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Abstract. A non-interactive zero-knowledge (NIZK) protocol allows a
prover to non-interactively convince a verifier of the truth of the state-
ment without leaking any other information. In this study, we explore
shorter NIZK proofs for all NP languages. Our primary interest is
NIZK proofs from falsifiable pairing/pairing-free group-based assump-
tions. Thus far, NIZKs in the common reference string model (CRS-
NIZKs) for NP based on falsifiable pairing-based assumptions all require
a proof size at least as large as O(|C|k), where C is a circuit computing
the NP relation and & is the security parameter. This holds true even for
the weaker designated-verifier NIZKs (DV-NIZKs). Notably, construct-
ing a (CRS, DV)-NIZK with proof size achieving an additive-overhead
O(|C1)+poly(k), rather than a multiplicative-overhead |C|-poly(k), based
on any falsifiable pairing-based assumptions is an open problem.

In this work, we present various techniques for constructing NIZKs
with compact proofs, i.e., proofs smaller than O(|C/|) + poly(x), and make
progress regarding the above situation. Our result is summarized below.

— We construct CRS-NIZK for all NP with proof size |C| + poly(k)
from a (non-static) falsifiable Diffie-Hellman (DH) type assumption
over pairing groups. This is the first CRS-NIZK to achieve a com-
pact proof without relying on either lattice-based assumptions or
non-falsifiable assumptions. Moreover, a variant of our CRS-NIZK
satisfies universal composability (UC) in the erasure-free adaptive
setting. Although it is limited to NP relations in NC!, the proof
size is |w| - poly(k) where w is the witness, and in particular, it
matches the state-of-the-art UC-NIZK proposed by Cohen, shelat,
and Wichs (CRYPTO’19) based on lattices.

— We construct (multi-theorem) DV-NIZKs for NP with proof size
|C| 4 poly(k) from the computational DH assumption over pairing-
free groups. This is the first DV-NIZK that achieves a compact proof
from a standard DH type assumption. Moreover, if we further assume
the NP relation to be computable in NC! and assume hardness of a
(non-static) falsifiable DH type assumption over pairing-free groups,
the proof size can be made as small as |w| + poly(k).
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Another related but independent issue is that all (CRS, DV)-NIZKs
require the running time of the prover to be at least |C/|-poly(x). Consider-
ing that there exists NIZKs with efficient verifiers whose running time is
strictly smaller than |C|, it is an interesting problem whether we can con-
struct prover-efficient NIZKs. To this end, we construct prover-efficient
CRS-NIZKs for NP with compact proof through a generic construction
using laconic functional evaluation schemes (Quach, Wee, and Wichs
(FOCS’18)). This is the first NIZK in any model where the running time
of the prover is strictly smaller than the time it takes to compute the
circuit C' computing the NP relation.

Finally, perhaps of an independent interest, we formalize the notion
of homomorphic equivocal commitments, which we use as building blocks
to obtain the first result, and show how to construct them from pairing-
based assumptions.

1 Introduction

1.1 Background

Zero-knowledge (ZK) protocols, introduced by Goldwasser, Micali, and Rackoff
[37], allow a prover to convince a verifier of the truth of a statement without
leaking any knowledge other than the fact that the statement is indeed true. A
practically useful and theoretically alluring feature for a ZK protocol to have is
non-interactiveness, where a prover simply outputs a single message (called a
proof) and convinces the verifier of the truth of the statement. Unfortunately,
it is known that non-interactive ZK (NIZK) for non-trivial languages do not
exist in the plain model where there is no trusted setup [36]. However, Blum,
Feldman, and Micali [10] showed how to construct a NIZK in a setting where the
prover and verifier have access to a shared common reference string (as known
as CRS-NIZK). Since then, NIZKs have been used as a ubiquitous building
block for cryptography ranging from the early chosen-ciphertext secure public
key encryption schemes [27,59,66], advanced signature schemes [5,19,65], and
multi-party computation [35].

Compact NIZK. One of the important research topics for NIZK is making the
proof size as small as possible. So far, CRS-NIZK for all of NP in the standard
model is known to exist from (doubly-enhanced) trapdoor permutation [6,28,34],
pairing [30,40,41,43,44,53], indistinguishability obfuscation (iO) [8,9,15,67], or
correlation intractable hash function [12,13,46]. Among these, CRS-NIZKs that
have proof size independent of the size of the circuit C' computing the NP rela-
tion are limited to those based on either a knowledge assumption [30,41,53] or
i0 [67]. There also exist generic conversions from standard CRS-NIZKs to CRS-
NIZKs with proof size independent of |C|. However, they rely on fully homo-
morphic encryption (FHE) [31,32] or homomorphic trapdoor functions (HTDF)
[20] whose existence is only implied from lattice-based assumptions. Put dif-
ferently, the classical CRS-NIZKs based on trapdoor permutations or (falsifi-
able [33,58]) pairing-based assumptions all require a large proof size that is
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polynomially related to the circuit size |C|. Notably, even the most well-known
Groth-Ostrovsky-Sahai NIZK (GOS-NIZK) [43] based on the decisional linear
or subgroup decision assumptions over pairing groups requires the proof size to
be as large as O(|C|k), where & is the security parameter. In fact, the CRS-
NIZK with the shortest proof that does not rely on any of the above strong tools
is the NIZK of Groth [40] based on the security of Naccache-Stern public key
encryption scheme [57] which achieves proof size |C| - polylog(k). Therefore, it
remains an interesting open problem to construct CRS-NIZKs with proof size
smaller than the current state-of-the-art while avoiding to rely on strong tools
such as knowledge assumptions, i0, FHE, and HTDF. Specifically, in this paper,
one of the primary interest is to obtain a CRS-NIZK with proof size achiev-
ing an additive-overhead O(|C|) + poly(k), rather than a multiplicative-overhead
|C| - poly(x) (or |C| - polylog(k)), based on any falsifiable pairing-based assump-
tions. Hereafter, we call such NIZKs with proof size O(|C|) + poly(x) as NIZKs
with compact proofs for simplicity.

Designated Verifier NIZKs and Compact Proofs. A relaxation of CRS-
NIZKs called the designated verifier NIZKs (DV-NIZKs) [24,61] retain most of
the useful properties of CRS-NIZKs and in some applications can be used as a
substitute for CRS-NIZKs. The main difference between CRS and DV-NIZKs
is that the latter limits the proof to only be verifiable by a designated party in
possession of a verification key; the proof can still be generated by anybody as in
CRS-NIZKs. Due to this extra secret information possessed by the verifier, DV-
NIZKs suffer from the so-called verifier rejection attack. Specifically, a prover
may learn partial information of the secret verification key and break soundness
if the verifier uses the same verification key for verifying multiple statements.
In this paper, our primary interest is multi-theorem DV-NIZKs (also known as
reusable or unbounded-soundness DV-NIZKs) where the verification key can be
reused for multiple statements without compromising soundness. Surprisingly,
most DV-NIZKs [17,18,24,55,61,69] (that are not a simple downgrade of CRS-
NIZKs) are known to either suffer from the verifier rejection attack or to be
limited to specific NP languages. It was not until recently that the first multi-
theorem DV-NIZK for all NP languages was (concurrently and independently)
shown by Couteau and Hofheinz [21], Katsumata et al. [47], and Quach et al. [63].
They proposed a tweak to the classical Feige-Lapidot-Shamir (FLS) NIZK pro-
tocol [28] and showed for the first time how to construct DV-NIZKs from the
computational Diffie-Hellman (CDH) assumption over pairing-free groups; an
assumption which is not yet known to imply CRS-NIZKs. However, one drawback
of their DV-NIZK is that the CRS size and proof size are huge, i.e., poly(x, |C]).
This is due to the fact that the FLS NIZK, which they base their construction
on, is highly specific to the NP-complete Hamiltonicity problem. It is unclear if
we can make their scheme compact since all other (CRS-)NIZKs following the
footsteps of FLS NIZK such as [40,48,50] suffer from the same problem of having
large CRS and proof size. Therefore, it is unclear whether such a weak assump-
tion as CDH over pairing-free groups can be used to construct a DV-NIZK with
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compact proofs. In fact, constructing DV-NIZKs with compact proof from any
pairing/pairing-free group assumptions remains open.

Prover-Efficient NIZKs. Continuing the line of NIZKs with compact proofs, it
is very natural and appealing to consider NIZKs that enjoy efficient provers, i.e.,
the running time of the prover is small. We say the prover is efficient if its running
time is strictly smaller than the time it takes to compute C(z, w) for statement x
and witness w, where recall C' was the circuit computing the NP relation. As an
example, we can imagine a case where a user (acting as a prover) is given some
sort of credential w as a witness by a trusted authority and is required to prove in
zero-knowledge the fact that it possesses a valid credential to make some action.
More concretely, in group signatures [5] a trusted authority will provide users
with a credential which allows them to sign anonymously on behalf of the group.
In such a case, it would be appealing if the user could generate a proof without
requiring to invest computational time-dependent of |C|, since if zero-knowledge
was not required, the prover could have simply output the credential w in the
clear and completely outsourced the computation of C'(x,w) to the verifier. Since
the authority is providing a valid credential w to the user, in principle, the user
should never need to compute C(z,w) to check whether w is valid.

As far as our knowledge goes, all NIZKs, regardless of CRS or DV, have a
prover with running time at least |C| - poly(x) which is much larger than the
time it takes to simply compute the circuit C'. We emphasize that solutions to
the counterpart notion of efficient verifiers are well known and studied. Specifi-
cally, NIZKs with compact proofs with the additional property of having efficient
verifiers are known as ZK-succinct non-interactive arguments (ZK-SNARGs) or
ZK-succinct non-interactive arguments of knowledge (ZK-SNARKs).! They have
been the subject of extensive research, e.g., [7,25,30,40,42,53,54,60], where con-
structions are known to exist either in the random oracle model or based on
non-falsifiable assumptions. We also note that it would be impossible to con-
struct a NIZK where both the prover and the verifier are efficient since the
circuit C representing the NP relation must be computed by at least one of
the parties to check the validity of the witness w. Therefore, it is an interesting
question of whether there exists an opposite flavor of the current NIZKs where
we have an efficient prover instead of an efficient verifier.

1.2 Owur Contribution

In this paper, we provide new constructions of CRS-NIZK and DV-NIZK with
compact proofs. The former is instantiated on a pairing group and the latter
on a paring-free group. The tools and techniques which we use for our CRS-
NIZK can be slightly modified to construct universally composable NIZK (UC-
NIZK) [43] with compact proofs over pairing groups. Finally, we provide a generic
construction of a CRS-NIZK with an efficient prover using as a building block

! We note that in ZK-SNARG /SNARK, it is conventional to require an efficient verifier
to have running time that is only poly-logarithmic dependent of |C|, rather than
being just strictly smaller than |C/|.
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the recently proposed laconic functional evaluation (LFE) scheme of Quach, Wee,
and Wichs [64]. We summarize our results below and refer to Tables 1, 2, and
3 for a comparison between prior works. We note that we only include multi-
theorem NIZKs supporting all of NP based on falsifiable assumptions in the
table.

1. We construct CRS-NIZKs for NP with compact proof from a (non-static)
assumption over pairing groups, namely, the (n, m)-computational Diffie-
Hellman exponent and ratio (CDHER) assumption introduced by [47]. This
is the first CRS-NIZK to achieve a compact proof without relying on either
lattice-based assumptions, knowledge assumptions, or indistinguishability
obfuscation. The proof size has an additive-overhead |C|+poly(x), rather than
a multiplicative-overhead |C| - poly(k), where C is the circuit that computes
the NP relation (See Table1). Moreover, if we assume the NP relation to
be computable in NC', we can make the proof size as small as |w| 4 poly(x),
where w is the witness. This matches the proof size of the CRS-NIZK of
Gentry et al. [32] based on fully-homomorphic encryption.

2. We construct UC-NIZKs for NP relations in NC! with compact proof from
the (n,m)-CDHER assumption. Although it is limited to NP relations in
NC!, it matches the smallest proof size among all the UC-NIZKs secure
against adaptive corruptions in the erasure-free setting (See Table2). The
proof size is small as |w| - poly(k), and in particular, matches the recent UC-
NIZK of Cohen, shelat, and Wichs [20] based on lattice-assumptions. Here,
note that for NC! circuits, the dependence on the depth d they have can be
ignored, since asymptotically d is smaller than k.

3. We construct (multi-theorem) DV-NIZKs for NP with compact proof from
the CDH assumption over pairing-free groups. This is the first DV-NIZK
that achieves a compact proof from a weak and static Diffie-Hellman type
assumption such as CDH. Specifically, similarly to the above CRS-NIZK, the
proof size of our DV-NIZK is |C| + poly(k), whereas all previous DV-NIZKs
had proof size poly(|C|,x) (See Table3). Moreover, if we further assume
the NP relation to be computable in NC! and assume the hardness of
the parameterized ¢-computational Diffie-Hellman inversion (CDHI) assump-
tion over pairing-free groups [16,56], we can make the proof size as small as
[w| + poly(x).

4. Finally, we construct prover-efficient CRS-NIZKs for NP through a generic
construction using LFE schemes [64]. This is the first NIZK in any model
(e.g., CRS, DV) where the running time of the prover is strictly smaller than
the time it takes to compute the circuit C' computing the NP relation. Using
any non-prover-efficient CRS-NIZK, we generically construct a CRS-NIZK
where the running time of the prover (and the proof size) is poly(, |z|, |w|, d),
independent of the circuit size |C|, by instantiating the LFE scheme by the
sub-exponential security of the learning with errors (LWE) assumption with
sub-exponential modulus-to-noise ratio, where x is the statement and d is the
depth of C. Moreover, if we use as building block a CRS-NIZK whose prover
running time is smaller than |C| - poly(k) (e.g., [43]), the running time and
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proof size can be made as small as O(|z| + |w|) - poly(k, d) by instantiating the
LFE scheme by the adaptive LWE assumption with sub-exponential modulus-
to-noise ratio introduced in [64].

Along the way of obtaining our first and second results, we formalize a new
tool called homomorphic equivocal commitments (HEC)?, which may be of inde-
pendent interest. An HEC is a commitment with two additional properties called
equivocality and homomorphism. The equivocality enables one to generate a com-
mitment that can be opened to any message by using a master secret key. The
homomorphism for a circuit family C = {C' : X — Z} informally requires that
one can commit to a message x € X, where its commitment com can be fur-
ther publicly modified to a commitment come on the message C(x) € Z for
any circuit C' € C. Here, a decommitment for comg can be computed by the
knowledge of the message x, decommitment of com, and the circuit C. To the
knowledgeable readers, we note that HEC is a strictly weaker primitive com-
pared to homomorphic trapdoor functions [39]. Previously, an HEC supporting
the family of all polynomial-sized circuits were only (implicitly) known from
lattice-based assumptions [39]. Apart from their construction, known (implicit)
constructions of HEC only support linear functions [62] or group operations on
a pairing group [2]. In this paper, we provide the first instantiation of HEC
supporting NC! based on any pairing-based assumptions, namely, the (n,m)-
CDHER assumption introduced in [47]. The construction is inspired by the recent
construction of compact homomorphic signatures of Katsumata et al. [47]. The
proposed HEC enjoys a particular form of compactness which is especially useful
for generically converting CRS-NIZKs with non-compact proofs to CRS-NIZKs
with compact proofs. Concretely, for any polynomially-sized circuit C', the eval-
uated commitment come and its decommitment of our HEC are of size poly(x)
independent of |C/|, and one can verify the validity of the decommitment in time
poly(k) independent of |C|. Somewhat surprisingly, we also construct another
instantiation of HEC supporting NC! based on the CDH assumption over pair-
ing groups. Although this HEC does not enjoy compactness, and hence cannot
be used for our compact CRS-NIZK conversion, we believe it to be an interesting
primitive on its own since we achieve homomorphic computations in NC! from
such a weak assumption as CDH.

1.3 Technical Overview

Our results can be broken up into three parts. The first two results concerning
CRS and UC-NIZKs with short proof are obtained through a generic conver-
sion from NIZKs with non-compact proofs to NIZKs with compact proofs using
homomorphic equivocal commitments (HEC); a primitive which we formalize
and provide instantiations in this work. The third result concerning DV-NIZKs

2 This primitive was already informally mentioned in [39] and we do not take credit
for proposing the concept of HEC. We note that Abe et al. [2] also introduced a
similar primitive with the name homomorphic trapdoor commitments.
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Table 1. Comparison of CRS-NIZKs for NP.

Reference CRS size Proof size Assumption (Misc.)

FLS [28] poly(x, |C|) poly(k, |C|) Trapdoor
permutation’

Groth [40] |C| - ktpm - polylog(k)  |C| - ktpm - polylog(x) Trapdoor

+poly(k) +poly(x) permutation’
Groth [40] |C|-polylog(x)+poly(x) |C| - polylog(k) +  Naccache-Stern PKE
poly(r)

GOS [43] poly(k) O(|C|k) DLIN/SD

CHK, Abusalah [3,14] poly(k,|C|) poly(k, |C|) CDH
(pairing group)

GGIPSS [32] poly(x) |w| + poly(x) FHE and CRS-NIZK
circular security

Sect. 3 poly(x, |C|) |C| + poly(k) (n,m)-CDHER

Sect. 3 poly(k, |C|, 2%) |w| 4 poly(x) (n, m)-CDHER
(limited to NC!
relation)

Sect. 5 poly(x, |z|, |wl|, d) poly(k, |z|, |wl|, d) LFE and CRS-NIZK

(prover-efficient,
implied by sub-exp.

LWE)
Sect. 5 (Jz| + |w|) - poly(k,d)  O(|z] + |w]) - LFE and CRS-NIZK?
poly(k, d) (prover-efficient,
implied by adaptive
LWE)

In column “CRS size” and “Proof size”, & is the security parameter, |z|, |w| is the statement and
witness size, |C| and d are the size and depth of the circuit computing the NP relation, and ktpm
is the length of the domain of the trapdoor permutation. In column “Assumption”, DLIN stands
for the decisional linear assumption, SD stands for the subgroup decision assumption, (n,m)-
CDHER stands for the (parameterized) computational DH exponent and ratio assumption,
LFE stands for laconic functional evaluation, and sub-exp. LWE stands for sub-exponentially
secure learning with errors (LWE).

TIf the domain of the permutation is not {0,1}"™, we further assume they are doubly enhanced
[34].

tWe additionally require a mild assumption that the prover run time is linear in the size of the
circuit computing the NP relation.

with short proof size based on pairing-free groups, that is, CDH and ¢-CDHI,
are obtained by extending the recent result of Katsumata et al. [47] which con-
structs the first NIZKs in the preprocessing model (PP-NIZKs) with short proof
size from pairing-free groups. As explained later, PP-NIZK is a strictly weaker
primitive compared to DV-NIZK. Finally, the fourth result concerning prover-
efficient NIZK is obtained by a generic construction based on the recently devel-
oped laconic function evaluation scheme of Quach et al. [64]. In the following,
we explain these approaches in more detail.

Generic Construction of Compact (CRS, UC)-NIZK from HEC. Here,
we explain our construction of compact CRS-NIZK. Our starting point is the
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Table 2. Comparison of UC-NIZKs for NP.

Reference Security (erasure-free) CRS size Proof size Assumption
(Misc.)

GOS [43] Adaptive (v') poly(r) O(|C|k) DLIN/SD

GGIPSS [32] Adaptive (X) poly(k) |w| + poly(x) FHE and UC-
NIZK
(circular
security)

CsW [20] Adaptive (v') poly(k, d) |w| - poly(x,d) HTDF and
UC-NIZK

Sect. 3 Adaptive (v') poly(k,|C|,2%) |w|-poly(k)  (n,m)-CDHER
(limited to NC?
relation)

In column “CRS size” and “Proof size”, k is the security parameter, |w| is the witness
size, |C| and d are the size and depth of circuit computing the NP relation. In col-
umn “Assumption”, DLIN stands for the decisional linear assumption, SD stands for the
subgroup decision assumption, HTDF stands for homomorphic trapdoor functions, and
(n,m)-CDHER stands for the (parameterized) computational DH exponent and ratio

assumption.
Table 3. Comparison of DV-NIZKs for NP.

Reference CRS size Proof size Verification key size Assumption
(Misc.)

CH, KNYY, poly(s, [C1) poly(,|Cl) _poly(s, C]) CDH

QRW (pairing-free

[21,47,63] group)

Sect. 4 poly(x) |C| 4 poly(k) poly(x) CDH
(pairing-free
group)

Sect. 4 2¢ . poly(k) |w| + poly(k) poly(k) ¢-CDHI
(pairing-free
group,
limited to NC!
relation)

In the columns concerning sizes, « is the security parameter, |w| is the witness-
size, |C| and d are the size and depth of the circuit computing the NP relation.
In column “Assumption”, ¢-CDHI stands for the ¢-computational Diffie-Hellman
inversion assumption.

recent result by Katsumata et al. [47], who constructed a designated prover NIZK
(DP-NIZK) with compact proof, where DP-NIZK is an analogue of DV-NIZK
where the prover requires secret information to generate proofs and anybody
can publicly verify the proofs. Since the construction of Katsumata et al. is an
instantiation of the generic conversion from homomorphic signature to DP-NIZK
proposed by Kim and Wu [51], we first briefly review Kim and Wu’s conversion.
Recall that in homomorphic signature, a signature o on a message m € {0, 1}*
generated by a secret key sk, can be homomorphically evaluated to a signature
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o on C(m) for a circuit C : {0,1}* — {0,1}. Anybody can verify the validity of
the signature by using a public verification key vk and the circuit C. As for the
security requirements, we need that given a verification key vk and a signature o
on m, it is computationally hard to forge a signature o* on z such that z # C'(m)
(unforgeability) and an honestly evaluated signature o on z does not reveal infor-
mation about m beyond the fact that it was derived from a signature on m such
that C(m) = z (context-hiding). Furthermore, as an efficiency requirement, we
need that the size of ¢ is independent of the size of the circuit C. In Kim and
Wu’s construction of DP-NIZK, the prover is given a signature o on a secret key
k of a secret key encryption (SKE) scheme as the secret proving key. When the
designated prover proves that z is in some language £ that is specified by a rela-
tion R, it generates an encryption ct of the witness w such that (z,w) € R and
homomorphically evaluates the signature o with respect to a circuit that com-
putes fy.ct, where fy o is a function that takes as input k’ and outputs whether
(z,SKE.Dec(k’, ct)) € R. The proof for DP-NIZK is then set as ct and the homo-
morphically evaluated signature o. The verifier prepares the function f; ¢ from
ct and z, and simply checks o is a correct signature on 1 with respect to the evalu-
ated function f; ;. The soundness of the protocol follows from the unforgeability
of the homomorphic signature since f, (k") = 0 for any k’ when x is not in the
language induced by the relation R. Furthermore, the zero-knowledge property
of the protocol follows from the security of SKE and the context-hiding property
of the homomorphic signature. Katsumata et al. [47] gave a new homomorphic
signature scheme with short evaluated signature o that supports the function
class of NC! circuits based on a newly introduced (non-static) pairing-based
assumption called the (n, m)-computational Diffie-Hellman exponent and ratio
(CDHER) assumption. Plugging this homomorphic signature into the Kim-Wu
conversion, they obtained the first compact DP-NIZK for all NP based on any
pairing-based assumptions.?

The aim of our work is to modify the Kim-Wu conversion and remove the
necessity of the prover keeping secret information to generate a proof so that
we can convert the compact DP-NIZK of Katsumata et al. into a compact CRS-
NIZK. The main reason why their construction cannot be used as a CRS-NIZK
is because the prover cannot generate the signature o on the fly without knowing
the signing key sk of the homomorphic signature. To this end, our first idea is
to let the prover choose vk, sk, and k on its own. This would allow the prover
to generate a proof as in the designated prover setting since it can generate the
signature o on k on its own by using the signing key sk. The proof for the CRS-
NIZK will then consist of the verification key vk and a proof of the DP-NIZK.
Unfortunately, there are multiple of problems with this naive approach. The first
problem is that the size of the verification key vk used in Katsumata et al. [47] is
polynomially dependent on the size of the circuit that computes the relation to be

3 Note that any NP relation can be converted to an NP relation in NC! by expanding
the witness size as large as the circuit computing the original NP relation. Notably,
a homomorphic signature scheme supporting the function class of NC! circuits is
sufficient for constructing DP-NIZK for all of NP.
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proven, and thus, this ruins the compactness property of the original DP-NIZK
proof. The second problem is that we can no longer invoke the unforgeability of
the homomorphic signature to prove soundness since unforgeability holds against
adversaries who only has access to a verification key vk and a signature o. Indeed,
in the specific case of Katsumata et al.’s homomorphic signature scheme, an
adversary will be able to completely break the soundness of the resulting scheme
if it is further given the signing key sk. Therefore, to resolve these problems,
we make use of the special structure that the homomorphic signature scheme of
Katsumata et al. has and abstract it to a primitive which we call homomorphic
equivocal commitments (HEC).

Our key observation is that in the Katsumata et al.’s homomorphic signature
scheme, the reverse direction of the signing procedure is possible without the
knowledge of the secret signing key sk if we are allowed to program part of the
verification key vk. Namely, the verification key vk can be divided into two parts
vko and vk; where the size of vk; is compact (i.e., independent of the size of the
circuit), and for a fixed vk and k, one can sample a signature o and efficiently
compute the remaining part of the verification key vk; without knowledge of
the secret signing key sk so that o is a valid signature on k with respect to the
entire verification key vk = (vko, vk1). We then modify our above idea using this
reverse direction of computation. Namely, we put the non-compact part of the
verification key vkg in the common reference string. The prover first choose k, o
on its own and then computes the remaining compact part of the verification key
vky from them so that o is a valid signature on k with respect to the verification
key vk. Notably, the prover no longer requires knowledge of the secret signing
key sk, and thus, the prover can generate a proof publicly. The resulting proof
is the same as in the case for the above naive construction except that we now
only append vk; to the underlying DP-NIZK proof, rather than vkg and vk;. The
first problem of having a large proof size we encountered in our above attempt
is now resolved since we moved the non-compact part of the verification key vkg
to the common reference string and the proof now only contains the compact
vk; and the compact proof of the underlying DP-NIZK. At first glance, the
second problem of losing soundness seems to be resolved as well, as the prover
is choosing the signature o without knowledge of the underlying secret signing
key sk. However, we encounter a new problem. Namely, once again, we cannot
directly use the unforgeability of the homomorphic signature to prove soundness,
since this time the part of the verification key vk, that the adversary appends to
the underlying DP-NIZK proof may be maliciously chosen in a way that deviates
from the security setting of the homomorphic signature. However, luckily, the
proof for unforgeability provided by Katsumata et al. can be adapted without
much change to the setting where vk; follows an arbitrary distribution since
their proof does not depend on the specific distribution which vk; is chosen
from. In this work, to capture this special security requirement as well as the
syntactic structure that we require for the homomorphic signature, we introduce
a new primitive that we call homomorphic equivocal commitment (HEC) and
instantiate it by mimicking the homomorphic signature scheme of Katsumata
et al. [47]. Roughly speaking, in our formulation, we regard vk; as a commitment
of a message k with respect to a randomness o.
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While the above explanation conveys our main idea, we need some more
modification to obtain our final construction. In the above construction, an hon-
est prover outputs a “commitment” vk; of a secret key k. However, a malicious
prover may choose the commitment that does not correspond to any secret key.
In this case, we can no longer argue soundness. To avoid the problem, we rely
on a non-compact NIZK to prove the well-formedness of the commitment. Since
the size of the circuit for checking the well-formedness is independent of the size
of the circuit for computing the relation to be proven, this does not harm the
compactness of the proof. We finally remark that the construction we explained
so far is still slightly different from the one we give in Sect. 3.2. There, we change
the scheme so that the prover provides the proof of knowledge of ¢ instead of
sending ¢ as part of the proof in the clear. While our scheme is secure without
this change, this makes it easier to extend our construction to the UC-secure
setting.

The proof size of the resulting CRS-NIZK is |C|+ poly(x) since our HEC only
supports NC! and thus we have to expand the witness to the concatenation of
all values corresponding to each wire of the circuit verifying the relation to make
the verification of the relation be done in NC'. On the other hand, if the relation
can be verified in NC! from the beginning, then the expansion is not needed
and the proof size is as small as |w| 4 poly(k).

Interestingly, our CRS-NIZK can also be seen as a variant of the UC-NIZK
recently proposed by Cohen, shelat, and Wichs [20]. The differences from their
scheme are (1) an HTDF is replaced with an HEC, (2) a witness is encrypted
by SKE of which key is committed by a HEC instead of the witness itself, and
(3) one-time signatures are omitted. If we are to construct a UC-NIZK in the
adaptive non-erasure setting as is done in [20], the modifications (2) and (3) are
no longer applicable, but (1) is still applicable. Based on this observation, we
obtain a UC-NIZK for NC! in the adaptive non-erasure setting with a similar
proof size to that of [20] based on a HEC instead of a HTDF. A caveat of
our construction is that the scheme only supports NP languages verifiable in
NC! whereas their scheme supports all of NP (verifiable by a polynomial-size
circuit). On the other hand, our abstraction as HEC instead of HTDF enables
us to instantiate the scheme based on a pairing assumption instead of lattices. In
particular, it seems difficult to construct HTDF based on a pairing assumption.

Compact DV-NIZKs Based on Pairing-Free Groups. Here, we explain
our constructions of compact DV-NIZKs. Actually, we give a generic compiler to
convert any non-compact DV-NIZK to a compact one additionally assuming the
existence of PKE and NC'-decryptable SKE with additive ciphertext overhead.
In this overview, we discuss a specific instantiation based on the CDH assumption
in pairing-free groups.

The starting point of our constructions is the recent construction of compact
NIZKs in the preprocessing model (PP-NIZKs) by Katsumata et al. [47] based
on inner-product functional encryptions (IPFE) [1].* PP-NIZK is a relaxation

4 Actually, their construction is based on a variant of IPFE called IPFE on exponent
(expIPFE). We note that their construction works with standard IPFE. They used
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of (CRS, DV, DP)-NIZK where both the prover and the verifier are given prov-
ing and verification keys, respectively, which should be hidden from each other.
Katsumata et al. first constructed a context-hiding homomorphic MAC for arith-
metic circuits by adding the context-hiding property to the non-context-hiding
homomorphic MAC of Catalano and Fiore [16] by using an IPFE. They then
plugged the context-hiding homomorphic MAC into the generic conversion by
Kim and Wu [51] to obtain PP-NIZKs.” Recall that in the PP-NIZK construc-
tion of Kim and Wu, a prover key consists of an SKE key k and a signature o on
k, and a verification key consists of a verification key vk of a homomorphic MAC
scheme. The reason why their scheme is PP-NIZK and not DV-NIZK is that a
prover has to obtain a signature o on k which should be generated by a trusted
third party who has the corresponding signing key sk.% Similarly to the case of
our CRS-NIZK explained in the previous section, we observe the following fact.
If one can choose o and vk in the reverse order, that is, if one can first choose
the signature o, and then define vk so that o is a valid signature on k, then
we could modify the scheme to be a DV-NIZK by letting the prover choose k
and o on its own. Below, we observe that the homomorphic MAC of Katsumata
et al. [47] indeed has this property. To explain this, we first recall the structure
of their homomorphic MAC.

In their homomorphic MAC scheme, a verification key vk (which is also a
signing key) consists of s & Ly, T & Zf) and a decryption key of an IPFE
corresponding to the vector (s,.. .,sD) S ZIE’ where p is a sufficiently large
prime, £ is the message length, and D is the degree of the arithmetic circuits
supported by the homomorphic MAC scheme.” A signature on k is defined to
be o := (r —k)-s~! mod p. From the form of o, we can see that for any fixed
k and s, one can set o and r in the reverse order, that is, one can first pick o
and then set r :==k + o -s mod p.

Going back to the construction of NIZK, this structure enables us to get
close to DV-NIZK. Namely, a prover can now choose k and o by itself, and it
no longer needs any proving key generated by a trusted third party. However,
there is an important problem still remaining on how the verifier gets to know
r = k+ o -s mod p, which is required for verification. Recall that r was part
of the private verification key of the PP-NIZK of Kim and Wu. If s is given to
a prover, then we cannot rely on unforgeability of the homomorphic MAC to
prove soundness, and if the prover sends k and o in the clear, then we cannot
rely on the security of SKE to prove zero-knowledge. Therefore the prover has
to transmit r = k+ o - s mod p to the verifier without knowing s nor revealing

the notion of expIPFE instead of IPFE for making it possible to instantiate the
scheme based on the DDH-based scheme by Agrawal, Libert, and Stehlé [4].

5 Kim and Wu [51] showed that if one uses their generic conversion on homomorphic
MACs instead of homomorphic signatures, it would result in PP-NIZKs instead of
DP-NIZKs.

6 In a homomorphic MAC, we can let sk := vk since both are kept private.

7 We remark that we cannot include the master secret key of IPFE in vk since the
context-hiding property should hold even against the verifier who sees vk.
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k and o to the verifier. We observe that this task can be done by using IPFE.
Namely, we give a secret key corresponding to the vector (1, s) of IPFE to the
verifier as a part of his verification key, and a prover encrypts vectors (k;, 0;) for
each i € [¢] where k; and o; are the i-th entry of k and o, respectively, and sends
the ciphertexts as a part of the proof. Then a verifier can obtain r =k + o - s
mod p by simply decrypting the IPFE ciphertexts with his decryption key.
Though the above idea seems to work at first glance, there is a problem that
was also addressed in [47]. Namely, since a standard security notion of IPFE
does not consider a malicious encryptor, an adversary may generate a malformed
ciphertext whose decryption result is perfectly under his control, which breaks
soundness. To prevent such an attack, Katsumata et al. [47] required a property
called an extractability for an IPFE, which means that one can extract a corre-
sponding message from any possibly malformed ciphertext if it does not decrypt
to L. They then showed that the DDH-based IPFE scheme of Agrawal, Libert,
and Stehlé [4] can be used as an extractable IPFE. However, unfortunately, we
will not be able to simply plug in the extractable IPFE of Agrawal et al. into
our DV-NIZK. This is because the IPFE of Agrawal et al. embeds the message
into the exponent of a group element, and forces one to compute the discrete
logarithm to decrypt. Therefore, unless we can be sure that the exponent will
be small, the IPFE of Agrawal et al. is difficult to use. Here, the reason why the
PP-NIZK of Katsumata et al. [47] did not face any issue with this somewhat
awkward decryption algorithm was because the verification algorithm only con-
sisted of checking whether the decryption result is equal to a certain value, which
could be tested in the exponent, using the verification key (s, r). However, in our
case, the verifier must first decrypt r using the IPFE secret key corresponding
to the vector (1, s) to recover r, and only then it can run the internal verification
algorithm of [47] using the pair (s,r). Notably, the verifier would have to solve
the discrete logarithm for a random value in Z,, to recover the piece r of the veri-
fication key used in the PP-NIZK of Katsumata et al. However, obviously, there
is no way to compute this efficiently. Therefore, in this work, we must take a dif-
ferent approach. Concretely, instead of relying on the extractability of IPFE, we
require a prover to provide a proof that he has honestly generated ciphertexts by
using another (non-compact) DV-NIZK. Here, since the validity check of IPFE
ciphertexts can be done with computational complexity independent of the size
of the language the prover really wants to prove, we can use a non-compact DV-
NIZK for this part while keeping the whole proof size compact. In summary, we
can convert the PP-NIZK of [47] to a DV-NIZK by adding ¢ IPFE ciphertexts
along with their validity proof whose sizes are poly(x). Since the proof size of
the PP-NIZK of [47] is |C| + poly(k), the proof size of the resulting DV-NIZK
is also |C| + poly(k). Moreover, we note that single-key secure IPFE suffices for
the above construction of DV-NIZK. Since single-key secure functional encryp-
tion for all polynomial-sized functions exist under the existence of PKE [3§]
and DV-NIZK for all of NP exists under the CDH assumption on a pairing-free
group [21,47,63], we can instantiate the above DV-NIZK based on the CDH
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assumption on a pairing-free group.® Finally, we note that by using the idea of
the compact homomorphic MAC based on the ¢-CDHI assumption by Catalano
and Fiore [16], we can further reduce the proof size to be |w| + poly(x) in the
case when the language to be proven is computable in NC!.

Generic Construction of Prover-Efficient NIZK from LFE. To achieve
prover-efficient NIZKs, we use laconic function evaluation (LFE) recently intro-
duced by Quach, Wee, and Wichs [64]. LFE schemes are defined for a class of
circuits C. We can generate a short digest of circuit C' € C from a CRS and the
circuit C. Anybody can then generate a ciphertext ct of a message m from the
CRS, the digest, and m. Finally, anybody can decrypt the ciphertext to C(m)
using the ciphertext ct and the circuit C. Here, the security of LFE imposes that
the ciphertext ct leaks no additional information other than the value C'(m). The
attractive feature of LFE is that the size of the CRS, digest, ciphertext ct, and
the running time of the encryption algorithm are all strictly smaller than the
size of the circuits in C.

Our design idea is to impose the computation of the circuit C' computing the
NP-relation on the verifier by using LFE. Specifically, we put a digest of C' (and
a CRS of LFE) in the CRS of our NIZK. The prover then computes an LFE
ciphertext of message (z,w) where x is a statement and w is its witness using the
digest of C'. A verifier can check the validity of the statement by decrypting the
ciphertext with C. By the security of LFE, the verifier obtains nothing beyond
C(z,w), hence, zero-knowledge of our NIZK follows naturally. Furthermore, by
the efficiency property of LFE, the running time of the prover is smaller than
the size of C'. However, this basic idea is not yet sufficient. This is because a
cheating prover may not honestly compute an LFE ciphertext of the message
(z,w) and may possibly break soundness of our NIZK. To overcome this issue, a
prover must generate not only an LFE ciphertext of (z,w) but also a NIZK proof
to prove that the prover honestly generated the LFE ciphertext of (z,w) with
the CRS of LFE and the digest of C. We point out that this additional NIZK
proof does not harm prover efficiency since the additional statement which the
prover must prove is independent of the size of the circuit C owing to the feature
of LFE. In particular, we can check the validity of the ciphertext by computing
the encryption circuit of LFE whose size is independent of the size of C.

Using any non-prover-efficient NIZK for NP as building block and instanti-
ating the LFE scheme by the sub-exponential security of LWE assumption with
sub-exponential modulus-to-noise ratio, we obtain a prover-efficient CRS-NIZK
for NP whose prover running time is poly(x, |z|, |w|,d), where d is the depth
of the circuit C' computing the NP relation. In particular, the prover running
time is independent of |C|. In fact, we can further reduce the prover running
time to be as small as O(|z| + |w]) - poly(k, d) where the dependence of the state-
ment = and witness w size is only quasi-linear if we further use the following

8 One may wonder why we only need CDH though [47] assumed DDH. Recall that the
DDH in their construction comes from the necessity of an extractable expIPFE. We
show that this can be replaced with any IPFE and DV-NIZK both of which exist
under the CDH assumption based on the same idea as explained above.
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two assumptions (1) the prover running time of the underlying NIZK is linear
in the size of the circuit that computes the NP relation, that is, |C| - poly(k) (2)
a natural variant of the above LWE assumption introduced by Quach et al. [64],
called the adaptive LWE assumption. Note that the assumption we make on the
underlying NIZK is not that strong, and in particular, we can use the NIZK of
Groth, Ostrovsky, and Sahai [43].

1.4 Related Works

Other than CRS and DV-NIZKs, which have been the main interest of this paper,
there are other variants of NIZKs. One is PP-NIZK and the other is DP-NIZK
as we briefly mentioned in Sect. 1.3. Similarly to DV-NIZKs, due to the extra
secret information shared by the prover and/or verifier, the soundness (resp. zero-
knowledge) property of (PP, DP)-NIZKs may be compromised after verifying
(resp. proving) multiple statements. In fact most of the PP or DP-NIZKs [22,
23,26,45,49,52] are known only to be secure for bounded statements. The first
multi-theorem PP and DP-NIZKs (that are not a trivial downgrade of CRS-
NIZKs) where given by Kim and Wu [51] who proposed a generic construction of
them via homomorphic MACs and homomorphic signatures, respectively. Since
homomorphic signatures were implied by lattice-based assumptions [39], this
implied the first DP-NIZKs based on lattices. Subsequently, Katsumata et al. [47]
constructed a homomorphic signature based on the CDHER assumption and a
homomorphic MAC based on the DDH assumption over pairing-free groups,
and thus constructed DP and PP-NIZKs relative to those assumptions. One
attractive feature of the NIZKs of Kim and Wu [51] and Katsumata et al. [47] is
that the proof size are compact: the DP-NIZK of [51] has proof size |w|+poly(x, d)
and the (PP, DP)-NIZK of [47] have proof size |C|+ poly(k), where d is the depth
of the circuit C' computing the NP relation.

2 Homomorphic Equivocal Commitment

2.1 Definition

We introduce a new primitive which we call homomorphic equivocal commitment
(HEC), which can be seen as a relaxed variant of HTDF defined by Gorbunov
et al. [39]. A HEC scheme with message space X, randomness space R, and
a randomness distribution Dr over R for a circuit class C = {C X = Z }
consists of PPT algorithms (HEC.Setup, HEC.Commit, HEC.Open, HEC.Eval™,
HEC.Eval®*", HEC.Verify).

HEC.Setup(1¥): The setup algorithm takes as input the security parameter 1%
and outputs a public parameter pp, an evaluation key ek, and a master secret
key msk.

HEC.Commit(pp, x; R): The commit algorithm takes as input a public parameter
pp and a message x € X along with a randomness R € R, and outputs a
commitment com. When we omit R to denote HEC.Commit(pp, x), we mean
that R is chosen according to the distribution Dy.
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HEC.Open(msk, (x, R),x’): The open algorithm takes as input a master secret
key msk, a message x € X, a randomness R € R, and a fake message x’ € X,
and outputs a fake randomness R’ € R.

HEC.Eval'(ek, C, x, R): The inner evaluation algorithm takes as input an evalu-
ation key ek, a circuit C' € C, a message x € X, and a randomness R € R,
and outputs a proof .

HEC.Eval®*(ek, C,com): The outer evaluation algorithm is a deterministic algo-
rithm that takes as input an evaluation key ek, a circuit C' € C, and a com-
mitment com, and outputs an evaluated commitment comeya)-

HEC.Verify(pp, comeyal, 2, 7): The verification algorithm takes as input a public
parameter pp, an evaluated commitment come,,, a message z € Z, and a
proof 7, and outputs T if the proof is valid and L otherwise.

Evaluation Correctness. For all k € Z, (pp, ek, msk) & HEC.Setup(1”), x €
X, R € R, com := HEC.Commit(pp, x; R), C € C, = < HEC.Eval™(msk, C, x, R),
and comey, := HEC.Eval®(ek, C, com), we have

Pr[HEC.Verify(pp, comeya, C(x),7) = T] = 1.

Distributional Equivalence of Open. We have

{(pp7 ek7 mSk7 X7 R? com)} Sgt {(pp7 ek7 mSk’ X7 RI? Com/)}

where (pp, ek, msk) <~ HEC.Setup(1%), (x,X) € X2 are arbitrary random vari-
ables that may depend on (pp, ek, msk), R & Dy, com = HEC.Commit(pp, x; R),
R & Dy, com’ = HEC.Commit(pp, X; R), and R’ & HEC.Open(msk, (X, R), x).
Computational Binding for Evaluated Commitment. For all PPT adver-
sary A,

(pp, ek, msk) & HEC.Setup(17),
py | HEC-Verify(pp: comeva, 2° ) = Tl (x, 7, 0. 2% ) & A(pp, k),
" # C(x) com := HEC.Commit(pp, x; R)
COMegy, 1= HEC.EvaIO"”(ek, C, com)

< negl(k).

Efficient Committing. There exists a polynomial poly such that for all

(pp, ek, msk) & HEC.Setup(1©), x € X, R € R, the running time of com :=
HEC.Commit(pp, x; R) is bounded by |x]| - poly(k).

Efficient Verification (optional). There exists a polynomial poly such
$

that for all (pp,ek,msk) «— HEC.Setup(1®), x € X, R € R, com :=
HEC.Commit(pp,x;R), C € C, = & HEC.EvaIm(ek,C,X,R), COMeya =
HEC.Eval®*(ek, C,com), and z € Z, we have |7| < poly(k) and |comeyal| <
poly(x) and the running time of HEC.Verify(pp, comeyal, 2, 7) is at most poly(k).
We remark that poly does not depend on C.
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Context-Hiding (optional). There exists a PPT simulator HEC.ProofSim

such that for all k € N, (pp, ek, msk) & HEC.Setup(1©), x € X, C € C, R € R,
and com := HEC.Commit(pp, x; R), we have

stat

{r & HEC.Eval™(ek,C,x, R))} = {n’ <& HEC.ProofSim(msk,com, C,C(x)))}

where the probability is only over the randomness used by the algorithms
HEC.Eval'™ and HEC.ProofSim.

Remark 2.1. We can generically convert any HEC scheme to a context-hiding
one by using any statistical CRS-NIZK scheme. Namely, instead of directly using
7 as an output of the inner evaluation algorithm, it outputs a NIZK proof for
the statement that there exists 7w that passes the verification.

Remark 2.2. The following properties immediately follow from the distributional
equivalence of open.

Equivocality. We have

Pr[HEC.Commit(pp, X; R) # HEC.Commit(pp,x; R)] = negl(x)

$

where (pp,ek,msk) <« HEC.Setup(1%), (x,X) € X2 are arbitrary ran-

dom variables that may depend on (pp,ek,msk), R & Dg, and R &
HEC.Open(msk, (X, R), x).

Hiding. We have

{pp, ek, com < HEC.Commit(pp, x)} "R {pp, ek, com’ & HEC.Commit(pp,x’)},

where (pp, ek, msk) <~ HEC.Setup(1%) and (x,x’) € X2 are arbitrary random vari-
ables that may depend on (pp, ek, msk). We say that a scheme is computationally
hiding if the above two distributions are computationally indistinguishable.

Remark 2.3. If we require neither efficient verification nor context-hiding, then
there is a trivial construction of HEC based on any equivocal commitment.
Namely, we can just set comey, = C|jcom and 7 := (x, R). The verification
algorithm can verify them by checking if com is a commitment of x with ran-
domness R and z = C(x) holds. On the other hand, if we require either of
efficient verification or context hiding, then there does not seem to be such a
trivial solution.? This is reminiscent of the similar situation for fully homomor-
phic encryption where a scheme without compactness nor function privacy is
trivial to construct but a scheme with either of them is non-trivial [31].

9 As remarked in Remark 2.1, we can convert the trivial construction to a context-
hiding one additionally assuming a statistical CRS-NIZK for all of NP. Though
this is less interesting than schemes with efficient verification, we do not consider it
a “trivial solution” since the existence of a statistical CRS-NIZK is an additional
assumption to an equivocal commitment.
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2.2 Constructions of HEC

Here, we show that we can construct an HEC scheme based on a non-static falsi-
fiable pairing assumption called the (n, m)-computational Diffie-Hellman expo-
nent ratio (CDHER) assumption [47].

(n, m)-Computational Diffie-Hellman Exponent and Ratio Assumption.
Let BGGen be a PPT algorithm that on input 1% returns a description G =
(G,Gr,p,g,e(-,+)) of symmetric pairing groups where G and G are cyclic groups
of prime order p, g is the generator of G, and e : G x G — G is an efficiently
computable (non-degenerate) bilinear map.

Definition 2.1 ((n, m)-Computational Diffie-Hellman Exponent and
Ratio Assumption) [47]. Let BGGen be a group generator and n := n(k) =
poly(k), m := m(r) = poly(k). We say that the (n, m)-decisional Diffie-Hellman
exponent and ratio (CDHER) assumption holds with respect to BGGen, if for all
PPT adversaries A, we have

Pr [A(G.0) = e(g.9)*"""] = negl(x)

$

where G = (G,Gr,p,g,e(-,-)) & BGGen(1*), s,a,b1,...,by,C1,...Cp Zy,
and

al c; al /b, am‘+1ci//bvc-}
{g }je['rn] s l}ie[n] ’ {g ‘ }le[;;]é#i[fm] ? {g o il €ln),iti!
) J /b e, alc,, /b;
b= 9 }ictn) {g“ i } ) {g i } ,
{9%“}ierm - i€[n],jE€[2m+1] ) i,i' €nl,jElm)]
s sb; } { sa™ bi/bire;r } { sa’ by /by } ) )
g {g iem) V9 Wil eln] igti! g “/e[;];{e[m]

Katsumata et al. showed that the CDHER assumption holds on the generic
group model introduced by Shoup [68].

Construction of HEC Based on CDHER Assumption. We show the fol-
lowing theorem.

Theorem 2.1. If the (n,m)-CDHER assumption holds on a pairing group for
all n = poly(k) and m = poly(k), then there exists an HEC scheme that sup-
ports NC' that satisfies evaluation correctness, distributional equivalence of
open, computational binding for evaluated commitments, efficient committing,
efficient verification, and context-hiding.

The construction is obtained by a tweak to the homomorphic signature scheme
by Katsumata et al. [47] as explained in Sect.1.3. The full description of the
construction and its security proof can be found in the full version.

In the full version, we also show that we can construct a context-hiding HEC
scheme without efficient verification based on the weaker CDH assumption on a
pairing group. Though this is not useful for constructing compact NIZKs as is
done in Sect. 3, this can be used for constructing (non-compact) context-hiding
homomorphic signature scheme as shown in the full version.



Exploring Constructions of Compact NIZKs from Various Assumptions 657

3 Compact CRS-NIZK from HEC

Here, we give a construction of a compact CRS-NIZK scheme based on any non-
compact CRS-NIZK scheme and HEC with efficient verification. If we instantiate
the construction with the HEC given in Sect. 2.2, then the proof size of the
resulting CRS-NIZK scheme is |C|+ poly (k). Moreover, if the relation supported
by the scheme is verifiable in NC*, then the proof size is |w| + poly(x).

3.1 Extractable CRS-NIZK

First, we define extractability for CRS-NIZK, which is needed for our construc-
tion of compact CRS-NIZK scheme. We note that the extractability defined
here is a mild property, and we can convert any CRS-NIZK scheme to the one
with extractability if we additionally assume the existence of PKE as shown in
Lemma3.1.

An extractable CRS-NIZK is a CRS-NIZK with an additional deterministic
algorithm Extract which takes as input a randomness rsetyp used in Setup and a
proof 7, and outputs a witness w that satisfies the following.

Extractability. For all PPT adversary A, we have

crs < Setup(17)
(z,7) < Acrs) | < negl(k).
w Extract(rsetup, 7)

Verify(crs,z, ) = T

Pr (z,w) ¢ R

where 7seryp is the randomness used in Setup to generate crs.
The following lemma is easy to prove. The proof can be found in the full
version.

Lemma 3.1. If there exist CRS-NIZK for all of NP and a CPA-secure PKE
scheme, then there exists CRS-NIZK for all of NP with extractability.

3.2 Construction of Compact CRS-NIZK

Before describing the construction, we prepare some building blocks and nota-
tions.

— Let £ be an NP language defined by a relation R C {0,1}* x {0,1}*. Let
n(k) and m(x) be any fixed polynomials. Let C' be a circuit that computes
the relation R on {0,1}" x {0,1}™, i.e., for (z,w) € {0,1}" x {0,1}"™, we
have C(z,w) =1 if and only if (z,w) € R.

— Let IIske = (SKE.KeyGen, SKE.Enc, SKE.Dec) be a symmetric key encryption
(SKE) scheme with ciphertext space CT and key space {0, 1}¢.

In the following, for z € {0,1}"™ and ct € CT, we define the function

fo.ct(K) := C(x,SKE.Dec(K, ct)).
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— Let ITnec = (HEC.Setup, HEC.Commit, HEC.Open, HEC.Eval™, HEC.Eval®*!,
HEC.Verify) be a HEC scheme with the message space that contains {0,1}*
and randomness space R on which a distribution Dz is defined. We need the
HEC scheme to support a function class containing { fz. ct}ze{0,1}7,ctcc

— Let IIcrsnizk = (Setup, Prove, Verify) be an extractable CRS-NIZK for the
language corresponding to the relation R defined below:

((pp, com, comeyal), (K, R, mec)) € R if and only if the followings are satisfied:
1. K € {0,1}*,
2. HEC.Commit(pp, K; R) = com,
3. HEC.Verify(pp, comeyal, 1, mHec) = T.
We note that extractable CRS-NIZK for all of NP exists assuming (non-
extractable) CRS-NIZK for all of NP and CPA secure PKE as shown in
Lemma 3.1.

The CRS-NIZK II{gsnizx = (Setup’, Prove’, Verify') for £ is described as follows.

Setup’(1%): This algorithm generates crs & Setup(1®) and (pp, ek, msk),<i
HEC.Setup(17). It outputs a common reference string crs’ = (crs, pp, ek).

Prove'(crs’, x,w): This algorithm aborts if R(z,w) = 0. Otherwise it parses
(crs,pp,ek) « crs, picks K & SKE.KeyGen(1%) and R & Dr, com-
putes ct < SKE.Enc(K,w), generates com := HEC.Commit(pp, K;R),
THec < HEC.Eval™(ek, fyct, K, R), cOMeya = HEC.Eval®“(ek, fyct,com),
and TNz < Prove(crs, (pp, com, comeyal), (K, R, THec)), and outputs a proof
= (ct,com,m\HZK).

Verify'(crs’, x,7'): This algorithm parses (crs,pp,ek) <« crs’ and (ct,com,
TNIZK) — T, computes coMey, = HEC.EvaIO“t(ek,fm’ct,com), and outputs
T if Verify(crs, (pp, com, comeyal), Tnizk) = T, and outputs L otherwise.

Correctness. Suppose that (ct,com, mnizk) is an honestly generated proof on
(z,w) € R. Then we have ct s SKE.Enc(K, w) and com = HEC.Commit(pp, K; R)
with some K and R. By the correctness of IIskg, we have f;«(K) = 1,
and by the correctness of ITygc, we have HEC.Verify(pp,comeyal, 1, THEC) =
T where we generate come,, = HEC.EvaIO“t(ek,fz,ct,com) and THEC <
HEC.Eval™ (ek, fu ct, K, R). Since we have ((pp,com,comeal), (K, R, Thec)) € R,
if we generate mnizk < Prove(crs, (pp, com, comeyal), (K, R, THec)), then we have
Verify(crs, (pp, com, comeyar), Tnizk) = T by the correctness of ITcrsnizk-

Security. The security of NIZK' is stated as follows. The proofs can be found in
the full version.

Theorem 3.1 (Soundness). If IIcrsnizk satisfies extractability and HEC sat-
isfies computational binding for evaluated commitment, then Il{genzx Satisfies
computational soundness.
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Theorem 3.2 (Zero-knowledge). If IIcrsnizk satisfies zero-knowledge, HEC
is computationally hiding,'® and SKE is CPA secure, then II{genzk Satisfies
zero-knowledge.

3.3 Instantiations

Here, we discuss that by appropriately instantiating Ilcrsnizk, we can achieve
compact proof size. In particular, we consider instantiating the HEC scheme
with our construction in Sect.2.2. Since our HEC scheme only supports NC!
circuits, we have to ensure that f, . is computable in NC!. For ensuring this,
we use the fact that any efficiently verifiable relation can be verified in NC! at
the cost of making the witness size as large as the size of a circuit that verifies
the relation (e.g., [29]). This is done by considering all values corresponding
to all gates when computing the circuit on input (x,w) to be the new witness.
In addition, we use an SKE scheme whose decryption circuit is in NC! with
additive ciphertext overhead (i.e., the ciphertext length is the message length
plus poly(k)) and the key size £ = k, which exists under the CDH assumption [47].
Then f, « is computable in NC! for every x and ct. In this case, we have that
|ct| < |C|+ poly(k). In order to bound the length of the proof #’, we also bound
|com| and |mnizk|- By the efficient committing property of HEC, |com| and the
size of the circuit computing HEC.Commit is bounded by | K| - poly(x) < poly(k).
Furthermore, by the efficient verification property of HEC, the size of the circuit
computing HEC.Verify is bounded by poly(x). Therefore, the size of the circuit
computing R is bounded by poly(x), which implies that |mnzk| is bounded by
poly(k) as well (even if IIcrsnizk is non-compact). To sum up, we have that the
proof size of Icrsnizk is |C| + poly(k). Moreover, if we only consider a relation
computable in NC! in the first place, then we need not expand the witness, and
the proof size can be further reduced to be |w|+ poly(k). Finally, we remark that
(non-compact) CRS-NIZK for all of NP exists under the CDH assumption on
a pairing group [3,14], which in particular holds under the CDHER assumption.
In summary, we obtain the following corollary.

Corollary 3.1. If the CDHER assumption holds on a pairing group, then there
exists CRS-NIZK for all of NP with proof size |C| 4 poly(k). Moreover, if the
corresponding relation is computable in NC", then the proof size is |w|+ poly(k).

Variant with Sublinear Proof Size. Katsumata et al. [47] showed that their
DP-NIZK achieves sublinear proof size i.e., |w| + |C|/logx + poly(k) if C is
a leveled circuit [11] whose gates are divided into L levels, and all incoming
wires to a gate of level ¢ + 1 come from gates of level i. Exactly the same idea
can be applied to our CRS-NIZK to achieve sublinear proof size. More detailed
explanation can be found in the full version. Namely, we obtain the following
corollary:

10 Recall that the computational hiding (or even statistical hiding) follows from the
distributional equivalence of open.
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Corollary 3.2. If the CDHER assumption holds on a pairing group, then there
exists CRS-NIZK for all NP languages whose corresponding relation is com-
putable by a leveled circuit with proof size |w| + |C|/log x + poly (k).

Variant with UC-Security. We can modify the above scheme to satisfy the UC
security in the non-erasure adaptive setting. Namely, we can show the following
theorem. The proof can be found in the full version.

Theorem 3.3. If the DLIN assumption and the CDHER assumption hold in a
bilinear group, then for any relation R that is computable in NC", there exists
a UC-secure NIZK scheme for R tolerating an adaptive, malicious adversary.

4 Compact DV-NIZK

4.1 Preliminaries

Lemma 4.1 (Implicit in [47]). Let C' be a boolean circuit that computes a rela-
tion R on {0,1}" x {0,1}™, i.e., for (z,w) € {0,1}™ x {0,1}™, we have
C(z,w) = 1 if and only if (z,w) € R, and p be an integer larger than |C|.
Then there exists a deterministic algorithm Expe , and an arithmetic circuit C
on Z, with degree at most 3 such that we have

= [Expg . (w)| = |C(x, )| for all w € {0,1}™.

~ If C(z,w) = 1, then we have C(z, Expo . (w)) =1 mod p.

— For any x € {0,1}", if there does not exist w € {0,1}™ such that C(x,w) =1,
then there does not exist w' € {0,111 such that C(x,w') =1 mod p

Lemma 4.2 ([47). There exists a deterministic polynomial-time algorithm
Coefficient that satisfies the following: for any p € N, arithmetic circuit f
over Z, of degree D, x = (x1,...,%4) € Zf; and o = (01,...,0¢) € Zf),
Coefficient(17, p, f,x, o) outputs (c1,...,cp) € ZZ? such that

D
florZ+x1,...,00Z + x0) = f(21,...,20) +chZj mod p. (1)

j=1

where Z is an indeterminate.

4.2 Construction

Here, we give a generic construction of compact DV-NIZK. Namely, we construct
DV-NIZK with the proof size |C| + poly(x) from any (non-compact) DV-NIZK,
SKE scheme whose decryption circuit is in NC! with additive ciphertext over-
head, and PKE scheme. First, we prepare notations and the building blocks.

— Let £ be an NP language defined by a relation R C {0,1}* x {0,1}*. Let
n(k) and m(x) be any fixed polynomials. Let C' be a circuit that computes
the relation R on {0,1}" x {0,1}™, i.e., for (z,w) € {0,1}" x {0,1}"™, we
have C(z,w) = 1 if and only if (z,w) € R. Let Expg, and C be as defined
in Lemma4.1.
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— Let ITppe = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) be an adaptively
single-key secure IPFE scheme with a prime modulus p > |C/|. Such an IPFE
scheme can be constructed from any PKE scheme [38].

— Let ITskg = (SKE.KeyGen, SKE.Enc, SKE.Dec) be a CPA-secure symmetric
key encryption scheme over a ciphertext space C7 and a key space {0,1}*
with additive ciphertext overhead (i.e., the ciphertext size is the message size
plus poly(x)) whose decryption algorithm is computed in NC'. Especially,
the decryption circuit can be expressed by an arithmetic circuit over Z, of
degree poly(k). We note that such an SKE scheme exists under the CDH
assumption [47].

— For z € {0,1}" and ct € C7, we define the function f, (K) =
C(z,SKE.Dec(K, ct)). Let D be the maximal degree of f, « (as a multivari-
ate polynomial). Since C’s degree is at most 3 and SKE.Dec(-, ct)’s degree is
poly(x), we have D = poly(x) (which especially does not depend on |C/).

— Let ITpynizk = (Setup, Prove, Verify) be DV-NIZK for the language corre-
sponding to the relation R defined below:

((pplPFE{CtIiPFE}iE[Z]vppIIPFEaCtI/PFE)a ({(szffi,Ri)}ie[e]7(017---,CDyR/))) €ER

if and only if the following conditions are satisfied:

1. For all i € [{], K; € {0,1},

2. For all i € [¢], IPFE.Enc(ppipge, (Ki,04); Ri) = Ctippg,
3. IPFE.Enc(ppipgg; (c1,-..,¢p); R') = ctipge.

The DV-NIZK IT}nizx = (Setup’, Prove’, Verify') for £ is described as follows.

Setup/(1%): This algorithm picks s & Zy and generates (crs, ky) &

Setup(17), (ppipre; Mskipre) <  IPFE.Setup(1%,12), (pplppes Mskippg) <
IPFE.Setup(1%,17), skippe <~ IPFE.KeyGen(mskipre, (1,5)), and skjppg <
IPFE.KeyGen(msk|pgg, (8, - ..,s”)). It outputs a common reference string
crs’ := (crs, ppipre, PPipre) and a verifier key &, := (kv, s, skipre, sKiprg)-
Prove’(crs’, z,w): This algorithm aborts if (z,w) ¢ R. Otherwise it parses
(crs, ppipre, PPIppe)  «— crs’, picks K & SKE.KeyGen(1%) and oy &
Z, for i € [f], and generates ctskg < SKE.Enc(K, Expc . (w)) and

(c1y...,¢cp) Coefficjent(lD,p,fx7ctSKE,K = (Ki,...,Ky),(01,...,00)).
Then it generates ctjpgg = IPFE.Enc(ppippg, (Ki,04); R;) for i@ €
[(] (where R; is the randomness used by the encryption algo-
rithm), ctipge = IPFE.Enc(ppipgg; (¢1,-.-,¢p); R’) (where R’ is the

randomness used by the encryption algorithm), and = < Prove
(crs, (PPIpFE; {thPFE}z‘e[eb PPIpFE CtI/PFE>7_({<Ki’ Oi, Ri)}ie[eb (c1,...,¢cp, R)))
and outputs a proof 7’ := (7, ctske, {Ctiprg bie[g, Ctipre)-
Verify’(crs’,k(,,x,i’): This algorithm parses (;rs, PPipFE; PPlpre) <  crs’,
(kv, s,skipre, skipre) < kv, and (7, ctske, {Ctippe tiegs Ctippg) 7, com-
putes 7; <~ |PFE.Dec(ppipre; Ctippes Skipre) for i € [¢] and ¢ < IPFE.Dec
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(PPIpEE> Ctipres SKipre ), and outputs T if we have Verify(crs, (pppres {ctfPFE}iem,
PPipre; Ctipre), ) = T and

fw>CtSKE(T17"'7T€) =14t mod p,

and outputs | otherwise.

Correctness. Suppose that (m,ctske, {Ctippgticjq, Ctippe) 1S an  honestly
generated proof on (z,w) € R. Then it is clear that we have
Verify(crs, (ppipre, {Ctipre bic(e]> PPipres Ctiprg): ™) = 1 by the way of generat-
ing the proof and the correctness of IIpynizk. By the way of generating
({ctfPFE}ie[g],ct{PFE) and correctness of Iliprg, we have r; = K; + 0;5 mod p
for i € [¢(] and t = 3, p ¢’ where r; and ¢ are generated as in the ver-
ification. Since we have fy ctoe(K1 +012Z,..., K¢ +00Z) = 1 + ZjE[D] chj
for an indeterminate Z by the correctness of ITsxg and Lemma4.2, we have
focteee (T15 - -, 70) = 1 4+t by substituting s for Z.

Proof Size. First, we remark that the relation R can be verified by a cir-
cuit whose size is a fixed polynomial in (k, ¢,logp, D) that does not depend on
|C|. Moreover, we have [Expc ,(w)| = |C(z,-)] < |C] for all w € {0,1}™ by
Lemma4.1. Then we have |7| = poly(k, £, logp, D), |ctske| = |C(=, )| + poly(),
|ctiope| = poly(k,logp), and |ctippg| = poly(k,logp, D). By setting ¢ = x and
p = 29 and remarking that D = poly(k), we have |7/| = |C(z,-)| + poly(x) <
|C| + poly(r).

Security. The security of our scheme IT[,zx is stated as follows. The proofs
are similar to the security proof for PP-NIZK by Katsumata et al. [47], and thus
given in the full version.

Theorem 4.1 (Soundness). If Ipynizk satisfies statistical (resp. computa-
tional) soundness and p = kW) then IILynizk satisfies statistical (resp. compu-
tational) soundness.

Theorem 4.2 (Zero-knowledge). If SKE is CPA secure, Iipgg is adaptively
single-key secure, and Ipynizk satisfies zero-knowledge, then ITfynzk Satisfies
zero-knowledge.

Instantiation. The above construction can be instantiated based on the CDH
assumption on a pairing-free group since

— An adaptively single-key secure IPFE scheme exists under any PKE scheme
[38], and there exists a PKE scheme based on the CDH assumption.

— An SKE scheme whose decryption circuit is in NC' with additive ciphertext
overhead exists under the CDH assumption [47].

— DV-NIZK for all of NP exists under the CDH assumption [21,47,63]

Therefore we obtain the following corollary.
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Corollary 4.1. If the CDH assumption holds on a pairing-free group, then there
exists DV-NIZK for all of NP with proof size |C| + poly(k).

Variant with Sublinear Proof Size. Similarly to the case of CRS-NIZK as
discussed in Sect. 3.3, we can make the proof size of the above DV-NIZK sublinear
in |C] if C is a leveled circuit. More detailed explanation can be found in the
full version. Namely, we obtain the following corollary:

Corollary 4.2. Ifthe CDH assumption holds on a pairing-free group, then there
exists DV-NIZK for all NP languages whose corresponding relation is com-
putable by a leveled circuit with proof size |w| + |C|/log x + poly(k).

Variant with Shorter Proof Size for NC' Relations. We can further reduce
the proof size to |w| + poly(x) if the relation to prove is computable in NC!
and we additionally assume ¢-computational Diffie-Hellman inversion (CDHI)
assumption [16,56].

Theorem 4.3. If the (-CDHI assumption holds for all { = poly(k), then there
exists DV-NIZK for all relations for all NP languages whose corresponding rela-
tion is computable in NC* with proof size |w| + poly(k).

The construction and security proofs can be found in the full version.

5 CRS-NIZK with Efficient Prover from Laconic
Function Evaluation

In this section, we present a NIZK proof system where a prover is efficient, that is,
the running time of a prover is smaller than the size of circuit that computes the
relation. We use laconic function evaluation to achieve our NIZK proof system.

Before describing the construction, we prepare some building blocks and
notations.

— Let £ be an NP language defined by a relation R C {0,1}* x {0,1}*. Let
n(k) and m(k) be any fixed polynomials. Let C' be a circuit that computes
the relation R on {0,1}" x {0,1}™, i.e., for (z,w) € {0,1}" x {0,1}™, we
have C(z,w) =1 if and only if (z,w) € R

Let LFE = (LFE.crsGen, LFE.Compress, LFE.Enc, LFE.Dec) be a LFE scheme
whose function class C is the class of all circuits with params = (1*,1%) con-
sisting of the input size k and the depth d of the circuits and contains {C'}

that computes the relation R for NP-complete language.
Let IIcrsnizk = (Setup, Prove, Verify) be a CRS-NIZK for the language corre-

sponding to the relation R defined below:

((z, Ife.crs, digest -, Ife.ct), (w, 7)) € R <= LFE.Enc(Ife.crs, digestc, (z,w); ) = Ife.ct.

The CRS-NIZK II{grsnizx = (Setup’, Prove’, Verify') for £ is described as follows.
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Setup’(1%): This algorithm generates crs < Setup(1®) and Ife.crs <
LFE.crsGen(1", params). It generates digest := LFE.Compress(Ife.crs,C). It
outputs a common reference string crs’ = (crs, Ife.crs, digest~).

Prove’(crs’, , w): This algorithm aborts if R(z,w) = 0. Otherwise it parses (crs,
Ife.crs, digest) «— crs’, generates Ife.ct := LFE.Enc(Ife.crs, digest, (z, w);
r) where r is the randomness for LFE.Enc and myizk il Prove(crs, (z, Ife.crs,
digest, Ife.ct), (w,r)). It outputs a proof 7’ := (Ife.ct, Tnizk)-

Verify'(crs’, x, 7'): This algorithm parses (crs, Ife.crs, digesty) « crs’, (Ifect,
mNizk) < 7', and computes ¢ := Verify(crs, (z, Ife.crs, digest, Ife.ct), mnizk). If
t=_1lor0<& LFE.Dec(Ife.crs, C, Ife.ct), then outputs L. Otherwise, outputs
T.

Completeness. By the completeness of IIcrsnizk, the proof myizk in an hon-
estly generated proof 7’ passes the verification of IIcrsnizk. That is, it holds
that Verify(crs, (z, Ife.crs, digest, Ife.ct), mnizk) = T. By the correctness of LFE,
it holds that 1 = C(z,w) < LFE.Dec(lfe.crs, C, Ife.ct) with probability 1. Thus,
the completeness follows.

Prover Efficiency. First, we remark that the relation R can be verified by a
circuit whose size is |LFE.Enc| since the relation is about the validity of LFE
ciphertexts. The running time of Prove’ is the sum of those of LFE.Enc and
Prove. We defer concrete efficiency analysis until Sect. 5.1 since the running time
depends on instantiations of LFE.Enc and Prove.

Security. The security of the scheme is stated as follows. See the full version for
the proofs.

Theorem 5.1 (Soundness). IIgenzk 1S computationally/statistically sound
if Icrsnizk s computationally/statistically sound, respectively.

Theorem 5.2 (Zero-Knowledge). I1{gonizk i computational zero-knowledge
if Ilcrsnizk 18 zero-knowledge and LFE is adaptively secure.

5.1 Instantiations

We can consider two cases since there are two instantiations of adaptively secure
LFE.

1. (Under sub-exponential security of the LWE assumption with sub-exponential
modulus-to-noise ratio): By the result of [64], it holds that |lfe.crs| =
poly(k, |x|,|w|,d), |digests| = poly(k), |Ife.ct] = poly(k,|z|, |w]|,d), and the
running time of LFE.Enc is poly(k, |z|, |w|,d) where d is the depth of C' since
the input length of C is |z| + |w|. In this case, we use a NIZK whose prover
running time is pon(C’,ﬁ;) where C is a circuit that computes the relation
7~27 which holds for any NIZK. In this case, C just runs LFE.Enc, so it takes
|LFE.Enc| + poly(|LFE.Enc|, k) time to generate mnizk. Thus, the running time
of the prover is poly(k, |z|, |w|, d).
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2. (Under the adaptive LWE assumption with sub-exponential modulus-to-noise
ratio): By the result of [64], it holds that |lfe.crs| = (|z| + |w]|) - poly(x, d),
|digest| = poly(), |Ife.ct| = O(|z| + |w]) - poly(k, d), and the running time of
LFE.Enc is O(|z| + |w]) - poly(k, d) where d is the depth of C' since the input
length of C'is |z|+|w]|. In this case, we use a NIZK whose prover running time
is |C|-poly(). An example of such a NIZK is the NIZK by Groth et al. [43]. By
using the efficiency of Groth et al. NIZK, it takes |LFE.Enc|+|LFE.Enc|-poly(x)
time to generate myzk. Thus, the running time of the prover is O(|z| + |w]) -

poly(r,d) - poly(r) = O(|z| + [w]) - poly(x, d).
Therefore, we obtain the following two corollaries.

Corollary 5.1. If a CRS-NIZK scheme for all of NP exists and the sub-
exponentially secure LWE assumption with sub-exponential modulus-to-noise
ratio holds, then there exists a CRS-NIZK scheme for all of NP whose prover
running time is poly(k, |z, |w]|, d).

Corollary 5.2. If the DLIN assumption in a bilinear group and the adaptive
LWE' assumption with sub-exponential modulus-to-noise ratio hold, then there
exists a CRS-NIZK scheme for all of NP whose prover running time is O(|z| +

|w|)poly(k, d).
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