal with zero mean vector 0p and covariance matrix Ip
(identity matrix).

In the subsetup of unscaled SBPD mi(x) = 1 (called DPD), Theorem 13
reduces to Theorem 3.1 of Ghosh and Basu [7]. The lengthy proof of Theorem
13, which extends the verification lines of the latter, will appear elsewehere; for
the sake of brevity, we only give a short sketch thereof, in the following. To begin
with part i, at parameter points θ in a closed ball B(θG , R) ⊂ Θ̃ with center
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θG and sufficiently small radius R > 0 we perform a Taylor-series expansion of
Hn,α,M (θ) around θG to achieve

Hn,α,M (θG ) − Hn,α,M (θ) =
p∑

j=1

(∇θ ,j Hn,α,M (θG )
) · (θG

j − θj)

︸ ︷︷ ︸
=:C1

+
1
2

p∑

j=1

p∑

l=1

(∇2
θ ,jl Hn,α,M (θG )

) · (θG
j − θj) · (θl − θG

l )

︸ ︷︷ ︸
=:C2

+
1
6

p∑

j=1

p∑

l=1

p∑

r=1

(θG
j − θj) · (θl − θG

l ) · (θr − θG
r ) · 1

n

n∑

i=1

κ
(i)
jlr(yi) · Z

(i)
jlr(yi)

︸ ︷︷ ︸
=:C3

,

where 0 ≤ |κ(i)
jlr(Yi)| ≤ 1 for all j, l, r ∈ {1, ..., p} and all i ∈ {1, ..., n}. Because

of EGi

[∇θ ,jV
(i)
θ (Yi)

]
= 0 and formula (13), one can apply a generalization of

the weak law of large numbers (GWLLN) to end up with limn→∞ PG

[|C1| <

p ·R3
]

= 1. Similarly, from (14), the GWLLN, some appropriate diagonalization
as well as assumption (AdA1) one can deduce the existence of a constant b > 0
such that limn→∞ PG

[
C2 < −b · R

]
= 1. Furthermore, by assumption (AdA2)

and the GWLLN there follows limn→∞ PG

[|C3| < c · R3
]

= 1 for some c > 0.
Since (p+c) ·R3−b ·R < 0 for sufficiently small R, one can derive that Hn,α,M (·)
has a local minimum in the interior of B(θG , R) which satisfies (10). From this,
the assertion of part i follows in a straightforward manner. To derive part ii, we
perform a Taylor-series expansion of θ̃ �→ ∇θ ,j Hn,α,M (θ̃) around θG to obtain
for the root-case θ̃ = θn via (10) the formula

hn,j := −√
n · ∇θ ,j Hn,α,M (θG )

=

p∑

l=1

√
n · (θn,l − θG

l )
︸ ︷︷ ︸

=: dn,l

·
[(

∇2
θ ,jl Hn,α,M (θG )

)
+

1

2

p∑

r=1

(θn,r − θG
r ) · ∇3

θ ,jlr Hn,α,M (θ∗
n)

]

︸ ︷︷ ︸
=: An,jl

,

where θ∗
n := θn + κ̃ ·(θG −θn) with κ̃ ∈ [0, 1]. Writing this in vector/matrix-form

as hn = Andn, one can deduce via (cf. (7))

∇θ
1
n

·
n∑

i=1

Bφα
(Gi, Fi,θ |Mi)

∣
∣
∣
∣
θ=θG

= 0

that EG

[
hn

]
= 0. By lengthy but straightforward calculations, we can also com-

pute the corresponding covariance matrix as CovG

[
hn

]
= ˙n. From Assumption

(AdA4) together with the appropriate version of the central limit theorem, as
well as some limit relation between An and ˜n, we end up with the assertion of
part ii.
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FASMSM, vol. 64. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56478-4

4. Basu, A., Harris, I.R., Hjort, N.L., Jones, M.C.: Robust and efficient estimation
by minimizing a density power divergence. Biometrika 85(3), 549–559 (1998)

5. Basu, A., Shioya, H., Park, C.: Statistical Inference: The Minimum Distance App-
roach. CRC Press, Boca Raton (2011)

6. Broniatowski, M., Stummer, W.: Some universal insights on divergences for statis-
tics, machine learning and artificial intelligence. In: Nielsen, F. (ed.) Geometric
Structures of Information. SCT, pp. 149–211. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-02520-5 8

7. Ghosh, A., Basu, A.: Robust estimation for independent non-homogeneous obser-
vations using density power divergence with applications to linear regression. Elec-
tron. J. Stat. 7, 2420–2456 (2013)

8. Ghosh, A., Basu, A.: Robust estimation in generalized linear models: the density
power divergence approach. TEST 25, 269–290 (2016)

9. Ghosh, A.: Divergence based robust estimation of the tail index through an expo-
nential regression model. Stat. Methods Appl. 26, 181–213 (2017)

10. Ghosh, A., Basu, A.: Robust bounded influence tests for independent non-
homogeneous observations. Statistica Sinica 28, 1133–1155 (2018)

11. Kißlinger, A.-L., Stummer, W.: Some decision procedures based on scaled Breg-
man distance surfaces. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS,
vol. 8085, pp. 479–486. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40020-9 52

12. Kißlinger, A.-L., Stummer, W.: New model search for nonlinear recursive models,
regressions and autoregressions. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2015.
LNCS, vol. 9389, pp. 693–701. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25040-3 74

13. Kißlinger, A.-L., Stummer, W.: Robust statistical engineering by means of scaled
Bregman distances. In: Agostinelli, C., Basu, A., Filzmoser, P., Mukherjee, D.
(eds.) Recent Advances in Robust Statistics - Theory and Applications, pp. 81–
113. Springer, India (2016). https://doi.org/10.1007/978-81-322-3643-6 5

14. Kißlinger, A.-L., Stummer, W.: A new toolkit for robust distributional change
detection. Appl. Stoch. Models Bus. Ind. 34, 682–699 (2018)

15. Matthys, G., Beirlant, J.: Estimating the extreme value index and high quantiles
with exponential regression models. Statistica Sinica 13, 853–880 (2003)

16. Nielsen, F., Garcia, V.: Statistical exponential families: a digest with flash cards.
Preprint, arXiv:0911.4863v2 (2011)

17. Nielsen, F., Hadjeres, G.: Monte Carlo information-geometric structures. In:
Nielsen, F. (ed.) Geometric Structures of Information. SCT, pp. 69–103. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-02520-5 5

https://doi.org/10.1007/978-3-319-56478-4
https://doi.org/10.1007/978-3-319-56478-4
https://doi.org/10.1007/978-3-030-02520-5_8
https://doi.org/10.1007/978-3-030-02520-5_8
https://doi.org/10.1007/978-3-642-40020-9_52
https://doi.org/10.1007/978-3-642-40020-9_52
https://doi.org/10.1007/978-3-319-25040-3_74
https://doi.org/10.1007/978-3-319-25040-3_74
https://doi.org/10.1007/978-81-322-3643-6_5
http://arxiv.org/abs/0911.4863v2
https://doi.org/10.1007/978-3-030-02520-5_5


330 B. Roensch and W. Stummer

18. Pardo, M.C., Vajda, I.: On asymptotic properties of information-theoretic diver-
gences. IEEE Trans. Inf. Theor. 49(7), 1860–1868 (2003)

19. Roensch, B., Stummer, W.: 3D insights to some divergences for robust statistics
and machine learning. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2017. LNCS, vol.
10589, pp. 460–469. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68445-1 54

20. Roensch, B., Stummer, W.: Robust estimation by means of scaled Bregman power
distances. Part II. Extreme values. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2019.
LNCS, vol. 11712, pp. 331–340. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26980-7 34

21. Stummer, W.: Some Bregman distances between financial diffusion processes. Proc.
Appl. Math. Mech. 7(1), 1050503–1050504 (2007)

22. Stummer, W., Kißlinger, A.-L.: Some new flexibilizations of Bregman divergences
and their asymptotics. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2017. LNCS, vol.
10589, pp. 514–522. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68445-1 60

23. Stummer, W., Vajda, I.: On Bregman distances and divergences of probability
measures. IEEE Trans. Inform. Theory 58(3), 1277–1288 (2012)

https://doi.org/10.1007/978-3-319-68445-1_54
https://doi.org/10.1007/978-3-319-68445-1_54
https://doi.org/10.1007/978-3-030-26980-7_34
https://doi.org/10.1007/978-3-030-26980-7_34
https://doi.org/10.1007/978-3-319-68445-1_60
https://doi.org/10.1007/978-3-319-68445-1_60


Robust Estimation by Means of Scaled Bregman
Power Distances. Part II. Extreme Values

Birgit Roensch1(B) and Wolfgang Stummer1,2

1 Department of Mathematics, University of Erlangen–Nürnberg,
Cauerstrasse 11, 91058 Erlangen, Germany

roensch@math.fau.de
2 Faculty Member of the School of Business and Economics, University of Erlangen–Nürnberg,

Lange Gasse 20, 90403 Nürnberg, Germany

Abstract. In the separate Part I (see [23]), we have derived a new robustness-
featured parameter-estimation framework, in terms of minimization of the scaled
Bregman power distances of Stummer and Vajda [25] (see also [24]); this leads to
a wide range of outlier-robust alternatives to the omnipresent non-robust method
of maximum-likelihood-examination. In the current Part II, we provide some
applications of our framework to data from potentially rare but dangerous events
(modeled with approximate extreme value distributions), by estimating the cor-
respondingly characterizing extreme value index (reciprocal of tail index); as a
special subcase, we recover the method of Ghosh [9] which is essentially a robus-
tification of the procedure of Matthys and Beirlant [19]. Some simulation studies
demonstrate the potential partial superiority of our method.

1 Introduction

In the last three decades, statistical and machine-learning issues in modelling (here,
univariate) extremes of random data have been widely applied in many research fields,
such as e.g. environmetrics (natural desasters), biometrics, insurance, finance, and cor-
responding triggered-loss-concerning risk management tasks. The basic idea is to quan-
tify the potential danger that (losses from) rare events can have enormous – and even
catastrophic – consequences on natural, human-made (including economic) and hybrid
systems. For this, a large variety of quantification methods have been developed, see
e.g. the books of Beirlant et al. [3], Castillo et al. [5], Coles et al. [6], Embrechts
et al. [7], de Haan and Ferreira [8], Reiss and Thomas [20], Resnick [21], the recent
survey paper of Gomes and Guillou [14], as well as the references therein. One fun-
damental result in the extreme value theory of independent random variables (Xi)i∈N
with identical distribution PX [·] := P[Xi ∈ ·] (i ∈ N) stems from the Fisher-Tippett-
Gnedenko theorem (cf. [13]) which states that the only possible non-degenerate (i.e.
not of one-point mass type) limit distributions (as n→ ∞) for normalized block-maxima

c© Springer Nature Switzerland AG 2019
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(max{X1, , . . . ,Xn}−an)/bn are members Hθ ,μ,σ of the so-called generalized-extreme-
value (GEV) distribution family described by the probability density functions

hθ ,μ,σ (x) :=
exp

(
− (1+θ · x−μ

σ )−1/θ
)

σ · (1+θ · x−μ
σ )(θ+1)/θ

· 1]−1,∞[
(
θ · x− μ

σ
)
, x ∈ R, θ ∈ R\{0},

h0,μ,σ (x) :=
1
σ

· exp(−x− μ
σ

) · exp
(

− exp(−x− μ
σ

)
)
, x ∈ R, (1)

for some location parameter μ ∈ R and some scale parameter σ ∈]0,∞[, where we
have employed the indicator function 1A(·) of the set A. Accordingly, PX is said to
be in the maximum domain of attraction of Hθ ,0,0, denoted by PX ∈ MDA(Hθ ,0,0).
The shape parameter θ is called extreme value index EVI (and its reciprocal 1/θ is
called tail index, although some authors such as e.g. Ghosh [9] call θ itself the tail
value index) and plays a key role in extreme value analytics. It is well known that
essentially all the common continuous distributions PX (e.g. Gaussian, etc.) used in
statistics, machine learning and artificial intelligence are covered. Hence, for fixed
large enough block-size n ∈ N and n ·N data point observations, one can approxi-
mate the log-likelihood function of the N ∈ N block-maxima Z1 := max{X1, . . . ,Xn},
Z2 := max{Xn+1, . . . ,X2n}, . . . , ZN := max{Xn(N−1)+1, . . . ,XNn} of the corresponding
N blocks in a straightforward manner from (1); accordingly, the maximum likelihood
estimator MLE of (θ ,μ ,σ) can be derived. However, the MLE-procedure is known to
be non-robust against outliers. One way to achieve a robust estimator θ̂ of θ is given by
Ghosh [9] who starts from Matthys and Beirlant’s [19] nonhomogeneous-exponential-
regression-type approximation for log-ratios of spacings of successive order statistics
of the X ′s, and afterwards employs the corresponding special case of the general mini-
mum density-power-divergence parameter-estimation method of Ghosh and Basu [10]
(see also [11,12]). The latter has been extended and flexibilized in Roensch and
Stummer [23] (cf. the separate Part I), by means of minimizing an appropriate scaled
Bregman power divergence in the sense of Stummer and Vajda [25] (see also Stum-
mer [24] and Sect. 2.2 of Broniatowski and Stummer [4]).
In the light of the above-mentioned explanations, the main goals of this paper are:

(i) To extend and flexibilize the Ghosh-method of extreme-value-index estimation by
employing some of the results of Roensch and Stummer [23].

(ii) To present some significant simulation studies for which our method (i) performs
superiorly to the Ghosh-method.

To achieve this, we first explain some basic facts about the fundamentally underlying
Matthys-Beirlant method and about scaled Bregman power distances, see Sect. 2. The
goal (i) respectively (ii) is realized in Sect. 3 respectively Sect. 4.

2 Matthys-Beirlant Model and Extreme-Value-Index Estimation

In their paper [19], Matthys & Beirlant derived the following approximation: for inde-
pendent data observations (Xi)i∈N of identical distributions PX (satisfying the above-
mentioned non-degeneracy assumption for the Fisher-Tippett-Gnedenko theorem), data
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size n ∈ N, and corresponding order statistics min{X1, . . . ,Xn} = Xn:1 ≤ Xn:2 ≤ . . . ≤
Xn:n =max{X1, . . . ,Xn}, the log-ratios (Yj) j=1,...,k−1 of spacings of the k∈ {1, . . . ,n−1}
largest successive observations defined by

Yj := j · log

(
Xn:n− j+1 −Xn:n−k

Xn:n− j −Xn:n−k

)

are approximately independent and exponentially distributed with non-homogeneous

means E[Yj] =
θ

1− ( j
k+1 )

θ
=: γ j(θ)−1 > 0, denoted by PYj ind≈ Exp(γ j(θ)), (2)

depending on the extreme value index θ ∈ R. Accordingly, fitting θ to the data obser-
vations amounts to parameter estimation within an (approximately valid) exponential
regression model. As a side remark, notice that

Yj = j · log

⎛
⎝

Xn:n− j+1−an
bn

− Xn:n−k−an
bn

Xn:n− j−an
bn

− Xn:n−k−an
bn

⎞
⎠ , j = 1, . . . ,k, k ≤ n−1,

for any sequences (an)n∈N of real numbers and (bn)n∈N of strictly positive real numbers;
consequently, the location parameter μ and scale parameter σ play no role here.

Let us imbed the current context as a special case of the general parameter-
estimation framework of Roensch and Stummer [23] for independent non-
homogeneous data observations, in terms of minimizing scaled Bregman power dis-
tances. To start with, we assume that the underlying “true” (approximate) joint distri-
bution is of the (independence-reflecting product-)form P(Y1,...,Yk−1) = G1 ⊗·· ·⊗Gk−1

with density ∏k−1
j=1 g j(x j) > 0 (x j ∈ [0,∞[), and that it is modeled with the distribution

family

F
(k−1)
Θ := {F(k−1)

θ := F1,θ ⊗·· ·⊗Fk−1,θ
∣∣Fj,θ = Exp(γ j(θ)) having density

[0,∞) � x 	→ f j,θ (x) = γ j(θ) · exp(−x · γ j(θ))> 0 for each j = 1, . . . ,k−1 and θ ∈ Θ}

with Θ := R. Furthermore, let M be a fixed – maybe nonprobability – distribution
(σ−finite measure) having – maybe nonnormalized – density [0,∞[� x 	→ m(x) > 0.
Moreover, we fix an arbitrary tuning parameter α ∈]− 1,∞[. In terms of the α−order
scaled Bregman power distance SBPD (cf. Stummer and Vajda [25] and [24]; see
also [4,15–18,22] for further insights and applications)

Bφα

(
Gj,Fj,θ ||M)

:=
∫

X

m(x)−α

(α +1) ·α
·g j(x)α+1 dx

+
∫

X

m(x)−α

α +1
· f j,θ (x)α+1 dx+

∫

X

m(x)−α

α
· f j,θ (x)α dGj(x),

for α ∈]−1,0[∪]0,∞[, (3)

Bφ0

(
Gj,Fj,θ ||M)

=
∫

X

g j(x) · log(g j(x))dx−
∫

X

log( f j,θ (x))dGj(x), (4)



334 B. Roensch and W. Stummer

as well as the short-hand notation GGG := (G1, . . . ,Gk−1), we define the average-SBPD-
minimizing functional Tα,M(GGG) via

1
k−1

k−1

∑
j=1

Bφα (Gj,Fj,Tα,MMM(GGG) ||M) := inf
θ∈Θ

1
k−1

k−1

∑
j=1

Bφα (Gj,Fj,θ ||M), (5)

with “best-fitting parameter” θGGG := Tα,M(GGG). Notice that in case of Gj = Fj,θ true for
some θ true ∈ Θ ( j= 1, . . . ,k−1), one can apply the general Theorem 1 of Roensch and
Stummer [23] to the special choices d = 1 = p, X =]0,∞[= Y , Θ = R, a0(x) = 0,
a(x) = −x, c(θ) = γ j(θ), b(y) = − log(y), Ξ = R, c̃(η) = cM , b̃(c̃(η)) = bM (and thus
m(x) = exp(−x · cM −bM)), θ1 = θ true, θ2 = θ , and derive from (3), (4) the SBPDs

1
k−1

k−1

∑
j=1

Bφα (Gj,Fj,θ ||M) =
1

k−1

k−1

∑
j=1

{ γ j(θ true)α+1 · eα·bM

α · (α +1)2 · γ j(θ true)−α2 · (α +1) · cM

+
γ j(θ)α+1 · eα·bM

(α +1)2 · γ j(θ)−α · (α +1) · cM +
γ j(θ true) · γ j(θ)α · eα·bM

α · γ j(θ true)+α2 · [γ j(θ)− cM ]

}
< ∞,

if α ∈]−1,0[∪]0,∞[,

1
k−1

k−1

∑
j=1

Bφ0 (Gj,Fj,θ ||M)=
1

k−1

k−1

∑
j=1

{
log(γ j(θ true))−log(γ j(θ))+

γ j(θ)
γ j(θ true)

}
−1<∞,

if α = 0,

provided that for α ∈]−1,0[∪]0,∞[ the three constraints (α +1) · γ j(θ true)−α · cM >
0, (α + 1) · γ j(θ) − α · cM > 0, and γ j(θ true) + α · [γ j(θ) − cM] > 0 are satisfied;
then, according to (5), one has the best-fitting parameter θGGG = Tα,M(GGG) = θ true with

1
k−1 ∑k−1

j=1Bφα (Gj,Fj,Tα,M(GGG) ||M) = 0 for all α > −1. Notice that the above-mentioned

first two constraints are always satisfied for α ∈]− 1,0[ and cM ≥ 0, whereas all three
constraints are fulfilled for α > 0 and cM ≤ 0; the special choice cM = 0 corresponds
(up to the multiple constant bM) to the unscaled case m(x)≡ 1 which can be interpreted
as a (set-up adapted) density power divergence in the sense of Basu et al. [1] (see also
Basu et al. [2]). For the choice cM < 0, the scaling M is not a finite distribution anymore.

Let us now return to the case where the transformed data (log-ratios) (Yj) j=1,...,k−1

are generated from general (not necessarily F
(k−1)
Θ −family member) probability dis-

tributions Gj ( j = 1, . . . ,k − 1). Following the lines of Roensch and Stummer [23],
by first removing from Bφα (Gj,Fj,θθθ ||Mj) (α > −1) in (3), (4) all θ−independent
terms (being obsolete for the right-hand side of (5)), and afterwards plugging in

GGG(k−1) := (G(k−1)
1 , . . . ,G(k−1)

k−1 ) := (δY1 , . . . ,δYk−1) instead of GGG (where δYj is the one-
point distribution putting mass 1 to the observation Yj), we arrive at the minimum SBPD

estimator θ̂k−1,α,M := Tα,M(GGG(k−1)) to be the θ−minimizer of

Hk−1,α,M(θ) :=
1

k−1

k−1

∑
j=1

[∫

X

f j,θ (x)1+α

(α +1) ·mj(x)α dx− f j,θ (Yj)α

α ·mj(Yj)α

]

=
eα·bM

k−1

k−1

∑
j=1

[ γ j(θ)1+α

(1+α)2 · γ j(θ)−α · (α +1) · cM − γ j(θ)α

α
· e−Yj ·α·(γ j(θ)−cM)

]

if α ∈]−1,0[∪]0,∞[, (6)
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Hk−1,0,M(θ) := − 1
k−1

k−1

∑
j=1

log( f j,θ (Yj)) = − 1
k−1

k−1

∑
j=1

[log(γ j(θ))−Yj · γ j(θ)]

if α = 0, (7)

provided that (1+α) · γ j(θ)− α · cM > 0 for α ∈]− 1,0[∪]0,∞[ (e.g. α ∈]− 1,0[ and

cM ≥ 0, or α > 0 and cM ≤ 0). By recalling γ j(θ) = (1 − ( j
k+1

)θ )/θ > 0 (cf. (2))

having derivative γ ′
j (θ) = ((θ · γ j(θ)− 1) · log( j

k+1 )− γ j(θ))/θ , we obtain from (6)
respectively (7) the corresponding estimating equations

d
dθ

Hk−1,α,M(θ) =
eα·bM

θ · (k−1)

k−1

∑
j=1

[(
(θ · γ j(θ)−1) · log(

j
k+1

)− γ j(θ)
)

· γ j(θ)α

· α · (γ j(θ)− cM)[
(α +1) · γ j(θ)−α · cM]2 −

( 1
γ j(θ)

−Yj

)
· e−Yj ·α·(γ j(θ)−cM)

]
= 0,

if α ∈]−1,0[∪]0,∞[, (8)

d
dθ

Hk−1,0,M(θ)=− 1
θ · (k−1)

k−1

∑
j=1

[(
(θ · γ j(θ)−1) · log(

j
k+1

)−γ j(θ)
)

·
( 1

γ j(θ)
−Yj

)]

:= − 1
k−1

k−1

∑
j=1

u j,θ (Yj) = 0, if α = 0, (9)

to be solved for θ . Notice that (9) corresponds (up to the non-effective outer minus sign)
to the estimating equation derived from the maximization of the log-likelihood, which
is exactly the MLE method for estimating the extreme-value-index θ of Matthys and
Beirlant [19]. Moreover, in the special subsetup of unscaled SBPD where cM = bM = 0
(and hence, m(x) ≡ 1), (8) reduces to the estimating equation of Ghosh [9].

3 Robustness Against Degenerate Contaminations

It is well known that the degree of robustness with respect to degenerate (i.e., one-point)
contaminations of the data, can be measured for instance in terms of appropriate influ-
ence functions; in the current setup, the latter can be derived from the above-mentioned
functional θGGG = Tα,M(GGG) = Tα,M(G1, . . . ,Gk−1) for α > −1. Indeed, by employing the
corresponding results of Roensch and Stummer [23], for one-point contaminations at
t0 ∈ X = R with degree ε ∈ [0,1[ in the j0−th (transformed, log-ratio) data observa-
tion ( j0 ∈ {1, . . . ,k−1}) we achieve by straightforward calculations the corresponding
influence function

R � t0 −→ IF(t0; j0,Tα,M,GGG) :=
∂

∂ε
T

(
G1, . . . ,(1− ε) ·Gj0 + ε ·δt0 , . . . ,Gk−1

)∣∣∣
ε=0

=

(
k−1

∑
j=1

JMj,α(θ)

)−1

·
(

f j0,θ (t0)
α

m(t0)α ·u j0,θ (t0)−ξM
j0,α(θ)

)
,
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with JMj,α(θ) :=
∫

X

f j,θ (x)α+1

m(x)α ·
(
u j,θ (x)

)2
dx

−
∫

X

f j,θ (x)α

m(x)α · (g j(x)− f j,θ (x)
) ·

[ ∂
∂θ

u j,θ (x)+α ·
(
u j,θ (x)

)2]
dx

and ξM
j,α(θ) :=

∫

X

f j,θ (x)αg j(x)
m(x)α ·u j,θ (x) dx.

By assuming that the true data-generating probability distributions come from the

F
(k−1)
Θ −family, i.e. GGG = FFFθ = (F1,θ , . . . ,Fk−1,θ ) and thus g j(·) = f j,θ (·) for all j ∈

{1, . . . ,k−1} and some θ ∈ Θ (to be found out), and by plugging in the explicit forms
of f j,θ (·) and m(·), we arrive by straightforward but lengthy calculations at

R � t0 −→ IF(t0; j0,Tα,M,FFFθ )

=
−γ j0(θ)α · γ ′

j0
(θ) ·

[ α·(γ j0 (θ)−cM)

[(α+1)·γ j0 (θ)−α·cM]2
+

(
t0 − 1

γ j0 (θ)

)
· e−t0·α·(γ j0 (θ)−cM)

]

k−1
∑
j=1

[
(γ ′

j (θ))2 · γ j(θ)α−1 · γ j(θ)2+α2·(γ j(θ)−cM)2

[(α+1)·γ j(θ)−α·cM]3
] , (10)

where the explicit form of γ ′
j0
(θ) has been given above. Applying general theory, for

good robustness performance it is desirable to choose the tuning parameter α > −1
and the scaling constant cM such that t0 → IF(t0; j0,Tα,M,FFFθ ) is bounded for each
j0 ∈ {1, . . . ,k−1} and each θ ∈Θ =R. For the MLE-case of Matthys and Beirlant [19],
where α = 0 and thus cM becomes obsolete, boundedness is not possible since then
(10) degenerates to a t0−line on R. By demanding α · (γ j0(θ)− cM) > 0 for the cru-
cial exponent, and by inspecting the range of γ j0(·), it is recommendable to ideally
employ either (i) α > 0 and cM < 0, or (ii) α > 0 and cM = 0 (which for the non-
effective choice bM = 0 becomes the unscaled framework of Ghosh [9] and which has
the theoretical disadvantage that robustness fails asymptotically), or (iii) α ∈]−1,0[ and

cM > (1 − n−θmin)/θmin ≥ γ1(θmin) ≥ γ j0(θmin) =
1−( j0

k+1 )
θmin

θmin > 0 where θmin is a (e.g.
prior-knowledge or constraint-desire reflecting) lower bound for the unknown extreme
value index θ (for θmin > 0 one has 1/θmin > (1 − n−θmin)/θmin leading to the more
restrictive but n−independent lower bound cM > 1/θmin). In Fig. 1(d), we exemplarily
display some outcoming influence functions which demonstrate the partial superiority
of our method.

Analogously to (10), for contamination in all data observations we can deduce from
the corresponding general result of Roensch and Stummer [23] an explicit expression
of

Rk−1 � t 	→ IF(t; Tα,M ,GGG) :=
∂

∂ε
T

(
(1− ε) ·G1 + ε ·δ1, . . . ,(1− ε) ·Gn+ ε ·δn

)∣∣∣
ε=0

=

(
k−1

∑
j=1

JMi,α (θ)

)−1

·
k−1

∑
j=1

(
f j,θ (t j)α

m(t j)α ·u j,θθθ (t j)−ξM
j,α (θ)

)
(11)

with t := (t1, ..., tk−1) and GGG = FFFθ . From (10) and (11) one can also derive
other connected robustness measures such as e.g. the gross-error sensitivity and the



Robust Estimation by Means of Scaled Bregman Power Distances 337

self-standardized sensitivity; breakdown-point analyses can be performed as well.
Moreover, following the lines of Roensch and Stummer [23] one can also show for the
(say) subcase GGG = FFFθ (θ ∈ R), α > 0, cM < 0, that there exists a consistent sequence
θk of roots to the estimating Eqs. (8), (9), and that the asymptotic distribution (for

k= kn → ∞ as n→ ∞) of
√
kn −1 ·Ω−1/2

kn
·Λkn ·(θkn −θ

)
is normal with zero mean and

unit variance. Here, we use the notations Λk := 1
k−1 ∑k−1

j=1 J
M
j,α(θ) and

Ωk :=
1

k−1

k−1

∑
j=1

[∫

X

f j,θ (x)2α+1

m(x)2α · (u j,θ (x))2 dx − (
ξM
j,α(θ)

)2
]
,

which (as above) for our current context of exponential distributions can be calculated
explicitly. For the sake of brevity, these robustness and limit investigations will appear
elsewhere, including many (α,M)−subcases which perform much more robust than the
MLE estimator.

4 Robustness Against Non-degenerate Contaminations

Let us now deal with the case of non-degenerate contaminations, in the sense that the
original data are described by independent random variables (Xi)i=1,...,n with identical
probability distribution of the form PX := (1−c) ·P+c ·Pcont where P∈MDA(Hθ ,0,0),
Pcont ∈ MDA(Hθcont ,0,0) for some P �= Pcont , and c ∈ [0,1[ represents the contamina-
tion degree. In terms of the sign function, we call the case sgn(θ) �= sgn(θcont) an
out-of-type contamination and sgn(θ) = sgn(θcont) an in-type contamination; the lat-
ter we further subdivide into in-family contaminations (where P, Pcont stem from the
same distribution family, e.g. lognormal distributions) and in-type out-of-family con-
taminations. Within each of these three contamination setups, Matthys and Beirlant
(MB) [19] respectively Ghosh (G) [9] have presented exemplary simulation studies,
by employing the exponential regression model (2) with – notationally embedded in
our wider framework – tuning-parameter constellations α = 0 (which corresponds to
MB-estimation being of MLE-type where cM is obsolete) respectively α > 0, cM = 0
(unscaled case, which corresponds to G-estimation). Both [19] and [9] use sample size
n = 500 and rep = 100 number of replications. We have extended these simulation
studies to our component-widened set of tuning parameters α > −1, cM ∈ R (scaled
case with enlargened divergence-parameter domain), by keeping n = 500 but using
rep= 10000 which leads to more significant results but which is much more computer-
runtime expensive. Expressed in terms of the standard performance measures

Bias(k;α,cM ,c) :=
1
rep

rep

∑
r=1

θ̂ (r,c)
k−1,α,M −θ , AE(k;α,cM ,c) :=

1
rep

rep

∑
r=1

∣∣∣θ̂ (r,c)
k−1,α,M −θ

∣∣∣ ,

MSE(k;α,cM ,c) :=
1
rep

rep

∑
r=1

(
θ̂ (r,c)
k−1,α,M −θ

)2
, k = 1, . . . ,n, α ∈ R, cM ∈ R,c ∈ [0,1[,

(12)
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Fig. 1. (a)–(c): Performance measures (12) for c= 15% and various different tuning parameters α ,
η := cM , with line types and colors explained in the legend of (c) (where, say, αunscaled = 1 means
α = 1 together with cM = 0). (d): Influence functions (10) for k = 100, θ = 1, contamination at
the j0 = 75-th observation, and various different tuning parameters α , η := cM (explained in an
analogous legend).
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(where the superscript (r, c) denotes the data-derived estimate obtained in the r−th
replication with contamination-degree c), the main essences of our simulation findings
are:

(1) for the uncontaminated case c = 0, the MB estimator θ̂k−1,0,obsolete (cf. (9)) has
the best performance and θ̂k−1,α,M produces slightly higher bias and MSE, for
appropriate tuning-parameter choices;

(2) for the contaminated case c �= 0 and for fixed α ∈]0,0.3[, the estimator θ̂k−1,α,M

with tuning-parameter choice cM < 0 is often advantageous over the corresponding
G-estimator (where cM = 0);

(3) for c �= 0, α ∈]−1,0[ and large enough cM (say, case-dependently, 2 or 4 or greater
than 10), the corresponding estimator θ̂k−1,α,M is often very advantageous over
that of any other tuning-parameter constellation α ∈ [0,1], cM ≤ 0 (including the
G-estimators). Moreover, the cases α ∈]− 1,0[, cM = 0 (i.e., no scaling on the
enlargened divergence-parameter-range), often lead to MSE’s being unstable with
changing excerpt-size k.

For the sake of brevity, we only present a representative simulation outcome here;
the entire comprehensive simulation studies will appear elsewhere. Consider the out-of-
type contamination context where P is a standard lognormal distribution (leading to θ =
0 and being very important e.g. in finance, insurance), Pcont is a Student t−distribution
with d f = 1/3 degrees of freedom (leading to θcont = 3), and contamination-degree c=
15%. For this, we have run simulations of r= 10000 replicates with sample size n= 500
each. The resulting plots of the correspondingly evaluated performance measures (12),
as functions of the excerpt-size k, are given in Fig. 1; they exemplarily reflect the above-
mentioned empirical findings (for k � 80 ≈ n/6).

Acknowledgement. We are grateful to the three referees for their very useful comments.
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Abstract. Unsupervised learning is a broad topic in machine learning
with many diverse sub-disciplines. Within the field of unsupervised learn-
ing we will consider three major topics: dimension reduction; clustering;
and anomaly detection. We seek to use the languages of topology and
category theory to provide a unified mathematical approach to these
three major problems in unsupervised learning.

Keywords: Unsupervised learning · Manifold learning · Clustering

1 Mathematical Foundations

Our goal is to develop a flexible theory that can cope with data sampled non-
uniformly from an underlying manifold embedded in a high dimension ambi-
ent space. The underlying approach is based on combining together multi-
ple local approximations of an underlying manifold on which the input data
X = {x1, x2, . . . , xN} is assumed to lie. Since most theory, such as the Nerve
theorem, implicitly assumes uniform distribution with respect to the ambient
metric, other approaches are called for. For example we can adapt to local den-
sity by locally approximating the Riemannian metric of the manifold for each
point, yielding N incompatible local approximations of inter-point distance. This
incompatibility is in turn tackled by transferring the problem to fuzzy topolog-
ical representations where natural means of combination are available. Given
a single fuzzy topological representation of the data the various subtopics of
unsupervised learning fall out as natural further operations.

The foundation of this approach is based on the work of David Spivak on
metric realization for fuzzy simplicial sets [10], and categorical versions of fuzzy
sets by Michael Barr [1] – it is this work that allows us to transfer the problem to
one of fuzzy topological representations. A sketch of the approach is as follows:
Let I be the unit interval (0, 1] ⊆ R with topology given by intervals of the
form (0, a) for a ∈ (0, 1]. The category of open sets (with morphisms given by
inclusions) can be imbued with a Grothendieck topology in the natural way for
any poset category.

Definition 1. A presheaf P on I is a functor from Iop to Sets. A fuzzy set is
a presheaf on I such that all maps P(a ≤ b) are injections.
c© Springer Nature Switzerland AG 2019
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Presheaves on I form a category with morphisms given by natural transfor-
mations. We can thus form a category of fuzzy sets by simply restricting to those
presheaves that are fuzzy sets. We note that such presheaves are trivially sheaves
under the Grothendieck topology on I. A section P([0, a)) can be thought of as
the set of all elements with membership strength at least a. We can now define
the category of fuzzy sets.

Definition 2. The category Fuzz of fuzzy sets is the full subcategory of sheaves
on I spanned by fuzzy sets.

Defining fuzzy simplicial sets is simply a matter of considering presheaves of
Δ valued in the category of fuzzy sets rather than the category of sets.

Definition 3. The category of fuzzy simplicial sets sFuzz is the category with
objects given by functors from Δop to Fuzz, and morphisms given by natural
transformations.

Alternatively, a fuzzy simplicial set can be viewed as a sheaf over Δ × I,
where Δ is given the trivial topology and Δ × I has the product topology. We
will use Δn

<a to denote the sheaf given by the representable functor of the object
([n], (0, a)). The importance of this fuzzy (sheafified) version of simplicial sets is
their relationship to metric spaces. We begin by considering the larger category
of extended-pseudo-metric spaces.

Definition 4. An extended-pseudo-metric space (X, d) is a set X and a map
d : X × X → R≥0 ∪ {∞} such that

1. d(x, y) � 0, and x = y implies d(x, y) = 0;
2. d(x, y) = d(y, x); and
3. Either d(x, z) � d(x, y) + d(y, z) or d(x, z) = ∞.

The category of extended-pseudo-metric spaces EPMet has as objects extended-
pseudo-metric spaces and non-expansive maps as morphisms. We denote the
subcategory of finite extended-pseudo-metric spaces FinEPMet.

The choice of non-expansive maps in Definition 4 is due to Spivak, but we
note that it closely mirrors the work of Carlsson and Memoli in [3] on topological
methods for clustering as applied to finite metric spaces. This choice is significant
since pure isometries are too strict and do not provide large enough Hom-sets.

In [10] Spivak constructs a pair of adjoint functors, Real and Sing between
the categories sFuzz and EPMet. These functors are the natural extension of
the classical realization and singular set functors from algebraic topology (see
[5]). We are only interested in finite metric spaces, and thus use the analogous
adjoint pair FinReal and FinSing. Formally we define the finite realization functor
as follows:

Definition 5. Define the functor FinReal : sFuzz → FinEPMet by setting

FinReal(Δn
<a) � ({x1, x2, . . . , xn}, da),
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where

da(xi, xj) =

{
− log(a) if i �= j,

0 otherwise
.

and then defining

FinReal(X) � colim
Δn

<a→X
FinReal(Δn

<a).

A morphism (σ,≤) : ([n], ([0, a)) → ([m], ([0, b)) only exists for a ≤ b, and in
that case we can define

FinReal((σ,≤)) : FinReal(Δn
<a) → FinReal(Δm

<b)

to be the map

({x1, x2, . . . , xn}, da) 	→ ({xσ(1), xσ(2), . . . , xσ(n)}, db),

which is non-expansive since a ≤ b implies da ≥ db.
Since FinReal preserves colimits it admits a right adjoint, the fuzzy singular

set functor FinSing. To define the fuzzy singular set functor we require some
further notation. Given a fuzzy simplicial set X let Xn

<a be the set X([n], (0, a)).
We can then define the fuzzy singular set functor in terms of the action of its
image on Δ × I.

Definition 6. Define the functor FinSing : FinEPMet → sFuzz by

FinSing(Y )n
<a � homFinEPMet(FinReal(Δn

<a), Y ).

With the necessary theoretical background in place, the means to handle the
family of incompatible metric spaces described earlier becomes clear. Each metric
space in the family can be translated into a fuzzy simplicial set via the fuzzy
singular set functor, distilling the topological information while still retaining
metric information in the fuzzy structure. Resolving the incompatibilities of the
resulting family of fuzzy simplicial sets can be done by taking a (fuzzy) union
or intersection across the entire family. The result is a single fuzzy simplicial
set which captures the relevant topological and underlying metric structure of
the manifold M. Thus if di is the induced distance metric approximated for the
point xi then the fuzzy topological representation of the manifold is given by
either

N⋃
i=1

FinSing((X, di)) or
N⋂

i=1

FinSing((X, di)).

depending on the kind of combination required. This can be phrased directly in
terms of pushouts (or colimits) and pullbacks (or limits) of simplicial sheaves for
those less comfortable with fuzzy set semantics.
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2 Dimension Reduction

We can make use of the general theory outlined in Sect. 1 for the purposes of
dimension reduction. The resulting algorithm, called Uniform Manifold Approx-
imation and Projection (UMAP), is sketched here. For a fuller presentation
see [9].

For the purposes of dimension reduction we assume the manifold hypothesis
– that the data is (approximately) sampled from some manifold M embedded in
the ambient feature space. If we assume the data to be uniformly distributed on
M (with respect to a Riemannian metric g) then any ball of fixed volume should
contain approximately the same number of points of X regardless of where on the
manifold it is centered. Conversely, a ball centered at Xi that contains exactly
the k-nearest-neighbors of Xi should have fixed volume regardless of the choice
of Xi ∈ X. We can approximate geodesic distance from Xi to its neighbors by
normalising distances with respect to the distance to the kth nearest neighbor
of Xi.

For real data it is safe to assume that the manifold M is locally connected.
In practice this can be realized by measuring distance in the extended-pseudo-
metric space local to Xi as geodesic distance beyond the nearest neighbor of
Xi. Since this sets the distance to the nearest neighbor to be equal to 0, this is
only possible in the more relaxed setting of extended-pseudo-metric spaces. It
ensures, however, that each 0-simplex is the face of some 1-simplex with fuzzy
membership strength 1, meaning that the resulting topological structure derived
from the manifold is locally connected. We note that this has a similar practical
effect to the truncated similarity approach of Lee and Verleysen [7], but derives
naturally from the assumption of local connectivity of the manifold. We may
then use the results of the previous section to combine together the local fuzzy
simplicial sets and arrive at a single global fuzzy topological representation.

Having obtained a representation of the manifold it only remains to find a low
dimensional representation of the data that suitably approximates the manifold.

Let Y = {Y1, . . . , YN} ⊆ R
d be a low dimensional (d � n) representation of

X such that Yi represents the source data point Xi. In contrast to the source
data where we want to estimate a manifold on which the data is uniformly
distributed, we know the manifold for Y is R

d itself. Therefore we know the
manifold and manifold metric apriori, and can compute the fuzzy topological
representation directly. Of note, we still want to incorporate the distance to
the nearest neighbor as per the local connectedness requirement. This can be
achieved by supplying a parameter that defines the expected distance between
nearest neighbors in the embedded space.

Given fuzzy simplicial set representations of X and Y , a means of comparison
is required. If we consider only the 1-skeleton of the fuzzy simplicial sets we can
describe each as a fuzzy graph, or, more specifically, a fuzzy set of edges. To
compare two fuzzy sets we will make use of fuzzy set cross entropy. For these
purposes we will revert to classical fuzzy set notation. That is, a fuzzy set is
given by a reference set A and a membership strength function μ : A → [0, 1].
Comparable fuzzy sets have the same reference set. Given a sheaf representation
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P we can translate to classical fuzzy sets by setting A =
⋃

a∈(0,1] P([0, a)) and
μ(x) = sup{a ∈ (0, 1] | x ∈ P([0, a))}.

Definition 7. The cross entropy C of two fuzzy sets (A,μ) and (A, ν) is defined
as

C((A,μ), (A, ν)) �
∑
a∈A

μ(a) log
(

μ(a)
ν(a)

)
+ (1 − μ(a)) log

(
1 − μ(a)
1 − ν(a)

)
.

Similar to t-SNE we can optimize the embedding Y with respect to fuzzy set
cross entropy C by using stochastic gradient descent. However, this requires a dif-
ferentiable fuzzy singular set functor. If the expected minimum distance between
points is zero the fuzzy singular set functor is differentiable for these purposes,
however for any non-zero value we need to make a differentiable approximation
(chosen from a suitable family of differentiable functions).

This completes the algorithm: by using manifold approximation and patching
together local fuzzy simplicial set representations we construct a topological
representation of the high dimensional data. We then optimize the layout of data
in a low dimensional space to minimize the error between the two topological
representations.

We believe this algorithm [9] to be state-of-the-art for dimension reduction
techniques.

3 Clustering

Clustering data requires a clear definition of what constitutes a cluster. Here we
follow Hartigan [6], Stuetzle [11], Chaudhuri et al. [4], and others in viewing the
problem as that of approximating the ‘cluster tree’ formed by level sets of the
probability density function (pdf) from which the data was drawn.

Specifically, a statistically oriented view of density clustering begins with the
assumption that there exists some unknown density function from which the
observed data is drawn. From the density function f , defined on a metric space
(X , d), one can construct a hierarchical cluster structure, where a cluster is a
connected subset of an f -level set {x ∈ (X , d) | f(x) ≥ λ}. As λ ≥ 0 varies these
f -level sets nest in such a way as to construct an infinite tree, which is referred
to as the cluster tree. Each cluster is a branch of this tree, extending over the
range of λ values for which it is distinct. The goal of a clustering algorithm is
to suitably approximate the cluster tree, converging to it in the limit of infinite
observed data points.

For our purposes we assume that the data is drawn from a pdf defined on
some manifold. In contrast to the dimension reduction case where it was benefi-
cial to adjust the metric so as have the data uniformly distributed on the man-
ifold, we specifically want to preserve the distribution. Indeed we may wish to
go a step further – since we are ultimately interested in the high density regions
of the pdf on the manifold it may be beneficial to emphasise these regions.
This is due to the finite sampling producing “noise” points that can confound
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density approximations built on limited data. Thus while the dimension reduc-
tion case normalised distances based on the uniform distribution assumption we
will instead do the opposite.

Specifically we have two issues when considering distances between points:
first we need some level of global normalisation to bring distances into a common
range regardless of the scaling of the source data. This can be achieved, similar to
the dimension reduction case, by normalising by a k-nearest-neighbour distance
– in this case, however we select the global average of knn distances since we
do not want to locally normalise the data. Next we may wish to emphasise
the pdf by extending distances in sparse regions of the space, while contracting
them in dense regions. This would be similar to Wishart’s mode analysis [12]. In
practice we can simply do the opposite of the dimension reduction case; instead
of normalizing by the knn-distance of each point we can expand distances by a
factor of some power α of the knn-distance. In some practical cases α may be
zero, but in high noise datasets values in the range (0, 1] are desirable. Thus we
can define a clustering distance local to xi as

dCi
(xi, xj) =

dRn(xi, xj)(
1
N

∑N
k=1 rk

) ·
⎛
⎝ ri(

1
N

∑N
k=1 rk

)
⎞
⎠

α

where ri is the distance to the kth nearest neighbor of xi.
We now have the familiar state of having multiple incompatible local metric

spaces, which we can convert and combine into a single fuzzy topological repre-
sentation. Again we wish to do the opposite of the dimension reduction approach
by using logical conjunction to join the fuzzy simplicial sets – i.e. we wish to use
intersection in this case. In categorical terms this is simply a matter of taking
the limit of a family of simplicial sheaves rather than the colimit.

In practical term this represents the requirement that a given simplex should
have membership strength at most the lowest membership strength of any of
the local representations. The result is a fuzzy topological representation of the
manifold that preserves density information.

Our next concern is converting this topological representation S into actual
density estimates which we can find level sets for. From an algebraic topology
point of view the way is clear: we want to consider π0(S), the connected compo-
nents of the fuzzy simplicial set S, assuming that such an object can be defined.
We first note that S itself is a functor S : Δop → sFuzz, where, in turn, sFuzz is
a sub-category of presheaves SetsIop

. It follows, via some trivial symbol pushing,
that S also defines a functor S : Iop → sSet. Since the connected component
functor π0 is defined on sSet, we can post compose with it to define a functor
π0 ◦ S

which defines a fuzzy set.
Expressing this fuzzy set in classical fuzzy set notation (A,μ) we have

A =
⋃
a∈I

π0 ◦ S([0, a))
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and
μ(a) = sup{i ∈ (0, 1] | a ∈ π0 ◦ S(i)}.

This is a very large set. Similar to HDBSCAN* [2], or the pruning of Stuetzle
and Nugent [11], we can dismiss connected components with size less then some
parameterized bound m. Thus we arrive at the fuzzy subset (A, ν) where

ν(a) =

{
sup{i ∈ (0, 1] | a ∈ π0 ◦ S(i)} if |a| ≥ m

0 otherwise
.

Finally we can further simplify the set by placing an equivalence relation on the
carrier set A. First define a binary relation � on elements of A by

a � b ⇐⇒ |a�b| ≤ m,

where � is set symmetric difference. Clearly this relation is symmetric and
reflexive, and thus the transitive closure ∼ of � is an equivalence relation on A.
The resulting fuzzy quotient set provides effectively a simplified tree of clusters,
and similar methods to those of HDBSCAN* [2] can be used to extract a flat
clustering if desired.

We note that all of this theory goes through much more cleanly than, for
example, the topological interpretations of HDBSCAN* (section 2.3 of [8]). Fur-
thermore the resulting clustering algorithm, while producing very similar results
to HDBSCAN*, is more robust to hyper-parameter selection. We therefore con-
tend, based on the limited experiments so far conducted, that this represents a
new state-of-the-art clustering algorithm.

4 Anomaly Detection

Anomaly detection is the task of finding samples that are “inconsistent with
the rest of the data”. Ultimately such an approach requires a model of the
expected distribution of the data through which to determine which samples are
“surprising”. While parametric techniques such as Gaussian mixture models can
be used, they still impose significant parametric assumptions. Ideally an anomaly
detection technique would make use of a non-parametric approximation of the
distribution of the data.

Following the work of the previous sections such a non-parametric density
estimate can be easily constructed. Specifically we can define a fuzzy set (X,ϕ)
with carrier set the source data X and fuzzy membership given by

ϕ(x) = sup{ν(a) | a ∈ A and x ∈ a},

where (A, ν) is defined as per the procedure in the previous section. This provides
a [0, 1]-valued membership strength for each data point. By simply taking the
fuzzy complement of this set we arrive at an outlier score with 1 representing a
maximal outlier and 0 representing a maximal inlier.
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In effect we are taking the fuzzy set (X,ϕ) to be a (scaled) approximation of
the pdf from which the data was drawn. By making use of the noise-offsetting
density exaggeration in the early steps of the clustering construction the effects
of outlying points have limited impact on this approximation, and hence are
readily identified as outliers.

We believe this represents a powerful new approach to anomaly detection
that demands further research.

5 Summary

We have presented a mathematical formulation in terms of topology and cat-
egory theory that allows for simple extensions to yield algorithms for a wide
variety of unsupervised learning tasks. These algorithms demonstrate state-of-
the-art performance in their tasks, despite being drawn from a single unified
framework. Thus the topological approaches to unsupervised learning outlined
here not only provide several new algorithms, but a rich field for further research
into unsupervised learning in general.
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Abstract. Dual separable Bregman divergences induce dual Rieman-
nian metric spaces which are isometric to the Euclidean space after non-
linear monotone embeddings. We investigate fixed-rate quantization and
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1 Introduction

1.1 Riemannian Geometry from a Separable Bregman Divergence

Consider a Bregman divergence

δΦ(x,x′) = Φ(x) − Φ(x′) − (x − x′)�∇Φ(x′), (1.1)

with real-valued generator function Φ : M → R and open convex subset M of
R

K . Here, M = J K where J is an interval (bounded or unbounded) in the real
line, and the separable Bregman generator

Φ(x) =
K∑

j=1

φ(xj), (1.2)

with φ : J → R is a three times continuously differentiable function so that we
have

δΦ(x, x′) =
K∑

j=1

δφ(xj , x
′
j). (1.3)

The Riemannian metric on M is given by

gi,j(x) = φ′′(xi)δi,j (1.4)
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(where δ is the Krönecker’symbol), and the corresponding Riemannian
distance [6] is

dφ(x,x′)2 =
K∑

j=1

(
h(xj) − h(x′

j)
)2

, (1.5)

where
h(x) =

∫ √
φ′′(x)dx (1.6)

is a an increasing continuously differentiable function defined as the antideriva-
tive of (φ′′)1/2. Its compositional inverse h−1 shall be denoted by H (with
H ◦h−1 = h−1 ◦H = id). Let h(x) to denote the transpose of (h(x1), ..., h(xK)),
and the same for H. We term distance dφ the Riemann-Bregman distance.

The equation γ(t) = (γ1(t), . . . , γK(t)) of the Riemannian geodesic [6]
between x and x′ is

γi(t) = h−1(h(xi) + kit), (1.7)

where the ki = h(x′
i)−h(xi) are the constants of integration such that γ(0) = x

and γ(1) = x′. That is, the geodesics are expressed as

γi(t) = h−1
(
(1 − t)h(xi) + th(x′

i)
)
, t ∈ [0, 1]. (1.8)

The coordinates of the geodesics are interpreted as a quasi-arithmetic mean.

1.2 Dual Riemann-Bregman Distances

By introducing the Legendre convex conjugate

φ∗(y) = sup
x∈J

{yx − φ(x)} = yφ′−1(y) − φ(φ′−1(y)),

with yi = φ′(xi) (and xi = φ′−1(yi) = φ∗′(yi)), we get the dual Riemannian
metric as g∗ij(y) = φ∗′′(yi)δi,j , and we check the following Crouzeix identity:
g(x)g∗(y) = id. It follows that we can express the Bregman-Riemannian distance
either by using the primal affine x-coordinate system, or by using the dual affine
y-coordinate system (with y = ∇Φ(x) and x = ∇Φ∗(y)):

Theorem 1. We have δΦ(x,x′) = δΦ∗(y′,y), and

dφ(x,x′) = dφ∗(y,y′) = dφ∗(∇Φ(x),∇Φ(x′)). (1.9)

Figure 1 illustrates the Legendre duality for defining the Riemann-Bregman dis-
tances in the dual coordinate systems induced by the Legendre transformation.

Example 1. Consider φ(x) = x log x − x (extended Shannon negentropy). We
have φ′(x) = log x and φ′′(x) = 1

x . It follows that h(x) = 2
√

x+ cx, where cx is a
constant. The Legendre conjugate is φ∗(y) = ey and h∗(y) =

∫ √
φ∗′′ = 2e

y
2 +cy,

where cy is a constant. We have y(x) = log x, dφ(x, x′) = 2|√x − √
x′| and

dφ∗(y, y′) = 2|e y
2 − e

y′
2 |. We check that dφ(x, x′) = dφ∗(y, y′) since e

y
2 =

√
x.
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Fig. 1. The dual Riemann-Bregman distances.

In information geometry [1,5], a smooth dissimilarity measure D on a man-
ifold M induces a dual structure (M, gD,∇D,∇∗

D) defined by a pair of affine
connection (∇D,∇∗

D) coupled to the metric tensor gD. The Riemannian geome-
try (M, gD) is a self-dual information-geometric structure with the dual connec-
tions coinciding with the Levi-Civita connection ∇LC. Bregman divergences δΦ

yield dually-flat information-geometric spaces (meaning ∇D-flat and ∇∗
D-flat)

although the Riemann-Bregman geometry is usual curved [9] (meaning ∇LC
D -

curved).
Let us report a few examples of Riemann-Bregman distances:

– φ(x) = x2/2, φ′′(x) = 1 and φ′′′(x) = 0. The induced distance is the standard
squared Euclidean distance

dφ(x,y)2 =
K∑

i=1

(xi − yi)2. (1.10)

– φ(x) = ex, φ′′(x) = φ′′′(x) = ex. The geodesic distance between x and y is
given by

dφ(x,y)2 =
K∑

i=1

(eyi/2 − exi/2)2. (1.11)
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– φ(x) = e−x: The geodesic distance between x and y is given by

dφ(x,y)2 =
K∑

i=1

(e−yi/2 − e−xi/2)2. (1.12)

– φ(x) = x ln x (Shannon negentropy). The domain is M = (0,∞)K and
φ′(x) = (lnx) − 1, φ′′(x) = 1

x and h(x) = 2
√

(x). The geodesic distance
between x and y is

dφ(x,y)2 = 2
K∑

i=1

(
√

yi − √
xi)2. (1.13)

This is the squared Hellinger distance used in probability theory [10].
– φ(x) = − ln x (Burg negentropy). To finish, we shall consider another example

on M = (0,∞)K . We have φ′(x) = − 1
x , φ′′(x) = 1

x2 and h(x) = log x + c.
Now, the distance between x and y is now given by

dφ(x,y)2 =
K∑

i=1

(ln yi − ln xi)2. (1.14)

1.3 Riemann-Bregman Centroids

Consider the best predictor of a random variable X taking values in M when
the prediction error is measured in the dφ-distance. The special relation of the
distance (1.5) to the Euclidean distance makes the following result clear:

Theorem 2 (Separable Riemann-Bregman centroid). Given a collection
of points {x1, ...,xN} in M, the point x̂ the realizes the minimum of

N∑

n=1

dφ(xn, ξ)2 over ξ ∈ M

is unique and given by

x̂ = H
( 1

N

N∑

n=1

h(xn)
)
. (1.15)

Observe that formula Eq. 1.15 coincides with the left-sided Bregman cen-
troid [8]. However, left-sided Bregman k-means and Riemann-Bregman k-means
will differ in the assignment steps because they rely on different dissimilarity
measures.

1.4 Balls and Voronoi Cells

The examples listed show that h : (M, dφ) → (RK , ‖·‖) is a non-linear isometry.
This allows us to describe balls in (M, dφ) as

Bφ(x, r) = {y ∈ M : dφ(y,x) ≤ r} = h−1
(
B(h(x), r)

)
. (1.16)
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(a) exp(x) (b) exp(−0.5x) (c) −x lnx

Fig. 2. Riemann-Bregman Voronoi diagrams.

Here, B(h(x), r) denotes the ball in R
K , of radius r centered at h(x).

Let S = {y1, ...,yn} be some subset (M, dφ). The Voronoi cell in M of yi is
defined by

vorφ(yi) = {x ∈ M : dφ(x,yi) ≤ dφ(x,yj), ∀yj ∈ M}. (1.17)

And as above, if we denote by vor(h(yi)) the Voronoi cell of h(yi) in the
Euclidean metric, it is clear that

vorφ(yi) = h−1
(
vor(h(yi))

)
. (1.18)

A few graphical examples are shown in Fig. 2.
Figure 3 displays four types of Voronoi diagrams [2–4] induced by a Breg-

man generator; The pictures illustrate the fact that the symmetrized Bregman
Voronoi diagram is different from the (symmetric metric) Riemann-Bregman
Voronoi diagram.

2 Fixed Rate Quantization

Let M ⊆ R
K be provided with a metric dφ derived from a divergence. Let

N ≥ 1 be a given integer and C = {y1, ..., yN} ⊂ M be a given set, called the
codebook and its elements are called the code vectors. A fixed rate quantizer (with
codebook C) is a measurable mapping q : M → C. The cardinality of C is called
the quantization rate. Two quantizers have the same rate if their codebooks have
the same cardinality

For a M−valued random variable X defined on a probability space (Ω,F , P ),
the φ−distortion of q in quantizing X is given by the expected reconstruction
square error:

Dφ(X, q(X))2 = E[dφ(X, q(X))2]. (2.1)

If we are interested in only one M−valued random variable X, we may replace
Ω by M, think of F as the Borel sets of M, think of X as the identity mapping,
and think of P as a probability measure on (M,F). Also, our notation is slightly
different from that of Linder [7] in that we put a square into the definition of
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(a) x lnx (Shannon) (b) − lnx (Burg)

Fig. 3. Four types of Voronoi diagrams induced by a Bregman generator: The left-sided
Bregman Voronoi diagram (blue), the right-sided Bregman Voronoi diagram (red), the
symmetrized Bregman Voronoi diagram (green), and the Riemann-Bregman Voronoi
diagram (purple). (Color figure online)

the square error. Since q(X) is constant on the “level” sets Si := {q(X) = yi}
for i = 1, ..., N, the former expectation can be written as

Dφ(X, q(X))2 = E[E[dφ(X, q(X))2|σ(q)]].

Here we denote by σ(q) the sub−σ−algebra of F generated by the partition
{S1, ..., SN} of Ω induced by the quantizer q. When P (Si) > 0 holds for all
blocks of the partition, the conditional expectation takes values

E[dφ(X, q(X))2|σ(q)] =
1

P (Si)

∫

Si

dφ(X,yi)
2dP on the set Si, i = 1, ..., N.

(2.2)
Notice that given σ(q), there is a quantizer having the same rate and realiz-
ing an error smaller than Dφ(X, q(X))2. The existence and uniqueness of such
quantizer is given by the following result in [6].

Theorem 3. Let G be a sub−σ−algebra of F . Let X be such that h(X) ∈ L2

(Lebesgue space of functions that are square integrable). Then there exists a
unique G measurable random variable, denoted by Eφ[X|G] satisfying

Eφ[X|G] = argmin{Dφ(X,Y )2|Y ∈ G, h(Y ) ∈ L2}
The result mentioned a few lines above can be stated as

Theorem 4. Let q be a quantizer of rate N. Suppose that the blocks {Si : i =
1, ..., N} of the partition of Ω determined by q are such that P (Si) > 0 for all
i = 1, ..., N. Then

q∗(X) = Eφ[X|G] =
N∑

i=1

1
P (Si)

Eφ[X;Si]ISi
(X) :=

N∑

i=1

yiISi
(X). (2.3)
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is the quantizer with codebook C∗, whose elements are y∗
i = 1

P (Si)
Eφ[X;Si],

which makes the error Dφ(X, q(X))2 smaller over all codebooks which determine
the same partition of Ω.

An interesting way to associate sets to a codebook C = {y1, ...,yN} of rate
N is by means of Voronoi cells. {S1, ..., SN} are the Voronoi cells determined
by C, their intersections are polyhedra of dimension lower than K (faces), and
the probability P does not change them, that is if P (Si ∩ Sj) = 0 whenever
i �= j. If we put Bi = int(Si) for the interior of the Voronoi cells, they generate a
sub-σ−algebra of F such that ∪iBi differs from M by a set of P−probability 0.

In the notation of Theorem 4 we have

Corollary 1. If the σ−algebra G is generated buy the interiors of the Voronoi
cells determined by a codebook C, then

y∗
i =

1
P (Si)

Eφ[X;Si] =
1

P (Bi)
Eφ[X;Bi] ∈ Bi ⊂ Si, ∀i = 1, ..., N.

3 Conclusion

We considered the dual Riemannian metric distances induced by the dual sepa-
rable Bregman divergences, and studied the fixed rate quantization problem. We
described the Riemann-Bregman Voronoi diagrams that can be obtained from
an ordinary Euclidean Voronoi diagram after monotone isometric embeddings.

(a) Data set (b) h(x) = x (c) h(x) = exp(−0.5x)

(d) h(x) = exp(0.5x) (e) h(x) =
√
x (f) h(x) = lnx

Fig. 4. Clustering by k-means
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We can cluster datasets in those Riemann-Bregman metric spaces easily using
either off-the-shelf partition-based (k-means), soft (Expectation-Maximization)
or hierarchical clusterings: We map the data {x1, . . . , xn} using the monotone
embedding h(x), then apply the chosen clustering on {h(x1), . . . , h(xn)}, and
map back the clusters into the metric space using the inverse monotone function
h−1(x) (see Fig. 4).
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Abstract. The traditional Minkowski distances are induced by the cor-
responding Minkowski norms in real-valued vector spaces. In this work,
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inequality for probability densities belonging to Lebesgue spaces. These
statistical Minkowski distances admit closed-form formula for Gaussian
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1 Introduction and Motivation

1.1 Statistical Distances Between Mixtures

Gaussian Mixture Models (GMMs) are flexible statistical models often used in
machine learning, signal processing and computer vision [15,28] since they can
arbitrarily closely approximate any smooth density. To measure the dissimilarity
between probability distributions, one often relies on the principled information-
theoretic Kullback-Leibler (KL) divergence [8]. However the lack of closed-form
formula for the KL divergence between GMMs has motivated various KL lower
and upper bounds [12,13,23,24] for GMMs or approximation techniques [10],
and further spurred the design of novel distances that admit closed-form formula
between GMMs [19].

A distance D : X × X → R is a non-negative real-valued function D on
the product space X × X such that D(p, q) = D((p, q)) = 0 iff. p = q. Here,
a distance may not be symmetric nor satisfy the triangular inequality. Two
usual symmetrizations of the KL divergence are the Jeffreys’ divergence and the
Jensen-Shannon divergence [18].

The Cauchy-Schwarz (CS [14]) and Hölder [25] distances D(p : q) are said
to be projective because D(λp : λ′q) = D(p : q) for any λ, λ′ > 0. An impor-
tant family of projective divergences for robust statistical inference are the γ-
divergences [11,22]. The Hölder projective divergences do not admit closed-form
formula for GMMs, except for the very special case of the CS divergence.
c© Springer Nature Switzerland AG 2019
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1.2 Minkowski Distances and Lebesgue Spaces

The renown Minkowski distances are norm-induced metrics [9] measuring dis-
tances between d-dimensional vectors x, y ∈ R

d defined for α ≥ 1 by:

Mα(x, y) := ‖x − y‖α =

(
d∑

i=1

|xi − yi|α
) 1

α

, (1)

where the Minkowski norms are given by ‖x‖α =
(∑d

i=1 |xi|α
) 1

α

. The Minkowski
norms can be extended to countably infinite-dimensional �α spaces of sequences
(see [1], p. 68).

Let (X ,F) be a measurable space where F denotes the σ-algebra of X , and
let μ be a probability measure (with μ(X ) = 1) with full support supp(μ) = X
(where supp(μ) := cl({F ∈ F : μ(F ) > 0}) and cl denotes the set closure). Let
F be the set of all real-valued measurable functions defined on X . We define
the Lebesgue space [1,4] Lα(μ) :=

{
f ∈ F :

∫
X |f(x)|αdμ(x) < ∞}

for α ≥ 1.
The Minkowski distance [16] of Eq. 1 can be generalized to probability densities
belonging to Lebesgue Lα(μ) spaces, to get the statistical Minkowski distance
for α ≥ 1:

Mα(p, q) :=
(∫

X
|p(x) − q(x)|αdμ(x)

) 1
α

. (2)

When α = 1, we recover twice the Total Variation (TV) metric

TV(p, q) :=
1
2

∫
|p(x) − q(x)|dμ(x) =

1
2
‖p − q‖L1(μ) =

1
2
M1(p, q). (3)

In this work, we design novel distances based on the Minkowski’s inequality
(triangle inequality for Lα(μ), which proves that ‖p‖Lα(μ) is a norm (i.e., the
Lα-norm), so that the statistical Minkowski’s distance between functions of a
Lebesgue space can be written as Mα(p, q) = ‖p − q‖Lα(μ)). The space Lα(μ) is
a Banach space (i.e., complete normed linear space).

2 Distances from the Minkowski’s Inequality

Let us state Minkowski’s inequality:

Theorem 1 (Minkowski’s inequality). For p(x), q(x) ∈ Lα(μ) with α ∈
[1,∞), we have the following Minkowski’s inequality:(∫

|p(x) + q(x)|αdμ(x)
) 1

α

≤
(∫

|p(x)|αdμ(x)
) 1

α

+
(∫

|q(x)|αdμ(x)
) 1

α

, (4)

with equality holding only when q(x) = 0 (almost everywhere, a.e.), or when
p(x) = λq(x) a.e. for λ > 0 for α > 1.

The usual proof of Minkowski’s inequality relies on Hölder’s inequal-
ity [25,27]. Following [25], we define distances by measuring in several ways
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the tightness of the Minkowski’s inequality. When clear from context, we shall
write ‖ · ‖α for short instead of ‖ · ‖Lα(μ). Thus Minkowski’s inequality writes
as ‖p + q‖α ≤ ‖p‖α + ‖q‖α. Minkowski’s inequality proves that the Lα-spaces
are normed vector spaces. Notice that when p(x) and q(x) are probability den-
sities (i.e.,

∫
p(x)dμ(x) =

∫
q(x)dμ(x) = 1), Minkowski’s inequality becomes an

equality iff. p(x) = q(x) almost everywhere, for α > 1. Thus we can define the
following novel Minkowski’s distances between probability densities satisfying
the identity of indiscernibles:

Definition 1 (Minkowski difference distance). For probability densities
p, q ∈ Lα(μ), we define the Minkowski difference Dα(·, ·) distance for α ∈
(1,∞) as:

Dα(p, q) := ‖p‖α + ‖q‖α − ‖p + q‖α ≥ 0. (5)

Definition 2 (Minkowski log-ratio distance). For probability densities
p, q ∈ Lα(μ), we define the Minkowski log-ratio distance Lα(·, ·) for α ∈
(1,∞) as:

Lα(p, q) := − log
‖p + q‖α

‖p‖α + ‖q‖α
= log

‖p‖α + ‖q‖α

‖p + q‖α
≥ 0. (6)

By construction, all these Minkowski distances are symmetric distances:
Namely, Mα(p, q) = Mα(q, p), Dα(p, q) = Dα(q, p) and Lα(p, q) = Lα(q, p).
Notice that Lα(p, q) is scale-invariant1: Lα(λp, λq) = Lα(p, q) for any λ > 0.
Scale-invariance is a useful property in many signal processing applications. Dis-
tance Dα(p, q) is homogeneous since

Dα(λp, λq) = |λ|Dα(p, q), (7)

for any λ ∈ R (and so is distance Mα(p, q)).

3 Closed-Form Formula for Statistical Mixtures

In this section, we shall prove that Dα and Lα between statistical mixtures are
in closed-form for all integer exponents (and Mα for all even exponents) for
mixtures of exponential families with conic natural parameter spaces.

Notice that by considering a parametric family E of probability densities,
those integral-based statistical Minkowski distances amount to equivalent param-
eter distances. For example, we can define the parametric distance

M ′
α(θ, θ′) := Mα(pθ, pθ′), (8)

for pθ, pθ′ ∈ E . From the viewpoint of symbolic calculation, whether the definite
integrals admit closed-form expressions or not when considering parametric dis-
tributions (using computer algebra systems), can be decided using Risch semi-
algorithm [6,26]. The symbolic integration method is called a semi-algorithm
because Risch algorithm requires an oracle to decide whether certain expressions
1 Like any distance based on the log ratio of triangle inequality gap induced by a

homogeneous norm.
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are equivalent to zero or not. We shall derive manually below a closed-form
expression for densities belonging to the same exponential family.

Let us first define the positively weighed geometric integral I of a set
{p1, . . . , pk} of k probability densities of Lα(μ) as:

I(p1, . . . , pk;α1, . . . , αk) :=
∫

X
p1(x)α1 . . . pk(x)αkdμ(x), α ∈ R

k
+. (9)

An exponential family [7,21] Et,μ is a set {pθ(x)}θ of probability densities
wrt. μ which densities can be expressed proportionally canonically as pθ(x) ∝
exp(t(x)�θ), where t(x) is a D-dimensional vector of sufficient statistics [7]. The
term t(x)�θ can be written equivalently as 〈t(x), θ〉, where 〈·, ·〉 denotes the
scalar product on R

D. Thus the normalized probability densities of Et,μ can be
written as

pθ(x) = exp
(
t(x)�θ − F (θ)

)
, (10)

where
F (θ) := log

∫
X

exp(t(x)�θ)dμ(x), (11)

is called the log-partition function (also called cumulant function [7] or log-
normalizer [21]). The natural parameter space is

Θ :=
{

θ ∈ R
D :

∫
X

exp(t(x)�θ)dμ(x) < ∞
}

. (12)

Many common distributions (Gaussians, Poisson, Beta, etc.) belong to exponen-
tial families in disguise [7,21].

Lemma 1. For probability densities pθ1 , . . . , pθk
belonging to the same exponen-

tial family Et,μ, we have:

I(pθ1 , . . . , pθk
;α1, . . . , αk) = exp

(
F

(
k∑

i=1

αiθi

)
−

k∑
i=1

αiF (θi)

)
< ∞, (13)

provided that
∑k

i=1 αiθi ∈ Θ.
Proof.

I(pθ1 , . . . , pθk
;α1, . . . , αk) =

∫ k∏
i=1

(
exp

((
t(x)�θi − F (θi)

)))αi
dμ(x), (14)

=

∫
exp

⎛
⎜⎜⎜⎜⎝t(x)�(

∑
i

αiθi)−
∑

i

αiF (θi) + F

(∑
i

αiθi

)
− F

(∑
i

αiθi

)

︸ ︷︷ ︸
=0

⎞
⎟⎟⎟⎟⎠dμ(x), (15)

= exp

(
F

(∑
i

αiθi

)
−

∑
i

αiF (θi)

) ∫
X

exp

(
t(x)�

(∑
i

αiθi

)
− F

(∑
i

αiθi

))
dμ(x)

︸ ︷︷ ︸
=1

,

(16)

= exp

(
F (

∑
i

αiθi)−
∑

i

αiF (θi)

)
, (17)
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since∫
X

exp

(
t(x)�(

∑
i

αiθi) − F (
∑

i

αiθi)

)
dμ(x) =

∫
X

p∑
i αiθi

(x)dμ(x) = 1,

(18)
provided that θ̄:=

∑
i αiθi ∈ Θ (and pθ̄ ∈ Et,μ).

In particular, the condition
∑

i αiθi ∈ Θ always holds when the natu-
ral parameter space Θ is a cone. In the remainder, we shall call those expo-
nential families with natural parameter space being a cone, Conic Exponen-
tial Families (CEFs) for short. Note that when

∑
i αiθi �∈ Θ, the integral

I(pθ1 , . . . , pθk
;α1, . . . , αk) diverges (that is, I(pθ1 , . . . , pθk

;α1, . . . , αk) = ∞).
Observe that for a CEF density pθ(x), we have pθ(x)α in Lα(μ) for any
α ∈ [1,∞).

Corollary 1. We have I(pθ1 , . . . , pθk
;α1, . . . , αk) = exp (F (

∑
i αiθi) −∑

i αiF (θi)) < ∞ for probability densities belonging to the same exponential
family with natural parameter space Θ being a cone.

Let us define:

JF (θ1, . . . , θk;α1, . . . , αk) :=
∑

i

αiF (θi) − F

(∑
i

αiθi

)
. (19)

This quantity is called the Jensen diversity [20] when α ∈ Δk (the (k − 1)-
dimensional standard simplex), or Bregman information2 in [3]. Although the
Jensen diversity is non-negative when α ∈ Δk, this Jensen diversity of Eq. 19
maybe negative when α ∈ R

k
+. When α ∈ R

k
+, we thus call the Jensen diversity

the generalized Jensen diversity. Whenever we want to emphasize that α ∈ R
+
k ,

we denote this generalized Jensen diversity by J+
F . It follows that we have

I(pθ1 , . . . , pθk
;α1, . . . , αk) = exp (−JF (θ1, . . . , θk;α1, . . . , αk)) . (20)

The CEFs include the Gaussian family, the Wishart family, the Binomial/
multinomial family, etc. [7,19,21].

Let us consider a finite positive mixture m̃(x) =
∑k

i=1 wipi(x) of k probability
densities, where the weight vector w ∈ R

k
+ are not necessarily normalized to one.

Lemma 2. For a finite positive mixture m̃(x) with components belonging to the
same CEF, ‖m̃‖Lα(μ) is finite and in closed-form, for any integer α ≥ 2.

Proof. Consider the multinomial expansion3 m̃(x)α obtained by applying the
multinomial theorem [5]:

m̃(x)α =
∑

∑k
i=1 αi=α
αi∈N

(
α

α1, . . . , αk

) k∏
j=1

(wjpj(x))αj , (21)

2 Because
∑

i αiBF (θi : θ̄) = JF (θ1, . . . , θk; α1, . . . , αk) for the barycenter θ̄ =∑
i αiθi, where BF (θ : θ′) = F (θ)−F (θ′)−(θ−θ′)�∇F (θ′) is a Bregman divergence.

3 To apply the multinomial expansion, we need elements to commute wrt. the product.
Thus it does not apply to the matrix cases.
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where (
α

α1, . . . , αk

)
:=

α!
α1! × . . . × αk!

, (22)

is the multinomial coefficient [2]. It follows that:

∫
m̃(x)αdμ(x) =

∑
∑

i αi=α
αi∈N

(
α

α1, . . . , αk

) ⎛
⎝ k∏

j=1

w
αj

j

⎞
⎠ I(p1, . . . , pk;α1, . . . , αk).

(23)
Thus the term

∫
m̃(x)αdμ(x) amounts to a positively weighted sum of inte-

grals of monomials that are positively weighted geometric means of mixture
components. When pi = pθi

, since I(pθ1 , . . . , pθk
;α1, . . . , αk) < ∞ using Eq. 1,

we conclude that m̃ ∈ Lα(μ) for α ∈ N, and we get the formula:

‖m̃‖Lα(μ) =

⎛

⎜
⎜
⎝

∑

∑
i αi=α
αi∈N

(
α

α1, . . . , αk

) (
k∏

j=1

w
αj

j

)

exp (−JF (θ1, . . . , θk; α1, . . . , αk))

⎞

⎟
⎟
⎠

1
α

,

(24)
for α ∈ N.

A naive multinomial expansion of m̃(x)α yields kα terms that can then be
simplified. Using the multinomial theorem, there are

(
k+α−1

α

)
integral terms in

the formula of
∫

(
∑k

i=1 wipi(x))αdμ(x). This number corresponds to the number
of sequences of k disjoint subsets whose union is {1, . . . , α} (also called the
number of ordered partitions but beware that some sets may be empty). Notice
that by setting wjpj(x) = 1 in Eq. 21 (with m̃(x) = k), we get the following
identity of the sum of all multinomial coefficients:

∑
∑k

i=1 αi=α
αi∈N

(
α

α1, . . . , αk

)
= kα. (25)

The multinomial expansion can be calculated efficiently using a generaliza-
tion of Pascal’s triangle, called Pascal’s simplex [17], thus avoiding to compute
from scratch all the multinomial coefficients. An efficient way to implement the
multinomial expansion using nested iterative loops follows from this identity:

(
k∑

i=1

xi

)α

=
α∑

α1=0

α1∑

α2=0

. . .

αk−2∑

αk−1=0

( α

α1

)(α1

α2

)
. . .

(αk−1

αk−2

)
x

α−α1
1 x

α1−α2
2 . . . x

αk−2−αk−1
k−1 x

αk−1
k .

(26)

We are now ready to show when the statistical Minkowski’s distances Mα,Dα

and Lα are in closed-form for mixtures of CEFs using Lemma 2.
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Theorem 2 (Closed-form formula for Minkowski’s distances). For mix-
tures m =

∑k
i=1 wipθi

and m′ =
∑k′

j=1 w′
jpθ′

j
of CEFs Eμ,t, Dα and Lα admits

closed-form formula for integers α ≥ 2, and Mα is in closed-form when α ≥ 2
is an even positive integer.

Proof. For Dα and Lα, it is enough to show that ‖m‖Lα(μ), ‖m′‖Lα(μ) and ‖m+
m′‖Lα(μ) are all in closed-form. This follows from Lemma 2 by setting m̃ to
be m, m′ and m + m′, respectively. The overall number of generalized Jensen
diversity terms in the formula of Dα or Lα is O

((
k+k′+α−1

α

))
.

Now, consider distance Mα. To get rid of the absolute value in Mα for even
integers α, we rewrite Mα as follows:

Mα(m,m′) = ‖m − m′‖Lα(μ) =
(∫

|m(x) − m′(x)|αdμ(x)
) 1

α

,

=
(∫ (

(m(x) − m′(x))2
)α

2
dμ(x)

) 1
α

.

Let m̃(x) = (m(x) − m′(x))2. We have:

m̃(x) = (m(x) − m′(x))2,

= m(x)2 + m′(x)2 − 2m(x)m′(x),

=

(
k∑

i=1

wipθi
(x)

)2

+

⎛
⎝ k′∑

j=1

w′
jpθ′

j
(x)

⎞
⎠

2

−2
k∑

i=1

k′∑
j=1

wiw
′
jpθi

(x)pθ′
j
(x). (27)

We have the density products pθ,θ′ :=pθpθ′ = I(pθ, pθ′ ; 1, 1) ∈ Lα
2
(μ) (using

Lemma 2) for any θ, θ′ ∈ Θ and α ≥ 2. When α = 2, α
2 = 1, and we easily

reach a closed-form formula for M2(m,m′). Otherwise, let us expand all the
terms in Eq. 27, and rewrite m̃(x) =

∑K
l=1 w′′

l pθl,θ′
l
. Now, a key difference is that

w′′
l ∈ R, and not necessarily positive. Nevertheless, since α

2 ∈ N, we can still
use the multinomial theorem to expand m̃(x)

α
2 , distribute the integral over all

terms, and compute elementary integrals I(pθ1,θ′
1
, . . . , pθK ,θ′

K
;α′

1, . . . , α
′
K) with∑K

l=1 α′
i = α

2 in closed-form. Thus Mα is available in closed-form for mixtures
of CEFs for all even positive integers α ≥ 2. The number of terms in the Mα

formula is O
((

max(k2,k′2)+α−1
α

))
.

Notice that Dλ
α(m1,m2) = 0 or Lλ

α(m1,m2) = 0 if and only if (1−λ)m1(x) =
λm2(x) almost everywhere. By integrating over the support, we find that a nec-

essary condition is λ = 1
2 . But when λ = 1

2 , we have L
1
2
α(m1 : m2) = Lα(m1,m2)

and D
1
2
α (m1 : m2) = 1

2Dα(m1,m2). It follows that Dλ
α(m1,m2) = 0 or

Lλ
α(m1,m2) = 0 if and only if m1 = m2 almost everywhere.
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Abstract. It is often difficult to estimate parameters of discrete mod-
els because of the computational cost for calculation of normalization
constant, which enforces the model to be probability. In this paper, we
consider a computationally feasible estimator for discrete probabilistic
models using a concept of generalized empirical localization, which cor-
responds to the generalized mean of distributions and homogeneous γ-
divergence. The proposed estimator does not require the calculation of
the normalization constant and is asymptotically efficient.

Keywords: Unnormalized model · Asymptotic efficiency ·
γ-divergence

1 Introduction

In this paper, we focus on a problem of parameter estimation of discrete prob-
abilistic models. A typical way for the estimation is the Maximum Likelihood
Estimation (MLE) and the MLE is a “good” estimator which asymptotically sat-
isfies the Cramér-Rao bound and is asymptotically efficient. In general, explicit
solutions for the MLE cannot be obtained and then gradient-based optimization
methods is usually required. But the calculation of the gradient includes the
calculation of the normalization constant which makes the model to be in the
probability space, and the calculation of the normalization constant is sometimes
computationally intractable when the model is in a high-dimensional space. A
typical example is the Boltzmann machine on X = {+1,−1}p,

exp
(
θ1x + 1

2xT θ2x
)

∑
x∈X exp

(
θ1x + 1

2xT θ2x
) (1)

and a calculation of the normalization constant of requires 2p summation, which
is hard to calculate as p is large. Other estimators derived from minimization of
divergence measures [2] also suffer the computational problem. To tackle with the
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problem associated with the normalization constant, various kinds of approaches
have been researched. Some methods are based on the Markov Chain Monte
Carlo (MCMC) sampling and the contrastive divergence [7] is a well-known
example. Another approach approximate the targeted probabilistic model by a
tractable model by the mean-field approximation assuming independence of vari-
ables [11]. In this paper, we focus on an approach which considers an unnormal-
ized model rather than the (normalized) probabilistic model. [8] defines informa-
tion of “neighbor” by contrasting probability with that of a flipped variable and
makes it possible to omit the calculation of normalization constant. [4] proposed
a generalized local scoring rules on discrete sample spaces and [6] avoids the
calculation of the normalization constant using a trick with auxiliary examples.
[13] proposes an asymptotically efficient estimator without the calculation of the
normalization constant, which consists of a concept of empirical localization and
a homogeneous γ-divergence [5,10]. In this paper, we extend the concept of the
empirical localization and propose a novel estimator which does not require the
calculation of normalization constant. We investigate statistical properties of the
proposed estimator and verify its validity with small experiments.

2 Settings

Let x be a d-dimensional vector in discrete space X such as {+1,−1}d or
{1, 2, . . .}d, and a bracket 〈f〉 for a function f on X denotes a sum of f over X ,
〈f〉 =

∑
x∈X f(x). For a given dataset D = {xi}n

i=1, the empirical distribution
p̃(x) is defined as

p̃(x) =

{
nx

n x is observed,
0 otherwise,

(2)

where nx is number of examples x is observed. We consider a probabilistic model

q̄θ (x) =
qθ (x)
Zθ

(3)

where qθ (x) is a unnormalized model expressed as

qθ (x) = exp(ψθ (x)) (4)

with a function ψθ (x) parameterized by θ and Zθ is a normalization constant
defined as Zθ = 〈qθ 〉 which enforces the (3) to be a probability function. Note
that the unnormalized model (4) is not a probability function and 〈qθ 〉 = 1
does not hold in general, and calculation of the normalization constant Zθ often
requires a high computational cost. Then calculation of the Maximum Likelihood
Estimator (MLE)

θ̂MLE = argmax
θ

n∑

i=1

log q̄θ (xi) (5)
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or maximization process of the log-likelihood using its gradient

n∑

i=1

{ψθ (xi) − 〈q̄θψθ 〉} (6)

involves difficulty of computational cost derived from Zθ . To overcome the dif-
ficulty of the computation of Zθ , we consider combination of the γ-divergence
and generalized mixture model.

2.1 γ-divergence

For two positive measure f, g, the γ-divergence [5] is defined as follows.

Dγ(f, g) =
1

1 + γ
log

〈
fγ+1

〉
+

γ

1 + γ
log

〈
gγ+1

〉 − log 〈fgγ〉 (7)

where γ is a positive constant. Note that Dγ(f, g) is non-negative and is said
to be homogeneous divergence because Dγ(f, g) = 0 holds if and only if f ∝ g,
rather than f = g. In the limit of γ → 0, the γ-divergence reduces to the usual
KL-divergence, 〈

f log
f

g
− f + g

〉
. (8)

Note that a combination of the γ-divergence and the unnormalized model does
not solve the problem of computational cost because a term Dγ(p̃, qθ ) includes〈
qγ+1
θ

〉
whose computation also requires the same order with the normalization

constant Zθ .

2.2 Empirical Localization

Firstly, we briefly introduce a concept of empirical localization of the (unnor-
malized) model q̄θ (x)(or qθ (x)) with the empirical distribution p̃(x) [13]. The
empirical localization is interpreted as a generalized mean of qθ and p̃, and lies
in e-flat subspace [1] as

r̃α,θ (x) =
p̃(x)αq̄θ (x)1−α

〈
p̃αq̄1−α

θ

〉 =
p̃(x)αqθ (x)1−α

〈
p̃αq1−α

θ

〉 . (9)

Note that the normalization constant Zθ in q̄θ is canceled out and r̃α,θ (x) does
not depend on Zθ , except for α = 0. Also note that the denominator

〈
p̃αq̄1−α

〉

(or r̃α,θ (x) itself) can be easily calculated because the empirical distribution
p̃(x) has some values only on observed x in the dataset and is always 0 on the
unobserved subset of X . This implies the model qθ (x) is empirically localized to
the observed subset of domain X of dataset D and we can ignore the unobserved
subset of X , which leads to a drastic reduction of computational cost. We observe
r̃0,θ (x) = q̄(x) and r̃1,θ (x) = p̃(x), and (9) connects the empirical distribution
p̃ and the normalized model q̄ with the parameter α.
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2.3 Estimator by Homogeneous Divergence and Empirical
Localization

In [13], an estimator which does not require calculation of the normalization
constant, was proposed by combining (7) and (9). The estimator is defined as

θ̂ = argmin
θ

Dγ(r̃1/(1+γ)
α,θ , r̃

1/(1+γ)
α′,θ ) (10)

Dγ(r̃
1/(1+γ)
α,θ , r̃

1/(1+γ)
α′,θ ) =

1

1 + γ
log

〈
p̃αq1−α

θ

〉
+

γ

1 + γ
log

〈
p̃α′

q1−α′
θ

〉
− log

〈
p̃βq1−β

θ

〉

(11)

where α �= α′ and β = (α + γα′)/(1 + γ). We observe that a setting with
α = 1, α′ = 0 and γ → 0 corresponds to the conventional MLE. Note that the
empirical risk (11) does not include the calculation of the normalization constant
Zθ and can be easily calculated.

The estimator (10) has the following good statistical properties.

Proposition 1 ([13]). Let us assume that ψθ (x) is written as θT φ(x) with a
fixed vector function ψ(x). Then the risk function (10) is convex with respect to
θ when β = 1 holds.

Proposition 2 ([13]). The estimator (10) is Fisher consistent and asymptoti-
cally efficient.

3 Proposed Estimator

The empirical localization (9) can be interpreted as a generalized mean of a
constant 1 and a distribution ratio qθ/p̃, and is rewritten as

r̃α,θ (x) ∝ p̃(x)αqθ (x)1−α = p̃(x)
(

qθ (x)
p̃(x)

)1−α

= p̃(x) exp
(

α log 1 + (1 − α) log
qθ (x)
p̃(x)

)
. (12)

We can extend the concept of (12) to the quasi-arithmetic mean, with a mono-
tonically increasing function u and its inverse function ξ, as follows.

r̃u,α,θ (x) = p̃(x)u
(

αξ(1) + (1 − α)ξ
(

qθ (x)
p̃(x)

))
. (13)

By transforming the function u(z) to u(z − a), we can set ξ(1) = 0 without loss
of generality. The generalized version of empirical localization (13) is rewritten
as

r̃u,α,θ (x) ∝
{

nxu
(
(1 − α)ξ

(
nqθ(x)

nx

))
x is observed

0 otherwise,
(14)
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and the model can be easily calculated because we can omit the unob-
served domain. We show two examples associated with β-divergence and η-
divergence [3] which are employed for the purpose of robust estimation [9,12].

Example 1. For u(z) = (1 + βz)1/β and ξ(z) = zβ−1
β , we have

r̃u,α,θ (x) = p̃(x)

(

(1 − α)
(

qθ (x)
p̃(x)

)β

+ α

)1/β

(15)

Example 2. For u(z) = (1 + η)ez − η and ξ(z) = log z+η
1+η , we have

r̃u,α,θ (x) = p̃(x)

⎧
⎪⎨

⎪⎩
(1 + η)

⎛

⎝
qθ (x)
p̃(x) + η

1 + η

⎞

⎠

1−α

− η

⎫
⎪⎬

⎪⎭
(16)

Example 3. For u(z) = − 1
z and ξ(z) = − 1

z , we have

r̃u,α,θ (x) =
p̃(x)qθ (x)

αqθ (x) + (1 − α)p̃(x)
(17)

We propose a novel estimator for discrete probabilistic model, which can be
constructed without calculation of the normalization constant Zθ . The proposed
estimator is defined by combining the (13) and γ-divergence with two hyper-
parameters α, α′(α �= α′), as follows.

θ̂ = argmin
θ

Dγ((r̃u,α,θ )1/(1+γ), (r̃u,α′,θ )1/(1+γ)) (18)

Note that when qθ (x) ∝ p̃(x) holds, we observe that r̃u,α,θ (x) ∝ r̃u,α′,θ (x)
and Dγ((r̃u,α,θ )1/(1+γ), (r̃u,α′,θ )1/(1+γ)) = 0 holds.

4 Statistical Property

In this section, we investigate statistical property of the proposed estimator.
Firstly, we show the Fisher consistency of the proposed estimator.

Proposition 3. Let θ0 be a true parameter of the underlying distribution, i.e.,
p(x) = q̄θ0(x). Then

θ0 = argmin
θ

Dγ(ru,α,θ , ru,α′,θ ) (19)

holds for arbitrary γ, α, α′(α �= α′) and θ0.

Proof. The proposed estimator satisfies the equilibrium equation

0 =
∂Dγ((r̃u,α,θ )1/(1+γ), (r̃u,α′,θ )1/(1+γ))

∂θ

∣
∣
∣
∣
θ=θ̂

(20)

implying the Fisher consistency.
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Secondly, we investigate the asymptotic distribution of the proposed
estimator.

Proposition 4. Let θ0 be a true parameter of the underlying distribution. Then,
under mild regularity condition, the proposed estimator asymptotically follows

√
n(θ̂ − θ0) ∼ N (0, I(θ0)−1) (21)

where N is the Normal distribution and I(θ0) = Vq̄θ 0
[ψ′

θ0
] is the Fisher infor-

mation matrix.

Proof. Let us assume that the empirical distribution is written as p̃(x) =
q̄θ0(x) + ε(x). By expanding the equilibrium condition (20) around θ = θ0

and ε(x) = 0, we have

0 	 ∂Dγ((r̃u,α,θ )1/(1+γ), (r̃u,α′,θ )1/(1+γ))
∂θ

∣
∣
∣
∣
θ=θ0

+
∂2Dγ((r̃u,α,θ )1/(1+γ), (r̃u,α′,θ )1/(1+γ))

∂θ∂θT

∣
∣
∣
∣
θ=θ0

(θ̂ − θ0). (22)

Using the delta method [14], we have

∂Dγ((r̃u,α,θ )
1/(1+γ), (r̃u,α′,θ )

1/(1+γ))

∂θ

∣∣∣∣∣
θ=θ0

− ∂Dγ((ru,α,θ )
1/(1+γ), (ru,α′,θ )

1/(1+γ))

∂θ

∣∣∣∣∣
θ=θ0

(23)

� C
〈
ψ′

θ0
ε
〉

(24)

where C is a constant, and from the central limit theorem, we observe
√

n
〈
ψ′

θ0
ε
〉

asymptotically follows the normal distribution with mean 0 and variance I(θ0) =
Vq̄θ 0

[ψ′
θ0

]. From the law of large number, we observe that the second term in the
rhs of (22) converges to −CI(θ0) in the limit of n → ∞, which concludes the
proposition.

The asymptotic variance in (21) implies that the proposed estimator is
asymptotically efficient and has the same efficiency with the MLE, which asymp-
totically attains the Cramér-Rao bound. Also note that the asymptotic variance
of the proposed estimator does not depend on choice of α, α′, γ.

5 Experiments

We numerically investigated properties of the proposed estimator with a small
synthetic dataset. Let q̄θ (x) be a 5-dimensional Boltzmann machine

q̄θ (x) =
exp

(
1
2xT θx

)

Zθ
(25)

whose parameter θ follows the normal distribution with mean 0 and variance
1. We generated 20 sets of datasets including 4000 examples and compared the
following method.
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1. MLE: Maximum likelihood estimator
2. gamma: The proposed estimator with u(z) = exp(z) [13]
3. IS: The proposed estimator with u(z) = − 1

z
4. eta: The proposed estimator with u(z) = (1 + η) exp(z) − η
5. beta: The proposed estimator with u(z) = (1 + βz)1/β

Figure 1(a) shows a box plot of MSEs of parameters, ||θ̂−θ||2 in a logarithmic
scale, with various deformation function u in (13). Figure 1(b) shows a box plot
of computational times for each estimator in a logarithmic scale. We observe
that some of the proposed estimator is comparable with the MLE, while the
computational time of the proposed estimator is drastically reduced compared
with that of the MLE.

A reason of why the proposed estimator with some functions u are inferior
to the MLE is a shortage of examples. The theoretical result shown in Sect. 4 is
based on assumptions of asymptotics and requires a lot of examples to assure

●

MLE gamma IS eta beta

−5
0

5

lo
g(
M
S
E
)

●
●

MLE gamma IS eta beta

−3
−2

−1
0

lo
g(
TI
M
E
)

Fig. 1. n = 4000. (a) Box plot of estimation errors, ||θ̂ − θ||2 of each method. (b) Box
plot of computational time of each method.
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Fig. 2. n = 16000. (a) Box plot of estimation errors, ||θ̂−θ||2 of each method. (b) Box
plot of computational time of each method.
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the asymptotic efficiency. We executed an another experiment with the same
setting except for the number n of examples. Figure 2(a), (b) show results for
n = 16000 and we observe that performance of the proposed estimator (IS, eta,
beta) is improved at the same level as the MLE while required computational
cost is still drastically fewer.

6 Conclusion

We proposed the novel estimator for discrete probabilistic model, which does
not require calculation of the normalization constant. The proposed estimator
is constructed by a combination of the γ-divergence and generalized empirical
localization, which can be interpreted as the generalized mean of distributions.
We investigated statistical properties of the proposed estimator and showed that
the proposed estimator asymptotically has the same efficiency with the MLE and
demonstrated the asymptotic efficiency with the small experiment.
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Abstract. In this paper, we propose to analyze the properties of the
cross entropy between the probability density functions of k consecutive
samples of wide-sense stationary Gaussian ARMA processes. It is shown
that, when k increases, the cross entropy has a transient behavior before
tending to an affine function of k whose slope is defined by the so-called
asymptotic increment. The latter depends on the parameters of the pro-
cesses and can be a reasonable choice to characterize the cross entropy.
Some illustrations are then given.

Keywords: Cross entropy · Jeffreys divergence ·
Kullback-Leibler divergence · ARMA processes

1 Introduction

Cross entropy between two probability density functions has been used in a wide
range of applications. Thus, in the field of information theory, it can be viewed
as the expected message-length per datum when a distribution has been used
whereas the data are characterized by another one. In addition, it is often used to
define the cost function useful for the backpropagation step when designing con-
volutional neural networks (CNNs) in the field of deep learning. Analyzing the
behaviour of the cross entropy between Gaussian autoregressive with moving
average (ARMA) processes can be of interest to compare short-memory pro-
cesses and to detect a statistical change in time series. Such issues are of interest
for instance in biomedical applications to detect a pathology. To address these
issues, it is true that divergences can be used [1,2]. Several divergences have been
proposed in the literature from [3] to the f -divergences. The reader may refer to
[4,5] for more details and for information about recent works. All make it possi-
ble to compare the probability density functions of k consecutive samples of time
series. Assuming that they correspond to autoregressive fractionally integrated
with moving average (ARFIMA) processes1, several works have been recently
led to analyze the Kullback-Leibler (KL) divergence [7], its symmetric version

1 Note that an ARMA process with orders (p, q) corresponds to an ARFIMA process
with orders (p, q) and a differencing order d equal to 0.
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known as the Jeffreys divergence (JD), but also the Rényi divergence of order α
[8], which can be seen as a generalization of the KL [9–16]. The authors studied
the way the increment of the divergence, i.e. the difference between two diver-
gences computed for k + 1 and k successive variates, evolves when k increases.
Concerning the JD, the conclusions are the following: after a transient behavior,
the JD increment tends to a finite value called asymptotic JD increment, except
when the ARFIMA processes have different unit zeros and/or when the differ-
ence between the differencing orders of the ARFIMA processes is larger than
0.5. In these particular cases, the limit of the increment tends to infinity since
it has been shown that the asymptotic JD increment amounts to summing two
signal powers: the power of the first process filtered by the so-called inverse filter
associated with the second one and the power of the second process filtered by
the inverse filter associated with the first one. It should be noted this asymptotic
increment can be also related to the so-called divergence rate, usually defined in
information theory.

In this paper, we propose a complementary study to the above analysis. Our
contribution is the following: we suggest analyzing the cross entropy between the
joint distributions of k consecutive samples of two Gaussian ARMA processes.
Among the questions that can be considered, one can wonder how the cross
entropy is influenced by the number k of variates that are considered. We show
that when k increases, the increment of the cross entropy tends to a limit called
the asymptotic increment. The latter can hence be of interest to characterize
the cross entropy. To derive its expression, the partial correlation coefficients
(PACF) of the processes are used in this paper.

The remainder of this paper is organized as follows. In Sect. 2, properties of
Gaussian ARMA processes are first recalled in terms of filtering interpretation,
correlation and power spectral density. Then, in Sect. 3, after giving the definition
of the Kullback-Leibler divergence, the Jeffreys divergence, the Shannon entropy
and the corresponding cross entropy, their expressions for Gaussian processes
are provided. Then, the evolution of the cross entropy is analyzed when two
Gaussian ARMA processes are compared. The expression of the asymptotic cross
entropy is also given. Finally, in Sect. 4, illustrations are provided and confirm
the theoretical analysis.

2 About Gaussian ARMA(p, q) Processes

The Gaussian ARMA process of order p and q is used in a wide range of applica-
tions from speech processing to biomedical applications. Its kth sample satisfies:

xk = −
p∑

l=1

alxk−l +
q∑

l=0

bluk−l (1)

where uk is the driving process, assumed to be white, Gaussian, zero-mean with
variance σ2

u. Given a0 = 1 and b0 = 1, {al}l=0,...,p and {bl}l=0,...,q are the AR
and MA parameters respectively.
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The ARMA process xk can be seen as the output of a linear filter whose
input is the zero-mean white Gaussian noise uk. Taking the z-transform of (1),
relation interpreted as a difference equation, one has:

X(z) = H(z)U(z) =

q∑
l=0

blz
−l

p∑
l=0

alz−l

U(z) =
∏q

l=1 (1 − zlz
−1)∏p

l=1 (1 − plz−1)
U(z) (2)

with X(z), U(z) and H(z) the z-transform of xk, uk and the impulse response
of the filter respectively. In addition, {pl}l=1,...,p are the poles while {zl}l=1,...,q

are the zeros.
The power spectral density (PSD), denoted as S(θ), with θ the normalized

angular frequency, can be expressed as follows:

S(θ) = σ2
u

|
q∑

l=0

ble
−jlθ|2

|
p∑

l=0

ale−jlθ|2
= σ2

u

∏q
l=1 |1 − zle

−jθ|2∏p
l=1 |1 − ple−jθ|2 (3)

In the following, as the ARMA process xk is zero-mean, the correlation function
and the covariance function are equal. In addition, the values of the correlation
function rτ , with τ the lag, tend to decay to zero geometrically.

∑
τ rτ is abso-

lutely summable. Therefore, this wide-sense stationary (w.s.s.) process is known
to be a short-memory process. As a corollary, the Toeplitz correlation matrix
of finite size k × k, denoted as Qk and defined from the correlation-function
coefficients rτ with τ = 1 − k, ..., k − 1, belongs to the Wiener class Toeplitz
matrices. As a consequence, according to [17], Qk is non singular even if the
PSD of the process is equal to zero at some frequencies. Qk is hence invertible.
Nevertheless, the infinite-size Toeplitz correlation matrix is no longer invertible
when the corresponding transfer function of the ARMA process has unit roots.

Let us now focus our attention on the identification issue of ARMA processes.
When dealing with a finite-order AR model, the Yule-Walker (YW) equations
and the correlation method can be considered to estimate both the AR param-
eters and the variance of the driving process [18]. When dealing with a finite-
order MA model, the most popular method is the Durbin algorithm, but other
approaches based on spectral factorization for instance exist. The reader may
refer to [6] for an exhaustive state of the art on the estimations of the ARMA
parameters when the data are noise free or disturbed by an additive white noise.

Remark: different ARMA processes are characterized by the same correlation
matrix or the same PSD. Indeed, let us take the toy example of a 1st-order MA
process defined by the driving-process variance equal to σ2

u and the transfer
function Hzl

(z) where the zero zl has its modulus larger than 1. In this case, the
following transformation can be considered:

Hzl(z) = (1 − zlz
−1) = −z∗

l H−1
bla,zl

(z)

(
1 − 1

z∗
l

z−1

)
(4)
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where z∗
l is the conjugate of zl, Hbla,zl

(z) = z−1−z∗
l

1−zlz−1 is a Blaschke product [19]
up to a multiplicative value of the form ±ejφl with φl the argument of zl. (4)
amounts to saying that Hzl

(z) corresponds to the cascade of two all-pass filters
with gains respectively equal to |zl| and 1 and a minimum-phase filter with
transfer function 1 − 1

z∗
l
z−1. Therefore, the MA process with a variance of the

driving process equal to Klσ
2
u = |zl|2σ2

u and characterized by the minimum-phase
transfer function 1− 1

z∗
l
z−1 has the same PSD as the MA process defined by the

variance of driving process equal to σ2
u and the transfer function 1− zlz

−1. This
can be easily generalized to any ARMA process by taking advantage of (2).

Given the above remark, let us now define the inverse filter that will be used in
this communication for a given correlation matrix. When all the zeros are inside
the unit-circle in the z-plane, H(z) is minimum-phase and directly invertible.
When one zero is outside the unit-circle in the z-plane, we suggest defining the
inverse filter by taking advantage of the above remark and (4). Therefore, the
BIBO-stable inverse filter is defined as follows:

H−1(z) =
1

σu

p∏
l=1

(1 − plz
−1)

q∏
l=1

H−1
zl (z) (5)

with

H−1
zl (z) =

{ 1
1−zlz

−1 if |zl| < 1
1

−zl∗
1

1− 1
z∗
l

z−1 if |zl| > 1 (6)

3 Kullback-Leibler Divergence, Jeffreys Divergence,
Entropy and Cross Entropy

3.1 Definitions and Applications to Gaussian Processes

In the following, two processes will be considered. By introducing the joint dis-
tributions of k successive values of the ith random process, denoted as pi(x1:k)
for i = 1, 2, the Shannon entropy is given by:

H
(i)
k = −

∫ +∞

−∞
pi(x1:k) ln pi(x1:k)dx1:k (7)

To study the dissimilarities between two processes defined by p1(x1:k) and
p2(x1:k), the KL divergence can be evaluated. It satisfies [7]:

KL
(1,2)
k =

∫

x1:k

p1(x1:k) ln
(

p1(x1:k)
p2(x1:k)

)
dx1:k (8)

Remark: as the KL is not symmetric, Jeffreys divergence can be used2:

JD
(1,2)
k = KL

(1,2)
k + KL

(2,1)
k (9)

2 In some papers, the symmetric version of the KL divergence can be also defined
as the mean between KL

(1,2)
k and KL

(2,1)
k . In others, the minimum value is rather

considered.
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At this stage, the cross entropy H
(1,2)
k can be expressed from the Shannon

entropy and the KL as follows:

H
(1,2)
k = KL

(1,2)
k + H

(1)
k (10)

Given the expression above and as the KL is not negative, the cross entropy
is always larger than the entropy. In addition, in many estimation issues, mini-
mizing the cross entropy amounts to minimizing the KL.

Let us now deduce the expressions of the entropy, the KL and the cross
entropy for Gaussian processes. For this purpose, let us first recall that the
probability density function of the ith real random Gaussian column vector x1:k

of size k, mean μk,i and covariance matrix Qk,i, is defined by:

pi(x1:k) =
1

(
√

2π)k|Qk,i|1/2
exp

( − 1
2
[x1:k − μk,i]T Q−1

k,i [x1:k − μk,i]
)

(11)

with i = 1, 2 and |Qk,i| the determinant of the covariance matrix.
By using (11), the entropy and the KL defined in (7) and (8) become:

H
(1)
k =

k

2
ln(2π) +

1

2

(
ln |Qk,1| + Tr(Q−1

k,1Qk,1)
)

=
k

2
(1 + ln(2π)) +

1

2
ln |Qk,1| (12)

and

KL
(1,2)
k =

1

2

[
Tr(Q−1

k,2Qk,1) − k − ln
|Qk,1|
|Qk,2| + (μk,2 − μk,1)

T Q−1
k,2(μk,2 − μk,1)

]
(13)

For real zero-mean processes, (13) reduces to:

KL
(1,2)
k =

1
2

[
Tr(Q−1

k,2Qk,1) − k − ln
|Qk,1|
|Qk,2|

]
(14)

Combining (10), (12) and (14) leads to:

H
(1,2)
k =

1
2

[
k ln(2π) + Tr(Q−1

k,2Qk,1) + ln|Qk,2|
]

(15)

3.2 Evolution of the Cross Entropy for Gaussian ARMA Processes

Let us study how the cross entropy evolves when k increases. More particularly,
let us analyze the increment ΔH

(1,2)
k = H

(1,2)
k+1 − H

(1,2)
k . Given (15), one has:

ΔH
(1,2)
k =

1
2

(
ln(2π) + Tr(Q−1

k+1,2Qk+1,1) − Tr(Q−1
k,2Qk,1) + ln

|Qk+1,2|
|Qk,2|

)
(16)

The above expression consists of three terms: the constant ln(2π)
2 , the second

term which is a difference of traces and a last term related to the determinant of
the correlation matrices. Let us focus our attention on the last two terms when
dealing with Gaussian ARMA processes.
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About the Difference of the Traces. In a recent paper [14], while analyzing
the properties of the JD for ARMA(p, q) processes as well as ARFIMA(p, d, q)
processes, we showed that:

lim
k→+∞

(
Tr(Q−1

k+1,2Qk+1,1) − Tr(Q−1
k,2Qk,1)

)
= P (1,2) (17)

where P (1,2) is the power of the 1st random process filtered by the inverse filter
corresponding to the 2nd one. If the 2nd process has a zero on the unit-circle in
the z-plane that is not equal to a zero of the 1st process, P (1,2) is infinite. When
the parameters of the processes are known, P (1,2) can be obtained from the
inverse Fourier of the PSD of the corresponding filtered process. The resulting
sequence corresponds to the correlation function and P (1,2) can then be easily
deduced. When the parameters of the processes are unknown, the identification
of the two ARMA processes from the data can be done, as a preliminary step,
by using the prediction error method (PEM) [20].

About the Term Based on the Determinants of the Covariance
Matrices. Taking into account the link between the covariance matrices and
the normalized covariance matrices, i.e. Ck+1,2 = 1

r0,2
Qk+1,2 where r0,2 is the

correlation function of the 2nd process computed for a lag equal to 0, one has:

|Qk+1,2|
|Qk,2| = r0,2

|Ck+1,2|
|Ck,2| (18)

However, as stated in [21], the determinant of the normalized covariance matrices
can be expressed from the PACF3, denoted as φτ,2, as follows:

|Ck,2| =
k−1∏

τ=1

(1 − φ2
τ,2)

k−τ (19)

This means that:
|Ck+1,2|
|Ck,2| =

k∏

τ=1

(1 − φ2
τ,2) (20)

Depending on the random processes under study, the PACF can become
equal to 0 or not. For a white noise, they are all null except for τ = 0. For a
pth-order AR process, they become null for τ > p. As minimum-phase moving
average processes can be seen as AR(∞)-order AR processes, the corresponding
PACF are all non-null.

3 After expressing the ith process at times k and k− τ as linear combinations of the τ
values xk−1,i, .., xk−τ+1,i and their residuals, the PACF φτ,i is defined as the corre-
lation coefficient computed between both residuals. Its modulus is hence necessarily
in the interval [0, 1]. Up to a multiplication by ±1, the PACF corresponds to the
reflexion coefficient.
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Let us now show that the limit of the ratio between the determinants of the
covariance matrices tends to a constant denoted L2 when k increases:

lim
k→+∞

|Ck+1,2|
|Ck,2| = lim

k→+∞

k∏
τ=1

(1 − φ2
τ,2) = L2 (21)

For this purpose, let us recall the way the variance of the driving process is
updated with the Durbin-Levinson algorithm [18] in order to express the con-
stant L2 from the variance of the driving process of the 2nd process. If ξτ,2

denotes the τ th reflection coefficient of the 2nd process, the variance of the cor-
responding driving process is updated as follows: σ2

u,2(τ) = (1 − ξ2τ,2)σ
2
u,2(τ − 1)

with σ2
u,2(0) = r0,2. As the square of the reflexion coefficient, i.e. ξ2τ,2, is equal

to φ2
τ,2, one has by combining (18), (20) and (21):

lim
k→+∞

|Qk+1,2|
|Qk,2| = lim

k→+∞
r0,2

k∏
τ=1

(1 − φ2
τ,i) = σ2

u,2

q2∏
l=1

Kl,2 (22)

with Kl,2 = 1 when the zero zl,2 of the 2nd process is inside the unit circle in the z-
plane and Kl,2 = |zl,2|2 when it is outside the unit-circle. This difference between
both cases is due to (4). Therefore, the limit corresponds to the variance of the
driving process associated to the 2nd ARMA process whose transfer function is
minimum phase.

Conclusion About the Increment of the Cross Entropy. The increment
of the cross entropy between wide sense-stationary Gaussian ARMA processes
tends to a limit that can be defined from (16), (17) and (22):

ΔH(1,2) = lim
k→+∞

ΔH
(1,2)
k =

1
2

(
ln(2π) + P (1,2) + ln

(
σ2

u,2

q2∏

l=1

Kl,2

))
(23)

After a transient behavior, the cross entropy between the pdfs of Gaussian
ARMA processes can be approximated by an affine function of k whose slope is
defined by the asymptotic increment given above.

If the 2nd process has a zero on the unit-circle in the z-plane that is not equal
to a zero of the 1st process, then ΔH(1,2) is infinite.

Remark: the symmetric cross-entropy could be defined as SH(1,2) = H(1,2) +
H(2,1). In this case, the corresponding asymptotic increment is defined by:

ΔSH(1,2) = ln(2π) +
1
2

(
P (1,2) + P (2,1) + ln

(
σ2

u,2σ
2
u,1

q1∏

l=1

Kl,1

q2∏

l=1

Kl,2

))
(24)

meanwhile the asymptotic increment of the JD is given by:

ΔJD(1,2) = −1 +
1
2
(P (1,2) + P (2,1)) (25)

In the following, let us give some illustrations.
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4 Illustrations

For two white noises processes, one has:

ΔH(1,2) =
1
2

(
ln(2π) +

σ2
u,1

σ2
u,2

+ ln σ2
u,2

)
(26)

and

ΔSH(1,2) = ln(2π) +
1
2

(
σ2
1

σ2
2

+
σ2
2

σ2
1

)
+

1
2

ln(σ2
1σ

2
2) (27)

Let us now illustrate the results with two 1st-order MA processes. The first one
is defined by its zero equal to −0.7 whereas the second is defined by its zero that
varies from 1.2 to −0.8 with a step equal to −0.5. The variances of the driving
processes are first assumed to be equal to 1. Then, σ2

u,2 = 4. In Table 1, the
evolutions of the increments are given as well as the limits obtained with (23).

Table 1. Evolutions of the increments of the cross entropies -MA case-

same variances of the driving processes different variances of the driving processes

Let us now compare two 1st-order AR processes. The first one is defined by its
pole equal to 0.99 whereas the second is defined by its pole that varies between
0.8 and 0.95 with a step equal to 0.5. The variances of the driving process are
assumed to be equal to 1. In Table 2, the evolutions of the cross-entropies and
the increments with respect to k are given. It should be noted that unlike the
comparison between 1st-order MA processes, the increment between 1st-order
AR processes tends to be rapidly the same and equal to the theoretical value
given in (23). They are respectively equal to 2.3260, 1.9114, 1.6225 and 1.4591.
They become smaller and smaller as the pole of the second process tends to be
closer to the pole of the first process. Note that for the AR cases, Kl,i = 1 for
any l and for i = 1, 2.
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Table 2. Evolutions of the cross entropies -AR case-

cross entropy increment

5 Conclusions and Perspectives

When analyzing the cross entropy between the pdfs of k consecutive values of
two ARMA processes, the following conclusions can be drawn: firstly, the cross
entropy as a function of k may exhibit a transient behavior when k increases.
Then, it tends to an affine function of k whose slope is defined by the asymptotic
increment. Therefore, unlike the increment of the cross entropy, the asymptotic
increment does not change when k is modified. This can be useful to characterize
the cross entropy.
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Abstract. In the present paper, we study Hessian and Einstein-Hessian
manifolds with some examples. We establish optimizations of the intrin-
sic invariant (normalized scalar curvature) for a new extrinsic invariant
(generalized normalized Casorati curvatures) on statistical submanifolds
in a Hessian manifold of constant Hessian curvature by using algebraic
technique. We consider the equality case of the derived inequalities.

Keywords: Hessian manifolds · Einstein-Hessian manifolds ·
Casorati curvatures

1 Introduction

The geometry of Hessian manifolds is a branch of physics, statistics, Kaehle-
rian and affine differential geometry. This is a new and fruitful field for many
researchers. Therefore, many researchers have investigated the similarity between
Kaehlerian and Hessian ones. The notion of a Hessian structure is the same
that dual affine connections are flat. Hessian metric has many applications.
For instance, it arises in the study of optimization, statistical manifolds and
string theory (via special Kaehler manifolds). It is also known that there are
several smooth families of probability distributions which admit Hessian struc-
tures (dually flat affine connections). Hessian sectional curvature and its useful
relations with Kaehlerian manifold has been introduced by Shima (see [11,12]).

The Casorati curvature [2] of a submanifold of a Riemannian manifold is
an extrinsic invariant defined as the normalized square of the length of the sec-
ond fundamental form of the submanifold. This curvature, which is of interest
in computer vision, was preferred by Casorati over the traditional curvature
because it seems to correspond better with the common intuition of curvature.
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A family of optimal Casorati inequalities involving the normalized scalar cur-
vature and the Casorati curvatures for any (statistical) submanifold in different
ambient space forms have been derived (for example [6], [10], [13]). Therefore,
we prove the following:

Theorem 1. Let N be an m−dimensional statistical submanifold in an
n−dimensional Hessian manifold N(c) of constant Hessian curvature c. Then
the generalized normalized Casorati curvatures δC(s;m − 1) and δ∗

C(s;m − 1)
satisfy

ρ ≤ 2δ0C(s;m − 1)
m(m − 1)

+
C0

m − 1
+

c

4
− m

2(m − 1)
(||H||2 + ||H∗||2), (1)

where 2C0 = C + C∗, 2δ0C(s;m − 1) = δC(s;m − 1) + δ∗
C(s;m − 1) and s ∈ R with

0 < s < m(m − 1).

Theorem 2. Let N be an m−dimensional statistical submanifold in an
n−dimensional Hessian manifold N(c) of constant Hessian curvature c. Then
equality holds in the relation (1) if and only if

hk
ij = −h∗k

ij , ∀ i, j ∈ {1, . . . , m}, i �= j,

h0k
mm =

m(m − 1)
s

h0k
11 = · · · =

m(m − 1)
s

h0k
m−1 m−1, ∀ k ∈ {m + 1, . . . , n}.

2 Hessian Manifolds and Statistical Submanifolds

In 1985, a notion of statistical manifold has been studied by Amari [1]. This
concept is of great interest because it connects information geometry, affine dif-
ferential geometry and Hessian geometry.

Definition 1. [1] A Riemannian manifold (N, g) with a Riemannian metric
g is said to be a statistical manifold (N, ∇, g) if a pair of torsion-free affine
connections on N satisfying

Gg(E,F ) = g(∇GE,F ) + g(E,∇∗
GF ), (2)

for any E,F,G ∈ Γ (TN) and ∇g is symmetric. The connections ∇ and ∇∗
are

called dual connections on N , which satisfy

(∇∗
)∗ = ∇. (3)

Remark that if (N,∇, g) is a statistical structure, so is (N, ∇∗
, g).

Definition 2. [1] Let (N,∇, g) be a statistical manifold and N be a submani-
fold of N . Then (N, ∇, g) is also a statistical manifold with the induced statistical
structure (∇, g) on N from (∇, g) and we call (N, ∇, g) as a statistical subman-
ifold in N .
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Let N be a statistical submanifold of dimension m in an n−dimensional
statistical manifold N . Let ∇ and ∇∗

be dual connections on N , and ∇ and ∇∗

be the induced dual connections by ∇ and ∇∗
on N , respectively. We suppose

that R, R, R
∗

and R∗ are the Riemannian curvature tensors with respect to
∇, ∇, ∇∗

and ∇∗ respectively. Then the corresponding Gauss equations are the
following:

g(R(E,F )G,H) = g(R(E,F )G,H) + g(h(E,G), h∗(F,H))
−g(h∗(E,H), h(F,G)), (4)

g(R
∗
(E,F )G,H) = g(R∗(E,F )G,H) + g(h∗(E,G), h(F,H))

−g(h(E,H), h∗(F,G)), (5)

for any E,F,G,H ∈ Γ (TN). Here h and h∗ are symmetric and bilinear imbed-
ding curvature tensors of N in N with respect to ∇ and ∇∗

, respectively.

Definition 3. [5] A triple (N, ∇, g) is called a Hessian manifold if a pair (∇, g)
on N satisfies the Codazzi equation

(∇Eg)(F,G) = (∇F g)(E,G), (6)

and ∇ is flat.

On an n−dimensional Hessian manifold (N, ∇), suppose that K = ∇ − ∇0
.

The tensor field Q of type (1, 3) defined by [11,12]

Q(E,F ) = [KE ,KF ], (7)

for any E,F ∈ Γ (TN) is said to be the Hessian curvature tensor with respect
to ∇, where the Lie bracket [, ] of vector fields is an operator that assigns to any
two vector fields on a smooth manifold and give a third vector field. Further, (7)
satisfies

R(E,F ) + R
∗
(E,F ) = 2R

0
(E,F ) + 2Q(E,F ), (8)

where R
0

denotes the Riemannian curvature tensor with respect to ∇0
.

Let L be a plane in T℘N , ℘ ∈ N . Choose an orthonormal basis {E,F} of L
and set

K(L) = g(Q(E,F )F,E). (9)

The number K(L) is independent of the choice of an orthonormal basis and is
called the Hessian sectional curvature. A Hessian manifold (N, ∇, g) is said to
be of constant Hessian sectional curvature c if and only if [11,12]

Q(E,F,G,H) =
c

2
[g(E,F )g(G,H) + g(E,H)g(F,G)], (10)

for any E,F,G,H ∈ Γ (TN).
Generally, one cannot define a sectional curvature with respect to the dual

connections (which are not metric) by the standard definitions. However, B.
Opozda [8,9] defined a sectional curvature on a statistical manifold.
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3 Einstein-Hessian Manifolds and Examples

Recall Theorems 7 and 8 of [11] and Example 2.2 of [12], we construct the
following examples of Hessian structure:

Example 1. Let R2 be the standard affine space with the standard flat connection
D and the standard affine coordinate system {u1, u2}. Let Θ be a domain in R

2

equipped with a potential Φ and g = DdΦ, given by

Θ = {u ∈ R
2|u1 > 0}, Φ =

(u2)2

4u1
+ log(

1
u1

),

g =

⎡
⎢⎣

(u2)2

2(u1)3 + 1 − u2

2(u1)2

− u2

2(u1)2
1

2u1

⎤
⎥⎦ .

Then the pair (D, g = DdΦ) is a Hessian structure on Θ.

Example 2. Let R
n be the standard affine space with the standard flat con-

nection D and the standard affine coordinate system {u1, . . . , un}. Let Λ be a
domain in R

n equipped with a potential φ and g = Ddφ, given by

Λ = {u ∈ R
n|ui > 0, i = 1, . . . , n}, φ =

n∑
i=1

uilog ui, g = δij
1
ui

.

Then the pair (D, g = Ddφ) is a Hessian structure on Λ.

Example 3. We consider a Hessian manifold (Hn+1,∇, g) of constant Hessian
curvature 4 (see [4] for details). We assume that a statistical immersion

f0 : (Rn,∇, g) → (Hn+1,∇, g)

of the trivial Hessian manifold (Rn,∇, g) into (Hn+1,∇, g) is given by

f0(u1, . . . , un) = (u1, . . . , un, u0).

It is easy to calculate that h = 2g, h∗ = 0 and ||H∗|| = 0. Thus, Rn is totally
umbilical with respect to ∇ and totally geodesic with respect to ∇∗

.

Theorem 3. Let (N, ∇, g) be an n−dimensional (n > 1) Hessian manifold of
constant Hessian curvature c. Then (N, g) is Einstein-Riemannian manifold.
Moreover, (N, g) is Ricci-flat if c = 0.

Proof. Ricci-flat manifolds are special Riemannian manifolds whose Ricci tensor
vanishes. The fact that g is of constant sectional curvature − c

4 , which directly
implies the theorem.
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Example 4. We recall Proposition 3.7 of [12]. Following are the Hessian manifolds
of constant Hessian curvature zero:

(1) The Euclidean space (Rn,D, g = Dd(12
∑n

i=1(x
i)2)),

(2) (Rn,D, g = Dd(
∑n

i=1(e
xi

)),

where D is a torsion-free connection. Then by Theorem 3, we say that (Rn, g)
is Ricci-flat in both the cases.

4 Optimal Casorati Inequalities

Let N(c) be a Hessian manifold of constant Hessian curvature c and N be an
n−dimensional statistical submanifold of N(c). Then N(c) is flat with respect
to ∇ and ∇∗

. Moreover, N(c) is a Riemannian space form of constant sectional
curvature −c

4 (with respect to the Levi-Civita connection ∇0
). For ℘ ∈ N , we

choose {E1, . . . , Em} and {Em+1, . . . , En} respectively a local orthonormal tangent
frame of T℘N and a local orthonormal normal frame of T⊥

℘ N in N . The scalar
curvature σ(℘) of N with respect to the Hessian curvature tensor Q is given by

σ(℘) =
1
2

∑
1≤i<j≤m

Q(Ei, Ej , Ej , Ei)

=
1
2

∑
1≤i<j≤m

[g(R(Ei, Ej)Ej , Ei) + g(R∗(Ei, Ej)Ej , Ei)

−2g(R0(Ei, Ej)Ej , Ei)]. (11)

Then the normalized scalar curvature ρ of N is defined as

ρ =
2σ

m(m − 1)
. (12)

The mean curvature vectors H and H∗ of N are respectively defined by

H =
1
m

m∑
i=1

h(Ei, Ei), and H∗ =
1
m

m∑
i=1

h∗(Ei, Ei).

The squared norm of H and H∗ of N are respectively given by

||H||2 =
1

m2

n∑
k=m+1

(
m∑

i=1

hk
ii)

2, and ||H∗||2 =
1

m2

n∑
k=m+1

(
m∑

i=1

h∗k
ii )2,

where

hk
ij = g(h(Ei, Ej), Ek), and h∗k

ij = g(h∗(Ei, Ej), Ek),

for i, j ∈ {1, . . . , m} and k ∈ {m + 1, . . . , n}.
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The normalized squared norms of second fundamental forms h and h∗ are
denoted by C and C∗, respectively, called the Casorati curvatures of N in N .
Therefore, we have

C =
1
m

n∑
k=m+1

m∑
i,j=1

(hk
ij)

2, and C∗ =
1
m

n∑
k=m+1

m∑
i,j=1

(h∗k
ij )2.

If we consider a r-dimensional subspace W of TN , r ≥ 2, and an orthonormal
basis {E1, . . . , Er} of W. Then the Casorati curvatures of the subspace W are
the following:

C(W) =
1
r

n∑
k=m+1

r∑
i,j=1

(hk
ij)

2, and C∗(W) =
1
r

n∑
k=m+1

r∑
i,j=1

(h∗k
ij )2.

The normalized Casorati curvatures δC(m−1), δ∗
C(m−1), δ̂C(m−1) and δ̂∗

C(m−1)
are defined as

(1) [δC(m − 1)]℘ = 1
2C℘ + (m+1

2m )inf{C(Ψ)|Ψ : a hyperplane of T℘N},
(2) [δ∗

C(m − 1)]℘ = 1
2C∗

℘ + (m+1
2m )inf{C∗(Ψ)|Ψ : a hyperplane of T℘N},

(3) [δ̂C(m − 1)]℘ = 2C℘ − ( 2m−1
2m )sup{C(Ψ)|Ψ : a hyperplane of T℘N},

(4) [δ̂∗
C(m − 1)]℘ = 2C∗

℘ − ( 2m−1
2m )sup{C∗(Ψ)|Ψ : a hyperplane of T℘N}.

Further, the generalized normalized Casorati curvatures δC(s;m − 1),
δ∗
C(s;m − 1), δ̂C(s;m − 1) and δ̂∗

C(s;m − 1) are given by [3]

(1) For 0 < s < m2 − m
[δC(s;m − 1)]℘ = sC℘ + ζ(s)inf{C(Ψ)|Ψ : a hyperplane of T℘N},
[δ∗

C(s;m − 1)]℘ = sC∗
℘ + ζ(s)inf{C∗(Ψ)|Ψ : a hyperplane of T℘N}.

(2) For s > m2 − m

[δ̂C(s;m − 1)]℘ = sC℘ + ζ(s)sup{C(Ψ)|Ψ : a hyperplane of T℘N},

[δ̂∗
C(s;m − 1)]℘ = sC∗

℘ + ζ(s)sup{C∗(Ψ)|Ψ : a hyperplane of T℘N},

where ζ(s) = 1
sm (m − 1)(m + s)(m2 − m − s), s �= m(m − 1).

Proof of Theorem 1:

We need the following lemma to prove Theorem 1:

Lemma 1. [13] Let ϑ = {(u1, u2, . . . , um) ∈ R
m : u1 + u2 + · · · + um = l} be a

hyperplane of Rm and π : Rm → R a quadratic form given by

π(u1, u2, . . . , um) = μ

m−1∑
i=1

(ui)2 + ν(um)2 − 2
∑

1≤i<j≤m

uiuj ,

where μ > 0, ν > 0.
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Then, by the constrained extremum problem, π has a global solution as
follows

u1 = u2 = · · · = um−1 =
l

μ + 1
,

um =
l

ν + 1
=

l(m − 1)
(μ + 1)ν

= (μ − m + 2)
l

μ + 1
,

provided that ν = m−1
μ−m+2 .

Following [7] and (11), we derive

2σ = m(m − 1)
c

4
+ m2||H0||2 − mC0 +

m

2
(C + C∗)

−m2

2
(||H||2 + ||H∗||2),

where H0 is the mean curvature vector with respect to ∇0
.

Let us define a quadratic polynomial P in the components of the second
fundamental form h0

P = sC0 + ζ(s)C0(Ψ) − 2σ + m(m − 1)
c

4

−m2

2
(||H||2 + ||H∗||2) +

m

2
(C + C∗). (13)

Without loss of generality, we assume that Ψ is spanned by E1, . . . , Em, combining
(13), it follows that

P =
m + s

m

n∑
k=m+1

m∑
i,j=1

(h0k
ij )2 +

ζ(s)
m − 1

n∑
k=m+1

m−1∑
i,j=1

(h0k
ij )2 −

n∑
k=m+1

(
m∑

i=1

h0k
ii )2

=
n∑

k=m+1

m−1∑
i=1

[2(ι + 1)(h0k
ii )2 +

2(m + s)
m

(h0k
im)2]

+[ι
∑

1≤i�=j≤m−1

(h0k
ij )2 − 2

∑
1≤i�=j≤m

(h0k
ii h0k

jj ) +
s

m
(h0k

mm)2]

≥
n∑

k=m+1

[
m−1∑
i=1

ι(h0k
ii )2 − 2

∑
1≤i�=j≤m

h0k
ii h0k

jj +
s

m
(h0

mm)2], (14)

where ι = ( s
m + ζ(s)

m−1 ).
We consider the quadratic form πk : Rm → R, for k = m + 1, . . . n, defined

by

πk(h0k
11 , . . . , h

0k
mm) =

m−1∑
i=1

ι(h0k
ii )2 − 2

∑
1≤i�=j≤m

h0k
ii h0k

jj +
s

m
(h0

mm)2, (15)
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and the problem as follows:

min{πk(h0k
11 , . . . , h

0k
mm) : h0k

11 + · · · + h0k
mm = γk, γk ∈ R}.

From Lemma 1, we see that the critical point (h0k
11 , . . . , h

0k
mm) is given by

h0k
11 = h0k

22 = · · · = h0k
m−1m−1 =

γk

μ + 1
=

γk

ι + 1
, h0k

mm =
γk

ν + 1
=

mγk

m + s
, (16)

and hence it is the global minimum point.
Plugging (16) into (15), we have

πk(h0k
11 , . . . , h

0k
mm) = 0. (17)

From (14) and (17), we get P ≥ 0 and hence we have

2σ ≤ sC0 + ζ(s)C0(Ψ) +
m

2
(C + C∗) + +m(m − 1)

c

4

−m2

2
(||H||2 + ||H∗||2).

Further, we find that

ρ ≤ s

m(m − 1)
C0 +

ζ(s)
m(m − 1)

C0(Ψ) +
1

2(m − 1)
(C + C∗)

+
c

4
− m

2(m − 1)
(||H||2 + ||H∗||2),

where we used (12). Thus, we get the required inequality (1).

Remark 1. It is easy to prove that the normalized scalar curvature is bounded
above by the generalized normalized Casorati curvatures δ̂C(s;m − 1) and
δ̂∗
C(s;m − 1) for s ∈ R, s > m(m − 1).

Corollary 1. Let N be an m−dimensional statistical submanifold in an
n−dimensional Hessian manifold N(c) of constant Hessian curvature c. Then
the normalized Casorati curvatures δC(m − 1) and δ∗

C(m − 1) satisfy

ρ ≤ 2δ0C(m − 1) +
C0

m − 1
+

c

4
− m

2(m − 1)
(||H||2 + ||H∗||2),

where 2C0 = C + C∗ and 2δ0C(m − 1) = δC(m − 1) + δ∗
C(m − 1).

Remark 2. One can prove Corollary 1 by using Lemma 1 and taking

s =
m(m − 1)

2
in δC(s;m − 1) and δ∗

C(s;m − 1) in Theorem 1, we have
[
δC

(
m(m − 1)

2
;m − 1

)]

℘

= m(m − 1) [δC(m − 1)]℘ ,

[
δ∗
C

(
m(m − 1)

2
;m − 1

)]

℘

= m(m − 1) [δ∗
C(m − 1)]℘

at any point ℘ ∈ N .



Inequalities for Statistical Submanifolds 397

Acknowledgment. The authors would like to thank to anonymous referees for their
comments to improve the manuscript.

References

1. Amari, S.: Differential-Geometrical Methods in Statistics. Lecture Notes in
Statistics, vol. 28. Springer, New York (1985). https://doi.org/10.1007/978-1-4612-
5056-2

2. Casorati, F.: Mesure de la courbure des surfaces suivant l’idee commune. Acta
Math. 14(1), 95–110 (1890)

3. Decu, S., Haesen, S., Verstraelen, L.: Optimal inequalities characterising quasi-
umbilical submanifolds. J. Inequal. Pure Appl. Math. 9(3), 1–7 (2008)

4. Furuhata, H.: Hypersurfaces in statistical manifolds. Differ. Geom. Appl. 27, 420–
429 (2009)

5. Furuhata, H.: Statistical hypersurfaces in the space of Hessian curvature zero.
Differ. Geom. Appl. 29, 586–590 (2011)

6. Lee, C.W., Yoon, D.W., Lee, J.W.: A pinching theorem for statistical manifolds
with Casorati curvatures. J. Nonlinear Sci. Appl. 10, 4908–4914 (2017)

7. Mihai, A., Mihai, I.: Curvature invariants for statistical submanifolds of Hessian
manifolds of constant Hessian curvature. Mathematics 44(6) (2018)

8. Opozda, B.: Bochner’s technique for statistical structures. Ann. Glob. Anal. Geom.
48(4), 357–395 (2015)

9. Opozda, B.: A sectional curvature for statistical structures. Linear Algebra Appl.
497, 134–161 (2016)

10. Siddiqui, A.N. and Shahid, M.H.: Optimizations on statistical hypersurfaces with
Casorati curvatures. Accepted for the publication in Kragujevac Journal of Math-
ematics (2019)

11. Shima, H.: Hessian manifolds of constant Hessian sectional curvature. J. Math.
Soc. Jpn. 47(4), 735–753 (1995)

12. Shima, H.: The Geometry of Hessian Structures. World Scientific, Singapore (2007)
13. Tripathi, M.M.: Inequalities for algebraic Casorati curvatures and their applica-

tions. Note Mat. 37, 161–186 (2017)

https://doi.org/10.1007/978-1-4612-5056-2
https://doi.org/10.1007/978-1-4612-5056-2


B. Y. Chen Inequalities for Statistical
Submanifolds in Sasakian

Statistical Manifolds

Mohd. Aquib1(B), Michel Nguiffo Boyom2, Ali H. Alkhaldi3,
and Mohammad Hasan Shahid1

1 Department of Mathematics, Jamia Millia islamia, New Delhi, India
aquib80@gmail.com, mshahid@jmi.ac.in

2 Nguiffo Boyom M. IMAG: Alexander Grothendieck Research Institute,
University of Montpellier, Montpellier, France

nguiffo.boyom@gmail.com
3 Department of Mathematics, College of Science, King Khalid University,

P.O. Box 9004, Abha 62529, Saudi Arabia
ahalkhaldi@kku.edu.sa

Abstract. In this paper, we derive a statistical version of B. Y. Chen
inequality for statistical submanifolds in the Sasakian statistical mani-
folds with constant curvature and discuss the equality case of the inequal-
ity. We also give some applications of the inequalities obtained.

Keywords: Chen’s inequality · Statistical manifolds ·
Sasakian statistical manifolds

1 Introduction

In 1989, the notion of statistical submanifolds was introduced and studied by
Vos [10]. Though, till the date it has made very little progress due to the hard-
ness to find classical differential geometric approaches for study of statistical
submanifolds. Furuhata [6], studied statistical hypersurfaces in the space of
Hessian curvature zero and provided some examples as well. In 2017, Furuhata
et al. [5] studied Sasakian statistical manifolds and obtained some results. Geom-
etry of statistical submanifolds is still young and efforts are on, so it is growing
[1–3,6–9].

In 1993 Chen [4] has obtained a sharp inequality for the sectional curvature
of a submanifold in a real space forms in term of the scalar curvature (intrinsic
invariant) and squared mean curvature (extrinsic invariant). Afterward, several
geometers obtained similar inequality for various submanifolds in various ambi-
ent spaces due to its rich geometric importance.

In the present article, we obtain B. Y. Chen inequality for statistical subman-
ifolds in Sasakian statistical manifold with constant curvature and obtain the
equality case of the inequality. We also give some applications of the inequalities
we derived.
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2 Preliminaries

Let (N, g) be a Riemannian manifold and ∇ and ∇∗
be torsion-free affine con-

nections on N such that

Gg(E, F) = g(∇GE, F) + g(E,∇∗
GF), (1)

for E, F, G ∈ Γ (TN). Then Riemannian manifold (N, g) is called a statistical man-
ifold. It is denoted by (N, g,∇,∇∗

). The connections ∇ and ∇∗
are called dual

connections. The pair (∇, g) is said to be a statistical structure.
If (∇, g) is a statistical structure on N, then (∇∗

, g) is also statistical structure
on N.

For the dual connections ∇ and ∇∗
we have

2∇◦
= ∇ + ∇∗

, (2)

where ∇◦
is Levi-Civita connection for g.

Let N be a (2m + 1)-dimensional manifold and let N be an n-dimensional
submanifolds of N. Then, the Gauss formulae are [10]

{∇EF = ∇EF + ζ(E, F),
∇∗

EF = ∇∗
EF + ζ∗(E, F),

(3)

where ζ and ζ∗ are symmetric, bilinear, imbedding curvature tensors of N in N
for ∇ and ∇∗

, respectively.
The R and R

∗ be Riemannian curvature tensor fields of ∇ and ∇∗
, respectively.

Then [10]

g(R(E, F)G, W) = g(R(E, F)G, W) + g(ζ(E, G), ζ∗(F, W))
− g(ζ∗(E, W), ζ(F, G)), (4)

and

g(R∗(E, F)G, W) = g(R∗(E, F)G, W) + g(ζ∗(E, G), ζ(F, W))
− g(ζ(E, W), ζ∗(F, G)), (5)

where

g(R∗(E, F)G, W) = −g(G, R(E, F)W). (6)

Let us denote the normal bundle of N by TN⊥. The linear transformations
AN and A∗

N are defined by
{
g(ANE, F) = g(ζ(E, F), N),
g(A∗

NE, F) = g(ζ∗(E, F), N), (7)
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for any N ∈ Γ (TN⊥) and E, F ∈ Γ (TN). The corresponding Weingarten formulas
are [10]

{∇EN = −A∗
NE + ∇⊥

E N,

∇∗
EN = −ANE + ∇∗⊥

E N,
(8)

where N ∈ Γ (TN⊥), E ∈ Γ (TN) and ∇⊥
E and ∇∗⊥

E are Riemannian dual connec-
tions with respect to the induced metric on Γ (TN⊥).

Let N be an odd dimensional manifold and φ be a tensor of type (1, 1), ξ a
vector field, and a 1-form η on N satisfying the conditions

η(ξ) = 1,
φ2E = −E + η(E)ξ,

for any vector field E on N, then N is said to have an almost contact structure
(φ, ξ, η).

Definition 1. An almost contact structure (φ, ξ, g) on N is said to be a Sasakian
structure if

(∇◦
Eφ)F = g(F, ξ)E − g(F, E)ξ,

holds for any E, F ∈ TN.

Definition 2 ([5]). A quadruple (∇, g, φ, ξ) is called a Sasakian statistical struc-
ture on N if (∇, g) is a statistical structure, (g, φ, ξ) is a Sasakian structure on
N and the formula

KEφF + φKEF = 0

holds for any E, F ∈ TN, where KEF = ∇EF − ∇◦
EF.

Definition 3 ([5]). Let (N,∇, g, φ, ξ) be a Sasakian statistical manifold and
c ∈ R. The Sasakian statistical structure is said to be of constant φ-sectional
curvature c if the curvature tensor S is given by

S(E, F)G =
c + 3

4
{g(F, G)E − g(E, G)F} +

c − 1
4

{g(φF, G)φE − g(φE, G)φF

− 2g(φE, F)φG − g(F, ξ)g(G, ξ)E + g(E, ξ)g(G, ξ)F + g(F, ξ)g(G, E)ξ
− g(E, ξ)g(G, F)ξ}, where E, F, G ∈ TN (9)

and

2S(E, F)G = R(E, F)G + R
∗(E, F)G. (10)

We denote a Sasakian statistical manifold with constant φ-sectional curvature c
by N(c).
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Let ξ be tangent to the submanifolds N and let {e1, . . . , en = ξ} and
{en+1, . . . , e2m+1} be tangent orthonormal frame and normal orthonormal frame,
respectively, on N. Then, the mean curvature vector fields H, H∗, H◦ are given by

H =
1
n

n∑
i=1

ζ(ei, ei), (11)

H∗ =
1
n

n∑
i=1

ζ∗(ei, ei), (12)

and

H◦ =
1
n

n∑
i=1

ζ◦(ei, ei). (13)

We also set

‖ζ‖2 =
n∑

i,j=1

g(ζ(ei, ej), ζ(ei, ej)), (14)

‖ζ∗‖2 =
n∑

i,j=1

g(ζ∗(ei, ej), ζ∗(ei, ej)), (15)

and

‖ζ◦‖2 =
n∑

i,j=1

g(ζ◦(ei, ej), ζ◦(ei, ej)). (16)

The second fundamental form ζ◦ (resp. ζ, or ζ∗) has several geometric properties
due to which we got following different classes of the submanifolds.

– A submanifold is said to be totally geodesic submanifold with respect to ∇◦

(resp. ∇, or ∇∗
), if the second fundamental form ζ◦ (resp. ζ, or ζ∗) vanishes

identically, that is ζ◦ = 0 (resp. ζ = 0, or ζ∗ = 0).
– A submanifold is said to be minimal submanifold with respect to ∇◦

(resp.∇,
or ∇∗

), if the mean curvature vector H◦ (resp.H, or H∗) vanishes identically,
that is H◦ = 0 (resp. H = 0, or H∗ = 0).

Let K(π) denotes the sectional curvature of a Riemannian manifold N of the
plane section π ⊂ TpN at a point p ∈ N. If {e1, . . . , en} be the orthonormal basis
of TpN and {en+1, . . . , e2m+1} be the orthonormal basis of T⊥

p N at any p ∈ N,
then

τ(p) =
∑

1≤i<j≤n

K(ei ∧ ej), (17)
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where τ is the scalar curvature. The normalized scalar curvature ρ is defined as

2τ = n(n − 1)ρ. (18)

We also put
ζγ
ij = g(ζ(ei, ej), eγ), ζ∗γ

ij = g(ζ∗(ei, ej), eγ),

i, j ∈ 1, . . . , n, γ ∈ {n + 1, . . . , 2m + 1}.

3 B. Y. Chen Inequalities

In this section, we obtain statistical version of well known B. Y. Chen inequality
for statistical submanifolds of Sasakian statistical manifolds with constant φ-
sectional curvature.

Theorem 1. Let N be a statistical submanifold in a Sasakian statistical manifold
N(c) with

∑
α

[
ζ∗α
11 ζα

22+ζα
11ζ

∗α
22

]
= 2

∑
α ζ∗α

12 ζα
12 such that the structure vector field

ξ of N(c) is tangent to N. Then

K(π) ≤ τ +
c + 3

4
(1 + n − n2) +

c − 1
4

{
3(Θ(π) − ‖P‖2) − Φ(π) − 2(1 − n)

}

+
n2

2
(‖H‖2 + ‖H∗‖2) − 2n2‖H◦‖2 + ‖ζ‖‖ζ∗‖, (19)

where Θ(π) = g2(φe1, e2), Φ(π) = η2(e1) + η2(e2), π = e1 ∧ e2 and ||P ||2 =
g2(φei, ej)

}
. Moreover, the equality holds if ζ and ζ∗ are parallel. That is

ζ = kζ∗, k ∈ R
+. (20)

Proof. From (4), (5), (9) and (10), we have

g(R(E, F)G, W) + g(R∗(E, F)G, W) =
c + 3

2
{g(F, G)g(E, W) − g(E, G)g(F, W}

+
c − 1

2
{g(φF, G)g(φE, W) − g(φE, G)g(φF, W) − 2g(φE, F)g(φG, W)

− g(F, ξ)g(G, ξ)g(E, W) + g(E, ξ)g(G, ξ)g(F, W) + g(F, ξ)g(G, E)g(ξ, W)
− g(E, ξ)g(G, F)g(ξ, W)} − g(ζ(E, G), ζ∗(F, W)) + g(ζ∗(E, W), ζ(F, G))
− g(ζ∗(E, G), ζ(F, W)) + g(ζ(E, W), ζ∗(F, G)). (21)

Putting F = W = ei and E = G = ej , in (21), we get

g(R(ei, ej)ej , ei) + g(R∗(ei, ej)ej , ei) =
c + 3

2
{g(ej , ej)g(ei, ei) − g(ei, ej)g(ej , ei}

+
c − 1

2
{g(φej , ej)g(φei, ei) − g(φei, ej)g(φej , ei)

− 2g(φei, ej)g(φej , ei) − g(ej , ξ)g(ej , ξ)g(ei, ei)
+ g(ei, ξ)g(ej , ξ)g(ej , ei) + g(ej , ξ)g(ej , ei)g(ξ, ei)
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− g(ei, ξ)g(ej , ej)g(ξ, ei)} − g(ζ(ei, ej), ζ∗(ej , ei))
+ g(ζ∗(ei, ei), ζ(ej , ej)) − g(ζ∗(ei, ej), ζ(ej , ei))
+ g(ζ(ei, ei), ζ∗(ej , ej)). (22)

Applying summation 1 ≤ i, j ≤ n and using (11)–(16) in (22), we obtain

∑
1≤i,j≤n

[g(R(ei, ej)ej , ei) + g(R∗(ei, ej)ej , ei)] =
c + 3

2
n(n − 1) + 2n2g(H, H∗)

+
c − 1

2
{2(1 − n) + 3g2(φei, ej)} − g(ζ(ei, ej), ζ∗(ej , ei))

− g(ζ∗(ei, ej), ζ(ej , ei))

=
c + 3

2
n(n − 1) + n2

{
g(H∗ + H, H∗ + H) − g(H, H) − g(H∗, H∗)

}

+
c − 1

2
{
2(1 − n) + 3g2(φei, ej)

}
− {

g(ζ(ei, ej) + ζ∗(ej , ei), ζ∗(ei, ej) + ζ(ej , ei))

− g(ζ(ei, ej), ζ(ei, ej)) − g(ζ∗(ej , ei), ζ∗(ej , ei))
}
. (23)

Since from Eq. (2) 2H◦ = H + H∗, it follows from the above equation that

2τ =
c + 3

2
n(n − 1) +

c − 1
2

{
2(1 − n) + 3‖P‖2}

+ 4n2‖H◦‖2 − n2(‖H‖2 + ‖H∗‖2) + 4‖ζ◦‖2 − (‖ζ‖2 + ‖ζ∗‖2). (24)

On the other hand we know that

K(π) =
1
2
[
g(R(e1, e2)e2, e1) + g(R∗(e1, e2)e2, e1)

]

=
1
2
[
g(R(e1, e2)e2, e1) + g(R∗(e1, e2)e2, e1)

− 2g(ζ∗(e1, e2), ζ(e2, e1)) + 2g(ζ(e1, e1), ζ∗(e2, e2))
]

= g(S(e1, e2)e2, e1) +
∑
α

[1
2
ζ∗α
11 ζα

22 +
1
2
ζα
11ζ

∗α
22 − ζ∗α

12 ζα
12

]
. (25)

Taking inner product of (9) with W and setting E = W = e1 and F = G = e2, we
find

g(S(e1, e2)e2, e1) =
c + 3

4

{
g(e2, e2)g(e1, e1) − g(e1, e2)g(e2, e1)

}

+
c − 1

4

{
g(φe2, e2)g(φe1, e1) − g(φe1, e2)g(φe2, e1)

− 2g(φe1, e2)g(φe2, e1) − g(e2, ξ)g(e2, ξ)g(e1, e1)

+ g(e1, ξ)g(e2, ξ)g(e2, e1) + g(e2, ξ)g(e2, e1)g(ξ, e1)

− g(e1, ξ)g(e2, e2)g(ξ, e1)
}

=
c + 3

4
+

c − 1

4

{
g(φe2, e2)g(φe1, e1) + 3g2(φe1, e2)
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− g
2(e2, ξ) − g

2(e1, ξ)
}

=
c + 3

4
+

c − 1

4

{
g(φe2, e2)g(φe1, e1) + 3Θ(π) − Φ(π)

}
. (26)

From (25) and (26), we get

2K(π) =
c + 3

2
+

c − 1

2

{
3Θ(π) − Φ(π)

}
+

∑

α

[
ζ∗α
11 ζα

22 + ζα
11ζ

∗α
22 − 2ζ∗α

12 ζα
12

]
. (27)

Taking into account (24) and (27), we have

2K(π) − 2τ =
c + 3

2
+

c − 1
2

{
3Θ(π) − Φ(π)

}
+

∑
α

[
ζ∗α
11 ζα

22 + ζα
11ζ

∗α
22 − 2ζ∗α

12 ζα
12

]

− c + 3
2

n(n − 1) − c − 1
2

{
2(1 − n) + 3‖P‖2} − 4n2‖H◦‖2

+ n2(‖H‖2 + ‖H∗‖2) + 4nC◦ − n(C + C∗)

=
c + 3

2
(1 + n − n2) +

c − 1
2

{
3Θ(π) − Φ(π) − 2(1 − n) − 3‖P‖2}

+
∑
α

[
ζ∗α
11 ζα

22 + ζα
11ζ

∗α
22 − 2ζ∗α

12 ζα
12

] − 4n2‖H◦‖2

+ n2(‖H‖2 + ‖H∗‖2) + 4‖ζ◦‖2 − (‖ζ‖2 + ‖ζ∗‖2). (28)

On the other hand,

‖ζ + ζ∗‖2 = g(ζ + ζ∗, ζ + ζ∗)
= ‖ζ‖2 + g(ζ, ζ∗) + g(ζ∗, ζ) + ‖ζ∗‖2
= ‖ζ‖2 + 2g(ζ, ζ∗) + ‖ζ∗‖2
≤ ‖ζ‖2 + 2‖ζ‖‖ζ∗‖ + ‖ζ∗‖2, (29)

and the equality holds if

ζ = kζ∗, k ∈ R
+ (30)

Equation (29) implies

‖ζ‖2 + ‖ζ∗‖2 ≥ ‖ζ + ζ∗‖2 − 2‖ζ‖‖ζ∗‖ (31)

Using (31) in (28), we obtain

2K(π) − 2τ ≤ c + 3
2

(1 + n − n2) +
c − 1

2
{
3Θ(π) − Φ(π) − 2(1 − n) − 3‖P‖2}

+
∑
α

[
ζ∗α
11 ζα

22 + ζα
11ζ

∗α
22 − 2ζ∗α

12 ζα
12

] − 4n2‖H◦‖2 + n2(‖H‖2 + ‖H∗‖2)

+ 4‖ζ◦‖2 − ‖ζ + ζ∗‖2 + 2‖ζ‖‖ζ∗‖
=

c + 3
2

(1 + n − n2) + n2(‖H‖2 + ‖H∗‖2) + 2‖ζ‖‖ζ∗‖
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+
c − 1

2
{
3Θ(π) − Φ(π) − 2(1 − n) − 3‖P‖2}

+
∑
α

[
ζ∗α
11 ζα

22 + ζα
11ζ

∗α
22 − 2ζ∗α

12 ζα
12

] − 4n2‖H◦‖2. (32)

Using the hypothesis of the theorem in (32), we have

2K(π) − 2τ ≤ c + 3
2

(1 + n − n2) +
c − 1

2
{
3Θ(π) − Φ(π) − 2(1 − n) − 3‖P‖2}

− 4n2‖H◦‖2 + n2(‖H‖2 + ‖H∗‖2) + 2‖ζ‖‖ζ∗‖. (33)

Moreover, equality holds if and only if it satisfies (30). Hence we have the required
result.

The following result is immediate consequence of Theorem 1.

Corollary 1. Let N be a statistical submanifold in a Sasakian statistical mani-
fold N(c) with

∑
α

[
ζ∗α
11 ζα

22+ζα
11ζ

∗α
22

]
= 2

∑
α ζ∗α

12 ζα
12 such that the structure vector

field ξ of N(c) is tangent to N. Then

K(π) − τ ≤ c + 3

4
(1 + n − n2) +

c − 1

4

{
3(Θ(π) − ‖P‖2) − Φ(π) − 2(1 − n)

}
, (34)

if N is totally geodesic with respect to ∇ or N is totally geodesic with respect to
∇∗

.

Further, we state similar result when the structure vector field ξ of N(c) is
normal to N.

Theorem 2. Let N be a statistical submanifold in a Sasakian statistical manifold
N(c) with

∑
α

[
ζ∗α
11 ζα

22+ζα
11ζ

∗α
22

]
= 2

∑
α ζ∗α

12 ζα
12 such that the structure vector field

ξ of N(c) is Normal to N. Then

K(π) ≤ τ +
c + 3

4
(1 + n − n2) +

c − 1
4

{
3Θ(π) − 3‖P‖2}

+
n2

2
(‖H‖2 + ‖H∗‖2) − 2n2‖H◦‖2 + ‖ζ‖‖ζ∗‖. (35)

From the above result we deduce the following corollary.

Corollary 2. Let N be a statistical submanifold in a Sasakian statistical mani-
fold N(c) with

∑
α

[
ζ∗α
11 ζα

22+ζα
11ζ

∗α
22

]
= 2

∑
α ζ∗α

12 ζα
12 such that the structure vector

field ξ of N(c) is Normal to N. Then

K(π) ≤ τ +
c + 3

4
(1 + n − n2) +

c − 1
4

{
3Θ(π) − 3‖P‖2}, (36)

if N is totally geodesic with respect to ∇ or N is totally geodesic with respect
to ∇∗

.
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4 Conclusion and Future work

We obtained the B. Y. Chen inequality for the statistical submanifolds in
Sasakian statistical manifolds having constant curvature. In fact, this is the
first such attempt for any statistical case. Therefore, I hope it will open the
door for the researcher to obtain such inequality, which has the great geo-
metric importance, for different ambient such as Holomorphic statistical
manifolds, Kenmotsu Statistical manifolds, Cosymplectic statistical
manifolds, Quaternion Kaehler-like statistical manifolds etc. with con-
stant curvatures. The forthcoming challenge is to improve the result by weaken-
ing the condition.
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Abstract. In 1999, Smet et al. conjectured the generalized Wintgen
inequality for submanifolds in real space forms. The commonly name
used for this conjecture is DDVV conjecture proved independently by Ge
and Tang (2008) and Lu (2011). Mihai Proved the Wintgen inequality
for lagrangian and Legendrian submanifolds in complex space forms and
Sasakian space forms in 2014 and 2017 respectively. In the present paper,
we proved the same inequality for Legendrian submanifolds of Sasakian
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1 Introduction

In 1985, statistical manifolds emerges from statistical distributions due to Amari
[1] in terms of information geometry. The geometry of such manifolds uses the
notion of dual connections, also referred as conjugate connections. It is closely
related to affine geometry and Hessian geometry. Due to lot of applications
of statistical manifolds to various fields of science and technology, it attracts
the attention of distinguished geometers from last few years. The geometry of
submanifolds of statistical manifolds have been studied by different authors and
obtain interesting results between intrinsic invariants and extrinsic invariants.
Furuhata [3] introduced the notion of Sasakian statistical structure an analogues
to Sasakian structure in contact geometry and obtain some beautiful results.
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Wintgen [7] established an inequality

K ≤ ‖H‖2 − |K|⊥

where K is Gauss curavture, K⊥ is normal curvature and H is squared mean
curvature of M2 in an Euclidean Space E4. The equality case holds if and only if
the ellipse of the curvature of M2 in E4 is circle. The above inequality is known
as Wintgen inequality.

Later on Smet et al. [2] extended the inequality and formulated the conjecture
on the Wintgen inequality for n-dimensional submanifolds of a real space form
M̄n+m(c). The conjucture is also known as DVVV conjecture and is formulated
as:

Conjecture 1. Let f : Mn → M̄m+n(c) be an isometric immersion of n-
dimensional submanifolds of a real space form M̄n+m(c) of constant sectional
curvature c, then

ρ ≤ ‖H‖2 − ρ⊥ + c

where ρ and ρ⊥ are the normalized scalar curvature and the normalized normal
scalar curvature respectively.

The normalized scalar curvature is defined by

ρ =
2τ

n(n − 1)
=

2
n(n − 1)

∑

1≤i<j≤n

K(ei ∧ ej). (1)

where τ is scalar curvature.
The normalized normal scalar curvature are defined as

ρ =
2τ⊥

n(n − 1)
=

2
n(n − 1)

√ ∑

1≤i<j≤n

∑

1≤α<β≤m

(R⊥(ei, ej , ξα, ξβ)). (2)

where τ⊥ is normal scalar curvature.
The distinguished geometers prove the conjecture for different submanifolds

and ambient spaces in complex as well as in contact geometry and also discuss the
equality case. Finally Ge and Tang [4] and Lu [5] proved the DDVV conjecture
independently for general case.

In the present paper, we obtain the generalized Wintgen inequality for Leg-
endrian submanifolds of Sasakian statistical manifolds with constant φ-sectional
curvature w.r.t dual connections ∇̄ and ∇̄∗.

2 Preliminaries

Let M̄, ḡ be a Riemannian manifold with a pair of torsion free affine connections
∇̄ and ∇̄∗. Then (∇̄, ḡ) is called statistical structure on if

(∇̄X ḡ)(Y,Z) − (∇̄Y ḡ)(X,Z) = 0 (3)
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for X,Y,Z ∈ TM̄ . If the Riemannian manifold M̄, ḡ with statistical structure
satisfies

Xḡ(Y,Z) = ḡ(∇̄XY,Z) + ḡ(Y,∇∗
XZ), (4)

is said to be a statistical manifold and is denoted as (M̄, ḡ, ∇̄, ∇̄∗). Any torsion-
free connection ∇̄ has a dual connection ∇̄∗ and satisfy

∇̄◦ =
∇̄ + ∇̄∗

2
(5)

where ∇̄◦ is the Levi-Civita connection on M̄ .
Consider M̄ be an odd dimensional manifold. Suppose η, φ and ξ be the 1-

form, a tensor field and structural vector field or Reeb vector field respectively
on M̄ satisfying

φξ = 0, φ2 = −I + η ⊗ ξ

then (η, φ, ξ) is called almost contact structure on M̄ . Consider (M̄, ḡ) Rieman-
nian manifold and (η, φ, ξ) is almost contact structure. Suppose φ∗ be another
tensor field of type (1, 1) on M̄ satisfying

ḡ(φX, Y ) = −ḡ(X,φ∗Y )

for X,Y ∈ TM̄ . Then (M̄, ḡ, φ, ξ, η) is said to be almost contact metric-like
manifold ad satisfying

φ∗2 − I + η ⊗ ξ

and
ḡ(φX, φ∗Y ) = ḡ(X,Y ) − η(X)η(Y ).

If a statistical manifold (M̄, ḡ, ∇̄) has an almost contact metric-like structure
(φ, ξ, η), then (M̄, ḡ, ∇̄, φ, ξ, η) is known as almost contact metric-like statistical
manifold.

A quadruple (∇̄, ḡ, φ, ξ) be Sasakian statistical structure on M̄ and so is
(∇̄∗, ḡ, φ∗, ξ), if (∇̄, ḡ]) is a statistical structure.

Definition 1. Let
(∇̄, ḡ, φ, ξ

)
be a Sasakian statistical structure on M̄ , and

c ∈ R. The Sasakian statistical structure is said to be of constant φ-sectional
curvature if

S(X,Y )Z =
c + 3

4
(ḡ(Y,Z)X − ḡ(X,Z)Y ) +

c − 1
4

(ḡ(φY,Z)φX

− ḡ(φX,Z)φY − 2ḡ(φX, Y )φZ − ḡ(Y, ξ)ḡ(Z, ξ)X
+ ḡ(X, ξ)ḡ(Z, ξ)Y + ḡ(Y, ξ)ḡ(Z,X)ξ − ḡ(X, ξ)ḡ(Z, Y )ξ) (6)

for X,Y,Z ∈ TM̄.

A submanifold M which is normal to the structural vector field ξ in a Sasakian
statistical manifold is known as c-totally real submanifold. In this particular case,



410 M. N. Boyom et al.

for every p ∈ M , φ(TpM) ⊆ T⊥
p M . if n = m, the M is known as Legendrian

submanifold.
Let (M, g,∇,∇∗) be statistical submanifold of (M̄, ḡ, ∇̄, ∇̄∗). The Gauss and

Weingarten formulae are given as

∇̄XY = ∇XY + σX, Y , ∇̄Xξ = −AξX + ∇⊥
Xξ (7)

∇̄∗
XY = ∇∗

XY + σ∗X,Y , ∇̄∗
Xξ = −A∗

ξX + ∇∗⊥
X ξ (8)

for all X,Y ∈ TM and ξ ∈ T⊥M respectively. Moreover, we have the following
equations

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗
XZ)

ḡ(σ(X,Y ), ξ) = g(A∗
ξX,Y ), ḡ(σ∗(X,Y ), ξ) = g(AξX,Y )

and Xḡ(ξ, η) = ḡ(∇⊥
Xξ, η) + ḡ(ξ,∇∗⊥

X η).

The mean curvature vector fields are defined as

H =
1
n

n∑

i=1

σ(ei, ei) =
1
n

m∑

l=1

(
n∑

i=1

σl
ii

)
ξl (9)

and H∗ =
1
n

n∑

i=1

σ∗(ei, ei) =
1
n

m∑

l=1

(
n∑

i=1

σ∗l
ii

)
ξl (10)

for 1 ≤ i, j ≤ n and 1 ≤ α ≤ m.

Proposition 1. [6] Let (M, g,∇,∇∗) be statistical submanifold of (M̄, ḡ, ∇̄,
∇̄∗). Let R̄ and R̄∗ be the Riemannian curvature tensors on M̄ for ∇̄ and ∇̄∗

respectively, then the Gauss, Codazzi and Ricci equations are given by the fol-
lowing result.

ḡ(R̄(X,Y )Z,W ) = g(R(X,Y )Z,W ) + ḡ(σ(X,Z), σ∗(Y,W ))
− ḡ(σ∗(X,W ), σ(Y,Z))

ḡ(R̄∗(X,Y )Z,W ) = g(R∗(X,Y )Z,W ) + ḡ(σ∗(X,Z), σ(Y,W ))
− ḡ(σ(X,W ), σ∗(Y,Z))

ḡ(R⊥(X,Y )ξ, η) = ḡ(R̄(X,Y )ξ, η) + g([A∗
ξ , Aη]X,Y )

ḡ(R∗ ⊥ (X,Y )ξ, η) = ḡ(R̄∗(X,Y )ξ, η) + g([Aξ, A
∗
η]X,Y )

(R̄(X,Y )Z)⊥ = (∇̄Xσ)(Y,Z) − (∇̄Y σ)(X,Z)
(R̄∗(X,Y )Z)⊥ = (∇̄∗

Xσ∗)(Y,Z) − (∇̄∗
Y σ∗)(X,Z)

where [Aξ, A
∗
η] = AξA

∗
η − A∗

ηAξ and [A∗
ξ , Aη] = A∗

ξAη − AηA∗
ξ , for X,Y,Z,W ∈

TM and ξ, η ∈ T⊥M .

3 Main Result

In the present section, we prove the main result of the paper.
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Theorem 2. Let N be the Legendrian submanifold of Sasakian statistical man-
ifold N̄ of constant φ-sectional curvature c. Then

ρ⊥∇̄,∇̄∗ ≤ 6
(

‖H‖2 + ‖H∗‖2 + 16‖H◦‖2
)

− 12ρ − 9 + 3c + 120(ρ̄◦ − ρ◦)

Proof. Suppose {e1, e2, . . . , en} and {en+1 = φe1, en+2 = φe2, . . . , e2n = φen,
e2n+1 = ξ} be the orthonormal frame on N and T⊥N respectively. Using Gauss
equation, we have

2τ = 2
∑

1≤i<j≤n

g(S(ei, ej)ej , ei)

=
∑

1≤i<j≤n

{ḡ((R(ei, ej)ej , ei) + ḡ((R∗(ei, ej)ej , ei))}

=
∑

1≤i<j≤n

{c + 3
2

+ ḡ(σ(ei, ei), σ∗(ej , ej)) + ḡ(σ∗(ei, ei), σ(ej , ej))

− 2ḡ(σ∗(ei, ej), σ(ei, ej)) (11)

Using the definition of normalized scalar curvature and (11), we obtain

ρ∇̄,∇̄∗
=

3 − c

2
+

1
n(n − 1)

n∑

r=1

∑

1≤i<j≤n

(
2σijrσ

∗r
ij − σii∗rσr

jj − σiirσ
∗r
jj

)
(12)

By the definition of normalize scalar curvature, we have

ρ⊥∇̄,∇̄∗
=

1

n(n − 1)

⎛
⎝ ∑

1≤s<t≤n

∑
1≤i<j≤n

[
g(R⊥(ei, ej)er, es) + g(R∗ ⊥ (ei, ej)er, es)

]2
⎞
⎠

1
2

which implies that

ρ⊥∇̄,∇̄∗
=

1
n(n − 1)

⎛

⎝
∑

1≤s<t≤n

∑

1≤i<j≤n

(
σs

ikσ∗r
jk − σ∗r

ik σs
jk + σ∗s

ik σr
jk − σr

ikσ∗s
jk

]2
⎞

⎠

1
2

Using the relation 2σ◦r
ik = σ◦r

ik + σ∗r
ik for 1 ≤ i < j ≤ n and 1 ≤ r ≤ n for the

submanifold w.r.t. ∇̄◦, we have

ρ⊥∇̄,∇̄∗
=

1
n(n − 1)

[ ∑

1≤s<t≤n

∑

1≤i<j≤n

( n∑

k=1

(4(σ◦s
ik σ◦r

jk − σ◦r
ik σ◦s

jk) + (σr
ikσs

jk

−σs
ikσr

jk) + (σ∗r
ik σ∗s

jk − σ∗s
ik σ∗r

jk))
)2] 1

2
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From the inequality (x + y + z)2 ≤ 3(x2 + y2 + z2) for x, y, z ∈ R and the
equation (18) of [5], we find

ρ⊥∇̄,∇̄∗ ≤ 3
2n2(n − 1)

m∑

r=1

∑

1≤i<j≤n

[
(σr

ii − σr
jj)

2 + (σ∗r
ii − σ∗r

jj )2 + 16(σ◦r
ii − σ◦r

jj )2
]

+
3

n(n − 1)

m∑

r=1

∑

1≤i<j≤n

[
(σr

ij)
2 + (σ∗r

ij )2 + 16(σ◦r
ij )2

]

Using simple calculations for mean curvature vector in view of statistical
structures, we arrive at

ρ⊥∇̄,∇̄∗ ≤ 3
2

(
‖H‖2 + ‖H∗‖2 + 16‖H◦‖2

)
− 3

n(n − 1)

m∑

r=1

∑

1≤i<j≤n

[
20σ◦r

ii σ◦r
jj

−σ∗r
ii σ◦r

jj − σr
iiσ

∗r
jj − 20(σ0r

ij )2 + 2σr
ijσ

∗r
ij

]
(13)

By Gauss equation for ∇̄◦ and substituting the value of (12) in (13), we get

ρ⊥∇̄,∇̄∗ ≤ 3
2

(
‖H‖2 + ‖H∗‖2 + 16‖H◦‖2

)

− 3ρ∇̄,∇̄∗ − 3
(

3 − c

4

)
+ 30(ρ̄◦ − ρ◦)

which implies that

ρ⊥∇̄,∇̄∗ ≤ 6
(

‖H‖2 + ‖H∗‖2 + 16‖H◦‖2
)

− 12ρ∇̄,∇̄∗ − 9 + 3c + 120(ρ̄◦ − ρ◦)
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Abstract. We study the logarithmic L(α)-divergence which extrapo-
lates the Bregman divergence and corresponds to solutions to novel opti-
mal transport problems. We show that this logarithmic divergence is
equivalent to a conformal transformation of the Bregman divergence,
and, via an explicit affine immersion, is equivalent to Kurose’s geometric
divergence. In particular, the L(α)-divergence is a canonical divergence
of a statistical manifold with constant sectional curvature −α. For such a
manifold, we give a geometric interpretation of its sectional curvature in
terms of how the divergence between a pair of primal and dual geodesics
differ from the dually flat case. Further results can be found in our follow-
up paper [27] which uncovers a novel relation between optimal transport
and information geometry.

Keywords: Logarithmic divergence · Bregman divergence ·
Conformal divergence · Affine immersion ·
Constant sectional curvature · Optimal transport

1 Introduction

Let Ω ⊂ Rn be an open convex set, n ≥ 2. For α > 0 fixed, we say that a
function ϕ : Ω → R is α-exponentially concave if eαϕ is concave on Ω. All
functions in this paper are assumed to be smooth. Given such a function ϕ, we
define its L(α)-divergence by

L(α)
ϕ [ξ : ξ′] :=

1
α

log(1 + αDϕ(ξ′) · (ξ − ξ′)) − (ϕ(ξ) − ϕ(ξ′)), ξ, ξ′ ∈ Ω, (1)

where Dϕ is the Euclidean gradient and · is the dot product. We always assume
the Hessian D2eαϕ is strictly negative definite on Ω. Then L(α)

ϕ is a divergence
on Ω, regarded as a manifold, in the sense of [1, Definition 1.1]. As α ↓ 0, the
L(α)-divergence (with ϕ fixed) converges to the Bregman divergence defined by

Bφ[ξ : ξ′] := (φ(ξ) − φ(ξ′)) − Dφ(ξ′) · (ξ − ξ′), (2)

c© Springer Nature Switzerland AG 2019
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where φ = −ϕ is convex with D2φ > 0. Thus the family {L(α′)
ϕ }0<α′≤α of

logarithmic divergences extrapolate the Bregman divergence Bφ.
Originally motivated by applications in stochastic portfolio theory [7], the

L(1)-divergence (and its extension to the L(α)-divergence) was introduced by
Pal and the first author in [19,26] and was studied further in [20,24,25]. There
are two main results proved in these papers. First, the L(α)-divergence cor-
responds to the solution to an optimal transport problem with a logarithmic
cost function; this is formulated using the general framework of c-divergence,
see [20,25,27]. Also see [9,18,21] for recent results about the optimal transport
problem which have independent mathematical interest. Second, the induced sta-
tistical manifold (M, g,∇,∇∗) (see [1, Section 6.2] for the definition) is dually
projectively flat with constant sectional curvature −α. In [26] we also defined an
L(−α)-divergence corresponding to constant positive sectional curvature α. For
expositional simplicity we only consider the L(α)-divergence in this paper and
[27], but similar results hold for the L(−α)-case as well.

In this paper we develop two geometric aspects of the logarithmic divergence.
First, we connect the L(α)-divergence with classical topics in information geom-
etry, namely conformal transformation and affine differential geometry. In par-
ticular, by using an explicit affine immersion, we show that the L(α)-divergence
is equivalent to the canonical geometric divergence constructed by Kurose [11].
Second, we provide a geometric interpretation of the sectional curvature for
a statistical manifold with constant negative sectional curvature. By analyz-
ing a canonical divergence between a pair of primal and dual geodesics, we
show that the sectional curvature can be quantified in terms of the deviation
from the generalized Pythagorean relation of a dually flat manifold (see Theo-
rem 4 below). This extends the geometric interpretation of sectional curvature
in Riemannian geometry. In our follow-up work [27] we proved a more general
result (see [27, Theorem 3.13]) that holds for any divergence (though it is not
intrinsic in the information geometric sense). This was achieved by a novel rela-
tion between information geometry and the pseudo-Riemannian framework of
Kim and McCann [10] concerning the Ma-Trudinger-Wang tensor in optimal
transport.

2 Conformal Divergence and Its Geometry

We refer the reader to [1] for general background in information geometry. Con-
formal transformations of divergence have been studied in the literature; see for
example [2,12,15,17] and the references therein. An important application is
robust clustering [14,23].

Definition 1. Let φ : Ω → R be convex (with D2φ > 0) and let κ : Ω → (0,∞).
We define the (left-sided) conformal transformation of the Bregman divergence
Bφ by

Dφ,κ[ξ : ξ′] := κ(ξ)Bφ[ξ : ξ′]. (3)

To abbreviate we call Dφ,κ a conformal divergence.
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Note that a right-sided conformal transformation can be converted to a left-
sided one by considering the convex conjugate of φ (see [1, p. 17]).

Our first result is that the L(α)-divergence is, up to a monotone transforma-
tion, equal to a conformal transformation of a Bregman divergence. This shows
that the geometry induced by the L(α)-divergence can be studied using results
of Bregman divergence and conformal transformation.

Theorem 1. Consider an L(α)-divergence L(α)
ϕ on Ω as in (1). Let φ = −eαϕ

which is convex and let κ = − 1
αφ > 0. Then, with T (x) = 1

α (eαx − 1), we have

T (L(α)
ϕ ) ≡ Dφ,κ. (4)

In particular, the conformal divergence Dφ,h induces the same dualistic structure
(g,∇,∇∗) as that of D(α)

ϕ .

Proof. The identity (4), once conceived, can be verified by a straightforward
computation. The second statement is a consequence of the following lemma
which can be proved again by a computation. Note that similar reasonings are
used in [25, Lemma 3] and [25, Theorem 17]. 
�
Lemma 1. Let D̃ and D be divergences related by a monotone transformation:
D̃ = T (D), where T : [0,∞) → [0,∞) is strictly increasing with T (0) = 0.
Let (g,∇,∇∗) and (g̃, ∇̃, ∇̃∗) be respectively the dualistic structures induced by
D and D̃. Then, in any local coordinate system, the coefficients of the dualistic
structures are related by

g̃ij = T ′(0)gij , Γ̃ijk = T ′(0)Γijk, Γ̃ ∗
ijk = T ′(0)Γ ∗

ijk. (5)

In particular, we have Γ̃ij
k = Γij

k and Γ̃ ∗
ij

k = Γij
k, and the primal and dual

curvature tensors are the same.

Remark 1. By Lemma 1, we say that two divergences D and D̃ are equivalent
if there exists T (as in Lemma 1 with T ′(0) = 1) such that D̃ = T (D). Clearly
this defines an equivalence relation among divergences on a manifold. Theorem
1 thus states that the L(α)-divergence is equivalent to a conformal divergence.

Theorem 1 motivates us to study conformal divergences in general. Recall
that two torsion-free affine connections ∇ and ∇̃ are projectively equivalent if
there exists a 1-form τ such that

∇XY = ∇̃Y X + τ(X)Y + τ(Y )X

for any vector fields X and Y . For its geometric interpretation see [16, p. 17]. In
particular, ∇ and ∇̃ have the same geodesics up to time reparameterizations. By
definition, ∇ is projectively flat if it is projectively equivalent to a flat connection.
When considering the L(α)-divergence or a conformal divergence, we think of M
(equal to Ω as a set) as a manifold, and ξ is the primal (global) coordinate
system with values in the convex set Ω.
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Proposition 1. Let (M, g,∇,∇∗) be the statistical manifold induced by a con-
formal divergence Dφ,κ.

(i) The primal connection ∇ is projectively flat and the primal geodesics are,
up to time reparameterization, straightlines in the ξ-coordinate system. (In
fact, using the language of [3, Section 8.4], ∇ is (−1)-conformally flat and
∇∗ is 1-conformally flat.)

(ii) ∇ has constant sectional curvature λ ∈ R with respect to g if and only if

1
κ(ξ)

≡ λφ(ξ) + a +
n∑

i=1

biξ
i (6)

for some real constants a and bi. In this case, the dual sectional curvature
is also constant and is equal to λ.

Remark 2. Note that if (6) holds then one may absorb the linear terms in the
definition of φ. On the other hand, we observe that if λ < 0 then λφ is concave.
Since on R

d there are no non-trivial positive concave functions, from (6) we see
that if the sectional curvature is constant and negative, the domain Ω must be
a proper subset of Rd.

Proof (of Proposition 1). Consider the dualistic structure (g,∇,∇∗) induced by
the conformal divergence. Consider the Euclidean coordinate ξ on Ω. By a direct
computation, the coefficients of g and ∇ are given by

gij(ξ) = κ(ξ)∂i∂jφ(ξ),

Γij
k(ξ) =

∂iκ(ξ)
κ(ξ)

δk
j +

∂jκ(ξ)
κ(ξ)

δk
i .

(7)

Since κ > 0, the 1-form τ = d log κ is well-defined. From (7), we have that
∇XY = ∇̃Y X + τ(X)Y + τ(Y )X we ∇̃ is the Euclidean flat connection on Ω.
Thus ∇ is projectively flat and we have (i). A further computation shows that

Rijk
�(ξ) = κ(ξ)

(
∂jk

1
κ

(ξ)δ�
i − ∂ik

1
κ

(ξ)δ�
j

)
. (8)

Using (8), we see that ∇ has constant sectional curvature λ ∈ R with respect to
g (see [25, Definition 12]) if and only if

κ(ξ)∂jk
1
κ

(ξ) = κ(ξ)gjk(ξ) = λκ(ξ)∂jkφ(ξ),

which is equivalent to (6) after integration. 
�

3 Realization by Affine Immersion

Consider a statistical manifold (M, g,∇,∇∗). In [25, Theorem 18] we proved that
if both ∇ and ∇∗ are dually projectively flat with constant sectional curvature
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−α < 0, then one can define intrinsically a local divergence of L(α)-type which
induces the given geometric structure. In this result, a key idea is that the primal
and dual coordinates are related by an optimal transport map (this leads to the
self-dual representation given by (21) below). In fact, by [3, Theorem 8.3], if
a statistical manifold has constant sectional curvature, then we automatically
have dual projective flatness. Thus the condition about projective flatness is
redundant and we may modify the statement as follows:

Theorem 2. [25, Theorem 18] The L(α)-divergence is a (local) intrinsic diver-
gence for a statistical manifold with constant negative sectional curvature.

On the other hand, for a (simply connected) statistical manifold with con-
stant sectional curvature, Kurose [11] defined globally a canonical, intrinsic diver-
gence using affine differential geometry and proved that it satisfies a generalized
Pythagorean theorem. In this section we show that if (Ω, g,∇,∇∗) is induced by
an L(α)-divergence L(α)

ϕ , then the geometric divergence is the conformal diver-
gence Dφ,κ in (4). While these canonical divergences are equivalent, our app-
roach in [20,25] gives an explicit construction in Kurose’s work, covers the Breg-
man and L(α)-divergences under the same framework, and suggests previously
unknown connections with optimal transport maps.

To state the main result we recall some concepts of affine differential geom-
etry; for details see [16] and [13]. Let M be an n-dimensional manifold. An
affine immersion of M into R

n+1 consists of an immersion f : M → R
n+1 and a

transversal vector field n with values in R
n+1 on M ∼= f(M). The last statement

means that
Tf(p)R

n+1 = f∗(TpM) ⊕ span(n(p))

for all p ∈ M . Let ∇ be the standard (flat) affine connection on R
n+1. Then the

covariant derivative decomposes as

∇Xf∗Y = f∗(∇XY ) + g(X,Y )n. (9)

We call ∇ and g the induced connection and bilinear form respectively. If the
induced connection and bilinear form are equal to the Riemannian metric and
primal connection of a dualistic structure (g,∇,∇∗), we say that the affine
immersion realizes the given structure. By [13, Theorem 5.3], this is possible
when the statistical manifold is simply connected and 1-conformally flat. This is
true in particular when the statistical manifold has constant sectional curvature.

Let (Rn+1)∗ be the dual space of Rn, and let 〈., .〉 be the dual pairing. Given
an affine immersion (f,n), the conormal vector field n∗ : M → (Rn+1)∗ is defined
by the conditions

〈n∗(p),n(p)〉 = 1, 〈n∗(p), f∗X〉 = 0 ∀X ∈ TpM. (10)

Definition 2 (Kurose’s geometric divergence). For an affine immersion
(f,n) with conormal field n∗, the geometric divergence is defined by

ρ(p, q) := 〈f(p) − f(q),n∗(q)〉, p, q ∈ M. (11)
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In [11] it was shown that if (g,∇) is 1-conformally flat, then the geometric
divergence does not depend on the choice of the immersion and recovers the
given dualistic structure. (The dual connection ∇∗ is uniquely determined given
g and ∇.) Hence, it can be viewed as a canonical divergence (see the next section
for more discussion).

The following result connects the L(α)-divergence with the geometric diver-
gence. It shows that the geometric divergence, the L(α)-divergence and the
conformal divergence are all equivalent. In particular, they are all intrinsically
defined (at least locally) for the given dualistic structure.

Theorem 3. Consider a convex domain Ω ⊂ R
n equipped with an L(α)-

divergence L(α)
ϕ and its induced geometry (g,∇,∇∗). Let φ = −eαϕ and κ = − 1

αφ
as in Theorem 1. Consider the affine immersion defined by

f(ξ) = κ(ξ)(ξ1, ξ2, ..., ξn, 1),
n(ξ) = αf(ξ),

(12)

where ξ is the Euclidean coordinate system on Ω. Then this affine immersion
realizes (g,∇). Moreover, the geometric divergence is given by

ρ(ξ, ξ′) = Dφ,κ(ξ, ξ′) =
1
α

(
eL

(α)
ϕ [ξ:ξ′] − 1

)
. (13)

Proof. The choice of our immersion (12) is motivated by the proof of [16, Propo-
sition 2.7]. It is easy to see that f is an immersion and n is transversal. Let
ẽj := ∂

∂ξj f and ∂kẽj := ∂
∂ξk

∂
∂ξj f . Then, it can be verified by a straightforward

computation that
∂kẽj ≡ Γkj

mẽm + gij(αf). (14)

We refer the reader to [25, Section 5] for expressions of the coefficients Γij
k. Thus

the affine immersion (f,n) realizes the given dualistic structure.
Next we construct the conormal vector field. Using the relations in (10), we

can show that the conormal field is given by

n∗(pξ) = (−∂1φ(ξ), . . . ,−∂nφ(ξ),−αφ(ξ) + Dφ(ξ) · ξ). (15)

We obtain (13) by plugging (15) into (13).

4 Interpretation of Sectional Curvature

Consider a statistical manifold (M, g,∇,∇∗). Given q ∈ M and v,w ∈ TqM
which are linearly independent, we can define the primal sectional curvature
sec(v,w) by

sec(v,w) :=
〈R(w,v)v,w〉

‖v‖2‖w‖2 − 〈v,w〉2 , (16)

where 〈., .〉 is the Riemannian inner product and R is the primal curvature tensor.
Similarly, we can define the dual sectional curvature sec∗. What are the geometric
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interpretations of these sectional curvatures? Interestingly, to the best of our
knowledge, this natural question has not been satisfactorily answered in the
literature.

For motivations, let us consider a Riemannian manifold (M, g). In this case,
it is well-known that the sectional curvature (given by (16) using the Levi-Civita
connection) can be interpreted in terms of the Riemannian distance, defined by

d(x, y) := inf
γ:γ(0)=x,γ(1)=y

∫ 1

0

‖γ̇(t)‖dt, (17)

between a pair of geodesics. For t1, t2 > 0 small, let r(t1) = expq(t1v) and
p(t2) = expq(t2w) be geodesics starting at q, where expq is the exponential
map. Then, we have

d2(r(t1), p(t2))

= ‖v‖2t21 + ‖w‖2t22 − 2〈v,w〉t1t2 − 1
3
〈R(w,v)v,w〉t21t22 + · · · ,

(18)

where the higher order terms are omitted (see [22]). This implies that

d2(r(t1), p(t2)) − d2(r(t1), q) − d2(q, p(t2))

= −2〈v,w〉t1t2 − 1
3
(‖v‖2‖w‖2 − 〈v,w〉2)sec(v,w)t21t

2
2 + · · · .

(19)

We look for analogous geometric interpretations for a statistical manifold.
Given a statistical manifold (M, g,∇,∇∗), in order to formulate a statement
in the form of (18) or (19), we need to have an intrinsically defined divergence
corresponding to the given geometry. This is the problem about constructing a
canonical divergence and was studied by several papers including [4–6,8].

Using the L(α)-divergence which is explicit, intrinsically defined and has spe-
cial properties, in this section we study the geometric interpretation for a sta-
tistical manifold with constant sectional curvature −α ≤ 0. Let q ∈ M and
v,w ∈ TqM. Motivated by the generalized Pythagorean theorem which holds
for the Bregman and L(α)-divergences, let

r(t1) = expq(t1v) and p(t2) = exp∗
q(t2w),

where expq and exp∗
q are respectively the exponential maps corresponding respec-

tively to the primal and dual connections ∇ and ∇∗. With D being an intrinsic
local L(α)-divergence (see Theorem 2), consider the expression H defined by

H(t1, t2) := D[r(t1) : p(t2)] − D[r(t1) : q] − D[q : p(t2)]. (20)

By the generalized Pythagorean theorem proved in [20, Theorem 1.2] and [25,
Theorem 16], if 〈v,w〉 = 0 then H(t1, t2) ≡ 0. This motivates the definition
of H and the comparison with (19). Note that if α = 0 then the manifold is
dually flat. In this case, there is a canonical divergence D of Bregman type.
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With the Bregman divergence and with H defined by (20), we have the identity
H(t1, t2) ≡ −〈v,w〉t1t2.

Now let α > 0 and let D be the canonical (local) L(α)-divergence. By [25,
Theorem 18], there exists a local coordinate system ξ and an α-exponentially
concave function ϕ = ϕ(ξ) such that D[y : x] = D(α)

ϕ [ξy : ξx]. Here ξx is the
primal coordinate of x ∈ M. Moreover, letting

η =
Dϕ(ξ)

1 − αDϕ(ξ) · ξ
, ψ(η) =

1
α

log(1 + αξ · η) − ϕ(ξ),

be respectively the dual coordinate and α-conjugate of ϕ, we have D[y : x] =
D(α)

ψ [ηx : ηy] and the self-dual representation

D[y : x] =
1
α

log(1 + αξy · ηx) − ϕ(ξy) − ψ(ηx). (21)

As α ↓ 0, these identities reduce to well-known properties of the Bregman diver-
gence [1, Chapter 1]. By analyzing carefully the primal and dual geodesics as
well as the self-dual representation (21), we have the following result.

Theorem 4. For t1, t2 > 0 small, we have

H(t1, t2) = −〈v,w〉t1t2 − α〈v,w〉
[‖v‖2

3
t31t2 +

‖w‖2
3

t1t
3
2 +

〈v,w〉
2

t21t
2
2

]

+ higher order terms.
(22)

Proof. By [25, Corollary 2], the primal/dual geodesics of L(α)-divergence are
straight lines in the primal/dual coordinate systems, up to time changes. Thus
we can write ξr(t1) = ξq + s1(t1)v and ηp(t2) = ηq + s2(t2)w, where v and w are
the coordinate representations of v and w, and s1 and s2 are time changes. For
notational simplicity we suppress the parameters t1 and t2. Using [25, (89)], we
have

〈v,w〉 =
(

v · w

1 + α(ξq · ηq)
− α

(1 + α(ξq · ηq))2
(ηq · v)(ξq · w)

)
. (23)

Differentiating (21) and using (23), we expand H(t1, t2) in terms of s1 and s2:

H(t1, t2) = − 〈v,w〉s1s2 +
α〈v,w〉

1 + α(ξq · ηq)
· (

(ηq · v)s21s2 + (ξq · w)s1s22
)

+ (C3 − αC1C2)α2(C2
1 + C2

2 + C1C2) − α

2
(C3 − αC1C2)2

+ higher order terms,

(24)

where C1 = ηq·v
1+α(ξq·ηq)

s1, C2 = ξq·w
1+α(ξq·ηq)

s2, and C3 = v·w
1+α(ξq·ηq)

s1s2.
On the other hand, the geodesic equations (see [25, (86)]) give us, after some

simplifications, Taylor expansions of s1 and s2:

s1(t1) = t1 + α(Dϕ(q) · v)t21 + T1t
3
1 + O(t41), (25)
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s2(t2) = t2 + α(Dψ(q) · w)t22 + T2t
3
2 + O(t42), (26)

where T1 = 1
3 (4(α(Dϕ(q) ·v))2 +α(v�D2ϕ(q)v)) and T2 = 1

3 (4(α(Dψ(q) ·w))2 +
α(w�D2ψ(q)w)). The proof is completed by combining (24), (25) and (26). 
�

This result gives a geometric interpretation of the negative sectional cur-
vature −α in terms of the canonical local L(α)-divergence D. Note that if we
use another intrinsic divergence (such as the conformal divergence) we will get
a different expression in (22). Analogous results can be derived for the L(−α)-
divergence.

Note that Theorem 4 implies that ∂2

∂t21∂t22
D[r(t1) : p(t2)]

∣∣∣
t1=t2=0

=

−2α〈v,w〉2, so the sectional curvature −α may be interpreted in terms of this
fourth order mixed derivative. In [27, Theorem 3.13] we extended this result to
any divergence. This is formulated using a novel connection between the infor-
mation geometry of c-divergence (which covers all divergences) and the pseudo-
Riemannian framework of Kim and McCann [10]. In particular, for any diver-
gence D, the mixed derivative ∂2

∂t21∂t22
D[r(t1) : p(t2)]

∣∣∣
t1=t2=0

is equal to −2 times

an un-normalized cross curvature of the Kim-McCann metric induced by the
cost function. The reader is referred to [27] for more details. To conclude this
paper, let us remark that for a statistical manifold with non-constant sectional
curvature, this cross sectional curvature is not intrinsic as there are different
divergences (and hence Kim-McCann metrics) which induce the same dualistic
structure. A natural starting point is to analyze the canonical divergence of Ay
and Amari constructed in [4]. We leave this as a problem for future research.
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transport. arXiv preprint arXiv:1807.05649 (2018)

22. Sternberg, S.: Curvature in Mathematics and Physics. Dover, Mineola (2012)
23. Vemuri, B.C., Liu, M., Amari, S., Nielsen, F.: Total Bregman divergence and its

applications to DTI analysis. IEEE Trans. Med. Imaging 30(2), 475–483 (2010)
24. Wong, T.-K.L.: Optimization of relative arbitrage. Ann. Financ. 11(3–4), 345–382

(2015)
25. Wong, T.-K.L.: Logarithmic divergences from optimal transport and Rényi geom-
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Abstract. We consider the problem of optimal transport where the cost
function is given by a D(α)

Ψ -divergence for some convex function Ψ [21],
where α = ±1 gives the Bregman divergence. For costs of this form, we
introduce a new complex geometric interpretation of the optimal trans-
port problem by considering an induced Sasaki metric on the tangent
bundle of the domain of Ψ . In this framework, the Ma-Trudinger-Wang
(MTW) tensor [12] is proportional to the orthogonal bisectional curva-
ture. This geometric framework for optimal transport is complementary
to the pseudo-Riemannian approach of Kim and McCann [10].

1 Introduction

Optimal transport is a classical field of mathematics which dates back to the
work of Monge in 1781 [13]. In its original formulation, it considered finding the
most efficient way to move piles of rubble from one configuration to another.
In the modern framework, we consider X and Y as Borel subsets of two metric
spaces, equipped with probability measures μ and ν, respectively, and a lower-
semicontinuous cost function c : X × Y → R. The optimal transport problem is
to find the non-negative measure γ on X × Y which minimizes

Wc(μ, ν) = min
γ∈Γ (μ,ν)

∫
X×Y

c(x, y)dγ(x, y).

Here, Γ (μ, ν) is the set of joint probabilities with the same marginal distributions
as μ ⊗ ν and γ is known as the optimal coupling.

In this paper, we study the regularity theory of this problem, specializing to
the case where the cost function is given by a D(α)

Ψ -divergence.

Definition 1 (D(α)
Ψ -divergence). Let Ψ : M → R be a convex function on a

convex domain M in Euclidean space. For two points x, y ∈ M and α ∈ (−1, 1),
a D(α)

Ψ -divergence is a function of the form

D(α)
Ψ (x, y) =

4
1 − α2

[
1 − α

2
Ψ(x) +

1 + α

2
Ψ(y) − Ψ

(
1 − α

2
x +

1 + α

2
y

)]
.
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These divergences were introduced by the second author [21] and form a
one-parameter family of statistical divergences. As α converges to either ±1, the
D(α)

Ψ -divergence converges to the Bregman divergence [1]. Bregman divergences
play an important role in information geometry as they provide a generalization
of distance functions which satisfy the generalized Pythagorean theorem. Due
to this interpolation property, D(α)

Ψ -divergences form a natural class worthy of
investigation.

Our main results provide a new geometric interpretation for the necessary
conditions to ensure that the associated optimal transport is smooth. More con-
cretely, we want to understand whether the rubble is moved in a continuous way
so that nearby piles remain close after transport. In this paper, we give a sum-
mary of our results, omitting proofs and a more complete exposition. We refer
the interested reader to [9] for a complete description of our results, accompanied
with proofs and extensive exposition.

2 Preliminaries on Optimal Transport

We briefly discuss some background on the regularity theory of optimal trans-
port. For a more complete overview of the subject, we recommend the book by
Villani [19] and the survey paper of De Philippis and Figalli [3]. In the following,
we use c to refer to the cost function and cI,J to denote ∂xI∂yJ c for multi-indices
I and J . Furthermore, ci,j is the matrix inverse of the mixed derivative ci,j .

In order to state the background results, it is necessary to first define the
c-exponential map, which plays a crucial role throughout.

Definition 2 (c-exponentialmap). For any x ∈ X, y ∈ Y, p ∈ R
n, the c-

exponential map satisfies the following identity.

c-expx(p) = y ⇐⇒ p = −cx(x, y).

Our primary interest is in the case when the optimal coupling γ is supported
on the graph of a function. In this case, the optimal transport is said to be
deterministic and the associated function is known as the optimal map. The fol-
lowing theorem, originally proved by Brenier [2] and extended by Gangbo and
McCann [8], provides sufficient conditions for optimal transport to be determin-
istic and shows that the associated optimal maps are induced by solutions to
Monge-Ampere type equations.

Theorem 1. Let X and Y be two open subsets of Rn and consider a cost func-
tion c : X × Y → R. Suppose that dμ is a smooth probability density supported
on X and that dν is a smooth probability density supported on Y . Suppose that
the following conditions hold:

1. The cost function c is of class C4 with ‖c‖C4(X×Y ) < ∞
2. For any x ∈ X, the map Y 	 y → cx(x, y) ∈ R

n is injective.
3. For any y ∈ Y , the map X 	 x → cy(x, y) ∈ R

n is injective.
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4. det(cx,y)(x, y) 
= 0 for all (x, y) ∈ X × Y .

Then there exists a c-convex function u : X → R such that the map Tu :
X → Y defined by Tu(x) := c-expx(∇u(x)) is the unique optimal transport map
sending μ onto ν. Furthermore, Tu is injective dμ-a.e.,

|det(∇Tu(x))| =
dμ(x)

dν(Tu(x))
dμ − a.e., (1)

and its inverse is given by the optimal transport map sending ν onto μ.

The regularity problem for optimal transport studies the smoothness of the
potential u. For this question, most of the initial work was done for the squared-
distance cost c(x, y) = 1

2‖x−y‖2 in Euclidean space, known as the 2-Wasserstein
distance. For more general cost functions, the breakthrough work was done by
Ma, Trudinger and Wang [12], who gave three conditions that ensure smoothness
for the solutions of Monge-Ampere equations. In this paper, we use a modified
version of their result, originally proved by Trudinger and Wang [18].

Theorem 2. Suppose that c : X × Y → R satisfies the hypothesis of the previ-
ous theorem, and that the smooth densities dμ and dν are bounded away from
zero and infinity on their respective supports X and Y . Suppose further that the
following holds:

1. X and Y are smooth.
2. The domain X is strictly c-convex relative to the domain Y .
3. The domain Y is strictly c∗-convex relative to the domain X.
4. The following condition (known as MTW(0)) holds:

For all vectors ξ, η ∈ R
n with ξ ⊥ η, the following inequality holds.

S(ξ, η) :=
∑

i,j,k,l,p,q,r,s

(cij,pc
p,qcq,rs − cij,rs)cr,kcs,lξiξjηkηl ≥ 0 (2)

Then u ∈ C∞(X) and T : X → Y is a smooth diffeomorphism, where
T (x) = c-expx(∇u(x)).

We will discuss the assumptions of Theorem 2 in a bit more detail. The first
condition is self-explanatory, while the second and third define the proper notions
of convexity, which are necessary to establish regularity of optimal transport [11].

Definition 3 (c-segment). A c-segment in X with respect to a point y is a
solution set {x} to cy(x, y) = z for z on a line segment in R

n. A c∗-segment in
Y with respect to a point x is a solution set {y} to cx(x, y) = z for z on a line
segment in Rn.

Definition 4 (c-convexity). A set E is c-convex relative to a set E∗ if for any
two points x0, x1 ∈ E and any y ∈ E∗, the c-segment relative to y connecting x0

and x1 lies in E. Similarly we say E∗ is c∗-convex relative to E if for any two
points y0, y1 ∈ E∗ and any x ∈ E, the c∗-segment relative to x connecting y0
and y1 lies in E∗.
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Finally, we discuss the inequality (2), which is known as the MTW (0) con-
dition, and is a weakened version of the MTW (κ) condition.

Definition 5 (MTW (κ)). A cost function c satisfies the MTW (κ) condition if
for any orthogonal vector-covector pair η and ξ, S(η, ξ) ≥ κ|η|2|ξ|2 for κ > 0.

Ma, Trudinger and Wang’s original work used MTW (κ), and this stronger
assumption is used in many applications. There is another strengthening of the
MTW (0) assumption that appears in the literature.

Definition 6 (Non-negative cross-curvature). A cost function c has non-
negative (resp. strictly positive) cross-curvature if, for any vector-covector pair
η and ξ,

S(η, ξ) ≥ 0 (resp. κ|η|2|ξ|2).
Non-negative cross-curvature is stronger than MTW (0), as the non-

negativity must hold for all pairs η and ξ, not simply orthogonal ones. This
notion was introduced by Figalli, Kim, and McCann [5] to study a problem
in microeconomics and in later work, they showed that stronger regularity for
optimal maps can be proven with this assumption [6].

The geometric significance of these notions is a topic of active research.
Although it is not immediately clear, S is in fact tensorial (coordinate-invariant)
and transforms quadratically in η and ξ [10]. On a Riemannian manifold, Loeper
[11] gave some insight into the behavior of the MTW tensor by showing that for
the 2-Wasserstein distance, the tensor is proportional to the sectional curvature
on the diagonal. This was extended by Kim and McCann, who gave a pseudo-
Riemannian framework for optimal transport [10], in which the MTW-tensor
becomes the curvature of light-like planes.

3 Geometry of TM

In order to associate optimal transport with Kähler geometry, we consider the
tangent bundle TM where M is the domain of Ψ . On any Riemannian manifold
(M, g) endowed with an affine connection D, it is possible to induce TM with
an almost Hermitian structure known as the Sasaki metric [4]. For brevity, we
will not review the construction here, but complete details can be found in the
paper by Satoh [16].

We are primarily interested in the case where TM is Kähler, which occurs
when M is Hessian (also known as affine-Kähler). There are two equivalent
definitions for such manifolds; with the former definition primarily used in dif-
ferential geometry and the latter primarily used in information geometry. For
details on how these definitions are equivalent, we refer readers to the book by
Shima [17].
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Definition 7 (Differential geometric). A Riemannian manifold (M, g) is
said to be Hessian if there is an atlas of local coordinates {ui}n

i=1 so that for
each coordinate chart, there is a convex potential Ψ such that

gij =
∂2Ψ

∂uiuj
.

Furthermore, the transition maps between these coordinate charts are affine.

Definition 8 (Information geometric). A Riemannian manifold (M, g) is
said to be Hessian if it admits dually flat connections. Namely, it admits two flat
(torsion- and curvature-free) connections D and D∗ satisfying

X (g(Y,Z)) = g(DX Y,Z) + g(Y,D∗
X Z) (3)

for all vector fields X , Y, and Z.

For our purposes, we are interested in the curvature of this metric, which can
be derived using the work of Satoh [16].

Proposition 1. Let (M, g,D) be a Hessian manifold with metric g and flat
connection D. Suppose {xi} are the coordinates where the Christoffel symbols of
D vanishes and Ψ is the Hessian potential of g. In the associated holomorphic
coordinates {zi} on TM , the holomorphic bisectional curvature of the Sasaki
metric satisfies the following identity:

R̃g̃D

(
∂zi , ∂zj , ∂zk , ∂zl

)
= −1

2
Ψijkl +

1
2
ΨrsΨiksΨjlr.

It is worth noting that the holomorphic bisectional curvature is negative to
what Shima defined as the Hessian curvature [17, p. 38].

4 Our Results

Our main result is to relate the MTW tensor to the bisectional curvature of the
Sasaki metric. To do so, we note that if c : M × M → R is a D

(α)
Ψ -divergence,

then the MTW tensor takes the following form:

S(x,y)(ξ, η) =
1 − α2

4
(ΨijpΨrsqΨ

pq − Ψijrs) ΨrkΨslξiξjηkηl. (4)

To relate this to a complex metric, we define M to be the domain of Ψ and
use Ψ as a potential for a Riemannian metric on M . This immediately implies
the main theorem of our current paper.

Theorem 3. Let X and Y be open sets in R
n and c be a D

(α)
Ψ -divergence. Then

the MTW tensor is proportional to the orthogonal bisectional curvature of the
Sasaki metric on (TM, gD, JD), after flatting the latter two indices (i.e. treating
η as a covector with η(ξ) = 0). Furthermore, the cross curvature is proportional
to the bisectional curvature of (TM, gD, JD).
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As an immediate consequence, this shows that the MTW tensor is non-
negative if the orthogonal bisectional holomorphic curvature of TM is non-
negative. By considering the dually flat structure of a Hessian manifold, we
can also give an alternative characterization of relative c-convexity.

Theorem 4. For a D
(α)
Ψ -divergence, a set Y is c-convex relative to X if and

only if, for all x ∈ X, the set 1+α
2 x + 1−α

2 Y ⊂ M is geodesically convex with
respect to the dual connection D∗.

Our results also hold for cost functions of the form c(x, y) = Ψ(x − y) with
Ψ : R

n → R a strongly convex function. This includes many of the common
examples in the literature, including the p-Wasserstein costs in Euclidean space.
These costs were studied by Gangbo and McCann [7] and Ma, Trudinger and
Wang [12], derived an expression proportional to Eq. (4) for their MTW tensor.

5 The Regularity of Pseudo-Arbitrages

For brevity, we will focus on a single application and refer readers to the full
paper for others [9]. A recent series of papers by Pal and Wong (see, e.g., [14]
and [20]) have studied the problem of finding pseudo-arbitrages, which are invest-
ment strategies which outperform the market portfolio under “mild and realistic
assumptions”. Their work combines information geometry, optimal transport
and mathematical finance to reduce this problem to solving optimal transport
problems where the cost function is given by a so-called log-divergence.

A central result in [14] shows that a portfolio map T outperforms the market
portfolio almost surely in the long run iff it is a solution to the Monge problem
for the cost function c : Rn−1 × R

n−1 → R given by

c(x, y) := log

(
1 +

n−1∑
i=1

exi−yi

)
− log(n) − 1

n

n−1∑
i=1

xi − yi. (5)

For this problem, we study the Kähler geometry of the Sasaki metric asso-
ciated to the potential Ψ(u) = log

(
1 +

∑n−1
i=1 eui

)
. Doing so, we find that the

Sasaki metric has vanishing orthogonal bisectional curvature and constant posi-
tive holomorphic sectional curvature [9]. Applying our main results and Theorem
2, we find the following regularity theorem.

Theorem 5. Suppose μ and ν are probability measures supported respectively on
subsets X and Y of the probability simplex. Suppose further that the following
regularity assumptions hold:

1. X and Y are smooth, strictly convex and uniformly bounded from the bound-
ary of the probability simplex. More precisely, there exists δ > 0, so that for
all x ∈ X, 1 ≤ i ≤ n, xi ≥ δ.

2. μ and ν are absolutely continuous with respect to the Lebesgue measure and dμ
and dν are smooth functions which are bounded away from zero and infinity
on their supports.
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Let ĉ(p, q) be the cost function given by

ĉ(p, q) = log

(
1
n

n∑
i=1

qi

pi

)
− 1

n

n∑
i=1

log
qi

pi
.

Then the ĉ-optimal map Tu taking μ to ν is smooth.

This also provides a regularity theorem for the associated displacement inter-
polation, which was asked in [15].

Corollary 1. Suppose μ and ν are smooth probability measures satisfying the
assumptions of Corollary 5 and that Tu is the ĉ-optimal map transporting μ to ν.
Suppose further that T (t)μ is the displacement interpolation from μ to ν defined
by T (t) = t · Id + (1 − t)Tu. Then T (t) is smooth, both as a map for fixed t and
also in terms of the t parameter.
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Abstract. A recently introduced canonical divergence D for a dual
structure (g, ∇, ∇∗) on a smooth manifold M is discussed in connec-
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1 Introduction

The geometrical structure induced by a divergence function (or contrast func-
tion) on a smooth manifold M provides a unified approach to measurement of
notions as information, energy, entropy, playing an important role in mathemat-
ical sciences to research random phenomena [1]. In the mathematical formula-
tion, a divergence function D(p, q) on a smooth manifold M is defined by the
first requirement for a distance:

D(p, q) ≥ 0, D(p, q) = 0 iff p = q. (1)

An important example of a divergence function is given by the Kullback-Leibler
divergence K(p, q) in the context that p and q are the vectors of probabilities of
disjoint events [2], namely

K(p, q) =
n+1∑

i=1

pi log
(

pi

qi

)
(2)

is a function on the n-simplex S := {p = (p1, . . . , pn+1) | pi ≥ 0,
∑
i

pi = 1}. Given

a smooth n-dimensional manifold M, we assume that D : M×M → R
+ is a C∞-

differentiable function. Working with the local coordinates {ξp := (ξ1p, . . . , ξn
p )}
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and {ξq := (ξ1q , . . . , ξn
q )} at p and q, respectively, it follows from Eq. (1) that

∂i D(ξp, ξq)
∣∣
p=q

= 0, ∂′
i D(ξp, ξq)

∣∣
p=q

= 0 (3)

∂j∂i D(ξp, ξq)
∣∣
p=q

= − ∂′
j∂i D(ξp, ξq)

∣∣
p=q

= ∂′
j∂

′
i D(ξp, ξq)

∣∣
p=q

, (4)

where ∂i = ∂
∂ξi

p
and ∂′

i = ∂
∂ξi

q
. Moreover, under the assumption that

gij := ∂i∂jD(ξp, ξq)
∣∣
p=q

> 0 (5)

we can see that the manifold M is endowed, through the divergence function
D, with the Riemannian metric tensor given by g = gij dξi ⊗ dξj , where the
Einstein notation is adopted. The symmetry of g immediately follows from the
requirement that D is a C∞ function on M × M.

From Eq. (2) we can see that, in general, a divergence function D is not
symmetric. The asymmetry of D leads to two different affine connections, ∇ and
∇∗, on M such that 1/2(∇+∇∗) is the Levi-Civita connection with respect to the
metric tensor g = gijdξi ⊗ dξj defined by Eq. (5). More precisely, working with
the local coordinates {ξp} and {ξq}, we can define the symbols Γijk and Γ ∗

ijk of
the connections ∇ and ∇∗, i.e. Γijk = g (∇∂i

∂j , ∂k) and Γ ∗
ijk = g

(
∇∗

∂i
∂j , ∂k

)
, by

means of the following relations

Γijk(p) = − ∂i∂j∂
′
kD(ξp, ξq)

∣∣
p=q

, Γ ∗
ijk(p) = − ∂′

i∂
′
j∂kD(ξp, ξq)

∣∣
p=q

. (6)

To sum up, a divergence function D on a smooth manifold M induces a metric
tensor on M by Eq. (5). In addition, the divergence D yields two linear torsion-
free connections, ∇ and ∇∗, on TM which are dual with respect to the metric
tensor g [2]:

X g (Y,Z) = g (∇XY,Z) + g (Y,∇∗
XZ) , ∀ X,Y,Z ∈ T (M), (7)

where T (M) denotes the space of vector fields on M. Finally, we refer to the
quadruple (M, g,∇,∇∗) as a statistical manifold [3].

1.1 The Inverse Problem Within Information Geometry

The inverse problem is to find a divergence D which generates a given geomet-
rical structure (M, g,∇,∇∗). For any such statistical manifold there exists a
divergence D such that Eqs. (5) and (6) hold true [4]. However, this divergence
is not unique and there are infinitely many divergences generating the same
geometrical structure (g,∇,∇∗). When this structure is dually flat, namely the
curvature tensors of ∇ and ∇∗ are null (R(∇) ≡ 0 and R∗(∇∗) ≡ 0), Amari and
Nagaoka introduced a canonical divergence which is a Bregman divergence [5].
The canonical divergence has nice properties such as the generalized Pythagorean
theorem and the geodesic projection theorem and it turns out to be of uppermost
importance to define a canonical divergence in the general case. A first attempt
to answer this fundamental issue is provided by Ay and Amari in [6] where a
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canonical divergence for a general statistical manifold (M, g,∇,∇∗) is given by
using the geodesic integration of the inverse exponential map. This one is under-
stood as a difference vector that translates q to p for all q, p ∈ M sufficiently
close to each other.

To be more precise, the inverse exponential map supplies a generalization to
M of the concept of difference vector in R

n. In detail, let p, q ∈ R
n, the difference

between p and q is the vector p − q pointing to p (see side (A) of Fig. 1). Then,
the difference between p and q in M is provided by the inverse exponential map.
In particular, given p, q suitably close in M, the difference vector from q to p is
defined as (see (B) of Fig. 1)

Xq(p) := X(q, p) := exp−1
q (p) = ˙̃σ(0), (8)

where σ̃ is the ∇-geodesic from q to p. Therefore, the divergence D introduced
in [6] is defined as the path integral

D(p, q) :=
∫ 1

0

〈Xt(p), ˙̃σ(t)〉σ̃(t) dt, Xt(p) := X(σ̃(t), p) := exp−1
σ̃(t)(p), (9)

where 〈·, ·〉σ̃(t) denotes the inner product induced by g on σ̃(t). After elementary
computation Eq. (9) reduces to,

D(p, q) =
∫ 1

0

t ‖σ̇(t)‖2 dt, (10)

where σ(t) is the ∇-geodesic from p to q [6]. The divergence D(p, q) has nice
properties such as the positivity and it reduces to the canonical divergence pro-
posed by Amari and Nagaoka when the manifold M is dually flat. However, if we
consider definition (9) for a general path γ, then Dγ(p, q) will be depending on γ.
On the contrary, if the vector field Xt(p) is integrable, then Dγ(p, q) =: D(p, q)
turns out to be independent of the path from q to p.

2 The Recent Canonical Divergence

In this article, we discuss about a divergence function recently introduced in [7].
This turns out to be a generalization of the divergence introduced by Ay and
Amari. The definition of the recent divergence (see below Eqs. (18), (19)) relies on
an extended analysis of the intrinsic structure of the dual geometry of a general
statistical manifold (M, g,∇,∇∗). In particular, we introduced a vector at q by
modifying the definition (8) of the difference vector X(q, p). Consider p, q ∈ M
such that there exist both, a unique ∇-geodesic σ and a unique ∇∗-geodesic σ∗,
connecting p with q. Moreover, let Xp(q) := exp−1

p (q) = σ̇(0) ∈ TpM. Then, we
∇-parallel translate it along σ∗ from p to q (see (C) of Fig. 1), and obtain

Πq(p) :=Pσ∗Xp(q) ∈ TqM. (11)
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R
n

p

q

p−
q

(A)

M

p

q

X(q, p)σ̃

(B)

M

p

q

X(p, q)

σ∗
Πq(p)σ

(C)

Fig. 1. Illustration (A) of the difference vector in R
n pointing from q to p; and (B)

the difference vector X(q, p) = ˙̃σ(0) as the inverse of the exponential map in q. The
novel vector Πq(p) at q is described in (C) as the ∇ parallel transport of X(p, q) = σ̇(0)
along the ∇∗-geodesic σ∗ from p to q.

(Note that Πq(p) corresponds to minus a difference vector.) Analogously, we
introduce the dual vector of Πq(p) as the ∇∗-parallel transport of σ̇∗(0) along
the ∇-geodesic σ,

Π∗
q (p) := P∗

σX∗
p(q), X∗

p(q) :=
∗

exp
−1

p (q) = σ̇∗(0), (12)

where
∗

expp denotes the exponential map of the ∇∗-connection. A fundamental
result obtained in [7] is that the sum of Πq(p) and Π∗

q (p) is the gradient of a
function rp(q) = r(p, q):

Πq(p) + Π∗
q (p) = gradqrp, r(p, q) := 〈exp−1

p (q),
∗

exp
−1

p (q)〉p. (13)

From here on, we refer to r(p, q) as the pseudo-squared-distance between p and
q. Note that the function r(p, q), in general, is not symmetric in its arguments.

For p ∈ M fixed and q varying in M, we then obtain two vector fields whenever
p and q are connected by a unique ∇-geodesic and a unique ∇∗-geodesic. Then,
we can introduce two vector fields on an arbitrary path γ : [0, 1] → M connecting
p and q in the following way. Let us firstly assume that for each t ∈ [0, 1] there
exist a unique ∇-geodesic σt and a unique ∇∗-geodesic σ∗

t connecting p with
γ(t). Then, we define

Πt(p) = Pσ∗
t
Xp(t), Xp(t) = exp−1

p (γ(t)) (14)

Π∗
t (p) = P∗

σt
X∗

p(t), X∗
p(t) =

∗
exp

−1

p (γ(t)). (15)
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From Eq. (13) we have that the sum

∫ 1

0

〈Πt(p), γ̇(t)〉γ(t) dt +
∫ 1

0

〈Π∗
t (p), γ̇(t)〉γ(t) dt = r(p, q) (16)

is independent of the particular path from p to q. This potential property of the
pseudo-squared-distance r(p, q) has been exploited for introducing a canonical
divergence D as potential function of Π and a dual divergence D∗ as potential
function of Π∗, i.e. gradD = Π and gradD∗ = Π∗ [7]. However, this does
not turn out in general. Indeed, on a general statistical manifold, the canonical
divergence D and its dual function D∗ are defined by the following unique and
orthogonal decompositions,

Π = gradD + V, Π∗ = gradD∗ + V ∗, (17)

where V is a vector field orthogonal to ∇-geodesics whereas V ∗ is orthogonal to
∇∗-geodesics (we will prove later the orthogonality of these decompositions).

When the vector field Π is integrated along the ∇-geodesic σ(t) (0 ≤ t ≤ 1)
connecting p with q, the recent canonical divergence assumes the following form

D(p, q) =
∫ 1

0

〈Πt(p), σ̇(t)〉σ(t) dt, Πt(p) = Pσ∗
t
exp−1

p (σ(t)), (18)

where σ∗
t (s) (0 ≤ s ≤ 1) denotes the ∇∗-geodesic such that σ∗

t (0) = p and
σ∗

t (1) = σ(t). On the contrary, if the vector field Π∗ is integrated along the
∇∗-geodesic σ∗(t) (0 ≤ t ≤ 1) connecting p with q, the dual divergence is given
by

D∗(p, q) =
∫ 1

0

〈Π∗
t (p), σ̇∗(t)〉σ∗(t) dt, Π∗

t (p) = P∗
σt

∗
exp

−1

p (σ∗(t)), (19)

where σt(s) (0 ≤ s ≤ 1) is the ∇-geodesic such that σt(0) = p and σt(1) = σ(t).
In this manuscript we review the relation of the canonical divergence D(p, q)

of (18) to other divergence functions in Sect. 3. Finally, we outline in Sect. 4 the
orthogonality and the symmetry properties of D.

3 Comparison with Previous Divergence Functions

Given a general statistical manifold (M, g,∇,∇∗), the basic requirement for a
smooth function D : M×M → R to be a divergence on M is its consistency with
the dual structure (g,∇,∇∗) through Eqs. (5)–(6) and the positivity D(p, q) > 0
for all p, q ∈ M sufficiently close to each other such that p = q. The recent
canonical divergence (18) holds these properties [7].

In this section, we will show that the canonical divergence D can be inter-
preted as a generalization of the divergence D introduced by Ay and Amari.
Indeed, we will see that these two divergences coincide on particular classes of



438 D. Felice and N. Ay

statistical manifolds. In order to achieve this result, we investigate some geo-
metric properties of the vector field Πt(p) given by Eq. (14) aiming to split
such a vector field in terms of the difference vector Xt(p) given in Eq. (9). To
be more precise, let us refer to Fig. 2 where the ∇-geodesic σ(t) (0 ≤ t ≤ 1)
connecting σ(0) = p with σ(1) = q is drawn. Then, for each t ∈ [0, 1] we
can consider the ∇-geodesic σt(s) (0 ≤ s ≤ 1) connecting p with σ(t) and the
∇∗-geodesic σ∗

t (s) (0 ≤ s ≤ 1) connecting p with σ(t). The difference vector
Xt(p) = X(σ(t), p) at σ(t) pointing to p is given in terms of the inverse exponen-
tial map by Xt(p) := exp−1

σ(t)(p). Therefore, the opposite of Xt(p) can be viewed
as the ∇-parallel translation of Xp(t) = exp−1

p (σ(t)) along the ∇-geodesic σt,
namely −Xt(p) = Pσt

Xp(t). Consider now the loop Σt based at p and given
by first traveling from p to σ(t) along the ∇∗-geodesic σ∗

t and then back from
σ(t) to p along the reverse of the ∇-geodesic σt. If Σt lies in a sufficiently small
neighborhood of p, then [7]

PΣt
Xp(t) = Xp(t) + RΣt

(
X∗

p(t),Xp(t)
)
,

where

RΣt

(
X∗

p(t),Xp(t)
)

:=
∫

Bt

P [R (X∗(t),X(t)) X(t)]
‖X∗

p(t) ∧ Xp(t)‖
dA

with X∗(t) and X(t) being the ∇-parallel transport of X∗
p(t) (:=

∗
expp

−1
(σ(t)))

and Xp(t), respectively, from p to each point of Bt along the unique ∇-geodesic
joining them. Here, R is the curvature tensor of ∇, Bt denotes the disc defined
by the curve Σt and X∗

p(t), Xp(t) are linearly independent. In addition, P within
the integral denotes the ∇-parallel translation from each point in Bt to p along
the unique ∇-geodesic segment joining them. Finally, by means of the property
of the parallel transport, we obtain the following geometric relation between the
vector Πt(p) and the opposite of the difference vector Xt(p) [7],

Πt(p) = Pσt
Xp(t) + Pσt

[
RΣt

(
X∗

p(t),Xp(t)
)]

. (20)

By noticing that Pσt
Xp(t) = σ̇t(1) = t σ̇(t) and inserting Eq. (20) into the

definition (18) of D, we obtain

D(p, q) = D(p, q) +
∫ 1

0

〈Pσt

[
RΣt

(
X∗

p(t),Xp(t)
)]

, σ̇(t)〉σ(t) dt, (21)

where D(p, q) is the divergence introduced in [6] and given by Eq. (10).
It is clear from Eq. (21) that particular conditions on the curvature tensor

would lead to the required equivalence between D and D. Actually, in Informa-
tion Geometry classes of statistical manifolds are characterized by the conditions
on the curvature tensors of ∇ and ∇∗ (see for instance Refs. [5], [8], [9]). In the
Table 1 we can see the categories of statistical manifolds on which the canonical
divergence D reduces to the divergence D introduced in [6]. A statistical mani-
fold (M, g,∇,∇∗) is self-dual when ∇ = ∇∗. Therefore, in this case M becomes a
Riemannian manifold endowed with the Levi-Civita connection. Hence, the vec-
tors Xp(t) and X∗

p(t) coincide for all t ∈ [0, 1]. Finally, the skew-symmetry of the
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p

q

σ(t)

σ∗
t

σt

Πt(p)

Xp(t)

X∗
p(t)

−Xt(p)

Fig. 2. The vector Πt(p) is obtained by ∇-parallel translating the vector Xp(t) := σ̇t(0)
along the ∇∗-geodesic σ∗

t . The opposite of the difference vector Xt(p) at σ(t) can be
understood as the ∇-parallel translation of the vector Xp(t) along the ∇-geodesic σt.

curvature tensor R yields the property R(X,X) = 0 for any X ∈ T (M). When a
manifold M is dually flat, it has a mutually dual affine coordinates {θ}, {η} and
two potentials {ψ,ϕ} such that D(p, q) = ψ(θp)−ϕ(ηq)+θp ·ηq [6]. This claims
that the canonical divergence D coincides with the canonical divergence of Breg-
man type introduced in [5] by Amari and Nagaoka on dually flat manifolds. The
concept of a symmetric statistical manifold, that is the information geometric
analogue to a symmetric space in Riemannian geometry, was introduced in [10].
There, the authors employed the following conditions on the curvature tensor,
∇R = 0 and R(Y,X,X,X) := 〈R(Y,X)X,X〉 = 0, in order to prove that their
divergence function is independent of the particular path connecting any two
points p, q sufficiently close to each other. The connection between the canonical
divergence D and the divergence introduced by Henmi and Kobayashi is widely
discussed in [7].

Table 1. The column on the left describes the category of statistical manifolds on
which the canonical divergence D reduces to the divergence D. The column on the
right shows the properties of the curvature tensor characterizing the corresponding
manifolds and supplying the equivalence D ≡ D through the Eq. (21). Here, X, Y are
vector fields on M, i.e. X, Y ∈ T (M).

Statistical manifold Condition on R
Self-dual R(X, X) = 0

Dually flat R ≡ 0

Symmetric ∇R ≡ 0, R(Y, X, X, X) = 0

To summarize, Table 1 describes, from the top to the bottom, the statistical
manifolds ordered from less generality to more generality where the equivalence
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between D and D is achieved. In this view, we can consider D as an extension
of the divergence D to the very general statistical manifold (M, g,∇,∇∗).

Since Eq. (2) we know that in general a divergence function is not symmet-
ric in its argument. However, the symmetry property owned by the canonical
divergence of Bregman type on dually flat manifolds, namely D(q, p) = D∗(p, q),
shows the way for the further investigation about symmetry properties of D in
the very general context of Information Geometry.

4 General Properties of D
In this section we prove that the decompositions given in Eq. (17) are orthogonal
ones. To this aim, we rely on the gradient–based approach to divergence which
was introduced in [6] and further developed in [3]. This approach has led to the
following decompositions of Πq(p) and Π∗

q (p) in terms of the canonical divergence
gradient and its dual [7],

Πq(p) = gradqDp(q) + Vq, 〈Vq, σ̇(1)〉q = 0 (22)

Π∗q(p) = gradqD∗
p(q) + V ∗

q , 〈V ∗
q , σ̇∗(1)〉γ(t) = 0, (23)

where σ(t), σ∗(t), (0 ≤ t ≤ 1) are the ∇ and ∇∗ geodesics, respectively, from p
to q. In order to prove that these decompositions are orthogonal ones, we exploit
the theory of minimum contrast geometry by Eguchi [1]. This allows us to show
that gradqDp is parallel to the tangent vector of the ∇-geodesic starting from
p whereas gradqD∗

p is parallel to the tangent vector of the ∇∗-geodesic starting
from p. Thus, let us consider the level sets of Dp and D∗

p:

H(κ) = {q ∈ M | Dp(q) = κ}, H∗(κ) = {q ∈ M | D∗
p(q) = κ}. (24)

Then to each q ∈ H(κ) we can define the minimum contrast leaf of D at q [2]:

Lq := {p ∈ M | D(p, q) = min
q′∈H

D(p, q′)}. (25)

Let us now fix q. Since q minimizes the set {D(p, q) | p ∈ Lq , q ∈ H} it follows
that the derivative of D(p, q) at q along any direction U tangent to H vanishes,
namely

∂′
UD(p, q) = 0, ∀U ∈ TqH, p ∈ Lq,

where ∂′
U denotes the derivative at q along the direction U . Thus we have that

〈U,Ξ〉q = 0 for all U ∈ TqH and Ξ ∈ TqLq, or equivalently that the tangent
space of Lq coincides with the normal space of H at q (see Fig. 3 for a cross-
reference). In addition, by taking derivatives at q along directions Ξ, Υ normal
to H we have that [1]

g (II(Υ,Ξ), U) := − ∂Ξ∂Υ ∂′
UD(p, q)|p=q = 0, ∀Ξ, Υ ∈ TqLq, U ∈ TqH, (26)

where the first relation defines the second fundamental tensor II with respect to
the ∇-connection. This implies that the second fundamental tensor with respect
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to ∇ for Lq vanishes at q. Therefore, according to the well-known Gauss formula
[11]

∇ΞΥ = ∇Lq

Ξ Υ + II(Ξ, Υ )

we can see from Eq. (26) that the family of all curves which are orthogonal
to the level set H are all ∇-geodesics ending at q (with a suitable choice of
the parameter). Since gradq Dp is orthogonal to H at q, we finally obtain that
gradq Dp is parallel to the ∇-velocity σ̇(1). This proves that Eq. (22) provides
an orthogonal decomposition.

Analogously, we have that the family of all curves which are orthogonal
to the level set H∗ are all ∇∗-geodesics ending at q (with a suitable choice
of the parameter). Since H∗ is the hypersurface of constant D∗ it turns out
that gradq D∗ is orthogonal to H∗ at q. Therefore, we can conclude that the
decomposition in Eq. (23) is an orthogonal one.

M

H q

Lq

Fig. 3. According to the Eguchi’s theory [1], the minimum contrast leaf Lq turns out
to be orthogonal at q to the level-set H generated by the canonical divergence D.

In general, the canonical divergence D(p, q) is not symmetric in its argument,
i.e. D(p, q) = D(q, p). However, the Kullback-Leibler divergence K(p, q) and the
canonical divergence D(p, q) of Bregman type suggest a symmetry property that
a divergence should satisfy, namely K∗(p, q) = K(q, p) and D∗(p, q) = D(q, p)
[5]. In order to answer what the relation of D(p, q) and D(q, p) is, let us set
D̃(p, q) := D(q, p). Consider the hypersurface H̃ of constant D̃ given by H̃ =
{q ∈ M | D̃(p, q) = κ}. Then, by noticing that −∂i∂j∂

′
k D̃(p, q) = Γ ∗

ijk we have
that gradq D̃p is parallel to σ̇∗(1) as well as gradq D∗

p(q). Here, σ∗(t) is the ∇∗-
geodesic from p to q. Recall that, since both functions, D̃p(q) and D∗

p(q), are
divergences, we have that D̃(p, q) ≥ 0, D∗(p, q) ≥ 0 and D̃(p, q) = 0, D∗(p, q) =
0 if and only if p = q. Furthermore, the gradient flows of these functions are
identical as a family of curves. This implies that, let p fixed, both, gradq D̃p(q)
and gradq D∗

p(q), point from q to the opposite direction, along the curve σ∗(t),
with respect to p. Therefore, we can find a positive constant depending on p and
q such that gradqD̃p = c(p, q) gradqD∗

p. This proves that there exists a function
f : [0,∞] → R

+ satisfying f(0) = 0 and f ′(0) > 0 such that [7]

D(q, p) = f (D∗(p, q)) .



442 D. Felice and N. Ay

Though this relation holds for a very general statistical manifold (M, g,∇,∇∗),
this result is still not satisfactory. However, it allows to face the issue of the
symmetry property originally established by the canonical divergence of Breg-
man type on dually flat manifolds. By analysing the cases where it holds
true, we may conjecture through our approach that it is satisfied whenever
r(p, q) = D(p, q) + D∗(p, q). Or equivalently, whenever the pseudo-squared-
distance is symmetric in its argument [7]. Forthcoming investigation will address
this fundamental issue of Information Geometry.
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Abstract. This paper develops Sobolev variants of the non-parametric
statistical manifolds appearing in [10] and [11]. The manifolds are mod-
elled on a particular class of weighted, mixed-norm Sobolev spaces,
including a Hilbert-Sobolev space. Densities are expressed in terms of
a deformed exponential function having linear growth, which lifts to a
continuous nonlinear superposition (Nemytskii) operator. This property
is used in the construction of finite-dimensional mixture and exponential
submanifolds, on which approximations can be based. The manifolds of
probability measures are developed in their natural setting, as embedded
submanifolds of those of finite measures.

Keywords: Banach manifold · Fisher-Rao metric · Hilbert manifold ·
Information geometry · Log sobolev inequality

1 Introduction

This paper develops non-parametric statistical manifolds modelled on spaces
of Sobolev type. It applies some of the results of [12] to a particular class of
manifolds, and develops smoothly embedded finite-dimensional exponential sub-
manifolds. The non-parametric manifolds are natural refinements of those in [10]
and [11]; they employ charts that are “balanced” between the density function
and its log. The inverses of the charts are expressed in terms of a deformed
exponential function having linear growth, a property shared by other deformed
exponentials (notably the Kaniadakis exponential with parameter κ = 1). (See
[8] and the discussion in [12]). The linear growth property is highly advantageous
in the Sobolev context because the deformed exponential then “lifts” to a non-
linear superposition (Nemytskii) operator that acts continuously on particular
classes of model spaces.

For some d ∈ N, let X be the σ-algebra of Lebesgue measurable subsets of Rd,
and let μ be a probability measure on X that is mutually absolutely continuous
with respect to Lebesgue (volume) measure. X is a very rich collection of subsets,
A ⊂ R

d, for which the Lebesgue measure dx(A) is well defined. Each A ∈ X has a

c© Springer Nature Switzerland AG 2019
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well-defined probability μ(A), which can be expressed in terms of the probability
density function r : Rd → [0,∞) as follows:

μ(A) =
∫

A

r(x) dx. (1)

The simplest example of a statistical manifold over the sample space R
d is the

finite-dimensional exponential model [1,3]. This is based on a finite set of lin-
early independent random variables η1, . . . ηn defined on (Rd,X , μ). Let B be
an open subset of R

n such that, for any y ∈ B, Eμ exp(
∑

i yiηi) < ∞, where
Eμ is expectation (integration) with respect to μ. Any y ∈ B represents the
probability measure Py, defined by

Py(A) =
∫

A

exp
(∑

i

yiηi − c

)
μ(dx), (2)

where c = logEμ exp(
∑

i yiηi). The set N := {Py : y ∈ B} is a manifold of prob-
ability measures, with a differentiable structure in terms of which the important
statistical divergences of estimation theory are suitably smooth.

The first fully successful infinite-dimensional (non-parametric) statistical
manifold was constructed in [14], and further developed in [2,5,13]. This is the
natural extension of exponential models such as N to the non-parametric set-
ting. The chart is a centred version of the log of the probability density function
p := dP/dμ, and so, as in (2), p is represented in terms of the exponential of
the model space variable. The model space used is the exponential Orlicz space,
which has a stronger topology than the Lebesgue Lλ(μ) spaces for 1 ≤ λ < ∞.

A central requirement of a chart in a statistical manifold is that it should
induce a topology with respect to which statistical divergences, such as the
Kullback-Leibler (KL)-divergence, are appropriately smooth. The KL-divergence
between finite measures P and Q on X is defined as follows [1,3]:

D(P |Q) := Q(Rd) − P (Rd) + Eμp log(p/q). (3)

It is of class C∞ on the exponential Orlicz manifold. As (3) shows, the KL-
divergence is bilinear in the density p and its log, and so its smoothness properties
are closely connected with those of p and log p considered as elements of dual
function spaces. This is why the following deformed logarithm logd : (0,∞) → R

was introduced in the Hilbert setting of [10]:

logd(y) = y − 1 + log y. (4)

This is composed with probability density functions to realise a chart on a
manifold of finite measures that maps into the Lebesgue space Lλ(μ), for any
2 ≤ λ < ∞ [10,11]. A centred version of this can be used as a chart on the
submanifold of probability measures. The inverse of logd can be thought of as
a deformed exponential function. It has linear growth, as a result of which the
density, p, and its log both belong to the same space as logd(p) (i.e. the model
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space Lλ(μ)). This property is not shared by the exponential Orlicz manifold.
Reference [12] shows that it is retained when the sample space is R

d and the
model space Lλ(μ) is replaced by particular spaces of Sobolev type.

The natural domain of statistical divergences, such as the KL-divergence,
is a space of measures defined on an abstract measurable space (Ω,F). Since
the primary concern of “raw” information geometry is the smoothness of these
divergences, the exponential Orlicz and Lλ(μ) manifolds of [14] and [11], in their
general form, make no reference to any other structures that the sample space
Ω may possess. However, in the special case that Ω = R

d, the topology and
linear structure of Rd play important roles in many applications. For example,
the Fokker-Planck equation makes direct reference to the linear structure of
R

d through a differential operator. For this reason, it is of interest to develop
“hybrid” information manifolds, in which the topology of the sample space is
somehow incorporated into the model space. One way of achieving this is to use
model spaces of Sobolev type. This approach is taken here, in the context of
the Lλ(μ) manifolds of [10,11]. For the development of Sobolev variants of the
exponential Orlicz manifold, the reader is referred to [7].

The paper is structured as follows. Section 2 introduces the spaces on which
the manifolds are modelled. Section 3 presents the principal results on the non-
parametric manifolds constructed from these spaces; it discusses both manifolds
of finite measures and submanifolds of probability measures. Finally Sect. 4 devel-
ops a class of smoothly embedded finite-dimensional exponential manifolds that
are of potential use in applications.

2 The Model Spaces

For some t ∈ (1, 2], let θt : [0,∞) → [0,∞) be a strictly increasing, convex
function that is twice continuously differentiable on (0,∞), such that −√

θt is
convex, limz↓0 θ′

t(z) < ∞, and

θt(z) =
{

0 if z = 0
ct + zt if z ≥ zt

}
, where zt ≥ 0, and ct ∈ R. (5)

Examples, including some for which R 	 z 
→ θt(|z|) ∈ R is of class C2 are
given in [12], which also develops variants for which t ∈ (0, 1]. (The restriction
t ∈ (1, 2], used here, simplifies the presentation in what follows while retaining
a useful subset of the manifolds developed in [12]). For each t ∈ (1, 2], we define
a reference probability measure, μ = μt, as follows.

μt(dx) = exp(lt(x))dx, where lt(x) :=
∑

i(Ct − θt(|xi|)), (6)

and Ct ∈ R is such that
∫

exp(Ct −θt(|z|))dz = 1. For any 1 ≤ λ < ∞, let Lλ(μ)
be the Banach space of (equivalence classes of) measurable functions u : Rd → R

for which ‖u‖Lλ(μ) := (
∫ |u|λdμ)1/λ < ∞.

For k ∈ N0, let S := {0, . . . , k}d be the set of d-tuples of integers in the
range 0 ≤ si ≤ k. For s ∈ S, we define |s| =

∑
i si, and denote by 0 the d-

tuple for which |s| = 0. For any 0 ≤ i ≤ k, Si := {s ∈ S : i ≤ |s| ≤ k} is
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the set of d-tuples of weight at least i and at most k. Let Λ = (λ0, λ1, . . . , λk),
where λi ∈ [1,∞) for 0 ≤ i ≤ k, and let W k,Λ(μ) be the mixed-norm, weighted
Sobolev space comprising functions a ∈ Lλ0(μ) that have weak partial derivatives
Dsa ∈ Lλ|s|(μ), for all s ∈ S1. For a ∈ W k,Λ(μ) we define the mixed norm

‖a‖W k,Λ(μ) :=
( ∑

s∈S0

‖Dsa‖λ0

L
λ|s| (μ)

)1/λ0

< ∞. (7)

W k,Λ(μ) is a Banach space with respect to this norm. (See Theorem 2.1 in [12]).
We shall confine our attention here to the following special class of model

spaces, parametrised by k ∈ N and λ ∈ [k,∞):

Gk,λ
m = W k,Λ(μ) with λ0 = λ and λi = λ/i for 1 ≤ i ≤ k. (8)

This includes the Hilbert-Sobolev space G1,2
m . Let ψ = expd : R → (0,∞) be

the inverse of the deformed logarithm of (4). The following is proved as part of
Proposition 2 in [12].

Proposition 1. (i) For any a ∈ Gk,λ
m , ψ(a) ∈ Gk,λ

m .
(ii)The nonlinear superposition (Nemytskii) operator Ψk,λ

m : Gk,λ
m → Gk,λ

m ,
defined by Ψk,λ

m (a)(x) = ψ(a(x)), is continuous.

This is rare property in the theory of nonlinear maps between Sobolev spaces,
and has its origins in the boundedness of the derivatives of ψ. It is useful in the
construction of finite-dimensional mixture or exponential submanifolds. Nor-
mally the Sobolev space forming the domain of a continuous nonlinear superpo-
sition operator would need a stronger topology than that forming its range [15].
This would require it to have larger Lebesgue exponents, or to control a greater
number of derivatives.

Remark 1. It is shown in [12] that the continuity of Ψ between identical Sobolev
spaces is also true of the fixed-norm space W 2,(1,1,1)(μ), but of no other fixed-
norm spaces (except for G1,λ

m with λ ∈ [1,∞)).

3 The Nonparametric Manifolds

Let G = Gk,λ
m be the mixed-norm Sobolev space as defined in (8). Let Ψ := Ψk,λ

m

be as defined in Proposition 1. We consider the set M of finite measures on X
satisfying the following:

(M1) P is mutually absolutely continuous with respect to μ;
(M2) p, log p ∈ G, where p = dP/dμ.

This is equipped with the global chart φ : M → G, defined by

φ(P ) = logd p = p − 1 + log p. (9)
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In view of Proposition 1, it is not difficult to show that φ is a bijection onto G.
(See Proposition 1 in [12]). For any P ∈ M , let P̃a ∈ M have density dP̃a/dμ =
ψ(1)(a), where a = φ(P ) and ψ(1) = ψ/(1 + ψ) is the first derivative of ψ. We
define a tangent vector, U at P ∈ M , to be a signed measure on X of finite total
variation such that

(T1) U is mutually absolutely continuous with respect to P̃a;
(T2) dU/dP̃a ∈ G, where a = φ(P ).

The tangent space TP M is the linear space of all such signed measures, and the
tangent bundle is the disjoint union TM = ∪P∈M (P, TP M). This admits the
global chart Φ : TM → G × G, defined by

Φ(P,U) = (φ(P ), dU/dP̃φ(P )). (10)

The derivative of a (Fréchet) differentiable, Banach-space-valued map f : M →
Y (at P and in the “direction” U) is defined as follows: (clearly u = Uφ).

Uf = (f ◦ φ−1)(1)a u, where (a, u) = Φ(P,U). (11)

Let mλ, eλ : M → Lλ(μ) be the nonlinear superposition operators defined by

mλ(P )(x) = p(x) − 1 and eλ(P )(x) = log p(x). (12)

The map mλ is the composition of Ψk,λ
m −1 with the inclusion map ı : G → Lλ(μ).

It is smoother than Ψk,λ
m since its range has a weaker topology. The following is

a corollary of Lemma 4 in [12].

Lemma 1. mλ, eλ ∈ C1(M ;Lλ(μ)).

The smoothness properties of the KL-divergence on manifolds modelled on
Lλ(μ) is investigated in detail in [11]. Its derivatives can be used to construct
the Fisher-Rao metric and Amari-Chentsov tensor on M by the Eguchi method
[4]. The Fisher-Rao metric is the covariant 2-tensor field defined, for λ ≥ 2, by

〈U, V 〉P = EμUmλV eλ = EμUeλV mλ = Eμ
p

(1 + p)2
UφV φ. (13)

The Amari-Chentsov tensor is the covariant 3-tensor field defined, for λ ≥ 3, by

τP (U, V,W ) = EμUmλV eλWeλ = Eμ
p

(1 + p)3
UφV φWφ (14)

Corollary 1. (i) If λ ≥ 2 then the Fisher-Rao metric is a continuous covariant
2-tensor field on M .

(ii) If λ ≥ 3 then the Amari-Chentsov tensor is a continuous covariant 3-tensor
field on M .

Proof. Both parts follows from the first representations in (13) and (14), Lemma
1 and the chain rule of Fréchet derivatives. ��
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In the raw (non-Sobolev) Hilbert manifold of [10], the composition map M 	
P 
→ 〈U(P ),V(P )〉P ∈ R is continuous for all continuous vector fields U, V.
However, the metric is not continuous in the stronger “operator topology” of
Corollary 1(i). The extra regularity here arises from the log-Sobolev embedding
theorem, and is not retained if t ∈ (0, 1]. (See Lemma 4 in [12]). Similarly, in
the raw Banach manifold of [11] with λ ≥ 3, the composition map M 	 P 
→
τP (U(P ),V(P ),W(P )) ∈ R is continuous for all continuous vector fields U, V,
W, but not continuous in the sense of Corollary 1(ii) unless λ > 3.

Let M0 ⊂ M be the subset of M whose members are probability measures.
These satisfy the additional hypothesis:

(M3) Eμp = 1.

The co-dimension 1 subspace of G whose members, a, satisfy Eμa = 0 will be
denoted G0. Let φ0 : M0 → G0 be defined by

φ0(P ) = φ(P ) − Eμφ(P ) = logd p − Eμ logd p. (15)

The following is a special case of parts of Propositions 5 and 6 in [12].

Proposition 2. (i) (M0, G0, φ0) is a C�λ�-embedded submanifold of (M,G, φ).
(ii) In terms of the charts φ0 and φ, the inclusion map ρ : G0 → G has the

following form
ρ(a) = a + Z(a), (16)

where Z : G0 → R is an (implicitly defined) normalisation function.
(iii) The first and (if λ ≥ 2) second derivatives of ρ are as follows:

ρ(1)a u = u − EPa
u,

(17)

ρ(2)a (u, v) = −Eμψ(2)(ρ(a))(u − EPa
u)(v − EPa

v)
Eμψ(1)(ρ(a))

,

where Pa := P̃a/P̃a(Rd), P̃a is the finite measure defined after (9) and ψ(i) is
the ith derivative of ψ.

For any P ∈ M0, tangent vectors U ∈ TP M0 are distinguished from those
only in TP M by the fact that U(Rd) = 0. The pushforward of the inclusion map
ı : M0 → M splits TP M into TP M0 and the complementary subspace of signed
measures {yP̃a, y ∈ R}.

Remark 2. The probability measure Pa in (17) is the escort probability in the
interpretation of M0 as a deformed exponential model [9].
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4 Finite-Dimensional Exponential Models

The α-divergences (and their derivatives such as the Fisher-Rao metric) are at
least as smooth on the Sobolev manifolds of Sect. 3 as they are on their non-
Sobolev counterparts (as developed in [10,11]) because the Sobolev manifolds
have stronger topologies. When it comes to embedded submanifolds, however,
this benefit is reversed. Theorem 5.1 in [10] shows that any finite dimensional
exponential manifold that is contained in the raw Hilbert manifold of [10] is
smoothly embedded in that manifold. That this is not so of the Hilbert-Sobolev
manifold M modelled on G1,2

m is demonstrated by the following example.

Example 1. Let d = 1, let μ be the standard Gaussian measure, k = 1 and λ = 2.
For i = 0, 1, let pi := exp(ηi) where η0 = 3x2/16 and η1 = sin(exp(3x2/16)).
Then P0 and P1 are both in M , but the measure with density exp((η0 + η1)/2)
is not, since its derivative is not square integrable.

Nevertheless, the smooth embedding property can be recovered under addi-
tional hypotheses. Let G = Gk,λ

m be the general mixed-norm space of Sect. 2,
and let M be the associated manifold of finite measures. Since the Fisher-Rao
metric is positive definite on M , it is a (strong) Riemannian metric on any finite-
dimensional, smoothly embedded submanifold, N , and the full geometry of dual
±α-covariant derivatives (for α ∈ [−1, 1]) is realised on N .

For some n ∈ N, let 1, η1, . . . , ηn be linearly independent members of G, and
for any y ∈ R

n+1 let P (y) be the measure on X with density

p(y) := exp γ(y), where γ(y) =
n∑

j=0

yjηj and η0 ≡ 1. (18)

The function γ : Rn+1 → G is clearly injective. Let B ⊂ R
n be open and such

that P (y) ∈ M for every y ∈ R × B, and let N := {P (y) : y ∈ R × B}. As well
as being a subset of M , N is a finite-dimensional exponential model with chart
θ : N → R × B, defined by θ = γ−1 ◦ eλ ◦ ı, where eλ is as defined in (12) and
ı : N → M is the inclusion map.

Theorem 1. Suppose that λ ≥ max{2, k} and that, for every y ∈ B, 1 ≤ j ≤ n
and s ∈ S1,

Eμ |p(y)Dsηj |λ/|s|
< ∞; (19)

then N is a C∞-embedded submanifold of M .

Proof. A partition of s ∈ S1 is a set π = {σ1, . . . , σn ∈ S1} such that
∑

i σi = s.
Let Π(s) denote the set of partitions of s. According to the Faá di Bruno formula,
for any s ∈ S1,

Ds
xp(y) = p(y)

∑
π∈Π(s)

Kπ

∏
σ∈π

Dσ
xγ(y), (20)

where the Kπ < ∞ are combinatoric constants, and x is made explicit in Ds
x for

the sake of clarity.
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As in the proof of Theorem 5.1 in [10], we define a local coordinate system
around a generic y ∈ R×B. Let ε > 0 be such that the ball of centre y and radius
ε is contained in R×B, and let B(y, r) be the ball of centre y and radius r. For any
ỹ ∈ B(y, ε/2n) let ζ ∈ (1/4, 3/4)n+1 be defined by ζj = (1+(n+1)ε−1(ỹ−y)j)/2;
then

ỹ =
1

n + 1

n∑
j=0

(
(1 − ζj)(y − εej) + ζj(y + εej)

)
,

where (ej ∈ R
n+1, 0 ≤ j ≤ n) is the coordinate orthonormal basis. Differentiat-

ing p with respect to y, for any α ∈ N
n+1
0 ,

Dα
y p(ỹ) = (2ε)−|α|

n∏
j=0

(
p
1−ζj

j− p
ζj

j+ log(n+1)αj (pj+/pj−)
)1/(n+1)

, (21)

where pj± = p(y±εej). The product rule now shows that, for any ỹ ∈ B(y, ε/2n),

Dα
y Ds

xp(ỹ) =
∑
β≤α

KβDα−β
y p(ỹ)

∑
π∈Π(s)

KπDβ
y

∏
σ∈π

Dσ
xγ(ỹ), (22)

where the Kβ < ∞ are combinatoric constants. For any m ∈ N0 there is a
Km < ∞ such that, for all q, r ∈ (0,∞) and all δ ∈ (1/4, 3/4),

q1−δrδ| log(q/r)|m =
q + r

(q/r)δ + (r/q)1−δ
| log(q/r)|m ≤ Km(q + r).

Applying this to (21) and (22), we obtain the bound

∣∣Dα
y Ds

xp(ỹ)
∣∣ ≤ K

∑
β≤α

∑
π∈Π(s)

n∏
j=0

∣∣∣∣(pj− + pj+)Dβ
y

∏
σ∈π

Dσ
xγ(ỹ)

∣∣∣∣
1/(n+1)

,

for some K < ∞. It follows from (19) and Hölder’s inequality that the term,
whose absolute value is taken on the right-hand side here, belongs to Lλ/|s|(μ),
and a further application of Hölder’s inequality shows that

Eμ sup
ỹ∈B(y,ε/2n)

∣∣Dα
y Ds

xp(ỹ)
∣∣λ/|s|

< ∞. (23)

A Taylor expansion of Dα
y Ds

xpy about y, in the direction ej , yields

Dα
y Ds

xp(y + tej) = Dα
y Ds

xp(y) + Dα+ej
y Ds

xp(y)t + Dα+2ej
y Ds

xp(y + δtej)t2/2,

for some δ = δ(y, t, j, x) ∈ [0, 1]. Together with (23) and the dominated conver-
gence theorem, this shows that (−ε/2n, ε/2n) 	 t 
→ Dα

y Ds
xp(y + tej) ∈ Lλ|s|(μ)

is differentiable at t = 0, with derivative D
α+ej
y Ds

xp(y). An inductive argument
thus establishes the infinite differentiability of R × B ∈ y 
→ Ds

xp(y) ∈ Lλ|s|(μ).
The same is clearly true of R × B ∈ y 
→ p(y) ∈ Lλ(μ), and so we have shown
that the inclusion map ı is of class C∞.
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Expressed in terms of the charts, ı takes the form f = φ ◦ e−1
λ ◦ γ. Let

g : G → R
n+1 be defined by g = π ◦ eλ ◦ φ−1, where π : Lλ(μ) → R

n+1 is the
L2(μ)-projection onto the subspace spanned by (1, η1, . . . , ηn). It follows from
Lemma 1 that g is of class C1. Now g ◦ f is the identity function of R × B, and
so f is a homeomorphism onto its image (endowed with the subspace topology),
and its derivative, f (1), is a toplinear isomorphism onto its image. So f (1)

R
n+1

is a finite-dimensional closed linear subspace of both G and L2(μ). Let Hc be
its orthogonal complement in L2(μ); then f (1) splits G into the components
f (1)

R
n+1 and G∩Hc. So f is an immersion and an embedding. (See Proposition

2.3 in [6]). This completes the proof. ��
Condition (19) is clearly satisfied if p(y) ∈ L∞(μ) for all y ∈ R × B; this

is so, for example, if N is the exponential manifold of all non-singular (scaled)
Gaussian measures on X , and t < 2. However, there are other possibilities, for
example that in which γ(y), p(y) and their x derivatives have sub-exponential
growth in x for all y ∈ B.

Let N0 := M0 ∩ N be the subset of probability measures. This is, itself,
a finite dimensional exponential manifold with chart θ0 : N → B defined by
θ0(P ) = (θ(P )1, . . . , θ(P )n).

Corollary 2. Under the hypotheses of Theorem 1:

(i) N0 is a C∞-embedded submanifold of N ;
(ii) N0 is a C∞-embedded submanifold of M0.

Proof. The map R × B 	 y 
→ Eμp(y) ∈ (0,∞) was shown, in the proof of
Theorem 1, to be of class C∞. Its first derivative with respect to y0 is Eμp(y).
Since this is strictly positive on R×B, the implicit function theorem shows that
f : B → R, defined by exp(f(z)+

∑n
j=1 zjηj) = 1, is of class C∞. In terms of the

charts θ and θ0, the inclusion map ı : N0 → N takes the form ϕ(z) = (f(z), z).
This is clearly a C∞-embedding, which proves part (i).

Let τ : G → G0 be defined by τ(a) = a − Eμa. This is of class C∞, and so
the same is true of the map g := τ ◦ φ ◦ ı ◦ θ−1

0 : B → G0, where ı : N0 → M is
the inclusion map. Now g is injective and, since τ (1)ρ(1) is the identity map of
G0, the same is true of its first derivative, at all points in B. The latter clearly
splits G0, and so the inclusion map ı : N0 → M0 (which is expressed in charts
by g) is an embedding. This completes the proof of part (ii). ��
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Abstract. The Kullback-Leibler divergence of a given log-normal den-
sity from a log-normal exponential arc is minimized, obtaining an opti-
mal value which is robust with respect to homogeneous transformations
leaving the correlation of the random variables involved unchanged.

Keywords: Exponential models · Orlicz spaces ·
Kullback-Leibler divergence

1 Introduction

The geometry of nonparametric exponential models and its analytical properties
in the topology of Orlicz spaces started with the paper of Pistone and Sempi
[5]. In their framework, the starting point is the notion of maximal exponential
model centered at a given positive density p, which is defined using the Orlicz
space associated to an exponentially growing Young function. One of the main
result in the subsequent work by Cena and Pistone [1] states that any density
belonging to the maximal exponential model centered at p is connected by an
open exponential arc to p and viceversa (by open, we essentially mean that the
two densities are not the extremal points of the arc). Further upgrades have
been proved in Imparato and Trivellato [2] and, more recently, in Santacroce,
Siri and Trivellato [6–9]. In particular, in [6], the equivalence between the equal-
ity of the maximal exponential models centered at two (connected) densities p
and q and the equality of the Orlicz spaces referred to the same densities is
proved. Recently, different authors have generalized the exponential setting by
replacing the exponential function with a new class of functions, called deformed
exponentials (see, e.g., Vigelis and Cavalcante [10]).

Applications of statistical exponential models built on Orlicz spaces can be
found in several fields, such as differential geometry, algebraic statistics, informa-
tion theory. In mathematical finance, applications to convex duality have been
recently given by [8] and [9], while in physics by, e.g., [4] and [3].
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In this paper, we briefly recall some results on exponential connections by
arc and their relation to Orlicz spaces. We then deal with the minimization of
the Kullback-Leibler divergence of a given density from an open exponential
arc. The optimal density is explicitly computed in the log-normal case, and the
corresponding minimal divergence turns out to be robust with respect to homo-
geneous transformations which leave the correlation of the random variables
involved unchanged. Finally, we specify our results in the Merton’s financial
model.

2 Orlicz Spaces and Exponential Models

In this section we recall the notions of Orlicz space, exponential arc and maximal
exponential model, as well as the corresponding main results.

Let (X ,F , μ) be a fixed probability space and denote with P the set of all
densities which are positive μ-a.s. and with Ep the expectation with respect to
p · μ, for each fixed p ∈ P.

Let us consider the Young function Φ1(x) = cosh(x) − 1, equivalent to the
more commonly used Φ2(x) = e|x| − |x| − 1.

Its conjugate function is Ψ1(y) =
∫ y

0
sinh−1(t)dt, which, in its turn, is equiv-

alent to Ψ2(y) = (1 + |y|) log(1 + |y|) − |y|.
Given p ∈ P, the Orlicz space associated to Φ1 is defined by

LΦ1(p) = {u measurable : ∃ α > 0 s.t. Ep(Φ1(αu)) < +∞} (1)

and it is a Banach space when endowed with the Luxembourg norm

‖u‖Φ1,p = inf
{

k > 0 : Ep

(
Φ1

(u

k

))
≤ 1

}
. (2)

Moreover, it is worth to note the following chain of inclusions:

L∞(p) ⊆ LΦ1(p) ⊆ La(p) ⊆ Lψ1(p) ⊆ L1(p), a > 1.

Definition 1. p, q ∈ P are connected by an open exponential arc if there exists
an open interval I ⊃ [0, 1] such that one of the following equivalent relations is
satisfied:

1. p(θ) ∝ p(1−θ)qθ ∈ P, ∀θ ∈ I;
2. p(θ) ∝ eθup ∈ P, ∀θ ∈ I, where u ∈ LΦ1(p) and p(0) = p, p(1) = q.

Observe that connection by open exponential arcs is an equivalence relation.
Let us consider the cumulant generating functional map defined on LΦ1

0 (p) =
{u ∈ LΦ1(p) : Ep(u) = 0}, by the relation Kp(u) = logEp(eu). We recall from
Pistone and Sempi [5] that Kp is a positive convex and lower semicontinuous
function, vanishing at zero, and that the interior of its proper domain, denoted

here by
◦

dom Kp, is a non empty convex set.
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For every density p ∈ P, we can then define the maximal exponential model
at p as

E(p) =
{

q = eu−Kp(u)p : u ∈
◦

dom Kp

}

⊆ P. (3)

The following theorem, which is one of the central results of [1,6,9], gives equiva-
lent conditions to open exponential connection by arcs. We state it in a complete
version, containing all the recent improvements.

Theorem 1. (Portmanteau Theorem)
Let p, q ∈ P. The following statements are equivalent.

(i) q ∈ E(p);
(ii) q is connected to p by an open exponential arc;
(iii) E(p) = E(q);
(iv) log q

p ∈ LΦ1(p) ∩ LΦ1(q);
(v) LΦ1(p) = LΦ1(q);
(vi) q

p ∈ L1+ε(p) and p
q ∈ L1+ε(q), for some ε > 0;

(vii) m
U

q
p : LΨ1(p) −→ LΨ1(q) s.t. m

U
q
p(v) = p

q v is an isomorphism of Banach
spaces.

3 Minimization of the Kullback-Lebleir Divergence

Let

D(q‖p) = Ep

(
q

p
log

q

p

)

= Eq

(

log
q

p

)

be the Kullback-Leibler divergence of q · μ with respect to p · μ. We will simply
refer to it as the divergence of q from p.

The following result relates the divergence finiteness to Orlicz spaces and
the proof can be find in Cena and Pistone [1] for the first statement and in
Santacroce, Siri and Trivellato [6] for the second one.

Proposition 1. Let p, q ∈ P. Then

(i) D(q‖p) < ∞ ⇔ log q
p ∈ L1(q) ⇔ q

p ∈ LΨ1(p);
(ii) D(q‖p) < ∞ ⇒ LΦ1(p) ⊆ L1(q) (not only LΦ1(p) ⊆ L1(p)).

Moreover, when working with the maximal exponential model, a stronger
result holds, implied by the Portmanteau Theorem:

Proposition 2. If q ∈ E(p), then the Kullback-Leibler divergences D(q‖p) and
D(p‖q) are both finite.

Nevertheless the converse is not true, as the counterexamples in Santacroce,
Siri and Trivellato [6,9] show.

For a fixed p ∈ P, let us now consider q, r ∈ E(p).
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Denote with r(θ) a generic element of the open arc between r and p, i.e. for
every θ ∈ I = (−ε, 1 + ε), ε > 0

r(θ) =
p(1−θ)rθ

c(θ)
∈ P, where c(θ) = Eμ

(
p(1−θ)rθ

)
= Ep

((
r

p

)θ
)

,

and suppose that q does not belong to the arc.
We are interested in minimizing the divergence of q from r(θ) over the expo-

nential arc, i.e. in finding
min
θ∈I

D(q‖r(θ)). (4)

Explicit computations give

D(q‖r(θ)) = Eq

(

log
q

r(θ)

)

= Eq(log q) − Eq

(

log
p(1−θ)rθ

c(θ)

)

= Eq(log q) − (1 − θ)Eq(log p) − θEq(log r) + logEp

((
r

p

)θ
)

= Eq

(

log
q

p

)

− θEq

(

log
r

p

)

+ logEp

((
r

p

)θ
)

.

The corresponding stationary condition is

d

dθ
D(q‖r(θ)) = −Eq

(

log
r

p

)

+
Ep

((
r
p

)θ

log r
p

)

Ep

((
r
p

)θ
) = 0,

i.e.

Ep

((
r

p

)θ

log
r

p

)

= Ep

((
r

p

)θ
)

Eq

(

log
r

p

)

.

Since q, r ∈ E(p), then q = eu−Kp(u)p and r = ev−Kp(v)p, with u, v ∈
◦

dom Kp,
and we can rewrite the divergence as

D(q‖r(θ)) = D(q‖p) − θEq (v − Kp(v)) + logEp

(
eθ(v−Kp(v))

)

= D(q‖p) − θEq(v) + logEp

(
eθv

)
.

The stationary condition then becomes

Ep

(
veθv

)
= Ep

(
eθv

)
Eq (v) .

Let us now introduce Mv(θ) = Ep(eθv) = eKp(θv), the moment generating func-
tion of v with respect to p · μ, which is well defined on I = (−ε, 1 + ε) since

v ∈
◦

dom Kp.
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In terms of the moment generating function, we then get

D(q‖r(θ)) = D(q‖p) − θEq(v) + log Mv(θ), (5)

with the stationary condition

M ′
v(θ) = Mv(θ)Eq (v) . (6)

3.1 The Log-Normal Case

Let us now suppose that (u, v) is a non-degenerate Gaussian vector with p-

mean (mu,mv) and p-covariance matrix
(

σ2
u c
c σ2

v

)

, with parameters mu,mv ∈ R,

σu, σv > 0 and c ∈ R such that −σuσv < c < σuσv.
Since, ∀(ξ, θ) ∈ R

2, the moment generating function of the Gaussian vector
is

M(u,v)(ξ, θ) = Ep

(
eξu+θv

)
= exp

(

muξ + mvθ +
1
2
σ2

uξ2 +
1
2
σ2

vθ2 + cξθ

)

and

∂

∂θ
M(u,v)(ξ, θ) = exp

(

muξ + mvθ +
1
2
σ2

uξ2 +
1
2
σ2

vθ2 + cξθ

)

· (mv + σ2
vθ + cξ),

we can derive

Ep (veu) =
∂

∂θ
M(u,v)(1, 0) = exp

(

mu +
1
2
σ2

u

)

· (mv + c)

= Mu(1) · (mv + c). (7)

Specifically, in our case u, v ∈
◦

dom Kp so that (mu,mv) = (0, 0) and thus
Ep (veu) = cMu(1) = ceKp(u).

We can use this equality in order to compute the term Eq (v) in the divergence
expression (5):

Eq (v) = Ep

(

v
q

p

)

= Ep

(
veu−Kp(u)

)
= e−Kp(u)

Ep (veu) = c.

As a byproduct of our computations, let us observe that, for p-densities q/p
and r/p, with a log-normal distribution, the following meaningful equality holds:

Eq (v) = Er (u) = Covp(u, v) = Ep (uv) . (8)

Moreover the divergence of q from the arc r(θ), with θ ∈ I = R, becomes a
simple parabola

D(q‖r(θ)) = D(q‖p) − θCovp(u, v) + log Mv(θ)

= D(q‖p) − θc +
1
2
σ2

vθ2.
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So the minimum is reached in

θ̄ =
c

σ2
v

=
Covp(u, v)
V arp(v)

(9)

and its value is

min
θ∈R

D(q‖r(θ)) = D(q‖r(θ̄)) = D(q‖p) − θ̄c +
1
2
σ2

v θ̄2 = D(q‖p) − 1
2

c2

σ2
v

= D(q‖p) − 1
2

Cov2
p(u, v)

V arp(v)
. (10)

The representation in E(p) of the density which minimizes the divergence is
r(θ̄) = ev̄−Kp(v̄)p, where

v̄ =
c

σ2
v

v =
Covp(u, v)
V arp(v)

v, Kp(v̄) =
1
2

c2

σ2
v

=
1
2

Cov2
p(u, v)

V arp(v)
. (11)

Let us observe that, if we explicit our results in terms of the correlation � =
�p(u, v) ∈ (−1, 1) we get

θ̄ = �
σu

σv
, v̄ = �

σu

σv
v, Kp(v̄) =

1
2
�2σ2

u, (12)

and the minimal divergence is

min
θ∈R

D(q‖r(θ)) = D(q‖p) − 1
2
�2σ2

u. (13)

Remark 1. By (13), let us note that the minimum of the divergence of q from the
arc connecting p and r depends on the choice of r only through the correlation
� between u and v.

On the other hand, let us consider another density s = ew−Kp(w)p and sup-
pose that (u,w) is a Gaussian vector with the same correlation as (u, v). Then,
there exists a ∈ I = R such that w = av, which in turn means that s belongs to
the exponential arc r(θ), connecting r and p, with θ = a.

Remark 2. If q and r are independent, which means that u and v are indepen-
dent, then we immediately get Covp(u, v) = c = 0, so that the density which
minimizes the divergence turns out to be r(0) = p.

Let us show that it is in fact a general result, not only true for log-normal
densities.

In case of independence between u and v, since v ∈ LΦ1
0 (p), we have

Eq(v) = Ep

(
veu−Kp(u)

)
= e−Kp(u)

Ep(veu) = e−Kp(u)
Ep(v)Ep(eu) = 0.

As a consequence
D(q‖r(θ)) = D(q‖p) + log Mv(θ)
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and the stationary condition immediately becomes

M ′
v(θ) = 0.

Since Mv is a strictly positive, continuous and convex function on its proper
domain, which contains (−ε, 1 + ε), and M ′

v(0) = Ep (v) = 0, we deduce that
θ = 0 is the unique minimum point for Mv. As a consequence, the density which
minimizes the divergence is p = r(0).

Example 1. Merton’s model

Let us now consider an application of the previous result to a financial model
in an uncertainty framework (see [9]).

Let F be the augmented filtration generated by a Brownian motion
(Bt)0≤t≤T<∞. Assume that the price process X of a financial market follows
the Black and Scholes dynamics

dXt = Xt (σdBt + mdt) , ∀ 0 ≤ t ≤ T,

with σ > 0 and m ∈ R.
Since the market is complete, the unique martingale measure obviously coin-

cides with the minimal entropy martingale measure, which has the form

q∗ = e− m
σ BT − 1

2
m2

σ2 T .

It can be proved, by condition (vi) of the Portmanteau Theorem, that q∗ belongs
to the maximal exponential model E(p) with p = 1, i.e. q∗ = eu∗−K1(u∗), where

u∗ = −m

σ
BT , K1(u∗) = D(1||q∗) =

1
2

m2

σ2
T. (14)

In fact, we immediately get

E((q∗)1+ε) = E

(
e− m

σ (1+ε)BT − 1
2

m2

σ2 (1+ε)T
)

< +∞,

E((q∗)−ε) = E

(
e

m
σ εBT + 1

2
m2

σ2 εT
)

< +∞.

From (iii) of the Portmanteau Theorem, if we choose a density r connected to
p = 1 by an open arc, then q∗ ∈ E(r) = E(1) and trivially, since the set of the
equivalent martingale measures is a singleton, it turns out to be the minimal
entropy martingale measure with respect to r.

Let us now consider the generic element r(θ) of the open arc connecting r
and p. The minimization of the entropy over the arc

min
θ∈I

D(q∗‖r(θ)) (15)

is the dual problem of a classical exponential utility maximization problem in
which an uncertainty exists on the choice of the reference probability measure.
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As we have seen before, modeling this uncertainty by varying the reference mea-
sure over an exponential arc r(θ) ∝ eθv ensures that, in the Gaussian case, the
optimal value of the divergence is robust with respect to homogeneous transfor-
mations of v which leave its correlation with u∗ unchanged.

Indeed, a particular choice of r is made by selecting v such that (u∗, v) is

a non-degenerate Gaussian vector with covariance matrix
(

m2

σ2 T c
c γ2

)

, picking

arbitrarily the parameters γ2 and c.
Using (10) we obtain the solution of the dual problem (15) as

D
(
q∗‖r(θ̄)) = D(q∗||1) − 1

2
c2

γ2
=

1
2

m2

σ2

(

T − Cov(BT , v)2

V ar(v)

)

. (16)

The representation in E(1) of the corresponding optimal density is then given
by r(θ̄) = ev̄−K1(v̄), where

v̄ =
c

γ2
v = −m

σ

Cov(BT , v)
V ar(v)

v, K1(v̄) =
1
2

c2

γ2
=

1
2

m2

σ2

Cov(BT , v)2

V ar(v)
. (17)

4 Conclusions

In the paper, we have dealt with the minimization of the Kullback-Leibler
divergence over a log-normal exponential arc. Explicit expressions have been
done for both the optimal density and the minimal divergence, showing their
robustness with respect to homogeneous transformations which leave the corre-
lation of the random variables involved unchanged. The results obtained have
been then applied to the complete Merton’s market model.
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Abstract. Information geometry of the space P(M) of probability
measures defined on a compact smooth Riemannian manifold M and
equipped with Fisher metric G, is investigated from the viewpoint of
Riemannian geometry. The function � : P(M) × P(M) → [0, π) associ-
ated to the geometric mean of two probability measures is introduced.
From the formulae of Levi-Civita geodesics the Riemannian distance
d(·, ·) of (P(M), G) is exactly given by �(·, ·). By applying the parametrix
H(x, x0; t) of the heat kernel of M it is shown that the diameter D
satisfies D = π.

Keywords: Riemannian distance · Geodesic · Diameter · Parametrix

1 Geodesics and Riemannian Distance Function

Information geometry of statistical models has been developed in a parametric
case. Duality of α-connections together with Fisher information metric and also
α-divergences are of great importance for a general framework in a parametric
model. For their development refer to [17], [1], [2] and the references therein.
The Fisher information metric G is well defined on the space of all probability
measures on a smooth manifold M , similarly to the parametric case, as shown
by T. Friedrich [7] and many interesting aspects and properties of the Fisher
metric G have been studied from information geometry. The α-connections and
the α-divergences can be provided associated to the Fisher metric G on the space
of all probability measures on M , as a non-parametric model. Refer to [10] for
these and the dual flatness of (±1)-connections and the subjects related to them.

In this paper we study, from a viewpoint of Riemannian geometry, infor-
mation geometry of a non-parametric model, namely of the space P(M) of all
probability measures on a manifold M , equipped with the Fisher metric G and
hence with the Levi-Civita connection ∇, i.e., the α-connection of α = 0. We
focus on geometric aspects associated to the Levi-Civita connection and give a
formula describing geodesics and geodesic segments and then exhibit an exact
c© Springer Nature Switzerland AG 2019
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form of the Riemannian distance function for the space P(M) with respect to the
Fisher metric G. The diameter, the supremum of the distance of two measures
of P(M) is discussed in Sect. 2 by applying the notion of parametrix for the heat
kernel of M , namely a certain approximation of the fundamental solution of the
heat equation on M and then the diameter of (P(M), G) turns out to equal π
(see Theorem 7).

To be precise, let (M, g) be a connected, compact smooth n-
dimensional Riemannian manifold with the Riemannian volume measure
λ =

√
|det gij | dx1 · · · dxn of

∫
M

dλ = 1 and let P(M) be the space of proba-
bility measures on M defined as

P(M) =
{

μ is a measure on M

∣∣∣∣
∫

M

dμ = 1, μ � λ,
dμ

dλ
∈ C0

+(M)
}

. (1)

Here μ � λ means that μ is absolutely continuous with respect to λ so that μ
is represented by μ = pλ with density function p = p(x), x ∈ M . The symbol
dμ/dλ denotes the Radon-Nikodym derivative of μ with respect to λ, given by
the density function p and C0

+(M) denotes the space of positive continuous
functions on M .

Notice that there is a natural embedding ρ : P(M) → L2(M,λ), μ = pλ �→
ρ(μ) = 2

√
p. The embedding ρ induces naturally a topology on P(M) with an

ε-open ball {μ1 = p1λ ∈ P(M) | 2|√p1 − √
p|L2 < ε} around μ = pλ.

Definition 1. Let ϕ : P(M) × P(M) → P(M) be a map, called the normalized
geometric mean;

ϕ(μ1, μ2) =

(∫

x∈M

√
dμ2

dμ1
(x) dμ1(x)

)−1 √
dμ2

dμ1
μ1 (2)

and let � : P(M) × P(M) → [0, π) be a function defined by

�(μ1, μ2) = 2 arccos

(∫

x∈M

√
dμ2

dμ1
(x) dμ1(x)

)
. (3)

The map ϕ and the function � are continuous with respect to the induced
topology [11]. The function � provides the Riemannian distance function with
respect to the Fisher metric G, as stated in Theorem 5. In [7] the metric G
is defined at each μ ∈ P(M) as the inner product of tangent vectors τ1, τ2 ∈
TμP(M)

Gμ(τ1, τ2) =
∫

M

dτ1
dμ

dτ2
dμ

dμ =
∫

x∈M

q1(x)
p(x)

q2(x)
p(x)

p(x) dλ(x). (4)

Here the tangent space at μ is defined by the space of signed measures on M

TμP(M) =
{

τ = qλ

∣∣∣∣ q ∈ C0(M) ∩ L2(M,λ),
∫

M

q(x) dλ(x) = 0
}

. (5)
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Note that the right hand side of (5) is an infinite dimensional vector space which
does not depend on a choice of μ, so we denote it V(M). The symbol dτi/dμ,
i = 1, 2 means the Radon-Nikodym derivative of τi with respect to μ, given
by (dτi/dλ)/(dμ/dλ) = qi/p. If τ ∈ V(M), then for any μ ∈ P(M) there exists
ε > 0 such that μ + tτ ∈ P(M), |t| < ε, since M is compact and the density
functions are continuous.

The Fisher metric G is a natural generalization of the classical Fisher infor-
mation for statistical models in parametric statistics and information theory [2].
The uniqueness of the metric G for probability measures with smooth density
function in the sense of diffeomorphism-invariance is shown in [3].

The Levi-Civita connection ∇ of the metric G is given explicitly in [7, p.276]
by applying an idea of constant vector fields:

(∇τ τ1)μ = −1
2

(
dτ

dμ

dτ1
dμ

− Gμ(τ, τ1)
)

μ

, τ, τ1 ∈ V(M). (6)

Here the Levi-Civita connection is an affine connection on P(M) which is torsion
free and leaves invariant the metric G. It is shown that the Riemannian curvature
tensor of the manifold (P(M), G) is given by

Rμ(τ1, τ2)τ3 =
1
4

(Gμ(τ2, τ3)τ1 − Gμ(τ1, τ3)τ2) (7)

so the sectional curvature is constant 1/4. Refer to [7].

Remark 1. The α-connections ∇α, α ∈ R associated to the metric G and the
Riemannian curvature tensor Rα of ∇α admit the following form, respectively;
∇α

τ τ1 = (1 + α)∇ττ1 and Rα
μ(·, ·) = (1 − α2)Rμ(·, ·) so that {∇α,∇−α} is a dual

pair and the pair {∇+1,∇−1} is dually flat. For the details refer to [10].

We obtain the explicit formula for a geodesic associated with the Levi-Civita
connection ∇. In fact, let γ : I → P(M)(I is an open interval, 0 ∈ I) be
a geodesic, parametrized by arc-length satisfying γ(0) = p0λ, γ̇(0) = ṗ0λ of
|γ̇(0)|μ(:= Gμ(γ̇(0), γ̇(0))1/2) = 1.

Theorem 1. (T. Friedrich [7]) The density function pt = pt(x) of γ(t) with
respect to λ has the form

pt(x) =
1

1 + tan2( t
2 )

{
p0(x) + 2 tan

(
t

2

)
ṗ0(x) + tan2

(
t

2

)
ṗ20(x)
p0(x)

}
. (8)

From (8) each geodesic of unit speed is periodic and of period π. However
every geodesic is not complete, since γ(π) /∈ P(M) at t = π. One is able to
obtain a density free description for a geodesic.

Theorem 2. ([9–11]) Let γ(t) be a geodesic with γ(0) = μ and γ̇(0) = τ ∈
TμP(M). If τ is of unit norm, i.e., |τ |μ = 1 with respect to G, then γ(t) is
represented by

γ(t) =
(

cos
t

2
+

dτ

dμ
· sin

t

2

)2

μ. (9)
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Next we consider the problem whether any two measures of P(M) can be
joined by a geodesic segment. For given probability measures μ, μ1 ∈ P(M) we
give affirmatively an explicit formula representing a geodesic segment joining μ
and μ1, by using above theorem.

Theorem 3. ([10,11]) Let μ, μ1 be arbitrary probability measures of P(M) with
μ 	= μ1. Then there exists a unique geodesic segment γ(t), t ∈ [0, l] such that
γ(0) = μ, γ(l) = μ1. Here the length l of γ is given by �(μ, μ1). Moreover, γ(t)
is represented by

γ(t) =
(

cos
t

2
+

dτ

dμ
· sin

t

2

)2

μ

with initial velocity vector of unit norm

τ =
1

tan(l/2)
(ϕ(μ, μ1) − μ) .

This theorem indicates that any measures μ, μ1 can be joined by a unique
geodesic segment whose length is �(μ, μ1).

Proof. Assume that μ and μ1 are joined by (9). Then there exists a number l > 0
such that (

cos
l

2
+

dτ

dμ
· sin

l

2

)2

μ = μ1. (10)

Rewrite this as (
cos

l

2
+

dτ

dμ
· sin

l

2

)2

=
dμ1

dμ

and solve this with respect to dτ/dμ, by an analogous argument in [9, p.1830,
Assertion 3], in fact, actually from the connectedness of the manifold M as

cos
l

2
+

dτ

dμ
· sin

l

2
=

√
dμ1

dμ
. (11)

We find then that the initial velocity τ of unit norm is uniquely determined by

τ =
1

sin(l/2)

(√
dμ1

dμ
− cos

l

2

)
μ (12)

immediate from (11). By integrating (11) with respect to μ we have

∫

M

√
dμ1

dμ
dμ = cos

l

2
(13)

from the tangent vector condition;
∫

M
dτ = 0. We can write (12) and (13),

respectively as

τ =
1

tan(l/2)
(ϕ(μ, μ1) − μ) (14)
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and

l = 2arccos

(∫

M

√
dμ1

dμ
dμ

)
= �(μ, μ1). (15)

The following is a direct consequence of above theorem.

Theorem 4. ([10,11]) Let μ, μ1 ∈ P(M) with μ 	= μ1. As is stated in above
Theorem, there exists a unique geodesic γ(t) with respect to G parametrized by
arc-length, joining μ and μ1. This geodesic segment can be expressed in the form

γ(t) = c1(t)μ + c2(t)μ1 + c3(t)ϕ(μ, μ1), t ∈ [0, l]. (16)

Here ϕ(μ, μ1) is the normalized geometric mean of measures μ, μ1, as introduced
in Definition 1. Moreover, γ(0) = μ, γ(l) = μ1, l = �(μ, μ1) and ci(t), i = 1, 2, 3
are the non-negative functions of t satisfying

c1(t) + c2(t) + c3(t) = 1

which are written respectively by

c1(t) =
sin2(l − t)/2

sin2(l/2)
, c2(t) =

sin2(t/2)
sin2(l/2)

,

c3(t) =
2 cos(l/2) · sin(t/2) · sin(l − t)/2

sin2(l/2)
.

As a consequence of Theorem 4 one has the following theorem.

Theorem 5. ([10,11]) Let γ = γ(t), t ∈ [0, l] (l = �(μ, μ1)) be a geodesic
segment joining μ, μ1 ∈ P(M), μ 	= μ1 satisfying γ(0) = μ, γ(l) = μ1. Then,

1. γ(t) ∈ P(M) at every t ∈ [0, l], i.e., the density function of γ(t) belongs to
C0

+(M) for every t ∈ [0, l],
2. the geodesic segment γ : [0, l] → P(M) is a curve lying on the 2-simplex

spanned by μ, μ1 and ϕ(μ, μ1),
3. Two tangent lines defined at the endpoints of the geodesic segment always

intersect each other at ϕ(μ, μ1),
4. the midpoint of the geodesic segment γ(t), t ∈ [0, l] is represented by

γ(l/2) =
1

4 cos2(l/2)

(
1 +

√
dμ1

dμ

)2

μ (17)

which is the (1/2)–power mean of μ, μ1. Refer to [11], [14].

One of our main theorems is the following.

Theorem 6. ([11]) The Riemannian distance d between μ and μ1 with respect
to the Fisher metric G is given by the function �(μ, μ1);

d(μ, μ1) = �(μ, μ1),
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where

d(μ, μ1) := inf

{
L(c) :=

∫ 1

0

√
G

(
dc

dt
,
dc

dt

)
dt : c ∈ C (μ, μ1)

}
.

Here C(μ, μ1) denotes the space of piecewise C1-curves c : [0, 1] → P(M) joining
μ and μ1.

Notice 0 ≤ d(μ, μ1) = �(μ, μ1) < π for any μ, μ1 ∈ P(M). The function �(·, ·)
is related to certain informations called the Hellinger integral and the Hellinger
distance [13].

This theorem is verified as follows. First we restrict our argument to the space
P∞(M) of measures in P(M) having smooth density function and then define the
exponential map over P∞(M) with the Fisher metric G and prove basic facts,
familiar in ordinary Riemannian geometry, Gauss lemma, the existence of totally
normal neighborhood and the minimizing length properties of geodesics, cf. [6,
Chap. 3],[8],[12]. We then show that the function � exactly gives the Riemannian
distance for the space (P∞(M), G). We prove secondly that P∞(M) is dense in
P(M) with respect to the C0-norm and show that the Riemannian distance of
μ, μ1 ∈ P∞(M) in P(M) is actually given by �(μ, μ1) by using the argument
of mollifiers. We verify finally from the continuity that �(μ, μ1) is properly the
Riemannian distance of μ, μ1 of P(M). For the details refer to [11].

2 Parametrix and Diameter

The diameter of a Riemannian manifold is defined by the supremum of the
distance over two points.

Theorem 7. The diameter D of the space (P(M), G) satisfies D = π.

Note that since �(μ, μ1) < π for μ, μ1, D ≤ π. We will give a proof by taking
a sequence {μi} in P(M) satisfying

∫

x∈M

√
dμi

dλ
(x) dλ(x) → 0, i → ∞. (18)

Then, �(μi, λ) → π. This is because

cos
�i

2
=

∫

M

√
dμi

dλ
(x) dλ(x), �i = �(μi, λ) ∈ [0, π). (19)

We will now construct such a sequence by using a parametrix of the heat kernel,
the fundamental solution of the heat equation (Δ + ∂

∂t )u = 0 over a compact
smooth manifold M . Here Δ = −∑

gij∇i∇j is the Laplacian of (M, g). See [4,
Cap. III, E], [18, VI], [20, III, §2] for the heat kernel and its parametrix. We also
refer to [22] for the heat kernel. Recall that on the Euclidean space (Rn, go) the
heat kernel is E(x, x′; t) = (4πt)−n/2 exp{−r2/4t}, r = d(x, x′). Refer to [21].
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Take a point xo ∈ M as a reference point. Let B(xo, ε) = {x ∈
M ; dg(x, xo) < ε} be an ε-open ball centered at xo, endowed with a geodesic nor-
mal coordinates {x1, · · · , xn}. Let Hk(x, xo; t) = Sk(x, xo; t)η(x), k > dim M/2,
be a parametrix of the heat kernel, where Sk(x, xo; t) is the function defined on
B(xo, ε) × R

∗
+ by

Sk(x, xo; t) = (4πt)−n/2 exp
{

−r2(x)
4t

} (
u0(x) + tu1(x) + · · · + tkuk(x)

)
,

(20)
where uj(x) = uj(x, xo), 0 ≤ j ≤ k are smooth functions inductively defined on
B(xo, ε). Notice that u0(x, xo) =

√
det gij on the normal coordinates around xo

in B(xo, ε) and u0(xo, xo) = 1. The principal part of (20) is just the heat kernel
of the Euclidean space. Refer to [4] for these. Moreover η = η(r), r = r(x) :=
dg(x, xo) is a bump function; η = η(r); 0 ≤ η ≤ 1 satisfying η(r) ≡ 1, r ≤ ε/4,
η(r) ≡ 0, r ≥ ε/2.

Definition 2. ([4]) A function H satisfying the following is called a parametrix
for the heat kernel;

1. H(·, · ; ·) ∈ C∞(M × M × R
∗
+),

2.
(
Δ1 + ∂

∂t

)
H(·, · ; ·) extends to a function in C0(M × M × R+),

3. limt→0+ H(·, xo; t) = δxo
,

where R+ = {x ∈ R |x ≥ 0} and R
∗
+ = {x ∈ R |x > 0} and the symbol δxo

means
the delta function centered at xo. In condition 2 Δ1 is the Laplacian operating
on the first variable.

It is shown in [4, Lemma E.III.3] that the above Hk(x, xo; t) gives a
parametrix, for x, xo ∈ M . Define a probability measure μ(t) on M parametrized
in t > 0 as

μ(t) :=
1

V (t)
{Sk(x, xo; t)η(r(x)) + (1 − η(r(x)))t}λ, (21)

where V (t) is given by

V (t) =
∫

B(xo, ε)

Sk(x, xo; t)η(x) dλ + t

∫

M

(1 − η) dλ, (22)

the total integral of the measure {Sk(x, xo; t)η(r(x)) + (1 − η(r(x)))t}λ, whose
first integral tends to 1, when t → 0 so we may assume that the first integral is
greater than 1/2 for any t, |t| < δ, for a sufficiently small δ. The second term is
estimated as

t

∫

M

(1 − η) dλ ≥ t Vol (M \ B(xo, ε/2)) . (23)

Then, μ(t) ∈ P(M) for any 0 < t < δ.
Consider next

√
dμ(t)
dλ

(x)λ =
1√
V (t)

{Sk(x, xo; t) η(r(x)) + (1 − η(x))t}1/2
λ (24)
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and its integral
∫

M

√
dμ(t)
dλ

(x) dλ =
1√
V (t)

∫

M

{Sk(x, xo; t)η(r(x)) + (1 − η(x))t}1/2 dλ. (25)

Since
√

a + b ≤ √
a +

√
b for a, b ≥ 0, the above is estimated from above as

∫

M

√
dμ(t)
dλ

(x) dλ ≤ 1√
V (t)

∫

M

{{Sk(x, xo; t) η(r(x))}1/2

+ {(1 − η(x))t}1/2} dλ

≤ 1√
V (t)

∫

Bε/4

{Sk(x, xo; t)η(r(x))}1/2 dλ

+
√

t√
V (t)

Vol(M \ Bε/2), Bε/2 := B(xo, ε/2).

From the above estimation of V (t) we have V (t) ≥ 1
2 + t Vol(M \ Bε/2) and

consequently
∫

M

√
dμ(t)
dλ

(x)dλ ≤ 1√
1
2 + t Vol(M \ Bε/2)

∫

Bε/2

{Sk(x, xo; t)η(r(x))}1/2dλ

+
√

t√
1
2 + t Vol(M \ Bε/2)

Vol(M \ Bε/2).

(26)

We estimate then the integrand of the first term,
√

Sk(x, xo; t)
√

η(r(x)). From
(20), we have

√
Sk(x, xo; t) = (8πt)n/2(4πt)−n/4(4π × 2t)−n/2 exp

{
−r2(x)

4(2t)

} √√√√ k∑
i=0

tiui(x).

Since tn/2 · t−n/4 = tn/4,

∫
Bε/2

√
Sk(x, xo; t)

√
η(r(x)) dλ

=
(8π)n/2

(4π)n/4
· tn/4

∫
Bε/2

(4π(2t))−n/2 exp

{
− r2(x)

4 · (2t)
} √∑

tiui(x)
√

η(r(x)) dλ. (27)

Here
√

η(r(x)) is a bump function and the square root term is estimated on
Bε/2 by

√√√√ k∑
i=0

tiui(x) =

⎛
⎝

√√√√ k∑
i=0

tiui(x)

⎞
⎠

−1 (
k∑

i=0

tiui(x)

)
≤ C

k∑
i=0

(2t)iui(x), C > 0
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for sufficiently small t > 0, since u0(x) =
√

det gij(x) > 0 on Bε/2 and
u0(xo) = 1.

Therefore the left hand of (27) must tend to 0, as t → 0, since the right
hand integral

∫
Bε/2

· · · dλ takes a finite value from the form of Sk(x, xo; 2t), or
rather of Hk(x, xo; 2t) (in fact, from Condition 3 of Definition 2). Therefore,
limt→0 �(μ(t), λ) = π and hence D = π.

3 Final Remarks

Our theorems, thus exhibited above, are derived from the argument of constant
vector fields employed in [7]. For a non-compact manifold case, one might need
a hypothesis of connectedness by an open mixture arc for probability measures
[11]. Probability measures μ and μ1 ∈ P(M) are said to be connected by an
open mixture arc (denoted μ ∼m μ1) if there exists an open interval I ⊃ [0, 1]
such that tμ + (1 − t)μ1 belongs to P(M) for t ∈ I. For this connectedness
refer to [11],[5] and [19]. Let Pm(M) = {μ ∈ P(M) |μ ∼m λ}. Define an infinite
dimensional vector space

Vm(M) =
{

ν = qλ

∣∣∣∣ q ∈ C0(M),
∫

M

dν = 0, λ + tν ∈ Pm(M)∀t, |t| < ε

}
(28)

which coincides with V(M) (see (5)), when M is compact. Every τ ∈ Vm(M)
induces a vector field at each μ ∈ Pm(M). Therefore, the argument of constant
vector fields can be applied to a non-compact manifold M .

Example 1. For simplicity we let M = R and λ = (4π)−1/2 exp(−x2/4)dx be
the Gaussian measure on R. Let Pm(R) = {μ ∈ P(R) |μ ∼m λ}. Then the
theorems above are all valid for Pm(R). The diameter is π, since the heat kernel
E(x, x′; t) = (4πt)−1/2 exp{−|x′ − x|2/4t}, t > 0 on R itself plays a role of a
parametrix.

We remark that a Gaussian measure μ(m,σ) of mean value m and variance
σ > 0 is connected with a Gaussian measure μ(m′,σ′) by an open mixture arc
if and only if (m,σ) = (m′, σ′). Thus, a space of probability measures on R

including all Gaussian measures does not admit globally defined constant vector
fields. To overcome this difficulty we might employ other methods, for example,
the method of Orlicz spaces given by Pistone et al. [16], [15] and [5], and formu-
late then information geometry for non-parametric model over the space P̂(M)
of probability measures having L1-integrable positive density function which is
endowed with an affine smooth structure.

For a study of parametric models from our non-parametric information geom-
etry we take an embedding of a parametric model over M into our space
(P(M), G) as a submanifold. Then the Riemannian submanifold theory will be
applied.
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Distances between Positive Definite
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Abstract. This work presents a parametrized family of distances,
namely the Alpha Procrustes distances, on the set of symmetric, pos-
itive definite (SPD) matrices. The Alpha Procrustes distances provide a
unified formulation encompassing both the Bures-Wasserstein and Log-
Euclidean distances between SPD matrices. This formulation is then
generalized to the set of positive definite Hilbert-Schmidt operators on
a Hilbert space, unifying the infinite-dimensional Bures-Wasserstein and
Log-Hilbert-Schmidt distances. The presented formulations are new both
in the finite and infinite-dimensional settings.

Keywords: Procrustes distance · Bures-Wasserstein distance ·
Log-Euclidean distance · Log-Hilbert-Schmidt distance ·
Positive definite matrices · Positive definite operators

1 Introduction and Motivations

The purpose of the current work is to provide a unified formulation linking two
important distances on the set of symmetric, positive definite (SPD) matri-
ces, namely the Bures-Wasserstein and Log-Euclidean distances, along with
their infinite-dimensional generalizations on the set of positive definite Hilbert-
Schmidt operators on an infinite-dimensional Hilbert space.

Let Sym+(n) denote the set of n × n real, symmetric, positive semi-definite
matrices and Sym++(n) ⊂ Sym+(n) denote the set of symmetric positive def-
inite (SPD) matrices. Let U(n) denote the set of n × n unitary matrices. In
the context of optimal transport theory [15], the Bures-Wasserstein distance on
Sym+(n) arises as follows. Let μX ∼ N (m1, A) and μY ∼ N (m2, B) be two
Gaussian probability distributions on R

n. Let Γ (μX , μY ) be the set of all prob-
ability distributions on R

n × R
n whose marginal distributions are μX and μY .
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It was proved [3,5,6,13] that the following is a squared distance, the so-called
L2-Wasserstein distance, between μX and μY

d2W(μX , μY ) = inf
μ∈Γ (μX ,μY )

∫
Rn×Rn

||x − y||2dμ(x, y)

= ||m1 − m2||2 + tr[A + B − 2(A1/2BA1/2)1/2]. (1)

For m1 = m2 = 0, we obtain the Bures-Wasserstein distance on Sym+(n)

dBW(A,B) =
(
tr[A + B − 2(A1/2BA1/2)1/2]

)1/2

. (2)

From the viewpoint of Procrustes distances [2,9], dBW is obtained via the fol-
lowing optimization problem

dBW(A,B) = min
U,V ∈U(n)

||A1/2U − B1/2V ||F = min
U∈U(n)

||A1/2 − B1/2U ||F , (3)

where || ||F is the Frobenius norm. Both the optimal transport and Procrustes
distance formulations remain valid in the infinite-dimensional settings, where
μX , μY are two Gaussian measures on a Hilbert space H, A,B are two covariance
operators on H [5,9], with || ||F replaced by the Hilbert-Schmidt norm || ||HS.

The Log-Euclidean distance, on the other hand, is the Riemannian distance
associated with the bi-invariant Riemannian metric on Sym++(n) [1], considered
as a Lie group under the commutative multiplication A � B = exp(log(A) +
log(B)), where log denotes the principal matrix logarithm. It is given by

dlogE(A,B) = || log(A) − log(B)||F . (4)

Contributions of this work. While the two distances given in Eqs.(2) and (4)
appear quite different and unrelated, we show that

1. By generalizing the Procrustes distance optimization problem in Eq.(3), we
obtain a parametrized family of distances on Sym++(n) that includes both
the Bures-Wasserstein and Log-Euclidean distances as special cases. We call
this family Alpha Procrustes distances.

2. The Alpha Procrustes distances are then generalized from Sym++(n) to the
set of positive definite unitized Hilbert-Schmidt operators on an infinite-
dimensional Hilbert space H. This setting is more general than the setting of
covariance operators on H. In particular, we recover the infinite-dimensional
Bures-Wasserstein and Log-Hilbert-Schmidt distances [10] as special cases.

2 Finite-Dimensional Setting

We start with the sets Sym+(n) and Sym++(n). The Procrustes distance for-
mulation in Eq.(3) can be generalized as follows.
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Definition 1 (Alpha Procrustes distance - finite-dimensional version).
Let α ∈ R, α �= 0 be fixed. The α-Procrustes distance between two matrices
A,B ∈ Sym++(n) is defined to be

dα
proE(A,B) = min

U,V ∈U(n)

∥∥∥∥AαU − BαV

α

∥∥∥∥
F

= min
U∈U(n)

∥∥∥∥Aα − BαU

α

∥∥∥∥
F

. (5)

For α > 0, we define this distance over the larger set Sym+(n).

Theorem 1 (Explicit expression). Let either (i) A,B ∈ Sym++(n), α ∈
R, α �= 0, or (ii) A,B ∈ Sym+(n), α ∈ R, α > 0. Then

dα
proE(A,B) =

(
1
α2

tr(A2α + B2α − 2tr(AαB2αAα)1/2)
)1/2

. (6)

Special case: Bures-Wasserstein-Fréchet distance. For α = 1/2,
A,B ∈ Sym+(n), we obtain

d
1/2
proE(A,B) = 2(tr[A + B − (A1/2BA1/2)1/2])1/2 = 2dBW(A,B). (7)

This is precisely twice the Bures-Wasserstein-Fréchet distance [2,3,8,13] between
A,B ∈ Sym+(n).

Special case: A,B commute. In this case, Eq.(6) becomes

dα
proE(A,B) =

∥∥∥∥Aα − Bα

α

∥∥∥∥
F

. (8)

This is precisely the power Euclidean distance [4]. For A,B ∈ Sym++(n),

lim
α→0

∥∥∥∥Aα − Bα

α

∥∥∥∥
F

= || log(A) − log(B)||F = dlogE(A,B). (9)

The following shows that this limit also holds for the Alpha Procrustes distance.

Theorem 2 (Limiting case - Log-Euclidean distance). Let A,B ∈
Sym++(n) be fixed. Then

lim
α→0

1
α2

[tr(A2α + B2α − 2(AαB2αAα)1/2] = || log(A) − log(B)||2F . (10)

We have then the following result.

Theorem 3. The function dα
proE, as defined in Eq.(6), is a metric on the set

Sym++(n) for all α ∈ R, with twice the Bures-Wasserstein-Fréchet distance
corresponding to α = 1/2 and the Log-Euclidean distance corresponding to α = 0.
Furthermore, dα

proE is a metric on the set Sym+(n) for all α > 0.
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3 Infinite-Dimensional Setting

We now generalize the results in Sect. 2 to the infinite-dimensional setting.
Throughout the following, let H denote a real, separable, infinite-dimensional
Hilbert space, unless explicitly stated otherwise. Let L(H) denote the set of
bounded linear operators on H, Sym(H) ⊂ L(H) the set of bounded, self-adjoint
operators, Sym+ ⊂ Sym(H) and Sym++(H) ⊂ Sym+(H) denote, respectively,
the sets of positive and strictly positive operators on H. Let U(H) denote the
set of unitary operators on H and Tr(H) and HS(H) denote the sets of trace
class and Hilbert-Schmidt operators on H, respectively.

In the case A,B are two positive trace class operators on H, we have

Theorem 4 ([5,9]). Let A,B ∈ Sym+(H) ∩ Tr(H) be fixed. Then

min
U∈U(H)

||A1/2 − B1/2U ||2HS = tr[A + B − 2(A1/2BA1/2)1/2] (11)

= d2W(N (0, A),N (0, B)). (12)

Corollary 1. Let α ∈ R, α > 0 be fixed. Let A,B ∈ Sym+(H) be fixed, such
that Aα, Bα ∈ HS(H). Then

min
U∈U(H)

||Aα − BαU ||2HS = tr[A2α + B2α − 2(AαB2αAα)1/2]. (13)

While Eq.(13) is valid for any pair A,B ∈ Sym+(H) such that Aα, Bα ∈
HS(H), in general the limit limα→0

1
α minU∈U(H) ||Aα − BαU ||HS does not exist

in a form similar to Eq.(10), since log(A) is unbounded even when A is strictly
positive. To obtain the infinite-dimensional generalization of Theorem 2, we con-
sider the setting of positive definite unitized Hilbert-Schmidt operators. Let
us denote by P(H) the set of self-adjoint, positive definite operators on H
P(H) = {A ∈ L(H), A∗ = A,∃MA > 0 s.t.〈x,Ax〉 ≥ MA||x||2 ∀x ∈ H}. We
write A > 0 ⇐⇒ A ∈ P(H). We recall that in [7], the author defined the set of
extended (or unitized) Hilbert-Schmidt operators on H to be

HSX(H) = {A + γI : A ∈ HS(H), γ ∈ R}, (14)

which becomes a Hilbert space under the extended Hilbert-Schmidt inner product

〈(A + γI), (B + νI)〉HSX = 〈A,B〉HS + γν = tr(A∗B) + γν. (15)

The set of positive definite unitized (or extended) Hilbert-Schmidt operators,
which is an infinite-dimensional generalization of Sym++(n), is defined to be

PC 2(H) = P(H) ∩ HSX(H) = {A + γI > 0 : A ∈ HS(H), γ ∈ R}. (16)

The set PC 2(H) is then a Hilbert manifold on which one can define the infinite-
dimensional generalizations of the affine-invariant Riemannian metric [7] and the
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Log-Determinant divergences [11,12]. In [10], we introduced the Log-Hilbert-
Schmidt distance on PC 2(H), which generalizes the Log-Euclidean distance on
Sym++(n). For (A + γI), (B + νI) ∈ PC 2(H), this distance is defined by

dlogHS[(A + γI), (B + νI)] = || log(A + γI) − log(B + νI)||HSX . (17)

We next define a family of distances that includes both the infinite-
dimensional Bures-Wasserstein and Log-Hilbert-Schmidt distances as special
cases.

3.1 The Case γ = ν = 1

For a fixed γ ∈ R, γ > 0, we consider the following subset of PC 2(H)

PC 2(H)(γ) = {A + γI > 0 : A ∈ HS} ⊂ PC 2(H). (18)

We first generalize the Alpha Procrustes distance in Definition 1 to the set

PC 2(H)(1) = {I + A > 0 : A ∈ HS} ⊂ PC 2(H). (19)

We first note that for any (I + A) ∈ PC 2(H)(1), (I + A)α = exp[α log(I +
A)] = I +

∑∞
k=1

αk

k! [log(I + A)]k = I + C where C ∈ Sym(H) ∩ HS(H), since

||C||HS ≤ ∑∞
k=1

|α|k
k! || log(I + A)||kHS = exp(|| log(I + A)||HS) − 1 < ∞.

Proposition 1. Let (I + A), (I + B) ∈ PC 2(H)(1) and α ∈ R be fixed. Then

min
(I+U),(I+V )∈U(H)∩HSX(H)

||(I + A)α(I + U) − (I + B)α(I + V )||HS (20)

= min
(I+V )∈U(H)∩HSX(H)

||(I + A)α − (I + B)α(I + V )||HS. (21)

The operators of the form (I + U) ∈ U(H) ∩ HSX(H) in Proposition 1 are
motivated by the following polar decomposition.

Lemma 1. Let (A + γI) ∈ HSX(H) be invertible. Then its polar decomposition
has the form

A + γI = S|A + γI| = (I + R)|A + γI|, (22)

where S = I + R ∈ U(H) ∩ HSX(H).

We note also that if U ∈ U(H) and (I + A) ∈ HSX(H), then generally
(I + A)U = U + AU /∈ HSX(H). With operators of the form (I + U) ∈ U(H) ∩
HSX(H), we have (I +A)(I +U) = I +A+U +AU ∈ HSX(H). Furthermore, for
(I +A), (I +B), (I +U), (I +V ) ∈ HSX(H), we have (I +A)(I +U)−(I +B)(I +
V ) ∈ HS(H), so that the expressions in Eqs.(20) and (21) are both well-defined
and finite.

Motivated by Proposition 1, the following is our definition for the Alpha
Procrustes distance between operators of the form (I + A) > 0, A ∈ HS(H).
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Definition 2 (Alpha Procrustes distance between positive definite
Hilbert-Schmidt operators - special case). Let α ∈ R, α �= 0 be fixed.
The α-Procrustes distance between (I + A), (I + B) ∈ PC 2(H)(1) is defined
to be

dα
proHS[(I + A), (I + B)] = min

(I+U)∈U(H)∩HSX (H)

∥
∥
∥
∥

(I + A)α − (I + B)α(I + U)

α

∥
∥
∥
∥
HS

.

(23)

To state the explicit expressions for dα
proHS[(I + A), (I + B)], as defined in

Eq.(23), we first need the following result.

Proposition 2. Let (I + A), (I + B) ∈ PC 2(H). Let α ∈ R be fixed. Then

(I + A)2α + (I + B)2α − 2[(I + A)α(I + B)2α(I + A)α]1/2 ∈ Tr(H), (24)

[(I + A)α(I + B)2α(I + A)α]1/2 − (I + A)α − (I + B)α + I ∈ Tr(H). (25)

With Proposition 2, we are ready to state the following.

Theorem 5. Let (I + A), (I + B) ∈ PC 2(H) and α ∈ R, α �= 0 be fixed. Then

(dα
proHS[(I + A), (I + B)])2 =

1

α2
min

(I+U)∈U(H)∩HSX (H)
||(I + A)α − (I + B)α(I + U)||2HS

=
1

α2

(

tr[(I + A)2α + (I + B)2α − 2[(I + A)α(I + B)2α(I + A)α]1/2]
)

(26)

=
1

α2

(||(I + A)α||2HSX + ||(I + B)α||2HSX − 2
)

− 2

α2

(

tr[[(I + A)α(I + B)2α(I + A)α]1/2 − (I + A)α − (I + B)α + I]
)

. (27)

3.2 The Case γ = ν > 0

The case γ = ν = 1 generalizes to the case γ = ν > 0 as follows.

Definition 3 (Alpha Procrustes distance between positive definite
Hilbert-Schmidt operators). Let γ > 0, α ∈ R, α �= 0 be fixed. The Alpha
Procrustes distance between two operators (A + γI), (B + γI) ∈ PC 2(H) is
defined to be

dα
proHS[(A + γI), (B + γI)]

= min
(I+U)∈U(H)∩HSX(H)

∥∥∥∥ (A + γI)α − (B + γI)α(I + U)
α

∥∥∥∥
HSX

. (28)

Theorem 6 (Explicit expression). Let (A + γI), (B + γI) ∈ PC 2(H) be
fixed. Let α ∈ R, α �= 0 be fixed. Then

(dα
proHS[(A + γI), (B + γI)])2 (29)

=
1

α2
tr[(A + γI)2α + (B + γI)2α − 2[(A + γI)α(B + γI)2α(A + γI)α]1/2]

=
||(A + γI)α||2HSX

− γ2α

α2
+

||(B + γI)α||2HSX
− γ2α

α2
(30)

− 2

α2
tr[[(A + γI)α(B + γI)2α(A + γI)α]1/2 − γα(A + γI)α − γα(B + γI)α + γ2αI].



Unifying Wasserstein and Log-Euclidean/Log-Hilbert-Schmidt Distances 481

Special case: Finite-dimensional setting. For A,B ∈ Sym++(n) (α �= 0),
or A,B ∈ Sym+(n) (α > 0), setting γ = 0 in Eq.(29) gives

(dα
proHS[A,B])2 =

1
α2

tr[A2α + B2α − 2(AαB2αAα)1/2] = (dα
proE[A,B])2. (31)

Corollary 2 (Special case - Bures-Wasserstein distance). Let A,B ∈
Sym+(H) ∩ Tr(H). Then

lim
γ→0

d
1/2
proHS[(A + γI), (B + γI)] = 2(tr[A + B − 2(A1/2BA1/2)1/2])1/2. (32)

Theorem 7 (Limiting case - Log-Hilbert-Schmidt distance). Let (A +
γI), (B + γI) ∈ PC 2(H) be fixed. Then

lim
α→0

dα
proHS[(A + γI), (B + γI)] = || log(A + γI) − log(B + γI)||HSX . (33)

Theorem 8. Let γ > 0 be fixed. The function dα
proHS, as defined in Eq.(28), is

a metric on the set PC 2(H)(γ) = {A + γI > 0 : A ∈ HS(H)} for all α ∈ R.

3.3 The RKHS Setting

We now present explicit expressions for the Alpha Procrustes distances between
RKHS covariance operators. Let X be a separable topological space and K
be a continuous positive definite kernel on X × X . Then the reproducing kernel
Hilbert space (RKHS) HK induced by K is separable ([14], Lemma 4.33). Let Φ :
X → HK be the corresponding feature map, so that K(x, y) = 〈Φ(x), Φ(y)〉HK

∀(x, y) ∈ X × X . Let X = [x1, . . . , xm],m ∈ N, be a data matrix randomly sam-
pled from X according to a Borel probability distribution ρ, where m ∈ N is
the number of observations. The feature map Φ on X defines the bounded linear
operator Φ(X) : Rm → HK , Φ(X)b =

∑m
j=1 bjΦ(xj),b ∈ R

m. The correspond-
ing empirical covariance operator for Φ(X) is defined to be

CΦ(X) =
1
m

Φ(X)JmΦ(X)∗ : HK → HK , (34)

where Jm = Im − 1
m1m1T

m is the centering matrix, with 1m = (1, . . . , 1)T ∈ R
m.

Let X = [xi]mi=1, Y = [yi]mi=1, be two random data matrices sampled from X
according to two Borel probability distributions and CΦ(X), CΦ(Y) be the corre-
sponding covariance operators induced by K. Define the m × m Gram matrices

K[X] = Φ(X)∗Φ(X), K[Y] = Φ(Y)∗Φ(Y),K[X,Y] = Φ(X)∗Φ(Y). (35)

Define A = 1√
m

Φ(X)Jm : Rm → HK , B = 1√
m

Φ(Y)Jm : Rm → HK , so that

A∗A =
1
m

JmK[X]Jm, B∗B =
1
m

JmK[Y]Jm, A∗B =
1
m

JmK[X,Y]Jm. (36)

To state our next result, let E : H1 → H1 be a self-adjoint, positive, compact
operator on a separable Hilbert space H1, with nonzero eigenvalues {λk(E)}NE

k=1,
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1 ≤ NE ≤ ∞, and corresponding orthonormal eigenvectors {φk(E)}NE

k=1. Con-
sider the following operator

hα(E) =
NE∑
k=1

(1 + λk(E))α − 1
λk(E)

φk(E) ⊗ φk(E). (37)

When (Lemma 10, [12]) dim(H1) < ∞, let E = UEΣEUT
E be the reduced singular

value decomposition of E, where UE is a unitary matrix of size dim(H1) × NE .
Then

hα(E) = UE [(ΣE + INE
)α − INE

]Σ−1
E UT

E . (38)

Theorem 9 (Alpha Procrustes distance between RKHS covariance
operators). Let A∗A, A∗B, B∗B be as defined in Eq.(36) and hα be as defined
in Eq.(38), with H1 = R

m. Then

α2(dα
proHS[(CΦ(X) + γIHK

), (CΦ(Y) + γIHK
)])2 (39)

= tr[(A∗A + γIm)2α − γ2αIm] + tr[(B∗B + γIm)2α − γ2αIm]

− 2γ2αtr

⎡
⎢⎣

⎡
⎣I3m +

⎛
⎝C11 C12 C13

C21 C22 C23

C21 C22 C23

⎞
⎠

⎤
⎦
1/2

− I3m

⎤
⎥⎦ , (40)

where the m × m matrices Cij, i = 1, 2, j = 1, 2, 3, are given by

C11 = [(Im + A∗A/γ)2α − Im], C12 =
1
γ

A∗Bh2α(B∗B/γ), (41)

C13 =
1
γ

[(Im + A∗A/γ)2α − Im]A∗Bh2α(B∗B/γ), (42)

C21 =
1
γ

B∗Ah2α(A∗A/γ), C22 = [(Im + B∗B/γ)2α − Im], (43)

C23 =
1
γ2

B∗Ah2α(A∗A/γ)A∗Bh2α(B∗B/γ). (44)

Remark. We will present in the full version of the current paper the associated
geometrical structures, the more technically involved case γ �= ν in the infinite-
dimensional setting, along with all the proofs.
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Abstract. Symmetric Positive Definite (SPD) matrices have been used
in many fields of medical data analysis. Many Riemannian metrics have
been defined on this manifold but the choice of the Riemannian structure
lacks a set of principles that could lead one to choose properly the metric.
This drives us to introduce the principle of balanced metrics that relate
the affine-invariant metric with the Euclidean and inverse-Euclidean met-
ric, or the Bogoliubov-Kubo-Mori metric with the Euclidean and log-
Euclidean metrics. We introduce two new families of balanced metrics,
the mixed-power-Euclidean and the mixed-power-affine metrics and we
discuss the relation between this new principle of balanced metrics and
the concept of dual connections in information geometry.

1 Introduction

Symmetric Positive Definite (SPD) matrices are used in many applications: for
example, they represent covariance matrices in signal or image processing [1–3]
and they are diffusion tensors in diffusion tensor imaging [4–6]. Many Rieman-
nian structures have been introduced on the manifold of SPD matrices depending
on the problem and showing significantly different results from one another on
statistical procedures such as the computation of barycenters or the principal
component analysis. Non exhaustively, we can cite Euclidean metrics, power-
Euclidean metrics [7], log-Euclidean metrics [8], which are flat; affine-invariant
metrics [5,6,9] which are negatively curved; the Bogoliubov-Kubo-Mori metric
[10] whose curvature has a quite complex expression.

Are there some relations between them? This question has practical inter-
ests. First, understanding the links between these metrics could lead to inter-
esting formulas and allow to perform more efficient algorithms. Second, finding
families of metrics that comprise these isolated metrics could allow to perform
optimization on the parameters of these families to find a better adapted metric.
Some relations already exist. For example, the power-Euclidean metrics [7] (resp.
power-affine metrics [11]) comprise the Euclidean metric (resp. affine-invariant
metric) and tend to the log-Euclidean metric when the power tends to zero.

We propose the principle of balanced metrics after observing two facts. The
affine-invariant metric gA

Σ(X,Y ) = tr((Σ−1XΣ−1)Y ) on SPD matrices may be
seen as a balanced hybridization of the Euclidean metric gE

Σ (X,Y ) = tr(XY )
c© Springer Nature Switzerland AG 2019
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on one vector and of the inverse-Euclidean metric (the Euclidean metric on pre-
cision matrices) gI

Σ(X,Y ) = tr((Σ−1XΣ−1)(Σ−1Y Σ−1)) on the other vector.
Moreover, the definition of the Bogoliubov-Kubo-Mori metric can be rewritten
as gBKM

Σ (X,Y ) = tr(∂X log(Σ)Y ) where it appears as a balance of the Euclidean
metric and the log-Euclidean metric gLE

Σ (X,Y ) = tr(∂X log(Σ) ∂Y log(Σ)).
These observations raise a few questions. Given two metrics, is it possible to
define a balanced bilinear form in general? If yes, is it clear that this bilinear
form is symmetric and positive definite? If it is a metric, are the Levi-Civita
connections of the two initial metrics dual in the sense of information geometry?

In this work, we explore this principle through the affine-invariant metric, the
Bogoliubov-Kubo-Mori metric and we define two new families of balanced met-
rics, the mixed-power-Euclidean and the mixed-power-affine metrics. In Sect. 2,
we show that if a balanced metric comes from two flat metrics, the three of them
define a dually flat structure. In particular, we show that the balanced structure
defined by the Euclidean and the inverse-Euclidean metrics corresponds to the
dually flat structure given by the ±1-connections of Fisher information geome-
try. In Sect. 3, we enlighten the balanced structure of the BKM metric and we
generalize it by defining the family of mixed-power-Euclidean metrics. In Sect. 4,
we define the family of mixed-power-affine metrics and we discuss the relation
between the concepts of balanced metric and dual connections when the two
initial metrics are not flat.

2 Affine-Invariant Metric as a Balance of Euclidean and
Inverse-Euclidean Metrics

Because the vocabulary may vary from one community to another, we shall first
introduce properly the main geometric tools that we use in the article (Sect. 2.1).
Then we examine in Sect. 2.2 the principle of balanced metric in the particular
case of the pair Euclidean/inverse-Euclidean metrics and we formalize it in the
general case of two flat metrics. In Sect. 2.3, we show that the ±1-connections of
the centered multivariate normal model are exactly the Levi-Civita connections
of the Euclidean and inverse-Euclidean metrics.

2.1 Reminder on Metrics, Connections and Parallel Transport

On a manifold M, we denote C∞(M) the ring of smooth real functions and
X(M) the C∞(M)-module of vector fields.

Connection. A connection is an R-bilinear map ∇ : X(M)×X(M) −→ X(M)
that is C∞(M)-linear in the first variable and satisfies the Leibniz rule in the
second variable. It gives notions of parallelism, parallel transport and geodesics.
A vector field V is parallel to the curve γ if ∇γ̇V = 0. The parallel transport
of a vector v along a curve γ is the unique vector field Vγ(t) = Π0→t

γ v that
extends v and that is parallel to γ. Thus, the connection is an infinitesimal
parallel transport, that is Πt→0

γ Vγ(t) = Vγ(0) + t∇γ̇V + o(t). The geodesics are
autoparallel curves, that is curves γ satisfying ∇γ̇ γ̇ = 0.
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Levi-Civita Connection. Given a metric g on a manifold M, the Levi-Civita
connection is the unique torsion-free connection ∇g compatible with the metric
g, that is ∇gg = 0 or more explicitly X(g(Y,Z)) = g(∇g

XY,Z) + g(Y,∇g
XZ)

for all vector fields X,Y,Z ∈ X(M). Thus a metric inherits notions of parallel
transport and geodesics. Note that geodesics coincide with distance-minimizing
curves with constant speed.

Dual Connections. Given a metric g and a connection ∇, the dual connection
of ∇ with respect to g is the unique connection ∇∗ satisfying the following
equality X(g(Y,Z)) = g(∇XY,Z) + g(Y,∇∗

XZ) for all vector fields X,Y,Z ∈
X(M). It is characterized by Lemma 1 below. In this sense, the Levi-Civita
connection ∇g is the unique torsion-free self-dual connection with respect to g.
We say that (M, g,∇,∇∗) is a dually-flat manifold when ∇,∇∗ are dual with
respect to g and ∇ is flat (then ∇∗ is automatically flat [12]).

Lemma 1 (Characterization of dual connections). Two connections ∇,∇′

with parallel transports Π,Π′ are dual with respect to a metric g if and only if the
dual parallel transport preserves the metric, i.e. for all vector fields X,Y ∈ X(M)
and all curve γ, gγ(t)(Xγ(t), Yγ(t)) = gγ(0)(Πt→0

γ Xγ(t), (Π′)t→0
γ Yγ(t)).

Proof The direct sense is proved in [12]. Let us assume that the dual parallel
transport preserves the metric and let X,Y,Z ∈ X(M) be vector fields. Let x ∈
M and let γ be a curve such that γ(0) = x and γ̇(0) = Xx. Using the first order
approximation of the parallel transport, our assumption leads to:

gγ(t)(Yγ(t), Zγ(t)) = gx(Πt→0
γ Yγ(t), (Π′)t→0

γ Zγ(t))

= gx(Yx + t∇γ̇Y + o(t), Zx + t∇′
γ̇Z + o(t))

= gx(Yx, Zx) + t[gx(∇γ̇Y,Z) + gx(Y,∇′
γ̇Z)] + o(t).

So Xx(g(Y,Z)) = gx(∇γ̇Y,Z) + gx(Y,∇′
γ̇Z) and ∇,∇′ are dual w.r.t. g. �

2.2 Principle of Balanced Metrics

Observation. We denote M = SPDn the manifold of SPD matrices and N =
dim M = n(n+1)

2 . The (A)ffine-invariant metric gA on SPD matrices [5,6,9], i.e.
satisfying gA

MΣM�(MXM�,MY M�) = gA
Σ (X,Y ) for M ∈ GLn, is defined by:

gA
Σ (X,Y ) = tr((Σ−1XΣ−1)Y ) = tr(X(Σ−1Y Σ−1)). (1)

The (E)uclidean metric gE on SPD matrices is the pullback metric by the embed-
ding id : M ↪→ (Symn, 〈·|·〉Frob):

gE
Σ (X,Y ) = tr(XY ). (2)

The (I)nverse-Euclidean metric gI on SPD matrices belongs to the family of
power-Euclidean metrics [7] with power −1. If SPD matrices are seen as covari-
ance matrices Σ, the inverse-Euclidean metric is the Euclidean metric on preci-
sion matrices Σ−1:

gI
Σ(X,Y ) = tr(Σ−2XΣ−2Y ) = tr((Σ−1XΣ−1)(Σ−1Y Σ−1)). (3)
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Observing these definitions, the affine-invariant metric (1) appears as a balance
of the Euclidean metric (2) and the inverse-Euclidean metric (3). We formalize
this idea thanks to parallel transport.

Formalization. The diffeomorphism inv : (M, gI) −→ (M, gE) is an isometry.
Since these two metrics are flat, the parallel transports do not depend on the
curve. On the one hand, the Euclidean parallel transport from Σ to In is the
identity map ΠE : X ∈ TΣM �−→ X ∈ TInM since all tangent spaces are
identified to the vector space of symmetric matrices Symn by the differential
of the embedding id : M ↪→ Symn. On the other hand, the isometry inv gives
the inverse-Euclidean parallel transport from Σ to In, ΠI : X ∈ TΣM �−→
Σ−1XΣ−1 ∈ TInM. We generalize this situation in Definition 1. Given Lemma
1, it automatically leads to Theorem 1.

Definition 1 (Balanced bilinear form). Let g, g∗ be two flat met-
rics on SPDn and Π,Π∗ the associated parallel transports that do not
depend on the curve. We define the balanced bilinear form g0

Σ(X,Y ) =
tr((ΠΣ→InX)(Π∗

Σ→In
Y )).

Theorem 1 (A balanced metric defines a dually flat manifold). Let g, g∗

be two flat metrics and let ∇,∇∗ be their Levi-Civita connections. If the balanced
bilinear form g0 of g, g∗ is a metric, then (M, g0,∇,∇∗) is a dually flat manifold.

If two connections ∇ and ∇∗ are dual connections with respect to a metric
g0, there is no reason for them to be Levi-Civita connections of some metrics.
Therefore, the main advantage of the principle of balanced metrics on the concept
of dual connections seems to be the metric nature of the dual connections.

Corollary 1 (Euclidean and inverse-Euclidean are dual with respect
to affine-invariant). We denote ∇E and ∇I the Levi-Civita connections of
the Euclidean metric gE and the inverse-Euclidean metric gI . Then gA is the
balanced metric of gI , gE and (SPDn, gA,∇I ,∇E) is a dually flat manifold.

2.3 Relation with Fisher Information Geometry

We know from [13] that the affine-invariant metric is the Fisher metric of the
centered multivariate normal model. Information geometry provides a natural
one-parameter family of dual connections, called α-connections [12]. In the fol-
lowing table, we recall the main quantities characterizing the centered multivari-
ate normal model P = {pΣ : Rn −→ R

∗
+,Σ ∈ M}, where M = SPDn.

Densities pΣ(x) = 1√
2π

n
1√

det Σ
exp

(
1
2x�Σ−1x

)

Log likelihood lΣ(x) = log pΣ(x) = 1
2

(−n log(2π) − log det Σ + x�Σ−1x
)

Differential dΣl(V )(x) = − 1
2

[
tr(Σ−1V ) + x�Σ−1V Σ−1x

]

Fisher metric [13] gΣ(V,W ) = 1
2 tr(Σ−1V Σ−1W )
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We recall that the α-connections ∇(α) [12] of a family of densities P are defined
by their Christoffel symbols Γijk = glkΓl

ij in the local basis (∂i)1�i�N at Σ ∈ M:
(
Γ(α)

ijk

)

Σ
= EΣ

[(
∂i∂j l +

1 − α

2
∂il∂j l

)
∂kl

]
. (4)

We give in Theorem 2 the expression of the α-connections of the centered mul-
tivariate normal model and we notice that the Euclidean and inverse-Euclidean
Levi-Civita connections belong to this family.

Theorem 2 (α-connections of the centered multivariate normal
model). In the global basis of M = SPDn given by the inclusion M ↪→
Sym(n) � R

N , writing ∂XY = Xi(∂iY
j)∂j, the α-connections of the multi-

variate centered normal model are given by the following formula:

∇(α)
X Y = ∂XY − 1 + α

2
(XΣ−1Y + Y Σ−1X). (5)

The mixture m-connection (α = −1) is the Levi-Civita connection of the
Euclidean metric gE

Σ (X,Y ) = tr(XY ). The exponential e-connection (α = 1)
is the Levi-Civita connection of the inverse-Euclidean metric, i.e. the pullback
of the Euclidean metric by matrix inversion, gI

Σ(X,Y ) = tr(Σ−2XΣ−2Y ).

The formula (5) can be proved thanks to Lemma 2 which gives the results
of expressions of type

∫
Rn x�Σ−1XΣ−1Y Σ−1ZΣ−1x exp

(− 1
2x�Σ−1x

)
dx, with

y = Σ−1/2x, A = Σ−1/2XΣ−1/2, B = Σ−1/2Y Σ−1/2 and C = Σ−1/2ZΣ−1/2.
If one wants to avoid using the third formula of Lemma 2, one can rely on the
formula (5) in the case α = 0 which is already known from [13].

Lemma 2. For A,B,C ∈ Symn:

EIn(y �−→ y�Ay) = tr(A),

EIn(y �−→ y�Ayy�By) = tr(A)tr(B) + 2tr(AB),

EIn(y �−→ y�Ayy�Byy�Cy) = tr(A)tr(B)tr(C) + 8tr(ABC)

+ 2(tr(AB)tr(C) + tr(BC)tr(A) + tr(CA)tr(B)).

Proof (Theorem 2). Given Lemma 2, the computation of the Christoffel symbols(
Γ(α)

ijk

)

Σ
leads to

(
Γ(α)

ijk

)

Σ
XiY jZk = − 1+α

4 tr(Σ−1[XΣ−1Y + Y Σ−1X]Σ−1Z).

On the other hand, the relation Γijk = glkΓl
ij between Christoffel symbols gives(

Γ(α)
ijk

)

Σ
XiY jZk = 1

2 tr
(
Σ−1

[(
Γl

ij

)(α)

Σ
XiY j∂l

]
Σ−1Z

)
. So we get:

∇(α)
X Y = ∂XY +

[(
Γl

ij

)(α)

Σ
XiY j∂l

]
= ∂XY − 1 + α

2
(XΣ−1Y + Y Σ−1X). (6)

It is clear that the mixture connection (α = −1) is the Euclidean connection.
The inverse-Euclidean connection can be computed thanks to the Koszul formula.
This calculus drives exactly to the exponential connection (α = 1). �

In the next section, we apply the principle of balanced metrics to the
pairs Euclidean/log-Euclidean (Bogoliubov-Kubo-Mori metric) and power-
Euclidean/power-Euclidean (mixed-power-Euclidean metrics).
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3 The Family of Mixed-power-Euclidean Metrics

3.1 Bogoliubov-Kubo-Mori Metric

The Bogoliubov-Kubo-Mori metric gBKM is a metric on symmetric positive
definite matrices used in quantum physics. It was introduced as gBKM

Σ (X,Y ) =∫ ∞
0

tr((Σ + tIn)−1X(Σ + tIn)−1Y )dt and can be rewritten [10] thanks to the
differential of the symmetric matrix logarithm log : M = SPDn −→ Symn as:

gBKM
Σ (X,Y ) = tr(∂X log(Σ)Y ) = tr(X ∂Y log(Σ)). (7)

The log-Euclidean metric gLE [8] is the pullback metric of the Euclidean metric
by the symmetric matrix logarithm log : (M, gLE) −→ (Symn, gE):

gLE
Σ (X,Y ) = tr(∂X log(Σ) ∂Y log(Σ)). (8)

Therefore, the BKM metric (7) appears as the balanced metric of the Euclidean
metric (2) and the log-Euclidean metric (8). As the Euclidean and log-Euclidean
metrics are flat, the parallel transport does not depend on the curve and
Theorem 1 ensures that they form a dually flat manifold.

Corollary 2 (Euclidean and log-Euclidean are dual with respect to
BKM). We denote ∇E and ∇LE the Levi-Civita connections of the Euclidean
metric gE and the log-Euclidean metric gLE. Then gBKM is the balanced metric
of gLE , gE and (SPDn, gBKM ,∇LE ,∇E) is a dually flat manifold.

3.2 Mixed-power-Euclidean

Up to now, we observed that existing metrics (affine-invariant and BKM) were
the balanced metrics of pairs of flat metrics (Euclidean/inverse-Euclidean and
Euclidean/log-Euclidean). Thus, the symmetry and the positivity of the bal-
anced bilinear forms were obvious. From now on, we build new bilinear forms
thanks to the principle of balanced metrics. Therefore, it is not as obvious as
before that these bilinear forms are metrics.

The family of power-Euclidean metrics gE,θ [7] indexed by the power θ 	= 0
is defined by pullback of the Euclidean metric by the power function powθ =
exp ◦ θ log : (M, θ2gE,θ) −→ (M, gE):

gE,θ
Σ (X,Y ) =

1
θ2

tr(∂Xpowθ(Σ) ∂Y powθ(Σ)). (9)

This family comprise the Euclidean metric for θ = 1 and tends to the log-
Euclidean metric when the power θ goes to 0. Therefore, we abusively consider
that the log-Euclidean metric belongs to the family and we denote it gE,0 := gLE .

We define the mixed-power-Euclidean metrics gE,θ1,θ2 as the balanced bilin-
ear form of the power-Euclidean metrics gE,θ1 and gE,θ2 , where θ1, θ2 ∈ R:

gE,θ1,θ2
Σ (X,Y ) =

1
θ1θ2

tr(∂Xpowθ1
(Σ) ∂Y powθ2

(Σ)). (10)
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Note that the family of mixed-power-Euclidean metrics contains the BKM
metric for (θ1, θ2) = (1, 0) and the θ-power-Euclidean metric for (θ1, θ2) = (θ, θ),
including the Euclidean metric for θ = 1 and the log-Euclidean metric for θ = 0.

At this stage, we do not know that the bilinear form gE,θ1,θ2 is a metric.
This is stated by Theorem 3. As the power-Euclidean metrics are flat, Theorem
1 combined with Theorem 3 ensure that the Levi-Civita connections ∇E,θ1 and
∇E,θ2 of the metrics gE,θ1 and gE,θ2 are dual with respect to the (θ1, θ2)-mixed-
power-Euclidean metric. This is stated by Corollary 3.

Theorem 3. The bilinear form gE,θ1,θ2 is symmetric and positive definite so it
is a metric on SPDn. Moreover, the symmetry ensures that gE,θ1,θ2 = gE,θ2,θ1 .

Corollary 3 (θ1 and θ2-power-Euclidean are dual with respect to
(θ1, θ2)-mixed-power-Euclidean). For θ1, θ2 ∈ R, we denote ∇E,θ1 and ∇E,θ2

the Levi-Civita connections of the power-Euclidean metrics gE,θ1 and gE,θ2 . Then
gE,θ1,θ2 is the balanced metric of gE,θ1 , gE,θ2 and (SPDn, gE,θ1,θ2 ,∇E,θ1 ,∇E,θ2)
is a dually flat manifold.

To prove Theorem 3, we show that for all spectral decomposition Σ = PDP�

of an SPD matrix, there exists a matrix A with positive coefficients A(i, j) > 0
such that gE,θ1,θ2

Σ (X,Y ) = tr((A•P�XP )(A•P�Y P )), where • is the Hadamard
product, i.e. (A • B)(i, j) = A(i, j)B(i, j), which is associative, commutative,
distributive w.r.t. matrix addition and satisfies tr((A • B)C) = tr(B(A • C)) for
symmetric matrices A,B,C ∈ Symn. The existence of A relies on Lemma 3.

Lemma 3. Let Σ = PDP� be a spectral decomposition of Σ ∈ M, with
P ∈ O(n) and D diagonal. For f ∈ {exp, log,powθ}, ∂V f(Σ) = P (δ(f,D) •
P�V P )P� where δ(f,D)(i, j) = f(di)−f(dj)

di−dj
. Note that 1

θ δ(powθ,D)(i, j) > 0
for all θ ∈ R

∗ and δ(log,D)(i, j) > 0.

Proof (Lemma 3). Once shown for f = exp, it is easy to get for f = log by
inversion and for f = powθ = exp ◦ θ log by composition. But the case f =
exp itself reduces to the case f = powk with k ∈ N by linearity, so we focus
on this last case. As ∂V powk(Σ) =

∑k−1
l=0 ΣlV Σk−1−l = P∂P �V P powk(D)P�

and ∂P �V P powk(D)(i, j) =
∑k−1

l=0 DlP�V PDk−1−l(i, j) = dk
i −dk

j

di−dj
P�V P (i, j),

we get ∂V powk(Σ) = P (δ(powk,D) • P�V P )P�.

Proof (Theorem 3). Let θ1, θ2 ∈ R
∗. For a spectral decomposition Σ = PDP�,

the matrix A defined by A(i, j) =
√

1
θ1

δ(powθ1
,D)(i, j) 1

θ2
δ(powθ2

,D)(i, j) > 0

satisfies gE,θ1,θ2
Σ (X,Y ) = tr((A • P�XP )(A • P�Y P )). Symmetry and non-

negativity are clear since they come from the Frobenius scalar product. Finally,
if gE,θ1,θ2

Σ (X,X) = 0, then A • P�XP = 0 so X = 0. So gE,θ1,θ2 is a metric. If

θ1 = 0, the matrix A defined by A(i, j) =
√

δ(log,D)(i, j) 1
θ2

δ(powθ2
,D)(i, j) > 0

satisfies the same property and gE,0,θ2 is a metric. �
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4 The Family of Mixed-power-affine Metrics

In previous sections, we defined our balanced metric from a pair of two flat
metrics and we showed that it corresponded to the duality of (Levi-Civita) con-
nections in information geometry. In this section, we investigate the balanced
metric of two non-flat metrics and we observe that the corresponding Levi-Civita
connections cannot be dual with respect to this balanced metric.

The family of power-affine metrics gA,θ [11] indexed by the power θ 	= 0
are defined by pullback of the affine-invariant metric by the power function
powθ : (M, θ2gA,θ) −→ (M, gA):

gA,θ
Σ (X,Y ) =

1
θ2

tr(Σ−θ ∂Xpowθ(Σ)Σ−θ ∂Y powθ(Σ)) (11)

This family comprise the affine-invariant metric for θ = 1 and tends to the log-
Euclidean metric when the power θ goes to 0. We consider that the log-Euclidean
metric belongs to the family and we denote gA,0 := gLE .

As these metrics have no cut locus because they endow the manifold with
a negatively curved Riemannian symmetric structure, there exists a unique
geodesic between two given points. Therefore, a canonical parallel transport
can be defined along geodesics. This allows to define the balanced bilinear form
of two metrics without cut locus.

Definition 2 (Balanced bilinear form). Let g, g∗ be two metrics without cut
locus on SPDn and Π,Π∗ the associated geodesic parallel transports. We define
the balanced bilinear form g0

Σ(X,Y ) = tr((ΠΣ→InX)(Π∗
Σ→In

Y )).

Given that the geodesic parallel transport on the manifold (M, gA,θ) is
ΠΣ→In : X ∈ TΣM �−→ 1

θ Σ−θ/2∂Xpowθ(Σ)Σ−θ/2 ∈ TInM, we define the mixed-
power-affine metrics gA,θ1,θ2 as the balanced metric of the power-affine metrics
gA,θ1 and gA,θ2 , where θ1, θ2 ∈ R and θ = (θ1 + θ2)/2:

gA,θ1,θ2
Σ (X,Y ) =

1
θ1θ2

tr(Σ−θ ∂Xpowθ1
(Σ)Σ−θ ∂Y powθ2

(Σ)). (12)

Note that the family of mixed-power-affine metrics contains the θ-power-
affine metric for (θ1, θ2) = (θ, θ), including the affine-invariant metric for θ = 1
and the log-Euclidean metric for θ = 0. This family has two symmetries since
gA,θ1,θ2 = gA,±θ1,±θ2 , they come from the inverse-consistency of the affine-
invariant metric. This family has a non-empty intersection with the family of
mixed-power-Euclidean metrics since gA,θ1,−θ1 = gE,θ1,−θ1 = gA,θ1 for all θ1 ∈ R.

The fact that gA,θ1,θ2 is a metric can be shown exactly the same way as in the
mixed-power-Euclidean case thanks to the equality Σ−θ/2∂V powθ(Σ)Σ−θ/2 =
P (ε(powθ,D)•P�V P )P� where ε(powθ,D) = (didj)−θ/2δ(powθ,D) and where
δ(powθ,D) has been defined in Lemma 3. This is stated in Theorem 4.

Theorem 4. The bilinear form gA,θ1,θ2 is symmetric and positive definite.
Hence it is a metric on SPDn and gA,θ1,θ2 = gA,θ2,θ1 .
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Power-affine metrics being non-flat, (M, gA,θ1,θ2 ,∇A,θ1 ,∇A,θ2), where ∇A,θ1

and ∇A,θ2 are Levi-Civita connections of gA,θ1 and gA,θ2 , cannot be a dually-flat
manifold. Actually, the two connections are even not dual. It can be understood
by comparison with previous sections since the duality was a consequence of
the independence of the parallel transport with respect to the chosen curve,
which was a consequence of the flatness of the two connections. Moreover, in the
Definition 2, the vectors are parallel transported along two different curves (the
geodesics relative to each connection) so it may exists a better definition for the
balanced bilinear form of two metrics without cut locus or even of two general
metrics.

5 Conclusion

The principle of balanced bilinear form is a procedure on SPD matrices that
takes a pair of flat metrics or metrics without cut locus and builds a new metric
based on the parallel transport of the initial metrics. When the two initial metrics
are flat, we showed that the two Levi-Civita connections are dual with respect
to the balanced metric. When the two initial metrics are not flat, the two Levi-
Civita connections seem not to be dual, so the principle of balanced metrics
does not reduce to the concept of dual Levi-Civita connections. A challenging
objective for future works is to define properly this principle for other general
pairs of metrics and to find conditions under which the balanced bilinear form
is a metric.
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Abstract. We formulate and discuss the affine-invariant matrix
midrange problem on the cone of n×n positive definite Hermitian matri-
ces P(n), which is based on the Thompson metric. A particular compu-
tationally efficient midpoint of this metric is investigated as a highly
scalable candidate for an average of two positive definite matrices within
this context, before studying the N -point problem in the vector and
matrix settings.

Keywords: Positive definite matrices · Statistics · Optimization

1 Introduction

In this paper, we develop a framework for affine-invariant midrange statistics
on the cone of positive definite Hermitian matrices P(n) of dimension n. In
Subsection 1.1, we briefly note the basic elements of Finsler geometry relevant to
the problem. In Subsection 1.2, we define the affine-invariant midrange problem
for a collection of N points. In Sect. 2, we study a particular midrange of two
positive definite matrices arising as the midpoint of a suitable geodesic curve. In
Sect. 3, we briefly review the scalar and vector affine-invariant midrange problem
before returning to the N -point problem on P(n) in Sect. 4.

1.1 Affine-Invariant Finsler Metrics on P(n)

Consider the family of affine-invariant metric distances dΦ on P(n) defined as

dΦ(A,B) = ‖ log A−1/2BA−1/2‖Φ, (1)

where ‖ · ‖Φ is any unitarily invariant norm on the space of Hermitian matri-
ces of dimension n defined by ‖X‖Φ := Φ(λ1(X), . . . , λn(X)), with λmin(X) =
λn(X) ≤ . . . ≤ λ1(X) = λmax(X) denoting the n real eigenvalues of X and Φ
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a symmetric gauge norm on R
n (i.e. a norm that is invariant under permuta-

tions and sign changes of the coordinates) [1]. For any such Φ, X is said to be a
dΦ-midpoint of A and B if

dΦ(A,X) = dΦ(X,B) =
1
2
dΦ(A,B). (2)

The curve γG : [0, 1] → P(n) defined by

γG(t) = A1/2
(
A−1/2BA−1/2

)t

A1/2 (3)

is geometrically significant as a minimal geodesic for any of the affine-invariant
metrics dΦ [1]. The midpoint of γG is the matrix geometric mean A#B, which
is a metric midpoint in the sense of dΦ(A,A#B) = dΦ(A#B,B) = 1

2dΦ(A,B)
for any Φ. For the choice of Φ(x1, . . . , xn) = (

∑
i x2

i )
1/2, d2 := dΦ corresponds

to the metric distance generated by the standard affine-invariant Riemannian
structure given by 〈X,Y 〉Σ = tr(Σ−1XΣ−1Y ) for Σ ∈ P(n) and Hermitian
matrices X,Y ∈ TΣP(n). For the choice of Φ(x1, . . . , xn) = maxi |xi| on the other
hand, d∞ := dΦ yields the distance function that coincides with the Thompson
metric [7] on the cone P(n)

d∞(A,B) = ‖ log A−1/2BA−1/2‖∞ = max{log λmax(BA−1), log λmax(AB−1)}.
(4)

While the minimal geodesic γG in (3) and the midpoint is unique for the Rieman-
nian distance function d2, it is not unique with respect to the d∞ metric which
generally admits infinitely many minimal geodesics and midpoints between a
given pair of matrices A,B ∈ P(n) [6], as expected from the analogous picture
concerning the associated norms in R

n. As we shall see in Sect. 2, some of these
minimal geodesics are much more readily constructible than others from a com-
putational standpoint and yield midpoints that satisfy many of the properties
expected of an affine-invariant matrix mean. Specifically, we will use the mid-
point of a particular minimal geodesic of d∞ from a construction by Nussbaum
as a scalable relaxation of the matrix geometric mean that is much cheaper to
construct than A#B.

1.2 The Affine-Invariant Midrange Problem

Given a collection of N points Yi in P(n), the midrange problem can be formu-
lated as the following optimization problem

min
X�0

max
i

d∞(X,Yi). (5)

We call a solution X� to the above problem a midrange of {Yi}.

Proposition 1. Let X� be a solution to (5) with optimal cost t� = f(X�) =
maxi d∞(X�, Yi). We have l ≤ t� ≤ u, where the lower and upper bounds are
given by

l =
1
2

diam∞({Yi}) :=
1
2

max
i,j

d∞(Yi, Yj), u = min
i

max
j

d∞(Yi, Yj) ≤ 2l. (6)
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Proof. By the triangle inequality, we have for any i, j = 1, . . . , N ,

d∞(Yi, Yj) ≤ d∞(Yi,X
�) + d∞(X�, Yj) ≤ t� + t� = 2t�, (7)

since t� = maxi d∞(X�, Yi). Taking the maximum of the left-hand side of (7)
over i, j, we arrive at l = 1

2 maxi,j d∞(Yi, Yj) ≤ t�. For the upper bound, note
that taking X = Yi for each i, we obtain a cost f(Yi) = maxj d∞(Yi, Yj). Since
the minimum of these N cost evaluations will still yield an upper bound on the
optimum cost t�, we have t� ≤ u = mini maxj d∞(Yi, Yj). �	

2 The 2-point Midrange Problem in P(n)

2.1 Scalable d∞ geodesic midpoints

As γG is a minimal geodesic for the d∞ metric, A#B lies in the set of midpoints
of this metric. In particular,

A#B ∈ argminX∈P(n)

(
max

Y ∈{A,B}
d∞(X,Y )

)
. (8)

Recall that the metric distance d∞ coincides with the Thompson metric dT on
the cone P(n). If C is a closed, solid, pointed, convex cone in a vector space V ,
then C induces a partial order on V given by x ≤ y if and only if y −x ∈ C. The
Thompson metric on C is defined as dT (x, y) = log max{M(x/y;C),M(y/x;C)},
where M(y/x;C) := inf{λ ∈ R : y ≤ λx} for x ∈ C \ {0} and y ∈ V . For
A,B ∈ P(n), we have M(A/B) = λmax(AB−1), so that

dT (A,B) = log max{λmax(AB−1), λmax(BA−1)}, (9)

which indeed coincides with d∞ in (4).
It is known that the Thompson metric does not admit unique minimal

geodesics. Indeed, a remarkable construction by Nussbaum describes a family
of geodesics that generally consists of an infinite number of curves connect-
ing a pair of points in a cone C. In particular, setting α := 1/M(x/y;C) and
β := M(y/x;C), the curve φ : [0, 1] → C given by

φ(t;x, y) :=

{(
βt−αt

β−α

)
y +

(
βαt−αβt

β−α

)
x if α 
= β,

αtx if α = β,
(10)

is always a minimal geodesic from x to y with respect to the Thompson metric.
The curve φ defines a projective straight line in the cone [6]. If we take C to
be the cone of positive semidefinite matrices with interior intC = P(n), then
for a pair of points A,B ∈ P(n), we have β = M(B/A;C) = λmax(BA−1) and
α = 1/M(A/B;C) = λmin(BA−1). Thus, the minimal geodesic described by
(10) takes the form

φ(t) :=

{(
λt
max−λt

min
λmax−λmin

)
B +

(
λmaxλt

min−λminλt
max

λmax−λmin

)
A if λmin 
= λmax,

λt
minA if λmin = λmax,

(11)
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where λmax and λmin denote the largest and smallest eigenvalues of BA−1,
respectively. Taking the midpoint t = 1/2 of this geodesic, we arrive at a compu-
tationally convenient d∞-midpoint of A and B, which we will denote by A ∗ B.

Proposition 2. For A,B ∈ P(n), we have

A ∗ B =
1√

λmin +
√

λmax

(
B +

√
λminλmaxA

)
. (12)

The result follows from elementary algebraic simplification upon setting A ∗
B = φ(1/2;A,B) in the case λmin 
= λmax. If λmin = λmax, then φ(1/2;A,B) =√

λminA also agrees with the formula in (12). The geometry of the set of d∞-
midpoints of a given pair of points in P(n) is studied in detail in [5], where it
is shown that there is a unique d∞ minimal geodesic from A to B if and only
if the spectrum of BA−1 lies in a set {λ, λ−1} for some λ > 0. Moreover, it is
shown that otherwise there are infinitely many d∞ minimal geodesics from A to
B, and that the set of d∞-midpoints of A and B is compact and convex in both
Riemannian and Euclidean senses [5].

We now consider the merits of A∗B as a mean of A and B. The following are
a number of properties that should be satisfied by a sensible notion of a mean
μ : P(n) × P(n) → P(n) of a pair of positive definite matrices [2,4].

(i) Continuity: μ is a continuous map.
(ii) Symmetry: μ(A,B) = μ(B,A) for all A,B ∈ P(n).
(iii) Affine-invariance: μ(XAX∗,XBX∗) = Xμ(A,B)X∗, for all X ∈ GL(n).
(iv) Order property: A  B =⇒ A  μ(A,B)  B.
(v) Monotonicity: μ(A,B) is monotone in its arguments.

Note that X∗ in (iii) denotes the conjugate transpose of X. It is relatively
straightforward to show that the map μ(A,B) := A ∗ B satisfies properties (i)–
(iii) listed above. In the remainder of this section, we will turn our attention to
the order and monotonicity properties (iv) and (v).

2.2 Order and Monotonicity Properties of µ(A,B) = A ∗ B

Condition (iv) is a generalization of the property of means of positive numbers
whereby a mean of a pair of points is expected to lie between the two points
on the number line. For Hermitian matrices, a standard partial order  exists
according to which A  B if and only if B − A is positive semidefinite. This
partial order is known as the Löwner order and the monotonicity of condition
(v) is also with reference to this order. It is well-known that the Löwner order is
affine-invariant in the sense that for all A,B ∈ P(n), X ∈ GL(n), A  B implies
that XAX∗  XBX∗. In particular, A  B if and only if I  A−1/2BA−1/2.
Thus, by affine-invariance of μ, it suffices to prove (iv) in the case where A = I
since A  μ(A,B)  B if and only if I  μ(I,A−1/2BA−1/2)  A−1/2BA−1/2.
To establish condition (iv) for μ(A,B) = A∗B, we shall make use of the following
lemma whose proof is elementary.
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Lemma 1. If c1, c2 ∈ R and M is an n × n matrix with eigenvalues λi(M),
then c1M + c2I has eigenvalues c1λi(M) + c2.

Let Σ ∈ P(n) be such that I  Σ and note that this is equivalent to λi(Σ) ≥ 1
for i = 1, . . . , n. Writing λmin = λmin(Σ) and λmax = λmax(Σ), we have by
Lemma 1 that

λi(I ∗ Σ) − 1 = λi

(
1√

λmin +
√

λmax

(
Σ +

√
λminλmaxI

))
− 1 (13)

=
λi(Σ) +

√
λminλmax − √

λmin − √
λmax√

λmin +
√

λmax

(14)

≥
(√

λmin +
√

λmax

) (√
λmin − 1

)
√

λmin +
√

λmax

≥ 0, (15)

since λi(Σ) ≥ λmin ≥ 1. Thus, we have shown that I  Σ implies I  I ∗ Σ. To
prove the other inequality, note that

λi(Σ − I ∗ Σ) = λi

((√
λmin +

√
λmax − 1√

λmin +
√

λmax

)
Σ −

√
λminλmax√

λmin +
√

λmax

I

)
(16)

=
(√

λmin +
√

λmax − 1√
λmin +

√
λmax

)
λi(Σ) −

√
λminλmax√

λmin +
√

λmax

(17)

≥ (
√

λmin +
√

λmax − 1)λmin − √
λminλmax√

λmin +
√

λmax

(18)

=
√

λmin

(√
λmin − 1

)
≥ 0. (19)

Therefore, we have also shown that Σ − I ∗ Σ � 0. That is,

I  Σ =⇒ I  I ∗ Σ  Σ, (20)

for all Σ ∈ P(n). In particular, upon substituting Σ = A−1/2BA−1/2 in (20) and
using the affine-invariance properties of both the Löwner order and the mean
μ(A,B) = A ∗ B, we establish the following important property.

Proposition 3. For A,B ∈ P(n), A  B implies that A  A ∗ B  B.

We now consider the monotonicity of μ in its arguments. First recall that
a map F : P(n) → P(n) is said to be monotone if Σ1  Σ2 implies that
F (Σ1)  F (Σ2). By symmetry and affine-invariance, it is sufficient to consider
monotonicity of μ(I,Σ) with respect to Σ. That is, monotonicity is established
by showing that

Σ1  Σ2 =⇒ I ∗ Σ1  I ∗ Σ2. (21)
Unfortunately, it turns out that F (Σ) := I ∗ Σ is not monotone with respect
to Σ as we shall demonstrate below. Nonetheless, F is seen to enjoy certain
weaker monotonicity properties, which is interesting and insightful. Considering
the eigenvalues of I ∗ Σ, we find that

λi(I ∗ Σ) =
λi(Σ) +

√
λminλmax√

λmin +
√

λmax

, (22)

where λmin and λmax refer to the smallest and largest eigenvalues of Σ.
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Proposition 4. The maximum and minimum eigenvalues of F (Σ) = I ∗ Σ are
monotone with respect to Σ.

Proof. Considering the cases i = 1 and i = n, we find that (22) yields

λmin(I ∗ Σ) =
√

λmin(Σ) and λmax(I ∗ Σ) =
√

λmax(Σ), (23)

both of which are seen to be monotone functions of Σ. �	
It is in the sense of the above that μ(A,B) = A∗B inherits a weak monotonicity
property. The monotonic dependence of the extremal eigenvalues of I ∗ Σ on
Σ ensures that if Σ1  Σ2, then we can at least rule out the possibility that
I ∗ Σ1 � I ∗ Σ2, where � 0 here denotes positive definiteness. To prove that
monotonicity is generally not satisfied in the full sense of condition (v), consider
a diagonal matrix Σ = diag(a, b, x) ∈ P(3), where λmin(Σ) = a < b ≤ x =
λmax(Σ) and x is thought of as a variable. We have I ∗Σ = diag (

√
a, f(x),

√
x),

where

λ2(I ∗ Σ) = f(x) :=
b +

√
ax√

a +
√

x
. (24)

Taking the derivative of f with respect to x, we find that

f ′(x) =
a − b

2
√

x(
√

a +
√

x)2
< 0, ∀x ≥ b, (25)

which shows that the second eigenvalue of I ∗ Σ decreases as x increases. Thus,
we see that I ∗ Σ cannot depend monotonically on Σ in this example.

2.3 A Geometric Scaling Property

Before completing this section on the midrange μ(A,B) = A ∗ B of a pair of
positive definite matrices, we note a key scaling property satisfied by μ which
suggests that it is a plausible candidate as a scalable substitute for the standard
matrix geometric mean A#B.

Proposition 5. For any real scalars a, b > 0 and matrices A,B ∈ P(n), we
have

(aA) ∗ (bB) =
√

ab(A ∗ B). (26)

Proof. The result follows upon substituting λi

(
(bB)(aA)−1

)
= b

aλi(BA−1) into
the formula (12). �	

The scaling in (26) of course does not generally hold for a mean of two
matrices. Indeed, it does not generally hold for means arising as d∞-midpoints
either. For instance, [5] identifies

A � B =

{ √
λmax

1+λmax
(A + B) if λminλmax ≥ 1,

√
λmin

1+λmin
(A + B) if λminλmax ≤ 1,

(27)
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as another d∞-midpoint of A and B corresponding to the midpoint of a different
d∞ minimal geodesic to the one considered in this paper. It is clear that (27)
does not scale geometrically as in (26). As a summary, we collect the key results
of this section in the following theorem.

Theorem 1. The mean μ(A,B) = A ∗ B defined in (12) yields a d∞-midpoint
of A,B ∈ P(n) that is continuous, symmetric, affine-invariant, and scales geo-
metrically as in (26). Moreover, if A  B, then A  μ(A,B)  B, and the
extremal eigenvalues of μ(I,Σ) depend monotonically on Σ ∈ P(n).

3 The Midrange Problem in R+ and R
n
+

It is instructive to consider the N -point affine-invariant midrange problem in
the scalar and vector cases, corresponding to the cones R+ and R

n
+, respectively.

In the scalar case, we are given N positive numbers yi > 0 that can be ordered
such that mini yi ≤ yk ≤ maxi yi for each k = 1, . . . , N . By the monotonicity of
the log function, we have log (mini yi) ≤ log yk ≤ log (maxi yi). The midrange is
uniquely given by

x = exp
(

1
2

[
log

(
min

i
yi

)
+ log

(
max

i
yi

)])
=

(
min

i
yi · max

i
yi

)1/2

. (28)

Note that (28) is the unique solution of the optimization problem

min
x>0

max
i

| log x − log yi|. (29)

In the vector case, the midrange problem in R
n
+ takes the form

min
x>0

max
i

‖ logx − log yi‖∞ := min
x>0

max
i

max
a

| log xa − log ya
i |, (30)

where x > 0 means that x = (xa) satsifies xa > 0 for a = 1, . . . , n and yi are a
collection of N given points in R

n
+. As in the matrix case, the optimum cost t�

has a lower bound
l =

1
2

max
i,j

‖ log yi − log yj‖∞. (31)

Proposition 6. The lower bound (31) is attained by x = (xa) ∈ R
n
+ given by

xa =
(
min

i
ya

i · max
i

ya
i

)1/2

. (32)

4 The N -point Midrange Problem in P(n)

In the matrix setting, the midrange problem (5) takes the form

min
X�0

max
i

‖ log(Y −1/2
i XY

−1/2
i )‖∞, (33)
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which can be rewritten as
{

minX�0,t t

e−tYi  X  etYi

(34)

While this problem is not convex due to the presence of the log function, the
feasibility condition e−tYi  X  etYi is convex for fixed t and can be solved
using standard convex optimization packages such as CVX [3]. Given a t that is
greater than or equal to the optimum value t� = minX maxi d∞(X,Yi), we can
solve (34) by successively solving the feasibility condition as we decrease t. In the
bisection method it is very desirable to have a good estimate for the initial t as
the successive reductions in t can be quite slow. In particular, if the lower bound
l = 1

2 diam({Yi}) is attained as in the vector case, then we can solve (34) in one
step by taking t = l and solving the feasibility condition once. Unfortunately, and
rather remarkably, numerical examples show that unlike the scalar and vector
cases, the lower bound l is not always attained in the affine-invariant matrix
midrange problem.

Proposition 7. The lower bound l = 1
2 diam∞({Yi}) is not necessarily attained

in (33).

The above result suggests that the N -point matrix midrange problem is
more challenging than the vector case in fundamental ways. While the bisec-
tion method offers a solution to this problem, we expect that significantly more
efficient solutions to the problem can be found. In particular, we expect to find
algorithms that rely principally on the computation of dominant generalized
eigenpairs that would be considerably more efficient and scalable than existing
algorithms for computing matrix geometric means, as in the N = 2 case.
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Abstract. Symmetric Positive Definite (SPD) matrices have been
widely used in medical data analysis and a number of different Rie-
mannian metrics were proposed to compute with them. However, there
are very few methodological principles guiding the choice of one par-
ticular metric for a given application. Invariance under the action of
the affine transformations was suggested as a principle. Another concept
is based on symmetries. However, the affine-invariant metric and the
recently proposed polar-affine metric are both invariant and symmetric.
Comparing these two cousin metrics leads us to introduce much wider
families: power-affine and deformed-affine metrics. Within this contin-
uum, we investigate other principles to restrict the family size.

Keywords: SPD matrices · Riemannian symmetric space

1 Introduction

Symmetric positive definite (SPD) matrices have been used in many differ-
ent contexts. In diffusion tensor imaging for instance, a diffusion tensor is a
3-dimensional SPD matrix [1–3]; in brain-computer interfaces (BCI) [4], in func-
tional MRI [5] or in computer vision [6], an SPD matrix can represent a covari-
ance matrix of a feature vector, for example a spatial covariance of electrodes or a
temporal covariance of signals in BCI. In order to make statistical operations on
SPD matrices like interpolations, computing the mean or performing a principal
component analysis, it has been proposed to consider the set of SPD matrices as
a manifold and to provide it with some geometric structures like a Riemannian
metric, a transitive group action or some symmetries. These structures can be
more or less natural depending on the context of the applications, and they can
provide closed-form formulas and consistent algorithms [2,7].

Many Riemannian structures have been introduced over the manifold of SPD
matrices [7]: Euclidean, log-Euclidean, affine-invariant, Cholesky, square root,
power-Euclidean, Procrustes... Each of them has different mathematical prop-
erties that can fit the data in some problems but can be inappropriate in some
other contexts: for example the curvature can be null, positive, negative, con-
stant, not constant, covariantly constant... These properties on the curvature
c© Springer Nature Switzerland AG 2019
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have some important consequences on the way we interpolate two points, on
the consistence of algorithms, and more generally on every statistical operation
one could want to do with SPD matrices. Therefore, a natural question one can
ask is: given the practical context of an application, how should one choose the
metric on SPD matrices? Are there some relations between the mathematical
properties of the geometric structure and the intrinsic properties of the data?

In this context, the affine-invariant metric [2,3,8] was introduced to give an
invariant computing framework under affine transformations of the variables.
This metric endows the manifold of SPD matrices with a structure of a Rie-
mannian symmetric space. Such spaces have a covariantly constant curvature,
thus they share some convenient properties with constant curvature spaces but
with less constraints. It was actually shown that there exists not only one but
a one-parameter family that is invariant under these affine transformations [9].
More recently, [10–12] introduced another Riemannian symmetric structure that
does not belong to the previous one-parameter family: the polar-affine metric.

In this work, we unify these two frameworks by showing that the polar-affine
metric is a square deformation of the affine-invariant metric (Sect. 2). We general-
ize in Sect. 3.1 this construction to a family of power-affine metrics that comprises
the two previous metrics, and in Sect. 3.2 to the wider family of deformed-affine
metrics. Finally, we propose in Sect. 4 a theoretical approach in the choice of
subfamilies of the deformed-affine metrics with relevant properties.

2 Affine-Invariant Versus Polar-Affine

The affine-invariant metric [2,3,8] and the polar-affine metric [12] are different
but they both provide a Riemannian symmetric structure to the manifold of SPD
matrices. Moreover, both claim to be very naturally introduced. The former uses
only the action of the real general linear group GLn on covariance matrices. The
latter uses the canonical left action of GLn on the left coset space GLn/On

and the polar decomposition GLn � SPDn × On, where On is the orthogonal
group. Furthermore, the affine-invariant framework is exhaustive in the sense
that it provides all the metrics invariant under the chosen action [9] whereas the
polar-affine framework only provides one invariant metric.

In this work, we show that the two frameworks coincide on the same quotient
manifold GLn/On but differ because of the choice of the diffeomorphism between
this quotient and the manifold of SPD matrices. In particular, we show that there
exists a one-parameter family of polar-affine metrics and that any polar-affine
metric is a square deformation of an affine-invariant metric.

In 2.1 and 2.2, we build the affine-invariant metrics g1 and the polar-affine
metric g2 in a unified way, using indexes i ∈ {1, 2} to differentiate them. First,
we give explicitly the action ηi : GLn × SPDn −→ SPDn and the quotient
diffeomorphism τ i : GLn/On −→ SPDn; then, we explain the construction
of the orthogonal-invariant scalar product gi

In
that characterizes the metric gi;

finally, we give the expression of the metrics g1 and g2. In 2.3, we summarize
the results and we focus on the Riemannian symmetric structures of SPDn.
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2.1 The One-Parameter Family of Affine-Invariant Metrics

Affine Action and Quotient Diffeomorphism. In many applications, one
would like the analysis of covariance matrices to be invariant under affine trans-
formations X �−→ AX + B of the random vector X ∈ R

n, where A ∈ GLn and
B ∈ R

n. Then the covariance matrix Σ = Cov(X), is modified under the trans-
formation Σ �−→ AΣA�. This transformation can be thought as a transitive Lie
group action η1 of the general linear group on the manifold of SPD matrices:

η1 :
{

GLn × SPDn −→ SPDn

(A,Σ) �−→ η1
A(Σ) = AΣA� . (1)

This transitive action induces a diffeomorphism between the manifold SPDn

and the quotient of the acting group GLn by the stabilizing group Stab1(Σ) =
{A ∈ GLn, η1(A,Σ) = Σ} at any point Σ. It reduces to the orthogonal group
at Σ = In so we get the quotient diffeomorphism τ1:

τ1 :
{

GLn/On −→ SPDn

[A] = A.On �−→ η1(A, In) = AA� . (2)

Orthogonal-Invariant Scalar Product. We want to endow the manifold
M = SPDn with a metric g1 invariant under the affine action η1, i.e. an affine-
invariant metric. As the action is transitive, the metric at any point Σ is char-
acterized by the metric at one given point In. As the metric is affine-invariant,
this scalar product gIn

has to be invariant under the stabilizing group of In.
As a consequence, the metric g1 is characterized by a scalar product g1In

on the
tangent space TIn

M that is invariant under the action of the orthogonal group.
The tangent space TIn

M is canonically identified with the vector space Symn

of symmetric matrices by the differential of the canonical embedding M ↪→
Symn. Thus we are now looking for all the scalar products on symmetric matrices
that are invariant under the orthogonal group. Such scalar products are given
by the following formula [9], where α > 0 and β > −α

n : for all tangent vectors
V1,W1 ∈ TIn

M, g1In
(V1,W1) = α tr(V1W1) + β tr(V1)tr(W1).

Affine-Invariant Metrics. To give the expression of the metric, we need a
linear isomorphism between the tangent space TΣM at any point Σ and the
tangent space TIn

M. Since the action η1
Σ−1/2 sends Σ to In, its differential

given by TΣη1
Σ−1/2 : V ∈ TΣM �−→ V1 = Σ−1/2V Σ−1/2 ∈ TIn

M is such a
linear isomorphism. Combining this transformation with the expression of the
metric at In and reordering the terms in the trace, we get the general expression
of the affine-invariant metric: for all tangent vectors V,W ∈ TΣM,

g1Σ(V,W ) = α tr(Σ−1V Σ−1W ) + β tr(Σ−1V )tr(Σ−1W ). (3)

As the geometry of the manifold is not much affected by a scalar multiplica-
tion of the metric, we often drop the parameter α, as if it were equal to 1, and
we consider that this is a one-parameter family indexed by β > − 1

n .
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2.2 The Polar-Affine Metric

Quotient Diffeomorphism and Affine Action. In [12], instead of defining
a metric directly on the manifold of SPD matrices, a metric is defined on the
left coset space GLn/On = {[A] = A.On, A ∈ GLn}, on which the general linear
group GLn naturally acts by the left action η0 : (A, [A′]) �−→ [AA′]. Then this
metric is pushed forward on the manifold SPDn into the polar-affine metric g2

thanks to the polar decomposition pol : A ∈ GLn �−→ (
√

AA�,
√

AA�−1
A) ∈

SPDn × On or more precisely by the quotient diffeomorphism τ2:

τ2 :
{

GLn/On −→ SPDn

A.On �−→
√

AA� . (4)

This quotient diffeomorphism induces an action of the general linear group GLn

on the manifold SPDn, under which the polar-affine metric will be invariant:

η2 :
{

GLn × SPDn −→ SPDn

(A,Σ) �−→ η2
A(Σ) =

√
AΣ2A� . (5)

It is characterized by η2(A, τ2(A′.On)) = τ2(η0(A,A′.On)) for A,A′ ∈ GLn.

Orthogonal-Invariant Scalar Product. The polar-affine metric g2 is char-
acterized by the scalar product g2In

on the tangent space TIn
M. This scalar

product is obtained by pushforward of a scalar product g0[In] on the tangent
space T[In](GLn/On). It is itself induced by the Frobenius scalar product on
gln = TIn

GLn, defined by 〈v|w〉Frob = tr(vw�), which is orthogonal-invariant.
This is summarized on the following diagram.

GLn
s−→ GLn/On

τ2

−→ M = SPDn

A �−→ A.On �−→
√

AA�
〈·|·〉Frob g0[In] g2In

Finally, we get the scalar product g2In
(V2,W2) = tr(V2W2) for V2,W2 ∈ TIn

M.

Polar-Affine Metric. Since the action η2
Σ−1 sends Σ to In, a linear iso-

morphism between tangent spaces is given by the differential of the action
TΣη2

Σ−1 : V ∈ TΣM −→ V2 = Σ−1TΣpow2(V )Σ−1 ∈ TIn
M. Combined with

the above expression of the scalar product at In, we get the following expression
for the polar affine metric: for all tangent vectors V,W ∈ TΣM,

g2Σ(V,W ) = tr(Σ−2 TΣpow2(V )Σ−2 TΣpow2(W )). (6)

2.3 The Underlying Riemannian Symmetric Manifold

In the affine-invariant framework, we started from defining the affine action
η1 (on covariance matrices) and we inferred the quotient diffeomorphism
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τ1 : (GLn/On, η0) −→ (SPDn, η1). In the polar-affine framework, we started
from defining the quotient diffeomorphism τ2 : GLn/On −→ SPDn (corre-
sponding to the polar decomposition) and we inferred the affine action η2. The
two actually correspond to the same underlying affine action η0 on the quotient
GLn/On. Then there is also a one-parameter family of affine-invariant metrics
on the quotient GLn/On and a one-parameter family of polar-affine metrics on
the manifold SPDn. This is stated in the following theorems.

Theorem 1 (Polar-affine is a square deformation of affine-invariant).

1. There exists a one-parameter family of affine-invariant metrics on the quo-
tient GLn/On.

2. This family is in bijection with the one-parameter family of affine-invariant
metrics on the manifold of SPD matrices thanks to the diffeomorphism τ1 :
A.On �−→ AA�. The corresponding action is η1 : (A,Σ) �−→ AΣA�.

3. This family is also in bijection with a one-parameter family of polar-affine
metrics on the manifold of SPD matrices thanks to the diffeomorphism τ2 :
A.On �−→

√
AA�. The corresponding action is η2 : (A,Σ) �−→

√
AΣ2A�.

4. The diffeomorphism pow2 :
{

(SPDn, 4g2) −→ (SPDn, g1)
Σ �−→ Σ2 is an isometry

between polar-affine metrics g2 and affine-invariant metrics g1.

In other words, performing statistical analyses (e.g. a principal component
analysis) with the polar-affine metric on covariance matrices is equivalent to
performing these statistical analyses with the classical affine-invariant metric on
the square of our covariance matrix dataset.

All the metrics mentioned in Theorem 1 endow their respective space with a
structure of a Riemannian symmetric manifold. We recall the definition of that
geometric structure and we give the formal statement.

Definition 1 (Symmetric manifold, Riemannian symmetric manifold).
A manifold M is symmetric if it is endowed with a family of involutions (sx)x∈M
called symmetries such that sx ◦sy ◦sx = ssx(y) and x is an isolated fixed point of
sx. It implies that Txsx = −IdTxM. A Riemannian manifold (M, g) is symmetric
if it is endowed with a family of symmetries that are isometries of M, i.e. that
preserve the metric: gsx(y)(Tysx(v), Tysx(w)) = gy(v, w) for v, w ∈ TyM.

Theorem 2 (Riemannian symmetric structure on SPDn). The Rieman-
nian manifold (SPDn, g1), where g1 is an affine-invariant metric, is a Rieman-
nian symmetric space with symmetry sΣ : Λ �−→ ΣΛ−1Σ. The Riemannian
manifold (SPDn, g2), where g2 is a polar-affine metric, is also a Riemannian
symmetric space whose symmetry is sΣ : Λ �−→

√
Σ2Λ−2Σ2.

This square deformation of affine-invariant metrics can be generalized into
a power deformation to build a family of affine-invariant metrics that we call
power-affine metrics. It can even be generalized into any diffeomorphic deforma-
tion of SPD matrices. We now develop these families of affine-invariant metrics.
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3 Families of Affine-Invariant Metrics

There is a theoretical interest in building families comprising some of the known
metrics on SPD matrices to understand how one can be deformed into another.
For example, power-Euclidean metrics [13] comprise the Euclidean metric and
tends to the log-Euclidean metric [14] when the power tends to 0. We recall that
the log-Euclidean metric is the pullback of the Euclidean metric on symmetric
matrices by the symmetric matrix logarithm log : SPDn −→ Symn. There is
also a practical interest in defining families of metrics: for example, it is possible
to optimize the power to better fit the data with a certain distribution [13].

First, we generalize the square deformation by deforming the affine-invariant
metrics with a power function powθ : Σ ∈ SPDn �−→ Σθ = exp(θ log Σ) to
define the power-affine metrics. Then we deform the affine-invariant metrics by
any diffeomorphism f : SPDn −→ SPDn to define the deformed-affine metrics.

3.1 The Two-Parameter Family of Power-Affine Metrics

We recall that M = SPDn is the manifold of SPD matrices. For a power θ 
= 0,
we define the θ-power-affine metric gθ as the pullback by the diffeomorphism
powθ : Σ �−→ Σθ of the affine-invariant metric, scaled by a factor 1/θ2.

Equivalently, the θ-power-affine metric is the metric invariant under the θ-
affine action ηθ : (A,Σ) �−→ (AΣθA�)1/θ whose scalar product at In coin-
cides with the scalar product g1In

: (V,W ) �−→ α tr(V W ) + β tr(V )tr(W ).
The θ-affine action induces an isomorphism V ∈ TΣM �−→ Vθ =
1
θΣ−θ/2 ∂V powθ(Σ)Σ−θ/2 ∈ TIn

M between tangent spaces. The θ-power-affine
metric is given by:

gθ
Σ(V,W ) = α tr(VθWθ) + β tr(Vθ)tr(Wθ). (7)

Because a scaling factor is of low importance, we can set α = 1 and consider
that this family is a two-parameter family indexed by β > −1/n and θ 
= 0.

We have chosen to define the metric gθ so that the power function powθ :
(M, θ2gθ) −→ (M, g1) is an isometry. Why this factor θ2? The first reason is for
consistence with previous works: the analogous power-Euclidean metrics have
been defined with that scaling [13]. The second reason is for continuity: when
the power tends to 0, the power-affine metric tends to the log-Euclidean metric.

Theorem 3 (Power-affine tends to log-Euclidean for θ → 0). Let Σ ∈ M
and V,W ∈ TΣM. Then limθ→0 gθ

Σ(V,W ) = gLE
Σ (V,W ) where the log-Euclidean

metric is gLE
Σ (V,W ) = α tr(∂V log(Σ) ∂W log(Σ))+β tr(∂V log(Σ))tr(∂W log(Σ)).

3.2 The Continuum of Deformed-Affine Metrics

In the following, we call a diffeomorphism f : SPDn −→ SPDn a deformation.
We define the f -deformed-affine metric gf as the pullback by the diffeomorphism
f of the affine-invariant metric, so that f : (M, gf ) −→ (M, g1) is an isometry.
(Regarding the discussion before the Theorem 3, gpowθ = θ2gθ.)
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The f -deformed-affine metric is invariant under the f -affine action ηf :
(A,Σ) �−→ f−1(Af(Σ)A�). It is given by gf

Σ(V,W ) = αtr(VfWf ) +
βtr(Vf )tr(Wf ) where Vf = f(Σ)−1/2 ∂V f(Σ) f(Σ)−1/2. The basic Riemannian
operations are obtained by pulling back the affine-invariant operations.

Theorem 4 (Basic Riemannian operations). For SPD matrices Σ,Λ ∈ M
and a tangent vector V ∈ TΣM, we have at all time t ∈ R:

Geodesics γf
(Σ,V )(t) = f−1(f(Σ)1/2 exp(tf(Σ)−1/2TΣf(V )f(Σ)−1/2)f(Σ)1/2)

Logarithm Logf
Σ(Λ) = (TΣf)−1(f(Σ)1/2 log(f(Σ)−1/2f(Λ)f(Σ)−1/2)f(Σ)1/2)

Distance df (Σ,Λ) = d1(f(Σ), f(Λ)) =
∑n

k=1 (log λk)2

where λ1, ..., λn are the eigenvalues of the symmetric matrix f(Σ)−1/2

f(Λ)f(Σ)−1/2.

All tensors are modified thanks to the pushforward f∗ and pullback f∗

operators, e.g. the Riemann tensor of the f -deformed metric is Rf (X,Y )Z =
f∗(R(f∗X, f∗Y )(f∗Z)). As a consequence, the deformation f does not affect the
values taken by the sectional curvature and these metrics are negatively curved.

From a computational point of view, it is very interesting to notice that the
identification L′

Σ : V ∈ TΣM �−→ V ′ = TΣf(V ) ∈ Tf(Σ)M simplifies the above
expressions by removing the differential TΣf . This change of basis can prevent
from numerical approximations of the differential but one must keep in mind
that V 
= V ′ in general. This identification was already used for the polar-affine
metric (f = pow2) in [12] without explicitly mentioning.

4 Interesting Subfamilies of Deformed-Affine Metrics

Some deformations have already been used in applications. For example, the
family Ar : diag(λ1, λ2, λ3) �−→ diag(a1(r)λ1, a2(r)λ2, a3(r)λ3) where λ1 � λ2 �
λ3 > 0 was proposed to map the anisotropy of water measured by diffusion
tensors to the one of the diffusion of tumor cells in tumor growth modeling
[15]. The inverse function inv = pow−1 : Σ �−→ Σ−1 or the adjugate function
adj : Σ �−→ det(Σ)Σ−1 were also proposed in the context of DTI [16,17]. Let us
find some properties satisfied by some of these examples. We define the following
subsets of the set F = Diff(SPDn) of diffeomorphisms of SPDn.

(Spectral) S = {f ∈ F|∀U ∈ On,∀D ∈ Diag++
n , f(UDU�) = Uf(D)U�}.

Spectral deformations are characterized by their values on sorted diagonal matri-
ces so the deformations described above are spectral: Ar, adj,powθ ∈ S.

For a spectral deformation f ∈ S, f(R∗
+In) = R

∗
+In so we can unically define

a smooth diffeomorphism f0 : R∗
+ −→ R

∗
+ by f(λIn) = f0(λ)In.

(Univariate) U = {f ∈ S|f(diag(λ1, ..., λn)) = diag(f0(λ1), ..., f0(λn))}. The
power functions are univariate. Any polynomial P = λX

∏p
k=1(X − ai) null at

0, with non-positive roots ai � 0 and positive coefficient λ > 0, also gives rise
to a univariate deformation.
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(Diagonally-stable) D = {f ∈ F|f(Diag++
n ) ⊂ Diag++

n }. The deforma-
tions described above Ar, adj,powθ and the univariate deformations are clearly
diagonally-stable: Ar, adj,powθ ∈ D and U ⊂ D ∩ S.

(Log-linear) L = {f ∈ F| log∗ f = log ◦ f ◦ exp is linear}. The adjugate
function and the power functions are log-linear deformations. More generally, the
functions fλ,μ : Σ �−→ (det Σ)

λ−μ
n Σμ for λ, μ 
= 0, are log-linear deformations.

We can notice that the fλ,μ-deformed-affine metric belongs to the one-parameter
family of μ-power-affine metrics with β = λ2−μ2

nμ2 > − 1
n .

The deformations fλ,μ just introduced are also spectral and the following
result states that they are the only spectral log-linear deformations.

Theorem 5 (Characterization of the power-affine metrics). If f ∈ S ∩L
is a spectral log-linear diffeomorphism, then there exist real numbers λ, μ ∈ R

∗

such that f = fλ,μ and the f-deformed-affine metric is a μ-power-affine metric.

The interest of this theorem comes from the fact that the group of spectral
deformations and the vector space of log-linear deformations have large dimen-
sions while their intersection is reduced to a two-parameter family. This strong
result is a consequence of the theory of Lie group representations because the
combination of the spectral property and the linearity makes log∗ f a homomor-
phism of On-modules (see the sketch of proof below).

Sketch of the proof. Thanks to Lie group representation theory, the linear
map F = log∗ f : Symn −→ Symn appears as a homomorphism of On-modules
for the representation ρ : P ∈ On �−→ (V �−→ PV P�) ∈ GL(Symn). Once
shown that Symn = span(In) ⊕ ker tr is a ρ-irreducible decomposition of Symn

and that each one is stable by F , then according to Schur’s lemma, F is homo-
thetic on each subspace, i.e. there exist λ, μ ∈ R

∗ such that for V ∈ Symn,
F (V ) = λ tr(V )

n In + μ
(
V − tr(V )

n In

)
= log∗ fλ,μ(V ), so f = fλ,μ.

5 Conclusion

We have shown that the polar-affine metric is a square deformation of the affine-
invariant metric and this process can be generalized to any power function or
any diffeomorphism on SPD matrices. It results that the invariance principle
of symmetry is not sufficient to distinguish all these metrics, so we should find
other principles to limit the scope of acceptable metrics in statistical computing.
We have proposed a few characteristics (spectral, diagonally-stable, univariate,
log-linear) that include some functions on tensors previously introduced. Future
work will focus on studying the effect of such deformations on real data and
on extending this family of metrics to positive semi-definite matrices. Finding
families that comprise two non-cousin metrics could also help understand the
differences between them and bring principles to make choices in applications.
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Abstract. We present a latent space factorization that controls a gener-
ative neural network for shapes in a semantic way. Our method uses the
segmentation data present in a collection of shapes to explicitly factorize
the encoder of a pointcloud autoencoder network, replacing it by several
sub-encoders. This allows to learn a semantically-structured latent space
in which we can uncover statistical modes corresponding to semantically
similar shapes, as well as mixing parts from several objects to create
hybrids and quickly explore design ideas through varying shape combi-
nations. Our work differs from existing methods in two ways: first, it
proves the usefulness of neural networks to achieve shape combinations
and second, adapts the whole geometry of the object to accommodate
for its different parts.

Keywords: Autoencoder · Pointcloud · Latent space

1 Introduction

Design ideas exploration is a necessary step for creative modeling. Building tools
that help quickly prototyping ideas can significantly improve designers’ workflow.
Given the tremendous size of 3D shape repositories, scanning all previously exist-
ing models can be cumbersome. This is why we propose, in this work, a first step
to building such a tool: a shape composer that allows to combine parts coming
from different objects into a single and coherent new object. Unlike other works
that extract and snap different parts into new positions, we explore the possi-
bility of holistic composition with the use of generative neural networks.

This paper presents a semantically-rich way of controlling generative net-
works for 3D shapes, without limiting the user to predefined labels. On the
contrary, our approach is essentially data-driven in two ways. First, because we
rely on a large collection of shapes to train our generative model; second, because
the dataset itself is used by the user to tweak the output. More specifically, the

Raphaël Groscot—This work was initiated during a long visit in the Geometric Com-
putation group at Stanford University.

c© Springer Nature Switzerland AG 2019
F. Nielsen and F. Barbaresco (Eds.): GSI 2019, LNCS 11712, pp. 511–519, 2019.
https://doi.org/10.1007/978-3-030-26980-7_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26980-7_53&domain=pdf
https://doi.org/10.1007/978-3-030-26980-7_53


512 R. Groscot et al.

dataset contains various shapes along with their segmentations into meaningful
object parts. Our generative network is then trained to produce shapes in a way
that is compatible with the segmentation. This is achieved by factorizing the
latent space of the generative model according to the different possible shape
parts. Thanks to this, a user can edit any given shape and decide to only change
part of it, by picking the desired geometry within the dataset. Moreover, the
network automatically adapts the final shape in a holistic way to make sure the
new part fits naturally. This leads to an inherent ambiguity in our task. On the
one hand, if we want to change the wings of a plane (for instance), we do not
want too much change in the other parts of the plane. On the other hand, we
still want the rest of the plane to adapt for the change. This is why we propose
an asymmetry in the design of our model.

As a matter of fact, our method relies on the Variational Auto Encoder
(VAE) framework (Sect. 3.1), but where the encoder is subdivided in several
partial encoders, one for each semantical part, that are mixed into a global code
which is then given to the decoder (Sect. 3.3). The decoder is structure-agnostic:
it only knows to transform a general code into a plausible shape, so that when
codes are manipulated and changed, the reconstruction should still look like a
plausible shape.

2 Related Work

Our method is related to different research efforts in 3D shapes analysis and
generation. We separate our review in three categories: generative modeling,
shapes neural networks, and data-driven shapes editing.

Generative Neural Networks. Generative models suchs as Generative Adver-
sarial Networks (GANs) [6] and Variational Auto Encoders (VAEs) [10] both
offer ways to sample from a distribution that matches a given dataset. VAEs rely
on an autoencoder scheme, where a network is asked to project data samples to
a subspace of much lower dimensionality (encode), while being able to recon-
struct the original data (decode). Adding a variational constraint that imposes
a prior (e.g. gaussian) on the latent distribution makes sure that the model gen-
eralizes well. Their compression-like behavior can then be used for several tasks
among which unsupervised learning, sampling, interpolation and denoising [4].
One drawback is that the output is typically blurred, because their loss does
not account for a perceptual term. On the contrary, GANs aim at mimicking
a given distribution by generating samples that are indistinguishable from the
original dataset; they can hence generate much sharper results, to the cost of
harder training and difficulty to control for mode collapse [12]. Conditioning on
the likelihood [3,16] allows to have a finer control on their outputs. Our work
aims at the same property by means of imposing a specific factorization on an
autoencoder latent space.
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Shape Neural Networks. As opposed to images, 3D shapes do not natu-
rally fit in a neural network framework. The main issue is to represent them
in a fixed-size Euclidian domain. The most direct way to do so is to use voxel
grids and directly transpose Convolutional Neural Networks in 3D [7]. However,
even if this approach can yield good results, generated shapes quality is limited
by the grid discretization and the O(n3) complexity. To overcome these limits,
Pointnet [18] introduced a neural network architecture based on pointclouds and
permutation-invariant operators, which characterizes well an unordered set such
as a pointcloud. It has successfully shown its usefulness for tasks such as classi-
fication and segmentation, and even has an extension that exploits hierarchical
analysis [19]. This architecture can also be used to generate pointclouds from
photographs [5]. Lastly, [2] has replaced the permutation invariance constraint by
imposing a lexicographic order on the pointset, leading to pointcloud GANs with
high reconstruction accuracy. Using shapes segmented into semantical parts, [17]
learns the joint probability for structure and geometry – for instance, the pres-
ence or absence of engines on a plane will constraint the profile of the wings.
While producing good quality results, their method does not allow to exchange
parts between shapes. Our method relies on a variation of such a shape neural
network, tailored at being used for shape combinations.

Data-Driven Shape Editing. Many existing methods give automated tools
for shapes editing and design exploration. Existing works range from shape cor-
respondences [7] to style similarity and transfer [13,14]. Others focus on gener-
ating diversity, by extracting and snapping parts together [8], or by hierchical
shape analysis and synthesis [11]. While [8] creates a combinatorial diversity, our
method focuses on the geometric prior for the whole shape, as contained in the
computed latent space. We also share a common usage as [14], but while they
use an example to guide the overall style of the reconstruction, we use multiple
examples, each one guiding a specific part of the shape.

3 Method

3.1 Autoencoder Foundation

Our goal is to create new object shapes, by generating variations within their
different parts, in a data-driven process. The first step is to be able to recreate
objects from the dataset. A natural choice is to use a generative model, we chose
autoencoders. Formally, the goal is to learn the two functions E (encoder) and
D (decoder) such that, for all X in the dataset:

X = D(E(X)) (1)

These two functions are implemented as neural networks that operate on point-
clouds, either taken as a source (for E) or as a target (for D). The key specificity
of our method is our factorization of E based on the available segmentation data.
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The architecture of our foundational autoencoder is the following (N = 1024
points):

Input: a minibatch of 32 pointclouds, each represented as a N × 3 matrix,
accompanied by their segmentation data (see part 3.2);

Encoder: based on Pointnet [18] but in a much simpler version, with successive
layers of per-point filters followed by ReLU layers;

Code mixer: the latent space factorization step, as explained in part 3.3;
Decoder: three fully connected layers with biases, except on the last layer;
Output: the last layer is ultimately reshaped to a N × 3 matrix.

3.2 Consistent Segmentation data

To demonstrate our method, we use the airplane category from ShapenetCore
and its segmentation obtained from [20], comprising of the four following parts:
body, wings, engine, tail. We restricted our analysis only to models containing
the four parts, but these parts need not have the same number of points. Since
all models are aligned in a consistent manner (the plane body is aligned with
the Z axis), our neural networks does not need any rotational invariance, and
can leverage from the strong spatial relations of the models’ parts for both the
encoder and decoder. Note that the value of K depends on the given dataset:
for the airplane category, K = 4.

3.3 Semantic Latent Space factorization

We use pointclouds to represent surfaces, a choice that leads to the following
remark: any subset of a pointcloud is a pointcloud. Although this may seem
trivial, note that this is not a property that usually holds in a machine learning
setting: for instance, a segmented region in an image is not typically rectangular.
This allows us to replace the encoder by K encoders, each for a part, which yields
the following factorization:

E = E1 ∗ E2 ∗ ... ∗ EK (2)

E(X) = C = [c1, c2, ..., cn], ci = Ei(X) (3)

where each Ei represents a partial encoder for part i, and evaluates what we call
a subcode. The above product corresponds to vector concatenation. In this form,
the factorization of the latent space simply corresponds to assigning parts to
dedicated coordinates. Figure 1 shows a diagram of the corresponding pipeline.
Note that for a given part i, the corresponding partial encoder Ei will take as
input pointclouds of different sizes, since one should not assume equal parts sizes
across the dataset. This limitation can be lifted thanks to the Pointnet [18] max-
pooling operation. Since part i is included in the whole shape of size N = 1024,
we know its size has to be smaller than 1024, so we can add zeros until we fill
a 1024 × 3 matrix. Then, one just has to make sure these padded zeros remain
through all the layers of the network, until the final max-pooling discards them.
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Fig. 1. Structure of our hybrid encoder model, illustrated for simplicity with K = 2
parts

3.4 Loss and Training

When it comes to pointclouds, two reconstruction losses can be considered: Earth
Mover’s Distance (EMD) and Chamfer Distance (CD). The former solves the
optimal transport problem of transporting S1 (where each point is seen as a
Dirac delta function) onto S2, and computing the optimal bijection φ:

dEMD(S1, S2) = min
φ:S1→S2

∑

x∈S1

‖x − φ(x)‖2 (4)

Relaxing the global optimality of the assignment, Chamfer Distance com-
putes the squared distance between each point of one pointcloud to its nearest
neighbor in the other pointcloud:

dCD(S1, S2) =
∑

x∈S1

min
y∈S2

‖x − y‖22 +
∑

y∈S2

min
x∈S1

‖x − y‖22 (5)

Chamfer distance is easier to implementat, has a shorter computation time,
and produces acceptable results for our usecase, so we chose to use it over EMD.
The interested reader will find a comparison of generation results for both losses
in [5].

This reconstruction loss becomes the objective function that is to be min-
imized. The reconstruction itself depends on the partial encoders and decoder
networks, which are simply non-linear parametric functions. So, the learning task
ultimately consists of finding the values for these parameters that minimize the
objective function. As typically in machine learning, this is done by a stochastic
gradient descent.

4 Experiments

We implemented our architecture using Tensorflow [1] and ran it on an Nvidia
Gti1080 GPU. We trained over 40 epochs using Adam optimizer [9] with learning
rate of 0.9 and a batchsize of 32.
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4.1 Basic Autoencoder Mode

Since our network is based on an autoencoder, we first demonstrate its ability to
reconstruct objects from the training set. Figure 2 shows examples of reconstruc-
tions, chosen to be representative of the type of objects present in our dataset.
We can notice that the reconstruction quality highly depends on the sub category
(not available) of the object: the typical plane present in the dataset is similar
to the second column, so this is where the autoencoder concentrated most of its
capacity.

Fig. 2. Example of some reconstructions. Top row: original. Bottom row: reconstructed.
The pairs of colored arrows point at errors in the predictions (Color figure online)

Clustering. The latent codes computed by E can be explored using standard
dimensionality reduction techniques, such as PCA and tSNE [15]. Figure 3 shows
the tSNE projection of our latent space over 2 dimensions, and snapshots of
certain blobs with their corresponding shapes. Note how similar shapes live in
the same blob. As with any tSNE projection, we remind the reader that distances
between blobs are not significant.

Continuous Part Transfer. Thanks to the factorization of E, by simply inter-
polating on a given Ei, we can easily transfer a part of an object to another one
while keeping the rest of the object unchanged. Let S be a source object, T
the target and i the index of the part we wish to transfer from S to T . This
is done with E(T ) = E1(T ) ∗ E2(T ) ∗ ... ∗ EK(T ), replacing Ei(T ) by Ei(S). A
linear interpolation between Ei(T ) and Ei(S) effectively realizes the continuous
morphing of the part. Figure 4 shows the results of selectively transfering parts
of a plane onto another one.
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(a) Blob from the left (b) Latent space (c) Blob from the middle
right

Fig. 3. tSNE projection of the encoder latent space, with close-ups of two blobs

(a) Interpolation of the whole plane

(b) Interpolation only on: wing

(c) Interpolation only on: body

(d) Interpolation only on: engine

(e) Interpolation only on: tail

Fig. 4. Selective part transfer, compared to the global interpolation from a source to
a target plane
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5 Limitations and Discussion

An inherent limitation of our model is that of the autoencoder it is based on.
Indeed, it suffers from a problem slightly similar to mode collapse, as shown in
Fig. 2: it focuses all its reconstruction capacity towards the most frequent shapes
from the dataset. In these reconstructions – running in simple autoencoder mode
– see how the secondary engines (blue arrows) are just partially recovered: points
that should be dedicated to them stayed on the wings. This is because such planes
belong to a rare class. During training, the decoder converged to a state that
favors the majority of wings, to the detriment of a minority of engines. It also
means that our model cannot be suited for part transfer when one part belongs
to an atypical object. Another consequence of lost small details is when they
belong to a discriminative part. Let us consider once again the example of the
plane with four engines: overall, the engines only have a mild contribution to the
reconstruction loss. Adopting a part-specific loss could be a way of circumventing
this problem.

As for part transfer, the ambiguity of our holistic design choice yields results
which are sometimes hard to predict. Since we want the whole model to adapt
for the new shape, we do not want to limit the geometry changes to the region
of the transferred part. We are still able to swap parts but this process does not
work for all parts. For several shapes, only one part – say the body of the plane
– determines the geometry of the other parts, at least in the learnt latent space.
So, swapping the body of such a plane with another one might lead to undesired
changes in the other parts of the plane.

Moreover, our autoencoder foundation suffers the same unbalanced latent
activation as reported in [17]: only a fraction of the latent dimensions have a
significant contribution to the reconstruction. All these aforementioned effects,
combined together, limit the current predictability of our part transfers. Further
investigations are required to improve this point.
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Abstract. We introduce a geometric variational discretization frame-
work for geophysical flow models. The numerical scheme is obtained by
discretizing, in a structure-preserving way, the Lie group formulation of
fluid dynamics on diffeomorphism groups and the associated variational
principles. Being based on a discrete version of the Euler-Poincaré vari-
ational method, this discretization approach is widely applicable. We
present an overview of structure-preserving variational discretizations of
various equations of geophysical fluid dynamics, such as the Boussinesq,
anelastic, pseudo-incompressible, and rotating shallow-water equations.
We verify the structure-preserving nature of the resulting variational
integrators for test cases of geophysical relevance. Our framework applies
to irregular mesh discretizations in 2D and 3D in planar and spherical
geometry and produces schemes that preserve invariants of the equations
such as mass and potential vorticity. Descending from variational princi-
ples, the discussed variational schemes exhibit a discrete version of Kelvin
circulation theorem and show excellent long term energy behavior.

Keywords: Anelastic and pseudo-incompressible equations ·
Rotating shallow-water equations ·
Soundproof and compressible fluids · Variational principle ·
Euler-Poincaré equations · Structure-preserving discretizations

1 Introduction

Variational methods are a powerful tool to derive consistent models from Hamil-
ton’s principle of least action. The equations of motion follow by computing the
critical curve of the action functional associated to the Lagrangian of the sys-
tem. When derived from a discrete version of variational principles, the resulting
discretizations preserve important geometric properties of their underlying con-
tinuous equations, such as long term stability, consistency in statistical properties
and conservation of stationary solutions, see e.g. [9,12,14].
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Given the generality of the approach, variational methods are applied in
various fields of interest. While most of the literature covers variational integra-
tors for ordinary differential equations (ODEs), in recent years they have been
developed also for partial differential equations (PDEs), in particular for fluid
and geophysical fluid dynamics (GFD), see e.g. [13] and [1–3,6]. The numerical
schemes descend from discretizing the Lie group formulation of fluid dynamics
on diffeomorphism groups and the associated variational principles.

In the field of GFD, variational integrators are of particular interest given
their conservation of invariants which is a crucial property for long time integra-
tions to guarantee accurate representation of the statistical properties of these
models [4,7]. In this context, the rotating shallow-water (RSW) equations, both
in the plane and on the sphere, have received considerable attention because
they allow us to study the essential features of the full 3D equations in an ideal-
ized setting. Another interesting approximation of the Euler equations is to filter
out sound waves as they are assumed to be negligible for atmospheric models.
In this context, mostly anelastic and pseudo-incompressible approximations are
studied, cf. [8,11].

Here, we present a unified variational discretization framework that covers
both the soundproof approximations of the Euler equations [2,3] and the com-
pressible rotating shallow-water case [1,5]. As shown in Sect. 2, this framework
will allow us to stress differences in the description of compressible and incom-
pressible flows. Naturally, the Lie groups approximations describing the different
flow models differ from each other, but the derivation of the corresponding Lie
algebras and fluid’s vector fields follows for all cases the same procedure. In
contrast, the treatment of advected quantities differs between soundproof and
compressible models. For some of these models, we present in Sect. 3 some numer-
ical results of the schemes from Sect. 2.4 focusing again on the similarities and
differences between them. Finally, in Sect. 4 we draw some conclusions.

2 Variational Discretization Framework

The discretization procedure mimics the continuous variational principle step by
step. In Table 1 the corresponding continuous definitions are given that have to
be suitably approximated.

Recall that in the Lagrangian representation, the variational principle is the
Hamilton principle δ

∫
L(ϕ, ϕ̇)dt = 0 written on the appropriate diffeomorphism

group of the fluid domain M. For instance for the RSW equations the group
Diff(M) of all diffeomorphisms is used, whereas for soundproof models, one
chooses the group Diff σ̄μ(M) that preserve a weighted volume σ̄dx, with σ̄ = 1,
σ̄ = ρ̄, or σ̄ = ρ̄θ̄, for the Boussinesq, anelastic, or pseudo-incompressible model,
in which ρ̄(z) and θ̄(z) characterize vertically varying reference states for density
and potential temperature, respectively, in hydrostatic balance [2].

The variational principle inherited from the Hamilton principle in Eule-
rian (spatial) representation is the Euler-Poincaré principle ([10]). The spatial
Lagrangian is expressed in terms of the Eulerian velocity u, the fluid depth
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h, and/or the potential temperature θ, and the fluid equations follow from
δ
∫ T

0
�dt = 0 with respect to constrained variations δu, δh or δθ, see Table 1.

2.1 Discrete Diffeomorphism Groups

The discretization procedure starts with the choice of a discrete version of the
diffeomorphism group, [1,13], obtained by first discretizing the space of functions
F(M) on which the group acts by composition on the right, and then identifying
a finite dimensional group acting by matrix multiplication on the finite dimen-
sional space of discrete functions, while preserving some properties of the action
by diffeomorphisms (constant functions are preserved). Given a mesh M of M
and choosing as discrete functions the space R

N of piecewise constant functions
on M, this results in the following matrix groups:

– for compressible flow: D(M) = {q ∈ GL(N)+ | q · 1 = 1}, with 1 = (1, ..., 1)T,
in which the condition q · 1 = 1 encodes, at the discrete level, the fact that
constant functions are preserved under composition by a diffeomorphism;

– for soundproof flow: Dσ̄(M) =
{
q ∈ GL(N)+ | q · 1 = 1 and qT Ωσ̄q = Ωσ̄

}
,

with Ωσ̄
i :=

∫
Ci

σ̄(z)dx, for a cell Ci, and where the additional constraint
imposes the preservation of the weighted volume at the discrete level.

The action of the groups D(M) and Dσ̄(M) by matrix multiplication on dis-
crete functions F ∈ R

N is denoted as

F ∈ R
N �→ qF = F ◦ q−1 ∈ R

N , q ∈ D(M), (1)

where the suggestive notation F ◦ q−1 for the multiplication of the vector F by
the matrix q is introduced to indicate that this action is understood as a discrete
version of the action of Diff(M) and Diff σ̄(M) by composition on F(M). The
situation is formally illustrated by the diagram

2.2 Discrete Lie Algebra and Discrete Vector Fields

By taking the derivative of continuous and discrete actions at the identity, we
get d

dt

∣
∣
t=0

f ◦ ϕ−1
t = −df · u and d

dt

∣
∣
t=0

F ◦ q−1
t = AF , where d

dt

∣
∣
t=0

ϕt = u
and d

dt

∣
∣
t=0

qt = A. Hence AF , with A an element of the Lie algebra of D(M) or
Dσ̄(S) is a discretization of (minus) the derivative of f in the direction u. The
Lie algebras of D(M) and Dσ̄(S) are:

– for compressible flow: d(M) = {A ∈ Mat(N) | A · 1 = 0},
– for soundproof flow: dσ̄(M) =

{
A ∈ Mat(N)

∣
∣ A · 1 = 0, ATΩσ̄ + Ωσ̄A = 0

}
.
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However, not all A ∈ d(M) or dσ̄(M) can be interpreted as discrete vector fields.
This induces nonholonomic constraints on the Lie algebras which have to be
appropriately taken into account in the variational principle.

Nonholonomic Constaints. For both soundproof and compressible fluids it is
required that fluxes are nonzero only between neighboring cells, hence we have
the linear constraint S =

{
A ∈ d(M)/dσ̄(M) | Aij = 0, ∀ j /∈ N(i)

}
where N(i)

is the set of indices of those cells adjacent to cell i.
For the compressible case, we have the additional constraint, ΩiiAij =

−ΩjjAji, for all j �= i, where Ω = Ωσ̄ with σ̄ = 1. This gives the additional lin-
ear constraint R =

{
A ∈ d(M) | ATΩ + ΩA is diagonal

}
. These nonholonomic

constraints are taken into account by using the Euler–Poincaré–d’Alembert prin-
ciple, which is the nonholonomic version of the Euler–Poincaré principle.

Fig. 1. Flux associ-
ated to Aij .

Discrete Vector Fields. Taking into account these non-
holonomic constraints, it can be shown that if a matrix A
approximates a vector field u, then,

– for compressible flow: matrix elements of A ∈ S ∩
R satisfy Aij 	 − 1

2Ωii

∫
Dij

(u · nij)dS, Aii 	
1

2Ωii

∫
Ci

(div u)dx,
– for soundproof flow: matrix elements of A ∈ S satisfy

Aij 	 − 1
2Ωσ̄

ii

∫
Dij

(σ̄ u · nij)dS,

for all j ∈ N(i), j �= i, with Dij the hyperface common to cells Ci and Cj and
nij is the normal vector on Dij pointing from Ci to Cj , cf. Fig. 1.

Discrete Advected Quantities. To formulate the discrete Euler–Poincaré–
d’Alembert principle, we need to define appropriate actions of D(M) on discrete
fluid depth D for RSW and of Dσ̄(M) on discrete potential temperature Θ for
SP. In both cases, the action results from the definition in (1), namely

– for compressible flow: D is a discrete density so the action, D �→ D • q, is dual
to the action on discrete functions: 〈D • q, F 〉 = 〈D,F ◦ q−1〉 for all F ∈ R

N ,
with respect to the discrete L2 pairing. It results in D • q = Ω−1qTΩD.

– for soundproof flow: Θ is a discrete function so the action is qΘ = Θ ◦ q−1 as
in (1). Then, Θ(t) = q(t)Θ0.

2.3 Euler–Poincaré–d’Alembert (EPA) Variational Principle

Consider the spatial discrete Lagrangian �d = �d(A,Q) : d(M)/dσ̄(M)×R
N → R

with Q ∈ R
N an advected quantity, (D or Θ). The discrete EPA principle reads:

δ
∫ T

0
�d(A,Q)dt = 0 for variations δA = ∂tB + [B,A], B(0) = B(T ) = 0, and

– for compressible flow: δQ = −Q • B, with A,B ∈ S ∩ R,
– for soundproof flow: δQ = BQ, with A,B ∈ S.
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Case 1: soundproof model. The discrete EPA principle, with Q = Θ, yields
the following semidiscrete equations for (A(t), Θ(t)) ∈ dσ̄(M) × R

N , [2]:

( d

dt

δ�d

δA
+

[δ�d

δA
Ωσ̄, A

]
(Ωσ̄)−1 +

(
Θ

δ�d

δΘ

T)(A)

+ dP
)

ij
= 0, for all i ∈ N(j) (2)

for some discrete function P (the discrete pressure). Here (dP )ij = Pj − Pi and
( )(A) denotes the skew-symmetric part of a matrix.
Case 2: compressible model. The discrete EPA principle, with Q = D, yields
the following semidiscrete equations for (A(t),D(t)) ∈ d(M) × R

N , [1]:

P
( d

dt

δ�

δA
+ Ω−1

[
AT, Ω

δ�

δA

]
+ D

δ�

δD

T)

ij
= 0, for all i ∈ N(j), (3)

where P is the projection associated to the nonholonomic constraint, [1]. These
equations are accompanied with the discrete continuity equation d

dtD+D•A = 0.
We provide in Table 1 a summary that enlightens the correspondence between

the continuous and discrete objects. Note that in both cases, the resulting equa-
tions of motion for soundproof and compressible flows are valid on any reasonable
mesh (e.g. not degenerated cells [1]). To result in implementable code, we have
to choose a mesh and a suitable discrete flat operators such as in [13].

Table 1. Continuous and discrete objects for soundproof (SP) and compressible (CP)
discretizations. The divergence is denoted by div and the Jacobian by J .

Continuous diffeomorphisms Discrete diffeomorphisms
Diff(M) � ϕ D(M) � q

Group action on functions Group action on discrete functions
f �→ f ◦ ϕ−1 F �→ F ◦ q−1 =: qF

Group action on densities Group action on discrete densities
CP: h �→ h • ϕ = (h ◦ ϕ)Jϕ CP: D �→ D • q = Ω−1qTΩD

Eulerian velocity and advected quantity Disc. Eulerian veloc. and advec. quantity

u = ϕ̇ ◦ ϕ−1,

{
SP: θ = Θ0 ◦ ϕ−1

CP: h = (h0 ◦ ϕ−1)Jϕ−1 A = q̇q−1,

{
SP: Θ = qΘ0

CP: D = Ω−1q−TΩD0

Euler-Poincaré principle Euler-Poincaré-d’Alembert principle
δ

∫ T
0 �(u, h/θ)dt = 0, δu = ∂tv + [v,u] δ

∫ T
0 �(A, D/Θ)dt = 0, δA = ∂tB + [B, A]{

SP: δθ = −dθ · v
CP: δh = − div(hv)

{
SP: δΘ = BΘ, A, B ∈ S
CP: δD = −Ω−1BTΩD, A, B ∈ S ∩ R

2.4 Numerical Schemes on Irregular Simplicial Meshes

The numerical schemes are obtained from (2) and (3), by specializing them to the
chosen mesh and the chosen discrete Lagrangian, which requires the construction
of a discrete “flat” operator A ∈ S ∩ R �→ A� associated to the given mesh, see
[13]. For instance, for the RSW case the discrete Lagrangian is

�d(A,D) =
1
2

N∑

i,j=1

DiA
�
ijAijΩii +

N∑

i,j=1

DiR
�
ijAijΩii − 1

2

N∑

i=1

g(Di +Bi)2Ωii. (4)
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The discrete flat operator is defined from the two conditions A�
ij = 2Ωii

hij

fij
Aij ,

and A�
ij +A�

jk +A�
ki = Ke

j

〈
ω(A�), ζe

〉
, for i, k ∈ N(j), k /∈ N(i), with e the node

common to cells Ci, Cj , Ck, where Ke
k := |ζe∩Ck|

|ζe| ,
〈
ω(A�), ζe

〉
:=

∑
hmn∈∂ζe

A�
mn,

and where |ζe ∩ Ck| is the area of the intersection of Ck with the dual cell ζe,
fij is the length of the triangle edge between Ci and Cj , and hij is the length
of the dual edge connecting the circumcenters of Ci and Cj .

The numerical scheme is then obtained by applying a variational discretiza-
tion in time, [6].

3 Numerical Results

On a small selection of test cases of fluid and geophysical fluid dynamics on
an f -plane or the sphere, we show the performance of the variational integra-
tors developed in [1,2]. We focus here on illustrating similarities and differences
between the models and their variational discretizations.

Consider first the RSW scheme on both an f -plane and the sphere. We
study the scheme’s capability to conserve steady state solutions, cf. [1,5], and
invariants such as mass, energy, potential vorticity and enstrophy. Figure 2 shows
that for long term integrations, the total energy (kinetic + potential energy) is
well preserved for simulations on a regular (left) and irregular (middle) f-plane
mesh, but also rather well on the sphere (right).
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Fig. 2. Relative errors in total energy for the RSW scheme over 1 year. Left and middle:
isolated vortex solutions [1] on uniform, resp. non-uniform meshes (642 triangles) on
an f -plane; right: TC 2 solutions [5] on the sphere (10242 Voronoi cells).

Note that mass and potential vorticity are preserved at machine precision
for all cases. Although not by construction, potential enstrophy is well preserved
too on both f -plane and the sphere: for 50 days run of TC 2 of [15] at 10−7 and
for TC 5 at 10−3. In general we notice that the solutions on the f-plane and on
the sphere behave very similarly.

Consider further the convergence plots for the RSW scheme on a regular
and irregular f-plane mesh (left) and on the sphere (right) of Fig. 3. The plots
show the convergence of the numerical results after 1 day, resp. 12 days of sim-
ulations against the corresponding steady state solutions. On the f -plane, our
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Fig. 3. Convergence of RSW scheme. Left: on the sphere for steady state solution
(WTC2) after 12 days. Right: on an f -plane for steady state solutions after 1 day.

scheme shows at least 1st order convergence rates, while on the sphere, given the
additional curvature, it reduces to the order of about 0.5.

Figure 4 shows the fluid depth after a simulation of 14 days for TC 2 (left)
and a Rossby wave [5]. A comparison to literature confirms that these solutions
are accurately represented by our RSW integrator.

Fig. 4. RSW scheme on the sphere. Left: Williamson test case 5 (flow over a mountain)
after 14 days. Right: Rossby wave test case. Colorbars indicate fluid depth in [m]. (Color
figure online)

Finally, Fig. 5 shows solutions of the cold bubble test case [3], i.e. a falling
cold bubble in a warm environment. The left panel presents the solution of the
anelastic model with a linearized buoyancy term, the right one the corresponding
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Fig. 5. Potential temperature θ on regular meshes: comparison of results of the anelas-
tic (left) and pseudo-incompressible schemes (right) for the falling cold air bubble with
θmin/θmax = 90 K/300K. Colorbar indicates [θ] in K.
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solution for the pseudo-incompressible (PI) scheme applying a nonlinear buoy-
ancy approximation. Our PI captures well the physical meaningful nonlinear
effect that prevents the bubble from stretching [3,11], in contrast to the anelas-
tic scheme. Matching well the results from literature, this confirms the accuracy
of the variational schemes for the soundproof models.

4 Conclusions

We presented a variational discretization framework for geophysical flow mod-
els. This framework unifies the integrators for soundproof and compressible flow
models developed in [1,2]. In particular, we could illustrate that the method-
ology of deriving discrete velocity fields as elements of discrete Lie algebras of
the fluid models has many steps in common, while the discrete Lie groups that
approximate the configuration space and the advection of either buoyancy or the
fluid density of soundproof or compressible fluids, respectively, naturally differ.
We illustrated on some selected numerical results simularities and differences
between these variational integrators while confirming their excellent conserva-
tion properties.
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Evolution Equations
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Abstract. We study finite element methods for the solution of evolu-
tion equations in Riemannian geometry. Our focus is on Ricci flow and
Ricci-DeTurck flow in two dimensions, where one of the main challenges
from a numerical standpoint is to discretize the scalar curvature of a
time-dependent Riemannian metric with finite elements. We propose a
method for doing this which leverages Regge finite elements – piecewise
polynomial symmetric (0, 2)-tensors possessing continuous tangential-
tangential components across element interfaces. In the lowest order set-
ting, the finite element method we develop for two-dimensional Ricci flow
is closely connected with a popular discretization of Ricci flow in which
the scalar curvature is approximated with the so-called angle defect: 2π
minus the sum of the angles between edges emanating from a common
vertex. We present some results from our ongoing work on the analysis
of the method, and we conclude with numerical examples.

Keywords: Finite element · Ricci flow · Scalar curvature ·
Angle defect

1 Introduction

Partial differential equations governing the evolution of time-dependent Rieman-
nian metrics are ubiquitous in geometric analysis. In this work, we study finite
element discretizations of such problems.

The model problem we consider consists of finding a Riemannian metric g(t)
on a smooth manifold Ω satisfying

∂

∂t
g = σ, g(0) = g0, (1)

where g0 is given and σ is a symmetric (0, 2)-tensor field depending on g and/or t.
We are particularly interested in two special cases: (i) two-dimensional normal-
ized Ricci flow, in which case σ = (R̄ − R)g, R is the scalar curvature of g, and
R̄ is the average of R over Ω (or some other prescribed scalar function); and (ii)
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two-dimensional Ricci-DeTurck flow, in which case σ = −Rg + Lwg and w is a
certain vector field depending on g.

In both Ricci flow and Ricci-DeTurck flow, the problem can be recast as
a coupled system of differential equations by treating the (densitized) scalar
curvature R and the metric g as independent variables. As we show below, the
system reads

∂

∂t
(Rμ) = (divg divg Sgσ)μ, R(0) = R0, (2)

∂

∂t
g = σ, g(0) = g0, (3)

where R0 is the scalar curvature of g0, divg is the covariant divergence operator,
μ = μ(g) is the volume form on Ω determined by g, and (Sgσ)ij = σij−gijg

k�σk�.
An advantage of this formulation is that it eliminates the need to discretize
the scalar curvature operator (the nonlinear second-order differential operator
sending g to R). The scalar curvature R is instead initialized at t = 0 and evolved
forward in time by solving the differential Eq. (2). The latter equation involves
a differential operator divg divg which is somewhat easier to discretize.

To fix ideas, let us consider the setting in which Ω is a 2-torus. Let Th be a
triangulation of Ω with maximum element diameter h. Assume that Th belongs
to a shape-regular, quasi-uniform family of triangulations parametrized by h.
Let Eh denote the set of edges of Th. Let q ∈ N and r ∈ N0. Define finite element
spaces

Vh = {v ∈ H1(Ω) | v|K ∈ Pq(K), ∀K ∈ Th},

Σh = {σ ∈ L2(Ω) ⊗ S | σ|K ∈ Pr(K) ⊗ S, ∀K ∈ Th, and �τT στ� = 0, ∀e ∈ Eh},

where Pr(K) denotes the space of polynomials of degree ≤ r on K, �τT στ�
denotes the jump in the tangential-tangential component of σ across an edge
e ∈ Eh, and S = {σ ∈ R

2×2 | σ = σT }. The space Σh is the space of Regge finite
elements of degree r [4,13].

For scalar fields u and v on Ω, denote 〈u, v〉g =
∫

Ω
uv μ(g). For sym-

metric (0, 2)-tensor fields σ and ρ defined on K ∈ Th, let 〈σ, ρ〉g,K =∫
K

gijσjkgk�ρ�i μ(g). For e ∈ Eh, denote 〈u, v〉g,e =
∫

e
uv

√
τT gτ d�, where τ

is the unit vector tangent to e relative to the Euclidean metric δ, and d� is
the Euclidean line element along e. With J =

(
0 1

−1 0

)
, let τg = τ/

√
τT gτ ,

ng = Jgτ/
√

τT gτ det g, and ∂v
∂ng

= nT
g g∇gv. Let Hessgv denote the Rieman-

nian Hessian of v.
To discretize the operator divg divg Sg appearing in (2), we make use of the

metric-dependent bilinear form

bh(g;σ, v) =
∑

K∈Th

〈Sgσ,Hessgv〉g,K +
∑

e∈Eh

〈

τT
g στg,

�
∂v

∂ng

�〉

g,e

.

This bilinear form is a non-Euclidean generalization of the bilinear form used in
the classical Hellan-Herrmann-Johnson mixed discretization of the biharmonic
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equation [9, p. 237]. Using integration by parts, it can be shown that for smooth
g, σ, and v, we have bh(g;σ, v) =

∫
Ω

(divg divg Sgσ)v μ(g).
To discretize (2), (3), we choose approximations Rh0 ∈ Vh and gh0 ∈ Σh of

R0 and g0, respectively. We then seek Rh(t) ∈ Vh and gh(t) ∈ Σh such that
Rh(0) = Rh0, gh(0) = gh0, and

∂

∂t
〈Rh, vh〉gh

= bh(gh;σh, vh), ∀vh ∈ Vh, (4)

∂

∂t
gh = σh, (5)

where σh = σh(gh, Rh, t) is a discretization of σ. For the moment, we postpone
discussing our choice of σh; this will be addressed in the next sections. We assume
throughout what follows that (1) and (4), (5) preserve the signature of g and
gh, in the sense that the eigenvalues of g and gh are bounded from below by a
positive constant independent of h, x, and t.

1.1 Connection with the Angle Defect

An important feature of (4) is its connection with the widely studied angle defect
from discrete differential geometry [2,5,14]. Recall that the angle defect Θi at
the ith vertex y(i) ∈ Ω of the triangulation Th measures the failure of the angles
incident at y(i) to sum up to 2π:

Θi = 2π −
∑

K∈ωi

θiK . (6)

Here, ωi denotes the set of triangles in Th having y(i) as a vertex, and θiK

denotes the interior angle of K at y(i). The following proposition shows that in
the lowest order setting (r = 0 and q = 1), the differential Eq. (4) reproduces
the angle defect if Rh0 is chosen appropriately.

Proposition 1. Let r = 0 and q = 1. Let {φi}i be the basis for Vh satisfying
φi(y(j)) = δj

i , and let Θi0 be the angle defect at vertex y(i) as measured by gh0.
If

〈Rh0, φi〉gh0 = 2Θi0, (7)

then the solution of (4), (5) satisfies

〈Rh(t), φi〉gh(t) = 2Θi(t)

for every t, where Θi(t) is the angle defect at vertex y(i) as measured by gh(t).

Proof. It is shown in [8, Lemma 3.3] that

∂

∂t
(2Θi(t)) = bh

(

gh(t);
∂

∂t
gh(t), φi

)

, (8)

so 2Θi(t) and 〈Rh(t), φi〉gh(t) obey the same ordinary differential equation.
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The relation (8) is a discrete analogue of the following relation which holds
in the smooth setting.

Proposition 2. Let g(t) be a smooth Riemannian metric on Ω depending
smoothly on t. Then, for every smooth scalar field v,

∂

∂t
〈R(g(t)), v〉g(t) =

〈

divg(t) divg(t) Sg(t)
∂g

∂t
, v

〉

g(t)

.

Remark 1. The relation above is not valid in dimensions greater than 2.

Proof. We have
∂

∂t
〈R(g(t)), v〉g(t) =

∫
Ω
(DR(g(t)) · σ(t)) v μ(g(t)) +

∫
Ω

R(g(t))v (Dμ(g(t)) · σ(t)) ,

where σ(t) = ∂
∂tg(t). The linearizations of R and μ are given by [6, Lemma 2]

DR(g) · σ = divg divg σ − Δg(gijσij) − gijσjkgk� Ric�i,

Dμ(g) · σ =
1
2
gijσijμ(g).

Since Ric = 1
2Rg in two dimensions and Δgu = divg divg(gu) for any scalar field

u, the first expression simplifies to

DR(g) · σ = divg divg Sgσ − 1
2
Rgijσij .

Combining these gives

∂

∂t
〈R(g(t)), v〉g(t) =

∫

Ω

(divg divg Sgσ) v μ.

2 Ricci Flow

Let us now focus on two-dimensional normalized Ricci flow, which corresponds
to the choice σ = (R̄ − R)g in (1). As before, R is the scalar curvature of g and
R̄ is the average of R over Ω (or some other prescribed scalar function).

Several simplifications can be made in this setting. Since σ is proportional to
g, we have divg divg Sgσ = Δg(R̄ − R) − 2Δg(R̄ − R) = Δg(R − R̄), so that (2)
reduces to

∂

∂t
(Rμ) = (Δg(R − R̄))μ.

This offers us some flexibility in our choice of discretization. One option is to
use (4), (5) as it is written, choosing σh equal to

σh = Ph((R̄h − Rh)gh), (9)
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where Ph is any projector onto Σh whose domain contains {vhρh | vh ∈ Vh, ρh ∈
Σh}, and R̄h ∈ Vh is equal to R̄ or an approximation thereof. Another option is
to use the discretization

∂

∂t
〈Rh, vh〉gh

= 〈∇gh
(R̄h − Rh),∇gh

vh〉gh
, ∀vh ∈ Vh, (10)

∂

∂t
gh = σh, (11)

again with σh given by (9).
The next proposition gives an example of a setting in which (4), (5) and (10),

(11) are equivalent. In it, we denote by z(e) ∈ Ω the midpoint of an edge e ∈ Eh.
Note that when r = 0, the linear functionals

ρ 	→ τT ρ(z(e))τ, e ∈ Eh

form a basis for the dual of Σh. We denote by {ψe}e∈Eh
⊂ Σh the basis for Σh

satisfying

τT ψe(z(e
′))τ =

{
1, if e = e′,

0, otherwise.

Proposition 3. Let r = 0 and q = 1. Let Ph be given by

Phρ =
∑

e∈Eh

(τT ρ(z(e))τ)ψe,

and let σh be given by (9). Choose Rh0 equal to the unique element of Vh satisfy-
ing (7) for every i. Then, with initial conditions Rh(0) = Rh0 and gh(0) = gh0,
problems (4), (5) and (10), (11) are equivalent. Furthermore, the solution gh(t)
satisfies

gh(t) = Ph(euh(t)gh0), (12)

where uh(t) ∈ Vh obeys the differential equation

∂

∂t
uh = R̄h − Rh, uh(0) = 0, (13)

and the solution Rh(t) satisfies

〈Rh(t), φi〉gh(t) = 2Θi(t) (14)

for every t and every i, where Θi(t) is the angle defect at vertex y(i) as measured
by gh(t).

Proof. Using the fact that functions in Vh are piecewise linear when q = 1, one
verifies through integration by parts that

bh(gh;Ph((R̄h − Rh)gh), vh) = bh(gh; (R̄h − Rh)gh, vh)
= 〈∇gh

(R̄h − Rh),∇gh
vh〉gh
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for every vh ∈ Vh. This demonstrates the equivalence of (4), (5) and (10), (11).
To deduce (12), (13), observe that differentiating (12) and invoking (13) gives

∂

∂t
gh = Ph

(
(R̄h − Rh)euhgh0

)

= Ph

(
(R̄h − Rh)Ph(euhgh0)

)

= Ph

(
(R̄h − Rh)gh

)

= σh

where the second line above follows from our choice of Ph. The relation (14)
between Rh(t) and the angle defect follows from Proposition 1.

2.1 Connection with Other Discretizations of Ricci Flow

Proposition 3 reveals a close connection between the lowest-order version of our
finite element discretization of Ricci flow and another popular finite difference
scheme for Ricci flow [3,11]. In this popular method, (Ω, g) is discretized with a
triangulation having time-dependent edge lengths �ij between adjacent vertices
i and j. The scalar curvature R(g) (which is twice the Gaussian curvature) is
then approximated by (two times) the angle defect. The method stores a time-
dependent scalar ui at each vertex i which evolves according to

∂

∂t
ui = 2(Θ̄i − Θi). (15)

where Θ̄i is prescribed. (Note that in [3], (15) is expressed in terms of ri := eui/2

rather than ui.) This collection of scalars determines the lengths �ij of all edges at
time t in terms of their lengths at t = 0 via a relation which is analogous to (12)
but is motivated by circle packing theory [12] rather than finite element theory.
(Other choices are also possible; see [10, Section 5] and [15] for a discussion of
alternatives.)

The connection with our finite element discretization is now transparent. In
the lowest order instance of our finite element discretization (r = 0 and q = 1),
the degrees of freedom for uh and gh are the values of uh at each vertex and the
squared length of each edge as measured by gh. According to Eq. (13) and (12),
these degrees of freedom evolve in nearly the same way that ui and �ij evolve
in [3,11].

There is one important discrepancy, however: Equation (15) is not a consis-
tent discretization of normalized Ricci flow. This is because the angle defect (6)
approximates the integral of the Gaussian curvature over a cell which is dual to
vertex i, not its average over the cell. See [1, Remark B.2.4] for more insight.
In many applications, this is not a serious concern, since very often the goal
is not to accurately approximate Ricci flow, but rather to construct a discrete
conformal mapping from a given triangulation to one with prescribed discrete
curvature.
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Putting this discrepancy aside, the similarities noted above suggest that our
finite element method (with r ≥ 0 and q ≥ 1) can be loosely regarded as a high-
order generalization of the scheme studied in [3,11]. A link like this does not
appear to hold for some other finite element discretizations of Ricci flow such as
the one studied in [7]. In particular, [7] relies on the existence of an embedding
of (Ω, g) into R

3.

3 Error Analysis

We now discuss some of our ongoing work on the analysis of the accuracy of
the discretization (4), (5). One setting which is particularly easy to analyze is
that in which σ and σh are prescribed functions of t. Then estimates for gh − g
are immediate, and it remains to estimate Rh − R. The following proposition
gives estimates for Rh −R in the metric-dependent negative-order Sobolev-norm
(recall that Ω has no boundary)

‖v‖H−1(Ω,g) = sup
u∈H1(Ω)

〈v, u〉g

‖u‖H1(Ω)
. (16)

In what follows, we take R̄ = R̄h to be constant, and we assume r > 0.

Proposition 4. If σ and σh depend only on t, and if g and R are sufficiently
regular, then for T > 0 small enough, the solutions of (2), (3) and (4), (5) satisfy

‖gh(T ) − g(T )‖L2(Ω) ≤ ‖gh0 − g0‖L2(Ω) +
∫ T

0

‖σh(t) − σ(t)‖L2(Ω) dt,

‖Rh(T ) − R(T )‖H−1(Ω,g(T ))

≤ C

(∫ T

0

(
h−1‖σh(t) − σ(t)‖L2(Ω) + |σh(t) − σ(t)|H1

h(Ω)

)
dt

+ inf
uh∈Vh

‖R(T ) − uh‖H−1(Ω,g(T )) + ‖Rh0 − R0‖H−1(Ω,g(T ))

)

.

Proof. The estimate for gh(T )−g(T ) is immediate, and the estimate for Rh(T )−
R(T ) can be obtained by extending the analysis in [8], which studies the case in
which g(t) = T−t

T δ + t
T g(T ), gh(t) = T−t

T δ + t
T gh(T ), and Rh0 = R0 = 0.

Choosing gh0, Rh0, and σh(t) equal to suitable interpolants of g0, R0, and
σ(t), one obtains from Proposition 4 estimates of the form

‖gh(T ) − g(T )‖L2(Ω) ≤ Chr+1,

‖Rh(T ) − R(T )‖H−1(Ω,g(T )) ≤ C(hr + hq+2)

for sufficiently regular solutions.
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4 Numerical Examples

Figure 1 plots a numerical simulation of normalized Ricci flow obtained using the
finite element method (4), (5) with the parameter choices described in Proposi-
tion 3. Here, Th was taken equal to a triangulation of a 2-sphere rather than a
2-torus. At each instant t ≥ 0, we visualized gh(t) by numerically determining
an embedding of the vertices of Th into R

3 with the property that the distances
between adjacent vertices agree with the edge lengths determined by gh(t).

Fig. 1. Numerical solution at t = 0, t = 0.05, and t = 0.75.
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Abstract. We study the local truncation error of the so-called fractional
variational integrators, recently developed in [1,2] based on previous
work by Riewe and Cresson [3,4]. These integrators are obtained through
two main elements: the enlarging of the usual mechanical Lagrangian
state space by the introduction of the fractional derivatives of the dynam-
ical curves; and a discrete restricted variational principle, in the spirit
of discrete mechanics and variational integrators [5]. The fractional vari-
ational integrators are designed for modelling fractional dissipative sys-
tems, which, in particular cases, reduce to mechanical systems with linear
damping. All these elements are introduced in the paper. In addition, as
original result, we prove (Sect. 3, Theorem 2) the order of local trunca-
tion error of the fractional variational integrators with respect to the
dynamics of mechanical systems with linear damping.

Keywords: Fractional variational integrators · Dissipative systems ·
Local truncation error

1 Preliminaries

1.1 Local Truncation Error

Let z : [a, b] → R
d and f : Rd → R

d a smooth curve and a smooth vector field,
respectively, for d ∈ N and [a, b] ⊂ R. Using the usual dot notation as time
derivative we can define the initial value problem:

ż = f(z), z(a) = z0, (1)

z0 ∈ R
d, with smooth solution z(t) ⊂ R

d. On the other hand, we define an
implicit one-step numerical method:

zk+1 = zk + h fh(zk, zk+1, h), (2)
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where h ∈ R+ is the time step, fh : Rd ×R
d ×R+ → R

d is smooth, and zk is con-
sidered an approximation of z(tk) for the time grid tk = {a + hk | k = 0, · · · , N},
with N = (b − a)/h. We say that the local truncation error order of the
method (2) with respect to (1) is p if

||z(tk+1) − zk+1|| = O(hp+1), (3)

when h → 0 and where || · || is the Euclidean norm in R
d [6].

1.2 Conservative Mechanical Systems

The dynamics of conservative simple mechanical systems, subject to a potential
force [7], is described by the second-order differential equation:

mẍ = −∇U(x), x(a) = x0, ẋ(a) = v0, (4)

where x0, v0 ∈ R, m ∈ R+ is the mass of the system (for simplicity, we will
set m = 1), x : [a, b] → R

1 is the dynamical curve and the potential energy
U : R → R is a smooth function. This equation can be transformed into a
first-order differential equation:

ẋ = v,

v̇ = −∇U(x), x(a) = x0, v(a) = v0.
(5)

The dynamical equation (4) can be obtained as a critical condition for extremals
from the Hamilton’s principle [8], given the action integral

S(x) =
∫ b

a

L(x(t), ẋ(t)) dt (6)

for a Lagrangian function L : TR → R (we shall consider the tangent bundle TR,
i.e. the state space, as the space locally isomorphic to R × R, with coordinates
(x, ẋ)) defined by

L(x, ẋ) =
1
2
ẋ2 − U(x). (7)

Remarkable geometric properties of the flow generated by (4) (equivalently (5))
are its symplecticity (it preserves the symplectic form ΩL := dx∧dẋ = dx∧dv ∈∧2(TR)) and the preservation of symmetries (Noether’s theorem) [8].

Remark 1. Observe that we are choosing a “Lagrangian version” (5) of Hamilton
equations for simple mechanical systems. In the picked setup, i.e. the configura-
tion manifold is the real space and the particular Lagrangian function (7), both
Lagrangian and Hamiltonian pictures are equivalent. Therefore, the theorems
about the local truncation error order of variational integrators in [5,9], apply
for (5).
1 We will restrict to the real space R for sake of simplicity, but all results in these

paper are straightforwardly extended to R
d.



Local Truncation Error of Low-Order Fractional Variational Integrators 543

1.3 Variational Integrators

A natural way of obtaining integrators preserving the symplectic form ΩL and
the symmetries of the system is to construct variational integrators [5]. For
that, we replace the continuous curves x(t) by discrete ones xd = {xk}0:N :=
{x0, x1, · · · , xN} ∈ R

N+1. Moreover, we define the discrete Lagrangian Ld :
R × R → R as an approximation in one time step of the action integral (6), say

Ld(xk, xk+1, h) �
∫ tk+h

tk

L(x(t), ẋ(t)) dt, (8)

where we shall omit the h dependence of the discrete Lagrangian unless needed.
Given this, we define the discrete action sum Sd(xd) =

∑N−1
k=0 Ld(xk, xk+1); the

discrete Hamilton’s principle applied upon this action sum provides the so-called
discrete Euler-Lagrange equations:

D1Ld(xk, xk+1) + D2Ld(xk−1, xk) = 0, k = 1, ..., N − 1, (9)

which, under the condition [D12Ld] is regular, define a discrete flow FLd
: R ×

R → R × R; (xk, xk+1) �→ (xk+1, xk+2), that we call variational integrator.
Alternatively, the transformation2:

v−
k = −D1Ld(xk, xk+1),

v+
k+1 = D2Ld(xk, xk+1),

(10)

defines an alternate discrete flow F̃Ld
: R×R → R×R; (xk, vk) �→ (xk+1, vk+1),

which, when we pick the Lagrangian (7), will be a variational integrator for (5)
(observe that, in the general case, the “velocity matching” condition v−

k = v+
k

reproduces the discrete Euler-Lagrange equations (9)). As mentioned above, F̃Ld

is symplectic and momentum preserving. Moreover, the symplecticity ensures
a bounded energy behaviour in the long-term, which is explained by Back-
ward Error Analysis [6]. Another advantage of the variational approach is that
the local truncation error order of the integrators can be determined from the
approximation in (8). In particular, we can establish the following result, which
is a direct application of the order theorems in [5] and [9]:

Theorem 1. Given the Lagrangian L(x(t), ẋ(t)) (7) and Ld(xk, xk+1) an order
p approximation of the action integral (8), then the local truncation error of the
variational integrator F̃Ld

determined by (10) with respect to (5) is of order p.

Low-order integrators (up to 2)3 can be obtained through a first order quadrature
and the following linear interpolation between the points [xk, xk+1]: ẋ(tk) �
(xk+1 − xk)/h and x(tk) � γxk + (1 − γ)xk+1, where γ ∈ [0, 1] ⊂ R. Namely:

Ld(xk, xk+1) =
1
2h

(xk+1 − xk)2 − hU(γxk + (1 − γ)xk+1).

2 Naturally, this transformation is nothing but the discrete Legendre transform [5],
which is shown here in a Lagrangian version.

3 High-order variational integrators can be obtained via the use of inner discrete nodes
and more involved interpolations, see [10].
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From this discrete Lagrangian, the discrete Euler-Lagrange equations read:

xk+1 − 2xk + xk−1

h2
= −γ∇U(γxk +(1−γ)xk+1)−(1−γ)∇U(γxk−1+(1−γ)xk),

which are a discretization in finite differences of (4); whereas the flow F̃Ld
defined

by (10) reads:

xk+1 = xk + hvk − h2γ∇U(γxk + (1 − γ)xk+1),
vk+1 = vk − h∇U(γxk + (1 − γ)xk+1).

(11)

Using the Taylor expansion and the definition in Sect. 1.1, it is easy to see that
the order 2 of this integrator w.r.t. (5) is achieved when γ = 1/2, i.e. for the
midpoint rule, circumstance which is consistent with Theorem 1.

1.4 Linearly Damped Mechanical Systems

The dynamical equations of a mechanical system subject to linear damping are:

ẍ = −∇U(x) − ρ ẋ, x(a) = x0, ẋ(a) = v0, (12)

with ρ ∈ R+. In the first-order version:

ẋ = v,

v̇ = −∇U(x) − ρ v, x(a) = x0, v(a) = v0.
(13)

There is no Lagrangian function such that (12) are its Euler-Lagrange equations
[11]. With our fractional approach [1,2], explained in Sect. 2, we have designed
a restricted variational principle surpassing this issue.

2 Fractional Variational Integrators

2.1 Continuous and Discrete Fractional Derivatives

Given a smooth function g : [a, b] → R, the α-fractional derivatives (Riemann-
Liouville version), with α ∈ [0, 1] are:

Dα
−g(t) =

1

Γ (1 − α)

d

dt

∫ t

a

(t−τ)−αg(τ)dτ, Dα
+g(t) = − 1

Γ (1 − α)

d

dt

∫ b

t

(τ−t)−αg(τ)dτ,

where Γ (z) is the Gamma function [12]. Relevant properties in our approach are
∫ b

a
h(t)Dα

σ g(t)dt =

∫ b

a

(
Dα

−σh(t)
)
g(t)dt, D

1/2
− D

1/2
− g(t) = ġ(t), D

1/2
+ D

1/2
+ g(t) = −ġ(t),

(14)
with σ = {−,+}. On the other hand, for a discrete curve {xk}0:N and the time
step h ∈ R+, we can define the following discrete α-fractional derivatives [4]:

Δα
−xk :=

1

hα

k∑
n=0

αnxk−n, Δα
+xk :=

1

hα

N−k∑
n=0

αnxk+n, (15)

where αn := −α(1 − α)(2 − α) · · · (n − 1 − α)/n! and α0 := 1. It is proven in
[13] (Theorem 2.4) that Δα

±xk is an order 0 approximation (i.e. consistent) of
Dα

±x(t).
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2.2 Continuous Restricted Variational Principle

In [1,2], the fractional state space T R is defined, which is a vector bundle over
R × R with coordinates (x, y, ẋ, ẏ, Dα

−x,Dα
+y) over the point (x, y). This is an

extension of the usual tangent bundle, including the fractional derivatives after
doubling the space of curves (note that we are considering an extra curve y(t)).
The necessity of this doubling comes out of the assymetric integration by parts
rule in (14). Given this fractional phase space, we define a Lagrangian function
L : T R → R and the action integral:

S((x, y)) =
∫ b

a

L(x(t), y(t), ẋ(t), ẏ(t),Dα
−x(t),Dα

+y(t)) dt. (16)

Using a particular set of varied curves (x(t), y(t))ε := (x(t), y(t)) + ε(δx(t),
δx(t)) (observe that we are “restricting” the variations of both curves to be
equal), where ε ∈ R+ and δx : [a, b] → R is smooth and defined such that
δx(a) = δx(b) = 0, and considering the extremal condition of the action as
d/dε

∣∣
ε=0

S((x, y)ε) = 0, we obtain the next result.

Proposition 1. Given the Lagrangian function

L(x, y, ẋ, ẏ, Dα
−x,Dα

+y) =
(

1
2
ẋ2 − U(x)

)
+

(
1
2
ẏ2 − U(y)

)
− ρDα

−xDα
+y, (17)

then, a sufficient condition for the extremals of (16) subject to restricted varia-
tions (x, y)ε are the equations:

ẍ = −∇U(x) − ρDα
−Dα

−x → (α = 1/2) → ẍ = −∇U(x) − ρ ẋ,

ÿ = −∇U(y) − ρDα
+Dα

+y → (α = 1/2) → ÿ = −∇U(y) + ρ ẏ.
(18)

The previous equations are the so-called restricted fractional Euler-
Lagrange equations in [1,2] (see these references for the proof) for the particu-
lar Lagrangian (17). It can be rigorously proven that the y-system is nothing but
the x-system in reversed time (even for more general Lagrangians), and there-
fore these equations do not imply extra physics. For a general α we obtain the
equations of a mechanical system subject to fractional damping. When α → 1/2,
according to (14), we recover the dynamics of systems with linear damping (12).

2.3 Discrete Restricted Variational Principle

Given discrete sequences xd = {xk}0:N and yd = {yk}0:N and defining ẋk :=
(xk+1 −xk)/h; equiv. yk; xk+1/2 := (xk+1 +xk)/2 and xk−1/2 := (xk +xk−1)/2;
equiv. yk±1/2; (we pick the midpoint rule because it provides the maximum order
of (11) w.r.t. (5)), the discrete action sum for the fractional problem is

Sd((xd, yd)) =
N−1∑
k=0

hL(xk+1/2, yk+1/2, ẋk, ẏk,Δα
−xk,Δα

+yk), (19)
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where the discrete fractional derivatives are defined in (15). As in the con-
tinuous case, we pick a particular set of restricted discrete variations, namely
(xd, yd)ε := ({xk}0:N , {yk}0:N )+ ε({δxk}0:N , {δxk}0:N ), where {δxk}0:N is such
that δx0 = δxN = 0. Considering the extremal condition of the discrete action
as d/dε

∣∣
ε=0

Sd((xd, yd)ε) = 0, we get the next result:

Proposition 2. Given the Lagrangian L (17), a sufficient condition for the
extremals of (19) subject to restricted variations (xd, yd)ε is

xk+1 − 2xk + xk

h2
= −1

2
∇U(xk+1/2) − 1

2
∇U(xk−1/2) − ρ Δα

−Δα
−xk,

yk+1 − 2yk + yk

h2
= −1

2
∇U(yk+1/2) − 1

2
∇U(yk−1/2) − ρ Δα

+Δα
+yk,

(20)

for k = 1, · · · , N − 1.

The previous equations are the so-called discrete restricted fractional Euler-
Lagrange equations in [1,2] for the particular Lagrangian (17). In (20) we
recognize a discretization in finite differences of (18) for a general α. More-
over, it can be also rigorously proven that the discrete y-system is the discrete
x-system in reversed (discrete) time.

3 Order Result

As original result, we explore the local truncation error order of (20) with respect
to (13). With that aim, we need to establish an equivalent to (10) in the fractional
case. Based on [1,2], we pick (restricting to the x-system):

v−
k =

xk+1 − xk

h
+

h

2
∇U(xk+1/2) + hρΔα

−Δα
−xk, (21a)

v+
k+1 =

xk+1 − xk

h
− h

2
∇U(xk+1/2). (21b)

Note that the first two terms in the right hand side of both equations corresponds
to (10) for Ld(xk, xk+1) = (xk+1 − xk)/2h − hU(xk+1/2). In addition, observe
that the “velocity matching” condition v−

k = v+
k reproduces the discrete dynam-

ics (20). Finally, according to (15) it can be proven [1,2] that

Δ1/2
− Δ1/2

− xk = (xk − xk−1)/h, k = 1, · · · , N. (22)

With these elements, we can establish the following order result

Theorem 2. The local truncation order of the fractional variational integrators
for simple mechanical systems (21) when α = 1/2, with respect to the continuous
dynamics (13), is one.
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Proof. First, using Taylor expansions and setting the notation x(tk) := xk,
ẋ(tk) := vk, v(tk) := vk, we deliver expressions for x(tk+1) and v(tk+1) in terms
of the dynamics (13), namely:

x(tk + h) = xk + hvk − h2

2
∇U(xk) − h2

2
ρ vk + O(h3), (23a)

v(tk + h) = vk − h∇U(xk) − hρvk − h2

2
ΔU(xk)vk (23b)

+
h2

2
ρ∇U(xk) +

h2

2
ρ2vk + O(h3).

On the other hand, from (21) we get the integrator:

xk+1 = xk + hvk+1 +
h2

2
∇U(xk+1/2), (24a)

vk+1 = vk − h∇U(xk+1/2) − hρΔ1/2
− Δ1/2

− xk. (24b)

Replacing (24b) into (24a) we get

xk+1 = xk + hvk − h2

2
∇U(xk+1/2) − h2ρΔ1/2

− Δ1/2
− xk

=1 xk + hvk − h2

2
∇U(xk+1/2) − h2ρ

(
xk − xk−1

h

)

=2 xk + hvk − h2

2
∇U(xk) − h2ρ vk + O(h3),

where in =1 we have used (22) and in =2 we have used xk+1/2 = xk + hvk/2 +
O(h2) and (xk −xk−1)/h = vk +h∇U(xk−1/2)/2, according to (21b). Thus, from
the last expression and (23a), it follows that ||x(tk+1) − xk+1|| = O(h2). From
(24b) we get

vk+1 = vk − h∇U(xk+1/2) − hρ Δ1/2
− Δ1/2

− xk = vk − h∇U(xk+1/2) − hρ
(xk − xk−1

h

)

= vk − h∇U(xk) − hρvk − h2

2
ΔU(xk)vk − h2

2
ρ∇U(xk−1/2) + O(h3)

= vk − h∇U(xk) − hρvk − h2

2
ΔU(xk)vk − h2

2
ρ∇U(xk) + O(h3),

where we have taken into account that xk−1/2 = xk + O(h) and used the same
expressions as above for xk+1/2 and (xk − xk−1)/h. From this last expression
and (23b), we obtain that ||v(tk+1)−vk+1|| = O(h2), and the result follows from
the definition of local truncation error in Sect. 1.1. �

Remark 2. The alternate integrator:

v−
k =

xk+1 − xk

h
+

h

2
∇U(xk+1/2), v+

k+1 =
xk+1 − xk

h
−h

2
∇U(xk+1/2)−hρ Δα

−Δα
−xk+1,

which also reproduces (20) via velocity matching v−
k = v+

k , delivers the same
result.
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4 Conclusions

We prove that the local truncation error order of the fractional variational inte-
grators (21), with respect to the dynamics of linearly damped mechanical sys-
tems (13), is one. These integrators are designed in the spirit of variational
integrators [5], i.e. by means of the discretization of variational principles, in
our case the Hamilton’s principle with restricted variations. Thus, we expect
similar behaviour in terms of Theorem 1, i.e. the order of the approximation of
the action is equal to the order of the integrator. Our result is not coherent
in the fractional case. On the one hand, we pick the midpoint rule approxima-
tion x(tk) � (xk + xk+1)/2, which is the case where the maximum order (2) is
achieved for the usual variational integrators and conservative mechanical sys-
tems. On the other, the approximation of the fractional derivative that we use,
Δα

−xk, is only consistent (order 0) w.r.t. Dα
−x(t) ([13], Theorem 2.4). Thus,

the approximation of the action (16) is limited to O(h), whereas the integra-
tor is O(h2). This represents an improvement from the expected result, and its
numerical demonstration can be found in ([2],§5) through several simulations.
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Abstract. Many boundary controlled and observed Partial Differential
Equations can be represented as port-Hamiltonian systems with dissipa-
tion, involving a Stokes-Dirac geometrical structure together with consti-
tutive relations. The Partitioned Finite Element Method, introduced in
Cardoso-Ribeiro et al. (2018), is a structure preserving numerical method
which defines an underlying Dirac structure, and constitutive relations
in weak form, leading to finite-dimensional port-Hamiltonian Differential
Algebraic systems (pHDAE). Different types of dissipation are examined:
internal damping, boundary damping and also diffusion models.

Keywords: Port-Hamiltonian systems · Dissipation ·
Structure preserving method · Partitioned Finite Element Method

1 Introduction

In this work, we are interested in infinite-dimensional dynamical systems repre-
senting open physical systems, i.e. with control v∂ and observation y∂ located at
the boundary ∂Ω of the geometrical domain Ω ⊂ R

d. When the corresponding
closed physical system proves conservative w.r.t. a given Hamiltonian functional
H, the open system is said to be lossless. When it proves dissipative, the open
system is said to be lossy. Here we use the port-Hamiltonian formalism, intro-
duced a few decades ago, see e.g. [9,17,21,22]. Note that very different multi-
physics applications can be described through it, e.g. plasmas in tokamaks [27],
or fluid structure interaction [6]. The underlying geometry of the dynamical sys-
tems relies on a so-called Stokes-Dirac structure, see [8]; for the system to be
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well-defined, some constitutive equations have to be added to the geometrical
structure.

Our main concern is to provide a numerical method that preserves, at the
discrete level, the geometrical structure of the original controlled PDE; for
short, we look for a structure-preserving method which automatically transforms
the Stokes-Dirac structure into a finite-dimensional Dirac structure: in the last
decade, quite a number of ways have been explored, see e.g. [10,13,19,20,26].
Recently in [4], a method based on the weak formulation of the Partial Differen-
tial Equation and the use of the celebrated Finite Element Method has emerged.
One of its many advantages is the preservation of the geometrical structure. It
has successfully been applied to 1-D and also n-D systems, linear and nonlinear
systems, with uniform or space-varying coefficients; it enables to deal with scalar-
valued fields, vector-valued fields and also tensor-valued fields. Wave equations
are tackled in [4,25], Mindlin’s or Kirchhoff’s plate equations are considered in
[2,3], the treatment of the shallow water equations together with a general pre-
sentation of the Partitioned Finite Element Method (PFEM) is to be found in
[5]. However, only lossless open systems have been addressed up to now: thus,
the present paper intends to enlarge the scope of PFEM to lossy open systems,
based on dissipative closed systems. These can be nicely accounted for in the
port-Hamiltonian framework by introducing specific interaction ports: resistive
ports.

The paper is organized as follows: in Sect. 2 the structure preserving dis-
cretization procedure is presented on a damped wave equation (with both inter-
nal and boundary damping) by introduction of resistive ports, in Sect. 3 the
extension is proposed to a diffusion model as another class of dissipative PDE.
Conclusions are drawn and a few perspectives are given in Sect. 4.

2 A General Result of Structure-Preserving
Discretization for Damped pHs

To fix ideas and notations, a simple 1-D PDE model borrowed from [28] is first
recalled: the lossy transmission line, on domain Ω = (0, �).

Example 1: The Lossless Transmission Line. Let us choose as energy variables
or state variables q(z, t) the linear charge density, and ϕ(z, t) the magnetic flux
density. With uniform or space-varying coefficients C(z) the distributed capac-
itance, and L(z) the distributed inductance, let us define the Hamiltonian den-
sity H(q, ϕ) := 1

2 ( q2

C + ϕ2

L ), and the Hamiltonian H(q, ϕ) :=
∫ �

0
H(q, ϕ) dz.

With a slight abuse of notation, H(q(t), ϕ(t)) will be denoted H(t) in the
sequel. The co-energy variables are defined as the variational derivatives of the
Hamiltonian w.r.t. the energy variables: uC := δqH = q

C is the voltage, and
iL := δϕH = ϕ

L is the current. The conservation laws for the lossless transmis-
sion line read ∂tq = −∂ziL and ∂tϕ = −∂zuC . This can be rewritten in vector
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form ∂t
−→
X = J δ−→

X
H, or in a more compact and abstract form:

−→
f = J −→e , with J =

(
0 −∂z

−∂z 0

)

,

and
−→
X =

(
q
ϕ

)

, −→e := δ−→
X

H =
(

eq

eϕ

)

=
(

uC

iL

)

,
−→
f = ∂t

−→
X =

(
∂tq
∂tϕ

)

.

−→e are the effort, or co-energy variables,
−→
f are the flows, and J the interconnec-

tion matrix. It is easy to prove that J is a formally skew-symmetric differential
operator on L2(0, �;R2). This results in a conservative closed system: indeed
dtH =

∫ �

0
∂t

−→
X · δ−→

X
H =

∫ �

0

−→
X ·J −→

X = (
−→
f ,−→e ) = 0, with the usual scalar product

in L2(0, �;R2).
For the study of the open system, we need to introduce boundary ports at the

boundary ∂Ω = {0}×{�}, such as e∂ :=
(
eq(0), eq(�)

)�, f∂ :=
(
eϕ(0), −eϕ(�)

)�.
With (−→e , e∂) ∈ E the effort space and (

−→
f , f∂) ∈ F the flow space, we define the

bond space B := E × F , and introduce a bilinear product on B, namely:

<(−→e , e∂), (
−→
f , f∂)> :=

∫ �

0

−→e · −→
f dz + (e∂ , f∂)R2 .

A Dirac structure is a subset D ⊂ B which is maximally isotropic w.r.t. the
symmetrized product on B × B, <<(e1, f1), (e2, f2)>> := <e1, f2>+ <e2, f1>.

Proposition 1. The subspace:

D := {(e, f) ∈ B | −→
f = J −→e , e∂ :=

(
eq(0), eq(�)

)�
, f∂ :=

(
eϕ(0), −eϕ(�)

)�},

is indeed a Stokes-Dirac structure.

As a consequence, the former conservative property of the closed system now
generalizes into the following losslessness property for the open system:

dtH(t) = −(e∂(t), f∂(t))R2 .

Example 2: The Lossy Transmission Line. Taking into account some losses
with R(z) the distributed resistance coefficient, leads to a new balance equa-
tion: ∂tq = −∂ziL and ∂tϕ = −∂zuC − RiL. This can be first seen as a
pHs with dissipation: ∂t

−→
X = (J − R) δ−→

X
H with some positive symmetric

bounded operator R, implying the dissipativity of the closed system: indeed,
dtH =

∫ �

0
∂t

−→
X · δ−→

X
H =

∫ �

0
δ−→
X

H · (J − R) δ−→
X

H = −(−→e ,R−→e ) ≤ 0.
But the construction of a Stokes-Dirac structure associated to it requires the

definition of extra resistive ports (eR, fR) which will now be related by an extra
constitutive relation eR = R fR. Let us consider the natural extension

−→
f e =

Je
−→e e, where −→e e = (−→e , eR),

−→
f e = (

−→
f , fR) and the extended interconnection

operator:

Je =

⎛

⎝
0 −∂z 0

−∂z 0 −1
0 1 0

⎞

⎠ .
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With the extended bilinear product:

<(−→e , e∂ , eR), (
−→
f , f∂ , fR)> :=

∫ �

0

(−→e · −→
f + eR fR) dz + (e∂ , f∂)R2 ,

a new Stokes-Dirac structure can be defined. As a consequence, thanks to eR =
R fR, the former dissipative property of the closed system now generalizes into
the following lossy property for the open system:

dtH(t) = −
∫ �

0

R f2
R(t) − (e∂(t), f∂(t))R2 ≤ −(e∂(t), f∂(t))R2 .

Note that for the dissipative system to be correctly defined, one actually needs
an extra constitutive relation to close the system. In fact, we have:

⎛

⎝
∂tq
∂tϕ
fR

⎞

⎠ =

⎛

⎝
0 −∂z 0

−∂z 0 −1
0 1 0

⎞

⎠

⎛

⎝
eq

eϕ

eR

⎞

⎠ .

The first two lines are dynamical equations (once the link between the efforts −→e
and the state variables

−→
X, called a constitutive relation, has been made explicit:

in the present case it is a diagonal linear transform) which must be complemented
by initial data, while the third line is an algebraic equation, to which a closure
equation must be added, namely eR = R fR.

PFEM consists of two steps: the definition of the Dirac structure from the
original Stokes-Dirac structure in Sect. 2.1, and the definition of the constitutive
relations at the discrete level in Sect. 2.2. Both steps are now detailed on the
n-D case of a wave equation with internal damping, see e.g. [18].

Let us consider the damped wave equation of the form:

ρ(x) ∂2
ttw(t,x) + ε(x) ∂tw(t,x) = div

(
T (x) · −−−→

gradw(t,x)
)
, x ∈ Ω,

with ε ≥ 0. Define as energy variables the strain αq(t,x) :=
−−−→
gradw(t,x), and

the linear momentum αp(t,x) := ρ(x)∂tw(t,x). Taking the mechanical energy
as Hamiltonian H(t) := 1

2

∫
Ω

αq(t,x)� · T (x) · αq(t,x) + 1
ρ(x)αp(t,x)2 dx, the

corresponding co-energy variables are the stress eq := δαqH = T · αq, and the
velocity ep := δαp

H = 1
ραp. Introducing damping ports, the PDE can be written:

⎡

⎣
∂tαq

∂tαp

fr

⎤

⎦ =

⎡

⎣
0

−−−→
grad 0

div 0 −1
0 1 0

⎤

⎦

⎡

⎣
eq

ep

er

⎤

⎦ , (1)

together with the closure relation er = ε fr.
As seen in Example 1, boundary ports can be taken as traces of the efforts.

Let us then denote −→n the outward normal to Ω, and define the boundary ports:

u∂ := ep

∣
∣
∂Ω

, y∂ := −→e q · −→n .
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This also gives rise to a Stokes-Dirac structure (thanks to Green’s formula),
and taking e∂ := u∂ and f∂ := −y∂ , one immediately has the following lossy
property:

dtH(t) = −
∫ �

0

ε f2
r (t) − (e∂(t), f∂(t))∂Ω ≤ (u∂(t), y∂(t))∂Ω . (2)

Impedance Boundary Conditions (IBC) can easily be taken into account
within this formalism: for x ∈ ∂Ω, let Z(x) ≥ 0 be the impedance, and take
u∂ = −Zy∂ + v∂ as control, where v∂ is an extra boundary control. Indeed, it
means that the IBC ∂tw + Z

(
T · −−−→

grad(w)
)

· −→n = v∂ is imposed to the original
system. The previous power balance then reads:

dtH(t) = −
∫ �

0

ε f2
r (t) − (Zy∂(t), y∂(t))∂Ω + (v∂(t), y∂(t))∂Ω ≤ (v∂(t), y∂(t))∂Ω .

Note that, as it has been said in Example 2, and as it has been done above with
the introduction of the resistive ports fr and er, the construction of a Stokes-
Dirac structure for the wave equation with IBC requires another extension of
the interconnection operator, i.e. boundary resistive ports have to be added.
However, this latter task is not that straightforward, since it involves unbounded
trace operators.

2.1 Stokes-Dirac Structure Translates into a Dirac Structure

Let us write a weak form of (1) with vq and vp as test functions, and apply
Green’s formula to the first line only, to make the boundary control term
appear, u∂ = ep

∣
∣
∂Ω

. Thus, we get (∂tαq,vq)Ω = −(ep,div vq)Ω +(u∂ ,vq ·−→n )∂Ω

and (∂tαp, vp)Ω = (div eq, vp)Ω − (er, vp)Ω . Let us choose finite-element bases:
αd

q(t,x) := Σ
Nq

i=1α
i
q(t)ϕ

i
q(x) = Φ�

q · αq(t) and similarly for ed
q for the q vector-

valued variables in the basis ϕq; αd
p(t,x) := Σ

Np

k=1α
k
p(t)ϕk

p(x) = Φ�
p · αp(t) and

similarly for ed
p for the p scalar-valued variables in the basis ϕp; fd

r (t,x) :=
Σ

Np

k=1f
k
r (t)ϕk

p(x) = Φ�
r · fr(t) and similarly for ed

r for the r scalar-valued vari-
ables in the basis ϕr; and ud

∂(t,x) := ΣN∂
m=1u

k
∂(t)ψm

∂ (x) = Ψ�
∂ ·u∂(t) and similarly

for yd
∂ for the boundary variables in the basis ψ∂ . Plugging the finite-dimensional

approximations into the above weak form leads to the following pHs:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Mq dtαq = D ep + Bu∂ ,

Mp dtαp = −D� eq + Ger,

Mr f
r

= −G� ep,

M∂ y
∂

= B�eq,

(3)

with mass matrices Mq =
∫

Ω
Φq ·Φ�

q ∈ R
Nq×Nq , Mp =

∫
Ω

Φp ·Φ�
q ∈ R

Np×Np and
M∂ =

∫
∂Ω

Ψ∂ ·Ψ�
∂ ∈ R

N∂×N∂ , a control matrix B :=
∫

∂Ω
Φq ·−→n ·Ψ�

∂ ∈ R
Nq×N∂ ,
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and a structure matrix J composed of D := − ∫
Ω

divΦq ·Φ�
p ∈ R

Nq×Np and G :=∫
Ω

Φp · Φ�
r ∈ R

Np×Nr . It is then straightforward to define a bilinear product on
Bd := R

Nq+Np+Nr+N∂ × R
Nq+Np+Nr+N∂ as <(eq, ep, er, e∂), (f

q
, f

p
, f

r
, f

∂
)> :=

e�
q Mqfq

+ e�
p Mpfp

+ e�
r Mrfr

+ e�
∂ M∂f

∂
.

Proposition 2. The subspace:

Dd := {(e, f) ∈ Bd | (f
q
, f

p
, f

r
)� = J(eq, ep, er)

�, e∂ := u∂ , f∂ := −y
∂
},

is a Dirac structure.

Remark 1. Moreover, contrarily to other structure-preserving methods relying
on Stokes-Dirac structure, like [13,20], there is no need here to project, reduce,
some non square matrices in order to recover a full rank system at the discrete
level, which is, at least from the numerical point of view, a severe limitation
indeed.

2.2 Constitutive Relation Are Approximated in Weak Form

The idea is fairly simple: the constitutive equation of the resistive port er = εfr

is written in weak form, and using the previously defined approximation fd
r and

ed
r , one gets:

Mr er(t) = <R>f
r
(t),

involving two symmetric Nr ×Nr matrices, the mass matrix Mr :=
∫

Ω
Φ�

r Φr dx
which is positive definite, and <R> :=

∫
Ω

Φ�
r ε(x)Φr dx, the averaged resistive

matrix which is positive.
Finally, once these two steps have been carried out, we can prove the following

Proposition 3. Defining the discrete Hamiltonian as:

Hd(t) = Hd(αq(t), αp(t)) := H(αd
q(t,x), αd

p(t,x)),

the discrete counterpart of the continuous lossy property (2) holds for the finite-
dimensional system (3) obtained with PFEM: dtHd ≤ 〈

u∂ , y
∂

〉
∂

:= y�
∂

M∂u∂ .

Indeed, thanks to the Dirac structure and the constitutive relations, we have:
dtHd = e�

q Mq dtαq + e�
p Mp dtαp = −f�

r
<R>f

r
+ y�

∂
M∂u∂ ≤ 〈

u∂ , y
∂

〉
∂
.

Now, at the boundary, the IBC is discretized in the same manner above: let
<Z> :=

∫
∂Ω

Ψ�
∂ Z(x)Ψ∂ dx ∈ R

N∂×N∂ be the averaged resistive matrix taking Z

into account on the boundary only. Then, define vd
∂(t,x) := ΣN∂

m=1v
k
∂(t)ψm

∂ (x) =
Ψ�

∂ · v∂(t) the approximation of the extra control v∂ , and add to system (3) the
following algebraic equation: M∂u∂(t) = −<Z>y

∂
(t)+M∂v∂(t), which mimicks

u∂ = −Zy∂ +v∂ by finite element discretization on the boundary. We finally get:

dtHd = −f�
r

<R>f
r

− y�
∂

<Z>y
∂

+ y�
∂

M∂v∂ ≤ 〈
v∂ , y

∂

〉
∂
.
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Remark 2. At the continuous level, we have seen that the extension of the inter-
connection operator which gives rise to the Stokes-Dirac structure could be a
difficult task, since it would involve unbounded operators (typically trace opera-
tors). However, once PFEM has been applied, it proves straightforward to define
the resistive ports, both internal and at the boundary. Indeed we can write, with
obvious notations:

⎛

⎜
⎜
⎜
⎜
⎝

Mq 0 0 0 0
0 Mp 0 0 0
0 0 Mr 0 0
0 0 0 Mi 0
0 0 0 0 M∂

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

dtαq

dtαp

fr

fi

f∂

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0 D 0 −B B
−D� 0 −1 0 0

0 1 0 0 0
B� 0 0 0 0

−B� 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

eq

ep

er

ei

e∂

⎞

⎟
⎟
⎟
⎟
⎠

,

together with the two constitutive relations:

Mrer = <R>fr, Miei = <Z>fi,

and the definitions f∂ = −y
∂

and e∂ = v∂ that are now usual in our approach.
All together, the desired lossy property of the system is ensured at the discrete
level.

Remark 3. Let us point out that the mass matrices on the left-hand side are
required in order to preserve the underlying geometry. To some extent, they do
discretize the bilinear form used to define the Stokes-Dirac structure, w.r.t. the
chosen finite element families, as seen before in Proposition 2.

3 Diffusion Model in Dissipative Formulation

The heat or diffusion PDE is most often considered as a dissipative infinite-
dimension system from a mathematical point of view, and examplifies the cat-
egory of parabolic PDEs: this approach is being recalled here with the choice
of a quadratic potential as Hamiltonian function, though its thermodynamical
meaning is far from clear, see [23,24] for details and the choice of either energy
or entropy as thermodynamically meaningful Hamiltonian.

Port-Hamiltonian System Model. Let H(t) := 1
2

∫
Ω

ρ(x) (u(t,x))
2

CV (t,x) dx be the
Hamiltonian with u the energy variable: ρ is the mass density, CV is the isochoric
heat capacity and u the internal energy density. The co-energy variable is δuH =

u
CV

= T (the temperature), assuming u(t,x) = CV (x)T (t,x). Let us define fu :=

∂tu, eu := T and −→e Q :=
−→
J Q (the heat flux). Then, with

−→
f Q := −−−−→

grad(T ), we
get:

(
ρfu−→
f Q

)

=
(

0 −div
−−−−→
grad 0

) (
eu−→e Q

)

.
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The system must be completed by e.g. Fourier’s law as constitutive relation:

−→
J Q(t,x) = −λ(x) · −−−→

grad (T (t,x)) , ∀t ≥ 0,x ∈ Ω, (4)

where λ is a tensor representing the thermal conductivity; it is a positive sym-
metric tensor thanks to Onsager’s reciprocal relations.

For the boundary ports, one possible choice is B−→e := eu|∂Ω
the boundary

temperature, and C−→e := −(−→e Q · −→n )|∂Ω
the incoming boundary flux. Hence, the

power balance for this lossy open system is:

dtH(t) = −
∫

Ω

−→
f Q(t,x) · λ(x) · −→

f Q(t,x) dx +
∫

∂Ω

v∂(t, γ)y∂(t, γ) dγ. (5)

Partitioned Finite Element Method. Following the procedure explained in
Sect. 2 and with obvious notations, we get:

⎧
⎪⎨

⎪⎩

Mρ fu(t) = D eQ(t) + B v∂(t),−→
M fQ(t) = −D� eu(t),
M∂ y∂(t) = C eu(t),

where for example D :=
∫

Ω

−−−→
grad (Φ) ·−→Φ� dx ∈ R

N×−→
N . The weak version of the

constitutive law (4) reads:

−→
MeQ(t) =

−→
ΛfQ(t), where

−→
Λ :=

∫

Ω

−→
Φ · λ · −→

Φ� dx ∈ R

−→
N ×−→

N ,

and thus the coupled system is now a pHDAE, see e.g. [1]; the energy balance (5)
becomes at the discrete level:

dtHd(t) = −fQ
�(t)

−→
ΛfQ(t) + v∂

�(t)M∂y∂(t).

4 Conclusion and Perspectives

In this paper, a structure-preserving numerical method has been presented
for lossy port-Hamiltonian systems: the so-called Partitioned Finite Element
Method (PFEM). It is based on the weak formulation of PDE, the application
of a Stokes formula (reduced to Green formula in our examples) to get the use-
ful boundary control explicitly, and the application of the classical finite element
method with the choice of conforming elements for the different ports. Boundary
damping, such as impedance boundary condition, studied theoretically in [15]
as a pHs, becomes particularly straightforward with PFEM, since it results in a
sparse damping matrix R at the discrete level (see [25] for more details).
The following perspectives seem relevant and promising:

– the choice of the finite element family remains quite open so far, but indeed,
from first numerical experiments, some optimal choices can be observed in
practice: the careful numerical analysis must still be investigated,
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– structure-preserving model reduction can be carried out using methods pre-
sented in [11],

– for the time-domain discretization as last step procedure for numerical simu-
lation, specific approaches should be followed, see e.g. [7],

– following [28], the introduction of entropy ports enables to transform dissipa-
tive systems into conservative systems, taking into account some thermody-
namical laws; see [23,24] for the application to the heat equation.

– an alternative computational solution consists in making use of the transfor-
mation of the lossy system into a lossless one, and only then apply classical
symplectic numerical schemes, see e.g. [12,16]; the difficulty lies in the fact
that the obtained finite-dimensional systems are necessarily differential alge-
braic equations that should be treated with some specific care, see e.g. [14].
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Abstract. Since WW2, computer fluid dynamics has seen a stagger-
ing expansion of methods and applications fueled by the development
of computer power. Now, of the main numerical approaches that have
been explored over these years, only a few have become mainstream and
make the vast majority of theoretical investigations in academia and
practical usage in applications. These mostly hinge on concepts of finite
volume discretization, monotonicity preservation, flux upwinding, and
the analysis of the associated numerical dissipation processes—common
tools here are the Riemann problem at cell interfaces and the Godunov
scheme, more or less adapted from their original versions.

However, application to what looks as “niche” problems shows that
these dominant approaches may not be as effective as generally accepted
and have unduly benefited from a “winner-takes-it-all” effect. One of
these problems is the simulation of isentropic flows which is actually
“not-so-niche” as it is of high practical interest, especially in multi-fluid
systems which involve complex energy transfers.

The present contribution aims at providing some perspective on CFD
numerical schemes recently designed in order to better capture isentropic
flows. The basic principle is that isentropic flow is geometric, i.e. poten-
tial (or internal) energy only depends on fluid density which in turn
is defined by fluid element trajectories. A numerical scheme can thus be
obtained by a variational, least action principle. Corrections must be fur-
ther added to enforce other properties such as energy conservation and
positive dissipation. This Geometry, Energy, and Entropy Compatible
approach (GEEC) is illustrated here on the historical von Neumann–
Richtmyer Lagrangian scheme and on our recently developed multi-fluid
Arbitrary Lagrangian–Eulerian scheme.
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1 Motivations

1.1 A Short Historical Perspective

The very first CFD scheme was designed by von Neumann and Richtmyer (VNR)
at Los Alamos in 1944—but published somewhat later [12]. It has the following
properties:

– 1D Lagrangian discretization of the (compressible) fluid,
– positions and internal energies defined at cells centers xc and integer time

steps tn,
– velocities (and momenta) defined at nodes xp and half-integer time steps

tn+
1/2—the so-called staggered discretization,

– propagation cycle involving three discrete increment equations, for node
velocities, node positions, and cell energies,

– dissipation for shock capture explicitly added as an “artificial” numerical
viscosity,

– approximate conservation of total energy (to the scheme’s order).

The scheme was later extended to 2D geometry with elasto-plastic material
behavior [13] and many other features where added over the years [1].

Concurrently, a more general approach applicable to hyperbolic coupled equa-
tions was designed by Godunov in 1954—but published somewhat later [3]—from
which many other methods were derived. The basic building block here consists
in considering the discontinuities of field values at cell interfaces as perturba-
tions whose propagation is calculated and remapped on the original cells. The
calculation can take many different forms and levels of accuracy producing a
wealth of different schemes—Godunov’s original being the solution of the Rie-
mann problem at cell interfaces. However, this always introduces some form of
dissipation which has the advantage of removing almost all over- and under-
shoots, oscillations, and other artifacts, at the expense of poor behavior in isen-
tropic conditions. The only options for recovering proper isentropic behavior
are then an artificial correction of over-dissipation or an expensive crank up of
the schemes’ order—both options being potentially very fragile for complex non-
linear systems. Intrinsic to these methods is the upwinding along the propagated
discontinuities which was critically reviewed by Roe [7,8].

Over the last decades, because exact conservation of mass, momentum, and
energy are required in order to properly capture Rankine-Hugoniot jump con-
ditions, the VNR schemes have eventually been deprecated by most numericists
while being preserved and used by practitioners for many specific applications
involving isentropic phases. However, in a recent co-publication by one of the
authors [4], a simple correction to the VNR scheme was designed so as to recover
exact conservation while preserving its isentropic behavior to its order of accu-
racy. For this purpose the scheme was first reinterpreted as deriving from a
variational least-action principle which made it practically identical to the very
popular Størmer–Verlet symplectic scheme used for astrophysics and molecular
dynamics.



GEEC Variational Approaches to Various Numerical Schemes for Fluids 561

1.2 GEEC: A General Framework for Hydro-Scheme Design

The approach to generate the conservative VNR scheme—here designated as
CSTS for Conservative Space- and Time-Staggered—appeared to be applica-
ble in many other numerical settings. We here provide an overview of two such
schemes: the original CSTS compressible single-fluid Lagrangian [4], possibly
with variable node masses [5], and a compressible multi-fluid ALE [10] (Arbi-
trary Lagrangian-Eulerian were the mesh moves and distorts according to user’s
free prescriptions, with unlimited number of fluids) and its single-fluid ALE
reduction [11]. The designing approach, designated as “GEEC,” consists of three
steps:

G: Geometry – Energy in isentropic flow only depends on the geometry of the
system, whose dynamics is thus defined by a Lagrangian and its action inte-
gral. Mimicking the derivation of the continuous evolution equations [9], the
minimization of the discretized action integral provides a numerical scheme
which in principle is symplectic;

E: Energy – According to a theorem of Ge and Marsden [2], a numerical scheme
cannot simultaneously preserve momentum, energy, and symplecticity but
only two out of the three. Hence, the scheme from step “G” is modified
by adding a conservative energy equation obtained from the energy bal-
ance analysis and the thermodynamic consistency. It is then symplectic or
entropic to the scheme’s order only;

E: Entropy – For non-isentropic behavior, dissipation terms are added, posi-
tivity of entropy production being easily enforced by appropriate algebraic
closures such as positive quadratic forms. Artificial viscosity [6] is merely a
special case of dissipation designed for shock capture.

The critical ingredient in the GEEC approach is the action integral discretization
as it entirely defines the numerical scheme except for some residual terms of
higher than the scheme’s order. Thus in all the following, the discrete action
integrals will always be provided, but for the sake of legibility, some energy
equations will be skipped. The reader is referred to the original publications for
full derivations and descriptions of the numerical schemes [4,5,10,11].

1.3 Common Notations

In all the following, the discretization will be carried out in any dimension over
an unstructured time-dependent constant-connectivity mesh of polytope-shaped
cells labeled c. The cells are defined by their boundary nodes xn

p labeled p at
each time tn. All fields (density ρ, velocity u, internal energy e, pressure p, etc.)
can be defined at cells or nodes, and integer or half-integer labeled times.
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2 Simple Example: The GEEC Conservative
Space-and-Time Staggered (CSTS) Lagrangian Scheme

2.1 G: Geometry Step

In the Lagrangian setting, the mass of fluid in each cell mc is constant and all
fields except velocity are discretized at cell centers and integer-labeled times.
Velocity describes the evolution of the grid nodes and is thus best defined
at nodes and half-integer labeled times (space-and-time staggering) u

n+1/2
p =

(xn+1
p −xn

p )/Δtn+
1/2 where Δtn+

1/2 = tn+1 − tn. A simple second-order accurate
action integral is then built as

A[{
xn

p

}]
=

∑
n

[∑
p
1
2mn+1/2

p (un+1/2
p )2Δtn+

1/2 − ∑
cmce[vn

c ]Δtn
]
, (1)

which is to be minimized with respect to the discrete trajectories, that is the
sets of positions

{
xn

p

}
.

The internal energies are functions of the per-mass volume vn
c of the fluid in

cell c, and node masses m
n+1/2
p are defined by redistributing the cell masses mc

in a conservative way

mn+1/2
p =

∑
cm

n+1/2
cp

[{
xn+1

q ,xn
q

}]
, with mc =

∑
pm

n+1/2
cp

[{
xn+1

q ,xn
q

}]
,

where m
n+1/2
cp are functions of the cell shapes defined by the set of cell nodes

{xn+1
q ,xn

q }. The most basic choice for quadrilaterals is Wilkins’ time indepen-

dent m
n+1/2
cp = mc/4 [13].

For constant node masses the least action principle yields the discrete momen-
tum equation

mp(un+1/2
p − un−1/2

p ) =
∑

cp
n
c

∂Vc

∂xp

∣
∣n Δtn, (2)

—notice here that pressure is denoted pn
c = −∂en

c /∂vn
c (do not confuse with sub-

script p). This scheme is very similar to the well known Størmer–Verlet symplec-
tic scheme. On the right-hand side the pressure gradient discretization involves
the cells’ corner vectors ∂Vc/∂xp. For variable node masses, the Euler–Lagrange
equations produce supplementary terms in (2) involving vectors ∂mcp/∂xq [5].

2.2 E: Energy Step

The kinetic energy equation, as defined from the action integral (1), is obtained
by rearranging the product (2) · 1

2 (un+1/2
p + u

n−1/2
p ) into

1
2mp

[
(un+1/2

p )2 − (un−1/2
p )2

]
=

∑
cp

n ∂Vc

∂xp

∣
∣n · 1

2 (un+1/2
p + un−1/2

p )Δtn.

Energy conservation then requires that the internal energy equation involves
pressure work terms that exactly balance with those of the kinetic energy. Fur-
ther imposing thermodynamic consistency (whereby pn

c can only appear between
tn and tn±1), it is then found
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mc(en+1
c − en

c ) =
∑

c

[ − 1
2

(
pn+1 ∂Vc

∂xp

∣
∣n+1 + pn

c
∂Vc

∂xp

∣
∣n) · un+1/2

p Δtn+
1/2

+ 1
4pn

c
∂Vc

∂xp

∣
∣n · (un+1/2

p − un−1/2
p ) (Δtn+

1/2 − Δtn−1/2)
]
.

The first term on the right hand side is a consistent second order discretiza-
tion of the pressure work “−p d v” and the second is a correction for energy
conservation which is of third order but may be non negligible at singularities.
This term acts as a consistent “flux-in-time” term which ensures conservation
despite the different time centering of kinetic and internal energies [4, § 2.3].

2.3 E: Entropy Step

Physical and numerical dissipation terms can now be added to the momentum
and energy equations. In particular, for numerical shock capture and mesh reg-
ularization it is usual to respectively introduce “artificial” stress q and force f
terms as

mp(un+1/2
p − un−1/2

p ) =
∑

c

(
(pn

c + qn
c ) ∂Vc

∂xp

∣
∣n + fn

cp

)
Δtn,

Positive entropy production can then be ensured to no better than the scheme
order if q and f fulfill the condition

∑
p − 1

2

[
qn
c

∂Vc

∂xp

∣
∣n + fn

cp

]
· (un+1/2

p + un−1/2
p ) ≥ ±O[

(Δt)3
]
.

This is achieved by usual algebraic closures and by introducing a prediction–
correction procedure on the momentum equation [4, § 2.5].

The CSTS scheme was extensively tested in one and two dimensions and
fulfilled expected properties [4, § 3]: second order behavior on isentropic flows
(Kidder test), exact jump conditions and shock propagation (Sod, Noh and Sedov
tests), and high maximum operating CFL limit (increased by over 60% thanks
to the prediction–correction step). Variable node masses preserved these fea-
tures and further allowed a very significant reduction of mesh distortions by
appropriately choosing the mass functions [5].

3 A GEEC Conservative Direct-ALE Multi-fluid Scheme

3.1 G: Geometry Step

For Eulerian or ALE schemes the evolution equations to be solved do not involve
explicit fluid element coordinates as in the Lagrangian setting of Sect. 2. How-
ever, the various fields (density, velocity, internal energy, etc. which are func-
tions of time and space coordinates) must be constrained to conserve mass
and Lagrangian coordinates or they would unduly appear as independent. This
is achieved by adding the constraints to the action integral with Lagrange
multipliers.

For a system of Φ fluids labeled ϕ (which describes a conditional ensemble
average of individual multi-fluid flow realizations) the action integral involves the
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per-fluid kinetic and internal energy contributions, the per-fluid mass conserva-
tion and Lagrangian coordinate preservation (Lin) constraints, and a volume
filling constraint

A =
∑

n,c,ϕ

(
Δtn+

1/2V n
c

1
2 [αρ]ϕn

c (uϕn+1/2
c )2 − ΔtnV n

c [αρ]ϕn
c eϕ

(
ρϕn

c , sϕ(ξϕn
c )

)

+ φϕn+1
c Dϕ

Δt[αρ]ϕn
c + ψϕn+1

c Dϕ
Δt[αρξ]ϕn

c

)
− ∑

n,cΠ
n
c

(∑
ϕαϕn

c − 1
)
, (3)

where αϕ, ρϕ, uϕ, vϕ, eϕ, sϕ, ξϕ, φϕ, ψϕ, Π are respectively the fluid ϕ’s
volume fraction, density, absolute velocity, relative-to-the-grid velocity, per-mass
internal energy, per-mass entropy, Lagrangian coordinate, and mass, Lin, and
volume filling multipliers. In the case of a single-fluid Φ = 1, the action integral
simplifies as α1 = 1 and multiplier Φ becomes irrelevant. Relative-to-grid trans-
port is embedded in the evolution equations and is not split as in Lagrange +
Remap schemes: this is a direct ALE scheme.

The constraints are expressed with a common transport operator

Dϕ
Δt aϕn

c = V n+1
c aϕn+1

c − V n
c aϕn

c + Δtn+
1/2∑

d

(
V̊

ϕn+1/2
cd aϕn

c − V̊
ϕn+1/2
dc aϕn

d

)
,

where V n
c is the cell volume at time tn and V̊

ϕn+1/2
cd are the volume transfer rates

of fluid ϕ from cell c to neighboring cell d during time step tn+
1/2 given by a first

order upwind closure

V̊
ϕn+1/2
cd = σ

ϕn+1/2
cd s

n+1/2
cd · vϕn+1/2

c , and σ
ϕn+1/2
cd = H

(
s

n+1/2
cd · vϕn+1/2

c

)
,

s
n+1/2
cd being the surface vector normal to the edge connecting cells c to d and

H being the Heaviside function. Velocities uϕ
c and vϕ

c are related by the grid
velocity, wϕ

c = uϕ
c − vϕ

c interpolated from its natural definition at nodes wϕ
p .

The transport operator is holonomic to its order of accuracy, which introduces
some spurious dissipation.

The momentum equation is obtained from the action integral minimization
with respect to the independent fields αϕ, ρϕ, vϕ, ξϕ, φϕ, ψϕ, Π and yields after
some lengthy calculations [10]

V n
c [αρ]ϕn

c uϕn+1/2
c − V n−1

c [αρ]ϕn−1
c uϕn−1/2

c

+ Δtn−1/2∑
d

(
V̊

ϕn−1/2
cd [αρ]ϕn−1

c uϕn−1/2
c − V̊

ϕn−1/2
dc [αρ]ϕn−1

d u
ϕn−1/2
d

)

= −Δtn
∑

d
1
2

(
1
2 (αϕn

c + αϕn
d ) + αϕn

c σ
ϕn−1/2
cd − αϕn

d σ
ϕn−1/2
dc

)

× s
n−1/2
cd (Pn

d − Pn
c + Qn

d − Qn
c ), (4)

all fluids at any time in a given cell being at equal pressures.
The pressure gradient in the momentum equation displays the surprising

property of being downwind. This is a general property that derives from the
upwind transport due to a discrete integration by parts in the calculation of the
action variation.
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Fig. 1. Volume fraction maps at times t = 0, 10−3, and 2 × 10−3 s (left, center, and
right) for the nine-fluids crossing test on a shrink-then-stretch swirling grid. One in
twenty grid lines represented in both dimensions (white lines). (Color figure online)

3.2 E and E: Energy and Entropy Steps

The per-fluid internal energy equation will not be given here due to the length
constraints on the present publication but they are obtained [10, § 3.7] by follow-
ing an approach identical to that of Sect. 2.2: conservation and thermodynamic
consistency. Suffice to say at this stage that they involve numerous terms due to
the full coupling by pressure forces of the 2Φ kinetic and internal energy reser-
voirs. With fluids of highly contrasted volume fractions, densities, and polytropic
coefficients such as air and water the coupling terms can become particularly
stiff. The final scheme is completely explicit and was found to behave stably and
consistently for a wide range of compositions, EOS stiffness, and Mach numbers.

3.3 A Strenuous Nine-Fluid Test: Supersonic Crossing of Eight
Gaussian Clouds on Shrink-then-Stretch Swirling ALE Grid

This 2D test involves eight packets or clouds of water in a background of still
air. The clouds and the background are each represented by separate fluids thus
defining a nine-fluid system whose evolution can thus be captured by the multi-
fluid scheme. Though described by separate equations, the eight water clouds
have the same stiffened-gas equation of state. Apart of pressure terms, no inter-
actions between the clouds or between clouds and air are added—collisions,
drag, thermal transfers, etc. Clouds can thus cross each other freely. The com-
putation domain is [−3; 3] × [−3; 3]m. The initial condition at t = 0 con-
sists in cloud volume fractions αϕ(0,x), all with Gaussian profiles of ampli-
tudes 0.15 and root mean square radii 0.2m, but centered at different positions
xϕ
0 = (±1, 0) m, (0,±1) m, (±2, 0) m, and (0,±2) m and set in respective uni-

form motions uϕ(0,x) = uϕ
0 = (±1000, 0) m/s, (0,±1000) m/s, (±2000, 0) m/s,

and (0,±2000) m/s. The velocity field of the air background is initially set so
that the mean volume weighted velocity cancels, u =

∑
ϕ αϕuϕ = 0. Boundary

conditions are perfect zero flux walls. The computation is carried out up to time
t = 2 × 10−3 s on an initially-Cartesian shrink-then-stretch swirling ALE grid
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[10, eq. 70]: the grid is shrunk to about 60% at t = 10−3 s and swirled at the
center by about a half turn at final time.

Figure 1 displays the gas volume fraction maps produced at t = 0, 10−3,
and 2 × 10−3 s (respectively left, center, and right) by the present GEEC multi-
fluid scheme on a 480 × 480 mesh at CFL = 0.7. At t = 10−3 s, all the clouds
cross (without merging) at the origin where the air volume fraction drops to
αAir ≈ 3.8%. At final time t = 2 × 10−3 s, the clouds occupy opposite posi-
tions with respect to the initial configuration, their trajectory being marginally
affected by the crossing and by the air motion despite the large volume frac-
tion variations and the severe mesh distortion. The only visible distortion of the
clouds is the expected smearing due to numerical diffusion.
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Jérôme Stenger1,2(B), Fabrice Gamboa1, Merlin Keller2, and Bertrand Iooss1,2
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Abstract. The purpose of this work is to optimize an affine functional
over positive measures. More precisely, we deal with a probability of
failure (p.o.f). The optimization is realized over a set of distributions
satisfying moment constraints, called moment set. The optimum is to be
found on an extreme point of this moment set. Winkler’s classification
of those extreme points states they are finite discrete measures. The set
of the support points of all discrete measures in the moment set is a
manifold over which the p.o.f is optimized. We characterize the mani-
fold’s structure by proving it is an algebraic variety. It is the zero locus
of polynomials defined thanks to the canonical moments. This reduces a
highly constrained optimization over the moment set onto a constraint
free manifold.

Keywords: Canonical moments · Optimal uncertainty quantification ·
Robustness

1 Introduction

1.1 Probability of Failure Inference

Computer codes are increasingly used to measure safety margins, especially in
nuclear accident management analysis. In this context, it is essential to evaluate
the accuracy of the numerical model results, whose uncertainties come mainly
from the lack of knowledge of the underlying physic and the model input param-
eters. Methods were developed in safety analyses to quantify those uncertainties
[6]. Their common principle relies mainly on a probabilistic modeling of the
model input uncertainties, on Monte Carlo sampling for running the computer
code on sets of input, and on the application of statistical tools to infer proba-
bilities of failure (p.o.f) of the scalar output variables of interest [13].

This takes place in a more general setting, known as Uncertainty Quantifi-
cation (UQ) methods [10]. Quantitative assessment of the uncertainties tainting
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the results of computer simulations is a major topic of interest in both industrial
and scientific communities.

p.o.f inference is tainted by the uncertainty of the input modeling. More
specifically, the inputs probability densities are usually chosen in parametric
families (uniform, normal, log-normal, etc.), and their parameters are estimated
using available datas and/or the opinion of an expert. However, they may differ
from the reality. This uncertainty on the input probability densities is propagated
to the p.o.f. As a consequence, different choices of distributions will lead to
different p.o.f values, thus different safety margins.

1.2 Optimal Uncertainty Quantification

In this work, we propose to gain robustness on the quantification of this measure
of risk. We aim to account for the uncertainty on the input distributions by
evaluating the minimal p.o.f over a class of probability measures A. In this
optimization problem, the set A must be large enough to effectively represent
our uncertainty on the inputs, but not too large in order to keep the estimation of
the quantile representative of the physical phenomena. For example, the minimal
p.o.f over the very large class A = {all distributions}, proposed in [5], will
certainly be too conservative to remain physically meaningful. Several articles
which discuss possible choices of classes of distributions can be found in the
literature of Bayesian robustness (see [11]). Deroberts et al. [2] consider a class
of measures specified by a type of upper and lower envelope on their density.
Sivaganesan et al. [12] study the class of unimodal distributions. In more recent
work, Owhadi et al. [9] propose to optimize the measure of risk over a class of
distributions specified by constraints on their generalized moments. They call
their work Optimal Uncertainty Quantification (OUQ). However, in practical
engineering cases, the available information on an input distribution is often
reduced to the knowledge of its mean and/or variance. This is why in this paper,
we are interested in a specific case of the framework introduced in [9]. We consider
the class of measures known by some of their classical moments, we refer to it
as the moment class:

A =
{

μ = ⊗μi ∈
d⊗

i=1

M1([li, ui]) | Eμi
[xj ] = c

(i)
j , (1)

c
(i)
j ∈ R, for 1 ≤ j ≤ Ni and 1 ≤ i ≤ d

}
,

where M1([li, ui]) denotes the set of scalar probability measures on the interval
[li, ui]. The tensorial product of measure set traduces the mutual independence
of the d-components of the input vector μ.

1.3 Reduction Theorem

The solution of our optimization problem is numerically computed thanks to
the OUQ reduction theorem [9,14]. This theorem states that the measure
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corresponding to the minimal p.o.f is located on the extreme points of the
distribution set. In the context of the moment class, the extreme distributions
are located on the d-fold product of finite convex combinations of Dirac masses:

AΔ =

{
μ ∈ A | μi =

Ni+1∑
k=1

w
(i)
k δ

x
(i)
k

for 1 ≤ i ≤ d

}
, (2)

To be more specific it holds that when n pieces of information are available on
the moments of a scalar measure μ, it is enough to pretend that the measure
is supported on at most n + 1 points. This powerful theorem gives the basis
for practical optimization of our optimal quantity of interest. In this matter,
Semi-Definite-Programming [4] has been already explored in [1] and [7], but
the deterministic solver used rapidly reaches its limitation as the dimension of
the problem increases. One can also find in the literature a Python toolbox
developed by McKerns [8] called Mystic framework that fully integrates the
OUQ framework. However, it was built as a generic tool for generalized moment
problems and the enforcement of the moment constraints is not optimal.

By restricting the work to our moment class, we propose an original and
practical approach based on the theory of canonical moments [3]. Canonical
moments of a measure can be seen as the relative position of its moment sequence
in the moment space. They are inherent to the measure and therefore present
many interesting properties. Our main contribution is in the proof that the
optimization set AΔ is an algebraic manifold, more specifically it is the zero
locus of polynomials whose coefficients are function of canonical moments. This
geometric approach replaces the optimization on the constrained space in Eq. (2)
into a constraint free optimization.

This paper proceeds as follows. In Sect. 2 we develop the reduction theorem
and the parameterization of the optimization space, we present the manifold
over which the optimization takes place. Section 3 is dedicated to the canonical
moments and the construction of the polynomials of interest. We show that the
zero locus of those polynomials constitute the optimization space. Section 4 gives
some conclusions and perspectives.

2 Problem Reduction

2.1 OUQ Theorem

In this work, we consider a p.o.f on the output of a computer code G : Rd → R,
seen as a black box function. In order to gain robustness on our safety margin
choice, our goal is to find the minimal p.o.f over the moment set A described
in Eq. (1). For a given threshold h, it reads:

inf
μ∈A

Pμ(G(X) ≤ h) (3)

The OUQ reduction theorem applies (Theorem 1). It states that the optimal
solution of the optimization problem (3) is a product of discrete measures. A
general form of the theorem reads as follows:
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Theorem 1 (OUQ reduction [9]). Suppose that X := X1 × · · · × Xd is a
product of Radon spaces. Let

A :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(G,μ)

G : X → Y, is a real valued measurable function,

μ = μ1 ⊗ · · · ⊗ μd ∈ ⊗d
i=1 M1(Xi),

for some integers N0, . . . , Nd, and measurable functions
ϕl : X → R and ϕ

(i)
j : Xi → R,

• Eμ[ϕl] ≤ 0 for l = 1, . . . , N0,

• Eμi
[ϕ(i)

j ] ≤ 0 for j = 1, . . . , Ni and i = 1, . . . , d

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Let Δn(X ) be the set of all discrete measures supported on at most n + 1 points
of X , and

AΔ := {(G,μ) ∈ A | μi ∈ ΔN0+Ni
(Xi)} .

Let q be a measurable real function on X × Y. Then

sup
(G,μ)∈A

Eμ[q(X,G(X))] = sup
(G,μ)∈AΔ

Eμ[q(X,G(X))].

This theorem derives from the work of Winkler [14], who has shown that the
extreme measures of moment class {μ ∈ M1(X ) | Eμ[ϕ1] ≤ 0, . . . ,Eμ[ϕn] ≤ 0}
are the discrete measures that are supported on at most n+1 points. The strength
of Theorem 1 is that it extends the result to a tensorial product of moment sets.
The proof relies on a recursive argument using Winkler’s classification on every
set Xi. A remarkable fact is that, as long as the quantity to be optimized is an
affine function of the underlying measure μ, this theorem remains true whatever
the function G and the quantity of interest q are.

Now, by taking ϕ
(i)
j (x) = xj for 1 ≤ i ≤ Ni, we enforced Ni moment con-

straints to μi, as in Eq. (1). Applying Theorem1 to the function q(X,G(X))
= −1{G(X)≤h}, the p.o.f reaches its optimum on the reduced set AΔ, such that
for a fixed threshold h we have:

inf
μ∈A

Fμ(h) = inf
μ∈AΔ

Eμ[1{G(X)≤h}],

= inf
μ∈AΔ

Pμ(G(X) ≤ h),

= inf
μ∈AΔ

N1+1∑
i1=1

· · ·
Nd+1∑
id=1

ω
(1)
i1

. . . ω
(d)
id

1{G(x
(1)
i1

,...,x
(d)
id

)≤h}, (4)

2.2 Parameterization Simplification

The optimization problem in Eq. (4) shows that the weights and the positions
of the input distributions provide a natural parameterization for the computation
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of the p.o.f. However, we now highlight the fact that the knowledge of the
support points of a discrete measure (Eq. (5)) fully determines the corresponding
weights. Hence, the support points are sufficient to compute the p.o.f (Eq. (4)).
Indeed, we recall that in the optimization set AΔ (Eq. (2)), Ni constraints are
enforced on the moment of the ith input. The measure μi is therefore supported
on at most Ni + 1 points, which reads:

μi =
Ni∑
i=1

w
(i)
j δ

x
(i)
j

(5)

The Ni + 1 Vandermonde system holds⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω
(i)
1 + . . . + ω

(i)
Ni+1 = 1

ω
(i)
1 x

(i)
1 + . . . + ω

(i)
Ni+1x

(i)
Ni+1 = c

(i)
1

...
...

...

ω
(i)
1 x

(i)
1

Ni

+ . . . + ω
(i)
Ni+1x

(i)
Ni+1

Ni

= c
(i)
Ni

(6)

where the Ni last equations derive from the constraints and the first one is the
expression of the measure mass equals to one. Because every support points
(x(i)

j )j are distinct, when they are set, the corresponding weights are uniquely
determined.

The optimization problem in Eq. (4) is therefore parameterized only with
the position of the support points of every input, so that the optimization takes
place on the following manifold:

V =
d∏

i=1

Vi,

=
d∏

i=1

⎧⎨
⎩xi =

(
x
(i)
1 , . . . , x

(i)
Ni+1

)
∈ R

Ni+1, s.t μi =
Ni+1∑
j=1

ω
(i)
j δ

x
(i)
j

∈ A(i)
Δ

⎫⎬
⎭ , (7)

where A(i)
Δ is such that AΔ =

⊗d
i=1 A(i)

Δ , this reads

A(i)
Δ =

{
μi =

Ni+1∑
k=1

ω
(i)
k δ

x
(i)
k

| Eμi
[xj ] = c

(i)
j , for 1 ≤ j ≤ Ni

}
. (8)

Vi is simply the set of support points of all measures in A(i)
Δ respecting the

constraints. Our main contribution in this work is to show that Vi is an algebraic
manifold, meaning it is the zero locus of some well defined polynomials.

3 Optimization Space Seen as a Variety

3.1 Canonical Moments

We define the moment space M := M(a, b) = {c(μ) | μ ∈ M1([a, b])} where
c(μ) denotes the sequence of all moments of some measure μ. The nth moment
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space Mn is defined by projecting M onto its first n coordinates, Mn = {cn(μ)
= (c1, . . . , cn) | μ ∈ M1([a, b])}. We now define the extreme values,

c+n+1 = max {c ∈ R : (c1, . . . , cn, c) ∈ Mn+1} ,

c−
n+1 = min {c ∈ R : (c1, . . . , cn, c) ∈ Mn+1} ,

which represent the maximum and minimum values of the (n + 1)th moment
that a measure can have, when its moments up to order n are fixed. The nth
canonical moment is then defined recursively as

pn = pn(c) =
cn − c−

n

c+n − c−
n

. (9)

Note that the canonical moments are defined up to the degree N = N(c)
= min {n ∈ N | cn ∈ ∂Mn}, and pN is either 0 or 1. Indeed, we know from
[3, Theorem 1.2.5] that cn ∈ ∂Mn implies that the underlying μ is uniquely
determined, so that, c+n = c−

n . We also introduce the quantity ζn = (1− pn−1)pn

that will be of some importance in the following. The very nice properties of
canonical moments are that, by construction, they belong to [0, 1] and are invari-
ant under linear transformation of the measures, y = a + (b − a)x. Hence, we
may restrict ourselves to the case a = 0, b = 1.

3.2 Support Points and Canonical Moments

From a given sequence of canonical moments, one wishes to reconstruct the
support of a discrete measure. This link arises through the following theorem

Theorem 2 ([3, Theorem3.6.1]). Let μ denote a measure on the interval [a, b]
supported on n + 1 points with canonical moments p1, p2, . . . . Then the support
of μ consists of the zeros of P ∗

n+1(x) where

P ∗
k+1(x) = (x − a − (b − a)(ζ2k + ζ2k+1))P ∗

k (x) − (b − a)2ζ2k−1ζ2kP ∗
k−1, (10)

with P ∗
−1(x) = 0, P ∗

0 (x) = 1 and ζk = (1 − pk−1)pk

The polynomial P ∗
n+1 is defined with the sequence of canonical moments up to

order 2n + 1. In the following, we consider a fixed sequence of moments cn =
(c1, . . . , cn) ∈ Mn, let μ be a measure supported on at most n + 1 points, with
classical moments cn. Hence, μ has canonical moments equal to pn = (p1, . . . , pn)
the corresponding sequence of canonical moments related to cn, as described in
Sect. 3.1. We define the set Θn+1 = {x ∈ [0, 1]n+1 | xi ∈ {0, 1} ⇒ xk = 0, k > i}
and the functional:

φpn
: Θn+1 → R[X]
(pn+1, . . . , p2n+1) �→ P ∗

n+1, (11)

The function φ computes, from a sequence of canonical moments (p1, . . . , p2n+1),
a polynomial P ∗

n+1 in regards of Theorem2. Therefore, the roots of P ∗
n+1 corre-

spond to the support of a measure with moments cn. We derive the following
Theorem, it is the geometric version of Theorem 2.
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Theorem 3. The set Vi of (Ni+1)-tuples corresponding to the support points of
a discrete measure with prescribed first Ni moments (c(i)1 , . . . , c

(i)
Ni

) is an algebraic
manifold of RNi+1. It is the zeros locus of the set of polynomials:

Si =
{
P ∗

Ni+1 = φpNi
(pNi+1, . . . , p2Ni+1), (pNi+1, . . . , p2Ni+1) ∈ ΘNi+1

}
(12)

In order to optimize our quantity of interest in Eq. (3), one need to explore
the space of admissible measures AΔ. More precisely, the p.o.f in Eq. (4) is
computed over the space V. This space corresponds to the support points of all
discrete measures respecting the constraints in AΔ. What is interesting is that
Θn+1 provides a very simple parameterization of V through the computation of
roots of some well defined polynomial.

An optimization over the highly constrained space AΔ is therefore simplified
into a constraint free optimization program over the space Θn+1.

4 Conclusion

This work aims to evaluate the maximum quantile over a class of distributions
constrained by some of their moments. We used the theory of canonical moments
into an improved methodology for solving OUQ problems. The set of optimiza-
tion corresponds to the support points of the discrete measures in the moment
set. We have successfully shown it is the zero locus of a set of polynomials
defined with canonical moments. The knowledge of the shape of this manifold
allows a computational constraint free optimization program, instead of a highly
constrained optimization over the moment set.
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Abstract. We investigate and computationally solve a shape optimiza-
tion problem constrained by a variational inequality of the first kind,
a so-called obstacle-type problem, with a gradient descent and a BFGS
algorithm in the space of smooth shapes. In order to circumvent the
numerical problems related to the non-linearity of the shape derivative,
we consider a regularization strategy leading to novel possibilities to
numerically exploit structures, as well as possible treatment of the regu-
larized variational inequality constrained shape optimization in the con-
text of optimization on infinite dimensional Riemannian manifolds.

Keywords: Variational inequality · Obstacle problem ·
Shape manifold · Gradient method · BFGS method

1 Introduction

Shape optimization is a classical topic in mathematics which is of high impor-
tance in a wide range of applications, e.g., acoustics [23], aerodynamics [19]
and electrostatics [6]. Qualitative properties of optimal shapes such as mini-
mum surfaces are investigated in classical shape optimization. In select cases, an
analytical solution can be derived. In contrast, modern and application-oriented
questions in shape optimization are concerned with specific calculations of shapes
which are optimal with respect to a process which is mostly described by partial
differential equations (PDE) or variational inequalities (VI). Consequently, the
area of shape optimization builds a bridge between pure and applied mathemat-
ics. Recently, shape optimization gained new interest due to novel developments
such as the usage of volumetric/weak formulations of shape derivatives. This
paper, which focuses on VI constrained shape optimization problems, is based
on recent results in the field of PDE constrained shape optimization and carries
the achieved methodology over to shape optimization problems with constraints
in the form of VIs. Thus, this paper can be seen as an extension of the Rieman-
nian shape optimization framework for PDEs formulated in [24] to VI. Note that
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VI constrained shape optimization problems are very challenging because of the
two main reasons: One needs to operate in inherently non-linear, non-convex and
infinite-dimensional shape spaces and—in contrast to PDEs—one cannot expect
the existence of shape derivatives for an arbitrary shape functional depending
on solutions to variational inequalities.

So far, there are only very few approaches in the literature to the problem
class of VI constrained shape optimization problems. In [12], shape optimiza-
tion of 2D elasto-plastic bodies is studied, where the shape is simplified to a
graph such that one dimension can be written as a function of the other. In
[22, Chap. 4], shape derivatives of elliptic VI problems are presented in the form
of solutions to again VIs. In [18], shape optimization for 2D graph-like domains
are investigated. Also [14] presents existence results for shape optimization prob-
lems which can be reformulated as optimal control problems, whereas [4,7] show
existence of solutions in a more general set-up. In [18], level-set methods are pro-
posed and applied to graph-like two-dimensional problems. Moreover, [8] presents
a regularization approach to the computation of shape and topological deriva-
tives in the context of elliptic VIs and, thus, circumventing the numerical prob-
lems in [22, Chap. 4]. However, all these mentioned problems have in common
that one cannot expect for an arbitrary shape functional depending on solutions
to VIs to obtain the shape derivative as a linear mapping (cf. [22, Example in
Chap. 1]). E.g., in general, the shape derivative for the obstacle problems fails
to be linear with respect to the normal component of the vector field defined
on the boundary of the domain under consideration. In order to circumvent the
numerical problems related to the non-linearity of the shape derivative (cf., e.g.,
[22, Chap. 4]) and in particular the non-existence of the shape derivative of a VI
constrained shape optimization problem, [8] presents a regularization approach
to the computation of shape and topological derivatives in the context of elliptic
VIs. In this paper, we consider this regularization strategy, leading to novel pos-
sibilities to numerically exploit structures, as well as possible treatment of the
regularized VI constrained shape optimization in the context of optimization on
infinite dimensional manifolds.

This paper is structured as follows. In Sect. 2, we give a brief overview of the
VI constrained shape optimization model class and regularization techniques
on which we focus in this paper. Section 3 presents a way to solve the VI con-
strained shape model problem in the space of smooth shapes based on gradient
representations via Steklov-Poincaré metrics. Finally, numerical results of the
gradient descent and a Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
are presented in Sect. 4.

2 VI Constrained Model Problem

Let Ω ⊂ R
2 be a bounded domain equipped with a sufficiently smooth boundary

∂Ω, which we will specify in more detail after stating the model problem. This
domain is assumed to be partitioned in a subdomain Ωout ⊂ Ω and an interior
domain Ωint ⊂ Ω with boundary Γint := ∂Ωint such that Ωout � Ωint � Γint
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= Ω, where � denotes the disjoint union. We consider Ω depending on Γint, i.e.,
Ω = Ω(Γint). In the following, the boundary Γint of the interior domain is called
the interface. In contrast to the outer boundary ∂Ω, which is fixed, the inner
boundary Γint is variable. The interface is an element of an appropriate shape
space. In this paper, we focus on the space of one-dimensional smooth shapes
(cf. [16]) characterized by Be := Be(S1,R2) := Emb(S1,R2)/Diff(S1), i.e., the
orbit space of Emb(S1,R2) under the action by composition from the right by the
Lie group Diff(S1). Here, Emb(S1,R2) denotes the set of all embeddings from
the unit circle S1 into R2, which contains all simple closed smooth curves in R2.
Note that we can think of smooth shapes as the images of simple closed smooth
curves in the plane of the unit circle because the boundary of a shape already
characterizes the shape. The set Diff(S1) is the set of all diffeomorphisms from S1

into itself, which characterize all smooth reparametrizations. These equivalence
classes are considered because we are only interested in the shape itself and
images are not changed by reparametrizations. More precisely, shapes that have
been translated represent the same shape. In contrast, shapes with different
scaling are not equivalent in this shape space. In [13], it is proven that the shape
space Be(S1,R2) is a smooth manifold. For the sake of completeness it should
be mentioned that the shape space Be(S1,R2) together with appropriate inner
products is even a Riemannian manifold. In [17], a survey of various suitable
inner products is given. In the following, we assume Γint ∈ Be.

Let ν > 0 be an arbitrary constant, ȳ ∈ L2(Ω) and y solving the VI formu-
lated in (3). For the objective function

J(y,Ω) := J (y,Ω) + Jreg(Ω) :=
1
2

∫
Ω(Γint)

|y − ȳ|2 dx + ν

∫
Γint

1 ds (1)

we consider the following VI constrained shape optimization problem:

min
Γint∈Be

J(y,Ω) (2)

with y solving the following obstacle type variational inequality:

a(y, v − y) ≥ 〈f, v − y〉 ∀v ∈ K := {θ ∈ H1
0 (Ω) : θ(x) ≤ ψ(x) in Ω}, (3)

where f ∈ L2(Ω) dependents on the shape, 〈·, ·〉 denotes the duality pairing and
a(·, ·) is a general bilinearform a : H1

0 (Ω)×H1
0 (Ω) → R, (y, v) �→

∑
ij aijyxi

vxj
+

byv defined by coefficient functions aij , b ∈ L∞(Ω), b ≥ 0.
With the tracking-type objective J the model is fitted to data measurements

ȳ ∈ L2(Ω). The second term Jreg in the objective function J is a perimeter
regularization, which is frequently used to overcome ill-posedness of shape opti-
mization problems. In (3), ψ denotes an obstacle which needs to be an element
of L1

loc(Ω) such that the set of admissible functions K is non-empty (cf. [22]).
Then smoothness of the boundary ∂Ω, where C1,1 regularity or polyhedricity is
sufficient, and ψ ∈ H2(Ω) ensure that the solution to (3) satisfies y ∈ H1

0 (Ω),
see, e.g., [9, Remark 2.3]. Further, (3) can be equivalently expressed as a PDE
with complementary constraints (cf. [11]):
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a(y, v) + (λ, v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ H1
0 (Ω) (4)

λ ≥ 0, y ≤ ψ, λ(y − ψ) = 0 in Ω (5)

The existence of solutions of any shape optimization problem is a non-trivial
question. Shape optimization problems constrained by VIs are especially chal-
lenging because, in general, the shape derivative of VI constrained shape opti-
mization problems is not linear (cf. [8,22]). This potential non-linearity of the
shape derivative complicates its use in algorithms. In order to circumvent the
problems related to the non-linearity, we consider a regularized version of (2)
constrained by (4)–(5). For convenience, we focus on a special bilinearform: We
assume the bilinearform a(·, ·) of the state equation to correspond to the Lapla-
cian −Δ. In this setting, a regularized version is given by:

min
Γint∈Be

J(yγ,c, Ω) (6)

s.t. − �yγ,c + λγ,c = f in Ω (7)
yγ,c = 0 on ∂Ω (8)

with λγ,c = maxγ(0, λ + c(yγ,c − ψ)), where γ, c > 0, 0 ≤ λ ∈ L2(Ω) fixed
and

maxγ(x) :=

{
max(0, x) for x ∈ R\[− 1

γ , 1
γ ]

γ
4 x2 + 1

2x + 1
4γ else

(9)

being a smoothed max-function. The convergence yγ,c → y in H1
0 (Ω) of the

regularized solution yγ,c to the unregularized solution y of (4) is guaranteed by
a result in [15, Proposition 1]. Furthermore, the smoothness of the regularized
PDE (7) guarantees the existence of adjoints, which in turn gives possibility to
characterize a corresponding shape derivative of (6). In [8], it is mentioned that
for a large parameter c the associated solution of the regularized state equation
(7)–(8) using the unsmoothed max-function is an excellent approximation of the
solution to the unregularized VI. Moreover, it is shown in [8] that the shape
derivative for the regularized problem converges to the solution of a linear prob-
lem which depends linearly on a perturbation vector field. Numerical tests in
[8] show the efficiency of the approach to introduce a regularization of the VI,
which allows to apply the usual theory for obtaining shape derivatives. We refer
to [15] for the shape derivative of (6)–(8) and the adjoint equation to (6)–(8),
as well as the limiting objects and equations for γ, c → ∞. However, we want
to point out that a proof of convergence of the optimal shapes generated by the
steepest descent or BFGS method using the regularization parameters γ, c > 0
for γ, c → ∞ is yet to be done.

3 Algorithmic Details

This section presents a way to solve (6)–(8) computationally in the Riemannian
manifold of smooth shapes. If we want to optimize on a Riemannian shape man-
ifold, we have to find a representation of the shape derivative with respect to
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the Riemannian metric under consideration, called the Riemannian shape gradi-
ent, which is required to formulate optimization methods on a shape manifold.
In [21], the authors present a metric based on the Steklov-Poincaré operator,
which allows for the computation of the Riemannian shape gradient as a repre-
sentative of the shape derivative in volume form. Besides saving analytical effort
during the calculation process of the shape derivative, this technique is compu-
tationally more efficient than using an approach which needs the surface shape
derivative form. For example, the volume form allows us to optimize directly over
the hold-all domain Ω containing one or more elements Γint ∈ Be, whereas the
surface formulation would give us descent directions (in normal directions) for
the boundary Γi only, which would not help us to move mesh elements around
the shape. Additionally, when we are working with a surface shape derivative,
we need to solve another PDE in order to get a mesh deformation in the hold-all
domain Ω as outlined for example in [24].

We denote the shape derivative of J in direction of a vector field U which can
be given in volume or surface form by DJ(·)[U ]. In order to distinguish between
surface and volume formulation, we use the notation DJ surf(·)[U ], DJvol(·)[U ].
Following the ideas presented in [21], we choose the Steklov-Poincaré metric

GS : H1/2(Γint) × H1/2(Γint) → R, (α, β) �→
∫

Γint

α(s) · [(Spr)−1β](s) ds,

where Spr : H−1/2(Γint) → H1/2(Γint), α �→ (γ0V )T n denotes the projected
Poincaré-Steklov operator with tr : H1

0 (Ω,R2) → H1/2(Γint,R
2) denoting the

trace operator on Sobolev spaces for vector-valued functions and V ∈ H1
0 (X,R2)

solving the Neumann problem

adeform(U, V ) =
∫

Γint

α · (tr(U))T n ds ∀U ∈ H1
0 (Ω,R2), (10)

where adeform : H1
0 (Ω,R2)×H1

0 (Ω,R2) → R is a symmetric and coercive bilinear
form. If r ∈ L1(Γint) denotes the L2-shape gradient given by the surface formula-
tion of the shape derivative DJsurf(yγ,c, Ω)[V ] =

∫
Γint

r 〈V, n〉 ds with n denoting
the normal vector field and yγ,c denoting the solution of the regularized state
equation (7)–(8), then a representation h ∈ TΓintBe

∼= C∞(Γint) of the shape gra-
dient in terms of GS is determined by GS(φ, h) = (r, φ)L2(Γint)

∀φ ∈ C∞(Γint).
From this we get that the mesh deformation vector V ∈ H1

0 (Ω,R2) can be
viewed as an extension of a Riemannian shape gradient to the hold-all domain
Ω because of the identities

GS(v, u) = DJ(yγ,c, Ω)[U ] = adeform(V,U) ∀U ∈ H1
0 (Ω,R2), (11)

where v = (tr(V ))T n, u = (tr(U))T n ∈ TΓintBe with TΓintBe
∼= C∞(Γint).
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One option to choose the operator adeform(·, ·) is the bilinear form associated
with the linear elasticity problem, i.e., aelas(V,U) :=

∫
Ω

(λtr(ε(V ))id + 2με(V )) :
ε(U) dx, where ε(U) := 1

2 (∇U + ∇UT ), A : B denotes the Frobenius inner
product for two matrices A,B and λ, μ denote the so-called Lamé parameters.
To summarize, we need to solve the following deformation equation: find V ∈
H1

0 (Ω,R2) s.t.

aelas(V,U) = DJ(yγ,c, Ω)[U ] ∀U ∈ H1
0 (Ω,R2). (12)

In this equation, we need the solution yγ,c of the regularized state equa-
tion (7)–(8), and the solution pγ,c of the corresponding adjoint equation (cf.
[15, Chapter 3]) in order to construct DJ(yγ,c, Ω)[·]. An alternative strategy to
the regularization outlined is the linearized modified primal-dual active set (lmP-
DAS) algorithm formulated in [5, Algorithm 2]. The lmPDAS algorithm is based
on the primal-dual active set (PDAS) algorithm given in [10] and on a lineariza-
tion technique inspired by the concept of internal numerical differentiation [3].

The Riemannian shape gradient is required to formulate optimization meth-
ods in the shape space Be. In the setting of constrained shape optimization prob-
lems, a Lagrange-Newton method is obtained by applying a Newton method to
find stationary points of the Lagrangian of the optimization problem. In con-
trast to this method, which requires the Hessian in each iteration, quasi-Newton
methods only need an approximation of the Hessian. Such an approximation is
realized, e.g., by a limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS)
update. In the Steklov-Poincaré setting, such an update can be computed with
the representation of the shape gradient with respect to GS and a suitable vector
transport (cf. [21]). The limited memory BFGS method (l-BFGS) for iteration
j is summarized in Algorithm 1, where l ∈ {2, 3, . . . } is the memory-length,
Vi ∈ H1

0 (Ω,R2) are the volume representations of the gradients in TΓintiBe as
by (12), Si ∈ H1

0 (Ω) are the BFGS deformations generated in iteration i, TSj−1

denotes the vector transport associated to the update Ωj = expΩj−1
(tr(Sj−1)T n)

and Yi := Vi+1 − TSi
Vi ∈ H1

0 (Ω,R2).

Remark 1. In general, we need the concept of the exponential map and vec-
tor transports in order to formulate optimization methods on a shape manifold.
The calculations of optimization methods have to be performed in tangent spaces
because manifolds are not necessarily linear spaces. This means points from a
tangent space have to be mapped to the manifold in order to get a new shape-
iterate, which can be realized with the help of the exponential map as used in
Algorithm 1. However, the computation of the exponential map is prohibitively
expensive in the most applications because a calculus of variations problem must
be solved or the Christoffel symbols need be known. It is much easier and much
faster to use a first-order approximation of the exponential map. In [1], it is
shown that a so-called retraction is such a first-order approximation and suf-
ficient in most applications. We refer to [20], where a suitable retraction and
vector transport on Be are given.
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4 Numerical Results

We focus on a numerical experiment which is selected in order to demonstrate
challenges arising for VI constrained shape optimization problems. To be more
precise, we move and magnify a circle in the domain Ω = (0, 1)2.

Algorithm 1. Inverse limited memory BFGS update in terms of the metric GS .
q ← Vj

Yj−1 ← Vj − TSj−1Vj−1

for i = j − 2, . . . , j − l do
Yi ← TSj−1Yi

end for
for i = j − 1, . . . , j − l do

Si ← TSj−1Si

ρi ← GS(tr(Yi)
T n, tr(Si)

T n)−1 = adeform(Yj , Sj)
−1

αi ← ρiG
S(tr(Si)

T n, tr(q)T n) = ρia
deform(Si, q)

q ← q − αiYi

end for

q ← GS(tr(Yj−1)
T n,tr(Sj−1)

T n)

GS(tr(Yj−1)T n,tr(Yj−1)T n)
q =

adeform(Yj−1,Sj−1)

adeform(Yj−1,Yj−1)
q

for i = j − l, . . . , j − 1 do
z ← Uj

q ← GS((γ0Yj−1)
T n,(γ0Sj−1)

T n)
GS((γ0Yj−1)T n,(γ0Yj−1)T n)

Uj =
adeform(Yj−1,Sj−1)

adeform(Yj−1,Yj−1)
Uj

end for
for i = j − l, . . . , j − 1 do

βi ← ρiG
S(tr(Yi)

T n, tr(q)T n) = ρia
deform(Yi, q)

q ← q + (αi − βi)Si

end for
Sj ← q

The right-hand side of (7), f ∈ L2(Ω), is chosen as a shape dependent piece-
wise constant function f(x) = 100 for x ∈ Ωint and f(x) = −10 for x ∈ Ω\Ω̄int.
Further, the perimeter regularization in Eq. (1) is weighted by ν = 0.00001. The
constants γ, c > 0 in the regularized state equation are set to γ = 100, c = 25.
The obstacle is given by

ψ : (0, 1)2 → R, (x, y) �→
{

0.25 if (x, y) ∈ (0.75, 1) × (0, 1)
100 if (x, y) ∈ (0, 0.75] × (0, 1)

. (13)

For our numerical test, we build artificial data ȳ by solving the state equation
without obstacle for the setting that Γint := {(x, y) ∈ (0, 1)2 : (x − 0.6)2 + (y −
0.5)2 = 0.22}. Then, we add noise to the measurements ȳ, which is i.i.d. with
N (0.0, 0.5) for each mesh node. The Lamé parameter are chosen by λ = 0 and
μ as the solution of the following Laplace equation:

−Δμ = 0 in Ω with μ = 20 on Γint and μ = 5 on ∂Ω
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Fig. 1. Left: Ω with the initial (small circle) and expected shape (dashed circle) and the
shape iterates of the gradient descent method. Right: Values of the objective function
and the shape distance in each iteration of the gradient descent method.

In order to solve our model problem formulated in Sect. 2, we focus on the
strategy described in Sect. 3. This means after solving the state and adjoint
equation, we compute a mesh deformation vector field by solving the defor-
mation equation. The regularized state and adjoint equations are solved using
the following discretizition. We use a Finite Element Method (FEM) with con-
tinuous Galerkin ansatz functions of first order and perform computations on
unstructured meshes with up to approx. 2 300 vertices and 4 300 cells. All lin-
ear systems are solved with the preconditioned conjugate gradient solver of the
software PETSc, which is used as a backend to the open source Finite Element
Software FEniCS, see [2].

First, we focus on a steepest descent strategy. This means we add the mesh
deformation vector field, which we get by solving the deformation equation, to
all nodes in the finite element mesh. We implemented also a full BFGS strategy
as described in Algorithm 1. Figures 1 and 2 present the results of the gradient
and the BFGS method. The left pictures show the domain Ω together with the
initial shape (small circle), the expected shape (dashed circle) and the shape
iterates. One can see that the expected shape is only achieved with the BFGS
method an not with the gradient method. This is due to some loss of shape
information in (0.75, 1) × (0, 1). This could be explained by the structure of the
limiting object p ∈ H1

0 (Ω) of the adjoints to the regularized problem, which is
given by

−Δp = −(y − ȳ) in Ω\A with p = 0 in A and p = 0 on ∂Ω, (14)

where A := {x ∈ Ω : y(x) ≥ ψ(x)} denotes the active set of the variational
inequality (4) (cf. [15, Theorem 1]). Due to the low obstacle ψ in (0.75, 1) ×
(0, 1), see (13), and the target ȳ being above ψ in (0.75, 1) × (0, 1), we have
(0.75, 1) × (0, 1) ⊂ A. Hence we have p|(0.75,1)×(0,1) = 0 for the sensitivities,
leaving no information in this area, resulting in shape derivatives which are 0
for directions V ∈ H1

0 (Ω,R2) with supp(V ) ⊂ (0.75, 1) × (0, 1). In this sense,
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Fig. 2. Left: Ω with the initial (small circle) and expected shape (dashed circle) and
the shape iterates of the BFGS method. Right: Values of the objective function and
the shape distance in each iteration of the BFGS method.

only target shapes Ω that correspond to solutions ȳ ∈ H1
0 (Ω) which are below

0.25 = ψ|(0.75,1)×(0,1) can be reached. This creates “blind areas” in the space
of shapes Be for the shapes not fulfilling this correspondence, which, due to
the Laplace equation regarded, is mostly the case for shapes that partly lie in
(0.75, 1)× (0, 1). The BFGS method only manages to reach the globally optimal
shape since it generates a large step while the current shape iterate is still outside
the blind area (0.75, 1) × (0, 1) ⊂ A.

The right pictures of Figs. 1 and 2 show the decrease of the objective function
and the mesh distance. In both methods, the shape distance between two shapes
Γ 1

int, Γ
2
int is approximated by the integral

∫
x∈Γ 1

int
maxy∈Γ 2

int
‖x − y‖2 dx, where

‖ ·‖2 denotes the euclidean norm. One sees that the BFGS method is superior to
the gradient method: 5 iterations (BFGS) vs. 12 iterations (gradient method).
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Abstract. We consider the problem of interpolating a finite set of obser-
vations at given time instant. In this paper, we introduce a new method
to compute the optimal intermediate control points that define a C2

interpolating Bézier curve. We prove this concept for interpolating data
points belonging to a Riemannian symmetric spaces. The main property
of the proposed method is that the control points minimize the mean
square acceleration. Moreover, potential applications of fitting smooth
paths on Riemannian manifold include applications in robotics, anima-
tions, graphics, and medical studies.

Keywords: Riemannian Bézier curves ·
Regression on Riemannian manifolds · Curve fitting ·
Mean square acceleration · Special orthogonal group

1 Introduction

The problem of constructing smooth interpolating curves in non-linear spaces, or
manifolds plays an important role in a wide variety of applications. For instance,
interpolation in the rotation group SO(3) has immediate application not only in
computer graphics and animation of 3D objects [1–3], but also in applications
ranging from robot motion planning to machine vision [4–6]. Such applications
encourage us to further search for some efficient methods to generate smooth
interpolating curves on non-linear spaces.

Motivated by potential applications in engineering science and technology,
our goal is to develop a new framework for generating C2 Bézier curves on
Riemannian manifolds that interpolate a given ordered set of points at spec-
ified time instants. While quite general, we will focus on a special class of
Riemannian symmetric spaces. The task of constructing interpolating curve on
SO(n) has attracted the attention of several authors. One of the most widely
cited approaches is the work of Shoemake [7] on SO(3), who adopts a re-
parametrization of the rotation matrices based on unit quaternion represen-
tation. Shoemake’s approach can essentially be viewed as a generalization of
the de Casteljau’s algorithm for Bézier curves to SU(2) in which two elements

c© Springer Nature Switzerland AG 2019
F. Nielsen and F. Barbaresco (Eds.): GSI 2019, LNCS 11712, pp. 589–598, 2019.
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of SO(3) are interpolated by the geodesic that joins them. Although this algo-
rithm seems computationally efficient, unfortunately the resulting curve depends
on the choice of local system coordinates. A few years later, taking into account
the Shoemake algorithm, a more careful geometric analysis of unit-quaternion-
based method was introduced by Barr et al. [1], Hart et al. [8], Ge and Ravani [9],
and Nielson et al. [10]. Despite the fact of producing an intrinsic curves, these
approaches does not generalize to higher-dimensional manifold.

In this paper, we present a novel framework to treat the interpolation problem
in the setting of Riemannian geometry and Bézier curve approach. We show
that it makes sense to define a C2 interpolating Bézier curve on Riemannian
symmetric spaces as the result of a least squares minimization and a recursive
algorithm. In particular, we will focus on a special class of Riemannian symmetric
spaces: the special orthogonal group SO(n). Indeed, working in such Riemannian
manifold allows nice properties to solve the issues above. The key point to give
explicit solution for the interpolation problem and ensures the C2 differentiability
condition at joint points is the use of global symmetries in these last points.
In fact, we will first derive equations for control points of a C2 Bézier curve
on the Euclidean space R

m. Then, building upon prior works [6,11], we use
these equations to find the control points of a C1 interpolating Bézier curve
on Riemannian manifolds as a generalization of the Bézier based fitting in the
Euclidean space and by means of methods of Riemannian geometry. These results
are sufficient to give explicit formula for control points of the C2 interpolating
Bézier curve on SO(n). The proposed method will be shown to enjoy a number
of nice properties and the solution is unique in many common situations.

The rest of the paper is organized as follows. In Sect. 2, we present our new
algorithm to construct a C2 Bézier curve on the Euclidean space. This will help
with the visualization of its main features and motivate its generalization on
SO(n). In Sect. 3, the generalization of our approach on the Lie group SO(n) is
prescribed. We conclude the paper with numerical examples and a conclusion.

2 C2 Interpolating Bézier Curves on R
m

In this section, we first describe our approach on the Euclidean space R
m. For

simplicity we will assume that the time instants are ti = i. In this work, we only
use Bézier curves of degree 2 and 3 such that the segment joining p0 and p1, as
well as the segment joining pN−1 and pN are Bézier curves of order two, while all
the other segments are Bézier curves of order three. Explicitly, the Bézier curve
βk of degree k ∈ {2, 3} are expressed in R

m with a number of control points bi,
represented as their coefficients in the Bernstein basis polynomials by:

β2(t; b0, b1, b2) = b0(1 − t)2 + 2b1(1 − t)t + b2t
2,

β3(t; b0, b1, b2, b3) = b0(1 − t)3 + 3b1t(1 − t)2 + 3b2t
2(1 − t) + b3t

3.

Moreover, we assume that there exists two artificial control points (̂b−
i ,̂b+i ) on the

left and on the right hand side of the interpolation point pi for i = 1, ..., (N −1).
Consequently, the Bézier curve β on R

m is given by:
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β(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

β2(t; p0,̂b−
1 , p1), if t ∈ [0, 1]

β3(t − (i − 1); pi−1,̂b
+
i−1,

̂b−
i , pi), if t ∈ [i − 1, i], i = 2, ..., N − 1

β2(t − (N − 1); pN−1,̂b
+
N−1, pN ), if t ∈ [N − 1, N ]

Then β is C∞ on [ti, ti+1], for i = 0, ..N − 1. To ensure that β is C1 at knots
pi, for i = 1, ..N − 1, we shall make the following assumption:

β̇ki(bi
0, ..., b

i
ki ; t − i + 1)|t=i = β̇ki+1(bi+1

0 , ..., bi+1
ki+1 ; t − i)|t=i i = 0, ..., N − 2.

(1)

This differentiability condition allows us to express ̂b+i in terms of ̂b−
i as:

̂b+1 =
5
3
p1 − 2

3
̂b−
1 , (2)

̂b+i = 2pi −̂b−
i , i = 2, ..., N − 2 (3)

̂b+N−1 =
5
2
pN−1 − 3

2
̂b−

N−1, (4)

We are left with the task of computing the control points ̂b−
i , for i = 1, ..., N −1,

that generate the C1 Bézier curve β. In [11], we have shown that solutions of the
problem of minimization of the mean square acceleration of the Bézier curve β
are exactly the control points of the curve:

min
̂b
−
1 ,...,̂b

−
N−1

E(̂b
−
1 , ...,̂b

−
N−1) := min

̂b
−
1 ,...,̂b

−
N−1

∫ 1

0
‖β̈0

2(t; p0,̂b
−
1 , p1)‖2

+

N−2
∑

i=1

∫ 1

0
‖β̈i

3(t; pi,̂b
−
i ,̂b

−
i+1, pi+1)‖2

+

∫ 1

0
‖ ¨
βN−1
2 (t; pN−1,̂b

−
N−1, pN )‖2 (5)

It turns out that the optimal solution Y = [̂b−
1 , ...,̂b−

N−1]
T ∈ R

(N−1)×m of (5)
is the unique solution of a tridiagonal linear system

Y = A−1CP = DP with
j=N+1
∑

j=0

dij = 1. (6)

where A is a tridiagonal sparse square matrix of size (N − 1) × (N − 1) with a
dominant diagonal, C a matrix of size (N − 1) × (N + 1) and P the matrix of
pi’s of size (N + 1) × m given by:

A(1,1:2) = [16 6] (7)
A(2,1:3) = [6 36 9] (8)

A(i,i−1:i+1) = [9 36 9], (9)
A(n−1,n−2:n−1) = [9 36] (10)

C(1,1:2) = [16 6] (11)
C(2,2:3) = [6 36 9] (12)

C(i,i:i+1) = [9 36 9], i = 3, ..., n− 2 (13)
C(n−1,n−1:n+1) = [9 36] (14)
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Now, let us assume that β is C1, so that (1) is met and the solution Y given
by (6) is obtained. The additional C2 condition for a C1 curve is the equality of
the second derivative at the joint point pi, for i = 1, ..., N − 1:

β̈ki(bi
0, ..., b

i
ki ; t − i + 1)|t=i = β̈ki+1(bi+1

0 , ..., bi+1
ki+1 ; t − i)|t=i i = 0, ..., N − 2.

It is obvious that with this C2 condition the position of the control points ̂b−
i and

̂b+i that generate the curve β will be modified. Therefore, it is more convenient to
use another notation. Let us denote by b−

i and b+i the new control points on the
left and on the right hand side of the interpolation point pi, for i = 1, ..., N − 1.
Computing the acceleration of β on respective intervals and taking into account
that β is C1, we shall replace b+1 by (2), b+i by (3), and b+N−1 by (4). We deduce
that:

b−
2 =

1
3
p0 − 1

2
b−
1 +

8
3
p1, (15a)

b−
i+1 = b+i−1 + 4pi − 4b−

i , i = 2, ..., N − 2 (15b)

pN = 2pN−1 + 2b+N−1 − 6b−
N−1 + 3b+N−2, (15c)

We see at once that points that will be modified by the additional C2 condition
are ̂b−

i and hence ̂b+i , for i = 2, ..., N − 1. The point ̂b−
1 remains invariant and

consequently it will be the case for ̂b+1 . We thus get b−
1 = ̂b−

1 , with ̂b−
1 is the

first row of the matrix Y obtained as a solution of the optimization problem
(5). However, the endpoint pN is affected as we can deduce from Eq. (15c).
Nevertheless, it follows that giving the control point b−

1 allows us to find all the
other control points including b−

2 with Eq. (15a) and hence b+2 with (3), then
b−
i+1 for i = 2, ..., N − 2 with (15b) and therefore b+i , for i = 3, ..., N − 2 with (3)

and b+N−1 with (4).

3 C2 Interpolating Bézier Curves On SO(n)

Our objective in this section is to work out concretely the extension of our app-
roach used to find control points that define a C2 Bézier curve in the Euclidean
space to the Riemannian manifold SO(n). In other words, given R0, ..., RN a set
of (N +1) distinct points in SO(n) and 0 = t0 < t1 < ... < tN = N an increasing
sequence of time instants, we present a conceptually simple framework to con-
struct a C2 Bézier curve γ : [0, N ] → SO(n) such that γ(tk) = Rk, k = 0, ..., N .
For the most part of Riemannian manifolds, the generalization of our approach
is not straightforward. For the case treated here, of the Lie group SO(n), since it
is a symmetric space and all the important geometric functions have nice, closed-
form expressions, the problem of finding a C2 Bézier curve that interpolates a
given set of points in such space can be completely solved.

Let us start by briefly sketch the differential structure of SO(n). We illustrate
this with the geometric toolbox described in Table 1. For more details concerning
the differential geometry of SO(n), see [12,13].
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Table 1. Geometric toolbox for the Riemannian manifold SO(n)

Set SO(n) = {R ∈ R
n×n | RTR = In and det(R) = 1}

Tangent spaces TRSO(n) = {H ∈ R
n×n | RHT + HRT = 0}

Inner product <H1, H2>R = trace(HT
1 H2)

Exponential ExpR(H) = ExpI(R
TH) = R exp(RTH)

Logarithm LogR1
(R2) = R1 log(RT

1 R2)

The shortest geodesic arc joining R1 to R2 in SO(n) can be parameterized
explicitly by:

α(t, R1, R2) = R1 exp(t log(RT
1 R2)), t ∈ [0, 1]. (16)

and we write:
α̇(t, R1, R2) :=

∂

∂u
|u=t α(t, R1, R2).

Furthermore, for each R1 ∈ SO(n), there exists a symmetry

ϕR1 : SO(n) −→ SO(n), R2 −→ R1R
T
2 R1

that reverses geodesics through R1. It is easy to check that ϕR1 is an isometry
and thus SO(n) turns into a Riemannian symmetric space. For R1, R2 ∈ SO(n),
let us denote by (dExpR1

)H the derivative of ExpR1
at H ∈ TR1SO(n) and by

(dϕR1)R2 the derivative of the geodesic symmetry ϕR1 at R2. Then, the following
result can be easily proved and will be very important for the derivation of the
results presented along this section.

Lemma 1. Let R1 ∈ SO(n).

(i) (dϕR1)
−1
R2

= (dϕR1)ϕR1 (R2), for all R2 ∈ SO(n)
(ii) (dExpR1

)−1
H = −(dExpR1

)−H ◦ (dϕR1)ExpR1
(H), for all H ∈ TR1SO(n)

Let us now denote by γk(t, V0, ..., Vk) the Bézier curve of order k ∈ {2, 3} on
SO(n) with a number of control points Vi for i = 0, ..., k. Furthermore, similar to
the Euclidean case, we will suppose that there exists two artificial control points
( ̂Z−

i , ̂Z+
i ) on the left and on the right hand side of the interpolation point Ri for

i = 1, ..., (N − 1). Hence, the Bézier Curve γ : [0, N ] −→ SO(n) is defined by:

γ(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ2(t;R0, ̂Z−
1 , R1), if t ∈ [0, 1]

γ3(t − (i − 1);Ri−1, ̂Z+
i−1,

̂Z−
i , Ri), if t ∈ [i − 1, i], i = 2, ..., N − 1

γ2(t − (N − 1);RN−1, ̂Z+
N−1, RN ), if t ∈ [N − 1, N ]

In order to obtain equations that govern the control points of the C2 Bézier curve
on SO(n), one should begin to compute ( ̂Z−

i , ̂Z+
i ), for i = 1, ..., N − 1, control
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Algorithm 1. Construction of the C1 interpolating Bézier curve on SO(n).
Input: N ≥ 3, R = [R0, ..., RN ]T a matrix of size n(N +1)×n containing the (N +1)

interpolation points on SO(n).

Output: ̂Z and R̃.
1: for i = 1 : N − 1 do
2: Calculate Q = [Qi

0, ..., Q
i
N ]T a matrix of size n(N +1)×n containing the (N +1)

interpolation points on TRiSO(n):
3: for k = 0 : N do
4: Qi

k = LogRi
(Rk) = Ri log(RT

i Rk)

5: Calculate Xi = [(Bi
1)

−, ..., (Bi
N−1)

−]T a matrix of size n(N − 1) × n con-
taining the (N − 1) control points of the C2 Bézier curve βi on TRiSO(n), and
Q̃ = [Q̃i

0, ..., Q̃
i
N ]T a matrix of size n(N + 1) × n containing the new interpolation

points on TRiSO(n) using the prescribed method on section 2.

6: Calculate control point ̂Z−
i with ̂Z−

i = ExpRi
((Bi

i)
−)

7: Calculate the new interpolation points R̃k = ExpRi
(Q̃i

k).
8: end for
9: end for

10: return ̂Z and R̃,

points of the Bézier curve γ that ensure the C1 differentiability condition of γ
at knots Ri on SO(n). To do this, our main idea is to treat the fitting problem
on the tangent space TRi

SO(n) at a point Ri ∈ SO(n) as for the Euclidean
case. Consequently, for each i = 1, ..., N − 1, we would like to transfer the data
R0, ..., RN in each tangent space TRi

SO(n) using Riemannian logarithmic map.
The mapped data are then given by Q = (Qi

0, ..., Q
i
N ) with Qi

k = LogRi
(Rk)

for k = 0, ..., N . Applying our approach used to define a C2 Bézier curve on
the Euclidean space R

m in each tangent space TRi
SO(n), for i = 1, ..., N − 1,

provides a natural and intrinsic method to compute control points ( ̂Z−
i , ̂Z+

i ) of
the desired C1 Bézier curve γ on SO(n).

Theorem 1. Let R0, ..., RN be a finite sequence of distinct points in the special
orthogonal group SO(n) with RT

i Rk, i �= k, sufficiently close to In. For each
i = 1, ..., N − 1, Q = (Qi

0, ..., Q
i
N ) are the corresponding mapped data in the

tangent space TRi
SO(n) at Ri defined by Qi

k = LogRi
(Rk) for k = 0, ..., N . Set

t0 = 0 < ... < tN = N a sequence of time instants. Then, there exists a unique
matrix Xi = [(B1

1)
−, ..., (B1

N−1)
−]T ∈ R

n(N−1)×n containing the (N − 1) control
points that generate the C2 Bézier curve βi, in each tangent space TRi

SO(n)
and a matrix Q̃ = [Q̃i

0, ..., Q̃
i
N ]T of size n(N +1)×n containing the new (N +1)

interpolation points in each tangent space TRi
SO(n).

Proposition 1. Under the same hypotheses of Theorem1, there exists a unique
matrix Z = [ ̂Z−

1 , ..., ̂Z−
N−1]

T ∈ R
n(N−1)×n, containing the (N − 1) control points

that generate the Bézier curve γ interpolating the points Ri at ti on SO(n), for
i = 0, ..., N . The rows of ̂Z are given by:

̂Z−
i = ExpRi

(x̃i), i = 1, ..., N − 1. (17)
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where x̃i, represent the row i of Xi in TRi
SO(n), for i = 1, .., N − 1. Moreover,

the new (N + 1) interpolation points in SO(n) are given by:

R̃k = ExpRi
(Q̃i

k), k = 0, ..., N ; i = 1, ..., N − 1. (18)

Algorithm 1 provides a detailed exposition of the steps of the proof of Theorem1
and Proposition 1.

Corollary 1. The Bézier path γ : [0, 1] → SO(n) is C1 on SO(n).

Proof. The following result may be proved in much the same way as Corollary
3.3. in [11].

We are now in a position to formulate the main theorem of this section,
which contains the counterpart of the equations derived in the last section that
generate control points of a C2 Bézier curve on R

m. Let us assume that γ is
C1, so that the solution ̂Z is obtained. Let us denote by Z−

i and Z+
i the new

control points on the left and on the right side of the interpolation point R̃i

that generate the C2 Bézier curve γ on SO(n). The key point to find the control
points Z−

i , for i = 1, ..., N −1 is similar to the Euclidean case. That is, we might
know Z−

1 (and therefore Z+
1 by the C1 differentiability condition on SO(n)) and

wish to define iteratively Z−
i for i = 2, ..., N − 1 (and obviously Z+

i in much the
same way as Z+

1 ).

Algorithm 2. Construction of the C2 interpolating Bézier curve on SO(n).
Input: N ≥ 3, R̃ = [R̃0, ..., R̃N ]T a matrix of size n(N +1)×n containing the (N +1)

interpolation points on SO(n).
Output: Z.
1: Calculate ̂Z = [ ̂Z−

1 , ..., ̂Z−
N−1]

T using Algorithm 1.

2: Set Z−
1 = ̂Z−

1 .
3: Calculate control point Z+

1 :
4: Z+

1 = ExpR̃1
(− 2

3
Exp−1

R̃1
(Z−

1 ))

5: Calculate control point Z−
2 :

6: Z−
2 = Exp

Z+
1

(

1
3

(

(dϕR̃1
)
Z−

1

(

α̇(1, R̃0, Z
−
1 )

)

− 4α̇(0, Z−
1 , R̃1)

))

7: for i = 2 : N − 2 do do
8: Z+

i = ExpR̃i
(−Exp−1

R̃1
(Z−

i ))

9: Z−
i+1 = Exp

Z+
i

((

(dϕR̃i
)
Z−

i

(

α̇(1, Z+
i−1, Z

−
i )

) − 2α̇(0, Z−
i , R̃i)

))

10: end for
11: Calculate control point Z+

N−1:

12: Z+
N−1 = ExpR̃N−1

(− 2
3
Exp−1

R̃N−1
(Z−

N−1))

13: return Z,
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Theorem 2. Let R̃0, ..., R̃N be a set of distinct points in the special orthog-
onal group SO(n) given by Eq. (18) and α(t) the shortest geodesic arc join-
ing control points of the curve γ on SO(n) given by Eq. (16). Let X1 =
[(B1

1)
−, ..., (B1

N−1)
−]T be the matrix of size n(N − 1) × n containing the con-

trol points of the C2 Bézier curve β1 in TR1SO(n). Then, there exists a unique
matrix Z = [Z−

1 , ..., Z−
N−1]

T ∈ R
n(N−1)×n, containing the (N − 1) control points

that generate the C2 Bézier curve γ interpolating the points R̃i at ti on SO(n),
for i = 0, ..., N . The rows of Z are given by:

Fig. 1. Example of an interpolating path on SO(3) applied to rotate a 12 sided dice
at given time instants (1, 5, 9, 13).
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(i) Z−
1 = ExpR1

((B1
1)

−).

(ii) Z−
2 = ExpZ+

1

(

1
3

(

(dϕR̃1
)Z−

1

(

α̇(1, R̃0, Z
−
1 )

)

− 4α̇(0, Z−
1 , R̃1)

))

.

(iii) Z−
i+1 = ExpZ+

i

((

(dϕR̃i
)Z−

i

(

α̇(1, Z+
i−1, Z

−
i )

) − 2α̇(0, Z−
i , R̃i)

))

,
i = 2, ..., N − 2.

We illustrate the proposed method to construct a smooth interpolating path
on SO(3) from four rotation matrices R1, R2, R3, and R4. We display the result
in Fig. 1 where rotations are applied to rotate a 12 sided dice and the given time
instants are displayed in a box. We can easily check that the resulting curve path
is smooth including at the interpolation points.

4 Conclusion

In this paper, we have introduced a new framework and algorithms to study the
fitting problem of C2 Bézier curves to a finite set of time-indexed data points on
the special orthogonal group SO(n). The proposed method takes into account the
global symmetries defined in the joint points. Therefore, the presented approach
is valid on any locally symmetric space and other Riemannian symmetric spaces.
In the future, we intend to extend the theory and then apply it to more general
nonlinear manifolds.

Acknowledgement. This research was partially supported by The National Center
for Scientific Research as CNRS PRIME Grant and the I-Site Clermont Auvergne
project.
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A Formalization of the Natural Gradient
Method for General Similarity Measures
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Abstract. In optimization, the natural gradient method is well-known
for likelihood maximization. The method uses the Kullback–Leibler
(KL) divergence, corresponding infinitesimally to the Fisher–Rao metric,
which is pulled back to the parameter space of a family of probability
distributions. This way, gradients with respect to the parameters respect
the Fisher–Rao geometry of the space of distributions, which might dif-
fer vastly from the standard Euclidean geometry of the parameter space,
often leading to faster convergence. The concept of natural gradient
has in most discussions been restricted to the KL-divergence/Fisher–
Rao case, although in information geometry the local C2 structure of
a general divergence has been used for deriving a closely related Rie-
mannian metric analogous to the KL-divergence case. In this work, we
wish to cast natural gradients into this more general context and provide
example computations, notably in the case of a Finsler metric and the
p-Wasserstein metric. We additionally discuss connections between the
natural gradient method and multiple other optimization techniques in
the literature.

Keywords: Optimization · Natural gradient · Statistical manifolds

1 Introduction

The natural gradient method [2] in optimization originates from information geom-
etry [4], which utilizes the Riemannian geometry of statistical manifolds (the
parameter spaces of model families) endowed with the Fisher–Rao metric. The
natural gradient is used for minimizing the Kullback–Leibler (KL) divergence, a
similarity measure between a model distribution and a target distribution, that
can be shown to be equivalent to maximizing model likelihood of given data.
The success of natural gradient in optimization stems from accelerating likelihood
maximization and providing infinitesimal invariance to reparametrizations of the
model, providing robustness towards arbitrary parametrization choices.

In the modern formulation of the natural gradient, a Riemannian metric
on the statistical manifold is chosen, with respect to which the gradient of the
given similarity is computed [4, Sec. 12]. The choice of the Riemannian met-
ric should, however, relate closely to the similarity measure being minimized.
c© Springer Nature Switzerland AG 2019
F. Nielsen and F. Barbaresco (Eds.): GSI 2019, LNCS 11712, pp. 599–607, 2019.
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We have illustrated this in Fig. 1, where model selection for Gaussian process
regression is carried out by maximizing the prior-likelihood of the data with nat-
ural gradients stemming form different metrics. Clearly, the Fisher–Rao metric—
which infinitesimally corresponds to the KL-divergence—achieves the fastest
convergence.

An example of an approach to choose a related Riemannian metric is the
classical Newton’s method that derives a metric from the Hessian of a convex
objective function, or its absolute value in the non-convex case [7]. Unfortu-
nately, evaluating the Hessian is not feasible in some cases. Instead, we can
compute a local Hessian, which corresponds to a local second order expansion of
the similarity measure [3]. This approach generalizes the natural gradient from
the KL-divergence case to general similarity measures, and to avoid confusion
with the well-known KL-divergence setting, we refer to this approach as the for-
mal natural gradient. We furthermore discuss the similarities between the trust
region, proximal, and natural gradient methods in Sect. 3 and provide example
computations in Sect. 4.

Iteration

Fig. 1. Maximizing prior likelihood for Gaussian process regression using natural gra-
dients under different metrics on Gaussian distributions. Convergence plots on left.
Data and model fit, with optimal exponentiated quadratic kernel parameters, on right.

2 Useful Metrics via Formalizing the Natural Gradient

The natural gradient is computed with respect to a chosen metric on the statis-
tical manifold, which often results from pulling back a metric between distribu-
tions. This way, the gradient takes into account how the metric on distributions
penalizes movement into different directions. We will now review how the nat-
ural gradient is computed given a Riemannian metric. Then, we introduce the
formal natural gradient, which derives this metric from the similarity measure.

Statistical Manifold. Let AC(X) denote the set of absolutely continuous prob-
ability distributions on some manifold X. A statistical manifold is defined by a
triple (X,Θ, ρ), where X is called the sample space and Θ ⊆ R

n the param-
eter space. Then, ρ : Θ → AC(X) maps a parameter to a density, given by
ρ : θ �→ ρθ(·), for any θ ∈ Θ. Abusing terminology, we also call Θ the statistical
manifold.



Formal Natural Gradient 601

Cost Function. Let a similarity measure c∗ : AC(X) × AC(X) → R≥0 (e.g. a
metric or an information divergence) be defined on AC(X) satisfying c∗(ρ, ρ′) = 0
if and only if ρ = ρ′. Assume c∗ to be strictly convex in ρ. Given a target
distribution ρ ∈ AC(X) and a statistical manifold (X,Θ, ρ), we wish to minimize
the cost function c → Θ × AC(X) → R≥0 given by

c(θ, ρ) = c∗(ρθ, ρ). (2.1)

If ρ = ρθ′ for some θ′ ∈ Θ, then by abuse of notation we write c(θ, θ′). We finally
assume that θ �→ c(θ, θ′) is C2 whenever θ �= θ′.

Natural Gradient. Assume a Riemannian structure (Θ, gΘ) on the statistical
manifold. The Riemannian metric gΘ induces a metric tensor GΘ, given by
gΘ

θ (u, v) = uT GΘ
θ v and a distance function which we denote by dΘ. The vectors

u, v belong to the tangent space TθΘ at θ. It is common intuition that the
negative gradient v = −∇θc(θ, ρ) gives the direction of maximal descent for c.
However, this is only true on a Euclidean manifold. Consider

v̂ = arg min
v∈TθΘ:dΘ(θ,θ+v)=Δ

c(θ + v, ρ), (2.2)

where θ + v is to be understood in a chart of Θ, and Δ > 0 defines the radius of
the trust region. Linearly approximating the objective and quadratically approx-
imating the constraint, this is solved using Lagrangian multipliers, giving the
natural gradient

v̂ = − 1
λ

[
GΘ

θ

]−1 ∇θc(θ, ρ), (2.3)

for some Lagrangrian multiplier λ > 0, which we refer to as the learning rate.
Below, a similar derivation is carried out in more detail.

Formal Natural Gradient. Traditionally, the natural gradient uses the Fisher–
Rao metric when the similarity measure used is the KL-divergence. We will
now show, how a trust region formulation with respect to the chosen similarity
measure can be used to derive a natural metric under which the natural gradient
can be computed, resulting in the formal natural gradient. Thus, consider the
minimization task

v̂ := arg min
v∈TθΘ, c(θ+v,θ)=Δ

c(θ + v, ρ). (2.4)

We approximate the constraint by the second degree Taylor expansion

c(θ + v, θ) ≈ 1
2
vT

(∇2
η→θc(η, θ)

)
v, (2.5)

where the 0th and 1st degree terms disappear as c(θ + v, θ) has a minimum 0
at v = 0. We call the symmetric positive definite matrix Hc

θ := ∇2
η→θc(η, θ) the

local Hessian. Then, we further approximate the objective function

c(θ + v, ρ) ≈ c(θ, ρ) + ∇θc(θ, ρ)T v. (2.6)
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Writing the approximate Langrangian L(v) of (2.4) with a multiplier λ > 0, we
get

L(v) ≈ c(θ, ρ) + ∇θc(θ, ρ)T v +
λ

2
vT

(∇2
η→θc(η, θ)

)
v. (2.7)

Thus by the method of Langrangian multipliers, (2.4) is solved as

v̂ = − 1
λ

[Hc
θ ]−1 ∇θc(θ, ρ). (2.8)

We refer to v̂ as the formal natural gradient with respect to c.

Remark 1. We could have just substituted η = θ in the local Hessian if ∇2
ηc(η, θ)

was continuous at η. However, when studying Finsler metrics later in this work,
the expression has a discontinuity at η = θ. Therefore, a direction for a limit has
to be chosen, and as a straight-forward candidate we compute the limit from the
direction of the gradient.

Metric Interpretation. The local Hessian Gc
θ can be seen as a metric tensor

at any θ ∈ Θ, inducing an inner product gc
θ : TθΘ×TθΘ → R given by gc

θ(v, u) =
vT Hc

θu. This imposes a pseudo-Riemannian structure on Θ, forming the pseudo-
Riemannian manifold (Θ, gc). Therefore, Gc

x provides us a natural metric under
which to compute the natural gradient for a general c∗. If ρ has a full rank
Jacobian everywhere, then a Riemannian metric is retrieved. Also, there is an
obvious pullback structure at play. Recall, that the cost is defined by c(θ, θ′) =
c∗(ρθ, ρθ′). Then, computing the local Hessian yields

Hc
θ = JT

θ Hc∗
ρθ

Jθ, (2.9)

where Hc∗
ρθ

= ∇2
ρ→ρθ

c∗(ρ, ρθ). Thus, Hc results from pulling back the c∗ induced
metric tensor Hc∗

on AC(X) to the statistical manifold Θ. In information geom-
etry, this Riemannian metric is said to be induced by the corresponding diver-
gence (similarity measure) [3]. Therefore, the formal natural gradient is just the
Riemannian gradient under the aforementioned induced metric.

Asymptotically Newton’s Method. We provide a straightforward result,
stating that the local Hessian approaches the actual Hessian in the limit, thus
the formal natural gradient method approaches Newton’s method. This is well
known in the Fisher–Rao case, but for completeness we provide the result for
the formal natural gradient.

Proposition 1. Assume c(θ, ρ) = c(θ, θ′) for some θ′ ∈ Θ, and that c is C2 in
θ. Then, the natural gradient yields asymptotically Newton’s method.

Proof. The Hessian at θ is given by ∇2
θc(θ, θ

′). Then, as c is C2 in the first
argument, passing the limit θ → θ′ yields

Hc
θ = ∇2

η→θc(η, θ) θ→θ′
→ ∇2

η→θ′c(η, θ′) = ∇2
η=θ′c(η, θ′), (2.10)

where the last expression is the Hessian at θ′.
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3 Loved Child has Many Names – Related Methods

In this section, we discuss connections between seemingly different optimization
methods. Some of these connections have already been reported in the literature,
some are likely to be known to some extent in the community. However, the
authors are unaware of previous work drawing out these connections in their full
extent. We provide such a discussion, and then present other related connections.

As discussed in [14], proximal methods and trust region methods are equiva-
lent up to learning rate. Trust region methods employ an l2-metric constraint

xt+1 = arg min
x:‖x−xt‖2≤Δ

f(x), Δ > 0, (3.1)

whereas proximal methods include a l2-metric penalization term

xt+1 = arg min
x

{
f(x) +

1
2λ

‖x − xt‖22
}

, λ > 0, (3.2)

The two can be shown to be equivalent up to learning rate via Lagrangian duality.
Instead of the l2 metric penalization, mirror gradient descent [13] employs a

more general proximity function Ψ : Rn × R
n → R>0, that is strictly convex in

the first argument. Then, the mirror descent step is given by

xt+1 = arg min
x

{
〈x − xt,∇f(xt)〉 +

1
λ

Ψ(x, xt)
}

. (3.3)

Commonly, Ψ is chosen to be a Bregman divergence Dg, defined by choosing a
strictly convex C2 function g and writing

Dg(x, x′) = g(x) − g(x′) − 〈∇g(x′), x − x′〉. (3.4)

To explain how these methods are related to the natural gradient, assume that we
are minimizing a general similarity measure c(x, y) with respect to x, as in Sect. 2.
Recall, that we first defined the natural gradient as a trust region step. In order to
derive an analytical expression for the iteration, we approximated the objective
function with the first order Taylor polynomial and the constraints by the local
Hessian and then used Lagrangian duality to yield a proximal expression, which
yields the formal natural gradient when solved. In Sect. 4, we will show how this
workflow indeed corresponds to known examples of the natural gradient.

Further Connections. Raskutti and Mukherjee [16] showed, that Bregman
divergence proximal mirror gradient descent is equivalent to the natural gradient
method on the dual manifold of the Bregman divergence. Khan et al. [8], consider
a KL divergence proximal algorithm for learning conditionally conjugate expo-
nential families, which they show to correspond to a natural gradient step. For
exponential families, the KL-divergence corresponds to a Bregman divergence,
and so the natural gradient step is on the primal manifold of the Bregman diver-
gence. Thus the result seems to conflict with the resut in [16]. However, this can
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be explained, as the gradient is taken with respect to a different argument of the
divergence, i.e., they consider ∇xDg(x′, x) and not ∇xDg(x, x′). It is intriguing
how two different geometries are involved in this choice.

Pascanu and Bengio [15] remarked on the connections between the natural
gradient method and Hessian-free optimization [11], Krylov Subspace Descent
[17], and TONGA [9]. The main connection between Hessian-free optimization
and Krylov subspace descent is the use of extended Gauss–Newton approximation
of the Hessian [18], which gives a similar square form involving the Jacobian as
the pullback Fisher–Rao metric on a statistical manifold. The connection was
further studied by Martens [12], where an equivalence criterion between the
Fisher–Rao natural gradient and extended Gauss–Newton was given.

4 Example Computations

We will now provide example computations for the local Hessian Hc of differ-
ent similarity measures c, as it is the essential object in computing the natu-
ral gradient given in (2.8). We first show that in the cases of KL-divergence
and a Riemannian metric, the definition of the formal natural gradient matches
the classical definition, as expected. Furthermore, we contribute local Hessians
for general f -divergences and Finsler metrics, specifically for the p-Wasserstein
metrics.

Natural Gradient of f-Divergences. Let ρ, ρ′ ∈ AC(X) and f : R>0 → R≥0

be a convex function satisfying f(1) = 0. Then, the f -divergence from ρ′ to ρ is

Df (ρ||ρ′) =
∫

X

ρ(x)f
(

ρ′(x)
ρ(x)

)
dx. (4.1)

Now, consider the statistical manifold (Rd, Θ, ρ), and compute the local Hessian
[
H

Df

θ

]

ij
= ∇2f(1)

∫

X

∂ log ρθ(x)
∂θi

∂ log ρθ(x)
∂θj

ρθ(x)dx. (4.2)

Substituting f = − log in (4.1) results in the KL-divergence, denoted by
DKL(ρ||ρ′). Noticing that ∇2f(1) = 1 with this substitution, we can write (4.2)
as H

Df

θ = ∇2f(1)HDKL
θ , where the local Hessian HDKL

θ is also the Fisher–Rao
metric tensor at θ, and thus the natural gradient of Amari [2] is retrieved.

Natural Gradient of Riemannian Distance. Let (M, g) be a Riemannian
manifold with the induced distance function dg and the metric tensor at ρ ∈ M
denoted by GM

ρ . Finally, denote by ρθ a submanifold of M parametrized by

θ ∈ Θ. Then, when c = 1
2d2, we compute G

1
2dg

θ as follows

[
H

1
2d2

θ

]

ij
=

1
2

(
∂

∂θj
ρθ

)T [
∇2

ρη→ρθ
d2(ρη, ρθ)

] (
∂

∂θi
ρθ

)

+
1
2

[
∂2

∂θj∂θi
ρθ

]
[∇ρη→ρθ

d2(ρη, ρθ)
]
,

(4.3)
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as θ′ → θ, the second term vanishes. Finally, ∇2
ρη→ρθ

d2(ρη, ρθ) = 2GM
ρθ

, thus

H
1
2dg

θ = JT
θ GM

xθ
Jθ, (4.4)

where Jθ = ∂
∂θρθ denotes the Jacobian. Therefore, the formal natural gradi-

ent corresponds to the traditional coordinate-free definition of a gradient on a
Riemannian manifold, when the metric is given by the pullback.

Natural Gradient of Finsler Distance. Let (M,F ) denote a Finsler mani-
fold, where Fρ : TρM → R≥0, for any ρ ∈ M , is a Finsler metric, satisfying the
properties of strong convexity, positive 1-homogeneity and positive definiteness.
Then, a distance dF is induced on M by

dF (ρ, ρ′) = inf
γ

∫ 1

0

Fγ(t)(γ̇(t))dt, ρ, ρ′ ∈ M (4.5)

where γ is any continuous, unit-parametrized curve with γ(0) = ρ and γ(1) = ρ′.
The fundamental tensor GF of F at (ρ, v) is defined as GF

ρ (v) = 1
2∇2

vF 2
ρ (v).

Then, GF
ρ is 0-homogeneous as the second differential of a 2-homogeneous func-

tion. Therefore, GF
ρ (λv) = GF

ρ (v) for any λ > 0. Furthermore, GF
ρ (v) is positive-

definite when v �= 0. Now, let u = −Jθ∇θd
2
F (ρθ, ρ

′), and as we can locally write
d2F (ρ, ρ′) = F 2

ρθ(v) for a suitable v, then

H
1
2d2

F

θ =
1
2
∇2

η→θd
2
F (ρη, ρθ) =

1
2

lim
λ→0

∇2
v=λuF 2

ρθ
(v) = JT

θ GF
ρθ

(u)Jθ. (4.6)

Coordinate-free gradient descent on Finsler manifolds has been studied by
Bercu [5]. The formal natural gradient differs slightly from this, as we use v =
−Jθ∇θd

2
F (ρθ, ρ

′) in the preconditioning matrix GF
(ρθ,v) (see Remark 1), where as

in [5], v is chosen to maximize the descent. Thus the natural gradient descent
in the Finsler case approximates the geometry in the direction of the gradient
quadratically to improve the descent, but fails to take the entire local geometry
into account.

p-Wasserstein Metric. Let X = R
n and ρ ∈ Pp(X) if

∫

X

dp
2(x0, x)ρ(x)dx, for some x0 ∈ X, (4.7)

where d2 is the Euclidean distance. Then, the p-Wasserstein distance Wp between
ρ, ρ′ ∈ Pp(X) is given by

Wp(ρ, ρ′) =
(

inf
γ∈ADM(ρ,ρ′)

∫

X×X

dp
2(x, x′)dγ(x, x′)

) 1
p

, (4.8)

where ADM(ρ, ρ′) is the set of joint measures with marginal densities ρ and ρ′.
The p-Wasserstein distance is induced by a Finsler metric [1], given by

Fρ(v) =
(∫

X

‖∇Φv‖p
2dρ

) 1
p

, (4.9)
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where v ∈ TρPp(X) and Φv satisfies v(x) = −∇ · (ρ(x)∇xΦv(x)) for any x ∈ X,
where ∇· is the divergence operator. Now, choose v = −Jθ∇θW

2
p (ρθ, ρ). Then,

through a cumbersome computation, we compute how the local Hessian acts on
two tangent vectors dθ1, dθ2 ∈ TθΘ

H
1
2W 2

p

θ (dθ1, dθ2)

= (2 − p)F 2(1−p)
ρθ

(v)
(∫

X

‖∇Φv‖p−2
2 〈∇Φdθ1 ,∇Φv〉dρθ

)

×
(∫

X

‖∇Φv‖p−2
2 〈∇Φdθ2 ,∇Φv〉dρθ

)

+ F 2−p
ρθ

(v)
∫

X

‖∇Φv‖p−2
2 〈∇Φdθ1 ,∇Φdθ2〉dρθ

+ (p − 2)F 2−p
ρθ

(v)
∫

X

‖∇Φv‖p−4
2 〈∇Φdθ1 ,∇Φv〉〈∇Φdθ2 ,∇Φv〉dρθ,

(4.10)

where Jθdθi = −∇ · (ρθ∇Φdθi
) for i = 1, 2. The case p = 2 is special, as the

2-Wasserstein metric is induced by a Riemannian metric, whose pullback can be
recovered by substituting p = 2 in (4.10), yielding

H
1
2W 2

2
θ (dθ1, dθ2) =

∫

X

〈∇Φdθ1 ,∇Φdθ2〉dρθ. (4.11)

This yields the natural gradient of W 2
2 as introduced in [6,10].

Acknowledgements. The authors were supported by Centre for Stochastic Geometry
and Advanced Bioimaging, and a block stipendium, both funded by a grant from the
Villum Foundation. We furthermore wish to thank the anonymous reviewers for their
very useful comments.

References

1. Agueh, M.: Finsler structure in the p-Wasserstein space and gradient flows.
Comptes Rendus Mathematique 350(1–2), 35–40 (2012)

2. Amari, S.I.: Natural gradient works efficiently in learning. Neural Comput. 10(2),
251–276 (1998)

3. Amari, S.i.: Divergence function, information monotonicity and information geom-
etry. In: Workshop on Information Theoretic Methods in Science and Engineering
(WITMSE). Citeseer (2009)

4. Amari, S.I.: Information Geometry and Its Applications. Springer, Tokyo (2016).
https://doi.org/10.1007/978-4-431-55978-8

5. Bercu, G.: Gradient methods on Finsler manifolds. In: Proceedings of the Workshop
on Global Analysis, Differential Geometry and Lie Algebras, pp. 230–233 (2000)

6. Chen, Y., Li, W.: Natural gradient in Wasserstein statistical manifold. arXiv
preprint arXiv:1805.08380 (2018)

7. Dauphin, Y.N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., Bengio, Y.: Iden-
tifying and attacking the saddle point problem in high-dimensional non-convex
optimization. In: Advances in Neural Information Processing Systems, pp. 2933–
2941 (2014)

https://doi.org/10.1007/978-4-431-55978-8
http://arxiv.org/abs/1805.08380


Formal Natural Gradient 607
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Abstract. Variations of the curves and trajectories in 1D can be anal-
ysed efficiently with functional data analysis tools. The main sources
of variations in 1D curves have been identified as amplitude and phase
variations. Dealing with the latter gives rise to the problem of curve
alignment and registration problems. It has been recognised that it is
important to incorporate geometric features of the curves in develop-
ing statistical approaches to address such problems. Extending these
techniques to multidimensional curves is not obvious, as the notion of
multidimensional amplitude can be defined in multiple ways. We pro-
pose a framework to deal with the curve alignment in multidimensional
curves as 3D objects. In particular, we propose a new distance between
the curves that utilises the geometric information of the curves through
the Frenet-Serret representation of the curves. This can be viewed as
a generalisation of the elastic shape analysis based on the square root
velocity framework. We develop an efficient computational algorithm to
find an optimal alignment based on the proposed distance using dynamic
programming.

Keywords: Curve registration · Functional data analysis ·
Frenet-Serret frames

1 Introduction

We consider the general problem of aligning multidimensional curves as 3D
objects. The curve alignment and registration problems are well studied for
scalar curves (1D) under functional data analysis framework [7,10]. The richness
of the registration problem comes from the variety of the criterion for compar-
ing and measuring the similarity between the curves, which may also depend
on the context. Nevertheless, in practice, good registration techniques aim to
align significant features of the curves, called landmarks, such as peaks and
valleys, and more generally geometric patterns of the curves. Many statistical
approaches have been developed to automate this process, without the need of
manually identifying the landmarks. As the geometric information is contained
c© Springer Nature Switzerland AG 2019
F. Nielsen and F. Barbaresco (Eds.): GSI 2019, LNCS 11712, pp. 608–617, 2019.
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in the derivatives, it is often better to align the curves based on the derivatives.
A related problem is to identify the sources of variations, in particular, decou-
pling amplitude and phase variations has been the main framework to study the
variations of 1D curves [6].

While the notion of amplitude is univocally defined for scalar curves, the
generalisation to curves in Euclidean space R

d can be done in multiple ways
[5]. Among possible approaches, the use of geometric features is shown to be
effective for registering curves. This idea is formalised within the framework of
elastic shape analysis [9], by considering significant landmarks and looking for
invariant properties through group actions such as isometries or invariance by
re-parametrisation. The basis of shape analysis is provided by the definition of
proper spaces for representing objects, and the definition of an adapted dis-
tance. One of the successful applications of shape analysis for curves in general
Euclidean spaces or more exotic ones is found with the use of the square root
velocity transform (SRVT, [9]). The geometric feature is embedded in the first
order derivative of the curves, the tangent of the curves.

In this article, we generalise the methodology based on the SRVT for the
registration of two curves. Instead of using only the tangent information, we
use an exhaustive description of the geometry of curves given by the so-called
Frenet frame, which corresponds to the higher order information. This moving
frame gives an explicit link to the complete geometric characterisation of a curve
(curvature and torsion) through the Frenet-Serret formula. We propose a new
distance between the curves based on the Frenet frame and demonstrates that the
registration of the curves based on the Frenet frames is equivalent to stretching
the curvatures and torsions. We show how to find an optimal solution using
dynamic programming.

The article is organised as follows. In Sect. 2, we introduce the Frenet frame-
work and review the square root velocity framework. Section 3 present our pro-
posed methodology of curve alignment under the Frenet framework. Section 4
develops a computational algorithm.

2 Preliminaries

2.1 Frenet-Serret Framework

We consider regular curves x, i.e, functions such that the derivatives x(k)(·), k =
0, . . . 3 exist, are continuous, and for all t in [0, T ], we have ẋ(t) = x(1)(t) �= 0
and det

(
x(1)(t), x(2)(t), x(3)(t)

) �= 0. Consequently, we can write x(t) = X (s(t))
where s �→ X(s) is the arclength parametrised curve and t �→ s(t) is the curvi-
linear speed ṡ(t) = ‖ẋ(t)‖ and s(t) =

∫ t

0
‖ẋ(u)‖ du. The length of the curve is

L = s(T ). For clarity, we write d
dtx = ẋ(t) for differentiation with respect to time

and d
dsX = X ′(s) for differentiation with respect to the curvilinear abscissa s.

We denote the space of warping functions as

W+
T,L =

{
h : [0, T ] → [0, L] |h, h−1 ∈ C1, ḣ > 0

}

which corresponds to the space of increasing diffeormorphisms.
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The parametrised curve {s �→ X(s), s ∈ [0, L]} is the geometric curve associ-
ated with x. For each s ∈ [0, L], the tangent vector T(s) = X ′(s) is normalised,
and we can define additional normalised vectors N and B such that N(s) ∝ T′(s)
and B(s) ∝ T(s) × N(s). Then, the matrix Q(s) = [T(s)|N(s)|B(s)] is an
orthonormal frame, which can be obtained by Gram-Schmidt orthonormalisa-
tion of the frame [X ′(s)|X ′′(s)|X ′′′(s)]. Quite remarkably, the Frenet frames are
shown to be the solution of the following ODE:

⎧
⎨

⎩

T′(s) = κ(s)N(s) ,
N′(s) = −κ(s)T(s) + τ(s)B(s) ,
B′(s) = −τ(s)N(s) ,

(1)

where the functions s �→ κ(s), τ(s) are respectively the curvature and torsion
(with a positivity condition for the curvature κ). In the rest of the paper, we
will denote θ : s �→ (κ(s), τ(s)) the corresponding R

2-valued function, and θ
will be called the generalised curvature. An alternative interpretation of this
Frenet-Serret formula is that it defines an ODE in the Lie group SO(3) as:

Q̇(s) = Q(s)Aθ (s) (2)

where the matrix

Aθ (s) �

⎡

⎣
0 −κ(s) 0

κ(s) 0 −τ(s)
0 τ(s) 0

⎤

⎦ , (3)

is in the Lie algebra of skew-symmetric matrices, with the generalised curvature
θ and the initial condition Q(0) = Q0.

The fundamental theorem of Differential Geometry of curves [2] is based
on the Frenet-Serret Eq. (2) and claims that two curves x0, x1 with the same
generalised curvature θ (hence L0 = L1) differ only by a rigid (Euclidean) trans-
formation and a re-parametrisation: there exists a unique (a,O) ∈ R

3 × SO(3)
and h ∈ W+

T,L such that

x1(t) = a + Ox0 ◦ h(t) .

Obviously this means that the Frenet frames Q0 and Q1 satisfy Q1(s) =
OQ0(γ(s)) for all s ∈ [0, L], and an appropriate diffeomorphism γ. It is clear
then that Qi or θi represent the shape of the curves xi, for i = 0, 1.

2.2 Elastic Shape Analysis

The shapes X0,X1 are what is left invariant under the actions of the rigid
group and the group of re-parametrisations. We now focus on the development
of an elastic shape analysis framework for the comparison of two different shapes
through the action of specific groups of local (and nonlinear) deformations. This
is motivated by finding the most appropriate warping h : [0, T ] −→ [0, T ] ∈ W+

T,T

such that the two curves x1 (h(t)) = X1 (s1 (h(t))) and x0(t) = X0 (s0(t)) looks
similar. This is the standard alignment or registration problem, which has been
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studied in various ways, in particular based on geometric features through the
geodesic distance between curves, [1,4,7,11]. We focus here on the geometric
features of the curves described by Frenet frames that can be seen as an exten-
sion of the Square Root Velocity Transform (SRVT) [9]. For each curve x, the
square root velocity function is defined as

qx(t) =
ẋ(t)

√‖ẋ(t)‖ =
√

ṡ(t)T (s(t)) ,

which can be viewed as a representation of the shape of the curve. The dis-
tance between two curves is then defined as the L2 distance between qx and is
parametrisation-independent.

The SRVF transformation F : x �→ ẋ(t)/
√‖ẋ(t)‖ helps defining a pre-shape

space that is used for characterising the underlying shape of a given function. In
order to align the curves x0, x1 with SRVF, we solve the following minimisation
problem that defines at the same time a geodesic distance:

dsrvf (x0, x1) = inf
O∈SO(3),h∈W+

T,T

∫ T

0

∥
∥
∥
∥q0(t) − O

√
ḣ(t)q1(h(t))

∥
∥
∥
∥

2

dt. (4)

As the distance dsrvf is invariant under re-parametrisation (and translation
and rotation), it can be conveniently re-written by using the increasing diffeo-
morphisms γ : [0, L0] → [0, L1] ∈ W+

L0,L1
such that s1◦h = γ◦s0 and by defining

the discrepancy

R(O, γ) =
∫ L0

0

∥
∥
∥T0(s) −

√
γ̇(s)OT1(γ(s))

∥
∥
∥
2

2
ds . (5)

The distance dsrvf and the corresponding optimal registration is obtained
by solving the following program (O∗, γ∗) = minγ,O R(O, γ) for γ ∈ W+

L0,L1
.

The optimal registration h∗ ∈ W+
T,T is then decomposed as h∗ = s−1

1 ◦ γ∗ ◦ s0.
While the warping functions si, i = 0, 1 are related to curvilinear speeds along
the shapes Xi, i = 0, 1, the diffeomorphism γ∗ is a non-linear curve stretching
that induces a deformation of the shape X1 towards the shape X0. We elaborate
on this analysis for defining a distance and the corresponding alignment problem
that fully exploit the geometry of the curve.

3 Elastic Shape Analysis and Curvature Stretching

3.1 Geometry Stretching

The previous section shows the alignment of x0, x1 is not done by changing
the curvilinear speed but by changing the geometry of the curves. Indeed, the
elastic distance induces a specific family of transformations on the geometry of
the curves. We have seen that the warping γ∗ permits to transform a curve of
length L0 to a curve of length L1 by a non-linear (diffeomorphic) stretching.
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The two Frenet paths Q0 : [0, L0] −→ SO(3) and Q1 : [0, L1] −→ SO(3)
are stretched with γ ∈ W+

L0,L1
. From Sect. 2.1, we know that the Frenet path

s �→ Q̃1(s) = Q1(γ(s)) is the solution to a new Frenet-Serret ODE:

d

ds
Q̃1(s) = Q′

1(γ(s))γ′(s) ,

= Q1 (γ(s)) Aθ (γ(s))γ′(s) ,

= Q̃1(s)Aθ̃ (s) ,

This means that the shape X1 is stretched to a new shape X̃1 that possesses
a generalised curvature θ̃(s) � θ(γ(s))γ′(s). In the case of equal length curves
(L0 = L1 = L), the standard group of non-linear stretching W+

L,L defines a family
of deformations that corresponds to a group action on the set of generalised
curvatures Θ = {θ = (κ, τ), κ > 0}: for any γ ∈ W+

L,L, we have θ �→ γ · θ =
γ′θ ◦ γ. Indeed, we can check that for γ1, γ2 ∈ W+

L,L, we have

(γ2 ◦ γ1) · θ = γ2 · (γ1 · θ) .

In general, the problem of finding a proper stretching γ between θ0 and θ1

can be expressed as solving the boundary value problem of finding γ such that
θ1(γ(s))γ′(s) = θ0(s) for all s ∈ [0, L0] with the constraint γ(0) = 0, γ(L0) = L1

and γ′ > 0. Nevertheless, it is easy to see that there is no solution in general for
stretching any geometry into another: if θ0 and θ1 are two generalised curvatures
such that the torsions are τ0 > 0 and τ1 < 0, then we cannot find γ such that
γ′τ1(γ) = τ0.

A relaxation of that problem can be turned into the standard registration
problem considered by SRVF, where we introduce a distance d defined on SO(3)
and we aim at solving the problem of calculus of variations

⎧
⎪⎨

⎪⎩

minγ

∫ L0

0
d (Q0(s),Q1(γ(s)))

√
γ′(s)ds

γ(0) = 0, γ(L0) = L1

γ′ > 0

,

This problem might be solved with the corresponding Euler-Lagrange equation,
but we will focus instead on a dynamic programming algorithm that solves effi-
ciently a discretised version of the problem, adapted to sampled curves.

3.2 Registration with Frenet-Serret Frames

We define in this section precisely our Frenet-Serret framework for the registra-
tion of two curves. We aim at finding a warping h : [0, T ] −→ [0, T ] that min-
imises the discrepancy between the moving frames Q1 (s1 (h(t))) to Q0 (s0(t)).
Similarly to the elastic distance, we propose the following distance between the
curves

D(x0, x1) =
∫ T

0

d (Q0 (s0(t)) ,Q1 (s1(t)))
√

ṡ0(t)ṡ1(t)dt , (6)
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where d(Q0,Q1) is a distance between the frames in SO(3). Standard choices

are the Frobenius distance ‖Q0 − Q1‖2F or the geodesic distance
∥
∥
∥log Q�

1 Q0

∥
∥
∥
2

F
,

where log is the matrix logarithm. More generally, we can consider a distance
based on the weighted norms such as ‖Q‖2W,F = Trace(Q�WQ), indicating
preferred directions in the frame.

If we introduce the non-linear stretching diffeomorphism s1 ◦ s−1
0 = γ ∈

W+
L0,L1

, this leads to

D(x0, x1) =
∫ L0

0

d (Q0 (s) ,Q1 (γ (s)))
√

γ′(s)ds .

The distance between curves can be seen as a weighted distance between
the Frenet path D (Q0,Q1; γ) =

∫ L0

0
d (Q0 (s) ,Q1 (γ (s)))

√
γ′(s)ds. A direct

extension of the distance dsrvf is then the elastic Frenet-Serret distance

DFS (x0, x1) = min
h∈W+

T,T ,O∈SO(3)
D(x0, Ox1 ◦ h). (7)

We can also consider a distance that does not respect rotation invariance,
but only reparametrisation, defined by

D0
FS (x0, x1) = min

h∈W+
T,T

D(x0, x1 ◦ h). (8)

As with elastic distance based on the SRVF, the registration problem is the
computation of the distance function:

γ∗ = arg min
γ∈W+

L0,L1

∫ L0

0

d (Q0 (s) ,Q1 (γ (s)))
√

γ′(s)ds . (9)

The optimal warping h ∈ W+
T,T for aligning x1 (h(t)) to x0(t) is given by

h∗ = s−1
1 ◦ γ∗ ◦ s0, where γ∗ is the optimal non-linear stretching. Similarly,

we can find the best reparametrisation and rotation (γ∗, O∗) that solves the
optimisation problem (7), and the curve O∗x1 (h∗(t)) is aligned to x0(t) with
h∗ = s−1

1 ◦ γ∗ ◦ s0.

Remark 1. D0
FS is a direct generalisation of the standard elastic distance. If

d (Q0,Q1) = ‖Q0 − Q1‖2F =
(
‖Q0‖2F + ‖Q1‖2F − 2Trace

(
Q�

0 Q1

))
, the min-

imisation of
∫ L0

0
d (Q0 (s) ,Q1 (γ (s)))

√
γ′(s)ds is then equivalent to the maximi-

sation of
∫ L0

0
Trace

(
Q�

0 (s)Q1 (γ (s))
) √

γ′(s)ds. In the same way, the minimi-

sation of
∫ L0

0

∥
∥
∥T0(s) − √

γ′(s)OT1(γ(s))
∥
∥
∥
2

2
ds is equivalent to the maximisation

of
∫ L0

0
T�
0 (s)OT1 (γ (s))

√
γ′(s)ds. This demonstrates that warping Frenet-Serret

frames requires a higher degree of agreement between the geometries of x0 and x1.

Remark 2. We put emphasis on the fact that registering two curves x0 and x1

with an elastic distance (based on SRVF or Frenet-Serret) is not equivalent to
aligning the curvatures and torsions.



614 N. J.-B. Brunel and J. Park

4 Algorithm for Pairwise Alignment

Our objective is to obtain an algorithm that computes the optimal stretching and
rotation by minimising

∫ L0

0
d (Q0 (s) , OQ1 (γ (s)))

√
γ′(s)ds in O, γ. We derive

an iterative algorithm that works with discretely sampled data from Q0 and Q1.
It starts by finding the best rotation O[0] that minimises the distance between
the normalised Frenet paths

∫ L0

0
d (Q0 (s) , OQ1 (s)) ds (with same length L0).

Then it implements an alternate optimisation based on a discretised criterion
denoted by DN0 (Q0, OQ1; γ): Repeat steps 1 and 2 until convergence for m ≥ 0

1. γ[m] = arg minγ DN0

(
Q0, O

[m]Q1; γ
)

computed by dynamic programming.
2. O[m+1] = arg minO DN0

(
Q0, OQ1; γ[m]

)
computed by weighted averaging of

rotations.

4.1 Discretisation and Dynamic Programming

We consider two regular grids Gi, i = 0, 1 defined on [0, Li], i = 0, 1, with stepsize
hi = Li

Ni
, i = 0, 1 and N0, N1 are the number of points used. The points of the

grid G0 are denoted sk = kh0, k ≤ N0, and the point of the grid G1 are denoted
xj = jh1, j ≤ N1. We use a quadrature formula for approximating the integrals∫ sk+1

sk
d (Q0(s),Q1 (γ(s)))

√
γ′(s)ds and we use a piece-wise linear approximation

of the function γ on the same grid G0, with values in G1. The function values
are denoted xk = γ(sk), and the derivatives are piece-wise constant on ]sk, sk+1[
and are denoted uk = γ′(sk). Consequently, we have xk+1 = xk + h0uk, for
k = 0, . . . , N0 − 1, and we must have xN0 = γ(sN0) = L1. As the boundary
conditions are fixed and known, the computation of γ is equivalent to optimising
with respect to u = (uk)k=0,...,N0−1. Moreover, the state dynamics is xk+1 =
xk + h0uk, which means that there exists ik ∈ 1, . . . , N1, such that ikh1 = ukh0,
i.e. the possible values of the derivatives uk are multiple of h1/h0.

On each segment [sk, sk+1], our approximation of the integral is gk(xk, uk)
and is obtained by using the trapezoidal rule

gk(xk, uk) = h0
d (Q0(sk),Q1 (xk)) + d (Q0(sk+1),Q1 (xk+1))

2
× √

uk.

where we have made use of the fact that γ′ = uk is constant on the segment.
Finally, our approximation of the integral criterion is the following sum

DN0 (Q0,Q1; γ) � DN0 [u] =
N0−1∑

k=0

gk(xk, uk) + gN0(xN0).

The terminal cost gN (xN ) is such that gN0(xN0) = +∞ if xN0 �= L1 and
gN0(xN0) = 0 if xN0 = L1. We need to solve the following program with con-
straints on the state and the control variables:

⎧
⎪⎪⎨

⎪⎪⎩

minu

∑N0−1
k=0 gk(xk, uk) + gN0(xN0)

s.t. xk+1 = xk + h0uk

x0 = 0, xN0 = L1, 0 < xk < L1,∀k ∈ [1, . . . , N0 − 1]
∀k ≤ N0 − 1, uk > 0
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We use Dynamic Programming for computing the criterion and optimising
in u. This is based on the backward computation of the value function Jk(x)
(k = 0, . . . , N0) defined on the state space, i.e the grid G1. For every initial state
x, the optimal cost is given by

{
JN0(x) = gN0(x),∀x ∈ G1

Jk(xk) = minu∈Uk(xk) gk(xk, u) + Jk+1 (xk + h0u) , k = 0, 1, . . . , N0 − 1 ,

where Uk(xk) is the set of admissible control at time k and state xk. For com-
putation speed, we may impose a more stringent constraint on the control such
as h0uk ≤ ΔMax. The optimal control found at each time k is denoted by u∗

k,
and is computed during the forward pass. The optimal alignment function γ∗ is
sampled on the grid G0, such that x∗

k = γ∗(sk) is obtained by starting at x∗
0 = 0

and by using the optimal decision u∗
k, k = 0, . . . , N0 − 1.

Remark 3. In practice we use this Dynamic Programming algorithm for com-
puting warping functions defined on [0, 1]. A straightforward change of variable
gives

D (Q0,Q1; γ) =
∫ 1

0

d
(
Q̃0(u), Q̃1 (γ̃(s))

) √
γ̃′(s)

√
L0L1ds (10)

where γ̃ : [0, 1] −→ [0, 1] is the warping function defined for all u ∈ [0, 1] such
as γ̃(u) = L1γ(uL0). The Frenet path Q̃0, Q̃1 have been defined by normalizing
the paths by their length, i.e Q̃i(u) = Qi(uLi), i = 0, 1.

Remark 4. We deal with two grids defined on [0, 1]: G0 = {i 1
N0

, i = 0, . . . , N0}
and G1 = {j 1

N1
, j = 0, . . . , N1}. It is important to resample the data and to

interpolate the data of the Frenet Path Q̃1 such that N1 = 2×N0. This is needed
because the warping function is piece-wise linear, and we control only the slope
uk on the interval [sk, sk+1]. We impose uk > 0, but the slope is quantified and
is proportional to h1

h0
, consequently if we want a good approximation of the exact

warping function γ we need a fine grid G1. In practice, doubling and interpolating
the number of points in Q̃1 is sufficient. On the other side, the trapezoid approx-
imation might be significantly biased, hence refining the grid G0 by interpolating
the data Q̃0(sk) is sometimes needed.

Remark 5. We use linear interpolation in the Lie Algebra: let A,B ∈ SO(3),
we define the smooth path ϕ : [0, 1] −→ SO(3) such that ϕ(0) = A and ϕ(1) = B,
by ϕ(s) = exp

(
s log(BA�)

)
A.

4.2 Optimal Rotation

The computation of the minimum depends on the type of the distance function
used. For the standard Frobenius distance, the solution is found by solving

min
O

N0−1∑

k=0

h0

√
u∗

k

2
Trace

( (
Q1(x

∗
k1

)Q�
0 (sk+1) + Q1(x

∗
k)Q�

0 (sk)
)

O
)
. (11)
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The solution is the polar part of the weighted mean
∑N0−1

k=0

h0
√

u∗
k

2 Q1(x∗
k1

)
Q�

0 (sk+1)+Q1(x∗
k)Q�

0 (sk). If we use the geodesic distance, the problem is equiv-
alent to computing a weighted geodesic, which can be computed by gradient
descent in SO(3), see [3,8].

5 Examples and Simulations

We show that our DP algorithm can estimate properly the warping function. In
our simulations, we define a reference generalised curvature θ0 and the associated
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Fig. 1. Alignement of two shapes X0 and X1, when θ1 = w∗ ·θ0 and estimation of the
warping function γ∗.
First Row: No rotation. Top Left: The two curves X0 (in blue) and X1 (in red). Top
Right: the estimates of γ∗: the truth γ∗ (dark blue), γ̂fs (red), and γ̂srvf (magenta).
The red and magenta are superimposed.
2nd Row: With a random rotation. Bottom Left: The two curves X0 (in blue) and X1

(in red). X1 is a stretched and rotated version of X0. Bottom Right: the estimates of
γ∗: the truth γ∗ (dark blue), γ̂fs (red), and γ̂srvf (magenta). The estimate γ̂fs is closer
to the truth blue line than γ̂srvf . The rotations are both estimated by SRVF and FS,
and we obtain also more precise results with Frenet-Serret, which might be natural
because we use more information. Finally, we should notice that the convergence is
much faster for the Frenet-Serret version than for the SRVF (less than 5 iterations
against more than 50 iterations) (color figure online).
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Frenet path Q0 and curve X0 of length L0. The curve X1 is obtained from X0

by applying the elastic deformation given by w∗, i.e θ1 = w∗ · θ0, and the
Frenet paths are such that ∀s ∈ [0, L1],Q1(s) = Q0

(
w∗(s)

)
. Our objective is

then to estimate w∗(−1) = γ∗ by minimizing our criteria DN0 (Q0,Q1; γ). We
denote γ̂fs the estimate obtained by Frenet-Serret frames and γ̂srvf obtained by
standard SRVF. We consider a warping functions defined in [0, 1] (see remark
3) w(s) = log(s+1)

log(2) with γ(s) = exp
(
log(2)s

) − 1. We consider that we observe
directly the Frenet paths Q0,Q1 on grids G0, G1, with L0 = 2, N0 = 100 and
L1 = 3, N0 = 150. The curves have a shape defined by a curvature κ0(s) =
exp(θ sin(s)) and a torsion τ0(s) = ηs − 0.5. We consider a simple registration
case without any rotation O, and we consider also the case of a additional random
rotation i.e Q1 = OQ0 ◦ w∗. The results are available in Fig. 1.
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Abstract. We discuss some modern perspectives about the mathemat-
ical formalization of colorimetry, motivated by the analysis of a ground-
breaking, yet poorly known, model of the color space proposed by H.L.
Resnikoff and based on differential geometry. In particular, we will under-
line two facts: the first is the need of novel, carefully implemented,
psycho-physical experiments and the second is the role that Jordan
algebras may have in the development of a more rigorously founded
colorimetry.

Keywords: Color space · Resnikoff’s model · Jordan algebras

1 Introduction

In 1974, H.L. Resnikoff published a revolutionary paper about the geometry of
the space of perceived colors P [12]. Starting from the axiomatic set for col-
orimetry provided by Schrödinger [15], he added a new axiom, the homogeneity
of P with respect to a suitable group of transformations, and proved that only
two geometrical structures were coherent with the new set of axioms: the first is
isomorphic to the well-known tristimulus flat space R

+ × R
+ × R

+ ≡ P1, while
the second, totally new, is isomorphic to R

+ × SL(2,R)/SO(2) ≡ P2, thus con-
firming the interest about hyperbolic geometry in colorimetry, already pointed
out by Yilmaz in [21].

Resnikoff was also able to single out a unique Riemannian metric on the
two geometrical structures by requiring it to be invariant with respect to the
group transformations: the resulting metric on P1 coincides with the well-known
Helmholtz-Stiles flat metric [20], while that on P2 is constant negative curvature
Rao-Siegel metric, which is analogous to the Fisher metric in the geometric
theory of information [1].
c© Springer Nature Switzerland AG 2019
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Finally, Resnikoff provided an elegant framework to treat the two cases P1

and P2 as special instances of a unique theory based on Jordan algebras. In
spite of its elegance and innovative character, Resnikoff’s and Yilmaz’s paper
remained practically ignored until today, receiving only a few quotation since
their publication.

With this contribution, we would like to share our ideas about the influence
that these pioneers might have for the development of a modern, geometry-based,
colorimetry. The aim is both to overcome the lack of mathematical rigor that
affects the foundation of this discipline and to create a theory more suited for
color image processing applications.

2 Description of Resnikoff’s Model of Color Space

As we said in the introduction, in the paper [12], Resnikoff analyzed the geomet-
rical properties of the space of perceived colors P with a high level mathematical
rigor. He started from Schrödinger’s axioms [15] for P:

Axiom 1 (Newton 1704): if x ∈ P and α ∈ R
+, then αx ∈ P.

Axiom 2: if x ∈ P then it does not exist any y ∈ P such that x + y = 0.
Axiom 3 (Grassmann 1853, Helmholtz 1866): for every x, y ∈ P and for every
α ∈ [0, 1], αx + (1 − α)y ∈ P.
Axiom 4 (Grassmann 1853): every collection of more than three perceived
colors is a linear dependent family in the vector space V spanned by the
elements of P.

The axioms imply that P is a convex cone embedded in a vector space V of
dimension 3, for standard observers non affected by color blindness, as it will be
implicitly assumed in the following part of the paper.

Resnikoff added another axiom, that of local homogeneity of P with respect
to changes of background. To correctly introduce this axiom, it is worthwhile
showing the observational arrangement that he considered, which is depicted in
Fig. 1: a standard observer is watching a simple color stimulus embedded in a
uniform background.

Fig. 1. The observational arrangement considered by Resnikoff.
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When the background of the color stimulus is modified, our perception of the
stimulus changes. Resnikoff identified the change of background transformations
B with the following group:

GL+(P) := {B ∈ GL(V ) : det(B) > 0, and B(x) ∈ P ∀x ∈ P},

where GL(V ) is the group of invertible linear operators on V , the requirements
det(B) > 0 and B(x) ∈ P guarantee that these transformations preserve the
orientation of the cone and that P is stable under their action.

The previous observation about how a change of background modifies the
perception of the colors stimulus can thus be formalized by saying that P is
locally homogeneous with respect to GL+(P). However, thanks to the convex
nature of P, it is clear that local homogeneity implies global homogeneity.

For this reason, Resnikoff postulates a fifth axiom on the structure of the
color space:

Axiom 5 (Resnikoff 1974): P is globally homogeneous with respect to the
group of background transformations GL+(P).

Starting from the set of axioms 1–5 and by using standard results from the
theory of Lie groups and algebras, Resnikoff managed to show that the only two
geometrical structures compatible with these axioms are:

P1 � R
+ × R

+ × R
+, (1)

or
P2 � R

+ × SL(2,R)/SO(2), (2)

where SL(2,R) is the group of 2 × 2 matrices with real entries and determinant
+1 and SO(2) is the group of matrices that perform rotations in the plane R

2.
The first geometrical structure, P1 agrees with the usual trichromatic space,

such as RGB, XYZ, and so on. The second one, P2, on the contrary, is a totally
new geometrical structure for the space P.

If a Riemannian metric on P existed, then the difference between the per-
ceived colors x, y ∈ P would be calculated with the integral

d(x, y) =
∫

γ

ds, γ(0) = x, γ(1) = y, (3)

where γ is the unique geodesic arc between x and y.
Resnikoff proved that the only Riemannian GL+(P)-invariant metric on P1 is

precisely the Helmholtz-Stiles metric (obtained with a totally different method),
i.e.,

ds2 = α1

(
dx1

x1

)2

+ α2

(
dx2

x2

)2

+ α3

(
dx3

x3

)2

, (4)

where xj ∈ R
+ and αj are positive real constants for j = 1, 2, 3.
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Turning his attention to P2, he showed that the only Riemannian GL+(P)-
invariant metric on it can be written like this:

ds2 = tr(x−1dxx−1dx), (5)

which is equivalent to the Rao-Siegel metric [4,17].
Resnikoff concluded his paper by showing that the models P1 and P2 are

particular instances of a unified framework based on the use of Jordan algebras.
We recall that a Jordan algebra A is an algebra over a field whose multiplication ◦
is commutative but non-associative and it satisfies the so-called Jordan’s identity:

(x ◦ y) ◦ x2 = x ◦ (y ◦ x2), (6)

for all x and y in A. Such an algebra is power-associative in the sense that the
sub-algebra generated by any of its element is associative.

In the Sect. 3 we will underline some problems that remained opened since the
appearance of Resnikoff’s paper, while in Sect. 4 we will discuss how Resnikoff’s
use of Jordan algebras was ahead of his time and it can be rescued from oblivion
and used to define the colorimetric attributes of a color.

3 Missing Pieces in Resnikoff’s Model from the
Viewpoint of Modern Colorimetry

Resnikoff’s paper remains, after more than 40 years since its publication, an
example of elegance, originality and independent research. However, in the light
of nowadays knowledge about color perception, there are three issues that must
be discussed carefully.

The first, and more delicate, one is the hypothesis of linearity for the back-
ground transformations B ∈ GL+(P). Resnikoff himself, in a subsequent paper
[13] recognized that this hypothesis is a very strong one with the sentence: ‘the
least verified aspect of Axiom 5 is its assertion of the linearity of transitive group
of changes of background ’.

Without linearity, the whole mathematical structure built by Resnikoff to
arrive to the identification of P1 and P2 as the only two possible geometrical
representations of P loses its foundation. Thus, a carefully developed psycho-
physical experiment based on color matching [6] is needed to check the linearity
of background transformations B ∈ GL+(P).

An original experiment to check additivity, i.e. the fact that B(x + y) color
matches B(x) + B(y), would be the following: on one side, we superpose the
lights x and y which generate the perceived colors x and y, respectively, with
respect to the same background b, then we perform a change of background
with the transformation B and we call b′ the new background. Finally, we color
match what we obtain, this will give us the perceived color B(x + y) ∈ P which
represents x + y in the context b′.

On the other side, we separately perform the change of context B on x and y
and we color match the results, obtaining B(x) ∈ P and B(y) ∈ P, respectively.
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We then match B(x) with the physical light x′ and B(y) with the physical light
y′. If the color sensations produced by x + y in the background b′ matches that
of x′ + y′ in the same background, then the change of context is additive.

To test homogeneity, i.e. the fact that B(αx) color matches αB(x), we must
use a similar procedure for at least a sufficiently large range of coefficients α ∈ R.

The question about how large this range of coefficients must be leads us
directly to the second issue, which is shared by any model of visual perception.
We are referring to the fact that Axiom 1, i.e. the fact that P is an infinite
cone, is only an idealization: for any x ∈ P and very large α, αx will cease
to be perceived, and this it will not belong to P anymore, because the retinal
photoreceptors will be firstly saturated and then permanently damaged [16].
Similarly, for α �= 0, but α � 0, αx will firstly switch the human visual system
to mesopic and then scotopic vision via the Purkinje effect [8], and then it will
fall below the threshold limit to be perceived. Thus, more than an infinite cone,
P has the structure of a truncated cone. In classical colorimetry, one bypasses
this last observation by working far from these limits, however, in order to build
a modern theory of colorimetry we must start taking into account more seriously
the lower and upper perceptual bound.

The third issue about Resnikoff’s model is the lack of locality, i.e. the fact the
observational configuration considered, that of Fig. 1 is a over-simplified version
of a real-world visual condition. Everyday vision deals with what is commonly
called ‘color in context’, i.e. the fact that a non-uniform background strongly
influences color perception, this phenomenon is referred to as color induction
[18]. Actually, many papers has been emphasized the role of context for color
vision to the point that a standalone definition of the color of a surface, without
the specification of the context in which the surface is embedded does not make
sense anymore: color is color in context [7,10,11,14].

This observation implies that the Resnikoff model, and any other color per-
ception model based on the observational configuration of Fig. 1, can only be
viewed as a first step towards a local theory of color, mathematically similar to a
field theory. A more thorough understanding of the color induction phenomenon
and properties as color constancy, i.e. the robustness of color perception with
respect to changes of illumination [10] or the invariance of saturation perception
for monochromatic light stimuli [21], are likely to play a fundamental role in the
construction of this kind of color field theory.

4 On the Role of Jordan Algebras in Colorimetry

The second part of [12] devoted to Jordan algebras may suggest that Resnikoff
had already a quantum interpretation of his new hyperbolic model. Jordan alge-
bras are non-associative commutative algebras that have been classified by Jor-
dan, Von Neumann and Wigner [9] under the assumptions that they are of finite
dimension and formally real. They are considered as a fitting alternative to the
usual associative non-commutative framework for the geometrization of quan-
tum mechanics. One of the main motivation to introduce Jordan algebras in
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our context is Koecher-Vinberg theorem which states that every open convex
regular homogeneous and self-dual cone is the interior of the positive domain of
a Jordan algebra [5]. From a quantum viewpoint, this means that such a cone is
the set of positive observables of a quantum system.

Contrary to Resnikoff, one may postulate at first that P can be described
from the state space of a quantum system characterized by a formally real Jordan
algebra A of real dimension 3, according to the dimension of P. Such an algebra
A is necessarily isomorphic to one of the following two: either R ⊕ R ⊕ R or
H(2,R), which is the algebra of real symmetric 2 × 2 matrices, with Jordan
product given by

x ◦ y =
1
2
(xy + yx). (7)

The classification by Resnikoff can be simply recovered by taking the symmetric
cone of the positive elements of A [5].

Let us, in particular, concentrate on the geometrical structure P2 of the color
space: the algebra H(2,R) is isomorphic to the so-called spin factor R ⊕ R

2 via
the transformation defined by

(α + v) 	−→
(

α + v1 v2
v2 α − v1

)
, (8)

with α ∈ R and v = (v1, v2) ∈ R
2, where v1 and v2 are the components of v with

respect to the canonical basis of R2. One may consider the spin factor R ⊕ R
2

as a 3-dimensional Minkowski space-time equipped with the metric

(α + v) · (β + w) = αβ − 〈v, w〉, (9)

where α and β are reals and v and w are vectors of R2. Let us also recall that
the light-cone C of R ⊕ R

2 is the set of elements x = (α + v) that satisfy

x · x = 0, (10)

and that a light ray is a 1-dimensional subspace of R⊕R
2 spanned by an element

of C. It is clear that every light ray is spanned by a unique element of the form
(1 + v) with v a unit vector of R

2 and, therefore, that the space of light rays
coincides with the projective real space P1(R). In other words, we have the
following result.

Proposition 1. There is a one to one correspondence between the light rays of
the spin factor R⊕R

2 and the rank 1 projections of the Jordan algebra H(2,R).

The correspondance is given by

(1 + v) 	−→ 1
2

(
1 + v1 v2

v2 1 − v1

)
. (11)

This correspondence has a meaningful interpretation: the light rays of the
spin factor R ⊕R

2, as a Minkowski space-time of dimension 3, are precisely the
pure states of the algebra H(2,R), as a quantum system over R

2.
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A state of A is a linear functional 〈·〉 : A −→ R that is nonnegative and
normalized, i.e. 〈1〉 = 1. It can be shown that the states of A are given by
density matrices, namely by the elements of H(2,R) that are non-negative and
have trace 1 [2]. They correspond precisely to the elements x = (1 + v)/2 of the
spin factor with ‖v‖ ≤ 1. The pure states, i.e those which can be characterized
as projections, form the boundary of this disk since, for pure states, it holds that
‖v‖ = 1. It is clear that this boundary can be identified with P1(R). Contrary
to the usual context of quantum mechanics, the system that we consider is real,
i.e. the algebra H(2,C) is replaced by H(2,R).

This system is a so-called rebit, a real qubit [2], that has no classic physical
interpretation because there is no space with a rotation group of dimension
two. As explained in the sequel, it appears that this kind of system is relevant to
explain color perception. We refer also to [19] for information on real-vector-space
quantum theory and its consistency regarding optimal information transfer.

An element ρ of H(2,R) is a state density matrix if and only if it can be
written as:

ρ(v1, v2) =
1
2
(Id2 + v · σ), (12)

where σ = (σ1, σ2) with:

σ1 =
(

1 0
0 −1

)
σ2 =

(
0 1
1 0

)
, (13)

and v = v1e1 + v2e2 is a vector of R2 with ‖v‖ ≤ 1. The matrices σ1 and σ2 are
Pauli-like matrices. In the usual framework of quantum mechanics, the Bloch
body [2], is the unit Bloch ball in R

3. It represents the states of the two-level
quantum system of a spin-12 particle, also called a qubit. In the present context,
the Bloch body is the unit disk of R2 associated to a rebit.

More precisely, let us consider the four state vectors:

|u1〉 =
(

1
0

)
, |d1〉 =

(
0
1

)
, |u2〉 =

1√
2

(
1
1

)
, |d2〉 =

1√
2

(−1
1

)
. (14)

We have:
σ1 = |u1〉〈u1| − |d1〉〈d1|, σ2 = |u2〉〈u2| − |d2〉〈d2|. (15)

The state vectors |u1〉 and |d1〉, resp. |u2〉 and |d2〉, are eigenstates of σ1, resp.
σ2, with eigenvalues 1 and −1. Using polar coordinates v1 = r cos θ, v2 = r sin θ,
we can write ρ(v1, v2) as:

ρ(r, θ) =
1
2

(
1 + r cos θ r sin θ

r sin θ 1 − r cos θ

)

=
1
2

{(1 + r cos θ)|u1〉〈u1| + (1 − r cos θ)|d1〉〈d1|
+ (r sin θ)|u2〉〈u2| − (r sin θ)|d2〉〈d2|} .

(16)

In particular, every pure state density matrix can be written as:

ρ(1, θ) = |(1, θ)〉〈(1, θ)|, (17)
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with:
|(1, θ)〉 = cos(θ/2)|u1〉 + sin(θ/2)|d1〉. (18)

This means that we can identify the pure state density matrices ρ(1, θ) with
the state vectors |(1, θ)〉 and also with the points of the unit disk boundary of
coordinate θ. More generally, every state density matrix can be written as a
mixture:

ρ(r, θ) = ρ0 +
r cos θ

2
(ρ(1, 0) − ρ(1, π)) +

r sin θ

2
(ρ(1, π/2) − ρ(1, 3π/2)) , (19)

with:

ρ0 =
1
2

(
1 0
0 1

)
. (20)

Such a mixture is given by the point of the unit disk of polar coordinates (r, θ).
It is important to notice that the four state density matrices ρ(1, 0), ρ(1, π),

ρ(1, π/2) and ρ(1, 3π/2) correspond to two pairs of state vectors (|u1〉, |d1〉),
(|u2〉, |d2〉), the state vectors |ui〉 and |di〉, for i = 1, 2, being linked by the “up
and down” Pauli-like matrix σi. It can be shown that this Bloch disk coincides
with Hering’s disk given by the color opponency mechanism. Details will appear
elsewhere [3].

Among all the states, the normalized identity ρ0 = (1 + 0)/2 = 1/2I2 plays
a significant role: it is the state of maximal von Neumann entropy. It is charac-
terized by:

ρ0 = argmax
ρ

(−Trace(ρ log ρ)). (21)

Actually, −Trace(ρ0 log ρ0) = log 2 and −Trace(ρ log ρ) = 0 for a pure state ρ.
This quantum interpretation allows us to define the three main attributes of

a color, without any reference to physical colors or even to an observer. In fact,
we can define a perceived color as a non-negative normalized element (α + v)/2
of the spin factor R ⊕ R

2. Nonnegativity is equivalent to α2 ≥ ‖v‖2, so that a
perceived color can be identified with a time-like element of the 3-dimensional
Minkowski space-time.

The real value α is naturally interpreted as the ‘luminance’ of the perceived
color, so that (α + v)/2α is a ‘chromatic’ state. Pure ‘chromatic’ states are
primary, monochromatic, colors and form the ‘hue’ circle P1(R) equipped with
the projective metric. Finally, since 0 ≤ −Trace(ρ log ρ) ≤ log 2, for all states ρ,
the entropy measure −Trace(x log x) provides the description of the ‘saturation’,
the state of maximal entropy ρ0 being perceived as ‘achromatic’.

5 Conclusions

A critical analysis of the mathematically elegant and theoretically avant-garde
model of Resnikoff for the space of perceived colors led us to propose a psycho-
physical experiment to verify one of the fundamental hypothesis on which the
model is based.
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We have also underlined that the finite threshold and saturation limit of reti-
nal photoreceptors should be taken into account in a moder rigorous description
of the color space geometry.

Moreover, we have motivated through the very important (and often under-
valued) phenomenon of color induction, why a color theory should be constructed
with the building blocks of local field theories.

Finally, we have sketched our ideas about how Jordan algebras can be used to
define the colorimetric attributes by pointing out the similarities to the formal-
ism of quantum mechanics. The quantum description that we propose creates a
deep connection between the pioneering works of Yilmaz and Resnikoff. A more
detailed study shows that the above mentioned rebit makes it possible to recover
Hering’s disk and thus to obtain a mathematical justification of the coherence
between trichromatic and color opponency theories [3].
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Abstract. Quantum information geometry studies families of quantum
states by means of differential geometry. A new approach is followed. The
emphasis is shifted from a manifold of strictly positive density matrices
to a manifold M of faithful quantum states on a von Neumann algebra of
bounded linear operators working on a Hilbert space. In order to avoid
technicalities the theory is developed for the algebra of n-by-n matrices.
A chart is introduced which is centered at a given faithful state ωρ. It
maps the manifold M onto a real Banach space of self-adjoint operators
belonging to the commutant algebra. The operator labeling any state
ωσ of M also determines a tangent vector in the point ωρ along the
exponential geodesic in the direction of ωσ. A link with the theory of
the modular automorphism group is worked out. Explicit expressions for
the chart can be derived in terms of the modular conjugation and the
relative modular operators.
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1 Introduction

In quantum information theory [1] the state of the system is described either by
a wave function, which is a normalized element of a Hilbert space, or, more gen-
erally, by a density matrix. Density matrices are also used in quantum statistical
physics. The equilibrium state of a quantum system at the inverse temperature
β is given by the density matrix

ρβ =
1

Z(β)
exp(−βH).

Here, H is a Hermitian matrix, called the Hamiltonian, and Z(β) =
Tr exp(−βH) is the normalizing factor and is called the partition sum. The
expression is the quantum analogue of a Boltzmann-Gibbs distribution. It is the
prototype of a model belonging to the quantum exponential family.
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Information geometry deals with the application of differential geometry to
statistical models. A quantum version of Amari’s dually flat geometry [2] was
studied by Hasegawa [3,4], Jenčová [5] and others. The approach of Pistone and
Sempi [6] was transferred to the quantum setting by Streater [7,8].

In [9], the present author proposes to shift the emphasis from manifolds of
density matrices to manifolds of states on a von Neumann algebra. The intention
of this move is to get rid of tracial states and, by doing so, to facilitate further
generalizations. However, both [9] and the present work are limited to the case of
a finite-dimensional Hilbert space in order to avoid technicalities. A first attempt
to advance with the general case is found in [10].

The next three sections review the mathematical formalism, the notion of
a manifold of quantum states and some elements of the theory of the modular
automorphism group. Section 5 derives an explicit expression for the positive
operators wich belong to the commutant algebra and characterize the states
of the manifold. In Sect. 6 the vectors tangent to an exponential geodesic are
characterized. The paper finishes with a short discussion in Sect. 7.

2 The GNS Representation

The space of n-by-n matrices forms a Hilbert space HHS for the Hilbert-Schmidt
inner product

〈A,B〉HS = Tr B∗A.

Here, B∗ is the adjoint matrix, i.e. the Hermitian conjugate of the matrix B.
Operators on HHS are sometimes called superoperators because the matrices are
themselves already operators on the Hilbert space C

n. An alternative view is
offered by the Gelfand-Naimark-Segal (GNS) representation. It is more powerful
and very general. The starting point is the remark that the Hilbert-Schmidt
inner product can be written as

〈A,B〉HS = nTr ρ0B
∗A,

where the density matrix ρ0 is the identity matrix I divided by n.
By definition, a density matrix ρ is positive and has trace equal to one:

Tr ρ = 1. By the GNS theorem there exists a Hilbert space H, a vector Ωρ in
H and a *-representation of the algebra A of n-by-n matrices as operators on H
such that

Tr ρA = (AΩρ, Ωρ) for all A ∈ A.

The map A �→ ωρ(A) = (AΩρ, Ωρ) belongs to the dual A∗ of A and is called
a state. Its defining properties are that ωρ(A∗A) ≥ 0 for all A (positivity) and
ωρ(I) = 1 (normalization). The state is said to be faithful if ωρ(A∗A) = 0 implies
A = 0. This is the case if the density matrix ρ is non-degenerate.

In the case of a non-degenerate density matrix ρ the GNS representation can
be made explicit as follows. The Hilbert space H is the tensor product Cn ⊗C

n.
Each matrix A is replaced by the matrix A ⊗ I, which has dimension n2-by-n2.
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Choose an orthonormal basis ψj , j = 1, 2, · · · , n of eigenvectors of ρ. One has
ρψj = pjψj with eigenvalues pj > 0. Let

Ωρ =
∑

j

√
pjψj ⊗ ψj .

A short calculation then shows that for any n-by-n matrix A one has ωρ(A) =
Tr ρA = (AΩρ, Ωρ).

The main advantage of this representation of the state ω is that the commu-
tant A′ of the algebra A is explicitly present. It consists of all matrices of the
form I ⊗ A. They clearly commute with all matrices of the form A ⊗ I. In par-
ticular, with any density matrix σ there corresponds a unique positive operator
Xσ in the commutant A′ such that

ωσ(A) ≡ Tr σA = (AX1/2
σ Ωρ,X

1/2
σ Ωρ) for all A ∈ A. (1)

3 The Manifold

The manifold M consists of all states ωσ on the von Neumann algebra A, where
σ is any non-degenerate density matrix of dimension n-by-n. Guided by recent
works of Pistone et al. [11,12] a chart χρ is introduced which is centered at
a state ωρ, corresponding with an arbitrary chosen but fixed non-degenerate
density matrix ρ. For any state ωσ in M the chart defines an element χρ(ωσ) of
the commutant A′. Its construction follows later on in Sect. 6.

If t �→ ωt ∈ M is a smooth curve then tangent vectors ft are defined by

ft(A) =
d
dt

ωt(A), A ∈ A. (2)

They belong to the dual A∗ of the algebra A and satisfy ft(I) = 0 and ft(A∗) =
ft(A). The tangent plane at the point ωρ is denoted TρM and consists of all
linear functionals fK of the form

fK(A) = (AΩρ,KΩρ), A ∈ A,

where K belongs to the Banach space Bx of all self-adjoint elements of the
commutant algebra A′ and satisfies (Ωρ,KΩρ) = 0.

The metric chosen on the tangent plane is that of Bogoliubov (see for instance
[1,2,13,14]). It can be derived from Umegaki’s relative entropy [15]

D(σ||τ) = Trσ [log σ − log τ ] .

by taking twice a derivative. The metric is not discussed in the present paper.
Details can be found in [9].

A geodesic corresponding to the exponential connection and connecting the
state ωσ ∈ M to the state ωρ at the center is of the form t �→ ωσ,t, where

ωσ,t(A) = TrσtA, A ∈ A, with
log σt = log ρ + tHσ − ζ(tHσ)

Hσ = log σ − log ρ,

ζ(tHσ) = log Tr exp(log ρ + tHσ). (3)
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The chart χρ is constructed in such a way that the tangent in the point ωρ equals
the linear functional fK with K = χρ(ωσ).

4 Relative Modular Operators

In [9] the chart χρ is constructed in an indirect manner. A more direct construc-
tion is given below in Sect. 6. It is based on Araki’s notion of relative modular
operators [16,17].

Let S denote the modular conjugation operator [18] determined by the vector
Ωρ. It is the anti-linear operator defined by SAΩρ = A∗Ωρ for all A in A. The
modular operator Δ equals S∗S and does not depend on the specific choice of
the vector Ωρ representing the state ωρ. The polar decomposition of S reads
S = JΔ1/2. The operator J satisfies J∗ = J , J2 = I. An important result
of Tomita-Takesaki theory, needed further on, states that JAJ belongs to the
commutant algebra A′ if and only if A belongs to A.

Given any vector Ξ in the Hilbert space H the relative modular conjugation
operator SΞ,Ωρ

is defined by

SΞ,Ωρ
AΩρ = A∗Ξ, A ∈ A.

For convenience, let us introduce the notation Sσ ≡ SΞ,Ωρ
when Ξ = X

1/2
σ Ωρ.

The relative modular operator Δσ is then given by

Δσ = S∗
σSσ = S∗XσS = Δρ−1σ.

Consider now the geodesic t �→ ωσ,t given by (3). Because Δρ−1 commutes
with σt it follows from Δσ,t = Δρ−1σt that

log Δσ,t = log Δρ−1 + log ρ + tHσ − ζ(tHσ)
= log Δ + tHσ − ζ(tHσ). (4)

One concludes that the operator Hσ which generates the exponential geodesic
also describes the relative modular operator Δσ,t for all states ωσ,t along the
geodesic.

5 Explicit Expressions

In [9] the operator Xσ, which characterizes the state ωσ via (1) is defined in an
indirect manner by requiring that

XσΩρ = σρ−1Ωρ.

An explicit expression is given by the following proposition.

Proposition 1. The operator Xσ satisfies Xσ = Sρ−1σS. The relative modular
operator Δσ satisfies

Δσ = S∗XσS and Δ1/2
σ = (ρ−1Δ)1/2σ1/2.
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Proof. One has for all A in A
XσAΩρ = AXσΩρ = Aσρ−1Ωρ = Sρ−1σSAΩρ

Because Ωρ is cyclic for A this implies that Xσ = Sρ−1σS. Next use that
ρ−1Δ = Δρ−1 belongs to the commutant A′ to obtain

Xσ = JΔ1/2ρ−1σS = JΔ−1/2[Δρ−1]σS = S∗
(
[Δρ−1]1/2σ1/2

)2

S.

Finally, one has for all A in A
SσAΩρ = A∗X1/2

σ Ωρ = X1/2
σ A∗Ωρ = X1/2

σ SAΩρ.

This implies Sσ = X
1/2
σ S and hence

Δσ = S∗
σSσ = S∗XσS =

(
[Δρ−1]1/2σ1/2

)2

.

�

6 The Chart

In [9] the operator χρ(ωσ) belonging to the commutant A′ is defined by the
relation

χρ(ωσ)Ωρ =
∫ 1

0

du ρu [log σ − log ρ + D(ρ||σ)] ρ−uΩρ. (5)

Its main property is that, given an exponential geodesic t �→ ωσ,t of the form
(3), the tangent vector at t = 0 satisfies

d
dt

∣∣∣∣
t=0

ωσ,t(A) = (AΩρ, χρ(ωσ)Ωρ) , A ∈ A. (6)

There is a one-to-one correspondence between the tangent vectors of TρM

and the elements of the Banach space Bx.

Alternative proof of (6)

Starting point is the following relation between any state ωσ in the manifold M

and the corresponding relative modular operator Δσ

ωσ(A) = (AΩρ,XσΩρ) = (AΩρ, S
∗ΔσSΩρ), A ∈ A. (7)

Consider a geodesic t �→ ωσ,t of the form (3). The relative modular operator
Δσ,t satisfies

d
dt

Δσ,t =
d
dt

exp (log Δ + tHσ − ζ(tHσ)) .
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Use the identity

d
dt

∣∣∣∣
t=0

eAH+tH =
∫ 1

0

du euAHe(1−u)A

to obtain

d
dt

∣∣∣∣
t=0

Δσ,t =
∫ 1

0

duΔu

(
Hσ − d

dt
ζ(tHσ)

∣∣∣∣
t=0

)
Δ1−u

=
[∫ 1

0

du ρuHσρ−u − d
dt

ζ(tHσ)
∣∣∣∣
t=0

]
Δ. (8)

From (5) one obtains

χρ(ωσ) = S

(∫ 1

0

du ρu [H + D(ρ||σ)] ρ−u

)∗
S.

Combine this with
d
dt

∣∣∣∣
t=0

ζ(tHσ) = −D(ρ||σ).

and (8) to obtain

d
dt

∣∣∣∣
t=0

Δσ,t = S∗χρ(ωσ)S. (9)

Putting the pieces together one obtains (6) from (7) and (9)

7 Discussion

The manifold M of faithful states on the von Neumann algebra A of n-by-n
matrices is studied. An arbitrary state ωρ in M is selected as the reference state.
Other states in M are labeled with operators in the commutant of the G.N.S.-
representation of the selected state. Tangent vectors are linear functionals on
the von Neumann algebra. They are also labeled with operators belonging to the
commutant algebra. In particular, the vectors tangent to an exponential geodesic
are characterized. By the use of the theory of the modular automorphism group
[18] and the relative modular operators [16,17] explicit expressions are obtained
for operators which were introduced already in a previous paper [9]. The explicit
expressions should help in generalizing the present approach to manifolds of
states on arbitrary σ-finite von Neumann algebras.

The expression (4) for the logarithm of the relative modular operator is affine
along the exponential geodesic, up to a scalar function which is due to normaliza-
tion. It resembles the similar expression (3) for the density matrix. Both use the
operator Hσ = log σ − log ρ as the generator of the geodesic connecting the state
ωσ to the state ωρ. The map ωσ �→ Hσ labels the states of the manifold with
operators belonging to the algebra A. On the other hand, the chart χρ, defined
in Sect. 6, uses operators belonging to the commutant algebra A′. This chart
determines in a direct manner the vectors tangent to the exponential geodesics
at the state ωρ.
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Abstract. Maximum entropy principle and Souriau’s symplectic gener-
alization of Gibbs states have provided crucial insights leading to exten-
sions of standard equilibrium statistical mechanics and thermodynamics.
In this brief contribution, we show how such extensions are instrumental
in the setting of discrete quantum gravity, towards providing a covariant
statistical framework for the emergence of continuum spacetime. We dis-
cuss the significant role played by information-theoretic characterizations
of equilibrium. We present the Gibbs state description of the geometry
of a tetrahedron and its quantization, thereby providing a statistical
description of the characterizing quanta of space in quantum gravity. We
use field coherent states for a generalized Gibbs state to write an effective
statistical field theory that perturbatively generates 2-complexes, which
are discrete spacetime histories in several quantum gravity approaches.

Keywords: Maximum entropy principle · Constrained systems ·
Quantum gravity and quantum geometry · Gibbs states

1 Discrete Quantum Spacetime

From the existence of singularities in classical gravitational theory to the discov-
ery of horizon entropies in semiclassical settings, many studies have hinted at a
discrete quantum microstructure of spacetime. Precisely what these quanta of
spacetime are, and how they give rise to a continuum gravitational field is the
holy grail of non-perturbative discrete quantum gravity. It is a complex open
issue, being tackled from various sides. Despite many conceptual and technical
differences between the different formalisms, they admit an interesting common-
ality: modelling of spacetime quanta as geometric polyhedra.

In particular, tetrahedra are the candidates of choice in 4d models for quan-
tum excitations of geometry in several approaches, such as loop quantum gravity,
spin foams, group field theory, dynamical triangulations and simplicial gravity.
Collective dynamics of such degrees of freedom is then expected to give rise to
an emergent spacetime. Statistical mechanical and field theoretic techniques are
c© Springer Nature Switzerland AG 2019
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thus crucial from the point of view of an emergent spacetime, not only for provid-
ing tools to extract effective spacetime ‘macroscopic’ physics from the quantum
gravitational ‘microscopics’, but also as probes to investigate non-perturbative
features. A natural way for such explorations is to consider quantum spacetime
as a many-body system [1], which is complementary with the view of classical
continuum spacetime as an effective thermodynamic system.

The procedure of maximizing information entropy subject to a given set of
constraints as presented by Jaynes [2,3] is uniquely positioned to be utilised in
background independent systems for defining an equilibrium Gibbs state. The
primary reasons for this are that this method does not rely on the existence of
any 1-parameter automorphism of the system (such as physical time evolution),
unlike the customary Kubo-Martin-Schwinger condition of non-relativistic sta-
tistical mechanics. It also allows for considering observables other than energy,
such as geometric volume, which may not necessarily be naturally understood as
symmetry generators. These two technical features of not requiring a 1-parameter
group of symmetries a priori, and an inclusion of other observables of interest,
makes this procedure particularly valuable in background independent quantum
gravity settings. Moreover, in an almost unassuming way, it points toward a
fundamental status of information entropy in quantum gravity, which has been
a recurring theme across various avenues in modern theoretical physics.

2 Generalized Gibbs States

A macrostate of a system with many underlying degrees of freedom is given in
terms of a finite number of observable averages. Jaynes [2,3] argued that the least
biased statistical distribution over the microscopics of the system, compatible
with our limited knowledge of its macroscopics in terms of these averages, is that
which maximizes the information entropy. The resultant distribution is Gibbs,
which faithfully encodes our partial knowledge of the system. Maximizing the
uncertainty in this manner ensures that we are using exactly only the information
that we have access to, not less or more.

Let {Oa}a=1,2,... be a finite set of smooth, real-valued functions on a finite-
dimensional symplectic phase space Γex. It is the unconstrained, extended state
space with respect to all constraints. Let ρ be a statistical density (real-valued
and positive function, normalised with respect to Liouville measure) on Γex. The
functions Oa are such that their statistical averages in ρ are well-defined and
constant, that is

〈Oa〉ρ ≡
∫

Γex

dλ Oa ρ = Ua. (1)

Shannon entropy of ρ is,
S[ρ] = −〈ln ρ〉ρ (2)

and its normalization is 〈1〉ρ = 1. Now consider maximization of S[ρ] under the
constraints of state normalization and Eq. (1) [2]. This optimization problem can
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be phrased in the language of Lagrange multipliers and imposing stationarity of
an auxiliary functional,

L[ρ, βa, κ] = S[ρ] −
∑

a

βa(〈Oa〉ρ − Ua) − κ(〈1〉ρ − 1) (3)

with multipliers βa, κ ∈ R. Stationarity with respect to variations in ρ then
results in a generalized Gibbs state of the form,

ρ{βa} =
1

Z{βa}
e− ∑

a βaOa (4)

with the partition function,

Z{βa} ≡
∫

Γex

dλ e− ∑
a βaOa = e1+κ (5)

where {βa} and Oa are such that the above integral converges.
The above procedure can be carried out analogously for finite quantum sys-

tems [3], given that the operators under consideration have well-defined trace
averages on a kinematic, unconstrained Hilbert space. Here statistical states
are density operators (self-adjoint, positive and trace-class), and the ensemble
averages for (self-adjoint) operators Ô are,

〈Ôa〉ρ ≡ Tr(ρ̂ Ôa) = Ua. (6)

Then Jaynes’ method gives a generalized Gibbs density operator,

ρ̂{βa} =
1

Z{βa}
e− ∑

a βaÔa . (7)

Averages Ua are generalized energies, β ≡ {βa} is a generalized vector-valued
(inverse) temperature, and dQa ≡ dUa −〈dOa〉 are generalized heat differentials.

This information-theoretic manner of defining equilibrium statistical mechan-
ics is to elevate the status of entropy as being more fundamental than energy.
This perspective can prove instrumental in background independent settings [4].
As long as the system is equipped with a well-defined state space and an observ-
able algebra, and is described macroscopically with a few observables {Oa} in
terms of its averages {Ua}, the maximum entropy principle can be applied to
characterize a notion of generalized statistical equilibrium.

3 Statistically Constrained Tetrahedra

Jaynes’ characterization of equilibrium also allows for a natural group-theoretic
generalization of thermodynamics, whenever the constraint is associated to some
(dynamical) symmetry of the system. In this case, the momentum map associated
to the Hamiltonian action of the symmetry group on the covariant (extended)
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phase space of the system plays the role of a generalized energy function, com-
prising the full set of conserved quantities. Moreover, its convexity properties
allow for a generalization of standard equilibrium thermodynamics [5].

This approach is useful also in the simplicial geometric context of non-
perturbative quantum gravity [6–8]. We will use the generalized Gibbs states
to define along these lines a statistical characterization of tetrahedral geome-
try in terms of its closure, starting from the extended phase space of a single
open tetrahedron. The closure constraint is what allows to interpret geometri-
cally a set of 3d vectors as the normal vectors to the faces of a polyhedron, and
thus to fully capture its intrinsic geometry in terms of them. Subsequently, we
will consider a system of many closed tetrahedra (or polyhedra in general) and
demonstrate its relation to the group field theory approach to quantum gravity.

3.1 Classical Closure Fluctuations

The symplectic space Γ{AI} = {(XI) ∈ su(2)∗4 ∼= R
3×4 | ||XI || = AI} ∼=

S2
A1

× ...×S2
A4

, is the space of intrinsic geometries of an open tetrahedron. Each
S2

AI
is a 2-sphere with radius AI , and I ∈ {1, 2, 3, 4}. When the four vectors XI

are constrained to sum to zero, the orthogonal surfaces associated to them close,
giving a tetrahedron in Euclidean R

3 with face areas {AI}1. In this subsection
we take Γex = Γ{AI}.

The diagonal action of the Lie group SU(2) (rotations) on Γex has an asso-
ciated momentum map J : Γex → su(2)∗ defined by,

J =
4∑

I=1

XI (8)

where ||XI || = AI . Symplectically reducing Γex with respect to J = 0 level set
gives the Kapovich-Millson phase space [9] S4 = Γex//SU(2) = J−1(0)/SU(2)
of a closed tetrahedron with the given face areas, where notation // means a
symplectic reduction. It imposes closure of the four faces, with space J−1(0)
being the constraint submanifold. But what we are interested in here is to define
a Gibbs probability distribution on Γex by imposing closure only on average,
using the method of Sect. 2.

From a statistical perspective, the exact (or strong) fulfilment of closure can
be understood as defining a microcanonical statistical state on Γex with respect
to this constraint. On the other hand, a weak fulfilment of the same constraint
can be thought of as being implemented by a generalized Gibbs state. Their
respective partition functions on the extended state space are then formally
related by a Laplace transform.

1 Analogous arguments hold for the case of an open d-polyhedron and its associated
closure condition.
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To define a Gibbs state with respect to closure for an open tetrahedron, we
maximize the Shannon entropy (2) under the constraints of state normalization
and the following three,

〈Ji〉ρ ≡
∫

Γex

dλ ρ Ji = 0 (i = 1, 2, 3). (9)

Here ρ is a statistical state defined on Γex, and Ji are components of J in a basis
of su(2)∗. Clearly the above equation (for each i) is a weaker condition than
imposing closure exactly by Ji = 0. Functions Ji are smooth and real-valued on
Γex, taking on the role of quantities Oa used in Eq. (1). Then optimizing the
auxiliary functional of Eq. (3) gives a Gibbs state on Γex of the form,

ρβ =
1

Z(β)
e−β·J (10)

where β ∈ su(2) is a vector-valued temperature, with components βi. Moreover,
the function β · J =

∑3
i=1 βiJi is the corresponding co-momentum map on Γex

(equivalently, the modular Hamiltonian).
Evidently, the state ρβ is an example of a generalization of Souriau’s Gibbs

states [5,10], to the case of Lie group actions of gauge symmetries generated by
first class constraints, in a fully background independent setting.

3.2 Quantum Statistical Mechanics

In a quantum setting, each tetrahedron face I is prescribed an SU(2) repre-
sentation label jI and Hilbert space HjI

. The tetrahedron itself is assigned an
invariant tensor (intertwiner) of the four incident representation spaces. The
full space of 4-valent intertwiners is

⊕
jI

Inv ⊗4
I=1 HjI

, where Inv⊗4
I=1HjI

is
the space of 4-valent intertwiners with given fixed spins {jI} (given fixed face
areas), corresponding to a quantization of S4. A collection of neighbouring quan-
tum tetrahedra has been associated to a 4-valent spin network [11], with the
labelled nodes and links of the latter being dual to labelled tetrahedra and their
shared faces respectively of the former. Then taking the viewpoint of tetrahedra
as being extended ‘particles’, the single particle Hilbert space of interest here is

H =
⊕
jI

Inv ⊗4
I=1 HjI

(11)

and, quantum states of a system of N such tetrahedra are elements of HN =
H⊗N . We can equivalently work with the holonomy representation of the same
quantum system in terms of SU(2) group data, which is also the state space of
a single gauge-invariant quantum of a group field theory defined on an SU(2)4

base manifold [6,12],
H = L2(SU(2)4/SU(2)). (12)

Mechanical models of N quantum tetrahedra can be defined by a set of gluing
operators defined on HN . Thus a quantum mechanical model of a system of N
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tetrahedra consists of the unconstrained Hilbert space HN , an operator algebra
defined over it and a set of gluing operators specifying the model.

Now for a quantum multi-particle system, a Fock space is a suitable home
for configurations with varying particle numbers. For bosonic (indistinguishable)
quanta, each N -particle sector is the symmetric projection of the full N -particle
Hilbert space, so that the Fock space is,

HF =
⊕
N≥0

sym HN . (13)

Fock vacuum |0〉 is the cyclic state with no tetrahedron degrees of freedom.
Then, a system of an arbitrarily large number of quantum tetrahedra is described
by the state space HF , an algebra of operators over it with a special subset of
them identified as gluing constraints. Quantum statistical states of tetrahedra
are density operators (self-adjoint, positive and trace-class) on HF [4].

As before, a generalized Gibbs state in a Fock system of quantum tetrahedra
with a constraint operator Ĉ is of the form,

ρ̂β =
1

Zβ
e−βĈ (14)

where β is associated with the condition 〈Ĉ〉 = 0. In particular, a density oper-
ator with a contribution from a grand-canonical weight of the form eμN̂ , will
correspond to a situation with varying particle number, where N̂ is the num-
ber operator associated with the Fock vacuum. The corresponding partition
function is

Z(μ, β) = TrHF

[
e−β Ĉ + μN̂

]
. (15)

If Ĉ is a dynamical constraint of the system, which in general could include
number- and graph-changing interactions, then one obtains a grand-canonical
state of the type above with respect to Ĉ.

3.3 Field Theory of Quantum Tetrahedra

Hilbert space HF is generated by ladder operators acting on the vacuum |0〉,
and satisfying the algebra,

[ϕ̂(g), ϕ̂∗(g′)] = δ(g, g′) (16)

where δ is a delta distribution on the space of smooth, complex-valued L2 func-
tions on SU(2)4, and g ≡ (g1, ..., g4).

For a state e−βĈ , the traces in the partition function and other observable
averages can be evaluated using an overcomplete basis of coherent states,

|ψ〉 = e− ||ψ||2
2 e

∫
dg ψ(g)ϕ̂∗(g) |0〉 . (17)
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These states are labelled by ψ ∈ H and ||.|| is the L2 norm in the single particle
Hilbert space H. This gives,

Tr(e−βĈÔ) =
∫

[Dμ(ψ, ψ̄)] 〈ψ| e−βĈÔ |ψ〉 , with Z = Tr(e−βĈ
I). (18)

Resolution of identity is I =
∫

[Dμ(ψ, ψ̄)] |ψ〉 〈ψ|, and the standard coherent state
measure is Dμ(ψ, ψ̄) =

∏∞
k=1 d Reψk d Imψk/π. The set of all such observable

averages formally defines the total statistical system. In the following, we show
how the quantum statistical partition function can be reinterpreted as the par-
tition function for a field theory (of complex-valued L2 fields) of the underlying
quantum tetrahedra.

For generic operators Ĉ(ϕ̂, ϕ̂∗) and Ô(ϕ̂, ϕ̂∗) as polynomials in the algebra
generators, and an arbitrary choice of operator ordering defining the exponential
operator, the integrand of the statistical averages can be treated as follows.

〈ψ| e−βĈÔ |ψ〉 = 〈ψ|
∞∑

k=0

(−β)k

k!
ĈkÔ |ψ〉 (19)

= 〈ψ| : e−βĈÔ : |ψ〉 + 〈ψ| : poC,O(ϕ̂, ϕ̂∗, β) : |ψ〉 (20)

where the second equality is gotten by using the commutation relations (16) on
each ĈkÔ and collecting all normal ordered terms : ĈkÔ : to get the normal
ordered : e−βĈÔ :. The second term in the last line of (19) is a collection of
the remaining terms arising as a result of exchanging ϕ̂’s and ϕ̂∗’s. In general, it
will be a normal ordered series in powers of ϕ̂ and ϕ̂∗, with coefficient functions
of β. The exact form of this series will depend on both Ĉ and Ô.

Further recalling that coherent states are eigenstates of the annihilation oper-
ator, ϕ̂(g) |ψ〉 = ψ(g) |ψ〉, we have

〈ψ| : e−βĈÔ : |ψ〉 = e−βC[ψ̄,ψ]O[ψ̄, ψ] (21)

where C[ψ̄, ψ] = 〈ψ| Ĉ |ψ〉 and O[ψ̄, ψ] = 〈ψ| Ô |ψ〉. Defining operators ÂC,O ≡
poC,O(ϕ̂, ϕ̂∗, β), we have

〈ψ| : ÂC,O(ϕ̂, ϕ̂∗, β) : |ψ〉 = AC,O[ψ̄, ψ, β], (22)

encoding all higher order corrections. Averages (18) can thus be written as

Tr(e−βĈÔ) =
∫

[Dμ(ψ, ψ̄)]
(
e−βC[ψ̄,ψ]O[ψ̄, ψ] + AC,O[ψ̄, ψ, β]

)
. (23)

In particular, the quantum statistical partition function for a dynamical sys-
tem of complex-valued L2 fields ψ defined on the base manifold SU(2)4 is

Z =
∫

[Dμ(ψ, ψ̄)]
(
e−βC[ψ̄,ψ] + AC,I[ψ̄, ψ, β]

)
≡ Z0 + ZO(�). (24)
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Here, by notation O(�) we mean simply that this sector of the full theory
includes all higher orders in quantum corrections relative to Z0. This full set of
observable averages (or correlation functions) (23), including the above partition
function, defines thus a statistical field theory of quantum tetrahedra (or in
general, polyhedra with a fixed number of boundary faces), characterized by a
combinatorially non-local statistical weight. In other words, a group field theory.
This statistical foundation of group field theories was first suggested in [12].

Whenever it is possible to reformulate AC,O such that

AC,O = AC,I[ψ̄, ψ, β]O[ψ̄, ψ] (25)

then (24) defines a statistical field theory for the algebra of observables O[ψ̄, ψ].
Further by rewriting Z in terms of a simple exponential measure (under some
approximations), we would get

Zeff =
∫

[Dμ(ψ, ψ̄)] e−Ceff[ψ̄,ψ,β,C,A], (26)

making the correspondence with a standard field theory manifest. A detailed
discussion of the relation of the resulting statistical field theory to existing group
field theory models, for topological BF theories, is given in [12,13].

4 Conclusion

We generalized Jaynes’ information-theoretic approach of statistical equilibrium
to a background independent system of many geometric tetrahedra. Using the
symplectic description of classical tetrahedron geometry, we presented a natural
generalization of Souriau’s Gibbs states to a constrained system. Using a Fock
space description, a quantum canonical partition function was put in relation
with the generating function of labelled 2-complexes of discrete quantum gravity.
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Abstract. The notion of composite system made up of distinguishable
parties is investigated in the context of arbitrary convex spaces.

Keywords: Composite-systems · Tensor-product · Entanglement

1 Introduction

When dealing with composite systems, one of the most striking features of quan-
tum theories is undoubtedly the existence of non-classical correlations between
subsystems of the given system, a phenomenon known under the name of ‘entan-
glement’.

In the context of standard quantum mechanics [10,24,29], where a physical
system is described by means of a Hilbert space H and the physical states are
density operators on H, entanglement is associated with the fact that the Hilbert
space of a composite system is not the Cartesian product of the Hilbert spaces
of the subsystems as it happens for the phase space of a classical composite
system, but, rather, it is taken to be the tensor product of the Hilbert spaces of
the subsystems.

A more refined formalism for quantum theories is the algebraic formulation
in terms of C∗-algebras [1,12,13,18,26,27]. In this context, a physical system
is described in terms of the C∗-algebra A of (bounded) observables and the
physical states are the mathematical states on A , that is, the positive linear
functionals on A normalized to 1.

The reformulation of quantum theories in terms of C∗-algebras also helps to
clearly see the link between quantum theories and classical probability theory.
Indeed, the space of quantum states and the space of probability distributions on
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a topological/measure space may be described by means of the “same object”,
namely the space of mathematical states on a C∗-algebra. When this algebra is
Abelian (commutative) we obtain the case of classical probability theory, while
when the algebra is non-Abelian, we enter in the quantum realm. Analogously
to what happens in the Hilbert-space formalism of quantum theories, the entan-
glement content of the theory comes from the fact that the C∗-algebra of a
composite system is taken to be a suitable tensor product of the C∗-algebras of
some subsystems.

In this contribution, we want to understand the mathematical requirements
we should impose on the description of the notion of composite system in a
given theoretical framework in order for the tensor product of suitable objects to
necessarily come out. What we have in mind is a rather elementary discussion on
the mathematical features characterizing the relation between composite systems
and tensor products. Accordingly, in order to avoid as much as we can to rely on
the specific traits of some given theoretical framework, we will not focus much
on the technical and interpretational details.

Essentially, we will model the space of states of a physical system by means
of a real, convex space S . This is a very broad theoretical framework of which
the spaces of states of both classical probability theory and quantum theories
are a particular instance. From the operational point of view, this perspective is
motivated by the idea that the states of a physical system are associated with
equivalence classes of preparation procedures yielding the same measurement
statistics, and that inequivalent preparation procedures may be “mixed in arbi-
trary proportions” resulting in operations that may be considered as admissible
preparation procedures (see [9,11,14–16,19–23]). Mathematically speaking, this
instance is then translated in the possibility of taking arbitrary convex combi-
nations of elements in S describing physical states.

From the purely mathematical point of view, the fact that S is a convex
set implies the existence of the vector space S ∗ of real-valued, affine linear
functionals on S , and this space will be the only ingredient, beside S , we will
need in our discussion. Note that S ∗ coincides with the dual space V ∗ of the
vector space V generated by formal linear combinations of elements in S . For
the sake of linguistic simplicity, we define S ∗ to be the dual space of the
convex set S with an evident abuse of nomenclature.

We want to stress that, by focusing only on the convex structure of S and its
dual space S ∗, our analysis clearly applies to both the space of quantum states
and the space of classical probability distributions on a topological/measure
space, while maintaining open the possibility of considering different types of
theories like those considered in the so-called generalized probabilistic theo-
ries (see [2,3,5,17]).

2 Composite Systems and Tensor Products

When describing composite systems from a theoretical point of view, there are,
essentially, two possible perspectives: either we start from the total system and
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then proceed in determining a suitable notion of subsystem, or we start from
the subsystems and then proceed in determining a suitable notion of composite
system. Here, we will investigate the latter case in the context of composite
systems made of distinguishable parties (we refer to [4] for a modern approach
to the former case).

For the purpose of this contribution, we represent a composite system by
means of the family {Sj}j∈[1,...n] of spaces of states of the n subsystems together
with the space S of states of the total system. As said before, we consider
the spaces of states of the subsystems as given, and we want to characterize
the admissible candidates for the convex set of the total system on the basis
of additional constraints associated with the notion of composite system. We
shall not deal with indistinguishable “particles”, i.e., neither Bosons, Fermions
or other parastatistics. These additional aspects would only add complications
without helping in addressing the core problem. If needed, we can include other
types of “statistics” at later time.

First of all, we want to implement a notion of “independence” among the
states (preparation procedures) of the subsystems. Roughly speaking, we want
to formalize the idea according to which there are no constraints among the
preparation procedures of the subsystems, that is, each party is free to prepare
its associated subsystem in any of the possible states independently from the
preparations of the other parties. Mathematically speaking, we implement this
idea by assuming the existence of an injective map

I : S1 × · · · × Sn −→ S (1)

so that for every n-tuple (ρ1, ..., ρn) ∈ S1 × · · · × Sn of states there is a cor-
responding ρ ∈ S representing the n-tuple of independent states (preparation
procedures) as a state of the total system. The notion of independence among
the states of the subsystems (see Eq. (1)) appears also in the context of alge-
braic quantum field theory. For instance, in [25], this condition, together with
a commutativity assumption, is used to prove that the algebra A generated by
the algebras A1 and A2 of observables associated with two space-like separated
spacetime regions is isomorphic with the algebraic tensor product A1⊗A2. Here,
we will obtain a similar result in the framework of convex spaces (of which the
spaces of states of C∗-algebras typical of algebraic quantum field theory form a
subfamily) by replacing the commutativity assumption with an interdependence
condition among the dual spaces of the subsystems (see below).

Before proceeding further, we note that the choice S = S1×· · ·×Sn, where
S is endowed with the convex sum obtained by the component-wise application
of the convex sums of the Sj ’s, is clearly the minimal choice compatible with
the assumption of independence among the states of the subsystems. In this
case, denoting by Vj the vector space canonically generated by Sj by means of
formal linear combinations of elements in Sj , it is clear that S = S1 ×· · ·×Sn

is a subset of the vector space V = ⊕n
j=1Vj . Consequently, the dual space S ∗

of S = S1 × · · · × Sn is just the dual space of V , that is, V ∗ = ⊕n
j=1V

∗
j . In

particular, this means that, for every n-tuple (fa1 , · · · , fan
) with faj

∈ S ∗
j for
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j ∈ [1, ..., n], there is an element fa1,...,an
∈ S ∗ such that

fa1,...,an
(ρ1, · · · , ρn) =

n∑

j=1

faj
(ρj). (2)

Clearly, fa1,...,an
vanishes on the product space S1 × · · · × Sn representing

independent equivalence classes of preparation procedures if and only if faj
= 0

for all j ∈ [1, ..., n]. Intuitively speaking, we may say that the dual spaces of
the subsystems do not “compose” with each other. This means that the system
described by S = S1 × · · · × Sn endowed with the component-wise convex
sum should be interpreted more as a juxtaposition rather than a composition of
systems, and, in general, we want to avoid the possibility of this convex set as
an admissible space of states.

At this point we may say that this is exactly what happens in the groupoid
interpretation of Quantum Mechanics [6–8]. There are two natural operations
with groupoids: disjoint union and direct product. The first corresponds to jux-
taposition (the corresponding algebra and space of states are direct sums) and
the second is the proper composition (tensor product).

A possible way to overcome this instance and force the subsystems to “com-
pose” is to implement a notion of interdependence for the dual spaces of the
subsystems. Before introducing this notion of interdependence, we want to point
out that there is no clear and unambiguous physical interpretation for it at
this moment because the theoretical framework of arbitrary convex spaces does
not allow a clear and unambiguous physical interpretation for the dual spaces.
Having cleared this point, we proceed by introducing the interdependence con-
dition among the dual spaces of the subsystems. First of all, we consider the
injective map we introduced in Eq. (1) implementing the notion of independence
among the states of the subsystems. Then, we should implement the idea that,
while a dual space possesses a “linearity” property, our “composite” objects are
“multilinear”. Accordingly, we assume the existence of an injective map

I∗ : S ∗
1 × · · · × S ∗

n −→ S ∗ (3)

such that, introducing the notation

fa1,...,an
:= I∗(fa1 , · · · , fan

), (4)

we have

fa1,...,an
(ρ) =

n∏

j=1

faj
(ρj), (5)

for every ρ = I(ρ1, · · · , ρn) ∈ I(S1 × · · · × Sn) ⊂ S . We define elements of
this type in S ∗ to be simple . The simple element fa1,...,an

defined by Eq. (5)
vanishes on (the injective image of) S1 ×· · ·×Sn whenever there is at least one
j ∈ [1, ..., n] for which faj

= 0. This is in sharp contrast with what happens in the
case S = S1×· · ·×Sn (see Eq. (2)) where we need faj

= 0 to be true for all j ∈
[1, ..., n] in order for the associated element in S ∗ to vanish on S1×· · ·×Sn. It is
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in this sense that we interpret Eq. (5) as an interdependence relation among the
dual spaces of the subsystems. There is a fully mature theory of non-commutative
measure spaces called “free probability theory” (essentially, C∗-algebras with a
tracial state), where it is introduced the notion of independence in a genuine non-
commutative way and, what is more important, the notion of freeness (see [28]).
We believe that there is a connection between the notion of independence and
freeness as defined in the context of free probability theory and the notions of
independence and interdependence introduced above, however, we will analyse
this connection elsewhere.

Now, we note that the existence of simple elements allows us to introduce the
notion of separable and entangled states as follows. First of all, consider the set
Sfs composed by all those ρ ∈ S such that, for every simple element fa1,...,an

∈
S ∗, there is a finite N , there are n-tuples (ρj1, ..., ρ

j
n) with j = 1, ..., N and ρjk

in Sk for every k ∈ [1, ..., n], and there is a probability vector p = (p1, ..., pN )
such that

(fa1,...,an
) (ρ) =

N∑

j=1

pj

n∏

k=1

fak
(ρjk). (6)

Elements in Sfs are called finitely-separable . Then, the space of separable
elements Ss is given by the closure of Sfs in S with respect to a suitable
topology that, in general, will depend on the specific situation considered. For
instance, if S is the space of states of a C∗ algebra A (i.e., the space of positive,
normalized linear functionals on A ), the closure of Sfs in S is taken with
respect to the weak* topology on S induced by A when thought of as a subset
of its double dual A ∗∗. It is not hard to see that the space of separable elements
is a convex cone in S . An element in S which is not separable will be called
entangled , and, in general, composite systems admit entangled states. In finite
dimensions, classical probability theory is the only case in which there are no
entangled states.

Below, we will show that the product convex set S = S1×· · ·×Sn considered
above is ruled out as a valid candidate because the interdependence condition
among the dual spaces of the subsystems forces S ∗ to “contain” a copy of the
tensor product ⊗n

j=1 S
∗
j of the dual spaces of the single subsystems. For this

purpose, we define W ⊆ S ∗ to be the vector space obtained taking arbitrary
but finite linear combinations of simple elements in S ∗, and we prove that W is
isomorphic, as a vector space, with the (algebraic) tensor product ⊗n

j=1 S
∗
j by

exploiting the universal property of the (algebraic) tensor product. Essentially,
we will see that, given any vector space X, and any multilinear map

φ : S ∗
1 × · · · × S ∗

n −→ X, (7)

there is a unique linear map

Φ : W −→ X (8)

such that
φ = Φ ◦ I∗. (9)
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Recall that the range of I∗ is in W because it coincides with the set of simple
elements generating W . We start defining Φ on the simple elements in W by
setting

Φ(fa1,...,an
) := φ(f1

a1
, · · · , fn

an
). (10)

Since the set of simple elements is a generating set for W , we can extend Φ
to the whole W by linearity so that, by construction, we have that Eq. (9) holds.
Furthermore, again because the set of simple elements is a generating set for W ,
the map Φ is unique by construction. Consequently, the universal property of
the algebraic tensor product implies the existence of a vector space isomorphism
between W and ⊗n

j=1 S
∗
j . It is important to note that, in general, W is only a

proper subspace of S ∗.
Now, it is not hard to see that a convex set S generating a vector space

V which is isomorphic with the tensor product ⊗n
j=1Vj of the vector spaces

generated by the single Sj ’s may always be interpreted as the convex set of a
composite system implementing the independence condition among states of
the subsystems (see Eq. (1)) and with the interdependence condition among
the dual spaces of the subsystems (see Eq. (5)). Indeed, we can define the map
I : S1 × · · · × Sn −→ S given by

(ρ1, · · · , ρn) 	→ I(ρ1, · · · , ρn) = ρ1 ⊗ · · · ⊗ ρn, (11)

and a general result from linear algebra assures us that ⊗n
j=1 S

∗
j is always a

subset of S ∗ (recall that we defined the dual space of a convex set to be the
dual space of the vector space generated by the convex set itself). Furthermore,
in the finite-dimensional case where dim(Vj) < ∞ for all j ∈ [1, ..., n], we have
that

W ∼= ⊗n
j=1 S

∗
j

∼= (⊗n
j=1Vj

)∗
, (12)

where Vj is the vector space generated by Sj . Consequently, choosing the vector
space V generated by S to be the tensor product ⊗n

j=1Vj is equivalent to impose
the minimality condition S ∗ = W for the dual space of S . Note that this
is no longer true in the infinite-dimensional case because the dual space of a
tensor product need not be the tensor product of the dual spaces. However, it is
reasonable to say that the subleties associated with infinite dimensions requires
more structures to be handled, and the framework of arbitrary convex spaces is
too broad to provide these structures.

As a final comment, let us point out that, even if we consider the finite-
dimensional case with the minimality condition S ∗ = W , there is no way to sin-
gle out unambiguously an explicit candidate for S without introducing further
assumptions. Again, this should not come as a surprise because the theoretical
framework of arbitrary convex spaces considered here is too broad.

3 Conclusions

We investigated the notion of composite system made of distinguishable parties
in the context of physical theories for which the admissible spaces of states are
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real, convex spaces. Essentially, we modelled a composite system by means of
the family {Sj}j∈[1,...n] of spaces of states of the n subsystems together with
the space S of states of the total system “endowed” with two mathematical
constraints. First of all, we imposed an independence relation among the states
of the subsystems in terms of an injective linear map I : S1 × · · · × Sn −→ S ,
where S is the space of states of the total system, and S1 × · · · × Sn is the
Cartesian product of the spaces of states of the subsystems. From the operational
point of view, the existence of the map I should be thought of as guaranteeing
that each party of the system is free to prepare its associated subsystem in any
of the possible states independently from the preparations of the other parties.
Then, we introduced an interdependence condition among the dual spaces of the
subsystems (see Eq. (5)). We saw that these two mathematical conditions are
enough to introduce the notion of separable and entangled states in the context
of arbitrary convex spaces, and to prove that the dual space S ∗ of a composite
system must contain a copy of the tensor product ⊗n

j=1S
∗
j of the dual spaces of

the single subsystems. Furthermore, in the finite-dimensional case, S generates
a vector space V which is isomorphic with the tensor product ⊗n

j=1Vj of the
vector spaces generated by the single subsystems if and only if S ∗ satisfies a
minimality condition.

We must stress that the interdependence condition expressed by Eq. (5) has
not yet a clear physical interpretation, but its mathematical expression points
toward a connection with the notions of independence and freeness as defined in
the context of free probability theory (see [28]) which will be explored elsewhere.
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Abstract. Let M be a simply-connected compact Riemannian symmet-
ric space, and U a twice-differentiable function on M , with unique global
minimum at x∗ ∈ M . The idea of the present work is to replace the prob-
lem of searching for the global minimum of U , by the problem of finding
the Riemannian barycentre of the Gibbs distribution PT ∝ exp(−U/T ).
In other words, instead of minimising the function U itself, to minimise
ET (x) = 1

2

∫
d2(x, z)PT (dz), where d(·, ·) denotes Riemannian distance.

The following original result is proved: if U is invariant by geodesic sym-
metry about x∗, then for each δ < 1

2
rcx (rcx the convexity radius of

M), there exists Tδ such that T ≤ Tδ implies ET is strongly convex on
the geodesic ball B(x∗, δ) , and x∗ is the unique global minimum of ET .
Moreover, this Tδ can be computed explicitly. This result gives rise to a
general algorithm for black-box optimisation, which is briefly described,
and will be further explored in future work.

Keywords: Riemannian barycentre · Black-box optimisation ·
Symmetric space

It is common knowledge that the Riemannian barycentre x̄, of a probability
distribution P defined on a Riemannian manifold M , may fail to be unique.
However, if P is supported inside a geodesic ball B(x∗, δ) with radius δ < 1

2rcx

(rcx the convexity radius of M), then x̄ is unique and also belongs to B(x∗, δ).
In fact, Afsari has shown this to be true, even when δ < rcx (see [1,2]).

Does this statement continue to hold, if P is not supported inside B(x∗, δ),
but merely concentrated on this ball? The answer to this question is positive,
assuming that M is a simply-connected compact Riemannian symmetric space,
and P = PT ∝ exp(−U/T ), where the function U has unique global minimum
at x∗ ∈ M . This is given by Proposition 2, in Sect. 2 below.

Proposition 2 motivates the main idea of the present work: the Riemannian
barycentre x̄T of PT can be used as a proxy for the global minimum x∗ of U .
In general, x̄T only provides an approximation of x∗, but the two are equal if U
is invariant by geodesic symmetry about x∗, as stated in Proposition 3, in Sect. 4
below.
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The following Sect. 1 introduces Proposition 2, which estimates the Rieman-
nian distance between x̄T and x∗, as a function of T .

1 Concentration of the Barycentre

Let P be a probability distribution on a complete Riemannian manifold M . A
(Riemannian) barycentre of P is any global minimiser x̄ ∈ M of the function

E(x) =
1
2

∫
M

d2(x, z)P (dz) for x ∈ M (1)

The following statement is due to Karcher, and was improved upon by
Afsari [1,2]: if P is supported inside a geodesic ball B(x∗, δ), where x∗ ∈ M
and δ < 1

2rcx (rcx the convexity radius of M), then E is strongly convex on
B(x∗, δ), and P has a unique barycentre x̄ ∈ B(x∗, δ).

On the other hand, the present work considers a setting where P is not
supported inside B(x∗, δ), but merely concentrated on this ball. Precisely, assume
P is equal to the Gibbs distribution

PT (dz) = (Z(T ))−1 exp
[
−U(z)

T

]
vol(dz); T > 0 (2)

where Z(T ) is a normalising constant, U is a C2 function with unique global
minimum at x∗, and vol is the Riemannian volume of M . Then, let ET denote
the function E in (1), and let x̄T denote any barycentre of PT .

In this new setting, it is not clear whether ET is differentiable or not. There-
fore, statements about convexity of ET and uniqueness of x̄T are postponed to
the following Sect. 2. For now, it is possible to state the following Proposition 1.
In this proposition, d(·, ·) denotes Riemannian distance, and W (·, ·) denotes the
Kantorovich (L1-Wasserstein) distance [3,4]. Moreover, (μmin , μmax) is any open
interval which contains the spectrum of the Hessian ∇2U(x∗), considered as a
linear mapping of the tangent space Tx∗M .

Proposition 1. Assume M is an n-dimensional compact Riemannian manifold
with non-negative sectional curvature. Denote δx∗ the Dirac distribution at x∗.
The following hold,
(i) for any η > 0,

W (PT , δx∗) <
η2

(4 diam M)
=⇒ d(x̄T , x∗) < η (3)

(ii) for T ≤ To (which can be computed explicitly)

W (PT , δx∗) ≤
√

2 (π/2)n−1
B−1

n (μmax/μmin)
n/2 (T/μmin)

1/2 (4)

where Bn = B(1/2, n/2) in terms of the Beta function.
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Proposition 1 is motivated by the idea of using x̄T as an approximation of
x∗. Intuitively, this requires choosing T so small that PT is sufficiently close to
δx∗ . Just how small a T may be required is indicated by the inequality in (4).
This inequality is optimal and explicit, in the following sense.

It is optimal because the dependence on T 1/2 in its right-hand side cannot
be improved. Indeed, by the multi-dimensional Laplace approximation (see [5],
for example), the left-hand side is equivalent to L · T 1/2 (in the limit T → 0).
While this constant L is not tractable, the constants appearing in Inequality (4)
depend explicitly on the manifold M and the function U . In fact, this inequality
does not follows from the multi-dimensional Laplace approximation, but rather
from volume comparison theorems of Riemannian geometry [6].

In spite of these nice properties, Inequality (4) does not escape the curse of
dimensionality. Indeed, for fixed T , its right-hand side increases exponentially
with the dimension n (note that Bn decreases like n−1/2). On the other hand,
although To also depends on n, it is typically much less affected by dimension-
ality, and decreases slower that n−1 as n increases.

2 Convexity and Uniqueness

Assume now that M is a simply-connected, compact Riemannian symmetric
space. In this case, for any T , the function ET turns out to be C2 throughout
M . This results from the following lemma.

Lemma 1. Let M be a simply-connected compact Riemannian symmetric space.
Let γ : I → M be a geodesic defined on a compact interval I. Denote Cut(γ)
the union of all cut loci Cut(γ(t)) for t ∈ I. Then, the topological dimension
of Cut(γ) is strictly less than n = dim M . In particular, Cut(γ) is a set with
volume equal to zero.

Remark: The assumption that M is simply-connected cannot be removed, as the
conclusion does not hold if M is a real projective space.

The proof of Lemma 1 uses the structure of Riemannian symmetric spaces,
as well as some results from topological dimension theory [7] (Chapter VII).
The notion of topological dimension arises because it is possible Cut(γ) is not a
manifold. The lemma immediately implies, for all t,

ET (γ(t)) =
1
2

∫
M

d2(γ(t), z)PT (dz) =
1
2

∫
M−Cut(γ)

d2(γ(t), z)PT (dz)

Then, since the domain of integration avoids the cut loci of all the γ(t), it
becomes possible to differentiate under the integral. This is used in obtaining
the following (the assumptions are the same as in Lemma 1).

Corollary 1. For x ∈ M , let Gx(z) = ∇fz(x) and Hx(z) = ∇2fz(x), where fz

is the function x 	→ 1
2 d2(x, z). The following integrals converge for any T

Gx =
∫

M−Cut(x)

Gx(z)PT (dz); Hx =
∫

M−Cut(x)

Hx(z)PT (dz)



660 S. Said and J. H. Manton

and both depend continuously on x. Moreover,

∇ET (x) = Gx and ∇2ET (x) = Hx (5)

so that ET is C2 throughout M .

With Corollary 1 at hand, it is possible to obtain Proposition 2, which is con-
cerned with the convexity of ET and uniqueness of x̄T . In this proposition, the
following notation is used

f(T ) = (4/π) (π/8)n/2 (μmax/T )n/2 exp (−Uδ/T ) (6)

where Uδ = inf{U(x)−U(x∗) ; x /∈ B(x∗, δ)} for positive δ. The reader may wish
to note the fact that f(T ) decreases to 0 as T decreases to 0.

Proposition 2. Let M be a simply-connected compact Riemannian symmetric
space. Let κ2 be the maximum sectional curvature of M , and rcx = κ−1 π

2 its
convexity radius. If T ≤ To (see (ii) of Proposition 1), then the following hold
for any δ < 1

2rcx.
(i) for all x in the geodesic ball B(x∗, δ),

∇2ET (x) ≥ Ct(2δ) (1 − vol(M)f(T )) − πAMf(T ) (7)

where Ct(2δ) = 2κδ cot(2κδ) > 0 and AM > 0 is a constant given by the struc-
ture of the symmetric space M .
(ii) there exists Tδ (which can be computed explicitly), such that T ≤ Tδ

implies ET is strongly convex on B(x∗, δ) , and has a unique global minimum
x̄T ∈ B(x∗, δ). In particular, this means x̄T is the unique barycentre of PT .

Note that (ii) of Proposition 2 generalises the statement due to Karcher [1],
which was recalled in Sect. 1.

3 Finding To and Tδ

Propositions 1 and 2 claim that To and Tδ can be computed explicitly. This means
that, with some knowledge of the Riemannian manifold M and the function U ,
To and Tδ can be found by solving scalar equations. The current section gives
the definitions of To and Tδ .

In the notation of Proposition 1, let ρ > 0 be small enough, so that,

μmin d2(x, x∗) ≤ 2 (U(x) − U(x∗)) ≤ μmax d2(x, x∗)

whenever d(x, x∗) ≤ ρ , and consider the quantity

f(T,m, ρ) = (2/π)1/2 (μmax/T )m/2 exp (−Uρ/T )

where Uρ is defined as in (6). Note that f(T,m, ρ) decreases to 0 as T decreases
to 0, for fixed m and ρ. Now, it is possible to define To as

To = min
{
T 1

o , T 2
o

}
where (8)
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T 1
o = inf

{
T > 0 : f(T, n − 2, ρ) > ρ2−n An−1

}
T 2

o = inf
{

T > 0 : f(T, n + 1, ρ) > (μmax/μmin)
n/2

Cn

}

Here, An = E|X|n for X ∼ N(0, 1), and Cn = ωn An/(diam M × vol M), where
ωn is the surface area of a unit sphere Sn−1 .

With regard to Proposition 2, define Tδ as follows,

Tδ = min
{
T 1

δ , T 2
δ

} − ε (9)

for some arbitrary ε > 0. Here, in the notation of (4), (6) and (7),

T 1
δ = inf

{
T ≤ To :

√
2π (T/μmin)1/2 > δ2 (μmin/μmax)

n/2
Dn

}

T 2
o = inf

{
T ≤ To : f(T ) > Ct(2δ) (Ct(2δ) vol M + πAM )−1

}

where Dn = (2/π)n−1 Bn/(4 diam M).

4 Black-Box Optimisation

Consider the problem of searching for the unique global minimum x∗ of U .
In black-box optimisation, it is only possible to evaluate U(x) for given x ∈ M ,
and the cost of this evaluation precludes numerical approximation of derivatives.
Then, the problem is to find x∗ using successive evaluations of U(x) (hopefully,
as few of these evaluations as possible).

Here, a new algorithm for solving this problem is described. The idea of this
algorithm is to find x̄T using successive evaluations of U(x), in the hope that x̄T

will provide a good approximation of x∗. While the quality of this approximation
is controlled by Inequalities (3) and (4) of Proposition 1, in some cases of interest,
x̄T is exactly equal to x∗, for correctly chosen T , as in the following proposition 3.

To state this proposition, let sx∗ denote geodesic symmetry about x∗ (see [7]).
This is the transformation of M , which leaves x∗ fixed, and reverses the direction
of geodesics passing through x∗.

Proposition 3. Assume that U is invariant by geodesic symmetry about x∗ , in
the sense that U ◦ sx∗ = U . If T ≤ Tδ (see (ii) of Proposition 2), then x̄T = x∗

is the unique barycentre of PT .

Proposition 3 follows rather directly from Proposition 2. Precisely, by (ii) of
Proposition 2, the condition T ≤ Tδ implies ET is strongly convex on B(x∗, δ),
and x̄T ∈ B(x∗, δ). Thus, x̄T is the unique stationary point of ET in B(x∗, δ).
But, using the fact that U is invariant by geodesic symmetry about x∗, it is
possible to prove that x∗ is a stationary point of ET , and this implies x̄T = x∗.
The two following examples verify the conditions of Proposition 3.
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Example 1. Assume M = Gr(k,Cn) is a complex Grassmann manifold. In par-
ticular, M is a simply-connected, compact Riemannian symmetric space. Identify
M with the set of Hermitian projectors x : Cn → C

n such that tr(x) = k, where
tr denotes the trace. Then, define U(x) = − tr(C x) for x ∈ Gr(k,Cn), where
C is a Hermitian positive-definite matrix with distinct eigenvalues. Now, the
unique global minimum of U occurs at x∗, the projector onto the principal k-
subspace of C. Also, the geodesic symmetry sx∗ is given by sx∗ · x = rx∗x rx∗ ,
where rx∗ : C

n → C
n denotes reflection through the image space of x∗. It is

elementary to verify that U is invariant by this geodesic symmetry.

Example 2. Let M be a simply-connected, compact Riemannian symmetric
space, and Uo a function on M with unique global minimum at o ∈ M . Assume
moreover that Uo is invariant by geodesic symmetry about o. For each x∗ ∈ M ,
there exists an isometry g of M , such that x∗ = g ·o. Then, U(x) = Uo(g−1 ·x) has
unique global minimum at x∗, and is invariant by geodesic symmetry about x∗.

Example 1 describes the standard problem of finding the principal subspace
of the covariance matrix C. In Example 2, the function Uo is a known tem-
plate, which undergoes an unknown transformation g, leading to the observed
pattern U . This is a typical situation in pattern recognition problems.

Of course, from a mathematical point of view, Example 2 is not really an
example, since it describes the completely general setting where the conditions
of Proposition 3 are verified. In this setting, consider the following algorithm.

Description of the algorithm:
– input : T ≤ Tδ % to find such T , see Section 3

Q(x, dz) = q(x, z)vol(dz) % symmetric Markov kernel
x̂0 = z0 ∈ M % initial guess for x∗

– iterate : for n = 1, 2, . . .

(1) sample zn ∼ q(zn−1, z)

(2) compute rn = 1 − min {1, exp [(U(zn−1) − U(zn))/T ]}
(3) reject zn with probability rn % then, zn = zn−1

(4) x̂n = x̂n−1 # 1
n

zn % see definition (10) below

– until : x̂n does not change sensibly
– output : x̂n % approximation of x∗

The above algorithm recursively computes the Riemannian barycentre x̂n of
the samples zn generated by a symmetric Metropolis-Hastings algorithm (see [8]).
Here, The Metropolis-Hastings algorithm is implemented in lines (1)--(3).
On the other hand, line (4) takes care of the Riemannian barycentre. Precisely,
if γ : [0, 1] → M is a length-minimising geodesic connecting x̂n−1 to zn, let

x̂n−1 # 1
n

zn = γ (1/n) (10)

This geodesic γ need not be unique.
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The point of using the Metropolis-Hastings algorithm is that the generated
zn eventually sample from the Gibbs distribution PT . The convergence of the
distribution Pn of zn to PT takes place exponentially fast. Indeed, it may be
inferred from [8] (see Theorem 8, Page 36)

‖Pn − PT ‖T V ≤ (1 − p T )n (11)

where ‖ · ‖T V is the total variation norm, and p T ∈ (0, 1) verifies

p T ≤ (vol(M)) inf
x,z

q(x, z) exp(− sup
x

U(x)/T )

so the rate of convergence is degraded when T is small.
Accordingly, the intuitive justification of the above algorithm is the following.

Since the zn eventually sample from the Gibbs distribution PT , and the desired
global minimum x∗ of U is equal to the barycentre x̄T of PT (by Proposition 3),
then the barycentre x̂n of the zn is expected to converge to x∗.

It should be emphasised that, in the present state of the literature, there is
no rigorous result which confirms this convergence zn → x∗ . It is therefore an
open problem, to be confronted in future work.

For a basic computer experiment, consider M = S2 ⊂ R
3, and let

U(x) = −P9(x3) for x = (x1, x2, x3) ∈ S2 (12)

where P9 is the Legendre polynomial of degree 9 [9]. The unique global minimiser
of U is x∗ = (0, 0, 1), and the conditions of Proposition 3 are verified, since U is
invariant by reflection in the x3 axis, which is geodesic symmetry about x∗.
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Fig. 1. graph of −P9(x
3)
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Fig. 2. x̂3
n versus n

Figure 1 shows the dependence of U(x) on x3, displaying multiple local min-
ima and maxima. Figure 2 shows the algorithm overcoming these local min-
ima and maxima, and converging to the global minimum x∗ = (0, 0, 1), within
n = 5000 iterations. The experiment was conducted with T = 0.2, and the
Markov kernel Q obtained from the von Mises-Fisher distribution (see [10]).
The initial guess x̂0 = (0, 0,−1) is not shown in Fig. 2.

In comparison, a standard simulated annealing method offered less robust
performance, which varied considerably with the choice of annealing schedule.
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Proofs

The proofs of all results stated in this work are detailed in the extended version,
available online: https://arxiv.org/abs/1902.03885
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Abstract. In this paper we show that the Hamiltonian Monte Carlo
method for compact Lie groups constructed in [20] using a symplectic
structure can be recovered from canonical geometric mechanics with a
bi-invariant metric. Hence we obtain the correspondence between the
various formulations of Hamiltonian mechanics on Lie groups, and their
induced HMC algorithms. Working on G ×g we recover the Euler-Arnold
formulation of geodesic motion, and construct explicit HMC schemes
that extend [20,21] to non-compact Lie groups by choosing metrics with
appropriate invariances. Finally we explain how mechanics on homo-
geneous spaces can be formulated as a constrained system over their
associated Lie groups. In some important cases the constraints can be
naturally handled by the symmetries of the Hamiltonian.

Keywords: Hamiltonian Monte Carlo · Lie groups ·
Homogeneous manifolds · MCMC · Symmetric spaces · Sampling ·
Symmetries · Symplectic integrators

1 Introduction

The HMC algorithm [16] is a method that generate samples from a probability
distribution which has a density known up to constant factor with respect to
a reference measure [5,7,8]. The method was originally extended to compact
semisimple Lie groups in [20], while Poisson brackets, shadow Hamiltonians and
higher order integrators were discussed in [21]. The algorithm was designed by
constructing a symplectic structure (and thus a mechanics) on G × g∗, but the
relation with the standard mechanics induced by the Liouville form on T ∗G was
never explained. One of the difficulties that arise when sampling distributions on
manifolds using HMC is the requirement to compute the geodesic flow accurately
in order to maintain the motion on the manifold [6,12,17].
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doi.org/10.1007/978-3-030-26980-7 69) contains supplementary material, which is
available to authorized users.
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In the context of Lie groups, the geodesic motion was handled in [4,14,20–22]
by assuming the Killing form defined a positive-definite Riemannian metric, in
which case geodesics are given by 1-parameter subgroups. This holds for compact
semisimple Lie groups (for example SO(n) and SU(n)) but is not case for most
other Lie groups, such as GL(n) or SL(n).1

In this article we formalise the HMC schemes given in [20,21] and connect
them to standard geometric mechanics on Lie groups, which allows us to remove
the compactness assumption on the Lie algebra (or equivalently, the assumption
that the Killing form is negative definite).

In Sect. 2.2 we show the symplectic structure used in [20,21] is symplectomor-
phic to the canonical one on T ∗G. It follows that many results from geometric
mechanics that assume standard mechanics, such as symplectic reduction on
cotangent bundles, can be used in HMC [1]. Since HMC is usually implemented
on the tangent bundle, we derive the corresponding symplectic structure on G×g
induced by a metric. In [20,21] the kinetic flow was simply given by left-invariant
vector fields as a result of the bi-invariance of the Killing-form. This corresponds
to solving the reconstruction equation for a constant curve on g, but, as we show
in Sect. 2.3, the geodesic flow of more general left-invariant metrics must solve
both the Euler-Arnold and reconstruction equations. Hence in Sect. 3 we consider
the Euler-Arnold equation and explain how it can be simplified and solved by
choosing inner products with appropriate symmetries. In particular we derive
explicit HMC schemes for GL(n) and semi-simple Lie groups. In Sect. 2.4 we
provide the explicit relation between the leapfrog scheme on Lie groups as used
in [6] and the general one on manifolds; while Sect. 2.5 discusses more efficient
integrators. In Sect. 4 we explain how more generally the mechanical system on
homogeneous manifolds can be derived from a constrained mechanics defined on
Lie groups. For reductive homogeneous manifolds, the constraints can be natu-
rally handled by choosing a Hamiltonian with sufficient symmetries. Hence we
recover the HMC scheme proposed in [6] to sample distributions on naturally
reductive homogeneous spaces using Lie group mechanics and symplectic reduc-
tion. We will see that this is still true for the discretised motion defined by the
leapfrog method or force-gradient integrators (i.e., these preserve the symme-
tries).

2 Hamiltonian Monte Carlo on Lie Groups

2.1 Lie Groups

Let Lg : G → G denote the left translation Lgh = gh on a Lie group G, and g (and
gL) denote the Lie algebra (of left-invariant vector fields) (see Sect. 6.10 for more
details). The Maurer-Cartan form θ ∈ Γ (T ∗G ⊗ g)2 is defined by θ : g �→ ∂gLg−1

1 In [21] the equations of motion are given for semisimple lie algebras, but the deriva-
tion uses the Killing form which is not Riemannian in general and as a result cannot
be used for HMC (due to the momentum refreshment step).

2 Γ (M) denotes the set of smooth sections of a bundle M. If the base space B is
ambiguous we write Γ (B, M).
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where ∂ denotes the tangent map. Let ξi be a basis of g, ei ∈ gL be the induced
left-invariant vector fields (so ei(1) = ξi), and θi the dual 1-forms, θi(ej) = δi

j .
We will adopt the Einstein notation and sum over repeated indices.

2.2 Symplectic Structures on Lie Groups

In this section we derive the symplectic structures on G × g∗, TG and G × g
induced by the canonical 1-form on T ∗G.

The canonical Liouville 1-form can be expressed in terms of the momentum
p ≡ (

θ−1
)∗ : T ∗G → g∗, as p

(
π∗θ

)
[2]. We can expand θ and p using a basis

ei of gL, which yields θ = ei(1) ⊗ θi and p = θi(1) ⊗ ei where we use the
canonical isomorphism TgG ∼= T ∗∗

g G to view ei as a function T ∗G → R, i.e., ei :
(g, αg) �→ αg

(
ei(g)

)
. The Liouville 1-form is then η ≡ eiπ

∗θi ∈ Γ (T ∗G, T ∗T ∗G)
on T ∗G (here π : T ∗G → G is the usual projection), and the canonical symplectic
structure is its exterior derivative3

ω ≡ −dη = −d(eiπ
∗θi) = π∗θi ∧ dei + 1

2eic
i
jkπ∗θj ∧ π∗θk. (1)

The symplectic volume form is then given by the product of the Haar measure
θ1 ∧ · · · ∧ θn on G with the Lebesgue measure on the fibres

ωn ≡
n∧

i=1

ω ∝ de1 ∧ · · · ∧ den ∧ π∗θ1 ∧ · · · ∧ π∗θn.

When G = R
n, then by the Maurer-Cartan equation and Poincaré lemma the

1-forms θi can be written as θi = dxi, and we recover the usual volume form.
Originally HMC on compact semisimple matrix groups was constructed on

the trivial bundle G × g∗, and although the momentum coordinates were left
undefined,4 we can recover the original mechanical system by defining p̃i : G ×
g∗ → R s.t. p̃i : (g, α1) → α1(ξi), from which we can form the symplectic
structure ω̃ = −d(p̃iπ

∗θi). Clearly ω and ω̃ are symplectomorphic with respect
to the canonical isomorphism T ∗G ∼= G × g∗, (g, αg) �→ (g, L∗

gαg) (see Sect. 6.1
of the Supplementary material).

In practice however we usually work on the tangent bundle. Consider a Rie-
mannian metric 〈·, ·〉 on TG. The associated musical isomorphism, FL : TG →
T ∗G, v �→ 〈v, ·〉, enable us to pull-back ω to a symplectic structure ωL on TG. The
latter is the exterior derivative of the 1-form −vjπ∗(〈ei, ej〉θi

) ∈ Γ (TG, T ∗TG),
where vj : TG → R satisfies (g, ug) �→ θi

g(ug), and now π : TG → G is the
tangent bundle projection (see Sect. 6.2 of the Supplementary material). To take
advantage of the symmetries of G we will restrict to left-invariant Riemannian

3 Here we use the fact that θ is a flat gauge-field, and thus satisfy Maurer-Cartan
equation 0 = dθ + 1

2 [θ ∧ θ] = ek(1) ⊗ (
dθk + 1

2 ck
ijθ

i ∧ θj
)
.

4 In [21] the symplectic structure is defined as dp for p ∈ T ∗
g G which does not define

a differential form over T ∗G since the components pi are then constant.
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metric, 〈·, ·〉 ≡ gijθ
i ⊗ θj where gij is symmetric positive definite, so the metric

is determined by its value at the identity, gij = 〈ξi, ξj〉1. Then

ωL ≡ FL∗ω = −d(gijv
jπ∗θi) = gijπ

∗θi ∧ dvj + 1
2girv

rci
jkπ∗θj ∧ π∗θk. (2)

As above, ωL can be pulled-back to define an equivalent mechanics on G ×g (the
coordinate functions vj are now the maps (g,X) �→ θj

1(X)). In particular, if the
metric is left-invariant the Hamiltonian H ≡ V ◦ π + 1

2 〈·, ·〉 on TG defines an
equivalent Hamiltonian V ◦π+ 1

2 〈·, ·〉1 on G×g (see Sect. 6.3 of the Supplementary
material).

2.3 Hamiltonian Fields and Euler-Arnold Equation

We now focus on the mechanical system on G × g induced by a left-invariant
metric T = vivjgij : g → R. For any function f : G × g → R, its Hamiltonian
vector field f̂ ∈ Γ (TG ⊕ Tg) is defined by ωL(f̂ , ·) = df . We have (see Sect. 6.4
of the Supplementary material)

f̂ = gjkξk(f)ej +
(
gikgljvrcrjiξl(f) − gjkej(f)

)
ξk. (3)

For the potential energy and kinetic energy induced by a left-invariant metric

T̂ = vkek + gikvrvscrsiξk V̂ = −gjkej(V )ξk

The Poisson brackets associated to ωL are defined by {r, h} ≡ ωL(r̂, ĥ) for
any functions r, h : G × g → R, and describe the rate of change of r along the
flow of h since {r, h} = ωL(r̂, ĥ) = dr(ĥ) = ĥ[r]. This is often written ṙ = {r, h}
where ṙ : G ×g → R is the function giving the rate of change of r in the direction

ĥ, ṙ(u) ≡ dr(Φĥ
u(t))

dt |t=0 (here Φĥ : R × (G × g) → G × g denotes the flow of ĥ).
It follows immediately that a function does not vary along its Hamiltonian flow:
ḣ = {h, h} = 0, and in fact neither does the symplectic structure Φĥ(t)∗ωL = ωL,
which enables the construction of symplectic integrators (see Sect. 6.9 of the
Supplementary material). It is also common to write the Poisson bracket of a
curve γ : [a, b] → TG with a function r by setting γ̇ = {γ, h} ≡ ĥ(γ). This is
a differential equation stating that γ̇ is the integral curve of ĥ. In particular, a
curve satisfying γ̇ = {γ,H} with initial conditions (g0, v0) = γ(0) is known as a
solution of Hamilton’s equations.

An integral curve γV of V̂ satisfies γ̇V = V̂ (γ). Let γV (t) =
(
q(t), v(t)

)
. The

equation then reads
(
q̇, v̇

)
=

(
0,−gjkej(V )ξk

)∣∣(
q(t),v(t)

), which implies

q(t) = q(0) v(t) = v(0) − tgjkej(V )|q(0)ξk. (4)

For the integral curves of T̂ , we have
(
q̇, v̇

)
=

(
vkek, gikvrvscrsiξk

)|γT (t). The
mysterious term gikvrvscrsiξk disappeared in both [20,21] (and didn’t appear in
[22]) since the structure constants of the Killing form are totally anti-symmetric



HMC on Lie Groups and Homogeneous Manifolds 669

(see Sect. 3). It is in fact nothing else than the 〈·, ·〉-adjoint of the adjoint rep-
resentation. Recall that the adjoint representation ad : g → End(g) satisfies
adξ ≡ ad(ξ) = [ξ, ·]. For each ξ ∈ g we can define its adjoint ad�

ξ with respect
to the inner product 〈ad�

ξ X,Y 〉 = 〈X, adξ Y 〉. It follows that ad� is bilinear so

〈ad�
v v, ξk〉 = vivj〈ad�

ξi ξj , ξk〉 = vivj〈ξj , adξi ξk〉 = vivj〈ξj , [ξi, ξk]〉
= vivj〈ξj , c

r
ikξr〉 = cr

ikvivjgjr = vivjcjik.

On the other hand 〈ad�
v v, ξk〉 = 〈( ad�

v v
)s

ξs, ξk〉 =
(
ad�

v v
)s

gsk. Combining
these two equations gives ad�

v v = gklvivjcjikξl. Hence the integral curves of T̂
satisfy (

q̇, v̇
)

=
(
vkek, ad�

v v
)|γT (t).

The equation v̇ = ad�
v v is a first order differential equation on the Lie algebra

g known as the Euler-Arnold equation. In order to derive the integral curves
of T̂ we can proceed in two steps. We first solve the Euler-Arnold equation
to give a solution s : [0, T ] → g. The equation for q̇ then states that q̇ =
vkek|(q(t),s(t)) = sk(t)ek(q(t)) = ∂1Lq(t)s(t), which is a first order ODE for q
called the reconstruction equation.

In summary we have shown that the Hamilton’s equation γ̇ = Ĥ(γ) defined
by the symplectic structure on G × g reads

q̇ = vjej(q) = ∂1Lqv v̇ = ad�
v v − gjkej(V )(q)ξk,

which can be recognised as the equations arising from the Hamilton-Pontryagin
variational principle.

We finally note that the left-invariance of the metric enabled us to obtain
two first order differential equations for the geodesic flow, rather than the usual
second-order differential equation on a general Riemannian manifold. This is
known as the Euler-Poincaré reduction.

2.4 Leapfrog Integrator

On an arbitrary Riemannian manifold M, we can define the leapfrog integrator
for the Hamiltonian system H = V + T as a composition of the kinetic T̂ and
potential V̂ fields defined by the canonical symplectic structure on TM [24].
The potential flow leads to the velocity update

q(t) = q(0) v(t) = v(0) − t∇q(0)V, (5)

(here ∇ is the Riemannian gradient) and the kinetic (or geodesic) flow leads to
the update (

q(t), v(t)
)

=
(
expq(0)(v(0)), Pq(t)v(0)

)
,

where expq v denotes the Riemann exponential map and Pqv the parallel trans-
port along the geodesic. Let us see the explicit relation between these updates
and the ones derived in Sect. 2.3. Suppose that M = G is a Lie group and T
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is defined by a left-invariant metric 〈·, ·〉. The components of the curvature are
determined by the structure constants (see appendix B [15])

Γijk = 1
2

(
cikj − cjki − ckji

)
, Ri

jkl = − 1
4ci

mjc
m
kl.

From Sect. 2.2 we know that, under the symplectomorphism TG ∼= G × g, the
Hamiltonian vector-field induced by the inner product 〈·, ·〉1 : g → R push-
forwards to the geodesic flow induced by T : TG → R. More precisely if
(q(t), v(t)) ∈ G × g is the integral curve of the Hamiltonian vector field of 〈·, ·〉1,
then the geodesic flow of the Riemannian metric T = 〈·, ·〉 on TG is given by(
q(t), ∂1Lq(t)v(t)

)
=

(
q(t), q̇(t)

)
.

For the potential term, observe that5

∇gV = gjk(g)dgV (ek)ej(g) = gjk(1)ek(V )(g)∂1Lgξj

(by left-invariance gij is constant), and v(t) = θi
g(v(t))ei(g) = vi(t)∂1Lgξi. Thus

under the symplectomorphism G × g → TG, we have (ξi → ∂1Lgξi) and (5)
push-forwards to the velocity update (4).

Finally let us see how the velocity update (4) is computed in practice when
G is a matrix group (or we have an injective representation G → GL(n) and
identify G with its image). In that case we need an extension W of V defined on
an open subset of GL(n). Then

ei(V )(g) = d(W ◦ ι)(g · ξi) =
∂W

∂xjk

(
∂(ι ◦ Lg)ξi)

)
jk

= tr
(∂W

∂x

�
· g · ξi

)
,

where · is matrix multiplication, ι : G → GL(n) is the inclusion (or a more
general injective representation), and in the last line we have identified g ∼
ι(g), ξi ∼ ∂ι(ξi). We arrive at the general velocity update formula for a matrix
group

vi(t)ξi = vi(0)ξi − tgij(1) tr
(∂W

∂x

�
· g · ξj

)
ξi.

In lattice gauge theory we typically have W (x) = Re tr
(
Ux

)
for a constant

complex matrix U . Given H : G × g → R, the following procedure produces a
sample from e−Hωn

L; to obtain an HMC sample from the marginal e−V θ1∧· · ·∧θn

we simply ignore the velocity component. Given current state (q(0), v(0)) ∈ G×g

2.5 Efficient Integrators

While the leapfrog integrator is the most common choice of integrator, it is not
always the optimal choice. For example [28,29] consider a symplectic integrator of
the form6 exp

(
λδtT̂

)
exp

(
1
2δtV̂

)
exp

(
(1−2λ)δtT̂

)
exp

(
1
2δtV̂

)
exp

(
λδtT̂

)
which,

5 Note that if α ∈ Γ (T ∗G), then α = ei(α)θi = α(ei)θ
i = αiθ

i. Moreover u = gijαiej

is the vector field associated to α by the metric since α(v) = αiθ
i(vjej) = αiv

i =
αkδk

i vi = αkgkrgriv
i = urgriv

i = 〈u, v〉.
6 Using the notation exp(tĤ) ≡ ΦĤ(t) for the Hamiltonian flow.



HMC on Lie Groups and Homogeneous Manifolds 671

Algorithm 1. Algorithm to generate a sample from e−Hωn
L.

1: sample v ∼ e− 1
2 gijvjvi

dv = N (0, g−1
ij )

2: v ← v − 1
2 tgjk tr

(
∂W
∂x

� · q(0) · ξj

)
ξk

3: Solve the Euler-Arnold and Reconstruction equations (q, v) ← (q(0), v)

4: v ← v − 1
2 tgjk tr

(
∂W
∂x

� · q · ξj

)
ξk

5: ΔH ← H(q, v) − H(q(0), v(0))
6: U ∼ Uniform[0, 1]
7: If U < exp(−ΔH), then return (q, v); else return (q(0), v(0)

despite being computationally more expensive, they show is 50% more efficient
than leapfrog. In [21] a “force-gradient” integrator is examined which involves
the Hamiltonian field ̂{V, {V, T}}, and thus contains second-order information
(derivatives) about V . The question of tuning HMC using Poisson brackets to
minimise the cost was considered in [14]; see also [13] for a discussion on Lie
group integrators, and [10] for integrators which outperform leapfrog on R

n.

3 Geodesics

We now analyse how Euler-Arnold equation v̇ = ad�
v v simplifies when the inner

product on g is adk-invariant for a subalgebra k ⊂ g. When G is connected, adk-
invariant inner products correspond to left G-invariant and right K-invariant
Riemannian metrics on G.7 When k = g these correspond to bi-invariant Rie-
mannian metric on G, which always exists when G is compact [27].

Ad G-Invariant Inner Products. The simplest case arises when ad�
v v = 0.

This situation occurs for example when the inner product on g is ad-invariant,
〈adu v, w〉 + 〈v, adu w〉 = 0, which implies ad� = − ad and ad�

v v = −[v, v] = 0.
We can find ad-invariant inner products on g when G has an AdG-invariant
inner product, or equivalently if it has a bi-invariant metric. A particular AdG-
invariant inner product is available on Lie groups whose lie algebra is compact,
which means the Killing-form B(u, v) ≡ tr

(
ad(u) ad(v)

)
is negative definite,

and so −B defines a positive definite ad-invariant inner product.
When ad�

v v = 0, then v(t) = v0, so the reconstruction equation becomes
q̇ = vkek|(q(t),v0) = vk

0ek(q(t)) = ∂1Lq(t)v0 = d
dtLq(t)e

tv0 |t=0, which implies
q(t) = q(0)etv0 (here we used the fact that etv0 is tangent to v0 at t = 0). Hence
we obtain the kinetic flow as in [21]

γT (t) =
(
q(0)etv0 , v0).

7 i.e., the left and right actions Lg and Rk are isometries for g ∈ G, k ∈ K (here
K is the Lie group associated to k). When G is not connected an analogous cor-
respondence exists with AdK-invariant inner products [6], i.e., inner products s.t.
〈Adk u, Adk v〉1 = 〈u, v〉1 for u, v ∈ g, which are automatically adk-invariant.
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Reductive Decomposition. Sometimes it is not possible to find a bi-invariant
metric on G. The natural next step is to consider inner products on g which
are adk-invariant, where k is a subalgebra of g. This means that 〈adu v, w〉 +
〈v, adu w〉 = 0 for all u ∈ k, and it follows that ad�

u = − adu. Then K is totally
geodesic in G and its geodesics are given by 1-parameter subgroups (see Sect. 6.5
of the Supplementary material). Let p ≡ k⊥, so g = k ⊕ p and v = vk + vp.
The Euler-Arnold equation reads v̇ = v̇k + v̇p = ad�

v v = ad�
vk

vk + ad�
vk

vp +
ad�

vp
vk + ad�

vp
vp = −[vk, vp] + ad�

vp
vk + ad�

vp
vp. We can simplify this further if

the decomposition k⊕ p is naturally reductive, i.e., [k, p] ⊂ p and for all u, v, w ∈
p, 〈[u, v]p, w〉 = 〈u, [v, w]p〉 [3]. This implies ad�

vp
vp = 0 (see Sect. 6.6 of the

Supplementary material), and we are left with

v̇ = −[vk, vp] + ad�
vp

vk.

Notably the constant curve v = v0 with either v0 ∈ k or v0 ∈ p is a solution.

Matrix Groups. Consider a subgroup G ⊂ GL(n) and set g = p⊕ k where p is
a subspace of the space of symmetric matrices, while k = so(n). We have in mind
the cases GL(n), SL(n) and SO(n) with p the space of symmetric matrices, the
space of traceless symmetric matrices, and {0} respectively. We equip g with
the standard inner product 〈A,B〉 ≡ tr(A�B) which is Ad K-invariant. Since
the product of a symmetric and an antisymmetric matrix is traceless, we have
〈A,B〉 = tr(ApBp) − tr(AkBk).

Note that for G = SO(n), this is just the negative of the Killing form (up to
a positive constant); while on GL(n) and SL(n), the Killing form, respectively
given by 2n tr(AB)−2 tr(A) tr(B) and 2n tr(AB), doesn’t define an inner product
(it is degenerate and pseudo-Riemannian respectively [25]).

For our inner product we have ad�
S A = [S,A] for any S ∈ p, A ∈ k, hence

Euler-Arnold equation simplifies to v̇ = −2[vk, vp] with solution (see Sect. 6.7 of
the Supplementary material)

(
q(t), v(t)

)
=

(
q(0)e

(
vp(0)−vk(0)

)
te2vk(0)t, vk(0) + Ad e−2vk(0)t(vp(0))

)
. (6)

Semi-simple Symmetric Spaces. The equation for the geodesics above also
holds for a semi-simple Lie group G using an inner product based on the Killing
form B (note GL(n) is not semi-simple). Let us consider a subgroup K for which
G/K is a symmetric space. In that case we can find a Cartan decomposition
g = k ⊕ p. By corollary 5.4.3 [19] the Killing form is negative-definite on K. We
say G/K is of compact (non-compact) type if B is negative (positive) definite on
p. If G/K is of compact type the inner product 〈v, u〉 ≡ B(vk, uk) + B(vp, up) is
Ad G-invariant, while if it is of non-compact type 〈v, u〉 ≡ −B(vk, uk)+B(vp, up)
is AdK-invariant. Then ad�

vp
vk = [vp, vk] (see Lemma 5.5.4 [19]) and we can find

the integral curves of T̂ as in Sect. 3.
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Approximating the Matrix Exponential. In practice there are several ways
to approximate the matrix exponential, for example by combining a Padé approx-
imant with a projection from GL(n) to G [9]. In particular the Cayley transform
z �→ (1+ 1

2z)/(1− 1
2z) = (1− 1

2z)−1(1+ 1
2z), which is the Padé-(1, 1) approximant,

maps exactly onto G for quadratic groups8 (in fact diagonal Padé approximants
are product of Cayley transforms) [18].

4 Constrained Mechanics on Homogeneous Manifolds

It was shown in [6] that HMC on naturally reductive manifolds can be imple-
mented using mechanics on Lie groups. Consider a Homogeneous manifold G/K
(where K is a closed subgroup of G) and a Hamiltonian H̃ = Ṽ + T̃ on T

(G/K)
.

Let π : G → G/K be the quotient projection. We can lift H̃ to TG by defin-
ing H ≡ (∂π)∗H̃. The lift T ≡ (∂π)∗T̃ defines a degenerate kinetic energy on
TG, since it maps all vectors in the vertical space verg ≡ ker(∂gπ) to zero. The
vertical space is described by the action fields verg = {ξG(g) : ξ ∈ k} where
ξG(g) = d

dte
tξ · g|t=0 = ∂1Lg(ξ).

In order to circumvent the issues related to the degeneracy of T , we need to
make a choice of horizontal space complementary to verg, or equivalently choose
a connection on the principal bundle G → G/K. This defines a unique way to
lift a curve on G/K to a curve on G, and a complementary subspace p to k, i.e.,
g = k ⊕ p (see Sect. 6.11 of the Supplementary material). Then, if (q, v) satisfies
the constrained equation

q̇ = vjej(q)
d
dt

(
∂T (q, v)

∂v

)
= ad∗

v

∂T (q, v)
∂v

− L∗
gdV v(t) ∈ p,

the projected curve π(q(t)) solves Euler-Lagrange equations on G/K [23]. We
note the constraint v(t) ∈ p can be rewritten in the form ver

(
v(t)

)
= 0 where

ver : g → k is the vertical projection.
If G/K is a reductive homogeneous manifold, there is a one-to-one corre-

spondence between AdG K-invariant inner products on p and G-invariant metric
on G/K. In particular if we extend the inner product on p to a non-degenerate
quadratic form on g s.t. p = k⊥, it defines a pseudo-Riemannian metric on G that
is left G-invariant and right K-invariant, and a kinetic energy T with T = (∂π)∗T̃
on p. The resulting Hamiltonian H = V +T is right K-invariant so by Noether’s
theorem, if v(0) ∈ p, then v(t) ∈ p for all t. This means the constraint v(t) ∈ p
is naturally handled by the symmetries of H (see Sect. 6.8 of the Supplementary
material).

If G/K is further naturally reductive, since ad�
v v = 0 for v ∈ p the above

system becomes

q̇ = vjej(q) v̇ = −gjkej(V )(q)ξk v(0) ∈ p,

8 By a quadratic group (sometimes called J-orthogonal) we mean a subgroup G =
{M ∈ GL(n) : MT JM = J} for some J ∈ GL(n).
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and we recover the HMC algorithm on naturally reductive homogeneous spaces
proposed in [6].

It is clear that integrators that are built by alternating between the flows
of V and T are automatically horizontal (the trajectory stays in G × p) since
both V and T are K-invariant. This is still true for the force-gradient integrators
Sect. 2.5. Indeed, from the adk-invariance of the inner product on g, we have
crij = −cjir for any i ∈ k (the structure constants always satisfy ci

jk = −ci
kj).

Hence if V is invariant under the right action of K on G, then ̂{V, {V, T}} =
−2gjkglsel(V )ejes(V )ξk ∈ p (see Sect. 6.12 of the Supplementary material).
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Abstract. The Fisher-Rao distance between two probability distribu-
tion functions, as well as other divergence measures, is related to entropy
and is in the core of the research area of information geometry. It can
provide a framework and enlarge the perspective of analysis for a wide
variety of domains, such as statistical inference, image processing (tex-
ture classification and inpainting), clustering processes and morphologi-
cal classification. We present here a compact summary of results regard-
ing the Fisher-Rao distance in the space of multivariate normal distribu-
tions including some historical background, closed forms in special cases,
bounds, numerical approaches and references to recent applications.

Keywords: Fisher-Rao distance · Information geometry ·
Multivariate normal distributions

1 Introduction

The Fisher-Rao distance is a measure of dissimilarity between two probability
distributions and, as well as other divergence measures, has had applications in
several areas. Let us start with the classical example of the univariate normal
distributions with media μ ∈ R and standard deviation σ ∈ (0,+∞),

p(x;μ, σ) =
1√
2πσ

exp

(
−1

2

(
x − μ

σ

)2
)

, x ∈ R. (1)

Figure 1 illustrates a comparison between four univariate normal distributions
represented by their (μ, σ) pairs. We can see on the left that the dissimilar-
ity between probability distributions associated with C and D is smaller than
the one between the distributions associated with A and B. This means that
a proper distance between points in the parameter space given by the media-
standard deviation plane (right) representing those normal distributions cannot
be Euclidean [1].
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Fig. 1. Univariate normal distributions and their representations in the (μ, σ) plane.

After some previous papers (Mahalanobis [2], Bhattacharyya [3], Hotelling
[4]) connecting geometry and statistics, Rao [5] in the search for an adequate
measure to determine the distance between two populations, introduced dif-
ferential geometry methods in the study of a space composed by parameters of
probability distributions (statistical models). In this landmark paper he consider
the statistical models with the Riemannian metric induced by the information
matrix defined by Fisher in 1921 [6]. The geodesic distance in this model is
usually called Fisher distance or, as in this paper, the Fisher-Rao distance.

Given a statistical model S = {pθ = p(x;θ);θ = (θ1, θ2, . . . , θm) ∈ Θ}, a
natural Riemannian structure [17] can be provided by the Fisher information
matrix:

gij(θ) =
∫

∂

∂θi
log p(x;θ)

∂

∂θj
log p(x;θ)p(x;θ)dx, (2)

This matrix can also be viewed as the Hessian matrix of the Shannon Entropy

H(p) = −
∫

p(x;θ) log p(x;θ)dx (3)

and is used to establish connections between inequalities in information theory
and geometrical inequalities.

The Fisher-Rao distance, dF , between two distributions θ1 and θ2 is given
by the shortest length of a curve γ(t) in the parameter space Θ connecting θ1

and θ2. Such a curve is called a geodesic and is given by the solutions of the
Euler-Lagrange equations

d2θk

dt2
+

∑
i,j

Γk
ij

dθi

dt

dθj

dt
= 0, k = 1, · · · ,m, (4)

where Γk
ij are the Christoffel symbols attached to this metric.

In the Fisher-Rao model of univariate normal distributions parametrized by
(μ, σ), the Fisher matrix is (

1
σ2 0
0 2

σ2

)
(5)
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and a closed form for the Fisher-Rao distance, dF , in this case is known via an
association with the classical model of the hyperbolic plane [1,5,7,8].

An analytic expression for dF is

dF ((μ1, σ1), (μ2, σ2)) =
√

2 cosh−1

⎛
⎜⎝1 +

∣∣∣( μ1√
2
, σ1

)
−

(
μ2√
2
, σ2

)∣∣∣2
2σ1σ2

⎞
⎟⎠ (6)

where |.| is the standard Euclidean norm in R
2. The geodesics in this half-

plane model are half-vertical lines and half-ellipses centered at σ = 0, with
eccentricity 1√

2
, [1]. Connections between the Fisher-Rao distance and the well-

know Kullback-Leibler divergence of univariate normals can also be devised [1].
The Fisher-Rao distance in the space of univariate normal distributions was

applied to quantization of hyperspectral images [9] and to the space of projected
lines in the paracatadioptric image [10]. In [11], this Fisher-Rao model was used
to simplify Gaussian mixtures through the k-means method and in [12] to a
hierarchical clustering technique.

The approach of Rao [5] for distances between univariate normal distributions
encourage several authors to use geometric tools in the study of statistical models
and the calculus of the Fisher-Rao distance between other probability distribu-
tions as well as stimulated the approach of other dissimilarity measures [7,8,13].
In 1975, Efron [14] introduced the curvature concept in statistical models and was
followed by important contributions of Dawid [15] and Amari-Nakaoga [16,17]
who unified the information geometry theory by introducing other concepts of
connection in statistical models. In an independent work, Chentsov [18] proved
that the Fisher-Rao information metric is, up to a scaling factor, the unique
yielding statistical invariance under Markov morphisms [19]. This metric has
been considered in several statistical models aiming applications to different
fields [19,20].

In this paper we gathered results and applications of the Fisher-Rao dis-
tance in the statistical model composed by multivariate normal distributions
which has also been the focus of our previous papers [1,21–23]. In this space a
closed form for the Fisher-Rao distance is not yet known. Section 2 is devoted
to main concepts and important results to approach this distance for general
normal distributions. In Sect. 3 we collect closed forms for special submanifolds
and related applications. Bounds for the Fisher-Rao distance regarding general
normal distributions are described in Sect. 4.

2 The Fisher-Rao Distance on Multivariated Normal
Distribution Space

We consider here multivariate normal distributions given by

p(x;μ, Σ) =
(2π)−(n

2 )√
Det(Σ)

exp
(

− (x − μ)tΣ−1(x − μ)
2

)
, (7)
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where xt = (x1, · · · , xn) ∈ R
n is the variable vector, μt = (μ1, · · · , μn) ∈ R

n is
the mean vector and Σ ∈ Pn(R) is the covariance matrix (Pn(R) is the space of
order n positive definite symmetric matrices). M = {pθ ;θ ∈ R

n ×Pn(R)} is the
statistical

(
n + n(n+1)

2

)
-dimensional model composed by these distributions.

We observe that, for any (c, Q) ∈ R
n × GLn(R), where GLn(R) is the space

of non-singular order n matrices, the mapping (μ, Σ) �→ (Qμ + c, QΣQt) is an
isometry in M [7]. Consequently, the Fisher-Rao distance between θ1 = (μ1, Σ1)
and θ2 = (μ2, Σ2) in M satisfies

dF (θ1,θ2) = dF ((Qμ1 + c, QΣ1Q
t), (Qμ2 + c, QΣ2Q

t)), (8)

for any (c, Q) ∈ R
n × GLn(R). In particular, taking Q = Σ

−(1/2)
1 and

c = −Σ
(−1/2)
1 μ1, θ = (μ, Σ) = (Σ−(1/2)

1 (μ2 − μ1), Σ
−(1/2)
1 Σ2Σ

−(1/2)
1 ) the

Fisher-Rao distance admits the form

dF (θ1,θ2) = dF (θ0,θ), (9)

where θ0 = (0, In), In is the n-order identity matrix and 0 ∈ R
n is the null

vector.
The geodesic equations in M can be expressed as [13]⎧⎨

⎩
d2μ
dt2 − (

dΣ
dt

)
Σ−1

(
dμ
dt

)
= 0

d2Σ
dt2 +

(
dμ
dt

)(
dμ
dt

)t

− (
dΣ
dt

)
Σ−1

(
dΣ
dt

)
= 0.

(10)

These equations could be partially integrated and, under certain initial con-
ditions, Eriksen [24] and Calvo and Oller [25] solved them, independently.

Han and Park in [26] proposed a numerically shooting method for computing
the minimum geodesic distance between two normal distributions, through pa-
rallel transport of a vector field defined along of a geodesic. They applied their
method for the segmentation of diffusion tensor magnetic resonance images.

In general, a closed form for the Fisher-Rao distance between normal dis-
tributions is known only for the univariate case and for some submanifolds as
described next.

3 Closed Forms for Special Submanifolds and Related
Applications

We collect closed forms which are known for special submanifolds of M. One
important aspect to be discussed here is when the considered submanifold is
totally geodesic, that is, when the distance restricted to the submanifold is the
same that the distance in M.
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3.1 The Submanifold MΣ Where Σ Is Constant

In the n-dimensional manifold composed by multivariate normal distributions
with common covariance matrix Σ, MΣ = {pθ ;θ = (μ, Σ), Σ = Σ0 ∈
Pn(R) constant}, the Fisher-Rao distance is equal to the Mahalanobis distance
[2], dΣ , which and for θ1 = (μ1, Σ0) and θ2 = (μ2, Σ0) is defined as

dΣ(θ1,θ2) =
√

(μ1 − μ2)tΣ−1
0 (μ1 − μ2). (11)

This distance was one of the first dissimilarity measure between data sets with
some correlation.

We remark that this submanifold is not totally geodesic. This can be seen
even in the space of univariate normal distributions described in Sect. 1. For
σ = σ0, dF ((μ1, σ0), (μ2, σ0)) < dσ((μ1, σ0), (μ2, σ0)) = |μ1 − μ2|/σ0 [1].

3.2 The Submanifold Mμ Where μ Is Constant

In 1976, S. T. Jensen deduced a closed expression for the Fisher-Rao dis-
tance in the n(n+1)

2 -dimensional totally geodesic submanifold Mμ = {pθ ;θ =
(μ, Σ), μ = μ0 ∈ R

n constant}, composed by distributions which have the same
mean vector μ [8]. We denote dF (, ) as dμ ,

dμ((μ, Σ1), (μ, Σ2)) =

√√√√1
2

n∑
i=1

[log(λi)]2, (12)

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of Σ
−1/2
1 Σ2Σ

−1/2
1 .

This submanifold was considered in the analysis and processing of diffusion
tensor images (DTI) [27,28]. In [29], the authors used this submanifold to analyze
color texture discrimination in several classification experiments.

3.3 The Submanifold MD Where Σ Is Diagonal

Let MD = {pθ ; θ = (μ, Σ), Σ = diag(σ2
1 , σ

2
2 , · · · , σ2

n), σi > 0, i = 1, · · · , n},
the submanifold of M composed by distributions with diagonal covariance
matrix. If we consider the parameter θ = (μ1, σ1, μ2, σ2, · · · , μn, σn), it can be
shown [1] that the metric in the parametric space of MD is the product metric
of the univariate Gaussian distributions:

dD(θ1,θ2) =

√√√√ n∑
i=1

d2F ((μ1i, σ1i), (μ2i, σ2i)), (13)

where dF is the distance given in (6). In this space, a curve α(t) = (α1(t), · · · ,
αn(t)) is a geodesic if and only if, αi(t), ∀ i, is a geodesic in H

2
F .

In [30] the authors described shapes representing each landmark by a Gaus-
sian model and considering the Fisher-Rao distance in MD to quantifying the
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difference between two shapes and in [13] Skovgaard applied this model in statis-
tical inference. The Fisher-Rao distance in MD also was used in [23] to simplify
of Gaussian mixtures models similarly of what was done in [31] with the Breg-
man divergence. A comparison between these two mixture simplifications can be
done by using the recent results of [32] which provides a closed formula for the
Minkowski distance for Gaussian mixture models.

It is important to note that MD ⊂ M is not totally geodesic. The subman-
ifold of MD composed only by normal distributions with covariance matrices
which are multiples of the identity (round normals) is totally geodesic. In fact,
this is a special case of the submanifold described next.

3.4 The Submanifold MDμ Where Σ Is Diagonal and μ Is an
Eigenvector of Σ

Let the n+1-dimensional submanifold composed by distributions with the mean
vector μ = μ1ei and diagonal covariance matrix Σ. Without loss of generality
we shall assume that ei = e1.

An analytic expression for the distance in MDμ is

d2Dμ(θ1,θ2) = d2F ((μ11, σ11) , (μ21, σ21)) +
n∑

i=2

d2F ((0, σ1i) , (0, σ2i)) . (14)

The distance in this submanifold was derived in [21] and it was proved that
MDμ is a totally geodesic submanifold of M. By considering this submanifold
it is possible to calculate the distance in M between two distributions with the
same covariance matrix.

4 Bounds for the Fisher-Rao Distance

Some bounds for the Fisher-Rao distance between two general normal distribu-
tions were derived in [21,22,25,33].

A Lower Bound. In 1990 Calvo and Oller [33] derived a lower bound for the
Fisher-Rao distance through an isometric embedding of the parametric space
M into the manifold of the positive definite matrices. Given θ1 = (μ1, Σ1) and
θ2 = (μ2, Σ2), let

Si =
(

Σi + μt
iμi μt

i

μi 1

)
, (15)

i = 1, 2. A lower bound for the distance between θ1 and θ2 is

LB(θ1,θ2) =

√√√√1
2

n∑
i=1

[log(λi)]2, (16)

where λk, 1 ≤ k ≤ n + 1, are the eigenvalues of S
−1/2
1 S2S

−1/2
1 .
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Upper Bounds. In [21] we have proposed an upper bound based on an isometry
in the manifold M and on the distance in the submanifold MD, as follows:
The Fisher-Rao distance between two multivariate normal distributions θ1 =
(μ1, Σ1) and θ2 = (μ2, Σ2) is upper bounded by,

U1(θ1,θ2) =

√√√√ n∑
i=1

d2F ((0, 1), (μi, λi)), (17)

where, λi are the diagonal terms of the matrix Λ given by the eigenval-
ues of A = Σ

−(1/2)
1 Σ2Σ

−(1/2)
1 = QΛQt and μi are the coordinates of μ =

QtΣ
−(1/2)
1 (μ2 − μ1), where Q is the orthogonal matrix whose columns are the

respective eigenvectors of A.
Another upper bound was derived in [22]. Given θ1 = (μ1, Σ1) and θ2 =

(μ2, Σ2), by Eq. (9) we can consider the distance between θ0 = (0, In) and
θ = (μ, Σ). Let P be an orthogonal matrix such that Pμ = (|μ|, 0, · · · , 0) and
D = diag(

√
(|μ| + 2)/2, 1, · · · , 1) a diagonal matrix. Taking θP = (Pμ,D) and

θ̄ = (μ, Σ̄), with Σ̄ = P−1DP−t, the bound is given by

U2(θ1,θ2) = dDμ(θ0,θP ) + dμ(θ̄,θ). (18)

From some comparisons in [22] it is possible to note that in some cases these
bounds are very tight. In [34] the upper bound U1 was used to tracking quality
monitoring.

5 Concluding Remarks

In this paper we approach the statistical model of multivariate normal distribu-
tions with the Fisher-Rao information distance, summarizing results and appli-
cations with the aim of widening the range of possible interpretations and the
use of this Riemannian manifold for data analysis in different contexts.

The Fisher-Rao distance between probability distributions has important
characteristics such as its strong connection with the Shannon entropy and its
uniqueness regarding statistical invariance under Markov morphisms. On the
other hand, as described here, even for normal multivariate distributions closed
forms for this distance is only known in special cases, what requires the use of
bounds and may demand somehow high computational cost. As pointed out in
[32], selecting a proper divergence measure for a specific context is usually a dif-
ficult task involving the classical trade-off between accuracy and computational
complexity.
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Abstract. Diffusion processes are fundamental in modelling stochas-
tic dynamics in natural sciences. Recently, simulating such processes on
complicated geometries has found applications for example in biology,
where toroidal data arises naturally when studying the backbone of pro-
tein sequences, creating a demand for efficient sampling methods. In this
paper, we propose a method for simulating diffusions on the flat torus,
conditioned on hitting a terminal point after a fixed time, by considering
a diffusion process in R

2 which we project onto the torus. We contribute
a convergence result for this diffusion process, translating into conver-
gence of the projected process to the terminal point on the torus. We also
show that under a suitable change of measure, the Euclidean diffusion is
locally a Brownian motion.

Keywords: Simulation · Conditioned diffusion · Manifold diffusion ·
Flat Torus

1 Introduction

Stochastic differential equations are ubiquitous in models describing evolution
of dynamical systems with, e.g. in modelling the evolution of DNA or protein
structure, in pricing financial derivatives, or for modelling changes in landmark
configurations which are essential in shape analysis and computational anatomy.
In settings where the beginning and end values are known on some fixed time
interval, the use of Brownian bridges becomes natural to evaluate the uncertainty
on the intermediate time interval.

When the data elements are elements of non-linear spaces, here differentiable
manifolds, methodology for simulating bridge processes is lacking. In particular,
in cases where the transition probability densities are intractable, it is of interest
to use simulation schemes that can numerically approximate the true densities.
In this paper we propose a method for simulating diffusion bridges on the flat
torus, T2 = R

2/Z2, i.e. we propose a process that can easily be simulated and
satisfies that the distribution of the true bridge of interest is absolutely con-
tinuous with respect to the distribution of this proposal process. This specific
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case will serve as an example of the more general setting of simulating diffusion
bridge processes on Riemannian manifolds. Because of the non-trivial topology
of the torus T

2, the conditioned process will be equivalent to a process in R
2

that is conditioned on ending up in a set of points. Therefore, we will address
the question of conditioning a process on infinitely many points. Secondly, we
will handle the case when the process crosses the cut locus of the target point,
i.e. the set of points with no unique distance minimizing geodesic.

It is a basic consequence of Doob’s h-transform that the distribution of a
conditioned diffusion process is the same as another diffusion process with the
drift depending on the transition density. However, as mentioned in [1], using
this transform directly is undesirable for simulation purposes as the transition
density is often intractable. Instead, the authors introduce a diffusion process
which can easily be simulated and with the property that the distribution of the
true conditioned diffusion is absolutely continuous wrt. the diffusion used for
simulation. We here use this approach that in [1] covers the Euclidean case as
the starting point for developing a simulation scheme on the torus.

Recent papers have considered diffusion processes on the torus, for example,
Langevin diffusions on the torus were studied in [3] and [4], in the latter to
describe protein evolution. In this paper, we introduce a diffusion process in
R

2 which can easily be simulated and projects onto a bridge process on the
torus. More generally, Brownian bridges on manifolds have been studied for
example in the context of landmark manifolds [9] and used for approximating
the transition density of the Brownian motion. The present paper uses bridges
on the flat torus to exemplify how some of the challenges of bridge simulation on
Riemannian manifolds can be addressed, here in particular non-trivial topology
of the manifold.

We begin in Sect. 2 with a short introduction to Brownian bridge processes
in the standard Eucliden case and how it relates to the definition of a Brow-
nian bridge process on the flat torus. At the end we introduce the stochastic
differential equation (SDE) which will be used for simulating the bridge process.
In Sect. 3 we argue that a strong solution of our proposed SDE exist. We show
results about convergence and absolute continuity in Sect. 4. Numerical examples
are presented in Sect. 5.

2 Theoretical Setup

This section will briefly review some Brownian bridges theory and discuss the
torus case. A more general theory of diffusion bridges can be found in [1], consti-
tuting the main reference for this work. At the end, we introduce our proposal
process.

Consider a Brownian motion W = (Wt)t≥0 in R
n. By conditioning, it can

be shown that W will end up at a given point at a given time. For example,
the process given by Bt = Wt − t

T WT defines a Brownian bridge conditioned to
return to 0 at time T . It can be shown that the diffusion process given by

dXt =
b − Xt

T − t
dt + dWt; 0 ≤ t < T and X0 = a, (1)
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for given a, b ∈ R
d and W a d-dimensional standard Brownian motion, is a d-

dimensional Brownian bridge from a to b on [0, T ] (see e.g. [6, sec. 5.6]). More
generally, diffusion bridges can be defined through Doob’s h-transform, that is,
the distribution of a diffusion

dXt = b(t,Xt)dt + σ(t,Xt)dWt, X0 = a,

conditioned on XT = b is the same as that of

dYt = b̃(t, Yt)dt + σ(t, Yt)dWt,

b̃(t, x) = b(t, x) + σ(t, x)σT (t, x)∇x log(p(t, x;T, b)),

where p(t, x;T, b) denotes the transition density of the process X. In the usual
setting where p is the transition density of a Brownian motion it has the form

p(s, x; t, y) =
1

√
2π(t − s)

exp
(

− ||x − y||2
2(t − s)

)
, s < t,

which yields (1).
We propose a method similar to the Euclidean scheme [1] for simulating

Brownian bridges on the flat torus, which is of the form

dXt = b(t,Xt)dt + σdWt; 0 ≤ t < T and X0 = a a.s., (2)

where σ > 0, a ∈ T
2 is given, and W is a two-dimensional standard Brownian

motion. The exact form of b(t, x) will become apparent below. It is important
here to note that in the particular case of the flat torus the transition density
for the Brownian motion is known and therefore it is possible to simulate from
the distribution of the true Brownian bridge on T

2, however, it requires the
calculation of the distance to infinitely many points which the proposed model
does not. In Fig. 4 is shown paths of the proposed model and the corresponding
paths of the true bridge process.

Let π : R2 → T
2 = R

2/Z2 denote the canonical projection onto the torus. The
standard two-dimensional Brownian motion W = (W 1,W 2), for two indepen-
dent one-dimensional Brownian motions W 1 and W 2, is mapped to a Brownian
motion B = (Bt)t≥0 on the flat torus T2 by the projection map π. Indeed, we can
identify the torus T

2 with the unit cube Q = {x ∈ R
2 : − 1

2 ≤ xk < 1
2 , k = 1, 2}.

Then for g ∈ C∞(T2) the Laplace-Beltrami operator, ΔT2 , on T
2 corresponds to

the restriction to Q of the usual Euclidean Laplacian, ΔR2 g̃, where g̃ denotes the
periodic extension of g, i.e. g̃ = g ◦ π (see [8, Sec. 3.5]). Since W is a Brownian
motion in R

2 if and only if it satisfies the diffusion equation

h(Wt)
m= h(W0) − 1

2

∫ t

0

ΔR2h(Ws)ds,

for all smooth functions h, where X
m= Y means that the difference X − Y is a

local martingale (see e.g. [2, Sec. 1.5]), it follows that, for h = g̃,

g̃(Wt)
m= g̃(W0) − 1

2

∫ t

0

ΔR2 g̃(Ws)ds = g(B0) − 1
2

∫ t

0

ΔT2g(Bs)ds
m= g(Bt).
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As this holds for all smooth functions g on T
2, we get that B is a Brownian

motion on T
2 in agreement with the definition of a manifold-valued Brownian

motion given in [5, Sec. 3.2].
By conditioning B on T

2 to hit a given point a ∈ T
2, at some fixed time

0 ≤ T < ∞, it is seen that

{ω ∈ Ω : BT (ω) = a} = {ω ∈ Ω : WT (ω) ∈ π−1(a)},

and so simulating a Brownian bridge on the flat torus T
2 is equivalent to sim-

ulating a two-dimensional standard Brownian motion conditioned to end up in
the set π−1(a) at time T . The diffusion given by (1) will not suffice as it is con-
structed to hit exactly one point. It will, however, provide one subset of sample
paths of the Brownian bridge on T

2, corresponding to subset of paths that will
“unwrap” the same number of times that it “wraps” around the cut locus. This
is illustrated in Fig. 1. To give a precise meaning to this statement we consider
the h-transform

h(t, z) =
∑

y∈π−1(a)

p(t, z;T, y)
p(0, z0;T, y)

,

with p denoting the transition density of the two-dimensional Brownian motion,
which by Doob’s h-transform implies that the distribution of W conditioned on
WT ∈ π−1(a) is the same as the distribution of the diffusion

dZt = σ2∇z log
( ∑

y∈π−1(a)

p(t, z;T, y)
)∣

∣∣∣
x=Zt

dt + σdWt

=
∑

y∈π−1(a)

gy(t, Zt)
y − Zt

T − t
dt + σdWt, Z0 = z0,

(3)

where gy(t, x) =
exp

(
− ‖y−z‖2

2σ2(T −t)

)

∑
y∈π−1(a) exp

(
− ‖y−z‖2

2σ2(T −t)

) .

Instead, we propose to consider the diffusion process on [0, T ), for some fixed
positive T , defined by

dXt = 1Gc(Xt)
α(Xt) − Xt

T − t
dt + σdWt, X0 = x0 (4)

where σ > 0 and α is defined by

α(Xt) = arg min
y∈π−1(a)

‖y − Xt‖ ,

with a ∈ T
2, and where G is the set of “straigt lines” of the form R× {x} (resp.

{x} × R) in R
2 where α(Xt) is not unique (see Fig. 1). The indicator function

removes the drift when the process does not have a natural attraction point.
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πR
2

Xt(ω)

Bt(ω)

T
2

G

Fig. 1. The figure illustrates the possibility of the diffusion path going an arbitrary
number of times around the torus, starting at the black dot and ending in the red.
This is illustrated by the red path. The conditioning on single point in T

2 therefore
leads to conditioning on multiple points in R

2. Left: Two paths from the same two-
dimensional process with multiple endpoints. Right: The projection of the two paths
onto the torus. (Color figure online)

3 Existence of Strong Solution

The drift term in Eq. (4) is discontinuous. However, we below show that it posses
certain regularity conditions and use this to show that a strong solution to the
SDE exist.

In order to ensure the existence of a solution to the diffusion in (4), we need
some regularity of the drift term. The drift coefficient is given by

1Gc(Xt)
α(Xt) − Xt

T − t
=

{
α(Xt)−Xt

T−t , if Xt ∈ Gc

0, otherwise,
(5)

for every 0 ≤ t < T , where the superscript c denotes the complement. It is a
discontinuous process with the set of discontinuities being the set G consisting
of the set of straight lines in R

2 where the argmin process is non-unique. It is
not even clear that the drift term is suitably measurable as the argmin map in
general is not.

Lemma 1. Let b : [0, T )×R
2 → R

2 be the map given by (5). Then b is B([0, T ))⊗
B(

R
2
) − B(

R
2
)

measurable. Furthermore, the map (s, ω) 
→ b(s,Xs(ω)) is
B([0, t]) ⊗ F0

t measurable, for every 0 ≤ t < T , where (F0
t ) denotes the nat-

ural filtration generated by X. This is called progressive measurability.

Proof. First note that Gc is a Borel measurable set as we can write it as a
countable union of open sets, i.e., for y = (y1, y2) we have

Gc =
⋃

y∈π−1(a)

(
y1 − 1

2
, y1 +

1
2

)
×

(
y2 − 1

2
, y2 +

1
2

)
=:

⋃

y∈π−1(a)

Vy.

Now, we need to show that for all A ∈ B(
R

2
)
, the set b−1(A) is an element of

B([0, T ))⊗B(
R

2
)
. It is enough to consider all open subsets U ⊆ R

2 as these sets
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generate the Borel algebra on R
2. So let U be an arbitrary open subset, then we

have that

b−1(U) = b−1(U) ∩ (
[0, T ) × Gc

) ∪ b−1(U) ∩ (
[0, T ) × G

)
.

As b is continuous on each of the sets [0, T )×Vy we have that b−1(U)∩(
[0, T )×Gc

)

is a countable union of open sets and therefore an element of B([0, T )) ⊗ B(
R

2
)
.

For the second part we see that

b−1(U) ∩ ([0, T ) × G) =

{
[0, T ) × G, if (0, 0) ∈ U

∅, otherwise,

where both are elements of B([0, T )) ⊗ B(
R

2
)
. This shows that b is Borel

measurable.
Progressive measurability follows by a very similar argument. ��

Usually, global or local Lipschitz conditions are imposed on the drift and diffusion
coefficients in order to secure global (resp. local) strong solutions to an SDE. This
is a too strong condition for the drift term in this case, however, it is bounded
in the following sense.

Lemma 2. The drift coefficient in (5) is uniformly bounded in x and in t on
[0, S], for any 0 ≤ S < T .

Proof. The first assertion is clear. Let S ∈ [0, T ) be arbitrary and 0 ≤ t ≤ S.
For every x ∈ Gc there exist a y ∈ π−1(a) such that we have

∥∥∥∥1Gc(x)
α(x) − x

T − t

∥∥∥∥

2

=
∥∥∥∥

y − x

T − t

∥∥∥∥

2

≤ C

(T − S)2
= CS ,

for some positive constants C > 0. ��
We now come to the main result of this section.

Proposition 1. There exist a strong solution of (4) on [0, T ), which is strongly
unique.

Proof. The drift term is Borel measurable and bounded on [0, S] by Lemmas 1
and 2. As indicated in [10, Thm. 2] and [11, Thm. 1] (4) has a strong solution
which is strongly unique. ��
Remark 1. The assumption in [10, Thm. 2] can be verified by using smooth
bump functions.
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4 Convergence and Absolute Continuity

The considerations above make the solution of (4) into a continuous semimartin-
gale. If a semimartingale X takes its values in an open set U of R2 then Itô’s
formula holds true for any C1,2([0, T ) × U) functions as well.

Proposition 2. Let X be a solution to (4) on the filtered probability space
(Ω,F , (Ft), P ). For every ω ∈ Ω for which there exist an S < T such that Xt(ω)
stays in Gc on [S, T ), then X converges pointwise almost surely to π−1(a).

Proof. Assume that for some ω ∈ Ω there exist some S < T such that on [S, T )
the process Xt(ω) takes its values in Gc. By continuity of the process it will take
it its values in some open neighborhood Vy of the point y ∈ π−1. The proof is
then identical to the proof in [1, Lemma 4]. ��
Remark 2. It is of course of interest to show that for almost every path the
process will converge. This can be obtained by showing that the process will not
intersect G infinitely many times close to T .

Consider the stochastic process E on 0 ≤ t ≤ S defined by

E(L)t = exp
(

−
∫ t

0

b(s,Xs)dWs − 1
2

∫ t

0

‖b(s,Xs)‖2 ds

)
, (6)

where L is the local martingale in the exponential. This is known as the Doléans-
Dade exponential. From Lemma 2 it follows that, for all t ≤ S,

E

[
exp

( ∫ t

0

‖b(s,Xs)‖2 ds

)]
≤ exp

(
tCS

)
< ∞

The above is known as the Novikov condition (cf. [7]) which ensures that (6) is a
martingale on [0, T ). Girsanov’s theorem ([6, Thm. 5.1 Chap. 3]) then provides
that the process defined by

W̃t = Wt +
∫ t

0

b(s,Xs)ds

is a Brownian motion under the new measure Q introduced below.

Theorem 1. Let X defined on (Ω,F , (Ft), P ) be a solution of (4) on [0, S] for
S < T . The process in (6) defined on 0 ≤ t ≤ S (S < T ) is a true martingale
and so there exists a measure Q which is absolutely continuous wrt. P such that
X is Q-Brownian motion.

Proof. The martingale property of (6) on [0, S] is a consequence of the Novikov
condition. Then Girsanov’s theorem gives us that X is a Q-Brownian motion on
[0, S]. ��
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(a) Paths visualized on an embed-
ded torus.

(b) The two Euclidean paths that
are mapped onto the torus.

Fig. 2. Two different paths visualized both on the torus and in Eucliden space. The
blue dot represents the starting point and the red represents the end point. (Color
figure online)

From the (perhaps obvious) fact that the distribution of the true Brownian
bridge is locally equivalent to the distribution of the Brownian motion up to
time t < T , it follows that the distribution of the Brownian bridge is absolutely
continuous wrt. The proposed process up to time t < T .

Remark 3. A bit of extra work is needed to obtain the correction term as in [1].
There are indications that it is possible to simulate from the true distribution
of the Brownian bridge on the torus, however, Theorem1 shows that (4) can
approximate it.

5 Numerical Experiments

For the numerical implementation of the proposed SDE in Eq. (4) we imple-
mented the Euler-Maruyama scheme, i.e. taking n equidistant discretization
points of the time interval t1, ..., tn, with ti+1 − ti = Δt, the numerical equation
becomes

xti+1 = xti
+

arg miny∈π−1(a)(‖y − xti
‖) − xti

T − ti
Δt + σΔWti

,

where ΔWti+1 = Wti+1−Wti
is equal in distribution to a normal random variable

with mean zero and variance Δt.
Figure 2a shows the implementation of the numerical scheme on an embedded

torus and Fig. 2b its Euclidean counterpart. Figure 3a shows the behaviour of the
drift term along a given path, illustrating that the attraction becomes stronger
as time approaches the terminal time. The vector fields in Fig. 3b shows the
constant attraction to the center of the open subsets.
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(a) Drift term (b) Vector field

Fig. 3. Figure a depicts the evolution of the drift term. It shows how the pull from the
drift becomes stronger near the end. Figure b shows the underlying vector field.

Fig. 4. Figure shows 9 paths from the proposed model (4) on the left and the cor-
responding paths from the true bridge (3) on the right. It is seen that the first and
the last paths disagree on the limiting point, whereas the rest looks fairly similar. The
picture agree with the fact that roughly four in five have the same limiting point. Here
σ = 0.8 and the conditioning points being the integers in [−2, 2] × [−2, 2].

Acknowledgements. We acknowledge F. van der Meulen for discussions and insights
on conditioned diffusions.
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Abstract. This papers aims at describing a novel framework for
bi-invariant density estimation on the group of planar rigid motion
SE(2). Probability distributions on the group are constructed from dis-
tributions on tangent spaces pushed to the group by the exponential map.
The exponential mapping on Lie groups presents two key particularities:
it is compatible with left and right multiplications and its Jacobian can
be computed explicitly. These two properties enable to define probability
densities with tractable expressions and bi-invariant procedures to esti-
mate them from a set of samples. Sampling from these distributions is
easy since it is sufficient to draw samples in Euclidean tangent spaces.
This paper is a preliminary work and the convergences of these estima-
tors are not studied.

Keywords: Density estimation · Lie groups · Rigid motions

1 Introduction

Probability density estimation problems generally fall in one of the two cate-
gories: estimating a density on a Euclidean vector space and estimating a den-
sity on a non-Euclidean manifold. In turn, estimation problems on non-Euclidean
manifolds can be divided in different categories depending on the nature of the
manifold. The two main classes of non-Euclidean manifold encountered in statis-
tics are Riemannian manifolds and Lie groups. On Riemannian manifolds, the
objects studied in statistics should be consistent with the Riemannian distance.
For instance, means of distributions are defined as points minimizing the average
square Riemannian distances. On a Lie group, the objects should be consistent
with the group law. Products of compact Lie groups and vector spaces belong to
both of these categories, they admit a Riemannian metric invariant by left and
right multiplications. On the other hand, other Lie groups do not admit such nice
metrics, hence the need for statistical tools based solely on group law and not on
the Riemannian distance. This problem has been properly addressed for the first
time by Pennec and Arsigny in [1] where authors define bi-invariant mean on
arbitrary Lie groups. Once the bi-invariant mean has been defined, higher order
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bi-invariant centered moments can be defined in the tangent space at the mean.
We address the problem of estimating densities on SE(2), the group of direct
isometries of the Euclidean plane. To do so, we introduce a parametric model
on SE(2) similar to the probability kernels defined in [4,7–9] on Riemannian
manifolds. Harmonic analysis is another well known approach to density estima-
tion, see [12] for SE(2) and [5,6,11] on other manifolds. Beside the technicalities
and numerical difficulties introduced by harmonic analysis on non abelian and
non compact groups, the main interest of our approach over harmonic analysis
techniques, is that it enables to define parametric models.

This work is based on two facts. First, the exponential map can be trans-
ported from the identity element to any point of the group regardless of the choice
of left or right multiplication. This property was already of primary importance
in the construction of the bi-invariant mean [1] and enables to define bi-invariant
estimation procedures. The second important fact is that the Jacobian of the
exponential map on SE(2) has a simple expression. This Jacobian provides an
easy way to define probability densities with explicit expressions on the group
by pushing densities from tangent spaces using the exponential map.

The paper is organized as follow. Section 2 describes the group of direct
isometries of the Euclidean plane. Section 3 reviews the relevant properties of
the exponential mapping. Section 4 recalls the definitions of the first and second
centered moments on a Lie group. A statistical model on Lie groups together with
an estimation procedure is introduced in Sect. 5. The estimation in a mixture
model is also discussed. Section 6 concludes the paper.

2 The Group SE(2)

SE(2) is the set of all direct isometries on the Euclidean space R
2. The compo-

sition law of functions makes SE(2) a group. For each element g of SE(2) there
are a unique rotation R and a unique vector t such that

g(u) = Ru + t

A convenient way to represent elements of SE(2) is to identify the isometry
g with the matrix (

R t
0 1

)
∈ Gl3(R).

It is easy to check that the composition of isometries corresponds to the
matrix multiplication. SE(2) is thus seen as a subgroup of Gl3(R). The tangent
space at the identity element, noted TeSE(2), is spanned by the matrices

v1 =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ , v2 =

⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠ , and v3 =

⎛
⎝0 0 0

0 0 1
0 0 0

⎞
⎠

and tangent matrix X is identified with its three coordinates (θ, a, b) ∈ R
3. Since

SE(2) is identified with a subgroup of Gl3(R), its group exponential is simply
the matrix exponential. Classical calculations on matrix exponential lead to
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exp (θv1 + av2 + bv3) =

⎛
⎝cos(θ) − sin(θ) a sin(θ)

θ − b 1−cos(θ)
θ

sin(θ) cos(θ) a1−cos(θ)
θ + b sin(θ)

θ
0 0 1

⎞
⎠ .

Let

Sθ[2π] =

(
sin(θ)

θ − 1−cos(θ)
θ

1−cos(θ)
θ

sin(θ)
θ

)
.

Given any matrix

M =

⎛
⎝ cos(θ) − sin(θ) x

sin(θ) cos(θ) y
0 0 1

⎞
⎠ ,

the solutions of exp (θ′u1 + av2 + bv3) = M are given by

θ′ = θ[2π],
(

a
b

)
= S−1

θ[2π]

(
x
y

)
,

hence the exponential map is a bijection between U = [−π, π[×R
2 and SE(2).

The logarithm is defined as the inverse of the exponential on [−π, π[×R
2.

Even though our density modelling framework is intrinsic, it is useful to define
a reference basis in each tangent space. Let Be be the basis (v1, v2, v3) of TeSE(2)
and dLg(v1, v2, v3) the basis Bg of TgSE(2), where dLg is the differential of the
left multiplication by g. In the remainder of the paper, coordinates of vectors
and matrices are expressed in these reference basis. The Lebesgue measure on
the tangent space TgSE(2) induced by Bg is noted λg.

In order to define densities on SE(2), it is necessary to define a reference
measure. Let ω be the left invariant volume form with ωe(v1, v2, v3) = 1 and
choose the orientation according to ω. The corresponding volume measure μG is
defined by

μG(A) =
∫

A

ω.

(μG is a Haar measure on SE(2)). On SE(2) it can be checked that any
left (right) invariant volume form is also right (left) invariant hence μG is a
bi-invariant measure. In the rest of the paper, densities on SE(2) are expressed
with respect to μG.

3 Bi-Invariant Local Linearizations

Densities are modelled using local linearizations. This section describes natural
maps between the tangent spaces at each point of the group, and the group.
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3.1 The Exponential at Point g

Since the exponential maps the lines of the tangent space at e to the one param-
eter subgroups of G, it is a natural candidate to linearize the group near the
identity. Let Ad be the group adjoint representation. Recall that on a Lie group,

g exp(v)g−1 = exp(Adg(v)) = exp(dLg(dRg−1(v))) = exp(dRg−1(dLg(v))),

where dLg and dRg are the differentials of the left and right multiplication. This
property enables the transport of the exponential application to any element of
the group without ambiguity on the choice of left or right multiplication,

expg : TgSE(2) → SE(2)
v �→ expg(v) = g. exp

(
dLg−1v

)
= exp

(
dRg−1v

)
g.

Note Ug ⊂ TgSE(2) = dLg (U) the injectivity domain of expg. The logarithm
logg : SE(2) → Ug becomes

logg1
(g2) = dLg1

(
log

(
g−1
1 g2

))
.

We now have a natural linearization of the group around an arbitrary g ∈ SE(2)
and the two commutative diagrams,

TeSE(2)

SE(2) SE(2)

TgSE(2)
dLg

Lg

loge logg

TeSE(2)

SE(2) SE(2)

TgSE(2)
dRg

Rg

loge logg

hence the name bi-invariant linearization.
Independence from the choice of left or right multiplication in the definition

of the exponential at an arbitrary point was the key ingredient of the definition
of the bi-invariant mean in [1]. It is again a key property in our framework for
bi-invariant density modelling.

The strength of the exponential map is that it turns some general algebra
problems into linear algebra. Once the space has been lifted to a tangent space,
the problem of left and right invariances is reduced to the study of the commu-
tation with the differentials of left and right multiplications. Since the tangent
spaces do not have a canonical basis or scalar product, the manipulations we
perform such as computing a mean, a covariance or estimating a density should
not depend on a particular coordinates choice. Hence if these manipulations
commute with all the linear invertible transformations, in particular with the
left and right differentials, they induce bi-invariant operations.
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3.2 Jacobian Determinant of the Exponential

A measure ν on TgSE(2) can be pushed forward to the group using the expo-
nential at g. This push forward measure is noted expg∗(ν). Since expg commutes
with the right and left actions, so does the push forward of measures. In order
to obtain expressions of the densities on the group, it is necessary to compute
the Jacobian determinant of the exponential.

Let Je(v) be the determinant of the differential of the exponential d expe,v

at the vector v in the basis Be and Bexpe(v)
. Calculations show that on SE(2)

Je(v) = 2
1 − cos(θ)

θ2
, (1)

for θ �= 0, and J(v) = 1 when θ = 0. Since expg(u) = g. expe

(
dLg−1u

)
,

d expg,u = dLg ◦ d expe,dLg−1 (u) ◦dLg−1 .

Furthermore,

dLg−1 (Bg) = Be and Bexpg(u)
= dLg

(
Bexpe(dLg−1 (u))

)
.

Hence expressed in the basis Bg and Bexpg(u)
, the determinant of d expg,u is given

by
Jg(u) = Je

(
dLg−1(u)

)
.

When all tangent vectors are expressed in the left invariant basis, it is possible
to drop the subscripts and write

J(v) = J(θ, a, b) = 2
1 − cos(θ)

θ2
. (2)

Assume ν has a density f with respect to a Lebesgue measure of TgSE(2) and
that its support is contained in an injectivity domain Ug of expg. The density
fSE(2) of the measure pushed on the group is given by

fSE(2)(expg v) =
d expg∗(ν)

dμG
(expg(v)) =

f(v)
J(v)

.

Since SE(2) is unimodular, i.e. μG is bi-invariant, the density of the pushed
forward measure also commutes with the left and right actions of SE(2).

4 First and Second Moments of a Distribution on a
Group

4.1 Bi-Invariant Means

Bi-invariant means on Lie groups have been introduced by Pennec and Arsigny,
see [1]. An element ḡ ∈ G is said to be a bi-invariant mean of g1, . . . , gk ∈ G or
of probability distribution ν on G, if

∑
i

logḡ(gi) = 0 or
∫

G

logḡ(g)dν(g) = 0.

Observe that ḡ is not necessarily unique, see [1–3] for more details.
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4.2 Covariance of a Distribution on SE(2)

Let ν be a distribution on SE(2) such that its bi-invariant mean ν̄ is uniquely
defined. The covariance matrix of ν in the basis Bν̄ is defined by

Σ =
∫

SE(2)

logḡ(g) logḡ(g)tdν(g).

In the principal geodesic analysis, the matrix Σ is sometimes referred to
as a linearized quantity in contrast to the ’exact’ principal geodesic analysis,
see [10].

5 Statistical Models for Bi-Invariant Density Estimation

5.1 Density Modelling from a Single Tangent Space

Let K : R+ → R+ be such that
∫
R+

x2K(x)dx =
1
4π

(K defines a probability density on R
3),

∫
R+

x4K(x)dx =
1
2π

(the identity matrix is the covariance matrix),

K(x > 1) = 0.

Let Cg be the set of covariance matrices compatible with the injectivity domain
Ug,

Cg =
{
Σ|v /∈ Ug, vΣ−1vt > 1

}
.

When Σ ∈ Cg, the support of the probability distribution ν on TgSE(2),

dν

dλg
=

1√
det(Σ)

K
(√

vΣ−1vt
)

is contained in Ug. The density of the push forward of ν is then

f(expg(v)) =
1

J(v)
√

det(Σ)
K

(√
vΣ−1vt

)
,

where J is given in Eq. 2. The set of such probability densities when g and Σ
vary form a natural parametric model for bi-invariant density estimation:

M = {fg,Σ : g ∈ SE(2) and Σ ∈ Cg} .

The commutation diagrams 3.1 imply that M is closed under left and right
action. The fact that g and Σ are the moments of fg,ΣμG plays a major role in
the relevance of the model M. This fact holds when Σ is small enough. A more
precise result will follow in a future work.
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Let g1, .., gk be points in SE(2) with a unique bi-invariant mean ḡ and such
that the empirical covariance

Σ =
∑

i

logḡ(g) logḡ(g)t

is contained in Cḡ. On the hand, finding the maximum likelihood estimation
when g1, . . . , gk are i.i.d. requires an optimization procedure. On the other hand,
matching moments is straightforward, provided that the moments of fg,ΣμG

are (g,Σ). In most cases, this moment matching estimator is expected to have
reasonable convergence properties. It can be checked that both the maximum
likelihood and the moment matching estimators are bi-invariant.

5.2 Mixture Models from Multiple Tangent Spaces

On a general Lie group, there are two reasons why it is useful, and sometimes
necessary, to model a distribution using lifts in more than one tangent space.
The first one is when there is no point g such that all the points gi are contained
in the domain of definition of the logarithm g. Note that on SE(2) this never
happens since the domain of definition of logg is SE(2). The second is that
linearizing the space far from its origin distorts its structure.

We provide now the outlines of a mixture estimator. Let g1, . . . , gk be sample
points in SE(2). If the mean of these points is not defined or not uniquely
defined, we partition this set of sample points in subsets E1, . . . , Ep such that

• the mean lj of each Ej is defined and unique,
• the covariance Σj is in the admissible set Clj .

For each j there is a density fj = flj ,Σj
in the parametric model M. The mixed

estimator is then the density

T (g1, . . . , gk) = f =
1
k

∑
j

cardEjfj .

If the construction of the partition E1, . . . , Ep from g1, . . . , gk is bi-invariant then
the estimator T is bi-invariant.

6 Conclusion and Perspectives

In this paper, we proposed a new statistical model M of densities on SE(2).
The strength of this model is that densities have explicit expressions and that
the moment matching estimator is straightforward to compute. Further works
should focus on analyzing the performances of the moment matching estimator
and on proposing detailed algorithms to estimate densities in a mixture model.
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Abstract. We revisit the natural gradient method for learning in sta-
tistical manifolds. We consider the proximal formulation and obtain a
closed form approximation of the proximity term over an affine subspace
of functions in the Legendre dual formulation. We consider two impor-
tant types of statistical metrics, namely the Wasserstein and Fisher-Rao
metrics, and introduce numerical methods for high dimensional param-
eter spaces.

Keywords: Optimal transport · Information geometry ·
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1 Introduction

Learning algorithms often proceed by minimizing a loss function that measures
the discrepancy between a data distribution and a model distribution. Given a
parametric model and a metric in probability space, the loss can be minimized
by the Riemannian gradient descent method, also known as the natural gradient
method. An important metric in this context is the Fisher-Rao information met-
ric [4,18], which induces the Fisher-Rao natural gradient [1]. Another important
metric is the Wasserstein metric [15,20], which induces the Wasserstein natural
gradient [8,9,12,14]. Natural gradient methods have numerous applications in
learning; see, e.g., [2,3,10,13,16,17].

In spite of having numerous theoretical advantages, applying natural gradient
methods is often challenging. In particular, machine learning models usually have
many parameters, making the direct computation of the parameter updates too
costly. Each update requires to compute the Jacobi matrix of the model and the
inverse of the metric tensor in parameter space. An alternative, implicit, way to
formulate the update is via a proximal operator. Recently [11] proposed proximal
methods as an approach to natural gradients and demonstrated their viability
in state of the art generative modeling. The idea is to compute the proximity
penalty in closed form over an approximation space. This results in a tractable
iterative regularization for the parameter updates.

We develop this idea to obtain a general natural proximal method, and pro-
vide explicit formulas for the Fisher-Rao and the Wasserstein metrics. These
c© Springer Nature Switzerland AG 2019
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serve three purposes: (i) The proximal operator and its approximation can enable
efficient and effective expressions for the time discretized parameter updates of
the natural gradient flow. (ii) The proximal method, as an implicit method,
naturally regularizes the objective function, and can be used to optimize non-
smooth objective functions. (iii) The metric regularization is expressed in terms
of statistics, such as mean and variance, and can be estimated from samples.

2 Natural Proximal Gradient

We review the natural gradient flow in a statistical manifold with Wasserstein
and Fisher-Rao metrics, present the natural proximal operators, and introduce
a systematic approximation which is suitable for estimation from samples.

2.1 Natural Gradients Flows

Learning problems are often formulated as the minimization of a loss func-
tion, as minθ∈Θ F (θ), where Θ ∈ R

d is the parameter of the hypothesis class,
and F : Θ → R is the loss function. As the hypothesis class, we consider a
parametrized probability model ρ : Θ → P(Ω), where Ω is the sample space,
which is a discrete or continuous set on which the distributions are supported.
The loss is usually a divergence (sometimes distance) function between the
empirical data distribution ρ̂data and the model distribution ρθ.

To find a minimizer, the gradient flow approach is often considered. This flow
follows the steepest descent direction of the loss function with respect to a given
Riemannian metric. In general, this is defined by

θ̇(t) = −G(θ(t))−1∇θF (θ(t)), (1)

where G(θ) ∈ R
d×d is the matrix representation of the Riemannian metric ten-

sor (for our choice of coordinates), and ∇θ = ( ∂
∂θ1

, . . . , ∂
∂θd

)� is the standard
(Euclidean) gradient operator. In the context of probability distributions, the
metric G(θ) is pulled back from a natural metric structure on probability space.
This implies that for any choice of the parametrization, (1) defines the same flow
of probability distributions. Hence it is said to be parametrization invariant.

We will focus on two important statistical metrics on probability space: the
Wasserstein metric and the Fisher-Rao metric. These metrics induce the follow-
ing metric tensors in parameter space. We write (·, ·) for the Euclidean or L2

inner product on the sample space Ω (which might be continuous or discrete).

Definition 1 (Statistical metric tensor on parameter space). Consider
the probability space (P(Ω), g) with metric tensor g, and a smoothly parametrized
probability model ρθ with parameter θ ∈ Θ. Then the pull-back G of g is given
by

G(θ) =
(
∇θρθ, g(ρθ)∇θρθ

)
.
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(i) If gθ = −(Δρθ
)−1, with Δρθ

= ∇ · (ρθ∇) being the weighted elliptic operator
[6,7,15], then G(θ) is the Wasserstein metric tensor, given by

GW (θ)ij =
(
∇θi

ρθ, (−Δρθ
)−1∇θj

ρθ

)
,

(ii) If gθ = 1
ρθ

, then G(θ) is the Fisher-Rao metric tensor, given by

GFR(θ)ij =
(
∇θi

ρθ,
1
ρθ

∇θj
ρθ

)
.

Given a metric tensor on parameter space, the standard approach for numerical
computation of the gradient flow (1) is the forward Euler method, i.e.,

θk+1 = θk − hG(θk)−1∇θF (θk),

where h > 0 is a step-size. This is known as the natural gradient descent
method [2]. In practice, we need to compute the matrix G(θ) and its inverse at
each parameter update, which is difficult in high dimensional parameter spaces.

2.2 Natural Proximal Operators

We next present another way to approximate the gradient flow, known as the
backward Euler or proximal operator method. The proximal operator refers to

θk+1 = ProxhF (θk) = arg min
θ

F (θ) +
D(θ, θk)

2h
, (2)

where D is a proximity term that penalizes the distance from the current point,
and h adjusts the strength. When h is infinity, the proximal operator returns
the global minimizer of F . The proximity term is given by the metric function:

D(θ, θk) = inf
θ(t)

{∫ 1

0

θ̇(t)�G(θ(t))θ̇(t)dt : θ0 = θ, θ1 = θk
}

= inf
θ(t)

{∫ 1

0

(∂tρθ(t), g(ρθ(t))∂tρθ(t))dt : θ0 = θ, θ1 = θk
}

.

(3)

In rare cases, the proximal operator (2) can be written explicitly.
We shall approximate D in a way that allows for a more friendly computation

of the proximal operator. Consider the iterative proximal update

θk+1 = arg min
θ

F (θ) +
1
2h

(
ρθ − ρθk , g(ρθ̃)(ρθ − ρθk)

)
, (4)

where θ̃ = θ+θk

2 . Here the D term in (2) is replaced by a mid-point expression,
which is exact up to the order o(‖θ − θk‖2). This new proximal operator corre-
sponds to a numerical method known as the semi-backward Euler method. Both
(2) and (4) are time discretizations of (1) with first order accuracy. We shall
focus on (4), and derive a tractable approximation of the regularization term.
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3 Affine Space Approximation of the Metric

Consider the proximity term (similar to a squared Mahalanobis distance)

D̃(θ, θk) =
(
ρθ − ρθk , g(ρθ̃)(ρθ − ρθk)

)
. (5)

In the following we derive an explicit and computer friendly approximation. To
this end, we first consider the variational formulation

1
2
D̃(θ, θk) = sup

Φ : Ω→R

(Φ, ρθ − ρθk) − 1
2

(
Φ, g(ρθ̃)

†Φ
)
, (6)

where † is the pseudo-inverse operator and the maximizer Φ = g(ρθ̃)(ρθ − ρθk)
recovers the previous formula. This corresponds to a expressing (5) in terms
of its Legendre dual between tangent space and cotangent space in probability
space; for a discussion see [7].

Now we restrict the optimization domain (i.e., the set of functions Φ : Ω → R)
to an affine space of functions of the form

FΨ =
{

Φ(x) =
n∑

j=1

ξjψj(x) = ξ�Ψ(x) : ξ ∈ R
n
}

,

where ξ = (ξj)n
j=1 is a parameter vector and Ψ = (ψj)n

j=1 collects a choice of
basis functions ψj : Ω → R. This results in following optimization problems:

(i) For the Wasserstein metric, we have

1
2
D̃W

Ψ (θ, θk) = sup
Φ=ξ�Ψ

Eθ[Φ] − Eθk [Φ] − 1
2
Eθ̃[‖∇Φ‖2];

(ii) For the Fisher-Rao metric, we have

1
2
D̃FR

Ψ (θ, θk) = sup
Φ=ξ�Ψ

Eθ[Φ] − Eθk [Φ] − 1
2
Eθ̃

[
(Φ − Eθ̃[Φ])2

]
.

These are quadratic semi-definite programs in ξ. In practice, if using small sample
estimates for the expectations, one can add a regularization −λ‖ξ‖2, with a small
λ > 0, to ensure strict definiteness and existence of a solution. We proceed to
solve these problems. We write Eθ[ψ] = Ex∼ρθ

[ψ(x)] and ∂l = ∂
∂xl

for the partial
derivative w.r.t. the lth sample space variable.1

Theorem 1 (Affine space approximation). Given a basis Ψ , the proximity
term D̃ within the affine function space FΨ = {ξ�Ψ : ξ ∈ R

n} is given by

D̃Ψ (θ, θk) = (Eθ[Ψ ] − Eθk [Ψ ])�
(
Ψ, g(ρθ)†Ψ

)†
(Eθ[Ψ ] − Eθk [Ψ ]).

1 If the sample space is discrete, we use the discrete differential operator. For an
edge weighted graph G = (V, E, ω), the gradient of Φ ∈ R

|V | is ∇Φ = (
√

ωijΦi −
Φj)(i,j)∈E ∈ R

|E|, and Eθ[‖∇Φ‖2] = 1
2

∑
i∈V pi(θ)

∑
j∈V ωij(Φi − Φj)

2. For details
see [8].
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(i) For the Wasserstein metric, we have

D̃W
Ψ (θ, θk) = (Eθ[Ψ ] − Eθk [Ψ ])�

(
CW (θ̃)

)−1

(Eθ[Ψ ] − Eθk [Ψ ]),

where CW (θ̃) = Eθ̃[
∑

l

(
∂lΨ

)(
∂lΨ

)�
].

(ii) For the Fisher-Rao metric, we have

D̃FR
Ψ (θ, θk) = (Eθ[Ψ ] − Eθk [Ψ ])�

(
CFR(θ̃)

)−1

(Eθ[Ψ ] − Eθk [Ψ ]),

where CFR(θ̃) = Eθ̃[
(
Ψ(x) − Eθ̃[Ψ ]

)(
Ψ(x) − Eθ̃[Ψ ]

)�
].

Fig. 1. Illustration of the proximity term over an affine space. Intuitively, the metric
between two distributions is measured along a chosen set of statistics.

Remark 1. The matrix C has size n×n, corresponding to the dimension of Ψ . For
the Fisher-Rao metric, it is the covariance of the basis functions Ψ w.r.t. ρθ̃. This
corresponds to the Fisher-Rao matrix when the basis is a sufficient statistics of
the model. See Fig. 1. The resulting metric bears a similarity with the Relative
Fisher Information Metric approach proposed in [19]. Similar observations apply
for the Wasserstein metric.

Remark 2. In the case of implicit generative models (used in GANs), where ρθ is
expressed as the push-forward measure of a latent variable z by a parametrized
family of functions gθ, we obtain

D̃(θ, θk) = (Ez [Ψ(gθ(z))]− Ez [Ψ(gθk (z))])
�
Ez [C(gθ̃(z))]

−1(Ez [Ψ(gθ(z))]− Ez [Ψ(gθk (z))]),

where C is the corresponding term inside the expectation in Theorem 1.

Proof. (i) For the constrained Wasserstein metric, the gradient of Φ w.r.t. the
sample space variable x is ∇Φ(x) = (

∑n
i=1 ξi∂lψi(x))l. The squared norm is then

‖∇Φ(x)‖2 =
∑

l

(
∑

i

ξi∂lψi(x))2 =
∑

l

∑
i

ξi∂lψi(x)
∑

j

ξj∂lψj(x) = ξ�CW (x)ξ,
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where CW
ij (x) =

∑
l ∂lψi(x)∂lψj(x). Now we consider the distance

1
2
D̃W

Ψ (θ, θk) = sup
Φ=ξ�Ψ

(
Φ, ρθ − ρθk

)
− 1

2

(
(∇Φ)2, ρθ̃

)

= sup
ξ

ξ�(Eθ[Ψ ] − Eθk [Ψ ]) − 1
2
ξ�

Eθ̃[C
W ]ξ.

In turn, by first order optimality conditions, at the maximizer we have

ξ∗ = (Eθ̃[C
W ])−1(Eθ[Ψ ] − Eθk [Ψ ]).

Thus D̃W
Ψ (θ, θk) = (Eθ[Ψ ] − Eθk [Ψ ])(Eθ̃[C

W ])−1(Eθ[Ψ ] − Eθk [Ψ ]).

(ii) For the Fisher-Rao metric, the term ‖Φ(z) − Eθ̃[Φ]‖2 equals

‖ξ�Ψ(z) − ξ�
Eθ̃[Ψ ]‖2 = ξ�(Ψ(z) − Eθ̃[Ψ ])(Ψ(z) − Eθ̃[Ψ ])�ξ = ξ�CFR(z)ξ,

where CFR(z) = (Ψ(z) − Eθ̃[Ψ ])(Ψ(z) − Eθ̃[Ψ ])�. ��
Example 1 (Order 1 approximation). For the metric approximation with the
space of linear functions, F1 =

{
Φ(x) = a�x + b : a ∈ R

m, b ∈ R

}
, we have:

(i)
D̃W

1 (θ, θk) = (Eθ[x] − Eθk [x])�(Eθ[x] − Eθk [x]).

(ii)
D̃FR

1 (θ, θk) = (Eθ[x]−Eθk [x])�
(
Eθ̃

[
(x−Eθ̃x)(x−Eθ̃x)�

])−1

(Eθ[x]−Eθk [x]).

Example 2 (Order 2 approximation). For the space of quadratic functions,
F2 =

{
Φ(x) = 1

2x�Qx + a�x + b : Q ∈ R
m×m, a ∈ R

m, b ∈ R

}
, we have:

(i)
D̃W

2 (θ, θk) =
(
Eθ

[
x

x⊗x
2

]
−Eθk

[
x

x⊗x
2

] )�
Eθ̃

[
Im x�⊗Im

x⊗Im Im⊗xx�

]−1 (
Eθ

[
x

x⊗x
2

]
−Eθk

[
x

x⊗x
2

] )
.

(ii)
D̃FR

2 (θ, θk) =
(
Eθ

[
x

x⊗x
2

]
−Eθk

[
x

x⊗x
2

] )�(
CFR(θ̃)

)−1(
Eθ

[
x

x⊗x
2

]
−Eθk

[
x

x⊗x
2

] )
,

where ⊗ is the Kronecker product (e.g., x ⊗ x is an m2 × 1 vector), and

CFR = Eθ̃

[( [
x

x⊗x
2

]
− Eθ̃

[
x

x⊗x
2

] )( [
x

x⊗x
2

]
− Eθ̃

[
x

x⊗x
2

] )�
]

.

4 Numerical Examples

The optimization loop can be implemented as shown in Algorithm 1. Here the
proximal operator is computed by a short gradient iteration. In practice we
can replace the expectations by sample averages, Eθ[f ] ≈ 1

N

∑N
i=1 f(x(i)), with

x(i) i.i.d. from ρθ. For the basis Ψ we can choose low order polynomials, as in
Examples 1 and 2, but even random functions worked well in our experiments.
The optimal choice will balance low dimension and relevant statistics for the
model under consideration. Orthogonality tends to be beneficial.
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Algorithm 1. Natural gradient with affine space proximal approximation.
Require: Loss F , basis of affine space Ψ , proximal step-size h, step-size α

for t = 0 to max outer iterations do
C(θ) = covθ[Ψ ]−1 (Fisher-Rao); C(θ) = Eθ[

∑
l

(
∂lΨ

)(
∂lΨ

)�
]−1 (Wasserstein)

for t′ = 0 to max inner iterations do
∇θ′D(θ, θ′) ← 1

2
∇θ′Eθ′ [Ψ�]C(θ)(Eθ′ [Ψ ] − Eθ[Ψ ])

θ′ ← θ′ − α(∇θ′F (θ′) + 1
2h

∇Dθ′(θ, θ′))
θ ← θ′

4.1 Maximum Likelihood Estimation for Hierarchical Models

We consider binary k-interaction models, which are exponential families ρθ(x) =
exp(θ�A(x))/Z(θ), x ∈ {0, 1}m, with sufficient statistics Aλ(x) =

∏
i∈λ(−1)xi ,

for λ ⊆ {1, . . . ,m}, |λ| � k. We use Ψj(x) = (−1)xj , j ∈ {1, . . . , m}, which are
sufficient statistics for the 1-interaction model (independence model). We draw
target distributions uniformly from the simplex and compute the MLEs. We
compare Euclidean, Fisher-Rao, Wasserstein, and proximals. For each problem
and method we run grid search over the step size α and proximal strength h,
which are kept fixed during optimization. The results are shown in Fig. 2.

4.2 Classification on CIFAR-10

Here we present an image classification task on the CIFAR-10 dataset [5] using
the Wasserstein proximal method. We use a simple CNN with two convolutional
layers followed by two fully-connected layers, with ReLU activations. In this
experiment F is the categorical cross-entropy loss and D = D̃W

Ψ is the Order 1
or Order 2 Wasserstein approximation. The specific details of our experiments
can be found in Appendix A. Figure 2 provides the results, where we give curves
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W prox, t=0.00614, =0.215, 1/2h=2.78e-08, TT=50

Fig. 2. Left: MLE wall-clock computation times until the KL-divergence is within
10−9 of optimal, for 4 binary variables and Ψ the independence model, and typical
optimization curves. Right: The learning curves for the image classification task on
CIFAR-10. Each experiment was averaged over 5 runs. The bold lines represent the
average, and the envelopes are the minimum and maximum achieved.
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for the validation error per epoch. As a baseline, we also give results when
performing SGD many times per epoch, but without regularization. We see that
the best result comes from the Order 2 Wasserstein distance approximation.

5 Discussion

We studied sampling–friendly implementations of the natural gradient based
on the proximal operator. We approximate the proximity penalty by an affine
space restriction in the Legendre dual formulation. This gives rise to a lower
dimensional metric, expressed in expectation parameters, which can be estimated
from samples. We cover both Fisher-Rao and Wasserstein metrics. Especially for
the Wasserstein proximal, our method offers significant savings in computation
time and provide improvement in validation error (in CIFAR-10 classification).

Acknowledgement. This project has received funding from AFOSR MURI FA9550-
18-1-0502 and the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement no 757983).

A Appendix for image classification on CIFAR-10

Here is the detailed version of our experiments, for image classification on
CIFAR-10. We use a simple CNN with two convolutional layers (each with 32
filters, with a kernel size of 3×3, a stride of 1, and zero padding), followed by two
fully-connected layers each having 512 nodes. For the optimizer, we use standard
stochastic gradient descent (SGD) with momentum value 0.95 and learning rate
of 0.001.

For the Wasserstein distance, if we denote the (deterministic) output of
our neural network as f(x, θ) (the log probability vector), the loss function as
L(y, f(x, θ)) where x is the image and y the label, and the dataset as D, then
the Order 1 and Order 2 approximations for the Wasserstein distance on image
classification on CIFAR-10 are: Order 1 approximation:

D̃W
1 (θ, θk) = ‖Ex∼D[f(x, θ)] − Ex∼D[f(x, θk)]‖2, (7)

and the Order 2 approximation:

D̃W
2 (θ, θk) = ‖Ex∼D[f(x, θ)] − Ex∼D[f(x, θk)]‖2

+ tr
(

varx∼D[f(x, θ)] + varx∼D[f(x, θk)]

− 2
(
varx∼D[f(x, θk)]1/2 varx∼D[f(x, θ)] varx∼D[f(x, θk)]1/2

))
.

(8)
We present our experiments on 5 different settings: (1) Standard learning

with no regularization, (2) performing SGD 3 times per batch, (3) performing
SGD 5 times per batch, (4) using the Order 1 Wasserstein Proximal (with m = 3
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and h = 2), (5) and using the Order 2 Wasserstein proximal (with m = 5 and
h = 1). From Fig. 2, we see that using the Order 2 Wasserstein proximal provides
the best results. We note that performing SGD a number of times per batch is
presented as a baseline, as we experimentally found that they also provided
improvements in validation error per epoch (but they are not the best as we can
see from Fig. 2).

Algorithm 2. Wasserstein Proximal Natural Gradient for Neural Networks
Require: Loss function L, neural network f(x, θ), Order 1 or 2 Wasserstein distance

approximation D, and data-label pairs {(x, y)} from dataset D.
Require: m number of gradient descent steps, and h strength of the proximal term

while stopping criteria not met do
Sample a mini-batch of image-label pairs {(xb, yb)}B

b=1 ∈ D
Approximately solve (by performing SGD m times)

θk+1 ← argminθ

{
1

B

B∑

b=1

L(y, f(x, θ)) +
1

2h
D(θ, θk)

}
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Parametric Fokker-Planck Equation
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Abstract. We derive the Fokker-Planck equation on the parametric
space. It is the Wasserstein gradient flow of relative entropy on the sta-
tistical manifold. We pull back the PDE to a finite dimensional ODE on
parameter space. Some analytical examples and numerical examples are
presented.

Keywords: Optimal transport · Information geometry ·
Statistical manifold · Fokker-Planck equation · Gradient flow

1 Introduction

Fokker-Planck equation, a linear evolution partial differential equation (PDE),
plays a crucial role in stochastic calculus, statistical physics and modeling
[13,16,18]. Recently, people also discover its importance in statistics and machine
learning [11,15,17]. Fokker-Planck equation describes the evolution of density
functions of the stochastic process driven by a stochastic differential equation
(SDE).

There is another viewpoint of Fokker-Planck equation based on optimal
transport theory. It treats the equation as the gradient flow of relative entropy
on probability manifold equipped with Wasserstein metric [5,14]. Recently, the
studies have been extended to information geometry [1–3], creating a new area
known as Wasserstein information geometry [7,9,10]. Inspired by those studies,
in this paper, we derive the metric tensor on parameter space by pulling back the
Wasserstein metric via the parameterized pushforward map. Then we compute
the Wasserstein gradient flow (an ODE system) of relative entropy defined on
parameter space. This leads to a statistical manifold version of Fokker Planck
equation, which can be viewed as an approximation of the original PDE.

Our work is motivated by two purposes, (1) reducing the evolution PDE to a
finite dimensional ODE system on parameter space; (2) applying parameterized
pushforward map to obtain an efficient sampling method to generate samples
from SDE. This is different from Markov Chain Monte Carlo (MCMC) methods
[12] or momentum methods [16]. In this brief presentation, we sketch the the-
oretical framework with illustrations on several examples. The complete results
will be reported in an extended version [8].
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2 Parametric Fokker-Planck Equation

In this section, we briefly review the fact that Fokker-Planck equation is a
Wasserstein gradient flow of relative entropy. We then introduce a Wasserstein
statistical manifold generated by parameterized mapping function. Based on it,
we derive the parametric Fokker-Planck equation as the gradient flow of param-
eterized relative entropy.

2.1 Fokker-Planck Equation

Consider the Fokker-Planck equation:

∂ρ(t, x)
∂t

= ∇ · (ρ(t, x)∇V (x)) + βΔρ(t, x), ρ(0, x) = ρ0(x). (1)

Here ∇·, ∇ is the divergence and gradient operator in R
d, ∇V is the drift function

and β > 0 is a diffusion constant. There are several understandings for the
Eq. (1).

On the one hand, consider the stochastic differential equation:

dXt = −∇V (Xt) +
√

2βdBt, X0 ∼ ρ0. (2)

Here {Bt}t≥0 is the standard Brownian motion. It is well known that the density
function ρ(t, x) of stochastic process Xt, i.e. Xt ∼ ρ(t, x), satisfies the Fokker-
Planck equation (1).

On the other hand, Eq. (1) is the Wasserstein gradient flow of relative entropy.
Denote the probability space supported on R

d:

P =
{

ρ :
∫

ρ(x)dx = 1, ρ(x) ≥ 0,

∫
|x|2ρ(x) dx < ∞

}

Equipped with the Wasserstein metric [6,14], P is an infinite dimensional Riem-
manian manifold. Denote

TρP =
{

ρ̇ :
∫

ρ̇(x)dx = 0
}

.

Consider a specific ρ ∈ P and ρ̇i ∈ TρP, i = 1, 2. The Wasserstein metric tensor
gW is defined as:

gW (ρ)(ρ̇1, ρ̇2) =
∫

∇ψ1(x) · ∇ψ2(x)ρ(x) dx,

where ρ̇i = −∇ · (ρi∇ψi) for i = 1, 2. Here gW is a metric tensor, which is
a positive definite bilinear form defined on tangent bundle TP = {(ρ, ρ̇) : ρ ∈
P, ρ̇ ∈ TρP}.
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The Riemannian gradient in (P, gW ) is given as follows. Consider a smooth
functional F : P → R, then

gradW F(ρ) = gW (ρ)
−1

(
δF
δρ

)
(x)

= −∇ · (ρ(x)∇ δ

δρ(x)
F(ρ)),

(3)

where δ
δρ(x) is the L2 first variation at variable x ∈ R

d. In particular, consider
the relative entropy

F(ρ) = β

∫
ρ(x) log

ρ(x)

1
Z

e
− V (x)

β

dx =

∫
V (x)ρ(x)dx + β

∫
ρ(x) log ρ(x)dx + β log(Z).

(4)
Here Z =

∫
e

V (x)
β dx is the normalizing constant for e

V (x)
β .

Then ∇
(

δF
δρ

)
= ∇V + β∇ log ρ, and (3) forms

∂ρ

∂t
= −gradW F(ρ) = ∇ · (ρ∇V ) + β∇ · (ρ∇ log ρ)).

Notice ∇ log ρ = ∇ρ
ρ , then ∇ · (ρ∇ log ρ) = ∇ · (∇ρ) = Δρ. The above equation

is exactly Fokker-Planck equation (1).
From now on, we apply the above geometric gradient flow formulation and

derive the Fokker-Planck equation (1) on parameter space.

2.2 Parameter Space Equipped with Wasserstein Metric

We consider a parameter space Θ as an open set in R
m. Denote the sample space

M = R
d. Suppose Tθ is a pushforward map from M to M , which is parametrized

by θ. For example, we can set Tθ(x) = Ux+ b, with θ = (U, b), U ∈ GLd(R), b ∈
R

d; we can also let Tθ be a neural network with parameter θ. We further assume
that Tθ is invertible and smooth with respect to parameter θ and variable x.

Denote p ∈ P as a reference probability measure with positive density defined
on M . For example, we can choose p as the standard Gaussian. We denote ρθ

as the density of Tθ#p.1 We further require:
∫ |Tθ(x)|2 dp(x) < ∞ holds for all

θ ∈ Θ. Then ρθ ∈ P for each θ ∈ Θ. Denote PΘ = {ρθ = ρ(θ, x)|θ ∈ Θ}, then
PΘ ⊂ P.

Now the connection between P and Θ is the pushforward operation T# :
Θ → PΘ ⊂ P, θ 	→ ρθ. In order to introduce the Wasserstein metric to parameter
space Θ, we assume that T# is an isometric immersion from Θ to P. Under this
assumption, the pullback (T#)∗gW of the Wasserstein metric gW by T# is the
metric tensor on Θ. Let us denote G = (T#)∗gW . Then for each θ, G(θ) is a

1 Let X, Y be two measurable spaces, λ is a probability measure defined on X; let
T : X → Y be a measurable map, then T#λ is defined as: T#λ(E) = λ(T−1(E)) for
all measurable E ⊂ Y . We call T#p the pushforward of measure p by map T .
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bilinear form on TθΘ 
 R
m, thus G(θ) can be treated as an m × m matrix.

Computation of G(θ) is illustrated in the following theorem:

Theorem 1. Suppose T# : Θ → P is isometric immersion from Θ to P. Then
the metric tensor G(θ) at θ ∈ Θ is m×m non-negative definite symmetric matrix
and can be computed as:

G(θ) =
∫

∇Ψ (Tθ(x))∇Ψ (Tθ(x))T dp(x), (5)

Or in entry-wised form:

Gij(θ) =
∫

∇ψi(Tθ(x)) · ∇ψj(Tθ(x)) dp(x), 1 ≤ i, j ≤ m.

Here Ψ = (ψ1, ...ψm)T and ∇Ψ is m × d Jacobian matrix of Ψ . For each
k = 1, 2, ...,m, ψk solves the following equation:

∇ · (ρθ∇ψk(x)) = ∇ · (ρθ ∂θk
Tθ(T−1

θ (x))). (6)

Proof. Suppose ξ ∈ TΘ is a vector field on Θ, for a fixed θ ∈ Θ, we first compute
the pushforward (T#|θ)∗ξ(θ) of ξ at point θ: We choose any differentiable curve
{θt}t≥0 on Θ with θ0 = θ and θ̇0 = ξ(θ). If we denote ρθt

= Tθt#p, then we have

(T#)∗ξ(θ) = ∂ρθt

∂t

∣∣
∣
t=0

. To compute ∂ρθt

∂t

∣∣
∣
t=0

, we consider for any φ ∈ C∞
0 (M):

∫
φ(y)

∂ρθt

∂t
(y)dy =

∂

∂t

(∫
φ(Tθt

(x))dp

)
=

∫
θ̇t

T
∂θTθt

(x)∇φ(Tθt
(x))dp

=
∫

θ̇T
t ∂θTθt

(T−1
θt

(x))∇φ(x) ρθt
(x) dx

=
∫

φ(x)
(
−∇ · (ρθt

∂θTθt
(T−1

θt
(x))T θ̇t)

)
dx

This weak formulation reveals that

(T#|θ)∗ξ(θ) =
∂ρθt

∂t

∣∣∣
t=0

= −∇ · (ρθ ∂θTθ(T−1
θ (x))T ξ(θ)) (7)

Now let us compute the metric tensor G. Since T# is isometric immersion from
Θ to P, the pullback of gW by T# gives G, i.e. (T#)∗gW = G. By definition of
pullback map, for any ξ ∈ TΘ and for any θ ∈ Θ, we have:

G(θ)(ξ(θ), ξ(θ)) = gW (ρθ)((T#|θ)∗ξ(θ), (T#|θ)∗ξ(θ)) (8)

To compute the right hand side of (8), recall (3), we need to solve for ϕ from:

∂ρθt

∂t

∣∣∣
t=0

= −∇ · (ρθ∇ϕ(x)) (9)

By (7), (9) is:

∇ · (ρθ∇ϕ(x)) = ∇ · (ρθ∂θTθ(T−1
θ (·))T ξ(θ)) (10)
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We can straightforwardly check that ϕ(x) = ΨT (x)ξ(θ) is the solution of (10).
Then G(θ) is computed as:

G(θ)(ξ, ξ) =
∫

|∇ϕ(y)|2 ρθ(y) dy =
∫

|∇ϕ(Tθ(x))|2 dp(x)

=
∫

|∇Ψ (Tθ(x))T ξ|2dp(x) = ξT

(∫
∇Ψ (Tθ(x))∇Ψ (Tθ(x))T dp(x)

)
ξ

Thus we can verify that:

G(θ) =
∫

∇Ψ (Tθ(x))∇Ψ (Tθ(x))T dp(x)

Generally speaking, the metric tensor G doesn’t have an explicit form when
d ≥ 2; but for d = 1, G has an explicit form and can be computed directly.

Corollary 1. When dimension d of M equals 1. And we further assume that:
ρθ > 0 on M and limx→±∞ ρθ(x) = 0. Then G(θ) has an explicit form:

G(θ) =
∫

∂θTθ(x)T ∂θTθ(x) dp(x). (11)

The following theorem ensures the positive definiteness of the metric tensor G:

Theorem 2. We follow the notations and conditions in Sects. 2.2 and 2.3. Then
G is Riemmanian metric on TΘ iff For each θ ∈ Θ, for any ξ ∈ TθΘ (ξ �= 0),
we can find x ∈ M such that ∇ · (ρθ ∂θTθ(T−1

θ (x)ξ) �= 0.

To keep our discussion concise, in the following sections, we will always assume
that G is positive definite on TΘ.
From now on, following [9,10], we call (Θ,G) Wasserstein statistical manifold.

2.3 Fokker-Planck Equation on Statistical Manifold

Recall the relative entropy functional F defined in (4), we consider F = F ◦T# :
Θ → R. Then:

F (θ) = F(ρθ) =
∫

V (x)ρθ(x) dx + β

∫
ρθ(x) log ρθ(x) dx. (12)

As in [1], the gradient flow of F on Wasserstein statistical manifold (Θ,G)
satisfies

θ̇ = −G(θ)−1∇θF (θ). (13)

We call (13) parametric Fokker-Planck equation. The ODE (13) as the Wasser-
stein gradient flow on parameter space (Θ,G) is closely related to Fokker-Planck
equation on probability submanifold PΘ. We have the following theorem, which
is a natural result derived from submanifold geometry:

Theorem 3. Suppose {θt}t≥0 solves (13). Then {ρθt
} is the gradient flow of F

on probability submanifold PΘ.
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3 Example on Fokker-Planck Equations with Quadratic
Potential

The solution of Fokker-Planck equation on statistical manifold (13) can serve as
an approximation to the solution of the original Eq. (1). However, in some special
cases, ρθt

exactly solves (1). In this section, we demonstrate such examples.
Let us consider Fokker-Planck equations with quadratic potentials whose

initial conditions are Gaussian, i.e.

V (x) =
1
2
(x − μ)T Σ−1(x − μ) and ρ0 ∼ N (μ0, Σ0). (14)

Consider parameter space Θ = (Γ, b) ⊂ R
m (m = d(d + 1)), where Γ is a d × d

invertible matrix with det(Γ ) > 0 and b ∈ R
d. We define the parametric map

as Tθ(x) = Γx + b. We choose the reference measure p = N (0, I). Here is the
lemma we have to use:

Lemma 1. Let F be the relative entropy defined in (4) and F defined in (12).
For θ ∈ Θ, If the vector function ∇

(
δF
δρ

)
◦ Tθ can be written as the linear

combination of {∂Tθ

∂θ1
, ..., ∂Tθ

∂θm
}, i.e. there exists ζ ∈ R

m, such that ∇
(

δF
δρ

)
◦

Tθ(x) = ∂θTθ(x)ζ. Then:

(1) ζ = G(θ)−1∇θF (θ), which is the Wasserstein gradient of F at θ.
(2) If we denote the gradient of F on P as gradF(ρθ) and the gradient of F on

the submanifold PΘ as gradF(ρθ)|PΘ
, then gradF(ρθ)|PΘ

= gradF(ρθ).

Proof. The detailed proof is provided in [8]. Here is an intuitive explana-
tion: ∇

(
δF
δρ

)
= ∇V + β∇ log ρθ is the real vector field that moves the par-

ticles in Fokker-Planck equation; and ∂θTθ(T−1
θ (·))θ̇ is the approximate vec-

tor field induced by the pushforward map Tθ. If such approximate is per-
fect with zero error, i.e. exits ζ such that ∇

(
δF
δρ

)
◦ Tθ(x) = ∂θTθ(x)ζ, then

ζ = θ̇ = G(θ)−1∇θF (θ) and the submanifold gradient agrees with entire mani-
fold gradient.

Now, let us come back to our example, we can compute

ρθ(x) = Tθ#p(x) =
f(T−1

θ (x))
|det(Γ )| =

f(Γ−1(x − b))
|det(Γ )| , f(x) =

exp(− 1
2 |x|2)

(2p)
d
2

.

Then we have:

∇
(

δF(ρθ)
δρ

)
◦ Tθ(x) = ∇(V + β log ρθ) ◦ Tθ(x) = Σ−1(Γx + b − μ) − βΓ−T x

is affine w.r.t. x.
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Notice that ∂Γij
Tθ(x) = (..0.. xj

i−th

..0..)T and ∂bi
Tθ = (..0.. 1

i−th
..0..)T . We can

verify that ζ = (Σ−1Γ−βΓ−T , Σ−1(b−μ)) solves ∇
(

δF(ρθ)
δρ

)
◦Tθ(x) = ∂θTθ(x)ζ.

By (1) of Lemma 1, ζ = G(θ)−1∇θF (θ). Thus ODE (13) for our example is:

Γ̇ = −Σ−1Γ + βΓ−T Γ0 =
√

Σ0 (15)

ḃ = Σ−1(μ − b) b0 = μ0 (16)

By (2) of Lemma 1, we know gradF(ρθ)|PΘ = gradF(ρθ) for all θ ∈ Θ. This
indicates that there is no local error for our approximation, one can verify that
the solution to the parametric Fokker-Planck equation also solves the original
equation.

In addition to previous results, we have the following corollary:

Corollary 2. The solution of Fokker-Planck equation (1) with condition (14) is
Gaussian distribution for all t > 0.

Proof. If we denote {Γt, bt} as the solutions to (15), (16), set θt = (Γt, bt), then
ρt = Tθt#p solves the Fokker Planck Equation (1) with conditions (14). Since
the pushforward of Gaussian distribution p by an affine transform Tθ is still a
Gaussian, we conclude that for any t > 0, the solution ρt = Tθt#p is always
Gaussian distribution. This is already a well known result about Fokker-Planck
equation. We reprove it under our framework.

4 Numerical Examples for 1D Fokker-Planck Equation

Since the Wasserstein metric tensor G has an explicit solution when dimension
d = 1, it is convenient to numerically compute ODE (13).

For example, we can choose a series of basis functions {ϕk}n
k=1. Each ϕk

can be chosen as a sinusoidal function or a piece-wise linear function defined
on a certain interval [−l, l]. It is also beneficial to choose orthogonal or near-
orthogonal basis functions because they will keep the metric tensor G far away
from ill-posedness. We set Tθ(x) =

∑m
k=1 θkϕk(x)2. Then according to (11), we

can compute G as

Gij(θ) = EX∼p

[
ϕi(X)ϕj(X)

]
1 ≤ i, j ≤ m

Recall that F (θ) =
∫

V (x)ρθ(x)dx+β
∫

ρθ(x) log ρθ(x)dx. The second part of F
is the entropy of ρθ, which can be computed by solving the following optimization
problem [4]:

∫
ρθ(x) log ρθ(x) dx = sup

h

{ ∫
h(x)ρθ(x) dx −

∫
eh(x)dx

}
+ 1 (17)

2 In application, carefully choosing Tθ which is not necessarily invertibile or smooth
can still provide valid results.
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We can solve (17) by parametrizing h. Suppose the optimal solution is h∗. Then
by envelope theorem, we know ∇θF (θ) can be computed as

∇θF (θ) = ∂θ

(∫
V (x)ρθ(x) dx + β

∫
h∗(x)ρθ(x) dx

)

= Ex∼p

[
∂θTθ(X)T ∇y(V (y) + βh∗(y))|y=Tθ(X))

]
(18)

Notice that both the metric tensor G and ∇θF (θ) are written in forms of expec-
tations, thus we can compute them by Monte Carlo simulations. And finally,
(13) can be computed by forward Euler method.

Our numerical results are always demonstrated by sample points: For each
time node t, we sample points {X1, ...,XN} from p, then {Tθt

(X1), ..., Tθt
(XN )}

are our numerical samples from distribution ρt which solves the Fokker-Planck
equation.

Here are several numerical results based on our method. We exhibit them in
the form of histograms. Consider the potential V (x) = (x+1)2(x−1)2. Suppose
the initial distribution is ρ0 = N (0, I). Figure 1 contains histograms of ρt which
solves ∂ρ

∂t = ∇ · (ρ∇V ) at different time nodes; we know ρt converges to δ−1+δ+1
2

Fig. 1. Histograms of ρt solving ∂ρ
∂t

= ∇ · (ρ∇V )

Fig. 2. Histograms of ρt solving ∂ρ
∂t

= ∇ · (ρ∇V ) + 1
4
Δρ
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as t → ∞. Here δa is the Dirac distribution concentrated on point a. Figure 2
contains histograms of ρt which solves ∂ρ

∂t = ∇ · (ρ∇V ) + 1
4Δρ at different time

nodes, we know ρt will converge to Gibbs distribution ρ∗ = 1
Z exp(−4(x+1)2(x−

1)2), with Z being a normalizing constant, as t → ∞. The density function of
ρ∗ is exhibited in Fig. 2.

5 Discussion

We presented a new approach for approximating Fokker-Planck equations
by parameterized push-forward mapping functions. Compared to the classical
moment method and MCMC method, we propose a systematic way for obtain-
ing a finite dimensional ODE on parameter space. The ODE represents the
evolution of statistical information conveyed in the original Fokker-Planck equa-
tion. In the future, we will study its geometric and statistical properties, and
derive practical numerical methods for applications in scientific computing and
machine learning. To be specific, in scientific computing, our techniques can be
used to provide numerical solutions (samples) to those evolution PDEs that can
be treated as Wasserstein gradient flows of certain functions defined on proba-
bility manifold; in area of machine learning, we wish to create efficient sampling
methods based on our computational tools designed for Wasserstein gradients.

Acknowledgement. This project has received funding from AFOSR MURI FA9550-
18-1-0502 and NSF Awards DMS–1419027, DMS-1620345, and ONR Award
N000141310408.
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Abstract. We consider the problem to identify the most likely flow
in phase space, of (inertial) particles under stochastic forcing, that is
in agreement with spatial (marginal) distributions that are specified
at a set of points in time. The question raised generalizes the classi-
cal Schrödinger Bridge Problem (SBP) which seeks to interpolate two
specified end-point marginal distributions of overdamped particles driven
by stochastic excitation. While we restrict our analysis to second-order
dynamics for the particles, the data represents partial (i.e., only posi-
tional) information on the flow at multiple time-points. The solution
sought, as in SBP, represents a probability law on the space of paths that
is closest to a uniform prior while consistent with the given marginals.
We approach this problem as an optimal control problem to minimize an
action integral a la Benamou-Brenier, and derive a time-symmetric for-
mulation that includes a Fisher information term on the velocity field. We
underscore the relation of our problem to recent measure-valued splines
in Wasserstein space, which is akin to that between SBP and Optimal
Mass Transport (OMT). The connection between the two provides a
Sinkhorn-like approach to computing measure-valued splines. We envi-
sion that interpolation between measures as sought herein will have a
wide range of applications in signal/images processing as well as in data
science in cases where data have a temporal dimension.

Keywords: Schrödinger bridge · Optimal mass transport ·
Optimal control · Multi-marginal

1 Introduction

In 1931/32, in an attempt to gain insights into the stochastic nature of quantum
mechanics, Schrödinger [22,23] raised the following question regarding a system
of a large number of classical independent identically distributed (i.i.d.) Brown-
ian particles. He hypothesized that this “cloud” of particles is observed to have
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(empirical) distributions ρ0(x0) and ρ1(x1) at two points in time t0 = 0 and
t1 = 1, respectively, and further that ρ1(x1) differs from what is dictated by the
law of large numbers, i.e., that

ρ1(x1) �=
∫
Rn

q(t0, x0, t1, x1)ρ0(x0)dx0,

where

q(s, x, t, y) = (2π)−n/2(t − s)−n/2 exp
(

−1
2

‖x − y‖2
(t − s)

)

denotes the Brownian transition probability kernel. Schrödinger then sought to
find the “most likely” evolution for the cloud of particles to have transitioned
from ρ0 to ρ1. In the language or large deviation theory (which was not in place
at the time), Schrödinger’s question amounts to seeking a probability law on the
path space that is in agreement with the two marginals while being the closest to
the Brownian prior in the sense of relative entropy [12]. The solution is known as
the Schrödinger bridge since the law “bridges” the two given end-point marginal
distributions.

Renewed interest in the Schrödinger Bridge Problem (SBP) has been fueled
by its connections to the Monge-Kantorovic Optimal Mass Transport (OMT)
and a wide range aplications in image analysis, stochastic control, and physics
[4,6,9,13,18,19,21]. More specifically, SBP, seen as a suitable regularization of
OMT, provides a natural model for uncertainty in the transport of distributions
as well as a valuable computational tool for interpolating distributional data.

In this work we consider a natural generalization of the Schrödinger bridge
theory to address the situation where the data consist of possible partial marginal
distributions at various points in time. Thus, we postulate a similar experiment
with stochastic particles. However, in contrast to the standard SB theory, we
conceive these particles to obey second order stochastic differential equations
with Brownian stochastic forcing that accounts for random acceleration along
trajectories in phase space (see Sect. 2). This new setting connects with recent
results on measure-valued splines [1,3,8], which are general notions of splines on
the Wasserstein space of measures. In this short paper, we provide a summary
of the theory. A more detailed account will appear in a forthcoming publication
(in preparation).

2 Multi-marginal Schrödinger Bridges for Inertial
Particles

Suppose we are given a large number of independent inertial particles driven by
white noise, that is, they follow the dynamics

dx = vdt, (1a)
dv = dw, (1b)
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where dw denotes standard Brownian motion and (x, v) is the phase space (x
denoting position and v velocity). The flow of probability densities μt(x, v) in
phase space obeys the Fokker-Planck equation

∂μ

∂t
+ v · ∇xμ − 1

2
Δvμ = 0, (2)

with initial condition μ0 at time t = 0. The law of large numbers dictates that,
when the number of particles is large enough, the distributions of the particles
will be closed to μt. The data of the problem we consider will, as in the stan-
dard SB problem, be inconsistent with the Fokker-Planck equation, and viewed
as a “atypical/rare” event. In standard SB setting, where only two end-point
marginals are specified, the “most likely” evolution amounts to an adjustment
of the Fokker-Planck equation by adding a suitable drift term to match the two
marginals. For inertial particles driven by white noise, the generator is hypoel-
liptic [16] and the SB theory carries over to matching marginals in phase space.

Throughout, we suppose that we have only access to position x and that
empirical marginals ρ0 = Projx μ0, ρ1 = Projx μ1 represent projections, accord-
ingly. The extra degree of freedom, since μ’s are partially specified, make
the corresponding multi-marginal problem nontrivial. Specifically, we seek the
most likely paths the particles have taken that match positional distributions
ρ0, ρ1, · · · , ρN at times 0 = t0 < t1 < · · · < tN = 1. To this end, we let Q be the
law of (1) (on path space) and we let P be any other law. We seek the minimizer
of

H(P, Q) =
∫

dP log
dP
dQ (3)

over all laws P that are consistent with the marginals ρ0, ρ1, · · · , ρN .
To guarantee the boundedness of the relative entropy H between P and the

prior process Q, P has to be of the form

dx = vdt, (4a)
dv = adt + dw, (4b)

where a is a suitable drift that may depend on the current and past values of
the process state. Invoking Girsanov’s theorem [7,11,14,17], we obtain that

H(P, Q) = EP

{∫ 1

0

‖a(t)‖2dt

}
=

∫ 1

0

∫
‖a‖2μdxdvdt.

Thus, we arrive at the optimal control formulation

min E

{∫ 1

0

‖a(t)‖2dt

}
, (5a)

dx = vdt, (5b)
dv = adt + dw, (5c)
x(ti) ∼ ρi, i = 0, 1, . . . , N. (5d)
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The difference to the standard Schrödinger bridge problem lies in the constraint
(5d); multiple marginals are partially specified. The existence and uniqueness of
the solution follow from the fact that it is a strongly convex optimization problem
on path space measures. The argument is similar to the standard argument in
SB theory [5,12,18,19] and will be presented in an extended version of the paper.
By utilizing the Fokker-Planck equation, we can rewrite the above as

min
∫ 1

0

∫
‖a‖2μdxdvdt, (6a)

∂μ

∂t
+ v · ∇xμ + ∇v · (aμ) − 1

2
Δvμ = 0, (6b)∫

μti(x, v)dv = ρi(x), i = 0, 1, . . . , N. (6c)

Here
∫

μti(x, v)dv = ρi(x) since Projx(μti) = ρi.
Now let â = a − 1

2∇v log μ, then the diffusion term in (6b) can be absorbed
into the convection terms, and then the cost becomes

∫ 1

0

∫
‖a‖2μdxdvdt =

∫ 1

0

∫
‖â +

1
2
∇v log μ‖2μdxdvdt

=
∫ 1

0

∫ {
‖â‖2μ +

1
4
‖∇v log μ‖2μ

}
dxdvdt

+
∫ 1

0

∫
〈â,∇v log μ〉μdxdvdt.

Direct calculation yields
∫ 1

0

∫
〈â,∇v log μ〉μdxdvdt =

∫
{μ1 log μ1 − μ0 log μ0}dxdv, (7)

which only depends on the two end distributions. Thus, we need to consider

min
∫ 1

0

∫ {
‖â‖2μ+

1
4
‖∇v log μ‖2μ

}
dxdvdt+

∫
{μ1 log μ1−μ0 log μ0}dxdv,(8a)

∂μ

∂t
+ v · ∇xμ + ∇v · (âμ) = 0, (8b)∫

μti(x, v)dv = ρi(x), i = 0, 1, . . . , N. (8c)

A similar formulation with a Fisher information term has been studied in [6,
13,20,25] for standard Schrödinger bridge problems. However, in the standard
setting, the term

∫ {μ1 log μ1−μ0 log μ0}dxdv can be dropped since the full-state
marginal distributions are already specified. It important to note that, compared
to (6), (8) is time symmetric.
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3 Connections to Measure-Valued Splines

A variational formulation [15] of splines going through {x1, x2, . . . , xN} in
Euclidean space is given by

min
∫ 1

0

‖ẍ‖2dt

x(ti) = xi, i = 0, 1, . . . , N,

where the minimization is taken over all twice-differentiable trajectories that
satisfy the constraints. This formation has been generalized to the Wasserstein
space of measures [1,3]. In particular, the fluid dynamic formulation for measure-
valued splines in [3] with marginals ρ0, ρ1, · · · , ρN at 0 = t0 < t1 < · · · < tN = 1
reads

min
∫ 1

0

∫
‖a‖2μdxdvdt, (9a)

∂μ

∂t
+ v · ∇xμ + ∇v · (aμ) = 0, (9b)∫

μti(x, v)dv = ρi(x), i = 0, 1, . . . , N. (9c)

We note that the above formulation is almost the same as (6) except for a missing
diffusion term in the constraint. This resembles the relation between standard
Schrödinger bridges and optimal mass transport [5,18,19].

Indeed, a zero-noise limit argument follows. If we replace the dynamics (1)
of the inertial particles by

dx = vdt, (10a)
dv =

√
εdw, (10b)

then the multi-marginal SB problem becomes

min
∫ 1

0

∫
‖a‖2μdxdvdt, (11a)

∂μ

∂t
+ v · ∇xμ + ∇v · (aμ) − ε

2
Δvμ = 0, (11b)∫

μ(ti, x, v)dv = ρi(x), i = 0, 1, . . . , N. (11c)

The “slowed down” formulation (11) reduces to (6) when we take the limit ε → 0.
Therefore, we establish the measure-valued spline as a zero-noise limit of a multi-
marginal SB, and SB as a regularized version of measure-valued spline. Rigorous
proof of these conclusions will be presented in a forthcoming paper.
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4 Algorithms

The Sinkhorn [10,24] algorithm is a natural iterative scheme in SB problems.
Due to its efficiency and simplicity, it has became a workhorse for data science
applications of optimal transport [10]. In this section, we develop a Sinkhorn-type
algorithm for multi-marginal Schrödinger bridge problems. The relation estab-
lished in Sect. 3 implies that the same algorithm can also be used to approximate
measure-valued splines.

Using a measure decomposition argument, the Schrödinger problem (11) can
be rewritten as

min J(π) :=
N−1∑
i=0

KL(πi,i+1 | e−Ci,i+1/ε) (12a)

∫
πi,i+1dxi+1dvi+1 = μi, i = 0, . . . , N − 1 (12b)

∫
πi,i+1dxidvi = μi+1, i = 0, . . . , N − 1 (12c)

∫
μidvi = ρi, i = 0, . . . , N (12d)

where KL(α|β) =
∫

α log α
β − α + β and

Ci,i+1(xi, vi, xi+1, vj+1) = (12‖xi+1 − xi − vi‖2 − 12〈xi+1 − xi − vi, vi+1 − vi〉
+ 4‖vi+1 − vi‖2)/(ti+1 − ti).

The optimization variables are joint distributions on the consecutive time points
over the phase space. Since the cost is a summation of relative entropies and the
constraints are convex, a natural algorithm is that of Bregman projections [2].

Define convex constraint sets

K0 = {
∫

π01dx1dv1 = μ0,

∫
μ0dv0 = ρ0},

KN = {
∫

πN−1,NdxN−1dvN−1 = μN ,

∫
μNdvN = ρN}, and

Ki = {
∫

πi,i+1dxi+1dvi+1 = μi,

∫
πi−1,idxi−1dvi−1 = μi,

∫
μidvi = ρi},

for i = 1, . . . , N − 1, then the Bregman iterative projection becomes

πn = PKL
Kin

(πn−1), n = 1, 2, 3, . . .

where in enumerates {0, 1, . . . , N} repeatedly. The initial condition is

π0 = e−Ci,i+1/ε, i = 0, . . . , N − 1. (13)

The projection operator is

PKL
K (π̄) := argminπ∈K KL(π | π̄). (14)
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These projections can be derived via Lagrangian method. The projections to
K0,KN are easier and the projections to K1, . . . ,KN−1 are more involved.
Specifically,

PK0 : π01 =
ρ0π̄01∫

π̄01dv0dx1dv1

PKN
: πN−1,N =

ρN π̄N−1,N∫
π̄N−1,NdvNdxN−1dvN−1

whereas for PKi
, i = 1, . . . , N − 1:

πi−1,i =
ρi(

∫
π̄i−1,idxi−1dvi−1

∫
π̄i,i+1dxi+1dvi+1)1/2∫

π̄i−1,idxi−1dvi−1

∫
(
∫

π̄i−1,idxi−1dvi−1

∫
π̄i,i+1dxi+1dvi+1)1/2dvi

π̄i−1,i

πi,i+1=
ρi(

∫
π̄i−1,idxi−1dvi−1

∫
π̄i,i+1dxi+1dvi+1)1/2∫

π̄i,i+1dxi+1dvi+1

∫
(
∫

π̄i−1,idxi−1dvi−1

∫
π̄i,i+1dxi+1dvi+1)1/2dvi

π̄i,i+1

In real implementation, we need to discretize the phase space over a
grid. After discretization, the algorithm only involves matrix multiplication,
pointwise-division, multiplication, square root, and therefore can be parallelized
easily. The linear convergence rate is guarantee by the property of Bregman
projections [2]. Our algorithm should be compared to that developed in [1]. A
major difference is that our algorithm doesn’t require discretization over the
time domain.

5 Conclusion

We considered a natural extension of the Schrödinger bridge problems to multi-
marginal partially observable setting. We focused on inertial particles, but more
general dynamics can be examined similarly. We discussed the physical meaning,
stochastic control formulation and several other aspects of the problems. Just
like in the standard SB problem, it has a natural relation to the measure-valued
spline theory. An efficient algorithm was also developed, which is available for
possible applications. We envision that this line of research will spark interest
in optimal transport theory for applications that involve constraints on multiple
time-points along transport paths.
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Abstract. We study generalized Hopf–Cole transformations motivated
by the Schrödinger bridge problem. We present two examples of canon-
ical transformations, including a Schrödinger problem associated with a
quadratic Rényi entropy.
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1 Schrödinger Bridge Problem

The Schrödinger problem, also named Schrödinger bridge problem (SBP), was
first introduced by Schrödinger in 1931 [4,6–8,16,18–21,24]. It is closely related
to, but different from the famous Schrödinger equation. The SBP searches for
the minimal kinetic energy density path for drift-diffusion processes with fixed
initial and final distributions.

Here we study a general family of SBPs. This family of problems consists of
controlled gradient flows of general potential energies on the Wasserstein density
manifold [13,22]. We study a generalized Hopf–Cole transformation for general
potential energies and show that the Hopf–Cole change of variables is a sym-
plectic embedding in the symplectic geometry of density manifold [15]. In the
last section we present two examples for which this Hopf–Cole transformation is
canonical.

1.1 The Classical Schrödinger Problem

Let M be a finite-dimensional manifold, which for simplicity we assume to be
compact and without boundary. We denote by ∇ and div the gradient and
divergence operators on M .

Fixing two probability measures μ and ν on M , the Schrödinger bridge prob-
lem (SBP) is defined by

inf
ρ,b

∫ 1

0

∫
M

1
2
|bt(x)|2 ρt(x) dx dt, (1)

where the infimum runs over all probability densities ρ and vector fields b
satisfying

∂tρt + div(ρtbt) = γ Δ ρt, ρ0 = μ, ρ1 = ν.

c© Springer Nature Switzerland AG 2019
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The constant γ ∈ R is a diffusion parameter which can be positive or negative;
note that γ = 0 corresponds to the Wasserstein distance with quadratic cost
between μ and ν via the Benamou–Brenier formula [2]. The solution to prob-
lem (1) is of the form bt = ∇φt for some scalar field φ, and the optimal pair (ρ, φ)
satisfies a Fokker–Planck equation and a Hamilton–Jacobi–Bellman equation:

⎧⎨
⎩

∂tρt + div(ρt∇φt) = γ Δ ρt

∂tφt +
1
2
|∇φt|2 = −γ Δ φt,

(2)

for all t ∈ (0, 1).

1.2 Hopf–Cole Transformation

Rather formidably, the optimality conditions (2) can be rewritten into a simpler
and more symmetric way thanks to a Hopf–Cole transformation. To this effect
define

ηt(x) = eφt(x)/(2γ) and η∗
t (x) = ρt(x)e−φt(x)/(2γ). (3)

If (ρ, φ) satisfies the system (2) then (η, η∗) solves the backward-forward heat
system {

∂tηt = −γ Δ ηt

∂tη
∗
t = γ Δ η∗

t .
(4)

Integrating the above system in time with the appropriate boundary conditions
on ρ leads to the so-called Schrödinger system, see [3,9,11].

1.3 Generalized Schrödinger Problem

Let P(M) be the space of probability measures on M and consider a regular
functional F : P(M) → R. In [14] was introduced the generalized Schrödinger
problem (GSP)

inf
ρ,b

∫ 1

0

∫
M

1
2
|bt(x)|2ρt(x) dx dt, (5)

subject to the constraint

∂tρt + div
(
ρt(bt − ∇δF(ρt))

)
= 0, (6)

as well as the boundary conditions ρ0 = μ, ρ1 = ν. Here μ and ν are fixed prob-
ability measures on M and δF denotes the first variation (i.e. the L2 gradient)
of F . This model was later considered in [10] where the authors prove various
convexity inequalities.

In the entropic case F(ρ) = γ
∫

ρ log ρ dx we recover the classical Schrödinger
bridge problem (1), since

div(ρ∇δF(ρ)) = div(ρ∇(γ log ρ + γ)) = γ Δ ρ.
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This is remindful of Otto’s interpretation of the heat equation as gradient flow of
the entropy in the Wasserstein metric; indeed the GSP can be seen as a controlled
gradient flow problem with respect to the Wasserstein metric.

As can be expected from control theory, solutions to the GSP can be written
as Hamiltonian flows. For a GSP with potential F the Hamiltonian is given by

H(ρ, φ) =
∫

1
2
|∇φ|2ρ − ∇φ · ∇δF(ρ) ρ dx,

where the dual variable φ is related to the control b by b = ∇φ. Then, a solution
(ρ,∇φ) to the GSP satisfies the Hamiltonian flow{

∂tρt = δφH(ρt, φt)
∂tφt = −δρH(ρt, φt).

(7)

This is an example of a Hamiltonian flow in the Wasserstein space [1,5,17].

2 Canonical Transformations

Let F be a regular functional defined over the space of probability measures and
consider (5) the GSP with potential F . In this context, the work [14] introduced
a type of Hopf–Cole transformation.

Definition 1. The generalized Hopf–Cole transformation (η, η∗) → (ρ, φ) is
defined by

{
δF(ρ) = δF(η) + δF(η∗)

φ = 2 δF(η).
(8)

Here δF denotes the first variation (i.e. the L2 gradient) of F and we assume
it is invertible.

It is a simple matter to check that in the entropic case F(ρ) = γ
∫

ρ log ρ dx we
recover the classical Hopf–Cole transformation (3).

The first result of this paper describes the optimality conditions written in
the new variables η and η∗.

Theorem 1. Given a solution (ρ, φ) to the Hamiltonian flow (7), the new vari-
ables (η, η∗) satisfy {

∂tηt =σ(ηt, η
∗
t ) δη∗K(ηt, η

∗
t )

∂tη
∗
t = − σ(η∗

t , ηt) δηK(ηt, η
∗
t ).

(9)

Here K is the Hamiltonian in the new variables: K(η, η∗) = H(ρ, φ). Moreover
σ is defined by

σ(η, η∗)(x,w) = −1
2

∫∫ [
δ2F(η)

]−1(x, y) δ2F(ρ)(y, z)
[
δ2F(η∗)

]−1(z, w) dy dz,

therefore σ(η, η∗) can be regarded as a linear map (which has the above kernel).
Here δ2F denotes the second variation (i.e. L2 Hessian) of F .
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Theorem 1 shows that the optimal (η, η∗) satisfies a system of Hamiltonian-
type equations. This is to be expected from symplectic theory since operating a
change of variables (η, η∗) → (ρ, φ) leads to Hamiltonian flows involving pulled-
back symplectic forms. We discuss this fact in more details in the general ver-
sion of this paper [15]. In the next section we focus on two potentials F , the
Boltzmann–Shannon entropy and the quadratic Rényi entropy, for which our
Hopf–Cole transformation is canonical, i.e. the form of Hamilton’s equations are
exactly preserved.

3 Examples

3.1 Classical Schrödinger Problem

In this first section we show that the classical Hopf–Cole transformation does
more than simplifying the optimality conditions of the SBP; from a symplectic
point of view it is in fact canonical, i.e. it preserves the form of the Hamiltonian
flows.

Proposition 1. Let (ρ, φ) be a solution to the SBP (1) and let (η, η∗) be the
new variables given by the Hopf–Cole transformation (3). Denoting by K the
Hamiltonian in the new variables, we have

{
2γ ∂tηt = δη∗K(ηt, η

∗
t )

2γ ∂tη
∗
t = −δηK(ηt, η

∗
t ).

Note that here the Hamiltonian is H(ρ, φ) =
∫

1
2 |∇φ|2ρ − γ∇ log ρ · ∇φρ dx and

therefore K takes the simple form

K(η, η∗) = −2γ2

∫
∇η · ∇η∗ dx.

We note that in the above Hamiltonian flow, as well as in the next example,
one could get rid of the constant 2γ by a simple rescaling of time.

3.2 Slow Schrödinger Problem

Let γ > 0 and consider the quadratic Rényi entropy

F(ρ) =
γ

2

∫ (
ρ(x)

)2
dx.

Solutions to the corresponding GSP (5) satisfy the system
⎧⎪⎨
⎪⎩

∂tρt + div(ρt∇φt) =
γ

2
Δ(ρ2t )

∂tφt +
1
2
|∇φt|2 = −γ ρt Δ φt.
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This is a “slow diffusion” type of Schrödinger problem which exhibits a nonlinear
diffusion term Δ(ρ2). In this case the generalized Hopf–Cole transformation (8)
is given by the linear formula

ρ = η + η∗, φ = 2γ η.

The next result shows that this transformation preserves the form of the Hamil-
tonian flow.

Proposition 2. The optimality conditions for the slow Schrödinger problem can
be written in the new variables as{

2γ ∂tηt = δη∗K(ηt, η
∗
t )

2γ ∂tη
∗
t = − δηK(ηt, η

∗
t ),

where the Hamiltonian K takes the form

K(η, η∗) =
γ

2

∫ (
η(x) + η∗(x)

) ∇η(x) · ∇η∗(x) dx.

More specifically, this is a system of PDEs
{

γ−1 ∂tηt + 1
2 |∇ηt|2 + (ηt + η∗

t )Δ ηt = 0
−γ−1 ∂tη

∗
t + 1

2 |∇η∗
t |2 + (ηt + η∗

t )Δ η∗
t = 0.

3.3 Schrödinger Equation

To conclude this list of examples we would like to mention the case of the
Schrödinger equation, which is closely connected to the GSP. Formally speak-
ing, the Schrödinger equation can be associated to an imaginary entropy
F(ρ) = γ

∫
ρ log ρ dx where γ = i is the imaginary unit; then the generalized

Hopf–Cole transformation (8) forms exactly the so-called Madelung transforma-
tion. Studies of the Madelung transformation as a symplectic change of vari-
ables include [5,12,13,23]. With this perspective, we also propose a generalized
Madelung transformation in [15].

Acknowledgement. This project has received funding from AFOSR MURI FA9550-
18-1-0502.
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738 F. Léger and W. Li

4. Carlen, E.A.: Stochastic Mechanics: A Look Back and a Look Ahead. Princeton
University Press, Berlin (2014)

5. Chow, S.-N., Li, W., Zhou, H.: A discrete Schrödinger equation via optimal trans-
port on graphs. J. Funct. Anal. 276(8), 2440–2469 (2019)

6. Conforti, G.: A second order equation for Schrödinger bridges withapplications to
the hot gas experiment and entropic transportation cost. Probab. Theor. Relat.
Fields 174, 1–47 (2018)

7. Conforti, G., Pavon, M.: Extremal flows in Wasserstein space. J. Math. Phys.
59(6), 063502 (2018)
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Abstract. We consider the manifold of rank-p positive-semidefinite
matrices of size n, seen as a quotient of the set of full-rank n-by-p matrices
by the orthogonal group in dimension p. The resulting distance coincides
with the Wasserstein distance between centered degenerate Gaussian dis-
tributions. We obtain expressions for the Riemannian curvature tensor
and the sectional curvature of the manifold. We also provide tangent vec-
tors spanning planes associated with the extreme values of the sectional
curvature.

1 Introduction

Positive-semidefinite (PSD) matrices appear, e.g., as covariance matrices in
statistics, kernels in machine learning, and variables in semidefinite optimiza-
tion; see, e.g., [MA18] for pointers to the literature.

The set of PSD matrices of size n × n is a stratified space [Tak11, Thm. C],
in which the strata are the manifolds

S+(p, n) = {S ∈ R
n×n|S � 0, rank(S) = p},

of PSD matrices of rank p, for p = 0, . . . , n. In many practical applications, the
rank of all the datapoints can be truncated to a common value, so that algorithms
can be restricted to handle datapoints lying on the same stratum (see [MA18]
and references within). This is for example the case when the data points are
low-rank approximations of large PSD matrices. Each stratum S+(p, n), with
p ≥ 1, can be given a Riemannian structure.

Classical algorithms on Riemannian manifolds can thus be used for pro-
cessing data on S+(p, n). For example, optimization on S+(p, n) has been used
in [MBS11,MMS11,MHB+16] for distance learning, distance matrix completion,
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and role model extraction. The works [LB14,GMM+17,KDB+18,MGS+19] run
interpolation algorithms on S+(p, n) for generating protein conformation tran-
sitions, modeling wind field, video classification and parametric model order
reduction.

In the full-rank case, i.e., when p = n, the manifold S+(n, n) is classically
identified to the reductive homogeneous space S+(n, n) � GLn/On, where GLn

is the general linear group. Therefore, there exists a GLn-invariant metric on
GLn/On which leads (up to a scaling factor) to the natural, affine-invariant
metric, or Fisher-Rao metric on S+(n, n), see [Smi05]. When p �= n, the set
S+(p, n) can be identified to a homogeneous space (see [VAV13]), but this homo-
geneous space is shown to be nonreductive, and there is no metric invariant
under the group action. There is thus no wide agreement on a preferred metric
on S+(p, n).

In this work, we consider the identification S+(p, n) � R
n×p
∗ /Op, with R

n×p
∗

the set of full-rank n-by-p matrices. The quotient manifold R
n×p
∗ /Op is endowed

with the metric induced from the Euclidean metric in R
n×p
∗ . This geometry was

already proposed in [JBAS10] (which contains, e.g., expressions for the Rieman-
nian exponential and for the projector on the horizontal space) and more recently
described in [MA18]. In this last paper, we obtained expressions for the Rieman-
nian logarithm, the injectivity radius and the cut locus. We mention that several
other geometries have been proposed on S+(p, n): [VAV09] represents S+(p, n) as
an embedded submanifold of Rn×n, [BS09] identifies it to the quotient manifold
(St(p, n) × S+(p, p))/Op, and, as already mentioned, [VAV13] identifies S+(p, n)
to a homogeneous space endowed with a right-invariant metric.

Even though the metric resulting from the identification S+(p, n) � R
n×p
∗ /Op

does not lead to a complete metric space, there are two main motivations to con-
sider it. The first one is the low computation cost associated with the most com-
mon operations on the manifold. Indeed, the operations are directly performed
on the representatives in R

n×p
∗ of the matrices, which are smaller than the initial

n × n matrices. As shown in [JBAS10,MA18], the Riemannian exponential and
logarithm have a computational cost that evolves linearly with n. Among all
the geometries proposed for S+(p, n), this is to our knowledge the only one that
leads to expressions for both the logarithm and the exponential maps that are
cheap to evaluate.

The second motivation to consider this quotient geometry is its interpreta-
tion with respect to optimal transport theory. Indeed, there exists a bijection
between the set of n × n PSD matrices and the set of (possibly degenerate)
centered Gaussian distributions on R

n. Let C1, C2 ∈ S+(n, n), two nonsin-
gular covariance matrices, and let W2(μ1, μ2) be the 2-Wasserstein distance
between the nondegenerate centered Gaussian distributions μ1 := N (0, C1)
and μ2 := N (0, C2). It is well-known that W2(μ1, μ2) coincides with the Rie-
mannian distance between C1 and C2, for the metric inherited from the quo-
tient representation S+(n, n) � GL(n)/On (see, e.g., [Tak11,BJL18]). When
C1, C2 ∈ S+(p, n), for p < n, the same conclusion holds: W2(μ1, μ2) is equal to
the Riemannian distance between the low-rank covariance matrices C1 and C2,
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for the metric induced by the quotient S+(p, n) � R
n×p
∗ /Op [Gel90, Corollary

2.5]. Specifically, the distance is given by (see [MA18, Sect. 2.10]):

d(C1, C2) =
[
tr (C1) + tr (C2) − 2tr

((
C

1/2
1 C2C

1/2
1

)1/2
)]1/2

.

The Wasserstein metric is also known as the Bures metric in quantum theory
(see [BJL18] and references therein).

Geometric properties of the manifold S+(n, n) � GL(n)/On have been widely
studied, see, e.g., [Tak11,BJL18,MMP18]. In particular, its sectional curvature
has been computed in [Tak11]. The contribution of this paper is to compute
the Riemannian curvature tensor and the sectional curvature of the manifold
S+(p, n) � R

n×p
∗ /Op. We also provide tangent vectors spanning tangent planes

associated with the maximal and minimal sectional curvatures. Bounds on the
curvature of the manifold appear, e.g., in some optimization algorithms and
associated convergence results on manifolds [ATV13,Bon13], and in guarantees
for the continuity of the result of some curve fitting algorithms [AGSW16]. The
Riemannian curvature tensor is, e.g., used in [SASK12] for curve fitting on man-
ifolds. We show that the sectional curvature is non-negative, and may become
infinitely large when approaching the boundary of the manifold (specifically, if
two singular values go simultaneously to zero). A consequence is that some of
the above-mentioned results involving bounds on the sectional curvature (in opti-
mization or curve fitting) do not directly apply on this manifold. Our conclusions
agree with the work [Dit95], which computes the curvature of the manifold of
density matrices (n×n positive-definite complex matrices of unit trace), endowed
with the Bures metric, and observes a similar unboundedness of the sectional
curvature as the rank of the matrix goes to n − 2.

The structure of this paper is as follows. Section 2 presents a brief summary
of the geometry of Rn×p

∗ /Op. In Sect. 3, we derive expressions for the Riemannian
curvature tensor and the sectional curvature. Finally, we compute in Sect. 4 the
extreme values of the sectional curvature.

2 Geometry of the Manifold S+(p, n) � R
n×p
∗ /Op

This quotient geometry, described in [MA18], relies on the characterization
S+(p, n) = {Y Y �|Y ∈ R

n×p
∗ }. The quotient representation comes from the

fact that the set of points Y Op := {Y Q|Q ∈ Op} is a fiber under the map
Y �→ Y Y �. The tangent space TY R

n×p
∗ � R

n×p is the direct sum of two
orthogonal subspaces: the vertical space (the tangent space of the fiber Y Op),
and the horizontal space (its orthogonal complement, with respect here to the
Euclidean metric). The vertical space at Y is given by VY = {Y Ω|Ω = −Ω� ∈
R

p×p}, while the horizontal space is HY = {η̄Y = Y (Y �Y )−1S + Y⊥K|S ∈
R

p×p, S = S�,K ∈ R
(n−p)×p}. Let π : R

n×p
∗ → R

n×p
∗ /Op be the quotient

map, mapping points from R
n×p
∗ to their fibers. For any Y ∈ R

n×p
∗ , any tan-

gent vector ξπ(Y ) ∈ Tπ(Y )R
n×p
∗ /Op is associated to a unique horizontal lift
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ξ̄Y ∈ HY , such that ξπ(Y ) = Dπ(Y )[ξ̄Y ]. The metric in R
n×p
∗ /Op is defined

as gπ(Y )

(
ξπ(Y ), ηπ(Y )

)
:= tr

(
ξ̄�
Y η̄Y

)
, which turns the quotient map π into a

Riemannian submersion. Finally, given two horizontal vector fields ξ̄, η̄, the pro-
jection on the vertical space of the bracket [ξ̄, η̄] is:

Pv
Y [ξ̄, η̄] = Y T−1

Y �Y

(
2
(
η̄�

Y ξ̄Y − ξ̄�
Y η̄Y

))
, (1)

with T−1
Y �Y

(Ω) the unique solution X to the Sylvester equation Y �Y X +
XY �Y = Ω, see [MA18, Proposition 2.37].

3 Curvature of the Manifold R
n×p
∗ /Op

In this section, we obtain expressions for the Riemannian curvature tensor and
the sectional curvature of the manifold R

n×p
∗ /Op. We rely on the fact that the

operator π : Rn×p
∗ → R

n×p
∗ /Op is a Riemannian submersion.

Theorem 1. Let ξ, η, α and β be vector fields on R
n×p
∗ /Op, and let ξ̄, η̄, ᾱ and

β̄ be their horizontal lifts. The Riemannian curvature tensor at π(Y ) satisfies:

〈R
R

n×p
∗ /Op

(ξπ(Y ), ηπ(Y ))απ(Y ), βπ(Y )〉 =
1
2
〈Pv

Y [ξ̄, η̄],Pv
Y [ᾱ, β̄]〉

−1
4

(
〈Pv

Y [η̄, ᾱ],Pv
Y [ξ̄, β̄]〉 − 〈Pv

Y [ξ̄, ᾱ],Pv
Y [η̄, β̄]〉

)
,

with Pv
Y [ξ̄, η̄] given by (1).

Proof. According to [O’N66, Thm 2], there holds:

〈R
R

n×p
∗ /Op

(ξπ(Y ), ηπ(Y ))απ(Y ), βπ(Y )〉 = 〈R
R

n×p
∗

(ξY , ηY )αY , βY 〉

+
1
2
〈Pv

Y [ξ̄, η̄],Pv
Y [ᾱ, β̄]〉 − 1

4
〈Pv

Y [η̄, ᾱ],Pv
Y [ξ̄, β̄]〉 − 1

4
〈Pv

Y [ᾱ, ξ̄],Pv
Y [η̄, β̄]〉.

Since R
n×p
∗ is an open subset of R

n×p, its Riemannian curvature tensor
is zero [O’N83, p. 79], hence the first term of the previous expression
vanishes. ��

The sectional curvature is then obtained as a corollary, see [O’N66, Corollary. 1,
Eq. 3]. In the case n = p, these results are already given in [Tak11].

Corollary 1. Let ξπ(Y ), ηπ(Y ) be (independent) tangent vectors on R
n×p
∗ /Op,

with horizontal lifts ξ̄Y , η̄Y . The sectional curvature at π(Y ) in R
n×p
∗ /Op is

K
R

n×p
∗ /Op

(ξπ(Y ), ηπ(Y )) =
3
∥∥Y T−1

Y �Y

(
η̄�

Y ξ̄Y − ξ̄�
Y η̄Y

)∥∥2

F

〈ξ̄Y , ξ̄Y 〉〈η̄Y , η̄Y 〉 − 〈ξ̄Y , η̄Y 〉2 . (2)

The rest of the paper aims at computing the maximal and minimal sectional
curvatures at an arbitrary π(Y ) ∈ R

n×p
∗ /Op.
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4 Extreme Values of the Sectional Curvature

We first introduce two lemmas. The first one solves for X a Sylvester equation
of the form Y �Y X + XY �Y = Ω, a step required to evaluate (2).

Lemma 1. Let Y ∈ R
n×p
∗ , with Y =: UΣV � a singular value decomposition,

with singular values σ1 ≥ · · · ≥ σp > 0, and let Ω ∈ R
p×p. The solution X to

the Sylvester equation Y �Y X + XY �Y = Ω is

X = V X̃V �, with X̃ ∈ R
p×p, X̃ij :=

Ω̃ij

(σ2
i + σ2

j )
, Ω̃ := V �ΩV. (3)

Moreover, if the matrix Ω is skew-symmetric, then so are X̃ and X.

Proof. We sketch the proof, presented in [BR97, Sect. 10], for the reader’s con-
venience. Since Y �Y = V Σ2V �, the Sylvester equation becomes: V Σ2V �X +
XV Σ2V � = Ω. Applying a similarity associated with V to both sides of the
equation yields: Σ2V �XV + V �XV Σ2 = V �ΩV. Now, defining X̃ := V �XV
and Ω̃ := V �ΩV , the equation becomes: Σ2X̃ + X̃Σ2 = Ω̃, which implies that
(σ2

i + σ2
j )X̃ij = Ω̃ij . �

The second lemma provides an upper bound on the Frobenius norm of the
skew part of the product of two matrices with unit norm. We will need this
result when computing the maximal sectional curvature of R

n×p
∗ /Op at some

point π(Y ) ∈ R
n×p
∗ /Op.

Lemma 2. Let A,B ∈ R
n×p, such that ‖A‖F = ‖B‖F = 1. Then,

∥∥A�B − B�A
∥∥2

F
≤ 2.

Proof. Let us consider the optimization problem:

max
‖A‖F=‖B‖F=1

∥∥A�B − B�A
∥∥2

F
.

Observe that, by symmetry of the problem, the Lagrange multipliers associated
with the constraints ‖A‖F = 1 and ‖B‖F = 1 are equal, and that the linear
independence constraint qualification (LICQ) condition holds. Hence the KKT
first-order necessary optimality conditions are:

⎧⎨
⎩

2B(B�A − A�B) − λA = 0 (a)
−2A(B�A − A�B) − λB = 0 (b)

‖A‖F = ‖B‖F = 1. (c)
(4)

Premultiplying 4a by A�, 4b by B�, and taking the sum of the two yields:

λ(A�A + B�B) = 2(A�B − B�A)(B�A − A�B).
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Taking the trace of both sides of the equation, we obtain:

λ = tr
(
(B�A − A�B)�(B�A − A�B)

)
=

∥∥A�B − B�A
∥∥2

F
.

We will show that λ ≤ 2, which will conclude the proof. If B = 0, then the claim
obviously holds, hence we assume from now on that B �= 0. Let B = UΣV �

be a compact singular value decomposition, where U ∈ R
n×r, Σ ∈ R

r×r and
V ∈ R

p×r, with r the rank of B and U�U = V �V = Ir. Equation (4) becomes:

2UΣ2U�A − 2UΣV �A�UΣV � = λA.

Left- and right-multiplying this equation by respectively U� and V yields:

2Σ2U�AV − 2ΣV �A�UΣ = λU�AV.

Now, defining Ã := ΣU�AV , we get:

2ΣÃ − 2ΣÃ� = λΣ−1Ã,

which can be written as:

2Σ2Ã − 2Σ2Ã� = λÃ. (5)

Assume first that Ã �= 0. Then, if r = 1, λ = 0. If r ≥ 2, the coefficients Ãij ,
i, j = 1, . . . , r of the matrix Ã satisfy the equation:

λ(Ãij − Ãji) = 2(σ2
i + σ2

j )(Ãij − Ãji).

If for some i, j ∈ {1, . . . , r}, Ãij �= Ãji there holds λ = 2(σ2
i +σ2

j ) ≤ 2 ‖B‖2F = 2.
Otherwise (i.e., Ã �= 0 is symmetric), λ = 0 by (5).

There remains to check the value of λ when Ã = 0. It can be readily checked
that the matrix [V, V⊥]�B�A[V, V⊥] is of the form:

[V, V⊥]�B�A[V, V⊥] =
[

Ã ΣU�AV⊥
0p−r×r 0p−r×p−r

]
.

Since Ã = 0, the matrix is strictly upper triangular. There holds
∥∥B�A − A�B

∥∥2

F
=

∥∥[V, V⊥]�(B�A − A�B)[V, V⊥]
∥∥2

F
= 2

∥∥ΣU�AV⊥
∥∥2

F
≤ 2,

which concludes the proof. �

We are now able to compute the minimum and maximum values of the sec-
tional curvature of Rn×p

∗ /Op at some point π(Y ). Observe that, since the sec-
tional curvature is associated to a tangent plane, it does not depend on the
choice of the vectors ξπ(Y ), ηπ(Y ) that span this tangent plane. As a result, we
make the assumption in the rest of the document that the horizontal lifts ξ̄Y

and η̄Y are orthonormal vectors, i.e., 〈ξ̄Y , ξ̄Y 〉 = 〈η̄Y , η̄Y 〉 = 1 and 〈ξ̄Y , η̄Y 〉 = 0.
This makes the denominator of (2) equal to one.
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Proposition 1. The minimum of the sectional curvature at π(Y ) of the quotient
manifold R

n×p
∗ /Op is always zero. If p = 1, the sectional curvature is equal to

zero.

Proof. By (2), the sectional curvature associated with a pair of orthonormal
tangent vectors ξπ(Y ), ηπ(Y ) is defined as:

K
R

n×p
∗ /Op

(ξπ(Y ), ηπ(Y )) = 3
∥∥Y T−1

Y �Y
(η̄�

Y ξ̄Y − ξ̄�
Y η̄Y )

∥∥2

F
.

Using Lemma 1, with Y = UΣV � a singular value decomposition and Ω̃ :=
V �(η̄�

Y ξ̄Y − ξ̄�
Y η̄Y )V , there holds:

K
R

n×p
∗ /Op

(ξπ(Y ), ηπ(Y )) = 3
∥∥∥(

UΣV �) (
V X̃V �

)∥∥∥2

F
, X̃ij =

Ω̃ij

(σ2
i + σ2

j )
.

Due to the unitarily invariance of the Frobenius norm, there holds:

K
R

n×p
∗ /Op

(ξπ(Y ), ηπ(Y )) = 3
∥∥∥ΣX̃

∥∥∥2

F
= 3

p∑
i,j=1

σ2
i Ω̃2

ij

(σ2
i + σ2

j )2
. (6)

This is zero if and only if Ω̃ is zero. If p = 1, the sectional curvature is always zero
since η̄�

Y ξ̄Y ∈ R. If p ≥ 2, take for example ξ̄Y = Y (Y �Y )−1S with S = S�, and
η̄Y = Y ‖Y ‖−1

F . Then, Ω̃ = 0, and if the matrix S is chosen such that
∥∥ξ̄Y

∥∥
F

= 1
and Diag (S) = 0, the two vectors ξ̄Y and η̄Y are orthonormal. �

The following result characterizes the maximum of the sectional curvature of
R

n×p
∗ /Op at some point π(Y ).

Proposition 2. Let Y ∈ R
n×p
∗ and Y = UΣV � a singular value decomposition,

with singular values σ1 ≥ σ2 ≥ · · · ≥ σp > 0. If p = 1, the sectional curvature
is always zero. If p ≥ 2, the maximum of the sectional curvature at π(Y ) of the
quotient Rn×p

∗ /Op is:

K
R

n×p
∗ /Op

(ξ∗
π(Y ), η

∗
π(Y )) =

3
σ2

p−1 + σ2
p

. (7)

This value is reached for, e.g., ξ∗
π(Y ) = Dπ(Y )[ξ̄∗

Y ] and η∗
π(Y ) = Dπ(Y )[η̄∗

Y ], with
ξ̄∗
Y = Y (Y �Y )−1Sξ and η̄∗

Y = Y (Y �Y )−1Sη, where

Sξ :=
V (Ep−1,p−1 − Ep,p)V �√

σ−2
p−1 + σ−2

p

Sη :=
V (Ep−1,p + Ep,p−1)V �√

σ−2
p−1 + σ−2

p

,

with Eij the matrix whose elements are zero excepted E(i, j) = 1.
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Proof. Similarly as in the proof of Proposition 1, let us write:

K
R

n×p
∗ /Op

(ξπ(Y ), ηπ(Y )) = 3
p∑

i,j=1

σ2
i Ω̃2

ij

(σ2
i + σ2

j )2
= 3

∑
i>j

Ω̃2
ij

(σ2
i + σ2

j )
, (8)

where the last inequality comes from the fact that Ω̃ := V �(η̄�
Y ξ̄Y − ξ̄�

Y η̄Y )V is
skew-symmetric. According to Lemma 2, the squared Frobenius norm of Ω̃ is
upper bounded by 2:

∥∥∥Ω̃
∥∥∥2

F
=

∥∥V �(η̄�
Y ξ̄Y − ξ̄�

Y η̄Y )V
∥∥2

F
=

∥∥η̄�
Y ξ̄Y − ξ̄�

Y η̄Y

∥∥2

F
≤ 2.

Therefore:

K
R

n×p
∗ /Op

(ξπ(Y ), ηπ(Y )) ≤
3
∑

i>j Ω̃2
ij

(σ2
p−1 + σ2

p)
≤ 3‖Ω̃‖2F

2(σ2
p−1 + σ2

p)
≤ 3

σ2
p−1 + σ2

p

.

To finish the proof, we show that this bound is reached for the vectors ξ̄∗
Y

and η̄∗
Y given in the proposition. It can be readily checked that ξ̄∗

Y and η̄∗
Y are

orthogonal and have unit norm. There remains to compute Ω̃∗:

η̄∗�
Y ξ̄∗

Y = Sη(Y �Y )−1Sξ =
V (Ep−1,p + Ep,p−1)Σ−2(Ep−1,p−1 − Ep,p)V �

σ−2
p−1 + σ−2

p

,

which simply becomes

η̄∗�
Y ξ̄∗

Y =
V (σ−2

p−1Ep,p−1 − σ−2
p Ep−1,p)V �

σ−2
p−1 + σ−2

p

.

Therefore, Ω̃∗ is:

Ω̃∗ =
(σ−2

p−1 + σ−2
p )Ep,p−1 − (σ−2

p−1 + σ−2
p )Ep−1,p

σ−2
p−1 + σ−2

p

= (Ep,p−1 − Ep−1,p),

such that
K

R
n×p
∗ /Op

(ξ∗
π(Y ), η

∗
π(Y )) =

3
σ2

p−1 + σ2
p

. ��

5 Conclusion

We have computed the curvature of the manifold S+(p, n) endowed with the
Bures–Wasserstein metric. We have provided expressions for the Riemannian
curvature tensor and the sectional curvature of the manifold. We have shown
that in the case p = 1 the sectional curvature is always zero. If p ≥ 2, the
minimum over the tangent planes of the sectional curvature is zero, while the
maximum goes to infinity as the pth and p−1th eigenvalues of the PSD matrix go
simultaneously to zero. Further works might aim at computing the curvature of
S+(p, n) endowed with the other metrics proposed in the literature (see [VAV09,
BS09,VAV13]), which to our knowledge are still unknown.
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Abstract. Classification of Symmetric Positive Definite (SPD) matrices
is gaining momentum in a variety machine learning application fields. In
this work we propose a Python library which implements neural networks
on SPD matrices, based on the popular deep learning framework Pytorch.

Keywords: SPD matrix · Covariance · Second-order neural network ·
Riemannian machine learning

1 Introduction

Information geometry-based machine learning has recently been rapidly emerg-
ing in a broad spectrum of learning scenarios, and deep learning has been no
exception. Notably, works such as [13–15] introduce neural networks respectively
operating on Lie groups, Grassmann spaces, and SPD matrices. The natural rep-
resentation of any temporally or spatially structured signal as a Gaussian process
allows for a near universal possible interpretation of the signal as its temporal
or spatial covariance, which is an SPD matrix, i.e. which belongs to the SPD
Riemannian manifold, which we note S+

∗ . Previous works make use of the SPD
representation in other contexts than deep learning: for instance, Riemannian
metric learning on S+

∗ is developed in [24], while [23] review kernel methods
on S+

∗ , with a primary applicative focus on electro-encephalogram/cardiogram
(EEG/ECG) classification. In a similar vein, [2,4] extend barycenter-based clas-
sification methods to the SPD Riemannian framework. On the other hand, [9]
propose the usage of SPD matrices as a region descriptor in images, with applica-
tions in image segmentation. The work in [17] pushed the idea further by allowing
the region covariance descriptor to be appended to a deep neural representation
of an image, and by doing so introduced the first hints of automatic backpropa-
gation in a Riemannian setting. Finally, the older theoretical developments in [7]
notably allowed the extension of optimization methods to manifold-valued neu-
ral networks as later utilized in [8,10,13]. Even more recent works, namely [1,25]
have appended SPD neural networks to classical, Euclidean ones, by consider-
ing the second-order moments of the learnt feature representations as a suitable
representation for the data.
c© Springer Nature Switzerland AG 2019
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In this environment of popularization of deep learning on SPD matrices, we
propose torchspdnet, a Python library featuring many relevant modules necessary
to build a neural network operating on SPD matrices. We do so in the popular
PyTorch framework [21]. While other libraries were proposed for general learn-
ing on manifolds (Geomstats [20]), deep learning on manifolds (McTorch [19]),
optimization on manifolds (Manopt [5]) and SPD matrix manipulation (PyRie-
mann [3]), ours focusses exclusively on deep learning architectures for SPD matri-
ces, providing seamless integration with any PyTorch development framework.
In the following section we describe the core components of a SPD neural net-
work, which we may call SPDNet. The third section deals with the optimization
of a manifold-valued network. Finally, we show some use cases.

2 Second Order Networks

Here we describe the architecture of an SPDNet. We begin with the core building
blocks, then show how to build a network using these blocks in various scenarios.
Following the logic of most modern deep learning frameworks including PyTorch,
the core building blocks, or layers of the network, are implemented as individual
modules.

2.1 SPD Layers

Similarly to a classical neural network, an SPDNet aims at building a hierarchical
sequence of more compact and discriminative manifolds as illustrated in Fig. 1.
Three main layers are introduced in [13], described below.

Fig. 1. Illustration of a generic SPD neural network. Successive bilinear layers followed
by activations build a feature SPD manifold, which is then transformed to a Euclidean
space to allow for classification.

BiMap. The bilinear mapping (BiMap) layer transforms an input matrix X(l−1)

of size n(l−1) at layer (l−1) into an SPD matrix X(l) of size n(l) at layer (l) using
a basis change matrix W (l), required to be full-rank, which in turn constrains
n(l) ≤ n(l−1). In practice W (l) is in fact constrained to be semi-orthogonal:

X(l) = W (l)T X(l−1)W (l) with W (l) ∈ O(n(l−1), n(l)) (1)
In the equation above, O(n(l−1), n(l)) is the manifold of semi-orthogonal rect-

angular matrices, also called Stiefel manifold, and X(l−1) = U (l−1)Σ(l−1)U (l−1)T

designates the eigenvalue decomposition of X(l−1)
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ReEig. The transformation layer is followed by an activation, in this case a
rectified eigenvalues (ReEig) layer:

X(l) = U (l−1) max(Σ(l−1), εIn(l−1))U (l−1)T with P (l−1) = U (l−1)Σ(l−1)U (l−1)T

(2)
The ReEig layer also makes use of an eigenvalue decomposition as it operates

directly on the eigenvalues, with ε being a fixed threshold set to a default value
of 1e − 4.

LogEig. After a succession of transformations and activations, the final feature
manifold is then transformed via a logarithmic mapping to a Euclidean space
(LogEig layer) to perform the actual classification:

X(l) = vec( U (l) log(Σ(l))U (l)T ) , with P (l) = U (l)Σ(l)U (l)T (3)

The LogEig layer is justified in the Log-Euclidian Metric (LEM) framework,
independently introduced in [11,22], which shows a correspondence from the
manifold S+

∗ to the Euclidean space S+ of symmetric matrices through the
matrix logarithm. The vec operator denotes matrix vectorization.

3 Training

The main difficulties of learning an SPDNet lie both in the backpropagation
through structured Riemannian functions [6,16], and in the manifold-constrained
optimization [7].

3.1 Structured Derivatives

Manifold-valued functions, such as the LogEig and ReEig layers, require a gen-
eralization of the chain rule, key to the backpropagation algorithm. Both these
layers can be represented in a unified fashion as a non-linear function f acting
directly on the eigenvalues of the input matrix X(l−1) = U (l−1)Σ(l−1)U (l−1)T .
Then, the backpropagation goes as follows: given the succeeding gradient ∂L(l)

∂X(l) ,

the output gradient ∂L(l−1)

∂X(l−1) is:

∂L(l−1)

∂X(l−1)
= U

(
L � (UT (

∂L(l)

∂X(l)
)U)

)
UT (4)

In the previous equation, the Loewner matrix of finite differences L is
defined as:

Lij =

{
f(σi)−f(σj)

σi−σj
if σi �= σj

f ′(σi) otherwise
(5)
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3.2 Constrained Optimization

In the specific case of the BiMap layer, the transformation matrix W is con-
strained to the Stiefel manifold. The Euclidean gradient ∂L

∂G of the loss function
L does not respect the geometry of the manifold: as such the gradient descent
is ill-defined. ∂L

∂G . The correct Riemannian gradient is obtained by tangent pro-
jection ΠTW on the manifold at W . The update is then obtained by computing
the geodesic on the manifold from W towards the Riemannian gradient, also
called exponential mapping ExpW (X). We illustrate this process in Fig. 2. Both
the tangent projection and geodsic are known on the Stiefel manifold [7]: ction
ExpW have a closed form [7]:

ΠTW (X) = X − WWT X

ExpW (X) = Orth(W + X)
(6)

The operator Orth represents the orthonormalization of a free family of vec-
tors, i.e. the Q matrix in the QR decomposition.

Fig. 2. Illustration of manifold-constrained gradient update. The Euclidean gradient
is projected to the tangent space, then mapped to the manifold.

3.3 Summary

The library we propose seamlessly integrates orthogonally-constrained optimiza-
tion on S+

∗ : the code for setting up the learning of a model in PyTorch is only
modified in the usage of the MixOptimizer class, which mixes a conventional
optimizer with the Riemannian ones:
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import torch . nn as nn
from mixoptimizer import MixOptimizer
. . .
model = . . . #de f i n e the model
. . .
l=nn . CrossEntropyLoss ( )
opt=MixOptimizer ( model . parameters ( ) , l r=l r ,momentum=0.9 ,
weight decay=5e−4) #de f i n e the l o s s f unc t i on and mixed
opt imize r
. . .
l . backward ( )
opt . s tep ( ) #in the t r a i n i n g loop , compute g r ad i en t s and
update weights as u sua l l y done

4 Use Cases

Here we show how to use the library in practice. Following the PyTorch logic, ele-
mentary functions are defined in torchspdnet.functional and high-level modules
in torchspdnet.nn.

4.1 Basic SPDNet Model

Here we give the most basic use case scenario: given input covariance data of
size 20 × 20, we build an SPDNet which reduces its size to 15 then 10 through
two BiMaps and a ReEig activation, followed by the LogEig and vectorization.
Finally, a standard fully-connected layer allows for classification over the 3 classes

import torch . nn as nn
import torchspdnet . nn as nn spd

model=nn . Sequent i a l (
nn spd . BiMap(1 , 1 , 20 , 15 ) ,
nn spd . ReEig ( ) ,
nn spd . BiMap(1 , 1 , 15 , 10 ) ,
nn spd . LogEig ( ) ,
nn spd . Vec to r i z e ( ) ,
nn . Linear (10∗∗2 ,3)

)

Note that our implementation of the BiMap module supports an arbitrary
number of channels, represented by the additional parameters all set to 1 in this
example.
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4.2 First-Order and Second-Order Combined

In a more complex example, an SPDNet acts upon the features maps of a convo-
lutional network. For an image recognition task, these features may come from a
pre-trained deep network but nothing keeps from training the whole network in
an end-to-end fashion or to fine-tune the parameters. Here we describe the com-
bination of a pre-trained ResNet-18 [12] on the CIFAR10 [18] challenge and of
SPDNet layers. We call such a model a second-order neural network (SOCNN).

import torch . nn as nn
import torchspdnet . nn as nn spd
from r e sn e t import ResNet18

class SOCNN(nn . Module ) :
def i n i t ( s e l f ) :

super ( c l a s s , s e l f ) . i n i t ( )

s e l f . model fo=ResNet18 ( ) #f i r s t −order model
s e l f . model fo . l o a d s t a t e d i c t ( th . load
( ’ p r e t r a ined /ResNet18 . pth ’ ) [ ’ s t a t e d i c t ’ ] )

s e l f . connect ion=nn . Conv2d (512 ,256 , k e r n e l s i z e
=(1 ,1)) #convo l u t i ona l connect ion

s e l f . model so=nn . Sequent i a l ( #second−order model
nn spd . BiMap(1 ,1 , 256 ,128 ) ,
nn spd . ReEig ( ) ,
nn spd . BiMap(1 , 1 , 128 , 64 ) ,

) . to ( s e l f . d e v i c e s o )

s e l f . dense=nn . Sequent i a l (
nn . Linear (64∗∗2 ,1024) ,
nn . Linear (1024 ,10)

)

def forward ( s e l f , x ) :
x f o=s e l f . model fo ( x )
x co=s e l f . connect ion ( x f o )
x sym=nn spd . CovPool ( ) ( x co . view
( x co . shape [ 0 ] , x co . shape [1 ] , −1) )

x so=s e l f . model so ( x sym )
x vec=nn spd . LogEig ( ) ( x so ) . view
( x so . shape [ 0 ] , x so . shape [ −1]∗∗2)

y=s e l f . dense ( x vec )
return y



Second-Order Networks in PyTorch 757

5 Conclusion

We have proposed a PyTorch library for deep learning on SPD matrices. We
hope its versatility and natural integration in any PyTorch workflow will allow
future projects to more readily make use of the potential of exploiting covariance
structure in data at any level.
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Abstract. In computational anatomy, the statistical analysis of tempo-
ral deformations and inter-subject variability relies on shape registration.
However, the numerical integration and optimization required in diffeo-
morphic registration often lead to important numerical errors. In many
cases, it is well known that the error can be drastically reduced in the
presence of a symmetry. In this work, the leading idea is to approxi-
mate the space of deformations and images with a possibly non-metric
symmetric space structure using an involution, with the aim to perform
parallel transport. Through basic properties of symmetries, we investi-
gate how the implementations of a midpoint and the involution compare
with the ones of the Riemannian exponential and logarithm on diffeo-
morphisms and propose a modification of these maps using registration
errors. This leads us to identify transvections, the composition of two
symmetries, as a mean to measure how far from symmetric the underly-
ing structure is. We test our method on a set of 138 cardiac shapes and
demonstrate improved numerical consistency in the Pole Ladder scheme.

Keywords: Shape registration · Parallel transport · Symmetric spaces

1 Introduction

Computational anatomy aims at modeling the temporal evolution and cross-
sectional variability of anatomical shapes. The deformations between shapes are
obtainedbyapplyingnon-rigid registrationalgorithmsthat seek the smallest trans-
formation - in a sense that will be defined precisely - of the ambient space to match
two shapes. In the diffeomorphic registration setting, the deformations aremodeled
by diffeomorphisms, that provide invertible and folding-free transformations.

In the Large Deformation Diffeomorphic Metric Mapping (LDDMM) frame-
work, the space of diffeomorphisms is endowed with a right invariant metric
and deformations of interest are obtained by geodesic flows from the identity
transformation. They are parameterized by their initial velocity fields, which are
tangent vectors at the identity deformation, defined by initial control points and
dual momenta. A transformation is then computed by integration of differential
equations. Registration is performed by solving an optimization problem on the
initial momenta and control points with a gradient descent. These numerical
c© Springer Nature Switzerland AG 2019
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schemes efficiently implement an exponential and logarithm map on a subspace
of diffeomorphisms.

However in practice, the optimization problem is relaxed to enforce smooth
deformations and results in inexact matching. Therefore we can think of the
exponential map as not going “far enough”. In this work we introduce a modified
exponential map that accounts for a residual error due to registration, indifferent
to the choice of the regularization parameter.

The choice of the metric and regularization parameter affects the geometric
structure of the space of deformations under consideration. Many convergence
results depend on the curvature of this space, e.g. [9], and especially on its
covariant derivative. This gradient being null in locally symmetric spaces, they
form a very convenient setting to perform statistics on shapes. In order to assess
how far from symmetric our structure is, it would therefore be valuable to develop
a procedure to measure this gradient. In this paper we build on a specific parallel
transport scheme.

Fig. 1. Pole Ladder

In the statistical analysis of temporal deforma-
tions, parallel transport along geodesics is commonly
used to perform inter-subject normalization, that is
the vector transport of velocity fields from each sub-
ject’s space to a common atlas’ space. An approxi-
mation based on Jacobi fields was proposed in [7,11].
A numerical implementation named Pole Ladder
(PL) was proposed in [5] and relies only on the com-
putation of exponential and logarithm maps. Follow-
ing the Shild’s ladder, it consists in the construction of geodesic parallelograms.
The progression between two shapes S and S′ is transported to T by:

• first computing a “midpoint” M on the geodesic between S and T . It is seen
as the diagonal of the geodesic parallelogram;

• then extending the geodesic from S′ to M by the same length to obtain T ′′;
• similarly extending the geodesic from T ′′ to T to obtain the parallel defor-

mation of the template T ;

See Fig. 1 for a schematic representation.
For large deformations that typically arise in inter-subject registration, this

procedure is usually iterated. We therefore expect numerical errors to grow linearly
in the number of steps, and lose crucial numerical accuracy. The accuracy of this
scheme was analyzed in [9] and shown to be a third order scheme in general, and
exact in symmetric spaces where it is equivalent to a single transvection, that is, a
composition of two symmetries, in our case symmetries with respect to M and T .

In many cases, it is well known that numerical errors can be drastically
reduced in the presence of a symmetry. This is for instance the case to diago-
nalize a symmetric matrix versus an arbitrary one. Using the Stationary Veloc-
ity Fields (SVF) framework for registration, a symmetric variant of Pole Lad-
der built on a Lie Group intrinsic symmetric structure was proposed in [3].
This procedure is recalled in Sect. 2.2. In this work, we build on this idea,
but rely on LDDMM to implement a more general involution that accounts for
the registration residual. This elementary algorithmic component constructs the
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symmetric shape of an original shape with respect to another one. It is presented
in Sect. 2.3. In Sect. 2.4, we introduce the basic properties that symmetries must
verify in an affine symmetric space and discuss whether these are fulfilled by our
implementation. From a theoretical perspective, deviations from these proper-
ties are due to a non zero covariant derivative of the curvature tensor with the
LDDMM metric. Conversely, we may interpret transvection errors as estimates
of the numerical curvature gradient that encompass all the approximations due
to the implementation. The numerical experiments of Sect. 3 show that there
is an optimal regularisation parameter for which the space of deformations can
best be approximated by a symmetric space.

The paper is organised as follows: in Sect. 2.1, we recall the LDDMM frame-
work following [2] and in Sect. 2.2 the Pole Ladder procedure. We then introduce in
Sects. 2.3and2.4 themaincontributionsof thepaper,namelyaccounting for residu-
als, defining symmetries and their properties: centrality, involutivity and transvec-
tivity. In Sect. 3 we present the numerical experiments and comment on the results.

2 Background and Method

2.1 The LDDMM Framework

In this work we consider shapes represented by 3D meshes. However, the method-
ology seamlessly applies to images. In order to define a practical finite dimen-
sional parameterization of a subspace of diffeomorphisms G acting on the ambi-
ent space Rd, we consider time-varying velocity fields vt(x) =

∑Nc

k=1 K(x, c
(t)
k )μ(t)

k

obtained by convolution of a Gaussian kernel K(x, y) = exp(−‖x−y‖2

σ2 ) over Nc

control points c(t) = [c(t)k ]k and momenta μ(t) = [μ(t)
k ]k.

The set of such fields forms a pre-Hilbert space with scalar product between
v =

∑
k K(·, ck)μk and v′ =

∑
k K(·, c′

k)μ′
k defined by

<v, v′>H =
∑

i

∑
j K(ci, c

′
j)μ

T
i μ′

j . (1)

Diffeomorphisms are then defined as flows of velocity fields from φ0 = Id.
This amounts to integrating the ordinary differential equation (ODE) ∂φt(·) =
vt[φt(·)] between 0 and 1. The scalar product on velocity fields induces a right-
invariant Riemannian metric on the obtained subspace of diffeomorphisms, and
geodesics of this metric are parameterized by control points and momenta that
satisfy the following Hamiltonian equations:

{
ċk

(t) =
∑

j K(c(t)k , c
(t)
j )μ(t)

j

μ̇(t) = −∑
j ∇1K(c(t)k , c

(t)
j )μ(t)T

k μ
(t)
j

(2)

φt and vt are thus uniquely determined by their initial control points μ, this depen-
dence will be explicitly written φc,μ

t and vc,μ
t . In practice the interval [0, 1] is dis-

cretized with n time steps and the ODE is solved with an iterative Euler forward
or Runge-Kutta 2 method. This implements an exponential map at identity. The
registration problem between a template shape T and a target mesh S optimizes
the following criterion over initial control points and momenta c, μ:
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C(c, μ) = ‖S − φc,μ
1 (T )‖22 + α2 · ‖vc,μ

0 ‖2H . (3)

For simplicity, we measure the distance between shapes by the L2 distance
between nodes of the meshes. ‖ · ‖H is the norm defined by the scalar prod-
uct of Eq. 1, which is actually the metric on G. The resulting v0 is a logarithm
at identity of φ1. In fact the metric is scaled by a factor α, and this impacts the
geometry of the underlying space as will be demonstrated. It allows to smoothly
interpolate between solutions that belong to two paradigms:

• α → 0: exact matching between shapes;
• α → ∞: point distribution models (PDM), no deformation.

2.2 Symmetric Pole Ladder for Parallel Transport

In the context of computational anatomy, the aforementioned registration frame-
work is used to represent a subject-specific temporal deformation between shapes
S and S′, and to transport this deformation to a common atlas or template T along
the geodesic segment [S, T ]. The anatomical shapes aremodeled as points in aman-
ifoldV under the action of the space of diffeomorphismsGdescribed above.We sup-
pose here that this manifold is equipped with an affine connection, which defines
parallel transport and the Exp map. Locally it further defines the Log map.

Algorithm 1 presents a symmetric variant of Pole Ladder [5] introduced in
[3] to approximately perform parallel transport in V.

Algorithm 1. Mid-point symmetric Pole Ladder transport of the geodesic seg-
ment [S, S′] along the geodesic [S, T ]
- Compute the midpoint M = ExpT ( 1

2
LogT (S)) on the inter-subject geodesic;

- Compute the symmetric point T ′′ = ExpM (−LogM (S′)) of S′ with respect to M ;
- Compute the symmetric point T ′ = ExpT (−LogT (T ′′)) of T ′′ with respect to T , and
return the geodesic segment [T, T ′].

A Taylor expansion at the midpoint M of the error between the vector trans-
ported by Pole Ladder and exact parallel transport of the vector uS = LogS(S′)
is derived in [9]. We denote by u = ΠM

S uS the exact transport to M , and u′ =
ΠM

T LogT (T ′) where T ′ is obtained by Pole Ladder. Let also v = LogM (T ). Then

u′ − u =
1
12

((∇vR)(u, v)(5u − 2v) + (∇uR)(u, v)(v − 2u)) + O(‖v + u‖5). (4)

In fact this scheme is exact in an affine locally symmetric space, where ∇R = 0.
In this case, using the local symmetries sX at point X, we have T ′ = sT ◦sM (S′)
meaning that Pole Ladder is equivalent to a transvection. As local symmetries
are affine mappings, the following diagrams commute:

TSV TT V

TMV TMV
ΠM

S

(dsM )S

ΠM
T

−Id

TSV TT V

V V
ExpS

(dsM )S

ExpT

sM
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Thus, ΠM
T ◦ (dsM )S = −ΠM

S [10, Prop. 4.3]. So with the previous notations,
(dsM )SuS = −ΠT

Mu and (dsM )SuS = LogT (T”) = −ΠT
Mu′ yielding u′ = u.

2.3 Accounting for Residuals to Improve Centrality and Symmetry

Fig. 2. Midpo-
int with residu-
als

In practice the registration is never exact due to the regulariza-
tion. Thus, we propose to decompose the space of shapes into
a deformation part encoding the orbit of the template, and a
Euclidean space of residual displacement fields

S = φ1(T ) + δ, (5)

where δ is a displacement field between corresponding points of
the two meshes. Of course different possibilities exist to com-
pute the residual, to transport it, and to apply it to different
shapes, but our experiments suggest that this very simple for-
mulation may be sufficient, so that we will not detail other approaches in this
paper. With this decomposition, a midpoint between T and S is defined by
(Fig. 2):

M = φ 1
2
(T ) +

1
2
δ = ExpT

(1
2
LogT (S)

)
+

1
2
δ. (6)

Unfortunately this formulation is not symmetric in T and S, and registering S
on T and shooting from S results in a different midpoint in general. We will
see however that using residuals decreases the distance between the midpoints
obtained with the two initial points.

Fig. 3. Symmetry
with residuals

Similarly, a symmetry is defined by inverting the
geodesics and the residuals (Fig. 3):

sT (S) = ExpT

(
− LogT (S)

)
− δ. (7)

The first desired consistency property which we refer to
as centrality is the compatibility of the midpoint with
the symmetry, namely sM (S) = T . Note that this con-
struction of a central midpoint and a local geodesic sym-
metry is possible in arbitrary affine connection manifolds
for close enough points. However, these symmetries are
affine mappings if and only if the space is locally sym-
metric [10, Prop. 4.2].

2.4 Involutivity and Transvectivity to Measure Curvature Gradient

By construction our symmetry verifies sT (T ) = T for all T ∈ V, and if the
log and exp maps are exact, sT ◦ sT = Id. We will evaluate the exactitude of
this property, called involutivity. Note that in a Lie Group of transformations,
natural symmetries may be defined at φ by ψ �→ φ ◦ψ−1 ◦φ, which, at φ = Id is
in fact the inversion. Involutivity in this case reduces to inverse consistency:
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(ψ−1)−1 = ψ ⇐⇒ ψ ◦ ψ−1 = Id. However, in our framework, both types of
errors are different because the metric exponential differs from the one defined
by the canonical Cartan-Shouten connection, which is the only one compatible
with the group operations.

Finally, in an affine globally symmetric space, symmetries must verify the
following property that we will call transvectivity [10, Prop. 5.3]:

∀M,S ∈ V sM ◦ sS = sT ◦ sM , where T = sM (S). (8)

We want to evaluate the exactitude of this property, and use the deviation to
this ideal case as a proxy to measure the gradient of the curvature of the space
in the directions of interest. At this point the role of α becomes clearer, it allows
to form a continuum of decompositions of the space of diffeomorphisms under
consideration:

• α → 0, δ → 0: the Riemannian space of deformations where the metric is not
compatible with the Cartan-Shouten connection. This space is not symmetric,
which shows in the transvectivity error.

• α → ∞, v0 → 0: the shapes are considered in the ambient space with
Euclidean norm, this space is of course symmetric. This is the PDM
framework.

We saw in Sect. 2.2 that Pole Ladder was doing the transvection sT ◦ sM .
With the same notations and using a Taylor expansion from [9], the deviation
to parallel transport when applying the opposite transvection sM ◦ sS is:

u′′ −u = − 1
12

((∇vR)(u, v)(5u + v) + (∇uR)(u, v)(v + 2u))+O(‖v +u‖5). (9)

Thus when measuring the transvectivity error ‖sM ◦ sS(S′) − sT ◦ sM (S′)‖2, we
in fact measure ‖ExpT (ΠT

Mu”) − ExpT (ΠT
Mu′)‖2 where

u′ − u′′ =
1
12

((∇vR)(u, v)(10u − v) − 4(∇uR)(u, v)u) + O(‖v + u‖5). (10)

The transvectivity error thus provides a practical way to measure the gradient
of the curvature of the space even in the absence of any closed-form expression.
This is noticeable in regards to the complexity of the curvature tensor itself in
Mario’s formula [8] and it may lead in the future to new ways of estimating the
curvature and its gradient.

3 Experiments and Application to Cardiac Shapes

In this section we assess the consistency of our numerical implementation of the
symmetry compared to its theoretical properties. We compare the symmetry
with residuals to standard symmetry without residuals (δ = 0) for different
values of the parameter α. We used Deformetrica [1] for all our experiments. We
also compare the parallel transport obtained by Pole Ladder with both types of
symmetry to the one implemented in Deformetrica [6] using the fanning scheme.
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We use a database of cardiac shapes from 138 subjects [3] for which the shapes
at two time-points are available: at end-diastole (S) and at end-systole (S′). We
use a population atlas as template T . Four types of errors are first measured. The
first is the distance between midpoints when shooting from T or from S. The three
others are, where M is the midpoint obtained by shooting from T :

• ‖sM (T ) − S‖2: the centrality error (Fig. 4a)
• ‖sM ◦ sM (S′) − S′‖2: the involutivity error (Fig. 4b)
• ‖sT ◦ sM (S′) − sM ◦ sS(S′)‖2: the transvectivity error (Fig. 4c).

Mean results for extreme values of α are given in Table 1. The average reg-
istration error of T on each subject’s S, as well as the norm of the deformation
and inverse consistency (by registering S on T ) for each regularisation parameter
are also given for reference.

Table 1. Mean errors measured on cardiac shapes, in millimeters

Error type α2 = 0.01 α2 = 1 α2 = 1089

Residual No residual Residual No residual Residual No residual

Centrality 0.36 0.43 0.10 0.50 <0.01 5.76

Involutivity 1.42 1.55 0.33 0.80 <0.01 9.39

Transvectivity 1.98 2.16 0.58 0.62 <0.01 0.16

Reg. error 0.23 0.41 5.61

Reg. norm 42 30 1

Inverse cons. 0.13 0.14 0.10

These results illustrate the two contributions of this paper. Firstly, using
residuals in the symmetry considerably improves the numerical accuracy of the
computation of a midpoint. As we can see on Fig. 5a, the distance between
midpoints computed by shooting from T or from S is reduced when using the
residuals. This error compares well with the inverse consistency error in general
and is even significantly lower for α ≥ 1.

Moreover, this increase in numerical accuracy is also visible on the centrality
and involutivity errors. Indeed, for centrality (Fig. 5b), the error when using
residuals is consistently smaller than without residuals, and this gain becomes

(a) Centrality (b) Involutivity (c) Transvectivity

Fig. 4. The three types of errors measured
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larger as α grows. It is also remarkable that this error is significantly lower
than the registration error for α ≥ 1. The same behavior is observed for the
involutivity on Fig. 5c. This means that for reasonable values of α we obtain
reliable implementations of the midpoint and symmetry.

Secondly, the LDDMM space endowed with the right invariant metric is not
symmetric, and the transvectivity error reflects the covariant derivative of the
curvature. Figure 5d gives further details: pushing registration with a small α
generates larger errors, and there is an optimal α ∈ [1; 2] for which the space
is closest to being symmetric. Using residuals, this error decreases as the space
flattens to a Euclidean space and deformations tend to the identity.

Finally, in order to evaluate the result of symmetric Pole Ladder and compare
it to the fanning scheme, we compute the local area strain (LAS) between end-
diastole and end-systole at every landmark of the mesh. For two corresponding
points mi,m

′
i that belong to ki triangular cells, we compute the mean of the

difference of area of each of these cells between S and S′.

LASS−S′
i =

1
ki

ki∑

j=1

(aj − a′
j)

aj
(11)

(a) Distance between Midpoints (b) Centrality

(c) Involutivity (d) Transvectivity

Fig. 5. The four errors for different values of α2, with and without residuals in the
computation of the midpoint and the symmetries.



Symmetric Shape Analysis with Diffeomorphisms 767

This feature is commonly used by clinicians to characterise the cardiac motion
[4]. Here we use it to test the isometric property of the parallel transport scheme:
we measure the area strain between the original subject’s meshes S and S′, and
compare it to the one measured between the atlas T and the deformed atlas T ′

obtained by the parallel transport algorithm. We report in Fig. 6a the square
root of the sum of squared differences over all landmarks:

ASE2 =
∑

i

(LASS−S′
i − LAST−T ′

i )2 (12)

(a) Local Area Change errors for different values
of α with and without residuals in Pole Ladder,
and with Deformetrica’s fanning scheme.

(b) Area Strain maps

Fig. 6. (b) Area strain maps for one patient computed between S and S’ and repre-
sented on S (top left), and computed between T and T’ and represented on T, where
T’ is obtained with the different methods and α = 1.

As α grows, both the temporal and subject-to-atlas deformations decrease,
thus generating less area changes, which explains the growing errors. Furthermore,
we can see on Fig. 6b that the area strain is dominated by a bending artifact of the
valve sections at the borders. Using residuals reduces this effect in this example.
Although more suitable methods may exist to directly map scalar functions from
one shape to another, these results emphasize the contribution of this paper: using
residuals improves the symmetry and parallel transport with Pole Ladder.

4 Conclusion

We introduced residuals from registration errors to compute midpoints and
symmetries between shapes. This results in improved numerical consistency for
the centrality and involutivity properties. Furthermore the transvectivity error
reflects the curvature of the underlying Riemannian space of deformations, and
allows to estimate how far from symmetric this space is, depending on the regu-
larisation parameter. Performing the same experiments in the framework of SVF
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with a similar implementation would yield very interesting comparison as the
space is naturally symmetric, and accounting for residuals would thus provide
a more consistent method for parallel transport. This gain could be even more
interesting when considering registration between images. Indeed images are not
in the template’s orbit in practice and residuals would encode intensity bias,
which is a key source of error in image registration.
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