
Highly Efficient Key Exchange
Protocols with Optimal Tightness

Katriel Cohn-Gordon1, Cas Cremers2(B), Kristian Gjøsteen3,
H̊akon Jacobsen4, and Tibor Jager5(B)

1 Oxford, UK
me@katriel.co.uk

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
cremers@cispa.saarland

3 NTNU - Norwegian University of Science and Technology, Trondheim, Norway
kristian.gjosteen@ntnu.no

4 McMaster University, Hamilton, Canada
jacobseh@mcmaster.ca

5 Paderborn University, Paderborn, Germany
tibor.jager@upb.de

Abstract. In this paper we give nearly-tight reductions for modern
implicitly authenticated Diffie-Hellman protocols in the style of the Sig-
nal and Noise protocols, which are extremely simple and efficient. Unlike
previous approaches, the combination of nearly-tight proofs and efficient
protocols enables the first real-world instantiations for which the param-
eters can be chosen in a theoretically sound manner.

Our reductions have only a linear loss in the number of users, imply-
ing that our protocols are more efficient than the state of the art when
instantiated with theoretically sound parameters. We also prove that
our security proofs are optimal: a linear loss in the number of users is
unavoidable for our protocols for a large and natural class of reductions.

1 Introduction

Key exchange protocols serve as a building block for almost all secure communi-
cation today. However, deploying a key exchange protocol requires implementors
to carefully choose concrete values for several parameters, such as group and key
sizes, which we here abstract into a single security parameter n. But how should
n be selected? An answer is to select it based on formal reductionist arguments
in the style of concrete security [7]. These arguments relate the security parame-
ter n of a protocol to the security parameter f(n) of an assumed-hard problem,
such that breaking the protocol with parameter n would lead to an attack on

Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme, grant agreement 802823, and the
Deutsche Forschungsgemeinschaft (DFG), project number 265919409.

K. Cohn-Gordon—Independent Scholar.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 767–797, 2019.
https://doi.org/10.1007/978-3-030-26954-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_25

768 K. Cohn-Gordon et al.

the hard problem with parameter f(n). We say a protocol is deployed in a the-
oretically sound way if n is chosen such that the underlying problem is “hard
enough” with parameter f(n).

Unfortunately, for most deployed protocols the parameters are actually not
chosen in a theoretically sound way. This means that the formal security argu-
ments are in reality vacuous since f(n) is too small for the underlying problem
to be hard. For example, existing security proofs for TLS [11,22,27] have a secu-
rity loss which is quadratic in the total number of sessions, but the parameters
chosen in practice does not account for this. If one aims for “128-bit security”,
and assumes 230 users and up to 230 sessions per user (very plausible for TLS),
then a theoretically sound choice of parameters would have to provide at least
“248-bit security”. In the particular case of the algebraic groups used for Diffie-
Hellman (DH) in TLS, this would require a group of order |G| ≈ 2496 instead
of the common 128-bit-secure choice of |G| ≈ 2256. But larger parameters typi-
cally leads to worse performance so this is not done in practice. Thus, for TLS
as actually used, the proofs do not provide any meaningful security guarantees
since they relate the hardness of breaking TLS to a DH instance which is too
easy to solve.

It would be desirable if protocols could be instantiated in a theoretically
sound way without sacrificing efficiency. This has led to the study of so-called
tight security, in which one aims to construct proofs such that the gap between
n and f(n) is as small as possible. While there have been several recent advances
in this field [3,19], typically they trade tighter proofs for the use of more complex
primitives and constructions—which themselves require more or larger keys. This
leads to the perhaps counter-intuitive observation that the resulting protocols
have a tighter security proof, but are substantially less efficient in practice. For
example, the recent protocol of Gjøsteen and Jager [19] has a constant security
loss, meaning that an attack on their protocol leads to an attack on decisional DH
with essentially the same parameter. However, it is a signed DH protocol, and
thus must be instantiated with a tightly-secure signature scheme. The solution
used by Gjøsteen and Jager [19] requires a total of 17 exponentiations which
can negate the efficiency savings from using a smaller group. In some sense they
overshoot their target: they achieve tightness without reaching the actual goal
of efficient theoretically sound deployment in practice.

In this work we will instead aim between the two extremes of real-world
protocols on the one end having very non-tight proofs, and the more theoretical
protocols on the other having fully tight proofs, focusing instead on the actual
end-goal of achieving efficient theoretically sound deployments in practice. Our
constructions fall into the class of implicitly authenticated DH protocols, which
often are more efficient than signed DH variants, and can additionally offer
various forms of deniability. Implicitly authenticated key exchange protocols
have been studied extensively in the literature, and in the past few years have
also started to see deployments in the real world. Perhaps the most well-known
example is the Signal protocol [38], which encrypts messages for WhatsApp’s
1.5 billion users. Another example is the Noise protocol framework [36], whose

Highly Efficient Key Exchange Protocols with Optimal Tightness 769

so-called IK pattern powers the new Linux kernel VPN Wireguard [16]. Similar
protocols in the literature include KEA+ [30] and UM [24].

We will give a security proof for a simple instance of this class, very close
to Signal’s basic design. In and of itself this isn’t particularly noteworthy. What
is noteworthy, however, is the tightness of the proof. Unlike any other proof for
a protocol as simple and efficient as ours, our proof only incurs a security loss
which is linear in the number of users μ and constant in the number of sessions
per user �. This is in stark contrast to most other key exchange proofs that are
typically quadratic in at least one of these parameters, and most of the time
quadratic even in their product μ�.

Our Contributions. Our contributions revolve around three protocols which all
aim for high practical efficiency when instantiated with theoretically sound
parameters. The first protocol, which we call Π, is a simple and clean implicitly
authenticated DH protocol very close to Signal, Noise-KK, KEA+ and UM, and
provides weak forward secrecy. In protocol Π users exchange a single group ele-
ment and perform four group exponentiations to establish a session key. Protocol
Π—specified precisely in Sect. 4—aims for maximal efficiency under the strong
DH assumption.

The other two protocols, which can be seen as variants of protocol Π, are
designed to avoid the strong DH assumption of Π. The first protocol, which we
call ΠTwin, adapts the “twinning” technique of Cash et al. [13] to protocol Π,
and needs four more exponentiations. The second, which we call ΠCom, addi-
tionally adapts the “commitment” technique of Gjøsteen and Jager [19], and
only needs two more exponentiations than protocol Π. On the other hand, it
requires one more round of communication. Both ΠTwin and ΠCom are slightly
more costly than protocol Π, but in return require only the standard CDH and
DDH assumptions.

Common to all our protocols is that they are simple and conventional, with
no heavyweight cryptographic machinery. They exchange ephemeral keys and
derive a session key from the combination of static-ephemeral, ephemeral-static
and ephemeral-ephemeral DH values via a hash function H. In our proofs H will
be a random oracle.

Our first core contribution is thus to give new reductions for all these pro-
tocols with a linear loss L = O(μ) in the random oracle model. This is better
than almost all known AKE protocols. As we will see, even though the loss is
not constant, our protocols are so efficient that they perform better than both
fully-tight protocols as well as the most efficient non-tight AKEs1. In contrast to
previous works, our proofs enable theoretically sound deployment of conventional
protocols while maintaining high efficiency.

Our second core contribution is to show that the O(μ) tightness loss is essen-
tially optimal for the protocols considered in this paper, at least for “simple”
reductions. A “simple” reduction runs a single copy of the adversary only once.
To the best of our knowledge, all known security reductions for AKE protocols
1 When instantiated with theoretically sound parameters under reasonable assump-

tions on μ and � in modern deployment settings.

770 K. Cohn-Gordon et al.

are either of this type or use the forking lemma (which of necessity leads to
a non-tight proof). Hence, to give a tighter security proof, one would have to
develop a completely new approach to prove security.

The lower-bound proof will be based on the meta-reduction techniques
described by Bader et al. [4]. However, these techniques are only able to han-
dle tight reductions from non-interactive assumptions, while our first protocol
is based on the interactive strong DH assumption. Therefore we develop a new
variant of the approach, which makes it possible to also handle the strong DH
assumption.

Finally, we prove that our protocols can be enhanced to also provide explicit
entity authentication by adding key-confirmation messages, while still providing
tight security guarantees. To do so, we generalise a theorem of Yang [41] in two
ways: we apply it to n-message protocols for n > 2, and we give a tight reduction
to the multi-user versions of the underlying primitives.

To summarise:

1. We give three protocols with linear-loss security reductions, making them
faster than both fully-tight protocols and the most efficient non-tight ones
when instantiated in a theoretically sound manner for reasonable numbers of
users and sessions.

2. We prove optimality of linear loss for our protocols under “simple” reductions.
3. We tightly extend our protocols with key confirmation messages to provide

explicit entity authentication.

Related Work. We briefly touch upon some other protocols with non-quadratic
security loss. KEA+ [30] achieves L = O(μ�) under the Gap-DH assumption, and
where the reduction for pairing-friendly curves takes O(t log t) time. However,
for non-pairing-friendly curves the reduction takes O(t2) time. Moreover, KEA+
also does not achieve weak forward secrecy in a modern model: only one side’s
long term key can be corrupted.

The first AKE protocols with L independent of μ and � were described by
Bader et al. [3] at TCC 2015. They describe two protocols, one with constant
security loss L = O(1) and another with loss L = O(κ) linear in the secu-
rity parameter. Both protocols make use of rather heavy cryptographic building
blocks, such as tree-based signature schemes, Groth-Sahai proofs [20], and cryp-
tographic pairings, and are therefore not very efficient.

As already mentioned, Gjøsteen and Jager [19] recently described a more
practical protocol, which essentially is a three-message variant of “signed Diffie-
Hellman”. Even though their protocol uses a rather complex signature scheme
to achieve tightness (a single key exchange requires 17 exponentiations and the
exchange of in total 16 group elements/exponents), when instantiated with the-
oretically sound parameters it turns out to be more efficient than even plain
signed DH with ECDSA, at least for large-scale deployments. Unlike [3], the
security analysis in [19] is in the random oracle model [8] since the paper aims
at maximal practical efficiency.

Highly Efficient Key Exchange Protocols with Optimal Tightness 771

2 Background

In this section we recap some background and standard definitions. Let G be a
cyclic group of prime order p with generator g.

Diffie-Hellman Problems. The computational and decisional Diffie-Hellman
problems are natural problems related to breaking the Diffie-Hellman protocol.

Definition 1. Consider the following experiment involving an adversary A. The
experiment samples x, y

$← Zp and starts A(gx, gy). The advantage of A in
solving the computational Diffie-Hellman problem is defined as

AdvCDH
G,g (A) := Pr [A(gx, gy) = gxy]

Definition 2. Consider the following experiment involving an adversary A. The
experiment samples x, y, z

$← Zp and tosses a coin b̂
$← {0, 1}. If b̂ = 1 then it

sets Z := gxy, while if b̂ = 0 then it sets Z = gz. We define the advantage of A
in solving the decisional Diffie-Hellman problem as

AdvDDH
G,g (A) := |Pr

[
A(gx, gy, Z) = b̂

]
− 1/2|

Let DDH(gx, gy, gz) be an oracle that returns 1 if and only if xy = z. The
gap Diffie-Hellman problem asks to solve the computational Diffie-Hellman prob-
lem, given access to the oracle DDH(·, ·, ·). The strong Diffie-Hellman problem is
related to the gap Diffie-Hellman problem, except that the adversary now gets a
less capable oracle where the first input is fixed, i.e., stDHx(·, ·) = DDH(gx, ·, ·).

Definition 3. Consider the following experiment involving an adversary A. The
experiment samples x, y

$← Zp and starts AstDHx(·,·)(gx, gy). The advantage of
A in solving the strong Diffie-Hellman problem is defined as

AdvstDH
G,g (A) := Pr

[
AstDHx(·,·)(gx, gy) = gxy

]
.

One may wonder to which extent the number of oracle queries to the strong
DH oracle affects the concrete security of this assumption. That is, how does the
security of strong DH degrade with the number of queries to the stDH oracle?
We are not aware of any concrete attacks that exploit the oracle to solve the
CDH problem more efficiently than other algorithms for CDH. In particular, in
many elliptic curves with practical bilinear pairings it is reasonable to assume
hardness of CDH, even though the bilinear pairing is a much stronger tool than
a strong DH oracle.

A crucial technique in any tight proof using Diffie-Hellman problems is reran-
domisation [6], where a single Diffie-Hellman problem instance can be turned into
many, in such a way that an answer to any one of them can be turned into an
answer to the original instance. We will use this technique in our proofs.

The Strong Twin Diffie-Hellman Problem. The strong twin Diffie-Hellman prob-
lem was introduced by Cash, Kiltz, and Shoup [13] at EUROCRYPT 2008. It

772 K. Cohn-Gordon et al.

is closely related to the standard computational Diffie-Hellman (CDH) problem,
except that it “twins” certain group elements, in order to enable an efficient
“trapdoor-DDH” test that makes it possible to simulate a strong-CDH oracle.
This makes it possible to show that the twin-DH problem is equivalent to the
standard CDH problem. Let twinDHx0,x1(Y,Z0, Z1) be an oracle which returns
1 if and only if DDH(gx0 , Y, Z0) = 1 and DDH(gx1 , Y, Z1) = 1.

Definition 4. Consider the following experiment involving an adversary A. The
experiment samples x0, x1, y

$← Zp and starts AtwinDHx0,x1 (·,·,·)(gx0 , gx1 , gy). The
advantage of A in solving the strong twin Diffie-Hellman problem is defined as

Adv2-CDH
G,g (A) := Pr

[
AtwinDHx0,x1 (·,·,·)(gx0 , gx1 , gy) = (gx0y, gx1y)

]

The following theorem was proven by Cash, Kiltz, and Shoup [[13], Theorem 3].

Theorem 1. Let A be a strong twin DH adversary that makes at most Q queries
to oracle O and runs in time tA. Then one can construct a DH adversary B that
runs in time tA ≈ tB such that

Adv2-CDH
G,g (A) ≤ AdvCDH

G,g (B) + Q/p.

3 AKE Security Model

In this section we define our game-based key exchange security model. It is
based on the real-or-random (“RoR”) security definition of Abdalla, Fouque,
and Pointcheval [2], and incorporates the extension of Abdalla, Benhamouda,
and MacKenzie [1] to capture forward secrecy. The central feature of the RoR-
model is that the adversary can make many Test-queries, and that all queries
are answered with a “real” or “random” key based on the same random bit b̂.

We prefer to work in a RoR-model because it automatically lends itself to
tight composition with protocols that use the session keys of the key exchange
protocol. For security models where there is only a single Test-query, or where
each Test-query is answered based on an individual random bit [3,19], such a
composition is not automatically tight.

Although we mainly consider key exchange protocols with implicit authen-
tication in this paper, we show in Sect. 8 how they can easily be upgraded to
also have explicit authentication by adding key-confirmation messages to the
protocol. The advantage of working in the RoR-model is that it allows us to do
this transformation tightly.

Execution Environment. We consider μ parties 1, . . . , μ. Each party i is repre-
sented by a set of � oracles, {π1

i , . . . , π�
i}, where each oracle corresponds to a

session, i.e., a single execution of a protocol role, and where � ∈ N is the max-
imum number of protocol sessions per party. Each oracle is equipped with a
randomness tape containing random bits, but is otherwise deterministic. Each
oracle πs

i has access to the long-term key pair (ski, pki) of party i and to the
public keys of all other parties, and maintains a list of internal state variables
that are described in the following:

Highly Efficient Key Exchange Protocols with Optimal Tightness 773

– Pids
i (“peer id”) stores the identity of the intended communication partner.

– Ψs
i ∈ {∅, accept, reject} indicates whether oracle πs

i has successfully com-
pleted the protocol execution and “accepted” the resulting key.

– ks
i stores the session key computed by πs

i .
– sentsi contains the list of messages sent by πs

i in chronological order.
– recvs

i contains the list of messages received by πs
i in chronological order.

– roles
i ∈ {∅, init, resp} indicates πs

i ’s role during the protocol execution.

For each oracle πs
i these variables are all initialized to the empty string ∅. The

computed session key is assigned to the variable ks
i if and only if πs

i reaches the
accept state, that is, we have ks

i �= ∅ ⇐⇒ Ψs
i = accept.

Partnering. To define when two oracles are supposed to derive the same session
key we use a variant of matching conversations. In addition to agreement on their
message transcripts, they should also agree upon each other’s identities and have
compatible roles (one being the initiator the other the responder). We remark
that our protocol messages consist only of group elements and deterministic
functions of them. This means that they are not vulnerable to the “no-match”
attacks of Li and Schäge [32].

Definition 5 (Origin-oracle). An oracle πt
j is an origin-oracle for an oracle

πs
i if Ψ t

j �= ∅, Ψs
i = accept, and the messages sent by πt

j equal the messages
received by πs

i , i.e., if senttj = recvs
i .

Definition 6 (Partner oracles). We say that two oracles πs
i and πt

j are part-
ners if (1) each is an origin-oracle for the other; (2) each one’s identity is the
other one’s peer identity, i.e., Pids

i = j and Pidt
j = i; and (3) they do not have

the same role, i.e., roles
i �= rolet

j.

Attacker Model. The adversary A interacts with the oracles through queries. It is
assumed to have full control over the communication network, modeled by a Send
query which allows it to send arbitrary messages to any oracle. The adversary
is also granted a number of additional queries that model the fact that various
secrets might get lost or leaked. The queries are described in detail below.

– Send(i, s, j,m): This query allows A to send any message m of its choice to
oracle πs

i on behalf of party Pj . The oracle will respond according to the
protocol specification and depending on its internal state. For starting a role
there are additional actions:
[Initiator] If (Pids

i , Ψ
s
i) = (∅, ∅) and m = ∅, then this means that A requests

πs
i to start the initiator role with peer Pj . In this case, πs

i will set Pids
i := j

and roles
i := init.

[Responder] If (Pids
i , Ψ

s
i) = (∅, ∅) and m �= ∅, then this means that A requests

πs
i to start the responder role with peer Pj with first message m. In this case,

πs
i will set Pids

i := j and roles
i := resp.

– RevLTK(i): For i ≤ μ, this query allows the adversary to learn the long-term
private key ski of user i. After the query i is said to be corrupted, and all
oracles π1

i , . . . , π�
i now respond with ⊥ to all queries.

774 K. Cohn-Gordon et al.

– RegisterLTK(i, pki): For i > μ, this query allows the adversary to register a
new party i with public key pki. We do not require that the adversary knows
the corresponding private key. After the query the pair (i, pki) is distributed to
all other parties. Parties registered by RegisterLTK are corrupted by definition.

– RevSessKey(i, s): This query allows the adversary to learn the session key
derived by an oracle. That is, query RevSessKey(i, s) returns the contents
of ks

i . Recall that we have ks
i �= ∅ if and only if Ψs

i = accept. After this query
πs

i is said to be revealed.

Note that unlike, e.g., [10,12], we do not allow the adversary to learn the
sessions’ ephemeral randomness.

Security Experiment. To define the security of a key exchange protocol we want to
evaluate the attacker’s knowledge of the session keys. Formally, we have an AKE
security game, played between an adversary A and a challenger C, where the
adversary can issue the queries defined above. Additionally, it is given access to
a special Test query, which, depending on a secret bit b̂ chosen by the challenger,
either returns real or random keys. The goal of the adversary is to guess b̂.

– Test(i, s): If Ψs
i �= accept, return ⊥. Else, return kb̂, where k0 = ki

s and
k1

$← K is a random key. If a Test query is repeated in the case b = 1, the
same random key is returned. After the query, oracle πs

i is said to be tested.

The adversary can issue many Test queries, to different oracles, but all are
answered using the same bit b̂.

The AKE security game, denoted GΠ(μ, �), is parameterized by the protocol
Π and two numbers μ (the number of honest parties) and � (the maximum
number of protocol executions per party), and is run as follows.

1. C begins by drawing a random bit b̂
$← {0, 1}, then generates μ long-term

key pairs
{
(ski, pki)

∣∣ i ∈ [1, . . . , μ]
}
, and initializes the collection of oracles{

πs
i

∣∣ i ∈ [1, . . . , μ], s ∈ [1, . . . , �]
}
.

2. C now runs A, providing all the public keys pk1, . . . , pkμ as input. During its
execution, A may adaptively issue Send, RevLTK, RevSessKey, RegisterLTK
and Test queries any number of times and in arbitrary order. The only require-
ment is that all tested oracles remain fresh throughout the game (see Defini-
tion 7 below). Otherwise, the game aborts and outputs a random bit.

3. The game ends when A terminates with output b′, representing its guess of b̂.
If not all test oracles are fresh, the security game outputs a random bit. If all
test oracles are fresh and b′ = b̂, it outputs 1. Otherwise, it outputs 0.

Definition 7 (Freshness). An oracle πs
i is fresh, written fresh(i, s), if:

(i) RevSessKey(i, s) has not been issued,
(ii) no query Test(j, t) or RevSessKey(j, t) has been issued, where πt

j is a partner
of πs

i , and
(iii) Pids

i was:
(a) not corrupted before πs

i accepted if πs
i has an origin-oracle, and

Highly Efficient Key Exchange Protocols with Optimal Tightness 775

(b) not corrupted at all if πs
i has no origin-oracle.

Definition 8 (Winning Events). We define the following three winning
events on game GΠ(μ, �).

(i) Event breakSound occurs if there exist two partner oracles πs
i and πt

j with
ks

i �= kt
j. In other words, there are two partner oracles which compute dif-

ferent session keys.
(ii) Event breakUnique occurs if for some oracle πs

i there exist distinct oracles πt
j

and πt′
j′ such that πs

i is a partner oracle to both πt
j and πt′

j′ . In other words,
there exists an oracle with more than one partner oracle.

(iii) Let guessKE be the output of game GΠ(μ, �). We define breakKE to be the
event guessKE = 1.

Definition 9 (AKE Security). An attacker A breaks the security of protocol
Π, if at least one of breakSound, breakUnique, or breakKE occurs in GΠ(μ, �). The
advantage of the adversary A against AKE security of Π is

AdvAKE
Π (A) = max {Pr [breakSound] ,Pr [breakUnique] , |Pr [breakKE] − 1/2|} .

We say that A (εA, t, μ, �)-breaks Π if its running time is t and AdvAKE
Π (A) ≥ εA.

The running time of A includes the running time of the security experiment (see
[19, Remark 1]).

Security Properties. The core aspects of the security properties in our model are
captured by the breakKE event, combined with the adversary’s capabilities and
the restrictions imposed on them through the freshness predicate.

The freshness clauses (i) and (ii) imply that we only exclude the reveal of
session keys for tested oracles as well as their partners. This encodes both (a) key
independence if the revealed key is different from the session key: knowing some
keys must not enable computing other keys, as well as (b) implicitly ensuring
agreement on the involved parties, since sessions that compute the same session
key but disagree on the parties would not be partnered, and reveal the Test
session’s key.

Our freshness clause (iii) encodes weak forward secrecy : the adversary can
learn the peer’s long-term key after the tested oracle accepted, but only if it has
been passive in the run of the oracle [26]. Another property captured by our
model is resistance to key-compromise impersonation attacks. Recall that KCI
attacks are those where the adversary uses a party A’s own private long-term
key to impersonate other users towards A. This is (implicitly) encoded by the
absence of any adversary restrictions on learning the private long-term key of
a test-oracle itself. Additionally, the breakUnique event captures the resistance
to replay attacks. The breakSound event ensures that two parties that execute
the protocol together in the absence of an attacker (or at least a passive one),
compute the same session key.

Some recent protocols also offer post-compromise security, in which the com-
munication partner πt

j may be corrupted before πs
i has accepted. However, in

this work we consider only stateless protocols, which cannot achieve this goal
[14].

776 K. Cohn-Gordon et al.

4 Protocol Π

Protocol Π, defined in Fig. 1, uses a mix of static-ephemeral and ephemeral-
ephemeral Diffie-Hellman key exchanges to get a protocol that is extremely
efficient in terms of communications as well as computational effort required.
Specifically, the two protocol participants exchange ephemeral Diffie-Hellman
shares gr and gs for random r, s, and then compute a session key from three
Diffie-Hellman shared secrets (static-ephemeral, ephemeral-static, ephemeral-
ephemeral) as well as identities and a transcript. Note that this is very close
to the Noise-KK pattern [36].

Fig. 1. Protocol Π. The session key is derived from the combination of the parties’
static-ephemeral, ephemeral-static, and ephemeral-ephemeral DH values.

Theorem 2. Consider the protocol Π defined in Fig. 1 where H is modeled as
a random oracle. Let A be an adversary against the AKE security of Π. Then
there exist adversaries B1, B2 and B3 against strong Diffie-Hellman such that

AdvAKE
Π (A) ≤ μ · AdvstDH

G,g (B1) + AdvstDH
G,g (B2) + μ · AdvstDH

G,g (B3) +
μ�2

p
.

The strong Diffie-Hellman adversaries all run in essentially the same time as A,
and make at most as many queries to their strong DH-oracle as A makes to its
hash oracle H.

The proof of the theorem is structured as a sequence of games running varia-
tions on the security experiment, with the first game identical to the experiment.
We bound the difference in the probability of the event that the experiment out-
puts 1 in each game. As a side effect, along the way we also get a bound on

Highly Efficient Key Exchange Protocols with Optimal Tightness 777

breakUnique. Then we argue that the probability that the experiment outputs 1
is 1/2 in the final game, which gives us a bound on breakKE. Since the scheme
has perfect correctness, the theorem follows.

To achieve this result in the final game, we shall have our oracles choose
session keys at random, without reference to secret keys or messages. Obviously,
we have to ensure consistency with what the adversary can learn. This means
that we have to make sure that partnered oracles both choose the same key
(Game 2); that keys the adversary should be able to compute on his own are
the same as chosen by the oracle (Game 2), and that corruptions of long-term
keys that enable the adversary to compute session keys on his own return results
consistent with previous RevSessKey-queries (Game 3 and 5).

The general technique we use is to have our oracles refrain from computing
the input to the key derivation hash oracle, but instead check to see if the
adversary somehow computes it. The idea is that computing the hash input is
hard to simulate in the strong Diffie-Hellman game, but checking if someone else
has computed the hash input is easy using the strong DH oracle provided.

We call an oracle honest (at some point) if the user it belongs to has not yet
been corrupted (at that point). There are five types of oracles that we will have
to deal with in separate ways, and the first four are essentially fresh oracles:

– (I) initiator oracles whose response message comes from a responder oracle,
which has the same ctxt (i.e., they agree on the message transcript and
participant identities and public keys) and which is honest when the response
is received;

– (II) other initiator oracles whose intended peer is honest until the oracle
accepts;

– (III) responder oracles whose initial message comes from an initiator, which
has the same ctxt up to the responder message (thus agreeing on the first
message and participant identities and public keys) and which is honest when
the response is received;

– (IV) other responder oracles whose intended peer is honest until the oracle
accepts; and

– (V) oracles whose intended peer is corrupted.

Note that at the time an initiator oracle starts, we cannot know if it will be of
type I or II. However, we will know what type it is when it is time to compute the
oracle’s session key. We also remark that types I and III correspond to case (iii)a
in the definition of freshness. Types II and IV correspond to case (iii)b.

In the following, let Sj denote the event that the experiment in Game j
outputs 1.

Game 0. Our starting point Game 0 is the security experiment defining AKE
security. We have that

Pr [breakKE] = Pr[S0]. (1)

We begin with an administrative step to avoid pathologies where honest
players choose the same random nonces.

778 K. Cohn-Gordon et al.

Game 1. In this game, we abort if two initiator oracles or two responder oracles
ever arrive at the same ctxt. The probability of this happening can be upper-
bounded by the probability of two oracles for the same peer choosing the same
random exponents, and we get that

|Pr[S1] − Pr[S0]| ≤ μ�2

p
. (2)

We also note that the event in this game that corresponds to breakUnique

cannot happen in this game. It follows that

Pr[breakUnique] ≤ μ�2

p
. (3)

4.1 Preparing Oracles

Our goal in this game is to change every oracle so that it no longer computes the
input to the key derivation hash H, but instead checks if the adversary computes
this input and adapts accordingly. This is essential for later games, since it allows
us to replace every use of the secret key with queries to a strong DH oracle.

Game 2. In this game, we modify how our oracles determine their session keys.
Note that at the point in time where an initiator oracle determines its session
key, we know its type exactly.

A type III, IV or V responder oracle with ctxt = î‖ĵ‖pk i‖pk j‖U‖V , secret
key b and random exponent s does the following to determine its session key k:
First, it checks to see if any oracle queries î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖W2‖W3 have
been made satisfying

W1 = pks
i W2 = U b W3 = Us . (4)

If any such query is found k is set to the corresponding hash value. Otherwise,
the session key is chosen at random. And if such a hash query happens later, the
hash value is set to the chosen session key.

A type I initiator oracle will simply use the key from the corresponding
responder oracle.

A type II or V initiator oracle with ctxt = î‖ĵ‖pk i‖pk j‖U‖V , secret key a
and random exponent r does the following to determine its session key k: First,
it checks to see if any oracle queries î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖W2‖W3 have been
made satisfying

W1 = V a W2 = pkr
j W3 = V r . (5)

If any such query is found, k is set to the corresponding hash value. Otherwise,
the session key is chosen at random. And if such a hash query happens later, the
hash value is set to the chosen session key.

The only potential change in this game is at which point in time the key
derivation hash oracle value is first defined, which is unobservable. It follows
that

Pr[S2] = Pr[S1]. (6)

Highly Efficient Key Exchange Protocols with Optimal Tightness 779

4.2 Type IV Responder Oracles

Game 3. In this game type IV oracles choose their session key at random, but do
not modify the hash oracle unless the intended peer is corrupted. If the adversary
corrupts the intended peer i of a type IV oracle running as user j with secret
key b, random exponent s and chosen key k, then from that point in time, any
query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖pks
i ‖U b‖Us

to the key derivation hash oracle H will result in the hash value k.
Unless one of these queries happen before user i is corrupted, the only change

is at which point in time the key derivation hash oracle value is first defined,
which is unobservable. Let F be the event that a query as above happens before
the corresponding long-term key is corrupted. Then

|Pr[S3] − Pr[S2]| ≤ Pr[F].

Let Fi be the same event as F , but with the intended peer being user i. We
then have that Pr[F] =

∑
i Pr[Fi].

Next, consider the event Ei which is that for some type IV oracle as above,
any query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖W2‖W3 W1 = pks
i = V a (7)

to the key derivation hash oracle H happens before user i is corrupted. Then
Pr[Fi] ≤ Pr[Ei].

We shall now bound the probability of the event Ei by constructing an adver-
sary against strong Diffie-Hellman. This adversary will embed its DH challenge in
some user i’s public key and type IV oracle responses for oracles whose intended
peer is user i, and recover the solution to its DH challenge from the hash query
in event Ei.

Strong Diffie-Hellman Adversary B1. The algorithm B1 takes as input a DH
challenge (X,Y) = (gx, gy) and outputs a group element Z. It has access to a
strong Diffie-Hellman oracle stDHx(·, ·).

Reduction B1 runs Game 2 with the following changes: it chooses i uniformly
at random and sets user i’s public key to pk i = X (and thus implicitly sets i’s
private key to the unknown value x). For type IV oracles whose intended peer is
user i, B1 sets V = Y · gρ0 , with ρ0 random. If the adversary corrupts user i, the
reduction B1 aborts. (For other users, the reduction simply returns the secret
key, as in Game 2.)

We need to recognise hash queries of the form (4) and (5) that involve user i,
as well as queries of the form (7). For (4), where user i acts in the responder role,
we know the oracle’s random exponent s, so we only need to recognise if W2 is U
raised to user i’s secret key, which can be done by checking if stDHx(U,W2) = 1.

For (5), where user i is the initiator, we know the oracle’s random exponent
r, so we only need to recognise if W1 is V raised to user i’s secret key, which can
be done by checking if stDHx(V,W1) = 1.

780 K. Cohn-Gordon et al.

Finally, for (7), we need to recognise if a group element W1 is V raised to
user i’s secret key, which can be done by checking if stDHx(V,W1) = 1. When
we recognise a query of the form (7), since we know that V = Y · gρ0 , we output

Z = W1X
−ρ0 = V xX−ρ0 = Y xgρ0xg−xρ0 = Y x.

In other words, our adversary B1 succeeds whenever Ei would happen in
Game 2. Furthermore, Ei in Game 2 can only happen before user i is corrupted,
so whenever Ei would happen in Game 2, B1 would not have aborted.

We get that

AdvstDH
G,g (B1) ≥ 1

μ

∑
i

Pr[Ei] ≥ 1
μ

∑
i

Pr[Fi] =
1
μ

Pr[F],

from which it follows that

|Pr[S3] − Pr[S2]| ≤ Pr[F] ≤ μ · AdvstDH
G,g (B1). (8)

4.3 Type III Responder Oracles

Game 4. In this game type III responder oracles choose their session key at
random, and do not modify the key derivation hash oracle.

Consider a type III responder oracle for user j with secret key b, random
exponent s and intended peer i, who has secret key a. Unless the adversary ever
makes a hash query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖W2‖W3 W3 = Us , (9)

this change is unobservable. Call this event F . We thus have

|Pr[S4] − Pr[S3]| ≤ Pr[F]. (10)

We shall bound the probability of F by constructing an adversary against
strong Diffie-Hellman. This adversary will embed its challenge in type I or II
initiator oracles’ message, as well as in type III responder oracles’ message. It
will recover the solution to its DH challenge from the hash query in event F .

Strong Diffie-Hellman Adversary B2. The algorithm B2 takes as input a DH
challenge (X,Y) = (gx, gy) and outputs a group element Z. It has access to a
strong DH-oracle stDHx(·, ·).

Our reduction B2 runs Game 3 with the following changes: for type I and II
initiator oracles (we cannot distinguish these at this point in time), it computes
U = X · gρ0 , with ρ0 random. For type III responder oracles, it computes V =
Y · gρ1 , with ρ1 random. Note that in this game, the reduction knows all static
secret keys, so user corruption is handled exactly as in Game 3.

We need to recognise hash queries of the form (5) for type II initiator ora-
cles, as well as queries of the form (9) for type III oracles. Although we do
not know the oracle’s random exponents, we do know their secret keys. This

Highly Efficient Key Exchange Protocols with Optimal Tightness 781

means that we only need to recognise if W3 is V raised to logg U = x + ρ0. Of
course, if W3 = V x+ρ0 , then W3V

−ρ0 = V x, which we can detect by checking if
stDHx(V,W3V

−ρ0) = 1. If this is the case for a query of the form (9), then we
output

Z = W3 · V −ρ0 · X−ρ1 = V x · X−ρ1 = gyx+ρ1xg−xρ1 = Y x

as the solution to the DH challenge. In other words, B2 succeeds whenever F
would happen in Game 3, hence

|Pr[S4] − Pr[S3]| ≤ Pr[F] ≤ AdvstDH
G,g (B2). (11)

Note that we do not stop the simulation in the case we detect a hash query
of the form (5) for a type II initiator oracle, because in this case the responder
message V does not contain the embedded DH challenge.

4.4 Type II Initiator Oracles

Game 5. In this game type II initiator oracles choose their session key at ran-
dom, but do not modify the hash oracle unless the intended peer is corrupted.
If the adversary corrupts the intended peer j of a type II oracle running as user
i with secret key a, random exponent r and chosen key k, then from that point
in time, any query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖V a‖pkr
j‖V r

to the key derivation hash oracle H will result in the hash value k.
Unless one of these queries happen before the user j is corrupted, the only

change is at which point in time the key derivation hash oracle value is first
defined, which is unobservable. Let F be the event that a query as above happens
before the corresponding long-term key is corrupted. Then

|Pr[S5] − Pr[S4]| ≤ Pr[F].

Let Fj be the same event as F , but with the intended peer being user j. We
then have that Pr[F] =

∑
j Pr[Fj].

Next, consider the event Ej which is that for some type II oracle as above,
any query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖W2‖W3 W2 = pkr
j = U b (12)

to the key derivation hash oracle H happens before user j is corrupted. Then
Pr[Fj] ≤ Pr[Ej].

We shall now bound the probability of the event Ej by constructing an adver-
sary against strong Diffie-Hellman. This adversary will embed its DH challenge
in some user j’s public key and type II oracle messages for oracles whose intended
peer is user j, and recover the solution to its DH challenge from the hash query
in event Ej .

782 K. Cohn-Gordon et al.

Strong Diffie-Hellman Adversary B3. The algorithm B3 takes as input a DH
challenge (X,Y) = (gx, gy) and outputs a group element Z. It has access to a
strong DH-oracle stDHx(·, ·).

Our reduction B3 runs Game 4 with the following changes: It chooses j uni-
formly at random and sets user j’s public key to pk j = X (and thus implicitly
sets j’s private key to the unknown value b = x). For type I and II initiator
oracles whose intended peer is user j, B3 sets U = Y · gρ0 , with ρ0 random.
If the adversary corrupts user j, the reduction B3 aborts. (For other users, the
reduction simply returns the secret key, as in Game 4.)

We need to recognise hash queries of the form (4) and (5) that involve user
j, as well as queries of the form (12). For (4), where user j is the responder, we
know the oracle’s random exponent s, so we only need to recognise if W2 is U
raised to user j’s secret key, which can be done by checking if stDHx(U,W2) = 1.
For (5), where user j is the initiator, we know the oracle’s random exponent r,
so we only need to recognise if W1 is V raised to user j’s secret key, which can
be done by checking if stDHx(V,W1) = 1. Finally, for (12), we need to recognise
if a group element W2 is U raised to user j’s secret key, which can be done by
checking if stDHx(U,W2) = 1.

When we recognise a query of the form (12), meaning that W2 = Ux where
know that U = Y · gρ0 , then we output

Z = W2X
−ρ0 = UxX−ρ0 = Y xgρ0xg−xρ0 = Y x.

In other words, our adversary B3 succeeds whenever Ej would happen in Game 4.
Furthermore, Ej in Game 4 can only happen before user j is corrupted, so when-
ever Ej would happen in Game 4, B3 would not have aborted. We get that

AdvstDH
G,g (B3) ≥ 1

μ

∑
j

Pr[Ej] ≥ 1
μ

∑
j

Pr[Fj] =
1
μ

Pr[F],

from which it follows that

|Pr[S5] − Pr[S4]| ≤ Pr[F] ≤ μ · AdvstDH
G,g (B3). (13)

4.5 Summary

Note that in Game 5, every session key is chosen at random independent of every
key and sent message.

For type V oracles, the key derivation oracle is immediately programmed so
that the session key is available to the adversary. But type V oracles are never
fresh and therefore never subject to a Test query.

For type II and IV oracles, the key derivation hash oracle is programmed
to make the session key available to the adversary only after the intended peer
is corrupted. But if the intended peer is corrupted, a type II or IV oracle will
become non-fresh, hence no Test query can be made to it.

Highly Efficient Key Exchange Protocols with Optimal Tightness 783

For type I and III oracles, the key derivation hash oracle will never make the
session key available to the adversary.

This means that for any oracle subject to a Test query, the session key is and
will remain independent of every key and sent message. Which means that the
adversary cannot distinguish the session key from a random key. It follows that

Pr[S5] =
1
2
. (14)

Furthermore, (3) from Game 1 gives us Pr[breakUnique] ≤ μ�2/p. Because of
perfect correctness Pr[breakSound] = 0. It is now easy to see that Theorem 2
follows from the construction of B1, B2 and B3 as well as Eqs. (1), (2), (6), (8),
(11), (13) and (14).

5 Avoiding the Strong Diffie-Hellman Assumption

The proof of Π relies on the strong Diffie-Hellman assumption, which is an
interactive assumption. A natural goal is to look for a protocol whose proof
relies on standard non-interactive assumptions. In this section we present two
protocols that solve this problem. Both can be seen as different modifications of
Π.

5.1 Protocol ΠTwin

The first protocol, which we call ΠTwin, applies the twinning technique of [13] to
the different DH values in Π. This requires some additional exponentiations over
protocol Π, as well as the need to transmit one extra group element. The details
are given in Fig. 2: instead of sending a single Diffie-Hellman share, the protocol
initiator samples and sends two ephemeral shares, and both shares are used in
the key derivation. This duplication allows us to reduce to twin Diffie-Hellman.

Theorem 3. Consider the protocol ΠTwin defined in Fig. 2 where H is modeled
as a random oracle. Let A be an adversary against the AKE security of ΠTwin.
Then there exists adversaries B1, B2 and B3 against twin Diffie-Hellman such
that

AdvAKE
ΠTwin

(A) ≤ μ · Adv2-CDH
G,g (B1) + Adv2-CDH

G,g (B2) + μ · Adv2-CDH
G,g (B3) +

μ�2

p
.

The adversaries all run in essentially the same time as A and make at most as
many queries to their twin DH oracle as A makes to its hash oracle H.

784 K. Cohn-Gordon et al.

Fig. 2. Protocol ΠTwin. It is obtained from protocol Π by applying the twinning trick
of [13] to the DH values

The proof is given in the full version. Note that by Theorem 1, we can tightly
replace the twin Diffie-Hellman terms in the theorem statement by ordinary
computational Diffie-Hellman terms.

5.2 Protocol ΠCom

The second protocol, which we call ΠCom, again uses the twinning technique
of [13], but this time only applied to the static DH values in Π. This provides
tight implicit authentication. However, instead of also twinning the ephemeral
DH values we use a variant of the commitment trick of [19]. This reduces the
number of exponentiations compared to ΠTwin, but adds another round of com-
munication. Also, we need to rely on the Decision Diffie-Hellman assumption
instead of computational Diffie-Hellman. The details are given in Fig. 3. The
proof of the following theorem is given in the full version.

Theorem 4. Consider the protocol ΠCom defined in Fig. 3 where H and G are
modeled as random oracles. Let A be an adversary against the AKE security of
ΠCom. Then there exists adversaries B1 and B3 against computational Diffie-
Hellman and an adversary B2 against Decision Diffie-Hellman such that

AdvAKE
ΠTwin

(A) ≤ μ · AdvCDH
G,g (B1) + AdvDDH

G,g (B2) + μ · AdvCDH
G,g (B3) +

μ�2(1 + 2t)
p

.

The adversaries all run in essentially the same time t as A and make at most
as many queries to their twin DH oracle as A makes to its hash oracle H.

Highly Efficient Key Exchange Protocols with Optimal Tightness 785

Fig. 3. Protocol ΠCom. It is obtained from protocol Π by applying the twinning trick
of [13] to the static DH values and the commitment trick of [19] to the ephemeral DH
values.

6 Efficiency Analysis

In this section we argue that our protocols are more efficient than other com-
parable2 protocols in the literature when instantiated with theoretically sound
parameter choices. There are two reasons for this. First, the most efficient key
protocols do not have tight proofs. Hence, for theoretically sound deployment
they must use larger parameters to compensate for the proof’s security loss,
which directly translates into more expensive operations. The result is that
although some protocols require fewer operations than ours (typically group
exponentiations), the increase in computational cost per operation dominates
whatever advantage they might have over our protocols in terms of number of
operations.

Second, the few known key exchange protocols which do have tight proofs,
require a large number of operations or heavy cryptographic machinery. Thus,
even though they can use small parameters, such as the P-256 elliptic curve, here
the sheer number of operations dominates their advantage over our protocols.

To illustrate the first point in more detail, here are some examples of very effi-
cient key exchange protocols having non-tight security proofs: UM [33], KEA+
[30], HMQV [26], CMQV [39], T S1/2/3 [24], Kudla-Paterson [28], and NAXOS
[29]. Typically, these proofs have a tightness loss between L = O(μ�) and
L = O(μ2�2) as illustrated for a few of the protocols in Table 1.

2 Comparing protocols is complex, and we return to this at the end of this section.

786 K. Cohn-Gordon et al.

Table 1. The number of group exponentiations in our protocols compared to other
protocols in the literature. All protocols are one-round except ΠCom, which has two
rounds of communication. All security proofs are in the random oracle model. The
security loss is in terms of the number of users (μ), the number of protocol instances
per user (�), and reduction’s running time (t).

Protocol #Exponentiations Assumption Security loss O(·)
HMQV [26] 2.5 CDH μ2�2

NAXOS [29] 3 Gap-DH μ2�2

UM [33] 3 Gap-DH μ2�2

Kudla-Paterson [28] 3 Gap-DH μ2�

KEA+ [30] 3 Gap-DH μ�†

Π (Fig. 1) 4 Strong-DH μ

ΠTwin (Fig. 2) 8/7 CDH μ

ΠCom (Fig. 3) 6 DDH μ

GJ [19] 17 DDH 1
† Only when using pairing-friendly curves; otherwise L = O(μ�t).

Suppose we now want to compare the efficiency of the protocols Π, ΠTwin,
ΠCom and HMQV, aiming for around 110-bits of security. Following Gjøsteen
and Jager [19], let us imagine two different scenarios: a small-to-medium-scale
setting with μ = 216 users and � = 216 sessions per user, and a large-scale setting
with μ = 232 users and � = 232 sessions per user. To instantiate the protocols in
a theoretically sound manner we need to select a group large enough so that the
underlying DH-assumptions are still hard even when accounting for the security
loss. For simplicity, we only consider selecting among elliptic curve groups based
on the NIST curves P-256, P-384, and P-521, and assume that the CDH, DDH,
and Gap-DH problems are equally hard in each group.

HMQV. Supposing HMQV has a tightness loss of L ≈ μ2�2, this translates
into a loss of 264 in the small-to-medium-scale setting, and a loss of 2128 in
the large-scale setting. To compensate we have to increase the group size by
a factor of L2 ≈ 2128 and L2 ≈ 2256, respectively. With a target of 110-bit
security, this means that we have to instantiate HMQV with curve P-384 and
P-521, respectively.

Π,ΠTwin,ΠCom. Our protocols’ security proofs have a tightness loss of L ≈ μ,
which translates into 216 in the small-to-medium-scale setting and 232 in
the large-scale setting. In the first setting P-256 is still sufficient for 110-bit
security, but in the later setting P-384 must be used instead.

We can now compare these instantiations by multiplying the number of expo-
nentiations required with the cost of an exponentiation in the relevant group.
For the latter values we use the OpenSSL benchmark numbers from Gjøsteen
and Jager [19] (reproduced in Table 2). Calculating the numbers we get:

Highly Efficient Key Exchange Protocols with Optimal Tightness 787

HMQV Π ΠTwin ΠCom

S-M 2.5 × 5.6 = 14 4 × 2.1 = 8.4 8 × 2.1 = 16.8 6 × 2.1 = 12.6

L 2.5 × 16.1 = 40.3 4 × 5.6 = 22.4 8 × 5.6 = 44.8 6 × 5.6 = 33.6

Table 2. OpenSSL benchmark results for NIST curves [19, Table 1].

Curve Exp./Sec. Time/Exp.

NIST P-256 476.9 2.1 ms

NIST P-384 179.7 5.6 ms

NIST P-521 62.0 16.1 ms

Observe that Π is more efficient than HMQV in both the small-to-medium-
scale setting as well as in the large-scale setting despite needing more exponen-
tiations. This is because it can soundly use smaller curves than HMQV due to
the relative tightness of its reduction. Protocol ΠTwin is about as efficient as
HMQV in both settings, while ΠCom lies somewhere in between Π and ΠTwin,
but since it requires one extra round of communication a direct comparison is
more difficult. Of course, the main reason to prefer ΠTwin and ΠCom over Π is
the reliance on the weaker CDH and DDH assumptions rather than strong DH.
A complicating factor in comparing with HMQV is the difference in security
properties and security models (see the end of this section).

To illustrate the second point mentioned above—that our protocols are also
more efficient than protocols with fully tight proofs—we also compute the num-
bers for the recent protocol of Gjøsteen and Jager (GJ) which is currently the
most efficient key exchange protocol with a fully tight proof. Since GJ can use
P-256 independent of the number of users and sessions its cost is 17×2.1 = 35.7
in both the small-to-medium scale setting as well as the large-scale setting. Nev-
ertheless, we observe that the large number of exponentiations in GJ dominates
its tightness advantage in realistic settings.

Thus, absent a fully tight proof, our protocols hit a proverbial “sweet spot”
between security loss and computational complexity: they can be instantiated
soundly on relatively small curves using only a few exponentiations.

Communication Complexity. For completeness we also briefly mention commu-
nication complexity. Since in most implicitly-authenticated DH-based protocols
each user only sends one or two group elements, there is in practice little differ-
ence between Π, ΠTwin, and ΠCom, and protocols like HMQV when it comes to
communication cost. Especially if elliptic curve groups are used.

This is in contrast to the fully tight signature-based GJ protocol, which
in total needs to exchange two group elements for the Diffie-Hellman key
exchange, two signatures (each consisting of a random 256-bit exponent, two
group elements, and four 256-bit exponents), and one hash value. Altogether,
this gives a total of ≈ 545 bytes communicated when instantiated for a security
level of, say, 128 bits [19, Sect. 5]. In comparison, Π, ΠTwin, and ΠCom would

788 K. Cohn-Gordon et al.

only need to exchange around 160 to 224 bytes for the same security level. This
assumes curve P-384 and includes the addition of two 256-bit key-confirmation
messages to provide explicit entity authentication in order to make the compar-
ison with the GJ protocol fair.

On the (Im)possibility of Fairly Comparing Protocols. Our protocols are the first
implicitly authenticated key exchange protocols that were designed to provide
efficient deployment in a theoretically sound manner. This implies that we must
compare their efficiency with other protocols with slightly different goals. In
Table 1 we included protocols with closely related goals and similar structure,
but not aiming for exactly the same target.

One example of such a different goal is that NAXOS was designed to be
proven in the eCK model, which also allows the reveal of the randomness of
the tested session, similar to HMQV. Our protocols, like TLS 1.3, currently do
not offer this property. We conjecture that the NAXOS transformation could be
directly applied to our protocols to obtain eCK-secure protocols without adding
exponentiations, but it is currently unclear if this could be done with a tight
proof, and hence we leave this to future work.

7 Optimality of Our Security Proofs

In this section we will show that the tightness loss of L = O(μ) in Theorems 2,
3 and 4 is essentially optimal—at least for “simple” reductions. Basically, a
“simple” reduction runs a single copy of the adversary only once. To the best of
our knowledge, all known security reductions for AKE protocols are either of this
type or use the forking lemma. For example, the original reduction for HMQV
uses the forking lemma and thus is very non-tight, but does not fall under our
lower bound. In contrast, the HMQV reduction by Barthe et al. [5] is simple and
thus our lower bound applies. Hence, in order to give a tighter security proof,
one would have to develop a completely new approach to prove security for such
protocols.

Tightness bounds for different cryptographic primitives were given in [4,15,
17,18,21,23,25,31,35,37,40], for instance. Bader et al. [4] describe a generic
framework that makes it possible to derive tightness lower bounds for many dif-
ferent primitives. However, these techniques are only able to consider tight reduc-
tions from non-interactive assumptions, while our first protocol is based on the
interactive strong Diffie-Hellman assumption. Morgan and Pass [34] showed how
to additionally capture bounded-round interactive assumptions, but the strong
Diffie-Hellman assumption does not bound the number of possible oracle queries,
so we cannot use their approach directly.

Therefore we develop a new variant of the approach of Bader et al. [4], which
makes it possible to capture interactive assumptions with an unbounded number
of oracle queries, such as strong Diffie-Hellman assumption. For clarity and sim-
plicity, we formulate this specifically for the class of assumptions and protocols
that we consider, but we discuss possible extensions below.

Highly Efficient Key Exchange Protocols with Optimal Tightness 789

Considered Class of Protocols. In the following we consider protocols where pub-
lic keys are group elements of the form pk = gx and the corresponding secret key
is sk = x. We denote the class of all protocols with this property with ΠDH. Note
that this class contains, in particular, NAXOS [29], KEA+ [30], and HMQV [26].

Remark 1. One can generalize our results to unique and verifiable secret keys,
which essentially requires that for each value pk there exists only one unique
matching secret key sk , and that there exists an efficiently computable relation R
such that R(pk , sk) = 1 if and only if (pk , sk) is a valid key pair. Following Bader
et al. [4], one can generalize this further to so-called efficiently re-randomizable
keys. We are not aware of concrete examples of protocols that would require this
generality, and thus omit it here. All protocols considered in the present paper
and the vast majority of high-efficiency protocols in the literature have keys of
the form (pk , sk) = (gx, x), so we leave such extensions for future work.

Why Does GJ18 Not Contradict Our Lower Bound? As mentioned in Remark 1,
our bound applies to protocols with unique and verifiable secret keys. In con-
trast, the protocol of Gjøsteen and Jager [19] constructs a tightly-secure digital
signature scheme based on OR-proofs, where secret keys are not unique. As
explained in [19, Section 1.1], these non-unique secret keys seem inherently nec-
essary to achieve fully-tight security.

Simple Reductions from (Strong) Diffie-Hellman. Intuitively, a simple reduction
R = RO from (strong) CDH takes as input a CDH instance (gx, gy) and may
query an oracle O that, on input Y,Z, returns 1 if and only if Y x = Z (cf.
Definition 3). More formally:

Definition 10. A simple reduction R interacts with an adversary A as follows.

1. R receives as input a CDH instance (gx, gy).
2. It generates μ public keys and starts A(pk1, . . . , pkμ). R provides A with

access to all queries provided in the security model described in Sect. 3.
3. R outputs a value h.

We say that R is a (tR, εR, εA)-reduction, if it runs in time at most tR and for
any adversary A with εA = AdvAKE

Π (A) holds that

Pr [h = gxy] ≥ εR.

We say that R = RO is a reduction from the strong CDH problem if it makes
at least one query to its oracle O, and a reduction from the CDH problem if not.

Remark 2. The formalization in this section very specifically considers the com-
putational problems CDH and sCDH, as concrete examples of reasonable hard-
ness assumptions that a typical security proof for the protocols considered in this
work may be based on. We will later discuss how our results can be extended to
other interactive and non-interactive problems.

790 K. Cohn-Gordon et al.

Theorem 5. Let Π be an AKE protocol such that Π ∈ ΠDH. Let |K| denote the
size of the key space of Π. For any simple (tR, εR, 1− 1/|K|)-reduction RO from
(strong) CDH to breaking Π in the sense of Definition 9 there exists an algorithm
MO, the meta-reduction, that solves the (strong) CDH problem in time tM and
with success probability εM such that tM ≈ μ · tR and

εM ≥ εR − 1
μ

.

Remark 3. Note that the lower bound εM ≥ εR − 1/μ implies that the suc-
cess probability εR cannot significantly exceed 1/μ, as otherwise there exists
an efficient algorithm M for a computationally hard problem. Note also that
this implies that the reduction cannot be tight, as it “loses” a factor of at least
1/μ, even if the running time of R is not significantly larger than that of the
adversary.

In the sequel we write [μ \ i] as a shorthand for [1 . . . i − 1, i + 1 . . . μ].

Proof. We describe a meta-reduction M that uses R as a subroutine to solve
the (strong) CDH problem. Following Hofheinz et al. [21] and Bader et al. [4],
we will first describe a hypothetical inefficient adversary A. Then we explain
how this adversary is efficiently simulated by M. Finally, we bound the success
probability of M, which yields the claim.

Hypothetical Adversary. The hypothetical adversary A proceeds as follows.

1. Given μ public keys pk1 = gx1 , . . . , pkμ = gxµ , A samples a uniformly random
index j∗ $← [μ]. Then it queries RevLTK(i) for all i ∈ [μ \ j∗] to obtain all
secret keys except for sk j∗ .

2. Next, A computes sk j∗ = xj∗ from pk j∗ = gxj∗ , e.g., by exhaustive search.3

3. Then A picks an arbitrary oracle, say π1
s for s = (j∗ + 1) mod μ, and executes

the protocol with π1
s , impersonating user j∗. That is, A proceeds exactly as

in the protocol specification, but on behalf of user j∗. Note that A it is able
to compute all messages and the resulting session key on behalf of user j∗,
because it “knows” sk j∗ .

4. Finally, A asks Test(s, 1). Note that this is a valid Test-query, as A has never
asked any RevSessKey-query or RevLTK(j∗) to the peer j∗ of oracle π1

s . If the
experiment returns the “real” key, then A outputs “1”. Otherwise it outputs
“0”.

Note that A wins the security experiment with optimal success probability 1 −
1/|K|, where |K| is the size of the key space. The loss of 1/|K| is due to the fact
that the random key chosen by the Test-query may be equal to the actual session
key.

Description of the Meta-reduction. Meta-reduction M interacts with reduction
R by simulating the hypothetical adversary A as follows.
3 Note that we are considering an inefficient adversary here. As usual for meta-

reductions, we will later describe how A can be simulated efficiently.

Highly Efficient Key Exchange Protocols with Optimal Tightness 791

1. M receives as input a CDH instance (gx, gy). It starts R on input (gx, gy).
2. Whenever R issues a query to oracle O, M forwards it to its own oracle. Note

that both oracles are equivalent, because M has simply forwarded the CDH
instance.

3. When R outputs public keys pk1 = gx1 , . . . , pkμ = gxµ to A, M makes a
snapshot of the current state stR of R.

4. For j ∈ [1 . . . μ], M now proceeds as follows.
(a) It lets A query RevLTK(i) for all i ∈ [μ \ j], in order to obtain all secret

keys except for sk j . Note that the reduction may or may not respond to
all RevLTK(i) queries. For instance, R may abort for certain queries.

(b) Then it resets R to state stR.
5. Now M proceeds to simulate the hypothetical adversary. That is:

(a) It picks a uniformly random index j∗ $← [1 . . . μ] and queries RevLTK(i)
for all i ∈ [μ \ j∗].

(b) Then it executes the protocol with π1
s , impersonating user j∗. Note that

this works only if M was able to obtain sk j∗ in Step (4).
(c) Finally, M lets A ask Test(s, 1). If the experiment returns the “real” key,

then A outputs “1”. Otherwise it outputs “0”.
6. If R outputs some value h throughout the experiment, then M outputs the

same value.

Note that M provides a perfect simulation of the hypothetical adversary, pro-
vided that it “learns” sk j∗ in the loop in Step (4).

Analysis of the Meta-reduction. M essentially runs reduction R at most μ times.
Apart from that, it performs only minor additional operations, such that we have
tM ≈ μ · tR.

In order to analyse the success probability of M, let us say that bad occurs, if
j∗ is the only index for which R did not abort in Step (4) of the meta-reduction.
Note that in this case M learns all secret keys, except for sk j∗ , in which is the
only case where the simulation of A in Step (5.b) fails. Since we may assume
without loss of generality that the reduction R works for at least one index
j ∈ [μ] and we chose j∗ $← [μ] uniformly random, we have

Pr [bad] ≤ 1
μ

.

Let win(R,A) denote the event that R outputs h = gxy when interacting
with A, and win(R,M) the corresponding event with M. Since M simulates A
perfectly unless bad occurs, we have

|Pr [win(R,A)] − Pr [win(R,M)]| ≤ Pr [bad] .

Furthermore, note that by definition we have εR = Pr [win(R,A)] and εM =
Pr [win(R,M)]. Hence we get |εR − εM| ≤ 1/μ, which in turn yields the lower
bound εM ≥ εR − 1/μ.

792 K. Cohn-Gordon et al.

Generalizations. The tightness lower bound proven above makes several very
specific assumptions about the considered protocols, hardness assumptions, and
security models. The main purpose of this is to keep the formalization and proof
focused on the type of protocols that we are considering in this paper. However,
a natural question is to which extent the results also apply to more general
protocols, models, and assumptions, and whether and how the tightness bound
can be evaded by tweaking the considered setting.

First of all, we consider only protocols where long-term secrets are of the
form (pk , sk) = (gx, x). As already briefly discussed above, one can generalize
this to other protocols, as long as the simulation of the hypothetical adversary
by the meta-reduction is able to recover properly distributed secret keys. In
particular, one can generalize to arbitrary efficiently re-randomizable long-term
keys, as defined by Bader et al. [4]. Note that current AKE protocols with tight
security proofs [3,19] do not have efficiently rerandomizable keys, and therefore
do not contradict our result.

In order to obtain a tighter security proof one may try to make different
complexity assumptions. These can be either non-interactive (i.e., the reduction
does not have access to an oracle O, such as e.g. DDH), or stronger interactive
assumptions. Let us first consider non-interactive assumptions. A very general
class of such assumptions was defined abstractly in Bader et al. [4], and it is
easy to verify that our proof works exactly the same way with such an abstract
non-interactive assumption instead of CDH.

Some stronger assumptions may yield tight security proofs, but not all of
them do. Consider for instance the gap Diffie-Hellman assumption, which is
identical to strong Diffie-Hellman, except that the first input to the provided
DDH-oracle is not fixed, but can be arbitrary. It is easy to verify that our proof
also works for this assumption, in exactly the same way. More generally, our
proof works immediately for any assumption for which the “winning condition”
of the reduction is independent of the sequence of oracle queries issued by the
reduction. An example of an interactive assumptions where this does not hold is
the trivial interactive assumption that the protocol is secure (which, of course,
immediately yields a tight security proof).

Finally, we note that our impossibility result holds also for many weaker or
stronger AKE security models. We only require that the model allows for active
attacks and provides a RevLTK query. Thus, the result immediately applies also
to weaker models that, e.g., do not provide a RevSessKey-query or only a single
Test-query, and trivially also for stronger models, such as eCK-style ephemeral
key reveals [10,12]. It remains an interesting open question whether stronger
impossibility results (e.g., with quadratic lower bound) can be proven for such
eCK-style definitions.

8 Adding Explicit Entity Authentication

In this section we describe how explicit entity authentication (EA) [9] can be
added to our protocols by doing an additional key-confirmation step. Recall that

Highly Efficient Key Exchange Protocols with Optimal Tightness 793

Fig. 4. Generic compiler from an AKE protocol Π with implicit authentication to a
protocol Π+ with explicit entity authentication.

EA is the aliveness property that fresh oracles are guaranteed to have a partner
once they accept. Our construction is a generic compiler which transforms an
arbitrary AKE protocol Π, secure according to Definition 9, into one that also
provides EA. The details of the compiler are given in Fig. 4.

Specifically, protocol Π+ begins by running protocol Π to obtain a session
key kΠ. This key, which we henceforth call the intermediate key for protocol Π+,
is then used to derive two additional keys: ka and km. The first key becomes the
final session key of protocol Π+, while km is used to compute a key-confirmation
message, i.e., a MAC, for each party. The EA property of Π+ reduces to the
AKE security of the initial protocol Π, the multi-user PRF security of the func-
tion used to derive ka and km, as well as the multi-user strong UF-CMA (mu-
SUF-CMA) security of the MAC scheme (see the full version for the formal
definitions).

Theorem 6. Let Π be an AKE protocol, let Π+ be the protocol derived from Π
as defined in Fig. 4, and let A be an adversary against the EA security of protocol
Π+. Then there exists adversaries B1, B2, D, and F , such that

AdvEA
Π+(A) ≤ AdvAKE

Π (B1) + 2 · AdvAKE
Π (B2) + Advmu-PRF

PRF,μ� (D) + Advmu-SUF-CMA
MAC,μ� (F),

where μ� is the number of sessions created by A. The adversaries B1, B2, D, and
F all run in essentially the same time as A.

Our result is basically a restatement of the theorem proved by Yang [41], but
with two minor differences: (1) our result is stated for arbitrary protocols and
not only two-message protocols, and (2) since we use the AKE-RoR model the
proof is tighter and slightly simpler.

794 K. Cohn-Gordon et al.

9 Conclusion

We showed that it is possible to achieve highly efficient AKE protocols that
can be instantiated with theoretically sound parameters. Specifically, we gave
protocol constructions that have only a linear tightness loss in the number of
users, while using only a handful of exponentiations. Our constructions are at
least as efficient as the best known AKE protocols in this setting. Perhaps sur-
prisingly, our constructions only use standard building blocks as used by widely
deployed protocols and are very similar to protocols like Noise-KK, and offer
similar security guarantees.

While our proofs have a linear loss we have showed that this is actually
unavoidable: any reduction from a protocol in our class to a wide class of hardness
assumptions must lose a factor of at least μ. Thus, our reductions are optimal in
this regard. Additionally, we proved that adding a key confirmation step tightly
provides explicit authentication.

Taken together, these results demonstrate for the first time that AKE proto-
cols can be instantiated in a theoretically sound way in real-world deployments
without sacrificing performance.

References

1. Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE password-
authenticated key exchange protocol. In: 2015 IEEE Symposium on Security and
Privacy, pp. 571–587. IEEE Computer Society Press, May 2015

2. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 65–84. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30580-4 6

3. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 26

4. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 10

5. Barthe, G., Crespo, J.M., Lakhnech, Y., Schmidt, B.: Mind the gap: modular
machine-checked proofs of one-round key exchange protocols. In: Oswald, E., Fis-
chlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 689–718. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46803-6 23

6. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

7. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press,
October 1997

https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-46803-6_23
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18

Highly Efficient Key Exchange Protocols with Optimal Tightness 795

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993

9. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

10. Bergsma, F., Jager, T., Schwenk, J.: One-round key exchange with strong security:
an efficient and generic construction in the standard model. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 477–494. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 21

11. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y., Zanella-
Béguelin, S.: Proving the TLS handshake secure (as it is). In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 235–255. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44381-1 14

12. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

13. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 8

14. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In:
IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon, Por-
tugal, 27 June–1 July 2016, pp. 164–178. IEEE Computer Society (2016). https://
doi.org/10.1109/CSF.2016.19

15. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 18

16. Donenfeld, J.A.: WireGuard: next generation Kernel network tunnel. In: NDSS
2017. The Internet Society, February/March 2017

17. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
512–531. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 27

18. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 93–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5 6

19. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS,
vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 4

20. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

21. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduc-
tion. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 66–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
30057-8 5

https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-662-44381-1_14
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-30057-8_5

796 K. Cohn-Gordon et al.

22. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 17

23. Jager, T., Stam, M., Stanley-Oakes, R., Warinschi, B.: Multi-key authenticated
encryption with corruptions: reductions are lossy. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10677, pp. 409–441. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70500-2 14

24. Jeong, I.R., Katz, J., Lee, D.H.: One-round protocols for two-party authenticated
key exchange. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 220–232. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24852-1 16

25. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
537–553. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 32

26. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

27. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 429–448. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 24

28. Kudla, C., Paterson, K.G.: Modular security proofs for key agreement protocols.
In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 549–565. Springer,
Heidelberg (2005). https://doi.org/10.1007/11593447 30

29. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

30. Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange
protocol. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 378–394. Springer, Heidelberg (2006). https://doi.org/10.
1007/11745853 25

31. Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 4

32. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining
trivial attacks for security protocols is not trivial. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1343–1360. ACM Press, October/
November 2017

33. Menezes, A., Ustaoglu, B.: Security arguments for the UM key agreement protocol
in the NIST SP 800-56A standard. In: Abe, M., Gligor, V. (eds.) ASIACCS 2008,
pp. 261–270. ACM Press, March 2008

34. Morgan, A., Pass, R.: On the security loss of unique signatures. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 507–536. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03807-6 19

35. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to
discrete log. In: Roy, B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20.
Springer, Heidelberg (2005)

https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-319-70500-2_14
https://doi.org/10.1007/978-3-319-70500-2_14
https://doi.org/10.1007/978-3-540-24852-1_16
https://doi.org/10.1007/978-3-540-24852-1_16
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/11593447_30
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/11745853_25
https://doi.org/10.1007/11745853_25
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-030-03807-6_19

Highly Efficient Key Exchange Protocols with Optimal Tightness 797

36. Perrin, T.: Noise protocol framework (2018). http://noiseprotocol.org
37. Seurin, Y.: On the exact security of Schnorr-type signatures in the random oracle

model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 554–571. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29011-4 33

38. Signal Messenger: Technical information (2018). https://signal.org/docs
39. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from

(H)MQV and NAXOS. Des. Codes Crypt. 46(3), 329–342 (2008)
40. Wang, Y., Matsuda, T., Hanaoka, G., Tanaka, K.: Memory lower bounds of reduc-

tions revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 61–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 3

41. Yang, Z.: Modelling simultaneous mutual authentication for authenticated key
exchange. In: Danger, J.-L., Debbabi, M., Marion, J.-Y., Garcia-Alfaro, J., Zin-
cir Heywood, N. (eds.) FPS -2013. LNCS, vol. 8352, pp. 46–62. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-05302-8 4

http://noiseprotocol.org
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-642-29011-4_33
https://signal.org/docs
https://doi.org/10.1007/978-3-319-78381-9_3
https://doi.org/10.1007/978-3-319-78381-9_3
https://doi.org/10.1007/978-3-319-05302-8_4

	Highly Efficient Key Exchange Protocols with Optimal Tightness
	1 Introduction
	2 Background
	3 AKE Security Model
	4 Protocol
	4.1 Preparing Oracles
	4.2 Type IV Responder Oracles
	4.3 Type III Responder Oracles
	4.4 Type II Initiator Oracles
	4.5 Summary

	5 Avoiding the Strong Diffie-Hellman Assumption
	5.1 Protocol Twin
	5.2 Protocol Pi-Com

	6 Efficiency Analysis
	7 Optimality of Our Security Proofs
	8 Adding Explicit Entity Authentication
	9 Conclusion
	References

