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Quality in Unconstrained Environments
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Abstract Taking a ‘selfie’ using a mobile device has become a natural gesture in
everyday life. This simple action has many similarities to face authentication on
a smartphone: positioning the camera, adjusting the pose, choosing the right back-
ground and looking for the best lighting conditions. In the context of face authentica-
tion, most of the standardised processes and best practice for image quality is mainly
focused on passport images and only recently has the attention of research moved to
mobile devices. There is a lack of an agile methodology that adapts the characteris-
tics of facial images taken on smartphone cameras in an unconstrained environment.
The main objective of our study is to improve the performances of facial verification
systems when implemented on smartphones. We asked 53 participants to take a min-
imum of 150 ‘selfies’ suitable for biometric verification on an Android smartphone.
Images were considered from constrained and unconstrained environments, where
users took images both in indoor and outdoor locations, simulating real-life scenar-
ios. We subsequently calculated the quality metrics for each image. To understand
how each quality metric affected the authentication outcome, we obtained biomet-
ric scores from the comparison of each image to a range of images. Our results
describe how each quality metric is affected by the environment variations and user
pose using the biometric scores obtained. Our study is a contribution to improve the
performance and the adaptability of face verification systems to any environmental
conditions, applications and devices.

C. Lunerti (B) · R. Guest
University of Kent, Canterbury CT2 7NT, Kent, UK
e-mail: c.lunerti@kent.ac.uk

R. Guest
e-mail: r.m.guest@kent.ac.uk

R. Blanco-Gonzalo · R. Sanchez-Reillo
University of Carlos III of Madrid, Leganés, Spain
e-mail: rbgonzal@ing.uc3m.es

R. Sanchez-Reillo
e-mail: rsreillo@ing.uc3m.es

© Springer Nature Switzerland AG 2019
A. Rattani et al. (eds.), Selfie Biometrics, Advances in Computer Vision
and Pattern Recognition, https://doi.org/10.1007/978-3-030-26972-2_7

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26972-2_7&domain=pdf
mailto:c.lunerti@kent.ac.uk
mailto:r.m.guest@kent.ac.uk
mailto:rbgonzal@ing.uc3m.es
mailto:rsreillo@ing.uc3m.es
https://doi.org/10.1007/978-3-030-26972-2_7


146 C. Lunerti et al.

7.1 Introduction

Mobile devices have brought a significant change in everyday life. They are ubiqui-
tous both for business and personal tasks including storing sensitive data and infor-
mation; from saving images to a photo gallery to interacting with financial infor-
mation. As such, and given the mobile nature of the devices, data have the risk of
being accessed by unauthorised users. It is therefore of critical importance to secure
mobile devices through appropriate and effective authorisation processes.

Personal identification numbers (PIN) and passwords are two techniques that have
been traditionally used to protect access to a mobile device across a range of mobile
device manufacturers and operating systems (OSs). In 2008, the Android OS also
introduced a personalised graphical pattern system that allows the unlocking of the
device by the connection of at least four dots on a 3 × 3 grid. However, all these
security methods are vulnerable to attacks such as shoulder surfing and latent finger
traces or are easy to replicate or guess [1, 2].

Biometrics has quickly become a viable alternative to traditional methods of
authentication. The use of biometric verification technologies provides many advan-
tages as the authentication is achieved using a personal aspect that users do not need
to remember and that is impossible to lose. Adoption of authentication using face
images as a securitymode began in 2011whenGoogle introduced inAndroid 4.0 ‘Ice
Cream Sandwich’ a face verification system called face unlock. In recent years, the
system has updated and improved. Now called Trusted Face, starting with Android
5.0 ‘Lollipop’, it has been included as part of the smart lock system [3]. In November
2017, Apple Inc. released the iPhone Xwith FaceID, a verification system that works
with a TrueDepth camera system. This technology comprises an infrared camera, a
dot projector and a flood illuminator, with a claim to allow high face verification
performances even in hostile light condition and robust against facial changes like
growing hair and beard [4].

To authenticate on a mobile facial verification system, users need to take a self-
portrait using the front-mounted cameraof thedevice. Since this action corresponds to
the definition of ‘taking a selfie’, it is possible to identify the relationship between the
process of selfie generation and smartphone authentication. However, we can identify
substantial differences between these processes depending on the use context. For
instance, to ensure a successful authentication, the selfie should not be taken with
other people, as this would add additional processing to the system for selecting the
appropriate face to authenticate among the others. Also, the facial expression should
be neutral, to avoid variability on the image.

Despite these differences, it is possible to surmise that the massive popularity
of posting selfies on social media has helped with the acceptability of mobile face
verification. The growth of the use of facial systems on mobile devices has not been
without issues. According to a survey of 383 subjects conducted by De Luca et al.
in 2015, a shift was observed as to the motivations to cause people to abandon
the use of face unlock, primarily from overriding privacy concerns to social com-
patibility. Across the subjects, 29% declared that they stopped using face unlock
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for usability concerns (such as variable performance caused by environmental prob-
lems) and for the feeling of awkwardness in taking a selfie in front of other people for
authentication [5].

The recent acceptance in the social context of taking selfies in public is playing
an essential role in the acceptability of face verification on a smartphone, leading to
the socially acceptable possibility of selfie authentication or selfie banking. In work
presented by Cook [6] in 2017, the authors underline that an increasing number of
users are checking their bank accounts using theirmobile devices, and they arewilling
to use face verification as a biometric over other modalities, such as fingerprint, as
they considered it more reliable and, through liveness detection, more secure.

It is, however, necessary to understand how taking authentication images in
an unconstrained environment influences the quality (and consequently the perfor-
mances) of a verification system. In face verification, most implementation standards
and best practices are focused on the use of facial images in specific scenarios, such
as electronic IDs or passports. Best practice needs to be adapted to the additional
unconstrained environment parameters that the device mobility introduces. As the
user moves the device in an unconstrained manner, both posture and the background
may be subject to significant change. Also, the resolution of a device camera is typ-
ically lower than those used for taking passport images, so the same quality metrics
may not have the same effect in this scenario. In the context of mobile devices,
it is crucial to asses a realistic scenario including the variability of unconstrained
environments.

Our research aims to contribute to the improvement of the performance of facial
verification systems when applied in smartphones. We have analysed how image
quality changes in respect to unconstrained environments and what influence this has
on the biometric match scores.We also have studied how the user and the smartphone
camera introduce variability in the system.

7.2 Biometric Selfies, the Challenges

The ISO/IEC 19794-5:2011 Biometric data interchange formats—Part 5: Face image
data standard [7] provides a series of measures and recommendations to consider
when collecting images for facial verification. The standard includes the acquisition
process, where subjects should be in a frontal position, at a fixed distance from the
camera. Images taken in unconstrained environments are mainly influenced by the
different postures that users present towards a camera that is considerably smaller
in size compared to the single-lens reflex (SLR) system generally used for capturing
passport images.Mobile devices can also bemoved, varying the distance between the
subject and the capturing device, resulting in a variation of light and posture. Some
existing studies [8, 9] have aimed to improve performance across different lighting
conditions and poses of subjects, although the majority focus on video surveillance
recognition or passport image application. In the first case, high-quality equipment
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is usually adopted, and in the second scenario, there is controlled variability in pose
and lighting that limits the application in real-life scenarios.

One approach to enhance sample quality of a biometric system is to provide real-
time feedback to subjects so that they can adjust the device or posture, or they can
provide another sample. In work presented by Abaza et al. [10], the authors analysed
common metrics used to assess the quality and presented an alternative face image
quality measure to predict the matching performance, requesting another sample
in the case where a donated image did not conform to quality requirements. The
method presented by the authors was to filter low-quality images using a proposed
face quality index, resulting in an improvement of the system performance from
60.67 to 69.00% when using a distribution-based algorithm (local binary patterns)
and from 92.33 to 94.67% when using commercial software (PittPatt).

Another approach when dealing with low-quality images is presented by Kocjan
and Saeed [11]. Their methodology consists of determining fiducial face points that
are robust to different light and posture conditions by using Toeplitz matrices. Their
algorithm achieved a 90% success rate when verifying images in unconstrained
environments although this only occurred for a database with less than 30 users.
Future research is focusing on maintaining the success rate while increasing the
database size.

There are few studies explicitly focused onmobile devices.A study on smartphone
and image quality [12] collected 101 subjects’ images of which 22 samples from each
person was captured from two different devices: a Samsung Galaxy S7 and an Apple
iPhone 6 Plus during two sessions. The variation of the light position and pose of the
user were fixed as participants were asked to take two images with a different yaw
posture (head turn to the right or the left) and six more variating their posture with
roll and pitch (head tilt to the right or the left and the back or the front, respectively).
The quality was assessed over the collected database using different schemes, and
the method proposed by the authors resulted in nearly equal or better performances
to the other quality assessment methodologies.

Several databases have been released to assess face verification/identification cov-
ering a series of problems and challenges that this modality needs to overcome
(for example, the ‘Labeled Faces in the Wild’ [13] database of unconstrained facial
images, formed of 13,233 images from 5749 subjects taken in different light condi-
tions and environments). However, there is a lack of a suitable unconstrained envi-
ronment facial image database with samples taken from a smartphone. Available
databases usually focus on a specific environment such as an office or a laboratory
and with controlled movements and posture for the user.

The main contribution of our study is the analysis of selfie biometrics considered
in real-life scenarios where the unconstrained environment introduces variations
in quality, interaction and performances. This work builds on our previous study
[14] where we described the quality variations in constrained and unconstrained
environments considering quality metrics conformant to the standard requirements
for passport images.
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7.3 Data Collection

With the aim of assessing the impact that different types of environments have on
selfies for mobile verification, we carried out an analysis by undertaking our data
collection. We designed a collection process lasting about 30 min repeated across
three time-separated sessions where participants took selfies suitable for verification
on a provided mobile device (a Google Nexus 5). Full local ethics approval was
granted prior to the commencement of our data collection.

During the first session, participants were informed as to the nature of the study
and demographics were recorded. Information was also recorded regarding partici-
pants’ previous experience with biometric systems and biometric authentication on
mobile devices. Following this process, they received an explanation on smartphone
enrolment. Each participant was asked to sit on a chair at a fixed distance from the
camera (2 m) in a roomwith only artificial light and a white background. Six pictures
were taken by a supervisor using a Canon EOS 30D SLR following the specifica-
tion for passport images as described in the standard ISO/IEC 19794-5. Under the
same conditions, they were given the smartphone and were asked to take another
five images by themselves using the front-mounted camera of the Nexus 5 and this
provided data to compare the ideal conditions of enrolment across two different
cameras.

For the remainder of Session 1, and for the following two sessions, a standard
procedure was followed. Participants were required to follow a map of locations
where they were to capture a minimum of 5 verification images. The map differed
across each capture session. Each map contained a total of 10 locations resulting
in a minimum of 150 selfies for each participant. The locations varied: indoors and
outdoors, crowded and less crowded, and were representative of locations where
smartphones are used in everyday life (cafés, car parks, corridors of a building, etc.).

To collect all the images, we used anAndroid app that was developed for this study
which also helped the participants to keep the count of the number of selfies taken
during the session. The only instruction that participants received was to take the
selfies for verification: ideally, they were advised to present a neutral expression and
a frontal pose to the camera, but theywere free tomove as required, assessing lighting
conditions and background that, in their opinion,was ideal to provide their biometrics
for verification. We collected a total of 9728 images from 53 participants of which
only one participant did not complete all three sessions. Gender of participants was
balanced (50.5% F/49.5% M).

7.4 Data Analysis

Based on the research questions that we wished to address, we considered our anal-
ysis according to the diagram shown in Fig. 7.1. The figure shows the contributory
variables that we wanted to investigate, and their relationships are indicated by the
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Fig. 7.1 Diagram of relationships considered in a mobile face verification system

arrows. These relationships can be explored across different types of environment.
The acquisition process in mobile scenarios is not a fixed system. Both the user and
the smartphone can move freely. In the verification process, Facial image quality
and biometric outcome scores receive influence from the user interaction and the
capturing sensor. All variables are under the influence of different environments.

7.4.1 Biometric Verification

We first used two different algorithms to assess facial detection, Viola–Jones [15]
as an open-source algorithm that is commonly used for this task, and the detection
system with a state-of-the-art commercial verification system [16]. The commercial
biometric system (CBS) was also used to assess biometric verification performance.

We considered four enrolment scenarios. The first enrolment (E1) included five
images taken using the SLR camera under static conditions as previously explained.
Under the same static condition, the second type of enrolment (E2) used images
taken with the smartphone camera. These first two types of enrolment enabled a
comparison of different types of cameras under the same ideal enrolment conditions.

The other two types of enrolment replicate real-life situations where the user is
using the face authentication for the first time and need to enrol on the smartphone.
We selected five random images taken indoors for the third enrolment (E3) and five
random images from the images taken outdoors (E4).Wedecided to exclude a random
combination between images taken indoors and outdoors because we assumed that
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it would be unlikely that someone will change his or her location from indoors to
outdoors (or vice versa) in this situation.

Once all the images had been selected for the enrolment, we then considered all
remaining images from that participant for verification. We used the CBS to perform
the biometric verification, recording a failure to detect when the CBS could not
recognise a face within an image. We calculated a biometric score (BS) as the mean
of the comparisons of one verification image against all five enrolment images and a
biometric outcome (BO) as either ‘succeeded’ or ‘failed’ depending on the majority
between the five comparisons.

7.4.2 The User

The user can introduce two types of influencing factors. Some characteristics are
intrinsic to the participant (such as demographic characteristics) and others that can
be temporary (such as glasses, type of clothing and facial expression). From the
demographics, we considered age, gender and previous experience (both with bio-
metrics in general and in biometrics used on a mobile device) that the users declared
before taking part in the experiment. We wanted to verify that there were not any
differences in terms of quality and performance assessment within any demographic
groups.

We used the CBS to estimate the facial expression that the user made during the
image acquisition concerning the level of anger, disgust, fear, happiness, neutral,
sadness and surprise. Each expression is recorded as a percentage of confidence that
the user exhibits a particular expression in a captured image.

7.4.3 The Capture Device

The capture devices used during the data collection were a Canon EOS 30D SLR
and a Nexus 5 smartphone camera. We provided the same model of mobile device
to all the participants, to ensure that there were no differences regarding camera
resolutions between the images. This decision had been made to obtain results that
are device-independent and that the observations made in this study are generally
valid in any case of scenarios.

We hypothesised that the images taken with the SLR would be higher-quality
images and that it would be easier to use for verification over a lower-quality image
taken from a smartphone camera. The camera specifics for both types of devices are
summarised in Table 7.1.

The exchangeable image file format (Exif) file, providing information related to
the image format, was examined from each image to establish the variation capture
equipment. Recent phones allow the owner to access, personalise andmodify specific
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Table 7.1 Camera specifics
for the SLR Canon EOS 30D
and the Google Nexus 5
cameras used during the data
collection [17, 18]

Camera specifics Canon EOS 30D Google Nexus 5

Type Digital AF/AE SLR Selfie camera

Pixels 8.5 MP 1.3 MP

Focal length
(35 mm)

35 mm 33 mm

Sensor pixel size 22.5 × 15.0 mm 1.95 µm

Autofocus features Autofocus 9 point Fixed focus

characteristics of the frontal camera but with the Nexus 5 that was not possible, and
the focus was set to automatic.

The main camera settings that give control over quality are the aperture, ISO and
shutter speed [19]. Aperture is the size of the hole within the lens that controls the
lights that enters the camera body and consequentially the focus of the subject. In
our experiment, it had a fixed value of 2.9 throughout all the images taken with both
the smartphone camera and the SLR. Shutter speed is the length of time the camera
shutter opens when taking the image. The SLR camera was fixed in position with a
tripod, and the shutter speed was set at 1/60 recording images of ideally not moving
subjects. When taking selfies with the smartphone, not only the subjects are moving
but also the camera can take a different position, depending on how the user is holding
the device. It becomes hard to differentiate these types of movements, and for this
reason, the settings that we decided to consider in our analysis is the variation in ISO
that measures the sensitivity of the camera sensor. The SLR had a fixed value set to
400, while the smartphone camera ISO variates between 100 and 2000.

7.4.4 Environment

We considered two types of environmental conditions. The experiment room, where
there was only a fixed artificial light and participants were sitting on a chair with a
white background, presented an indoor environment with ideal conditions. Images
taken in this scenario were collected using both the SLR and the smartphone camera
(SmrC).

All the selfies taken with the smartphone outside the experiment room have been
collected in unconstrained environmental conditions. We analysed separately the
images taken in the unconstrained environment when outdoors and when indoors.

7.4.5 Facial Image Quality Metrics

To assess the facial quality of the selfies acquired during the data collection, we
followed the recommendations of ISO/IEC TR 29794-5 Technical Report (TR) [20].
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Out of the several facial image quality (FIQ) metrics considered in the TR, we
selected five metrics as the ones that are commonly used in the state-of-the-art to
describe quality features. Image brightness refers to the overall lightness or darkness
of the image. The image contrast helps to understand the difference in brightness
between the user and the background of the image. The global contrast factor (GCF)
determines the richness of contrast in details perceived in an image. The higher the
GCF, the more detailed the image. Image blur quantifies the sharpness of an image.
Finally, the exposure quantifies the distribution of the light in an image.

Below, there is a description on how to calculate each FIQ metric:

Image Brightness (B)
Image brightness is a measure of pixels intensities of an image. As defined in the
TR, the image brightness can be represented by the mean of the intensity values hi ,
where i ∈ {0, . . . , N }.

The mean of the histogram h̄ can be represented by the formula:

h̄ = 1

N + 1

N∑

i=0

hi

where h is the intensity value of each pixel, and N is the maximum possible intensity
value.

Image Contrast (C)
Image contrast is the difference in luminance of the object in the image. There are
different ways to define image contrast—we chose to calculate it from the histogram
of the whole image using the following formula:

C =
√∑N

x=1

∑N
y=1 (I (x, y) − µ)2

MN

where I (x, y) is the image face of size M × N , and µ represents the mean intensity
value of the image.

Global Contrast Factor (GCF)
The global contrast factor (GCF) is described in the TR as the sumof the average local
contrasts for different resolutions multiplied by a weighting factor. We calculated
the GCF following the methodology presented by Matkovic et al. [21]. The local
contrast is calculated at the finest resolution that is the original image as the average
difference between neighbouring pixels. Then the local contrast is calculated for
various resolutions that are obtained combining four original pixels into one super
pixels, reducing the image width and height to half of the original ones. This process
has been done for a number of R iterations. The global contrast is then calculated as
a weighted average of local contrasts:
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GCF =
R∑

k=1

wkCk

where Ck is the local contrast for R a number of resolutions considered, and wk is the
weighting factor. The authors defined the optimum approximation for the weighting
factor over R resolution levels as:

wk =
(

−0.406385
k

R
+ 0.334573

)
k

R
+ 0.0877526

where wk ranges from 1 to the number of resolutions (R) of the image considered.

Image Blur (Blur)
To calculate the blur effect, we studied the work presented by Crete et al. [22]. Their
methodology allows the determination of a no-reference perceptual blurriness of an
image by selecting the maximum blur among the vertical direction blurver, and the
one among the horizontal one blurhor.

Blur = Max(blurver, blurhor)

The metric range is between 0 and 1, where 0 is the best and 1 is the worst quality.

Exposure (E)
Exposure can be characterised by the degree of distribution of the image pixels over
the greyscale or over the range of values in each colour channel. As defined in the TR,
exposure can be calculated as a statistical measure of the pixel intensity distribution,
such as entropy [23].

E = −
N∑

i=1

pi log2 pi

where pi is the histogram of the intensity level for the N possible intensity levels.

7.5 Results

As a pre-processing stage, we removed the images that were taken by mistake (for
example, that did not include a facial image, or contained other people), obtaining
a final database of 9420 selfie images. In this paragraph, we illustrate the results
obtained according to the different elements considered for image quality, biometric
outcomes and user expressions.
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7.5.1 Image Quality

Our initial investigation was to understand the variations regarding the quality of
facial images. We wanted to assess how each metric varies depending on the many
factors that affect the system, including different types of environments.

From Table 7.2, we can observe that the original means have around the same
values as themedian, sowe can assume that extreme scores do not influence themean.
A further analysis assessing the 5% trimmed means confirmed that there were no
substantial outliers in the distribution that affect the mean values. From the skewness
and kurtosis analysis, we can ascertain that all the variables are normally distributed,
as their values are between −1.96 and 1.96, except esxposure (E).

We studied the quality metrics under different conditions. Since each FIQ metric
has a different range of values, we analysed them separately to understand their
relationship with the user and the type of environmental conditions. In Fig. 7.2, we
can see the variations of image brightness (B) across the 53 participants. This feature
could be used to distinguish the images that have been taken in ideal conditions from
the ones taken in the unconstrained environment. The threshold that is presented
in the graph, as well as in the following figures that describe each quality metrics,
represents an example of an empirically selected threshold (120) that can be used to
distinguish between images taken in a constrained or unconstrained environment. A
further study needs to be carried out to determine the optimal thresholds that could
be generally valid for any type of camera sensors.

The images that have been taken with the SLR in static condition have quality
values different from those taken with a smartphone camera in unconstrained envi-
ronments, indicated separately for indoors and outdoors location and the distinction
between static conditionswhen using the smartphone is less evident. For SLR images,
B ranges between 120 and 160 while for images taken indoors and outdoors in the
unconstrained environments the range is from 90 to 120. When investigating bright-
ness considering additional influencing factors, we observed that the values appear to
be stable across all the three sessions and there are no significant differences between
gender and age. Similarly, people that had previous experience with (mobile) bio-
metrics did not result in different images concerning brightness compared to those
who had not experienced biometric systems.

From Fig. 7.3, we can see the variation in image contrast (C) across all the partic-
ipants. In this case, SLR images taken in ideal conditions vary across the users with
values from around 11–13, while in unconstrained scenarios, the images presented
values with variation from 9.5 to 11. C provides a clearer division compared to B
between ideal conditions and unconstrained environment. No significant differences
were identified across demographics.

Contrary to the previous two FIQ metrics, GCF calculated on SLR images, as
shown in Fig. 7.4, appears centred between a small range (from 1 to 3) compared to
the values of all the images taken by the smartphone.

All the images captured using the smartphone range from 3 to 6.5, including
those under ideal conditions, making impossible to distinguish them from the uncon-
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Fig. 7.2 Mean values of Image Brightness across 53 participants

Fig. 7.3 Mean values of image contrast across 53 participants
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Fig. 7.4 Mean values of GCF across 53 participants

strained environment. GCF resulted in the only qualitymetric considered that is influ-
enced by the demographic. There is a negative correlation with age (r = −0.123,
n = 9728, p < 0.001). It looks like younger participants tented to take images with
higher GCF, hence more high defined images. This could be of interest for future
analysis.

LikeGCF, image blur (Fig. 7.5) also presented a distinct range of values for images
taken with the SLR compared to when using the smartphone camera under the same
ideal conditions. Across the collected facial images, there were not many cases of an
extreme blur—all the participant reported blurriness less than 0.36. Ideal conditions
with the SLR can be detected from having a range of values less than 0.26, while all
the images taken with the mobile device range between 0.26 to 0.36. Even though it
could be unclear to form a distinction between images taken in ideal conditions with
a smartphone and those taken in the unconstrained environments, we can still notice
a distinction between images taken when indoors (from 0.31 to 0.36) and outdoors
(0.26–0.31). There are no differences regarding sessions, demographics and previous
experience.

Exposure values (Fig. 7.6) for SLR images are between the ranges of 6.65–7.35,
whereas we can put a threshold to differentiate them from smartphone images taken
indoors and outdoors that range from 7.35 to 7.80, and we cannot make a distinc-
tion with the images taken in ideal conditions with the smartphone. There are no
significant differences between sessions, gender and age.

We also inspected the variation of ISO when the images were taken in different
environmental conditions in an attempt to analyse the correlation between the camera
specifics and the levels of FIQ metrics. ISO distribution does not appear normally
distributed, but from the analysis of the scatter plots, we observed a linear correlation
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Fig. 7.5 Mean values of Image blur across 53 participants

Fig. 7.6 Mean values of exposure across 53 participants
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that we investigated through a nonparametric Spearman correlation. There were
significant results for each of the FIQ metrics, but there was a particularly strong
positive correlation for blur (r = 0.528, n = 9420, p < 0.001) and C (r = 0.451, n =
9420, p < 0.001). ISO values have a negative correlation with GCF for r = −0.438,
n = 9420, p < 0.001. The correlation for B and E is less strong, with correspondently
positive values for r = 2.28 and negative for r = −0.072 (n = 9420, p < 0.001).

Acknowledging the correlation between eachqualitymetric and ISOspecification,
we can determine the required FIQ levels that we want to achieve and fix the ISO
value on the capturing sensor. Alternatively, it may be possible to predict outcome in
quality from the ISO value and be able to provide feedback in real time or request a
new image from the user to ensure that the selfie will appear with the required quality
for verification.

7.5.2 Biometric Results

To perform biometric verification, we first detect the facial area of each image in
our data set. A facial area was detected within all the images taken in ideal con-
ditions when using the SLR. Table 7.3 shows the failure to detect (FTD) using the
Viola–Jones algorithm and the CBS. Overall, the number of faces detected across
the entire database is above 90%. In a controlled environment, CBS was not able
to detect three faces, using Viola–Jones, only one facial image was not detected. A
higher percentage of FTD is recorded when images were taken outdoors (7.5% for
CBS and 5.7% for Viola–Jones).

We analysed the outcomes of the biometric system depending on the type of
environment.We aimed to understand howdifferent type of environmental conditions
influence the biometric outcome and if there is a relationship between quality and
biometric scores. A relationship can be used to regulate a biometric threshold to adapt

Table 7.3 Frequency and percentage of FTD recorded by the two algorithms

Environmental conditions Viola-Jones CBS

Frequency Per cent Frequency Per cent

Ideal conditions Valid FTD 1 0.4 3 1.1

Detected 264 99.6 262 98.9

Total 265 100.0 265 100.0

Unconstrained indoors Valid FTD 135 3.9 194 5.5

Detected 3364 96.1 3305 94.5

Total 3499 100.0 3499 100.0

Unconstrained outdoors Valid FTD 306 5.7 400 7.5

Detected 5032 94.3 4938 92.5

Total 5338 100.0 5338 100.0
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Table 7.4 Percentages of succeeded and failed verification across different environmental condi-
tions when using a smartphone

Environmental
conditions

Verification Dataset Outcome E1 E2 E3 E4

Ideal conditions N = 210 Succeeded 96.7 100 99.5 99

Failed 3.3 0 0.5 1

Unconstrained Indoors N = 3040 Succeeded 91.8 97.4 98.9 98.1

Failed 8.2 2.6 1.1 1.9

Unconstrained Outdoors N = 4683 Succeeded 88.7 96.1 97.7 99.2

Failed 11.3 3.9 2.3 0.8

it to the different conditions and to ensure high performances in any unconstrained
environments.

Table 7.4 shows the different percentages of verification success and failure for
the different environments.

A higher percentage of users that have been mistakenly rejected by the system
is recorded when the enrolment has been performed using the SLR images in ideal
conditions (E1), particularly when the verification takes place in an unconstrained
environment, where returned results of 8.2% indoors and 11.3% outdoors. Despite
having a better resolution, verification comparisons between images taken from an
SLR and a smartphone yield poorer results, as already observed in our previous
study [14]. This outcome could result from the application of the chosen matching
algorithm to two different types of camera sensors, and it highlight the importance
of using an accurate cross-sensor matching in the particular scenario between static
SLR images and mobile camera images. Future research should focus on addressing
this issue analysing images collected using different camera sensors to study the
effects that this can have on biometric performances.

Enrolment performed with a smartphone in ideal conditions (E2) obtained the
perfect acceptance rate for images taken under the same conditions, as expected,
but it also recorded a favourable success rate for both the type of unconstrained
environments, with 97.4% for verification performed when indoors and 96.1% when
outdoors.

When the enrolment has occurred within an unconstrained environment (E3 and
E4), it can be seen that a system is more resilient to the different types of verification
environments, meaning that it would be better to enrol ideally under conditions
that are adverse in terms of light and background so that we can ensure higher
performances across a broad range of environments.

To perform a correlation between biometric scores and quality metrics, we need to
check whether the scores are also normally distributed. Table 7.5 shows the descrip-
tive statistics for the biometric scores recorded during the verification of images
against the four types of enrolments. Checking the skewness and kurtosis values,
we can say that not all the biometric scores form a normal distribution with only
a few exceptions. In the table are also reported the minimum and maximum bio-



162 C. Lunerti et al.

Ta
bl
e
7.
5

D
es
cr
ip
tiv

e
st
at
is
tic

s
fo
r
th
e
bi
om

et
ri
c
sc
or
es

re
co
rd
ed

in
di
ff
er
en
te
nv
ir
on

m
en
ts

E
nv
ir
on
m
en
ta
lc
on
di
tio

ns
M
in

M
ax

M
ea
n

St
d.

de
v.

Sk
ew

ne
ss

K
ur
to
si
s

St
at
.

St
d.
er
r.

St
at
.

St
d.
er
r.

Id
ea
lc
on
di
tio

ns
E
1

14
.2

21
9.
2

12
8.
29

44
.9
4

−0
.1
88

0.
16
8

−0
.6
14

0.
33
4

E
2

59
3.
8

11
93
.2

91
6.
1

14
7.
83

0.
07
3

0.
16
8

−1
.1
06

0.
33
4

E
3

47
.4

28
1.
8

95
.8
8

31
.4
6

2.
54
4

0.
16
8

11
.9
36

0.
33
4

E
4

43
.6

17
5.
2

92
.8
1

29
.5
4

0.
79
8

0.
16
8

−0
.0
03

0.
33
4

U
nc
on
st
ra
in
ed

in
do
or
s

E
1

8.
4

20
5.
8

80
.3

26
.5
1

0.
64
4

0.
04
4

1.
02
3

0.
08
9

E
2

26
.0

73
8.
0

95
.4
0

41
.1
0

3.
72
1

0.
04
4

33
.8
65

0.
08
9

E
3

23
.8

42
0.
6

11
5.
09

42
.2
9

1.
85
9

0.
04
4

5.
71
4

0.
08
9

E
4

30
.2

26
7.
0

10
0.
53

31
.5
2

0.
89
0

0.
04
4

1.
52
3

0.
08
9

U
nc
on
st
ra
in
ed

ou
td
oo
rs

E
1

4.
2

23
9.
2

76
.8
6

27
.7
3

1.
01
7

0.
03
6

1.
87
0

0.
07
2

E
2

4.
4

26
2.
4

92
.2
7

37
.0
2

1.
24
6

0.
03
6

1.
85
7

0.
07
2

E
3

7.
4

19
8.
0

99
.2
6

30
.5
7

0.
44
7

0.
03
6

−0
.2
32

0.
07
2

E
4

7.
6

68
7.
6

14
0.
63

64
.7
5

1.
91
7

0.
03
6

7.
67
5

0.
07
2



7 Selfies for Mobile Biometrics: Sample Quality … 163

Table 7.6 Correlation between biometric scores and FIQ metrics for n = 7923

BS_E1 BS_E2 BS_E3 BS_E4

B Spearman’s rho 0.028* 0.076** 0.041** −0.130**

Sig. (2-tailed) 0.014 0.000 0.000 0.000

C Spearman’s rho 0.053** 0.057** 0.047** −0.222**

Sig. (2-tailed) 0.000 0.000 0.000 0.000

GCF Spearman’s rho −0.096** −0.095** −0.117** 0.202**

Sig. (2-tailed) 0.000 0.000 0.000 0.000

Blur Spearman’s rho 0.049** 0.042** 0.105** −0.288**

Sig. (2-tailed) 0.000 0.000 0.000 0.000

E Spearman’s rho −0.059** −0.064** −0.001 −0.027*

Sig. (2-tailed) 0.000 0.000 0.896 0.016

*Correlation is significant at the 0.05 level (two tailed)
**Correlation is significant at the 0.01 level (two tailed)

metric scores recorded in the different environments (and their means and standard
deviations).

We performed a nonparametric (Spearman) correlation shown in Table 7.6. The
correlation has been performed for all the verification images (n = 7923) taken with
the smartphone in both constrained and unconstrained environment. We investigated
the correlation between the quality metrics recorded for those images and their bio-
metric scores recorded when comparing them against the four types of enrolment.

From Table 7.6, we can observe some significant correlations, but not particu-
larly strong overall (all values of the correlation coefficient, r, are smaller than 0.29).
Image blur has a strong negative correlation with the fourth type of enrolment E4 (r
= −0.288, n = 7923, p < 0.001). In a scenario where the enrolment is performed
in an unconstrained outdoor environment, the verification images appear to be more
sensitive to the blurriness of the image. The correlation indicates that a reduction
of blurriness of the image corresponds to a higher biometric score during the ver-
ification. Exposure presented a weak correlation that is negative for all the type of
enrolments. The other quality metrics tend to have overall a positive correlation with
the first three types of enrolment (captured indoors), and a negative correlation for
the fourth type of enrolment (captured outdoors).

GCF has the opposite behaviour, having negative correlations with the first three
types of enrolment, and a positive correlation with the E4. This can mean that despite
having higher values ofGCF, hence an image richer in details, in thefirst three types of
enrolment the performances are lower. An explanation for this could be the influence
that the GCF receives from local contrast in different areas of the image. For instance,
a facial image can have a lower contrast in one side of the image compared to the
other one, and this cannot be recorded using the image contrast. This difference in
contrast on the same image can influence the performances in the first three types of
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enrolment as it has been recorded to occur more frequently when the images were
taken in indoor locations.

7.5.3 User’s Facial Expressions

For most of the images taken with the SLR and the smartphone camera where it has
been possible to detect a face (n = 7888), the CBS provided a level of confidence
that the user was displaying a series of facial expression. In our study, we wanted to
inspect if there is a correlation between the user’s facial expressions and the quality
level recorded, as well as the outcome from the biometric system, considering the
variation that the different type of environmental conditions adds. In Fig. 7.7, we can
see the mean of a facial expression’s confidence for each environmental condition,
indicating the frequency with which each specific expression occurred in different
scenarios.

Users were only instructed to take selfies during the data collection that could
be used for biometric authentication. The ideal posture would be frontal and with a
neutral expression. So as expected, the facial expression that occurs the most is the
neutral expression with a mean value above 40% across all scenarios. For images
taken with the SLR under ideal conditions, a neutral expression has a confidence
level of more than 60%. Another expression with a mean value of more than the
40% is ‘surprise’ which notably occurred when using the smartphone camera. It was
reported by the participants that in situations of inclement weather when outdoors,
particularly with rain and strong wind, it had been harder for them take the selfies

Fig. 7.7 Mean of confidence values for facial expressions
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for face authentication that conformed to the requirements asked from them and
this may explain why the level of disgust and anger is higher for images taken in
unconstrained outdoor environment.

Facial expressions do not conform to the normality assumption for a parametric
correlation, so a Spearman correlation has been used to assess the relation that differ-
ent facial expressions have on both quality and biometric performances. We did not
find any particularly strong correlations between quality metrics and facial expres-
sions (the correlation coefficient was smaller than 0.18), but we did however observe
a correlation with the biometric outcomes. We considered the correlation with all
the verification images where it could be possible to estimate facial expressions (n
= 7678) and their biometric scores for each of the enrolment type. We noticed a
strong positive correlation for neutral expression in each enrolment scenario: under
ideal conditions for images taken with the SLR (r = 0.324, n = 7678, p < 0.001)
and the smartphone (r = 0.318, n = 7678, p < 0.001) and for enrolment that was
performed in unconstrained environments indoors (r = 0.382, n = 7678, p < 0.001)
and outdoors (r = 0.295, n = 7678, p < 0.001). Among the other facial expressions
estimated, we also observed that an expression of disgust has a strong negative cor-
relation with ideal conditions of enrolment performed with SLR (r = −0.314, n =
7678, p < 0.001) and the smartphone camera (r = −0.211, n= 7678, p < 0.001). The
correlation was also negative for confidence estimation of disgust presented in the
images that recorded biometric scores when comparedwith unconstrained enrolment
scenarios for smartphone images taken indoors (r = −0.232, n = 7678, p < 0.001)
and outdoors (r = −0.141, n = 7678, p < 0.001).

7.6 Conclusions and Future Work

Our study aims to contribute to improve the adaptability and the performance of
mobile facial verification systems by analysing how an unconstrained environment
affects quality and biometric verification score. Our experimental results describe the
variations of FIQmetrics and biometric outcomes recorded under different conditions
and provide recommendations for the application of selfies biometrics in real-life
scenarios.

From the analysis of fivedifferent imagequalitymetrics selected from the ISO/IEC
Technical Report for image quality applied for face verification, we found that image
brightness and contrast could be employed to select whether an image has been
taken in a constrained or unconstrained environment. Global contrast factor, image
blur and exposure were not showing different values for ideal and unconstrained
conditions as clearly as the other metrics. However, by observing the local contrast
and the level of blurriness, it could be possible to observe a difference between
images taken in the unconstrained environments when indoors from when outdoors.
These interesting results are encouraging and lead to further investigation to assess
if there are significant differences between the FIQ metrics values across each type
of environments. To have an overall and realistic perspective, future research will
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focus on analysing results collecting images using a range of different model of
devices to ensure that these overall observations can be applied in context with any
possible camera model. A further experiment will also be performed to explore
deblurring techniques that can improve the biometric performances on those images
that presented lower-quality characteristics.

Our results also suggest that it is possible to consider camera specification to
regulate the quality requirement for facial images when taken on a smartphone.
From our study, our recommendations will be considering fixing a value for the ISO
that can result in the FIQ desired, or to inspect the variation of ISO values to regulate
the thresholds of acceptance of images before verification and request an additional
presentation in case of non-compliance of the requirements for quality.

Studying the biometric scores,we can confirm that enrolment under unconstrained
conditions ensures the system to be more robust against the variations of the environ-
ment regarding verification performances. We reported a linear correlation between
quality and biometric scores, although not particularly strong.

The type of the environment is one of the factors that influence users’ facial
expressions. While there was not a significantly strong correlation between different
facial expressions and the quality metrics, we reported positive and negative cor-
relations depending on the type of expressions that affect the biometric outcomes.
Future research can use this information to adapt biometric systems depending on
the estimation of facial expressions detected in both the enrolment and verification
scenarios considering the environment in which the interaction is taking place. The
biometric system could send adapted feedbacks when the estimation of the location
is possible to remind the user to maintain a neutral expression during the verification
process.
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