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User Authentication via Finger-Selfies

Aakarsh Malhotra, Shaan Chopra, Mayank Vatsa and Richa Singh

Abstract In the last one decade, the usage and capabilities of smartphones have
increasedmultifold.Tokeepdata anddevices secure, fingerprint and face recognition-
based unlocking are gaining popularity. However, the additional cost of installing
fingerprint sensors on smartphones questions the use of fingerprints. Alternatively,
finger-selfie, an image of a person’s finger acquired using a built-in smartphone
camera, can act as a cost-effective solution. Unlike capturing face selfies, capturing
good-quality finger-selfies may not be a trivial task. The captured finger-selfie might
incorporate several challenges such as illumination, in- and out-of-plane rotations,
blur, and occlusion. Users may even present multiple fingers together in the same
frame. In this chapter, we propose authentication using finger-selfies taken in an
unconstrained environment. The research contributions include the UNconstrained
FIngerphoTo (UNFIT) database which is captured under challenging unconstrained
conditions. The database also contains the manual annotation of identities and loca-
tion of the fingers. We further present a segmentation algorithm to segment finger
regions and, finally, perform feature extraction and matching using CompCode and
ResNet50. Experimental results show that despite multiple challenges present in the
UNFIT database, the segmentation algorithm can segment and perform authentica-
tion using finger-selfies.

Aakarsh Malhotra and Shaan Chopra: Equal contribution by student authors.

A. Malhotra · S. Chopra · M. Vatsa · R. Singh (B)
IIIT-Delhi, Delhi, India
e-mail: rsingh@iiitd.ac.in

A. Malhotra
e-mail: aakarshm@iiitd.ac.in

S. Chopra
e-mail: shaan15090@iiitd.ac.in

M. Vatsa
e-mail: mayank@iiitd.ac.in

© Springer Nature Switzerland AG 2019
A. Rattani et al. (eds.), Selfie Biometrics, Advances in Computer Vision
and Pattern Recognition, https://doi.org/10.1007/978-3-030-26972-2_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26972-2_2&domain=pdf
mailto:rsingh@iiitd.ac.in
mailto:aakarshm@iiitd.ac.in
mailto:shaan15090@iiitd.ac.in
mailto:mayank@iiitd.ac.in
https://doi.org/10.1007/978-3-030-26972-2_2


22 A. Malhotra et al.

2.1 Introduction

In the current digital era, smartphones and mobile devices are ubiquitous. With the
growth of smartphone usage, people store enormous amounts of personal and confi-
dential information on their smartphones. Storing such information on smartphones
demands suitable security mechanisms. Traditional security measures include pass-
words, patterns, or pins. However, these methods need to be memorized by the users
and are vulnerable to shoulder surfing attacks [1]. Alternatively, biometric-based user
authentication is now more popular and requires minimal effort from the users.

As illustrated in Fig. 2.1, modern smartphones have multiple sensors that can
facilitate user authentication. For instance, cameras can be used to capture face [2]
and finger-selfies, while fingerprint sensors can be used to acquire fingerprints.
Researchers and commercial entities have explored the usability of all three, and
each posing certain advantages and constraints. For instance, traditional fingerprints
are accurate but require the installation of additional capacitive sensors [3]. Face self-
ies are easy to capture, but theymay be affected by several external factors. Similarly,
finger-selfies do not need any additional sensors, but the technology requires more

Fig. 2.1 Acquisition sensors and their corresponding captured modalities
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Fig. 2.2 An illustration of acquisition mechanism of finger-selfie and the corresponding finger-
selfie

research to demonstrate the effectiveness. This chapter focuses on finger-selfie, pre-
senting a reviewof the research efforts related to improving the usability and accuracy
of finger-selfie recognition.

As shown in Fig. 2.2, finger-selfie acquisition involves capturing ridge-valley
details present on the tip of the finger using a device camera by the user. Over-
coming the drawback of traditional biometric-based authentication, a finger-selfie
does not require an additional sensor. All it needs is the smartphone’s in-built cam-
era. As per Tim Ahonen’s Phone book [4] and Statista [5], approximately 89% of
all digital photographs arise from handheld devices such as tablets and smartphones.
While these statistics motivate the use of finger-selfies as a cost-effective method for
authentication, there are other advantages as well. Finger-selfies act as a contactless
fingerprint acquisition technique, which is hygienic and secure, leaving no latent
impressions on the surface of the sensor. Over the flattened live scan fingerprints,
finger-selfies also contain additional information such as finger shape and phalanx
lines. While these lines may not have global uniqueness, a localized correlation with
ridge-valley patterns in the neighborhood may aid person identification [6].

Other than authentication for device unlocking, law enforcement agencies have
also shown their interest toward finger-selfies. For instance, on finding a finger-selfie
of a potential drug dealer holding drugs on his fingers, the SouthWales Police and the
scientific support unit utilized the finger-selfie to identify the culprit [7]. Similarly,
a hacker used an image of a German minister’s finger, acquired from a distance
of three meters, to generate fingerprints [8]. Such use cases highlight the need for
finger-selfie-based recognition systems.

Emphasizing on the other side of the coin, finger-selfie-baseduser authentication is
not perfect either. As illustrated in Fig. 2.3, a finger-selfie looks drastically different
from a traditional fingerprint, with skin and background visible along with ridge-



24 A. Malhotra et al.

(a) Finger-selfie acquired under different conditions

(b) Corresponding livescan images of the same subject

Fig. 2.3 Visual difference between a finger-selfie and a legacy fingerprint image

valley details.While its acquisition requiresminimal effort from the user, their lack of
cooperation might induce many challenges. Unlike capturing face selfies, acquiring
a good-quality finger-selfie may not be a trivial task, and the captured finger-selfie
might comprise several variations such as illumination, in- and out-of-plane rotations,
blur, and occlusion. Users might even present multiple fingers in the same frame.
A summary of these challenges is illustrated in Fig. 2.4. While these challenges
highlight a real-life unconstrained acquisition scenario, detection and recognition of
these finger-selfies for smartphone authentication become a cumbersome task.

To promote unconstrained finger-selfie-based recognition, this chapter first pro-
vides a review of existing research on finger-selfie followed by finger-selfie-based
authentication in an unconstrained environment. This research is inspired by our pre-
liminary work, which showcased the application of finger-selfies in an unconstrained
environment [9]. The important research contributions of this chapter are:

1. A review of existing databases utilized in the literature for finger-selfie/image/
photograph-based recognition and a detailed summary of existing approaches for
finger-selfie recognition are discussed.

2. Anovel publicly availableUNconstrained FIngerphoTo (UNFIT) database,which
is captured under challenging unconstrained conditions. The database also con-
tains manual annotation of identities and location for 3450 images from 115
subjects.
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(a) Scale (b) Position (c) Rotation (90°) (d) Rotation (180°)

(e) Multiple fingers (f) Split fingers (g) Illumination (h) Flash Usage

(i) Background (j) Blurred (k) Salient fingers (l) Deformation

Fig. 2.4 Sample finger-selfie images from the proposedUNFIT database.While the database incor-
porates numerous challenges, a real-life unconstrained acquisition of finger-selfies might contain
one or more challenges together, making finger-selfie recognition a complex problem. Varying
resolutions of the camera adds to the challenges of finger-selfie recognition

3. A segmentation algorithm to segment finger regions from a finger-selfie using the
existingVGGSegNet [10]model. The performance of the segmentation algorithm
is compared with other segmentation methods such as FCN 8 [11]. We show that
existing deep learning algorithms for segmentation can easily outperform the
traditional skin color-based segmentation [12] methods used in the literature.

4. Finally, recognition of the segmented finger is performed. The benchmarking
for feature extraction and matching is performed using CompCode [13] and
ResNet50 [14] followed byHamming distance and cosine similarity, respectively.
Experimental results show that despite multiple challenges present in the UNFIT
database, finger-selfie-based biometric authentication is feasible and pragmatic.
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2.2 Related Work

Recent studies have demonstrated the usage of fingerphoto/contactless fingerprints
acquired using smartphones and other digital cameras toward benchmarking of con-
tactless fingerprint recognition. However, a significant limitation of these studies is
the use of constrained or semi-constrained fingerphoto datasets. A summary of the
datasets is presented in Table2.1, and their details are given below.

Table 2.1 Literature review of existing databases of contactless fingerprints/fingerphotos
Research Device Subjects # Samples Challenges Public Nature

Song et al. [15] CCD – – None ✗ Constrained

Lee et al. [16] Phone 150 + 168 400 + 840 Background,
orientation

✗ Semi-
constrained

Lee et al. [17] Phone 15 60 + 30 + 30
videos

Blur,
orientation/
movement

✗ Semi-
constrained

Piuri and
Scotti [18]

Webcam 15 150 Background ✗ Semi-
constrained

Hiew et.al [19] Digital Camera 103 classes 1938 None ✗ Constrained

Kumar and
Zhou [6]

Webcam 156 1566 Resolution ✓ Semi-
constrained

Derawi et al.
[20]

Phone 22 1320 None ✗ Constrained

Yang et al.
[21–23]

Phone 25 2100 Background,
illumination

✗ Semi-
constrained

Stein et al. [24] Phone 11 + 37 66 videos, 990
photographs

None ✗ Constrained

Tiwari and
Gupta [25]

Phone 50 150 Illumination ✗ Constrained

Sankaran et al.
[12]

Phone 64 4096 Background,
illumination

✓ Semi-
constrained

Taneja et al.
[26]

Multiple 64 8192 Fingerphoto
Spoofing

✓ –

Lin and Kumar
[27]

- 300 classes 1800 None ✓ Constrained

Proposed Phone 230 classes 3450 Background,
blur, multiple
fingers,
illumination,
affine variation,
resolution,
deformations

✓ Unconstrained
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2.2.1 Existing Databases

Several researchers have designed algorithms and shown results on contactless fin-
gerprint recognition. However, a significant limitation related to the research on
finger-selfie recognition is the unavailability of public datasets. While four of the
datasets are publicly available, these datasets incur just one or two variations, which
lack common challenging scenarios of acquisition present in finger-selfies. A sum-
mary of these datasets is presented below.

2.2.1.1 Publicly Available Databases

As illustrated in Table2.1, there exist databases for contactless fingerprints; how-
ever, for benchmarking and algorithmic evaluation, only the following databases are
publicly available in the research community:

• HKPU Low-Resolution Fingerprint Database [6]: The database has a total of 1566
low-resolution contactless fingerprint images from 156 subjects. The contactless
fingerprints are acquired using a webcam in two different sessions. While the
database is acquired at a low resolution, it incorporates no other challenge during
acquisition. Hence, the database can be termed as semi-constrained.

• IIITD Smartphone Fingerphoto Database [12]: In 2015, Sankaran et al. proposed
this database, containing 4096 fingerphoto images from 64 participants acquired
using a smartphone camera. The database also includes 1024 livescan images to
promote matching of fingerphoto with legacy fingerprint databases. The subsets of
the database include varying background and illumination. Hence, this database
can also be considered as semi-constrained.

• PolyU Contactless to Contact-based Fingerprint Database [27]: Recently, Lin and
Kumar proposed a constrained dataset, with 1800 contactless fingerprint samples
from 300 different fingers. While the images of fingers were acquired in a con-
strained setting, the database aimed to establish the matching of contactless finger-
prints with contact-based livescan fingerprints. Hence, the database also includes
1800 contact-based livescan images.

• Other than the databases mentioned above, Taneja et al. [26] proposed a Spoofed
Fingerphoto Database, which aimed to establish the effect of spoofing of finger-
photos using display and print attack. This databasewas created using fingerphotos
taken from the IIITD Smartphone Fingerphoto Database [12].

Using the in-house and publicly available touchless fingerprint databases, researchers
have demonstrated benchmarking results of their proposed algorithms. A summary
of these algorithms is presented below.
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2.2.2 Finger-Selfie Recognition Techniques

For touchless fingerprint recognition, Song et al. [15] used only blue channel informa-
tion of finger images. They utilized mean and coherence for segmentation and Gabor
filters to enhance ridge details. Their results were illustrated visually on a touchless
fingerprint image. In 2006, Lee et al. [16] performed segmentation by combining
normalized color (RB) model and frequency information extracted using the Tenen-
grad method. Minutiae were extracted from the segmented image, following which
the authors reported about 80% GAR at 0.01% FAR. In 2008, Lee et al. [17] aimed
at focus estimation by estimating blur. They also used coherence and symmetry for
quality estimation and difference in frames (contour extraction) for pose estimation.
On the Samsung Database (SDB)—I, II, III, IV—with 60, 30, 30 image sequences
and 1200 fingerprint images, respectively, authors reported a rejection rate of 5.67%
and EER of 3.02%.

Piuri and Scotti [18] performed blur reduction using Lucy-Richardson algorithm
andWiener filter algorithm followed by color model andmorphology-based segmen-
tation. After performing fingerphoto registration, enhancement, and minutia extrac-
tion using MINDTCT, authors reported an EER of 0.042% for 150 images. Hiew et
al. [19] utilized Gabor features, followed by PCA and SVM for verification. They
reported an EER of 1.23%. In 2011, while proposing a publicly available dataset,
Kumar andZhou [6] performed enhancement by Sobel filtering and area thresholding
on the acquired image, followed byGaussian sharpening. Using LRT andCompCode
features followed by Hamming distance, the authors reported a cross-session EER
of 3.95% with 93.97% accuracy on the proposed dataset. In the same year, Derawi
et al. [20] performed feature extraction and matching using COTS and reported an
EER of 0.00–23.62% for different fingers on their in-house database.

Yang et al. [21–23] utilized their semi-constrained database with 2100 samples
toward quality assessment of fingerprint images captured from a smartphone cam-
era. They defined a total of seven [21] and twelve [22] quality metrics to determine
the quality of contactless fingerprint image. Using the same dataset, Raghavendra et
al. [23] performed mean shift clustering to segment the probable finger regions. The
final finger is detected from top five-sized regions using a fusion of Pearson, Fourier
magnitude, and energy measure based on the wavelet transform. They reported
an average segmentation accuracy of 96.46%. Using NBIS MINDTCT for minu-
tia extraction followed by matching, authors report an EER of 3.74%. In 2013, Stein
et al. [24] performed spoof detection, followed by minutia extraction and matching.
The authors reported 1.20% EER for contactless fingerprints and 3.00% EER for fin-
ger videos. Tiwari and Gupta [25] found ROI in fingerphoto by adaptive thresholding
followed by morphological operations. They aligned the image using PCA followed
by image enhancement using adaptive histogram equalization. Using SURF features,
authors report an EER of 3.33% on their proposed in-house database.

In 2015, Sankaran et al. [12] created IIITD Smartphone Fingerphoto Database
and proposed a fingerphoto-to-fingerphoto and fingerphoto-to-livescan matching
algorithm. With segmentation performed using adaptive thresholding, authors per-
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formed image sharpening and median filtering to enhance the image [28]. From the
enhanced image, ScatNet features were extracted, followed by PCA and matching
using RDF classifier. On the proposed semi-constrained dataset, authors reported
an EER of 3.65–7.45% on different subsets of fingerphoto-to-fingerphoto match-
ing and 7.07–10.43% for fingerphoto-to-livescan matching. Later, in 2017, Malhotra
et al. [29] further improved the state-of-the-art performance on IIITD Smartphone
Fingerphoto Database. Using an LBP-based enhancement, the authors reported an
EER of 1.47–8.36% on different subsets of fingerphoto-to-fingerphoto matching and
6.44–7.61% for fingerphoto-to-livescan matching. Recently, Lin and Kumar [27]
proposed a livescan and contactless fingerprint image database. To align the contact-
less images with livescan images, the authors proposed an RTPS-based fingerprint
deformation correction model. By performing minutiae- and ridge-based matching,
the authors reported a rank-1 accuracy of 94.11% using their proposed algorithm.

While these algorithms have shown good accuracies and low error rates, their per-
formance is not evaluated in a real-life scenario of unconstrained finger-selfie recog-
nition. A primary reason is the absence of an unconstrained finger-selfie database. To
address this concern and to promote finger-selfie recognition in an uncontrolled sce-
nario, we present UNFIT: an unconstrained fingerphoto database in the next section.

2.3 UNconstrained FingerPhoto (UNFIT) Dataset

In Sect. 2.2.1.1, we highlighted publicly available databases for contactless finger-
print recognition. While these datasets have an ample number of samples, these sam-
ples are acquired in a constrained or semi-constrained environment. In this research,
we create the first unconstrained fingerphoto (UNFIT) database andmake it available
for the research community.1 The database has many challenges, which would be
present in a finger-selfie acquired in an uncontrolled environment with minimal user
cooperation. The details of the dataset are presented below.

2.3.1 Database Acquisition

Forty-five different smartphones belonging to the subjects are used to capture finger-
selfies. This brings variations in terms of resolution and camera sensor to the database.
OnePlus and iPhone devices are used to acquire 48% of images in the database
followed by other phones including Redmi devices, Google Nexus, Lenovo K3Note,
LenovoK4,Mi 4, Le 1s, SamsungGalaxy,MicromaxCanvas,MotoG,MotoC,Moto
M, and HTC devices. The camera resolutions of these smartphones varied from 8
to 16MP. The distribution of different smartphone devices used for finger-selfie
acquisition can be seen in Fig. 2.5a.

1The UNFIT database can be downloaded from: http://iab-rubric.org/resources/UNFIT.html.

http://iab-rubric.org/resources/UNFIT.html
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Fig. 2.5 Acquisition details: a Devices used for finger-selfie acquisition, and b Offline and online
mechanisms used for obtaining finger-selfies

The database is collected via both online and offline methods which helps incor-
porate the effect of image compression due to transmission. WhatsApp, Telegram,
Google Drive, Gmail, and Facebook messenger are used for online data collection,
whereas for offline data collection, different phone devices belonging to the subjects
are used followed by transmission via a pen drive. Figure2.5b shows the distribu-
tion of images collected using different modes of online and offline data collection.
Adding on, variations in illumination, intensity, and blur are present in the database
due to the optional usage of auto-focus and flash for acquiring finger-selfies.

During database acquisition, no constraints are enforced for distance of the finger
from the camera sensor. Varying distance allows the presence of more challenges,
such as position and scale variation. However, the appearance of ridge-valley details
stays limited with respect to the camera sensor. The minimum and maximum dis-
tances for a focussed detailed acquisition depend upon the camera’s aperture and
len’s focal length. With 45 different smartphones used to obtain finger-selfies, the
camera’s aperture and len’s focal length vary across the smartphone devices. Hence,
a generic claim for a minimum and maximum distance for a focussed image cannot
be made. Thus, varying sensors, lens, the distance of finger, illumination, and back-
ground variations makes locating, segmenting, and recognizing ridge-valley details
in the finger challenging.

2.3.2 Database Statistics

Over a span of three months, we collated a novel finger-selfie database consisting of
3450 images and termed it as Unconstrained FIngerphoTo (UNFIT) database. The
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database has multiple images of the index and the middle finger for each subject,
where both the fingers of the same participants are considered as different classes.
We refrained from acquiring thumb finger-selfies since capturing frontal region of
thumb while holding a phone facing downward in the other hand is inconvenient for
subjects. During acquisition, the participants are allowed to use either of the hand for
capturing the finger-selfies, as long as all the finger-selfies arise from the same hand.
The database contains 230 different classes belonging to 115 participants. Out of
the 115 subjects from whom finger-selfies were captured in the UNFIT database, 38
were female participants, and 77 were male participants. The details of the database
can be seen in Table2.2. Figure2.6 exhibits some sample images from the database.
Two different sets of finger-selfies are collected from each subject:

• Set I: Single Finger—Images of the index and middle fingers belonging to the
same hand of a user are captured. Finger-selfies are collected from either the left

Table 2.2 A summary of various subsets presents in the UNFIT database

Subset Fingers Classes Images

Set I Index 115 1150

Middle 115 1150

Subtotal: 230 2300

Set II Multiple fingers 115 1150

Total: 3450

Fig. 2.6 Sample finger-selfie images from different subsets of the proposed UNFIT database
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or right hand of the user as per his/her convenience without enforcement of any
constraints regarding background, illumination, resolution, position, or orientation
of the finger. Figure2.6a and b demonstrates sample images belonging to this set.
The set contains a total of 2300 images (=115 subjects × 2 fingers × 10 instances
per finger).

• Set II:Multiple Fingers—At times, usersmay capturemultiple fingers, intention-
ally or unintentionally, and this additional information can be useful for improving
finger-selfie recognition performance. Thus, this is useful for demonstrating the
effect of multiple fingers on finger-selfie recognition. Figure2.6c shows the sam-
ple images belonging to this set. The set contains a total of 1150 samples (=115
subjects× 10 instances per participant) of both index andmiddle fingers belonging
to the same hand taken together.

2.3.3 Challenges

In a scenario where the user cooperation is minimal, intra-class variations may
increase. Some of these variations are shown in Fig. 2.4. A detailed description of
challenges included in the proposed UNFIT database is as follows:

• Affine variations: Finger-selfie acquisition involves presenting the finger in front
of the rear or front camera of the smartphone. While this task sounds trivial, there
can be enormous affine variations. These variations may include translation and
rotation of finger. Rotation variation may be caused both by rotation of finger in
the 2D image plane (Fig. 2.4c–d) and by rolling of the finger on axis of the finger.
While rotation in the 2D image plane does not lead to any information loss, a
rotation along the finger axis may result in different amount of acquired ridge-
valley detail. The varying distance from the acquisition camera would result in
scale variations.

• Multiple fingers: As a part of the UNFIT dataset, index and middle fingers are
collected together. While the multiple fingers can be placed in any order and may
experience all variations a single finger can, multiple fingers may encounter other
challenges as well. As illustrated in Fig. 2.4e–f, the multiple fingers may be split
or may be presented together. The split-finger scenario aids in the robust testing
of segmentation algorithms, since the algorithms should be able to segment the
fingers in both situations.

• Illumination: The finger-selfies can be captured in both indoor and outdoor envi-
ronments. It induces illumination variations, which may result in dull or bright
finger-selfies. Usage of camera flash, as illustrated in Fig. 2.4h, may result in tar-
geted bright regions too.

• Background: Allowing any natural background to be present, finger-selfies may
have similar looking backgrounds. Adding on, there may be regions in the back-
groundwith skin (Fig. 2.4k). In such a scenario, selection of salient fingers becomes
a tedious task.
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• Blur: During the capture process, a common problem is unfocused acquisition of
an image. It may lead to a blurred finger-selfie due to which ridge-valley details
might not be prominent. Similarly, finger-selfie may incur motion blur due to hand
movement or unstable holding of smartphones.

• Deformation: In some cases, participants provided finger-selfies with crooked
fingers.

2.3.4 Ground-Truth Annotation

Due to various challenges incorporated in the proposed database (as mentioned in
Sect. 2.3.3), the position and appearance of fingers in the images vary. To determine
the exact location of the finger, it is necessary to generate ground-truth annotations
for the same. A segmentation tool is developed in MATLAB using Piotr Dollar’s
toolbox [30]. The GUI of the toolbox allows the user to utilize rotatable and resizable
rectangular boxes to manually bound the finger region. With a rectangular region
representing a finger region, only aminimal amount of background pixels are labeled
as foreground. It acts as a loose bound for the finger, making sure that there is only a
negligible loss of ridge-valley details. The rectangular region can easily be cropped
and fed to recognition modules. The ground-truth annotations, which are represented
as a mask, are also publicly available along with the database with the same image
name in a different folder.

2.3.5 Experimental Protocol

As mentioned in Sect. 2.3.2, the UNFIT database is collected from 115 subjects with
30 images taken from each participant. While training and testing, a 50:50 subject
disjoint split is maintained. Hence, training data includes 1740 images corresponding
to 58 subjects, and testing data consists of remaining 1710 images from 57 partici-
pants. The index and middle fingers of the same subject are considered as different
classes, resulting in 116 classes during training and 114 classes while testing. Dur-
ing testing, the first five images of each case (index, middle, or both fingers) are
treated as the gallery, whereas the remaining images (sample #6–10) are considered
as the query images.While generating scores, the genuine scores are generated when
index–index, middle–middle, and multiple–multiple fingers of the same subjects are
matched. All other combinations of match scores generated by matching query with
gallery images are treated as imposter scores.
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2.4 Segmentation Framework

The unique and discriminative features of a fingerprint lie in its ridge-valley pattern.
These details are present on the finger-tip, which constitutes for the foreground
of the finger-selfie image. Hence, a framework is presented which aims to discard
the background pixels and keep only the foreground information. A summary of the
segmentation framework is illustrated in Fig. 2.7, and its details are elaborated below.

2.4.1 Segmentation Using VGG SegNet

The segmentation framework primarily utilizesVGGSegNet for classifying pixels as
foreground or background. The VGG SegNet architecture has encoder and decoder
network. While the role of the encoder is to convert the input data into a meaningful
feature map at a lower dimension, the decoder upsamples the lower-dimensional
feature map. The lower-dimensional feature map is produced due to max-pooling
operation after a sequential process of convolution, batch normalization, and ReLU
activation to produce nonlinearity. The locations of features, which are propagated
in the network after max-pooling, are stored for further computation.

The decoder network utilizes pooling indices (the ones stored during encoding)
to perform a nonlinear upsampling in order to counter the effect of max-pooling. The
stored pooling indices guide the decoder network to map a lower input feature map
to a higher-dimensional feature map. Hence, the upsampled feature map obtained
from the decoder network has a sparse representation of the input. The upsampling
approach using pooling indices is a training-free method, hence reducing the number
of training parameters of the model.

While pooling is known to have local invariance, in this work, a standard encoder–
decoder networkwith pooling layers is utilized. The previous encoder–decoder archi-
tectures also use a standard pooling in their model (or global average pooling at the
end of the network). It can be noted that networks that have used pooling [11, 31, 32]

Fig. 2.7 Illustration of the segmentation framework using VGG SegNet followed by 32 × 32
block-wise smoothening
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have worked well for the task of object segmentation. However, to eliminate pooling,
the entire model has to be revamped and replaced by a capsule-net style architecture.
Such scenario would require training from scratch, disallowing us to use pre-trained
network.With a limited number of training instances, training a pooling-free network
would be beyond the scope of the proposed framework.

The sparse representation is fed as input to a convolutional layer, which is suc-
ceeded by a Softmax classification layer. The Softmax layer classifies each of the
image pixels as foreground or background. Thus, the VGG SegNet-based segmen-
tation algorithm utilizes a pre-trained model of VGG SegNet for finger-selfie seg-
mentation. The model is fine-tuned using finger-selfies. However, as we explain in
Sect. 2.4.4.1, the predicted mask is tightly bound, due to which a significant fore-
ground area is lost. Therefore, VGG SegNet architecture is succeeded by a 32 × 32
block-wise smoothening layer to increase the number of foreground pixels. The full
segmentation pipeline is shown in Fig. 2.7. Algorithm 1 summarizes the complete
segmentation algorithm.

Input: 224×224 finger-selfie image
Output: Segmented mask for finger-selfie

Fine-tune VGG SegNet Architecture using training finger-selfies and their masks;
Use trained model to predict mask for test finger-selfies;
Binarize the predicted masks;
fp = Count of finger (foreground) pixels;
bp = Count of non-finger (background) pixels;
N = Number of test images;
Region = Number of non-overlapping blocks of dimension 32×32 pixels in a finger-selfie;
while N �= 0 do

Divide test image into blocks of size 32×32 pixels;
while Region do

if fp ≥ bp then
Set all pixels of the region as foreground;

else
Do not update any pixels of the region;

end
Region = Region - 1;

end
N = N − 1;

end
Algorithm 1: Algorithm for finger-selfie segmentation using a fine-tuned VGG
SegNet architecture followed by a layer of 32 × 32 block-wise smoothening.

2.4.2 Implementation Details

To train the VGG SegNet + 32 × 32 block-wise smoothening network, finger-selfies
of size 224 × 224 × 3 are used along with their corresponding ground-truth anno-
tation of size 224 × 224 × 1. As illustrated in Fig. 2.7, VGG SegNet consists of
an encoder and a decoder network. The output dimension of encoder network is
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14 × 14 × 512. This multi-channel output is fed to the decoder network, which in
turn gives an output of dimension 112 × 112 × 2. The output of the decoder network
serves as input to the Softmax layer, whose task is to provide a binary prediction for
each pixel. The white pixel in the binary predicted mask represents the finger region,
whereas the black pixel represents the background. Similar to VGG SegNet, FCN 8
is also provided finger-selfies and its corresponding ground-truth annotation.

The VGG SegNet and FCN 8 architectures are fine-tuned using an augmented
training set. The augmented training data is created by increasing the original training
setwithmirror flipped, intensity changed, blurred, and rotated finger-selfies. Rotation
of finger-selfies is performed at three different angles: 90◦, 180◦, and 270◦. After
image augmentation, the size of the training set increases to 27600 images. The
corresponding finger location annotation is generated for these augmented images
from the original ground-truth annotation. Using the augmented training dataset, the
deep architectures are fine-tuned for 100 epochs.

2.4.3 Performance Evaluation Metrics

To evaluate the performance of segmentation algorithm, the following metrics are
used:

• Segmentation accuracy (SA):

SA = CPB

TB
(2.1)

where CPB is a count of the correctly predicted blockswhile TB is the total number
of blocks.

• Foreground segmentation accuracy (FSA):

FSA = CPFB

TFB
(2.2)

FSA is the normalized foreground segmentation accuracy, where CPFB represents
the number of correctly predicted foreground blocks, normalized with respect to
the total count of foreground annotated blocks (TFB).

• Background Segmentation Accuracy (BSA):

BSA = CPBB

TBB
(2.3)

BSA is the normalized background segmentation accuracy, where CPBB portrays
the number of correctly predicted background blocks normalized with respect to
the total count of background annotated blocks (TBB).

Figure2.8 demonstrates a visual elucidation of FSA and BSA using the segmen-
tation algorithm.
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2.4.4 Segmentation Performance

Table2.3 reports the segmentation performance of the algorithm in terms of FSA,
BSA, and SA. VGG SegNet, along with 32 × 32 block-wise smoothening, provides
the best foreground segmentation accuracy and performs well in terms of BSA and
SA as well. Tables2.4 and 2.5 illustrate a comparison of various segmentation tech-
niques with the VGG SegNet+block-wise smoothening algorithm. Figure2.9 shows
a few sampleswhere the segmentation framework can segment finger-selfie correctly,
whereas Fig. 2.10 shows some failure cases of the segmentation algorithm.

In the proposed UNFIT database, background pixels constitute 86.21% pixels
compared to 13.79% foreground pixels. While FSA is lower than BSA in Table2.3,
the reported segmentation accuracy (SA) is biased toward BSA for all fingers. This
is due to higher number of background pixels in the UNFIT database as compared
to foreground finger region pixels.

2.4.4.1 Effect of 32× 32 Block-Wise Smoothening

Table2.4 shows a comparison of the proposed architecture with VGG SegNet. For
VGG SegNet, it can be observed that BSA outperforms FSA for all the fingers. The

Table 2.3 Segmentation performance of the VGG SegNet + 32 × 32 block-wise smoothening
finger-selfie segmentation algorithm
Algorithm Segmentation

metric
Finger

All together (%) Index (%) Middle (%) Multiple (%)

VGG SegNet + 32 × 32
block-wise smoothening

SA 89.04 89.89 90.62 86.61

BSA 92.71 93.16 93.06 91.91

FSA 71.22 70.28 74.49 68.90

Table 2.4 Comparison of the segmentation framework with VGG SegNet: illustrating the effect
of 32 × 32 block-wise smoothening
Algorithm Segmentation

Metric
Finger

All together (%) Index (%) Middle (%) Multiple (%)

VGG SegNet SA 90.08 91.01 91.77 87.45

BSA 94.69 95.04 94.89 94.15

FSA 66.75 65.98 70.16 64.10

VGG SegNet + 32 × 32
block-wise smoothening

SA 89.04 89.89 90.62 86.61

BSA 92.71 93.16 93.06 91.91

FSA 71.22 70.28 74.49 68.90
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Fig. 2.9 Illustration of the successful cases of the segmentation framework

Fig. 2.10 Illustration of the failure cases of the segmentation framework
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Fig. 2.11 Significance of 32 × 32 smoothening over VGG SegNet architecture

reason for higher BSA is the tight bound over the located finger-selfie obtained by the
trained VGG SegNet. A drawback of a tight bound over the located finger-selfie is
that few foreground finger regions are termed as background while most background
regions are predicted as background. Thus, for VGG SegNet, BSA is higher than
FSA due to erroneous classification of foreground pixels on the boundary of the
located finger-selfie.

As observed by the segmentation performance of VGG SegNet in Table2.4, FSA
remains lower due to misclassification of foreground pixels located on the bound-
ary of the located finger-selfie. Loosening the predicted boundary by VGG SegNet
will increase foreground pixels, in turn increasing FSA. Thus, a 32 × 32 block-wise
smoothening layer is added in the VGG SegNet architecture and it aids in increasing
the FSA from 66.75 to 71.22%. While there is a trade-off for reduced SA and BSA
by 1.04 and 1.98%, respectively, the distinctive ridge-valley details present in fore-
ground region in finger-selfies are not compromised. An illustration of the effect of
smoothening over VGG SegNet is shown in Fig. 2.11.

2.4.4.2 Comparison of VGG SegNet with FCN 8

Similar to VGG SegNet, a FCN 8 architecture is also fine-tuned. Inferring from the
positive effect of 32 × 32 block-wise smoothening on FSA, FCN 8 architecture also
includes a 32 × 32 block-wise smoothening. The FCN 8 trains a fully convolutional
encoder–decoder network, and it uses an AdaDelta optimizer and a cross-entropy
loss function.

Table2.5 shows a comparison of segmentation performance of FCN-8-based seg-
mentation with VGG SegNet-based segmentation algorithm. However, with highest
FSA and overall segmentation accuracy, the VGG SegNet + block-wise smoothen-
ing model outperforms under both the scenarios. One of the major reasons for bet-
ter performance of VGG SegNet-based approach is the lesser number of trainable
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Table 2.5 Comparison of segmentation performance of the finger-selfie segmentation framework
with FCN 8
Algorithm Segmentation

metric
Finger

All together (%) Index (%) Middle (%) Multiple (%)

FCN 8 SA 88.55 89.45 90.19 86.01

BSA 93.92 94.22 94.09 93.45

FSA 61.46 60.11 63.66 60.62

FCN 8 + 32 × 32 block-
wise smoothening

SA 87.56 88.37 89.16 85.16

BSA 92.04 92.41 92.43 91.27

FSA 65.81 64.19 67.97 65.26

VGG SegNet + 32 × 32
block-wise smoothening

SA 89.04 89.89 90.62 86.61

BSA 92.71 93.16 93.06 91.91

FSA 71.22 70.28 74.49 68.90

parameters [33]. Using the max-pooling indices from respective encoding layers,
the decoder in VGG SegNet performs sparse upsampling. This procedure reduces
computation time as well as increases generalizability of the model. On the contrary,
FCN 8 learns parameters for upsampling too. Hence, despite data augmentation, the
training data may not be enough to train additional parameters, which justifies VGG
SegNet outperforming FCN 8.

2.4.4.3 Comparison with Skin Color-Based Segmentation

Inspired from existing studies [12, 16, 18, 23], the VGG SegNet + 32 × 32 block-
wise smoothening model is also compared with various skin color-based segmen-
tation algorithms. The results are presented in Fig. 2.12. The foremost comparison
is performed with a thresholding color channel-based skin color segmentation algo-
rithm [34, 35]. The finger-selfie image, available in RGB color space, is converted
to HSV and YCbCr color space. The information in Hue, Cb, and Cr color space
is used to find probable skin color regions using pre-defined thresholds. While the
VGG SegNet + 32×32 block-wise smoothening method provides FSA of 71.22%,
skin color-based segmentation provides FSA of 58%. Segmentation algorithm pro-
posed by Sankaran et al. [12] also fails to perform well. Due to image augmentation
by varying intensities, our fine-tuned model becomes robust toward illumination
variations and flash usage in finger-selfies. However, because of too bright or too
dull skin regions in certain cases, the standard skin color algorithms fail due to fixed
thresholds.

Additionally, a comparison is shown of skin color segmentation with a deep archi-
tecture. Firstly, the salient region is cropped out using skin color-based segmenta-
tion. The salient region is fed as input to the architecture: VGG SegNet + 32 × 32
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Fig. 2.12 Comparison of segmentation accuracies obtained with the skin color-based techniques
and the VGG SegNet with block-wise smoothening algorithm

smoothening. However, both SA and FSA are reduced. The results are shown in
Fig. 2.12. These results indicate that in an unconstrained scenario, skin color-based
segmentation is likely to fail.

2.5 Finger-Selfie Recognition

In 2013, Li et al. [22] highlighted that minutiae-based techniques for feature extrac-
tion and matching would fail for finger-selfies. Sankaran et al. [12] showcased a sim-
ilar inference, highlighting that minutiae-based techniques fail for semi-constrained
scenarios. Hence, the authors used ScatNet for their experiments. While ScatNet
worked for the semi-constrained scenario, the representation would fail to encode
discriminatory information under deformations and rotational variations present in
the UNFIT database. As a result, we too utilized two non-minutiae-based algorithms
for feature extraction, namely CompCode and ResNet50. The details are mentioned
in the subsection below.

2.5.1 Feature Representations

Non-Deep learning: Competitive Coding (CompCode) [13, 36] is a popular non-
minutiae-based feature representation, commonly deployed for fingerprint and palm-
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print recognition. Quite recently, CompCode and its variant were exploited for utiliz-
ing ridge-valley details present in palmprints for person recognition [36].With ridge-
valley pattern forming a unique structure, filters that encode orientation information
can provide an efficient feature representation. CompCode features are extracted by
convolution of the real part of the Gabor filter Gr over the image I. The Gabor filters
Gr have J different orientations, each of which varies from previous by π

J . Along
with orientation variations, Gabor filters differ in frequency W as well. Hence, the
total number of filters convolved to obtain the feature representation are J × W . The
response of the filter, convolved over the segmented finger-selfie I, is given as:

R = I(x, y) ∗ ψR(x, y, ωi, θj) (2.4)

Here, ψR is the real part of the Gabor filter ψ , while ωi and θj are frequency and
orientation of the Gabor filter. Note that the segmented output is upscaled to a fixed
size of 400×400 before applying Gabor filters to obtain the representation.

Deep learning-based approach: The segmented finger-selfie is served as input
to the ResNet50 architecture [14]. ResNets have shown their application to general
object recognition with deeper networks. To counter the effect of vanishing gradient
and overfitting, ResNets have shortcut connections among different convolutional
layers. Intuitively, along with the feedforward mapping F(x) from the previous layer
Cl , the input to the next convolution layer Cl+1 also includes an identity mapping x
from some previous layer Cl−k . Hence, the input to convolutional layer Cl+1 can be
written as:

F(x, {Wi}) + x (2.5)

where Wi signifies transformation through multiple convolutional layers. In the
ResNet50 architecture, the function F(x) involves two stacked convolutional lay-
ers. This implies that the input x is taken from the activated output of layer Cl−2, and
Wix is a transformation of x over two convolutional layers.

The segmentedRGB image is provided to the network at a fixed size of 224 × 224.
In our experiments, the ResNet50 architecture is initialized using the weights of
the model trained on the ImageNet database. With the Softmax classification layer
removed, the network provides a feature vector of dimension 2048 × 1, which is
treated as the feature representation of the finger-selfie. The intermediate layers of

Fig. 2.13 Procedure to obtain feature representation using ResNet50 architecture
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ResNet50 look for different shapes and strokes.Hence, thefinal feature representation
encodes curves, vertical and horizontal lines, and other shapes, which are equivalent
to ridge orientations, finger shape, and phalanx lines. The procedure to obtain the
feature representation is illustrated in Fig. 2.13.

2.5.2 Finger-Selfie Recognition Performance

After extracting features from finger-selfie images, the next step is tomatch the query
feature templates with the gallery templates. The CompCode features are matched
with gallery templates using Hamming distance to obtain a distance score. Simi-
larly, representation obtained from ResNet50 architecture is matched with gallery
templates using cosine similarity.

On the testing set of 57 subjects, receiver operating characteristic (ROC) curve
is used to report the verification performance. The ROC curve is shown in Fig. 2.14.
Table2.6 shows the confusion matrix when feature representation from CompCode
and ResNet50 are matched using Hamming distance and cosine similarity, respec-
tively. In spite of the potency of CompCode for palmprint and fingerprint recogni-
tion, we observe an EER of 41.41% for finger-selfie matching. On the other hand,
the cosine similarity of ResNet50-based representation yields a better performance
with EER as 35.32%.

Fig. 2.14 Receiver operating characteristic (ROC) curve for the VGG SegNet + 32 × 32 segmen-
tation pipeline. Representation from ResNet50 architecture is matched using cosine similarity, and
CompCode features are matched using Hamming distance metric on the test set of UNFIT database
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Table 2.6 Confusion matrix when feature representation from CompCode and ResNet50 are
matched using Hamming distance and cosine similarity, respectively. From a total of 731,025 pairs
(855 probe representations matched with 855 gallery representations), there are 4275 genuine and
726,750 imposter pairs. Values are reported at 10% FAR

Prediction

CompCode+Hamming ResNet50+Cosine

Match Non-Match Match Non-Match

Ground truth Match 1016 3259 1517 2758

Non-match 72,480 654,270 73,335 653,415

The finger-selfie dataset, namely the UNFIT database, has numerous variations.
The variations occur due to an unconstrained environment. The ResNet50 model is
pre-trained on ImageNet database, where objects are of different shapes and sizes.
These learned weights can handle variations in finger-selfies pertaining to scale and
orientation of finger-selfie. Also, ResNet50 feature representation for segmented
finger-selfies is matched using cosine similarity. Since cosine similarity is an angular
similarity of two vectors, variations introduced in the magnitude of representations
due to illumination variations do not effect cosine similarity. Hence, the recognition
model becomes robust toward illumination variations. Thus, the overall performance
ofResNet50+Cosine similarity is better thanCompCode+Hamming distance-based
recognition.

While such results are motivating that deep architectures have a better potential
for finger-selfie recognition, there is still a long way to go for recognition of finger-
selfies in an unconstrained scenario. With the proposed UNFIT database, we expect
that the research community will be driven toward building better segmentation,
enhancement, quality assessment, and feature representation modules for finger-
selfie-based recognition.

2.6 Conclusion

This chapter presents a review of existing research on finger-selfies and later intro-
duces finger-selfie in an unconstrained environment. The proposed UNconstrained
FIngerphoTo (UNFIT) database incorporates various challenges such as rotation,
translation, orientation, position, scale, multiple fingers, illumination, background,
and resolution which arise due to the differing environments in which the finger-
selfies are acquired. This database includes the manual annotations and experimen-
tal protocol, using which segmentation and verification results are benchmarked. A
VGG SegNet-based segmentation approach is presented along with baseline results,
followed by matching algorithms using CompCode and ResNet50 representations.
We assert that the proposed database can take forward the research in this domain
and the segmentation pipeline can segment and perform authentication using finger-
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selfies despite the challenges posed in the database. Future work can include quality
assessment for detection of poor-quality finger-selfies and use of minutiae in con-
junction with deep learning features for improved recognition performance.
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