Chapter 14)
A Framework for Secure Selfie-Based Geda
Biometric Authentication in the Cloud

Veeru Talreja, Terry Ferrett, Matthew C. Valenti and Arun Ross

Abstract Cloud-based selfie authentication has multiple advantages over on-device
selfie authentication: Cloud-based authentication can support nomadic access from
multiple devices including those not owned by the user, can leverage cheap and
scalable utility computing, and can enable rapid innovation by allowing new match-
ing algorithms to be continually deployed with no need to update the local device.
This chapter presents a framework for a cloud-based selfie biometric authentication,
which is termed Selfie-Biometrics-as-a-Service (SBaaS). By leveraging Platform-as-
a-Service (PaaS) concepts, the framework is designed to enable independent software
vendors to develop extensions and add-ons to a provider’s core application. In par-
ticular, the framework creates an innovative marketplace for biometric algorithms
by providing a standard pre-built interface for the development and submission of
new matching algorithms. When an authentication request is submitted, a criteria is
used to select an appropriate matching algorithm. Every time a particular algorithm
is selected, the corresponding developer is rendered a micropayment. Also presented
in this chapter are solutions for preserving the confidentiality of biometrics stored
in the cloud. This can be achieved through the use of biocryptosystems, which are
secure biometric architectures involving the conversion of biometric features into
secure signals that can be stored in the biometric database but are still useable for
authentication. To provide a concrete example, a case study of a selfie-based ocular
recognition system is disclosed, and detailed descriptions are provided of the user
and developer interfaces.

V. Talreja - T. Ferrett - M. C. Valenti
West Virginia University, Morgantown, WV, USA
e-mail: vtalreja@mix.wvu.edu

T. Ferrett
e-mail: terry.ferrett@mail.wvu.edu

M. C. Valenti
e-mail: matthew.valenti@mail.wvu.edu

A. Ross (X))
Michigan State University, East Lansing, MI, USA
e-mail: rossarun @cse.msu.edu

© Springer Nature Switzerland AG 2019 275
A. Rattani et al. (eds.), Selfie Biometrics, Advances in Computer Vision
and Pattern Recognition, https://doi.org/10.1007/978-3-030-26972-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26972-2_14&domain=pdf
mailto:vtalreja@mix.wvu.edu
mailto:terry.ferrett@mail.wvu.edu
mailto:matthew.valenti@mail.wvu.edu
mailto:rossarun@cse.msu.edu
https://doi.org/10.1007/978-3-030-26972-2_14

276 V. Talreja et al.

14.1 Introduction

Recently, there has been tremendous interest in incorporating selfie biometric solu-
tions into consumer electronic such as smartphones and tablets. Traditionally, spe-
cialized biometric sensors have been proprietary with high cost, low market adoption,
and limited compatibility with competing systems [28]. However, smartphones are
equipped with cameras and other sensors suitable for biometric sensing tasks in
the context of face, fingerprint, ocular, and gait recognition. The presence of high-
resolution front-facing cameras, in particular, offers the possibility of performing
selfie biometric recognition within the confines of the device.

Selfie biometric authentication is currently being used by e-commerce companies
to enable customers to purchase merchandise more conveniently, by using a selfie
for login authentication and payment confirmation. It is also being used by banks and
other organizations to protect the security of financial records and access to funds.
Major organizations that have begun using a selfie authentication technology include
Amazon, Mastercard, and Alibaba.

When selfie biometrics are used to authenticate a user on a personal device, the
enrollment is usually local to the device and successful authentication unlocks a
locally stored key for use in a conventional private-key cryptosystem. However,
performing selfie biometric authentication using only the resources local to the de-
vice is challenging due to several confounding factors including variations in head
pose, ambient illumination, facial expression, occlusion, and limited availability of
resources within the smartphone for storage and computation [11, 13]. Another sig-
nificant challenge that cannot be met by a solitary personal device is supporting the
nomadic usage habits demanded by today’s consumers, who want to be able to gain
access to services from any location using any number of personal devices or from
public infrastructure such as ATMs and pay stations. As an alternative to confining
authentication to the local device, biometric authentication can be performed in the
cloud. In this regard, cloud computing may be harnessed as a viable option. Cloud
computing [19] facilitates the outsourcing of computing and storage tasks to in-
frastructures managed by dedicated providers—providing an opportunity to surpass
mobile resource limits [29]. For instance, the feature extraction, data storage, and
matching components of a selfie biometric system can be moved to a cloud infras-
tructure, while leaving only the sensing task in the device. This is an example of a
biometrics-in-the-cloud paradigm [10].

There is an increased interest in performing biometric recognition in mobile de-
vices and as a cloud-based service [2, 4, 9, 12, 16]. In [5], a framework for cloud-
based face recognition emphasizing the parallelization of recognition tasks across
multiple servers is introduced. Performing biometric recognition in mobile devices
and as a cloud-based service has also been adopted widely in the biometric recog-
nition industry. For example, Zoloz provides cloud-based selfie biometric authenti-
cation solutions, which are used by around 50 banks and 200 million users in Asia.
FacePhi offers a cloud-based mobile facial recognition solution, Selphi, that enables
mobile banking users to access their accounts just by taking a selfie.

14 A Framework for Secure Selfie-Based Biometric ... 277

There are a variety of models for providing biometrics in the cloud. Biometrics-as-
a-Service (BaaS) is a model where the biometrics-in-the-cloud architecture is offered
by a service provider [28]. If the infrastructure allows for component developers to
develop and incorporate custom components in the cloud (e.g., feature extraction or
matcher modules), then itis referred to as Platform-as-a-Service (PaaS) [18]. Broadly
speaking, some PaaS providers, such as Bungee Labs and SalesForce.com, provide a
framework that allows independent software vendors (ISV) to develop extensions or
add-ons to the provider’s core application [3]. A key contribution of this chapter is to
present a similar framework for cloud-based selfie biometric authentication known
as Selfie-Biometrics-as-a-Service (SBaaS) that allows the developers of biometric
recognition algorithms to actively contribute to the SBaaS system. This is achieved by
creating an interface for uploading algorithms and a scheme for selecting algorithms
and rendering micropayments to the developers. Having such an infrastructure in
place has the benefit of promoting innovation and reducing costs for the BaaS by
allowing the development of its key components to be outsourced [32].

Authentication in the cloud may raise questions regarding the preservation of in-
formation confidentiality and the use of secure authentication methods in the cloud.
Privacy and security of the biometric data can be achieved by combining cloud au-
thentication modules with biometric security architectures involving the conversion
of biometric features into secure signals that can be stored in the biometric database
but are still usable for authentication.

In this chapter, we present a cloud-based framework SBaa$S for performing selfie
biometric recognition using smartphones or other mobile devices as sensors and
demonstrate a reference implementation of this framework using ocular recognition
as a specific example. The salient features of this framework include the following:

1. Smartphones and other mobile devices, including the cameras resident in them,
require no modification from their stock hardware configuration.

2. Computationally intensive tasks such as segmentation, feature extraction, and
matching are outsourced to the cloud.

3. Software developers can upload their own biometric matching algorithms to the
cloud. Thus, the cloud hosts multiple matching algorithms pertaining to multiple
developers.

4. Enabling developers to upload matching algorithms creates an environment
where the value of algorithms is measured by their in-application performance,
creating incentives for competition and innovation.

5. The matching algorithm is automatically selected based on the characteristics
of the input images and the performance of the algorithm as evaluated on se-
questered data.

6. Every time an algorithm is selected for matching, its developer is credited under
a micropayment model.

In addition to the SBaaS framework, we also present a secure Selfie-Biometrics-
as-a-Service (SSBaaS) framework, in which the biometric features are converted into
secure signals using secure biometric architectures to preserve the privacy informa-
tion of the user.

278 V. Talreja et al.

14.2 Architecture

This section develops a general framework for SBaaS, which can be implemented
for any biometric modality. The components of the system are the user interface,
developer interface, biometric database, and cloud-based computing infrastructure.
The user interface is an application, which may be embodied as a mobile-enabled
web application or a native smartphone app, through which users submit matching
requests. In particular, users use the interface to submit a selfie image to be com-
pared with a corresponding enrollment selfie image stored in the biometric database,
where the biometric database is a storage location for enrollment selfies. The de-
veloper interface is a virtual machine having identical software as the computing
infrastructure for developing and submitting matching algorithms to the system. The
computing infrastructure consists of a cloud server for executing matching requests
using developer-submitted algorithms. The architecture is depicted in Fig. 14.1.

14.2.1 Cloud Computing Characteristics

The definition of cloud computing [19] encompasses several elements that the SBaaS
architecture provides. Users can submit matching requests through a web interface,

Biometrics—as—a—service

Worker N

User
SR R ECET
Interface P B @
— \
Biometric . Matching
Database @ . Algorithms

Algorithm

~”(Virtual Machine Matching
~ Interface > (Shell Server

Developer
Cloud

Platform—-as—a—service Infrastructure

Fig. 14.1 Proposed SBaaS architecture. A user submits a matching request by uploading a probe
selfie captured using the camera on a mobile device. The probe selfie from the user and the corre-
sponding enrollment selfie from the biometric database are submitted to the cloud infrastructure.
The comparison is performed by a worker process. Matching algorithm developers use the virtual
machine interface to develop and submit their algorithms to the cloud infrastructure over a shell
session for deployment to the worker processes

14 A Framework for Secure Selfie-Based Biometric ... 279

and the requests are automatically processed by available servers, providing on-
demand self-service. The web interface is designed for both mobile and desktop use,
incorporating broad network access. Resource pooling is implemented such that
multiple matching requests are distributed among servers, automatically balancing
the request load as needed.

Additional servers can be added to the system rapidly, as the operating system
installation and software provisioning are fully automated, providing rapid elasticity.
The computing framework software is designed to execute matching requests across
any number of servers. The execution of each matching request is tracked, and
users are charged for service in proportion to the number of completed requests
and according to the selected algorithms (i.e., not all algorithms will be priced the
same). Matching algorithm developers are credited for every matching request that
uses their algorithm, making this an instance of measured service.

Cloud services are classified according to the level of abstraction at which the
users and developers interact with the infrastructure. In the SBaaS architecture, users
perform matching operations by submitting requests through a web interface. In the
context of biometrics, this architecture is an instance of biometrics-as-a-service, a
model for providing biometric recognition functionality through a service provider
[28]. A virtual machine containing an operating system and pre-installed software that
is identical to the cloud infrastructure is provided to the software developers, making
this an instance of Platform-as-a-Service. The use of a virtual machine ensures that
developed algorithms are binary compatible with the infrastructure and obviates the
need for developers to provision their own development environments.

14.2.2 User Interface

The user interface shown in Fig. 14.1 is a web application that is accessible on both
mobile and desktop browsers. This interface is used by the user to submit a probe selfie
for matching. The probe selfie and the enrollment selfie from the biometric database
are sent to the cloud infrastructure where preprocessing is done to select the most
suitable matching algorithm. The matching algorithm can be selected automatically
by the system, or the user can also select the matching algorithm through the user
interface. The selected algorithm is executed on the selfies and a match score is
returned. Even though Fig. 14.1 shows that the user interface is embodied as a web
application, it could also be implemented as a native app that runs directly on the
smartphone. While it could be a stand-alone app, it could also be integrated into
another app, such as a banking or e-commerce app.

280 V. Talreja et al.

14.2.3 Biometric Database

The biometric database stores the enrollment selfies of the users. When a user submits
amatching request through the user interface by uploading their selfie to the cloud, the
corresponding enrollment selfie from the biometric database is also uploaded to the
cloud infrastructure for authentication. The biometric database may be centralized,
or it may be distributed. For instance, the biometric database could be stored on the
user’s smartphone as part of the image gallery or it could also be a part of the cloud
infrastructure. Another example of a biometric database is that the user can store their
enrollment selfie in their personal accounts with a storage provider such as Dropbox,
which would cater to the needs of a nomadic user for access from multiple devices.
Alternatively, the biometric database could be held by an entity such as a bank or an
e-commerce site, or it could also be hosted by a third-party authentication service
provider. This idea of third-party authentication service provider is analogous to the
password authentication service rendered by, for example, Facebook or Google.

14.2.4 Computing Infrastructure

The computing infrastructure executes matching requests using developer-submitted
algorithms. The user submits a matching request to the web server by uploading a
probe selfie and, optionally, selecting a matching algorithm. The other selfie for the
matching request is the enrollment selfie from the biometric database. If the user does
not select an algorithm, the system selects one automatically. The server stores the
selfies as data files in the user’s data directory and creates a job file in the user’s job
input queue containing parameters required for matching, such as filesystem paths
to the input files and to the matching algorithm, if an algorithm has been selected.

The job manager preprocesses the job file and moves it to the user’s job running
queue. Preprocessing is performed as follows. If the user selected a specific matching
algorithm, no action is taken during preprocessing. If no algorithm was selected by the
user, the system selects an algorithm automatically depending on the characteristics
of the probe selfie. A table of matching algorithms and the number of times each has
been executed is updated by the job manager, incrementing the number of executions
for the selected algorithm. Following preprocessing, the job manager creates a task
file containing the paths to the input files and the selected matching algorithm and
places the task file in the user task input queue.

The task controller determines the number of tasks contained in all users’ task
input queues and schedules tasks for execution such that all users receive an equal
share of the available processing cores, which is an instance of fair scheduling. The
system is implemented such that other scheduling policies may be incorporated. To
schedule an individual task for execution, the task controller moves the task file from
the user’s task input queue to the global task input queue.

14 A Framework for Secure Selfie-Based Biometric ... 281

A generic worker process running on one of the worker nodes reads a task in the
global task input queue and moves it to the global task running queue. The generic
worker process executes the matching operation, saves the result in the task file, and
moves it to the global task output queue. The task controller moves the task from
the global task output queue to the user task output queue. The task file is read by
the job manager, and the matching result is stored in the job file and moved to the
Jjob output queue. The web interface reads the matching result from the job file and
displays it to the user.

14.2.5 Developer Interface

The developer interface is a virtual machine (VM) that contains software for devel-
oping algorithms for submission to the cloud infrastructure. The operating system
and software environment on the VM are configured identically to the environment
on the computing infrastructure (i.e., the cloud server). Identical configuration obvi-
ates the need for the algorithm developer to invest time installing and configuring a
compatible development environment. The VM enables the developer to implement
matching algorithms that are binary compatible with the infrastructure, and upload
scripts and executables directly for use.

The VM is distributed over the Internet as an archive containing a disk image of
the preinstalled and configured operating system. The software hypervisor, which
executes the virtual machine, is chosen for compatibility with as many widely used
host operating systems as possible. A desktop environment having minimal resource
requirements is chosen for the VM to enhance user interface performance in a virtu-
alized environment.

The VM contains software for algorithm development, such as compilers, text
editors, debuggers, and source control clients, as well as libraries commonly used
for image processing applications and research. The developer must implement their
algorithm such that it can be executed on a command line—a broad and general
requirement that is straightforward to satisfy.

14.3 A Reference Infrastructure Implementation

This section describes a reference implementation of the general SBaaS architecture
described in Sect. 14.2. The user interface implementation is first described, followed
by the developer interface. Finally, details of the computing infrastructure implemen-
tation are given. For the implementation given in this section, the biometric database
is considered to be the image gallery on the user’s smartphone or tablet.

282 V. Talreja et al.

14.3.1 User Interface

The user interface is implemented using Mobile-Google Web Toolkit (MGWT)!
which is a software framework for developing mobile web applications. MGWT is
an extension of Google Web Toolkit (GWT),? which is a Java-based framework,
for creating efficient and optimized browser-based applications. GWT is an open-
source completely free framework that helps developers to build high-performance
web applications without having expert skills in JavaScripting or browser quirks.
Google also uses GWT in many of its products such as Inbox, Calendar, Adwords,
and AdSense.

While GWT can help build fast desktop applications using Java, it lacks wid-
gets and animations for developing mobile apps. MGWT closes this gap—MGWT
provides mobile widgets, smooth animations, touch support, and much more. One
can use MGWT to build highly optimized Java-based AJAX applications that are
compatible with all browsers, including Android and the iPhone mobile browsers.
We used MGWT 1.1.2 along with GWT 2.7 and Eclipse to develop the user inter-
face. A few other Java-based API’s were also used along with MGWT to develop
the functionality of the user interface.

The steps taken by a user to submit a job through the web interface and obtain the
results of the matching are as follows:

1. The web application is accessed by pointing a mobile browser to a known Web
site.

2. After logging into the application, the user can either view their previous job
submissions or submit a new job.

3. If the user wishes to submit a new job, they can upload a probe selfie, a gallery
selfie, and either explicitly select a matching algorithm or allow the interface
to select an appropriate algorithm based on image characteristics, as shown in
Fig. 14.2a.

4. Upon submitting the job request, the user will be redirected to the Job History
page. Shown in Fig. 14.2b s the Job History page view. This page provides details
about all previous jobs submitted by the user. The user can view the complete
details of a particular job—including the input images and the matching score—
by clicking on the associated job.

14.3.2 Computing Infrastructure

The computing infrastructure used in this reference implementation is a heteroge-
neous cloud of servers, each having a varying number of processing cores and main

Uhttp://www.m-gwt.com/.
Zhttp://www.gwtproject.org/.

http://www.m-gwt.com/
http://www.gwtproject.org/

14 A Framework for Secure Selfie-Based Biometric ... 283

tps//werl.cseewvuedu/in [§

1-250f 87 B ¥

Serial # A Iﬂ:«;‘llha Status ;":::unq
1 :f Done 0.12075
Automatic Selection ® . 819 — ——
Al
. 3 i':f Done 09731
Manual Selection @] i
4 ;) Done 0.44723
5 v Done 0271676
6 01 Done 0227528
7 iy Dane 0275401
B :3‘5 Done 0.403736
9 1:‘1 Done 0068674
10 :S‘D Done 0.14846
(a) Algorithm Selection page (b) Job History page

Fig. 14.2 Screen shots of the mobile web app

memory. A single server acts as a router between the Internet and remaining servers
and hosts the web and shell servers. This server is denoted as the head node. The
remaining servers execute matching requests and are denoted as worker nodes. The
operating system on all nodes is Ubuntu Linux. All data are stored in the head node
and shared to the worker nodes using the standardized distributed file system pro-
tocol Network File System (NFS). The software components implementing the job
manager, task controller, and generic worker are designed to work independently of
one another, communicating through files on the file system. This architecture allows
the components to be reused with little or no modification to the code, consistent
with the UNIX philosophy and the notion of a microservice [35].

The job manager is implemented as a MATLAB® program that runs persistently
on the head node within a GNU screen session. When a user submits a matching
request using the web interface, the interface creates a data file (in MATLAB’s .mat
format) containing (a) the paths to the input images and (b) the user’s algorithm
selection option; this file is stored in the user’s home directory. The job manager
creates a task file—also in .matr format—containing paths to the images and the
algorithm to execute.

Like the job manager, the task controller is implemented as a MATLAB program
on the head node that is run in a GNU screen session. The task controller schedules a
user’s task for execution when the worker node resources become available. Exactly
one matching request may be executed for every processing core available on the

284 V. Talreja et al.

worker nodes. Once this limit is reached, further matching requests must wait until
a core becomes available.

A matching request is executed by a generic worker process running on a worker
node. The generic worker process is a MATLAB program which executes the al-
gorithm specified in the task file. The task file specifies an entry function for the
matching algorithm, which is a MATLAB function implemented by the algorithm
developer to initiate algorithm execution. Since the algorithm developer has full
control of the entry point function, they may execute a program implemented in any
language which can be executed on the Linux command line by using the MATLAB
feature to execute shell commands.

Once the algorithm execution is complete, control is returned to the generic
worker, which stores matching results in the task file. The task file is consumed
by the job manager, which stores the matching result in the job file. The job file is
passed through the queues to the web interface, which displays the matching result
to the user. In this reference implementation, the matching score is sent back to the
user.

14.3.3 Developer Interface

The developer interface is implemented as a virtual machine using Ubuntu as the op-
erating system. This is the same operating system installed on the cloud infrastructure
nodes, which simplifies the deployment of matching algorithms. The software tools
and libraries used for compiling algorithms in the developer interface exactly match
those on the infrastructure, enabling the developer to deploy binaries directly. Virtu-
albox was chosen as the hypervisor as it is freely available for all major computing
platforms (Windows, OSX, and Linux). An example of the developer interface is
shown in Fig. 14.3.

The virtual machine is distributed through a publicly accessible Web site as a
compressed archive, which expands to a single Virtualbox Disk Image (VDI) file.
The developer specifies the VDI file as the disk image for a virtual machine in
Virtualbox, and the developer interface is immediately available. Downloading and
executing a virtual machine image is much simpler than a conventional provisioning
process where the developer personally installs Ubuntu and the required software.

The virtual machine contains various machine learning frameworks, an open-
source computer vision library Open CV 2.4.11 [7], and standard utilities for software
development in the Linux environment such as GNU Emacs and the GNU compiler
collection. Documentation for using the interface is provided as a wiki, which is
linked via the interface desktop. The developer deploys their algorithm by uploading
the required scripts, executables, and data files to their home directory in the cloud
and submitting a request for integration to the infrastructure administrator.

14 A Framework for Secure Selfie-Based Biometric ... 285

® OcularCloud - ...= Terminal - dev... 2, 16 Apr 224 developer

- OcularCloud - WVU Wireless C ications Research Lab y - Mozilla Firefox
OcularCloud - ... = | &

see.wvu.edu/wiki/OcularCloud# = e ||<®Search

+ Introduction OcularCloud

« Announcements
« Personnel
= Publications
« Projects
search 1 Introduction
2 Project Enrollment
3 Development Environment
3.1 Installation
toolbox 3.2 Fundamental Usage
- Special pages 4 Examples
4.1 Matching
4.2 Deployment

Go | Search

File Edit View Terminal Go Help
developer@ocularcloud-de:~/osiris/examples/matching/scores$ cat list_result_matching
_inter.txt

eyel.jpg eyel.jpg 0.525641
developer@ocularcloud-de:~/osiris/examples/matching/scores$

A==

Fig. 14.3 Virtual machine implementing the developer interface. The web browser displays the de-
veloper documentation wiki. A terminal window shows the match score for two images as computed
by a matching algorithm

14.4 An Operational Example

Ocular biometrics is the combination of multiple modalities in and near the eye re-
gion, such as the iris and periocular region [1, 25, 36]. In this operational example,
we focus on the iris and periocular modalities as examples (together referred to as
“ocular”’). We performed two sets of experiments that illustrate the potential benefits
of the framework. The first experiment shows that different algorithms provide dif-
ferent matching performance, thereby motivating the need for a system that supports
a plurality of algorithms. The second experiment evaluates the performance of the
system when the algorithm is automatically selected.

14.4.1 An Illustration of Algorithmic Diversity

The dataset used for the first experiment is the ND-IRIS-0405 iris dataset [6]. This
dataset contains 64,980 images corresponding to 356 unique subjects and 712 unique

286 V. Talreja et al.

irises. For our evaluation, we use iris images of 12 subjects and 12 images of the
same iris per subject. In total, we used 144 images. All of the matching algorithms
used by the example system are based on Open Source for IRIS (OSIRIS), which is a
well-known open-source iris recognition system developed in the framework of the
BioSecure project.® Specifically, OSIRIS 4.7 was used,* which is composed of four
processing modules—segmentation, normalization, encoding, and matching. Gabor
filters are applied to the normalized iris image, and the resulting phasor responses
are quantized into a binary feature set. The Hamming distance measure is used to
compare the binary feature sets of two iris images in order to obtain the final matching
score.

In order to mimic the use of multiple algorithms, different Gabor filter parameters
were selected for the OSIRIS algorithm, resulting in different sets of Gabor filters.
This was accomplished by changing the sizes of the Gabor filters, or by changing
the number of Gabor filters. Gabor filter coefficient sizes are defined in terms of
the coefficient matrix (m x n). We used five different Gabor filter parameter sets A,
B, C, D, and E for this experiment. The A, B, and C parameter sets have 2 Gabor
filters each, with coefficient matrix sizes of 9 x 15,9 x 27,and 9 x 51, respectively.
Parameter sets D, and E have 4 and 6 Gabor filters each, respectively. When used
with OSIRIS, each parameter set is viewed as a different algorithm, which we denote
Algorithm A, Algorithm B, Algorithm C, Algorithm D, and Algorithm E.

The following experiment was performed to evaluate and compare the perfor-
mance of the three algorithms A, B, and C. False accept rate (FAR), false re-
ject rate (FRR), and genuine accept rate (GAR) are computed for the test dataset
of 144 images. Based on the number of subjects (N = 12) and the number of
images (t = 12) per subject, we obtain Nz(t —1)/2 = 792 genuine scores and
(N(N — 1)t?)/2 = 9504 imposter scores. The ROC (GAR vs FAR) curve at var-
ious threshold points for the first experiment is shown in Fig. 14.4. Algorithm B
with 2 Gabor filters of size 9 x 27 performs marginally better than the other two
algorithms. But it can be observed from the curves that there is no clear winner.
However, these curves suggest that different algorithms may be needed depending
upon operational requirements of FAR and/or GAR.

A similar experiment was performed for comparing the algorithms (A, D, and E
which have a different number of filters (2, 4, and 6, respectively). The ROC curve
for this experiment is shown in Fig. 14.5. This figure quite evidently solidifies the
assumption and the motivation behind the solution proposed as we can clearly see
that one algorithm never comes out on top as the curves do intersect at a number of
points. So, again as already stated depending on the images, thresholds, and region
of operation, a different algorithm can be selected for matching of the selfie ocular
images.

3http://biosecure.wp.tem-tsp.eu/.
“http://svnext.it-sudparis.eu/svnview2-eph/ref_syst//Iris_Osiris_v4.1.

http://biosecure.wp.tem-tsp.eu/
http://svnext.it-sudparis.eu/svnview2-eph/ref_syst//Iris_Osiris_v4.1

14 A Framework for Secure Selfie-Based Biometric ... 287

100

95

90

85

80

75

GAR (Genuine Accept Rate)

70 & — — Algorithm A
| —*¥— Algorithm B
—+— Algorithm C

65 1 1 1 1
102 10" 10" 10°% 10° 10°% 10' 10'® 102
FAR (False Accept Rate)

Fig. 14.4 ROC curves for three algorithms that each use two filters, but with different sizes

100

95

90

85

80

75

GAR (Genuine Accept Rate)

70 — — Algorithm A
—#— Algorithm D
—+— Algorithm E

65 Il Il Il Il Il
102 107"% 107" 1095 10° 10%® 10" 10"® 102
FAR (False Accept Rate)

Fig. 14.5 ROC curves for three algorithms that each use a different number of Gabor filters

288 V. Talreja et al.

14.4.2 An Illustration of Automatic Algorithm Selection

In order to evaluate our SBaaS framework reference implementation, we conducted
an experiment by using the web app on a smartphone. The trials were conducted
by using a selfie image of the ocular region as one input and an ocular image from
the phone gallery as the second input. Each trial entailed matching two images, and
the experiment entailed 320 such trials. The trials consisted of both genuine and
impostor image pairings.

Once the selfie images were uploaded to the cloud, the algorithm to be executed
on the input images was selected automatically. Based on the input image charac-
teristics, a particular algorithm was automatically invoked by the system at the time
of authentication. In this experiment, three algorithms were used. The first was an
OSIRIS-based iris recognition algorithm (“OSIRIS”), the second was a custom pe-
riocular matching algorithm (“Periocular”), and the third was a neural network iris
matcher (“NN”). The selection method first computes the radius of the iris region in
the input ocular image and uses this to select one of the three algorithms. In particu-
lar, the range between minimum and maximum radius of the iris is divided into three
parts using two thresholds. If the radius of the iris is below the first threshold, the
algorithm “Periocular” is selected. If the radius of the iris is between the first and the
second threshold, then “OSIRIS” algorithm is selected for execution. Finally, if the
radius of the iris is above the second threshold, then “NN” algorithm is executed.

Table 14.1 gives the number of times each algorithm was executed during the 320
trials conducted in the experiment. Besides hosting three completely different algo-
rithms, it is possible for the cloud to host several instances of the same algorithm,
where the different instances use different parameters. The experiment conveys the
main theme of the proposed framework, i.e., depending on the input images, a dif-
ferent algorithm is selected each time and the developer for that selected algorithm
is rendered a micropayment. This experiment shows that the proposed framework
is feasible and creates an innovative and competitive ecosystem that benefits both
software developers and end users.

For the above experiments, the radius of the iris has been considered as one of
the variables to be used for automatic selection of the algorithm. However, there are
a lot of other variables that can be used to automate the selection of the algorithm to
be executed on the pair of input selfies. An example of other variable to be used for

Table 14.1 Table showing the number of executions for each algorithm for a total of 320 trials

Serial No. Developer Algorithm Modality Number of Number of
name name executions executions in
%
1 TMPS OSIRIS Iris 102 31.9
2 ROSS Periocular Ocular 68 21.2
3 VT NN Iris 154 46.9

14 A Framework for Secure Selfie-Based Biometric ... 289

automation could be the matching score generated by the algorithm. An algorithm that
gives the best matching score can be selected and the micropayment can be rendered
to the corresponding developer. However, this entails running all the algorithms in
the cloud on a given pair of inputs which would make the system really slow as it
would lead to a huge computational cost.

Another example to automate the selection could be dependent on the micro-
payments that are being rendered. Assuming that the micropayment amount for an
algorithm is decided by the developer uploading their algorithm (it could be the li-
censing fee for using the algorithm). In that case, the algorithm selection could be
automated based on the micropayment being rendered. Less micropayment algorithm
could be selected more number of times.

Another way could be to select the strategy for automatic selection of the algorithm
dynamically depending on the load of the system. If there is a heavy load and the
number of selfie images to be matched in the queue is above a threshold, then the
algorithm selection could be switched from the original automation strategy to a
new strategy. The new strategy could be dependent on the computational cost of
each algorithm, and this could be used to generate faster matching scores and reduce
the load.

14.5 Secure Selfie-Biometrics-as-a-Service

In the general SBaaS framework discussed in Sec. 14.2, the enrollment selfie is stored
in the biometric database. As in the reference implementation, the biometric database
could simply be the image gallery on the user’s device. Alternatively, the biometric
database could be stored in the cloud or at a private server hosted by a bank, an
e-commerce site, or a third-party authentication service provider. In these alternate
scenarios, the security of the stored biometric data is critical and is not sufficiently
integrated into the previously discussed SBaaS framework. In this section, we present
an improved model that provides a solution for the security of the stored biometric
data. This new model is termed “Secure Selfie-Biometrics-as-a-Service (SSBaaS).”
A general SSBaaS architecture is given in Fig. 14.6. The SSBaaS architecture con-
sists of two modules: a feature extraction module (FEM) and a biometric security
module (BSM). The FEM consists of feature extraction algorithms uploaded by the
developers, and the BSM consists of the common back-end components required to
keep the biometric secure in the SSBaaS architecture.

14.5.1 Feature Extraction Module

The SSBaaS model differs from the previously discussed SBaaS model in terms
of how the developer contributes to algorithms. In the SBaaS model, the developer
uploads an end-to-end biometric matching algorithm to the cloud. However, in the

290 V. Talreja et al.

Feature Extraction Aigorithm -~ | s
Developer et 3
Feature Extraction Biometric Secunty
Module (FEM) Module (BSM)
N E Encodmg Stored Data S }
Enrollment m Algorithm 1 Procedure
: Algorithm 2 i
k Selfies
A Algorithm 3
: i
1 :Database;
[{ ;
L
!)
; - 0
. . ' Comparison 7
Authentication ma ' ———p Jor X
\ d Algorithm n P Procedure v
Selfie . _

Fig. 14.6 General secure selfie-biometrics-as-a-service architecture

SSBaaS model, the developer only uploads algorithms for the extraction of features
from the enrollment and probe selfies. The FEM contains all the feature extraction
algorithms uploaded by the developers. The features extracted from each selfie have
to be in the form of a binary vector. To preserve the privacy of the user, the binary
feature vector is not directly stored in the database. Instead, the binary feature vector
is passed through the BSM to generate a secure biometric template that is stored
in the database. It is important to articulate to the developers the requirements that
are enforced on the biometric feature extraction algorithms to generate the biometric
feature vectors that are compatible for use in the BSM.

The statistical and privacy-preserving properties desired for the biometric feature
vectors are as follows:

1. A bit in the feature vector is equally likely to be zero or one, which helps in
maximizing the entropy of the feature vector.

2. A given bit in a feature vector provides no information about any other bit in the
feature vector, which implies different bits in the feature vector are independent
of each other.

3. The feature vector of one person provides no information about the feature vector
of the other person, which implies inter-user independence.

4. Strong intra-user dependence, which implies different measurements of the same
user are related by a binary symmetric channel (BSC) with crossover probability
p where p is much smaller than 0.5.

Upon registering with the system, a developer is required to be bound to a set
of constraints that enforce the above properties. Satisfying the above properties not

14 A Framework for Secure Selfie-Based Biometric ... 291

only ensures good matching performance but also provides nice privacy-preserving
features. This also benefits the developers by improving the chances of their algo-
rithm being selected and micropayment being rendered to their accounts. However,
designing feature vectors to possess such privacy-preserving properties forces a com-
promise between robustness and discriminability of the feature values, which in turn
affects the accuracy (FRR and FAR) of the system, underscoring the fact that privacy
at this time comes at the price of performance.

14.5.2 Biometric Security Module

In the SSBaaS model, it is assumed that the enrollment biometric information is
stored in the cloud or on a private server. Consequently, the SSBaas model must pre-
serve the biometric information confidentiality of the user. The leakage of biometric
information stored in the cloud to an adversary constitutes a serious threat to secu-
rity and privacy because if an adversary gains access to a biometric template, he can
potentially obtain the stored user information. The attacker can use this information
to gain unauthorized access to the system by reverse engineering the system and cre-
ating a physical spoof. Furthermore, an attacker can abuse the biometric information
for unintended purposes and violate user privacy [21].

To alleviate such security and privacy concerns, secure biometric schemes have
been developed to allow for authentication without requiring the enrollment bio-
metric template to be stored in its raw format. BSM, which is shown as a part of
Fig. 14.6, presents a general secure biometric scheme. The functionality of BSM is
to develop a suitable encoding procedure for transforming enrollment biometric data
into a template to be stored in the cloud and also to develop a comparison procedure
for matching the probe biometric data with the stored template to produce an au-
thentication decision. The BSM constitutes the back end of the SSBaaS architecture
and is common to all developers and users of the complete system. All the feature
extraction developers leverage the same BSM and have no direct access to the BSM.
Rather, they only contribute to the FEM.

There are four main specific implementations of secure biometric schemes that
are widely used: fuzzy commitment, secure sketch, secure multiparty computation,
and cancelable biometrics [26]. Fuzzy commitment and secure sketch are biomet-
ric cryptosystem methods and are usually implemented with error-correcting codes
and provide information-theoretic guarantees of security and privacy (e.g., [14, 15,
20, 23, 30]). Secure multiparty computation architectures are distance based and use
cryptographic tools. Cancelable biometrics, which is a transformation based method,
uses revocable and non-invertible user-specific transformations for distorting the en-
rollment biometric (e.g., [17, 27, 34, 37]), with the matching typically performed in
the transformed domain. Fuzzy commitment, secure sketch, and cancelable biomet-
rics architectures are described briefly below, treating each as a special manifestation
of the BSM in 14.6.

292 V. Talreja et al.

Fuzzy commitment, a classical method of biometric protection, was first proposed
by Juels and Wattenberg [15] in 1999. Fuzzy commitment is a key-binding method
of biocryptosystem, and the encoding procedure involves combining a randomly
generated vector Z with the enrollment biometric feature E resulting in the stored
data S. The comparison procedure checks whether the randomly generated vector Z
is exactly recovered using the probe feature vector P and S. There are many methods
of implementing this fuzzy commitment scheme. However, a common method is to
use error control coding (ECC). An example of using ECC for fuzzy commitment
involves constructing the stored data as S = G’ Z @ E, where G is the generator
matrix of an ECC. During authentication, the probe feature vector P is combined
with S using S @ P. Next, using ECC decoding, the system attempts to decode the
random message Z and allows access only if it is successful.

Secure sketch is a key generation method where some helper data or a sketch S
is derived from the enrolled biometric feature vector E and stored in the database.
The probe is given access when the probe biometric feature vector P is consistent
with the stored secure sketch S. The sketch S should be constructed so that it reveals
little or no information about E. Similar to fuzzy commitment, a common method
of implementing secure sketch is to use ECC. In this method, ECC is applied to the
biometrics or the feature vector to generate a sketch, which is stored in the database.
The secure sketch S is constructed as S = HE; which is constructed as a syndrome of
an ECC with parity check matrix H. A legitimate probe biometric P = E would be a
slightly error-prone version of E. Consequently, authentication can be accomplished
by attempting to decode E given P and S.

Cancelable biometrics involves transforming or distorting the enrollment biomet-
ric with a non-invertible user-specific transformation. The transformation in cance-
lable biometrics is a one-way transformation and can be applied either to the original
biometric or in the feature domain. The advantage of using one-way transforma-
tions is that they are non-invertible and therefore the original biometric cannot be
recovered easily. This transformation is revocable as well, which means that if the
biometric is compromised, a new transformation can be applied to generate the can-
celable template. This helps in protecting the privacy and also deters cross-matching
since a different transformation can be used for a different application. Cancelable
biometrics was first proposed by Ratha et al. [27], following which, there have been
various different methods of generating cancelable biometric templates. Some of the
popular methods use non-invertible transforms [27], bio-hashing [17], salting [37],
and random projections [34]. Literature surveys on cancelable biometrics can be
found in [26] and [24].

The secure biometric architectures explained above could be extended to include
multiple biometric traits of a user [8, 21, 22, 31, 33]. Nagar et al. [21] developed a
multimodal cryptosystem based on feature-level fusion using two different security
architectures, fuzzy commitment, and fuzzy vault. In [31], face and fingerprint tem-
plates are concatenated to form a single binary string, and this concatenated string is
used as input to a secure sketch scheme. In [33], a feature-level fusion framework is
presented to generate a shared representation from each user’s multiple biometrics.
For each user, a selection of a different set of reliable and discriminative features from

14 A Framework for Secure Selfie-Based Biometric ... 293

the shared representation is performed to generate a cancelable biometric template.
This cancelable template is passed through an appropriate error-correcting decoder
to find the closest codeword, which is hashed to generate the final secure multimodal
template.

14.5.3 Reference Implementation of SSBaaS

A reference implementation of the SSBaaS architecture is shown in Fig. 14.7. In
the reference implementation, the focus is on presenting a specific manifestation
of the BSM. During enrollment, the user submits a selfie (i.e., enrollment selfie),
which is transmitted to the cloud. In the cloud, depending on the learning or the
state of the system, one or more feature extraction algorithms from the FEM are
executed for the enrollment selfie. Initially, when the system has not learnt anything,
all the feature extraction algorithms may be executed by the system for a given
enrollment selfie. However, with an increase in enrollments, the system learns the
best feature extraction algorithm for a given enrollment selfie, depending on certain
learning criterion. Examples of these learning criteria are discussed later at the end
of this section. For now, we can assume each feature extraction algorithm from the
FEM is executed and one enrollment feature vector, denoted by E, is generated for
each algorithm. Consequently, the number of enrollment feature vectors for each
enrollment selfie is equal to the number of feature extraction algorithms (say n) in
the FEM. For clarity of exposition, only one feature vector E is shown at the output
of FEM in Fig. 14.7.

Feature Extraction Algorithm S —
Developer o
Feature Extraction e Biometric Security
- Module (FEM) Encoding procedure Module (BSM)
NN) E Se_ Cryptographic Frash(S;
Enrollment m Algorithm 1 _~' > FEC Decoding =5 "4 ching
] Algorithm 2 .
3 Selfies N - @ @ @ @ 00 { i
Algorithm 3 ;
' | Database
1 8 p
4 ' [fhash(Se)
H e ‘Comparison Procedure:
; orom '
e P ing S, Cryptographic _fhash(Sp,
Authentication — ! FEC Decoding —2» Cyptograpl IS or X
e Algorithm n tesbing
\ Selfie
S J

Fig. 14.7 Reference implementation of SSBaaS

294 V. Talreja et al.

The enrollment binary feature vector E is now passed to the BSM module for
further processing and generation of secure biometric template in the database. The
encoding procedure in this BSM consists of two steps: forward error correction
(FEC) decoding and cryptographic hashing. The FEC decoding in this implemen-
tation is the equivalent of a secure sketch template protection scheme. In a secure
sketch scheme, sketch or helper data are generated from the user’s biometrics, and
this sketch is stored in the access control database. There are many methods of im-
plementing this secure sketch scheme. However, a common method is to use error
control coding. In this method, error control coding is applied to the biometrics or the
feature vector to generate a sketch which is stored in the database. Similarly, in this
implementation, the FEC decoding is considered to be the error control coding part
required to generate the secure sketch. The enrollment binary feature vector E gener-
ated from the FEM is considered to be the noisy codeword of some error-correcting
code. This noisy codeword is decoded using FEC decoding, and the output of the
decoding is the biometric secure sketch S, that corresponds to the codeword closest
to the enrollment feature vector. This biometric sketch Se is cryptographically hashed
to generate the secure biometric template fhash(Se), Which is stored in the database.
The same procedure of FEC decoding and cryptographic hashing is applied for all
the n feature vectors generated by the n feature extraction algorithms for an enroll-
ment selfie. This would imply that for each user’s enrollment selfie, there would n
cryptographic hashes stored in the database.

During authentication, the same process is performed. The user submits a probe
selfie, which is transmitted to the cloud for authentication. A probe feature vector P
is generated using the feature extraction algorithm in FEM. Next, the probe feature
vector P is passed through an FEC decoder for the same error-correcting code used
during the enrollment. The output of the FEC decoder is the probe biometric sketch
Sp, which is cryptographically hashed and access is granted only if this hash matches
the enrolled hash. During authentication, if it is a genuine probe, the enrollment E
and the probe vector P would usually decode to the same codeword in which case the
hashes would match and access would be granted. Generally, if it is a legitimate probe,
access would be granted. However, an adversary may use synthesized biometrics to
fool and gain access to the system. Therefore, any analysis of the SSBaaS model must
take into account not only authentication accuracy but also the information leakage
and the possibility of attacking the system when the stored template is compromised.

Initially, when the system is still trying to determine the best feature extraction
algorithm for a given user, the method discussed above could be one way of doing
the enrollment, where the number of hashes stored per user is equal to the number of
feature extraction algorithms in the FEM. Over a period of time, the system learns the
best feature extraction algorithm for a given user depending on a number of variables.
One of the variables is the execution time of the feature extraction algorithm. Some
of the feature extraction algorithms may execute faster than the other algorithms.
However, the execution time could be dependent on the resolution of the image,
which in turn could be dependent on the device being used to capture the selfie. A
device table could be stored in the cloud providing information as to which feature
extraction algorithm works better with images from a particular device. For example,

14 A Framework for Secure Selfie-Based Biometric ... 295

if the device is an iPhone 8, then Algorithm 3 may give fast and accurate results.
In this case, iPhone 8 could be indexed with Algorithm 3. Using this table, the
system can decide which algorithm needs to be used if the user operates a particular
device; thus, it should be able to generate the enrollment feature vector only using
the corresponding algorithms from the device table. However, this is just one method
of deciding the best feature extraction algorithm. There could be other variables such
as matching accuracy and micropayment cost that could be used to decide the best
feature extraction algorithm for particular user enrollment. This is a design decision,
and it might differ depending on the system requirements.

14.6 Summary

In this chapter, we presented a Selfie-Biometrics-as-a-Service framework for per-
forming selfie biometric matching in a cloud environment using the sensors available
in ordinary smartphones. The proposed biometrics-as-a-service paradigm enables
users to perform biometric matching in a web interface. Moreover, the Platform-as-
a-Service model enables the developers of recognition technology to upload their
algorithms to the cloud. By selecting algorithms for execution and rendering mi-
cropayments to the corresponding developer, continuous algorithm innovation is
encouraged. A reference implementation and an operational example have been pre-
sented demonstrating that the architecture is feasible in the form of a case study based
on ocular recognition. Additionally, an overview of a secure Selfie-Biometrics-as-a-
Service model has been discussed with a major focus on biometric template security
in the cloud.

Acknowledgements This research was funded by the Center for Identification Technology Re-
search (CITeR), a National Science Foundation (NSF) Industry/University Cooperative Research
Center (I/UCRC).

References

1. Alonso-Fernandez F, Bigun J (2015) Near-infrared and visible-light periocular recognition with
gabor features using frequency-adaptive automatic eye detection. IET Biom 4(2):74-89

2. Barra S et al (2015) Ubiquitous iris recognition by means of mobile devices. Pattern Recognit
Lett 57:66-73

3. Beimborn D, Miletzki T, Wenzel S (2011) Platform as a service (PaaS). Bus & Inf Syst Eng
3(6)

4. Bharadi VA, D’silva GM (2015) Online signature recognition using software as a service
(SAAS) model on public cloud. In: International conference on computer, communication and
automated, pp 65-72

5. Bommagani AS, Valenti MC, Ross A (2014) A framework for secure cloud-empowered mobile
biometrics. In: Proceeding of IEEE military communications conference, pp 255-261

6. Bowyer KW, Flynn PJ (2010) The ND-IRIS-0405 iris image dataset. University of Notre Dame,
CVRL

296

7.

8.

9.

10.
11.

12.

13.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

V. Talreja et al.

Bradski G (2000) The opencyv library. Dr. Dobb’s J Softw Tools Prof Program 25(11):120-123
(2000)

Canuto AM, Pintro F, Xavier-Junior JC (2013) Investigating fusion approaches in multi-
biometric cancellable recognition. Expert Syst Appl 40(6):1971-1980

Chow R, Jakobsson M, Masuoka R, Molina J, Niu Y, Shi E, Song Z (2010) Authentication in
the clouds: a framework and its application to mobile users. In: Proceedings of the 2010 ACM
workshop on cloud computing security workshop, CCSW *10. ACM, New York, NY, USA, pp
1-6. https://doi.org/10.1145/1866835.1866837

Das R (2013) Biometrics in the cloud. Keesing J Doc Identity, 21-23

de Freitas Pereira T, Marcel S (2015) Periocular biometrics in mobile environment. In: Pro-
ceeding of biometrics: theory, applications and systems (BTAS), pp 1-7

Jeong DS, et al (2006) Iris recognition in mobile phone based on adaptive gabor filter. In:
Proceeding of international conference on biometrics (ICB), pp 457463

Jillela RR, Ross A (2015) Segmenting iris images in the visible spectrum with applications in
mobile biometrics. Pattern Recognit Lett 57(C):4-16

. Juels A, Sudan M (2002) A fuzzy vault scheme. In: Proceeding IEEE international symposium

on information theory, p 408. https://doi.org/10.1109/ISIT.2002.1023680

Juels A, Wattenberg M (1999) A fuzzy commitment scheme. In: Proceeding 6th ACM confer-
ence on computer and communications security, pp 28-36 (1999)

Kang JS (2010) Mobile iris recognition systems: an emerging biometric technology. Procedia
Comput Sci 1(1):475-484

. Kong A, Cheung KH, Zhang D, Kamel M, You J (2006) An analysis of biohashing and its

variants. Pattern Recognit 39(7):1359-1368

Lawton G (2008) Developing software online with platform-as-a-service technology. Computer
41(6):13-15

Mell P, Grance T (2011) The NIST definition of cloud computing. In: Recommendations of
the national institute of standards and technology, special publication pp 800—145

Nagar A, Nandakumar K, Jain AK (2008) Securing fingerprint template: fuzzy vault with minu-
tiae descriptors. In: Proceeding 19th international conference on pattern recognition. https://
doi.org/10.1109/ICPR.2008.4761459

Nagar A, Nandakumar K, Jain AK (2012) Multibiometric cryptosystems based on feature-
level fusion. IEEE Trans Inf Forensics Secur 7(1):255-268. https://doi.org/10.1109/TIFS.2011.
2166545

Nandakumar K, Jain AK (2008) Multibiometric template security using fuzzy vault. In: Pro-
ceeding IEEE international conference on biometrics: theory, applications and systems
Nandakumar K, Jain AK, Pankanti S (2007) Fingerprint-based fuzzy vault: implementation
and performance. IEEE Trans Inf Forensics Secur 2(4):744-757. https://doi.org/10.1109/TIFS.
2007.908165

Patel VM, Ratha NK, Chellappa R (2015) Cancelable biometrics: a review. IEEE Signal Process
Mag 32(5):54-65. https://doi.org/10.1109/MSP.2015.2434151

Raghavendra R, Busch C (2016) Learning deeply coupled autoencoders for smartphone based
robust periocular verification. In: 23rd international conference on image processing (ICIP).
IEEE

Rane S, Wang Y, Draper SC, Ishwar P (2013) Secure biometrics: concepts, authentication
architectures, and challenges. IEEE Signal Process Mag 30(5):51-64. https://doi.org/10.1109/
MSP.2013.2261691

Ratha NK, Chikkerur S, Connell JH, Bolle RM (2007) Generating cancelable fingerprint tem-
plates. IEEE Trans Pattern Anal Mach Intell 29(4):561-572. https://doi.org/10.1109/TPAMI.
2007.1004

Rose J (2016) Biometrics as a service: the next giant leap? Biom Technol Today 2016(3):7-9
Stojmenovic M (2012) Mobile cloud computing for biometric applications. In: 15th interna-
tional conference on network-based information system, pp 654-659

Sutcu Y, Li Q, Memon N (2007) Protecting biometric templates with sketch: theory and practice.
IEEE Trans Inf Forensics Secur 2(3):503-512

https://doi.org/10.1145/1866835.1866837
https://doi.org/10.1109/ISIT.2002.1023680
https://doi.org/10.1109/ICPR.2008.4761459
https://doi.org/10.1109/ICPR.2008.4761459
https://doi.org/10.1109/TIFS.2011.2166545
https://doi.org/10.1109/TIFS.2011.2166545
https://doi.org/10.1109/TIFS.2007.908165
https://doi.org/10.1109/TIFS.2007.908165
https://doi.org/10.1109/MSP.2015.2434151
https://doi.org/10.1109/MSP.2013.2261691
https://doi.org/10.1109/MSP.2013.2261691
https://doi.org/10.1109/TPAMI.2007.1004
https://doi.org/10.1109/TPAMI.2007.1004

14

31

32.

33.

34.

3s.

36.

37.

A Framework for Secure Selfie-Based Biometric ... 297

Sutcu Y, Li Q, Memon N (2007) Secure biometric templates from fingerprint-face features. In:
Proceeding IEEE conference on computer vision and pattern recognition

Talreja V, Ferrett T, Valenti MC, Ross A (2018) Biometrics-as-a-service: a framework to pro-
mote innovative biometric recognition in the cloud. In: Proceeding IEEE international confer-
ence on consumer electronics (ICCE)

Talreja V, Valenti MC, Nasrabadi NM (2017) Multibiometric secure system based on deep
learning. In: Proceeding IEEE global conference on signal and information processing, pp
298-302. https://doi.org/10.1109/GlobalSIP.2017.8308652

Teoh AB, Kuan YW, Lee S (2008) Cancellable biometrics and annotations on biohash. Pattern
Recognit 41(6):2034-2044

Thones J (2015) Microservices. IEEE Softw 32(1), 116, 113-115

Woodard DL, Pundlik S, Miller P, Jillela R, Ross A (2010) On the fusion of periocular and
iris biometrics in non-ideal imagery. In: 20th international conference on pattern recognition
(ICPR). IEEE, pp 201-204

Zuo J, Ratha NK, Connell JH (2008) Cancelable iris biometric. In: Proceeding IEEE interna-
tional conference on pattern recognition, pp 1-4

https://doi.org/10.1109/GlobalSIP.2017.8308652

	14 A Framework for Secure Selfie-Based Biometric Authentication in the Cloud
	14.1 Introduction
	14.2 Architecture
	14.2.1 Cloud Computing Characteristics
	14.2.2 User Interface
	14.2.3 Biometric Database
	14.2.4 Computing Infrastructure
	14.2.5 Developer Interface

	14.3 A Reference Infrastructure Implementation
	14.3.1 User Interface
	14.3.2 Computing Infrastructure
	14.3.3 Developer Interface

	14.4 An Operational Example
	14.4.1 An Illustration of Algorithmic Diversity
	14.4.2 An Illustration of Automatic Algorithm Selection

	14.5 Secure Selfie-Biometrics-as-a-Service
	14.5.1 Feature Extraction Module
	14.5.2 Biometric Security Module
	14.5.3 Reference Implementation of SSBaaS

	14.6 Summary
	References

