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Preface

Biometrics is the science of recognizing individuals based on their biological or
behavioral attributes such as face, fingerprints, iris, gait, voice, or typing pattern.
Biometric solutions are being increasingly incorporated in mobile devices such as
smartphones in order to secure mobile phone services such as banking. In this
context, “selfie biometrics” has gained increased attention from the research com-
munity and industry alike. A “selfie,” by definition, is a self-portrait photograph,
typically taken with a smartphone that is held in the hand or supported by a selfie
stick. “Selfie biometrics” is, therefore, an authentication mechanism where a user
captures images of her own biometric traits (such as face, fingerprints, or iris) by
using the sensors available in the device itself. Thus, no additional hardware is
required for the acquisition of biometric samples for mobile user authentication.

Recently, a number of papers have been published on the topic of selfie bio-
metrics. This book provides the first comprehensive description of the
state-of-the-art in selfie biometrics using face, ocular, fingerprint, and other
modalities. This book includes an introductory chapter by the editors that sum-
marizes the state-of-the-art in this topic, followed by individual chapters describing
the various modalities that are being used for this purpose, the methods that have
been developed to perform authentication using these modalities, and an analysis
of the robustness, privacy, and usability of each method. Liveness detection and
soft-biometrics prediction from selfie images are also covered in this book.

Overall, this book aims to present a clear understanding, recent advances, and
challenges in the field of selfie biometrics. This book is suitable for final-year
graduate students, postgraduate students, engineers, researchers, and academicians
in the field of computer science and engineering who are engaged in various
disciplines of system sciences, information security, privacy, and identity busi-
nesses. The objective of this book is also to engage researchers from academia and
industry on the state-of-the-art mobile biometric research and technology and to
mitigate the potential problems in real-time integration of selfie biometrics for
mobile user authentication.
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Unique Features

1. First comprehensive book on the state-of-the-art methods for selfie face, finger,
and ocular biometrics for mobile user authentication

2. Review latest developments on privacy, security, usability, liveness detection,
and soft-biometric prediction from selfie images

3. Enlist the challenges involved in the real-time integration of selfie biometrics for
mobile use cases.

Audience

This book is essential reading for anyone involved in biometric-based person
authentication, privacy and security, mobile security, and adversarial pattern clas-
sification. Students, researchers, practitioners, engineers, and technology consul-
tants are the main audience. Those who are new to the field will also benefit from
the introductory chapter outlining the basics for the most important terms and topics
associated with selfie biometrics.

Organization

This book is organized as follows: Chapter 1 provides an overview of selfie face,
finger, and ocular modalities. Further, spoofing and anti-spoofing techniques,
soft-biometrics prediction, cloud-based services and challenges, and future research
directions for selfie biometrics are also discussed. Part I discusses methods for selfie
finger, ocular, and face biometrics for mobile user authentication. Part II discusses
spoofing and anti-spoofing schemes for selfie biometrics. Part III discusses
soft-biometric prediction and continuous user authentication based on selfie bio-
metrics. Part IV discusses the framework for security, privacy, and case study on
usability along with a distributed protocol for selfie biometrics.

Wichita, USA Ajita Rattani
Kansas City, USA Reza Derakhshani
East Lansing, USA Arun Ross
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Chapter 1
Introduction to Selfie Biometrics

Ajita Rattani, Reza Derakhshani and Arun Ross

Abstract Traditional password-based solutions are being predominantly replaced
by biometric technology formobile user authentication. Since the inception of smart-
phones, smartphone cameras have made substantial progress in image resolution,
aperture size, and sensor size. These advances facilitate the use of selfie biomet-
rics such as the self-acquired face, fingerphoto, and ocular region for mobile user
authentication. This chapter introduces the topic of selfie biometrics to the readers.
Overview of the methods for different selfie biometrics modalities is provided. Live-
ness detection, soft-biometrics prediction, and cloud-based infrastructure for selfie
biometrics are also discussed.Open issues and research directions are included to pro-
vide the path forward. The overall aim is to improve the understanding and advance
the state-of-the-art in this field.

1.1 Mobile Biometrics

Biometrics is the science of recognizing an individual based on the inherent physical
(fingerprints, iris, face, hand geometry, and palmprint) or behavioral traits (gait,
voice, and signature) associatedwith the person [1]. A conventional biometric system
operates by capturing the biometric trait of a person and comparing the acquired
sample with the biometric template(s) in a database to determine the identity or to
validate a claimed identity.

With the unprecedented mobile technology revolution, mobile devices have
transcended from their primary communication role to all-in-one platforms for
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2 A. Rattani et al.

shopping, entertainment, productivity, and social networking. An increasing number
of individuals are accessing the internet and online services, such as e-commerce and
banking, using their smartphones instead of traditional desktop computers. Although
individuals are using their smartphones for sensitive applications and transactions,
these devices can be easilymisplaced, lost, or stolenmore often than other computing
devices, thereby demanding the use of effective user authenticationmechanisms. Tra-
ditional methods for mobile security include the use of passwords, PINs, and screen
lock patterns to restrict access to authorized users. However, these methods have
many security drawbacks: They can be guessed, forgotten, stolen, or eavesdropped.

Password replacement solutions are now predominantly based on biometrics.
In some cases, passcodes are used in conjunction with biometrics in a multifactor
configuration. The use of biometric technology in mobile devices has been referred
to as mobile biometrics, encompassing the sensors that acquire biometric samples
as well as the associated algorithms for preprocessing, and matching the biometric
samples to verify the claimed identity [2–4].

Since the inception of smartphones, smartphone cameras have made substantial
progress. Image resolution, aperture size, and a sensor size of smartphone cameras
have all improved tremendously over time. Since 2008, the megapixel count of these
images has gone up from 2 to 20+; apertures have become brighter, with f/1.4 camera
modules being considered; and sensor diagonal has increased from 0.25 inches to
approximately 0.45 inches.1 These advances in smartphone cameras facilitate the
acquisition and integration of biometric modalities such as the face and ocular region
for mobile user authentication [5–8]. Figure1.1 shows an example of face-based
mobile user authentication. This figure was taken from https://www.scnsoft.com/
blog/3d-face-recognition-to-join-a-list-of-mobile-enabled-biometrics.

Other popular modalities such as fingerprint and iris that are used for mobile user
authentication warrant the use of additional hardware for data acquisition. Further,
behavioral biometrics such as gait/motion, keystroke, and touch/swipe analysis have
also been used for user authentication in mobile devices [9, 10].

Mobile biometrics is, ubiquitously, installed in 100 percent of mobile devices,
fueled by advances inmobile biometrics and rapid expansion of smartphones’market
share. Figure1.2 is a chart from Statista showing biometrics to be installed on 100%
of wearables and tablets by 2020. In fact, the latest smartphones provide a range of
biometric capabilities, with the most common OEM-provided modalities being the
face, fingerprint, and at times iris recognition. Mobile device applications include
online banking, password vaults, signing documents univocally, secure access to
Web sites, and execution of administration procedures. E-commerce giant Alibaba is
using facial recognition service in their mega-app Alipay Wallet.2 MasterCard3 has
introduced user authentication based on face biometrics, and many more followed
suit. Some versions of the Android mobile operating system have also used face

1https://petapixel.com/2017/06/16/smartphone-cameras-improved-time/.
2https://www.computerworld.com/article/2897117/alibaba-uses-facial-recognition-tech-for-
online-payments.html.
3http://www.bbc.com/news/technology-35631456.

https://www.scnsoft.com/blog/3d-face-recognition-to-join-a-list-of-mobile-enabled-biometrics
https://www.scnsoft.com/blog/3d-face-recognition-to-join-a-list-of-mobile-enabled-biometrics
https://petapixel.com/2017/06/16/smartphone-cameras-improved-time/
https://www.computerworld.com/article/2897117/alibaba-uses-facial-recognition-tech-for-online-payments.html
https://www.computerworld.com/article/2897117/alibaba-uses-facial-recognition-tech-for-online-payments.html
http://www.bbc.com/news/technology-35631456


1 Introduction to Selfie Biometrics 3

Fig. 1.1 Face biometrics for mobile user authentication

biometrics to log in users (Google has developed “Face Unlock” for Android 4.0).4

It is reported that future versions of Android will be shipped with native support for
more advanced and secure 3D face recognition algorithms,5 similar to what Apple
introduced under their “Face ID” moniker with iPhone X.

The applications ofmobile biometrics are in border control, financial transactions,
and physical and logical access control.

• Border Control: Passenger-friendly security is one of the primary concerns at
high-volume border checkpoints such as airports. Mobile devices are exceedingly
being utilized to facilitate customs and border crossings6 to address such needs. As
such, deployment of mobile devices is poised to automate the process of traveler
identification and border security at checkpoints like airports and seaports in a
secure yet user-friendly and private manner. Mobile passport apps are already tak-
ing advantage of modalities such as face to authenticate and process international
travelers using their smartphones.7

• Financial Market: The democratization of financial services has gone hand-in-
hand with the spread of mobile technologies, enabling consumers to have access

4https://www.technologyreview.com/s/425805/new-google-smart-phone-recognizes-your-face/.
5http://www.planetbiometrics.com/article-details/i/9918/desc/google-developing-3d-face-
authentication/.
6https://www.airsidemobile.com.
7https://mobilepassport.us/faq.php.

https://www.technologyreview.com/s/425805/new-google-smart-phone-recognizes-your-face/
http://www.planetbiometrics.com/article-details/i/9918/desc/google-developing-3d-face-authentication/
http://www.planetbiometrics.com/article-details/i/9918/desc/google-developing-3d-face-authentication/
https://www.airsidemobile.com
https://mobilepassport.us/faq.php


4 A. Rattani et al.

Fig. 1.2 Chart from Statista, biometrics to be installed on 100% of wearables and tablets by 2020.
Source https://www.statista.com/chart/11122/the-future-of-mobile-biometrics/

to a wide swath of financial services without needing the traditional brick-and-
mortar institutions, especially in developing markets. Examples include online
shopping, micro-lending, immediate transfer of funds, or paying bills via mobile
apps. Biometrics is increasingly being used to authenticate the involved parties
in such transactions. Mobile wallets and other payment systems such as Apple
Pay and Android Pay, along with major players like MasterCard8 are utilizing
smartphone-based biometric authentication for financial transactions.

• Physical and Logical Access Control: Access control is used to regulate restricted
access to resources or a place. Physical and logical are the twomain types of access
control.While physical access control limits access to buildings, rooms, areas, and
IT assets, logical access control limits connection to computer networks, system
files, and data. The role of biometrics in physical and logical access control is to
avoid illegal access by validating the identity of a user through biometric traits.
These biometric-based access control solutions are better authentication methods
compared to physical keys, key cards, and PINs because they cannot be lost, stolen,
and easily compromised. Out of band authentication is one popular method where
a mobile device is used to transmit the user’s identity from his or her phone to a
nearby logical or physical asset in need of user authentication, such as a personal
computer or a smart lock.

8http://newsroom.mastercard.com/eu/press-releases/mastercard-makes-fingerprint-and-selfie-
paymenttechnology-a-reality/.

https://www.statista.com/chart/11122/the-future-of-mobile-biometrics/
http://newsroom.mastercard.com/eu/press-releases/mastercard-makes-fingerprint-and-selfie-paymenttechnology-a-reality/
http://newsroom.mastercard.com/eu/press-releases/mastercard-makes-fingerprint-and-selfie-paymenttechnology-a-reality/


1 Introduction to Selfie Biometrics 5

Mobile biometrics aims to achieve conventional functionality and robustness
while supporting portability, mobility, and user experience; bringing greater con-
venience and opportunity for deployment in a wide range of operational environ-
ments. The technology is expected to continue experiencing exponential growth due
to increased consumer demand for convenient security. The Global Biometrics and
Mobility Report in 2017 by Acuity Market Intelligence projected that global mobile
biometricmarket revenueswill reach 50.6 billion annually by 2022. This includes 2.7
billion biometrically enabled smart mobile devices generating 3.1 billion in biomet-
ric sensor revenue annually, 16.7 billion biometric app downloads generating 29.2
billion in annual revenues from direct purchase and software development fees, and
1.37 trillion biometrically secured payment and non-payment transactions generat-
ing 18.3 billion in annual authentication fees: http://www.acuity-mi.com/GBMR_
Report.php/.

However, it is worth mentioning that classical methods for biometric recognition
may not be readily adaptable to a mobile environment because of the following
factors:

• Due to device mobility and operation in an uncontrolled environment, biomet-
ric samples acquired using a mobile phone’s front-facing cameras are usually
degraded due to factors such as specular reflection, motion blur, illumination vari-
ation, and background lighting, not to mention the inherent lower quality of front-
facing cameras compared to the main back-facing modules used in smartphones.
Therefore, more efficient and robust methods may be required for biometric inte-
gration in mobile devices.

• Although the computational power of mobile devices is proliferating, it still may
not be sufficient for real-time operation of highly accurate and computationally
costly methods for biometric authentication.
Given that about 0.5 seconds is spent by the camera module to initialize, meter,
and capture an image, an ideal biometric recognition module should take less than
half a second for the whole process not to make more than a second, an essential
factor in user experience.

Therefore, most of the proposed studies on mobile biometric methods have
emphasized on developing computationally efficientmethods (lowmemory andCPU
impact) for accurate recognition of mobile use cases [11–13].

1.2 Selfie Biometrics

The storage and computational capability of smartphones have improved substan-
tially over time. Figure1.3 shows the enhancement in the storage capabilities of
different models of flagship smartphones.

Chipsets from four leading vendors that power the handsets are as follows:Apple’s
4-core A10 Fusion (iPhone 7/7 plus) and 6-core AI- and AR-optimized A11 Bionic

http://www.acuity-mi.com/GBMR_Report.php/
http://www.acuity-mi.com/GBMR_Report.php/


6 A. Rattani et al.

Fig. 1.3 Charts from ZDNet shows substantial improvement in storage capability of flagship
smartphones. Source https://www.zdnet.com/article/flagship-smartphones-specs-benchmarks-
and-prices-for-iphone-samsung-huawei-and-more//

(iPhone 8/8Plus/X). Samsung’s 8-core Exynos 8995 in the Galaxy S8/S8+/Note
8 (worldwide versions). Qualcomm’s mid-range 8-core Snapdragon 625 (Black-
Berry KEYone and Motion); 4-core 820 (HP Elite x3) and 821 (HTC U Ultra, LG
G6); and top-end 8-core 835 (Google Pixel 2/2XL, HTC U11+, LG V30, Moto Z2
Force, OnePlus 5T, Galaxy S8/S8+/Note 8 [US/China versions], Sony Xperia XZ
Premium). HiSilicon’s Kirin 960 in the Huawei P-series and Honor handsets, and
the AI-optimized 8-core Kirin 970 in the new Huawei Mate 10 and 10 Pro.9 Chart
in Fig. 1.4 shows how these platforms measure up in terms of processor and graph-
ics performance, as assessed by Primate Labs’ multi-core Geekbench 4 (Gb4) and
Futuremark’s 3DMark Ice Storm Unlimited (ISU) benchmarks, respectively. This
chart shows continuous improvement in the CPU and GPU performance over time.

The advancement in storage and computational performance, to a great extent,
facilitate the use of Selfie biometrics. In the context of mobile device, a selfie, by
definition, is a self-portrait photograph, typically taken with a smartphone’s camera
while being held in hand or supported by a selfie stick. Selfie biometrics is, therefore,
an authentication mechanism where a user captures images of her biometric traits
(such as the face or ocular region) by using the imaging sensors available in the
device itself.

9https://www.zdnet.com/article/flagship-smartphones-specs-benchmarks-and-prices-for-iphone-
samsung-huawei-and-more/.

https://www.zdnet.com/article/flagship-smartphones-specs-benchmarks-and-prices-for-iphone-samsung-huawei-and-more//
https://www.zdnet.com/article/flagship-smartphones-specs-benchmarks-and-prices-for-iphone-samsung-huawei-and-more//
https://www.zdnet.com/article/flagship-smartphones-specs-benchmarks-and-prices-for-iphone-samsung-huawei-and-more/
https://www.zdnet.com/article/flagship-smartphones-specs-benchmarks-and-prices-for-iphone-samsung-huawei-and-more/


1 Introduction to Selfie Biometrics 7

Fig. 1.4 Charts from ZDNet shows substantial improvement in computational capabil-
ity of flagship smartphones. Source https://www.zdnet.com/article/flagship-smartphones-specs-
benchmarks-and-prices-for-iphone-samsung-huawei-and-more//

The advantages of selfie biometrics include:

• No Additional Hardware Needed: As the mobile camera is used for selfie image
acquisition, no additional hardware is needed for personal authentication inmobile
devices.

• High Acceptability and Usability: Over 1million selfies are taken each day glob-
ally (https://infogram.com/selfie-statistics-1g8djp917wqo2yw). Given the popu-
larity of selfies, it is widely accepted as a means of mobile user authentication.

Challenges of selfie biometrics include intra-class variations such as poses, occlu-
sion, low lighting, spectral reflection, and motion blur due to operation in a free
mobile environment.

1.2.1 Types of Selfie Biometrics

1.2.1.1 Face

Figure1.5 shows sample face images acquired using the front-facing camera of an
iPhone 5s. The complete face recognition pipeline consists of selfie face acquisi-
tion, face detection, possibly normalization, and finally matching with one or more

https://www.zdnet.com/article/flagship-smartphones-specs-benchmarks-and-prices-for-iphone-samsung-huawei-and-more//
https://www.zdnet.com/article/flagship-smartphones-specs-benchmarks-and-prices-for-iphone-samsung-huawei-and-more//
https://infogram.com/selfie-statistics-1g8djp917wqo2yw


8 A. Rattani et al.

Fig. 1.5 Example face images acquired using the front-facing camera of iPhone 5s

stored templates. Face normalization reduces the effect of intra-class variations such
as lighting and poses variations through preprocessing, geometric frontalization,
and registration routines. Most of the proposed studies on mobile face biometrics
have emphasized developing computationally efficient methods (low memory and
CPU impact) for face detection (such as optimized Viola–Jones) and recognition
[5, 14–21]. Mobile face recognition methods can be broadly categorized into (a)
client–server based and (b) device based [21]. In the client–server approach, face
acquisition, face detection, and sometimes feature extraction routines are performed
on the device side. The remaining computationally intensive tasks, such as clas-
sifier training and recognition, are performed on the server. In the device-based
approach, all of the operations are performed within the device and exceedingly
using secure hardware pipelines. The templates themselves are usually stored on the
device, especiallywith nativeOEM implementations. However, third-party appsmay
store templates on secure servers via their cloud services. Of late, deep learning such
as CNN solutions have been successfully ported into mobile phones, and they are
working with very high accuracy and speed both on the device- and server-side [22]
applications. One widely deployed commercial example is Face++ (https://www.
faceplusplus.com/)).

1.2.1.2 Ocular

Ocular biometrics encompasses the imaging and use of characteristic features
extracted from the eyes for personal recognition. Ocular biometric modalities in
visible light have mainly focused on iris, blood vessel structures over the white of
the eye (mostly due to conjunctival and episcleral layers), and the periocular region
around the eye. Figure1.7 shows an example of an eye image labeled with iris,
conjunctival vasculature, and periocular region. Textural descriptors (such as LBP,

https://www.faceplusplus.com/
https://www.faceplusplus.com/
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Fig. 1.6 Sample eye images acquired using iPhone 5s containing variations such as a light and b
dark irides, c reflection, and d imaging artifact

Fig. 1.7 Example eye image labeled with iris, conjunctival vasculature, and periocular region

LQP, and BSIF) and deep learning-based CNNs have been mostly used for identity
verification in mobile ocular biometrics [23–26]. In 2016, a large-scale competition
was conducted on Mobile Ocular Biometric Recognition on VISOB dataset [27].
Figure1.6 shows substantial variations in the ocular images captured using the front-
facing camera of iPhone 5s from publicly available VISOBmobile ocular biometrics
dataset [27].

1.2.1.3 Fingerphoto

There has been a recent trend in touchless fingerprint recognition technology, where
the back-facing smartphone cameras acquire high-resolution photographs of finger
ridge patterns. This mobile modality is henceforth referred to as fingerphotos10 [8,
28]. Fingerphoto authentication methods may offer an economical alternative to tra-
ditional fingerprint systems for mobile use cases as they avoid the need for extra
hardware [29]. The further advantages of the touchless finger photo authentication
methods over traditional touch-based fingerprint include being hygienic and remov-
ing the risk of leaving latent prints on the sensor. Furthermore, there are no finger
impression deformations in the acquired images that could be caused by pressing the

10Though not a traditional selfie capture per se, and given its commonalities with selfie mobile
biometrics, we have included it among other selfie modalities.
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Fig. 1.8 Complete pipeline of fingerphoto-based system in mobile devices

finger on a touch-based sensor. Low-quality fingerprints due to low pressure or dry
skin may also be mitigated by such touchless photographic fingerprint acquisition.

A typical pipeline for finger photo authentication system consists of imaging one
ormore fingers (with orwithout flash)with a high-quality back-facingmobile camera
from a short distance. This is followed by image segmentation, enhancement, and
minutiae extraction. The extracted minutiae form the template that is subsequently
matched with an enrolled reference to establish the identity of the mobile user (see
Fig. 1.8). Some of the finger photo challenges include the improper focus of the
camera due towhich ridge patterns of the fingermay not be captured. Further, various
potential poses of the finger must be considered: the orientation angle, pitch angle,
and position of the finger, as well as the distance of the finger to the camera and the
background.

1.2.2 Selfie Biometrics and Spoof Attacks

As the use of biometrics for smartphone user authentication continues to increase,
capabilities to detect spoof attacks are needed to alleviate user concerns. A spoof
attack occurs when an adversary mimics the biometric trait of another individual to
circumvent the system for illegitimate access and advantages [30]. These attacksmay
pose a serious threat because they can be executed at the sensor (camera) levelwithout
requiring any technical knowledge of the functioning of the biometric system. Lack
of efficient anti-spoofing and liveness detection methods may create a formidable
psychological barrier in the mass adoption of biometrics in mobile applications.
Therefore, there is a pressing need for the development of robust countermeasures
against spoof attacks for mobile biometrics.
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Fig. 1.9 Example of print, replay, and 3D mask attacks for face biometrics in mobile device [31]

In context of selfie biometrics, spoof attacks mainly consist of (i) print attacks,
(ii) photograph attacks, and (iii) replay attacks. Print and photograph attacks can be
executed using a selfie photograph of the enrolled user, which may be displayed in
hard copy (2D or 3D) or on a screen to themobile device. The video replay attacks are
performed by displaying a video on a mobile screen. Anti-spoofing countermeasures
aim to disambiguate live, and real face captures from spoof counterparts to avoid
spoof attacks in mobile devices.

Face: Figure1.9 shows example of print and replay attacks for face biometrics
in the mobile device. Apart from print and photograph attacks, face recognition is
also subject to 3D facemask attackswhich require high-resolution fabrication system
capturing the 3D shape and texture information of the target subject’s face. However,
print and replay attacks can be launchedmore easily bymalicious users than 3Dmask
attacks.

The existing countermeasures can be coarsely classified into motion analysis-
based [32–35], texture-based [36–44], image-quality based [39, 45–47], and deep
learning-based (which can be considered as an end-to-end data-driven spoofing arti-
fact feature extractor and classifier) [48]. Motion analysis-based methods can be
considered as liveness detection, and texture, image quality and deep learning-based
methods can be considered as spoof detection methods (since they mostly detect
artifacts and distortions arising from spoofing methods).

Fingerphoto: The types of spoof attacks for finger photo can be photograph,
print, and spoofs fabricated using material such as gelatin and latex. Countermea-
sures include use of textural descriptors such as local binary patterns, dense scale
invariant feature transform, and locally uniform comparison image descriptor fea-
tures combined with with classifiers such as support vector machine (SVM) [49], use
of challenge response [50] and deep convolutional neural networks (which combines
feature extraction and classification steps of the earlier mentioned methods) [51].
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Ocular: Apart from photograph and print attacks, spoof attacks for ocular or
iris biometrics may include the use of artificial eyes and patterned lenses. Common
countermeasures include use of local and global textural descriptors such as LBP
and GLCM [52], eye motion analysis, and convolutional neural networks, similar to
face anti-spoofing [53].

1.2.3 Selfie and Cloud-Based Services

The significant challenge associated with selfie biometrics is the limited availability
of resources—within the smartphone—for storage and computation. Therefore, it
may be necessary in some cases to outsource the computing and storage demands to
a more powerful server outside the smartphone. In this regard, cloud computing may
be harnessed as a viable option [54, 55]. Cloud computing facilitates the outsourcing
of computing and storage tasks to infrastructures managed by dedicated providers
a potential approach to surpassing mobile resource limits. For instance, the feature
extraction, data storage, and matching components of a biometric system can be
moved to a cloud infrastructure, while leaving only the sensing task in the smart-
phone. There is an increased interest in performing biometric recognition in mobile
devices and as a cloud-based service [54, 56, 57]. If the biometrics-in-the-cloud
architecture is offered by a service provider, then it is referred to as Biometrics-as-
a-Service (BaaS). If the infrastructure allows for component developers to develop
and incorporate custom components in the cloud (e.g., feature extraction or matcher
modules), then it is referred to as Platform-as-a-Service (PaaS). This paper in [54]
presents a framework for Biometrics-as-a-Service (BaaS) that performs biometric
matching operations in the cloud while relying on simple and ubiquitous consumer
devices such as a smartphone.

1.2.4 Selfie and Soft Biometrics

Apart from biometric authentication using selfie images, several soft-biometric
attributes can also be extracted from selfie captures. These soft-biometric attributes
may include eyeglasses, gender, age, and clothing, which can be used in the absence
of primary biometric trait, or conjunction with a primary biometric trait for perfor-
mance enhancement. Also, these soft-biometric traits can also be used for continuous
user authentication to verify that the user initially authenticated is still the user in
control of the device [58]. Selfie soft biometrics including gender [59–61], age [62],
eyeglasses [63], eyebrows [64], and clothing information [65] have been studied for
usewithmobile face and ocularmodalities for performance enhancement and contin-
uous user authentication (see Fig. 1.10). Further study in [66] proposed a combination
of soft-biometric attributes such as face shape, skin tone, hair color, eyeglasses, eth-
nicity, and gender for continuous user authentication in mobile devices.
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Fig. 1.10 Example of soft-biometric attributes from selfie images

1.3 Challenges and Future Directions

One of the main challenges in selfie biometrics involves developing accurate and
computationally efficient methods for the mobile environment. Due to data acqui-
sition in a mobile and uncontrolled environment, the acquired samples may exhibit
substantial intra-class variations. This can lower the accuracy of the system and may
even frustrate users of the devices.

A recent survey [21] suggests an average reported face recognition accuracy of
92.3% in amobile environment. However, most of the existingmethods are evaluated
on in-house mobile datasets of limited size. Therefore, the relevance of the reported
results cannot be established.

Reported error rates regarding the performance of proposed countermeasures
against spoof attacks [21] in mobile devices are usually high, especially for replay
attacks. This suggests the need for advanced and accurate methods for liveness and
spoof detection for selfie biometrics.Continuous advancement in spoofing techniques
will lead to novelmethods for spoof attacks. There is an immediate need for designing
a liveness detection/ anti-spoof method that is robust across new spoof attacks [67].
Therefore, the development of advanced and open-set liveness/ anti-spoof detection
methods for known and novel spoof attacks should be the path forward.

With the advancement in mobile technology, deep learning-based solutions
became viable for client-oriented and cloud-based mobile biometrics applications.
Consequently, deep learning-based solutions for accurate recognition and anti-
spoofing should be developed. Advanced loss functions such as triplet- [68] and
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center-loss [69] should be utilized for the task. There is a room for the development
of a framework for Biometrics-as-a-Service that performs selfie matching opera-
tions in the cloud. Dynamic fusion framework needs to be developed for combining
available soft-biometric attributes from selfie images for performance enhancement.
Efforts should also be directed toward large-scale database collection for selfie face
images to evaluate and compare deep learning solutions on a common test set.

1.4 Conclusion

Recently, several papers have been published on the topic of selfie biometrics. This
book describes the state-of-the-art in selfie biometrics with a focus on the face,
ocular, and finger modalities. This introductory chapter has described the notion
of selfie biometrics and summarized the notable state of the art on this topic. This
chapter will be followed by individual chapters covering: various selfie modalities,
the methods of selfie-basedmobile user authentication, predicting soft biometrics for
performance enhancement and continuous authentication, anti-spoofing (measures
and robustness), quality, privacy, security, and usability of selfie biometrics.
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Chapter 2
User Authentication via Finger-Selfies

Aakarsh Malhotra, Shaan Chopra, Mayank Vatsa and Richa Singh

Abstract In the last one decade, the usage and capabilities of smartphones have
increasedmultifold.Tokeepdata anddevices secure, fingerprint and face recognition-
based unlocking are gaining popularity. However, the additional cost of installing
fingerprint sensors on smartphones questions the use of fingerprints. Alternatively,
finger-selfie, an image of a person’s finger acquired using a built-in smartphone
camera, can act as a cost-effective solution. Unlike capturing face selfies, capturing
good-quality finger-selfies may not be a trivial task. The captured finger-selfie might
incorporate several challenges such as illumination, in- and out-of-plane rotations,
blur, and occlusion. Users may even present multiple fingers together in the same
frame. In this chapter, we propose authentication using finger-selfies taken in an
unconstrained environment. The research contributions include the UNconstrained
FIngerphoTo (UNFIT) database which is captured under challenging unconstrained
conditions. The database also contains the manual annotation of identities and loca-
tion of the fingers. We further present a segmentation algorithm to segment finger
regions and, finally, perform feature extraction and matching using CompCode and
ResNet50. Experimental results show that despite multiple challenges present in the
UNFIT database, the segmentation algorithm can segment and perform authentica-
tion using finger-selfies.
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2.1 Introduction

In the current digital era, smartphones and mobile devices are ubiquitous. With the
growth of smartphone usage, people store enormous amounts of personal and confi-
dential information on their smartphones. Storing such information on smartphones
demands suitable security mechanisms. Traditional security measures include pass-
words, patterns, or pins. However, these methods need to be memorized by the users
and are vulnerable to shoulder surfing attacks [1]. Alternatively, biometric-based user
authentication is now more popular and requires minimal effort from the users.

As illustrated in Fig. 2.1, modern smartphones have multiple sensors that can
facilitate user authentication. For instance, cameras can be used to capture face [2]
and finger-selfies, while fingerprint sensors can be used to acquire fingerprints.
Researchers and commercial entities have explored the usability of all three, and
each posing certain advantages and constraints. For instance, traditional fingerprints
are accurate but require the installation of additional capacitive sensors [3]. Face self-
ies are easy to capture, but theymay be affected by several external factors. Similarly,
finger-selfies do not need any additional sensors, but the technology requires more

Fig. 2.1 Acquisition sensors and their corresponding captured modalities
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Fig. 2.2 An illustration of acquisition mechanism of finger-selfie and the corresponding finger-
selfie

research to demonstrate the effectiveness. This chapter focuses on finger-selfie, pre-
senting a reviewof the research efforts related to improving the usability and accuracy
of finger-selfie recognition.

As shown in Fig. 2.2, finger-selfie acquisition involves capturing ridge-valley
details present on the tip of the finger using a device camera by the user. Over-
coming the drawback of traditional biometric-based authentication, a finger-selfie
does not require an additional sensor. All it needs is the smartphone’s in-built cam-
era. As per Tim Ahonen’s Phone book [4] and Statista [5], approximately 89% of
all digital photographs arise from handheld devices such as tablets and smartphones.
While these statistics motivate the use of finger-selfies as a cost-effective method for
authentication, there are other advantages as well. Finger-selfies act as a contactless
fingerprint acquisition technique, which is hygienic and secure, leaving no latent
impressions on the surface of the sensor. Over the flattened live scan fingerprints,
finger-selfies also contain additional information such as finger shape and phalanx
lines. While these lines may not have global uniqueness, a localized correlation with
ridge-valley patterns in the neighborhood may aid person identification [6].

Other than authentication for device unlocking, law enforcement agencies have
also shown their interest toward finger-selfies. For instance, on finding a finger-selfie
of a potential drug dealer holding drugs on his fingers, the SouthWales Police and the
scientific support unit utilized the finger-selfie to identify the culprit [7]. Similarly,
a hacker used an image of a German minister’s finger, acquired from a distance
of three meters, to generate fingerprints [8]. Such use cases highlight the need for
finger-selfie-based recognition systems.

Emphasizing on the other side of the coin, finger-selfie-baseduser authentication is
not perfect either. As illustrated in Fig. 2.3, a finger-selfie looks drastically different
from a traditional fingerprint, with skin and background visible along with ridge-
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(a) Finger-selfie acquired under different conditions

(b) Corresponding livescan images of the same subject

Fig. 2.3 Visual difference between a finger-selfie and a legacy fingerprint image

valley details.While its acquisition requiresminimal effort from the user, their lack of
cooperation might induce many challenges. Unlike capturing face selfies, acquiring
a good-quality finger-selfie may not be a trivial task, and the captured finger-selfie
might comprise several variations such as illumination, in- and out-of-plane rotations,
blur, and occlusion. Users might even present multiple fingers in the same frame.
A summary of these challenges is illustrated in Fig. 2.4. While these challenges
highlight a real-life unconstrained acquisition scenario, detection and recognition of
these finger-selfies for smartphone authentication become a cumbersome task.

To promote unconstrained finger-selfie-based recognition, this chapter first pro-
vides a review of existing research on finger-selfie followed by finger-selfie-based
authentication in an unconstrained environment. This research is inspired by our pre-
liminary work, which showcased the application of finger-selfies in an unconstrained
environment [9]. The important research contributions of this chapter are:

1. A review of existing databases utilized in the literature for finger-selfie/image/
photograph-based recognition and a detailed summary of existing approaches for
finger-selfie recognition are discussed.

2. Anovel publicly availableUNconstrained FIngerphoTo (UNFIT) database,which
is captured under challenging unconstrained conditions. The database also con-
tains manual annotation of identities and location for 3450 images from 115
subjects.
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(a) Scale (b) Position (c) Rotation (90°) (d) Rotation (180°)

(e) Multiple fingers (f) Split fingers (g) Illumination (h) Flash Usage

(i) Background (j) Blurred (k) Salient fingers (l) Deformation

Fig. 2.4 Sample finger-selfie images from the proposedUNFIT database.While the database incor-
porates numerous challenges, a real-life unconstrained acquisition of finger-selfies might contain
one or more challenges together, making finger-selfie recognition a complex problem. Varying
resolutions of the camera adds to the challenges of finger-selfie recognition

3. A segmentation algorithm to segment finger regions from a finger-selfie using the
existingVGGSegNet [10]model. The performance of the segmentation algorithm
is compared with other segmentation methods such as FCN 8 [11]. We show that
existing deep learning algorithms for segmentation can easily outperform the
traditional skin color-based segmentation [12] methods used in the literature.

4. Finally, recognition of the segmented finger is performed. The benchmarking
for feature extraction and matching is performed using CompCode [13] and
ResNet50 [14] followed byHamming distance and cosine similarity, respectively.
Experimental results show that despite multiple challenges present in the UNFIT
database, finger-selfie-based biometric authentication is feasible and pragmatic.
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2.2 Related Work

Recent studies have demonstrated the usage of fingerphoto/contactless fingerprints
acquired using smartphones and other digital cameras toward benchmarking of con-
tactless fingerprint recognition. However, a significant limitation of these studies is
the use of constrained or semi-constrained fingerphoto datasets. A summary of the
datasets is presented in Table2.1, and their details are given below.

Table 2.1 Literature review of existing databases of contactless fingerprints/fingerphotos
Research Device Subjects # Samples Challenges Public Nature

Song et al. [15] CCD – – None ✗ Constrained

Lee et al. [16] Phone 150 + 168 400 + 840 Background,
orientation

✗ Semi-
constrained

Lee et al. [17] Phone 15 60 + 30 + 30
videos

Blur,
orientation/
movement

✗ Semi-
constrained

Piuri and
Scotti [18]

Webcam 15 150 Background ✗ Semi-
constrained

Hiew et.al [19] Digital Camera 103 classes 1938 None ✗ Constrained

Kumar and
Zhou [6]

Webcam 156 1566 Resolution ✓ Semi-
constrained

Derawi et al.
[20]

Phone 22 1320 None ✗ Constrained

Yang et al.
[21–23]

Phone 25 2100 Background,
illumination

✗ Semi-
constrained

Stein et al. [24] Phone 11 + 37 66 videos, 990
photographs

None ✗ Constrained

Tiwari and
Gupta [25]

Phone 50 150 Illumination ✗ Constrained

Sankaran et al.
[12]

Phone 64 4096 Background,
illumination

✓ Semi-
constrained

Taneja et al.
[26]

Multiple 64 8192 Fingerphoto
Spoofing

✓ –

Lin and Kumar
[27]

- 300 classes 1800 None ✓ Constrained

Proposed Phone 230 classes 3450 Background,
blur, multiple
fingers,
illumination,
affine variation,
resolution,
deformations

✓ Unconstrained
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2.2.1 Existing Databases

Several researchers have designed algorithms and shown results on contactless fin-
gerprint recognition. However, a significant limitation related to the research on
finger-selfie recognition is the unavailability of public datasets. While four of the
datasets are publicly available, these datasets incur just one or two variations, which
lack common challenging scenarios of acquisition present in finger-selfies. A sum-
mary of these datasets is presented below.

2.2.1.1 Publicly Available Databases

As illustrated in Table2.1, there exist databases for contactless fingerprints; how-
ever, for benchmarking and algorithmic evaluation, only the following databases are
publicly available in the research community:

• HKPU Low-Resolution Fingerprint Database [6]: The database has a total of 1566
low-resolution contactless fingerprint images from 156 subjects. The contactless
fingerprints are acquired using a webcam in two different sessions. While the
database is acquired at a low resolution, it incorporates no other challenge during
acquisition. Hence, the database can be termed as semi-constrained.

• IIITD Smartphone Fingerphoto Database [12]: In 2015, Sankaran et al. proposed
this database, containing 4096 fingerphoto images from 64 participants acquired
using a smartphone camera. The database also includes 1024 livescan images to
promote matching of fingerphoto with legacy fingerprint databases. The subsets of
the database include varying background and illumination. Hence, this database
can also be considered as semi-constrained.

• PolyU Contactless to Contact-based Fingerprint Database [27]: Recently, Lin and
Kumar proposed a constrained dataset, with 1800 contactless fingerprint samples
from 300 different fingers. While the images of fingers were acquired in a con-
strained setting, the database aimed to establish the matching of contactless finger-
prints with contact-based livescan fingerprints. Hence, the database also includes
1800 contact-based livescan images.

• Other than the databases mentioned above, Taneja et al. [26] proposed a Spoofed
Fingerphoto Database, which aimed to establish the effect of spoofing of finger-
photos using display and print attack. This databasewas created using fingerphotos
taken from the IIITD Smartphone Fingerphoto Database [12].

Using the in-house and publicly available touchless fingerprint databases, researchers
have demonstrated benchmarking results of their proposed algorithms. A summary
of these algorithms is presented below.
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2.2.2 Finger-Selfie Recognition Techniques

For touchless fingerprint recognition, Song et al. [15] used only blue channel informa-
tion of finger images. They utilized mean and coherence for segmentation and Gabor
filters to enhance ridge details. Their results were illustrated visually on a touchless
fingerprint image. In 2006, Lee et al. [16] performed segmentation by combining
normalized color (RB) model and frequency information extracted using the Tenen-
grad method. Minutiae were extracted from the segmented image, following which
the authors reported about 80% GAR at 0.01% FAR. In 2008, Lee et al. [17] aimed
at focus estimation by estimating blur. They also used coherence and symmetry for
quality estimation and difference in frames (contour extraction) for pose estimation.
On the Samsung Database (SDB)—I, II, III, IV—with 60, 30, 30 image sequences
and 1200 fingerprint images, respectively, authors reported a rejection rate of 5.67%
and EER of 3.02%.

Piuri and Scotti [18] performed blur reduction using Lucy-Richardson algorithm
andWiener filter algorithm followed by color model andmorphology-based segmen-
tation. After performing fingerphoto registration, enhancement, and minutia extrac-
tion using MINDTCT, authors reported an EER of 0.042% for 150 images. Hiew et
al. [19] utilized Gabor features, followed by PCA and SVM for verification. They
reported an EER of 1.23%. In 2011, while proposing a publicly available dataset,
Kumar andZhou [6] performed enhancement by Sobel filtering and area thresholding
on the acquired image, followed byGaussian sharpening. Using LRT andCompCode
features followed by Hamming distance, the authors reported a cross-session EER
of 3.95% with 93.97% accuracy on the proposed dataset. In the same year, Derawi
et al. [20] performed feature extraction and matching using COTS and reported an
EER of 0.00–23.62% for different fingers on their in-house database.

Yang et al. [21–23] utilized their semi-constrained database with 2100 samples
toward quality assessment of fingerprint images captured from a smartphone cam-
era. They defined a total of seven [21] and twelve [22] quality metrics to determine
the quality of contactless fingerprint image. Using the same dataset, Raghavendra et
al. [23] performed mean shift clustering to segment the probable finger regions. The
final finger is detected from top five-sized regions using a fusion of Pearson, Fourier
magnitude, and energy measure based on the wavelet transform. They reported
an average segmentation accuracy of 96.46%. Using NBIS MINDTCT for minu-
tia extraction followed by matching, authors report an EER of 3.74%. In 2013, Stein
et al. [24] performed spoof detection, followed by minutia extraction and matching.
The authors reported 1.20% EER for contactless fingerprints and 3.00% EER for fin-
ger videos. Tiwari and Gupta [25] found ROI in fingerphoto by adaptive thresholding
followed by morphological operations. They aligned the image using PCA followed
by image enhancement using adaptive histogram equalization. Using SURF features,
authors report an EER of 3.33% on their proposed in-house database.

In 2015, Sankaran et al. [12] created IIITD Smartphone Fingerphoto Database
and proposed a fingerphoto-to-fingerphoto and fingerphoto-to-livescan matching
algorithm. With segmentation performed using adaptive thresholding, authors per-
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formed image sharpening and median filtering to enhance the image [28]. From the
enhanced image, ScatNet features were extracted, followed by PCA and matching
using RDF classifier. On the proposed semi-constrained dataset, authors reported
an EER of 3.65–7.45% on different subsets of fingerphoto-to-fingerphoto match-
ing and 7.07–10.43% for fingerphoto-to-livescan matching. Later, in 2017, Malhotra
et al. [29] further improved the state-of-the-art performance on IIITD Smartphone
Fingerphoto Database. Using an LBP-based enhancement, the authors reported an
EER of 1.47–8.36% on different subsets of fingerphoto-to-fingerphoto matching and
6.44–7.61% for fingerphoto-to-livescan matching. Recently, Lin and Kumar [27]
proposed a livescan and contactless fingerprint image database. To align the contact-
less images with livescan images, the authors proposed an RTPS-based fingerprint
deformation correction model. By performing minutiae- and ridge-based matching,
the authors reported a rank-1 accuracy of 94.11% using their proposed algorithm.

While these algorithms have shown good accuracies and low error rates, their per-
formance is not evaluated in a real-life scenario of unconstrained finger-selfie recog-
nition. A primary reason is the absence of an unconstrained finger-selfie database. To
address this concern and to promote finger-selfie recognition in an uncontrolled sce-
nario, we present UNFIT: an unconstrained fingerphoto database in the next section.

2.3 UNconstrained FingerPhoto (UNFIT) Dataset

In Sect. 2.2.1.1, we highlighted publicly available databases for contactless finger-
print recognition. While these datasets have an ample number of samples, these sam-
ples are acquired in a constrained or semi-constrained environment. In this research,
we create the first unconstrained fingerphoto (UNFIT) database andmake it available
for the research community.1 The database has many challenges, which would be
present in a finger-selfie acquired in an uncontrolled environment with minimal user
cooperation. The details of the dataset are presented below.

2.3.1 Database Acquisition

Forty-five different smartphones belonging to the subjects are used to capture finger-
selfies. This brings variations in terms of resolution and camera sensor to the database.
OnePlus and iPhone devices are used to acquire 48% of images in the database
followed by other phones including Redmi devices, Google Nexus, Lenovo K3Note,
LenovoK4,Mi 4, Le 1s, SamsungGalaxy,MicromaxCanvas,MotoG,MotoC,Moto
M, and HTC devices. The camera resolutions of these smartphones varied from 8
to 16MP. The distribution of different smartphone devices used for finger-selfie
acquisition can be seen in Fig. 2.5a.

1The UNFIT database can be downloaded from: http://iab-rubric.org/resources/UNFIT.html.

http://iab-rubric.org/resources/UNFIT.html
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Fig. 2.5 Acquisition details: a Devices used for finger-selfie acquisition, and b Offline and online
mechanisms used for obtaining finger-selfies

The database is collected via both online and offline methods which helps incor-
porate the effect of image compression due to transmission. WhatsApp, Telegram,
Google Drive, Gmail, and Facebook messenger are used for online data collection,
whereas for offline data collection, different phone devices belonging to the subjects
are used followed by transmission via a pen drive. Figure2.5b shows the distribu-
tion of images collected using different modes of online and offline data collection.
Adding on, variations in illumination, intensity, and blur are present in the database
due to the optional usage of auto-focus and flash for acquiring finger-selfies.

During database acquisition, no constraints are enforced for distance of the finger
from the camera sensor. Varying distance allows the presence of more challenges,
such as position and scale variation. However, the appearance of ridge-valley details
stays limited with respect to the camera sensor. The minimum and maximum dis-
tances for a focussed detailed acquisition depend upon the camera’s aperture and
len’s focal length. With 45 different smartphones used to obtain finger-selfies, the
camera’s aperture and len’s focal length vary across the smartphone devices. Hence,
a generic claim for a minimum and maximum distance for a focussed image cannot
be made. Thus, varying sensors, lens, the distance of finger, illumination, and back-
ground variations makes locating, segmenting, and recognizing ridge-valley details
in the finger challenging.

2.3.2 Database Statistics

Over a span of three months, we collated a novel finger-selfie database consisting of
3450 images and termed it as Unconstrained FIngerphoTo (UNFIT) database. The
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database has multiple images of the index and the middle finger for each subject,
where both the fingers of the same participants are considered as different classes.
We refrained from acquiring thumb finger-selfies since capturing frontal region of
thumb while holding a phone facing downward in the other hand is inconvenient for
subjects. During acquisition, the participants are allowed to use either of the hand for
capturing the finger-selfies, as long as all the finger-selfies arise from the same hand.
The database contains 230 different classes belonging to 115 participants. Out of
the 115 subjects from whom finger-selfies were captured in the UNFIT database, 38
were female participants, and 77 were male participants. The details of the database
can be seen in Table2.2. Figure2.6 exhibits some sample images from the database.
Two different sets of finger-selfies are collected from each subject:

• Set I: Single Finger—Images of the index and middle fingers belonging to the
same hand of a user are captured. Finger-selfies are collected from either the left

Table 2.2 A summary of various subsets presents in the UNFIT database

Subset Fingers Classes Images

Set I Index 115 1150

Middle 115 1150

Subtotal: 230 2300

Set II Multiple fingers 115 1150

Total: 3450

Fig. 2.6 Sample finger-selfie images from different subsets of the proposed UNFIT database
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or right hand of the user as per his/her convenience without enforcement of any
constraints regarding background, illumination, resolution, position, or orientation
of the finger. Figure2.6a and b demonstrates sample images belonging to this set.
The set contains a total of 2300 images (=115 subjects × 2 fingers × 10 instances
per finger).

• Set II: Multiple Fingers—At times, usersmay capturemultiple fingers, intention-
ally or unintentionally, and this additional information can be useful for improving
finger-selfie recognition performance. Thus, this is useful for demonstrating the
effect of multiple fingers on finger-selfie recognition. Figure2.6c shows the sam-
ple images belonging to this set. The set contains a total of 1150 samples (=115
subjects× 10 instances per participant) of both index andmiddle fingers belonging
to the same hand taken together.

2.3.3 Challenges

In a scenario where the user cooperation is minimal, intra-class variations may
increase. Some of these variations are shown in Fig. 2.4. A detailed description of
challenges included in the proposed UNFIT database is as follows:

• Affine variations: Finger-selfie acquisition involves presenting the finger in front
of the rear or front camera of the smartphone. While this task sounds trivial, there
can be enormous affine variations. These variations may include translation and
rotation of finger. Rotation variation may be caused both by rotation of finger in
the 2D image plane (Fig. 2.4c–d) and by rolling of the finger on axis of the finger.
While rotation in the 2D image plane does not lead to any information loss, a
rotation along the finger axis may result in different amount of acquired ridge-
valley detail. The varying distance from the acquisition camera would result in
scale variations.

• Multiple fingers: As a part of the UNFIT dataset, index and middle fingers are
collected together. While the multiple fingers can be placed in any order and may
experience all variations a single finger can, multiple fingers may encounter other
challenges as well. As illustrated in Fig. 2.4e–f, the multiple fingers may be split
or may be presented together. The split-finger scenario aids in the robust testing
of segmentation algorithms, since the algorithms should be able to segment the
fingers in both situations.

• Illumination: The finger-selfies can be captured in both indoor and outdoor envi-
ronments. It induces illumination variations, which may result in dull or bright
finger-selfies. Usage of camera flash, as illustrated in Fig. 2.4h, may result in tar-
geted bright regions too.

• Background: Allowing any natural background to be present, finger-selfies may
have similar looking backgrounds. Adding on, there may be regions in the back-
groundwith skin (Fig. 2.4k). In such a scenario, selection of salient fingers becomes
a tedious task.
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• Blur: During the capture process, a common problem is unfocused acquisition of
an image. It may lead to a blurred finger-selfie due to which ridge-valley details
might not be prominent. Similarly, finger-selfie may incur motion blur due to hand
movement or unstable holding of smartphones.

• Deformation: In some cases, participants provided finger-selfies with crooked
fingers.

2.3.4 Ground-Truth Annotation

Due to various challenges incorporated in the proposed database (as mentioned in
Sect. 2.3.3), the position and appearance of fingers in the images vary. To determine
the exact location of the finger, it is necessary to generate ground-truth annotations
for the same. A segmentation tool is developed in MATLAB using Piotr Dollar’s
toolbox [30]. The GUI of the toolbox allows the user to utilize rotatable and resizable
rectangular boxes to manually bound the finger region. With a rectangular region
representing a finger region, only aminimal amount of background pixels are labeled
as foreground. It acts as a loose bound for the finger, making sure that there is only a
negligible loss of ridge-valley details. The rectangular region can easily be cropped
and fed to recognition modules. The ground-truth annotations, which are represented
as a mask, are also publicly available along with the database with the same image
name in a different folder.

2.3.5 Experimental Protocol

As mentioned in Sect. 2.3.2, the UNFIT database is collected from 115 subjects with
30 images taken from each participant. While training and testing, a 50:50 subject
disjoint split is maintained. Hence, training data includes 1740 images corresponding
to 58 subjects, and testing data consists of remaining 1710 images from 57 partici-
pants. The index and middle fingers of the same subject are considered as different
classes, resulting in 116 classes during training and 114 classes while testing. Dur-
ing testing, the first five images of each case (index, middle, or both fingers) are
treated as the gallery, whereas the remaining images (sample #6–10) are considered
as the query images.While generating scores, the genuine scores are generated when
index–index, middle–middle, and multiple–multiple fingers of the same subjects are
matched. All other combinations of match scores generated by matching query with
gallery images are treated as imposter scores.
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2.4 Segmentation Framework

The unique and discriminative features of a fingerprint lie in its ridge-valley pattern.
These details are present on the finger-tip, which constitutes for the foreground
of the finger-selfie image. Hence, a framework is presented which aims to discard
the background pixels and keep only the foreground information. A summary of the
segmentation framework is illustrated in Fig. 2.7, and its details are elaborated below.

2.4.1 Segmentation Using VGG SegNet

The segmentation framework primarily utilizesVGGSegNet for classifying pixels as
foreground or background. The VGG SegNet architecture has encoder and decoder
network. While the role of the encoder is to convert the input data into a meaningful
feature map at a lower dimension, the decoder upsamples the lower-dimensional
feature map. The lower-dimensional feature map is produced due to max-pooling
operation after a sequential process of convolution, batch normalization, and ReLU
activation to produce nonlinearity. The locations of features, which are propagated
in the network after max-pooling, are stored for further computation.

The decoder network utilizes pooling indices (the ones stored during encoding)
to perform a nonlinear upsampling in order to counter the effect of max-pooling. The
stored pooling indices guide the decoder network to map a lower input feature map
to a higher-dimensional feature map. Hence, the upsampled feature map obtained
from the decoder network has a sparse representation of the input. The upsampling
approach using pooling indices is a training-free method, hence reducing the number
of training parameters of the model.

While pooling is known to have local invariance, in this work, a standard encoder–
decoder networkwith pooling layers is utilized. The previous encoder–decoder archi-
tectures also use a standard pooling in their model (or global average pooling at the
end of the network). It can be noted that networks that have used pooling [11, 31, 32]

Fig. 2.7 Illustration of the segmentation framework using VGG SegNet followed by 32 × 32
block-wise smoothening
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have worked well for the task of object segmentation. However, to eliminate pooling,
the entire model has to be revamped and replaced by a capsule-net style architecture.
Such scenario would require training from scratch, disallowing us to use pre-trained
network.With a limited number of training instances, training a pooling-free network
would be beyond the scope of the proposed framework.

The sparse representation is fed as input to a convolutional layer, which is suc-
ceeded by a Softmax classification layer. The Softmax layer classifies each of the
image pixels as foreground or background. Thus, the VGG SegNet-based segmen-
tation algorithm utilizes a pre-trained model of VGG SegNet for finger-selfie seg-
mentation. The model is fine-tuned using finger-selfies. However, as we explain in
Sect. 2.4.4.1, the predicted mask is tightly bound, due to which a significant fore-
ground area is lost. Therefore, VGG SegNet architecture is succeeded by a 32 × 32
block-wise smoothening layer to increase the number of foreground pixels. The full
segmentation pipeline is shown in Fig. 2.7. Algorithm 1 summarizes the complete
segmentation algorithm.

Input: 224×224 finger-selfie image
Output: Segmented mask for finger-selfie

Fine-tune VGG SegNet Architecture using training finger-selfies and their masks;
Use trained model to predict mask for test finger-selfies;
Binarize the predicted masks;
fp = Count of finger (foreground) pixels;
bp = Count of non-finger (background) pixels;
N = Number of test images;
Region = Number of non-overlapping blocks of dimension 32×32 pixels in a finger-selfie;
while N �= 0 do

Divide test image into blocks of size 32×32 pixels;
while Region do

if fp ≥ bp then
Set all pixels of the region as foreground;

else
Do not update any pixels of the region;

end
Region = Region - 1;

end
N = N − 1;

end
Algorithm 1: Algorithm for finger-selfie segmentation using a fine-tuned VGG
SegNet architecture followed by a layer of 32 × 32 block-wise smoothening.

2.4.2 Implementation Details

To train the VGG SegNet + 32 × 32 block-wise smoothening network, finger-selfies
of size 224 × 224 × 3 are used along with their corresponding ground-truth anno-
tation of size 224 × 224 × 1. As illustrated in Fig. 2.7, VGG SegNet consists of
an encoder and a decoder network. The output dimension of encoder network is
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14 × 14 × 512. This multi-channel output is fed to the decoder network, which in
turn gives an output of dimension 112 × 112 × 2. The output of the decoder network
serves as input to the Softmax layer, whose task is to provide a binary prediction for
each pixel. The white pixel in the binary predicted mask represents the finger region,
whereas the black pixel represents the background. Similar to VGG SegNet, FCN 8
is also provided finger-selfies and its corresponding ground-truth annotation.

The VGG SegNet and FCN 8 architectures are fine-tuned using an augmented
training set. The augmented training data is created by increasing the original training
setwithmirror flipped, intensity changed, blurred, and rotated finger-selfies. Rotation
of finger-selfies is performed at three different angles: 90◦, 180◦, and 270◦. After
image augmentation, the size of the training set increases to 27600 images. The
corresponding finger location annotation is generated for these augmented images
from the original ground-truth annotation. Using the augmented training dataset, the
deep architectures are fine-tuned for 100 epochs.

2.4.3 Performance Evaluation Metrics

To evaluate the performance of segmentation algorithm, the following metrics are
used:

• Segmentation accuracy (SA):

SA = CPB

TB
(2.1)

where CPB is a count of the correctly predicted blockswhile TB is the total number
of blocks.

• Foreground segmentation accuracy (FSA):

FSA = CPFB

TFB
(2.2)

FSA is the normalized foreground segmentation accuracy, where CPFB represents
the number of correctly predicted foreground blocks, normalized with respect to
the total count of foreground annotated blocks (TFB).

• Background Segmentation Accuracy (BSA):

BSA = CPBB

TBB
(2.3)

BSA is the normalized background segmentation accuracy, where CPBB portrays
the number of correctly predicted background blocks normalized with respect to
the total count of background annotated blocks (TBB).

Figure2.8 demonstrates a visual elucidation of FSA and BSA using the segmen-
tation algorithm.
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2.4.4 Segmentation Performance

Table2.3 reports the segmentation performance of the algorithm in terms of FSA,
BSA, and SA. VGG SegNet, along with 32 × 32 block-wise smoothening, provides
the best foreground segmentation accuracy and performs well in terms of BSA and
SA as well. Tables2.4 and 2.5 illustrate a comparison of various segmentation tech-
niques with the VGG SegNet+block-wise smoothening algorithm. Figure2.9 shows
a few sampleswhere the segmentation framework can segment finger-selfie correctly,
whereas Fig. 2.10 shows some failure cases of the segmentation algorithm.

In the proposed UNFIT database, background pixels constitute 86.21% pixels
compared to 13.79% foreground pixels. While FSA is lower than BSA in Table2.3,
the reported segmentation accuracy (SA) is biased toward BSA for all fingers. This
is due to higher number of background pixels in the UNFIT database as compared
to foreground finger region pixels.

2.4.4.1 Effect of 32 × 32 Block-Wise Smoothening

Table2.4 shows a comparison of the proposed architecture with VGG SegNet. For
VGG SegNet, it can be observed that BSA outperforms FSA for all the fingers. The

Table 2.3 Segmentation performance of the VGG SegNet + 32 × 32 block-wise smoothening
finger-selfie segmentation algorithm
Algorithm Segmentation

metric
Finger

All together (%) Index (%) Middle (%) Multiple (%)

VGG SegNet + 32 × 32
block-wise smoothening

SA 89.04 89.89 90.62 86.61

BSA 92.71 93.16 93.06 91.91

FSA 71.22 70.28 74.49 68.90

Table 2.4 Comparison of the segmentation framework with VGG SegNet: illustrating the effect
of 32 × 32 block-wise smoothening
Algorithm Segmentation

Metric
Finger

All together (%) Index (%) Middle (%) Multiple (%)

VGG SegNet SA 90.08 91.01 91.77 87.45

BSA 94.69 95.04 94.89 94.15

FSA 66.75 65.98 70.16 64.10

VGG SegNet + 32 × 32
block-wise smoothening

SA 89.04 89.89 90.62 86.61

BSA 92.71 93.16 93.06 91.91

FSA 71.22 70.28 74.49 68.90
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Fig. 2.9 Illustration of the successful cases of the segmentation framework

Fig. 2.10 Illustration of the failure cases of the segmentation framework
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Fig. 2.11 Significance of 32 × 32 smoothening over VGG SegNet architecture

reason for higher BSA is the tight bound over the located finger-selfie obtained by the
trained VGG SegNet. A drawback of a tight bound over the located finger-selfie is
that few foreground finger regions are termed as background while most background
regions are predicted as background. Thus, for VGG SegNet, BSA is higher than
FSA due to erroneous classification of foreground pixels on the boundary of the
located finger-selfie.

As observed by the segmentation performance of VGG SegNet in Table2.4, FSA
remains lower due to misclassification of foreground pixels located on the bound-
ary of the located finger-selfie. Loosening the predicted boundary by VGG SegNet
will increase foreground pixels, in turn increasing FSA. Thus, a 32 × 32 block-wise
smoothening layer is added in the VGG SegNet architecture and it aids in increasing
the FSA from 66.75 to 71.22%. While there is a trade-off for reduced SA and BSA
by 1.04 and 1.98%, respectively, the distinctive ridge-valley details present in fore-
ground region in finger-selfies are not compromised. An illustration of the effect of
smoothening over VGG SegNet is shown in Fig. 2.11.

2.4.4.2 Comparison of VGG SegNet with FCN 8

Similar to VGG SegNet, a FCN 8 architecture is also fine-tuned. Inferring from the
positive effect of 32 × 32 block-wise smoothening on FSA, FCN 8 architecture also
includes a 32 × 32 block-wise smoothening. The FCN 8 trains a fully convolutional
encoder–decoder network, and it uses an AdaDelta optimizer and a cross-entropy
loss function.

Table2.5 shows a comparison of segmentation performance of FCN-8-based seg-
mentation with VGG SegNet-based segmentation algorithm. However, with highest
FSA and overall segmentation accuracy, the VGG SegNet + block-wise smoothen-
ing model outperforms under both the scenarios. One of the major reasons for bet-
ter performance of VGG SegNet-based approach is the lesser number of trainable
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Table 2.5 Comparison of segmentation performance of the finger-selfie segmentation framework
with FCN 8
Algorithm Segmentation

metric
Finger

All together (%) Index (%) Middle (%) Multiple (%)

FCN 8 SA 88.55 89.45 90.19 86.01

BSA 93.92 94.22 94.09 93.45

FSA 61.46 60.11 63.66 60.62

FCN 8 + 32 × 32 block-
wise smoothening

SA 87.56 88.37 89.16 85.16

BSA 92.04 92.41 92.43 91.27

FSA 65.81 64.19 67.97 65.26

VGG SegNet + 32 × 32
block-wise smoothening

SA 89.04 89.89 90.62 86.61

BSA 92.71 93.16 93.06 91.91

FSA 71.22 70.28 74.49 68.90

parameters [33]. Using the max-pooling indices from respective encoding layers,
the decoder in VGG SegNet performs sparse upsampling. This procedure reduces
computation time as well as increases generalizability of the model. On the contrary,
FCN 8 learns parameters for upsampling too. Hence, despite data augmentation, the
training data may not be enough to train additional parameters, which justifies VGG
SegNet outperforming FCN 8.

2.4.4.3 Comparison with Skin Color-Based Segmentation

Inspired from existing studies [12, 16, 18, 23], the VGG SegNet + 32 × 32 block-
wise smoothening model is also compared with various skin color-based segmen-
tation algorithms. The results are presented in Fig. 2.12. The foremost comparison
is performed with a thresholding color channel-based skin color segmentation algo-
rithm [34, 35]. The finger-selfie image, available in RGB color space, is converted
to HSV and YCbCr color space. The information in Hue, Cb, and Cr color space
is used to find probable skin color regions using pre-defined thresholds. While the
VGG SegNet + 32×32 block-wise smoothening method provides FSA of 71.22%,
skin color-based segmentation provides FSA of 58%. Segmentation algorithm pro-
posed by Sankaran et al. [12] also fails to perform well. Due to image augmentation
by varying intensities, our fine-tuned model becomes robust toward illumination
variations and flash usage in finger-selfies. However, because of too bright or too
dull skin regions in certain cases, the standard skin color algorithms fail due to fixed
thresholds.

Additionally, a comparison is shown of skin color segmentation with a deep archi-
tecture. Firstly, the salient region is cropped out using skin color-based segmenta-
tion. The salient region is fed as input to the architecture: VGG SegNet + 32 × 32
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Fig. 2.12 Comparison of segmentation accuracies obtained with the skin color-based techniques
and the VGG SegNet with block-wise smoothening algorithm

smoothening. However, both SA and FSA are reduced. The results are shown in
Fig. 2.12. These results indicate that in an unconstrained scenario, skin color-based
segmentation is likely to fail.

2.5 Finger-Selfie Recognition

In 2013, Li et al. [22] highlighted that minutiae-based techniques for feature extrac-
tion and matching would fail for finger-selfies. Sankaran et al. [12] showcased a sim-
ilar inference, highlighting that minutiae-based techniques fail for semi-constrained
scenarios. Hence, the authors used ScatNet for their experiments. While ScatNet
worked for the semi-constrained scenario, the representation would fail to encode
discriminatory information under deformations and rotational variations present in
the UNFIT database. As a result, we too utilized two non-minutiae-based algorithms
for feature extraction, namely CompCode and ResNet50. The details are mentioned
in the subsection below.

2.5.1 Feature Representations

Non-Deep learning: Competitive Coding (CompCode) [13, 36] is a popular non-
minutiae-based feature representation, commonly deployed for fingerprint and palm-
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print recognition. Quite recently, CompCode and its variant were exploited for utiliz-
ing ridge-valley details present in palmprints for person recognition [36].With ridge-
valley pattern forming a unique structure, filters that encode orientation information
can provide an efficient feature representation. CompCode features are extracted by
convolution of the real part of the Gabor filter Gr over the image I. The Gabor filters
Gr have J different orientations, each of which varies from previous by π

J . Along
with orientation variations, Gabor filters differ in frequency W as well. Hence, the
total number of filters convolved to obtain the feature representation are J × W . The
response of the filter, convolved over the segmented finger-selfie I, is given as:

R = I(x, y) ∗ ψR(x, y, ωi, θj) (2.4)

Here, ψR is the real part of the Gabor filter ψ , while ωi and θj are frequency and
orientation of the Gabor filter. Note that the segmented output is upscaled to a fixed
size of 400×400 before applying Gabor filters to obtain the representation.

Deep learning-based approach: The segmented finger-selfie is served as input
to the ResNet50 architecture [14]. ResNets have shown their application to general
object recognition with deeper networks. To counter the effect of vanishing gradient
and overfitting, ResNets have shortcut connections among different convolutional
layers. Intuitively, along with the feedforward mapping F(x) from the previous layer
Cl , the input to the next convolution layer Cl+1 also includes an identity mapping x
from some previous layer Cl−k . Hence, the input to convolutional layer Cl+1 can be
written as:

F(x, {Wi}) + x (2.5)

where Wi signifies transformation through multiple convolutional layers. In the
ResNet50 architecture, the function F(x) involves two stacked convolutional lay-
ers. This implies that the input x is taken from the activated output of layer Cl−2, and
Wix is a transformation of x over two convolutional layers.

The segmentedRGB image is provided to the network at a fixed size of 224 × 224.
In our experiments, the ResNet50 architecture is initialized using the weights of
the model trained on the ImageNet database. With the Softmax classification layer
removed, the network provides a feature vector of dimension 2048 × 1, which is
treated as the feature representation of the finger-selfie. The intermediate layers of

Fig. 2.13 Procedure to obtain feature representation using ResNet50 architecture
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ResNet50 look for different shapes and strokes.Hence, thefinal feature representation
encodes curves, vertical and horizontal lines, and other shapes, which are equivalent
to ridge orientations, finger shape, and phalanx lines. The procedure to obtain the
feature representation is illustrated in Fig. 2.13.

2.5.2 Finger-Selfie Recognition Performance

After extracting features from finger-selfie images, the next step is tomatch the query
feature templates with the gallery templates. The CompCode features are matched
with gallery templates using Hamming distance to obtain a distance score. Simi-
larly, representation obtained from ResNet50 architecture is matched with gallery
templates using cosine similarity.

On the testing set of 57 subjects, receiver operating characteristic (ROC) curve
is used to report the verification performance. The ROC curve is shown in Fig. 2.14.
Table2.6 shows the confusion matrix when feature representation from CompCode
and ResNet50 are matched using Hamming distance and cosine similarity, respec-
tively. In spite of the potency of CompCode for palmprint and fingerprint recogni-
tion, we observe an EER of 41.41% for finger-selfie matching. On the other hand,
the cosine similarity of ResNet50-based representation yields a better performance
with EER as 35.32%.

Fig. 2.14 Receiver operating characteristic (ROC) curve for the VGG SegNet + 32 × 32 segmen-
tation pipeline. Representation from ResNet50 architecture is matched using cosine similarity, and
CompCode features are matched using Hamming distance metric on the test set of UNFIT database
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Table 2.6 Confusion matrix when feature representation from CompCode and ResNet50 are
matched using Hamming distance and cosine similarity, respectively. From a total of 731,025 pairs
(855 probe representations matched with 855 gallery representations), there are 4275 genuine and
726,750 imposter pairs. Values are reported at 10% FAR

Prediction

CompCode+Hamming ResNet50+Cosine

Match Non-Match Match Non-Match

Ground truth Match 1016 3259 1517 2758

Non-match 72,480 654,270 73,335 653,415

The finger-selfie dataset, namely the UNFIT database, has numerous variations.
The variations occur due to an unconstrained environment. The ResNet50 model is
pre-trained on ImageNet database, where objects are of different shapes and sizes.
These learned weights can handle variations in finger-selfies pertaining to scale and
orientation of finger-selfie. Also, ResNet50 feature representation for segmented
finger-selfies is matched using cosine similarity. Since cosine similarity is an angular
similarity of two vectors, variations introduced in the magnitude of representations
due to illumination variations do not effect cosine similarity. Hence, the recognition
model becomes robust toward illumination variations. Thus, the overall performance
ofResNet50+Cosine similarity is better thanCompCode+Hamming distance-based
recognition.

While such results are motivating that deep architectures have a better potential
for finger-selfie recognition, there is still a long way to go for recognition of finger-
selfies in an unconstrained scenario. With the proposed UNFIT database, we expect
that the research community will be driven toward building better segmentation,
enhancement, quality assessment, and feature representation modules for finger-
selfie-based recognition.

2.6 Conclusion

This chapter presents a review of existing research on finger-selfies and later intro-
duces finger-selfie in an unconstrained environment. The proposed UNconstrained
FIngerphoTo (UNFIT) database incorporates various challenges such as rotation,
translation, orientation, position, scale, multiple fingers, illumination, background,
and resolution which arise due to the differing environments in which the finger-
selfies are acquired. This database includes the manual annotations and experimen-
tal protocol, using which segmentation and verification results are benchmarked. A
VGG SegNet-based segmentation approach is presented along with baseline results,
followed by matching algorithms using CompCode and ResNet50 representations.
We assert that the proposed database can take forward the research in this domain
and the segmentation pipeline can segment and perform authentication using finger-
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selfies despite the challenges posed in the database. Future work can include quality
assessment for detection of poor-quality finger-selfies and use of minutiae in con-
junction with deep learning features for improved recognition performance.
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Chapter 3
A Scheme for Fingerphoto Recognition
in Smartphones

Ruggero Donida Labati, Angelo Genovese, Vincenzo Piuri and Fabio Scotti

Abstract Touchless technologies for fingerphoto recognition based on smartphones
can be considered selfie biometrics, in which a user captures images of his or her own
biometric traits by using the integrated camera in a mobile device (here referred to as
selfie fingerprint biometrics). Such systems mitigate the limitations of leaving latent
fingerprints, dirt on the acquisition device released by the fingers, and skin deforma-
tions induced by touching an acquisition surface associated with a touch ID-based
system. Furthermore, the use of the integrated camera to perform biometric acquisi-
tion bypasses the need of a dedicated fingerprint scanner.With respect to touch-based
fingerprint recognition systems, selfie fingerprint biometrics require ad hoc methods
for most steps of the recognition process. This is because the images captured us-
ing smartphone cameras present more complex backgrounds, lower visibility of the
ridges, reflections, perspective distortions, and nonuniform resolutions. Selfie fin-
gerprint biometric methods are usually less accurate than touch-based methods, but
their performance can be satisfactory for a wide variety of security applications. This
chapter presents a comprehensive literature review of selfie fingerprint biometrics.
First, we introduce selfie fingerprint biometrics and touchless fingerprint recogni-
tion methods. Second, we describe the technological aspects of the different steps of
the recognition process. Third, we analyze and compare the performances of recent
methods proposed in the literature.
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3.1 Introduction

Smartphones are a type of handheld mobile computer and are widely used all over
the world to store sensitive data and to access a wide range of distributed services.
Therefore, these devices require strong authenticationmechanisms for properlyman-
aging access to local data and distributed information. For this reason, some recent
smartphones possess integrated sets of sensors specifically designed for biometric
acquisition, such as fingerprint scanners [17]; illumination systems, optics and cam-
eras for ocular biometrics [39]; and devices for acquiring three-dimensional face
samples [1]. In this context, fingerprint-based systems are particularly promising
due to their high accuracy and their acceptance by users. However, not all current
smartphones include a dedicated fingerprint scanner, whereas almost every smart-
phone includes a digital camera. Due to recent advances in the speed, resolution, and
dynamic range of the digital cameras embedded in smartphones, selfie fingerprint
biometrics is attracting increasing interest [3].

Touchless fingerphoto recognition technologies possess important advantages
with respect to systems based on traditional touch-based fingerprint scanners: (i)
the absence of elastic skin deformations, since the finger is not pressed onto any
surface; (ii) the absence of latent fingerprints left on the sensor; (iii) the absence of
dirt on the acquisition surface introduced by the touch-based acquisition process; and
(iv) a faster capture of biometric data [16]. However, as shown in Fig. 3.1, the touch-
less fingerprint images acquired using the cameras integrated in smartphones can
present several nonidealities in comparison to samples acquired using touch-based
fingerprint scanners, as follows:

Fig. 3.1 Examples of fingerprint images of the same finger acquired using a touch-based sensor
(a) and a smartphone camera (b). The touchless acquisition performed with a smartphone camera
presents a more complex background, nonuniform illumination, and out-of-focus regions
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• Such an image has a more complex background, including the skin of the finger,
instead of containing only the ridge pattern as classical contact-based samples do;

• The illumination is not constant in all regions of the finger in the image;
• The fingerprint image contains reflections, reducing the contrast of the ridge pat-
tern;

• The sample resolution varies because the distance from the finger to the camera
is not constant among different acquisitions; thus, the application of the most
commonly used fingerprint recognition algorithms (designed for samples with a
standard resolution of 500 pixels per inch) becomes difficult;

• In many cases, the fingerprint image presents perspective distortions caused by
uncontrolled rotations of the finger in three-dimensional space because no pins or
references for finger positioning are provided during the acquisition process;

• The ridge pattern may not be sufficiently distinguishable in all regions of the
fingerprint due to the limited depth of focus of the optics; and

• The sample may present motion blur.

Due to the aforementioned nonidealities, the accuracy of selfie fingerprint bio-
metrics is currently inferior to that of traditional touch-based technologies [11, 16].
Selfie fingerprint biometric techniques require specifically designed algorithms for
most steps of the recognition process.

This chapter is organized as follows. Section3.2 describes the biometric recogni-
tion process of selfie fingerprint biometrics from a technological point of view, focus-
ing on each step of the computational chain individually. Section3.3 presents a perfor-
mance analysis of state-of-the-art technologies. Finally, Sect. 3.4 concludes thework.

3.2 Biometric Recognition Process

Several studies in the literature have proposed touchless fingerprint acquisition
systems based on a single camera [20, 35], multiple cameras [12, 24, 30, 46], or
mobile devices (e.g., smartphone cameras) [4, 5, 42]. Recognition algorithms for
touchless fingerprint samples can consider either two-dimensional images or three-
dimensional models.While methods based on three-dimensional models can achieve
a higher recognition accuracy than methods based on two-dimensional images can,
they usually require complex acquisition setups, which are difficult to integrate into
smartphones [11].

Selfie fingerprint biometric methods typically consider a single two-dimensional
image, which can present the same nonidealities exhibited by touchless samples
acquired using any digital camera. For this reason, many existing algorithms can
be successfully applied to fingerprint images acquired using smartphone cameras
as well as to samples acquired using other touchless devices. In addition, with re-
spect to touchless systems based on a single camera or multiple cameras, mobile
devices represent a more compact solution since all hardware and software com-
ponents necessary to perform a correct acquisition are integrated in a single piece
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of equipment (e.g., a camera, focus assessment and correction functionalities, an
illumination source, and a processing architecture).

The recognition procedure in selfie fingerprint biometrics usually consists of four
steps: (i) acquisition, (ii) segmentation, (iii) enhancement, and (iv) feature extraction
and matching. In addition, the recognition procedure can also include a quality as-
sessment, a liveness detection, and a step for mitigating the nonidealities of touchless
fingerprint sensors. Figure3.2 shows a schema of the recognition process in selfie
fingerprint biometrics.

Fig. 3.2 Outline of the recognition process for selfie fingerprint biometrics
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3.2.1 Acquisition

During the acquisition process, the biometric trait of interest is presented to the ac-
quisition sensor, and a biometric sample is obtained. In the case of selfie fingerprint
biometrics, one or more fingers are presented to the integrated camera of a smart-
phone, and the collected sample is a two-dimensional image. The acquisitionmethods
presented in the literature feature important differences in terms of the techniques
applied to control the finger positioning, illumination, and background. Fingerprint
images acquired under controlled and uncontrolled conditions present important dif-
ferences in terms of quality. In particular, acquisition procedures in which the finger
positioning, illumination, and background are controlled can achieve better-quality
images than uncontrolled acquisition techniques. However, controlled acquisition
setups require a higher level of cooperation from the user. As an example, Fig. 3.3
shows fingerprint images of the same finger captured using a smartphone camera
under controlled and uncontrolled conditions.

Several acquisition methods based on smartphone cameras are available. In
the majority of cases, the camera parameters (focal distance, aperture of the di-
aphragm, and exposure time) are computed automatically by the acquisition soft-
ware provided by the operating system, and the operator captures the finger-
print image as soon as the fingertip is within the field of view of the cam-
era. The existing acquisition methods can be classified according to the num-
ber of fingers considered and the acquisition constraints applied (in terms of

Fig. 3.3 Examples of fingerprint images captured using a smartphone camera under controlled (a)
and uncontrolled (b) conditions. In images acquired under controlled conditions, the background
is easier to remove, and the ridge pattern is more visible and less affected by noise. However,
controlled acquisition setups are less usable than uncontrolled setups are and require a higher level
of cooperation from the user
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controlled or uncontrolled finger positioning and background). Specifically, it is
possible to distinguish five classes: (i) single fingerprints with controlled finger
positioning, controlled background, and illumination conditions; (ii) single finger-
prints with uncontrolled finger positioning but controlled background and illumi-
nation conditions; (iii) single fingerprints with uncontrolled finger positioning, un-
controlled background, and illumination conditions; (iv) multiple fingerprints with
controlled finger positioning but uncontrolled background and illumination condi-
tions; and (v)multiple fingerprints with uncontrolled finger positioning, uncontrolled
background, and illumination conditions.

In acquisition setups discussed in class (i), images are acquired under laboratory
conditions; supports are used to position the smartphone, dedicated illumination
setups are used, and the user is required to place his or her finger on a flat surface
[6].

In acquisition methods discussed in (ii), constraints on the position of the finger
are reduced but the background and illumination conditions are controlled [42, 44].
In these setups, the operator (who may also be the owner of the fingerprint) holds
the device, while the software installed on the smartphone automatically captures
the image. The LED of the smartphone is used as a flashlight to enhance the details
of the fingerprint and the contrast with the background, making it easier to segment
the region of interest in the image.

In acquisition setups discussed in (iii), the constraints are further reduced; conse-
quently, such methods must cope with various uncontrolled backgrounds captured
under both indoor and outdoor conditions [36]. There are publicly available datasets
of fingerprint images captured under both indoor and outdoor conditions with con-
trolled and uncontrolled backgrounds [21, 40].

While most smartphone-based acquisition procedures focus on a single finger at
a time, the acquisition methods discussed in (iv) use multifinger acquisition setups
that require previously defined procedures for positioning the fingers [4]. In such an
acquisition procedure, a translucent guide is superimposed on the screen of the device
to help the user both in correctly positioning the fingers and in capturing images with
a constant distance between the fingers and the camera, thereby ensuring a fixed
resolution.

The acquisition setups discussed in (v) need to overcome all possible nonidealities
of the samples due to an unconstrained acquisition setup. There is a publicly available
database of fingerprint samples acquired using smartphones consisting of images
collected without any constraints on position, illumination, background, focus, or
the number of fingers [22]. These fingerprint images present high variability since
they were acquired using different cameras and acquisition software.

3.2.2 Segmentation

The purpose of the segmentation step is to separate the biometric trait of interest from
other information in the sample. In the case of selfie fingerprint biometrics, this step
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aims to extract the region corresponding to the ridge pattern of the last phalanx. The
proposed segmentation approaches in the literature can be divided into those based
on samples acquired in controlled (i) or uncontrolled (ii) backgrounds. While in the
first case, it is often possible to use general-purpose segmentation approaches, in the
second case, it is necessary to consider additional challenges, such as the properties
of the skin color or the presence of out-of-focus regions.

An example of a lightweight method for images acquired with controlled back-
grounds is to threshold the red channel of the image to detect the region in which
the finger is present [42]. Adaptive thresholding techniques can be applied to color
as well as grayscale images [44]; for example, a background subtraction method can
be used in combination with a thresholding technique based on the skin color [4].

Segmenting images with uncontrolled backgrounds requiremethods that aremore
complex than those based on controlled backgrounds. For example, an algorithmic
segmentation approach that consists of a preliminary training step and subsequent
refinement steps for background removal is described in [25]. The preliminary train-
ing step collects information related to the distribution of the skin pixels in the RGB
color space. The first refinement step builds a look-up table using the color distri-
bution information and performs a color-based segmentation to determine whether
the pixel belongs to the finger region or not. The second refinement step exploits the
frequency information and computes a second segmentation mask by assuming that
the regions of the image that do not correspond to the finger are out of focus and
therefore contain only limited information at low frequencies. The last step combines
the color- and frequency-based results using a region growing algorithm.

Algorithms for skin color detection can also be applied to segment images with
uncontrolled backgrounds. A well-known method for skin detection used for seg-
menting touchless fingerprint images acquired using smartphones is the mean shift
segmentation. In this method, several segments, each corresponding to a different re-
gion of the image, are compared against a fixed reference image to correctly establish
which region depicts the finger [23].

Skin detection algorithms may also rely on thresholding channels of the image
in color spaces other than the most frequently used RGB color space. Fingerprint
segmentation in images acquired using smartphones with uncontrolled backgrounds
can be performed by thresholding the magenta (M) channel in the CMYK color
space [40] or by thresholding a combination of channels in the YCbCr and HSV
color spaces [2].

Recently, deep learning and convolutional neural networks (CNNs) are being
increasingly used for a wide variety of signal and image processing applications,
including the extraction of relevant information from biometric samples [7]. CNNs
can also be successfully applied to segment touchless fingerprint images with un-
controlled backgrounds [5].

In the case of acquisitions with multiple fingers, it is possible either to separate the
fingers such that they can be individually matched or to performmultimodal sample-
level fusion [37] by treating eachmultifinger acquisition as a single biometric sample
[5]. The separation of different fingers can be performed by estimating the boundaries
between the fingers using edge detectors [4].



56 R. Donida Labati et al.

3.2.3 Enhancement

The enhancement step aims to reduce noise and improve the distinguishability of the
distinctive characteristics of a biometric trait. In the case of selfie fingerprint biomet-
rics, the enhancement step is performed in most of the systems and has the purposes
of improving the visibility of the ridge pattern and removing unnecessary details
in the image. There are two main classes of enhancement techniques applicable to
touchless fingerprint images acquired using smartphones: (i) those that enhance the
visibility of the ridges using reduced computational resources and (ii) schemes that
aim to obtain an enhanced representation of the ridge pattern that is as similar as
possible to touch-based samples. As an example, Fig. 3.4 shows a touchless finger-
print image captured with a smartphone camera and the corresponding enhanced
representation with minutiae features [33] extracted using a commercial software
designed for touch-based samples [34].

Schemes based on enhancing the visibility of the ridges use well-known image
processing algorithms, such asWiener filtering [36] and adaptive histogram equaliza-
tion [44], which are applied to perform fast computations and enhance the visibility
of the ridges.

Schemes aiming to obtain a representation of the ridge pattern similar to touch-
based samples aremore computationally expensive andusually incorporate two tasks:
noise reduction and enhancement of the ridge pattern. The noise reduction task can
be performed by applying a median filter [42], followed by histogram equalization
[40], and a band-pass filter tuned to the frequency of the ridges [4], or a process-
ing sequence consisting of a Wiener low-pass filter, a top-hat filter, and histogram

Fig. 3.4 Example of a touchless fingerprint image captured with a smartphone camera (a) and the
corresponding enhanced representation (b). This figure shows that commercial software [34] can
successfully extract theminutiae features [33] from an enhanced touchless fingerprint representation
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equalization [31]. The visibility of the ridge pattern can be enhanced by means of
an adaptive binarization procedure [42], an unsharp masking algorithm followed by
local histogram normalization [40], or a set of Gabor filters tuned according to the
local frequency and orientation of the ridges [31].

The proposed schemes may also perform the enhancement step as one single task.
As an example, a bank of wavelets can be used to estimate the phase congruency
of the frequency response and to extract the local regions of the image with higher
phase congruency, which are then identified as parts of the ridge pattern [2].

3.2.4 Feature Extraction and Matching

The feature extraction step aims to extract a digital representation of unique features
from a biometric sample (called a template), while the purpose of matching is to
compute a similarity or dissimilarity score between two or more templates (called
a matching score or a distance, respectively). In the case of selfie fingerprint bio-
metrics, the methods in the literature can be classified according to the used feature
sets: (i) Level 1 features, (ii) Level 2 features, and (iii) learned features. Level 1
features are global characteristics of the ridge pattern [33]. Level 2 features are local
characteristics describing certain formations of the ridges, namely ridge endings or
bifurcations, also called minutiae [33]. Learned features cannot be classified as per-
taining to Level 1 or Level 2 since they are automatically learned from training data;
they can be extracted using a variety of computational intelligence techniques, such
as artificial neural networks, support vector machines, CNNs, deep neural networks
and dictionary-based techniques [18].

Level 1 features are typically designed for touchless fingerprint samples but can
also be applied to images acquired using smartphone cameras. There are methods for
extracting feature vectors that describe the ridge orientation flow using Gabor filters
[19] and methods for extracting singular points from touchless fingerprint samples
[8].

Most of the methods in the literature adopt feature extraction and matching
techniques pertaining to Level 2. Minutiae-based feature extractors and matchers
can be directly applied to touchless fingerprint images acquired using smartphones
[6, 27]. However, most of the methods in the literature extract minutiae-based fea-
tures from enhanced ridge pattern images to achieve better accuracy. To extract and
match minutiae-based features, commercial biometric recognition software tools de-
signed for touch-based samples are widely used, with satisfactory results [2, 4, 42].
Furthermore, the minutiae-based feature extractor and matcher included in the Bio-
metric Image Software of the National Institute of Standards and Technology (NIST)
[47] can also be applied to enhanced representations of ridge patterns [36].While not
designed for images captured using mobile devices, a minutiae matcher specifically
designed for touchless fingerprint images [14] can also be used for fingerprint im-
ages acquired using smartphone cameras. Local features other than minutiae points,
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such as scale-invariant robust features [44], can also be extracted from enhanced
representations of ridge patterns.

In recent studies pertaining to learned feature representation, the feature extrac-
tion and matching steps have been performed using computational intelligence ap-
proaches,with promising results. In particular, it is possible to use scattering networks
to extract features and use a random forest classifier to perform the biometric match-
ing [40]. A similar technique using a scattering network and a machine learning
classifier is presented in [32]. A competitive coding algorithm and a residual net-
work can also be used in conjunction with a matcher based on the Hamming distance
between templates [5].

3.2.5 Quality Assessment

In the quality assessment step, a score value is estimated for each image or local re-
gion to represent its ability to be processed by the biometric system with satisfactory
results. In the case of selfie fingerprint biometrics, quality estimation can be achieved
through three main classes of methods, as follows: (i) estimating the global image
quality, (ii) estimating the quality of local regions, and (iii) estimating the focus
quality for real-time applications. Methods for estimating the global image quality
can be used to reject samples with out-of-focus regions or due to low visibility of
the ridge pattern caused by poor illumination. Methods for estimating the quality
of local regions can be used to discard poor-quality regions of a sample during the
feature extraction process. Methods for estimating the focus quality can be used to
implement autofocusing methods specifically designed for selfie fingerprint biomet-
rics. Figure3.5 shows an example of a fingerprint image in which different regions
have different levels of quality.

There are several quality assessment approaches for touchless fingerprint acqui-
sitions pertaining to global image quality estimation. Such methods are typically
designed for systems based on either a single camera [13] or multiple cameras [9,
45, 49], but most of them can also be applied to images captured with smartphone
cameras. In any case, quality assessment methods trained on images acquired using
smartphones can achieve higher accuracy for selfie fingerprint biometrics than meth-
ods trained on other types of samples, such as touchless fingerprint images acquired
with other kinds of cameras. As an example, the global image quality can be assessed
by evaluating the symmetry of the local gradients in the image in combination with
a focus estimator [26].

Methods for estimating the local image quality can use sets of features based on
the autocorrelation of the fingerprint pattern in the spatial and frequency domains
[27] and can also use additional features related to the intensity level of each pixel,
the orientation of each local region, and the high-frequency information of the image
[28].

Quality assessment methods designed for the real-time selection of correctly fo-
cused images are able to run in real time on deviceswith limited computational power,



3 A Scheme for Fingerphoto Recognition in Smartphones 59

Fig. 3.5 Example of the
quality assessment of a
touchless fingerprint image
captured using a smartphone.
The figure shows that
different regions offer
different levels of visibility
of the ridge pattern and are
therefore associated with
different quality values

such as smartphones. For example, a fast and efficient focus estimator analyzes the
density and sharpness of the edges in the image [42].

3.2.6 Liveness Detection

Liveness detection methods aim to distinguish biometric samples of real biometric
traits from possible presentation attacks against the sensor [15]. In the case of selfie
fingerprint biometrics, this step aims to distinguish real fingers from synthetic ar-
tifacts consisting of heterogeneous materials, printouts, and the images shown on
electronic devices. Selfie fingerprint biometrics is a recently emerging research field,
and there are only a few studies in the literature on methods for liveness detection
that are applicable to touchless samples acquired using smartphones.

It is possible to estimate the presence of a spoofing attack based on frame se-
quences of fingers. In particular, it is possible to analyze the pattern of the reflection
of the material while a finger is gradually moving in front of the camera under the
light emitted by the integrated LED of the smartphone and then to estimate the edge
density of the fingerprint image [41].

Liveness estimation can also be performed on the basis of a single fingerprint
image acquired by a smartphone camera. Various texture descriptors (local binary
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patterns, dense scale-invariant feature transforms, and locally uniform comparison
image descriptors) can be used by a support vector machine to distinguish between
real and fake fingerprints [43].

Although some methods have not been tested on images captured using a smart-
phone, there are liveness detection algorithms based on single touchless fingerprint
images that could also be evaluated for images acquired using mobile devices. As
an example, the method presented in [48] extracts local binary pattern features and
computes gray-level co-occurrence matrices to classify each image as real or fake
by means of a feedforward neural network classifier.

3.2.7 Mitigation of Nonidealities of Touchless Fingerprint
Sensors

This step aims to mitigate the nonidealities of fingerprint images captured with a
smartphone (as mentioned in Sect. 3.1). Several methods in the literature include an
additional processing step with the purpose of mitigating one or more nonidealities
of the captured samples. The methods proposed in the literature can be classified
according to their goal: (i) normalizing the fingerprint images to a previously defined
resolution, (ii) reducing perspective distortions due to uncontrolled rotations of the
finger during acquisition (Fig. 3.6), or (iii) applying surface distortions to increase
the compatibility between touchless samples acquired using smartphones and touch-
based fingerprint images.

Fig. 3.6 Angles of rotation of a finger
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Methods based on normalizing the images aim to mitigate one of the most impor-
tant nonidealities, namely the uncontrolled resolution of the fingerprint images due
to the absence of pins or references for finger positioning, which help to maintain
a constant distance between the finger and the camera among different acquisitions
[11]. The resulting nonconstant resolution of the samples prevents the direct use of
most of the state-of-the-art minutiae-based fingerprint matchingmethods, such as the
NIST BOZORTH3 software [47], which evaluates the Euclidean distances between
pairs of minutiae points. To overcome this problem, studies on touchless fingerprint
recognition systems normalize the image resolution to approximately 500 pixels per
inch by assuming a constant size for each finger [35]. Other studies have normalized
the image resolution by assuming that the ridge frequency is constant for each finger
[42]. There are also more complex scaling methods that identify the thick valley
between the intermediate phalanges and proximal phalanges for scaling the image
accordingly [36].

To alleviate the presence of perspective distortions due to uncontrolled rotations
of the finger during acquisition, existing methods estimate the rotations of the finger
and apply rigid transformations to each fingerprint sample. In particular, the rotation
angles of the finger can be estimated using trained neural networks and then used to
compute a frontal view image of the fingerprint by rotating a three-dimensional finger
model through the estimated angle [10]. Other approaches estimate finger rotations
by evaluating the position of the core point and the contour of the finger [26], or
apply a correction to the yaw angle of the finger as estimated from its silhouette [42].

Most methods in the literature pertaining to surface distortions require multiview
acquisition systems [38] or three-dimensional models [11]. Single fingerprint images
acquired using smartphone cameras can also be matched with touchless to touch-
based fingerprint images using multisiamese networks [29].

3.3 Performance Analysis

Compared to traditional touch-based systems, touchless fingerprint recognition sys-
tems based on less-constrained acquisitions usually exhibit a reduction in accuracy
[12] because the lower acquisition constraints result in an increase in the distances be-
tween samples belonging to the same user. Among touchless fingerprint recognition
systems, selfie fingerprint biometric systems often use the least-constrained acqui-
sition procedures, and therefore, such systems currently achieve lower recognition
accuracy compared to fingerprint recognition systems based on more-constrained
touchless acquisition devices.

Most studies in the literature use private biometric databases collected by the
authors. To the best of our knowledge, there are only two publicly available databases
of fingerprint images acquired using smartphones:

• The IIITD SmartPhone Fingerphoto Database v1 (ISPFDv1) [21] is composed of
5100 images captured from 128 fingers using an iPhone 5 with autofocus turned
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Table 3.1 Overview of selfie fingerprint biometric recognition methods
References DB size

(Ind./Samp.)
Acquisition Methodology Accuracy

[26] 60/1200 Single device, indoor
acquisition, uniform
background, manual
focus assessment

Gabor filtering, minutiae
extraction, and matching
algorithms for
touch-based samples

EER = 4.12%
(single device)

[6] 220/1320 Multiple devices, indoor
acquisition, uniform
background, fixed
position, controlled
illumination

Commercial software for
touch-based samples

EER = 4.66%
(single device)

[42] 82/492 Multiple devices, indoor
acquisition, uniform
background

Median filtering, adaptive
binarization procedure,
commercial software for
touch-based samples

EER = 19.1%
(multiple
devices)

[27] 100/2100 Multiple devices, indoor
and outdoor acquisition,
unconstrained
background

Commercial software for
touch-based samples

EER = 16.9%
(all samples,
multiple
devices); EER =
5.81%
(high-quality
samples,
multiple devices)

[36] 100/1800 Multiple devices, indoor
and outdoor acquisition,
unconstrained
background

Wiener filtering, minutiae
extraction, and matching
algorithms for
touch-based samples

EER = 3.74%
(indoor, single
device); EER =
2.04% (outdoor,
single device,
≈60% FTA)

[44] 50/150 Single device, indoor
acquisition, uniform
background

Adaptive histogram
equalization, SURF
features, nearest
neighbors

EER = 3.33%
(single device)

[40] 128/5100 Single device, indoor and
outdoor acquisition,
constrained and
unconstrained
background

Median filtering,
histogram equalization,
unsharp masking,
scattering network, L1
distance

EER = 3.65%
(indoor with
outdoor
matching, single
device)

[4] 33/275 Multiple devices,
translucent guide on
screen, fixed distance,
indoor acquisition,
uniform background

Band-pass filter, local
histogram normalization,
commercial software for
touch-based samples

FAR = 0.01% @
FRR = 1%

[2] 1500/3000 Single device, indoor
acquisition,
unconstrained
background

Wavelet filtering, phase
congruency, commercial
software for touch-based
samples

EER = 4.8%
(single device)

[5] 230/3450 Multiple devices, indoor
and outdoor acquisition,
unconstrained
background, uncontrolled
position and illumination

Competitive coding,
CNNs, cosine distance

EER = 35.48%
(multiple
devices)

Notes Ind. = Number of individuals; Samp. = Total number of samples; EER = Equal error rate;
FTA = Failure to enroll; FAR = False acceptance rate; FRR = False rejection rate; SURF = Speeded
Up Robust Features; CNN = Convolutional neural network
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on and without any integrated or external illumination source. The images, repre-
senting both indoor and outdoor conditions, were collected without the use of pins
or references for the finger positioning and have a resolution of 8 megapixels.

• The IIITD Unconstrained Fingerphoto Database (UNFIT) [22] is composed of
3450 images captured from 230 fingers using 45 distinct smartphones and different
acquisition software. The images represent both indoor and outdoor conditions,
were collected without the use of pins or references for the finger positioning, and
have resolutions ranging from 8 to 16 megapixels.

Table3.1 presents an overview of the fingerprint recognition methods for images
acquired using smartphone cameras, describing the size of the dataset considered,
the acquisition procedure, the methodology, and the recognition accuracy. This ta-
ble shows that current biometric systems based on fingerprint images acquired using
smartphones can achieve a satisfactory recognition accuracy formany heterogeneous
application scenarios. Furthermore, the results obtainedwhen evaluatingmethods us-
ing sets of images collected under both indoor and outdoor conditions are worse than
those achieved when evaluating methods on images collected only under indoor con-
ditions. Similarly, the results obtained for images acquired using multiple different
smartphones are inferior to those achieved for images acquired using a single device.

3.4 Conclusions

This chapter presents a review ofmethodologies for selfie fingerprint biometrics. The
existing methods for fingerprint recognition are described, analyzing every step of
the biometric recognition process. The performance of the state-of-the-art methods
is also compared and analyzed.

State-of-the-art methods enable the acquisition and processing of images of
multiple fingerprints with uncontrolled finger positioning and uncontrolled back-
ground and illumination conditions. They may use enhancing algorithms and stan-
dard minutiae-based recognition techniques or may be based on dedicated feature
extractors and matchers. There are also methods for quality estimation, liveness de-
tection, resolution normalization, and the mitigation of perspective distortions as
well as techniques for improving the compatibility between touchless and touch-
based samples.

Currently, selfiefingerprint biometrics can achieve satisfactory accuracy for awide
variety of identity verification applications. However, these systems are less accu-
rate than traditional touch-based fingerprint recognition technologies. This is because
smartphone-based systems use samples acquired under less-constrained conditions,
which present additional challenges with respect to touch-based fingerprint images.
Furthermore, the results reported in the literature show that there are two main as-
pects of the acquisition process that contribute to reducing the recognition accuracy:
(i) acquiring images using heterogeneous smartphones and (ii) performing outdoor
acquisition with uncontrolled illumination and background conditions.
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To improve the usability of selfie fingerprint biometric techniques, current re-
search trends are oriented toward further lowering the acquisition constraints by
considering multifingerprint samples acquired in different outdoor scenarios, with
uncontrolled backgrounds, illumination conditions, and finger positioning. At the
same time, researchers are focusing on improving the recognition accuracy by de-
signing novel enhancement techniques, more efficient feature extraction and match-
ing algorithms such as methods based on deep learning and convolutional neural
networks.
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Chapter 4
MICHE Competitions: A Realistic
Experience with Uncontrolled Eye
Region Acquisition

Silvio Barra, Maria De Marsico, Hugo Proença and Michele Nappi

Abstract People struggle every daywith authentication to access a protected service
or location, or simply aimed at protecting one’s own devices. This spurs a growing
demand for self-handled authentication strategies. The increasing number of remote
services of various kinds corresponds to an increasing number of passwords to use
and remember, and also to the growth of the password theft risk, due to the increasing
value of the protected resources. The other core element in present authentication
scenarios is the ubiquity ofmobile equipment. Smartphones add a “whatever” dimen-
sion to the possible uses of the mobile devices whenever and wherever that include
storing/transferring multimedia information, often personal and often sensitive. Bio-
metrics can both enforce and simplify authentication in controlled environments.
Mobile biometrics in uncontrolled settings, where there is no operator to guide the
capture of a “good-quality” sample on a mobile device, is the new frontier for se-
cure use of data and services. The iris is among the best candidates for biometric
recognition. It is extremely discriminative: Right and left irises of the same person
are so different to hinder a correct matching, because randotypic elements largely
overcome genotypic ones in individual development. However, self-acquired sam-
ples often suffer from poor quality, due, e.g., to reflections, motion blurring, out of
focus, or bad image framing. Mobile setting and especially the inherent problems
related to uncontrolled iris image acquisition are addressed in the two challenges of
the MICHE project, whose results are the core topic of this chapter.
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4.1 Introduction

Any user in the world that has to access a protected service or location, or that
simply wants to protect its owned devices, has to struggle with assuring a secure
access to them. This is a first aspect that characterizes self-handled authentication
strategies. Actually, the use of special signs, objects, or passphrases goes back to
the very origins of human communities. Watchwords asked by sentinels, or the five-
pointed pentagon tattooed on the palm of members of the Pythagorean school, are
examples of a kind of authentication often seen in the literature. The first attempt
to use computer support for authentication is represented by passwords that first
appeared at the Massachusetts Institute of Technology in the mid-1960s. There, a
massive compatible time-sharing computer (CTSS) was used to pioneer many of the
milestones of computing, including password-based authentication. In those times, a
single password was sufficient to access one’s virtual space and files, which after all
were the only resources to protect. Afterward and beyond any forecasting, computers
massively entered everyday life, with Internet allowing the creation of an increasing
number of remote services of various kinds. This has caused both the corresponding
increase of the number of passwords to use and also the growth of the password theft
risk, due to the increasing value of the protected resources. More and more complex
and non-trivial passwords must be used. However, the more they are difficult to
crack, the more they are difficult to remember. The possible alternative or addition
represented by possession of physical objects (e.g., keys and cards) does not solve
these problems. Rather, the need to keep the physical object always available when
needed, and the possibility that it can be lost or stolen, may make things even worse
for the users. In this awkward scenario, biometric authentication, though not being
invincible, seems to provide a more “natural” alternative. The users can just exploit
what they are or the way they behave to be recognized and granted privileges.

The other core element in present authentication scenarios is that mobile equip-
ment is ubiquitous nowadays. Smartphones substituted old cellular phones that in turn
had replaced traditional landlines. The possibility to communicate almost wherever
and whenever represents a characterizing aspect of the still ongoing technological
revolution. However, the whatever dimension, that allows the new communication
devices and protocols, is even more disrupting. The uses of present smart mobile
devices include storing/transferring in real time almost any kind of multimedia in-
formation. Such data is often personal and often sensitive. The exchange of sensitive
information requires a twofold approach to address increasing security needs: It is
necessary both to reliably identify the owner before the use of the device and to
reliably identify the user of a remote service at the moment the device connects to it.
Biometrics can both enforce and make authentication simpler in conventional con-
trolled environments. The next step is to move biometrics in uncontrolled settings,
where there is no operator to guide the capture of a “good-quality” sample and on
mobile devices. Mobile biometric recognition is the new frontier for secure use of
data and services.

It is interesting to remind the basic principles and issues that characterize bio-
metric authentication. The paper by Clarke published in 1994 [20] is among the
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earliest ones devoting specific attention to biometric recognition. Available means to
achieve formal identificationof individuals are classified as: (1)ways tomerely distin-
guish among individuals—names and codes; (2) ways to verify individual identity—
knowledge-based identification and token-based identification; and, finally, (3) bio-
metrics that can be used for both verification and identification. In this classification,
the term “biometrics” refers to identification techniques relying on some physical
and difficult-to-alienate characteristic. Of course, they require suitablemeasurements
and matching strategies. Clarke further sketches a first taxonomy of biometric traits
[20]: (1) those based on appearance that include the usual elements reported in any
identity document, such as height, weight, color of skin, hair and eyes, visible mark-
ings, gender, race, facial hair, glasses that are supported by photographs; (2) those
based on (social) behavior, including body signals, voice characteristics, speech style,
visible handicaps that are supported by video (or audio) recordings; (3) those based
on biodynamics, including the way of signing and keystroke dynamics that require
specific capture strategies; (4) those based on natural physiography, including skull
measures, teeth and skeletal injuries, fingerprint sets and handprints, retinal scans,
vein patterns, hand geometry, and DNA; and (5) those based on imposed physical
characteristics, including collars, bracelets, microchips, and transponders. The pa-
per by Jain et al. [37] simplifies this classification into two broad classes, namely
physical or behavioral traits, that are still used at present as reference. The paper
further elaborates on Clarke’s human identifiers to list the properties of a biometric
trait. They are the well-known universality, uniqueness, collectability, performance,
and circumvention. In [36], biometric traits are further classified as either supporting
unique identification (hard traits, e.g., face or fingerprints) or providing informa-
tion lacking sufficient distinctiveness and/or permanence to differentiate any two
individuals (soft traits, e.g., demographic traits and most behavioral traits).

Notwithstanding the optimistic premises, the kind of interaction required from the
biometric recognition systems may cause troubles to non-expert users, especially in
unattended scenarios where no operator is there to assist during the task. In general,
authentication systems are often difficult to use. Quoting from a paper published
in 2001 by Sasse et al. [63]: “The security research community has recently recog-
nized that user behavior plays a part in many security failures, and it has become
common to refer to users as the ‘weakest link in the security chain’. We argue that
simply blaming users will not lead to more effective security systems.” In 2000,
Nielsen [46] assumes that “in the future, security will improve through biological
[biometric] verification mechanisms, such as fingerprint recognition or retina scan-
ning” and yet also alerts that “it will take time for this infrastructure to be built (and
fingerprint systems will not work for some people).” The conclusion in [63] is even
more skeptical: “Biometric systems may be a good fit for some user–tasks–context
configurations, but not all of them.” Concerns raised in 2004 [48] and related to the
acquisition step are unfortunately still valid, as researchers dealing with biometric
recognition know very well. Fingerprint readers may suffer from dirt, bad framing,
a different pressure and motion; face recognition systems are affected by PIE (pose,
illumination, expression) distortions and also by aging of the subject. Iris scanners
may suffer from the bad alignment of the eye with the camera lens (e.g., off-axis).
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These problems become dramatically critical when dealing with mobile biometrics.
In this case, more problems rise because of the unattended acquisition, since the user
may not be able to capture a good sample and further be unaware of what capturing a
“good sample” means in the different cases. The 2007 work by Sasse [62] proposes
an apparently obvious solution: “Biometric systems should have user-friendly, intu-
itive interfaces that guide users in presenting necessary traits.” However, reliable use
of selfie biometrics is still an open problem.Mobile biometric recognition is continu-
ously increasing its popularity, thanks to the possibility of exploiting personal and/or
wearable devices equipped with more and more accurate sensors. Mobile equipment
is ubiquitous nowadays and allows capturing biometric traits anytime in any place,
by incorporating all necessary hardware equipment and software applications for
capturing and processing biometric data. However, the capture phase still poses cru-
cial problems. This dichotomy (Fig. 4.1) inspired Mobile Iris CHallenge Evaluation
(MICHE) project.

The chapter develops as follows. Section4.2 summarizes themain concepts related
to iris recognition and howMICHE challenges are positioned with respect to the past
and present research scenarios. Section 4.3 briefly describes the challenge setup with
its two separate phases and the dataset used as benchmark for evaluating participating
approaches. Section 4.4 deals with the first MICHE-I challenge, focused on iris
segmentation. Section 4.5 presents the results of the following MICHE-II challenge,
focused on iris recognition.

Increasing popularity of mobile biometrics Uncontrolled condi�ons
Non-technical users

Lower computa�onal resources

Fig. 4.1 Increasing popularity of mobile biometrics versus increasing use by non-technical users
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4.2 Iris Recognition and MICHE Challenges

The iris is the circular structure in the central part of the eye that determines what is
popularly defined as the eye color. From a functional point of view, it has a muscular
nature that is responsible for controlling the diameter and size of the pupil (the inner
black disk, actually a hole) and therefore the amount of light reaching the retina. From
an optical point of view and comparing the eye to a camera, the pupil represents the
aperture, while the iris has the role of the diaphragm. From the biometric recognition
point of view and of the involved processing steps, it is worth reminding which are
the most relevant external visible structures that contribute to characterize a human
iris. The pupillary zone is the most internal part of the iris, whose edges mark the
pupil boundary. These edges are well visible in light color eyes, while it may be
difficult to distinguish them in very dark eyes. The latter is one of the problems to
be addressed during iris region segmentation in visible light. Proceeding toward the
external iris border, the collarette is a very thick region that separates the pupillary
region from the ciliary zone. In this region, the sphincter muscle and dilator muscle
regulate the pupil dilation. It is relatively easy to identify this region in eyes which
are not too dark, since it is made up of radial ridges extending from the periphery
to the pupillary zone. The ciliary zone extends up to meet the sclera. The overall
iris structure is characterized by both regularities, represented by radial furrows, and
singularities, represented by crypts and possible lighter/darker spots (Fig. 4.2).

The iris is among the best candidates for biometric recognition. It is extremely
discriminative: Right and left irises of the same person are so different to hinder a
correct matching. This is due to the fact that randotypic elements largely overcome
genotypic ones in individual development. In other words, contrarily to, e.g., face,
the genetic baggage has very little influence on the iris makeup process. Its small size
makes related image processing quite fast with respect to face, and its peculiarities
make it very difficult to spoof an iris template. The most used kind of iris codes,

Ciliary zone

Pupillary zone

Collare�e

Fig. 4.2 Most relevant regions of iris images, for biometric recognition purposes. The col-
larette divides the pupillary and ciliary zones, as is particularly visible in light-pigmented irises.
Image adapted from the original image by JDrewes - Own work, CC BY-SA 3.0, https://commons.
wikimedia.org/w/index.php?curid=3117810

https://commons.wikimedia.org/w/index.php?curid=3117810
https://commons.wikimedia.org/w/index.php?curid=3117810
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devised by Daugman [22], is among the less expensive templates from the storage
point of view, and the acquisition is little intrusive. For all these reasons, the iris is a
natural candidate for mobile biometric recognition.

Research results regarding related techniques have quickly progressed from the
pioneering work byDaugman [22] andWildes [66], mostly pertaining controlled set-
tings and near-infrared (NIR) capture settings, to the use of deep learning [41], with
the most recent Noisy Iris Challenge Evaluation (NICE) addressing iris recognition
in less controlled settings [50, 52]. In addition to evolving iris image processing tech-
niques, the periocular region is deserving increasing attention, to either complement
iris recognition or to be used with images with too low resolution. Among the most
recent works, Reddy et al. [59] propose Ocular-Net, a convolution neural network
(CNN) model, using six registered overlapping patches from the ocular and periocu-
lar region; these are extracted to train a small CNN for each patch named PatchCNN
to extract feature descriptors. As the proposed method is a patch-based technique,
one can extract features based on the availability of the region in the eye image. The
proposed Ocular-Net with 1.5M parameters obtained comparative performance with
popular ResNet-50 model which has 23.4 M parameters.

Mobile setting and especially the inherent problems related to uncontrolled ac-
quisition are addressed in the two challenges of the MICHE project [24, 25] whose
results are the core topic of this chapter. Whatever the context, the iris recognition
workflow follows the same processing steps, which are typical of any object de-
tection/recognition procedure. The ease of localizing the eyes within the faces, and
the characteristic annular shape of the iris, should facilitate a reliable and accurate
detection of this anatomical element and the creation of a suitable representation.
This especially holds when NIR capturing is used, since reflections and illumination
variations have little influence on images, and a controlled acquisition guarantees a
correct position with respect to the camera. On the contrary, when capture is carried
out in visible light (VL), images usually contain precious chromatic features than
NIR images, but they are also much more seriously affected by many noisy artifacts
produced by light sources and reflections [57], and their processing suffers from pos-
sible dark pigmentation. Therefore, the first difficulties soon arise when attempting
to detect and segment the iris. Of course, a poor segmentation compromises all the
following steps, since feature extraction would be possibly carried out on non-iris
regions, while the complete set of (possibly unconnected) iris regions would not be
correctly identified. Iris segmentation was the focus of the first MICHE challenge,
aimed at assessing the accuracy of the candidate algorithms. It is worth noticing that
segmentation not only identifies the useful iris region, but also usually produces a
segmentation mask to be used during matching to leave out non-iris patches. The
step following segmentation is iris sample normalization. In most approaches, this
does entail not only reducing iris images to a common size, but also computing a
polar representation facilitating the following processing. The most used technique
to obtain this is the rubber sheet model introduced by Daugman [21]. The same
procedure is applied to the segmentation mask. Afterward, different approaches ex-
tract and match different features, related either to the regular patterns that can be
identified or to possible singularities, either local or global [19]. Feature extraction
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ACQUISITION SEGMENTATION NORMALIZATION

FEATURE EXTRACTION
&

CODING
MATCHING

RECOGNITION RESULT

VERIFICATION IDENTIFICATION

YES/NO IDENTITY

Fig. 4.3 Main phases of iris recognition processing chain (bold font underlines the phases addressed
by MICHE challenges)

and recognition are the focus of the second MICHE challenge. Figure 4.3 shows the
typical steps in iris processing and recognition and points out those addressed by
MICHE. Of course, the kind of the final result depends on the entailed recognition
modality, either verification (1:1 matching) or identification (1:N matching).

4.3 Challenge Setup and MICHE Dataset

As anticipated above, the Noisy Iris Challenge Evaluation I (NICE I) addressed the
problem of matching images captured in unconstrained conditions. The iris dataset
used as benchmark, namely UBIRIS.v2 [53], was captured in the visible wavelength
(VW), at-a-distance (4–8 m), and on-the-move. The results of the challenge confirm
howVWand uncontrolled conditions together dramatically affect recognition perfor-
mance. Similar conclusions result from the following NICE II contest [52]. Going
further along the line of increasingly challenging conditions, MICHE project ad-
dresses a further problem. While UBIRIS datasets were acquired by high-resolution
cameras, MICHE dataset, as we will better detail in the following, only uses built-in
cameras of different smartphones that at the moment of capture produced images
of undoubtedly lower quality than UBIRIS ones. MICHE challenges followed the
sameNICE schema: a first one focusing on iris segmentation and using as benchmark
MICHE dataset, and a second one focusing on feature extraction and matching, car-
ried out with an extended version of the dataset, and using as a common segmentation
tool the best method resulted from the first challenge.
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Whywas a newdataset required?TheChineseAcademyof Scienceswas a pioneer
in collecting the first publicly available datasets dealing with iris images, continu-
ously updated from CASIA-IrisV1 to CASIA-IrisV4 since 2002 [43, 64]. Its images
are either collected under NIR or are synthesized. Therefore, until NIR sensors will
truly spread on mobile devices, these datasets cannot be used to assess everyday life
iris processing on mobiles. Similar considerations hold for benchmarks used for ICE
competitions [68, 69]. On the contrary, UBIRIS datasets, available from SOCIA Lab
at University of Beira Interior (Portugal), were captured in visible light and uncon-
trolled conditions. However, they have a much better resolution than average mobile
sensors. Figure 4.4 shows some details of the last CASIA versions, while Fig. 4.5
shows a sample from a ICE competition and a sample from UBIRIS, both from a
left eye. Looking at the two samples, it is easy to understand the difference between
the two addressed contexts.

The aim of MICHE was to assess the real feasibility of iris recognition when
images are captured in visible light, by “normal” user-level mobile devices and by
“normal” (not necessarily technical) users in uncontrolled/unattended conditions,
and when cross-device matching can be needed (Fig. 4.6).

MICHE challenges provided as a benchmark a dataset reflecting this specific
setup. Before continuing, it is worth pointing out two symmetrical considerations.
The accuracy of capture/quality of the captured image may be enhanced due to the
usually short distance (not more than the length of a normal human arm) and to
the user natural attitude to have a frontal pose while taking a selfie. In addition,

CASIA DATASET (LATEST VERSION)

CASIA_INTERVAL

CASIA_LAMP

CASIA_IRISTHOUSANDs
CASIA_DISTANCE

Fig. 4.4 Last versions of CASIA datasets

Fig. 4.5 A sample from ICE (left) and one from UBIRIS (right)
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Visible light, «normal» device, «normal» user, uncontrolled/una�ended condi�ons

Cross-device matching

Fig. 4.6 Cohesive perspective of the MICHE operational context

in this case we are considering collaborative users that have all interest in being
recognized. The reverse of the medal is that the quality of the captured image can
suffer from possible lower resolution of the mobile device camera, from motion blur
and illumination distortions, and from incorrect image framing that can be all caused
by either/both kinds of device, the possible lack of technical experience of the user,
and by the lack of control on user capture operation. Addressing these problems
requires more robust detection/segmentation and matching procedures. It is worth
pointing out again that the performance of the matching can be dramatically affected
by the quality of the segmentation. This is the reason for having all participants
to the second part of the challenge to all use the same segmentation: They have
a common starting point so that it is possible to evaluate the addition of feature
extraction/matching in a fair way.

The composition of the dataset used for MICHE reflects the use of different mo-
bile devices for the acquisition and a realistic simulation of the acquisition process
including different sources of distortion/noise. The data was captured across several
acquisition sessions separated in time, to get a realistic amount of intra-class varia-
tions. All images were annotated with metadata useful to carry out demographics as
well as well as device-based analysis. In order to reproduce a real-world setting, the
subjects involved in experiments were given no special instructions but were rather
advised to take a selfie of their eye as they would do if asked in a real situation.
For instance, subjects usually wearing eyeglasses could either remove or keep them.
The self-images of their iris were acquired by normally holding the mobile device.
For each session, a minimum of four shots for each camera (a device could possibly
have two) and acquisition mode (either indoor or outdoor) was requested. Indoor
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acquisition was affected by various sources of artificial light, sometimes combined
with natural light sources. Outdoor acquisition exploited natural light only. Only one
iris per subject was acquired. The three kinds of devices used for data acquisition
purposes (both smartphones and tablets) that (at the time!) were representative of the
current top market category can represent at present medium-level devices and are
listed by increasing camera resolution:

• Galaxy Tablet II (GT2)

– Operating system: Google’s Android
– Posterior camera: N/A
– Anterior camera: 0.3 megapixels

• iPhone5 (IP5)

– Operating system: Apple iOS
– Posterior camera: iSight with 8 megapixels (72 dpi)
– Anterior camera: FaceTime HD camera with 1.2 megapixels (72 dpi)

• Galaxy Samsung IV (GS4)

– Operating system: Google’s Android
– Posterior camera: CMOS with 13 megapixels (72 dpi)
– Anterior camera: CMOS with 2 megapixels (72 dpi).

It is interesting to point out that it is possible to identify three groups of images
at three different resolutions (1536 × 2048 for iPhone5, 2322 × 4128 for Galaxy
S4, and 640 × 480 for the tablet). Examples are shown in Fig. 4.7. This is a further
challenge for cross-device matching.

Sources of noise affecting the MICHE dataset images include all those that can
be present in real-world unattended settings. Different kinds of reflexes are among
the most frequent ones and can be caused by either artificial light or natural light
sources, as well as by people or objects in the scene. Out of focus and blur can be
either due to an incorrect capture operation or due to involuntary movements of the
hand and/or of the head and/or of the eye during selfie capturing. Part of the region
of interest may be occluded by eyelids, eyeglasses, eyelashes, hair, or shadows. The
device itself may introduce artifacts due to low resolution or sensor defects, or it
may present different color dominants. Further problems are raised by off-axis gaze
and variable illumination. Actually, Fig. 4.8 shows that these factors can also affect
images in UBIRIS.v2 (http://nice2.di.ubi.pt/). However, comparison of Figs. 4.7 and
4.8 is useful to further point out the features of MICHE images. Most of all, due
to lack of precise framing and to different capture distances, it is possible to obtain
either well-centered eyes or half faces or partial eye images. Of course, this causes

http://nice2.di.ubi.pt/
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Fig. 4.7 Examples of MICHE images. From top to bottom, images were taken by iPhone5, by
Galaxy S4, and by Galaxy Tablet II devices

Fig. 4.8 Examples of UBIRIS images
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a different position, size, and sharpness of the region of interest, i.e., the region
useful for iris recognition. This happens because capture can happen from a very
close distance up to a distance equal to the arm length, even if in general the users
maintain an average capture distance that is in the middle. This means that more
robust eye localization techniques are required as a first processing step, but at the
same time it is possible to use, when present, useful information from the periocular
region.

The dataset is annotated by metadata through a reference XML file for each iris
image. The information recorded regards image acquisition (e.g., device character-
istics, distance from the device, outdoor/indoor indication) and archiving (e.g., file
name and file type), subject demographics, and the conditions under which the im-
age was acquired. At present, MICHE dataset contains images from 75 different
subjects, acquired in two sessions separated in time (1–9 months apart) with 1297
images from GS4, 1262 images from IP5, and 632 images from GT2. The dataset
also contains a MICHE Fake and a MICHE Video subsets, to test presentation attack
detection (PAD) approaches and recognition from dynamic data. More details on the
dataset can be found in [26]. Table 4.1 summarizes the difference in terms of possible
distortions between controlled and uncontrolled acquisition. It is worth pointing out
that “controlled” in this context means assisted by an expert operator that can ap-
preciate the possible defects in the obtained image and ask to repeat the acquisition
until a satisfactory visual quality is achieved. Low resolution can be considered as a
possibly common problem for the two settings, depending on the acquisition device.
However, in uncontrolled conditions it can add to possible other distortions and can
be more frequent in mobile capture.

4.4 MICHE-I Challenge: Iris Segmentation

The participants toMICHE-I challenge had the above described dataset as a common
benchmark. The aim of the challenge and of the analyses carried out on its results was
to explore both image covariates that are likely to cause a decrease in the performance
levels of the compared algorithms and the further effect of cross-device operations.
Segmentation was the only focus of the challenge; however, participants had the
possibility to also integrate their proposal with a recognition module. This allowed
to test both the original approaches and possible recombinations of segmentation (S)
and recognition (R) modules.

The analysis of results went beyond the evaluation/identification of the best ap-
proaches, but also focused on the image features/distortions that can mostly pos-
itively/negatively affect the final recognition performance and on interoperability
issues caused by the use of different devices in enrollment vs. testing phases. Having
more recognitionmodules available, itwas also possible to investigatemulti-classifier
strategies, to complement the strengths of more different approaches. The fusion was
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carried out at score level either by the popular simple sum or by a weighted sum pol-
icy assigning higher weights to methods achieving a lower equal error rate (EER) in a
pretesting step. Returning to the challenge setting, the performance measures chosen
to evaluate the different iris/non-iris segmentation strategies were a set of quite clas-
sical ones used for binary classification: accuracy, precision, sensitivity, specificity,
Pratt, F1 score, Rand index, global consistency error, E1 score, Pearson correlation
coefficient. Final recognition, when included in the participant methods, was carried
out in verification mode (1:1 matching). The corresponding performance measures
were decidability index, equal error rate (EER), and receiver operating characteristic
(ROC) curveswith corresponding area under curve (AUC). SinceMICHE-Iwas espe-
cially focused on iris segmentation, more metrics were used to measure performance
in this operation. Moreover, when present, the results of proposals also addressing
iris recognition were analyzed concentrating on the segmentation methods allowing
a more reliable feature extraction and matching thanks to a better separation of the
eye regions.

4.4.1 Metrics Used to Evaluate the Segmentation Quality

Table 4.2 summarizes the performancemeasures used to evaluate the candidatemeth-
ods in MICHE-I, and that are quite common for classification problems (in our case,
iris/non-iris) or even multi-class problems. Some of them are specifically suited for
segmentation: Pratt metric is introduced in [49] and global consistency error in [44].

Each of the metrics exploited to evaluate the segmentation quality is able to cap-
ture some specific aspect of a correct classification. Of course, it is firstly important
to correctly classify an existing edge pixel (true positives vs. false negatives) and
this ability is different from avoiding false positives (vs. true negatives). Actually,
the two can be in contrast, so that the lower the rate of false negatives, the higher
the number of false positives could be. This is common for binary classifiers, and
as a matter of fact they do play an asymmetrical role in evaluating segmentation
algorithms: An algorithm that achieves the former might be less effective to achieve
the latter. Errors in either direction can differently affect the rest of the process-
ing. A contour interruption caused by false negatives can hinder if not completely
compromise the detection of a shape or produce an unconnected contour where a
connected one is needed/expected. The role of the first four metrics is to measure
these aspects separately. F1 score rather provides an overall estimate of the ability
of the algorithm to distinguish true edge pixels from false ones without missing too
many of them. RI is a measure of the overall agreement between positive/negative
classifications and ground truth, taking into account pairs of corresponding pixels.
It can be extended to more different candidate classifications. E1 score represents
a kind of complementary measure, since it rather measures the proportion of dis-
agreeing pixels. Pratt metric evaluates accuracy from a point of view more strictly
related to the specific segmentation problem, since it returns a global estimate of the
distance between the detected contours and the ground truth: not only true/false, not
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Table 4.2 Performance measures used to evaluate the methods submitted to MICHE-I

Accuracy Accuracy measures the proportion of true results, summing up true
positives and true negatives and computing the rate with respect to the
total number of samples

Precision Precision measures the proportion of the true positives against all the
returned positive results that include both true and false positives

Recall Recall is also called the true positive rate, or the sensitivity, and measures
the proportion of positives that are correctly identified as such, i.e., true
positive against ground truth positives

Specificity Specificity is the true negative rate and measures the proportion of
negatives that are correctly identified as such, i.e., true negatives against
ground truth negatives

F1 score F1 score can be interpreted as a weighted average of the precision p and
the recall r, and is defined as: F1-score = 2 × Precision×Recall

Precision+Recall ; it ranges
from a best value of 1 and a worst value of 0

Rand index (RI) The Rand index counts the fraction of pairs of corresponding pixels in
given segmentation and ground truth, whose elements are either both
labeled as edge or both labeled as non-edge, both in ground truth and in
the returned segmentation

E1 score E1 score represents the classification error rate of the algorithm on the
input image and is given by the proportion of corresponding disagreeing
pixels (that have a different label in the returned segmentation and in
ground truth); it can be computed by the logical exclusive OR operator

Pratt Pratt metric is defined as a function of the distance between correct and
measured edge positions; it is also indirectly related to the false positive

and false negative edges: Pratt = 1
max{EG ,ED} ×

ED∑

k=1

1
1+α+d2i

where EG and

ED are the number of ground truth and detected edge points, respectively,
di is the distance from the ith detected edge point and the closest ground
truth one, and α is a scaling constant that in the original metric
formulation is α = 1

9 ; this metric takes into account the global trend of the
distances between returned and ground truth edges; it ranges between an
optimal value of 1 and a minimum of 0

Global consistency
error (GCE)

The global consistency error evaluates at which extent one segmentation
can be viewed as a refinement of the other, given two segmentations S1
and S2, a pixel pi and regions R(S1, pi) and R(S2, pi). Containing the pixel
in segmentation S1 and S2, respectively, a local (asymmetric) error
measure is defined as E(S1, S2, pi) = |R(S1,pi)\R(S2,pi)|

|R(S1,pi)| , so that it is
possible to compute a local refinement error in each direction at each
pixel; the global consistency error forces all local refinements to be in the
same direction, being finally defined as
GCE = 1

nmin{
∑

i
E(S1, S2, pi),

∑

i
E(S2, S1, pi)} with n the number of

pixels; substituting the minimum of the sums with the sum of the minima
provides the local consistency error (LCE) that would rather allow
refinement in different directions in different parts of the image

Pearson correlation
coefficient (PCC)

The Pearson correlation coefficient is a measure of the linear correlation
between two random variables X and Y, returning a value between +1 and
1 inclusive, where 1 is total positive correlation, 0 is no correlation, and -1
is total negative correlation.
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only lack of correspondence, but also distance from the true result. In this respect,
GCE provides a similar yet more “directed” result, taking into account the direction
of the error too: It measures how the errors with respect to ground truth (the direction
is fixed) can result in a less detailed segmentation though bringing much the same
core information. Finally, PCC is the usual Pearson correlation, to evaluate if the
result segmentation and the ground truth present a similar trend.

4.4.2 Methods Participating in MICHE-I

Sincemost proposals includedboth segmentation and recognition, both sub-proposals
will be briefly summarized when appropriate. A first observation deriving from the
analysis of the methods is that it is a common practice to try to compensate for poor
image quality using different approaches. A frequent one entails the use of the peri-
ocular region as an extra source of information.When the resolution of the iris region
is not sufficient, or too many distortions are present, recognition can be supported
by additional features extracted from the region around the eye. Among the other
proposals along this line, this approach had been proposed also in NICE II challenge
(addressing recognition) and in particular by the winning method by Tan et al. [65].
A combined strategy using more sets of features/methods can reduce the specific
sensitivity to any particular data covariate. Last but not least, it is possible to exploit
color compensation techniques to attenuate the typical cross-device difference of
sensor features. The participating methods are listed below by alphabetical order of
the first author’s last name.

The approach by Abate et al. [4] for the challenge relies on an algorithm based on
the watershed transform for iris segmentation, namely watershed-based iris detection
(BIRD). The first step is to compute for each RGB channel the gradients in a colored,
illumination-corrected image. The final gradient image is obtained by averaging the
gradients computed over the separate channels. The watershed transform exploits
the topographical distance approach [60]. The output of the watershed transform
guides the binarization of the original image and the circle detection step, in order
to find a parametrized expression for both the pupil and the sclera boundaries. Also,
this proposal exploits the periocular region, which is localized using as reference
the length of the iris radius. Differently from Santos et al. (see below) that exploit
a rectangular periocular region, BIRD relies on a different choice. Starting from the
approximating circle detected during the iris segmentation process, BIRD exploits
its center coordinates and radius to construct two concentric ellipses that enclose part
of the area around the iris. Both ellipses are centered in the center of the iris, but
they are defined by different major and minor axes, always determined starting from
the iris radius. The area enclosed by the ellipses is processed in a way similar to the
Daugman rubber sheetmodel. The resulting rectangular region has a resolutionwhich
depends on the granularity chosen for the parameters (angle) and on the mapping.
This way of processing the periocular region is quite original. For both regions,
feature encoding is done by means of 64-bit color histograms, matched using the
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cosine dissimilarity and Hamming distance. Iris and periocular results are fused at a
score level, by implementing a simple sum approach.

The proposal by Barra et al. [18] also includes segmentation and recognition.
The segmentation method, named IS_IS, was originally proposed in [23]. The orig-
inal method entails using Canny edge detector to identify edges, and then the pupil
boundary is identified by a voting scheme that ranks circular edges by uniformity of
the inner region and contrast between the inner and outer regions. Iris is identified
after applying the rubber sheet model to the image, by inspecting the dark-to-light in-
tensity variations along the columns of the image in polar coordinates. The method is
modified to run onmobile devices. Feature encoding relies on spatial histograms (spa-
tiograms). Common histograms can be considered as first-order spatiograms, while
higher-order ones contain further information relating to the spatial domain spanned
by the pixels falling in each bin. Second-order spatiograms used here store also the
mean and covariance matrix of the pixel coordinates. Spatiograms are matched by
correlation-based techniques.

The proposal by Haindl and Krupička [33] focuses on the detection of the non-
iris components, especially reflections, for the parametrizations of the iris ring. The
accurate detection of eyelids and reflections can have a significant impact on the
final iris segmentation. The proposed model adaptively learns its parameters on the
iris texture part and then searches for iris reflections by the recursive prediction
analysis. After detecting reflections, pupil parametrization is carried out by form
fitting techniques. Next, data is converted into the polar domain according to the
usual rubber sheet model technique. In the resulting stripe, a texture analysis phase
determines the regions of the normalized data that should not belong to the iris,
according to a Bayesian paradigm.

As other proposals, Hu et al. [34] apply a combined approach and fuse different
iris segmentation techniques, selected according to their performance in address-
ing specific cases of degraded images. Their proposal implements a model selection
strategy, which selects the final parametrizations for iris and pupil boundaries among
the candidates returned by the used baseline segmentation strategies. The selection
relies on the image description provided by histograms of local gradients that are
inputted to a support vector machine providing the fused response. This strategy is
designed to be modular and can be updated by adding/substituting baseline segmen-
tation methods. This proposal does not entail either coding or classification.

The method submitted to the challenge by Santos et al. [61] entails both seg-
mentation and recognition. It uses both the information from the iris and from the
periocular region, encoded/matched in a localized way. The first step is iris ring seg-
mentation, which is carried out according to a variation of the integro-differential
operator by Daugman. As a matter of fact, the characterizing part of this proposal
is the encoding/matching step. Once identified, this ring also allows locating the
periocular region of interest (ROI). According to a combined strategy, information
encoding exploits a family of texture descriptors used separately in the iris ring and
in the regions surrounding the cornea (i.e., eyelids, eyelashes, skin, and eyebrows).
In particular, the periocular region undergoes a twofold examination, entailing both a
distribution-based analysis of patches defined over a fixed grid and a global analysis
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of the whole region. The former is carried out by computing both local binary pat-
terns (LBPs), histogram of oriented gradients (HOGs), and uniform LBP (ULBP).
Each descriptor is computed separately for each patch and quantized into histograms.
Global analysis rather entails feature extraction from the whole periocular ROI. In
this case, the descriptors applied are scale-invariant feature transform (SIFT) and
GIST (a set of five descriptors originally introduced in [47] to model the shape of
a scene in a way that bypasses the segmentation and the processing of individual
objects or regions). Iris information is encoded according to the classical approach
described by Daugman [22]. It may appear that much more information is captured
and stored from the periocular region than from the iris. During matching, scores
from all the adopted descriptors are fused by a nonlinear supervised neural network.
It is worth pointing out that the method further exploits device-specific calibration
techniques that compensate for a different color rendering characterizing each ex-
perimental setup. The latter is especially useful in cross-sensor tests. In summary,
this method uses information from two different sources, the iris and the periocular
region, and further uses different descriptors to fully exploit their different charac-
teristics. The overall proposal is a good example of how a difficult setting can be
addressed by an ensemble of techniques.

4.4.3 Some Interesting Notes on Achieved Results

We will not report the detailed results of the competition. The interested reader can
refer to [24]. The same will be done for the results from MICHE-II. Rather, we will
underline some interesting aspects as possible guidelines to take into account.

For each method and for each device, the segmentation was carried out on images
captured both indoor and outdoor (OUT); in some cases, no segmentation at all was
returned, and this represents a kind of failure to enroll (FTE) error. The method by
Haindl and Krupička achieves the highest rate of successfully segmented images,
while the method used by Barra et al. achieves the lowest. However, thanks to the
number of different performance measures exploited, it was possible to observe that
the usable segmentation results returned by the latter, although less in number, were
more accurate, providing the highest level of similarity with the ground truth. From
the point of view of similarity with ground truth, the second method achieving the
best results was the one by Abate et al. Therefore, these two methods should provide
higher-quality masks, since they apply a more strict quality criterion for the obtained
segmentation. Surprisingly enough, the methods by Haindl Krupička and byHu et al.
were instead more reliable in terms of the rate of success in the following recognition
step. This seems a contradiction; therefore, a more careful investigation was carried
out entailing the comparison of the 50 best common segmentations from the different
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methods. When working on the pictures where the segmentation task is easier, the
results are different from those above. The mean scores on all devices testify that the
method by Haindl and Krupička is actually the most reliable one. This means that it
is not possible to predict the behavior of any method when problematic samples are
submitted.

It is interesting to have a look at Fig. 4.9 to appreciate the differences that can
be observed in the segmentation masks, whose accuracy can be influenced by the
capture condition (indoor vs. outdoor), by the resolution of the image, determined
by the capture device, and by the segmentation method.

It is possible to observe the frequent degradation of image quality passing from
indoor to outdoor conditions, caused by a huger presence of reflections. However,
indoor capture can be influenced by the different color temperatures of the illumi-
nation sources and of the sensor (see, e.g., IP5 IN and GS4 IN in Fig. 4.9). A higher
resolution can be desirable to capture finer details. However, also the amount of noise
can be greater. An example is given by the more stable segmentation produced on
GT2 images. Of course, a final assessment can only be provided by the recognition
results obtained on images captured in corresponding conditions.

Fig. 4.9 Examples of the segmentation results in good-quality MICHE images
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4.4.4 Recombination of Segmentation and Recognition
Modules

Recognition was not specifically addressed in MICHE-I. However, since most sub-
mitted proposals also included a recognitionmodule, this allowed to carry out further
evaluations.We recombined segmentation and recognitionmodules in differentways.
The aim was to evaluate how the two parts of a proposal depended on each other and
which segmentation methods provided a more robust preliminary step for a different
coding. The well-separable and not already published segmentation modules were
those included in the proposals by Abate et al. [4], Barra et al. [18], Hu et al. [34],
and Santos et al. [61] that have been described above.

The performances achieved by the recognition methods included in the proposals
submitted to MICHE-I were evaluated in verification mode (1:1 matching, where it
is to intend that a probe subject is matched against a single gallery subject, though
possibly exploiting more templates per subject). The used figures of merit (FOMs)
were decidability, area under curve (AUC) with reference to the receiver operating
characteristic (ROC) curve, and equal error rate (EER). The preliminary identification
of the iris ROIwas carried out in turn using the segmentationmethods of the challenge
proposals. Decidability is the same FOM used for the NICE II competition [51]. The
first step to compute it requires to carry out a “one-against-all” comparison for each
image I = I1; . . . ; In of the dataset. The matching process exploits the segmented
images and the corresponding binary mapsM = M1; . . . ;Mn that provide the noise-
free iris region identified by the segmentation step. The comparison provides a set
of intra-class dissimilarity values DI = DI1; . . . ;DIk , with k the number of image
pairs belonging to a same iris, and a set of inter-class dissimilarity values DE =
DE1; . . . ;DEm, with m the number of image pairs belonging to different irises. The
decidability value d ′(DI1; . . . ;DIk;DE1; . . . ;DEm) → [0;∞[ used as evaluation
measure is computed separately for each recognition method as:

d ′ = |avg(DI) − avg(DE)|
√

1
2 × (σ 2(DI) + σ 2(DE))

, (4.1)

where avg and σ 2 have the conventional meaning of average and variance functions
computer over the parameter sets.

The challenge proposals including a clearly separable recognition module were
those by Abate et al. [4], Barra et al. [18], and Santos et al. [61]. A further recognition
method was submitted for a special issue based on but not limited to the challenge,
namely the one presented by Raja et al. in [55]. It was tested in combination with
all the four segmentation modules in order to get a wider set of experiments. This
approach to feature extraction and recognition is based on deep sparse filtering.
Sparse filtering [45] is an unsupervised algorithm which does not explicitly aim to
model the distribution of data. It optimizes a simple cost function of sparsity using
l2 normalized features. The only parameter required in learning sparse filters is the
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number of features, as the sparse filters are learned by optimizing sparsity in feature
distribution. Extending the method to deep sparse filters, a variable number of layers
form the building blocks in learning. In the proposed approach, the deep sparse filter
consists of two layers such that layer 1 is trained using 200,000 random patches of
size 16 × 16 pixels from 4212 natural images. The sparse filtered features obtained as
output from the layer 1 are normalized and submitted to layer 2 using a feedforward
network. The sparse filter is trained at layer 1 with 256 filters of dimension 16 × 16
features and at layer 2 with 256 sparse filters of 16 × 16 features. The sparse filter
features obtained from layer 2 are exploited to extract features from the iris images.
Each iris image is convolved with the 256 filters of layer 2, so that a total of 256
response images are obtained. These images are binarized and pooled at pixel feature
level in groups of eight so as to obtain a response image from each pool. Afterward,
an histogram is extracted from each obtained image and histograms are chained to
form a feature vector.

When recognition is assessed in a context like the one addressed by MICHE, it is
significant to also test cross-device performance. Segmentation can affect the final
process by a different accuracy in identifying pixel regions belonging to the iris.
Some such regions may be missing, or some non-iris patches may erroneously enter
the feature extraction and matching step. The first kind of errors becomes critical
if quite extended, so that relevant information may be left out from the matching.
This may either cause a FA (the missing region was a highly characterizing one) or
a FR. The second hypothesis is less frequent, because the remaining part of the iris
could be sufficient for a positive recognition. On the other hand, the second type
of error may affect the final result even if less extended, since it introduces differ-
ences between two irises even where pixels should not have been considered for the
matching, therefore erroneously increasing the differences. The most frequent con-
sequence is a FR, since in general the non-iris regions have a structure significantly
different from the iris regions of both the same eye and different eyes. Differently
from segmentation, feature extraction and matching rely on finer details that allow
to summarize the microstructure of the iris region. In this case, artifacts and sensor
typical noise introduced by a sensor can cause a higher accuracy degradation when
captured images are matched against those captured by a different sensor. In partic-
ular, the sensor pattern noise (SPN) as defined in [42] is so specific of each device,
though of the same brand and model of others, that it could be used to identify the
one that captured an image.

Cross-sensor matching experiments were implemented by alternatively using sets
of images acquired by the same device as either gallery set or test set (probe set),
including intra-device recognition. Each combination of probe–gallery devices will
be referred to as a class of comparison. Detailed report of experimental results can
be found in [24]. It is interesting here to just underline the main observed aspects.

The first observation deriving from the inspection of the results is that the recog-
nition method by Santos et al. systematically outperforms the others in all classes of
comparisons and with all segmentation algorithms. Among the classes of compari-
son, those entailing the same device generally allow better performance with respect
to heterogeneous pairs. The class of comparison GT2vsGT2 achieves a higher level
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of performance (on average and compared to the others) in terms of both the EER
values achieved by the various combinations of segmentation/recognition, and of the
relationship between FARs and FRRs (better ROC curves). This happens notwith-
standing the poorer resolution of the embedded camera. However, this class generally
presents the lowest decidability values. The apparent contradiction may be caused
by the fact that the sizes of probe and gallery sets for GT2 are smaller than the oth-
ers. This means a lower percentage of inter-classes uncertainty, which contributes
to increase the level of performance and to a lower intra-class generalizability of
the results. Another non-obvious observation is that performances are sensitive to
the swap of the probe/gallery role of images from different sources. Of course, this
depends on the different levels of detail of images from devices with a different
resolution. In general, the higher the resolution of the probe (the amount of details)
with respect to the gallery images, the worse the result, because part of the probe
information does not get matched. Finally, the segmentation methods by Haindl and
Haindl and Krupička , and by Hu et al. provide more stable results that cause less
performance difference in the following recognition step, even if in both cases the
superiority of the recognition by Santos et al. is even more evident.

A final analysis of the results of MICHE-I when using a single recognition system
was carried out to identify the “intrinsic” covariates that can mainly affect recogni-
tion. For this reason, “extrinsic” covariates were neglected. In particular, for each
experiment the device was fixed for both probe and gallery, to neglect factors related
to the device difference. Moreover, also the segmentation and the recognition meth-
ods were fixed, in order to neglect the differences in the achieved similarity given by
the specific techniques. The aim was to identify the best/worst pairwise comparisons
that were common to all experiments. For each experiment, each gallery template is
compared with each of the others of the same subject, and the full set of the obtained
intra-subject dissimilarity scores is organized in a list ordered by ascending values.
Given device and method peculiarities, such scores may fall in different ranges and
have different distributions across the experiments. However, it is still worth com-
paring the obtained rankings. The samples considered as the “best” ones always
appear on the heading part of the ordered lists, meaning that they always achieve a
very good similarity when compared with samples of the same subject. The contrary
holds for “worst” samples. The possible recurrent features of the latter are the most
interesting, because they represent those intrinsic conditions that can hinder a cor-
rect recognition. Figure 4.10 shows some typical examples of “worst” samples. It is
possible to observe that the occlusions by the eyelids are rather evident in most of the
pictures; the average brightness of images is low, or the iris falls in a shadow region;
reflections of unpredictable nature can affect images captured outdoors (image in the
upper left corner of Fig. 4.10). On the contrary, in “good” samples the visibility of
the irises and of the pupils is high, thus making it easier to detect and segment them.

Aiming at a possible gain in accuracy, the combination of multiple recognition
methods was evaluated. In this last round of experiments, the different recognition
results were fused at score level. Each experimental session was identified by the
pair of (possibly different) devices capturing gallery and probe, by the segmentation
method, and by the recognition strategy exploited. The latter can entail either a single
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Fig. 4.10 Examples of “worst” samples

method or a score-level fusion of the results from a possible subset of them. For each
session, each recognizer involved produced a dissimilarity matrix: The lower the
value of a cell (score), the higher the probability that the images on the row and on
the column depicted two irises from the same subject. In order to fuse more results,
the values in the matrices had to be normalized, in order to obtain comparable values
in a common range [0, 1]. This was achieved by the min/max rule, by considering the
minimum and the maximum value for each matrix. Two score-level fusion strategies
were investigated: the simple sum fusion and the matcher weighting fusion. The
former consists in just summing up the scores produced by each of the M methods
involved in a session. The values in the obtained distancematrix are normalized again
to remain in the range [0, 1]. The matcher weighting fusion assigns to each matcher
m a weight wm that is inversely proportional to the achieved EER em and is defined
as follows:
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wm =
1

∑M
m=1

1
em

em
, (4.2)

where 0 ≤ wm ≤ 1 and
∑M

m=1 wm = 1.
The number of segmentation methods, of recognition methods, of pairs of

probe/gallery devices, and the consequent number of their combinations, makes
the amount of results to analyze and report extremely large. It is easy to guess how
this amount further increases by introducing possible combinations of recognition
methods in multimodal strategies and possible different fusion strategies for each
such combination. Once again, we report here only the most relevant outcomes.
Given the four segmentation methods, and for each of them the nine combinations
of probe/gallery devices, an overall analysis of the fusion results testifies that the
improvement achieved by using any of the two fusion strategies is rather limited. In
many cases, the AUCs are just a little wider than the ones obtained by an execution
of Santos et al. algorithm alone. This means that the four recognition methods taken
into account have no sufficiently complementary ability to extract andmatch relevant
features. In other words, they rely on similar information content, though represented
in different ways. The increased computational demand required by running differ-
ent methods and by the fusion of their results is not positively counterbalanced by a
significant enough improvement in the recognition accuracy. In conclusion, a gener-
ally well-performing method can achieve better performance than the combination
of weaker ones if the latter do not represent different kinds of information so as to
balance each other’s flaws.

4.5 MICHE-II Challenge: Iris Recognition

Along the line of NICE challenges, the second round of MICHE challenge, namely
MICHE-II, focused on iris recognition. As already underlined, the accuracy of the
encoding in correctly extracting relevant and discriminative features, and the follow-
ing recognition, can be generally heavily affected by the quality of the segmentation.
In order to provide a common starting point to all participants, not only a common
benchmark was provided that represents an extension of the previous dataset though
maintaining the same feature distribution and variety. As for the second phase, all the
competing methods had to start from the results of the same segmentation algorithm,
in order to be able to assess the net contribution on the feature extraction/recognition
alone. As for NICE, the best segmentation algorithm from MICHE-I was chosen,
namely the one by Haindl and Krupička [33]. Of course, different feature extrac-
tion procedures can produce different templates and specific approaches to similar-
ity/distance evaluation. Therefore, the competitors were free to choose a suitable
distance measure for the produced iris templates, with the only constraint to be a
semi-metric. The higher the dissimilarity, the higher is the probability that the two
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irises are fromdifferent subjects. Given I the set of images from theMICHEdatabase,
and Ia and Ib ∈ I , the dissimilarity function D had to be defined as:

D : Ia × Ib → [0; 1] ⊂ R, (4.3)

with properties

D(Ia; Ia) = 0 (4.4)

D(Ia; Ib) = 0iifIa = Ib (4.5)

D(Ia; Ib) = D(Ib; Ia) (4.6)

Each algorithm had to return a full dissimilarity matrix among probe and gallery
sets. New images were added, and distance matrices were computed from scratch
during the evaluation of themethods, in order to avoid any kind of bias while creating
the final rank. Distance matrices were used to compute the classical FOMs to rank
them, namely recognition rate (RR) for identification and receiver operating charac-
teristic (ROC) curves, in particular the area under curve (AUC), for verification.

4.5.1 Methods Participating in MICHE-II

We summarize below the main characteristics of the participants. As for MICHE-I,
the methods are listed by alphabetical order of the first author’s last name, even if
they were assigned an identifying label. Also in this case, a special issue following
the challenge hosted a further method that was evaluated and compared in a second
round.

The method labeled as irisom was implemented is first described in [1], and
experiments are extended in [3]. It implements iris recognition in the visible spec-
trum through unsupervised learning by means of self-organizing maps (SOMs). The
proposed method starts with a first step of image enhancement by simple image
processing techniques, like contrast enhancement and histogram adjustment. Then,
it exploits unsupervised learning by self-organizing maps (SOMs). The SOM net-
work clusters iris features at pixel level, after discarding those marked as non-iris in
the segmentation mask. The discriminative feature map is obtained by using RGB
data of the iris combined with the statistical descriptors of kurtosis and skewness,
computed at pixel level in a neighborhood window of size 3 × 3. The network pro-
duces a feature map with the activation status of the neurons for each pixel. The
map represents a cluster decomposition of the image, which maps the problem of
iris recognition onto a lower-dimensional space. The method then computes the his-
togram of gradients (HOGs) over the obtained feature maps, and the result is used as
a feature vector. Verification relies on the Pearson correlation coefficient computed
in the [0,1] real interval. The best results for this method were achieved with 5 × 5
and 10 × 10 SOMs.
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The method otsedom is described in [7], and experiments are extended in [5].
The proposal was submitted by a joint team from Universidad del Pais Vasco (UPV)
and Universidad de Las Palmas de Gran Canaria (ULPGC). The approach combines
popular computer vision techniques and machine learning paradigms. Starting from
the segmentation, well-known local descriptors are computed. Those suitable for the
problem are selected after evaluating a collection of 15, with different grid configu-
ration setups. Popular examples of the selected descriptors are local binary patterns
(LBPs), local phase quantization (LPQ), and Weber local descriptor (WLD). They
are used individually to build separate classifiers by a supervised machine learn-
ing approach. Each classifier computes the dissimilarity between two irises by the
histogram distance between the two a-posteriori probability distributions computed
from the two iris images. In a second step, the best combination of subsets of classi-
fiers is evaluated to build the best multi-classifier system out of the individual ones.
In practice, the final algorithm combines the best five descriptors to obtain a robust
dissimilarity measure of two given iris images. The mode of each a-posteriori prob-
ability for each class value is used to combine the classifiers. Some combinations of
local descriptors also take into account the periocular region.

A research group with a slightly different composition from the above presented
a further set of proposals collectively labeled as ccpsiarb [8]. The experiments pre-
sented by the authors are extended in [6]. Based on the training dataset given by
MICHE-II, a set of classifiers is constructed and tested, aiming at classifying a sin-
gle image. Iris images are processed using well-known image processing algorithms.
Different transformations of the original pictures can highlight different characteris-
tics of the images. Examples of the transformations tested are equalization, Gaussian,
median, etc. This phase aims at expressing the variability in the aspect of a picture,
so as to obtain different values for the same pixel (feature) positions. The output
images are considered the input of the previously trained classifiers, obtaining the
a-posteriori probability for each of the considered class values. The classifiers im-
plement somewell-knownML supervised classification algorithms, with completely
different approaches to learning: IB1, Naive Bayes, random forest, and C4.5. Ex-
periments take into account the 19 image collections obtained by applying single
transformations, and the four different classifiers, giving a total of 76 experiments.
After testing all these combinations, the edge transformation followed by IB1 clas-
sification (identified as combination ccpsiarb_17) is identified as the combination
providing the best results.

The tiger_michemethod described in [9], with experiments extended in [10], uses
a combination of a popular iris code approach and a periocular biometric based on
the multi-block transitional local binary patterns. To generate iris codes, the method
convolves the unwrapped iris image with 1-D Log-Gabor filter. Log-Gabor functions
are chosen because they have no DC component, and this can alleviate the negative
influence of light intensity differences on textural information, which affects the
images captured in the visible spectrum. Since a 1-D filter is used, each row in the
unwrapped image is treated as 1-D signal. It is multiplied in a frequency domain
with 1-D Log-Gabor filters of different scales that capture textural information with
different levels of details. To generate the iris code, the phase information of the
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output signals is quantized into four levels, one for each possible quadrant in the
complex plane. The coding then discards iris code values at positions corresponding
to either very small or very large amplitudes of filter response. Hamming distance
is used to match the iris codes, once adapted to take the segmentation mask into
account.

Transitional LBP (TLBP) uses comparisons between neighbor pixels in a clock-
wise direction for all pixels, except the central one, so that it encodes information
about the partial ordering of border pixels. Its formulation is

TLBPP,R = s(g0, gP−1) +
P−1∑

i=1

s(gi − gi−1)2
i, (4.7)

where, as usual, g0 is the central pixel of thewindowoverwhich the code is computed,
P is the number of neighbors,R is thewindow radius, and s(x) returns 1 or 0 according
to the sign of its argument. Multi-block extensions of both LBP and TLBP use the
average gray values from the blocks of pixels instead of the gray values of individual
pixels to create the code. The method uses block sizes 3 × 3, 9 × 9, and 15 × 15.
For each block size, it computes TLBP12,3 and TLBP24,6 codes and their histograms,
which are concatenated to create a feature vector. Histogram vectors are matched
using chi-square distance between the concatenated histograms.

The Hamming distance between two iris codes and the periocular matching score
are computed separately and then combined by a score-level fusion to improve the
system accuracy. The values returned by the matchers fall in different ranges and
present very different score distributions; therefore, the authors exploit z-score nor-
malization.

The method labeled as karanahujax is described in [11], with experiments ex-
tended in [12]. It exploits a hybrid convolution-based model, for verifying a pair
of periocular images containing the iris. The baseline proposed model is based on
root scale-invariant feature transform (SIFT). The binary mask is used to get the iris
image rid of occlusions. Then, dense color root SIFT descriptors [15] are computed,
giving keypoints with identical size and orientation. The hybrid model is conceived
as a combination of this baseline model and of two deep networks, an unsupervised
one and a supervised one. The unsupervised convolution-based deep learning ap-
proach (Model1) uses a stacked convolutional architecture, with external models
learned a-priori on external facial and periocular data, on top of the baseline root
SIFT model: The approach is completed by different score fusion strategies. The
supervised approach (Model2) also uses a stacked convolution architecture, but the
feature vector is learned in a supervised manner. The fusion carried out in the hybrid
model exploits an average of the computed scores after suitable normalization.

FICO_matcher exploits the fast iris recognition (FIRE) algorithm described in
[29]. Related experiments are extended in [30]. The key features of the method are
the use of a combination of classifiers exploiting the iris color and texture infor-
mation, and its limited computational time that makes it particularly attractive for
fast identity checking on mobile devices. The classifiers whose results are fused, re-
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spectively, exploit the distance among color, texture, and “cluster” features, meaning
the presence of specific pixel aggregations in the image. In order to compute color
distance, given two irises, each picture is first split into small blocks. For each pair
of corresponding blocks, the color distance is computed, and the minimum color
distance obtained is the final score returned by the color descriptor. The exploited
color distance measure is the Kolmogorov–Smirnov distance. Given the cumulative
histograms of images, with ĥi = ∑

j≤i hj, the distance is defined as:

dK−S(H ,K) = max
i

(|ĥi − k̂i|). (4.8)

The texture descriptor relies on the Minkowski–Bouligand dimension (box-
counting dimension). The box-counting dimension of a set S is defined as:

dimbox(S) = limε→0
logN (ε)

log 1
ε

, (4.9)

where N (ε) is the number of boxes of side length ε required to cover the set S.
Images are decomposed in layers according to the colors, each layer is divided into
blocks, and for each of them the box-counting dimension is computed. These are
finally chained in a feature vector, and matching relies on Euclidean distance.

“Clusters” are connected components resulting frommorphological operators ap-
plied to image layers obtained as for texture description. The features characterizing
clusters are centroid coordinates, orientation, and eccentricity. Such cluster feature
vectors are chained to make up an image feature vector.

Two versions of the method are tested, namely V1 that uses three kinds of de-
scriptors, by suitably weighing the obtained distances, and V2 that does not use
texture.

The method Raja described in [56] did not participate in the first round of the
MICHE-II competition, but was submitted for the following special issue and was
therefore tested from scratch togetherwith the others. It proposes deep sparse filtering
carried out on both multiple image patches and on the complete image. The image
corresponding to each RGB channel is divided into a number of blocks. Both such
blocks and the whole image are processed to obtain deep sparse histograms using
the set of deep sparse filters. The final feature vectors are the concatenation of the set
of histograms obtained from different channels and blocks. The extracted features
are represented in a collaborative subspace, to jointly represent the set of training
samples that correspond to enrollment. In such space, a new classification approach
is adopted.
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4.5.2 Some Interesting Notes on Achieved Results

The ranking of the participant methods was obtained by running all the methods
from scratch at BipLab—University of Salerno, over an extended set of images after
segmenting themwith the segmentation algorithm provided for the competition. The
final rank list in Table 1 reports the best performing version among the ones submitted
for each author (label). The rank was obtained by averaging the recognition rate (RR)
and the area under curve (AUC) achieved, and considering only images captured by
the two smartphones. Both cross-device (ALLvsALL) and single-device settings
were considered

• tiger_miche
• karanahujax_Model2
• Raja
• irisom_10x10
• FICO_matcher_V1
• otsedom
• ccpsiarb_17.

As for the segmentation results, details can be found in [25], while it is interesting
here to point out some interesting aspects of the outcomes.

As a first observation, the better the ranking achieved, the more stable the method
with respect to the test setting. Of course, the hardest conditions are those found in
ALLvsALL, where gallery and probe images come from different devices in unpre-
dictable pairings.As expected, allmethods provided consistently lower performances
in this condition. The results confirmed the observation stemming from MICHE-I
outcomes: The images over which the highest recognition accuracy was achieved in
homogeneous settings (gallery and probes from the same device) come from IP5,
and the achieved scores further present a lower standard deviation, notwithstanding
the lower resolution of the camera. Once more, this seems to suggest that, in the
given uncontrolled and noisy conditions, higher resolution may also increase the
way the noise typical of iris images can affect recognition. A related observation
regards the way the different methods behave with respect to the different devices.
The best method achieves high results with both cameras. Four methods, namely
karanahujax_Model2, irisom_10x10, FICO_matcher_V1, and ccpsiarb_17, rather
achieve their best performance with IP5. Methods developed in more versions are
more stable w.r.t. the different variations. For instance, karanahujax_Model1 and
karanahujax_Model2 achieve the same final score, but Model2 achieves the bet-
ter behavior in ALLvsALL. A similar constant behavior is observed for the many
versions of ccpsiarb, while FICO_matcher_V2 achieves dramatically worse results
than FICO_matcher_V1, confirming the expected outcome that texture distance is
critical for iris matching. Execution times were not evaluated in the competition, but
are important for real-time operations. The best method tiger_miche also achieved
the best result in terms of time required by the single matching operation. Only
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FICO_matcher_V1 did better, and even more FICO_matcher_V2 that, however, pro-
vides much lower recognition accuracy. On the other extreme, we find the methods
relying onML techniques, which therefore seemnot suited for a real-time operational
setting.

4.6 MICHE After the Challenges

Theprevious sections have shown the role of theMICHEdatasetwithin the challenges
using it as benchmark: Robust approaches have been designed, developed, and tested
for both segmentation and recognition/verification purposes, mainly thanks to the
dual nature of the dataset itself:

• The different acquisitionmodalities adopted for the enrollment of the subject, from
the indoor/outdoor acquisition to the different illumination conditions, and most
of all the different devices, have allowed the design and testing of cross-sensor
verification algorithms.

• From a different point of view, the capture protocol assured a well-balanced pres-
ence of images presenting all the possible distortions that can affect iris images in
realistic mobile unattended conditions.

In the last years, pattern recognition performance in terms of both accuracy and
computing time has been considerably improved, mainly due to the wide diffusion
of the artificial intelligence-based approaches like fuzzy controller configurations
and machine/deep learning techniques. Therefore, it has become possible to address
more complex problems and conditions, also in biometrics.As a consequence, despite
the high level of complexity of the images in the MICHE dataset, and thanks to its
characteristics, a number of researchers investigating iris recognition have used it also
outside the challenge to train and/or test their architectures over these images, also
reaching quite interesting results. These approaches have successfully addressed each
of the issues involved in a typical iris recognition systems, as summarized in Fig. 4.11.

Eye Landmark Detection. The proposal in [35] deals with a novel approach for
eye landmark detection with two-level cascaded convolutional neural networks. The
network at the first level utilizes eye state estimation as an auxiliary task to provide
the initial positions of the eyes. The shallower network at the second level fine-tunes
eye positions by taking as input some small regions centered at predicted eye point
locations.

Noise Removal. The goal of the work presented in [2] is to implement an effective
lightweight fuzzy-based solution for noise removal from iris images, which allows
a fast yet reliable segmentation approach which preserves the original resolution of
the iris images.

Sclera Segmentation. Sclera segmentation can represent a preliminary step for
either a correct iris identification or further processing based on the segmented area.
The paper [13] proposes a new sclera quality measure and a method for sclera seg-
mentation under relaxed imaging constraints. In particular, the quality measure is
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based on a focus measure. The sclera segmentation is obtained by fusing the infor-
mation about pixel properties of both the sclera area and the skin around the eye. The
authors also propose a template rotation for sclera alignment and distance scaling
methods tominimize the error rateswhen noisy eye images are captured at-a-distance
and on-the-move, together with overcoming head pose rotation.

Iris Segmentation. The method in [54] accurately localizes the iris by a model
relying on the histograms of oriented gradients (HOGs) descriptor and on a support
vector machine (SVM) classifier, namely HOG-SVM. Based on the achieved local-
ization, the iris texture is automatically extracted by means of a cellular automaton
which evolves via the GrowCut technique.

The study in [16] proposes a two-stage iris segmentation scheme based on a
convolutional neural network (CNN), which is capable of accurate iris segmentation
in severely noisy environments for iris recognition by visible light camera sensor.

The same group proposes in [17] a densely connected fully convolutional net-
work (IrisDenseNet), able to determine the true iris boundary even with low-quality
images. The approach ensures an improved information flow between the network
layers, by introducing dense connectivity, i.e., the direct connections from any layer
to all subsequent layers in a dense block. The experiments are carried out on five
datasets, acquired in both visible and NIR light, including MICHE.

The segmentation method proposed in [14] is designed for the unconstrained
environment of the smartphone videos. It is based on the preliminary choice of the
best frames from the videos. Then, it tries to enhance the contrast of these frames
between dark and light regions by applying two fuzzy logic membership functions
on the negative image.

Fig. 4.11 A schema organizing the works that have used MICHE dataset according to the specific
goal of the research
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Feature Extraction. The proposal in [67] deals with a nonlinear dynamic data
analysis tool, global preserving kernel slow feature analysis (GKSFA). This tool is
able to extract the high nonlinearity and inherently time-varying dynamics of batch
process, but, being an unsupervised feature extraction method, it lacks the ability to
utilize batch process class label information. The authors propose a novel batch pro-
cess monitoring method based on the modified GKSFA, namely discriminant global
preserving kernel slow feature analysis (DGKSFA), which integrates discriminant
analysis and GKSFA. MICHE dataset is used to exemplify discriminant and cluster
analysis, to help explaining the proposed nonlinear contribution plot.

Iris Recognition. The paper [40] proposes an iris recognition mechanism to solve
the problem of user authentication in wearable smart glasses. Given the premises,
the contribution deals with both hardware and software. As for the hardware, a set
of internal infrared camera modules is designed, including an infrared light source
and a lens module, which is able to take clear iris images within 25 cm. As for the
software, the devised iris segmentation algorithm is devised to be used on smart glass
devices. Regarding the iris recognition, the authors propose an intelligent Hamming
distance (HD) threshold adaptation method which dynamically fine-tunes the HD
threshold used for verification according to empirical data collected. The research in
[39] proposes a new recognition method for noisy iris and ocular images by using
one iris and two periocular regions, both centered in the pupil and with a slightly
different radius. The approach exploits three convolutional neural networks (CNNs).

Periocular Authentication. The experiments in [27] apply a convolutional neu-
ral network (CNN) to carry out periocular authentication on two datasets. Several
different data augmentation techniques are tried to increase accuracy, and the results
testify their relative benefits.

Miscellanea. MICHE has bee exploited as benchmark even for experimenting
algorithms out of the scope of the “hard” biometric recognition (individual subject
recognition), like in [58], in which a feasibility study of gender recognition from
ocular images has been proposed. In an even wider scope, given the multiple cameras
involved in the acquisition process of MICHE dataset, some works have used it to
assess sensor identificationmethods. The purpose in that case is to classify the images
according to the sensor that shot it. As an example, [28, 38] propose two approaches
with this goal. They are, respectively, based on deep learning networks and on a
technique based on photo-response non-uniformity noise (PRNU). Sensor features
have also been occasionally exploited for binding the identity of a subject to the
information related to the sensor of his/her smartphone, as shown in Fig. 4.12, in
order to obtain a double check of the user fusing biometrics and hardware metrics.
Interesting detailed analyses are reported in [31, 32].
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Fig. 4.12 Fusion of the information related to the subjects and those related to the smartphone
sensor could both improve the verification of user identity and confirm the ownership of the device

4.7 Conclusions

This chapter addressed the challenges and difficulties in performing reliable biomet-
ric recognition, using self-acquired images from the subjects (selfies). In particular,
we described the MICHE dataset, used as main data source for two international
competitions about segmentation/recognition effectiveness of biometrics systems
with such type of data. Based on our MICHE experience, it is possible to identify a
number of take-home messages, presented below in the form of a list:

• An experienced operator could control specific critical conditions (e.g., pose, il-
lumination, eye framing), possibly repeating the sample capture. However, this is
not possible in uncontrolled/unattended conditions.

• The acquisition of the iris using visible light and in uncontrolled conditions
presents peculiar difficulties, but it may rise even more problems when the op-
erational setting entails a mobile application: It is necessary to compensate for
users’ lack of technical experience/ability and poor image quality, and also con-
sider the possibly different features of the devices used for enrollment/recognition.

• Indoor conditions usually arise less illuminationdistortionswith respect to outdoor,
where a higher number of illumination sourcesmay affect the image quality. On the
other hand, data yielding from different indoor environments has high probability
of being heterogenous, due to the different color temperatures of illumination
sources.

• Reflections are more evident in outdoor than in indoor environments, but a more
diffused and uniform illumination can create better conditions for localization and
segmentation.
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• Higher resolutions increase the amount of information collected, but also increase
the levels of noise. Hence, the signal-to-noise ratio appears to be weakly correlated
with the resolution of the images acquired.

• It is not possible to fully and reliably predict the behavior of any method when
problematic samples are submitted; i.e., there is substantial amount of work to
be done in terms of reliability and robustness of recognition in case of severely
degraded samples.

• The periocular region, coded either by the same or by different descriptors than
those used for the iris, can improve the recognition accuracy by providing addi-
tional information; as a matter of fact, using this multi-trait strategy has become a
quite used solution, especially when expecting poor-quality eye samples.

• The combined use of multiple types of features can reduce the negative effect of
a particular data covariate. However, at the same time, it tends to augment the
computational complexity of the recognition chain, which might be particularly
problematic for the execution in mobile devices.

• Typical cross-sensor differences may modify the iris micro-texture and possibly
introduce artifacts, but several problems can be addressed by suitable color com-
pensation techniques.

• It appears that the higher the resolution of the probe with respect to the gallery
images, the higher the amount of unmatched information and, therefore, the lower
the recognition accuracy. This observation suggests that a gallery update should
be carried out when the sensor technology improves too dramatically.

• The increase of noise due to higher resolution might be limited to uncontrolled
conditions where no capture adjustment is attempted, as in the case of the MICHE
dataset; due to the lack of extensive cross-resolution tests in either controlled or
uncontrolled conditions, it is not possible to generalize this observation.

• Intrinsic factors affecting the recognition problem (not related to either the capture
device or the segmentation/recognition methods) are the iris occlusions due to
eyelids, the low brightness of the samples, the existence of shadows in the iris
region, and reflections of unpredictable shape and color inside the iris ring.

• Fusion of different features and/or different classifiers can improve the matching
phase, when each component highlights and takes into account a different relevant
aspect for coding and matching. However:

– fusing more recognition methods can be effective only if they take into account
sufficiently complementary information; this may not be true notwithstanding
the different ways of representing features if the information content is basically
the same;

– it is not sufficient to fuse different computer vision techniques to enhance the
image anddifferent descriptors to capture different properties; it is also necessary
to identify those processing steps able to extract the really relevant information.

• machine learning-based techniques seem still too demanding, especially in terms
of the computational time cost, to be exploited in real-time operations in mobile
devices, where the computing power is limited and the requirement of low energy
consumption is a strong constraint.
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Chapter 5
Super-resolution for Selfie Biometrics:
Introduction and Application to Face
and Iris

Fernando Alonso-Fernandez, Reuben A. Farrugia,
Julian Fierrez and Josef Bigun

Abstract Biometrics research is heading towards enablingmore relaxed acquisition
conditions. This has effects on the quality and resolution of acquired images, severely
affecting the accuracy of recognition systems if not tackled appropriately. In this
chapter, we give an overview of recent research in super-resolution reconstruction
applied to biometrics, with a focus on face and iris images in the visible spectrum, two
prevalent modalities in selfie biometrics. After an introduction to the generic topic
of super-resolution, we investigate methods adapted to cater for the particularities of
these two modalities. By experiments, we show the benefits of incorporating super-
resolution to improve the quality of biometric images prior to recognition.

The lack of resolution has a negative impact on the performance of image-based
biometrics. Many applications which are becoming ubiquitous in mobile devices do
not operate in a controlled environment, and their performance significantly drops
due to the lack of pixel resolution, since it decreases the amount of information
available for recognition [41].

While many generic super-resolution techniques have been studied to restore
low-resolution images for biometrics [54, 73], the results obtained are not always as
desired. Those generic super-resolution methods are usually aimed to enhance the
visual appearance of the scene. However, producing an overall visual enhancement
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of biometric images does not necessarily correlate with a better recognition perfor-
mance [6, 29]. Such techniques are designed to restore generic images and therefore
do not exploit the specific structure found in biometric images (e.g. iris or faces),
which causes the solution to be sub-optimal [22]. For this reason, super-resolution
techniques have to be adapted to cater for the particularities of images from a specific
biometric modality [8].

In recent years, there has been an increased interest in the application of super-
resolution to different biometric modalities, such as face iris, gait or fingerprint
[60]. This chapter presents an overview of recent advances in super-resolution re-
construction of face and iris images, which are the two prevalent modalities in selfie
biometrics.We also provide experimental results using several state-of-the-art recon-
struction algorithms, demonstrating the benefits of using super-resolution to improve
the quality of face and iris images prior to classification. In the reported experiments,
we study the application of super-resolution to face and iris images captured in the
visible range, using experimental set-ups that represent well the selfie biometrics
scenario. The chapter begins with a general introduction to image resolution, in-
cluding the usual mathematical formulation, a brief taxonomy of super-resolution
methods, and performance metrics. We then focus on face biometrics, describing
recent super-resolution methods adapted for this biometrics including experimental
results. Another section on iris super-resolution follows with a parallel structure. The
chapter ends with a summary and an outlook of future trends.

5.1 Image Super-Resolution

The performance of biometric recognition systems and the quality perceived by
the human visual system (HVS) is significantly affected by the resolution of the
image. These images can be up-scaled using classical interpolation schemes used in
several commercial software such as bilinear and bicubic interpolation [31]. These
methods use kernels that assume that the imagedata is either spatially smooth or band-
limited and usually reconstruct blurred images [74].More sophisticated interpolation
methods were proposed in [11, 71] that manage to restore sharper images at the
expense of generating visual artefacts in texture-less regions of the image. While
more advanced interpolation schemes manage to restore sharper images, they fail to
reliably restore texture detail which is important for biometric recognition systems.

Several researchers have proposed more advanced techniques that recover the lost
high-frequency information. These methods usually formulate the problem using the
following acquisition model

X = DBY + η (5.1)

whereX is the observed low-resolution image,B is the blurring kernel,D is the down-
sampling matrix, η represents additive noise and Y is the unknown high-resolution
image to be estimated.
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Existing super-resolution methods can be categorized into two groups: (i) Recon-
struction-based super-resolution techniques, which exploit the redundancies present
in images and videos to estimate and restore an image, and (ii) Learning-based
super-resolution methods, which treat the problem as an inverse problem and learn
a mapping relation between the low- and high-resolution images. More detail about
each category is provided in the following subsections, while a comprehensive survey
can be found in [54].

5.1.1 Reconstruction-Based Methods

Reconstruction-based algorithms try to address the aliasing artifacts that are present
in the observed low-resolution images due to the under-sampling process. Iterative
back projection (IBP)methods [38, 39] use the acquisitionmodel defined inEq. (5.1).
These methods first register a sequence of low-resolution images over the high-
resolution grid which are then averaged to estimate the high-resolution image. IBP
is then used to refine that initial solution. To facilitate convergence and increase
robustness against outliers, the authors in [23, 82] regularize the objective function
using either smoothness or sparse constraints.

These methods were later on extended by considering different fusion kernels
and including a de-blurring filter as a post-process, e.g. using the Wiener Filter
as suggested in [31]. The authors in [24, 25] have shown that the median fusion
of the registered low-resolution images is equivalent to the maximum-likelihood
estimation and results in a robust super-resolution algorithm if the motion between
the low-resolution frames is translational. Different data fusion techniques [26] based
on adaptive averaging [65], Adaboost classification [70] and SVD-based filters [53]
were also considered. Probabilistic-based super-resolution techniques based on the
maximum-likelihood (ML) [14, 68] and maximum a-posteriori (MAP) [32] were
proposed to estimate the high-resolution frame.

More recently, a framework that extends reconstruction-based super-resolution
methods for the single image super-resolution problem was proposed in [30]. This
method is based on the observation that patches in a natural image tend to reoccur
many times inside an image, both within the same scale as well as across different
scales.

On the other hand, Lin et. al. [49] have derived the theoretical limits of recon-
struction-based super-resolution methods and proved that they can only achieve low
magnification factors (≤2).Moreover, thesemethods (except for thework in [30]) are
only applicable for video sequences, i.e. they require several low-resolution images
as input, and in general, they fail to restore dynamic non-rigid objects such as faces.

Due to the limitations of reconstruction-based super-resolution, the research com-
munity is increasingly paying more attention to learning-based super-resolution
methods, which can recover more texture detail and achieve higher magnification
factors. They also have the advantage of only needing one image as input.
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5.1.2 Learning-Based Methods

The seminal work of Freeman [28] presented the first example-based (a.k.a. learning-
based) super-resolution algorithm. This class of methods employs a couple dictio-
nary of low- and corresponding high-resolution patches which are constructed by
collecting collocated patches from a set of low- and high-resolution training images.
Figure5.1 illustrates the principle of how the low-resolution L and high-resolution
H dictionaries are constructed. The authors in [28] then proposed to subdivide the
input image into low-resolution patches that are traversed in raster-scan order. At
each step, a low-frequency patch is selected by a nearest neighbour search from the
low-resolution dictionary L. The high-resolution patch is then estimated using the
collocated patch in the high-resolution dictionary H. Markov Random Fields are
then used to enforce smoothness across neighbouring patches. The reconstructed
high-resolution patches are then stitched together to form the high-resolution image.

The authors in [13] observed that small patches from low- and high-resolution
images formmanifolds with similar local geometry in two distinct spaces. They then
use local linear embedding (LLE) to find the k-closest neighbours from L to the ith
low-resolution patch xi to form the sub-dictionary Lk . The reconstruction weights w
are then computed using the following optimization problem

w = argmin
w

||xi − Lkw||22 subject to
∑

j

wj = 1 (5.2)

Fig. 5.1 Dictionary
construction for a
learning-based
super-resolution algorithm

HR-image

LR-image

[ ]· · ·
HR-dictionary H

[ ]· · ·
LR-dictionary L
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which has a closed form solution. The high-resolution patch ỹi is then reconstructed
using

ỹi = Hkw (5.3)

whereHk correspond to the k column vectors fromH that correspond to the k-closest
neighbours on the low-resolution manifold. Several researchers have proposed dif-
ferent ways of estimating the combination weights w, the most notorious one is to
pose a sparsity constraint on the weights as done in [79]

w = argmin
w

||xi − Lw||22 subject to ||w||1 (5.4)

that can be computed in polynomial time using sparse coding solvers and is capable
to outperform the neighbour-embedding scheme [13]. Later on, the same group has
shown in [80] that performance can be further improved using dictionary learning
techniques that jointly train the low- and high-resolution dictionaries to generate a
more compact representation of the patch pairs which simply sample a large amount
of image patch pairs as shown in Fig. 5.1.

The authors in [19] have shown that sparse representations are affected by the
distortions present in the low-resolution image and are therefore not accurate enough
to faithfully reconstruct the original image. They then reformulate the sparse coding
problem in (5.4) as

w = argmin
w

||xi − Lw||22 subject to ||w||1 and
∑

j

(wj − βj)
2 ≤ ε (5.5)

where β is estimated from the sparse coding coefficients of neighbouring patches.
Deep convolutional neural networks (DCNN) were investigated recently for the

generic super-resolution task. In [18], the authors present a shallow network consist-
ing of just three convolutional layers, providing substantial improvement over sparse
coding-based super-resolutionmethods. This model poses the super-resolution prob-
lem as a regression problem and uses a DCNN to model a function f (X : θ) that
minimizes the following loss function

L(θ) =
∑

j

f ((Xj : θ) − Yj)
2 (5.6)

where Xj and Yj represent a set of low- and corresponding high-resolution training
images, j is an index and θ are the hyperparameters of the network. More recently,
very deep architectures were proposed in [45, 48] which employ deeper architectures
and residual learning and are reported to provide state-of-the-art performance. The
results in Fig. 5.2 show the performance of VDSR [45] against bicubic interpolation
where it can be clearly seen that VDSR is able to recover sharper images.
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VRSDBicubic

Fig. 5.2 Comparing the performance of a very deep CNN (VDSR) against bicubic interpolation

5.1.3 Performance Metrics

To evaluate the performance of super-resolution methods, the peak signal-to-noise
ratio (PSNR) and the structural similarity (SSIM) index between the enhanced and
the corresponding high-resolution reference images are usually employed [73].

The PSNR is a measure of the ratio between the maximum possible power of a
signal and the power of corrupting noise that affects the fidelity of its representation.
The signal in this case is the reference high-resolution image Y, and the noise is
the error introduced in its estimation Ỹ by the reconstruction algorithm. Considering
greyscale images of size N × M and grey values in the [0, 255] range, it is defined
(in dBs) as:

PSNR(Y, Ỹ) = 10 log10

[
2552

MSE(Y, Ỹ)

]
(5.7)

where MSE(Y, Ỹ) is the mean squared error given by

MSE(Y, Ỹ) =
⎡

⎣ 1

NM

M∑

i=1

N∑

j=1

∣∣∣Y (i, j) − Ỹ (i, j)
∣∣∣
2

⎤

⎦ (5.8)

A higher PSNR generally indicates that the reconstruction is of higher quality. If
the two images are identical,MSE(Y, Ỹ) = 0, inwhose case PSNR(Y, Ỹ) = ∞. The
PSNR is an estimation of the absolute error between two images. The SSIM index,
on the other hand, is a perception-based model that considers image degradation as
a perceived change in structural information. This is achieved by using first- and
second-order statistics of grey values on local image windows. It is computed on
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various windows of an image. Given two collocated image windows y and ỹ, the
SSIM index is computed as

SSIM (y, ỹ) =
(
2μyμỹ + c1

) (
2σyỹ + c2

)
(
μ2

y + μ2
ỹ + c1

) (
σ 2

y + σ 2
ỹ + c2

) (5.9)

where the parameter μy (μỹ) is the average grey value of y (ỹ), the parameter σy (σỹ)
is the variance of the grey values of y (ỹ), and σyỹ is the covariance of y and ỹ. By
default, c1 = (0.01 ∗ 255)2 and c2 = (0.03 ∗ 255)2 [78]. Also, the window size is of
11 × 11, which is weighted with a circular Gaussian filter of standard deviation 1.5
before calculating local statistics. The SSIM index is computed for all pixels of the
image, which are then averaged to obtain the SSIM index of the overall image. The
SSIM index is a decimal value between −1 and 1, and value 1 is only reachable in
the case of two identical images.

The use of super-resolution techniques in general applications is aimed at im-
proving the overall visual perception and appearance. In biometrics, however, the
aim is to improve the recognition performance [60]. While PSNR or SSIM are the
standard metrics widely used in the super-resolution literature, they are not neces-
sarily good predictors of the recognition accuracy. Human and machine evaluations
of image quality may differ, and human judgement may not be relevant to biometric
algorithms [6]. For this reason, reporting recognition performance using enhanced
images is necessary to evaluate the goodness of the reconstruction algorithm in a
biometric context.

5.2 Face Super-Resolution

In their seminal work in 2000, Baker and Kanade [7] exploited the fact that human
face images are a relatively small subset of natural scenes and introduced the concept
of class-based super-resolution, i.e. only facial images are used to learn the coupled
dictionaries L and H. This method employs a pyramid-based algorithm to learn a
prior on the derivative of the high-resolution facial images as a function of the spatial
location in the image and the information from higher levels of the pyramid and
the solution is derived using the MAP algorithm. The authors in [35] observed that
similar faces share similar local structure and synthesize missing pixels using a linear
combination of spatially neighbouring pixels. This method was extended in [47]
where they exploit the sparse nature of the pixel structure. However, the performance
of these reconstruction-basedmethods significantly degrades when considering large
magnification factors where the local pixel structure is degraded.
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5.2.1 Face Eigentransformation

Face representation models were used in [12, 63, 77] to derive a set of low- and
high-resolution prototypes. The low-resolution face image is reconstructed using
a weighted combination of low-resolution prototypes, and the learned weights are
used to combine the high-resolution prototypes to synthesize the high-resolution face
image. To explain this principle, we take the classical Eigentransformation method
[77] which was used as a baseline in several studies. The low-resolution and high-
resolution mean faces (mL and mH , respectively) are computed as

m̂L = 1

M

M∑

i=1

Li and m̂H = 1

M

M∑

i=1

Hi (5.10)

whereM is the number of training faces and the notation Ki denotes the ith column
vector of matrix K. The coupled dictionaries are then centred using

L̄ = L − mL and H̄ = H − mH (5.11)

Given an input low-resolution image X, it can be approximated using a weighted
combination of centred faces using

X̃ = L̄w + mL (5.12)

where
w = VLΛ

− 1
2

L ET (X − mL) (5.13)

whereVL is the eigenvectormatrix,ΛL is the eigenvaluematrix andE is the eigenface
matrix which are derived by computing PCA on the covariance matrix CL = L̄T L̄.
The reconstruction of the high-resolution face image is done by simply replacing
the low-resolution dictionary L̄ with the high-resolution dictionary H̄ and the low-
resolution mean face mL with the high-resolution mean face mH in (5.12), which is
therefore computed using

Ỹ = H̄w + mH (5.14)

The above methods are able to hallucinate missing information by exploiting
the global facial structure. Nevertheless, the faces restored using these methods are
generally noisy and their quality is usually inferior to bicubic interpolation. This is
mainly attributed to the fact that the dimension of the face image is much larger than
the number of training examples which makes the dictionaries undercomplete.

More recently, the authors in [51] exploited the structure of the face and con-
structed position-dependent dictionaries, as shown in Fig. 5.3. Face images are first
aligned using affine transformation such that the eyes and mouth centres are aligned
and then they are divided into overlapping patches. Then they construct a coupled
dictionary for each patch-position. In the example in Fig. 5.3, the high-resolution
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Fig. 5.3 Dictionary
construction using the
position-patch principle

LR-Face images

HR-Face images

[
HR-dictionary H1

] [
HR-dictionary HN

]

[
LR-dictionary L1

] [
LR-dictionary LN

]

dictionary H1 (marked in red) consists of a vectorized representation of top-left po-
sition of all the N high-resolution images while the corresponding low-resolution
dictionary L1 is composed of the vectorized representations of the N low-resolution
images. This simple extension reduces the dimensionality of the problem and reduces
the possibility of over fitting. During testing, the low-resolution input image X is dis-
sected into a set of overlapping patches that we shall denote as xj where j ∈ [1,N ]
represents the patch-position. For each position-patch j, the authors use the coupled
low- and high-resolution dictionaries Lj and Hj, respectively. Each patch is restored
independently and then stitched together by averaging overlapping pixels.

The authors in [51] proposed to formulate the restoration of a patch as a least
squares problem

wj = argmin
wj

||Hj − Ljwj||22 (5.15)

which has the following closed form solution

wj =
(

LT
j Lj

)†
LT
j Hj (5.16)

where † stands for the pseudo-inverse operator. Several researchers have extended
the position-patch method using different objective functions. The authors in [44]
have formulated the weight estimation problem using sparse coding

wj = argmin
wj

||Hj − Ljwj||22 subject to ||wj||1 (5.17)

which enforces the combination weights wj to be sparse. This regularization allows
deriving sharper facial images and is more robust to outliers.
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5.2.2 Local Iterative Neighbour Embedding

One drawback of the methods of Sect. 5.2.1 is that they assume that low- and
high-resolution manifolds have similar local geometrical structure. Reconstruction
weights are estimated on the low-resolutionmanifold, and they are simply transferred
to the high-resolution manifold. However, the low-resolution manifold is distorted
by the one-to-many relationship between low- and high-resolution patches [46, 72].
Therefore, the reconstruction weights estimated on the low-resolution manifold do
not necessarily correlate with the actual weights needed to reconstruct the unknown
high-resolution patch on the high-resolution manifold.

Motivated by this observation, the authors in [36, 46] derive a pair of projec-
tion matrices that can be used to project both low- and high-resolution patches on a
common coherent sub-space. However, the dimension of the coherent sub-space is
equal to the lowest rank of the low- and high-resolution dictionary matrices. There-
fore, the projection from the coherent sub-space to the high-resolution manifold is
ill-conditioned.

This ill-conditioning is overcome in the locality-constrained iterative neighbour
embedding (LINE) method presented in [42] as follows. They first estimate the high-
resolution patch v0,0 by up-scaling the low-quality patch xj using bicubic interpola-
tion and initialize the intermediate dictionary as L{0}

j = Lj. This iterative method has
an outer loop indexed by b ∈ [0,B − 1] and an inner loop indexed by c ∈ [0,C − 1].
For every iteration of the inner loop, the supports s (i.e. the column vectors) of Hj

are derived as the k-nearest neighbours of vb,c. The combination weights are then
computed using

w = argmin
w

||xj − L{b}
j (s)w||22 + τ ||d(s) � w||22 (5.18)

where τ is a regularization parameter, � is the element-wise multiplication operator
and d(s) measures the Euclidean distance between the restored patch vb,c and the
k-nearest neighbours column vectors from the high-resolution dictionary Hj. This
optimization problem has an analytical solution and the high-resolution patch is
updated using

vb,c+1 = Hj(s)w (5.19)

Once all iterations of the inner loop are completed, the intermediate dictionary
L{b+1}
j is updated using a leave-one-out methodology as described in [42] and the

inner loop is repeated. The final estimate of the high-resolution patch is then simply
vB,C−1.



5 Super-resolution for Selfie Biometrics … 115

5.2.3 Linear Model of Coupled Sparse Support

While the method of Sect. 5.2.2 iteratively updates the low-resolution dictionary to
restore the geometrical structure in the low-resolution manifold, it cannot guarantee
to converge to an optimal solution. Farrugia et al. [22] later presented the linear
model of coupled sparse support (LM-CSS) which learns linear models based on
the local geometrical structure on the high-resolution manifold rather than the low-
resolution manifold. For this, in a first step, the low-resolution patch is used to derive
a globally optimal estimate of the high-resolution patch. This is equivalent to solving
the following problem

Φ = argmin
Φ

||Hj − ΦLj||22 subject to ||Φ||22 ≤ ε (5.20)

which can be solved using Ridge regression. This approximated solution is close
in Euclidean space to the ground truth but is generally smooth and lacks the tex-
ture details needed by state-of-the-art face recognizers. The authors then search for
the sparse support that best estimates the first approximated solution on the high-
resolution manifold where the geometric structure of manifold is intact. The derived
support is then used to extract the atoms from the coupled low- and high-resolution
dictionaries Lj and Hj that are most suitable to learn an up-scaling function for ev-
ery position-patch. The second step reformulates the problem as in Equation (5.20),
where only a subset of the column vectors, defined by the support, are used to find
the solution. This work also demonstrates that sparsity leads to sharper solutions
and generally results in higher recognition accuracies. The same authors have also
demonstrated that these super-resolution techniques can be applied to restore com-
pressed low-resolution facial images [21].

5.2.4 Results

In the experiments reported here, we consider a composite dataset which includes
images from both colour FERET and Multi-PIE datasets, where only frontal facial
images were considered. One image per subject was randomly selected, resulting in
a dictionary of 1203 facial images. The gallery for the evaluation included images
from both FRGC-V2 (controlled environment) and MEDS datasets. One unique
image per subject was randomly selected, providing a gallery of 889 facial images.
The probe images were taken from the FRGC (uncontrolled environment), where
two images per subject were included, resulting in 930 probe images. All the images
were registered using affine transformation computed on landmark points of the eyes
and mouth centres such that the distance between the eyes is set to 40 pixels. The
probe and low-resolution dictionary images were down-sampled to the desired scale
using MATLAB’s imresize function.
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Table 5.1 Summary of the quality analysis results using the PSNR and SSIMmetrics on the FRGC
dataset

SR Method Inter eye distance

8 10 15 20

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 24.0292 0.6224 26.2024 0.7338 25.2804 0.7094 28.6663 0.8531

Eigentrans-
formation [77]

24.3958 0.6496 26.8645 0.7504 24.9374 0.6724 27.7883 0.7892

Neighbour
embedding [13]

26.9987 0.7533 27.9560 0.7973 29.9892 0.8714 31.6301 0.9122

Position-
Patches [51]

27.3044 0.7731 28.2906 0.8145 30.1887 0.8785 31.7192 0.9143

Sparse Position-
Patches [44]

27.2500 0.7666 28.2219 0.8100 30.1290 0.8767 31.7162 0.9146

LINE [42] 27.0927 0.7591 28.0253 0.8009 30.0471 0.8727 31.6970 0.9131

LM-CSS [22]
(k = 50)

27.1307 0.7679 28.1078 0.8093 30.0240 0.8761 31.6875 0.9139

LM-CSS [22]
(k = 150)

27.4866 0.7802 28.4200 0.8009 30.3431 0.8845 31.9610 0.9209

The best result of each column is marked in bold

The results in Tables5.1 and 5.2 evaluate the performance of different face super-
resolution techniques mentioned in this chapter in terms of both quality (PSNR and
SSIM) and recognition performance (rank-1 and Area Under the Curve), respec-
tively. It can be seen that the global Eigentransformation method [77] most of the
time performs worse than bicubic. This can be explained by the fact that while it re-
constructs a face that is visually more pleasing than the ones obtained using bicubic
interpolation, it fails to reliably recover the local texture detail (see example images in
Fig. 5.4). On the other hand, the remaining patch-based schemes outperform bicubic
interpolation in terms of both quality and recognition performance. The VGG-Face
CNN face recognition system (DeepFaces) is also found to be particularly fragile,
performing considerably worse than LBP for any resolution. For example, with a
magnification factor of just 2 (Inter Eye distance = 20), its rank-1 accuracy is equal
or below 40% for any reconstruction technique. It can also be noticed that while
position-patch [51] achieves higher PSNR and SSIM compared to sparse position-
patch [44], LINE [42] and LM-CSS with k = 50 [22], it does not perform well in
terms of face recognition performance. The authors in [22] show experimentally
using different face recognizers that the PSNR and SSIM metrics do not correlate
well with the recognition performance since they are biased to provide high scores to
blurred images. It can be seen in Fig. 5.4 that the images restored via position-patches
are more blurred, which harm the recognition performance. They also showed that
sparse-based methods [22, 42, 44] are able to better preserve the texture detail and
thus are able to achieve higher recognition performance. The results in Fig. 5.4 also
show that the LINEmethod generally reconstructs sharp facial images, although they
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Table 5.2 Summary of the Rank-1 recognition performance and Area Under the Curve (AUC)
metric using the LBP [1] and DeepFaces [64] face recognition algorithm on the FRGC dataset
SR method Comparator Inter eye distance

8 10 15 20

Rank-1 AUC Rank-1 AUC Rank-1 AUC rank-1 AUC

Bicubic LBP 0.3065 0.9380 0.5032 0.9598 0.6065 0.9708 0.7054 0.9792

DeepFaces 0.0000 0.5296 0.0000 0.5337 0.0258 0.6223 0.1903 0.7157

Eigentrans-
formation [77]

LBP 0.2559 0.9390 0.4516 0.9554 0.5624 0.9633 0.6495 0.9688

DeepFaces 0.0151 0.5794 0.0194 0.5954 0.0398 0.6187 0.1226 0.6612

Neighbour em-
bedding [13]

LBP 0.5548 0.9635 0.6398 0.9712 0.7215 0.9795 0.7559 0.9830

DeepFaces 0.0151 0.5940 0.0602 0.6290 0.2086 0.6970 0.4075 0.7562

Sparse Position
Patches [44]

LBP 0.5677 0.9649 0.6441 0.9721 0.7247 0.9803 0.7570 0.9830

DeepFaces 0.0161 0.5870 0.0419 0.6198 0.1624 0.6880 0.3796 0.7553

Position Patches
[51]

LBP 0.4699 0.9588 0.5849 0.9675 0.6849 0.9782 0.7312 0.9812

DeepFaces 0.0161 0.5914 0.0398 0.6201 0.1785 0.6878 0.3559 0.7408

LINE [42] LBP 0.5925 0.9647 0.6559 0.9714 0.7323 0.9804 0.7677 0.9833

DeepFaces 0.0312 0.6036 0.07 10 0.6385 0.2161 0.7050 0.4172 0.7630

LM-CSS [22]
(k = 50)

LBP 0.6032 0.9658 0.6581 0.9722 0.7398 0.9798 0.7742 0.9833

DeepFaces 0.0172 0.5874 0.0484 0.6293 0.1914 0.7015 0.4022 0.7609

LM-CSS [22]
(k = 150)

LBP 0.5452 0.9644 0.6344 0.9710 0.7398 0.9801 0.7602 0.9831

DeepFaces 0.0151 0.5890 0.0527 0.6291 0.2108 0.7011 0.3828 0.7578

The best result of each column is marked in bold

tend to be noisy. This noise does not seem to harm the recognition performance, but
it may make it hard for a human to recognize a person from such noisy images.

One of the major problems in these methods is that they assume that the face
images are aligned and cannot be applied directly to restore faces with random pose
and orientation. The authors in [22] presented a simple method that registers the
faces in the dictionary where a set of landmark points are used to register the dataset
with the low-resolution image using piecewise affine transformation. Any face super-
resolution method described in this chapter can then be used to restore faces with
unconstrained poses. However, this approach is computationally intensive and it is
difficult for a user to accurately mark the landmark points on very low-resolution
images. Following the success of deep learning for generic super-resolution, the
authors in [10] applied deep learning to directly restore facial images at arbitrary
poses without the need for pre-registration. Themain advantage of this method is that
it is very fast to compute, it does not need human interaction and it is able to restore
the whole head including the hair region. Nevertheless, while the results presented
in the paper are promising, they were not assessed in terms of face recognition
performance.
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Bicubic ET [78] PP [52] SPP [45] LINE [43] LM-CSS [23]

Fig. 5.4 Super-resolved face images using different face super-resolution techniques with a mag-
nification factor of ×4 with an inter-eye distance of 10 pixels

5.3 Iris Super-Resolution

Super-resolutionwas introduced to the irismodality in 2003 byHuang et al. [37]. This
method learns the probabilistic relation between different frequency bands, which
is used to predict the missing high-frequency information of low-resolution images.
Reconstruction-based methods for iris started in 2006 with the work of Barnard et al.
[9], where they employed a multi-lens imaging hardware system to capture multiple
iris images. Reconstruction was done by modelling the least square inverse problem
associated with Eq. (5.1). Later, Fahmy [20] proposed to estimate high-resolution
images using an auto-regressive model that fuses a sequence of low-resolution iris
images. While these two works super-resolve the original iris image, most of the
existing reconstruction-based methods employ the unwrapped polar image as input.
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Several polar images are aligned and combined pixel-wise to obtain a reconstructed
image. Given a set of N polar iris images Xi, the super-resolved image Ỹ is esti-
mated as

Ỹ(x, y) =
∑N

i=1 wiXi(x, y)∑N
i=1 wi

(5.21)

where Ỹ(x, y) is the intensity value of at pixel (x, y) of the super-resolved image,
Xi(x, y) is the intensity value at the same location of the input image i, and wi are
the combination weights. The weights can be derived to simply compute the mean
or median of the pixel values, as in [33, 43, 55]. Other studies have proposed to
incorporate quality measures [34, 56, 58, 62], so more weight is given to frames
with higher quality [27]. Recent reconstruction-based studies have proposed the use
of Gaussian process regression (GPR), enhanced iterated back projection (EIBP)
[17] and total variation regularization algorithms [16] to super-resolve polar frames.

Regarding learning-based methods, several algorithms have been proposed to
learn the mapping between low- and high-resolution images, for example, multi-
layer perceptrons [69], Markov networks [50] or Bayesian modelling [2]. Some
works have also proposed to super-resolve images in the feature space, instead of the
pixel domain. This strategy has been followed with Eigeniris features [57] (similar
to Eigenfaces proposed in [75]) and with the popular iris Gabor features [59, 61].
Recent studies also make use of convolutional neural networks, such as [67, 81].

Despite the now extensive literature on iris super-resolution, themajority of works
have employed near-infrared data, which is the prevalent illumination in commercial
systems. In the experiments reported in the present chapter, we study the applica-
tion of super-resolution to iris images captured in the visible range using various
smartphones, using an experimental setup that represents well the selfie biometrics
scenario.

5.3.1 Iris Eigen-Patches

The work [4] proposed the use of principal component analysis (PCA) Eigen-
transformation of local image patches to compute a reconstructed iris image. The
technique is inspired by the system of [15] for face images. It employs the Eigen-
transformationmethod defined by Eqs. (5.10)–(5.14) [77], but applied to overlapping
patches, as shown in Fig. 5.5. The iris images are first resized via bicubic interpolation
to have the same iris radius, and then aligned by extracting a square region around the
pupil centre. Images are then divided into overlapping patches, and a coupled dictio-
nary is constructed for each patch-position. Each patch is reconstructed separately,
and a preliminary reconstructed image Ỹ′ is obtained by averaging the overlapping
regions. The authors in [15] also propose the incorporation of a re-projection step to
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Fig. 5.5 Block diagram of patch-based iris hallucination

reduce artifacts and make the output image more similar to the input image X. The
image Ỹ′ is re-projected to X via gradient descent using

Ỹt+1 = Ỹt − τU
(

B
(

DBỸt − X
))

(5.22)

where U is the up-sampling matrix. The process stops when |Ỹt+1 − Ỹt| < ε.

5.3.2 Local Iterative Neighbour Embedding

Recently, the work [5] adapted the method described in Sect. 5.2.2 to reconstruct
iris images, based on multi-layer locality-constrained iterative neighbour embedding
(LINE) of local image patches [42]. In thementionedwork [5], and in the experiments
reported here, update of the intermediate dictionary has not been implemented. On
the other hand, inspired by [15], the re-projection step described in Sect. 5.3.1 has
been incorporated in the reconstruction of iris images after the application of the
LINE algorithm.

5.3.3 Results

Weuse the visible spectrum smartphone iris (VSSIRIS) database [66], which consists
of images from28 semi-cooperative subjects (56 eyes) captured using the rear camera
of two different smartphones (Apple iPhone 5S andNokia Lumia 1020). Images have
been obtained in unconstrained conditions under mixed illumination consisting of
natural sunlight and artificial room light. Each eye has five samples per smartphone,
thus totalling 5 × 56 = 280 images per device (560 in total). Figure5.6 shows some
example images. All images are resized via bicubic interpolation to have the same iris
radius using MATLAB’s imresize function (we choose as target radius the average
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Fig. 5.6 Sample images from VSSIRIS database [66]

Fig. 5.7 Super-resolved iris images using different iris super-resolution techniques with a magni-
fication factor of ×22

iris radius R = 145 of the whole database, given by available ground truth). Then,
images are aligned by extracting a square region of 319 × 319 around the sclera
centre (about 1.1 × R). Two sample iris images after this procedure can be seen in
Fig. 5.7, right.

Aligned and normalized high-resolution images are then down-sampled via bicu-
bic interpolation to different sizes, and then used as input low-resolution images of
the reconstruction methods. The low-resolution images are then hallucinated to the
original input size. Given an input low-resolution image, we use all available images
from the remaining eyes (of both smartphones) to train the hallucination methods
(leave-one-out). Training images are mirrored in the horizontal direction to duplicate
the size of the training dataset, thus having 55 eyes× 10 samples× 2 = 1100 images
for training. Verification experiments are done separately for each device. Each eye
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is considered as a different enrolled user. As enrolment samples, we employ original
high-resolution images, whereas reconstructed images are employed as query data.
Genuine trials are done by pair-wise comparison between all available images of
the same eye, avoiding symmetric matches. Impostor trials are done by comparing
the first image of an eye to the second image of the remaining eyes. This procedure
results in 56 × 10 = 560 genuine and 56 × 55 = 3018 impostor scores per device.

The results in Tables5.3 and 5.4 show the performance of different iris super-
resolution techniques mentioned in this chapter in terms of both quality (PSNR and
SSIM) and equal error rate verification performance, respectively. It can be observed

Table 5.3 Summary of the quality analysis results using the PSNR and SSIM metrics on the
VSSIRIS dataset

SR method Magnification factor

2 4 8 16 22

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 39.2 0.96 33.55 0.88 29.93 0.8 26.77 0.75 24.97 0.72

Eigen-
patches [4]

39.4 0.96 33.53 0.87 30.19 0.79 27.37 0.75 26 0.73

LINE [5]
(k = 75)

38.43 0.95 31.21 0.78 26.19 0.57 26.13 0.66 25.46 0.68

LINE [5]
(k = 150)

38.1 0.94 30.24 0.74 27.09 0.62 26.87 0.71 25.85 0.71

LINE [5]
(k = 300)

37.65 0.93 28.87 0.67 28.76 0.72 27.25 0.73 26.06 0.72

LINE [5]
(k = 600)

36.8 0.92 30.36 0.74 29.57 0.76 27.41 0.74 26.15 0.73

LINE [5]
(k = 900)

35.92 0.9 31.59 0.79 29.82 0.77 27.45 0.74 26.17 0.73

The best result of each column is marked in bold

Table 5.4 Summary of the EER recognition performance (in %) using the Log-Gabor iris recog-
nition algorithm [52] on the VSSIRIS dataset

SR method iPhone Nokia

Magnification factor Magnification factor

2 4 8 16 22 2 4 8 16 22

High-resolution 8.04 7.5

Bicubic 14.47 13.88 14.79 16.14 18.47 11.24 10.38 10.88 12.36 14.93

Eigen-patches [4] 8.38 8.33 7.96 8.96 10.68 7.61 7.09 7.3 9.55 10.54

LINE [5] (k = 75) 7.94 8.28 8.56 9.98 13.55 7.67 8 8.05 9.27 12.65

LINE [5] (k = 150) 8.17 8.73 8.12 9.59 12.55 7.75 8.03 8.19 9.81 11.79

LINE [5] (k = 300) 8.17 8.52 8.88 9.57 12 7.65 8.56 7.81 9.44 10.75

LINE [5] (k = 600) 8.03 8.77 8.54 9.59 11.53 7.65 7.95 7.62 9.98 10.22

LINE [5] (k = 900) 8.03 8.11 8.33 9.61 10.59 7.75 7.71 7.64 9.37 10.7

The best result of each column is marked in bold
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that the two trained reconstruction methods evaluated outperform bicubic interpo-
lation. Its advantage is more evident at very high magnification factors, where the
biggest differences in qualitymetrics and verification performance occur.An interest-
ing observation is that the different evaluationmetrics employed here do not show the
same tendency or relative difference as resolution changes. For example, the PSNR
of bicubic interpolation is similar to that of the best-trained method up to a magni-
fication factor of 8; but with bigger magnification factors, the trained reconstruction
methods achieve higher PSNR. The SSIM, on the other hand, remains similar. And
despite the PSNR or SSIM being similar or not, the verification performance of bicu-
bic is much worse than the trained methods, regardless of the magnification factor
employed. This demonstrates again that image quality metrics are not necessarily
good predictors of the recognition performance [6].

Regarding the two trained methods evaluated, there is no clear winner. Regarding
the neighbourhood size k of LINE, there are no conclusive results either. The choice
of k does not seem to have a significant impact on the performance. Only with a
magnification factor of 22, there is a clear tendency for a bigger value of k. It can be
seen in Fig. 5.7 that the images restored with a bigger k are more blurred (due to more
patches being averaged), but this seems to be positive for the recognition performance
nevertheless. It is also worth noting that the verification performance using trained
reconstruction remains similar to the baseline performance up to a magnification
factor of 8 (which corresponds to an image size of only 29 × 29). This would allow
to keep query images of very low size without sacrificing performance, with positive
implications, for example, if there are data storage or transmission restrictions.

5.4 Summary and Future Trends

Face and iris biometrics are two well-explored modalities, with systems yielding
state-of-the-art performance in controlled scenarios. However, the use of more re-
laxed acquisition environments, like the one represented in selfie biometrics, is push-
ing image-based biometrics towards the use of low-resolution imagery. If not tackled
properly, low-resolution images can pose significant problems in terms of reduced
performance. In this context, super-resolution techniques can be used to enhance the
quality of low-resolution images to improve the recognition performance of existing
biometric systems.

Super-resolution is a core topic in computer vision, with many techniques pro-
posed to restore low-resolution images [54, 73].However, comparedwith the existing
literature in generic super-resolution, super-resolution in biometrics is a relatively
recent topic [60]. This is because most approaches are general scene, designed to
produce overall visual enhancement. They try to improve the quality of the image
by minimizing objective measures, such as the peak signal-to-noise (PSNR), which
does not necessarily correlate with better recognition performance [3]. Images from
a specific biometric modality have particular local and global structures that can be
exploited to achieve a more efficient up-sampling [8]. For example, recovering local
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texture details is essential for face and ocular images due to the prevalence of texture-
based recognition in these modalities [40]. This chapter has presented an overview
of the image super-resolution topic, with emphasis on the reconstruction of face and
iris images in the visible spectrum, which are the two prevalent modalities in selfie
biometrics. We investigate several existing techniques and evaluate their application
to reconstruct face and iris images.

Despite promising performance of super-resolution methods for facial or ocular
images under well-controlled conditions, they degenerate when encountering images
from uncontrolled environments, as, for example, non-frontal views, expression or
lightning changes [76]. Future trends in biometrics super-resolution therefore relate
to designing effective approaches to cope with these variations. For example, one
limitation of existing studies is that low-resolution images are simulated by down-
sampling high-resolution images due to the lack of databases with low-resolution
and corresponding high-resolution reference images. As a result, variations in pose,
illumination or expression are not yet fully considered, neither the associated artifacts
introduced (e.g. compression, noise or blur). In addition, prior to down-sampling,
images are aligned by manual annotation of landmarks (eyes, nose, etc.) followed
by affine transformation. All super-resolution schemes employed in the biometric
literature are heavily affected by imprecise image alignment, even by small amounts;
however, real low-resolution images usually have blurring, and so many ambiguities
exist for landmark localization or segmentation, thus making a necessity the use of
reconstruction schemes capable of working under imprecise alignment.
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Chapter 6
Foveated Vision for Biologically Inspired
Continuous Face Authentication

Souad Khellat-Kihel, Andrea Lagorio and Massimo Tistarelli

Abstract In everyday life whenever people observe, interact or speak to each other,
visual attention is mostly directed toward the other person’s face, particularly to the
eyes and the nearby periocular regions. This is naturally reflected when the user
interacts with their mobile phones in several usual activities, such as web access,
payments and video calls. For this reason, the functionality of mobile devices is
strongly affected by the design of the user interface. In this chapter, we propose
a biologically inspired approach for continuous user authentication based on the
analysis of the ocular regions. The proposed system is based on a modified version
of the HMAX visual processing module. HMAX is a hierarchical model which has
been conceived to mimic the basic neural architecture of the ventral stream of the
visual cortex. The original HMAXmodel consists of four layers: S1, C1, S2 and C2.
S1 and C1 represent the responses to a bank of orientation-selective Gabor filters.
S2 and C2 represent the responses of simple and complex cells to other textural
features. The discrimination power of HMAX in recognizing classes of objects is
invariant to rotation and scale. The C1 layer, which is mainly responsible for the
scale and rotation invariance, is implemented using a max-pooling operation, which
may lose some spatial information. To overcome this problem while preserving the
maximal visual acuity and hence the localization accuracy, we propose to augment
the model by applying a retinal log-polar mapping. The log-polar mapping is an
approximation of the retino-cortical mapping that is performed by the early stages of
the primate visual system. Due to the high density of the cones in the fovea, the log-
polar approximation of the space-variant distributionmodel of the photoreceptors can
only be applied outside the foveal region. Therefore, the log-polar mapping is added
to the HMAX model as a complementary stage to process the peripheral region of
the grabbed images. In order to demonstrate the feasibility of the proposed approach
to mobile scenarios, experimental results obtained from publicly available databases
and image streams grabbed from mobile devices will be presented.
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Keywords Face recognition · HMAX architecture · Log-polar mapping · Visual
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6.1 Introduction

Object recognition, in general, and face recognition, in particular, can be performed
either in a holistic manner, by processing the entire image, or as a local process, by
analyzing a series of local regions of the image containing the object or the face to
be recognized. Concerning face recognition, for un-cooperative or loosely cooper-
ative scenarios, part-based approaches have the advantage of coping up better with
occlusions, make-up or other adversarial conditions [1, 2]. This chapter proposes a
part-based approach to face recognition, for un-cooperative scenarios such as con-
tinuous authentication on mobile devices. The core of the algorithm is based on the
HMAX network, which is an approximate model of the early stages of the visual
pathway in primates. Even though the HMAX model well mimics the anatomical
architecture of the primary visual area (V1), it does not take into account the retino-
cortical mapping which takes advantage of the space-variant topology of the human
retina. The proposed approach aims to fill this gap by adding a retino-cortical trans-
formation which has an advantage to the scale- and rotation-invariant properties of
the retinal topology.

The original HMAXmodel consists of four layers (S1, C1, S2 and C2) each layer
mimicking the responses of either simple cells, complex cells or hyper complex cells.
S1 and C1 can also be simulated with the responses of a bank of Gabor filters with
several orientations and scales, while S2 and C2 can be modeled with the responses
of more complex filters.

The logarithmic to polar (or log-polar) mapping was originally proposed to model
the space-variant arrangement of the ganglion cells in the human retina [3]. In the
proposed approach, this approach is adopted as a preprocessing stage to implement
the retino-cortical transformation.

As noted in [4], the image areas lying inside the face are not the best suited to per-
form unsupervised learning with the HMAX architecture. Therefore, the developed
computational framework includes the processing of the image area around the face.
The outer face is represented by means of the log-polar transformation [3].

Thefinal classification stage is implementedbymeans of a softmax as an activation
layer, while cross-entropy loss is the loss function adopted for error estimation.

6.2 Related Work

The most recent approaches for face recognition on mobile devices are based on
active and/or continuous authentication [5]. In [4], local regions (left and right eye,
nose and mouth) are extracted from a set of fiducial points. The extracted textured
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regions are concatenated to obtain a vector for classification.Weng et al. [2] presented
an algorithm for face detection based on convolutional deep networks. This algorithm
has been proposed to be suitable for mobile devices. In [3], continuous authentication
is performed by matching facial attributes. The user authentication is performed
by simply comparing the computed facial attributes with the enrolled attributes of
the original user. Several algorithms for face recognition on mobile devices have
been proposed and compared in [6]. These methods are based on the comparison
of intensity values, LBP features and applying transfer learning from the five layers
of AlexNet. Two additional methods are based on the direct comparison of fiducial
points. The best performance is obtained with the DCNN and the cosine distance
obtaining an EER which is less than 5%.

The most recent methods for face recognition are based on the deep convolutional
neural network [6–8]. Even though deep neural networks have been successfully used
to address several hard problems in computer vision, the implementation is compu-
tationally intensive and the network is generally designed with each layer processing
the entire image. The HMAX model, which was developed before CNNs started to
be extensively used to solve computer vision problems, was developed to demon-
strate the feasibility of a biologically plausible architecture for face recognition. The
model was tested on several publicly available databases such as LFW, PubFig and
SURF-W [9] providing results comparable to state-of-the-art methods.

In [10], a new C3EFs inspired from the ventral and dorsal stream of visual cortex
have been used. They proposed a model to extract new view-independent features,
using visual attention model and ventral stream model to achieve the goal of view-
independent face recognition. A higher layer has been added to the HMAX model.
Hu et al. [11] proposed an improved version of the HMAX model, named as sparse
HMAX. This model addresses the local-to-global structure gradually along the hier-
archy by applying a patch-based learning approach to the output of the previous layer.
The major difference between the two models is that in the sparse HMAX S2 bases
are learned by sparse coding, and therefore the S2 codes are computed by sparse
coding.

6.3 Face Recognition on Mobile Devices

Capturing and processing face images on mobile devices are generally an easy pro-
cess as long as the user is cooperative.However, if the face acquisition and recognition
process are continuous and without the explicit cooperation of the user, most of the
grabbed face images can be partially occluded, with strongly uneven illumination
and unpredictablemotion and pose. Processing substantially degraded images require
taking advantage of multiple sources of information and using piecewise polynomial
for missing data.

When analyzing the outputs of the inner layers of several deep convolutional
neural networks, it turns out that the data processed at each layer is related to the
area inside the face and those around it. This is in strong contrast with the approach
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adopted by almost all conventional face recognition algorithms that were based on
carefully cropping of the inner portion of the faces, in order to exclude outer part of
the face. The remarkable performance produced by the most recent face recognition
CNN architectures already demonstrates the high discrimination power of the outer
face area. For this reason, in this chapter, a modified version of the HMAX hierarchi-
cal model is proposed. The proposed method includes both a foveal visual process,
dedicated to analyzing the inner facial regions, and a peripheral visual process, ded-
icated to analyzing the information which can be captured from the regions around
the face. The proposed approach is based on a multistage architecture involving the
detection of the face, the extraction of 64 standard facial landmarks and the ocular
regions. A log-polar transformation is independently applied to the extracted ocular
regions and the entire face image. The log-polar parametrization allows to extract
the information on the ocular regions with high resolution thus mimicking the retinal
foveal vision, while the entire face is re-sampled to retain only the peripheral portion
of the face. The HMAX architecture is fed with both the foveal and the peripheral
data for feature extraction. Finally, a softmax layer is applied for classification. The
general structure of the proposed framework is depicted in Fig. 6.1.

6.3.1 Detection of the Face, Ocular Regions
and the Landmarks

Faces in the image are detected, and the eyes and mouth regions are extracted by
applying the Viola–Jones algorithm [12]. The Viola–Jones algorithm may fail in
some cases, such as if the face is darker than the background, as it happens with a
strong backlight. In other cases, the algorithm is unable to correctly classify the eyes
or other facial regions. Some examples of mis-classification are depicted in Fig. 6.2.

Log Polar transforma onVideo sequences Region of interest detec on Feature extrac on Classifica on

Fig. 6.1 General structure of the proposed framework



6 Foveated Vision for Biologically Inspired Continuous … 133

In order to improve the face detection process, the landmark extraction algorithm is
applied to detect the face1 and the facial landmarks. The adopted algorithm models
each facial landmark as a local region. A global optimization is then applied to
capture topological modifications due to changes in viewpoint or head pose [13].
The landmarks are also used to select the images out of a sequence where the face
is best viewed. The local structure of the landmarks within the ocular regions is
analyzed to determine if the eyes are open, and consequently the face can be reliably
detected and used for further processing. For both eyes, the arctangent of the angle
between the top, bottom and the outer landmark points is computed. If the average
arctangent value computed from the eyes is less than 1, then either one or both the
eyes are open. Therefore, the frame is selected, and the facial and ocular regions are
extracted (Figs. 6.3 and 6.4).

(a) (b) (c) (d)

Fig. 6.2 Errors recorded performing the face and eyes detection with the Viola–Jones algorithm.
a and bThe face is not detected because it is darker than the background. cThe eyebrow ismistakenly
extracted as the ocular region. d Incorrect detection of the region of interest

Fig. 6.3 Sample image from
the UMD database with the
extracted landmark points

1In this case, the landmark extraction algorithm is applied as an alternativemethod to theViola–Jones
algorithm for the detection of the face and the extraction of the regional regions.
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Fig. 6.4 Illustrates the process of facial region selection based on the arctangent test on the landmark
points around the eyes

6.3.2 Foveal and Peripheral Vision

Looking at a face from a short distance should produce a different perception of
the same face viewed from a long distance. However, the human visual system is
capable of coping up with the size change due to distance by capturing a high-
resolution description of the most salient features of the viewed face. In an artificial
system, this can be accomplished either by “foveating,” in rapid succession, these
parts of the scene or moving an interest window on a high-resolution image [14].
Certainly, facial features are important for recognition, but it cannot be said that the
face itself is better characterized by the most prominent features taken in isolation,
rather than by the context in which they are located. For this reason, it is not sufficient
to scan the face or the image with a fovea, but it is also necessary to provide some
information on the area around the fovea. A way to meet both requirements is to
adopt a space-variant sampling strategy of the image where the central part of the
visual field is sampled at a higher resolution than the periphery. In this way, the
peripheral part of the visual field is coded at low resolution but can be still used to
describe the context in which foveal information is located. A great advantage of
this approach is the considerable data reduction with respect to adopting a uniform
resolution schema, while a wide field of view (i.e., peripheral vision) is preserved
[15, 16].

The high acuity in the fovea is due to the dense packing of cone photorecep-
tors (Fig. 6.5). On the other hand, the low acuity in the peripheral area of the retina
is due to the lack of cones and the relative sparsity of rods [17]. In the proposed
system, the fovea is directed to capture the information lying on the ocular regions,
while the periphery captures the information on the outer region of the entire face.

The arrangement of the cones in the human retina, and the corresponding variable
size of the ganglion cells receptive fields across the visual field, produces a space-
variant topological transformation of the retinal image into its cortical projection
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[18]. This transformation can be presented by a log-polar mapping. This retino-
cortical mapping can be described through a transformation from the retinal plane
onto the cortical plane, which is scale and rotation-invariant, as depicted in Fig. 6.6.
If (x, y) are Cartesian coordinates and (ρ, θ) are the polar coordinates, by denoting
z = x + j y = ρe jθ a point in the complex plane, the log-polar mapping is

w = ln(z). (6.2)

As the resolution in the fovea is almost constant, this transformation is a good
approximation of the non-foveal part of the retinal image. Therefore, it is applied to
reproduce peripheral vision by re-sampling the outer region of the face.

The transformation has been implemented through the algorithm proposed in
[19]. Different parameters can be tuned, such as the number of cells per eccentricity
(CP), the number of eccentricities (NE), the cell dimension (CD), the size of the
overlapping area along the eccentricity (OE) and the radius (OR).

Fig. 6.5 Cones distribution in fovea and periphery

Fig. 6.6 Diagram explaining the log-polar transformation. Every pixel [x, y] on the Cartesian plane
is represented on the basis (ρ, θ) as [ln θ] on the cortical plane
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The Caltech database, composed of 450 frontal face images of 27 subjects [20], is
employed to select the parameters for the log-polar mapping. Several classification
experiments were carried on the remapped face images, by assigning different values
to the parameters of the log-polar transformation. The resulting scores are reported
in Table 6.1. In Fig. 6.7, some example images remapped with the obtained best
parameters are shown.

Table 6.1 EER and GAR@1%FAR of the facial regions to tune the log-polar mapping parameters

Parameters
(CP, NE, CD, OE, OR)

Used regions EER (Equal Error Rate) VR at 1% FAR
(Verification Rate at 1%
False Acceptance Rate)

(50, 50, 50, 1.5, 1.5) Left eye 2 98

(50, 50, 50, 1.5, 1.5) Right eye 0.22 100

(50, 50, 50, 1.7, 1.7) Left eye 2 98

(50, 50, 50, 1.7, 1.7) Right eye 0.44 98

(70, 50, 50, 1.5, 1.5) Left eye 2 96

(70, 50, 50, 1.5, 1.5) Right eye 1.67 98

(70, 50, 50, 1.7, 1.7) Left eye 4 96

(70, 50, 50, 1.7, 1.7) Right eye 2 98

(32, 32, 120, 1.7, 1.7) Left eye 0.22 100

(32, 32, 120, 1.7, 1.7) Right eye 0 100

(32, 64, 130, 1.5, 1.5) Face 0.11 100

(32, 64, 130, 1.5, 1.5) Face 0 100

(a) (b)

Fig. 6.7 Examples of images remapped according to the log-polar transformation: a original
images, b images mapped on the log-polar plane
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6.3.3 The Original HMAX Model

The HMAX model is a hierarchical model for object representation and recogni-
tion inspired by the neural architecture of the early stages of the visual cortex in the
primates. The general architecture of theHMAXmodel is represented inFig. 6.8. Pro-
ceeding to the higher levels of the model, the number and typicality of the extracted
features change. Each layer is projected to the next layer by applying templatematch-
ing or max-pooling filters. Proceeding to the higher levels of the model, the number
of (X, Y ) pixel positions in a layer is reduced. The input to the model is the gray
level image. S1 and C1 represent the responses to a bank of Gabor filters tuned to
different orientations. S2 and C2 are the responses to more complex filtering stages.

The first layer S1 in the HMAXnetwork consists of a bank of Gabor filters applied
to the full resolution image. The response to a particular filter G, of layer S, at the
pixel position (X, Y ) is given by:

R(X,Y) =
∣
∣
∣
∣
∣
∣

∑
XiGi

√
∑

X2
i

∣
∣
∣
∣
∣
∣

(6.3)

The size of the Gabor filter is 11 × 11 ,and it is formulated as follows:

G(x, y) = exp

(

−
(

x2 + γ 2Y 2
)

2σ 2

)

cos
(
2π

λ
X

)

(6.4)

where X = x cos θ − y sin θ and Y = x sin θ + y cos θ . x and y vary between−5 and
5, and θ varies between 0 and π . The parameters γ (aspect ratio), σ (effective width)

Fig. 6.8 General architecture of the HMAX model
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and λ (wavelength) are set to 0.3, 4.5 and 5.6, respectively. For the local invariance
(C1) layer, a local maximum is computed for each orientation. They also perform a
subsampling by a factor of 5 in both the X and Y directions [20]. In the intermediate
feature layer (S2 level), the response for each C1 grid position is computed. Each
feature is tuned to a preferred pattern as a stimulus. Starting from an image of size
256 × 256 pixels, the final S2 layer is a vector of dimension 44 × 44 × 4000. The
response is obtained using

R(X, P) = exp

(‖X − P‖2
2σ 2

)

(6.5)

The last layer of the architecture is the global invariance layer (C2). Themaximum
response to each intermediate feature over all (X,Y ) positions and scales is calculated.
The result is a characteristics vector that will be used for classification.

For the implementation of the HMAX model, we use the tool proposed in [21].
Figure 6.9 highlights the input and the output of the HMAX in our case.

6.3.4 Classification with the Softmax Layer

The classification stage is implemented with a neural network based on the softmax
function. The loss function for the softmax layer is based on the computation of the
crossentropy [22]:

Li = −log

(

e fyi
∑

j e
f j

)

(6.6)

HMAX

HMAX

HMAX

HMAX

Features 
fusion

Features 
fusion

Face

Ocular

Circle around 
the face

Log polar 
ocular

Fig. 6.9 General architecture of the proposed system based on the HMAX model



6 Foveated Vision for Biologically Inspired Continuous … 139

where f j the j-th element of the feature vector representing subject f, while Li is the
full loss over the training examples.

During the training phase, feature vectors are composed of frames extracted from
different video sequences from the same session. This composition of features is
required to cope with the difference of illumination which is always recorded even
within the same session.

6.4 Experimental Results

The UMD_AA dataset [23], a very challenging test bed for performing experiments
on active authentication for mobile devices, has been used in this study. In this
dataset, videos are recorded in different illumination conditions within a laboratory
room. The first image subset was captured with artificial lighting. The second subset
was captured without any illumination. The last subset was captured with natural
sunlight. The database is composed of 45 subjects. For each subject, five videos
are available for each session. One out of the five videos, containing variations in
the face position and rotation, is used for testing. The remaining four videos are
used for testing. The test videos are captured from mobile devices while the user
is performing a specific activity, such as looking at a window popup, scrolling test,
taking a picture or working on a document. In the first protocol, the training data is
composed of videos pertaining to given ambient lighting while the test data belongs
to the other two subsets. Therefore, there are three available scenarios for the first
protocol 1 → {2, 3}, 2 → {1, 3}, 3 → {1, 2}, where 1 is the subset containing the
data acquired in the indoor illumination condition, 2 is the subset containing the data
acquired without illumination, and 3 is subset containing the data acquired in the
sunlight illumination condition.

For the first experiment, the original HMAXmodel was applied to process the full
faces and the ocular regions in theUMDdataset. The face and ocular regions obtained
by applying the Viola–Jones and the landmark detection algorithms were used as
input for HMAX network. The classification rates obtained from the ocular regions
and the outer face are fused using themax rule. Table 6.2 reports the recognition rates
obtained using the face, ocular regions and the fusion of the two components. S1
corresponds to videos obtained from session 1, S2 to session 2 and S3 to session 3.

Table 6.2 Recognition rates obtained from the first experiment

Session Face and ocular regions from landmark
points

Face and ocular regions from the
Viola–Jones algorithm

Outer face Ocular regions Fusion Outer face Ocular regions Fusion

S1 88.62 85.37 89.43 63.41 72.50 67.48

S2 68.24 70.27 75.68 55.28 47.97 48.78

S3 89.43 84.55 91.87 57.72 60.16 63.41
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The second experiment was performed by applying a full implementation of
the proposed system and performing the log-polar mapping on the ocular regions,
obtained from the Viola–Jones and the landmarks detection algorithms. The obtained
log-polar images were used as input for the HMAX network (Table 6.3).

The recognition rates obtained in the second experiment from the first session are
graphically compared in the bar histogram depicted in Fig. 6.10.

The performance of the proposed framework is compared with the algorithms
applied in [23]. The best performance obtained from Fisherfaces (FF), Sparse
Representation-based classification (SRC) and Mean-Sequence SRC (MSSRC) has
been used for comparison and reported in Table 6.4.

The effectiveness of the landmark detection and frame selection approach over
the Viola–Jones can be noted by comparing the results reported in Table 6.2.

As it can be noted by comparing the results reported from the two experiments,
and graphically shown in Fig. 6.10, the proposed system always improves the per-
formance of the HMAXmodel. The improvement is due to the biologically inspired
retino-cortical projection applied to the raw input data.

The results obtained by applying the UMD testing protocol 1 are aligned with the
performance of the other methods (FF, SRC, MSSRC) reported in [22]. However,

Table 6.3 Recognition rates obtained from the second experiment

Session Face and ocular regions from landmark
points

Face and ocular regions from the
Viola–Jones algorithm

Outer face Ocular regions Fusion Outer face Ocular regions Fusion

S1 96.75 87.80 97.56 89.17 79.17 91.67

S2 89.19 71.17 87.39 58.54 64.23 64.23

S3 94.31 91.87 95.12 87.80 85.37 91.87

(a)                                                              (b)

Fig. 6.10 Comparison between the recognition rate obtained by applying the originalHMAXmodel
and the proposed algorithm. a Recognition rates obtained by processing face and ocular regions
extracted with landmark extraction and selection, b Recognition rates obtained by processing face
and ocular regions extracted with the Viola–Jones algorithm
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Table 6.4 Comparison of the results obtained by applying protocol 1 on the UMD database

Enrollment 
session

Test
session FF SRC MSSRC Outer face

Ocular

regions
Fusion

1 2 54.48 52.79 47.21 53.15 33.33 54.95

1 3 45.27 51.18 46.15 94.31 91.87 95.12

2 1 25.52 44.18 43.06 56.76 66.67 78.38

2 3 56.80 58.58 60.36 84.68 73.87 84.68

3 1 24.77 17.64 17.64 48.78 73.17 73.98

3 2 56.01 51.95 45.85 48.65 31.53 50.45

by applying a max rule fusion to the ocular and outer face scores outperformed the
other methods.

6.5 Conclusion

Face recognition is now considered as a commodity available with a number of
portable devices and interfaces. The high recognition performance obtained by well-
engineered systems and also by the most recent deep convolutional network-based
approaches is difficult to obtain. However, most of these systems are applied to
challenging but not fully comparable to the viewing conditions faced in everyday
life. For example, all face recognition systems operating in mobile devices require
the active cooperation of the user. Moreover, the face itself has to be presented in an
almost standard position, as the system is unable to operate if the face is presented
rotated or upside-down. Whenever the user is not cooperative or unaware of the face
being captured for instance, for continuous verification of the user’s identity, the
recognition performance drops dramatically.

In order to face this extremely challenging problem, a modified version of the
biologically inspired HMAX model has been proposed. As the HMAX model does
not take into account the retino-cortical mapping between the retinal plane and the
early stages of the visual cortex in the primates, a log-polar mapping was introduced
as a preprocessing step. The proposed system takes inspiration from the space-variant
structure of the receptive fields in the human retina, which produces a dual image
representation. Objects are represented with a very high accuracy in the fovea but
within a very small field of view, while objects lying in the periphery of the retina are
sampled at a very low resolution butwith awidefield of view.This dual representation
was reproduced by sampling image regions corresponding to the eyes with high
resolution and the outer part of the face with a low-resolution log-polar sampling.
From the representation produced by the HMAX model, classification is performed
by including a final softmax layer.
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The system performance has been assessed by processing the UMD mobile face
database. From a comparative analysis, the proposed system clearly outperforms
other state-of-the-art algorithms for continuous authentication.

The system proposed in this chapter was an attempt to take advantage of the
biological structure of the human visual system to improve face recognition per-
formance in very challenging environments, such as continuous authentication on
mobile devices. However, further research will be required to include other features
of the neural architecture of the V1 area in the brain and possibly integrate them in
a unique model.
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Chapter 7
Selfies for Mobile Biometrics: Sample
Quality in Unconstrained Environments

Chiara Lunerti, Richard Guest, Ramon Blanco-Gonzalo
and Raul Sanchez-Reillo

Abstract Taking a ‘selfie’ using a mobile device has become a natural gesture in
everyday life. This simple action has many similarities to face authentication on
a smartphone: positioning the camera, adjusting the pose, choosing the right back-
ground and looking for the best lighting conditions. In the context of face authentica-
tion, most of the standardised processes and best practice for image quality is mainly
focused on passport images and only recently has the attention of research moved to
mobile devices. There is a lack of an agile methodology that adapts the characteris-
tics of facial images taken on smartphone cameras in an unconstrained environment.
The main objective of our study is to improve the performances of facial verification
systems when implemented on smartphones. We asked 53 participants to take a min-
imum of 150 ‘selfies’ suitable for biometric verification on an Android smartphone.
Images were considered from constrained and unconstrained environments, where
users took images both in indoor and outdoor locations, simulating real-life scenar-
ios. We subsequently calculated the quality metrics for each image. To understand
how each quality metric affected the authentication outcome, we obtained biomet-
ric scores from the comparison of each image to a range of images. Our results
describe how each quality metric is affected by the environment variations and user
pose using the biometric scores obtained. Our study is a contribution to improve the
performance and the adaptability of face verification systems to any environmental
conditions, applications and devices.
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7.1 Introduction

Mobile devices have brought a significant change in everyday life. They are ubiqui-
tous both for business and personal tasks including storing sensitive data and infor-
mation; from saving images to a photo gallery to interacting with financial infor-
mation. As such, and given the mobile nature of the devices, data have the risk of
being accessed by unauthorised users. It is therefore of critical importance to secure
mobile devices through appropriate and effective authorisation processes.

Personal identification numbers (PIN) and passwords are two techniques that have
been traditionally used to protect access to a mobile device across a range of mobile
device manufacturers and operating systems (OSs). In 2008, the Android OS also
introduced a personalised graphical pattern system that allows the unlocking of the
device by the connection of at least four dots on a 3 × 3 grid. However, all these
security methods are vulnerable to attacks such as shoulder surfing and latent finger
traces or are easy to replicate or guess [1, 2].

Biometrics has quickly become a viable alternative to traditional methods of
authentication. The use of biometric verification technologies provides many advan-
tages as the authentication is achieved using a personal aspect that users do not need
to remember and that is impossible to lose. Adoption of authentication using face
images as a securitymode began in 2011whenGoogle introduced inAndroid 4.0 ‘Ice
Cream Sandwich’ a face verification system called face unlock. In recent years, the
system has updated and improved. Now called Trusted Face, starting with Android
5.0 ‘Lollipop’, it has been included as part of the smart lock system [3]. In November
2017, Apple Inc. released the iPhone Xwith FaceID, a verification system that works
with a TrueDepth camera system. This technology comprises an infrared camera, a
dot projector and a flood illuminator, with a claim to allow high face verification
performances even in hostile light condition and robust against facial changes like
growing hair and beard [4].

To authenticate on a mobile facial verification system, users need to take a self-
portrait using the front-mounted cameraof thedevice. Since this action corresponds to
the definition of ‘taking a selfie’, it is possible to identify the relationship between the
process of selfie generation and smartphone authentication. However, we can identify
substantial differences between these processes depending on the use context. For
instance, to ensure a successful authentication, the selfie should not be taken with
other people, as this would add additional processing to the system for selecting the
appropriate face to authenticate among the others. Also, the facial expression should
be neutral, to avoid variability on the image.

Despite these differences, it is possible to surmise that the massive popularity
of posting selfies on social media has helped with the acceptability of mobile face
verification. The growth of the use of facial systems on mobile devices has not been
without issues. According to a survey of 383 subjects conducted by De Luca et al.
in 2015, a shift was observed as to the motivations to cause people to abandon
the use of face unlock, primarily from overriding privacy concerns to social com-
patibility. Across the subjects, 29% declared that they stopped using face unlock
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for usability concerns (such as variable performance caused by environmental prob-
lems) and for the feeling of awkwardness in taking a selfie in front of other people for
authentication [5].

The recent acceptance in the social context of taking selfies in public is playing
an essential role in the acceptability of face verification on a smartphone, leading to
the socially acceptable possibility of selfie authentication or selfie banking. In work
presented by Cook [6] in 2017, the authors underline that an increasing number of
users are checking their bank accounts using theirmobile devices, and they arewilling
to use face verification as a biometric over other modalities, such as fingerprint, as
they considered it more reliable and, through liveness detection, more secure.

It is, however, necessary to understand how taking authentication images in
an unconstrained environment influences the quality (and consequently the perfor-
mances) of a verification system. In face verification, most implementation standards
and best practices are focused on the use of facial images in specific scenarios, such
as electronic IDs or passports. Best practice needs to be adapted to the additional
unconstrained environment parameters that the device mobility introduces. As the
user moves the device in an unconstrained manner, both posture and the background
may be subject to significant change. Also, the resolution of a device camera is typ-
ically lower than those used for taking passport images, so the same quality metrics
may not have the same effect in this scenario. In the context of mobile devices,
it is crucial to asses a realistic scenario including the variability of unconstrained
environments.

Our research aims to contribute to the improvement of the performance of facial
verification systems when applied in smartphones. We have analysed how image
quality changes in respect to unconstrained environments and what influence this has
on the biometric match scores.We also have studied how the user and the smartphone
camera introduce variability in the system.

7.2 Biometric Selfies, the Challenges

The ISO/IEC 19794-5:2011 Biometric data interchange formats—Part 5: Face image
data standard [7] provides a series of measures and recommendations to consider
when collecting images for facial verification. The standard includes the acquisition
process, where subjects should be in a frontal position, at a fixed distance from the
camera. Images taken in unconstrained environments are mainly influenced by the
different postures that users present towards a camera that is considerably smaller
in size compared to the single-lens reflex (SLR) system generally used for capturing
passport images.Mobile devices can also bemoved, varying the distance between the
subject and the capturing device, resulting in a variation of light and posture. Some
existing studies [8, 9] have aimed to improve performance across different lighting
conditions and poses of subjects, although the majority focus on video surveillance
recognition or passport image application. In the first case, high-quality equipment
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is usually adopted, and in the second scenario, there is controlled variability in pose
and lighting that limits the application in real-life scenarios.

One approach to enhance sample quality of a biometric system is to provide real-
time feedback to subjects so that they can adjust the device or posture, or they can
provide another sample. In work presented by Abaza et al. [10], the authors analysed
common metrics used to assess the quality and presented an alternative face image
quality measure to predict the matching performance, requesting another sample
in the case where a donated image did not conform to quality requirements. The
method presented by the authors was to filter low-quality images using a proposed
face quality index, resulting in an improvement of the system performance from
60.67 to 69.00% when using a distribution-based algorithm (local binary patterns)
and from 92.33 to 94.67% when using commercial software (PittPatt).

Another approach when dealing with low-quality images is presented by Kocjan
and Saeed [11]. Their methodology consists of determining fiducial face points that
are robust to different light and posture conditions by using Toeplitz matrices. Their
algorithm achieved a 90% success rate when verifying images in unconstrained
environments although this only occurred for a database with less than 30 users.
Future research is focusing on maintaining the success rate while increasing the
database size.

There are few studies explicitly focused onmobile devices.A study on smartphone
and image quality [12] collected 101 subjects’ images of which 22 samples from each
person was captured from two different devices: a Samsung Galaxy S7 and an Apple
iPhone 6 Plus during two sessions. The variation of the light position and pose of the
user were fixed as participants were asked to take two images with a different yaw
posture (head turn to the right or the left) and six more variating their posture with
roll and pitch (head tilt to the right or the left and the back or the front, respectively).
The quality was assessed over the collected database using different schemes, and
the method proposed by the authors resulted in nearly equal or better performances
to the other quality assessment methodologies.

Several databases have been released to assess face verification/identification cov-
ering a series of problems and challenges that this modality needs to overcome
(for example, the ‘Labeled Faces in the Wild’ [13] database of unconstrained facial
images, formed of 13,233 images from 5749 subjects taken in different light condi-
tions and environments). However, there is a lack of a suitable unconstrained envi-
ronment facial image database with samples taken from a smartphone. Available
databases usually focus on a specific environment such as an office or a laboratory
and with controlled movements and posture for the user.

The main contribution of our study is the analysis of selfie biometrics considered
in real-life scenarios where the unconstrained environment introduces variations
in quality, interaction and performances. This work builds on our previous study
[14] where we described the quality variations in constrained and unconstrained
environments considering quality metrics conformant to the standard requirements
for passport images.
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7.3 Data Collection

With the aim of assessing the impact that different types of environments have on
selfies for mobile verification, we carried out an analysis by undertaking our data
collection. We designed a collection process lasting about 30 min repeated across
three time-separated sessions where participants took selfies suitable for verification
on a provided mobile device (a Google Nexus 5). Full local ethics approval was
granted prior to the commencement of our data collection.

During the first session, participants were informed as to the nature of the study
and demographics were recorded. Information was also recorded regarding partici-
pants’ previous experience with biometric systems and biometric authentication on
mobile devices. Following this process, they received an explanation on smartphone
enrolment. Each participant was asked to sit on a chair at a fixed distance from the
camera (2 m) in a roomwith only artificial light and a white background. Six pictures
were taken by a supervisor using a Canon EOS 30D SLR following the specifica-
tion for passport images as described in the standard ISO/IEC 19794-5. Under the
same conditions, they were given the smartphone and were asked to take another
five images by themselves using the front-mounted camera of the Nexus 5 and this
provided data to compare the ideal conditions of enrolment across two different
cameras.

For the remainder of Session 1, and for the following two sessions, a standard
procedure was followed. Participants were required to follow a map of locations
where they were to capture a minimum of 5 verification images. The map differed
across each capture session. Each map contained a total of 10 locations resulting
in a minimum of 150 selfies for each participant. The locations varied: indoors and
outdoors, crowded and less crowded, and were representative of locations where
smartphones are used in everyday life (cafés, car parks, corridors of a building, etc.).

To collect all the images, we used anAndroid app that was developed for this study
which also helped the participants to keep the count of the number of selfies taken
during the session. The only instruction that participants received was to take the
selfies for verification: ideally, they were advised to present a neutral expression and
a frontal pose to the camera, but theywere free tomove as required, assessing lighting
conditions and background that, in their opinion,was ideal to provide their biometrics
for verification. We collected a total of 9728 images from 53 participants of which
only one participant did not complete all three sessions. Gender of participants was
balanced (50.5% F/49.5% M).

7.4 Data Analysis

Based on the research questions that we wished to address, we considered our anal-
ysis according to the diagram shown in Fig. 7.1. The figure shows the contributory
variables that we wanted to investigate, and their relationships are indicated by the



150 C. Lunerti et al.

Fig. 7.1 Diagram of relationships considered in a mobile face verification system

arrows. These relationships can be explored across different types of environment.
The acquisition process in mobile scenarios is not a fixed system. Both the user and
the smartphone can move freely. In the verification process, Facial image quality
and biometric outcome scores receive influence from the user interaction and the
capturing sensor. All variables are under the influence of different environments.

7.4.1 Biometric Verification

We first used two different algorithms to assess facial detection, Viola–Jones [15]
as an open-source algorithm that is commonly used for this task, and the detection
system with a state-of-the-art commercial verification system [16]. The commercial
biometric system (CBS) was also used to assess biometric verification performance.

We considered four enrolment scenarios. The first enrolment (E1) included five
images taken using the SLR camera under static conditions as previously explained.
Under the same static condition, the second type of enrolment (E2) used images
taken with the smartphone camera. These first two types of enrolment enabled a
comparison of different types of cameras under the same ideal enrolment conditions.

The other two types of enrolment replicate real-life situations where the user is
using the face authentication for the first time and need to enrol on the smartphone.
We selected five random images taken indoors for the third enrolment (E3) and five
random images from the images taken outdoors (E4).Wedecided to exclude a random
combination between images taken indoors and outdoors because we assumed that
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it would be unlikely that someone will change his or her location from indoors to
outdoors (or vice versa) in this situation.

Once all the images had been selected for the enrolment, we then considered all
remaining images from that participant for verification. We used the CBS to perform
the biometric verification, recording a failure to detect when the CBS could not
recognise a face within an image. We calculated a biometric score (BS) as the mean
of the comparisons of one verification image against all five enrolment images and a
biometric outcome (BO) as either ‘succeeded’ or ‘failed’ depending on the majority
between the five comparisons.

7.4.2 The User

The user can introduce two types of influencing factors. Some characteristics are
intrinsic to the participant (such as demographic characteristics) and others that can
be temporary (such as glasses, type of clothing and facial expression). From the
demographics, we considered age, gender and previous experience (both with bio-
metrics in general and in biometrics used on a mobile device) that the users declared
before taking part in the experiment. We wanted to verify that there were not any
differences in terms of quality and performance assessment within any demographic
groups.

We used the CBS to estimate the facial expression that the user made during the
image acquisition concerning the level of anger, disgust, fear, happiness, neutral,
sadness and surprise. Each expression is recorded as a percentage of confidence that
the user exhibits a particular expression in a captured image.

7.4.3 The Capture Device

The capture devices used during the data collection were a Canon EOS 30D SLR
and a Nexus 5 smartphone camera. We provided the same model of mobile device
to all the participants, to ensure that there were no differences regarding camera
resolutions between the images. This decision had been made to obtain results that
are device-independent and that the observations made in this study are generally
valid in any case of scenarios.

We hypothesised that the images taken with the SLR would be higher-quality
images and that it would be easier to use for verification over a lower-quality image
taken from a smartphone camera. The camera specifics for both types of devices are
summarised in Table 7.1.

The exchangeable image file format (Exif) file, providing information related to
the image format, was examined from each image to establish the variation capture
equipment. Recent phones allow the owner to access, personalise andmodify specific
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Table 7.1 Camera specifics
for the SLR Canon EOS 30D
and the Google Nexus 5
cameras used during the data
collection [17, 18]

Camera specifics Canon EOS 30D Google Nexus 5

Type Digital AF/AE SLR Selfie camera

Pixels 8.5 MP 1.3 MP

Focal length
(35 mm)

35 mm 33 mm

Sensor pixel size 22.5 × 15.0 mm 1.95 µm

Autofocus features Autofocus 9 point Fixed focus

characteristics of the frontal camera but with the Nexus 5 that was not possible, and
the focus was set to automatic.

The main camera settings that give control over quality are the aperture, ISO and
shutter speed [19]. Aperture is the size of the hole within the lens that controls the
lights that enters the camera body and consequentially the focus of the subject. In
our experiment, it had a fixed value of 2.9 throughout all the images taken with both
the smartphone camera and the SLR. Shutter speed is the length of time the camera
shutter opens when taking the image. The SLR camera was fixed in position with a
tripod, and the shutter speed was set at 1/60 recording images of ideally not moving
subjects. When taking selfies with the smartphone, not only the subjects are moving
but also the camera can take a different position, depending on how the user is holding
the device. It becomes hard to differentiate these types of movements, and for this
reason, the settings that we decided to consider in our analysis is the variation in ISO
that measures the sensitivity of the camera sensor. The SLR had a fixed value set to
400, while the smartphone camera ISO variates between 100 and 2000.

7.4.4 Environment

We considered two types of environmental conditions. The experiment room, where
there was only a fixed artificial light and participants were sitting on a chair with a
white background, presented an indoor environment with ideal conditions. Images
taken in this scenario were collected using both the SLR and the smartphone camera
(SmrC).

All the selfies taken with the smartphone outside the experiment room have been
collected in unconstrained environmental conditions. We analysed separately the
images taken in the unconstrained environment when outdoors and when indoors.

7.4.5 Facial Image Quality Metrics

To assess the facial quality of the selfies acquired during the data collection, we
followed the recommendations of ISO/IEC TR 29794-5 Technical Report (TR) [20].
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Out of the several facial image quality (FIQ) metrics considered in the TR, we
selected five metrics as the ones that are commonly used in the state-of-the-art to
describe quality features. Image brightness refers to the overall lightness or darkness
of the image. The image contrast helps to understand the difference in brightness
between the user and the background of the image. The global contrast factor (GCF)
determines the richness of contrast in details perceived in an image. The higher the
GCF, the more detailed the image. Image blur quantifies the sharpness of an image.
Finally, the exposure quantifies the distribution of the light in an image.

Below, there is a description on how to calculate each FIQ metric:

Image Brightness (B)
Image brightness is a measure of pixels intensities of an image. As defined in the
TR, the image brightness can be represented by the mean of the intensity values hi ,
where i ∈ {0, . . . , N }.

The mean of the histogram h̄ can be represented by the formula:

h̄ = 1

N + 1

N∑

i=0

hi

where h is the intensity value of each pixel, and N is the maximum possible intensity
value.

Image Contrast (C)
Image contrast is the difference in luminance of the object in the image. There are
different ways to define image contrast—we chose to calculate it from the histogram
of the whole image using the following formula:

C =
√∑N

x=1

∑N
y=1 (I (x, y) − µ)2

MN

where I (x, y) is the image face of size M × N , and µ represents the mean intensity
value of the image.

Global Contrast Factor (GCF)
The global contrast factor (GCF) is described in the TR as the sumof the average local
contrasts for different resolutions multiplied by a weighting factor. We calculated
the GCF following the methodology presented by Matkovic et al. [21]. The local
contrast is calculated at the finest resolution that is the original image as the average
difference between neighbouring pixels. Then the local contrast is calculated for
various resolutions that are obtained combining four original pixels into one super
pixels, reducing the image width and height to half of the original ones. This process
has been done for a number of R iterations. The global contrast is then calculated as
a weighted average of local contrasts:
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GCF =
R∑

k=1

wkCk

where Ck is the local contrast for R a number of resolutions considered, and wk is the
weighting factor. The authors defined the optimum approximation for the weighting
factor over R resolution levels as:

wk =
(

−0.406385
k

R
+ 0.334573

)
k

R
+ 0.0877526

where wk ranges from 1 to the number of resolutions (R) of the image considered.

Image Blur (Blur)
To calculate the blur effect, we studied the work presented by Crete et al. [22]. Their
methodology allows the determination of a no-reference perceptual blurriness of an
image by selecting the maximum blur among the vertical direction blurver, and the
one among the horizontal one blurhor.

Blur = Max(blurver, blurhor)

The metric range is between 0 and 1, where 0 is the best and 1 is the worst quality.

Exposure (E)
Exposure can be characterised by the degree of distribution of the image pixels over
the greyscale or over the range of values in each colour channel. As defined in the TR,
exposure can be calculated as a statistical measure of the pixel intensity distribution,
such as entropy [23].

E = −
N∑

i=1

pi log2 pi

where pi is the histogram of the intensity level for the N possible intensity levels.

7.5 Results

As a pre-processing stage, we removed the images that were taken by mistake (for
example, that did not include a facial image, or contained other people), obtaining
a final database of 9420 selfie images. In this paragraph, we illustrate the results
obtained according to the different elements considered for image quality, biometric
outcomes and user expressions.
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7.5.1 Image Quality

Our initial investigation was to understand the variations regarding the quality of
facial images. We wanted to assess how each metric varies depending on the many
factors that affect the system, including different types of environments.

From Table 7.2, we can observe that the original means have around the same
values as themedian, sowe can assume that extreme scores do not influence themean.
A further analysis assessing the 5% trimmed means confirmed that there were no
substantial outliers in the distribution that affect the mean values. From the skewness
and kurtosis analysis, we can ascertain that all the variables are normally distributed,
as their values are between −1.96 and 1.96, except esxposure (E).

We studied the quality metrics under different conditions. Since each FIQ metric
has a different range of values, we analysed them separately to understand their
relationship with the user and the type of environmental conditions. In Fig. 7.2, we
can see the variations of image brightness (B) across the 53 participants. This feature
could be used to distinguish the images that have been taken in ideal conditions from
the ones taken in the unconstrained environment. The threshold that is presented
in the graph, as well as in the following figures that describe each quality metrics,
represents an example of an empirically selected threshold (120) that can be used to
distinguish between images taken in a constrained or unconstrained environment. A
further study needs to be carried out to determine the optimal thresholds that could
be generally valid for any type of camera sensors.

The images that have been taken with the SLR in static condition have quality
values different from those taken with a smartphone camera in unconstrained envi-
ronments, indicated separately for indoors and outdoors location and the distinction
between static conditionswhen using the smartphone is less evident. For SLR images,
B ranges between 120 and 160 while for images taken indoors and outdoors in the
unconstrained environments the range is from 90 to 120. When investigating bright-
ness considering additional influencing factors, we observed that the values appear to
be stable across all the three sessions and there are no significant differences between
gender and age. Similarly, people that had previous experience with (mobile) bio-
metrics did not result in different images concerning brightness compared to those
who had not experienced biometric systems.

From Fig. 7.3, we can see the variation in image contrast (C) across all the partic-
ipants. In this case, SLR images taken in ideal conditions vary across the users with
values from around 11–13, while in unconstrained scenarios, the images presented
values with variation from 9.5 to 11. C provides a clearer division compared to B
between ideal conditions and unconstrained environment. No significant differences
were identified across demographics.

Contrary to the previous two FIQ metrics, GCF calculated on SLR images, as
shown in Fig. 7.4, appears centred between a small range (from 1 to 3) compared to
the values of all the images taken by the smartphone.

All the images captured using the smartphone range from 3 to 6.5, including
those under ideal conditions, making impossible to distinguish them from the uncon-
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Fig. 7.2 Mean values of Image Brightness across 53 participants

Fig. 7.3 Mean values of image contrast across 53 participants
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Fig. 7.4 Mean values of GCF across 53 participants

strained environment. GCF resulted in the only qualitymetric considered that is influ-
enced by the demographic. There is a negative correlation with age (r = −0.123,
n = 9728, p < 0.001). It looks like younger participants tented to take images with
higher GCF, hence more high defined images. This could be of interest for future
analysis.

LikeGCF, image blur (Fig. 7.5) also presented a distinct range of values for images
taken with the SLR compared to when using the smartphone camera under the same
ideal conditions. Across the collected facial images, there were not many cases of an
extreme blur—all the participant reported blurriness less than 0.36. Ideal conditions
with the SLR can be detected from having a range of values less than 0.26, while all
the images taken with the mobile device range between 0.26 to 0.36. Even though it
could be unclear to form a distinction between images taken in ideal conditions with
a smartphone and those taken in the unconstrained environments, we can still notice
a distinction between images taken when indoors (from 0.31 to 0.36) and outdoors
(0.26–0.31). There are no differences regarding sessions, demographics and previous
experience.

Exposure values (Fig. 7.6) for SLR images are between the ranges of 6.65–7.35,
whereas we can put a threshold to differentiate them from smartphone images taken
indoors and outdoors that range from 7.35 to 7.80, and we cannot make a distinc-
tion with the images taken in ideal conditions with the smartphone. There are no
significant differences between sessions, gender and age.

We also inspected the variation of ISO when the images were taken in different
environmental conditions in an attempt to analyse the correlation between the camera
specifics and the levels of FIQ metrics. ISO distribution does not appear normally
distributed, but from the analysis of the scatter plots, we observed a linear correlation
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Fig. 7.5 Mean values of Image blur across 53 participants

Fig. 7.6 Mean values of exposure across 53 participants
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that we investigated through a nonparametric Spearman correlation. There were
significant results for each of the FIQ metrics, but there was a particularly strong
positive correlation for blur (r = 0.528, n = 9420, p < 0.001) and C (r = 0.451, n =
9420, p < 0.001). ISO values have a negative correlation with GCF for r = −0.438,
n = 9420, p < 0.001. The correlation for B and E is less strong, with correspondently
positive values for r = 2.28 and negative for r = −0.072 (n = 9420, p < 0.001).

Acknowledging the correlation between eachqualitymetric and ISOspecification,
we can determine the required FIQ levels that we want to achieve and fix the ISO
value on the capturing sensor. Alternatively, it may be possible to predict outcome in
quality from the ISO value and be able to provide feedback in real time or request a
new image from the user to ensure that the selfie will appear with the required quality
for verification.

7.5.2 Biometric Results

To perform biometric verification, we first detect the facial area of each image in
our data set. A facial area was detected within all the images taken in ideal con-
ditions when using the SLR. Table 7.3 shows the failure to detect (FTD) using the
Viola–Jones algorithm and the CBS. Overall, the number of faces detected across
the entire database is above 90%. In a controlled environment, CBS was not able
to detect three faces, using Viola–Jones, only one facial image was not detected. A
higher percentage of FTD is recorded when images were taken outdoors (7.5% for
CBS and 5.7% for Viola–Jones).

We analysed the outcomes of the biometric system depending on the type of
environment.We aimed to understand howdifferent type of environmental conditions
influence the biometric outcome and if there is a relationship between quality and
biometric scores. A relationship can be used to regulate a biometric threshold to adapt

Table 7.3 Frequency and percentage of FTD recorded by the two algorithms

Environmental conditions Viola-Jones CBS

Frequency Per cent Frequency Per cent

Ideal conditions Valid FTD 1 0.4 3 1.1

Detected 264 99.6 262 98.9

Total 265 100.0 265 100.0

Unconstrained indoors Valid FTD 135 3.9 194 5.5

Detected 3364 96.1 3305 94.5

Total 3499 100.0 3499 100.0

Unconstrained outdoors Valid FTD 306 5.7 400 7.5

Detected 5032 94.3 4938 92.5

Total 5338 100.0 5338 100.0
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Table 7.4 Percentages of succeeded and failed verification across different environmental condi-
tions when using a smartphone

Environmental
conditions

Verification Dataset Outcome E1 E2 E3 E4

Ideal conditions N = 210 Succeeded 96.7 100 99.5 99

Failed 3.3 0 0.5 1

Unconstrained Indoors N = 3040 Succeeded 91.8 97.4 98.9 98.1

Failed 8.2 2.6 1.1 1.9

Unconstrained Outdoors N = 4683 Succeeded 88.7 96.1 97.7 99.2

Failed 11.3 3.9 2.3 0.8

it to the different conditions and to ensure high performances in any unconstrained
environments.

Table 7.4 shows the different percentages of verification success and failure for
the different environments.

A higher percentage of users that have been mistakenly rejected by the system
is recorded when the enrolment has been performed using the SLR images in ideal
conditions (E1), particularly when the verification takes place in an unconstrained
environment, where returned results of 8.2% indoors and 11.3% outdoors. Despite
having a better resolution, verification comparisons between images taken from an
SLR and a smartphone yield poorer results, as already observed in our previous
study [14]. This outcome could result from the application of the chosen matching
algorithm to two different types of camera sensors, and it highlight the importance
of using an accurate cross-sensor matching in the particular scenario between static
SLR images and mobile camera images. Future research should focus on addressing
this issue analysing images collected using different camera sensors to study the
effects that this can have on biometric performances.

Enrolment performed with a smartphone in ideal conditions (E2) obtained the
perfect acceptance rate for images taken under the same conditions, as expected,
but it also recorded a favourable success rate for both the type of unconstrained
environments, with 97.4% for verification performed when indoors and 96.1% when
outdoors.

When the enrolment has occurred within an unconstrained environment (E3 and
E4), it can be seen that a system is more resilient to the different types of verification
environments, meaning that it would be better to enrol ideally under conditions
that are adverse in terms of light and background so that we can ensure higher
performances across a broad range of environments.

To perform a correlation between biometric scores and quality metrics, we need to
check whether the scores are also normally distributed. Table 7.5 shows the descrip-
tive statistics for the biometric scores recorded during the verification of images
against the four types of enrolments. Checking the skewness and kurtosis values,
we can say that not all the biometric scores form a normal distribution with only
a few exceptions. In the table are also reported the minimum and maximum bio-
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Table 7.6 Correlation between biometric scores and FIQ metrics for n = 7923

BS_E1 BS_E2 BS_E3 BS_E4

B Spearman’s rho 0.028* 0.076** 0.041** −0.130**

Sig. (2-tailed) 0.014 0.000 0.000 0.000

C Spearman’s rho 0.053** 0.057** 0.047** −0.222**

Sig. (2-tailed) 0.000 0.000 0.000 0.000

GCF Spearman’s rho −0.096** −0.095** −0.117** 0.202**

Sig. (2-tailed) 0.000 0.000 0.000 0.000

Blur Spearman’s rho 0.049** 0.042** 0.105** −0.288**

Sig. (2-tailed) 0.000 0.000 0.000 0.000

E Spearman’s rho −0.059** −0.064** −0.001 −0.027*

Sig. (2-tailed) 0.000 0.000 0.896 0.016

*Correlation is significant at the 0.05 level (two tailed)
**Correlation is significant at the 0.01 level (two tailed)

metric scores recorded in the different environments (and their means and standard
deviations).

We performed a nonparametric (Spearman) correlation shown in Table 7.6. The
correlation has been performed for all the verification images (n = 7923) taken with
the smartphone in both constrained and unconstrained environment. We investigated
the correlation between the quality metrics recorded for those images and their bio-
metric scores recorded when comparing them against the four types of enrolment.

From Table 7.6, we can observe some significant correlations, but not particu-
larly strong overall (all values of the correlation coefficient, r, are smaller than 0.29).
Image blur has a strong negative correlation with the fourth type of enrolment E4 (r
= −0.288, n = 7923, p < 0.001). In a scenario where the enrolment is performed
in an unconstrained outdoor environment, the verification images appear to be more
sensitive to the blurriness of the image. The correlation indicates that a reduction
of blurriness of the image corresponds to a higher biometric score during the ver-
ification. Exposure presented a weak correlation that is negative for all the type of
enrolments. The other quality metrics tend to have overall a positive correlation with
the first three types of enrolment (captured indoors), and a negative correlation for
the fourth type of enrolment (captured outdoors).

GCF has the opposite behaviour, having negative correlations with the first three
types of enrolment, and a positive correlation with the E4. This can mean that despite
having higher values ofGCF, hence an image richer in details, in thefirst three types of
enrolment the performances are lower. An explanation for this could be the influence
that the GCF receives from local contrast in different areas of the image. For instance,
a facial image can have a lower contrast in one side of the image compared to the
other one, and this cannot be recorded using the image contrast. This difference in
contrast on the same image can influence the performances in the first three types of
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enrolment as it has been recorded to occur more frequently when the images were
taken in indoor locations.

7.5.3 User’s Facial Expressions

For most of the images taken with the SLR and the smartphone camera where it has
been possible to detect a face (n = 7888), the CBS provided a level of confidence
that the user was displaying a series of facial expression. In our study, we wanted to
inspect if there is a correlation between the user’s facial expressions and the quality
level recorded, as well as the outcome from the biometric system, considering the
variation that the different type of environmental conditions adds. In Fig. 7.7, we can
see the mean of a facial expression’s confidence for each environmental condition,
indicating the frequency with which each specific expression occurred in different
scenarios.

Users were only instructed to take selfies during the data collection that could
be used for biometric authentication. The ideal posture would be frontal and with a
neutral expression. So as expected, the facial expression that occurs the most is the
neutral expression with a mean value above 40% across all scenarios. For images
taken with the SLR under ideal conditions, a neutral expression has a confidence
level of more than 60%. Another expression with a mean value of more than the
40% is ‘surprise’ which notably occurred when using the smartphone camera. It was
reported by the participants that in situations of inclement weather when outdoors,
particularly with rain and strong wind, it had been harder for them take the selfies

Fig. 7.7 Mean of confidence values for facial expressions
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for face authentication that conformed to the requirements asked from them and
this may explain why the level of disgust and anger is higher for images taken in
unconstrained outdoor environment.

Facial expressions do not conform to the normality assumption for a parametric
correlation, so a Spearman correlation has been used to assess the relation that differ-
ent facial expressions have on both quality and biometric performances. We did not
find any particularly strong correlations between quality metrics and facial expres-
sions (the correlation coefficient was smaller than 0.18), but we did however observe
a correlation with the biometric outcomes. We considered the correlation with all
the verification images where it could be possible to estimate facial expressions (n
= 7678) and their biometric scores for each of the enrolment type. We noticed a
strong positive correlation for neutral expression in each enrolment scenario: under
ideal conditions for images taken with the SLR (r = 0.324, n = 7678, p < 0.001)
and the smartphone (r = 0.318, n = 7678, p < 0.001) and for enrolment that was
performed in unconstrained environments indoors (r = 0.382, n = 7678, p < 0.001)
and outdoors (r = 0.295, n = 7678, p < 0.001). Among the other facial expressions
estimated, we also observed that an expression of disgust has a strong negative cor-
relation with ideal conditions of enrolment performed with SLR (r = −0.314, n =
7678, p < 0.001) and the smartphone camera (r = −0.211, n= 7678, p < 0.001). The
correlation was also negative for confidence estimation of disgust presented in the
images that recorded biometric scores when comparedwith unconstrained enrolment
scenarios for smartphone images taken indoors (r = −0.232, n = 7678, p < 0.001)
and outdoors (r = −0.141, n = 7678, p < 0.001).

7.6 Conclusions and Future Work

Our study aims to contribute to improve the adaptability and the performance of
mobile facial verification systems by analysing how an unconstrained environment
affects quality and biometric verification score. Our experimental results describe the
variations of FIQmetrics and biometric outcomes recorded under different conditions
and provide recommendations for the application of selfies biometrics in real-life
scenarios.

From the analysis of fivedifferent imagequalitymetrics selected from the ISO/IEC
Technical Report for image quality applied for face verification, we found that image
brightness and contrast could be employed to select whether an image has been
taken in a constrained or unconstrained environment. Global contrast factor, image
blur and exposure were not showing different values for ideal and unconstrained
conditions as clearly as the other metrics. However, by observing the local contrast
and the level of blurriness, it could be possible to observe a difference between
images taken in the unconstrained environments when indoors from when outdoors.
These interesting results are encouraging and lead to further investigation to assess
if there are significant differences between the FIQ metrics values across each type
of environments. To have an overall and realistic perspective, future research will
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focus on analysing results collecting images using a range of different model of
devices to ensure that these overall observations can be applied in context with any
possible camera model. A further experiment will also be performed to explore
deblurring techniques that can improve the biometric performances on those images
that presented lower-quality characteristics.

Our results also suggest that it is possible to consider camera specification to
regulate the quality requirement for facial images when taken on a smartphone.
From our study, our recommendations will be considering fixing a value for the ISO
that can result in the FIQ desired, or to inspect the variation of ISO values to regulate
the thresholds of acceptance of images before verification and request an additional
presentation in case of non-compliance of the requirements for quality.

Studying the biometric scores,we can confirm that enrolment under unconstrained
conditions ensures the system to be more robust against the variations of the environ-
ment regarding verification performances. We reported a linear correlation between
quality and biometric scores, although not particularly strong.

The type of the environment is one of the factors that influence users’ facial
expressions. While there was not a significantly strong correlation between different
facial expressions and the quality metrics, we reported positive and negative cor-
relations depending on the type of expressions that affect the biometric outcomes.
Future research can use this information to adapt biometric systems depending on
the estimation of facial expressions detected in both the enrolment and verification
scenarios considering the environment in which the interaction is taking place. The
biometric system could send adapted feedbacks when the estimation of the location
is possible to remind the user to maintain a neutral expression during the verification
process.
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Chapter 8
Presentation Attack Detection for Face
in Mobile Phones

Yaojie Liu, Joel Stehouwer, Amin Jourabloo, Yousef Atoum
and Xiaoming Liu

Abstract Face is the most accessible biometric modality which can be used for
identity verification in mobile phone applications, and it is vulnerable to many dif-
ferent presentation attacks, such as using a printed face/digital screen face to access
the mobile phone. Presentation attack detection is a very critical step before feeding
the face image to face recognition systems. In this chapter, we introduce a novel
two-stream CNN-based approach for the presentation attack detection, by extracting
the patch-based features and holistic depth maps from the face images.We also intro-
duce a two-stream CNN v2 with model optimization, compression and a strategy of
continuous updating. The CNN v2 shows great performances of both generalization
and efficiency. Extensive experiments are conducted on the challenging databases
(CASIA-FASD, MSU-USSA, replay attack, OULU-NPU, and SiW), with compari-
son to the state of the art.

8.1 Introduction

Biometrics authentication systems aim to utilize physiological characteristics, such
as fingerprint, face, and iris, or behavioral characteristics, such as typing rhythm
and gait, to uniquely identify an individual. As biometric systems are widely used
in real-world applications including unlocking cell phone and granting mobile
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transaction, biometric spoofs, or presentation attacks (PA) are becoming a large
threat, where a spoof biometric sample is presented to the biometric system and
attempts to be authenticated. Face, as the most accessible biometric modality, has
many different types of PAs including print attack, replay attack, 3D masks, etc. As
a result, conventional face recognition systems can be very vulnerable to such PAs
and are exposed to risk and loss beyond measure.

In order to develop a face recognition system that is invulnerable to various types
of PAs, there is an increasing demand in designing a robust presentation attack de-
tection (PAD or face anti-spoofing) system to classify a face sample as live/spoof
before recognizing its identity. Previous approaches to PAD can be categorized into
three groups. The first is the texture-based methods, which discover discriminative
texture characteristics unique to various attack mediums. Due to a lack of an explicit
correlation between pixel intensities and different types of attacks, extracting robust
texture features is challenging. The second is the motion-based methods that aim at
classifying face videos based on detecting movements of facial parts, e.g., eye blink-
ing and lipmovements. Thesemethods are suitable for static attacks, but not dynamic
attacks such as replay or mask attacks. The third is image quality and reflectance-
based methods, which design features to capture the superimposed illumination and
noise information to the spoof images.

Most of the prior face PAD works apply SVM on hand-crafted features. While
convolutional neural network (CNN) exhibits a superior performance in many com-
puter vision tasks [6, 31, 32], there are only a few CNN-based methods for face
PAD. Those methods typically use CNN for learning the representations, which will
be further classified by SVM [33, 42]. In our view, further utilizing CNN in multiple
ways, such as end-to-end training and learningwith additional supervision, is a viable
option for solving face PAD problems. On the one hand, with an increasing variety
of sensing environments and PAs, it is not desirable to have a hand-crafted feature to
cover all attacks. On the other hand, we need CNN to learn a robust feature from the
data.With the growing numbers of face spoofing databases, CNN is known to be able
to leverage the larger amount of training data and learn generalizable information to
discriminate live versus spoof samples.

Following this perspective, in this chapter, we introduce a novel two-streamCNN-
based face PAD method for print and replay attacks, denoted as CNN v1. The pro-
posed method extracts the patch-based features and holistic depth maps from face
images, as shown in Fig. 8.1. Here, the patch-based features are extracted from a
local region of the face images, aiming at learning the spoofing texture that exists all
over the images. The depth map leverages the whole face and describes the live face
as a 3D object but the printed and digital screen face as a flat plain. Combining the
patch-based and holistic features has two benefits: First, utilizing the local patches
help to learn spoof patterns independent of spatial face areas. Second, holistic depth
maps leverage the physical properties of the spoof attacks and learn a pixel-wise
labeling. We use two CNNs to learn patch-based and holistic features, respectively.
The first CNN is trained to predict a score for each extracted patch from a face image,
and we assign the face image with the average of scores. The second CNN estimates
the depth map of the face image and provides the face image with a liveness score



8 Presentation Attack Detection for Face in Mobile Phones 173

Patch Score Face Images Depth Map

Fig. 8.1 In order to differentiate between live from spoof images, we propose an approach fusing
patch-based and holistic depth-based cues. Left column shows the output scores of the local patches
for a live image (top) and a spoof image (bottom), where the blue/yellow represents a high/low
probability of spoof. While this visualization utilizes densely sampled patches, 10 random patches
are sufficient for our anti-spoof classification. Right column shows the output of holistic depth
estimation, where the yellow/blue represents closer/further points

based on estimated depth map. The fusion of the scores of both parts leads to the
final estimated class of live versus spoof. The combination of these patch-based and
depth-based CNNs is referred to as CNN v1. Further, to embed such PAD method in
a mobile scenario, we apply an architecture optimization, a model compression, and
a strategy of continuous updating. We call the advanced model as the two-stream
CNN v2. The CNN v2 is trained in an end-to-end fashion and obtains comparable or
higher accuracy in comparison with CNN v1, while achieving a real-time efficiency
on the mobile phone system.

We summarize the contributions of this chapter as follows:

• Our proposed method utilizes both learned local and holistic features for classify-
ing live versus spoof face samples;

• We propose a method for estimating the dense depth map for a live or spoof face
image;

• We achieve the state-of-the-art performance on conventional face anti-spoofing
databases;

• We provide an practical approach to train a robust and efficient system for mobile
PAD scenarios.
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8.2 Prior Work

We review papers in three relevant areas: traditional face PAD methods, CNN-based
PAD methods, and image depth estimation.

Traditional face PAD methods Most prior work utilizes hand-crafted features
and adopts shallow learning techniques (e.g., SVM and LDA) to develop a PAD
system. A great number of works pay attention to the texture differences between
the live faces and the spoof ones. Common local features that have been used in
prior work include LBP [18, 19, 38], HOG [30, 58], DoG [44, 53], SIFT [41], and
SURF [8]. However, the aforementioned features to detect texture difference could
be very sensitive to different illuminations, camera devices, and specific identities.
Researchers also seek solutions on different color spaces such as HSV andYCbCr [7,
10], Fourier spectra [37], and optical flow maps (OFM) [4].

Additionally, some approaches attempt to leverage the spontaneous face motions.
Eye blinking is one cue proposed in [40, 52], to detect spoof attacks such as paper
attack. In [29], Kollreider et al. use lip motion to monitor the face liveness. Methods
proposed in [14, 15] combine audio and visual cues to verify the face liveness.

CNN-based methods CNNs have been proven to successfully outperform other
learning paradigms in many computer vision tasks [6, 31, 32]. In [33, 42], the
CNN serves as a feature extractor. Both methods fine-tune their network from a pre-
trained model (CaffeNet in [42], VGG-face model in [33]) and extract the features
to distinguish live versus spoof. In [59], Yang et al. propose to learn a CNN as
a classifier for face PAD. Registered face images with different spatial scales are
stacked as input, and live/spoof labeling is assigned as the output. In addition, Feng
et al. [20] propose to use multiple cues as the CNN input for live/spoof classification.
They select shearlet-based features to measure the image quality and the OFM of the
face area as well as the whole scene area. And in [57], Xu et al. propose an LSTM-
CNN architecture to conduct a joint prediction for multiple frames of a video.

However, compared to other face-related problems, such as face recognition [32,
36, 55] and face alignment [26], there are still substantially fewer efforts and ex-
ploration on face PAD using deep learning techniques [3, 27, 34]. Therefore, the
proposed method aims to further explore the capability of CNN in face PAD, from
the novel perspective of fusing the local texture-based decision and holistic depth
maps.

Image depth estimation Estimating depth from a single RGB image is a funda-
mental problem in computer vision. In recent years, there has been rapid progress
due to data-driven methods [28], especially deep neural networks trained on large
RGB-D datasets [50], as well as weak annotations [12]. Specifically, for face im-
ages, face reconstruction from one image [24, 26, 54] or multiple images [46, 47]
can also be viewed as one approach for depth estimation. However, to the best of
our knowledge, no prior work has attempted to estimate the depth for a spoof image,
such as a face on a printed paper. In contrast, our approach estimates depth for both
the live face and spoof face, which is particularly challenging since the CNN needs to
discern the subtle difference between two cases in order to correctly infer the depth.
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8.3 Robust CNN System for Mobile PAD

In this section, we present the details of the proposed CNN system for Mobile PAD.
We first introduce a general CNN system denoted as CNN v1, which leverages two
streams of CNNs: patch-based CNN and depth-based CNN. To tailor the system
for a mobile scenario, we redesign the patch-based CNN and combine it with the
depth-based CNN, denoted as CNNv2. In addition, we propose a simple but effective
learning strategy of continuous updating to improve the robustness of the system.

8.3.1 Patch- and Depth-Based CNN v1

The proposed CNN v1 [3] consists of two streams: patch-based CNN and depth-
based CNN. Figure 8.2 shows a high-level illustration of both streams along with a
fusion strategy for combining them. For the patch-based CNN stream,we train a deep
neural network end-to-end to learn rich appearance features, which are capable of
discriminating between live and spoof face images using patches randomly extracted
from face images. For the depth-based CNN stream, we train a fully convolutional
network (FCN) to estimate the depth of a face image, by assuming that a print or
replay presentation attack has a flat depth map, while live faces contain a normal
face depth.

Either the appearance or the depth cue can detect face attacks independently.
However, fusing both cues has proven to provide promising results. In this model,
we refer to the fusion output as the spoof score. A face image or video clip is classified
as spoof if its spoof score is above a pre-defined threshold. In the remainder of this
section, we explain in detail the two CNN steams used for face PAD.

8.3.1.1 Patch-Based CNN

There are multiple motivations to use patches instead of full face in our CNN. First
is to increase the number of training samples for CNN learning. Note that for all
available anti-spoofing datasets, only a limited number of samples are available for
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Fig. 8.2 Architecture of the proposed face PAD approach
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training. For example, CASIA-FASD only contains 20 training subjects, with 12
videos per subject. Even though hundreds of faces can be extracted from each video,
overfitting could be a major issue when learning the CNN due to the high similarities
across the frames. Second, when using the full face images as input, traditional CNN
needs to resize faces due to varying face image resolutions,where such scaling change
might lead to the reduction of the discriminative information. In contrast, using the
local patches can maintain the native resolution of the original face images, and thus
preserve the discriminative ability. Third, assuming the spoof-specific discriminative
information is present spatially in the entire face region, and patch-level input can
enforce CNN to discover such information, regardless of the patch location. This is
a more constrained or challenging learning task compared to using the whole face
image.

Input features CNN is claimed to be a powerful feature learner that is able to
map from raw RGB pixel intensities to the discriminative feature representation,
guided by the loss function, which is in sharp difference to the conventional hand-
crafted features. In our work, one observation is that CNNmight also benefit from the
hand-crafted features, which are proven to work well for the anti-spoof application.
In a way, this is one form of bringing domain knowledge to CNN learning. This
might be especially important for face anti-spoof applications, since without domain
knowledge it is more likely for CNN to learn non-generalizable information from
the data, rather than the true discriminative feature.

In reviewing hand-crafted features for face PAD, researchers have been exper-
imenting with several color spaces as input to a feature extraction module to find
discriminative descriptors. Typically, the most common color spaces used are RGB,
HSV , YCbCr , and several combinations among them, such as HSV + YCbCr [10].
TheRGB has limited applications in face PADdue to the high correlation between the
three color components and the imperfect separation of the luminance and chromi-
nance information. On the other hand, HSV and YCbCr are based on the separation
of the luminance and the chrominance information, providing additional features for
learning the discriminative cues.

In this work, we attempt to use both HSV and YCbCr color spaces in the CNN-
based methods. Moreover, we also explore several other input feature maps to the
CNN including a pixel-wise LBP map and high-frequency patches. For the pixel-
wise LBP map, we use the LBP8,1 operator (i.e., P = 8 and R = 1) to extract the
pixel-wise textural features from the face image, and afterward we randomly extract
patches from the texturemap. Note that in previousworks,LBP is only used to extract
histogram descriptors. For the high-frequency patches, the idea is to remove the low-
frequency information from the patches which is motivated by the work in [17]. For
any given face image I, we subtract the low-pass filtered image of I, which results in
a high-frequency image IH = I − flp(I). An illustration of the various input features
explored in our system is in Fig. 8.3. Compared to using RGB alone, providing these
input features can facilitate the CNN training.

Based on our experiments, all of the proposed input features are useful repre-
sentations to learn a CNN capable of distinguishing spoof attacks from live faces.
In the experiments section, quantitative results comparing the input features will be
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RGB HSV LBPYCbCr IH

Live

Print
Attack

Replay
Attack

Fig. 8.3 Examples on RGB (G channel), HSV (S channel), YCbCr (Cb channel), pixel-wise LBP
(LBP of S channel in HSV ), high-frequency images (using G in RGB) of both live and spoof face
images

presented. For the patch-based CNN, after detecting the face region, we convert the
full face image into one of the feature representations, i.e., HSV , and then extract
fixed size patches for CNN training and testing.

8.3.1.2 Depth-Based CNN

In this section, we explain the details of the depth-based CNN. Other than 3D-mask
PA, all known PAs, such as printed paper and display, have an obviously different
depth compared to the live faces. Therefore, developing a robust depth estimator can
benefit the face PAD.

Basedon [17],webelieve that high-frequency informationof face images is crucial
for face PAD, and resizing images may lead to a loss of high-frequency information.
Therefore, to be able to handle face images with different sizes, we propose to
maintain the original image size in training the CNN for depth estimation. That is,
we train a fully convolutional network (FCN) whose parameters are independent
to the size of input face images. The input is face images, and the output is the
corresponding depth maps. For the live faces, the depth information is from the
3D face shapes estimated using a state-of-the-art 3D face model fitting algorithm
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[24–26, 35]. For the spoof faces, the depth information is the flat plain, as assumed
by the attack medium’s geometry, e.g., screen, paper.

Generating the depth labels We represent the live face with the dense 3D shape

A as

⎛
⎝
x1 x2 · · · xQ
y1 y2 · · · yQ
z1 z2 · · · zQ

⎞
⎠ where z denotes the depth information of the face, and Q is

the number of 3D vertices.
Given the face image, the 3D face model fitting algorithm [24] can estimate the

shape parameters p ∈ R
1×228 and projection matrix m ∈ R

3×4. We then use 3DMM
model [5] to compute the dense 3D face shape A by

A = m ·
[

S̄ + ∑228
i=1 p

iSi

1ᵀ

]
, (8.1)

where S̄ is the mean shape of the face, and Si are the PCA shape bases representing
identification variations, e.g., tall/short, light/heavy, and expression variations, e.g.,
mouth opening, smile.

After we compute the 3D dense shape of the face, the depth map composes of the
z-value for Q vertices from the shapeA. In order to obtain a smoothing and consistent
depth map from discrete z-values from Q vertices, the z-buffering algorithm [39] is
applied, and the “texture” of the objects is imported as the depth information (i.e.,
z-values). To note that, input faces with different sizes would lead to a different range
for z-values, mostly proportional to the face size. Hence, the depth map M needs to
be normalized before being used as the label for CNN training. In our case, we use
the max-min method for normalization.

Examples of depth maps are shown in Fig. 8.4. For spoof faces as well as the
background area in the live faces, the z-value is equal to 0. Note that for some print
attacks, it is possible that the papers are bent. Since it is hard to estimate the actual
amount of bending, we also treat the ground truth depth of bending papers as the flat
plain.

Depth map for classification The proposed FCN can estimate a depth map for a
face image. Since the depth maps used to supervise the training can distinguish be-
tween live and spoof images, the estimated depthmaps should also have the capability
to classify live versus spoof. To leverage this capability, we train SVM classifiers
using the estimated depth maps of the training data.

Specifically, to ensure that the input dimension of SVM is of the same size, the
depth map M is overlaid with a fixed N × N grid of cells. We compute a mean depth
of each local cell and generate a N 2-dim vector, which is fed to the SVM with RBF
kernel. Given that resizing the depth map might lose information, we propose to
train multiple SVMs with different sizes of N . To properly determine the number
of SVMs, we adopt a Gaussian mixture model to fit the distribution of input image
sizes. During the testing stage, we feed the testing sample to the SVM, whose input
size N is closest to the sample.
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Live

Spoof

Fig. 8.4 Depth labels for depth-based CNN learning. A live face image, a fitted face model, and
the depth label (top row). A spoof face image and the flat plain depth (bottom row)

Moreover, we can leverage the temporal information given a face video input.
For live videos, the depth changes little over time, while the depth of spoof ones can
change substantially due to noisy estimation and involuntary hand movement while
holding spoof mediums. Hence for a video, we first compute a N 2-dim vector for
each frame, and then compute standard deviation of the estimated depth maps of the
video. The final feature of a frame feeding to SVM is a 2N 2-dim vector. Given the
SVM output of all frames, we use their average as the final score of the video.

8.3.1.3 CNN Architecture

A detailed network structure of the patch- and depth-based CNN v1 is illustrated in
Table 8.1.

Patch-based CNN A total of five convolutional layers are used followed by
three fully connected layers. Following every convolutional layer, we use a batch
normalization, ReLU, and pooling layers. Softmax loss is utilized in CNN training.
Given a training image, we initially detect the face and then crop the face region
based on eye positions. After that, several patches are extracted randomly from the
face image, such that all patches have the same fixed size. We avoid any rescaling
to the original face images for the purpose of maintaining the spoof patterns within
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Table 8.1 a Network structure of patch-based CNN and depth-based CNN. Red texts represent the
output of the CNNs. Every convolution layer is cascaded with a ReLU layer. Note that the input
size for patch-based CNN is fixed to be 96 × 96. The input size for depth-based CNN is varied
from sample to sample. For simplicity, we show the case when the input size is 128 × 128. b The
network structure of patch- and depth-based CNN v2. Red texts represent the output of the CNN.
Every convolution layer is cascaded with a batch normalization and ReLU layer. Note that the input
face image for the CNN v2 is normalized to 256 × 256

the extracted patches. If the face image is a live face, we assign all of its patches a
binary label of 1. If the face is a spoof face, the labels of patches are 0.

During testing, we extract patches in the same manner as training. The patch-
based CNN will produce spoof scores for every patch in the range of 0–1. The final
result of the image is the average spoof score of all patches. If the presentation attack
is in the video format, we compute the average spoof score across all frames.

Depth-based CNN We employ a FCN to learn the nonlinear mapping function
f (I;�) from an input image I to the corresponding depth map M, where � is
the network parameter. Following the setting in Sect. 8.3.1.1, we useHSV + YCbCr

features as the CNN input. The depth labelM is obtained in the approach described in
the previous subsection. Our FCN network has a bottleneck structure, which contains
two parts, downsampling part and upsampling part, as shown in Table 8.1. The
downsampling part contains si x convolution layers and twomax-pooling layers; the
upsampling part consists of f ive convolution layerswhich sandwich f our transpose
convolution layers for the upsampling purpose. This architecture composes of only
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convolution layers without fully connected layer, and each layer is followed by the
ReLU layer. We define the loss function as the pixel-level Euclidean loss,

argmin
�

J = ‖ f (I;�) − M‖2F . (8.2)

8.3.2 Patch- and Depth-Based CNN v2

As we evaluate the patch- and depth-based CNN v1, we notice several drawbacks of
this model. First, it is not very time-efficient. With N random patches and one whole
image to go through the CNNs for each sample, the system requires approximately
1 + N

2 seconds to process each frame, which is not suitable for mobile applications
such as phone unlocking. To reduce the time cost, we revisit the patch-based approach
and propose a fully convolution network that learns the same patch-based features.
Secondly, CNN v1 is trained with limited amount of data, where most of them are
captured in a constrained environment. It could make wrong estimations for input
sampleswith extreme illuminations, poses, and other unknown factors. To handle this
real-world issue, we deploy a simple but effective strategy of continuous updating
that can improve the generalization of the system by a large margin. The overall
architecture of the CNN v2 is shown in Fig. 8.5.

8.3.2.1 Revisit the Patch-Based CNN

We mention several motivations to use patches instead of the full face in CNN in
Sect. 8.3.1.1, and one of the major reasons is to prevent overfitting of the CNN
training. However, during the testing time, we need to sample sufficient amount of
random patches in order to maintain a consistent performance, which can be very
time-consuming. We revisit the design of the patch-based CNN. For the framework
of CNN, the effective receptive field for a certain level of convolution layer is con-
strained. For example, the conv-13 in Tabe 8.1 has a receptive field of 5 × 5 patch in

Fig. 8.5 Architecture of the advanced face PAD approach



182 Y. Liu et al.

the original input. With a specified depth, the output of a fully convolutional network
(FCN) is locally receptive and hence essentially patch-based.

Therefore, we redesign the patch-based CNN as a fully convolutional network,
where the input of the network is the cropped face, and the output of the network
is a binary mask. Each element of the mask indicates the spoofness of a local patch
whose size is the same as that of the receptive field. For a spoof face, by assuming
the whole region of the face as well as its close surrounding are all from the spoof
medium, such as printed paper and digital screen, the binary mask is an one map.
And for a live face, the binary mask is a zero map.

Despite the patch-based CNN shares similar architecture as the depth-based CNN,
they still learn distinct features for detecting PA. The patch-based CNN focuses on
generic spoofing features that exist on all local regions of the image, while the depth-
based CNN focuses on face-dependent features that only exist within face regions,
such as eye corners, cheek, and jaw lines.

8.3.2.2 Maps for Classification

Patch-based CNN provides a binary maskmap to indicate the spoofness of each local
patch, and depth-based CNN provides an estimated depth map for the whole face
region. Since the given labeling (i.e., binary mask or depth map) itself is discrimina-
tive with respect to live versus spoof, it might not be necessary to use an additional
classifier (e.g., SVM) for classification. To convert these two maps into a score for
decision making, we simply compute the L2 norm of each map and sum them up
with an assigned weight, as shown in Eq. 8.3.

score = α ‖M‖22 + ‖D‖22 . (8.3)

8.3.2.3 Model Compression

To utilize the trained face PAD CNNmodel for authentication in mobile and embed-
ded devices, we should make the CNN model compatible with the computational
power on those devices. There are many research papers for compressing the CNN
models and reducing their computational cost. The model compressing methods [13]
can be categorized into four main groups: (1) parameter pruning and sharing [51], (2)
knowledge distillation [21], (3) transferred convolutional filters [48], (4) low-rank
factorization [22].

In this work, our objective is to find the model with the minimum computational
requirement; hence, we design the model compression as a search algorithm. We
utilize a new greedy method similar to the binary search for finding the minimum
number of filters needed in each layer. We make a development set for evaluating
the performance of the compressed models with our greedy method. To find the
minimum size of the network with acceptable performance on the development set,
we iteratively reduce the number of filters by half while keeping the number of layers
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fixed and retraining the network. We stop this process when the CNN model cannot
achieve acceptable performance on the development set, as an indication of low
capacity of the CNNmodel for the face anti-spoofing task. By applying this method,
we reduce the size of the CNN model by 160 times from ∼ 80 Mb to 0.5 Mb while
achieving similar performance.

8.3.2.4 CNN v2 Architecture

A detailed network structure of the patch- and depth-based CNN v2 is illustrated
in Table 8.1. With the same input to the network, the new patch-based CNN and
depth-based CNN can share the weights with each other, since they are trained for
the same purpose. We combine these two networks into one to further reduce the
computation time by half. Aftermodel compression, a total of nine convolution layers
with three max-pooling layers are used to extract spoofing features at different levels
of scales. Then, we adopt a shortcut connection to concatenate the feature maps of
each pooling layer with the size normalized as 32. The concatenated features are
sent to three additional convolution layers. The final output of the network is two
32 × 32 maps, where the first map is supervised by the zero/one map for learning the
patch-based features, and the secondmap is supervised by the depth map for learning
the depth-based face-dependent features. The maximum receptive field of the CNN
v2 is 72. The L1 loss is utilized in CNN training. Following every convolution layer,
we use a batch normalization layer and ReLU layer.

Given a testing image, we initially detect the face and then crop the face region
based on eye positions. The cropped face is utilized in the CNN v2 to produce the
binarymaskmapM as well as the depth mapD. The final score for the testing sample
is a weighted average of the map norms, as shown in Eq. 8.3.

8.3.2.5 CNN System Updating

To improve performance and increase the robustness of the network, we utilize it-
erative update training by incorporating failure cases from the previous model. This
process is shown in Fig. 8.6. We begin with a trained model and its corresponding set
of training data. The performance of the trained model is qualitatively analyzed by
collecting failure cases using our PC and Android demo applications. These failure
cases are then analyzed, specifically considering if there are patterns that are com-
mon to the experienced failures such as low illumination, reflective glare on spoofs,
washing out due to excessive illumination, and extreme pose, among others. The
collected failure case images are then added into the training data, and the model is
updated using a random shuffle of the previous and newly collected data. In this way,
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Fig. 8.6 Iterative updating of the trained model using the most recent failure cases collected by
the PC and Android apps allows for targeted improvements for situations in which the model fails.
The updating process begins with a model trained on our training dataset. Newly collected data is
added to the current training data. This significantly and quickly improves the trainedmodel without
unnecessary effort to collect unimportant data

we enforce that the model performs similarly on previous success cases and previous
failure cases, while improving performance on the most recent failure cases. As we
repeat the updating processmultiple times, it becomesmore difficult to collect failure
cases, indicating that the model has become more robust to its previous weaknesses.

8.4 Experiments

8.4.1 Database

We evaluate our proposed method on two PAs: print and replay attacks, using five
benchmark databases: CASIA-MFSD [60], MSU-USSA [41], replay attack [16],
OULU-NPU [11], and SiW [34].

CASIA-MFSD: This database contains 50 subjects and 12 videos for each subject
under three different image resolutions and varied lightings. Each subject includes
three different spoof attacks: replay, warp print, and cut print attacks. Due to the
diversity of the spoof types, many previous works [40, 52] that leverage the motion
cues such as eye blinking or shape deformation would fail on this dataset. This
dataset partitions the subject space and uses 20 subjects for training and 30 subjects
for testing.

MSU-USSA: As one of the largest public face spoofing databases, MSU-USSA
contains 1000 in the wild live subject images from the weakly labeled face Database
and creates eight types of spoof attacks from different devices such as smart phones,
personal computers, tablets, and printed papers. This dataset covers images under
different illuminations, image qualities, and subject diversity.
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Replay attack: This database contains 1, 300 live and spoof videos from 50 subject.
These videos are divided into training, development, and testing sets with 15, 15, and
20 subjects, respectively. The videos contain two illumination conditions: controlled
and adverse. Given the print and replay attacks in this set, the database also divides
the attacks into twomore types based on whether they use a support to hold the spoof
medium, or if the attack is held by a person.

OULU-NPU: This more recent database is comprised of 4920 live and spoof videos
captured of 55 subjects using si x mobile phone cameras in three sessions with
varying illumination conditions and scene backgrounds. Unlike earlier databases,
this uses 1080p videos to accommodate higher quality images’ increasing prevalence
in society. Four testing protocols are defined to evaluate a network’s performance
under differing situations such as generalization in leave-one-out testing.

8.4.2 Experimental Parameters and Setup

In CNN v1, we use Caffe toolbox [23] to implement the patch-based CNN. The
learning rate is set as 0.001, decay rate as 0.0001, momentum as 0.99, and batch size
as 100.Before being fed into theCNN, the face samples are normalized by subtracting
the mean face of training data. Since CASIA and replay attack are video datasets,
we only extract two random patches per frame for training. For the images in MSU-
USSA, we extract 64 patches from each live face region and eight patches from
each spoof face region. For CASIA andMSU-USSA, a fixed patch size of 96 × 96 is
used. For replay attack, given its low image resolution, the patch size is 24 × 24. To
accommodate the difference in patch sizes, we remove the first two pooling layers
for the patch-based CNN. For the depth-based CNN, we use TensorFlow [1], with
the learning rate of 0.01 and batch size of 32. The patches are also normalized
by subtracting the mean face of training data. When generating the depth labels,
we normalize the depth in the range of 0–1. We use the weighted average of two
streams’ scores as the final score of our proposed method, where the weights are
experimentally determined.

In CNN v2, we use TensorFlow to implement all parts, with the learning rate of
0.01 and batch size of 32. The input face samples are normalized to be 256 × 256 × 3.
The depthmaps are also normalized to the range of 0–1with the size of 32.We use the
weighted average of two feature maps as the final score as mentioned in Sect. 8.3.2.2.
Based on the experiments, the final α and β are set to be 0.5 and −1.2, respectively,
for all of the following experiments.

Our experiments follow the protocol associated with each of the five databases.
For each database, we use the training set to learn the CNN models and the testing
set for evaluation in terms of equal error rate (EER) and half total error rate (HTER).
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8.4.3 Ablation Study

8.4.3.1 Patch-Based CNN Analysis

In Sect. 8.3.1.1, we explore several input feature maps to train the patch-based CNN
v1, which include different combinations of color spaces, a pixel-wise LBPmap, and
high-frequency patches. For all of the experiments, we first detect and then crop the
face for a given frame. After that we convert the face image into a new feature map
as seen in Fig. 8.3, which will then be used to extract patches. Table 8.2 presents the
results on CASIA-FASD when using different combinations of input feature maps.
Based on our experiments, we only show the best four combinations of features in this
table. From these results, we can clearly see that the HSV + YCbCr features have
a significant improvement in performance compared to the other features with an
EER of 4.44% and an HTER of 3.78%. Moreover, adding an LBPmap to theHSV +
YCbCr has a negative impact to the CNN learning, which reduces the performance
of using HSV + YCbCr only by 2.31% HTER. Similarly, when training the patch-
based CNN with high-frequency data in the HSV + YCbCr images, it also reduces
the performance by 1.79% HTER. This shows that the low frequencies may also
provide discriminative information to anti-spoofing.

8.4.3.2 Depth-Based CNN Analysis

The depth map results of CNN v1 on the CASIA-FASD testing set are shown in
Fig. 8.7. TheCNN is attempting to predict the face-like depth of a live face, i.e., higher
values in the depth map, while the predicted depth of the spoof images to be flat, i.e.,
lower values in the depth map. Due to the difficulty of the problem, the estimated
depth is not perfect, compared to the depth label shown in Fig. 8.4. However, we can
still find a clear distinction between the depth maps of the live images and those of
the spoof images. In the spoof image, there might be certain areas that suffer more
degradation and noise from the spoof attack. As we can see from Fig. 8.7, our CNN is
still trying to predict some areas with high values in the depth map. However, overall
depth patterns of spoof samples are far from those of live samples so that the SVM
can learn their difference. Hence, training a CNN for depth estimation is beneficial to

Table 8.2 EER (%) and HTER (%) of CASIA-FASD, when feeding different features to patch-
based CNN

Feature EER (%) HTER (%)

YCbCr 4.82 3.95

YCbCr + HSV 4.44 3.78

YCbCr + HSV + LBP 7.72 6.09

(YCbCr + HSV)H 9.58 5.57
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Fig. 8.7 Depth estimation on CASIA-FASD testing subjects. The first two columns are the live
images and their corresponding depth maps, and the rest six columns are three different types of
spoof attacks (print, cut print, and video attacks) and their corresponding depth maps

face anti-spoofing. Fig. 8.8 shows the mean and standard deviation of the estimated
depth maps for all live faces and spoof faces in replay attack. The differences of live
vs. spoof in both mean and standard deviation demonstrate the discriminative ability
of depth maps, as well as support the motivation of feature extraction for SVM in
Sect. 8.3.2.2.

8.4.3.3 Fusion Analysis

We extensively analyze the performance of our patch-based and depth-based CNN
v1 on CASIA-FASD and report frame-based performance curves as seen in Fig. 8.9.
As mentioned earlier, CASIA-FASD has three different video qualities and three dif-
ferent presentation attacks, which we use to highlight the differences of our proposed
CNN streams. For the low-quality images, the patch-based method achieves an EER
of 2.78%. For the same quality, we notice that depth-based CNN performs better,
which is understandable since the relative depth variation of frontal-view face image
is very small compared to the far distance when a low-quality face image is captured.
For the normal quality, the fusion of both methods has a large positive impact on
the final result, which can be seen from the ROC curves. The result of both methods
on high-quality videos is reasonably good, and therefore, fusion will maintain the
same performance. It is clear that the depth-based method struggles when the face
images are lower in resolution, and vice-versa for the patch-based method. On the
other hand, the patch-based method suffers with high resolution, and vice-versa for
the depth-based method. Therefore, the fusion of both methods will strengthen the
weak part of either one.
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Live

Spoof

Mean Standard Deviation

Fig. 8.8 Mean and standard deviation of the estimated depth maps of live and spoof faces, for all
testing samples in replay attack. Note the clear differences in both the mean and standard deviation
between the two classes
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Fig. 8.9 Frame-based ROC curves on CASIA-FASD comparing the fusion method with the patch-
based and depth-based CNNs
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When analyzing the three different presentation attacks in CASIA-FASDwith our
proposed methods, the most successfully detected attack is the video replay attack. It
is worthy to note that, since the ROC curve of every attack is an average of the three
different video qualities, the difference among the three attacks is not large. For the
fusion results, the best gain can be seen in the print attacks compared to the results
of the two methods independently.

8.4.3.4 Patch- and Depth-Based CNN v2 Analysis

Similarly, we evaluate the performance of the patch- and depth-based CNN v2. In
CNN v2, we utilize the CNN to estimate two maps, a binary mask of spoofness, and
a depth map. We train a CNN with binary mask supervision only and a CNN with
depth map supervision only to validate the effectiveness of fusing the two feature
maps. The test is conveyed on CASIA-FASD database. Without the supervision of
depth map, the CNN obtains 6.7% as the EER and 6.3% as the HTER; without the
supervision of binary mask, the CNN obtains 25.6% as the EER and 20.4% as the
HTER. By combining the two streams, the CNN v2 can achieve the best performance
of 4.4% as the EER and 4.6% as the HTER.

To further show the effectiveness of the continuous updating strategy, we collect
a private testing set. To continuously update the model, we use the face PAD demo
system with CNN v2 to capture failure cases from f ive subjects, none of which are
included in the private testing set. The model without updating obtains 31.2% as the
EER and 31.1% as the HTER, while the model with updating achieves 6.2% as the
EER and 5.4% as the HTER, which demonstrates a large margin of improvement.

8.4.4 Experimental Comparison

We compare the proposed method with the state-of-the-art CNN-based methods on
CASIA-FASD. Table 8.3 shows the EER and HTER of six face anti-spoof meth-
ods. Among different methods in Table 8.3, the temporal features are utilized in
a long short-term memory (LSTM) CNN [57], the holistic features are extracted
for classification in [59], CNN is used for the feature extraction in [33], and after
applying PCA to the response of the last layer, SVM is utilized for classification.
According to Table 8.3, our method outperforms others in both EER and HTER.
This shows the combination of local and holistic features contain more discrimina-
tive information. Note that even though depth-based CNN alone has larger errors,
its fusion with patch-based CNN still improves the overall performance. For CNN
v2, it shows a perfect performance on replay database and the high-resolution part
of CASIA dataset with EER and HTER to be 0. However, it performs worse on the
low-resolution part of the CASIA dataset, and thus the overall EER and HTER are
slightly worse than CNN v1. Because of the superior performance on the first two
part and its time efficiency, we still regard CNN v2 as a better model and use CNN
v2 to conduct further experiments.
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Table 8.3 EER (%) and HTER (%) on CASIA-FASD

Method EER (%) HTER (%)

Fine-tuned VGG-face [33] 5.20 –

DPCNN [33] 4.50 –

[59] 4.92 –

CNN [57] 6.20 7.34

[10] 6.2 –

[49] 3.14 –

[8] 2.8 –

[57] 5.17 5.93

Haralick features [2] – 1.1

Moire pattern [43] – 0

Patch-based CNN 4.44 3.78

depth-based CNN 2.85 2.52

Patch- and depth-based CNN v1 2.67 2.27

Patch- and depth-based CNN v2 4.4 4.6

Table 8.4 EER (%) and HTER (%) on MSU-USSA

Method EER (%) HTER (%)

[41] 3.84 –

Patch-based CNN 0.55 ± 0.26 0.41 ± 0.32

depth-based CNN 2.62 ± 0.73 2.22 ± 0.66

Patch and depth-based CNN v1 0.35 ± 0.19 0.21 ± 0.21

Patch and depth-based CNN v2 0 ± 0 0 ± 0

We also test our method on the MSU-USSA database. Not many papers report
results in this database because it is relatively new. Table 8.4 compares our results
with [41] which analyzes the distortions in spoof images and provides a concatenated
representation of LBP and color moment. In comparison with [41], our patch-based
CNN already achieves 89% reduction of EER. The complementariness of depth-
based CNN further reduce both the EER and HTER.

On the replay attack database [16], we compare the proposed method with three
prior methods in Table 8.5. For the CNN v1, although our EER is similar to the prior
methods, the HTER of ourmethod is much smaller, whichmeans we have fewer false
acceptance and rejection. Moreover, though the fusion does not significantly reduce
the EER andHTER over the depth-based CNN,we do observe an improvement in the
AUC from 0.989 in patch-based CNN to 0.997 in the fusion. Additionally, our CNN
v2 is able to achieve perfect performance on the replay attack dataset, demonstrating
the enhanced capability of the CNN v2.
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Table 8.5 EER (%) and HTER (%) on replay attack

Method EER (%) HTER (%)

Fine-tuned VGG-face [33] 8.40 4.30

DPCNN [33] 2.90 6.10

[59] 2.14 –

[10] 0.4 2.9

[8] 0.1 2.2

Moire pattern [43] – 3.3

Patch-based CNN 2.50 1.25

Depth-based CNN 0.86 0.75

Patch- and Depth-based CNN v1 0.79 0.72

Patch- and Depth-based CNN v2 0 0

Table 8.6 Performance of the proposed method and SOTA face anti-spoofing methods during
cross-dataset evaluation on current face anti-spoofing datasets. The HTER is reported. Results for
other works are reported for cross-dataset testing between CASIA-FASD and replay attack. Results
for OULU and the private test set are the HTER over the entire test set. The results for our models
are only reported if the model evaluated was not trained on the corresponding training data for a
given test set

Algorithm CASIA-
FASD

replay attack OULU Private test

Motion [19] 47.9 50.2 – –

Spectral cubes [45] 50.0 34.4 – –

Color LBP [10] 35.4 37.9 – –

Color texture [7] 37.7 30.3 – –

Color SURF [9] 23.2 26.9 – –

Boulkenafet [9] 39.2 9.6 – –

Liu [34] 27.6 28.4 – –

CNN v2 (CASIA baseline) – 42.0 25.3 26.7

CNN v2 (Replay baseline) 43.2 – 36.2 27.8

CNN v2 (Without updating) 36.1 34.7 33.1 31.1

CNN v2 (With updating) 23.2 15.4 0.0 5.4

Table 8.6 shows the performance of the CNN v2 compared to SOTA performance
for cross-dataset evaluation. In this cross-dataset evaluation scenario, the HTER
for all methods is significantly poorer than in the intra-dataset evaluation scenario,
as is evident in our best performance in HTER of 23.2% compared to 2.3% for
CASIA-FASD and 15.4% compared to 0.0% for replay attack. Our CASIA baseline
and replay baseline performance are for the CNN v2 trained on CASIA-FASD and
replay attack, respectively. When trained only on this low-resolution data, the cross-
dataset performance is poor. The CNN v2 without updating, which was trained on a
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larger dataset of mostly 1080p images, lags slightly behind the SOTA performance.
However, when we incorporate the iterative updating of the network, we are able
to achieve SOTA performance for cross-dataset evaluation, except in the case of the
replay attack dataset. However, the SOTA work that performs best on replay attack
performs much worse than our CNN v2 with updates on CASIA-FASD, indicating
that our CNN v2 with updating is much more stable and able to generalize well. This
further demonstrates the value of iterative updates using failure cases to improve the
robustness of the network, even in the case of cross-dataset evaluation.

8.4.5 Model Size and Running Time

Figure 8.10 shows the Android demo app under three different situations. The An-
droid demo has two major functions, testing the performance of the trained model
and collecting failure cases for the current model. This is accomplished via three
modes in the demo: (i) normal mode, (ii) live failure mode, and (iii) spoof failure
mode. A prediction of live will draw a green bounding box around the face. In normal
mode, the score is displayed to the screen. In live failure mode, it is assumed that
any detected faces are live. A prediction of spoof will save the image to the phone’s

(a) (b) (c)

Fig. 8.10 Screenshot of the Android mobile phone demo. A score of 0 indicates live, and a score
of 1 indicates spoof. Shown are a correct detection of a live face, b correct detection of a spoof
attack, c failed detection of a spoof attack and subsequent capture of the failure case
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storage as a live failure case. In spoof failure mode, it is assumed that any detected
faces are spoof. A prediction of live will save the image to the phone’s storage as a
spoof failure case.

The demo mode and failure case threshold can be changed via the in-app settings
(shown in Fig. 8.10). Modifying the failure case threshold, let us tune the difficulty
for a failure case to occur by requiring higher confidence as the updating process
matures. These settings also allow for hiding the raw score value, switching between
the front and rear cameras of the device and refocusing the camera. Similar settings
are available on the PC demo for collecting failure cases.

In an iterative method, the failure cases collected by both the PC and Android
demos are added to the training set, and the model is updated with these additional
images. This allows for rapid improvement of common failure cases across any of
our demo-enabled devices. Often a failure case from a previous iteration will be
correctly classified by the updated model, thereby reducing the number of failure
cases collected each iteration. The reduced number of failure cases indicates that
the updated model is becoming increasingly robust against attacks it was previously
weak to. As shown in Table 8.6, the model with updating performs significantly
better than the non-updated model.

Due to the limited computation ability of smartphone devices compared to PCs,
wemust reduce thememory and processing time of the trainedmodel for theAndroid
demo. To do this, we reduce the number of kernels in the convolutional layers until an
appropriately small and fast, but still accurate model is produced. This improves the
responsiveness of the Android app by doubling its FPS, but requires a small degrada-
tion in performance. Finally, we are able to achieve nine FPS on the PC application
without using the GPU, which increases to 30 FPS when we enable the GPU. We
are unable to utilize the GPU on Android smartphones, and hence are limited to four
FPS for the reduced CNN v2 model or 1–2 FPS for the full CNN v2 model.

8.5 Conclusions

In this chapter, we introduce a novel solution for mobile face PAD system via fusing
patch-based CNN and depth-based CNN. Unlike the prior PAD methods that use
the full face and single labels to train and detect presentation attacks, we leverage
both supervisions for local patches from the same face and estimation of the face
depth to distinguish the spoof from live faces. The first CNN stream is based on
patch appearance extracted from face regions. This stream demonstrates its robust-
ness across all presentation attacks, especially on lower-resolution face images. The
second CNN stream is based on face depth estimation using the full face image. We
prove it can improve the performance via fusing two CNNs. We further improve
its mobile performance via combining two CNNs into one, optimizing the network
structures and applying the strategy of continuous learning. The experiments show
that the proposed CNN is robust, generalized, and computationally efficient in sev-
eral testing scenarios, either intra-testing on the commonly used database, or testing
sample from real-world hard cases.
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Chapter 9
Liveness and Threat Aware Selfie Face
Recognition

Geetika Arora, Kamlesh Tiwari and Phalguni Gupta

Abstract Biometric-based human authentication can provide acceptable level of
security to mobile devices such as a tablets and smartphones. Face is one of the most
popular choices for biometrics on mobile device since the user can conveniently
capture his face image by taking a selfie. Like any other security system, selfie face
recognition is also vulnerable to attacks wherein an imposter can present photograph
of a genuine user to gain an access to the mobile device. Liveness detection is
an essential counter-measure to spoof attacks. In adverse scenarios, an attacker can
physically force the user to provide his facial image to unlock the phone. In such cases,
facial expression detection can act as a counter-measure. This chapter investigates
face-based human recognition techniques on mobile devices and highlight methods
having liveness and threat awareness.

9.1 Introduction

Mobile devices such as smartphones and tablets have become an essential part of
everyone’s life due to their usability and versatility. These devices are capable of
managing users’ schedules and e-commerce. As a result, a lot of important and con-
fidential information remain stored on the device. With the increasing use of mobile
devices, access control has become essential to protect from unauthorized access.
User authentication enables access control. It can be carried out by using a PIN,
passwords, tokens, or patterns. These traditional means of authentication are well
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accepted in the society; however, there are some internal and external factors that
limit the security while using them [25]. Internal factors refer to user’s unsafe behav-
ior. For instance, a user tends to set a simple string as a password to remember; but,
this makes it easy to guess. The external factors involve malware or shoulder surfing,
in which imposters can acquire the password by their stealthy observation. Biomet-
rics can address these issues based on what you have such as face, and fingerprint,
instead of what you do.

Biometric authentication is an automated way of recognizing or verifying a per-
son’s identity by using his/her physiological and/or behavioral characteristics [46].
A biometric recognition system is essentially a pattern recognition system that works
by obtaining a biometric sample from a subject, extracts the feature set from the sam-
ple and matches this feature set with the feature set of the templates stored in the
database [10, 41]. Based on the type of application, biometric systems can operate
in two modes: verification and identification. In verification mode, a user’s acquired
biometric sample is matched with his claimed identity, i.e., one-to-one matching. In
identification, the acquired sample is matched against all the entries in the database,
known as one-to-many matching. Biometric authentication is preferred over other
traditional methods because it need not be memorized and it is hard to be spoofed
by an imposter. Selfie biometric involves the use of an image captured by the user
himself from his mobile device for the purpose of authentication [30, 42].

A face recognition system can be attacked at various stages. Sensor level attack is
possible by presenting a fake biometric sample to the sensor. A previously submitted
biometric data could also be used for authentication. This is known as replay attack
[43].Another kind of attack is at the feature extractormodule inwhich, it is compelled
to choose the features providedby the imposter, instead of extracting features from the
genuine user. Attacks can also be executed on the communication channel between
the matcher and feature extractor. In this type of attack, imposter steals the extracted
features from the sample so as to use it later. The matching module could also be
attacked by forcing it to generate a high matching score to bypass the authentication
process. Another type of attack is on the database in which the imposter can add a
new template, remove or modify the existing templates. The attack can also occur
between the matcher and database. The most fatal attack consists of overriding the
match score generated by the matcher [11]. All these attacks can be classified as a
direct and indirect attack as shown in Fig. 9.1. Direct attack occurs at the sensor level
or outside the system. It is when a person pretends to be someone else to acquire
unauthorized access to the system. It is also known as spoofing. On the other hand,
indirect attacks occur inside the system bymanipulating the templates in the database
or evading the feature extractor or matcher [31].

A face recognition system has two stages, namely face representation and face
matching. During face representation, facial landmarks are extracted by using geo-
metrical descriptors while face matching employs multi-class classifiers [9, 24, 44]
to obtain a match between two faces. These are robust to varying expressions and
occlusion present in the image. Such attacks pose substantial threat for a security be-
cause acquiring a facial image or video of a person from the Internet is not a problem
these days. Therefore, face liveness detection algorithms have become essential to
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Fig. 9.1 Figure showing points of attacks in face recognition system

Fig. 9.2 Block diagram: liveness and threat detection in selfie face recognition

detect physical life like signals in the image presented to the system [14]. But only
detecting liveness of a face is not sufficient as the genuine person may be threatened
to authenticate himself on a device. To address this problem, it becomes necessary
to check for under-the-threat authentication after checking for liveness. If the cap-
tured facial image is classified as under-threat, then the system remains locked. This
process is depicted in Fig. 9.2.

Section 9.2 discusses the important face-based human recognition systems having
liveness detection techniques. The threat detection technique has been discussed in
Sect. 9.3. Finally, concluding remarks are given in Sect. 9.4.
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9.2 Liveness Detection

The selfie face recognition systems are prone to direct attacks. In this type of attack, a
fake face image is presented to the system for authentication. To counter this scenario,
liveness detection is employed which aim at differentiating a printed photograph or
video presented to the face recognition system from a real live image of a person.
Liveness detection techniques can be broadly classified into four categories, namely
(1) motion-analysis-based, (2) texture-analysis-based, (3) image-quality-analysis-
based, and (4) hybrid [32].

9.2.1 Motion-analysis-based Techniques

Motion-analysis-based techniques work by detecting spontaneous movements from
the input videos in order to classify the fake and live images. If the input video consists
of the expected motion characteristics such as eye blinking, mouth movement, and
expression variation, then it is said to correspond to a live user.

An eye-blinking-based liveness detection technique has been proposed in [27]. It
models eye-blinking characteristics in an undirected conditional random field (CRF)
framework that incorporates different states of eye blinking. Advantage is that it
relaxes the conditional independence assumption among the observed states. This
helps improve the eye-blink detection, specially in the cases when reflections of
light source are present on the glasses. It has been observed that finding an optimal
threshold for image binarization is difficult in the case of eye images taken in different
resolutions and lighting conditions [13]. To address this limitation, Kim et al. have
proposed a technique in [13] to classify closed and open-eye images captured in
different conditions by making use of a deep residual convolution neural network.
Li et al. have proposed a technique in [15] to explore the artificial intelligence (AI)-
based synthesized face videos. These videos are produced by using a series of images
generated by a neural network on huge amount of training data [17]. The technique
focuses on the detection of lack of eye blinking. It has employed a long-term recurrent
convolution neural network (LRCNN) to differentiate between the closed and open
eye by considering the previous temporal knowledge. LRCNN have the ability to
memorize the previous state due to temporal domain and therefore performs better
than the convolution neural network (CNN).

A unidimensional projection of the reduced feature vector technique proposed in
[3] applies motion magnification to highlight micro- and macro-facial expressions
of the subject. A histogram of the optical flow orientation angle is calculated over
local blocks which later are concatenated to obtain a single feature vector, called
histogram of oriented optical flows (HOOF). Principal component analysis (PCA) at
95% eigen energy is employed to reduce the feature dimensional. A two-class LDA
is used for classification to obtain a unidimensional projection of the reduced feature
vector. An approach incorporating dynamic mode decomposition (DMD) has been
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Table 9.1 Summary of motion-analysis-based techniques for liveness detection

Author Strategy Databases Parameters and results

Pan et al. [27] Eye-blinking Blinking Video
Database

Average one-eye
rate = 88.8% and
average two-eye
rate = 95.7% (W = 3)

Bharadwaj et al. [3] HOOF + LDA Print Attack Database
and Replay Attack
Database

HTER = 0 and 1.25%
respectively

Kim et al. [13] Deep residual CNN NIR eye dataset EER = 1.88934%

Li et al. [15] LRCNN Private (Eye Blinking
Video (EBV) dataset)

Area Under the Curve
(AUC) = 0.99%

Killioğlu et al. [12] Pupil tracking Extended Yale Face
Database B

Success ratio = 89.7%

Singh and Arora [36] Eye-blinking, chin and
lip movement

In-house database (65
videos captured at 25
fps for 10 s)

Liveness Detection
Rate = 98.98% for
front facial images
without glasses

Tirunagari et al. [38] DMD + LBP + SVM CASIA-FASD HTER = 21.75%

proposed in [38]. DMD is used to detect motion in the video. LBP pattern is used to
detect dynamic patterns and SVM for classification with DMD.

A liveness detection technique based on tracking the direction of the pupil has
been proposed in [12]. It has been implemented by observing whether the direction
of the pupil matches the LED’s position. A liveness detection technique that utilizes
multiple liveness detectors has been proposed in [36] uses eye-blink, chinmovement,
and lip movement for liveness detection. The changes in consecutive frames have
been observed to detect any motion. The proposed technique works by comparing
pixels of a video frame and static background frame in order to detect the motion.

Motion-analysis-based anti-spoofing techniques have good generalizing ability,
but they are computationally heavy and require high user cooperation during the
verification process. These techniques fail miserably and report a huge number of
authentication failures if user cooperation is not requested. In the case of liveness
detectors that rely on spontaneous movements, video display attacks may succeed
in fooling the system. A summary of motion-analysis-based techniques with their
obtained results is shown in Table 9.1.

9.2.2 Texture-analysis-based Techniques

A recaptured image acquired from a 2D photographs of a face may optically look
as the images captured from the live face. Therefore, they end up having an over-
lapping features. To distinguish between the two, suitable feature space needs to
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be chosen that have sufficient discriminating power to separate the two classes.
Texture-analysis-based techniques focus on shape deformation and surface reflec-
tion for spoof detection. These artifacts are caused as a result of skin texture difference
between spoofed and live face image.

A technique proposed in [21] considers the difference in specular reflections and
the surface properties in prints and real images such as pigments. Multi-scale local
binary patterns (LBP) have been used to encode micro-texture characteristics differ-
ence and spatial information in a feature histogram. The feature histograms are then
fed into a support vector machine (SVM) to classify whether the input micro-texture
pattern corresponds to a fake or live image. An extension of this technique has been
proposed in [22]. It uses two texture features, Gabor wavelets and local binary pattern
(LBP) to encode macroscopic information and micro-patterns, respectively, for face
description. Further, the low-level information is added to feature description by us-
ing a histogram of oriented features (HOG). This feature vector is then transformed
into a compact linear form by applying a homogeneous kernel map. This transformed
representation is fed into support vector machine that classifies the input into a fake
or live image. The previous approach proposed in [22] has been modified by Hassan
et al. [8] by using SIFT descriptors along with LBP and Gabor wavelets. The local
features descriptors have been extracted using SIFT while the texture features have
been extracted using Gabor wavelets and LBP. These three feature vectors are fed
into an SVM separately, and the output of three SVM scores are fused to classify if
the input is a live image. The results obtained are slightly better than the earlier ap-
proaches. An enhanced local binary descriptor (ELBP) proposed in [18] encodes the
spatial message and micro-texture difference between the live and fake image. The
enhanced feature vector is fed into an SVM for classification. A general technique
that works for face, iris, and fingerprint can be found in [1] using locally uniform
comparison image descriptor algorithm (LUCID) that analyzes local features. Ex-
tracted local patterns are encoded to a feature vector which is used to train SVM for
classification between live and fake image. Pinto et al. have proposed a face spoof
detection algorithm that takes into account of noise and artifacts generated during
the manufacture and recapture of synthetic biometric sample [29]. These artifacts
have been characterized by extracting spectral and temporal information from the
video. These features are low-level descriptors. Visual code-book is later used to find
mid-level descriptorswith low-level ones. All themid-level features are concatenated
into one and are fed to SVM for classification.

Many anti-spoof detection algorithms use grayscale images, hence discard the
color information that could be important in distinguishing fake images. Keeping
this in mind, a facial color texture-based technique has been proposed [5] that takes
the chroma component into consideration. Face descriptors have been extracted from
three different color bands: RGB, HSV, and YCbCr. Feature descriptors used are:
local phase quantization (LPQ), the binarized statistical image features (BSIF), the
co-occurrence of adjacent local binary patterns (CoALBP), and the scale-invariant
descriptor (SID). These face descriptors extracted from different color channels have
been concatenated in order to attain a single enhanced color feature vector. The
concatenated feature vectors are passed into an SVM which classifies the input as a
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Table 9.2 Summary of texture-analysis-based techniques for liveness detection

Author Strategy Databases Parameters and result

Määttä et al. [21] Multi-scale Local
Binary Pattern

NUAA Photograph
Imposter Database

Area Under Curve
(AUC) = 0.99%

Määttä et al. [22] Fusion of LBP, Gabor
and HOG

NUAA Photograph
Imposter Database

Area Under the Curve
(AUC) = 0.999% and
Equal Error Rate
(EER) = 1.1 %

Hassan et al. [8] Fusion of SIFT, Gabor
and LBP

CASIA and NUAA
Imposter dataset

Area Under the Curve
(AUC) = 0.9974 and
0.9764% respectively

Liu et al. [18] Enhanced Local
Binary Pattern (ELBP)

NUAA spoofing
dataset

Area Under the Curve
(AUC) = 0.996% and
Accuracy = 95.1%

Boulkenafet et al. [5] Color Information
(Chroma component)

CASIA FASD,
Replay-Attack
Database, MSU
mobile face spoof
database

Equal Error Rate
(EER) = 2.1, 0.4, 4.9%
respectively

Akhtar et al. [1] LUCID Print Attack, NUAA,
Yale Recaptured,
Replay Attack

HTER = 2.880.88%,
1.540.16, 1.900.20 and
5.460.55%
respectively

Pinto et al. [29] Spectral and temporal
information and visual
code-book

Replay-Attack HTER = 2.75%

live image or a fake one. A summary of the above-discussed techniques is shown in
Table 9.2.

Texture-analysis-based techniques have low computational complexity and there-
fore have a faster response time. However, they need high-resolution input image to
get micro-texture characteristics that becomes a limitation. The generalization abil-
ity of these techniques is not good, i.e., when a model is trained on one dataset and
tested on another, the performance of spoof detection rapidly degrades [5].

9.2.3 Image-quality-analysis-based Techniques

Techniques lying under this category utilize the fact that therewould be a difference in
the quality of captured image (i.e., the image acquired from the user) and recaptured
images. The recaptured images may have blurriness and would lack in detail and
sharpness. These methods assess the quality by using the complete image and hence
are more generalized [40, 45]. Galbally et al. [7] have proposed 14 image-quality
measures for spoof detection. These measures include signal-to-noise ratio (SNR),
normalized absolute error (NAE), structural content (SC), mean angle similarity
(MAS), and total edge difference (TED).
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An image-distortion-based liveness detection technique has been proposed in [47]
by Wen et al. It uses four features, namely specular reflection, chromatic moment,
blurriness, and color diversity to construct the feature space. To classify the input
image as a live or fake image, an ensemble classifier that consists of multiple SVMs
is used. This approach is further extended to multi-frame spoof detection in videos
on the basis of majority voting. A liveness detection proposed in [19] selects features
based on reflection ratio. It assumes that the reflection ratio of recaptured images
is greater than the original image. High-frequency components would be more in
genuine face image than recaptured face image and the proportion of image color
distribution changes in screen display and print. Three features based on reflection
ratio, blurriness, and color proportion are extracted. The feature vectors pertaining
to original and recaptured image have been fed into an SVM for classification. A
liveness detection method in [28] takes into consideration of image distortion such as
surface reflection, shape deformation, color distortion, andmoire patterns. It accounts
for different image regions, feature descriptors, and color intensity channels and
rejects face images on the basis of bezel detection and inter-pupillary distance (IPD)
constraint.

In [6], additional source of illumination or a camera has been used to extract a
3D feature vector without explicit reconstruction for liveness detection by analyzing
reflection property of the face bymodeling it as theLambertian surface.ALambertian
surface canbedefined as the one that reflects light in all possible directions.Therefore,
the intensity of the reflected light remains the same even when the camera or the face
is moved.

It has been observed that motion analysis techniques involving the use of head
rotation and eye blinking are not robust to crude photo-attack in which images of
the genuine user are downloaded from the Internet. Therefore, challenge-response
authentication can be employed to improve the existing motion-analysis-based tech-
niques. A technique in [26] uses challenge-response authentication along with de-
tecting facial expressions. It uses an Inception-RsNet [37] deep network, namely
FaceLiveNet which has two branches corresponding to facial expression recognition
and face verification. A deep neural network-based approach proposed in [2], makes
use of nonlinear diffusion to differentiate between the original and fake image. The
edges obtained from the recaptured image varies from that of the image of the real
face. A summary of image-quality-analysis-based techniques for liveness detection
is given in Table 9.3.

The image-quality-analysis based techniques have low computational complexity
and faster response time. They also have a good generalizing ability but their perfor-
mance is limited to high-quality input images. With low acquisition quality images,
these techniques do not perform well.
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Table 9.3 Summary of image-quality-analysis-based techniques for liveness detection

Author Strategy Databases Parameters and result

Wen et al. [47] Image distortion Idiap and MSU True Positive Rate at
0.1% False
Acceptance
Rate = 92.2 and
94.7%, respectively. In
case of training and
testing done on same
database and = 75.5
and 73.7%,
respectively. In case of
cross-platform

Luan et al. [19] Reflection ratio,
blurriness and color
proportion

NUAA Accuracy = 98.80%

Patel et al. [28] Image distortion Idiap Replay-Attack,
CASIA FASD and
MSU-MFSD

HTER = 14.6%,
EER = 5.88 and 8.41%
respectively

Martino et al. [6] Reflection under
different lighting
conditions

Private (5010 pairs of
stereo images + 7503
pairs of images under
different lighting
conditions)

Classification
Accuracy = 98.9%

Ming et al. [26] FaceLiveNet CK+ and OuluCASIA Accuracy of liveness
detection = 100 and
99% respectively

Alotaibi and
Mahmood [2]

CNN NUAA dataset Accuracy = 98.99%

Galbally and Marcel
[7]

14 image quality
measures

Replay Attack dataset HTER = 0.5

9.2.4 Hybrid Techniques

Hybrid techniques combine features related to both image-quality and motion anal-
ysis for liveness detection. A technique proposed in [45] obtains features related to
image quality by analyzing green and red channels of the face image which rep-
resents blood flow on the face. The other feature is obtained by approximating the
color distribution at local regions of face images, instead of the complete images.
The feature space obtained from these two features are then concatenated with a
feature obtained from a multi-scale local binary pattern, which is fed into SVM to
discriminate between a live and spoofed face images.

Combination of texture and motion-based approach in [3] applies motion mag-
nification to exaggerate micro and macro facial expressions exhibited by a subject.
Multi-scale LBP texture features have been used to classify the magnified video of
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Table 9.4 Summary of hybrid techniques for liveness detection

Author Strategy Databases Parameters and result

Wang et al. [45] Texture + motion NUAA, CASIA, Idiap Area Under the Curve
(AUC) = 99.96, 96.57
and 96.55%
respectively

Bharadwaj et al. [3] Motion + texture Print Attack Database
and Replay Attack
Database

HTER = 1.25 and
6.62% respectively

Siddiqui et al. [35] Motion + texture CASIA-FASD dataset,
MSU mobile face
spoofing database and
3D-MAD

EER = 3.14, 0.00 and
0.00% respectively

the subject. Feature space obtained from three LBP configurations (LBPu28,1, LBP
u2
8,2

and LBPu216,1 are concatenated and fed into an SVMwith Radial Basis Function (RBF)
kernel. An approach that incorporates texture-based features along with motion anal-
ysis has been proposed in [35] that cipher video texture andmotion. Features of spoof
are collected for full frame and segmented face area. Features are then combined for
classification. A summary of hybrid techniques with their obtained results is shown
in Table 9.4.

9.3 Threat Detection

Only having liveness detection would not be sufficient for security of mobile device.
A genuine user may be forcefully asked to undergo the authentication process. If the
system could identify a user in threat, it can lock the system and send emergency
messages. Threat detection would be based on recognition of facial expression. One
can use facial features located at eyelids, eyebrows, lips, cheeks, forehead, and chin
to recognize various expressions. Change in facial features has been utilized in [23]
to detect expressions. In [23], the facial image after pre-processing is divided into
regions for an exclusive localization of feature points. The first half of the region
contains eyebrows and eyes. The second half has cheeks, nose, and mouth. The
frequency analysis is done on both the parts and a feature vector is obtained. It is
passed to a Hopfield neural network for training. This technique has been tested on an
in-house dataset and has achieved a success rate of 79.8%. Another technique based
on the extraction of features such as lips, eyebrows, or mouth has been proposed in
[34]. This has used mouth and eyebrows corners as anchor points for the detection
of four facial expressions. It has been tested on JAFFE database [20] and achieved
an accuracy of 78% for anger and sad expression and 83% for happy and surprise
expression. A feature descriptor, namely local directional pattern number (LDN)
has been proposed in [33]. It has been used to encode facial texture information
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to recognize facial expressions. The face has been divided into several parts, and
corresponding LDN feature has been extracted. These different feature vectors are
then concatenated to form a global feature vector, which have been used as facial
descriptors. An MLP neural network-based facial expression recognition approach
has been proposed in [4]. A facial descriptor, namely perceived facial images (PFI)
has been used for feature extraction. This technique has been tested on GEMEP
FERA, the Cohn-Kanade and the FER-2013 databases.

Under-threat face detection on mobile devices has been addressed by Tiwari et
al. [39] along with liveness detection and facial recognition. Threat detection step is
performed after the liveness of the input image/video to the face recognition system
has been determined. Threat detection involves two parts: (1) recognizing the identity
of the user and (2) checking if he/she is under-threat or not. Registration starts with
the acquisition of images related to a normal face and an under-threat face of all
the users. Two region of interests (ROI) are extracted from the facial image. One
containing the forehead and other containing eyes. These regions are then enhanced
using gamma correction, a difference of gaussian and contrast equalization. These
feature vectors are computed for both the ROIs by using uniform extended local
ternary pattern (UELTP) [16]. A global feature vector is obtained by combining the
features obtained from both the ROIs. Feature vectors of query sample and the ones
stored in the database are compared using Chi-Square distance metric to obtain a
matching score. The proposed technique has been tested on two private datasets,
namely SmartBioFace and SmartBioThreatFace. The former consists of five frontal
face images of a hundred students. The other database contains normal as well as
under-threat frontal face images of 100 subjects. Each subject has provided five
normal and five under-threat face images in the database. The proposed technique
on SmartBioFace database achieved a correct recognition rate (CRR) of 100% and
EER of 3.46%. On SmartBioThreatFace dataset, the proposed scheme has obtained
an EER of 18.50% along with a CRR of 52.81%.

9.4 Conclusions

Attacks on a facial recognition systemhave attracted a significant amount of research.
Most attacks are direct such as presenting a spoof to the sensor. This chapter reviews
spoof detection methods for selfie face recognition. These techniques are classified
into four broad categories, namely motion-analysis-based, image-quality-analysis-
based, texture-based, and hybrid. It has been observed that motion-based and image-
quality-analysis-based methods achieve good generalizing ability. Contextual cues
are also useful to detect spoof. For example, a large change in the usual background
may be due to attack. Sometimes a finger of the attacker could be seen while he
holds the printed photograph. Deep-learning-inspired approaches such as long-term
recurrent convolutional neural networks (LRCNN) has been used to detect an eye-
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blink [15], convolutional neural networks has been used to differentiate between
the edges obtained from a fake and a live image [2], FaceLiveNet has been used to
detect facial expression/liveness using Inception-RsNet [37]. Deep-learning-based
methods have proven to be efficient for classification and generalizing over inter-
dataset verification platform. However, they come at an expense of huge training
time that may not be suitable for all applications. Only intergrating liveness detection
may not be sufficient to ensure mobile device security. As the user could be forced by
the attacker to undergo an authentication, therefore threat detection module is also
required which typically addresses facial expression classification [20, 33, 34]. The
methods achieved good results over the in-house dataset, but a large scale evaluation
is needed for statistical significance of the results. Despite a lot of work that has been
done toward liveness and threat aware face recognition system, the field is not yet
mature. More efficient and accurate techniques are needed as the adaptation of the
mobile devices increases.

Appendix

There are certain parameters that are used for evaluating the performance of a face
recognition system. Some of the commonly used measures are listed below.

• One-eye detection rate: It refers to the rate of correctly detected blinks to the total
number of blinks in test data. In this, right and left eyes are calculated separately.

• Two-eye detection rate: It is same as one-eye detection rate, but it accounts for
the simultaneous blinks of both the eyes for one blink activity.

• False Acceptance Rate (FAR) and False Rejection Rate (FRR): FAR is the
likelihood of the system to accept an unauthorized user as an authorized one. FRR,
on the other hand, indicates the possibility of the system rejecting an authorized
person by considering it as an imposter.

• Equal Error Rate: It refers to the value where FAR and FRR are equal and is used
to determine their threshold values. The lower the value of EER, higher would be
accuracy of a biometric system.

• Half Total Error Rate (HTER): It is computed by averaging the false acceptance
rate and false rejection rate.

• Area Under the Curve (AUC): A receiver operating characteristic curve (ROC
curve) represents a graphical plot of true positive rate (TPR) against the false
positive rate (FPR) at different threshold settings. The area under the ROC curve
(AUC) refers to the probability of a randomly chosen positive example being
classified as positive with greater suspicion than a randomly selected negative
example.
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Part III
Selfie and Soft-Biometrics



Chapter 10
Soft-Biometric Attributes
from Selfie Images

Ajita Rattani and Mudit Agrawal

Abstract The aim of this chapter is to discuss the soft-biometric attributes that can
be extracted from selfie images acquired from mobile devices. Existing literature
suggests that various features in demographics, such as gender and age, in physical,
such as periocular and eyebrow, and inmaterial, such as eyeglasses and clothing, have
been extracted fromselfie images for continuous user authentication andperformance
enhancement of primary biometric traits. Due to the limited hardware resources,
low resolution of front-facing cameras, and the usage of the device in different
environmental conditions, factors such as robustness to low-quality data, consent-
free acquisition, lower computational complexity, and privacy, favor soft-biometric
prediction in mobile devices.

10.1 Introduction to Facial Soft Biometrics

The inception of soft biometrics can be traced back to the mid-nineteenth century
when Alphonse Bertillon proposed a very first system based on biometric, morpho-
logical, and anthropometric determinations for person identification [1]. Later, Jain
redefined soft biometrics as a set of traits providing information about a user, without
individually authenticating the subject due to their lack of distinctiveness and perma-
nence [2]. Not necessarily unique to an individual, soft-biometric traits in physical,
behavioral, or material form are classifiable in pre-defined human complaint cate-
gories [3].

Describable visual attributes are any visual and contextual information that helps
represent an image [4]. Typically, visual soft-biometric characteristics can be auto-
matically deducted from primary biometric data, such as predicting gender and age
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from face images and can be broadly classified into demographic, anthropometric,
physical, medical, material, and behavioral attributes. Examples of demographic
attributes include age, gender, ethnicity, and eye color. Anthropometric and physi-
cal traits include body geometry, periocular region, eyebrows, and facial geometry.
BMI, wrinkles, health condition, and body weight are an example of medical at-
tributes while eyeglasses, scarf, clothes, lenses, and gait are examples of material
and behavioral attributes [2, 3]. There is also an overlap between various attributes.
For example, physical attributes like the periocular region and facial geometry could
also be indicative of demographics.

Soft biometrics can be used in two ways:

• As a stand-alone system: Automated systems based on soft-biometric attributes
have drawn significant interest in numerous applications such as surveillance,
forensics, human–computer interaction, targeted advertisement systems (e.g.,
gender-personalized advertising campaign), and search space reduction. Several
attributes such as age [5], gender [6], and ethnicity have been proposed for effi-
cient filtering and indexing of biometric databases for increased throughput of the
system.

• In conjunction with primary biometric traits: Soft biometrics can be used in
conjunction with the primary biometric trait for performance enhancement by
adding more degrees of freedom to the existing features of the primary biomet-
ric trait, especially when primary features are compromised due to image qual-
ity. For instance, a hybrid system that combines a face recognition system with
soft-biometric attributes such as age, gender, and ethnicity to improve the overall
matching accuracy [3]. Woodard et al. [7] have shown that the fusion of periocular
and iris biometrics could enhance the performance of the system for non-ideal
imagery.
Soft biometrics can also be employed for continuous or short-term user authenti-
cation to ensure that the user primarily authenticated is still the user in control of
the device. For instance, Mohammad et al. [8] have used eyebrow region and eye-
glasses [9] for short-term user authentication after primary face biometric-based
initial authentication offering the best trade-off between computational complexity
and accuracy.

Among various visual soft biometrics, selfie soft biometrics is gaining the most
popularity due to the recent advancements in front-facing cameras in smartphones.
Human faces captured in selfies convey a lot of information in the form of age,
ethnicity, jewelry and clothing, emotions, and mental state. This chapter discusses
various soft-biometric attributes that can be deduced from selfie images (Fig. 10.1).
This chapter is organized into the following sections. The next section focuses on the
factors favoring soft-biometric prediction in selfie images. In Sect. 10.3, we discuss
the attributes that can be extracted from selfie images, especially those which can
be deduced from facial, upper-dorsal and lower-dorsal regions of the user’s selfie
image, their significance, and the prior work. Finally, we conclude in Sect. 10.4.
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Fig. 10.1 Soft-biometric attributes that can be extracted from a selfie face image [10]

10.2 Factors in Favor of Selfie Soft Biometrics

It can be argued that with the latest advancements in machine learning, particularly
in deep neural networks, we could extract enough degrees of freedom in primary
biometric features like face and iris, to prevent the need for any soft biometrics.
However, several factors favor soft-biometric prediction, particularly in the context
of mobile devices:

• Robustness to low-quality data: Due to the device mobility and operation in
an uncontrolled environment (e.g., varying lighting conditions and poses), selfie
images captured from mobile devices exhibit substantial degradations resulting in
motion blur, poor signal-to-noise ratio, lowMTF, and poor uniformity. Figure10.2
shows sample selfie face images from Adience dataset [11] acquired using mobile
devices. Soft-biometric attributes such as gender and age can still be extracted from
lower resolution samples captured in an uncontrolled environment when primary
biometric trait may not be conclusive for user authentication [12, 13].

• Consent-free acquisition: Soft biometrics (such as clothing and eyeglasses) can
often be captured without the consent and cooperation of the mobile user. This

Fig. 10.2 Examples of low-quality face images acquired using mobile devices in an uncontrolled
environment
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is advantageous for continuous authentication for maintaining the logged-in state
after the initial log-in session [14, 15] without asking the user to necessarily
cooperate with the device. For example, many face authentication systems require
users to look at the camera in a front-parallel position, to best capture facial features.
However, once authenticated, the user may not necessarily look at the camera,
thereby producing off-axis imagery not suitable for face authentication systems.
Soft biometrics could then be used to maintain the logged-in state.

• Low computational complexity: Primary biometric authentication is often
equipped with presentation attack detection, which needs specialized hardware,
for example, FaceID on iPhone uses a patterned light to understand the 3D shape
of the face to guard against spoof attacks. Such external light sources, with special-
ized cameras, increase the power consumption cost, thereby making it difficult to
be used in continuous authentication. Soft-biometric attributes processing usually
has lower computational complexity than primary biometric data. For instance,
processing and feature extraction from eyebrows [8] or periocular region [16] in-
volve a fraction of lower computational complexity than full-face images. In selfie
images, using the standard RGB camera instead could lower the cost further down.

• Privacy: As soft-biometric characteristics are not unique among subjects, there
are lesser privacy and security concerns related to storing soft-biometric attributes
in a client–server architecture where the device is used solely for the acquisition
of the biometric samples. Feature extraction and matching are performed at the
server side [3].

10.3 Soft-Biometric Attributes from Selfie Images

The selfie images can be extracted in three different poses: high, medium, and low
as shown in Fig. 10.3. While attributes related to facial features, such as gender, age,
eyebrows, and accessories, can be extracted from high and medium poses, the lower
pose can obtain rich clothing information from the lower-dorsal region for short-term
user authentication [17].

The soft-biometric attributes extracted from selfie images have been categorized
in the following subsections.

Fig. 10.3 Medium, low, and
high poses for selfie image
acquisition
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10.3.1 Demographic Attributes

10.3.1.1 Age

Age is an important demographic attribute. Humans have an innate ability to reli-
ably estimate the age of their peers based on holistic facial features such as skin
texture, wrinkles, skin quality, facial hair, and chin line [3]. Age-based access and
targeted advertising are central to various applications. In the context of biometrics,
age classification can be employed as a soft-biometric trait in fusion with primary
biometric trait to improve the matching accuracy. This is primarily because many
biometric algorithms are sensitive to the aging of the subjects. Advances have been
made in the form of age-invariant solutions that seek to learn an aging model for age
transformation of the input operational image to that of biometric templates [18–
20]. These models can either be integrated with existing biometric engines to obtain
invariance to the aging effect or could help in age classification from face images
by utilizing geometric information, appearance models, and aging pattern subspaces
[21]. Despite these studies, the ability to automatically deduce age from a biometric
sample is far from an accurate and robust solution. One of the main challenges is
that age progression varies among individuals and is influenced by factors such as
genetics, health, lifestyle, eating habits, and stress level [21].

In the context of selfie biometrics, a study in [13] proposed convolutional neural
networks for age classification from face images acquired using smartphones. The
network comprises of only three convolutional layers and two fully connected layers
resulting in a small number of neurons. Experimental evidence on full-face images
from Adience dataset [11] suggests 1-off the accuracy of 84.7%.

Age classification from ocular images acquired using smartphones was conducted
in [5]. This is the first study of its kind as existing studies on age classification have
used periocular regions or directly iris images captured in the NIR spectrum instead
of mobile RGB captures [22–24]. This is because of the unavailability of the publicly
availablemobile ocular biometric databases with annotated age information. Authors
in [5] used representation learning and proposed a convolutional neural network
(CNN) comprising of three convolutional layers and two fully connected layers. The
choice of the simpler model was to avoid over-fitting especially for small training
datasets. The advantages of such a system include enhanced recognition ability and
invariance to aging in smartphone-based ocular recognition (Fig. 10.4).

Further, it provides privacy benefits and reduces computational cost over scanning
full-face images for age classification. The accuracy of the proposed CNN model
was tested using the cropped version of the recently released Adience dataset [11].
The reported 1-off accuracy of the model was 84.6± 1.7%.
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Fig. 10.4 Example of ocular eyebands correctly (in terms of exact and 1-off accuracies) and
incorrectly classified into different age groups using the CNN age classification model proposed in
[5]

10.3.1.2 Gender

Automated gender estimation has drawn significant interest in numerous applica-
tions such as surveillance, human–computer interaction, anonymous customized
advertisement systems, image retrieval system as well as in fusion with primary
biometric trait to improve the matching accuracy of a biometric system. The num-
ber of studies has been proposed for gender estimation from the face, fingerprint,
and ocular images. In the context of mobile devices, gender recognition from face
[25],1 keystroke dynamics [26], and accelerometer and gyroscope sensor readings
[27] have been studied to enhance the security of the biometric system integrated
into mobile devices.

Levi and Hassner [28] proposed convolutional neural networks for gender classi-
fication from face images acquired using smartphones. The network uses a simpler
model of only three convolutional layers and two fully connected layers with a small
number of neurons. Experimental evidence on full-face images fromAdience dataset
[11] suggests 1-off the accuracy of 86.8%.

Study in [29] proposed gender prediction from ocular images captured in the mo-
bile environment. Authors evaluated local binary patterns (LBP), binary statistical
image features (BSIF), local phase quantization (LPQ) and histogramof oriented gra-
dient (HOG) based textural descriptors along with support vector machines (SVM),
and multilayer perceptron (MLP) classifiers on a large scale publicly available VI-
SOBdataset captured usingmobile devices. The best accuracy of 91.6%was obtained
using histogram of gradient (HOG) in combination with MLP classifier.

In another study [6], authors evaluated the use of pre-trained CNNs for gender
prediction from ocular images. To this aim, VGGNet, InceptionNet, and ResNet
pre-trained on ImageNet dataset were used for feature extraction from selfie ocular
images. The extracted featureswere fed toSVMandMLP-based classifier for training
andgender classification onVISOBdataset. Thebest accuracyof 94.0%wasobtained
using ResNet for feature extraction in combination with MLP classifier.

1https://web.stanford.edu/class/ee368/Project-Spring-1415/Reports/Fu.pdf.

https://web.stanford.edu/class/ee368/Project-Spring-1415/Reports/Fu.pdf


10 Soft-Biometric Attributes from Selfie Images 219

10.3.2 Physical Attributes

10.3.2.1 Eyebrows

Eyebrows are one of the novel biometrics that naturally exists in the human face
for all genders. While some studies have shown the potential of eyebrows as stand-
alone biometrics for recognizing individual, others have considered eyebrows as a
soft-biometric trait to be used when the primary biometric trait is unavailable due to
occlusion (e.g., frames of glasses, glares on glasses, reflective coating on glasses and
eyes half-closed) for ocular biometrics [8]. Eyebrow region offers the best trade-off
between computational complexity and accuracy in comparison with face or ocular
biometrics. This is because the eyebrow region is one-sixth of the full-face region
and yet comprises of the feature-rich region on the face.

The advantages of eyebrow-based mobile user authentication include extraction
using the front-facing RGB camera available in the mobile device (instead of IR
cameras needed for iris recognition), computational efficiency, and fast throughput.
Therefore, it can also be employed as a primary or soft-biometric trait in combination
with primary biometrics traits such as face and ocular region. Eyebrows can also be
used for continuous user authentication to ensure that the user primarily authenticated
is still the user in control of the device.

Mohammad et al. [8] developed a method of user authentication using eyebrows
for smartphone devices. This is the first large-scale study evaluating the potential of
eyebrows biometric for mobile user authentication. The authors used local histogram
of oriented gradients (HOG) and global GIST descriptors extracted from eyebrow
ROIs with support vector machine (SVM) for user authentication. The experimental
results suggest minimum EER of 3.23% on fusing the outputs of left and right
eyebrow ROIs for OPPO mobile device in VISOB database. With the continuous
advancement in mobile hardware technology, the proposed approach can be used as
a viable device-side application for user authentication and as a soft-biometric trait.
The performance of eyebrows biometrics may be impacted by covariates such as
eyeglasses, motion blur, lighting variations, and sometimes by user expressions.

10.3.2.2 Periocular Region

Several studies have been proposed for mobile user recognition based on periocular
biometrics which refers to the facial regions in the immediate vicinity of the eye,
excluding the pupil, iris, and sclera regions (Fig. 10.5) [30]. Study in [31] used pre-
trained VGGNet for feature extraction from the periocular region along with Sparse
Augmented Collaborative Representation based Classification. Experimental results
onVISOBdataset suggest an accuracy of 99% at the false accept rate of 10−3. In [32],
deep feature fusion of iris and periocular recognitionwas implemented. The proposed
method first applies maxout units into the convolutional neural networks (CNNs) to
generate a compact representation for eachmodality and then fuses the discriminative
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Fig. 10.5 Example of
periocular region
surrounding the eye

features of two modalities through a weighted concatenation. The parameters of
convolutional filters and fusion weights were simultaneously learned to optimize the
joint representation of iris and periocular biometrics. Experiments were conducted
on CASIA-mobileV 1 dataset. In [16], Eidinger et al. studied periocular biometrics
in a mobile environment. To facilitate this, discrete cosine transform (DCT) based
features were extracted from the periocular region and were used to train and test a
Gaussian mixture model.

10.3.3 Material Attributes

10.3.3.1 Eyeglasses

Eyeglasses belong to the sub-category of accessories. Patel et al. [14] outlined vari-
ous approaches that use eyeglasses as a soft-biometric trait for fusion with primary
biometric trait and continuous user authentication. A study in [9] proposed two
schemes for prescription eyeglasses detection. The first non-learning-based scheme
uses Viola–Jones for ocular region of interest (ROI) detection. This is followed by
eyeglasses detection, yielding an overall accuracy of 97.9% for VISOB datasets.
The second scheme is the learning-based scheme consisting of three main steps (a)
ROI detection, (b) fusion of local binary pattern (LBP) and histogram of gradients
(HOG) features, and (c) applying classifiers such as support vector machine (SVM),
multilayer perceptron (MLP), and linear discriminant analysis (LDA), and eventu-
ally combining the output of these classifiers. The best overall accuracy of 100% on
VISOB dataset was obtained.

10.3.3.2 Clothing Information

Clothing information has been studied extensively in person re-identification for
multi-camera surveillance systems. The advantages of using clothing information for
mobile user re-authentication is that clothing ROI is a much larger target compared
to the face and eyes, and thus, it can be acquired from the front-facing camera, while
a user is naturally interacting with the target application with no explicit cooperation
(except an initial consent to allow the method). Further, it is inherently revocable
and unlike other soft biometrics, the information stored in the template generally
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does not compromise user’s privacy. Nguyen et al. in [17] investigated the use of
clothing information as soft biometrics for short-term mobile user re-authentication.
The authors evaluated the feature-level fusion of textural descriptors and deep fea-
tures extracted using VGGNet in combination with support vector machine (SVM)
classifier.

It should be noted that though this method is neither applicable to scenarios where
people wear uniform clothing nor when the device camera is not in the general direc-
tion of the user’s torso. The latter is indeed a benefit since re-authentication should
not happen when the user is not naturally interacting with the app that requested the
service.

10.3.4 Combination of Demographic, Physical and Material
Attributes

Studies in [15, 33] used a combination of gender, age, face shape, hair color, skin
color, and the presence of eyeglasses for continuous mobile user authentication us-
ing hand-crafted and deep feature representation, respectively. The binary attribute
classifiers were trained on each of the soft-biometric attributes using PubFig dataset.
The learned classifiers were then applied to the image of the current user of a mobile
device to extract the attributes, and then, the authentication was done by directly
comparing the difference between the acquired attributes and the enrolled attributes
of the user. Experimental investigation onMOBIO dataset suggests EER of 0.19%on
the fusion of those aforementioned demographic, physical, and material attributes.

10.3.5 Behavioral Attributes

Apart from demographics, physical and material attributes, behavioral attributes can
also be extracted from selfie images. There is growing research which aims at un-
derstanding cultural and behavioral patterns using selfie images along with the psy-
chological characteristics of the individuals in selfie images. Musil et al. [34] used
the tilt of the head, the side of the face exhibited, mood, and head position to study
personality characteristics. The phenomenon of the selfie was explored from three
different perspectives:

• Selfie as a picture, with the main focus on the visual elements of the picture, their
positions, and their relationships. A total of 165 students from a range of fields of
study submitted selfies which were coded by three independent raters. The factors
considered for rating were background brightness, environmental contexts, tilt of
the body, tilt of the head, part of the face, eye contact, frame of the picture, head
position in the image, mood, social distance of the subject from the camera, camera
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Fig. 10.6 Examples of male
and female selfies in Fiji,
with horizontal, vertical, and
diagonal lines indicated and
additional lines for the
face-ism calculation (a/b)
[34]

position itself, and face-ism defined as the ratio of head length by distance from
the top of the head to the lowest part of the body in the photograph.
The modal selfie from the samples was found to be in a vertical frame, taken inside
a room (context), with the body and head not tilted, and face centrally exhibited.
The head was in the central to the central upper position, and the camera was
surprisingly in the left down or left center position with the users posing at a
close personal distance with eye contact and positive mood. Apart from these
dimensions, male and female selfies differed especially in the categories tilt of the
head, tilt of the face, head position, and mood as shown in Fig. 10.6.

• Selfie as a reflection, where distinct cues related to the personality characteristics
of the individual in the selfie were explored and selfie as an impression, where the
interpretation of the image in the context of the impression created in others was
studied. While no significant relations between the coding cues and psychological
constructs (e.g., Big Five personality traits narcissism and femininity–masculinity)
were found, entitlement was the only construct that had a significant correlation
with the face-ism index.

In the project of Phototrails [35], Hochman and Manovich analyzed 2.3 million
Instagram photographs shared by hundreds of thousands of people in 13 global cities
to study social, cultural, and political insights about people’s activities. In SelfiCity
[36] project, smile scores, and extremeposes based onhead-tilt angleswere compared
across various cultures, genders, and ages in five major cities of the world.

It is interesting to note that while there has been a lot of research lately on finding
interesting patterns in subgroups using selfie images, and psychological traits in a
particular selfie at a specific instance in time, behavioral characteristics of a given
individual over time are still an unexplored territory. As online social media continue
to capture selfie images of individuals across time, extraction of behavioral attributes
of an individual as a soft biometrics remains an interesting direction of research.
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10.4 Conclusion

In this chapter, we reviewed existing methods for soft-biometric attribute extraction
from selfie images acquired from mobile devices. The methods can be categorized
into those extracting demographic, physical, material, and arguably, behavioral at-
tributes from selfie images. We also explored the reasons that favor soft biometrics
over primary biometric traits, particularly in the context of mobile devices. These
soft-biometric attributes are either used in combination with the primary biometric
traits such as the face or ocular region for performance enhancement or continuous
user authentication.

As devices around us grow in all forms and factors, biometric authentication
is likely to become the norm. This would also bring in multiuser interaction with
multiple devices at a given time, instead of a one-to-one interaction which exists
today. Soft biometrics would then not only help track authenticated users but would
also enhance authentication with various user attributes discussed in this chapter.
Depending on a particular scenario and computational cost on a device at a given
time, a future system should be able to swiftly switch back and forth between primary
biometric authentication (expensive operations which include presentation attack
detection) and soft-biometric authentication.
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Chapter 11
Sex-classification from Cellphones
Periocular Iris Images

Juan Tapia, Claudia Arellano and Ignacio Viedma

Abstract Selfie soft biometrics has great potential for various applications ranging
from marketing, security, and online banking. However, it faces many challenges
since there is limited control in data acquisition conditions. This chapter presents a
super-resolution convolutional neural networks (SRCNNs) approach that increases
the resolution of low-quality periocular iris images cropped from selfie images of
subject’s faces. This work shows that increasing image resolution (2× and 3×) can
improve the sex-classification rate when using a random forest classifier. The best
sex-classification rate was 90.15% for the right and 87.15% for the left eye. This was
achieved when images were upscaled from 150 × 150 to 450 × 450 pixels. These
results compare well with the state of the art and show that when improving image
resolutionwith the SRCNN the sex-classification rate increases.Additionally, a novel
selfie database captured from 150 subjects with an iPhone X was created (available
upon request).

11.1 Introduction

Sex-classification from images has become a hot topic for researchers in recent years
since it can be applied to several fields such as security,marketing, demographic stud-
ies, among others. Themost popular methods for sex-classification are based on face,
fingerprint, and iris images. Iris-based sex-classification methods are usually based
on near infra-red (NIR) lighting and sensors. This has limited its use since it requires
controlled environments and specific sensors. The possibility of using color images
to perform iris biometrics has only recently been reported in the literature [1–4].
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Fig. 11.1 Representation of
different conditions to
capture the selfie images.
Left: Straight arms. Middle:
Half-Straight-arm. Right:
Straight arm upper position

These images have traditionally been deemed less suitable for classical iris process-
ing algorithms due to the texture of dark-colored irises not being easily discernible
in the visible spectrum.

In order to overcome this limitation, the inclusion of periocular information has
been studied and shown to be one of the most distinctive regions of the face. This
has allowed it to gain attention as an independent method for sex-classification or
as a complement to face and iris modalities under non-ideal conditions. This region
can be acquired largely relaxing the acquisition conditions, in contrast to the more
carefully controlled conditions usually needed in NIR iris only systems.

Results to date have not just shown the feasibility for sex-classification using VIS
periocular iris images but have also reported the feasibility of acquiring other soft
biometric information such as; for instance: ethnicity, age, or emotion [5].

In this work, we proposed a method to classify sex from cellphone (selfie) VIS pe-
riocular images. This is a challenging task since there is limited control of the quality
of the images taken, since selfies can be captured fromdifferent distances, light condi-
tions, and resolutions (see Fig. 11.1). Cellphones and mobile devices in general have
been widely used for communication, accessing social media, and also for sensitive
tasks such as online banking. The use of soft biometrics such as sex-classification in
cellphones may be useful for several applications. Real-time electronic marketing,
for instance, may benefit from sex-classification by allowing web pages and Apps to
offer products according to the person’s sex. Data collection tasks may also benefit
from discriminating target markets according to sex. Applications in security, on the
other hand, may be highly improved by using sex-classification information. It may
allow for the protection of users in tasks such as online banking, mobile payment,
and sensitive data protection.

Previous work addressing biometric recognition on cellphones includes the use
of additional accessories and products specially developed to facilitate this task. An
example of such products is Aoptix Stratus,1 a wrap around sleeve that facilitates
NIR iris recognition on the iPhone.

However, these products imply additional cost and only work for specific models
of cellphone (iPhone). Therefore, it is important to study a reliable and user-friendly
soft biometrics recognition system for all cellphone devices. Furthermore, as biomet-
rics increasingly becomes more widely used, the issue of interoperability is raised

1http://www.ngtel-group.com/files/stratusmxds.pdf.

http://www.ngtel-group.com/files/stratusmxds.pdf
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Fig. 11.2 Block diagram of the proposed method. Top: The traditional sex-classification approach.
Bottom: The proposed sex classification approach in order to improve the quality of the small
images that comes from selfie images

and the exchange of information between devices becomes an important topic of
research to validate biometric results, since they should be indifferent to the sensor
used to acquire the images [6, 7].

Little work has been reported using periocular VIS cellphone images [8]. They
mainly use images that are cropped from selfies. In this context, the resulting perioc-
ular iris image has low-quality resolution leading to weak sex-classification results.
In this work, a convolutional neural network-super-resolution approach based on [9]
was proposed to limit this weakness as it allows the creation of a higher quality ver-
sion of the same image (see Fig. 11.2). The resulting high-resolution image is then
used as input for a random forest algorithm that performs the sex-classification.

This approach is novel as there has not been previous attempts to classify sex from
periocular iris cellphone images using super-resolution techniques for increasing the
size of the low-quality images that come through selfies.

11.1.1 Sex-Classification from Periocular VIS Images: State
of the Art

Sex-classification from periocular VIS images has been reported multiple times in
the literature [10–13]. Alonso-Fernandez et al. [2] reviewed the most commonly
used techniques for sex-classification using periocular images. They also provided
a comprehensive framework covering the most relevant issues in periocular images
analysis. They presented algorithms for detecting and segmenting the periocular
region, the existing databases, a comparison with face and iris modalities and the
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identification of the most distinctive regions of the periocular area among other top-
ics. This work gives a comprehensive coverage of the existing literature on soft
biometrics analysis from periocular images. A more recent review of periocular iris
biometrics from the visible spectrum was made by Rattani et al. [14, 15]. They ad-
dressed the subject in terms of computational image enhancement, feature extraction,
classification schemes, and designed hardware-based acquisition setups.

Castrillon-Santana et al. [16] also proposed a sex-classification system that works
for periocular images. Theyused a fusionof local descriptors to increase classification
performance. They have also shown that the fusion of periocular and facial sex-
classification reduces classification error. Experiments were performed on a large
face database acquired in the wild where the periocular area was cropped from the
face image after normalizing it with respect to scale and rotation.

Kumari et al. [17] presented a novel approach for extracting global features from
the periocular region of poor-quality grayscale images. In their approach, global sex
features were extracted using independent component analysis and then evaluated
using conventional neural network techniques. All the experiments were performed
on periocular images cropped from the FERET face database [18].

Tapia et al. [19] trained a small convolutional neural network for both left and
right eyes. They studied the effect of merging those models and compared the results
against the model obtained by training a CNN over fused left–right eye images. They
showed that the network benefits from this model merging approach, becomingmore
robust toward occlusion and low-resolution degradation. This method outperforms
the results obtained when using a single CNN model for the left and right set of
images individually.

Previous work addressing sex-classification is summarized in Table11.1.
Several soft-biometric approaches using periocular iris images captured from

mobile devices such as cellphones are presented as follows. Zhang et al. [20]
analyzed the quality of iris images on mobile devices. They showed that images are
significantly degraded due to hardware limitations and the less-constrained capture
environment. The identification rate using traditional algorithms is reduced when
using these low-quality images. To enhance the performance of iris identification
from mobile devices, they developed a deep feature fusion network that exploits
complementary information from the iris and periocular regions. To promote iris
recognition research on mobile devices under NIR illumination, they released the
CASIA- Iris-Mobile-V1.0 database.

Rattani et al [8] proposed a convolutional neural network (CNN) architecture for
the task of age classification. They evaluated the proposed CNNmodel on the ocular
crops of the recent large-scale Adience benchmark for sex and age classification cap-
tured using smartphones. The obtained results establish a baseline for deep learning
approaches for age classification from ocular images captured by smartphones.

Raghavendra et al. [21] demonstrated a new feature extraction method based
on deep sparse filtering to obtain robust features for unconstrained iris images. To
evaluate the proposed segmentation and feature extraction method, they employed
an iris image database (VSSIRIS). This database was acquired using two different
smartphones—iPhone 5S and Nokia Lumia 1020 under mixed illumination with un-
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Table 11.1 Summary of sex-classification methods using images from eyes

Paper I/P Source No. of images No. of
subjects

Type Acc (%).

Thomas et al. [22] I Iris 16,469 N/A NIR 75.00

Lagree et al. [23] I Iris 600 300 NIR 62.17

Bansal et al. [24] I Iris 400 200 NIR 83.60

Juan E.Tapia et al. [25] I Iris 1500 1500 NIR 91.00

Costa-Abreu et al. [26] I Iris 1600 200 NIR 89.74

Tapia et al. [27] I Iris 3000 1500 NIR 89.00

Bobeldyk et al. [28] I / P Iris 3314 1083 NIR 85.70 (P)
65.70 (I)

Merkow et al. [29] P Faces 936 936 VIS 80.00

Chen et al. [30] P Faces 2006 1003 NIR/Thermal 93.59

Castrillon et al. [16] P Faces 3000 1500 VIS 92.46

Kuehlkamp et al. [31] I Iris 3000 1500 NIR 66.00

Rattani et al. [8] P Faces 572 200 VIS 91.60

Tapia et al. [13] I Iris 10,000 unlabel
3000 labeled

–
1500

NIR 77.79
83.00

Tapia et al. [19] P Iris 19,000 1500 NIR 87.26

I Iris images, P periocular images, L left and R right, Acc Accuracy

constrained conditions in the visible spectrum. The biometric performance is bench-
marked based on the equal error rate (EER) obtained from various state-of-the-art
methods and a proposed feature extraction scheme.

11.1.2 Challenges on VIS Cellphone Periocular Images

Selfie biometrics is a new topic only sparsely reported in the literature [15]. Some
of the aspects that make sex-classification from selfie images a challenging task are
summarized as follows.

Cellphone sensors

The biometrics field is gradually becoming more and more part of daily life thanks
to advances in sensor technology for capturing biometric data. More companies are
producing and improving sensors for capturing periocular data [32].

Most cameras are designed for RGB and their quality can suffer if they sense light
in the IR part of the spectrum. IR blocking filters (commonly known as hot mirrors)
are used in addition to Bayer patterns to remove any residual IR. This makes RGB
sensors perform poorly when acquiring iris images. Specially when it comes to dark
irises.

Due to space, power and heat dissipation limitations, camera sensors on mobile
devices are much smaller than traditional iris sensors and the NIR light intensity



232 J. Tapia et al.

is much weaker than that of traditional iris imaging devices. Therefore, the image
noise on mobile devices is intensive, which reduces the sharpness and contrast of iris
texture.

Camera sensor size and focal length are small on mobile devices. As a result
images of the iris are often less than 80 pixels in radius, which does not satisfy the
requirement described in the international standard ISO/IEC 29794-6.2015 which
restricts the iris pupil size to 120 pixels across iris diameters. Moreover, iris radius
decreases rapidly as stand-off distance increases. The diameter of the iris decreases
from 200 pixels to 135 pixels as the stand-off distance increases by only 10cm.
Although the iris radius in images captured at a distance is usually small, variation
with distance is not so apparent because of long focal lengths.

Interoperability across sensors

Several studies have investigated the interoperability of both face and fingerprint
sensors.Additionally, there havebeen reports on sensor safety, illumination, and ease-
of-use for iris recognition systems. As of writing, no studies have been conducted
to investigate the interoperability of cellphone cameras from various manufacturers
using periocular information for sex-classification algorithms. In order to function
as a valid sex-classification system, texture sex patterns must prevail independently
of the hardware used. The issue of interoperability among cellphones is an important
topic in large-scale and long-term applications of iris biometric systems [6, 7, 32].

Non-controlled acquisition environment

In non-constrained image capture settings such as the selfie, it is not always possible
to capture iris images with enough quality for reliable recognition under visible
light. Periocular iris imaging from cross-sensors allows backward compatibility with
existing databases and devices to be maintained while at the same time meet the
demand for robust sex-classification capability. The use of the full periocular image
helps overcome the limitations of just using iris information, improving classification
rates [3, 4, 17].

Periocular cellphone images for biometrics applications are mainly coming from
selfie face images. Traditionally, people capture selfie images in multiple places
and backgrounds, using selfie sticks, alone or with others. This translates to a high
variability of images, in terms of size, light conditions and face pose in the image.
To classify sex from a selfie, the periocular iris region from left, right, or both eyes
needs to be cropped. Therefore, resulting periocular images usually have very low
resolution.

An additional limitation for cellphones is size reduction when images are shared
over the Internet. This may affect the accuracy of sex-classification. For example,
the iPhone X has a 7 MB selfie frontal camera. But images may be sent over the
Internet using four size options: Small (60 Kb), Medium (144 Kb), BIG(684 Kb)
and real-size (2 MB).

In this work, a super-resolution CNN algorithm is proposed. This algorithm
increases the resolution of images captured using cellphones allowing better sex-
classification rates. See Fig. 11.2 (Fig. 11.3).
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Fig. 11.3 Example of selfie images captured from iPhone X with three different distances. Left:
1.0 mts (Straight arms). Middle: 60cm (Middle straight arms). Right: 10cm. (Arms close to the
face). Dot squares show the periocular images. All images have the same resolution 2320 × 3088

11.2 Proposed Method for Sex-Classification

In this section, a method for achieving sex-classification from cellphone periocular
images is described. The pipeline of this work is shown at the bottom of Fig. 11.2.
In Sect. 11.2.1, the data super-resolution convolutional neural network algorithm
used for resizing the images in order to increase their resolution is presented. The
sex-classifier used afterward is a random forest algorithm which is described in
Sect. 11.2.2.

11.2.1 Super-resolution Convolutional Neural Networks

Single-image super-resolution algorithms can be categorized into four types: pre-
diction models, edge-based methods, image statistical methods and patch-based (or
example-based) methods. These methods have been thoroughly investigated and
evaluated in [33, 34].

In this chapter, a patch-based model to improve resolution of low quality images
cropped from selfies is used. The super-resolution using deep learning convolutional
neural networks (SRCNNs) algorithm proposed by Dong et al. [9] was implemented.
The network directly learns an end-to-endmapping between low- and high-resolution
images, with little pre-/post-processing beyond optimization.

The main advantage and most significant attributes of this method are as follows:

1. SRCNNs are fully convolutional, which is not to be confused with fully-
connected.

2. An image of any size (provided the width and height will tile) may be input into
the algorithm making it very fast in comparison with traditional approaches.
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Fig. 11.4 Example of feature maps of CONV1 and CONV2 layers

3. It trains for filters, not for accuracy (see Fig. 11.4).
4. They do not require solving an optimization problem on usage. After the SRCNN

algorithm has learned a set of filters, a simple forward pass can be applied to
obtain the super resolution output image. A loss function on a per-image basis
does not have to be optimized to obtain the output.

5. SRCNNs are entirely an end-to-end algorithm. The output is a higher-resolution
version of the input image. There are no intermediate steps. Once training is
complete, the algorithm is ready to perform super-resolution on any input image.

The goal while implementing a SRCNNs algorithm is to learn a set of filters that
allows low-resolution inputs to be mapped to a higher resolution output. Two sets of
image patches were created. One of them is a low-resolution patch that is used as
the input to the network. And the second one a high-resolution patch that will be the
target for the network to predict/reconstruct. The SRCNN algorithm will learn how
to reconstruct high-resolution patches from low-resolution input. Figure11.4 shows
filter examples.

11.2.2 Random Forest Classifier

To sex-classify (selfie) periocular images coming fromdifferent sensors (cellphones),
a random forest classifier (RF) was used. RF algorithm requires a single tuning
parameter (Number of trees) making it simpler to use than SVM or neural network
algorithms. Furthermore, RF does not require a large amount of data for training like
in convolutional neural network algorithm.

RF consists of a number of decision trees. Every node in the decision tree has a
condition on a single feature, and it is designed to split the dataset into two. The data
with similar response values end up in the same set. The measure for the (locally)
optimal condition is called impurity. For classification, the most commonly used
impurity measures are the Gini impurity (GDI), the Two Deviance Criterion (TDC)
and the Twoing Rule (TR). The Gini’s Diversity Index (GDI) can be expressed as
follows:

Gini_index = 1 −
∑

i=1

= p2(i) (11.1)
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where, the sum is over the classes i at the node, and p(i) is the observed fraction of
classes with class i that reach the node). A node with just one class (a pure node)
has Gini index 0; otherwise, the Gini index is positive.

The expression for the deviance of a node using the Two Deviance Criterion
(TDC) is defined as follows:

T DC_index = −
∑

i=1

= p(i)logp(i) (11.2)

The TR, on the other hand, can be expressed as:

T R_index = P(L)P(R)(
∑

| L(i) − R(i) |)2 (11.3)

where P(L) and P(R) are the fractions of observations that split to the left and
right of the tree, respectively. If the result of the purity expression is large, the split
makes each child node purer. Similarly, if the expression is small, the split will make
each child node more similar to each other, and hence similar to the parent node.
Therefore, in this case, the split does not increase the node purity.

For regression trees, on the other hand, the impurity measure commonly used is
the variance. When a tree is trained, the impact of each feature on the impurity of
the node can be computed. This allows the features to be ranked according to the
impurity measure.

11.3 Experiments and Results

This section describes the experiments performed in order to evaluate sex-classi-
fication from periocular VIS images. The databases used for the experiments are
first introduced in Sect. 11.3.1. Additionally, a novel hand-made periocular iris im-
age database captured from cellphones (INACAP Database) is presented (available
upon request). Pre-processing and data-augmentation steps used for improving per-
formance of the experiments are described in Sect. 11.3.2. Section11.3.3 describes
the process followed to determine the best parameters for the implementation of
the SRCNN algorithm. Finally, in Sect. 11.3.4, the experimental setup and results
obtained are shown.

11.3.1 Databases

One of the key problems for classifying soft-biometric features such as sex are
the small quantity of sex-labeled images. Most databases available were collected
for iris recognition applications. They do not, however, usually have soft-biometric
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information such as sex, age, or ethnicity. In other cases, although this information
may have been collected, it is not publicly available since it is considered private
information. If only selfie databases were considered, the lack of soft-biometric
information is even worse. Most data available on the Internet are unlabeled images.
The small amount of sex-labeled selfie images does not allow the training of powerful
classifiers such as convolutional neural network and deep learning.

The existing databases used in thiswork and the novel INACAPdatabase collected
for this work are introduced as follows.

11.3.1.1 Existing Databases Used for the Experiments

The following databases were used: CSIP [35], MICHE [36], MODBIO [3]. The
CSIP database was acquired over cross-sensor setups and varying acquisition sce-
narios, mimicking the real conditions faced in mobile applications. It considered the
heterogeneity of setups that cellphone sensor/lens can deliver (A total of 10 different
setups). Four different devices (Sony Ericsson Xperia Arc S, iPhone 4,THL W200
and Huawei Ideos X3 (U8510)) were used and the images were captured at multiple
sites. Where artificial, natural, and mixed illumination conditions were used. Some
of the images were captured using frontal/rear cameras and LED flash.

The MICHE Database captured images using smartphones and tablets such as
the iPhone5 (IP5),Galaxy Samsung IV (GS4), and Galaxy Tablet II (GT2).

The MODBIO database comprises the biometric data from 152 volunteers. Each
person provided samples of face, iris, and voice. There are 16 images for each per-
son. The equipment used for acquisition was a portable handheld device, ASUS
transformer Pad TF 300T, with the Android operating system. The device has two
cameras—one front and one back. The author used the back camera version TF300T-
000128, with 8 MB resolution and autofocus. The sex distribution was 29% females
and 71% males. Each image has a size of 640 × 480 pixels.

11.3.1.2 Novel Home-made INACAP-database

This database was collected by students from Universidad Andres Bello (UNAB)
and Universidad Tecnologica de Chile - INACAP. This database contains 150 selfie
images captured in three different distances according to the position from where
the image was taken. We identify three possibles positions and classify the database
accordingly:

Set 1: 150 selfies taken while the arm is extended up to front (Fig. 11.1 Left)
Set 2: 150 selfies taken while the arm is bent toward the face (Fig. 11.1 Middle)
Set 3: 150 selfies taken while the arm stretched up from the head (Fig. 11.1 Right)
This is a person disjoint-dataset with 75 female and 75 male selfie images.

Table11.2 shows a summary of the databases used in this chapter.
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Table 11.2 VW databases

Dataset Resolution No.
Images

No.
Subjects

F M Sensor(s)

CSIP(*) [35] var. res. 2004 50 9 41 Xperia ArcS, iPhone
4, Th.I W200, Hua
U8510

MOBBIO [3] 250×200 800 100 29 71 Cellphones

MICHE [36] 1000×776 3196 92 26 76 iPhone 5

Home-made 2320×3088 450 150 75 75 iPhone X

F represents the number of Female images and M the number of Male images; * only left images
available

11.3.2 Data Pre-processing and Augmentation

All the images from the databases used present different regions of interest as perioc-
ular images. OpenCV 2.10 was used to detect the periocular region and to normalize
it by size. An eye detector algorithm was employed to automatically detect and crop
the left and right periocular regions. All images were re-sized to 150 × 150 pixels.
In those cases where the eye detector failed to select the periocular region, the image
was discarded.

To increase the number of images available from the left and the right eye, an image
generator function was used. The partition ratio for training, testing, and validation
sets was preserved. The dataset was increased from 6000 to 18,000 images for each
eye (36,000 images in total) using the following geometric transformations: rotation
(in ranges of 10◦), width and height shifting (in ranges of 0.2), and zoom range of
15%. All changes were made using the Nearest fill mode, meaning the images were
taken from the corners to apply the transformation. The mirroring process was not
applied since this may transform the left eye into a right eye. Care was taken not to
mix training and testing examples. See Fig. 11.5.

Fig. 11.5 Data-
augmentation examples used
in order to increase the
number of images available
to train the classifier
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11.3.3 Hyper-parameters Selection

A SRCNNs architecture that consists of only three CONV - RELU layers with no
zero-padding was proposed. The first CONV layer learns 64 filters, each of which is
9 × 9. This volume is fed into a second CONV layer where 32 filters of 1 × 1 were
used to reduce dimensionality and learn local features. The final CONV layer learns
a total of depth channels (which will be 3 for RGB images), each of which are 5 × 5.
Finally, in order to measure the error rate, a mean-squared loss (MSE) rather than
binary/categorical cross-entropy was used.

The rectifier activation function ReLU controls the nonlinearity of individual
neurons and when to activate them. There are several activation functions available.
In this work, the suite of activation functions available on the Keras framework was
evaluated. However, the best results for these CNNs were achieved where ReLU and
Softmax activation functions were used.

In order to find the best implementation for the SRCNNs, the parameters of the
CNN such as batch size, epoch, learning rate, among others need to be determined.

Batch size: Convolutional neural networks are in general sensitive to batch size,
which is the number of patterns shown to the network before the weights are updated.
The batch size has an impact on training time and memory constraint. A set of
different batch sizes from n = 16 to n = 512 in steps of 2n were evaluated by the
SRCNN algorithm.

Epochs: The number of epochs is the number of times that the entire training dataset
is shown to the network during training. The number of epochs was tested from 10
up to 100 in steps of 10.

Learning Rate and momentum: The learning rate (LR) controls how much the
weights are updated at the end of each batch. The momentum, on the other hand,
controls how much the previous update is allowed to influence the current weight
update. A small set of standard learning rates from the range 10e − 1 to 10e − 5 and
momentum values ranging from 0.1 to 0.9 in steps of 0.1 were tried

The selection of the best hyper-parameters of our modified implementation of SR-
CNN was found using a grid search fashion. The best classification rate was reached
with a batch size of 16, epoch number equal to: 50, LR of 1e − 5 and momentum
equal to 0.9.

According to the size of image used, a stride value equal to 15 was proposed. The
patch size used was 25 × 25 pixels. Figure11.6 shows a example of input and output
images from SRCNN.

11.3.4 Experimental Setup and Results

According to the pipeline shown in Fig. 11.2, there are two key processes involved
to achieve sex-classification from periocular cellphone images. The super-resolution
approach to increase resolution of images and the classifier itself.
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Fig. 11.6 Top: Regular image cropped from face selfie image in three different scales and low-
quality images. Botton: Upscaling images generated from SRCNN in high-quality images

For the super-resolution process (SRCNNn), 3000 images taken from existing
databases (CSIP, MICHE, MODBIO) were used as input. The algorithm generated
100,000 patches of 25 × 25 pixels. This process allows the filters needed to achieve
super-resolution to be estimated. As result, the cropped selfie was transformed from
its original dimension of 150 × 150 pixels to high-resolution images of 300 × 300
(2×) and 450 × 450 (3×) pixels (see Fig. 11.6).

The SRCNN algorithm was implemented using Keras and Theano (as the back
end), both open-source software libraries for deep learning. The training process was
performed on an Intel i7 3.00GHz processor and Nvidia P800 GPU.

For the sex-classification process, the random forest algorithm was used for all
experiments using the three purity measures described in the previous section (Gini
(GDI), Two Deviance Criterion (TDC) and the Twoing Rule (TR)). The algorithm
was tested using several numbers from the tree (from 100 to 1000). For training,
the databases were split into left- and right-eye images. For each eye, the existing
databases were used (CSIP, MICHE,MODBIO ) with a total of 6000 images plus the
augmented data described in Sect. 11.3.2. In total, 18, 000 periocular images for each
eye were used (Left and Right). For testing, the INACAP database which contains
450 images was used.

Three experiments were performed to evaluate the sex-classification rate. The first
experiment (Experiment 1) was used as a baseline for comparison where the inputs
are the original 150 × 150 pixel images.

Experiment 2 estimated the sex-classification using the 2X upscaled images from
SRCNNs meaning the 300 × 300 pixel images.

Experiment 3 used the 3X upscaled images as input (450 × 450 pixel images).
The rate of sex-classification obtained for all experiments is shown in Table11.3.

Results for the random forest classifier using the three impurity measure and the
following number of trees: 100, 300, 500, and 1000 are also reported. The best
results for the baseline experiment (Experiment 1) were 68.70% and 71.00% for
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Table 11.3 Sex-classification results with random forest classifier using a CSIP, MICHE, and
MODBIO dataset for trained and home-made dataset as validation dataset

Model Tree Traditional SRCNN-X2 SRCNN-X3

150 × 150 300 × 300 450 × 450

Left Right Left Right Left Right

(%) (%) (%) (%) (%) (%)

RF-GDI 100 60.65 62.60 69.35 72.15 77.90 78.90

300 61.35 63.45 68.70 70.25 78.90 78.45

500 62.45 64.45 70.30 73.40 77.30 79.15

1000 66.70 68.70 74.45 75.60 79.90 80.25

RF-TR 100 62.25 64.70 75.20 76.15 83.45 83.45
300 63.35 66.50 71.20 75.80 85.15 84.30
500 64.45 68.70 74.45 76.90 86.30 88.90

1000 68.70 71.00 77.50 77.15 86.70 89.45

RF-TDC 100 63.35 64.50 74.00 74.50 78.90 80.35

300 64.15 65.90 73.20 75.90 80.15 84.15

500 64.56 67.70 75.50 76.80 84.05 89.25
1000 68.70 70.15 76.20 76.50 87.15 90.15

SRCNN-X2 represents of result with two times upscaling. SRCNN-X3 represents of result with
three times upscaling

the left and right periocular images, respectively. Results improved as the image
resolution increased. The best sex-classification rate (90.15% for the right eye and
87.15%) was achieved when 450 × 450 pixel images were used (SRCNN-3) and the
RF algorithm was implemented using the TDCmetric. These results are competitive
with the state of the art and shows thatwhen improving image resolutionwithSRCNN
the sex-classification rate from periocular selfie images also improved.

11.4 Conclusion

Selfie biometrics is a novel research topic that has great potential for multiple ap-
plications ranging from marketing, security, and online banking. However, it faces
numerous challenges to its use as there is only limited control over data acquisition
conditions compared to traditional iris recognition systems, where the subjects are
placed in specific poses in relation to the camera in order to capture an effective
image. When using selfie images, we do not just deal with images taken from chal-
lenging environments, conditions, and settings but also with low resolution since
periocular image are mainly cropped from images of the entire face.

This chapter is preliminary work that demonstrates the feasibly of sex-classifica-
tion from cellphone (Selfie) periocular images. It has been shown that when us-
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ing super-resolution convolutional neural networks for improving the resolution of
periocular images taken from selfies, sex-classification rates can be improved.

In this work, a random forest classifier algorithm was used. However, in order
to move forward in this topic, it is necessary to create new sex-labeled databases
of periocular selfie images. This would allow the use of better classifiers such as
those based on deep learning. An additional contribution of this work, is a novel
hand-made database (INACAP) that contains 450 sex-labeled selfie images captured
with an iPhone X (Available upon request).
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Chapter 12
Active Authentication on Mobile Devices

Pramuditha Perera and Vishal M. Patel

Abstract In recent years, we have witnessed a significant growth in the use of
mobile devices such as smartphones and tablets. In this context, security and privacy
in mobile devices becomes vital as the loss of a mobile device could compromise
personal information of the user. To deal with this problem, Active Authentication
(AA) systems have been proposed in the literature where users are continuously
monitored after the initial access to the mobile device. In this chapter, we provide a
survey of recent face-based AA methods.

12.1 Introduction

Traditional methods for authenticating users on mobile devices are based on ex-
plicit authentication mechanisms such as passwords/ pin numbers or secret patterns.
Studies have shown that users often choose a simple, easily guessable password like
“12345,” “abc1234,” or even “password” to protect their data [1, 2]. As a result,
hackers could easily break into many accounts just by trying most commonly used
passwords. On the other hand, when a secret pattern is used to gain initial access
to the mobile device, the user would draw the same pattern multiple times on the
screen over the time. It has been shown that with special lighting and high-resolution
photograph, one can easily deduce the secret pattern (see Fig. 12.1) [3] using the oily
residues or smudges left on the screen.

Furthermore, recent studies have shown that about 34% or more users did not
use any form authentication mechanism on their devices [4–7]. In these studies,
inconvenience was cited to be one of the main reasons why users did not use any
authentication mechanism on their devices [6, 7]. Moreover, [7] demonstrated that
mobile device users considered unlock screens unnecessary in 24% of the situations
and they spent up to 9%of time they use their smartphone to deal with unlock screens.
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Fig. 12.1 Smudge attack
[3]. Secret pattern can be
determined with special
lighting and high-resolution
camera

Furthermore, as long as the mobile phone remains active, typical devices incorporate
no mechanisms to verify whether the user originally authenticated is still the user in
control of the device. Thus, unauthorized individuals could potentially obtain access
to personal information of the user if a password is compromised or if the user does
not exercise adequate vigilance after initial authentication on a device.

In order to overcome these issues, both biometrics and security research commu-
nities have developed techniques for continuous authentication on mobile devices.
These methods essentially make use of the physiological and behavioral biometrics
using the built-in sensors and accessories such as gyroscope, touchscreen, accelerom-
eter, orientation sensor, and pressure sensor to continuouslymonitor the user identity.
For instance, physiological biometrics such as face can be captured using the front-
facing camera of a mobile device and can be used to continuously authenticate a
mobile device user. On the other hand, sensors such as gyroscope, touchscreen, and
accelerometer can be used to measure behavioral biometric traits such as gait, touch
gestures, and hand movement transparently. Figure12.2 highlights some of the sen-
sors and accessories available in a modern mobile device. These sensors are capable
of providing raw data with high precision and accuracy. Therefore, they can be used
to monitor three-dimensional device movement, device positioning, and changes in
ambient environment near the device. Note that the terms continuous authentication,
Active Authentication [8], implicit authentication [9, 10], and transparent authenti-
cation [11] have been used interchangeably in the literature.

12.2 Common AA Approaches

Figure12.3 shows the typical setup of a biometrics-based mobile device continuous
authentication system [12]. Biometric modalities such as gait, face, keystroke, or
voice are measured by the sensors and accessories that are available in the mobile
device. Then, the biometric system determines whether these biometric traits cor-
respond to a legitimate user or not. If the features do correspond to the legitimate
user, the biometric system will continue to process new incoming data. However, if
the biometric system produces a negative response then the system will prompt the
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Fig. 12.2 Sensors and accessories available in a mobile device. Raw information collected by these
sensors can be used to continuously authenticate a mobile device user

Fig. 12.3 A biometrics-based mobile continuous authentication framework [12]

user to verify his or her identity by using a traditional explicit authentication method.
If the user is able to verify his identity, then he will be allowed to use the mobile
device. Otherwise, the device will be locked. In a practical continuous authentication
system, this entire process happens in real time.

A plethora of mobile continuous authentication methods have been proposed
in the literature. Screen-touch gestures are one of the earliest modalities proposed
for Active Authentication. Screen-touch gestures are basically the way users swipe
their fingers on the screen of mobile devices. They have been used to continuously
authenticate userswhile users performbasic operations on the phone [13–18]. In these
methods, a behavioral feature vector is extracted from the recorded screen-touch data
and a discriminative classifier is trained on these features for authentication. Touch
gestures along with the micro-movement of the device caused by user’s screen-touch
actions have also been used for authentication in [19]. Stylometry, GPS location,Web
browsing behavior, and application usage patterns were used in [20] for continuous
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authentication. Face-based continuous user authentication has also been proposed
in [21–24]. Gait as well as device movement patterns measured by the smartphone
accelerometer were used in [25, 26] for continuous authentication. Fusion of speech
and face was proposed in [21] while [27] proposed to fuse face images with the
inertial measurement unit data to continuously authenticate the users. A low-rank
representation-based method was proposed in [28] for fusing touch gestures with
faces for continuous authentication. A domain adaptation method was proposed in
[29] for dealing with data mismatch problem in continuous authentication. Some of
the other continuous authentication methods are based on Web browsing behavior
[30], behavior profiling [31], text-based [32, 33], and body prints [34].

12.3 Face-Based AA Methods

The face modality is one of the widely used biometric modalities in Active Authenti-
cation. Such systems typically consist of threemain stages. In the first stage, faces are
detected from the images or videos captured by the front-facing cameras of smart-
phones. Then, holistic or local features are extracted from the detected faces. Finally,
these features are passed on to a classifier for authentication. A number of different
methods have been proposed in the literature for detecting and recognizing faces on
mobile devices. In what follows, we provide a brief overview of recent face-based
AA methods that have been proposed recently in the literature [23, 35–41].

In [24], the feasibility of face and eye detection on mobile phones was evaluated
using AdaBoost cascade classifiers with Haar-like and LBP features as well as a skin
color-based detector. On aNokia N90mobile phone that has anARM9 220MHz pro-
cessor and a built-inmemory of 31MB, their work reported that theHaar +AdaBoost
method can detect faces in 0.5 s from 320× 240 images. This approach, however, is
not effective when wide variations in pose and illumination are present or the images
contain partial or clipped images. To deal with these issues, a deep convolutional
neural network (DCNN)-based method was recently developed in [42] for detecting
faces on mobile platforms. In this method, deep features are first extracted using the
first five layers of AlexNet [43]. Different-sized sliding windows are considered, to
account for faces of different sizes, and an SVM is trained for each window size to
detect faces of that particular size. Then, detections from all the SVMs are pooled
together and some candidates are suppressed based on overlap criteria. Finally, a
single bounding box is generated as the output by the detector. It was shown that
this detector is quite robust to illumination change and is able to detect partial or
extremely profile faces. A few sample positive detections from the UMDAA dataset
[22] are shown in Fig. 12.4. The DCNN-based detections are marked in red, while
the ground truth is in shown yellow. Another part-based method for detecting partial
and occluded faces on mobile devices was developed in [44]. This method is based
on detecting facial segments in the given frame and clustering them to obtain the
region that is most likely to be a face.
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Fig. 12.4 Examples of positive detections with pose variations and occlusion on the UMDAA
dataset. The detector’s output is in red, while ground truth is in yellow [42]

Several works in the literature have used face recognition-based algorithms to
perform Active Authentication. In [45], a AA method was proposed based on one-
class SVM. In their approach, faces are detected using the Viola–Jones detector
[46]. Histogram equalization is then applied on the detected images to normalize
the effect of illumination. Finally, two-dimensional Fourier transform features are
extracted from the normalized images and fed into one-class SVM for authentication.
In [24], a face and eye detection scheme has been introduced along with a LBP
feature-based face recognition method designed for mobile devices. It was shown
that their proposed continuous face authentication system can process about 2 frames
per second on a Nokia N90 mobile phone with an ARM9 processor with 220 MHz.
Average authentication rates of 82 and 96% for images of size 40× 40 and 80× 80,
respectively, were reported in [24]. In [22], a number of different face recognition
methods were evaluated on a dataset of 750 videos from 50 users collected over three
sessions with different illumination conditions.

12.3.1 Attribute-Based AA

Visual attributes are essentially labels that can be given to an image to describe
its appearance [47]. A facial attribute-based continuous authentication method was
recently proposed in [23, 38]. Figure12.5 gives an overview of this method. Given
a face image sensed by the front-facing camera, pre-trained attribute classifiers are
used to extract a 44-dimensional attribute feature. The binary attribute classifiers
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Fig. 12.5 Overview of the
attribute-based
authentication method
proposed in [23]

are trained using the PubFig dataset [47] and provide compact visual descriptions
of faces. The score is determined by comparing extracted attribute features with the
features corresponding to the enrolled user. These score values are essentially used
to continuously authenticate a mobile device user. Furthermore, it was shown that
the attribute-based method can be fused LBP features [24] to obtain an improved
performance.

This method was later extended in [39] where DCNNs were used to predict at-
tributes for AA. In particular, a multi-task, part-based DCNN architecture was pro-
posed for attribute detection. It was shown in [39] that this method can outperform
the previously presented attribute-based methods as well as baseline LBP method
for face-based mobile AA. Furthermore, effectiveness of this architecture was also
demonstrated in terms of speed and power consumption by deploying it on an actual
mobile device.

12.3.2 Extreme Value Analysis for Mobile AA

In principle, the primary goal of an authentication system is to ensure information
security through intruder prevention. In order to prevent intrusions, an authentication
mechanism should operate with a very low degree of false alarms. In [35], a special
emphasis was given to the AA systems at the low false alarm region (from 0.001 to
0.1) and a new performance enhancement mechanism in this region for unimodal
mobile AA systems was presented based on the statistical Extreme Value Theory
(EVT).

Figure12.6 gives an overview of this EVT-based AA system. A typical AA
system extracts features of a probe and compares them against the enrolled fea-
tures. In this system, distribution of the probability scores is also obtained in the
enrollment phase. Tail of the probability score distribution is modeled using the
EVT and is used together with the similarity score generated in the standard AA
system to enhance the performance of the standard system. It is interesting to note
that this EVT-based mechanism is independent of sensors and features used in the
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Fig. 12.6 Overview of the
EVT-based AA system.
Non-shaded blocks represent
typical components of an AA
system. Shaded components
are the additions for
performance enhancement
[35]

underline AA system. Therefore, any existing AA system can be extended by in-
corporating this performance enhancement scheme. Experiments were conducted
on three publicly available AA datasets, and it was shown that the new method can
improve performance of the existing face and touch gesture-based AA systems.

12.3.3 One-Class Classification

Due to unavailability of training samples from negative classes, AA can be viewed
as an one-class classification problem. To this end, a Single-class Minimax Proba-
bility Machine (1-MPM)-based solution called Dual Minimax Probability Machines
(DMPM) for AA applications was recently introduced in [48]. In contrast to 1-MPM,
this method has two notable differences.

(1) An additional hyper-plane is learned to separate training data from the origin by
taking into account maximum data covariance.

(2) The possibility of modeling the underline distribution of training data is consid-
ered as a collection of sub-distributions.

Intersection of negative half-spaces defined by the two learned hyper-planes is
considered to be the negative space during inference. The effectiveness of this mech-
anism was demonstrated by performing evaluations on three publicly available face-
based AA datasets. In particular, it was shown that the decision boundary found by
this method was indeed better than the decision boundary produced by 1-MPM. In
all datasets, DMPM method demonstrated an improvement of 4–6% compared to
1-MPM.

In another work [49], a new DCNN-based one-class classification algorithm
was recently introduced and was evaluated on AA application. Figure12.7 gives
an overview of the proposed CNN-based approach for one-class classification. The
overall network consists of a feature extractor network and a classifier network. The
feature extractor network essentially embeds the input target class images into a fea-
ture space. The extracted features are then appended with the pseudo-negative class
data and generated from a zero-centered Gaussian in the feature space. The appended
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Fig. 12.7 Block diagram of the DCNN-based one-class classification approach proposed in [49].
Here, μ̄ and σ are mean and standard deviation parameters of a Gaussian, respectively, and I is the
identity matrix

features are then fed into a classification network which is characterized by a fully
connected neural network. The classification network assigns a confidence score for
each feature representation. The output of the classification network is either 1 or
0. Here, 1 corresponds to the data sample belonging to the target class and 0 cor-
responds to the data sample belonging to the negative class. The entire network is
trained end-to-end using binary cross-entropy loss. Extensive experiments were con-
ducted, and it was demonstrated that this new DCNN-based one-class classification
method achieved significant improvements over the recent state-of-the-art methods
including one-class SVM, 1-MPM and support vector data description (SVDD) [49].

12.3.4 Quickest Intrusion Detection in Mobile AA

It is well known that a balance needs to be made between security and usability of
a biometrics-based AA system [5, 50, 51]. In order to strike this balance in an AA
scheme, following fundamental challenges should be factored.

1. Accuracy: How accurately does a mobile AA system detect an attacker or an
intruder? Due to limitations of representation and classification models on mobile
devices, behavioral and physiological biometrics-basedmethods do not provide good
accuracy in practice [12, 52]. The AA system will be of little use in terms of security
if it produces a high degree of false positives. On the other hand, a higher false
negative rate would severely degrade the usability of the technology. Many recent
approaches in the literature have attempted to address this factor by proposing better
features and classifiers [12].

2. Latency: How long does it take to detect an attacker? If an AA system takes
too long (e.g., 1–3min) to detect an intrusion, it would grant an intruder plenty of
time to extract sensitive information prior to the lock down. Hence, unless intruder
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Fig. 12.8 Problem of quick intrusion detection in face-based AA systems. (A–I) show the genuine
user with varying facial expressions. An intrusion occurs starting from (J). Active authentication
systems should be able to detect intrusions as quickly as possible without causing too many false
detections [41]

detection is sufficiently fast, the AA system would hold a little value in practice no
matter how high its detection accuracy is.

Consider a series of observations captured from a front-facing camera of
an Android device shown in Fig. 12.8. Frames (A–I) belong to the genuine user
of the device. From frame J onward, an attacker starts to operate the device. In this
scenario, frame J signifies a change point (i.e., an intrusion). The AA system should
be able to detect intrusions with aminimal delay while maintaining a low rate of false
detections. For instance, note the changes in genuine user’s images in frames (D-F)
due to camera orientation and facial expressions. While having a fast response, an
AA system ideally should not falsely interpret these variations as intrusions.

3. Efficiency: How much resource does the system use? By definition, mobile
AA systems are continuous processes that run as background applications. If they
consume considerable amount of resources, memory, and processing power, it could
slow down other applications and cause the battery to drain quickly. Despite the
improvements in mobile memory and processors, battery capacity remains to be
a constraint due to limitations in heat transfer and space [53]. Therefore, it can
be expected to be the bottleneck in terms of efficiency in years to come. If an AA
application causes battery to drain too quickly, then it is unrealistic to expect the users
to use AA technology as they would typically opt out from using such applications
[54]. Therefore, efficiency has a huge impact over the usability ofAAas a technology.
Recently, [38] studied the efficiency of a mobile AA system based on face biometric.
Experiments were conducted on a Google Nexus 5 device with 2 GB of RAM and a
quad-core 2.2 GHz CPU. It was shown that the normal usage of the device consumes
about 520 mW of power and the facial attribute-based AA framework running at
4 frames per second consumes about 160.8 mW additional power. It is needless to
say that nearly 30% increase in power consumption would take a toll on battery life.
A trivial solution for this problem would be to decrease the sampling rate of data
acquisition. However, the effects of such a measure on the detection performance
have not been studied in the literature.

Many existing AA systems attempt to improve the accuracy of the system by
proposing sophisticated features and classifiers. However, how fast an AA system
could detect an intruder has not been widely studied in the literature. Yet, it remains
to be an important feature of an AA system. In a recent paper [37, 41], authors
addressed the problem of quickly detecting intrusionswith lower false detection rates
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Fig. 12.9 An overview of the QCD-based AA method proposed in [41]

in mobile AA systems. They proposed Quickest Change Detection (QCD), which
is a well-studied problem in statistical signal processing and information theory,
for the purpose of intrusion detection in mobile AA systems. Figure12.9 gives an
overview of the proposed method. As opposed to a conventional AA system, this
system utilizes all past observations along with distributions of match and non-match
data of the genuine user to arrive at a decision. This proposedmethod does not require
a specific feature nor a specific classifier; therefor, it can be built upon any existing
AA system to enhance its performance. In particular, the introduced algorithms not
only reduced the number of observations taken, but also improved the performance
of the system in terms of latency and false detections. The validity of this result was
demonstrated using various AA datasets.

12.3.5 Multi-user AA

Multiple-user active authentication [36, 40], in contrast with single-user active au-
thentication, requires verification of identity of multiple subjects. Both traditional
verification- and identification-based solutions fail to address the specific challenges
presented in this problem. In a recent work [40], introduced Extremal Openset Rejec-
tion (EOR), a twofold mechanism with a sparse representation-based identification
step and a verification step for this purpose. In the verification step, concentration of
the sparsity vector and the overlap between matched and non-matched distributions
are considered for decision making. Furthermore, a semi-parametric model based on
EVT for modeling the distributions and an algorithm to estimate the parameters of
extreme value distributions were also introduced in [40].

The EORmethod essentially utilizesmatched and non-matched distribution infor-
mation on top of the identification criterion to make a better decision. It was shown
that this additional processing has a significant gain particularly when identification
criterion is poor (i.e., when a low number of users are enrolled). If a large number
of classes are present, the additional verification step does not introduce a signifi-
cant improvement. It was shown that EOR performs on par with the identification



12 Active Authentication on Mobile Devices 253

method in such scenarios. As a result, the EOR framework is particularly suited for
multiple-user authentication problems.

Effectiveness of this method was demonstrated using three publicly available
face-based mobile active authentication datasets. It was observed that verification-
based algorithms generally performed well when low number of users were enrolled.
On the one hand, identification-based algorithms required larger number of users to
obtain good performance. However, good performance of both of these cases was
confined to extremes with respect to number of users. On the other hand, the new
EOR method yielded superior performance consistently as the number of users was
varied. Hence, it was shown that EOR is suited for multiple AA in mobile devices
where the number of users may vary.

12.4 AA Datasets

Data collection is one of the biggest challenges in mobile AA research. Several
small-scale datasets are publicly available to the research community [12]. In par-
ticular, UMDAA-01 [22], MOBIO [21], and UMDAA-02 [55] are the three most
commonly used face-based AA datasets. Sample images from these datasets are
shown in Fig. 12.10. In what follows, we give a brief overview of these datasets.

The UMDAA-01 dataset [22] contains images captured using the front-facing
camera of a iPhone 5S mobile device of 50 different individuals captured across
three sessions with varying illumination conditions. Images of this dataset contain
pose variations, occlusions, partial clippings as well as natural facial expressions as
evident from the sample images shown in Fig. 12.10a.

The MOBIO dataset [21] contains videos of 152 subjects taken across two phases
where each phase consists of six sessions. Videos in this dataset are acquired using a
standard 2008MacBook laptop computer and a NOKIAN93i mobile phone. Sample
images from this dataset are shown in Fig. 12.10b.

The UMDAA-02 Dataset [55] is an unconstrained multimodal dataset where 18
sensor observationswere recorded across a two-month period using aNexus 5mobile

Fig. 12.10 Sample images from three face-based AA datasets. a UMDAA-01 [22], bMOBIO [21],
c UMDAA-02 [55]. Each column represents sample images obtained for the same user
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device. Unlike the earlier datasets, there exists a huge intra-class variation in this
dataset in terms of poses, partial faces, illumination as well as appearances of the
users as evident from the sample images shown in Fig. 12.10c.

12.5 Discussion

In this chapter, we provided a brief overview of recent advances in mobile-based
active authentication methods. In particular, a special emphasis was given to the
face-based methods. Continuous authentication on mobile devices promises to be an
active area of research especially as more and more sensors are being added to the
smartphone device and computation power of mobile devices has increased tremen-
dously. There are, however, several challenges to be overcome before successfully
designing a biometric-based continuous authentication system. Below, we list a few.

• A number of continuous authentication methods have been proposed in the litera-
ture that evaluate the performance of their proposedmethod on a variety of different
datasets using different performancemeasures. However, there is no clear standard
for evaluating the performance of different methods in the literature. Guidelines
on an acceptable benchmark are needed.

• As discussed earlier, one of the major challenges in mobile-based AA is the
datasets. Most mobile-based AA techniques discussed earlier have been evaluated
on small- and mid-sized datasets consisting of hundreds of samples. However, in
order to really see the significance and impact of various continuous authentication
schemes in terms of usability and security, they need to be evaluated on large-scale
datasets containing thousands and millions of samples.

• More usability and acceptability studies need to be conducted to really see the
significance of AA in practice.
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Chapter 13
Mobile User Re-authentication Using
Clothing Information

Hoang (Mark) Nguyen, Ajita Rattani and Reza Derakhshani

Abstract Biometric authentication has become a popular alternative to passwords
on mobile devices. However, most implementations do not incorporate any mecha-
nisms to ascertain whether the originally authenticated user is still in control of the
mobile device. Thus, the user has to re-scan for any subsequent device access, which
may lead to biometric scan fatigue. One solution to this problem is to re-authenticate
the user via ancillary surrogates of identity that are likely to be stable and unique
in the short term and easier to acquire compared to the primary biometric modality,
such as opportunistically captured clothing information. The aim of this paper is
to investigate such clothing information as a soft biometrics for short-term mobile
user re-authentication. To this aim, we propose a novel method for segmentation and
matching of clothing ROI from images captured via front-facing camera of mobile
devices, without explicitly requiring the face to be present. Experimental investi-
gations on a large-scale mobile dataset show error rates as low as 2.5% using this
method.

13.1 Introduction

Mobile devices are playing a significant role in daily life, not only for communications
but also for entertainment, e-commerce, and even remote health services. However,
mobile phones are misplaced, lost, and stolen more than other computing devices.
Therefore, efforts have been directed at the development of biometrically secure
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mobile access and transactions. The use of biometric technology in mobile devices
is referred to asmobile biometrics [9, 16, 17, 24]. Biometrics Research Group, Inc.1

has predicted that by 2020,mobile biometricswill transition from consumer adoption
phase to full maturity, enabling the technology to overtake existing authentication
technologies. By 2020, it is estimated that biometrics will be ubiquitous, installed
on 100 percent of mobile devices.

Thus, many commercial solutions as well as well as academic studies have been
focusing on mobile user authentication via strong primary biometric traits. In par-
ticular, modalities based on face [9, 16] and ocular region [14, 15, 17, 20] acquired
using selfie images are of interest given that they do not require any specialized
sensors.2 Fingerprint and near-infrared iris captured [4, 25] using dedicated sensors
installed in mobile devices have also been used for mobile user authentication.

However, most of these methods focus on entering the user into the authenticated
state via the primary biometric but provide no explicit or robust solution to keep the
user in that state. In other words, they have no mechanism to determine whether the
user authorized after the initial successful authentication is still the same person in
control of the device [10]. If the device locks up or logs out after the initial access,
the user has to frequently re-scan his or her biometrics using the primary modality
to regain access to the device and its services, each time requiring a certain level of
cooperation and attention, leading to bad user experience. Alternatively, if a timer is
used to extend the initial authenticated state, there is still a risk of illegitimate access
to the sensitive information on the device by an intruder if the device was taken
from its original user in the meantime. To mitigate this problem, there is a need for
short-term, low friction user re-authentication to properly extend the authenticated
state after the initial primary biometric scan by the authorized user [2, 10, 23, 26].

Two most important factors for frequent and even continuous user authentication
are reliability and usability. Primary biometrics such as face, eye, and finger scans are
highly reliable but require a non-negligible active user cooperation for an acceptable
scan (e.g., aligning the face or eyes with the camera or placing a clean finger on
the fingerprint scanner), reducing their utility for frequent re-authentication. Further,
these traits might not be available due to the user’s pose. Less cooperative soft
biometrics such as gender, skin color, and other face attributes, as well as other
modalities like keystrokes and device movement dynamics [12, 23] have gained
attention for user re-authentication in the background.

In this work, we investigate the use of clothing information as soft biometrics
for short-term mobile user re-authentication. Clothing information has been studied
extensively in person re-identification for multi-camera surveillance systems [5–7].
The advantages of using clothing information for mobile user re-authentication are
as follows:

1https://www.biometricupdate.com/201703/special-report-mobile-biometric-applications.
2A selfie is a self-portrait image of a user captured using the ubiquitous front-facing cameras
available in virtually all mobile devices.

https://www.biometricupdate.com/201703/special-report-mobile-biometric-applications
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• Clothing, as something that one has, and after being temporarily tied to the user
identity at the time of the primary biometric scan, is usually unique and stable
enough to be used for re-authentication for ensuing several minutes.

• Though clothing, as detailed above, may constitute a temporary visual representa-
tion of an individual, it is inherently revocable and unlike other soft biometrics the
information stored in the template generally does not compromise user’s privacy.

• Clothing ROI is a much larger target compared to the face and eyes, and thus it
can be acquired from the front-facing camera while a user is naturally interacting
with the target application with no explicit cooperation (except an initial consent
to allow the method).

It should be noted though that this method is not applicable to scenarios where people
wear uniform clothing, nor when the device camera is not in the general direction
of the user’s torso. The latter is indeed a benefit, since re-authentication should not
happen when the user is not naturally interacting with the app that requested the
service. That is also the time window when the OS permissions allow the use of the
device cameras.

Our earlier study in [11] consisted of a preliminary investigation on the use of
clothing information for mobile user re-authentication. The new contribution of this
work over [11] are as follows:

1. A new deep learning-based method for more accurate segmentation of clothing
ROI from selfie images that is robust to different user poses, rendering this
method much more applicable to everyday mobile use cases.

2. Evaluation of SURFkeypoint detectors and patch descriptors formatching cloth-
ing ROIs from selfie image pairs, followed by a comparative evaluation of
this non-learning-based texture descriptor method with learning-based methods
across various scales to better understand the pros and cons of eachmethodology.

The rest of this paper is organized as follows: Sect. 13.2 describes the existing
work related to continuous mobile user authentication. Section13.3 describes the
proposed segmentation and matching methods for clothing-based short-term user
re-authentication. Experimental validations of the proposed method are discussed in
Sect. 13.4. Conclusions and future work are given in Sect. 13.5.

13.2 Previous Work

In this section, we discuss existing soft biometric methods applicable to the mobile
device user re-authentication.

Samangouei et al. [23] proposed facial attributes such as gender, ethnicity, eye-
glasses, hair color, skin type, and face shape as an auxiliary authenticationmethod for
mobile devices. Binary SVM classifiers were trained for each attribute. The learned
classifiers were applied to the selfie image of the user for attribute’s extraction.
Authentication was done by comparing the extracted attributes with the enrolled
attributes of the user.
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Zhao et al. [26] investigated the touch-based continuous mobile authentication
via proposing a novel Graphic Touch Gesture Feature (GTGF). In this method, touch
traces were converted to images for the explicit representation of the touch dynamics.
The touch sequences were first segmented and normalized so that traces have a fixed
number of sample points. Then, the samples on the normalized traces were converted
into shapes and intensity values of the GTGF. User authentication was performed by
computing L1-normbetween a pair ofGTGF images. In [22] a text-basedmultimodal
biometric approach utilizing linguistic analysis, keystroke dynamics, and behavioral
profiling was proposed for continuous mobile user authentication.

Crouse et al. [2] proposed an unobtrusive continuous authentication system based
on face matching. Performance and accuracy for unconstrained face matching were
improved by integrating data from the device accelerometer, gyroscope, and magne-
tometer to correct camera sensor orientation and hence face image.

Rattani et al. [18, 19] proposed convolutional neural networks for gender and
age prediction from ocular images captured using mobile devices for performance
enhancement and potential re-authentication. In another work [10], authors exploited
the use of eyebrows for short-termmobile user authentication. Eyebrows, being one-
sixth of the facial region, is computationally efficient and offers fast throughput for
continuous re-authentication inmobile devices. To this aim, the histogramof oriented
gradients and GIST descriptors extracted from left and right eyebrow regions were
evaluated.

The above studies, though helpful in their given contexts, do not solve the prob-
lem of user re-authentication without needing the face to be in view, or they may
require user interaction with an additional touch-based modality. To the best of our
knowledge, the line of studies starting with [11] was the first attempt on continuous
user authentication using clothing information from selfie images in the mobile en-
vironment. In that the preliminary study, learning-based methods using local texture
descriptors alongwith support vector machines (SVM)were applied on clothing ROI
that was approximated through heuristics.

13.3 Proposed Method

Themain steps involved in the proposedmethod are (a) selfie-pose-invariant clothing
ROI segmentation and (b) robust matching of the features extracted from clothing
ROI. We evaluated the efficacy of both learning and non-learning methods for the
latter. Next, we discuss these steps in detail.

13.3.1 Clothing Segmentation

The segmentation task can be viewed as a pixel-wise labeling where the system
differentiates between the pixels of clothing from those of the background. Deep
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learning-based segmentation methods have been outperforming traditional methods.
It has become common to use convolutional encoder–decoder models for this pur-
pose. The encoder layers extract features from input data while the decoder layers
reconstruct the image by way of the feature maps [8]. The model produces a binary
mask of the original image size delineating the background from the foreground
target object, respectively.

In this work, we used U-Net [21]-based deep learning model for clothing ROI
segmentation. U-Net is a convolutional neural network that was originally developed
for biomedical image segmentation. The network architecture of U-Net consists of
contracting part (encoder) on the left and expansive path (decoder) on the right.
The encoder is a repeated application of two 3 × 3 convolutions, followed by recti-
fied linear units (ReLU), and 2 × 2 max pooling operation. Similarly, each decoder
layer consists of an upsampling using 2 × 2 up-convolution, a concatenation of cor-
responding feature maps from the contracting path, and two 3 × 3 convolutions
followed by ReLUs. This was also the first network to introduce skip connections
for directly connecting the upsampling and downsampling layers. This allows the
network to take the context of the image into account, which could be lost through
the convolution operation otherwise. The architecture of the network is designed for
parametrizationwith fewer training images, and it yieldsmore precise segmentations.

For clothing segmentation, we trained the U-Net model with 1000 selfie images
collected from the web. The dataset was further augmented by adding Gaussian blur,
scaling, and rotation to the original selfie images, along with target binary masks.
The training clothing masks were created usingMATLAB’s built-in “imageLabeler”
function.

Figure13.1 shows the architecture of U-Net for clothing mask generation from
selfie images.

Fig. 13.1 Architecture of U-Net model used for clothing mask generation from selfie images
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13.3.2 Clothing Matching

Clothingmatching is the process of confirmingwhether twovisual representations are
from the same clothes or not. This is done by feature extraction from segmented cloth-
ing ROIs and matching them using either learning or non-learning-based methods.
Next, we discuss our proposed learning and non-learning methods for the purpose.

13.3.2.1 Learning-Based Method

We define a learning-based method as one where the discriminant (or the similarity
metric) is learned via training data. In the proposed learning-based method, tile
texture features are used to train an SVM as the learned similarity metric. The trained
SVM is then used for re-authentication. Based on the literature features and our
various experiments, we found local binary pattern (LBP) [13], histogram of oriented
gradient (HOG) [3], and color histogram (CH) to be most effective for this task. LBP
is a simple visual descriptor that encodes the differences between the given center
pixel with those in its neighborhood. HOG computes the local gradient orientation
of the dense grid with local contrast normalization. LBP and HOG both operate
on gray-scale images. CH generates color information from the histogram of R, G,
and B channels. All features are extracted by dividing clothing ROI into 2 × 3 non-
overlapping tiles at four different image scales (1×, 0.5×, 0.25× and 0.125×), an
arrangement that was experimentally determined to be most effective. All these LBP,
HOG, and CH feature vectors are then concatenated into a single vector as shown in
Fig. 13.2 and used for training and testing the SVMs. We experimentally determined
linear SVMs to provide the best generalization.

Fig. 13.2 Features extracted from a clothing ROI that is divided into 2 × 3 blocks at three different
scales. All the extracted features from the different scales are concatenated into a single vector prior
to classification
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13.3.2.2 Non-learning-Based Method

Wedefine a non-learning-basedmethod as onewhere the discriminant is a pre-defined
distance metric, such as Euclidean or Manhattan distance. In our non-learning-based
method, we used the venerable speeded up robust features (SURF) [1]. SURF has
been proven to be one of the best local feature detectors and descriptors for ob-
ject recognition and image classification. In order to detect interest points, it uses
Hessian matrix with the approximation of Gaussian smoothing. Similar to the scale-
invariant feature transform (SIFT), interest points are calculated at different scales
of the image pyramid. The descriptors around each interest point are computed us-
ing the first-order Haar wavelet responses which represent the intensity distribution
of pixels within a block. The match score is computed as the number of matched
SURF points between enrollment and verification clothing ROIs using the sum of
absolute differences (Manhattan distance), experimentally deemed to be the best for
this use case. Figure13.3 shows the matching of SURF descriptors from clothing
pairs coming from same (genuine) and different (impostor) clothing ROIs.

The obvious advantage of learning-based method is its higher accuracy over
non-learning methods given its data-driven similarity metric. However, non-learning
methods are usually computationallymore efficient, do not require an extensive train-
ing process, and being more generic they may generalize better over certain unseen
datasets. Figure13.4 shows the overall proposed system.

Fig. 13.3 SURF point matching between a pair of similar (genuine) clothing ROIs (top) and
different (impostor) clothing (below)

Fig. 13.4 Overview of the short-term user re-authentication system based on clothing informa-
tion. The main steps are clothing segmentation using U-Net followed by matching using proposed
learning or non-learning-based methods
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13.4 Experimental Validation

13.4.1 Dataset and Protocol

The dataset used in this work is a subset of full face mobile dataset used to generate
VISOBdataset [17]. VISOBdatasetwas collected by acquiring full face selfie images
from around 550 healthy adults using front-facing cameras of mobile devices. The
subset of the dataset consisting of about 240,000 selfie images from 293 subjects
using an OPPO N1 cellular phone. Out of the whole subset, the pre-trained seg-
mentation algorithm detected masks for about 85,000 of images containing enough
clothing information. Approximately half of these images were used for training and
testing. Both the sets were further subdivided based on lighting conditions at the time
of capture: daylight and indoor office lighting, for experimental analysis of system
performance across different lighting conditions. Equal error rate (EER), area under
the ROC curve (AUC), and precision and recall were used as performance metrics
in our analysis.

13.4.2 Results

In this section, we present and discuss the result of proposed clothing segmentation
and matching using learning and non-learning-based methods.

13.4.2.1 Clothing Segmentation

In order to evaluate the segmentation accuracy, we used precision and recall metrics
given in Eqs. 13.1 and 13.2, respectively. In these equations, S is the segmentation
mask obtained by U-Net model, and R is the ground truth label mask. Precision is the
fraction of pixels that are segmented correctly over the total pixels in clothing mask
generated by U-Net. Recall is the fraction of pixels that are segmented correctly over
the total pixels in the ground truth labelmask.Using the above equations, we obtained
precision and recall of 94.73 and 94.03%, respectively. The high precision and recall
rates suggest the efficacy of the proposed method for clothing ROI segmentation.
Figure13.5 shows the examples of segmented clothes and clothing masks.

Precision = S ∩ R

|S| (13.1)

Recall = S ∩ R

|R| (13.2)
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Fig. 13.5 Example of a original selfie images, b segmented clothes, c and the correspondingmasks
obtained by our U-Net model segmentation. The eye regions have been masked in order to preserve
the privacy of the participants

13.4.2.2 Learning-Based Clothing Matching

Table13.1 shows the performance of learning-based method for clothing matching
in terms of EER and AUC across same and different lighting conditions. Recall that
learning-based method consists of feature level fusion of LBP, HOG, and CH fea-
ture vectors for SVM training and classification. Understandably, a very low error
rate is obtained when training and testing sets are acquired under the same light-
ing conditions. The least EER of 2.5% was obtained when training and testing sets
were acquired using indoor office lighting condition. However, the EER increased
when lighting conditions were varied. The EER increased to 10.7% when the train-
ing images were acquired in office lighting conditions and test images came from
daylight captures. Similarly, EER increased to 13.9%when the training images were
acquired under daylight conditions and test images came from indoor office light-
ing conditions. This suggests that the method is sensitive to illumination variations.
Figures13.6 and 13.7 show ROC curves of the learning-based method across same
and different lighting conditions.

Table 13.1 AUCs and EERs of learning-based method with same and different lighting conditions

Train Test AUC EER (%)

Office light Office light 0.994 2.5

Daylight Daylight 0.992 3.5

Office light Daylight 0.954 10.7

Daylight Office light 0.937 13.9
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Fig. 13.6 ROC of
learning-based method for
clothing matching when the
training and test images are
all acquired under indoor
office lighting conditions

Fig. 13.7 ROC of
learning-based method when
the training and test images
are acquired under daylight
and office lighting
conditions, respectively

13.4.2.3 Non-learning-Based Clothing Matching

Table13.2 shows the performance of non-learning-based SURF matcher. Again, it
can be seen that lower EERs are obtained when the pair of selfie images were cap-
tured under the same lighting conditions. EERs of 11.9 and 13.9% were obtained
when images were acquired under the same office lighting or daylight conditions,

Table 13.2 AUCs and EERs of non-learning method using same and different lighting conditions

Train Test AUC EER (%)

Office light Office light 0.943 11.9

Daylight Daylight 0.929 13.8

Office light Daylight 0.888 19.7

Daylight Office light 0.875 18.9
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Fig. 13.8 ROC of the
non-learning method when
the training and test images
are acquired under office
lighting condition

Fig. 13.9 ROC of the
non-learning method when
the training and testing
images are acquired under
office and daylight
conditions, respectively

respectively. However, the performance drops for training and testing across different
lighting conditions. 18.9 and 19.7% EERs were obtained when training and testing
images were acquired under mixed office light and daylight conditions.

Figures13.8 and 13.9 show the ROCs for non-learning clothing matching under
same and different lighting conditions, respectively.

13.5 Conclusion and Future Work

In this paper, we showed the utility of partial clothing information, seen on the user’s
upper torso during uncooperative, free form interaction with a mobile device with
front-facing cameras, for short-term re-authentication. We treat such clothing infor-
mation as a soft identifier (something that user has and does not change in short
term) if and when tied to a strong identifier such as a primary biometric that enters
the user into the authenticated state. Here we show that, using our proposed clothing
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segmentation and matching methods, one can obtain acceptable error rates to keep
the user authenticated if he/she returns to a previously (biometrically) authorized
device after a short period of time, without needing extra explicit biometric scans,
for better user experience. The obtained error rates for matching clothing informa-
tion are quite low when the verification clothing images are captured under similar
lighting conditions that were used for training (2.5 and 11.9% EERs for learning
and non-learning-based matching methods, respectively). However, the error rates
increase across different lighting conditions. As a part of future work, a large-scale
retraining and evaluation of the proposed methods will be conducted on other avail-
able mobile datasets. The proposed methods can be made more resilient to varying
lighting conditions by including lighting variability into larger training sets, utilizing
lighting-equalizing preprocessing, and by employing more resilient matching. More
specifically, deep learning-based methods will be developed for matching clothing
ROIs. Further, an adaptive fusion of clothing information with other available soft
biometrics traits, such as the presence of eyeglasses, skin color, and gender, will be
investigated for further performance enhancements.
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Chapter 14
A Framework for Secure Selfie-Based
Biometric Authentication in the Cloud

Veeru Talreja, Terry Ferrett, Matthew C. Valenti and Arun Ross

Abstract Cloud-based selfie authentication has multiple advantages over on-device
selfie authentication: Cloud-based authentication can support nomadic access from
multiple devices including those not owned by the user, can leverage cheap and
scalable utility computing, and can enable rapid innovation by allowing new match-
ing algorithms to be continually deployed with no need to update the local device.
This chapter presents a framework for a cloud-based selfie biometric authentication,
which is termed Selfie-Biometrics-as-a-Service (SBaaS). By leveraging Platform-as-
a-Service (PaaS) concepts, the framework is designed to enable independent software
vendors to develop extensions and add-ons to a provider’s core application. In par-
ticular, the framework creates an innovative marketplace for biometric algorithms
by providing a standard pre-built interface for the development and submission of
new matching algorithms. When an authentication request is submitted, a criteria is
used to select an appropriate matching algorithm. Every time a particular algorithm
is selected, the corresponding developer is rendered a micropayment. Also presented
in this chapter are solutions for preserving the confidentiality of biometrics stored
in the cloud. This can be achieved through the use of biocryptosystems, which are
secure biometric architectures involving the conversion of biometric features into
secure signals that can be stored in the biometric database but are still useable for
authentication. To provide a concrete example, a case study of a selfie-based ocular
recognition system is disclosed, and detailed descriptions are provided of the user
and developer interfaces.
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14.1 Introduction

Recently, there has been tremendous interest in incorporating selfie biometric solu-
tions into consumer electronic such as smartphones and tablets. Traditionally, spe-
cialized biometric sensors have been proprietarywith high cost, lowmarket adoption,
and limited compatibility with competing systems [28]. However, smartphones are
equipped with cameras and other sensors suitable for biometric sensing tasks in
the context of face, fingerprint, ocular, and gait recognition. The presence of high-
resolution front-facing cameras, in particular, offers the possibility of performing
selfie biometric recognition within the confines of the device.

Selfie biometric authentication is currently being used by e-commerce companies
to enable customers to purchase merchandise more conveniently, by using a selfie
for login authentication and payment confirmation. It is also being used by banks and
other organizations to protect the security of financial records and access to funds.
Major organizations that have begun using a selfie authentication technology include
Amazon, Mastercard, and Alibaba.

When selfie biometrics are used to authenticate a user on a personal device, the
enrollment is usually local to the device and successful authentication unlocks a
locally stored key for use in a conventional private-key cryptosystem. However,
performing selfie biometric authentication using only the resources local to the de-
vice is challenging due to several confounding factors including variations in head
pose, ambient illumination, facial expression, occlusion, and limited availability of
resources within the smartphone for storage and computation [11, 13]. Another sig-
nificant challenge that cannot be met by a solitary personal device is supporting the
nomadic usage habits demanded by today’s consumers, who want to be able to gain
access to services from any location using any number of personal devices or from
public infrastructure such as ATMs and pay stations. As an alternative to confining
authentication to the local device, biometric authentication can be performed in the
cloud. In this regard, cloud computing may be harnessed as a viable option. Cloud
computing [19] facilitates the outsourcing of computing and storage tasks to in-
frastructures managed by dedicated providers—providing an opportunity to surpass
mobile resource limits [29]. For instance, the feature extraction, data storage, and
matching components of a selfie biometric system can be moved to a cloud infras-
tructure, while leaving only the sensing task in the device. This is an example of a
biometrics-in-the-cloud paradigm [10].

There is an increased interest in performing biometric recognition in mobile de-
vices and as a cloud-based service [2, 4, 9, 12, 16]. In [5], a framework for cloud-
based face recognition emphasizing the parallelization of recognition tasks across
multiple servers is introduced. Performing biometric recognition in mobile devices
and as a cloud-based service has also been adopted widely in the biometric recog-
nition industry. For example, Zoloz provides cloud-based selfie biometric authenti-
cation solutions, which are used by around 50 banks and 200 million users in Asia.
FacePhi offers a cloud-based mobile facial recognition solution, Selphi, that enables
mobile banking users to access their accounts just by taking a selfie.
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There are a variety ofmodels for providing biometrics in the cloud.Biometrics-as-
a-Service (BaaS) is amodel where the biometrics-in-the-cloud architecture is offered
by a service provider [28]. If the infrastructure allows for component developers to
develop and incorporate custom components in the cloud (e.g., feature extraction or
matchermodules), then it is referred to asPlatform-as-a-Service (PaaS) [18]. Broadly
speaking, some PaaS providers, such as Bungee Labs and SalesForce.com, provide a
framework that allows independent software vendors (ISV) to develop extensions or
add-ons to the provider’s core application [3]. A key contribution of this chapter is to
present a similar framework for cloud-based selfie biometric authentication known
as Selfie-Biometrics-as-a-Service (SBaaS) that allows the developers of biometric
recognition algorithms to actively contribute to the SBaaS system. This is achieved by
creating an interface for uploading algorithms and a scheme for selecting algorithms
and rendering micropayments to the developers. Having such an infrastructure in
place has the benefit of promoting innovation and reducing costs for the BaaS by
allowing the development of its key components to be outsourced [32].

Authentication in the cloud may raise questions regarding the preservation of in-
formation confidentiality and the use of secure authentication methods in the cloud.
Privacy and security of the biometric data can be achieved by combining cloud au-
thentication modules with biometric security architectures involving the conversion
of biometric features into secure signals that can be stored in the biometric database
but are still usable for authentication.

In this chapter, we present a cloud-based framework SBaaS for performing selfie
biometric recognition using smartphones or other mobile devices as sensors and
demonstrate a reference implementation of this framework using ocular recognition
as a specific example. The salient features of this framework include the following:

1. Smartphones and other mobile devices, including the cameras resident in them,
require no modification from their stock hardware configuration.

2. Computationally intensive tasks such as segmentation, feature extraction, and
matching are outsourced to the cloud.

3. Software developers can upload their own biometric matching algorithms to the
cloud. Thus, the cloud hosts multiple matching algorithms pertaining to multiple
developers.

4. Enabling developers to upload matching algorithms creates an environment
where the value of algorithms is measured by their in-application performance,
creating incentives for competition and innovation.

5. The matching algorithm is automatically selected based on the characteristics
of the input images and the performance of the algorithm as evaluated on se-
questered data.

6. Every time an algorithm is selected for matching, its developer is credited under
a micropayment model.

In addition to the SBaaS framework, we also present a secure Selfie-Biometrics-
as-a-Service (SSBaaS) framework, in which the biometric features are converted into
secure signals using secure biometric architectures to preserve the privacy informa-
tion of the user.



278 V. Talreja et al.

14.2 Architecture

This section develops a general framework for SBaaS, which can be implemented
for any biometric modality. The components of the system are the user interface,
developer interface, biometric database, and cloud-based computing infrastructure.
The user interface is an application, which may be embodied as a mobile-enabled
web application or a native smartphone app, through which users submit matching
requests. In particular, users use the interface to submit a selfie image to be com-
pared with a corresponding enrollment selfie image stored in the biometric database,
where the biometric database is a storage location for enrollment selfies. The de-
veloper interface is a virtual machine having identical software as the computing
infrastructure for developing and submitting matching algorithms to the system. The
computing infrastructure consists of a cloud server for executing matching requests
using developer-submitted algorithms. The architecture is depicted in Fig. 14.1.

14.2.1 Cloud Computing Characteristics

The definition of cloud computing [19] encompasses several elements that the SBaaS
architecture provides. Users can submit matching requests through a web interface,

...
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Fig. 14.1 Proposed SBaaS architecture. A user submits a matching request by uploading a probe
selfie captured using the camera on a mobile device. The probe selfie from the user and the corre-
sponding enrollment selfie from the biometric database are submitted to the cloud infrastructure.
The comparison is performed by a worker process. Matching algorithm developers use the virtual
machine interface to develop and submit their algorithms to the cloud infrastructure over a shell
session for deployment to the worker processes
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and the requests are automatically processed by available servers, providing on-
demand self-service. The web interface is designed for both mobile and desktop use,
incorporating broad network access. Resource pooling is implemented such that
multiple matching requests are distributed among servers, automatically balancing
the request load as needed.

Additional servers can be added to the system rapidly, as the operating system
installation and software provisioning are fully automated, providing rapid elasticity.
The computing framework software is designed to execute matching requests across
any number of servers. The execution of each matching request is tracked, and
users are charged for service in proportion to the number of completed requests
and according to the selected algorithms (i.e., not all algorithms will be priced the
same). Matching algorithm developers are credited for every matching request that
uses their algorithm, making this an instance of measured service.

Cloud services are classified according to the level of abstraction at which the
users and developers interact with the infrastructure. In the SBaaS architecture, users
perform matching operations by submitting requests through a web interface. In the
context of biometrics, this architecture is an instance of biometrics-as-a-service, a
model for providing biometric recognition functionality through a service provider
[28].Avirtualmachine containing anoperating systemandpre-installed software that
is identical to the cloud infrastructure is provided to the software developers, making
this an instance of Platform-as-a-Service. The use of a virtual machine ensures that
developed algorithms are binary compatible with the infrastructure and obviates the
need for developers to provision their own development environments.

14.2.2 User Interface

The user interface shown in Fig. 14.1 is a web application that is accessible on both
mobile anddesktopbrowsers. This interface is usedby the user to submit a probe selfie
for matching. The probe selfie and the enrollment selfie from the biometric database
are sent to the cloud infrastructure where preprocessing is done to select the most
suitable matching algorithm. The matching algorithm can be selected automatically
by the system, or the user can also select the matching algorithm through the user
interface. The selected algorithm is executed on the selfies and a match score is
returned. Even though Fig. 14.1 shows that the user interface is embodied as a web
application, it could also be implemented as a native app that runs directly on the
smartphone. While it could be a stand-alone app, it could also be integrated into
another app, such as a banking or e-commerce app.
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14.2.3 Biometric Database

Thebiometric database stores the enrollment selfies of the users.When a user submits
amatching request through the user interface by uploading their selfie to the cloud, the
corresponding enrollment selfie from the biometric database is also uploaded to the
cloud infrastructure for authentication. The biometric database may be centralized,
or it may be distributed. For instance, the biometric database could be stored on the
user’s smartphone as part of the image gallery or it could also be a part of the cloud
infrastructure. Another example of a biometric database is that the user can store their
enrollment selfie in their personal accounts with a storage provider such as Dropbox,
which would cater to the needs of a nomadic user for access from multiple devices.
Alternatively, the biometric database could be held by an entity such as a bank or an
e-commerce site, or it could also be hosted by a third-party authentication service
provider. This idea of third-party authentication service provider is analogous to the
password authentication service rendered by, for example, Facebook or Google.

14.2.4 Computing Infrastructure

The computing infrastructure executes matching requests using developer-submitted
algorithms. The user submits a matching request to the web server by uploading a
probe selfie and, optionally, selecting a matching algorithm. The other selfie for the
matching request is the enrollment selfie from the biometric database. If the user does
not select an algorithm, the system selects one automatically. The server stores the
selfies as data files in the user’s data directory and creates a job file in the user’s job
input queue containing parameters required for matching, such as filesystem paths
to the input files and to the matching algorithm, if an algorithm has been selected.

The job manager preprocesses the job file and moves it to the user’s job running
queue. Preprocessing is performed as follows. If the user selected a specificmatching
algorithm, no action is taken during preprocessing. If no algorithmwas selected by the
user, the system selects an algorithm automatically depending on the characteristics
of the probe selfie. A table of matching algorithms and the number of times each has
been executed is updated by the job manager, incrementing the number of executions
for the selected algorithm. Following preprocessing, the job manager creates a task
file containing the paths to the input files and the selected matching algorithm and
places the task file in the user task input queue.

The task controller determines the number of tasks contained in all users’ task
input queues and schedules tasks for execution such that all users receive an equal
share of the available processing cores, which is an instance of fair scheduling. The
system is implemented such that other scheduling policies may be incorporated. To
schedule an individual task for execution, the task controller moves the task file from
the user’s task input queue to the global task input queue.
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A generic worker process running on one of the worker nodes reads a task in the
global task input queue and moves it to the global task running queue. The generic
worker process executes the matching operation, saves the result in the task file, and
moves it to the global task output queue. The task controller moves the task from
the global task output queue to the user task output queue. The task file is read by
the job manager, and the matching result is stored in the job file and moved to the
job output queue. The web interface reads the matching result from the job file and
displays it to the user.

14.2.5 Developer Interface

The developer interface is a virtual machine (VM) that contains software for devel-
oping algorithms for submission to the cloud infrastructure. The operating system
and software environment on the VM are configured identically to the environment
on the computing infrastructure (i.e., the cloud server). Identical configuration obvi-
ates the need for the algorithm developer to invest time installing and configuring a
compatible development environment. The VM enables the developer to implement
matching algorithms that are binary compatible with the infrastructure, and upload
scripts and executables directly for use.

The VM is distributed over the Internet as an archive containing a disk image of
the preinstalled and configured operating system. The software hypervisor, which
executes the virtual machine, is chosen for compatibility with as many widely used
host operating systems as possible. A desktop environment having minimal resource
requirements is chosen for the VM to enhance user interface performance in a virtu-
alized environment.

The VM contains software for algorithm development, such as compilers, text
editors, debuggers, and source control clients, as well as libraries commonly used
for image processing applications and research. The developer must implement their
algorithm such that it can be executed on a command line—a broad and general
requirement that is straightforward to satisfy.

14.3 A Reference Infrastructure Implementation

This section describes a reference implementation of the general SBaaS architecture
described in Sect. 14.2. The user interface implementation is first described, followed
by the developer interface. Finally, details of the computing infrastructure implemen-
tation are given. For the implementation given in this section, the biometric database
is considered to be the image gallery on the user’s smartphone or tablet.
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14.3.1 User Interface

The user interface is implemented using Mobile-Google Web Toolkit (MGWT)1

which is a software framework for developing mobile web applications. MGWT is
an extension of Google Web Toolkit (GWT),2 which is a Java-based framework,
for creating efficient and optimized browser-based applications. GWT is an open-
source completely free framework that helps developers to build high-performance
web applications without having expert skills in JavaScripting or browser quirks.
Google also uses GWT in many of its products such as Inbox, Calendar, Adwords,
and AdSense.

While GWT can help build fast desktop applications using Java, it lacks wid-
gets and animations for developing mobile apps. MGWT closes this gap—MGWT
provides mobile widgets, smooth animations, touch support, and much more. One
can use MGWT to build highly optimized Java-based AJAX applications that are
compatible with all browsers, including Android and the iPhone mobile browsers.
We used MGWT 1.1.2 along with GWT 2.7 and Eclipse to develop the user inter-
face. A few other Java-based API’s were also used along with MGWT to develop
the functionality of the user interface.

The steps taken by a user to submit a job through the web interface and obtain the
results of the matching are as follows:

1. The web application is accessed by pointing a mobile browser to a known Web
site.

2. After logging into the application, the user can either view their previous job
submissions or submit a new job.

3. If the user wishes to submit a new job, they can upload a probe selfie, a gallery
selfie, and either explicitly select a matching algorithm or allow the interface
to select an appropriate algorithm based on image characteristics, as shown in
Fig. 14.2a.

4. Upon submitting the job request, the user will be redirected to the Job History
page. Shown in Fig. 14.2b is the JobHistory page view.This page provides details
about all previous jobs submitted by the user. The user can view the complete
details of a particular job—including the input images and the matching score—
by clicking on the associated job.

14.3.2 Computing Infrastructure

The computing infrastructure used in this reference implementation is a heteroge-
neous cloud of servers, each having a varying number of processing cores and main

1http://www.m-gwt.com/.
2http://www.gwtproject.org/.

http://www.m-gwt.com/
http://www.gwtproject.org/
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(a) Algorithm Selection page (b) Job History page

Fig. 14.2 Screen shots of the mobile web app

memory. A single server acts as a router between the Internet and remaining servers
and hosts the web and shell servers. This server is denoted as the head node. The
remaining servers execute matching requests and are denoted as worker nodes. The
operating system on all nodes is Ubuntu Linux. All data are stored in the head node
and shared to the worker nodes using the standardized distributed file system pro-
tocol Network File System (NFS). The software components implementing the job
manager, task controller, and generic worker are designed to work independently of
one another, communicating through files on the file system. This architecture allows
the components to be reused with little or no modification to the code, consistent
with the UNIX philosophy and the notion of a microservice [35].

The job manager is implemented as a MATLAB® program that runs persistently
on the head node within a GNU screen session. When a user submits a matching
request using the web interface, the interface creates a data file (in MATLAB’s .mat
format) containing (a) the paths to the input images and (b) the user’s algorithm
selection option; this file is stored in the user’s home directory. The job manager
creates a task file—also in .mat format—containing paths to the images and the
algorithm to execute.

Like the job manager, the task controller is implemented as a MATLAB program
on the head node that is run in a GNU screen session. The task controller schedules a
user’s task for execution when the worker node resources become available. Exactly
one matching request may be executed for every processing core available on the
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worker nodes. Once this limit is reached, further matching requests must wait until
a core becomes available.

A matching request is executed by a generic worker process running on a worker
node. The generic worker process is a MATLAB program which executes the al-
gorithm specified in the task file. The task file specifies an entry function for the
matching algorithm, which is a MATLAB function implemented by the algorithm
developer to initiate algorithm execution. Since the algorithm developer has full
control of the entry point function, they may execute a program implemented in any
language which can be executed on the Linux command line by using the MATLAB
feature to execute shell commands.

Once the algorithm execution is complete, control is returned to the generic
worker, which stores matching results in the task file. The task file is consumed
by the job manager, which stores the matching result in the job file. The job file is
passed through the queues to the web interface, which displays the matching result
to the user. In this reference implementation, the matching score is sent back to the
user.

14.3.3 Developer Interface

The developer interface is implemented as a virtual machine usingUbuntu as the op-
erating system. This is the same operating system installed on the cloud infrastructure
nodes, which simplifies the deployment of matching algorithms. The software tools
and libraries used for compiling algorithms in the developer interface exactly match
those on the infrastructure, enabling the developer to deploy binaries directly. Virtu-
albox was chosen as the hypervisor as it is freely available for all major computing
platforms (Windows, OSX, and Linux). An example of the developer interface is
shown in Fig. 14.3.

The virtual machine is distributed through a publicly accessible Web site as a
compressed archive, which expands to a single Virtualbox Disk Image (VDI) file.
The developer specifies the VDI file as the disk image for a virtual machine in
Virtualbox, and the developer interface is immediately available. Downloading and
executing a virtual machine image is much simpler than a conventional provisioning
process where the developer personally installs Ubuntu and the required software.

The virtual machine contains various machine learning frameworks, an open-
source computer vision libraryOpenCV 2.4.11 [7], and standard utilities for software
development in the Linux environment such as GNU Emacs and the GNU compiler
collection. Documentation for using the interface is provided as a wiki, which is
linked via the interface desktop. The developer deploys their algorithm by uploading
the required scripts, executables, and data files to their home directory in the cloud
and submitting a request for integration to the infrastructure administrator.
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Fig. 14.3 Virtual machine implementing the developer interface. The web browser displays the de-
veloper documentationwiki. A terminal window shows thematch score for two images as computed
by a matching algorithm

14.4 An Operational Example

Ocular biometrics is the combination of multiple modalities in and near the eye re-
gion, such as the iris and periocular region [1, 25, 36]. In this operational example,
we focus on the iris and periocular modalities as examples (together referred to as
“ocular”). We performed two sets of experiments that illustrate the potential benefits
of the framework. The first experiment shows that different algorithms provide dif-
ferent matching performance, thereby motivating the need for a system that supports
a plurality of algorithms. The second experiment evaluates the performance of the
system when the algorithm is automatically selected.

14.4.1 An Illustration of Algorithmic Diversity

The dataset used for the first experiment is the ND-IRIS-0405 iris dataset [6]. This
dataset contains 64,980 images corresponding to 356 unique subjects and 712 unique
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irises. For our evaluation, we use iris images of 12 subjects and 12 images of the
same iris per subject. In total, we used 144 images. All of the matching algorithms
used by the example system are based on Open Source for IRIS (OSIRIS), which is a
well-known open-source iris recognition system developed in the framework of the
BioSecure project.3 Specifically, OSIRIS 4.1 was used,4 which is composed of four
processing modules—segmentation, normalization, encoding, and matching. Gabor
filters are applied to the normalized iris image, and the resulting phasor responses
are quantized into a binary feature set. The Hamming distance measure is used to
compare the binary feature sets of two iris images in order to obtain the finalmatching
score.

In order to mimic the use of multiple algorithms, different Gabor filter parameters
were selected for the OSIRIS algorithm, resulting in different sets of Gabor filters.
This was accomplished by changing the sizes of the Gabor filters, or by changing
the number of Gabor filters. Gabor filter coefficient sizes are defined in terms of
the coefficient matrix (m × n). We used five different Gabor filter parameter sets A,
B, C, D, and E for this experiment. The A, B, and C parameter sets have 2 Gabor
filters each, with coefficient matrix sizes of 9 × 15, 9 × 27, and 9 × 51, respectively.
Parameter sets D, and E have 4 and 6 Gabor filters each, respectively. When used
with OSIRIS, each parameter set is viewed as a different algorithm, which we denote
Algorithm A, Algorithm B, Algorithm C, Algorithm D, and Algorithm E.

The following experiment was performed to evaluate and compare the perfor-
mance of the three algorithms A, B, and C. False accept rate (FAR), false re-
ject rate (FRR), and genuine accept rate (GAR) are computed for the test dataset
of 144 images. Based on the number of subjects (N = 12) and the number of
images (t = 12) per subject, we obtain Nt (t − 1)/2 = 792 genuine scores and
(N (N − 1)t2)/2 = 9504 imposter scores. The ROC (GAR vs FAR) curve at var-
ious threshold points for the first experiment is shown in Fig. 14.4. Algorithm B
with 2 Gabor filters of size 9 × 27 performs marginally better than the other two
algorithms. But it can be observed from the curves that there is no clear winner.
However, these curves suggest that different algorithms may be needed depending
upon operational requirements of FAR and/or GAR.

A similar experiment was performed for comparing the algorithms (A, D, and E
which have a different number of filters (2, 4, and 6, respectively). The ROC curve
for this experiment is shown in Fig. 14.5. This figure quite evidently solidifies the
assumption and the motivation behind the solution proposed as we can clearly see
that one algorithm never comes out on top as the curves do intersect at a number of
points. So, again as already stated depending on the images, thresholds, and region
of operation, a different algorithm can be selected for matching of the selfie ocular
images.

3http://biosecure.wp.tem-tsp.eu/.
4http://svnext.it-sudparis.eu/svnview2-eph/ref_syst//Iris_Osiris_v4.1.

http://biosecure.wp.tem-tsp.eu/
http://svnext.it-sudparis.eu/svnview2-eph/ref_syst//Iris_Osiris_v4.1
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Fig. 14.4 ROC curves for three algorithms that each use two filters, but with different sizes
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Fig. 14.5 ROC curves for three algorithms that each use a different number of Gabor filters
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14.4.2 An Illustration of Automatic Algorithm Selection

In order to evaluate our SBaaS framework reference implementation, we conducted
an experiment by using the web app on a smartphone. The trials were conducted
by using a selfie image of the ocular region as one input and an ocular image from
the phone gallery as the second input. Each trial entailed matching two images, and
the experiment entailed 320 such trials. The trials consisted of both genuine and
impostor image pairings.

Once the selfie images were uploaded to the cloud, the algorithm to be executed
on the input images was selected automatically. Based on the input image charac-
teristics, a particular algorithm was automatically invoked by the system at the time
of authentication. In this experiment, three algorithms were used. The first was an
OSIRIS-based iris recognition algorithm (“OSIRIS”), the second was a custom pe-
riocular matching algorithm (“Periocular”), and the third was a neural network iris
matcher (“NN”). The selection method first computes the radius of the iris region in
the input ocular image and uses this to select one of the three algorithms. In particu-
lar, the range between minimum and maximum radius of the iris is divided into three
parts using two thresholds. If the radius of the iris is below the first threshold, the
algorithm “Periocular” is selected. If the radius of the iris is between the first and the
second threshold, then “OSIRIS” algorithm is selected for execution. Finally, if the
radius of the iris is above the second threshold, then “NN” algorithm is executed.

Table14.1 gives the number of times each algorithm was executed during the 320
trials conducted in the experiment. Besides hosting three completely different algo-
rithms, it is possible for the cloud to host several instances of the same algorithm,
where the different instances use different parameters. The experiment conveys the
main theme of the proposed framework, i.e., depending on the input images, a dif-
ferent algorithm is selected each time and the developer for that selected algorithm
is rendered a micropayment. This experiment shows that the proposed framework
is feasible and creates an innovative and competitive ecosystem that benefits both
software developers and end users.

For the above experiments, the radius of the iris has been considered as one of
the variables to be used for automatic selection of the algorithm. However, there are
a lot of other variables that can be used to automate the selection of the algorithm to
be executed on the pair of input selfies. An example of other variable to be used for

Table 14.1 Table showing the number of executions for each algorithm for a total of 320 trials

Serial No. Developer
name

Algorithm
name

Modality Number of
executions

Number of
executions in
%

1 TMPS OSIRIS Iris 102 31.9

2 ROSS Periocular Ocular 68 21.2

3 VT NN Iris 154 46.9
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automation could be thematching score generated by the algorithm.Analgorithm that
gives the best matching score can be selected and the micropayment can be rendered
to the corresponding developer. However, this entails running all the algorithms in
the cloud on a given pair of inputs which would make the system really slow as it
would lead to a huge computational cost.

Another example to automate the selection could be dependent on the micro-
payments that are being rendered. Assuming that the micropayment amount for an
algorithm is decided by the developer uploading their algorithm (it could be the li-
censing fee for using the algorithm). In that case, the algorithm selection could be
automated based on themicropayment being rendered. Lessmicropayment algorithm
could be selected more number of times.

Anotherway could be to select the strategy for automatic selection of the algorithm
dynamically depending on the load of the system. If there is a heavy load and the
number of selfie images to be matched in the queue is above a threshold, then the
algorithm selection could be switched from the original automation strategy to a
new strategy. The new strategy could be dependent on the computational cost of
each algorithm, and this could be used to generate faster matching scores and reduce
the load.

14.5 Secure Selfie-Biometrics-as-a-Service

In the general SBaaS framework discussed in Sec. 14.2, the enrollment selfie is stored
in the biometric database. As in the reference implementation, the biometric database
could simply be the image gallery on the user’s device. Alternatively, the biometric
database could be stored in the cloud or at a private server hosted by a bank, an
e-commerce site, or a third-party authentication service provider. In these alternate
scenarios, the security of the stored biometric data is critical and is not sufficiently
integrated into the previously discussed SBaaS framework. In this section, we present
an improved model that provides a solution for the security of the stored biometric
data. This new model is termed “Secure Selfie-Biometrics-as-a-Service (SSBaaS).”
A general SSBaaS architecture is given in Fig. 14.6. The SSBaaS architecture con-
sists of two modules: a feature extraction module (FEM) and a biometric security
module (BSM). The FEM consists of feature extraction algorithms uploaded by the
developers, and the BSM consists of the common back-end components required to
keep the biometric secure in the SSBaaS architecture.

14.5.1 Feature Extraction Module

The SSBaaS model differs from the previously discussed SBaaS model in terms
of how the developer contributes to algorithms. In the SBaaS model, the developer
uploads an end-to-end biometric matching algorithm to the cloud. However, in the
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Fig. 14.6 General secure selfie-biometrics-as-a-service architecture

SSBaaS model, the developer only uploads algorithms for the extraction of features
from the enrollment and probe selfies. The FEM contains all the feature extraction
algorithms uploaded by the developers. The features extracted from each selfie have
to be in the form of a binary vector. To preserve the privacy of the user, the binary
feature vector is not directly stored in the database. Instead, the binary feature vector
is passed through the BSM to generate a secure biometric template that is stored
in the database. It is important to articulate to the developers the requirements that
are enforced on the biometric feature extraction algorithms to generate the biometric
feature vectors that are compatible for use in the BSM.

The statistical and privacy-preserving properties desired for the biometric feature
vectors are as follows:

1. A bit in the feature vector is equally likely to be zero or one, which helps in
maximizing the entropy of the feature vector.

2. A given bit in a feature vector provides no information about any other bit in the
feature vector, which implies different bits in the feature vector are independent
of each other.

3. The feature vector of one person provides no information about the feature vector
of the other person, which implies inter-user independence.

4. Strong intra-user dependence, which implies differentmeasurements of the same
user are related by a binary symmetric channel (BSC) with crossover probability
p where p is much smaller than 0.5.

Upon registering with the system, a developer is required to be bound to a set
of constraints that enforce the above properties. Satisfying the above properties not
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only ensures good matching performance but also provides nice privacy-preserving
features. This also benefits the developers by improving the chances of their algo-
rithm being selected and micropayment being rendered to their accounts. However,
designing feature vectors to possess such privacy-preserving properties forces a com-
promise between robustness and discriminability of the feature values, which in turn
affects the accuracy (FRR and FAR) of the system, underscoring the fact that privacy
at this time comes at the price of performance.

14.5.2 Biometric Security Module

In the SSBaaS model, it is assumed that the enrollment biometric information is
stored in the cloud or on a private server. Consequently, the SSBaas model must pre-
serve the biometric information confidentiality of the user. The leakage of biometric
information stored in the cloud to an adversary constitutes a serious threat to secu-
rity and privacy because if an adversary gains access to a biometric template, he can
potentially obtain the stored user information. The attacker can use this information
to gain unauthorized access to the system by reverse engineering the system and cre-
ating a physical spoof. Furthermore, an attacker can abuse the biometric information
for unintended purposes and violate user privacy [21].

To alleviate such security and privacy concerns, secure biometric schemes have
been developed to allow for authentication without requiring the enrollment bio-
metric template to be stored in its raw format. BSM, which is shown as a part of
Fig. 14.6, presents a general secure biometric scheme. The functionality of BSM is
to develop a suitable encoding procedure for transforming enrollment biometric data
into a template to be stored in the cloud and also to develop a comparison procedure
for matching the probe biometric data with the stored template to produce an au-
thentication decision. The BSM constitutes the back end of the SSBaaS architecture
and is common to all developers and users of the complete system. All the feature
extraction developers leverage the same BSM and have no direct access to the BSM.
Rather, they only contribute to the FEM.

There are four main specific implementations of secure biometric schemes that
are widely used: fuzzy commitment, secure sketch, secure multiparty computation,
and cancelable biometrics [26]. Fuzzy commitment and secure sketch are biomet-
ric cryptosystem methods and are usually implemented with error-correcting codes
and provide information-theoretic guarantees of security and privacy (e.g., [14, 15,
20, 23, 30]). Secure multiparty computation architectures are distance based and use
cryptographic tools.Cancelable biometrics, which is a transformation basedmethod,
uses revocable and non-invertible user-specific transformations for distorting the en-
rollment biometric (e.g., [17, 27, 34, 37]), with the matching typically performed in
the transformed domain. Fuzzy commitment, secure sketch, and cancelable biomet-
rics architectures are described briefly below, treating each as a special manifestation
of the BSM in 14.6.
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Fuzzy commitment, a classical method of biometric protection, was first proposed
by Juels and Wattenberg [15] in 1999. Fuzzy commitment is a key-binding method
of biocryptosystem, and the encoding procedure involves combining a randomly
generated vector Z with the enrollment biometric feature E resulting in the stored
data S. The comparison procedure checks whether the randomly generated vector Z
is exactly recovered using the probe feature vector P and S. There are many methods
of implementing this fuzzy commitment scheme. However, a common method is to
use error control coding (ECC). An example of using ECC for fuzzy commitment
involves constructing the stored data as S = GT Z ⊕ E, where G is the generator
matrix of an ECC. During authentication, the probe feature vector P is combined
with S using S ⊕ P. Next, using ECC decoding, the system attempts to decode the
random message Z and allows access only if it is successful.

Secure sketch is a key generation method where some helper data or a sketch S
is derived from the enrolled biometric feature vector E and stored in the database.
The probe is given access when the probe biometric feature vector P is consistent
with the stored secure sketch S. The sketch S should be constructed so that it reveals
little or no information about E. Similar to fuzzy commitment, a common method
of implementing secure sketch is to use ECC. In this method, ECC is applied to the
biometrics or the feature vector to generate a sketch, which is stored in the database.
The secure sketch S is constructed as S = HE; which is constructed as a syndrome of
an ECC with parity check matrix H. A legitimate probe biometric P = E would be a
slightly error-prone version of E. Consequently, authentication can be accomplished
by attempting to decode E given P and S.

Cancelable biometrics involves transforming or distorting the enrollment biomet-
ric with a non-invertible user-specific transformation. The transformation in cance-
lable biometrics is a one-way transformation and can be applied either to the original
biometric or in the feature domain. The advantage of using one-way transforma-
tions is that they are non-invertible and therefore the original biometric cannot be
recovered easily. This transformation is revocable as well, which means that if the
biometric is compromised, a new transformation can be applied to generate the can-
celable template. This helps in protecting the privacy and also deters cross-matching
since a different transformation can be used for a different application. Cancelable
biometrics was first proposed by Ratha et al. [27], following which, there have been
various different methods of generating cancelable biometric templates. Some of the
popular methods use non-invertible transforms [27], bio-hashing [17], salting [37],
and random projections [34]. Literature surveys on cancelable biometrics can be
found in [26] and [24].

The secure biometric architectures explained above could be extended to include
multiple biometric traits of a user [8, 21, 22, 31, 33]. Nagar et al. [21] developed a
multimodal cryptosystem based on feature-level fusion using two different security
architectures, fuzzy commitment, and fuzzy vault. In [31], face and fingerprint tem-
plates are concatenated to form a single binary string, and this concatenated string is
used as input to a secure sketch scheme. In [33], a feature-level fusion framework is
presented to generate a shared representation from each user’s multiple biometrics.
For each user, a selection of a different set of reliable and discriminative features from
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the shared representation is performed to generate a cancelable biometric template.
This cancelable template is passed through an appropriate error-correcting decoder
to find the closest codeword, which is hashed to generate the final secure multimodal
template.

14.5.3 Reference Implementation of SSBaaS

A reference implementation of the SSBaaS architecture is shown in Fig. 14.7. In
the reference implementation, the focus is on presenting a specific manifestation
of the BSM. During enrollment, the user submits a selfie (i.e., enrollment selfie),
which is transmitted to the cloud. In the cloud, depending on the learning or the
state of the system, one or more feature extraction algorithms from the FEM are
executed for the enrollment selfie. Initially, when the system has not learnt anything,
all the feature extraction algorithms may be executed by the system for a given
enrollment selfie. However, with an increase in enrollments, the system learns the
best feature extraction algorithm for a given enrollment selfie, depending on certain
learning criterion. Examples of these learning criteria are discussed later at the end
of this section. For now, we can assume each feature extraction algorithm from the
FEM is executed and one enrollment feature vector, denoted by E, is generated for
each algorithm. Consequently, the number of enrollment feature vectors for each
enrollment selfie is equal to the number of feature extraction algorithms (say n) in
the FEM. For clarity of exposition, only one feature vector E is shown at the output
of FEM in Fig. 14.7.

Fig. 14.7 Reference implementation of SSBaaS
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The enrollment binary feature vector E is now passed to the BSM module for
further processing and generation of secure biometric template in the database. The
encoding procedure in this BSM consists of two steps: forward error correction
(FEC) decoding and cryptographic hashing. The FEC decoding in this implemen-
tation is the equivalent of a secure sketch template protection scheme. In a secure
sketch scheme, sketch or helper data are generated from the user’s biometrics, and
this sketch is stored in the access control database. There are many methods of im-
plementing this secure sketch scheme. However, a common method is to use error
control coding. In this method, error control coding is applied to the biometrics or the
feature vector to generate a sketch which is stored in the database. Similarly, in this
implementation, the FEC decoding is considered to be the error control coding part
required to generate the secure sketch. The enrollment binary feature vector E gener-
ated from the FEM is considered to be the noisy codeword of some error-correcting
code. This noisy codeword is decoded using FEC decoding, and the output of the
decoding is the biometric secure sketch Se that corresponds to the codeword closest
to the enrollment feature vector. This biometric sketch Se is cryptographically hashed
to generate the secure biometric template fhash(Se), which is stored in the database.
The same procedure of FEC decoding and cryptographic hashing is applied for all
the n feature vectors generated by the n feature extraction algorithms for an enroll-
ment selfie. This would imply that for each user’s enrollment selfie, there would n
cryptographic hashes stored in the database.

During authentication, the same process is performed. The user submits a probe
selfie, which is transmitted to the cloud for authentication. A probe feature vector P
is generated using the feature extraction algorithm in FEM. Next, the probe feature
vector P is passed through an FEC decoder for the same error-correcting code used
during the enrollment. The output of the FEC decoder is the probe biometric sketch
Sp, which is cryptographically hashed and access is granted only if this hash matches
the enrolled hash. During authentication, if it is a genuine probe, the enrollment E
and the probe vector P would usually decode to the same codeword in which case the
hasheswouldmatch and accesswould be granted.Generally, if it is a legitimate probe,
access would be granted. However, an adversary may use synthesized biometrics to
fool and gain access to the system. Therefore, any analysis of the SSBaaSmodelmust
take into account not only authentication accuracy but also the information leakage
and the possibility of attacking the systemwhen the stored template is compromised.

Initially, when the system is still trying to determine the best feature extraction
algorithm for a given user, the method discussed above could be one way of doing
the enrollment, where the number of hashes stored per user is equal to the number of
feature extraction algorithms in the FEM.Over a period of time, the system learns the
best feature extraction algorithm for a given user depending on a number of variables.
One of the variables is the execution time of the feature extraction algorithm. Some
of the feature extraction algorithms may execute faster than the other algorithms.
However, the execution time could be dependent on the resolution of the image,
which in turn could be dependent on the device being used to capture the selfie. A
device table could be stored in the cloud providing information as to which feature
extraction algorithmworks better with images from a particular device. For example,
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if the device is an iPhone 8, then Algorithm 3 may give fast and accurate results.
In this case, iPhone 8 could be indexed with Algorithm 3. Using this table, the
system can decide which algorithm needs to be used if the user operates a particular
device; thus, it should be able to generate the enrollment feature vector only using
the corresponding algorithms from the device table. However, this is just one method
of deciding the best feature extraction algorithm. There could be other variables such
as matching accuracy and micropayment cost that could be used to decide the best
feature extraction algorithm for particular user enrollment. This is a design decision,
and it might differ depending on the system requirements.

14.6 Summary

In this chapter, we presented a Selfie-Biometrics-as-a-Service framework for per-
forming selfie biometric matching in a cloud environment using the sensors available
in ordinary smartphones. The proposed biometrics-as-a-service paradigm enables
users to perform biometric matching in a web interface. Moreover, the Platform-as-
a-Service model enables the developers of recognition technology to upload their
algorithms to the cloud. By selecting algorithms for execution and rendering mi-
cropayments to the corresponding developer, continuous algorithm innovation is
encouraged. A reference implementation and an operational example have been pre-
sented demonstrating that the architecture is feasible in the form of a case study based
on ocular recognition. Additionally, an overview of a secure Selfie-Biometrics-as-a-
Service model has been discussed with a major focus on biometric template security
in the cloud.
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Chapter 15
Biometric Template Protection
on Smartphones Using the
Manifold-Structure Preserving
Feature Representation

Kiran B. Raja, R. Raghavendra, Martin Stokkenes and Christoph Busch

Abstract Smartphone-based biometrics authentication has been increasingly used
for many popular everyday applications such as e-banking and secure access control
to personal services. The use of biometric data on smartphones introduces the need for
capturing and storage of biometric data such as face images. Unlike the traditional
passwords used for many services, biometric data once compromised cannot be
replaced. Therefore, the biometric data not only should not be stored as a raw image
but also needs to be protected such that the original image cannot be reconstructed
even if the biometric data is available. The transforming of raw biometric data such
as face image should not decrease the comparison performance limiting the use of
biometric services. It can therefore be deduced that the feature representation and the
template protection scheme should be robust to have reliable smartphone biometrics.
This chapter presents two variants of a new approach of template protection by
enforcing the structure preserving feature representation via manifolds, followed
by the hashing on the manifold feature representation. The first variant is based
on the Stochastic Neighbourhood Embedding and the second variant is based on
the Laplacian Eigenmap. The cancelability feature for template protection using
the proposed approach is induced through inherent hashing approach relying on
manifold structure. We demonstrate the applicability of the proposed approach for
smartphone biometrics using a moderately sized face biometric data set with 94
subjects captured in 15 different and independent sessions in a closed-set scenario.
The presented approach indicates the applicability with a low Equal Error Rate,
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EER = 0.65% and a Genuine Match Rate, GMR = 92.10% at False Match Rate
(FMR) of 0.01% for the first variant and the second variant provides EER = 0.82%
and GMR = 89.45% at FMR of 0.01%. We compare the presented approach against
the unprotected template performance and the popularly used Bloom filter template.

15.1 Introduction

The use of biometrics as an authentication mechanism for a number of secure access
services such as banking, border control or civilian identity management has resulted
in the popularity of new generation biometric sensors in devices such as smartphones.
A number of real-world applications using a smartphone for biometric authentication
have demonstrated the success for corporations and convenience to the customers [2,
3]. Complementing the success from industry, there have been a number of academic
works investigating various aspects of biometrics usage on the smartphone. A set of
works have investigated the use of face biometrics [4, 5], periocular biometrics [6]
and a few on the iris biometrics [4, 7]. Another set of works have indicated the
use of a multi-modal approach for smartphone authentication to compensate the
performance losses due to non-standard biometric data on smartphone [4, 5, 7].
While the use of biometrics provides versatility and convenience, the challenge of
storing the biometric data on smartphones is not addressed to a greater extent. Unlike
the passwordmechanisms, the original biometric characteristics are limited (one face,
two irises, ten fingerprints) and thus cannot be replaced for a user if compromised,
especially if the smartphone with biometric data is stolen or lost making the data
available to maligned parties. It is therefore essential to store the biometric data in a
protected manner such that the original biometric image (e.g. face image) cannot be
reconstructed under the loss of a smartphone, leading to a need for irreversibility.

As an impact of protecting the biometric data, one can expect performance degra-
dation in biometric authentication as the protected templates are typically a result of a
number of transformations which may suffer a loss of information [8, 9]. The loss in
biometric performance implies either rejecting the genuine subject repeatedly (corre-
sponding to false reject rate—FAR) or accepting the subjects falsely (corresponds to
false accept rate—FAR). While it is desired to have FAR and FRR simultaneously at
very low values in an ideal biometric system, it is at least expected to prevent no false
accepts in practical application with minimal possible false rejects, especially in the
use case such as personalized banking applications to prevent monetary loss [2, 10].
The template protection schemes for smartphones thus need to consider performance
factor and maintain the performance as equivalent to performance without template
protection, or better performance than no-template protection.Given that smartphone
is a personal device, it can be generalized that the same device is used to access a num-
ber of different services by the user. A direct implication of using the same biometric
data (e.g. face) also enforces the need to make the biometric template unlinkable
between different services from both user and the service provider perspective.
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Although the requirements of template protection have been laid out in ISO-24745
[11], there are not many works reported on the smartphone biometric template pro-
tection. In this chapter, we present a new approach of protecting biometric templates
on the smartphone by exploiting the feature space and using it to the advantage of
creating protected templates. Specifically, we employ structure preserving manifold
representation to keep the relational features intact prior to creation of the template.
The creation of a protected template itself is based on the hashing approach to de-
rive robust representation. While hash-based representation aids in deriving secure
transformed template, there are a number of practical considerations in obtaining a
stable hash for biometric data.

• The biometric data (e.g. face or fingerprint) varies across different captures, dif-
ferent sessions, different capture conditions and different camera/smartphones.
The change in the captured biometric data under these conditions influences the
biometric features proportionally. As a direct implication, the hash template rep-
resentation will be impacted, resulting in lower biometric performance.

• The biometric features can provide high performance when the structural and
relational neighbourhood features are preserved. For instance, minutia vicinity
plays an important role in obtaining higher performance as compared to unordered
fingerprint features. In a similar manner, one can argue that the features from the
face can be highly reliable when the structural neighbourhood is preserved in the
feature space.

• Our assertion is that hashing-based template protection can provide better perfor-
mance if the extracted features preserve the neighbourhood and relational struc-
ture information making them stable against variations introduced due to capture
process.

In this chapter, we present a new approach such that the structure of biomet-
ric features is preserved through the use of manifold representation and further use
this representation to derive robust protected template via hashing. The proposed
approach being computationally simple and efficient is suitable to be deployed on
the low-power computational devices such as smartphones. Further, the cancela-
bility is introduced by adopting an entropy-based sampling method to choose the
features to obtain the manifold embedding. Through the properties of manifolds, i.e.
inductive manifold and Stochastic Neighbourhood Embedding (SNE), we ensure
the irreversibility, unlinkability and revocability. Further, the proposed approach is
validated through the set of experiments on a moderate-sized database of 94 subjects
with real biometric data captured using the smartphone. The key contributions of
this chapter are:

1. A new approach for creating protected biometric templates is proposed which
is based on the neighbourhood relation/structure preserving manifold represen-
tation of textural features and hash representation.

2. An experimental performance evaluation is presented to illustrate the validation
of proposed approach through the use of smartphone biometric database. The
proposed approach is compared against biometric performance of unprotected
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template and Bloom filter-based protected template. All of our experiments cor-
respond to the closed-set protocol as the work is addressed towards verification
scenarios.

3. This chapter also presents a systematic discussion of the proposed approach
for template protection and subsequently discusses unlinkability analysis. In the
end, this chapter presents the merits and the limitations of the proposed approach
to provide possible direction for future works.

In the rest of this chapter, Sect. 15.2 presents the related works followed by the
Sect. 15.3 that discusses proposed approach for biometric template protection. The
Sect. 15.4 provides the details on the employed database and the corresponding pro-
tocols for experiments. The experiments and the obtained results are discussed in
Sect. 15.5 along with the brief discussion on unlinkability analysis in the Sect. 15.5.2
to demonstrate the security level of the proposed template protection method. A set
of concluding remarks and a list of potential future work is provided in Sect. 15.6.

15.2 Related Works

A number of approaches can be adopted to deal with this problem of biometric
template protection[11] which are either cancellable biometrics or biometric cryp-
tosystems [8, 9, 12–17]. In this work, we adopt the template protection approach
through cancellable biometrics. The goal of cancellable biometrics is to derive a
biometric template that is irreversibly distorted while keeping the uniqueness for all
biometric purposes such as identification and verification. Cancellable biometrics
can be achieved through methods from simple mathematical transformations to ap-
proaches based on hashing. In this work, we adopt hashing-based template protection
schemewith a set of key constraints to fulfil the properties required for biometric tem-
plate protection while still achieving high biometric accuracy in a protected domain
biometric comparison [1].

15.3 Proposed Approach for Protected Biometric
Templates

The proposed approach of protected template creation is presented in Fig. 15.1. As
depicted in Fig. 15.1, the features from biometric data are first extracted using tex-
ture descriptors. Specifically, we utilize widely employedBinarized Statistical Image
Features (BSIF). The set of extracted features are represented using themanifold rep-
resentation such that the neighbourhood representation is preserved. Given the set of
enrolment images for the subjects, the proposed approach derives the hash projection
matrix from the manifold representation of features. Through the projection matrix,
we create the protected templates for each subject in the enrolment set. In a similar
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Fig. 15.1 Biometric system with proposed template protection is indicated by the path followed
by solid lines which also satisfies the properties of biometric template protection

manner, when a verification attempt is made by the subject, the textural features are
extracted using BSIF followed by the manifold representation. The features are then
projected using learnt hash projection matrix to derive the protected template repre-
sentation for probe data. The templates in the protected domain for both enrolment
and the probe are compared using a simple Hamming distance measure to establish
the biometric performance. The details of each component of the proposed approach
are presented in the section below.

15.3.1 Feature Vector from Binarized Statistical Image
Features

Given the preprocessed biometric image, we first extract the textural descriptors us-
ing the Binarized Statistical Image Features (BSIF)[18]. The descriptors are obtained
by convolving the image with the set of filters in the BSIF filter bank which is learnt
using the independent component analysis of natural image patches. The choice of
BSIF filters to extract the descriptors is motivated by high biometric performance
reported in many earlier works [5, 18, 19]. Further, to make the descriptors highly
unique, we employ both block-based feature extraction and multi-scale represen-
tation through the use of a number of filters from BSIF. Specifically, we employ
the filters that correspond to 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15
and 17 × 17 pixels with eight orientations. The pixel-wise response from the con-
volution of different orientation filters within a chosen filter is combined to obtain a
final response through the thresholding and binarization approach such that a value
between 0 − −255 is obtained for every pixel [18]. The extracted features are fur-
ther represented using histogram representation in the subsequent steps. Further, the
uniqueness of the features from biometric images is enhanced through block-based
approach where prior to extracting the BSIF features, each image is divided into a
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Fig. 15.2 Schematic representation of learning hash function for closed enrolment set

number of blocks and BSIF features extracted thereon. In this chapter, we employ
32 blocks of size 8 × 20 pixels from a resized biometric image of size 64 × 80 pix-
els. The set of all resulting histograms are concatenated to form a feature vector.
The feature vector is further binarized using a simple zero thresholding [20, 21] to
form a binary feature vector such that Hamming distance can be easily employed to
derive biometric performance. Figure15.2 presents the number of steps involved in
extracting the final feature vector in this chapter.

15.3.2 Structure Preserving Biometric Feature
Representation and Template Protection

As argued in the introduction, preserving the neighbourhood structure results in
better biometric performance and thus in this section, we discuss the approach for
preserving structure and neighbourhood within the feature vector of biometric data.
Learning compact and effective hash codes can be achieved through embedding
the original data into a low-dimensional space while simultaneously preserving the
inherent neighbourhood structure [22]. In the line of the same argument, a set ofworks
have demonstrated that nonlinear manifold learning methods are more powerful
than linear dimensionality reduction techniques as they can effectively preserve the
local structure of the input data without the explicit knowledge of global linearity
[22, 23]. Motivated by such argument, we represent the features using the manifold
representation using the t-DistributedStochasticNeighbourEmbedding (t-SNE) such
that the structural relation of biometric data is preserved [23].

Given the binary feature vector Bx for a subject x within the set of enrolment
samples, we attempt to learn the hash projection function and the details are provided
herewith. The manifold representation for a given enrolment set X such that:

X := {x1, x2, . . . , xn}

can be given by:
Y := {y1, y2, . . . , yn}

where Y is the manifold-based representation of corresponding binary feature
vectors X.
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The key objective in deriving the manifold representation for the enrolment data
q represented by xq and i by xi is that they should preserve both the neighbourhood
and the structure in the original space. Thus, the problem can be formulated as a
minimization problem that can be represented by Eq.15.1.

min{
n∑

i=1

w(xq, xi)‖yq − yi‖2} (15.1)

where Wqi = w(xq, xi) is the affinity matrix as defined in [22]. Reformulating
Eq.15.1, it can be deduced that there exists y�

q where the solution of objective function
is optimal such that:

n∑

i=1

w(xq, xi)(y�
q − yi) = 0 (15.2)

The assertion of the objective given in Eq.15.1 is that the minimized distance
between the points in embedding implies the distance between the nearest neighbours
in the original dimension is preserved. For the sake of simplicity, we skip the details
of each step, and the reader is referred to [1, 22].

Solving Eq.15.2 and rearranging the terms, y�
q can be obtained as:

y�
q =

∑n
i=1 w(xq, xi)yi∑n
i=1 w(xq, xi)

. (15.3)

Equation (15.3) is a simple formulation of manifold representation using the set
of the linear combination of the features from the enrolment set [22].

Further, as the key properties of protected templates in biometrics need to fulfil
irreversibility, revocability and unlinkability [11, 24, 25], we impose another condi-
tion to choose the sub-samples of the features via entropy-based selection to induce
the first level of randomness. Given any manifold features Y ⊆ R

r and p ∈ N, the
m-th entropy number εm(Y) of Y is defined as

εm(Y ) := inf{ε > 0|N (ε,Y , ‖ · − · ‖) ≤ m} (15.4)

where N is the covering number. Then, εm(Y ) is the smallest radius that Y can be
covered by less or equal to m balls [22].

However, the challenge in realizing Equation (15.4) is the difficulty to cover all
the wide range Y and therefore, an alternative possibility would be to use m clusters
to cover Y where the clustering can be performed byK-means algorithm. The cluster
centres are required to have the largest overall weight with respect to the points from
their own cluster, i.e.

∑

i∈Ij
w(cj, xi)
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indicating the cluster centres as expressed by ŷq. Using the relation mentioned
above, Eq. (15.3) can be written as given by Eq.15.5 along with the sign func-
tion, which translates to hash function. The hash function obtained by binarizing the
low-dimensional embedding not only preserves the manifold with neighbourhood
but also provides the binary templates [22].

h(x) = sgn

(∑m
j=1 w(x, cj)yj∑m
j=1 w(x, cj)

)
(15.5)

where sgn(·) is the sign function and

YB := {y1, y2, . . . , ym}

is the embedding for the base set

B := {c1, c2, . . . , cm}

which is the cluster centres obtained by K-means.
The approach formulated by Eq.15.5 is the manifold representation (a.k.a., em-

bedding) for the enrolment data:

Y = W̄XBYB, (15.6)

where W̄XB is defined using the cluster centres:

W̄ij = w(xi, cj)∑m
i=1 w(xi, cj)

(15.7)

for xi ∈ X, cj ∈ B.
In this chapter, we employ two different approaches to derive amanifold represen-

tation of the enrolment features. The first approach to derive manifold representation
is through Stochastic Neighbourhood preserving Embedding (t-SNE) [23] as pro-
posed in our recent work. It was shown in the preliminary work in [1] that t-SNE
based structure preserving manifold is able to preserve both biometric features as
well as performance. While in the first approach, the manifold representation and the
hashed projection is only based on the optimization of one function given in Eq.15.5,
we explore another similar approach proposed in [22] with a set of relaxations to
consider features in themanifold representation and the features in the original space.

min{
n∑

i=1

w(xi, xj)‖yi − yj‖2 + λ

n∑

xi∈Y,xj∈x

w(xi, xj)‖yi − yj‖2} (15.8)

where λ is the relaxation parameter. Through the specific reformulation provided in
[22], Eq.15.8 can be presented as the Laplacian Eigenmap. The first approach relies
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on t-SNE and is referred to as Manifold-structure Preserving Biometric Template
(MaPBiT) in our earlier work. The second approach relies on Laplacian Eigenmap
(LE), and we hereby refer to it as Manifold-structure Preserving via Laplacian
Eigenmap for Biometric Template (MaPLEBiT).

15.4 Data set and Evaluation Protocol

This section provides the details of the data set employed for the experimental eval-
uation of the approach presented in this chapter. We employ a face data set cap-
tured from smartphone that consists of images corresponding to 94 unique subjects
[5, 21]. The composition of the images in the database is provided in Table15.1.

The images are captured in 15 different attempts where 5 captures correspond
to the high-quality enrolment samples and 10 correspond to the probe attempts
under varying capture conditions such as illumination and background. We retain
the original partition of the database where the complete data set is partitioned to
Development and Testing/Evaluation. The Development set consists of data cap-
tured from 21 different subjects, while the Testing set consists of data captured from
73 subjects. The parameters of experiments such as number of filters, size of filters
and hashing features are selected on the basis of empirical trials on theDevelopment
data set. The selected parameters are used for experiments on the Testing data set to
report the results in this work.

15.4.1 Evaluation Protocols

This section outlines the experimental protocols followed in this chapter. We adopt
the protocols corresponding to the earlier works [21] that have 5 images in enrolment
set and 10 images in the probe set. The results are presented in the terms of Equal
Error Rate (EER %) such that a symmetrical error distribution of False Match Rate
(FMR) versus False Non-Match Rate (FNMR) can be visualized. The error rates
are accompanied by the Detection Error Trade-off (DET) curves to understand the
algorithmic performance.

Table 15.1 Statistics of the smartphone face biometric data set

Development data set Testing data set

Subjects 21 73

Device Samsung Galaxy S5 Samsung Galaxy S5

Reference images 5 5

Probe images 10 10

Genuine comparisons 1050 3650

Impostor comparisons 21,000 262,800
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15.5 Experiments and Results

Along with the results from the proposed approach in this chapter, we present the
results from two other approaches that correspond to the performance from un-
protected biometric templates and another set corresponding to protected templates
through Bloom filter approach. A significant difference to be noted in the experi-
mental protocols is that while the unprotected and protected template performance
is independent of enrolment samples, the proposed approach relies on the known
enrolment set (closed-set biometric scenario).

Unprotected Templates: In order to provide biometric performance, we provide
the baseline evaluation with unprotected biometric templates using the multi-scale
block-based Binarized Statistical Image Features (BSIF) which are derived using a
set of varying filters of size such as 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13,
15 × 15 and 17 × 17 with each of basis size corresponding to eight layers. Further,
the biometric face image is partitioned into 32 different blocks of size 8 × 20 pixels as
discussed earlier in Sect. 15.3.1. The resulting concatenated histograms are binarized
using simple zero thresholding, and the distance between two histograms ismeasured
using Hamming distance in the unprotected domain.

Bloom filter Template Protection: In a similar manner to unprotected templates,
we employ Bloom filter representation to derive protected templates using the fea-
tures as discussed in Sect. 15.3.1. Further, Hamming distance is employed tomeasure
the dissimilarity between the protected templates to derive the biometric templates
[21].

Proposed Template Protection Schemes: In order to evaluate the proposed ap-
proaches, we adopt features as outlined in Sect. 15.3.1. As the features are further
represented in binary format, we employ simple Hamming distance to derive the bio-
metric performance. The key difference here compared to unprotected and Bloom
filter based template protection is the number of filters employed. In the proposed
approach, we employ block-based approach with only 9 × 9 pixels with 8 bits while
both unprotected and Bloom filter based templates employ 8 different filters along
with block-based approach.

15.5.1 Discussion on Results

As it can be observed from Table15.2 and Fig. 15.3, the proposed approach (both
variants) provide better performancewith respect to both FMRandFNMR.The better
results compared to unprotected templates can be fully attributed to the optimization
procedure in selecting the unique bits for the hash. While one can argue that the
performance is primarily due to optimization from the known set, it can be counter-
argued that data from pseudo-users can be used to derive the templates for each
user of the smartphone. Given this argument, we are justified in using this approach
to obtain the performance close to unprotected templates. The obtained results have
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Table 15.2 Results obtained for unprotected templates, Bloom filter template & proposed template
protection (MaPBiT andMaPLEBiT). GenuineMatch Rate (GMR) reported at FalseMatch Rate of
0.01%. The results with ± presents the average variance over a number of experimental evaluation

Template Face

EER GMR

Unprotected-MBSIF 1.65 90.05

Protected-Bloom filter 2.91 82.68

Protected-Proposed-MaPBiT 0.65 ± 0.18 92.10 ± 0.78

Protected-Proposed-
MaPLEBiT

0.82 ± 0.12 89.45 ± 0.57

Fig. 15.3 Comparison of
biometric performance using
DET for smartphone face
biometric data set
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validated our intuition that retaining the inherent structural similarity of biometric
features via neighbourhood preserving embedding improves the protected template
performance. Further, the results also suggest that the approach can be used in two
different variants with t-SNE and Laplacian Eigenmap based manifolds.

15.5.2 Unlinkability Analysis

This section presents the unlinkability analysis of the proposed approach through
the metric proposed in [12, 26]. Here, it is assumed that the same biometric system
is deployed for two different applications, and it should not be possible to tell if an
individual present in one is also present in the other. The biometric templates from
the same individual (one template from each application) are compared to generated
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Fig. 15.4 Unlinkability analysis of proposed template protection

mated score distribution. Similarly, the biometric templates fromdifferent individuals
are compared to generate the non-mated score distribution. Greater overlap between
the two distributions demonstrates greater unlinkability.

The score distributions of two cancellable templates are presented in Fig. 15.4
for two variants of the proposed approach. As observed from Fig. 15.4, both the
variants,MaPBiT andMaPLEBiT, demonstrate a good degree of unlinkability. This
can be interpreted through the genuine and the imposter distribution which have a
high degree of overlap indicating the low probability of linkability.

15.5.3 Limitations of Current Work and Potential Future
Works

The proposed approach in both variants has demonstrated not only good biometric
performance but also the applicability for the smartphone biometric scenario. While
the performance closely matches the unprotected template biometric performance,
the proposed approach inherently needs known enrolment set. Although this limita-
tion can be addressed through employing a set of pseudo-users, real-time analysis
with large-scale biometric data needs to be conducted. As a second advantage, the
proposed approach results in a compact template size which can be aptly used in
smartphone biometric scenario demanding very low memory size.

15.6 Conclusions

In this chapter, an approach for biometric template protection for smartphonedatawas
presented with two variants. The need for preserving the sensitivity of the biometric
datawhile respecting key properties of irreversibility, unlinkability and renewability
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has been met through the proposed approach. The chapter has systematically argued
the use ofmanifold preserving feature representation to improve the biometric perfor-
mance of template protection. The argument has been well illustrated using the two
variants of manifold representation with an experimental analysis of the proposed
approach. The results obtained on a moderate-sized face biometric database indicate
the applicability of proposed approach with a resulting accuracy of EER ≈ 0.65%
for the first variant (t-SNE) and the EER ≈ 0.82% for the second variant (Lapla-
cian Eigenmap), both of which are better than the EER (1.65%) of the unprotected
biometric system. Unlinkability analysis of the proposed approach has shown very
low chance of linkage issues and thereby providing the better cancellable biometric
templates in a closed-set scenario.
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Chapter 16
Security, Privacy, and Usability
Challenges in Selfie Biometrics

Mikhail Gofman, Sinjini Mitra, Yu Bai and Yoonsuk Choi

Abstract Frombiometric image acquisition tomatching to decisionmaking, design-
ing a selfie biometric system is riddledwith security, privacy, andusability challenges.
In this chapter, we provide a discussion of some of these challenges, examine some
real-world examples, and discuss both existing solutions and potential new solutions.
The majority of these issues will be discussed in the context of mobile devices, as
they comprise a major platform for selfie biometrics; face, voice, and fingerprint
biometric modalities are the most popular modalities used with mobile devices.

16.1 Introduction

Modern mobile devices support face, voice, fingerprint, and iris recognition. These
biometric systems operate under uncontrolled conditions; they must contend with
security threats of fake biometrics; they must protect against the divulgence of bio-
metric templates if the device is lost or stolen; and they are constantly pressured to be
user-friendly. In this chapter, we will provide an overview of security and usability
challenges and solutions in mobile biometric systems. Special focus will be placed
on issues of security attacks involving fake biometrics, template security, and the
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making of mobile biometric systems user-friendly. The chapter concludes with the
discussion of case studies concerning selfie biometric systems.

16.2 Security Issues Overview

The iPhone 5swas among the first commercially successful consumermobile devices
that supported fingerprint recognition [1]. Within a week of its release (2013), Chaos
Computer Club (CCC), a German hacker group, had bypassed the fingerprint sensor
“using easy everyday means.” According to the CCC website:

The fingerprint of the enrolled user is photographed with 2400 dpi resolution. The resulting
image is then cleaned up, inverted and laser printed with 1200 dpi onto transparent sheet
with a thick toner setting. Finally, pink latex milk or white wood glue is smeared into the
pattern created by the toner onto the transparent sheet. After it cures, the thin latex sheet is
lifted from the sheet, breathed on to make it a tiny bit moist and then placed onto the sensor
to unlock the phone. [2]

Since then, methods were identified that could both bypass fingerprint recognition
on later models of Apple iPhone [3]—and onAndroid-based devices [4]—and defeat
face recognition systems on more modern devices, such as the iPhone X (released
in 2017) [5, 6]. Attacks of this type are becoming progressively more sophisticated
and effective as hackers continue to develop new methodologies. As an increasing
number of users continue to ditch passwords and pin codes in favor of selfie biometric
systems as their primary security gatekeepers, it is critical that these systems remain
resilient to security attacks.

In addition to the security threats posed by fake biometric attacks, there exist
concerns about the security and privacy of the data in the biometric templates. A
template is a digital representation of the user’s identifying features that are created
from biometric samples initially supplied by the user when he/she sets up his/her
device. The samples provided at the time of authentication are then matched against
the stored template. If a template is divulged—say, if the device is lost, stolen, or
hacked—hackers can use the template data to bypass biometric systems that use the
same biometric modality.

The consequences of stolen biometric data are exacerbated by the fact that bio-
metric modalities cannot be as easily changed as passwords can.Moreover, the stolen
template data can be used for surveillance purposes in order to track users while they
use the compromised biometric in different places and at different times.

These security concerns prompted mobile device manufacturers and security
researchers to develop various software- and hardware-based defenses. To give the
reader a better grasp of these security challenges and solutions, we begin with a
generic threat model applicable to all biometric systems. We then focus on develop-
ing solutions to defend against trait-spoofing attacks and protect templates in mobile
devices.
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16.3 The Threat Model

The model depicted in Fig. 16.1 is adapted from Ratha et al. [7].
In this model, the sensor is used to acquire the raw biometric data. Next, the

feature extractor module extracts the identifying information from the raw data. The
features are then matched against the templates of enrolled users by the matcher
module. Finally, the matcher outputs a “yes/no” decision as to whether the sample
supplied during authentication matches the stored template.

The system in Fig. 16.1. The selfie biometric system threat model is susceptible
to the following threats:

1. The attacker can place or present a fake biometric on the sensor or in front of
the camera (e.g., a fake finger or a photograph of a face) in order to result in a
false positive identification of an illegitimate subject. Multiple such attacks have
proven to be successful against mobile devices [3–5].

2. Raw biometric data from the sensor can be recorded and replayed such that the
attacker may gain access to the system (e.g., voice samples).

3. A feature extractor may be replaced by the attacker with another extractor that
generates a predetermined set of features.

4. Features extracted from biometric data can be replaced with some other features
chosen by the attacker.

5. A trait-matching algorithm can be replaced with the attacker’s own matching
algorithm.

6. Biometric templates can be accessed by and tampered with by the attacker. This
includes insertion, deletion, modification, or theft of the templates.

7. The retrieval of the template from the template database can be compromised;
for example, the attacker can replace the template retrieved from the requested
user with his/her own template.
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4. Synthesized
Feature Vector

2. Replay
Old Data

5. Override
Matcher

8. Override
Final Decision

3. Override Feature Extractor

6. Modify
Template

7. Channel 
Interception

Yes/No

Biometric

Feature 
Extractor

MatcherSensor

Stored Templates

Fig. 16.1 The selfie biometric system threat model
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8. The decision of the identity verification system can be overridden by the attacker
such that he/she may gain unauthorized access to the system or deny access to a
legitimate user.

Mobile device manufacturers have developed specialized computing hardware
that helps mitigate attacks (2)–(8), such as the Apple Corporation’s Secure Enclave
processor [8] used with iPhones. This hardware is physically isolated from the main
computing architecture of the device. Therefore, even if the applications, operating
system, and the primary computing hardware are compromised, the function of the
biometric system remains unaffected.

To further mitigate an attack (8), the templates store an output of a one-way func-
tion computed from the original biometric features. This output can still be used to
match the features while rendering the derivation of the original identifying features
computationally difficult or impossible. This is an important consideration in mobile
devices because, even if the data is stored on a physically isolated, tamperproof hard-
ware chip, attackers can disassemble a lost or stolen device in an attempt to bypass
tamperproof hardware security mechanisms and thus retrieve the data.

Attack (1) remains an important concern. Some recent, noteworthy compromises
of selfie biometric systems include:

• According to The Verge, “All it took was some dental mold to take a cast, some
play-dough to fill it, and then a little trial and error to line up the play-dough on
the fingerprint reader. We did it twice with the same print: once on an iPhone 6
and once on a Galaxy S6 Edge” [9].

• According to MyBroadband: “[When] our new gelatin [cast of person’s finger-
prints], was placed on the Nokia 5’s sensor, the result was almost instant—the
device was unlocked” [10].

• iPhone X’s Face ID face recognition was bypassed by a Vietnamese company who
created a 3-D mask of the individual’s face that the device recognized as the face
of the legitimate user [5].

• There were reports of children using their faces to unlock their parents’ locked
iPhone Xs using Face ID because children’s faces may be sufficiently similar to
their parents’ faces [11].

• There were reports and demonstrations of iPhone X being unlocked by people
who did not look alike [12].

• Banking mobile applications based on face recognition have been bypassed using
a pre-recorded video of the user’s face [13].

To help combat these and similar attacks, researchers andmobile device manufac-
turers have developed more robust sensors and additional hardware-based liveness
testing techniques. These techniques help ensure the biometric reading from the sen-
sor is indeed given by a living human being (e.g., checking the finger’s pulse during
fingerprint recognition and requiring eye blinking during face recognition).

A variety of software-based data processing techniques for detecting spoofed bio-
metrics have also been proposed. Some have focused on frustrating attacks directed at
specificmodalities (e.g., face, voice, and fingerprint), while some proposed recogniz-
ing people based on multiple biometric modalities in order to challenge the attacker
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to falsify more than one modality. Although these measures are useful, experience
implies that all measures are likely to be eventually defeated by the attackers—the
question is not “if,” but rather, “when.” Regardless, continuous innovation in tech-
nologies and methods for detecting fake biometrics is a practical necessity.

Next, we discuss attacks (1) and (7) along with their countermeasures. In selfie
biometrics, these particular attacks have proven to be the most widely executed in
practice, the most widely discussed in the literature, and the utmost focus of public
concern.

16.3.1 Presentation Attacks

Throughout this section, we use the ISO/IEC 30107 standard definition of a “presen-
tation attack”—“presentation of an artifact or human characteristic to the biometric
capture subsystem in a fashion that could interfere with the intended policy of the
biometric system” [14]—to refer to attacks involving falsified biometrics.

Presentation attacks have been a concern in biometric systems since the field’s
inception. An attacker can utilize knowledge of, for example, a user’s fingerprints
in order to fabricate a fake finger that he/she can then apply to the sensor and foil
the system. Similarly, an attacker can hold up a photograph of the user’s face before
the camera in an attempt to unlock a mobile device that uses face recognition as
a gatekeeper. Biometric researchers, manufacturers, and standardizing groups (e.g.,
International Organization for Standardization Standards Office and National Insti-
tute of Standards and Technology [NIST]) are currently working to develop efficient
methodologies to stop such attacks.With the increasing reliance onmobile biometrics
in government applications, NIST developed a protocol to ensure security in mobile
device biometric applications [15]. Selfie biometric systems in mobile devices have
added a sense of urgency to these efforts; although proven vulnerable, millions of
consumers and organizations continue to rely on the security afforded by face and
fingerprint recognition on their mobile devices.

Protecting devices against presentation attacks is challenging. First, additional
hardware may be needed to allow biometric sensors to differentiate between a real
biometric and a spoof. The increased costs and design complexity are problematic
for mobile selfie biometric systems wherein strict size and cost constraints pose
issues. Second, many mobile devices have limited computational resources, which
precludes the use of the best available software approaches that can be computation-
ally intensive.

Next, we discuss presentation attacks and countermeasures for face, fingerprint,
and voice modalities that are commonly used in mobile device biometrics.
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16.3.2 Face Presentation Attacks

Face presentation attacks are classified based on whether they use 2-D or 3-D face
artifacts. 2-D attacks typically involve the use of 2-D face videos, still photographs,
and other forms of 2-D artifacts to deceive systems that identify people based on 2-D
images (as manymobile selfie biometric systems do). 3-D attacks use 3-Dmasks and
other types of 3-D artifacts to deceive face recognition systems based on 2-D or 3-D
face images. According to a survey conducted by Galbally et al. [16] and Rattani and
Derakhshani [17], the specific techniques in these categories can be summarized in
the following ways.

(1) Photograph attacks: These involve presenting the camera with a 2-D face
photograph of the legitimate user. The image can be printed on paper or displayed
on the computer screen. This type of attack was successful against early versions of
Android’s face unlock feature [18] as well as modern Android-based devices (e.g.,
Samsung Galaxy S8 [18]).

If the system requires that the user blink, an animated image that mimics blinking
can be created. Another technique involves creating a copy of the original face
image, creating another image with the eyes erased, and then rapidly alternating
these two images on the computer screen positioned in front of the camera. Such a
technique was used to defeat the blinking detection mechanism in face unlock that
was introduced in Android to counter presentation attacks [18].

Blinking can also be faked using a printed 2-D mask of the face with holes cut
out for the eyes and mouth. The attacker then wears the mask in front of the camera
and replicates natural blinking and mouth movements as needed [19].

(2) Video attacks: The attacker presents the camera with a video of the legitimate
user’s face. The video preserves a face’s movements and texture and therefore can
defeat rudimentary anti-spoofing mechanisms such as blinking [20]. This attack has
been successful against mobile banking applications that utilize face recognition
[19].

(3) 3-D mask attacks: Here, the attacker uses a 3-D mask of the legitimate user’s
face. Although the task of creating a 3-Dmask is generallymore difficult than finding
a photograph or video of the legitimate user’s face, the task is becoming easier due
to the availability of 3-D printers capable of cheaply producing high-quality masks
and services; for example, www.thatsmyface.com, for a current fee of $299 (at this
point in time), can create a 3-D wearable mask from a 2-D face photograph. Another
variation of a 3-Dmask attackwas used to bypass iPhoneX’s face recognition system
based on 3-D imaging [21].

The research into 3-D mask attacks and defenses has recently accelerated
due to the availability of datasets featuring different types of 3-D masks, such as
3-MAD [22].

Galbally et al. also discuss feature-level dynamic, feature-level static, sensor-level,
and score-level approaches for defeating presentation attacks.

Feature-level dynamic approaches analyze the movements of the different face
regions in order to detect a still 2-D photograph. The central idea is that the move-
ments of the real face and the movements of the printed image will be different. They

http://www.thatsmyface.com


16 Security, Privacy, and Usability Challenges in Selfie Biometrics 319

can also use challenge–response protocols requiring that users blink or make specific
face gestures, such as smiling or turning. Although feature-level static techniques
can help defeat attacks based on 2-D still photographs, they are less effective against
video spoofs that contain natural movements. They do, however, make video spoof-
ing attacks somewhat more difficult, as the attacker must find or fabricate a video of
the victim performing a specific gesture.

More advanced feature-level countermeasures include comparing the movements
of the foreground and background, implementing techniques that use local binary
patterns (LBPs) [23] in order to track face movements or detect texture properties
of a live face, analyzing face photographs taken in sequence in order to infer the
3-D structure of the face, and estimating the noise resulting from capturing the
photograph.

Although Galbally et al. argue that face anti-spoofing, feature-level dynamic tech-
niques require multiple face images during authentication and hence will not work
in applications wherein a sequence of face photographs is unavailable, we believe
this will not be a problem in the majority of mobile selfie biometric systems wherein
such sequences can be readily captured from the device camera. However, if only
one image is available, then the feature-level static approaches can be applied; these
are generally faster yet tend to be less robust than their feature-level dynamic coun-
terparts.

Feature-level static analysis techniques detect spoofed face images based on the
single image rather than a sequence of images. Many techniques in this category are
based on analyzing the texture of the face [24]. If a sequence of photographs or a
video is available, then these techniques can be applied to individual photographs or
video frames. The results of the analysis of each frame can then be fused together
and the decision can be made based on the final score. This, however, is believed to
be a less robust method than using the feature-level dynamic techniques described
above.

Sensor-level techniques differ significantly from static and dynamic feature-level
fusion techniques and typically require the integration of additional hardware into
the sensor. These can include, for example, an extension of the sensing capabilities
with the addition of the infrared or near-infrared (IR/NIR) cameras that capture
information beyond the visible spectrum. Recent mobile devices such as iPhone X
have recently started using special cameras that construct 3-D face models for face
recognition [25], which help defeat spoofing using 2-D photographs and videos. The
iPhone X Face ID camera projects IR rays onto 30,000 points of the face to construct
a 3-D image of the face. A 2-D IR scan is also captured. According to an Apple white
paper discussing Face ID [26]. “This data is used to create a sequence of 2-D images
and depth maps” that are then used for authentication.

Although the Face ID system has already been bypassed, it thus far (at this point
in time) appears to be more difficult to spoof [26] according to the many documented
reports of failed spoofing attempts (i.e., 2-D photographs and videos, 3-D masks)
that have worked against other devices. We, therefore, believe that combining IR
and 3-D imaging techniques will certainly bring greater security to face recognition
on mobile devices. The challenges of doing so require addressing the open research
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questions of optimally combining IR/NIR and 3-D data while coping with physical
space, manufacturing costs, and computational constraints.

Score-level approaches employ different anti-spoofing strategies. Each strategy
is implemented as a module that outputs a score indicating the likelihood that the
face image is a spoof, and the scores from the different modules are then combined.
The resulting score is then used to judge whether or not the image is a spoof.

Overall, we believe the most effective approaches will occur from combining
static feature, dynamic feature, score-level, and sensor-level techniques; each tech-
nique possesses unique strengths. Advancements in mobile sensors and computing
technologies are also expected to pave the way toward the development of new
approaches to combat spoofing attacks. Furthermore, increased computing power
capable of scaling increased computational loads imposed by the use of multiple
presentation attack detection techniques will make the simultaneous implementation
ofmultiple and simultaneous feature-level static, feature-level dynamic, sensor-level,
and score-level techniques a possibility.

16.3.3 Fingerprint Presentation Attacks

Fingerprints are the most popular biometric [27]. Unlike, for example, the face or
voice, fingerprints work well in poorly lit and noisy environments. At the same time,
fingerprint recognition systems continue succumbing to presentation attacks. Some
attacks are as simple as using various sticky materials to pick up a latent fingerprint
fromsurfaces and then apply the captured print to the reader,whilemore sophisticated
attacks include the use of 3-D printed fingers [28].

Marasco and Ross [29] published a survey documenting presentation attacks and
proposed countermeasures.We use the survey to guide our discussion of the different
types of attacks and countermeasures and then include remarks on their applicability
in the mobile device context while discussing and analyzing modern works that
specifically focus on mobile devices.

The attack types are categorizedbasedon themethods used for faking afingerprint:

Cooperative duplication: This occurs when the subject voluntarily presses
his/her fingerprint into plaster or a similar material that captures the inverted impres-
sion of the fingerprint. The mold is then filled with some liquid material that later
hardens and thus captures the actual impression of the fingerprint (e.g., gelatin).

This type of attack can be difficult to execute with mobile devices, as many
users are unlikely to cooperate with the process. Indeed, when the authors of this
chapter were constructing a multimodal biometric dataset constituting the face, ear,
and fingerprints, nearly fifty volunteers were willing to donate their faces and ears.
At the point in time this study was written, only a handful were willing to donate
fingerprints.
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Non-cooperative attacks: These types of attacks do not require the subject’s
cooperation and are a serious threat to mobile device fingerprint recognition. These
can be divided into four sub-categories:

1. Latent fingerprints: When a finger touches certain surfaces (e.g., glass, metal,
wood), it leaves a fingerprint impression. These impressions may then be col-
lected and used for presentation attacks. Various techniques for collecting fin-
gerprints have been developed [30] and are applicable for mobile fingerprint
readers.

2. Fingerprint re-activation: When the finger contacts the sensor, it leaves a fin-
gerprint. That fingerprint can be reactivated using techniques such as breathing
on the sensor or applying graphite powder.

Earlier generations of fingerprint scanners, such as those used for the Samsung
Galaxy S5 [31], required that the user swipe the finger across the sensor. Newer
sensors, such as those used for the Samsung Galaxy S9, allow the user to press the
finger onto the sensor and hold it in place. This is believed to be more user-friendly
than swiping. However, since the swiping motion tends to wipe or at least distort
the latent fingerprints (i.e., fingerprints left on the sensor surface from previous con-
tact)—unlike pressing and holding—such an attack becomes a theoretically greater
concern. More research is needed in order to establish the real extent of the threat.

3. Cadaver: This involves the use of a dead finger to unlock a device. According
to multiple reports from law enforcement professionals, it is not uncommon for
crime investigators to apply the fingers of corpses to the iPhone fingerprint reader
in order to unlock the deceased person’s device [32, 33]. These reports come in
spite of the claims that anti-spoofing measures in the iPhone fingerprint sensors
can successfully discriminate between a living and a dead finger [34].

4. Fingerprint synthesis is the use of the user’s biometric template stored by the
system in order to reconstruct the fingerprint. Such an attack inevitably requires
access to the template. Apple and various Android-based mobile device man-
ufacturers currently possess dedicated hardware and software that prevent the
compromise of the template data that can frustrate this attack. The details of
template security approaches will be discussed in the forthcoming sections.

5. Other techniques: Attackers can employ schemes to steal people’s finger-
prints—e.g., by leavingmaterials on surfaces often touchedbypeople that capture
fingerprints. Materials can include gel, plaster, or forensic fingerprint powders.
The attacker can then later return to collect fingerprints.

A more sophisticated form of attack would involve secretly embedding a finger-
print scanner that produces high-resolution images of fingerprints or a device that
captures the fingerprint topology in ATM machines and other places that frequently
come into contact with human fingers. Indeed, a malicious mobile device manufac-
turer can choose to purposely leak fingerprint images from the user’s phone back to
the manufacturer, where they can then be used for presentation attacks.

A person’s fingerprints can also be obtained through coercion or secretly without
consent—e.g., pressing the finger into gel or plaster while the victim is asleep or
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distracted. The efforts and risks may well be worth the reward depending on the
attacker’s purpose.

Other potential, less orthodox threat vectors may exist as well. For example, it has
been discovered that iPhone’s Touch ID system allows the enrollment of pawprints
of cats [35], dogs [36], and hedgehogs [37]. Some pet owners have allegedly used
this technique to protect their phones (although we could not verify the validity of
these accounts). Therefore, an attacker with access to the user’s pet can replicate the
pawprint using cooperative duplication techniques described above.

Next, we discuss techniques for countering the fingerprint presentation attacks.
First, we provide an overview of the different types of defense measures and then
discuss defense measures used with modern mobile devices.

Marsasco et al. [29] separated anti-spoofing techniques into two categories:
hardware-based and software-based. Hardware-based measures require that addi-
tional anti-spoofing hardware be integrated into the sensor such that the sensor may
discriminate between a live finger and a spoof. Software-based techniques process
the biometric data and features in order to detect anomalies that can signal a spoof-
ing attack. Such techniques can be broken down into dynamic and static techniques.
Dynamic techniques include detecting ridge-based distortion and fingerprint perspi-
ration properties. Static techniques include detecting anomalies in the finger texture,
detecting the pattern of the sweat pores on the finger, and detecting the fingerprint’s
perspiration properties (using methods different than dynamic). Next, we discuss
these techniques in the context of mobile biometrics.

Hardware-based techniques: The integration of hardware-based measures into
mobile devices can be challenging and is subject to cost and physical space con-
straints. We briefly examine some of these technologies developed by Apple and
manufacturers of the various Android-based devices.

Optical fingerprint scanners are the oldest method of capturing and comparing
fingerprints that rely on capturing an optical image and using algorithms to detect
a user’s biometric patterns, such as ridges and valleys (see Fig. 16.2), by analyzing
the lightest and darkest areas of the optical image. The major drawback of optical
scanners is that they are not difficult to bypass, since only 2-D pictures are captured

Fig. 16.2 Fingerprint ridges
and valleys
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and can be replaced with prosthetics or other high-quality pictures. Therefore, this
technique is not widely used in modern devices.

The most commonly found type of modern fingerprint scanner is the capacitive
scanner. Such a scanner was used in iPhone 5s, which was the first mobile device
produced by Apple to support fingerprint recognition. The fingerprint reader used a
capacitive sensor to read the pattern of fingerprint ridges and valleys (see Fig. 16.2).
Rather than creating an optical image of a fingerprint, capacitive fingerprint scan-
ners use arrays of tiny capacitor circuits to collect data from a user’s fingerprint. The
advantage of such sensors compared to traditional optical sensors, which simply take
photographs of the ridges and valleys, is that capacitive sensors actually require that
the finger applied to the sensor has the proper shape. Therefore, such sensors cannot
be deceived by simple attacks wherein the attacker applies a fingerprint image to the
sensor. Capacitors store electrical charges that are connected to conductive plates on
the surface of the scanner to track a fingerprint’s details. The charge stored in the
capacitor will be changed slightly when a finger’s ridge is placed over the conduc-
tive plates, and the air gaps between ridges will leave the charge at the capacitor
unchanged. An op-amp integrator circuit is used to track these changes by causing
the output to respond to changes in the input voltage over time. The result is then
recorded by an analog-to-digital converter.

The latest fingerprint technology is an ultrasonic sensor, and Qualcomm’s [38]
Sense ID [39] ultrasonic fingerprint sensing technology is a major player in this
arena. In order to capture the biometric details of a fingerprint, the hardware is
composed of both an ultrasonic transmitter and a receiver. An ultrasonic transmitter
transmits a pulse against the finger that is placed over the scanner. Some pulses are
absorbed, while others are bounced back toward the receiver—depending on the
type of biometric traits, such as ridges, valleys, and pores. Hence, depending on the
signals received, a map of the fingerprint features is created. These types of scanners
require that the fingerprint to have proper shape and hence cannot be deceived with
a simple fingerprint photograph.

In order to prevent fingerprint spoofing, anti-spoofing technology can be imple-
mented in software, hardware, or both. Hardware-based solutions have the advantage
of a greater ability to detect the liveness of the finger that is scanned, but require addi-
tional hardware capabilities in the fingerprint scanner—such as the ability to sense
pulse, temperature, and capacitance—that cannot be performed using software alone.

Typical fingerprint anti-spoofing systems measure parameters such as temper-
ature, electrical conductivity, pulse oximetry, and skin resistance, and the built-in
logic ensures the sensed value is within an acceptable range. The system includes a
fingerprint sensor to capture fingerprint image data, coupled with a spoof detection
module that may consist of the following components:

1. Logic that is programmed to determine the probability of a spoof from a combi-
nation of metrics derived from the fingerprint image data.

2. A metric generator is included to generate the metrics, and classifier logic is
included to generate the raw probability from the metrics that the fingerprint
image data was generated from a synthetic material.
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3. Adjustor logic is included to adjust the raw probability by a base probability
to generate the spoof probability. The base probability is generated from stored
metrics based on fingerprint image data captured during an enrollment step.

4. A filter is included to divide the fingerprint image data into multiple windows.
The classifier logic is also programmed to determine the spoof probability based
on a comparison of the values computed from each of the windows.

5. An access module is coupled to a host system that is programmed to grant access
to the host system when the spoof probability is within a predetermined range.
This host system can be any one of various electronic devices, such as a smart-
phone, touchpad, digital camera, personal computer.

6. A storage is also included to store the metrics that are obtained in the previous
steps. The storage is coupled to the spoof detection module over a network, and
the stored metrics are encrypted.

7. A metric calculator is included and coupled to the classifier logic. The metric
calculator is programmed to calculate multiple metrics from fingerprint image
data.

Software-based techniques: Next, we discuss the dynamic and static software-
based techniques that analyze sequences of fingerprint images to detect spoofs. Image
sequences can be captured while the user holds the finger to the sensor for a few
seconds. Marasco and Ross documented the following dynamic techniques:

1. Perspiration-based techniques: It is common for fingers to perspire. These
approaches analyze a sequence of fingerprint images captured over a short period
of time to track the progressive flow of sweat that originates in the sweat pores
(located along the fingerprint ridges) andmoves across those ridges. The presence
of sweat makes the ridge areas between pores appear darker than the surrounding
areas. The presence of these patterns is evidence of a live finger. To the best of our
knowledge, this approach has not yet been attempted on mobile devices although
presents an interesting research opportunity.

2. Ridge distortion techniques: When the finger is moved around the sensor while
being pressed, the resulting fingerprint image becomes distorted. Unique prop-
erties of the skin produce significantly greater distortion for a live finger than a
spoofed one. The amount of distortion can be measured by assuming the first
image is non-distorted and then comparing the distortion in the first image to
the other images in the sequence. Specifically, the system can look for a positive
correlation between the increase of the fingerprint area and the intensity of the
signal, both of which occur when pressure is applied to the surface of the finger.

Static features: Techniques in the category rely on a single image rather than a
sequence, which makes the approach more efficient albeit less robust. Static features
include the unique texture of the skin, properties of the skin elasticity, or perspiration-
based features.

Live and spoofed fingerprints have different textures characterized by morphol-
ogy, smoothness, and orientation. Marasco and Ross identified the following texture-
based approaches:
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1. Texture-based: Materials such as silicon and gelatin that are commonly used
for creating spoofed fingerprints tend to be less smooth than the skin of a real
finger. The extra coarseness can be measured in terms of the standard deviation
of the remaining residual noise after the original image is denoised, wherein a
larger deviation would be associated with a coarser surface. This approach, as
is the case with most static approaches, is expected to scale favorably to mobile
devices. Avila et al. [40] seem to agree, and they discussed this technique in
their technical report on state-of-the-art liveness detection measures for mobile
devices.

2. First- and second-order statistics: A live fingerprint can be distinguished from
the spoof based on the differences between probabilities in observing a particular
gray value at the random location on the image or based on the non-uniformity
of gray areas distributed along the ridges due to sweat pores and other factors in
the fingerprint anatomy. First-order statistics (i.e., mean, energy, entropy,median,
variance, skewness, kurtosis, and coefficient of variation) canbeused tomodel the
distribution of gray levels, while second-order statistics construct the joint gray-
level function between pairs of pixels. Both types of statistics can be efficiently
computed on a modern mobile device.

3. Local-ridge frequency analysis: This approach [41] is based onmulti-resolution
texture analysis and inter-ridge frequency analysis. It measures how the distribu-
tion of the gray levels in the fingerprint image changes in response to the changes
in the fingerprint structure. Moreover, cluster shade and cluster prominence fea-
tures are used, both of which are computed based on the co-occurrence matrix
constituting the joint probability function of two elements in a given direction
and distance. Finally, these multi-resolution analysis features are combined with
ridge frequency features, and a fuzzy-C-means classifier is then used to classify
the combined feature set as legitimate or illegitimate.

As Marasco and Ross point out, this approach benefits by not depending on the
perspiration phenomenon. However, local-ridge frequency analysis can be affected
by cold weather, skin conditions, and dirt and moisture on the finger. This can be
very problematic in mobile use cases wherein fingerprints are expected to operate in
uncontrolled conditions that often include the aforementioned situations.

4. Local phase quantization (LPQ) analysis: A fingerprint can be rotated in many
different ways. A rotation invariant LPQ technique can identify the spectral dif-
ferences between a legitimate fingerprint and a spoof. The technique has the
advantage of remaining robust against blurring and is likely to scale well to the
mobile device’s limited resources, as evidenced in the work by Jiao and Deng
[42], who used LPQ in an indoor positioning application based on the mobile
device camera.

5. Power spectrum analysis [43]: Creating a spoofed fingerprint changes the fre-
quency details between the ridges and valleys of a fingerprint. This, in turn, results
in a spoofed fingerprint image containing fewer high-frequency characteristics
than a live fingerprint. The amount of high-frequency data can be computed using
Fourier transform. There are currently many libraries, such as TarsosDSP [44],
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that support Fourier transform. Therefore, we believe the technique is likely to
prove viable for mobile devices.

6. Local binary patterns (LBPs): Real and spoofed fingerprint images have differ-
ent textural characteristics that can be described using LBP features. The original
LBP algorithm was proposed by Ojala et al. [45] and assumes a localized 3 × 3
pixel image region. LBP is then computed by subtracting the gray value of the
center pixel from the other pixels in the region. If the difference is less than or
equal to 0, then the result is 0; otherwise, it is 1. Thus, the values of the surround-
ing pixels are binarized. Finally, the binarized value of each pixel is multiplied
by the original value, and the results are summed in order to obtain the LBP
operator. Mobile device libraries, such as OpenCV [46], include functions for
extracting LBP.

Nikam and Agarwal [47] fused LBP features with wavelet-based features to rep-
resent ridge frequency and orientation information. The dimensionality of the fused
dataset was then reduced using the Sequential Forward Floating Selection (SFFS)
algorithm [21] and was then classified using a hybrid classifier approach that com-
bined neural networks, a support vector machine, and the k-nearest neighbor (k-NN).

Jia et al. [48] argued that the 3× 3 area fails to capture some useful textural infor-
mation of the fingerprint. To address this, they proposed a multi-scale LBP operator
(MSLBP). In their work, they utilized two approaches: (1) increasing the radius of the
area beyond a single pixel, and then (2) applying filters to the original image as well
as applying an LBP operator in the fixed radius. Evaluation on the Liveness Detec-
tion Competition 2011 (LivDet2011) database [49] showed a significantly greater
increase in spoofing detection accuracy compared to the traditional LBP approach.

A more recent work by Kumpituck et al. [50] proposed that LBP be used to char-
acterize the local appearance of sub-band images— images coded using the sub-band
coding technique that decomposed the image into different constituent frequencies
and then encoded each frequency separately. They first decompose the original image
using a two-dimensional discrete wavelet transform (2D-DWT) in order to obtain
a sub-band image. LBP extraction is then performed on the resulting image, and
the extracted features are used to train the SVM classifier. The trained classifier is
then used to classify images as either live or spoofed. The authors then evaluated
their approach using the LivDet [49] database containing spoofed fingerprint samples
and reported that using LBP derived from the sub-band images more significantly
improves spoofing classification accuracy compared to the traditional approaches
that use wavelet energy from sub-band energy. 2-DWT [51] as well as LBP extrac-
tion has been previously performed on mobile devices and is thus computationally
viable.

Other approaches: Other static approaches includeWeber Local Descriptor [52]
and Binarized Statistical Image Features [53], both of whose computational demands
consist primarily of linear algebra operations that can be efficiently implemented on
modern mobile devices.
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Perspiration-based features:

1. Individual pore spacing: Perspiration around the perspiration pores results in
a recognizable pattern of gray levels. FFT can be used to detect these patterns.
FFT is currently well supported through existing developer libraries for mobile
devices [54].

2. Intensity-based features: Works in this category attempt to distinguish between
real and spoofed images based on the uniformity of gray pixel distribution.
Researchers have observed that live fingerprints have a non-uniform distribution
of gray levels as well as high ridge/valley contrast values. In addition, depending
on the material used to create the spoofed fingerprint, the spoofed fingerprint
images have been observed as exhibiting less variation in the gray levels.

The conversion of gray images into grayscale and the analysis of pixel values
comprise a computationally non-intense process performed routinely in image pro-
cessing applications implemented on mobile devices.

Quality-based features: These approaches focus on discriminating between live
and spoofed fingerprints based on image quality. Quality differences can bemeasured
in terms of strength, continuity, and clarity of ridges. The hypothesis here is that
spoofed images will be weaker, less continuous, and exhibit fewer clear ridges. The
continuity can be measured by considering the energy concentrations, which can
be computed using basic statistical and linear algebra techniques. For example, the
ridge strength can be computed as a ratio of eigenvalues of the covariance matrix and
the gradient vector. Similarly, the ridges’ clarity can be computed using the mean
and standard deviation of the foreground image [52]. The relatively low overhead of
such computations makes them well suited for implementation on mobile devices.

Furthermore, as Marasco and Ross pointed out, pores located along the ridges are
difficult to spoof. Therefore, integrating quality-based features into mobile device
systems may be a promising approach to add yet another obstacle for frustrating
fingerprint spoofing.

Pore-based approaches: Manivan et al. [55, 56] firstly used a high-pass filter to
identify active sweat pores and secondly used a correlation filter to determine their
position. Others have experimented with techniques to analyze the number [57] and
distribution of pores [58] as well as the detection of active pores [59, 60] on the
fingerprint image, the main hypothesis being that differences exist between live and
spoofed images.

Rattani et al. suggested that the existing software-based anti-spoofing fingerprint
methods are not robust across fingerprint fabricationmaterials [61]. The performance
significantly drops when the fingerprint—fabricated using novel materials—is clas-
sified during the testing stage. To mitigate the impact of novel fabrication materials,
automatic adaptation [62], image preprocessing [63], and open-set, classification-
based [62] anti-spoofing schemes are proposed.

The above techniques should be computationally scalable to modern mobile
devices. Multiple packages that support efficient implementation of low- and high-
pass filtering techniques are currently available for Android [64, 65]. The remaining
statistical techniques used in these approaches may either be implemented from
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scratch or leverage the utilities provided by existing libraries, such as TensorFlow
[66]. In terms of effectiveness, more evaluation is needed for images obtained
from mobile device fingerprint readers. However, similar to previous techniques,
we believe the integration of these techniques provides a promising means to add yet
another obstacle to frustrating spoofing attacks.

16.3.4 Voice Presentation Attacks

Voice is an appealing modality for use with mobile devices, as it allows users to
interact with the device naturally through speech—the most common means for
human communication. It is currently being used with Android and iPhone devices
to interact with digital agent programs, thus allowing the user to perform tasks on the
device by iterating commands. In addition, Android’s voice unlock feature allows
users to unlock their devices by uttering “Ok Google.” The feature recognizes users
based on their unique voice characteristics.

However, the use of voice recognition for secure authentication onmobile devices
remains limited.Webelieve this is a result of the difficulty associatedwith the threat of
voice spoofing attacks. Indeed, Google’s support warns users of voice unlock: “You
can let ‘Ok Google’ unlock your device when your Google Assistant recognizes
your voice. Note: This setting can make your device less secure. A similar voice or
recording of your own voice could unlock your device” [67]. This warning refers
to the well-documented threat of a replay attack where the impostor records the
legitimate user’s voice and then replays it. Young et al. [68] have analyzed replay
attack vulnerabilities in mobile device voice recognition systems and have proposed
replay attack methodologies that can be performed using easily available software
and hardware (e.g., the Raspberry Pi computing device [69]). They built a device that
connects to the victim’s phone and injects commands to the phone’s digital assistant.
Google’s warning also refers to attacks involving zero-effort impostors, wherein the
impostor simply speaks in his/her original voice hoping the system will mistake
his/her voice for that of the legitimate user, or more sophisticated attacks wherein
the impostor uses electronically synthesized speech or attempts to speak in a way
that mimics the speech of the target user (such an impostor may potentially require
significant training and experience).

Voice recognition can either be text dependent, wherein the same phrases must be
used during the enrollment and authentication stages, or text independent, wherein
any phrase can be uttered during authentication and the recognition is based on the
sound of the user’s voice. Text-dependent recognition is generally associated with
achieving greater recognition accuracy with shorter phrases [70] and hence proves
more convenient for mobile devices than text-independent speech recognition. Both
types of systems, however, would face the challenge of dealing with spoofing attacks.
The effort involved in simply recording and replaying a voice can be as simple as
using an application on anothermobile device to record a legitimate user while he/she
attempts to unlock his/her device. Therefore, any user with a mobile device can be
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a potential attacker, which includes 77% of Americans as of 2018 [71]. We discuss
potential solutions from traditional, non-mobile voice recognition systems that may
prove useful in the context of mobile biometrics.

Spoofing vulnerabilities: Commonly used voice features include short-term
spectral, prosodic, or high-level features. Short-term spectral features are derived
from short voice frames (e.g., 20–30 ms long) and are used to describe voice timbre.
Commonly used short-term spectral features include mel-frequency cepstral coef-
ficients (MFCCs), linear predictive cepstral coefficients (LPCCs), and perceptual
prediction (PLP) features [70].

Prosodic features are syllables and words that describe speaking style and into-
nation. The use of prosodic features for authentication may not be ideal with mobile
devices because they require relatively significant training data, which might be
inconvenient for the user to supply. In addition, prosodic features based on pitch are
not robust in uncontrolled conditions [70] in which mobile devices operate.

High-level features include word usage, pronunciation, and other types of infor-
mation that can be parsed from discrete tokens of speech. These can be robust to
environmental noise but may require preprocessing in order to convert speech to text
from which high-level feature extraction is possible.

All three types of features can be spoofed. Short-term spectral features can be
spoofed by simply recording and replaying speech. Modern voice synthesizers are
also capable of reproducing short-term spectral features if given the model of the
speaker’s voice.

Prosodic features can also be reproduced using synthesizers and voice conversa-
tion systems. One approach is to use a voice synthesizer to generate fundamental
frequency trajectories that are correlated with the voice of the speaker being imper-
sonated [70].

High-level features are based on speech content and can thus be easily spoofed
by replaying the speech, which will have the same spoken phrases as the original
voice. Moreover, artificial intelligence systems and statistical models can be used to
generate speech with content sufficiently similar to that of the impersonated speaker.
Next, we discuss specific threats and their countermeasures. Specifically, we dis-
cuss countermeasures to attacks based on recorded and replayed speech, synthetic
speech, and voice conversion and impersonation. Our discussion is guided by the
survey published by Wu et al. [70] although relates the attacks and countermeasures
to mobile use cases and presents discussions of modern publications specifically
targeted toward mobile devices.

Record and replay attack countermeasures: The original approach to detecting
recorded and replayed speech was proposed by Shang and Stevenson [72]. The
approach is based on storing voice samples from past authentication attempts and
comparing these samples to the access phrase used during the authentication attempt.
The attack is considered a replay if the new sample closely matches one of the prior
samples. Such a technique may prove impractical for use with mobile devices, as
storing all prior samples would likely result in excessive storage space consumption.
In addition, the attacker might be able to obtain a sample recording sample of the
user (e.g., from an online video) that was not previously used for authentication.
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Villalba et al. proposed that the increased noise and reverberation resulting from
replaying far-field recordings be used to detect spoofing [73]. Although the tech-
nique was effective in significantly reducing the false acceptance rate (FAR), it was
attempted onboth the landline andGSMtelephony systemsyet not onmobile devices.
The approach’s effectiveness for modern mobile devices remains unclear because
much depends on the microphone and speaker technologies used in the attacks;
these can also vary widely across devices.

Wang et al. used channel noise to detect voice samples that were recorded and
replayed. The hypothesis was that the voice sample originally recorded from a live
human being would only contain channel noise from the device used by the voice
recognition system [70, 74]. A sample obtained from a replayed recording would
also contain channel noise from the recording device and the speakers used for
replay. The approach was effective in reducing equal error rates (EER) from 40.17
to 10.26% when a system based on Gaussian mixture model–universal background
model (GMM-UBM) was subject to spoofing attacks. We believe this technique can
scale to the limited computational resources of mobile devices, as GMMs have pre-
viously been used in mobile speech applications [75]. The technique’s effectiveness
in practice would require evaluation using a database of voice samples recorded on
a mobile device containing spoofed samples.

Synthetic speech attack countermeasures: Many techniques have been pro-
posed for countering attacks involving synthesized speech. These efforts are in good
measure considering that the vulnerability of voice recognition systems to voice
synthesis attacks is a well-recognized problem (e.g., [67]).

The synthesis processes are known to introduce detectable artifacts. Satoh et al.
have used intra-frame differences that were later demonstrated to work well for
synthesizers based on hidden Markov models (HMMs) that do not employ global
variance compensation [70]. Other artifacts have been observed, such as the smooth-
ing of high-order cepstral coefficients by the HMM training and synthesis processes
resulting in synthetic speech containing less variation than speech originating from a
living human being [70, 76]; furthermore, some researchers have focused on studying
the acoustic differences between natural and synthetic speech as a means of detect-
ing spoofing attempts. Although the above approaches may scale nicely to modern
mobile devices, to the best of our knowledge, few works have focused on countering
the threat of speech synthesis attacks on mobile devices.

Voice conversion attack countermeasures: While speech synthesis attacks con-
vert text to speech, voice conversion attacks use speech samples from the targeted
user to automatically convert an impostor’s voice into a voice that sounds similar
to that of the target speaker [70]. The conversion process introduces detectable arti-
facts that include the absence of the natural phase in converted speech [77, 78] and
more decreased dynamic variability compared to natural speech [79]. The authors in
[79] also demonstrated that supervector-based SVM classifiers can effectively detect
voice conversion attacks based on utterance-level and dynamic speech variability
[80], while the approaches based on detecting natural speech phases were argued
to likely prove ineffective for cases wherein converted speech preserved the natural
phase feature [81].
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SVM-based machine learning has been widely used with mobile devices, includ-
ing by the authors, which scaled adequately [82]. Therefore, we believe the imple-
mentation and evaluation of the technique in mobile applications is a viable topic for
further investigation.

Human-based voice impersonation attack countermeasures: In contrast to the
speech synthesis or speech conversion attacks that involve the use of technology to
impersonate the voice of another person [70], a human-based voice impersonation
attack does not require any additional equipment, but rather simply involves one
person attempting to speak in a way that resembles another. The studies evaluating
the effectiveness of these types of attacks have reported contradictory findings and
are thus inconclusive.

Part of the challenge in developing countermeasures against this type of attack
is that human-based voice impersonation involves the use of natural speech and
hence often lacks the detectable artifacts resulting from record and replay, voice
synthesis, and voice conversion [70]. Nevertheless, Chen et al. [83] successfully used
theSpear systemdevelopedbyKhoury et al. [84] in order to construct amobile system
resilient to human-based spoofing attacks. The system was implemented on Android
4.4 KitKat smartphone and was based on the Gaussian mixture and intersession
variability (ISV) techniques. The system yielded low FARs when evaluated by the
Carnegie Mellon University (CMU) Arctic Database [85].

Other recent countermeasures: Chen et al. [83] proposed a software-based
approach for mobile devices that detect recorded and replayed voices based on the
magnetic field emitted by the speakers. The hypothesis is that, unlike humans, loud-
speakers usemagnetic force to create sound that in turn produces amagnetic field that
can be detected using the magnetometer sensor within a mobile device. The authors
also used a Spear system [84], as described in the previous section, to detect human
impersonation attacks. The overall system was able to achieve 100% accuracy.

Feng et al. [86] developed a small wearable device that protects mobile device
digital assistants against replay, speech synthesis, and human-based impersonation
attacks. The device includes an accelerometer that is agitated by the speech signal.
The accelerometer data is then communicated via Bluetooth to the mobile device,
where it is correlated with the sound data received from the mobile device micro-
phone. This correlation is then used to perform matching on the remote server. The
system produced a 0.1% false positive (or acceptance) rate. Although the wearable
component may present usability concerns for users, it also presents new opportu-
nities. For example, the wearable component can also take on the function of the
security token used in multifactor authentication. Matching the voice on the remote
server may prompt privacy concerns from users who fear their voices might be
recorded and stored on remote systems for espionage purposes.

Zhang et al. [87] developed a mobile-based approach using the Doppler phe-
nomenon to resist replay and human-based spoofing attacks. When the user utters
a passphrase, the phone’s speaker emits a 20 kHz tone—a high-frequency sound
inaudible to the human ear—and monitors the microphone to pick up the signal
reflections. Those resulting from the movements of the user’s lips, vocal chords, etc.
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while uttering a passphrase cause Doppler shifts that are used to evaluate the voice’s
liveness. During evaluation, the system achieved a 1% error.

Zhang et al. [88] proposed a voice replay attack detection system that leverages
mobile devices’ stereo sound recording capabilities. The central idea is that a stereo
recording system uses twomicrophones, and when the live user speaks while holding
the phone close to his/her mouth, the voice signal arrives at the two microphones
at different times. The same phenomenon does not manifest in the case of replayed
recordings.

16.3.5 Multimodal Biometrics

Using multiple biometrics requires the user to provide more evidence in order to
prove identity and hence increase the amount of identifying data the attacker needs
to spoof. However, combining data frommultiple biometrics in a way that makes the
system resilient to spoofing attacks is challenging.

Rodrigues et al. [89] empirically demonstrated that, in multimodal biometric sys-
tems that combine match scores from different modalities (using weighed sum, like-
lihood ratio, and Bayesian likelihood ratio), bypassing a single modality may suffice
to bypass the entire system. Therefore, the multimodality of such a system simply
presents the attacker with opportunities for spoofing.

Combining identifying data at the feature level is associated with greater recog-
nition accuracy compared to combining match scores. We have previously devel-
oped feature-level fusion schemes for mobile devices that achieved significantly
lower errors [82, 90, 91] compared to unimodal schemes in the presence of zero-
effort impostors. We also believe feature-level fusion is a more promising approach
toward multimodal systems’ resilience to spoofing attacks than are methods based
on score-level fusion of modalities. We are currently in the process of evaluating the
performance of these schemes against spoofing attacks.

Below,wefirst proposemethods and techniques for strengtheningmultimodal bio-
metric systems onmobile devices against spoofing attacks by dividing the approaches
into software- and hardware-based.

Software-based: We believe that, as the first line of defense, a multimodal system
on a mobile device must perform spoofing detection on the individual modalities.
Ideally, at the software level, the spoofing detection on each modality should be
performed using multiple techniques to maximize the probability of detection.

The second line of defense may constitute techniques that exploit the system’s
multimodality to detect spoofing. For example, within a system based on face and
voice, the voice signal can be correlated to the movement of the lips. A system based
on the face and ears also presents multiple opportunities for increased spoofing
detection. For example, our research group is currently researching the feature-level
fusion of face and ear biometrics on a mobile device. The user interacts with the
system by looking straight at the camera, which captures the face, and quickly turns
his/her head to both the left and right such that the camera may capture both ears.
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We believe the properties of these motions can be analyzed to detect replay attacks
by, for example, analyzing the subtle sound made by the motion or using the device
accelerometer to measure vibrations created by the motion.

The third approach to detect spoofing of a multimodal biometric system involves
studying the properties of a fused set of features where one or more modality is being
spoofed. We believe a correlation of the fused feature’s properties set to modality
spoofing may present a new line of promising research. Such research is currently
being undertaken by our research group.

Finally, the software-based techniques should also be backed up by sensor-
level techniques and other hardware-based techniques that may further increase the
resilience of the system.

Hardware-based: To have a multimodal biometric system that is reliable and
effective, it is necessary that embedded hardware be employed—e.g., low-power
processor, digital signal processor (DSP), or field-programmable gate array (FPGA).
These hardware resources can be used in various real-life applications, such as the
authentication of electronic identification for driver licenses and e-passports, user
authentication within financial institutions, and entry control within buildings, lab-
oratories, and borders. As stated above, multimodal biometric systems can raise
security to another level by adopting more than one biometric trait.

Most multimodal biometric systems are required to have powerful computing
environments in which complex tasks can be executed at reasonably high speeds.
Using software alone, it is not easy to process multiple biometric traits with different
features in a reasonable amount of time. Therefore, we need a multimodal biometric
system with support from efficient hardware in which various multimodal biometric
algorithms are performed on a real-time basis. Typical application processors used
in most embedded systems work at a clock rate of only a few hundreds of MHz, and
the floating-point arithmetic is not hardware-implemented. However, multimodal
biometric algorithms that process multiple biometric traits in parallel require higher
computing power with hardware-implemented floating-point arithmetic in order to
ensure a real-time authentication.

In order to performmultimodal biometrics in real time, some tasks and executions
that require high computational power can be implemented into FPGA. These tasks
are dynamically synthesized on FPGA, and the multimodal biometric algorithms can
be processed significantly faster. Most multimodal biometric algorithms are directly
related to digital image processing because multiple biometric traits, such as faces
and fingerprints, are required. In the recent years, embedded system performance
has been increased due to the development of new hardware such as low-power
processors, DSP chips, and FPGAs. Among the hardware, FPGA is a promising
technique to be used in multimodal biometric systems because it may accelerate the
execution of algorithms and offer tremendous potential toward improving overall
performance through parallelization [92].

Although recent new processors’ technology continuously improves the perfor-
mance of multimodal biometrics, the potential of implementing these algorithms on
the CPU is still not fully exploited. An FPGA device can accelerate the execution of
algorithms and offer a tremendous throughput by employing parallelization. On the
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other hand, for multimodal biometrics, the FPGA cannot accommodate all required
algorithms. Therefore, optimization at the software level and hardware implemen-
tation at the hardware level must be carefully considered. Herein, the software and
hardware co-design is used to design the system, which consists of both a hardware
platform and software platform. The hardware employs Intel DE5 board within two
DDR3 SODIMM slots that can be used to expand the amount of memory available
to the FPGA. The FPGA board connects with CPU through peripheral component
interconnect express (PCIe). Consequently, the biometric algorithm (e.g., face fin-
gerprint modules) runs on the hardware platform. Our experimental results reveal
that the proposed software and hardware hybrid platform can achieve three times the
acceleration that the software counterpart can achieve.

16.4 Template Security

The widespread use of the biometric systems requires massive storage of biometric
data. In the generic biometric authentication system, there are five major compo-
nents: sensor, feature extractor, template database, matcher, and decision module
(see Fig. 16.3). In Fig. 16.3, two procedures of the biometric system are depicted.
During the enrollment procedure, the user information is stored in the template
database. On the other side, the biometric sensor is the interface between the user
and the authentication procedure. The function of the biometric sensor is to collect the
biometric trait of the user. Then, the quality assessment model determines whether
the collected biometric trait is sufficient for further processing. The feature extractor
processes the collected biometric data to extract salient information for distinguish-
ing between different users. Once the user information can be found in the template
database, the matcher module can execute a program that compares two inputs from

Fig. 16.3 Enrollment and authentication stages in a biometric system
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the template database and feature extractor as well as generates the output as a match
score. Finally, the decision module makes the decision.

The protection of the template database is not a trivial task, and some works have
employed template protection schemes to improve security in a template database
[93]. Non-reversibility is introduced to define the computationally infeasibility of
recovering the unprotected template from the protected template. Therefore, indi-
viduals exploit the possibility of creating different protected templates from the
same template used in various applications—a property known as diversity. Conse-
quently, diversity leads to revocability, which involves protecting as many templates
as necessary. Current template protection schemes can be divided into two categories:
feature transformation systems and biometric cryptosystems. Some previous works
have been proposed as being inspired by feature transformation. For example, the
Biohashing system combines the password provided by the user with biometric data
[94]. However, this method requires many passwords to protect templates, and these
passwordsmust be stored privately. On the other hand, biometric cryptosystems try to
generate additional information for unprotected templates. Themajor contribution of
this method is that additional data is not required to be kept private. Some works pro-
vide insight into possible attacks within the generic biometric system (see Fig. 16.1).
Although the software-based solution aims to protect the template database, the delay
and security of the protection module are considered major drawbacks.

Some works [95] propose a fingerprint biometric cryptosystem for an FPGA
device. The results imply that accuracy is improved and delay is reduced. To imple-
ment a fingerprint biometric cryptosystem in the FPGA device, both the algorithm
and hardware architecture must be considered carefully. In the algorithm aspect, bio-
metric cryptosystems are based on the fuzzy commitment that constitutes error cor-
rection and cryptosystems techniques. The error correction code can be processed by
two different types either bit-by-bit or block-by-block. Both types are applied in the
biometric cryptosystems with Bose–Chaudhuri–Hocquenghem (BCH) and Reed—
Solomon codes [96]. On the other hand, the cryptosystems are designated based on
QFingerMaps, and the additional cryptosystem information is generated by a fuzzy
commitment scheme, which fuses the codeword and QFingerMap in an obfuscated
way. In this work, we employ an (Exclusive OR) XOR operator to fuse the codeword
and QFingerMap. The main functional blocks that should be implemented on the
FPGA device includeQFingerMap extraction, the encoder to generate the codeword,
the hash function to protect the generated codeword, and the decoder to correct errors.

16.5 Usability

In this section, we discuss the usability issues affecting selfie biometric systems on
mobile devices. We firstly discuss the general principles of user-friendly biometric
system interfaces for mobile devices, then provide insights specific to designing
friendly user interfaces for mobile device multimodal systems that we have learned
through our research and practice.
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We then present a novel approach for performing multimodal biometrics on an
FPGA that can be integratedwithmobile devices and can drastically reduce execution
time and power consumption in multimodal mobile biometric systems, as our results
suggest. Reducing these aspects is important for improving user experience. The
prototype multimodal feature-level fusion system used was taken from [82] and was
based on combining face and voice biometrics using discriminant correlation analysis
(DCA) as well as classification using k-nearest neighbors (k-NN). The challenge
stems from implementing k-NN on the FPGA in a way that is viable for mobile
devices.

Software-based: Any software–user interface must be designed to maximize the
quality of user experience. Hence, the principles of effective interface design apply
to mobile biometrics systems. In this section, we focus solely on specific challenges
in mobile device authentication systems that we have learned during our research
and practice. We then include a specific discussion of multimodal biometrics.

First, the biometric authentication process should be easy to enable and configure,
which is especially important for users who are not technology savvy. Although
mobile device manufacturers are making great strides in simplifying the process,
some users do not use biometric authentication because they are unsure how to set it
up (in our experience, some did not even knowwhere to find the setting). One possible
solution involves encouraging the user to utilize the device’s biometric feature (if
it is fit for authentication) both during and following the device setup process. It is
important to ensure, however, that these encouragements be both non-intrusive and
easily disabled by the user.

Furthermore, the enrollment processmust minimize the amount of user effort; this
includes limiting the number of training samples, providing feedback on the user’s
progress, and minimizing processing time. Otherwise, an initial negative experience
may cause the user to give up or turn away from the feature.

Second, the biometric authentication process should be easy to invoke. Many
modern devices address this by setting the authentication screen as the first image the
user sees upon obtaining the device’s attention—typically by pressing a button.Many
fingerprint-based systems, such as those used for iPhones and Galaxy devices, allow
users to authenticate immediately by placing a finger on the sensor and requiring no
prior actions in order to invoke the authentication process.

A similar approach is possible with face- and voice-based biometric systems. For
example,many smart home systems, such asAmazonAlexa andGoogleHome, allow
users to get the device’s attention by uttering a predefined phrase—e.g., a user can
utter “Ok Google” in order for Google Home system to begin accepting commands.
However, such an approach would require that the mobile device constantly monitor
themicrophone or camera, which in turn raises issues of privacy, false device unlocks
(e.g., the camera accidentally catches the user’s face), and increased power consump-
tion. For example, Android-based phones allow users to conduct Google searches
and perform other functions on their devices by uttering “Ok Google.” According to
previous reports, some users feel apprehensive about their devices constantly “lis-
tening” to them through the microphones [97].
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Third, the interface should be intuitive when interacting with users and providing
them with prompt feedback in the event that matching fails. The latter is especially
important for mobile devices, which operate in uncontrolled conditions that cause
false rejections. For example, if the fingerprint match fails because the fingertip is
wet (assuming the system can detect moisture), then the user should be instructed to
wipe his/her finger; or, if the face does not match due to insufficient lighting, then
the user should be instructed to increase the brightness. We believe these hints will
help reduce user frustration.

Fourth, the matching process must occur instantly, and if successful, the user
should immediately be taken to the home screen of the device or to the applica-
tions he/she was most recently using. Long authentication times will likely lead to
frustration, and the same is true of the enrollment process. Because the enrollment
process is typically executed only once, unlike the authentication process that is done
repeatedly, greater delays may be tolerated here. To maximize speed, developers can
leverage the parallel architecture of modern mobile processors, graphics processing
units (GPUs), and other specialized biometric technologies discussed in the section
concerning hardware techniques.

Usability of mobile device multimodal biometrics: All the above user interface
design principles additionally apply tomultimodal biometrics. However, multimodal
biometric systems require the collection ofmultiple biometricmodalities, thus requir-
ing greater effort from the user. We believe the key here is to minimize user efforts
to a level comparable to that of a unimodal system. One possible way to achieve this
is to simultaneously capture samples from multiple modalities.

For example, in our previous work, we experimented with developing an interface
for a multimodal system based on face and voice (see Fig. 16.4). A user-friendly GUI
for simultaneous capture of face and voice on a mobile device. The interface consists
of a live stream from the device’s front camera with a square drawn around the
user’s detected face and a volume meter indicating the strength of the voice signal.
Additional indicators are provided to indicate the quality of the face (e.g., luminosity)
and voice data, (e.g., signal-to-noise ratio). These indicators utilize percentages,
wherein higher percentages indicate greater quality. On one hand, we believe these
can help the user quickly identify issues in the event that authentication fails. On
the other hand, they can potentially confuse the user with the extra data. We plan to
explore the user’s experienced utility of these indicators in our future research.

The system records a video of the user’s face while he/she utters a phrase. The
face images and voice are then extracted from the video track and sound track,
respectively. The execution time for the authentication process takes a fraction of
a second due to efficient algorithms and parallel extraction of both face and voice
features—the most time-consuming operations of our algorithm.

We have also experimented with a multimodal biometric system based on the
face and ear, finding that the easiest way for the user to capture both modalities is
to look into the camera and then twist his/her head firstly to the left and secondly
to the right while holding the device in a fixed position. In our informal preliminary
experiments, we observed that users were able to capture both modalities within one
second. Figure 16.5 presents a diagram illustrating our approach.
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Fig. 16.4 A user-friendly GUI for simultaneous capture of face and voice on a mobile device

Fig. 16.5 A method for capturing face and ears in a mobile device
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The above approach replaces our previous approach, which required that users
move the device from the face to the left ear and then to the right ear. However, this
proved to be excessively difficult for many users who could not easily find their ears
with their cameras.

SamsungGalaxyS9 also includes an Intelligent Scan feature that allows the device
to be unlocked with both the face and iris, which are captured simultaneously when
the user looks into the camera. We believe this approach is the right direction from
the interface perspective.

Expanding authentication to more than two biometrics is even more challenging;
however, simultaneous capture can go a long way. For example, the effort required
from a tri-modal system based on face, voice, and iris can still be achieved by record-
ing avideoof the user’s facewhile he/sheutters a phrase and simultaneously capturing
images of the iris. Thus, the effort of a tri-modal system is potentially reduced to that
of a bimodal system.

Overall, the research on the mobile biometrics user experience is still a relatively
new field ripe for future research and innovation. It requires that designers consider
technical aspects such as quick execution time, psychological aspects that involve
making the system’s appearance and operation inviting, and social aspects such as
privacy. Achieving this goal will require that software and hardware designers as
well as user experience experts join in collaboration to ensure the system is designed
bottom up with usability in mind.

Next, we present a novel approach for reducing execution time and power con-
sumption in mobile device multimodal systems using FPGAs.

Fast and power-efficient feature-level fusion of face and voice using FPGA:
Current mobile devices can be used to identify users based on a single biometric
modality such as the face or fingerprints. However, to attain maximum identification
accuracy, prior work has revealed promising results regarding the use of multiple or
multimodal biometrics.

Gofman et al. [91] proposed an approach for fusing MFCC features from the
face with histogram of oriented gradient (HOG) features on mobile devices. They
used DCA to fuse the features and then classified the fused feature set using var-
ious classifiers (SVM, k-NN, random forests, linear discriminant analysis [LDA],
and quadratic discriminant analysis [QDA]). Although their approach led to more
significantly improved EER compared to unimodal face and voice approaches, they
did not consider the hardware aspects of implementing their approach on mobile
devices (e.g., power consumption).

Recently, novel systems were proposed to incorporate programmable hardware
into the smartphone to rethink a vision wherein applications may consider both soft-
ware and hardware components. Current smartphone devices are incredibly con-
strained energy-wise due to their batteries. Development in battery density has
received more attention; however, recent research shows that the battery density
has been doubling only every ten years [98]. In addition, the physical size limitations
of the portable devices lead to a relatively static energy budget among all devices.
Consequently, CPUs empowering modern smartphones are optimized for power effi-
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ciency rather than speed. For this reason, implementing the application that requires
high computation power on mobile devices nevertheless remains challenging.

k-NNwas introduced as supervised and instance-based learning in the early 1950s.
This algorithm was not initially popular because it requires high computation power,
although it was and remains a popular means of classification in biometrics due to
its simplicity and, in many cases, high accuracy. In general, there are three or four
steps in the k-NN algorithm:

1. Calculate the distance and similarity between the testing set and the training set;
2. Sort the distance and similarity to determine the k-nearest classes;
3. Perform majority voting to decide the class.

There are many ways to measure the distance or similarity between data in testing
and training sets. The Euclidean, Minkowsky, Chebychev, Camberra, andManhattan
methods for measuring distance are proposed as the following equations [98]:

Euclidean: D(x, y) =
(

m∑
i=1

(|xi − yi |2)1/2
)

Manhattan: D(x, y) =
∑

|xi − yi |

Minkowsky: D(x, y) =
(

m∑
i=1

|xi − yi |r
)1/r

Chebychev: D(x, y) = m
max
i=1

|xi − yi |

Camberra: D(x, y) =
m∑
i=1

|xi − yi |
|xi − yi |

In Fig. 16.6, the hierarchical platform-based design for k-NN classifier is illus-
trated. The main purpose of the proposed design is to modularize various functions
in both hardware and software. The basic operators including addition, multiplica-
tion, square root, subtraction, division, and comparator are depicted. Among various
operators, k-NN consists of two time-consuming operations: distance computing and

Fig. 16.6 k-NN classifier and its hardware functionality
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sorting. Thus, these operations can be fully parallelized due to independent distance
computation. The parallel property allows us to involve an FPGA device, which is
perfectly suitable for implementing such k-NN heterogeneous architecture. In this
work, we employ OpenCL architecture to transfer data from the CPU to FPGA.
During the distance-computing process, the matrix for distance values is collected
between all query and reference objects. Then, the rank process finds the k-NNs for
each query object. To sort the distance, the sinking sorting algorithm is employed
with a worst-case and average-case complexity O

(
n2

)
. The choice of the sinking

sorting algorithm in this work was based on the algorithm’s property; each candidate
is picked up according to the smallest distance in the current queue. The process can
be perfectly parallelized because it compares each pair of adjacent items and swaps
them if they are in the wrong order.

OpenCL is an open resource framework for parallel programming on systems
with heterogeneous processors. Using OpenCL enables multiple hardware architec-
tures by different manufacturers. In Figure 16.7, OpenCL framework connects host
processor and FPGA through PCIe connection. The host computer handles the data
flow, which is explicitly programmed by the user. The memory system in this work
can be categorized into three groups: global, local, and private.

The accelerator is classified into a workgroup sharing the local memory, which
plays cache-based memory such that each accelerator can access data stored in the
local memory. The global memory is used to store data that is accessible to the
workgroup and the host computer, while the private memory is reserved for each

Fig. 16.7 OpenCL compiler to generate both executable software for the system CPU and a bit-
stream on FPGA [30,000×]
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accelerator and performs the fastest data movement. The two functions are imple-
mented in the hardware accelerator.

Compared to a traditional Verilog or VHDL design, the scheduling issue on the
hardware resource is automatically attached to the device in OpenCL. Thus, in this
work, we need only to design the required number of accelerators and distribute the
workload.

Distance Calculation Accelerator
The design of the distance calculation accelerator aims to parallelize the distance
calculation at each accelerator. In order to avoid unnecessary latency of memory use,
we use local memory for distance calculation. The reference data is loaded into the
local memory, which may be easily accessed by the accelerators.

Distance Sorting Accelerator
When a distance calculation accelerator produces the distance matrix between input
data and reference data, the distance sorting accelerator is employed to find the k-
nearest distance in each row using the sinking sorting algorithm. For example, when
the first item compares the third and fourth distances in the row, the second item can
be launched to compare others. Once all items have been compared and reached at
the end of the row, the k-NNs are formed.

In order to test the approach, we implemented the framework in a CPU and
FPGA system. The CPU used in this work was an Intel I7-3770K with 3.5 GHz with
a Windows 7, 64-bit operating system. An FPGA board (Intel DE5) with a Stratix
V GX was inserted and connected with CPU through PCIe lanes. The integrated
transceivers with a transfer speed of 12.5 Gbps allowed the DE5 board to fully
comply with version 3.0 of the PCIe standard. Two independent banks of DDR3
SODIMMRAMwere used to construct global memory. The local memory employed
interconnected on-chip RAM block—a simple process easily given access. Private
memory was implemented using flip-flops. The flip-flop within the data flow can
run at the accelerator’s frequency. To test the framework, we used a labeled face
and voice images from [91]. This approach’s performance is compared with its CPU
counterpart.

Table 16.1 illustrates the performance comparison between the CPU and FPGA
results. We utilized twenty different faces and voices in order to avoid some errors
during the test. Because the runtime of CPU was longer than FPGA due to unpar-
alleled process architecture, the FPGA could thus achieve 148 times the speed up.
Regarding the power aspect, CPU consumed five times that of the FPGA device.

Table 16.1 Performance
comparison between CPU
and FPGA

Platform CPU FPGA

Transistor size/nm 22 40

Runtime/ratio 150.16 1

Speedup/ratio 1 148

Power/ratio 5.41 1
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16.6 Selfie Biometrics Case Studies

This section presents a couple case studies on the topic of privacy, confidentiality,
and usability of selfie biometrics on mobile devices. The first relates to the face- and
fingerprint-based biometric capabilities on the latest smartphones, such as Samsung
(Android-based) and iPhone, while the second relates to applications of keystroke
dynamics on mobile devices.

Case Study 1
The common modern smartphones mentioned above are equipped with both facial
recognition and fingerprint recognition techniques. Android introduced face unlock
in 2011 [99], while Apple introduced Touch ID a couple of years later [100]. These
were followed by the fingerprint lock on the Samsung Galaxy S7 phones in 2016 and
then the more recent Face ID technology integrated with iPhone X in 2017 [101].
This was many users’ initial exposure to and true interaction with biometrics. It is
thus important to assess whether users did or did not choose to adopt any of these
biometric-based authentication methods to unlock their mobile devices as well as
the underlying reasons behind their decisions. In fact, researchers have stated that
the usability of biometric systems is a critical element in users’ adoption decisions
[102]. Despite the awareness of additional security provided by biometrics through
passwords and PINs, peoplemay have concerns about several issues (i.e., privacy and
reliability) that act as barriers to the large-scale adoption of this technology among
consumers. Hence, studies have been conducted [102–104] to explore users’ beliefs,
attitudes, and perceptions toward using biometric security on their mobile devices,
which remains, nonetheless, not very prevalent today.

Several researchers have performed comparative studies [104, 105] to analyze
usability among face recognition, iris recognition, voice recognition, fingerprint
recognition, and gesture recognition techniques on mobile devices, all of which
yielded considerably critical flaws. In 2014, two studies investigating smartphone
unlocking behavior among users had determined that users failed to realize the impor-
tance of protecting the data stored on their phones (and hence the risks associated
with losing that data) and that users spent more time than necessary to unlock their
phones [106, 107]. Face ID on the iPhone X has recently become available and has
replaced the fingerprint unlocking scheme (Touch ID). Reports [108] havementioned
that, although Face ID is perceived as more secure than Touch ID, there have been
several issues with its operation. For example, the former does not work in landscape
orientation, it does not always work in bright sunlight or with sunglasses, and it is
occasionally slow.

Recently, Bhagavatula et al. [102] explored within-subject usability of Touch ID
on iPhones and face unlock on Android devices in a laboratory setting in order
to assess different scenarios in which mobile phones operate. Moreover, they also
administered an online survey to 198 participants to evaluate general user perceptions
and attitudes toward using different types of biometric security on mobile platforms
during everyday life. This study was the first of its kind (at the time) to examine the
usability of biometric security on commonly used smartphones in today’s society.
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We summarize the methodologies used and results obtained from this case study in
the following section.

Laboratory usability study: The within-subject study performed by Bhagavatula
et al. [102] consisted of comparing four unlocking mechanisms on smartphones:
Android face unlock on a Samsung Galaxy S4 phone, iPhone Touch ID (fingerprint
recognition), Android PIN unlock, and iPhone PIN unlock. They compared these
biometric-based authentication schemes because these were the only such schemes
available on smartphones at the time (Android fingerprint unlock and iPhoneFace ID
were not yet introduced). The PINswere used as a baseline for comparison among the
biometric security techniques. Ten participants—eight male and two females—par-
ticipated in the study, and each participant was provided with a phone. Participants
also filled out a questionnaire concerning their demographic backgrounds, prior expe-
riencewith smartphones and biometric systems, and perceptions and attitudes toward
biometrics (Likert-scale-type questions). Each subject also performed authentication
using each of the four schemes in five different scenarios: (1) sitting, (2) sitting in a
dark room, (3) walking, (4) walking while carrying a bag in one hand, and (5) sitting
and applying moisturizer to the hands. These five situations are consistent with prior
studies of mobile phones’ user usability. Their main results include

• All participants determined Android face unlock and iPhone Touch ID as being
easy to use during several common usage scenarios;

• The face unlock did not work for any participants in the darkroom setting;
• Touch ID was relatively easy to use even in the presence of moisturizer on partic-
ipants’ hands; and

• Most participants favored iPhone’s Touch ID over Android’s face unlock and PINs.

Online survey: The purpose of the online survey was to understand real usability
issues faced by consumers in the real world, such as the perceived usefulness of
the biometric security schemes to protect the phone from unauthorized use and the
system’s ease of use or convenience. For this purpose, 198 subjects who owned a
smartphone model that supported either Android face unlock or iPhone Touch ID
were selected. Similar to the laboratory study, participants were asked through a
survey to provide their demographic information, level of prior familiarity with bio-
metric authentication techniques, general phone unlocking behaviors, and rationale
for adopting or not adopting a biometric scheme for their mobile phones. The main
findings from this survey include:

• Participants using iPhones overwhelmingly perceived Touch ID as more conve-
nient to use than PINs, although a few users reported issues with Touch ID when
using the phones with dirty fingers; and

• Very few Android users, on the other hand, used the face unlock technique to
unlock their phones due to technical difficulties encountered.

The overall conclusions reached by Bhagavatula et al. from their two studies
clearly indicate that people more positively perceive the extra security provided
by biometrics on their mobile devices compared to traditional methods, such as
PINs; furthermore, iPhone’s Touch ID was determined the most popular biometric.
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Android’s face unlock mechanism seemed to suffer from some drawbacks that, if
fixed, may lead to more large-scale adoption. In general, just as it is important to
develop novel biometric authentication techniques for mobile phones, it is equally
important to assess user perceptions and attitudes regarding usability in order tomake
mobile biometric security more prevalent among the masses (Figs. 16.8 and 16.9).

Case Study 2
The use of behavioral biometrics, such as gait and keystroke dynamics, is still not
as prevalent in mobile devices as the use of the physical biometrics (e.g., face, fin-
gerprints, and iris). However, existing research indicates that authentication methods
can be improved by considering implicit, individual behavioral cues [109, 110]. Ver-
ifying identity based on typing behavior—also called “keystroke dynamics”—has
been studied thoroughly in the literature with older mobile phones with physical
keys [103, 111] as well as with newer devices featuring touchscreens [112, 113].

Fig. 16.8 Face ID and Touch ID on Apple iPhones. Copyright info Google images—“labeled for
reuse”
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Fig. 16.9 Face unlock on a
Samsung Galaxy phone.
Copyright info Google
images—“labeled for reuse”

Buschek et al. [114] presented an in-depth analysis of current keystroke biometrics
on current smartphones that provide touch-typing capabilities and included a pro-
posed approach to improve the usability of this method, which we discuss briefly as
a case study in this subsection.

Buschek et al. [114] collected data from 28 participants aged an average of
25 years; eight participants were female, twenty were male, and all owned mobile
phones with touchscreens and typed with their right hands. Each participant was
invited to two sessions that were at least one week apart. Each session comprised
three main tasks (three hand postures) and lasted about an hour. For each hand pos-
ture, participants typed six different passwords in random order twenty times each.
The number of attempts was unlimited, and the user could reenter the password if a
wrong attempt was entered during any step.

Some challenges for practical and usable applications of mobile keystroke bio-
metrics are demonstrated by the study’s following results:

• The EERs obtained from data collected in a single session were lower than those
collected over different sessions, indicating that mobile typing biometrics vary
over time;

• Mobile typing biometrics are highly dependent on the specific hand posture; train-
ing and testing using multiple postures increased participants’ EERs by 86.3%
relative to testing with the same hand posture.

These observations imply that an important consideration for improving the
usability of mobile keystroke biometrics involves the ability of the application to
infer postures dynamically. The latter can be achieved by combining the models for
different hand postures using a probabilistic framework that has proven to reduce
EERs more significantly than a single model based on one posture. Thus, although
using multiple hand postures creates a trade-off between security (lower EERs) and
usability, this can be easily addressed (as described above). Since usability is a pri-
mary concern for more widespread application of biometrics on the mobile platform,
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Fig. 16.10 Keystrokes on a Samsung Galaxy phone. Copyright info Google images—“labeled for
reuse”

this case study offers interesting insights as to how this may be achieved without
compromising the level of security attained (Fig. 16.10).

16.7 Conclusion

Users have been eager to embrace selfie biometrics. However, security vulnerabili-
ties and usability issues have emerged. Researchers andmobile devicemanufacturers
have proposed innovative software- and hardware-based techniques meant to over-
come these problems, many of which yielded promising results. iPhone X’s Face
ID system, for example, cannot be deceived with a photograph of the person’s face
thanks to its imaging technology. However, vulnerabilities continue to pose a threat
(e.g., 3-D masks).

As the use of selfie biometrics grows and new modalities find their way onto
mobile devices, new security and usability challenges will arise and introduce ripe
areas for future innovation and development.
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Chapter 17
The Horcrux Protocol: A Distributed
Mobile Biometric Self-sovereign Identity
Protocol

Asem Othman and John Callahan

Abstract Deployed mobile biometric authentication systems rely on mobile- or
server-centric models. However, both model schemes present a single point of
biometric data compromise from a security perspective. If biometric data is com-
promised, it poses a direct threat to users’ digital identities. A recent example of
compromised biometric data includes the stolen database of fingerprint images in
the US Office of Personnel Management breach of 2015. This chapter proposes a
distributed identity authentication protocol, called the Horcrux protocol, in which
there is no such single point of compromise. The protocol relies on two standard
efforts, the IEEE 2410-2017 Biometric Open Protocol Standard (BOPS) and the
decentralized identifiers (DIDs) standard which is under development by the W3C
Verifiable Claims Community Group. To accomplish this, we propose specification
and implementation of a decentralized biometric credential storage option utilizing
the concept of self-sovereign identity using blockchains.

17.1 Introduction

The proliferation of powerful mobile computing devices such as smartphones has
changed the way users access many services (such as banks, e-commerce, govern-
ment service). Hence, mobile biometric authentication has been introduced to evolve
identity authentication beyond the current fault password model [2, 21] to strengthen
the security of transactions, reduce fraud and associated costs, and improve the user
experience by eliminating the need tomanagemultiple passwords. The use of mobile
biometrics has rapidly expanded and become more mainstream thanks to companies
like Apple and Samsung, and the development of embedded fingerprint sensors for
smartphones such as Touch ID. Organizations across a variety of vertical indus-
tries have deployed biometric technology to provide convenient methods for users
to securely access a wide range of digital services.
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While mobile biometric authentication has the potential to offer significant value
to enterprises, most security and privacy preservation schemes are still primarily
based on archaic, static models that don’t work any more and it is getting worse.
The latest evidence of this is recent breaches disclosed by Yahoo, Equifax, and
Target stores [4] that have exposed identity information for millions of individuals.
Hacking attacks are not just targeting enterprises but also Federal agencies. In 2015,
hackers stole the database of fingerprint images from the US Office of Personnel
Management [38]. Like other stolen identity information, the unauthorized access
of biometric data (i.e., biometric images and/or feature sets) can be quite damaging
to individuals due to its uniqueness and intrinsic to them. Another major privacy
concern is function creep [23], where authorized agencies use biometric data for
purposes beyond its original intent. For example, an agency could glean additional
information, such as an individual’s gender, age, ancestry origin, or link biometric
databases belonging to different applications. De-identifying biometric data prior to
storage is an approach that has been proposed in the literature [23, 30, 31] to ensure
that the stored biometric data is used only for its intended purpose and to prevent
an adversary or an administrator from viewing the original identifiable data. De-
identifying [27] involves storing a transformed or modified version of the biometric
data in such a way that it is impossible to deduce the original biometric signal from
the stored version, either an image or a feature set. However, applying a noninvertible
de-identifying function on biometric images implies a loss in accuracy as discussed in
[27, 30] because the transformed images are difficult to align and the discriminability
of the biometric content is reduced. Meanwhile, the security of de-identified feature
sets approaches [31] relies on the assumption that the key and/or the transformation
parameters are known only to the legitimate user. Maintaining the secrecy of those
keys is one of the main challenges since these approaches are vulnerable to linkage
attacks where the key or the set of transformation parameters along with the stored
template are compromised.

As such, additional research efforts must be made to keep this data secure and
confidential by improving these de-identifying approaches for biometric images and
feature sets. Until then enterprises will continue to store the biometric data in either
the mobile or server without de-identifying it. These data storages are done within
encryption layers including choosing a proper compliance system and infrastructure,
which considers the particularly sensitive nature of biometric data.Nevertheless,with
the news of stolen and hacked biometric data from phones [42], as well as servers
breaches [38], means these schemes of storage are not the best solution.

A possible solution is the distributed storage model that has been included in the
IEEE Biometrics Open Protocol Standard 2410-2017, or BOPS [1]. BOPS supports
a storage model, which is neither device- nor server-centric storage [36], where the
user’s biometric template is distributed using a secret sharing scheme between the
user’s mobile device and the service provider. Both shares of the biometric data
are encrypted, and for the authentication process to be successful, both shares are
required [1].
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However, nowadays, the user who used to consume locally installed applications
on a single device or phone has moved well beyond that to an ecosystem where users
own several devices and are externally authenticating their identities significantly
more often. This new ecosystem requires biometric authentication models to evolve
to link users to verified identity claims on the growing number of personal connected
devices. This has led to the development of a series of identity management models,
such as self-sovereign identity.

Self-sovereign identity (SSI) is a new decentralized ecosystem for private and
secure identity management that is being implemented by several projects [3, 17, 32]
as the replacement for traditional identity proving systems. Self-sovereign identity
puts end-users—not the organizations that traditionally centralize identity—in charge
of decisions about their own privacy and disclosure of their personal information and
credentials. Self-sovereign identity utilizes distributed ledgers (DLT), i.e., blockchain
technology, to establish a web-of-trust [6].

In this chapter, we discuss the specification and implementation of our Hor-
crux protocol that combines the decentralized self-sovereign identity ecosystemwith
2410-2017 IEEE Biometric Open Protocol Standard (BOPS) [1].1 Horcrux protocol
is a secure and robust identity authentication solution capable of supporting different
business requirements as well as the privacy of users by allowing them to manage the
storage and access of their personally identifying information (PII)2 via a distributed
mobile biometric authentication system. This marriage of these two models (SSI and
BOPS) via the Horcrux protocol will guarantee the following principles:

• Existence: Usersmust have an independent existence that can not only exist wholly
in the digital form, and by using a biometric-based protocol , i.e., BOPS [1], for
enrolling and authentication, this guarantees that the digital identity has been
created and will always be verified by an existing end-user.

• Control: Users must control the storage and access to their identities. Under the
self-sovereign identity ecosystem, users are always able to refer to, update, or even
hide their personal information and credentials. The Horcrux protocol will assure
that the access is always secure by their biometric which also is securely stored
via the decentralized ecosystem, along with their personal information.

• Portability and interoperability: BOPS [1] and self-sovereign identity [32] have
been designed around these principles.

• Protection: The security of the Horcrux protocol is trusted because it is based on
strong cryptography and governed by self-sovereign identity using a blockchain
technology and BOPS.

The rest of the chapter is organized as follows. In Sect. 17.2, we discuss the
biometric authentication standard BOPS and the unique way to store biometric data
in a distributedmatter to preserve the privacy and security of the stored biometric data.

1The term “Horcrux” comes from the Harry Potter book series in which the antagonist (Lord
Voldemort) places copies of his soul into physical objects. Each object is scattered and/or hidden to
disparate places around the world. He cannot be killed until all Horcruxes are found and destroyed.
2Personally identifying information are data about an individual which considered to be sensitive
and thus subject to security and privacy protections such as biometric and demographic data.
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Section17.3 gives a quick overview of the different identity models and evolution of
these models into the new self-sovereign identity ecosystem that provides users with
full control over their identity access and storage. Section17.4 looks at the Horcrux
protocol where both BOPS and SSI model can be deployed together to provide a new
way for users to establish a portable, secure, and controllable biometric-based identity
system which is intrinsically theirs. Finally, Sect. 17.5 summarizes the chapter.

17.2 IEEE Biometric Open Protocol Standard (BOPS)
Storage Model

In traditional authentication systems such as password and PIN, only one centralized
database stores the data used for authentication. When the user offers the requested
proof of identity, the authentication server evaluates this proof and grants access to
the user. While most security experts and enterprises see the benefits of biometric-
based mobile authentication in comparison to knowledge-based systems (usually,
password and PIN), the underlying architecture with which to implement biometrics
is still the same centralized storage model,3 more specifically, whether a server or
mobile-centric storage approach. The following describes the server- and mobile-
centric approaches. Then we describe the distributed storage model that has been
adopted by IEEE BOPS.

17.2.1 Server-Centric Approach

In this setup, biometric identity data is captured by trusted means and then stored
centrally on a secure server. The server-centric biometric authentication architecture
is managed by the service provider. To perform a user verification, the captured
biometric sample is sent to the server for processing andmatching against the enrolled
data stored centrally.

A server-centric approach is likely preferred for organizations that desire a high
degree of control over the end-to-end process of biometric authentication and to
manage and secure the storage and use of the biometric data.

This approach also supports users accessing digital services via a wide range of
endpoints such as computers, mobile devices, smart TVs, and physical locations
(bank branch, enterprise access control, and in-store retail scenarios). Organizations
can also analyze the biometric data they collect to improve the performance ofmatch-
ing algorithms.

Finally, by storing more resources and functions in the cloud rather than on the
device itself, it reduces app size and complexity. As a result, server-centric authen-

3The enrollment stage of most of the deployed biometric systems generates a digital representation
of an individual’s biometric trait that is stored in the system storage database [15].
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tication may also function more effectively with devices that have limited memory
and processing power.

Comments on Server-Centric Approach

The major concerns with this approach are security and privacy. A server-based
biometric database becomes a “honeypot” target for criminals, hostile governments,
and hacking groups. As the 2015 OPMhack [38], which led to the theft of millions of
US government personnel fingerprint data, demonstrated storing peoples’ biometric
data in network accessible databases can lead to wide-scale theft of sensitive data.
Furthermore, there is the privacy concern of function creep where the biometric
data is used in different purposes than authentication such as improving matching
algorithms, databases linkage without consent, and deriving additional demographic
information [23, 27].

Moreover, it is a generally accepted privacy principle that individuals must be able
to access their PII and update it where necessary; therefore, some jurisdictions have
already specifically referenced biometric data in privacy guidance and legislation
such as European General Data Protection Regulation (GDPR) [10].

GDPR is European Union’s new set of policies on data protection that officially
took effect on May 2018. While this regulation focuses on the citizens of European
Union (EU), and reshapes the way organization across Europe handle citizens’ PII
data, any organization outside of EU that collects or processes data of EU citizens
is also affected. GDPR expressly identifies biometric data as a category of sensi-
tive personal data and requires the development of solutions with adequate privacy
measures in place giving individuals’ choice and control of their data. This means
that organizations must ensure that individuals can access their biometric data as and
when they request it. Further, organizations must have processes in place to allow
individuals to correct, update, and delete their data where necessary.

Based on such data privacy regulation, compared to server-centric storage of
biometric data, the storage and matching of biometric data on smartphones for au-
thentication purposes are compelling and more straightforward approaches to satisfy
global privacy requirements.

17.2.2 Mobile-Centric Approach

In this setup, biometric template creation, storage, and matching all occur locally
on the device which allows an organization such as a bank to enable strong bio-
metric authentication into their mobile app without having to manage PII on a cen-
tral server. The mobile-centric biometric systems are getting growing support for
solutions which are incorporating FIDO authentication protocols [11]. In a FIDO-
compliant system, a successful biometric match grants access to a private key stored
on the device, which is in turn used to respond to a public key infrastructure (PKI)
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challenge4 [28] from a relying party, such as a bank or retailer whose app is running
on the device.

A mobile-centric approach is likely the best option for organizations with a pri-
mary objective of preventing large-scale breaches of customer data and satisfying
global privacy requirements. Storing and matching biometric data on a device gives
users more control over their data.

Themobile-centric approach for storing biometric data is also gainingmomentum
because now most major smartphone manufacturers are shipping devices that sup-
port biometric authentication and providing access to third parties via APIs. These
advances are enabling organizations to swiftly roll out mobile-based biometric au-
thentication services. Therefore, this mobile-centric model is being adopted by or-
ganizations, including banks and payment service providers (PSPs), as a quick way
of solving the “password” problem.

Comments on Mobile-Centric Approach

The manufacturer-led, mobile-centric model only solves part of the problem of pro-
viding secure and convenient access. Organizations are still looking at alternatives
to ensure that an authentication solution is available to a large percentage of their
users’ base. The mobile-centric approach only offers biometric authentication to
those equipped with the latest mobile devices with integrated biometric sensors and
secure hardware to store sensitive biometric data. In addition, mobile biometric apps
are consuming more disk and runtime footprints since the biometric processes all
take place on the app, which less powerful devices may not easily support.

Moreover, as the data remains on the device, there are no transfers of the biometric
data unless users perform backups to the cloud to avoid re-enrolling in cases of lost or
damaged devices. However, most of the organizations that adopt the mobile-centric
approach do not provide such backup services.

Finally, there are genuine concerns for organizations operating in highly regulated
sectors, such as finance and health care, that this model to capture and store biometric
data is managed by smartphone manufacturers using algorithms tuned to be more
convenient than secure.

Although most of these deployed mobile biometric authentication systems by
manufacturers are applying mechanisms to protect the integrity and confidentiality
of data storage and code execution (i.e., Trusted Execution Environments [8] and
Secure Elements [34]), Zhang et al. [42] revealed some severe issues with one of the
deployed Android fingerprint frameworks which is using an embedded fingerprint
sensor. They exploited an HTC One device with malware and demonstrated that an
attacker can collect fingerprint images of victims every time they swipe their fingers.

4The private key is used to respond to the PKI challenge and never leaves the mobile device.
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17.2.3 BOPS Distributed Storage Approach

The choice of either a device- or server-centric biometric authentication method
provides organizations with both positive and negative consequences. However, the
main concern with both approaches is that there is a single point to compromise
biometric data.

There is, however, a third approach that is a privacy-centric and also pro-
vides service providers with a mechanism of managing the storage of their cus-
tomers/employees data without relying only on the operating system provided by
a device manufacturer. This model is a distributed storage model that has been in-
troduced by Othman and Ross [27] and adopted by the Biometrics Open Protocol
Standard, or BOPS, which is IEEE standard 2410-2017.

The IEEE 2410-2017 Biometrics Open Protocol Standard (BOPS) [1] demands
high levels of assurance to control communication between an organization server
and its clients via two-way secure socket layer/transport layer security (SSL/TLS)
and to monitor authentication logs and patterns with enhanced intrusion detection
system (IDS) analytics.

The difference between BOPS approach and the aforementioned approaches
(server- or mobile-centric) that the biometric enrolled data, i.e., representation of
a fingerprint, voice, facial features, is cryptographically protected into two shares
using a secret sharing scheme, i.e., visual cryptography [25]. These encrypted shares
are stored, respectively, on a client device and a remote BOPS server, such that the
biometric data is not kept in a single point to compromise.

Visual cryptography scheme [25] (VCS) is a simple and secure way to share a
secret such that decryption can be performed using a simple binary operation. The
basic scheme is referred to as the k-out-of-n visual cryptography scheme which is
denoted as (k, n) VCS [25]. Given an original binary data T , it is encrypted into
shares such that:

T = Sh1 ⊕ Sh2 ⊕ Sh3 ⊕ . . . ⊕ Shk (17.1)

where⊕ is a boolean operation, Shi , hi ∈ 1, 2, . . . , k is a sharewhich appears aswhite
noise image, k ≤ n, and n is the number of these shares. It is difficult to decipher the
secret T using individual Shi ’s [25]. The encryption is undertaken in such a way that
k or more out of the n generated shares are necessary for reconstructing the original
secret T .

As shown in Fig. 17.1, BOPS defines three steps during enrollment. First, the re-
mote server generates a public–private key pair (RKP) in which the public key is sent
to the mobile device. Then, a biometric template (called the initial biometric vector
or “IBV”) is collected, encrypted into two shares (shares I and II) using 2-out-of-2
scheme, and then paired with a device-generated public–private key pair (LKP). In
the third step, the LKP private key is reserved locally and the LKP public key along
with the biometric share II is encrypted with the RKP public key for transmission
to the server over a two-way TLS connection and IBV is discarded. The client cer-



362 A. Othman and J. Callahan

Fig. 17.1 Illustration of distributed model steps during the biometric enrollment stage. (1) Server
sends an enrollment request along with the RKP public key, (2) biometric capture is encrypted into
two shares (I and II) using visual cryptography, and (3) biometric share II and device (LKP) public
key are encrypted by the server (RKP) public key and sent to the server via two-way TLS

tificate for the TLS connection is installed a priori via application installation on the
mobile device.

During authentication, a candidate biometric vector (CBV) is acquired for match-
ing with IBV. BOPS defines two configuration modes for authentication:

• Local Match: This configuration is used in the case the biometric matching is done
on mobile devices. The server is requested to encrypt (using its RKP private key)
IBVshare II it holds and returns them to the local device.TheCBVis collected, IBV
shares from local (I) and remote (II) combined and matched on the local device.
The CBV and combined IBV are subsequently wiped from volatile memory.

• Remote Match: This configuration is used in the case the biometric matching is
done remotely on the server. The collected CBV and the local IBV share I are
encrypted in an envelope with the RKP public key and transmitted to the server.
On the server, the incoming IBV share from the local device is combined with
server-based share and compared to the incoming CBV. The CBV and combined
IBV are subsequently discarded.

The choice between these twodifferent configurations is set according to the policy
of the enterprise that deploys BOPS in their biometric authentication framework.

A distributed storage approach combines convenience, personal privacy, and en-
hanced security to create a model that makes it harder for attackers to compromise
a system.
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The fundamental idea of this distributed approach is utilizing secret sharing
scheme [25] that, rather than encrypting the data as a single file using the standard
public and private key pairing methodology, biometric data is encrypted randomly
into multiple shares. These shares must be combined in order to recreate the original
biometric data, ensuring that only the people, or devices, that possess the encrypted
share files are able to recombine them and gain access to the protected information
without any influence to the overall matching performance. Therefore, in the BOPS
model, if the central biometric database, i.e., server is hacked, then attackers still
need to have the user device’s share of the biometric vector to break the system.
Conversely, if a user has their mobile device compromised, an attacker still needs
to break into the central database. This ensures that the biometric data is protected
from data breaches, provides peace of mind for the end-user that their biometric
cannot be easily compromised, and enhances the storage architecture to eliminate
misuse of the data. Moreover, this distributed model has two different matching con-
figurations which allow an organization to customize their solutions based on their
customer-base used technologies and network connectivity.

Hence, this simple IEEE open protocol standard solves the single point of failure
and control concerns with a storage model that can lead to the deployment of more
secure, flexible, and interoperable biometric authentication solutions. Table17.1 pro-
vides a high-level summery of discussed approaches for biometric data storage.

Comments on BOPS Distributed Model

Today, technology vendors and organizations have employed vastly different ap-
proaches when building biometric technology solutions to address identity and ac-
cess problems. It means that user PII exists within the context of each specific Web
site or application they use and control over their identity and data must be exerted
on a site-by-site, app-by-app basis. So, even if some organization are adopting the
IEEE BOPSmodel for storage, users still have the burden to manage and consolidate
their digital identity that is scattered across different organizations, with no ability to
secure them effectively if organizations are adopting different approaches to manage
biometric data (i.e., server- or mobile-centric model).

At the same time, there is a growing inefficiency when organizations all around
the world have to collect, store, and protect the same sort of PII (either biometric,
demographic data or personal credentials) in their own silos and most of these silos
are reaching their tipping points.

Hence, fundamental changes are needed to evolve identity authentication in order
to improve the user experience by eliminating the need to manage multiple accounts
and to eliminate reliance on any one vendor or group of vendors.

We believe the common denominator across most aspects of personally identi-
fying information (PII) protection is identity. An identity is inextricably linked to
a person, device, application, system, or network, and it is the most dependable
‘perimeter’ we can rely upon to determine how to make information available se-
curely and adequately.
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Table 17.1 A high-level comparison of different models to storage biometric data

Biometric
storage

Pros Cons

Server-centric
model

• High degree of control over the biometric
authentication to manage and secure the data
storage

• Large-scale data breaches

• Multiple end-point access and services using
the same biometric authentication system

• Privacy concerns of misusing
and cross-linking the
biometric data without users’
consents

• Analyze the biometric to improve the
performance of matching algorithms

• Suitable for identification scenarios
(1: N matching)

• Reduce app size and complexity of terminal
access point of the service

Mobile-centric
model

• No managing and storing of PII or biometric
data in a central database

• Biometric authentication only
available to owners of the
latest mobile devices with
biometric capabilities

• No privacy concerns of misusing the data • Lost and stolen devices are
problematic scenarios

• Taking advantages of recent devices that
have shipped with biometric capabilities

• Most of the available mobile
devices are built to be
convenient more than secure

BOPS
distributed
model

• No single point to compromise • Cannot be utilized for
identification scenarios
(1: N matching)

• A privacy-centric approach where the
organizations don’t have to manage or to
store biometric data

• The users have the burden to
manage and consolidate their
digital identity that is
scattered across different
organizations

• Taking advantage of a secret sharing scheme
to securely store the biometric data in a
distributed manner

• Biometric trait-agonistic approach

• Supported by IEEE 2410-2017 standard that
guarantees high levels of assurance to control
communication between an organization
server and its clients and to monitor
authentication logs and patterns with an
enhanced intrusion detection system

• Matching can be configured to be on mobile
or server based on enterprises’ policies
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In the following sections, we give a quick overview of the different identity mod-
els and evolution of theses models into the new self-sovereign identity ecosystem
that provides users a full control over their identity accessing and storage. Then, we
discuss our Horcrux protocol where both BOPS and SSI model can be deployed to-
gether to provide a newway for users to establish a portable, secure, and controllable
biometric-based identity system which is intrinsically theirs.

17.3 Self-sovereign Identity Ecosystem

Current identity proving methods (see Fig. 17.2) rely on specific parties: an issuer,
end-user, verifier, and inspector.

Issuers such as governments associate identity credentials with end-users. Then,
the issuer shares personal information and credentials of the end-userwith a verifier. If
the end-user applies for a bank account, credit card, or car loan, the inspector contacts
a verifier to prove the claimed identity by the end-user. Therefore, especially if this
process is online, the inspector presents a multiple-choice quiz about past addresses
or who financed the user’s last car. That’s an identity verification service that a
verifier provides to lenders and others, i.e., inspectors. Based on the answers or
proof of holding the credentials, the inspector will verify the claimed identity by the
end-user and guarantee the required service. This ecosystem has the same security
flaw as the traditional authentication systems; end-user personal data (e.g., SSN,
addresses, birthdate) is stored in a centralized database of the verifier. An example
of this security flaw is the data breach of a verifier in USA; Equifax [14].

In current digital and interconnected practice, these verifiers become a central-
ized database which stores the data used for authentication. When the user offers the
requested proof of identity, the authentication server evaluates this proof and grants
access to the user. For example, when a user tries to access his account on a typical
Web application, he is prompted to enter a password. Traditionally, the Web appli-
cation holds the information about the user’s account and his password. When the
user submits his password during log-in process, the application compares the stored
password to the submitted password. If they match, the user is granted access to the
application. In other words, all the information needed to authenticate the user is held
on a single system. This silo-based approach, where users must maintain identities
for every site they interact with, has become untenable. It is not just a usability dis-
aster for individuals, it also creates a multitude of data honeypots for hackers which
when breached, compromises trust in all Internet services.

To solve this problem, in some current implementations, the authentication server
can be completely separated from the server running Web applications or biometric
authentication database . For example, single sign-on (SSO) schemes [29] are based
on this concept. SSO schemes rely on a third-party identity provider (IdP) to broker
authentication using protocols such as SAML [13] and OpenID Connect [37]. Since
their introduction in 2002 and 2010, respectively, only 5% of sites use any of over
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Fig. 17.2 Traditional
identity proving ecosystem

50 disparate IdP [41] SSO services (e.g., “Login with Facebook” and “Sign in with
Google”).

However, these have produced inadvertent side effects such as concentrating con-
trol around a small number of providers, increasing data leakage through inadvertent
sharing, and raising privacy concerns, all while not actually giving the individual
real control.

Surveys of users show an overwhelming dissatisfactionwith single sign-on (SSO),
a feeling of “lack of control” over their data [20, 35, 39] and a desire to control it
themselves. Recent legislation, such as the General Data Protection Regulations
(GDPR) [10, 16] and Payment Services Directive II (PSD2) [7], are pressuring
institutions, both private and public, to place citizen or customer data into the end-
user’s control.

Self-sovereign identity is a new identity ecosystem where individuals (or even
organization) control, and manage their identities. In this sense, the individual is
their own identity provider—no external party can claim to “provide” the identity
for them because it is intrinsically theirs. In other words, self-sovereign identity is
as a digital record or container of identity transactions that end-users control. The
end-user can add more data to it, or ask others to do so, reveal some the data or all of
it some of the time or all the time. Moreover, end-users can record their consent to
share data with others and easily facilitate that sharing. It is persistent and not reliant
on any single third party. Claims made about an end-user in identity transactions can
be self-asserted or asserted by a third party whose authenticity can be independently
verified by a relying party. The infrastructure of self-sovereign identity has to reside in
an environment of diffuse trust which is not controlled by any single organization or
even a small group of organizations. The cryptographically secure blockchain is the
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breakthrough technology that makes this possible. It enables multiple entities such
as organizations and governments to cooperate mutually via distributed consensus
to form decentralized blockchains, where data is replicated in multiple locations to
be resistant to faults and tampering. While distributed ledger technology has been
around for some time, new blockchain applications, such as Bitcoin, have resulted in
realizations of its potential, particularly with respect to decentralization and security.

17.3.1 Distributed Ledgers Technology (DLT)

A DLT is a cryptographically secure, decentralized, and distributed ledger of in-
formation. In this chapter, we use the term DLT and blockchain interchangeably to
encompass all implementations of such architecture. DLT replace trust in humans
with trust in mathematics via cryptographic triple play [18]:

(1) Each transaction in the blockchain is digitally signed by the originator.
(2) Each transaction—singly or in blocks—is chained to the prior via a digital hash.
(3) Validated transactions are replicated across all machines using a consensus

algorithm.

The result is an immutable time-stamped append-only distributed ledger, which
contains a set of cryptographically hashed transactions. When a new record/
transaction is added to a chain, all other distributed instances of the chain are up-
dated with the new record. This provides complete transparency of every transaction
that makes it very difficult, if not almost impossible to change past transactions or
maliciously control future ones.

DLT implementations can be divided into two categories [18]: public and private.
A public DLT typically has a lower transaction throughput as the network is public
and larger; therefore, the consensus mechanism requires more time and resources.
Conversely, in a private DLT, only a selection of verified entities has the privilege to
access the ledger, and consequently, the transaction approval rate is higher. A private
DLT provides more privacy but less transparency on the content of the transactions.
These public or private DLTs can be either permissionless and permissioned. In a
permissionless DLT, any entity can theoretically participate in writing into the ledger.
In a permissioned blockchain, however, only the authorized entities are permitted to
participate in validating and adding transactions to the ledger.

These DLT different implementations underpin the majority of cryptocurrencies
by allowing for transactions to take place without central intermediaries [22, 40].
Bitcoin [24] and Ethereum [9] are common examples of blockchain-based cryp-
tocurrencies. However, DLT use cases have expanded beyond the financial services
industry.

DLT is leading the next evolution of the identity by the creation of a common
identity layer that allows people, organizations, and things to have their own self-
sovereign identity (SSI)—a digital identity they own and control, and which cannot
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be taken away from them. The decentralized nature of the blockchains networks
ensures data integrity and availability, as well as privacy for the users, as there is
no need for the continuous involvement of the identity issuer, for identity access,
resolution, or verification.

17.3.2 Self-sovereign Identity Ecosystem Architecture

Figure17.3 provides an overview of the self-sovereign identity architecture. The
followings are the brief descriptions of the architecture entities. Note that in this
architecture, the information is no longer centralized and connections are individually
permissioned.

• DID: Decentralized Identifiers (DIDs) are a new type of identifier intended for
a self-sovereign identity system, i.e., entirely under the control of an entity and
not dependent on a centralized registry or certificate authority. DIDs are opaque,
unique sequences of bits, that get generated when a user accepts a claim from
an issuer along with a corresponding DID document. DIDs have a foundation
in Universal Resource Identifiers (URIs) [19, 33]; therefore, they achieve global
uniqueness without the need for a central registration authority.

Fig. 17.3 Self-sovereign identity ecosystem architecture
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• DID document: A DID resolves to a corresponding DID document—a simple
document that contains all the metadata needed to interact with the DID. Specifi-
cally, a DID document typically contains at least three things along with personal
information or credentials. The first is a set of mechanisms that may be used to
authenticate as a particular DID (e.g., public keys, biometric templates, or even
an encrypted share of biometric data). The second is a set of authorization infor-
mation that outlines which entities may modify the DID document. The third is a
set of service endpoints, which may be used to initiate trusted interactions with an
entity [33].

• Blockchains: In this architectural construct, the blockchain acts as an index of
identifiers and audit trail of permissioned exchanges between the issuer of claims,
the holder of claims, and the inspector of claims.

• Identity hubs and repositories:Thesehubs are secure personal data repositories that
curate and coordinate the storage of signed/encrypted DID documents, and relay
messages to identity-linked devices. Examples of identity hubs include Dropbox,
Google Drive, and Storj.

• Issuer:Anentity that createsDIDandDIDdocuments associates itwith a particular
subject and transmits it to a holder. Examples of issuers include corporations,
governments, and individuals.

• Inspector/Verifier: Inspectors request claims in the form ofDIDs from subjects and
organizations in order to give them access to protected resources. The inspector
verifies that the credentials provided via DID and in the DID document are fit-for-
purpose and also checks the validity of the DID in the blockchain. Examples of
inspectors include employers, security personnel, and Web sites.

• Holder:Holders receiveDIDs from issuers, storeDIDdocuments via identity hubs,
and provide DID documents to inspectors. The entity which controls a particular
DID can be the subject of the DID document, but not necessarily. An inspector
can also resolve DIDs into their corresponding DID documents and discover DIDs
across a decentralized system. Examples of holders are users—students, employ-
ees, and customers. Other examples of holders that have the permissions to handle
subject’s claims include Web services or mobile apps installed on the subject’s
personal devices.

SSI users have the liberty to manage their identity data on their mobile devices
or cloud repositories. Mobile devices have become an essential part of our lives. We
use mobile devices to store our credentials and payment. Therefore, while physical
documents and storage of identity attributes on the cloud and third-party identity
providers may exist for the years to come, storing identity data on mobile devices is
the next natural step toward the realization of self-sovereign identity and usingmobile
biometric can help in facilitating this to protect and authenticate digital identities.
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17.4 The Horcrux Protocol

The IEEE 2410-2017 standard, BOPS allows for interoperability at several layers
including the persistence cluster [1] provided it satisfies security requirements for
storage of encrypted biometric shares. We propose any BOPS server can act as
a holder of biometric shares via blockchain using methods outlined in the W3C
Decentralized Identity (DID) specification [33]. A BOPS server can enroll a user
by storing biometric share(s) as DID documents using off-chain storage providers
owned by the user. The corresponding DID acts as the identity assertion associated
with the enrolled biometric.

17.4.1 Enrollment

Figure17.4 depicts a standard BOPS enrollment flow (adapted from [1] Sect. 7.2).
The user (via a browser user-agent) is prompted to enroll their biometrics with a
service provider acting as an issuer. The initial biometric vector (IBV) is encrypted
(via visual cryptography) into two shares. One share is reserved on the local mo-
bile device while the second is transmitted to the BOPS server. Instead of a persis-
tence cluster (e.g., SOLR) backend, the BOPS server relies on a blockchain store
in this case using a decentralized identifier (DID) [33] for persistence. DIDs pro-
vide a blockchain-agnostic method for resolving DID documents much like URIs
[19] uniquely characterize Web resources via URNs and URLs, but for disparate
blockchain ecosystems. The W3C Verifiable Claims Community Working Group
has defined DID method specifications [33] for implementors of CRUD5 operations
specific to a particular blockchain. The BOPS server acts as a resolver given a DID to
fetch the corresponding DID document if possible. The DID and corresponding DID
document are cryptographically associated with each other via blockchain transac-
tions such that any tampering with the DID document for a given DID would be
evident. After persisting the DID document and registering the associated DID on a
blockchain, the user is notified of success (or failure) of their enrollment. It should be
noted that no biometric shares are stored on any blockchains, only inDIDDocuments
that are persisted “off-chain” via identity hubs or personal storage providers.

17.4.2 Authentication

The encrypted biometric share is still within an encrypted envelope as per [1], but the
share is persisted on a corresponding DID document of an associated DID. The DID
can be used as a claim with another BOPS server acting as a verifier. Again, this is

5In computer programming, create, read, update, and delete (CRUD) are the four basic functions
of persistent storage.
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possible because any tampering with the DID document associated with a given DID
will be detectable due to their relationship via a recorded blockchain transaction [33].
Figures17.5 and 17.6 show examples of a different BOPS server being used by a
verifier (BOPS server B), where the user tries to access a resource on aWeb site (e.g.,
the service provider) using a mobile client application (MCA) with a DID created
by an issuer 17.4 and a public key created at enrollment. The service provider relies
on a BOPS server to resolve the DID and fetch the corresponding DID document
via a blockchain from the storage provider. If the DID document is a valid claim, the
BOPS server checks if the issuer of the claim is known (via its public key in the DID
document) and that the enrollment public key matches for this user as well. If valid,
the user (via their MCA) is requested for their candidate biometric vector (CBV),
i.e., probe and complement share of the IBV as per [1].

17.4.2.1 Remote Authentication

In the case of remote authentication/match, upon receiving the complementary share
and CBV from the client (as described in 17.2—Remote configuration mode), the
enrollment public key is used to decrypt the client’s share, combine the IBV shares,
and match them to the CBV. If successful, the user is authenticated. Note that, the
service provider, acting as a verifier, uses a different BOPS server instance to au-
thenticate the user even though this user has never registered at this service provider.
Furthermore, the user and service provider are the only parties needed at authentica-
tion time unlike SAML or OAuth that rely on third-party identity providers (IdPs) to
broker identity claims in traditional single sign-on (SSO) systems. The Horcrux pro-
tocol supports self-sovereign identity [5] by using blockchain technology to secure
credentials issued by valid authorities (i.e., issuers) for later use directly by the user
who owns the credentials. The user may store such credentials via several personal
cloud storage providers such as Dropbox, Google Drive, and Amazon S3. But the
user delegates management (via OAuth tokens) to a holder such as the BOPS server.
The holder can access issued claims like the encrypted biometric shares on behalf
of the user during authentication, but require biometric authentication as specified
in the authenticationCredentials section of the claim [33].

17.4.2.2 Local Authentication

The local configuration matching mode of BOPS is also available such that a com-
bination of biometric shares occurs on the mobile device. Figure17.6 shows this
variation in which the second biometric share is retrieved via DID referencing from
the corresponding DID document but is transmitted to the client by a service provider
and its BOPS server. The biometric share is opaque to the service provider and BOPS
server in this case, but the server knows that the corresponding share on the mobile
device is used for matching due to the use of Hash-based Message Authentication
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Code(HMAC)6 while retrieving and sending the encrypted second share by BOPS
server (BOPS B in Fig. 17.6). The enrolled share is never sent to the server, but
both shares are kept locally as per BOPS local configuration mode. The matching is
done locally and authentication decision. MCA sends the decision after computing
an HMAC using the share and sends it to the server. The server can compare the
HMAC key with the opaque encrypted share from the DID document. It is possi-
ble, however, that the user could resolved a given DID, retrieve the corresponding
DID document, extract the opaque encrypted share, and construct the HMAC, thus
spoofing possession of that share and falsifying the biometric match. We are in the
process of investigating methods for securing DIDs on a mobile device and/or using
server-based key mechanism to prevent this attack vector.

17.5 Summary

The threat of cyber attacks and the explosive growth of mobile and connected devices
has ignited the quest for practical, secure, and privacy-preserving digital identity and
access management (IdM) architectures with highly secure authentication solutions.
While the self-sovereign identity (SSI) model is the next evolution of identity man-
agement paradigm in which users have complete ownership and control over their
digital identity, there is the need to provide the users with a secure, reliable, and
interpretable biometric authentication model to control the storage and access to
their digital identities. The Horcrux protocol is a method for secure exchange of bio-
metric credentials within an existing standard (IEEE 2410-2017 BOPS [1]) imple-
mented across next-generation blockchain-based self-sovereign identity platforms
based on open standards like DIDs and DID documents [33]. By using blockchain
and off-chain storage as an alternative to the persistent layer in BOPS, we use new
blockchain-agnostic standards to enroll via an issuer and authenticate on a verifier
that is not part of a real-time trust network. Instead, they rely on user-controlled bio-
metric credentials that are cryptographically encrypted into multiple shares across
the user’s device and blockchain-linked personal storage providers. The protocol is
generalized for two ormore biometric shares that can be stored acrossmobile devices
and personal storage providers with redundancy for availability and safety. Future
plans include a reference implementation and detailed analysis of the protocol for
performance and correctness using TLA+ in amanner similar to the protocol analysis
of WPA found in [26]. Further, the IEEE 2410-2017 standard allows for more than
two encrypted shares. Hence, as a continuation of the proposed Horcrux protocol,
algorithms such as visual cryptography [36] and Naor and Shamir secret sharing
[25] can be utilized for larger number of shares. Using DIDs and associated DID
documents for more biometric shares across different blockchains and replicating
copies of shares could considerably protect users from compromise and increase
availability.

6HMAC is an approach to verify a message integrity by ensuring that the data has not been altered
or replaced when send back to the sender [12].
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