
Reusable Non-Interactive Secure
Computation

Melissa Chase1, Yevgeniy Dodis2, Yuval Ishai3(B), Daniel Kraschewski4,
Tianren Liu5(B), Rafail Ostrovsky6, and Vinod Vaikuntanathan5

1 Microsoft Research, Redmond, USA
melissac@microsoft.com

2 New York University, New York, USA
dodis@cs.nyu.edu

3 Technion, Haifa, Israel
yuvali@cs.technion.ac.il

4 TNG Technology Consulting GmbH, Unterföhring, Germany
daniel.kraschewski@tngtech.com

5 MIT, Cambridge, USA
{liutr,vinodv}@mit.edu

6 UCLA, Los Angeles, USA
rafail@cs.ucla.edu

Abstract. We consider the problem of Non-Interactive Two-Party
Secure Computation (NISC), where Rachel wishes to publish an encryp-
tion of her input x, in such a way that any other party, who holds an
input y, can send her a single message which conveys to her the value
f(x, y), and nothing more. We demand security against malicious par-
ties. While such protocols are easy to construct using garbled circuits and
general non-interactive zero-knowledge proofs, this approach inherently
makes a non-black-box use of the underlying cryptographic primitives
and is infeasible in practice.

Ishai et al. (Eurocrypt 2011) showed how to construct NISC proto-
cols that only use parallel calls to an ideal oblivious transfer (OT) oracle,
and additionally make only a black-box use of any pseudorandom gen-
erator. Combined with the efficient 2-message OT protocol of Peikert et
al. (Crypto 2008), this leads to a practical approach to NISC that has
been implemented in subsequent works. However, a major limitation of
all known OT-based NISC protocols is that they are subject to selective
failure attacks that allows a malicious sender to entirely compromise the
security of the protocol when the receiver’s first message is reused.

Motivated by the failure of the OT-based approach, we consider the
problem of basing reusable NISC on parallel invocations of a standard
arithmetic generalization of OT known as oblivious linear-function eval-
uation (OLE). We obtain the following results:

– We construct an information-theoretically secure reusable NISC pro-
tocol for arithmetic branching programs and general zero-knowledge
functionalities in the OLE-hybrid model. Our zero-knowledge proto-
col only makes an absolute constant number of OLE calls per gate in
an arithmetic circuit whose satisfiability is being proved. We also get

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 462–488, 2019.
https://doi.org/10.1007/978-3-030-26954-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_15

Reusable Non-Interactive Secure Computation 463

reusable NISC in the OLE-hybrid model for general Boolean circuits
using any one-way function.

– We complement this by a negative result, showing that reusable
NISC is impossible to achieve in the OT-hybrid model. This pro-
vides a formal justification for the need to replace OT by OLE.

– We build a universally composable 2-message reusable OLE proto-
col in the CRS model that can be based on the security of Paillier
encryption and requires only a constant number of modular exponen-
tiations. This provides the first arithmetic analogue of the 2-message
OT protocols of Peikert et al. (Crypto 2008).

– By combining our NISC protocol in the OLE-hybrid model and
the 2-message OLE protocol, we get protocols with new attractive
asymptotic and concrete efficiency features. In particular, we get the
first (designated-verifier) NIZK protocols for NP where following a
statement-independent preprocessing, both proving and verifying are
entirely “non-cryptographic” and involve only a constant computa-
tional overhead. Furthermore, we get the first statistical designated-
verifier NIZK argument for NP under an assumption related to fac-
toring.

1 Introduction

Non-interactive secure computation (NISC) refers to the problem where Rachel
wishes to publish an encryption of her input x, in such a way that any other
party, who holds an input y, can send her a single message which conveys to
her the value f(x, y), and nothing more. In the semi-honest setting, there are
several solutions to this problem including (i) garbled circuits [23,29] combined
with two-message oblivious transfer (OT) protocols (e.g., [2,24,26]) and (ii) fully
homomorphic encryption [9,16,27].

In reality, we care about security against potentially malicious parties and
indeed, we have tools to achieve this level of security. For example, one could
compile these protocols to be secure against malicious parties by using general
non-interactive zero-knowledge (NIZK) proofs in the common reference string
(CRS) model [6]. However, this requires making non-black-box use of the under-
lying cryptographic primitives, and is generally infeasible in practice. A recent
line of work [1,19] has come up with efficient maliciously secure NISC protocols
that make oracle calls to an oblivious transfer primitive. This model is referred
to as the OT-hybrid model, and we henceforth refer to NISC protocols in the
OT-hybrid model succinctly as NISC/OT protocols.

The paradigm of designing protocols in the OT-hybrid model that are either
information-theoretically secure or make use of symmetric cryptographic prim-
itives such as a pseudorandom generator, and plugging in fast implementations
of OT, has paid great dividends in cryptography for several reasons. First, we
have fast OT implementations under standard assumptions. Secondly, OT is self-
reducible, so the cryptographic cost of implementing it can be pushed to an offline
phase. OT can itself also be implemented with information-theoretic security
given correlated randomness. In short, combining efficient NISC/OT protocols

464 M. Chase et al.

with efficient 2-message OT implementations, we can get efficient “public-key”
non-interactive variants of secure computation, as was recently accomplished in
[1,19]. This approach is beneficial even in simpler special cases such as con-
structing (designated-verifier) NIZK. For these cases, and more generally for
functionalities computed by log-depth circuits or polynomial-size branching pro-
grams, such NISC/OT protocols can be made information-theoretically secure
(in particular, there is no need for the pseudorandom generator).

Selective Failure Attacks and (Non-)Reusability. The starting point of this work
is that this rosy picture belies a major defect of all known NISC/OT protocols.
To see this, imagine that Rachel wants to publish a reusable encryption of her
input x, obtain messages from anyone in the world with inputs yi, conveying
to her the value of f(x, yi). In the semi-honest setting, any NISC/OT protocol
is guaranteed to be reusable, in the sense that if we fix Rachel’s OT inputs
and let Sam choose fresh OT inputs in each invocation, security still holds.
However, in all known NISC/OT protocols (e.g., [1,19]), a malicious Sam can
mount a “selective failure attack”, feeding malformed OT messages to Rachel,
checking whether she aborts or not, and using this information to violate both the
secrecy of her input and the correctness of her output. The same holds for the
special case of zero-knowledge functionalities, namely for NIZK/OT protocols
(e.g., [5,20]). Such attacks have been previously considered in other contexts,
such as in the setting of verifiable outsourcing of computation [15], and seem
notoriously difficult to eliminate.

1.1 Our Contribution

We start by showing that the above limitation of OT-based protocols is inherent.
That is, we show:

Theorem 1.1 (Informal). There is no information-theoretic and reusably
secure implementation of NISC/OT for general functions, or even for NC1 func-
tions.

We also prove a similar result for zero-knowledge functionalities, though in a
more restricted “black-box” framework that is still broad enough to capture all
existing NIZK/OT protocols.

Achieving Reusability with OLE. Towards bypassing this negative result, we
make the following key observation: the inherent limitation of OT-based proto-
cols can be overcome if we replace OT by an arithmetic extension of OT known as
oblivious linear function evaluation (OLE). The OLE functionality maps sender
inputs (a, b) and receiver input x to receiver output ax + b, where a, b, x are
taken from some (typically large) field or ring. The high level intuition is that
by making the domain size of the receiver’s selections super-polynomial, we can
effectively eliminate the correlation between the receiver’s OT inputs and the
event of the receiver detecting failure. We note that OLE enjoys many of the

Reusable Non-Interactive Secure Computation 465

useful features of OT, including a self-reducibility property that enables shifting
almost all of the implementation cost to an offline phase.

Our main result shows that this relaxation from OT to OLE is indeed helpful.
We present a general-purpose reusable non-interactive secure computation proto-
col that only makes parallel OLE calls over a large field.1 Here reusability means
that the same receiver OLE inputs xi can be used for polynomially many func-
tion evaluations while still ensuring full simulation-based security. This implies
in particular that even if the sender learns full or partial information about the
receiver’s outputs (such as whether the receiver accepts or rejects), the sender
cannot obtain more influence on the receiver’s outputs than in an ideal function
evaluation. We denote such a reusable NISC protocol by rNISC/OLE.

Theorem 1.2. There exists a statistically secure rNISC/OLE protocol for
(arithmetic or boolean) branching programs and NC1 circuits. Evaluating an
t-node n-variant branching program costs O(nt3) OLE calls. It comes with
an efficient black-box straight-line simulator, the statistical simulation error is
O(nt3)/|F|.

Our rNISC/OLE protocol for branching programs is information-theoretic
and does not rely on any cryptographic assumptions. Its complexity is polyno-
mial in the size of an arithmetic branching program being computed. This is
sufficient to capture arithmetic log-depth (NC1) circuits. In the case of general
polynomial-size circuits, we obtain a similar result, except that we also make use
of a pseudorandom generator.

Theorem 1.3. If one-way functions exist, there exists an rNISC/OLE protocol
for circuits.

In the important special case of zero-knowledge functionalities, where ver-
ification can always be done by a shallow circuit, our rNISC/OLE protocol is
still information-theoretic and only makes a constant number of OLE calls per
gate in an arithmetic circuit whose satisfiability is being proved. Even in the
single-shot case (without a reusability requirement), and even in the special case
of zero-knowledge functionalities, similar NIZK/OLE protocols were not known
prior to our work.

Theorem 1.4. There exists a statistically secure rNIZK/OLE protocol (i.e.,
rNISC for zero-knowledge functionalities), such that proving the satisfiability
of an arithmetic or boolean circuit costs O(1) OLE calls per gate. It comes with
an efficient black-box straight-line simulator, the statistical simulation error is
O(circuit size)/|F|.

We optimize the concrete efficiency of our rNIZK/OLE protocol in the full
version, so that proving knowledge of a satisfying assignment of an arithmetic

1 Alternatively, settling for computational security, one can replace a field by a
“pseudo-field,” namely a ring whose description hides all zero-divisors. A useful
example is the ring ZN for an RSA modulus N with an unknown factorization.

466 M. Chase et al.

circuit costs 7 OLE calls per addition gate and 44 OLE calls per multiplication
gate. (Minimizing this constant is an interesting future research direction that
can be motivated by practical implementations.) We stress that since the pro-
tocol is information-theoretic in the OLE-hybrid model, each OLE involves only
a small number of field operations (without any exponentiations) in the online
phase.

Constructing Reusable OLE. We complement our rNISC/OLE protocol by
proposing an efficient secure implementation of the reusable OLE oracle which
is compatible with our efficiency goals. Concretely, assuming the security of
Paillier’s encryption scheme [25], we construct a universally secure 2-message
reusable OLE protocol in the CRS model (over the ring ZN for an RSA modu-
lus N). The communication cost of the protocol involves a constant number of
group elements and its computational cost is dominated by a constant number
of exponentiations. This protocol provides the first arithmetic analogue of the 2-
message OT protocol of PVW [26], which is commonly used in implementations
of secure two-party computation (in particular, it is used by the non-interactive
ones from [1]). Our efficient OLE protocol is independently motivated by other
applications of OLE in cryptography; see [3,17] and references therein.

Theorem 1.5 (Informal). Under the Paillier assumption, there is a reusable
OLE scheme in the common reference string (CRS) model with a communica-
tion complexity of O(1) group elements, and a computational cost of O(1) group
exponentiations. Moreover, depending on the CRS distribution, the OLE can be
statistically secure against either the sender or the receiver.

Combining our statistical NIZK/OLE with the OLE protocol in the statistical
sender security mode, we get the first statistical NIZK argument for NP under
an assumption related to factoring.

Theorem 1.6 (Informal). Under the Paillier assumption, there exists a sta-
tistical designated-verifier NIZK argument for NP.

On the Efficiency Benefits of Switching to OLE. The switch from OT to OLE
has some unexpected efficiency benefits. Beyond the reusability issue, OT-based
protocols in the malicious security model use a “cut and choose” approach that
has considerable (super-constant) overhead in communication and computation.
While there are effective techniques for amortizing the communication overhead
(cf. [21]), these come at the expense of a super-constant computational overhead
and apply only in the Boolean setting. Other approaches that employ OLE and
apply to the arithmetic setting, such as the ones from [12,14], are inherently
interactive.

The combination of our information-theoretic rNISC/OLE and the Paillier-
based OLE implementation yields NISC and designated-verifier NIZK protocols
with attractive new efficiency features. As discussed above, for general NISC
there was no previous approach that could offer reusable security, even for the

Reusable Non-Interactive Secure Computation 467

case of boolean circuits, without applying general-purpose NIZK on top of a
semi-honest secure NISC protocol.

Even for the special case of zero-knowledge, where many other competing
approaches are known, our approach is quite unique. In particular, we are the
first to construct any kind of (reusable-setup) NIZK protocol where one can push
all of the cryptographic operations to an offline phase; using the self-reducibility
of OLE, we can have an online phase that involves only arithmetic computations
in the “plaintext domain” and its security (given the preprocessed information)
is unconditional. Moreover, the online phase satisfies a strong notion of constant
computational overhead in the sense that both the prover and verifier only need
to perform a constant number of addition and multiplication operations for each
gate of the arithmetic verification circuit, in the same ring ZN over which the
circuit is defined. As additional bonus features, the preprocessing required for
implementing this highly efficient online phase consists only of a constant num-
ber of exponentiations per gate, and its security relies on a conservative, “20th
century” assumption.

In addition, even in the stand-alone (non-reusable) world, our approach has
its benefits. For example, as a corollary of our approach, we show that the
satisfiability of an arithmetic circuit of size s can be proved in zero knowledge
with soundness error O(s)/|F| via O(s) parallel calls to (regular, non-reusable)
OLE over F. We also get an analogous result for NISC where the number of OLE
calls depends polynomially on the arithmetic branching programs size.

1.2 Related Work

We briefly discuss several recent works that are relevant to the asymptotic effi-
ciency features of our protocol. As discussed above, a distinctive efficiency feature
of our rNIZK/OLE protocol for arithmetic verification circuits (more generally,
rNISC/OLE for constant-depth arithmetic circuits) is that, in an offline-online
setting, its online phase is non-cryptographic and has a constant computational
overhead. Moreover, the offline phase only requires a constant number of expo-
nentiations per arithmetic gate.

Bootle et al. [7] construct zero-knowledge protocols for arithmetic verification
circuits with constant computational overhead in the plain model, i.e., without
any offline phase. However, this protocol relies on constant-overhead implemen-
tations of cryptographic primitives (a plausible but non-standard assumption),
it requires multiple rounds of interaction (but can be made non-interactive via
the Fiat-Shamir heuristic) and, most importantly in the context of our work, the
cryptographic work in this protocol cannot be preprocessed. Finally, this proto-
col does not directly apply in the more general setting of secure computation.

Applebaum et al. [3] obtain (again, under plausible but non-standard assump-
tions) secure two-party protocols for evaluating arithmetic circuits that have
constant computational overhead in the plain model. However, these protocols
are inherently interactive (even when restricted to constant-depth circuits) and
are only secure against semi-honest parties.

468 M. Chase et al.

Finally, Chaidos and Couteau [11] construct an alternative Paillier-based
designated-verifier (reusable) NIZK protocol with a constant number of expo-
nentiations per arithmetic gate. The constant from [11] is significantly smaller
than ours and the protocol can be based on more general assumptions. How-
ever, whereas for NIZK there are several other competing approaches, including
succinct and publicly verifiable protocols, our NISC protocol provides the first
reusable solution for NISC that is efficient enough to be implemented. Moreover,
the NIZK protocol from [11] (which is based on Σ-protocols) does not have the
feature of a non-cryptographic online phase that our protocol inherits from the
underlying information-theoretic OLE-based protocol.

There has been recent interest in the goal of constructing reusable NIZK
protocols with different forms of setup from alternative assumptions such as
LWE [10,22,28]. Our work provides a new avenue for constructing such proto-
cols by reducing this goal to the construction of reusable 2-message OLE. The
usefulness of our approach has been demonstrated in the recent work of Boyle
et al. [8], which constructs (bounded) reusable NIZK with a correlated random-
ness setup from the Learning Parity with Noise (LPN) assumption over large
fields. This construction can rely on a simplified honest-verifier variant of our
rNIZK/OLE protocol, as the correlated randomness setup effectively restricts
the verifier to be honest.

There are two main qualitative differences between our work and all of the
recent NIZK-related works mentioned above. First, we obtain non-trivial (posi-
tive and negative) results on NIZK in a natural and well-motivated information-
theoretic setting, whereas all of the above works are inherently cast in a com-
putational setting. This information-theoretic aspect of our positive results is
crucial for obtaining reusable NIZK protocols that have a non-cryptographic
online phase given offline preprocessing. Second, our positive results apply to
NISC, which is more general than NIZK in a useful way. While many differ-
ent techniques for constructing NIZK protocols from different assumptions are
known, including black-box constructions from cryptographically hard groups,
our work provides the first black-box constructions of reusable NISC protocols
of any kind.

2 Overview of the Techniques

In this section we provide a high level overview of the proofs of our main results.

2.1 Impossibility of rNISC/OT

We show several negative results, which highlight the hardness of reusable secure
computation. The first negative result shows that for non-interactive two-party
computation protocols, even perfect security against malicious senders does not
imply reusable security. In particular, previous works that construct NISC/OT
protocols do not immediately imply rNISC/OT.

Reusable Non-Interactive Secure Computation 469

The second negative result shows that OLE is strictly stronger than OT in the
sense that there exists no information-theoretic rNISC/OT protocol for the OLE
functionality with composable security. Third and finally, assuming the existence
of one-way functions, in the OT-hybrid model, we show that there are no general
resettably sound, non-interactive zero-knowledge proofs with black-box simula-
tion. We describe below an outline of the second and third impossibility results.
For the technical details, we refer the reader to the full version.

OT is Not Sufficient for Reusability. The basic intuition behind the weakness
(“non-reusability”) of OT is the following: a malicious sender can learn the
receiver’s choice bits if the receiver uses the same randomness and input in
different protocol runs. In particular, suppose the receiver’s private OT choice
bit has been fixed in a set-up phase. In the first protocol run, a malicious sender
feeds (a, b) to the OT. In the second protocol run, the malicious sender feeds
(a′, b′) to the OT where either a �= a′ or b �= b′ (but not both). If the receiver
output is different in these two protocol runs, the malicious sender can deduce
the receiver’s choice bit.

Moreover, imagine implementing a functionality, such as reusable OLE or
reusable NIZK, in the OT hybrid model. Such an implementation will involve
the receiver calling the OT functionality using a vector of choice bits. Suppose
now that the receiver has different outputs in two protocol runs where the sender
chooses OT-input strings (a,b) and (a′,b′) respectively. The malicious sender
can now modify (a,b) to equal (a′,b′) by a sequence of single-bit modifications.
By observing the receiver’s output when the sender feeds these intermediate
OT-input strings, the malicious sender can always learn the sender’s j-th choice
bit for some j such that (a[j],b[j]) �= (a′[j],b′[j]).

In the OLE-hybrid model, this intuition does not work. Consider a similar
scenario: The receiver uses the same randomness and input in two protocol runs,
let x[i] ∈ F be the receiver’s input in the i-th OLE instance. The malicious sender
feeds (a[i],b[i]) and (a′[i],b′[i]) to the i-th OLE instance in these two protocol
runs respectively. Say the (a[j],b[j]) �= (a′[j],b′[j]) is the only difference between
(a,b) and (a′,b′) and the receiver outputs differently in these two protocol
runs. Given the above information, the malicious sender can only deduce that
x[j] �= −b[j]−b′[j]

a[j]−a′[j] . Such knowledge contains little information if x[j] has large
min entropy.

We now outline how to translate this intuition into concrete impossibility
results for the OLE functionality first, and then the zero-knowledge functionality.
Details can be seen in the full version.

First, we outline the impossibility of a statistically reusable non-interactive
OLE/OT protocol. The intuition behind our impossibility proof relies on a com-
mitment protocol. There is a statistically reusable commitment protocol in the
OLE-hybrid model: The receiver first samples a random x ∈ F as his OLE-input.
To commit si ∈ F, the sender samples random ri ∈ F and feeds (si, ri) to the
OLE oracle, so that the receiver gets OLE-output yi = si · x + ri. To unveil
the i-th commitment, send (si, ri) to the receiver. Such a protocol has statistical

470 M. Chase et al.

reusable security in the OLE-hybrid model. We show that in an OT-based imple-
mentation of the OLE primitive, a corrupted sender can recover the receiver’s
private input x after polynomially many rounds. The corrupted sender repeats
the following so that either he recovers x or he learns more about receiver’s
OT choice bits. The sender samples an honest run in which the sender chooses
(s, r,a,b), then samples (s′, r′,a′,b′) from the same distribution subject to the
condition that (a′,b′) agrees with (a,b) on the known receiver choice bits. The
sender can test whether (s′, r′) and (s, r) are consistent with the same x, i.e.
whether s′x + r′ = sx + r, by testing whether the receiver accepts (s′, r′) as an
unveil message when the sender’s OT-input strings are a,b. If so, the sender
recovers x = − r−r′

s−s′ and thus finish the attack (s �= s′ with high probability
because s is statistically hidden in the receiver’s view). Otherwise, the receiver
would reject (s′, r′) as an unveil message when the sender’s OT-input strings are
a,b, while accept it when the sender’s OT-input strings are a′,b′. The sender
will be able to learn at least one more receiver’s choice bit from such a difference.
At the end of this process, the sender learns all the relevant choice bits of the
receiver, upon which he can sample an (s, r) and (s′, r′) pair that results in the
same commitment sx + r = s′x + r′. This, by the calculation above, allows him
to extract x.

Also in the full version we show that there is no UC secure rNISC/OT proto-
col for general zero-knowledge proof functionality. Suppose such protocol exists.
This means the sender can prove statements x ∈ L just by transforming a cor-
responding witness w into sender’s OT-input strings. By assuming the existence
of one-way functions, we can define the language such that it is easy to sample
a random no instance y /∈ L or to sample a random yes instance x ∈ L together
with a witness w, while it’s computationally hard to distinguish a random yes
instance from a no instance. Now how can a malicious sender (prover) find some
y /∈ L but still convince the receiver to accept y? He just samples a true state-
ment (x,w) and starts off flipping bits in the corresponding OT-input strings,
then checks each time if the receiver still accepts. Of course, the sender only
flips the part of OT-input strings where he does not know the receiver’s choice
bits yet. As soon as the receiver starts rejecting, the malicious prover find out
one more receiver’s choice bit. This process can be repeated until the malicious
prover has learned sufficiently many of the receiver’s choice bits. There are so few
indices where the malicious prover doesn’t know the choice bits—denote these
indexes by U—such that even if the OT-input strings are replaced with random
bits on indexes in U , the receiver will still accept with high probability. Then by
the UC security, if the sender instead samples y /∈ L, generates OT-input strings
using the black-box simulator, and replaces the generated OT-input strings with
random bits on indexes in U , the receiver will also accept with high probability,
breaking soundness. The details of this impossibility result are in the full version.

2.2 Construction of Information-Theoretic rNISC/OLE

Semi-honest NISC/OLE Our rNISC/OLE construction is a complicated object
with many intermediate steps. Let us start with a warm-up question, namely,

Reusable Non-Interactive Secure Computation 471

how to construct NISC with semi-honest security. As a starting point, we present
a construction for the semi-honest model from the work of Ishai and Kushile-
vitz [18]. Then we will outline the main contribution of our work, namely, how
to obtain (reusable) security against malicious parties.

Let x denote the receiver Rachel’s input and let y denote the sender Sam’s
input. We consider arithmetic functionalities. Namely, both x,y are vectors over
a given finite field F. The functionality is computed by an arithmetic branching
program, defined as follows (see [18] for a more formal description). A t-node
arithmetic branching program is specified by affine functions g1,1, g1,2, . . . , gt,t.
The branching program maps input vectors x,y to the determinant of the matrix

G(x,y) Δ=

⎡
⎢⎢⎢⎢⎣

g1,1(x,y) · · · g1,t(x,y)

−1
. . .
.

...
−1 gt,t(x,y)

⎤
⎥⎥⎥⎥⎦

.

Branching programs can efficiently simulate arithmetic formulas and arithmetic
NC1 circuits. For example, the formula x1y1 + x2y2 + x3y3 can be computed by
the branching program

x1y1 + x2y2 + x3y3 = det

⎡
⎢⎢⎣

x1 x2 x3

−1 y1

−1 y2

−1 y3

⎤
⎥⎥⎦ .

The technique for securely reducing a branching program computation to
parallel OLE calls can be viewed as an arithmetic analogue of Yao’s garbled
circuit technique [4,29]. In a nutshell, the construction of the two-party pro-
tocol works as follows: The sender Sam samples two random upper triangular
matrixes R1, R2 with an all-one diagonal. Observe that the matrix R1G(x,y)R2

is a randomized encoding of detG(x,y) since:

– detG(x,y) can be computed from R1G(x,y)R2 because multiplying by R1

and R2 preserves the determinant; and
– the distribution of R1G(x,y)R2 merely depends on detG(x,y) and not on x

and y. (This depends crucially on the structure of G, in particular the fact
that the one-off diagonal of G consists of −1; we refer the reader to [18] for
more details.)

Therefore, if the receiver gets only R1G(x,y)R2, he will learn no information
other than detG(x,y).

Now to construct a semi-honest NISC/OLE protocol, we use the fact that
the OLE functionality allows secure evaluation of affine functions. Therefore,
the receiver chooses x as its input, and the sender feeds the affine function
x �→ R1G(x,y)R2 to the OLE oracle. Let us denote this affine function by G′, i.e.
G′(x) = G′

R1,R2,y(x) := R1G(x,y)R2. Eventually, the receiver gets R1G(x,y)R2,
which leaks detG(x,y) but perfectly hides all other information.

472 M. Chase et al.

Additionally, this NISC/OLE protocol is perfectly secure against malicious
receivers, if the underlying OLE protocol is reusable. Since this is the first time
reusability rears its head, let us explain in a bit more detail why this is the case.
The affine function in question can be thought of as

x �→ R1G(x,y)R2 := v0 +
∑
i∈[n]

xivi

for some vectors v0, . . . ,vn chosen by the sender (as functions of y, R1 and
R2.) Now, it turns out to be easy to create a functionality out of (non-
reusable) OLE where the sender inputs (v0[j],v1[j], . . . ,vn[j]), the receiver
inputs x := (x1, . . . , xn), and the receiver obtains v0[j]+

∑
i∈[n] xivi[j]. That is,

each coordinate of the computation above can be realized using (non-reusable)
OLE. However, using non-reusable OLE to compute the entire output by repeat-
ing this process once per co-ordinate runs into a serious issue when the receiver
Rachel is malicious: she can feed the different instances of OLE with different
values of x. On the other hand, if the underlying OLE functionality is reusable,
it permits the receiver to send a single message x that can be used for multiple
invocations of OLE, ipso facto forcing Rachel to be semi-honest.

However, the protocol is not secure against malicious senders. Indeed, the
sender can choose any affine G′ so that the receiver will output detG′(x). For
security against malicious senders, the sender needs to prove that G′, the affine
function he fed into the OLE satisfies an arithmetic constraint: namely, that the
sender knows two upper triangular matrixes R1, R2 and an input vector y such
that G′(·) ≡ R1G(·,y)R2.

This is the key problem that remains to be solved. We now describe how to
achieve this goal in a number of steps that make this task successively simpler,
eventually reducing everything to reusable OLE.

An Intermediate Primitive: Certified OLE. Certified OLE is a specialized OLE
wherein the sender can prove that the coefficients he chose satisfies some arith-
metic conditions. More precisely, we define certified OLE as a primitive that
allows:

– the receiver to learn the outputs of affine functions, where the inputs are
chosen by the receiver and the coefficients are chosen by the sender;

– the sender to convince the receiver that the sender-chosen coefficients satisfy
arbitrary arithmetic constraints.

We will implement a CertifiedOLE/OLE construction in the reusable world,
whose security is information-theoretic.

An Intermediate Primitive: Replicated OLE. Certified OLE allows the sender to
prove that his coefficients satisfy arbitrary arithmetic constraints. In particular,
the sender can prove an equality constraint, i.e., prove that two of the coefficients
she chose are equal. We isolate this ability into another (weaker) primitive called
replicated OLE. More precisely, we define replicated OLE as a primitive that
allows:

Reusable Non-Interactive Secure Computation 473

– the receiver to learn the outputs of affine functions, where, as before, the
inputs are chosen by the receiver and the coefficients by the sender;

– the sender to convince the receiver that some of the sender-chosen coefficients
are equal.

Replicated OLE is not as powerful as certified OLE, yet it is an important
stepping stone to our eventual construction. In the corresponding section in the
full version, we first construct replicated OLE directly from OLE, then construct
certified OLE from replicated OLE2. For now, let us assume that we already have
reusable replicated OLE, and we will construct (reusable) certified OLE using
replicated OLE as a black box.

To begin with, note that to construct certified OLE, it is sufficient to support
the following atomic operations.

1. Reveal ax + b to the receiver, where a, b ∈ F are coefficients chosen by the
sender, x ∈ F is an input chosen by the receiver, F is a finite field.
In this overview, all coefficients chosen by the sender will be denoted by the
first few letters in the alphabet such as a, b, c and inputs chosen by the receiver
will be denoted by the last few such as x, y, z.

2. Allow the sender to convince the receiver that two coefficients are equal.
3. Allow the sender to convince the receiver that three coefficients a, b, c satisfies

a + b = c.
4. Allow the sender to convince the receiver that three coefficients a, b, c satisfies

ab = c.

The first two atomic operations are already supported by replicated OLE.
We will implement latter two using calls to replicated OLE.

The third atomic operation, i.e., proving a + b = c, is implemented as the
following. The receiver samples an random x ∈ F and uses it as an input to OLE.
The sender samples random a′, b′ ∈ F and sets c′ = a′+b′. The replicated OLE is
used to reveal ax+a′, bx+ b′, cx+ c′ to the receiver. Clearly, the receiver cannot
cheat; no matter which x be picks, he will receive three values, the first two of
which are random and the third is the sum of the first two. How about a cheating
sender? Note that the receiver is convinced if and only if (ax + a′) + (bx + b′) =
(cx+c′). Since x is randomly chosen by the receiver and hidden from the sender,
in case the sender sets a + b �= c (or a′ + b′ �= c′), the receiver can detect this
with overwhelming probability.

The last atomic operation, i.e., proving ab = c, is implemented using a similar
idea. The receiver samples random x, y ∈ F, sets z = xy and uses x, y, z as
inputs to an OLE. Note that a malicious receiver might choose z �= xy and the
sender can never detect this. Therefore, we have to design a mechanism that
can “enforce” honest receiver behavior. More precisely, our mechanism should
prevent the receiver from learning any information in case he chooses z �= xy. We
will explain the details of this mechanism later; for now, let us simply assume
the receiver chooses z = xy.
2 The actual roadmap is somewhat different, and will be gradually revealed in this

overview. An impatient reader is referred to Fig. 1 at the end of the overview.

474 M. Chase et al.

The sender samples random a′, b′, c′ ∈ F, sets d = ab′, e = a′b and samples
d′, e′ ∈ F such that d′ + e′ = a′b′ − c′. The replicated OLE is used to reveal
ax + a′, by + b′, cz + c′, dx + d′, ey + e′ to the receiver. The receiver is convinced
if and only if (ax+ a′)(by + b′)− (cz + c′)− (dx+ d′)− (ey + e′) = 0. Notice that
if both sender and receiver are honest, then

(ax + a′)(by + b′) − (cz + c′) = a′by + b′ax + a′b′ − c′ = (dx + d′) + (ey + e′).

In case the sender behaves maliciously, the receiver will detect this with over-
whelming probability. To prove this, we consider (ax+a′)(by + b′)− (cxy + c′)−
(dx + d′) − (ey + e′) as a polynomial in variables x and y, which equals

(ab − c)xy + (ab′ − d)x + (a′b − e)y + a′b′ − c′ − d′ − e′,

This turns out to be a non-zero polynomial as long as the sender deviates from
the protocol. Thus by sampling random x, y ∈ F, the receiver will detect cheating
with overwhelming probability.

Now, there are two outstanding issues we have not handled: (1) in the descrip-
tion above, we assumed that the receiver chooses x, y, z such that z = xy hon-
estly; and (2) we haven’t yet shown how to construct replicated OLE, starting
from (reusable) OLE. We will both of these in turn.

An Intermediate Primitive: Half-Replicated OLE. Our replicated OLE is con-
structed on top of what we call half-replicated OLE. In each OLE call, the sender
chooses two coefficients. We separate them, and call them the multiplicative coef-
ficient and the additive coefficient respectively. Half-replicated OLE only sup-
ports two operations:

1. Reveal ax + b to the receiver, where x ∈ F is an input chosen by the receiver,
a ∈ F is a multiplicative coefficient chosen by the sender, b ∈ F is an additive
coefficient chosen by the sender (as before); and

2. Allow the sender to convince the receiver that two multiplicative coefficients
are equal.

Half-replicated OLE is even weaker than replicated OLE. We first construct
replicated OLE on top of half-replicated OLE by the following protocol: The
receiver samples random y and sets it as an input to OLE. For each receiver-
chosen input x, the receiver let x′ = xy and sets it as an extra input to OLE.
Notice that as before, the sender cannot detect whether the receiver generated
the tuple (x, y, x′) honestly. Therefore, we have to design a mechanism that can
enforce x′ = xy. Again, analogous to the construction of certified OLE from
replicated OLE, we will defer this to later; for now, just assume the receiver
chooses x′ = xy honestly.

The sender uses the replicated OLE to reveal ax + b and ax′ + by to the
receiver. (More precisely, the sender does this by sampling a random c and
revealing ax+b, ax′+c, by−c to the receiver.) The receiver then uses the identity
(ax + b) · y = (ax′ + c) + (by − c) to check whether the sender behaves honestly.

Reusable Non-Interactive Secure Computation 475

Using a completely analogous argument as before, we can show that the receiver
catches a cheating sender with high probability. (For this argument to work, we
need the fact that the sender uses the same a in the first two invocations, but
we already have this by the half-replicated guarantee since a is a multiplicative
coefficient.)

At this point, there are three outstanding issues we have not handled: (1)
in the construction of certified OLE from replicated OLE, we assumed that the
receiver chooses x, y, z such that z = xy honestly; (2) in the construction of
replicated OLE from half-replicated OLE, we assumed that the receiver chooses
x, y, x′ such that x′ = xy honestly; and (3) we haven’t yet shown how to construct
half-replicated OLE, starting from (reusable) OLE. (1) and (3) are issues we
already saw, but we just added (2) to our list. (In fact, as the reader might
observe, (1) and (2) are really the same issue.)

We will first solve issues (1) and (2) by introducing the primitive of half-
replicated OLE allowing CDS operations.

An Intermediate Primitive: Half-Replicated OLE Allowing CDS Operations. Our
replicated OLE and certified OLE require the receiver to choose three inputs
x, y, z such that z = xy. Unfortunately, there was no means for the sender to
detect whether the receiver behaves honestly, and we left this problem open.

We design a mechanism called conditional disclosure of secrets (CDS), in
which the sender can disclose a message to the receiver if and only if the receiver-
chosen inputs satisfy some arithmetic constraints. For example, in certified OLE,
the sender can encrypt his messages using one-time pad, and disclose the pad if
and only if the receiver chooses z = xy honestly.

We now show how to design a half-replicated OLE allowing CDS operations
starting from any half-replicated OLE.

As a first try, in order to disclose secret a ∈ F to the receiver if and only if
z = xy, the sender samples random b, c ∈ F and uses the half-replicated OLE to
disclose

[
y z
1 x

] [
b
c

]
+

[
a
0

]

to the receiver. (More precisely, this means the sender should also sample random
b′, c′ that b′ + c′ = a, and use the half-replicated OLE to disclose by + b′, cz +
c′, cx + b.) If z = xy is satisfied, then the receiver can recover a as

(1,−y) ·
([

y z
1 x

] [
b
c

]
+

[
a
0

])
= a.

It is not hard to verify security against malicious receiver. When z �= xy, the
matrix [y z

1 x] is invertible, in which case all information about a is erased by
one-time padding.

But this protocol is not secure against a malicious sender: As the protocol is
built on top of half-replicated OLE, the sender can deviate from the protocol by
changing the additive coefficients. In particular, the sender can choose a non-zero

476 M. Chase et al.

d ∈ F and uses the half-replicated OLE to disclose [y z
1 x][b

c] + [a
d] to the receiver.

Then the receiver will recover (1,−y) · ([y z
1 x][b

c] + [a
d]) = a − dy, which is a

function of the receiver’s inputs, and constitutes a deviation from the protocol.
An easy way to solve this problem is to rely on the fact that the (honest)

receiver samples y ∈ F uniformly at random, and we can use this ability to
fight against the malicious sender.3 The sender samples a random a′ as an extra
coefficient and uses the above insecure CDS protocol (with freshly sampled b′

and c′ in the place of b and c) to disclose a′ if z = xy. If the sender is malicious,
then the receiver gets a′ − d′y.

Finally, the receiver can now detect malicious behaviour, by running a third
subprotocol: sample a random w ∈ F as an extra input and ask the sender to
disclose aw + a′ using OLE.

In summary, there are three sub-protocols going on here:

1. In sub-protocol 1, the sender inputs (an arbitrary) a and uniformly random
b, c and the receiver inputs x, y, z and the receiver gets

[y z
1 x][b

c] + [a
0]

2. In sub-protocol 2, the sender inputs uniformly random a′, b′, c′ and the
receiver inputs (the same) x, y, z and the receiver gets

[y z
1 x][b′

c′] + [a′
0]

3. In sub-protocol 3, the sender inputs a and a′, the receiver inputs a random
w and gets a′ + wa.

The receiver has no cheating room here. The reusability of the underlying
(half-replicated) OLE forces her to use the same x, y and z in the subprotocols.
Furthermore, if she chooses z �= xy, she gets nothing, as we argued above. Finally,
choosing w arbitrarily in the third subprotocol doesn’t help her either due to
the randomness of a′.

As for a cheating sender, the details of the argument are somewhat more
complex but it is very similar in spirit to earlier arguments of the same flavor.

In turn, it is not hard to see that fortifying half-replicated OLE with CDS
operations (as we just did) solves both problems (1) and (2) discussed above.
It remains to solve (3), namely constructing a (reusable) half-replicated OLE
protocol starting from any reusable OLE.

Revisiting Half-Replicated OLE. The last missing piece is to construct half-
replicated OLE in the (reusable) OLE-hybrid model. The key idea of the con-
struction is the following.

The receiver samples a random w ∈ F and sets w as an input to the OLE.
For each multiplicative coefficient a ∈ F, the sender has to sample a random
a′ ∈ F and use OLE to disclose aw + a′. This OLE call works essentially as
3 In the main body, we do not need to assume that y is random. Moreover, we will

consider more general arithmetic conditions beyond z = xy.

Reusable Non-Interactive Secure Computation 477

Fig. 1. Primitives (and supported operations – described below in text – in the
bracket). We remark that “Replicated OLE” in this figure is only defined and used
in the overview. In the main body, our proof follows the other path, directly construct-
ing “Replicated Certified OLE”.

a commitment of a. For each half-replicated OLE input x ∈ F, the receiver
translates it into two OLE inputs y, z ∈ F such that y is sampled uniformly at
random, and z = x − wy.

Each half-replicated OLE call ax + b can be translated into three OLE calls
using the equation

ax + b = a(wy + x − wy) + b

= awy + az + b

= y(aw + c) − (cy + d) + (az + b + d),
(1)

where c, d are arbitrary numbers. More precisely, the sender should sample ran-
dom c, d ∈ F and use the OLE to disclose aw + c, cy + d and az + b + d to the
receiver. Finally, the receiver computes the right output using Eq. 1.

We refer to this half-replicated OLE protocol as Πα- 1
2repOLE

in the main body.
The correctness of such a half-replicated OLE protocol is straight-forward. In this
protocol, the sender can cheat without being detected by the receiver. Instead,
when the sender deviates from the protocol, the receiver will output a random
number. Moreover, as the randomness comes from w and y which are sampled
by the receiver, the receiver’s output is statistically close to the uniform distri-
bution, even conditioned on the sender’s view and x. Therefore it is not hard to
embed another mechanism which detects any malicious sender behaviour with
overwhelming probability. We leave the details to the full version.

Roadmap. We defer the detailed presentation of the results in this subsection to
the full version. There, starting from reusable OLE, we define and construct a

478 M. Chase et al.

sequence of increasingly more powerful primitives, the last of which eventually
supports all of the following operations.

1. Reveal ax + b to the receiver, where x ∈ F is an input chosen by the receiver,
a ∈ F is a multiplicative coefficient chosen by the sender, b ∈ F is an additive
coefficient chosen by the sender.

2. Convince the receiver that two multiplicative coefficients are equal.
3. Convince the receiver that two coefficients are equal.
4. Disclose a message to the receiver if receiver-chosen inputs x, y, z satisfies

z = xy.
5. Convince the receiver that three multiplicative coefficients a, b, c satisfies a +

b = c.
6. Convince the receiver that three multiplicative coefficients a, b, c satisfies

ab = c.

Such a primitive readily implies reusable NIZK and reusable NISC. The interme-
diate primitives are sorted in Fig. 1 by dependence. Each of them only supports
a subset of the operations.

A Corollary: Single-Shot (Non-reusable) NISC/OLE and NIZK/OLE. As a
corollary of our techniques, we get a (non-reusable) NISC/OLE protocol with
interesting features. In particular, we get a single-shot NISC/OLE proto-
col where the number of OLE calls depends polynomially on the arithmetic
branching program size, and the simulation is statistical with an error of
poly(branching program size)/|F|. In the special case of the zero-knowledge func-
tionality, we get a single-shot NIZK/OLE protocol which (a) uses O(1) (non-
reusable) OLE calls per gate of the verification circuit; and (b) is entirely non-
cryptographic in its online phase.

These results are proved by combining the following two facts:

– Our reusable NISC/OLE protocol immediately implies a single-shot NISC
protocol in the (non-reusable) vector-OLE hybrid model. Vector OLE is a
generalization of OLE where the receiver inputs a scalar x ∈ F and a number
k ∈ N, the sender gets k and inputs a pair of vectors (a,b) ∈ (Fk)2, and
the receiver obtains ax + b ∈ F

k. Vector OLE can be viewed as reusable
OLE under the constraints that the number of OLE calls is known in the
choice phase, and all OLE calls are non-adaptive. Our simulator also fits this
(non-reusable) protocol.

– The result of Döttling, Kraschewski and Müller-Quade [13] shows an efficient
equivalence between OLE and vector OLE. In particular, they show a constant
rate statistical vector-OLE protocol in OLE hybrid model. It also comes with
an efficient straight-line simulator achieving O(communication)/|F| statistical
soundness error.

Putting these together, we get our single-shot NISC/OLE and NIZK/OLE
protocols.

Reusable Non-Interactive Secure Computation 479

2.3 Paillier-Based 2-Message OLE Protocol

In this subsection, we provide a quick overview of our Paillier-based instantiation
of reusable OLE. For more details, we refer the reader to Sect. 4.

Consider a simplified OLE scheme as follows: The CRS will contain an ElGa-
mal public key (b,B0 = bsk0) in a Paillier group. (Paillier allows us to get additive
homomorphism, while ElGamal means that the receiver will be able to construct
related key pairs.) On input α, the receiver forms another related public key
b,B1, such that it knows the secret key corresponding to (b,B1B

α
0). It sends this

key pair to the sender. On input z0, z1, the sender encrypts z0 under (b,B0) and
z1 under (b,B1), using the same randomness, and sends both ciphertexts to the
receiver. The receiver can then combine the ciphertexts to obtain an encryption
of αz0 + z1 under (b,B1B

α
0), which it can decrypt.

Recall that in a Paillier group for N = (2p′ + 1)(2q′ + 1) all elements can be
decomposed into a component in a subgroup of order 2p′q′, and a component
of order N , call them G2p′q′ and GN ; the ElGamal encryption will encode the
message in the order N component. Intuitively, we can argue the scheme is secure
against a corrupt receiver as follows: First the CRS is indistinguishable from one
where b is only in G2p′q′ , but B0 has a component in GN . Then suppose that
the receiver chooses B1 whose GN component is (1 + N)α (and note that a
simulator can recover this α using the factorization of N). The GN components
of the resulting ciphertexts can be shown information theoretically to depend
only on z0α + z1, while the G2p′q′ components are independent of z0, z1.4

Security against a corrupt sender is more challenging, because it could send
invalid ciphertexts (i.e., ciphertexts in which decryption produces an element not
in GN). In particular, an adversarial sender could form a pair of ciphertexts that
decrypt correctly under a specific α and incorrectly otherwise, and thus perform
a selective failure attack. To prevent this, we need a way for the receiver to
identify bad ciphertext pairs that can’t be predicted based on α. Suppose the
receiver runs the scheme twice, once with a random input γ, and once with input
2α−γ, while the sender uses inputs z0, w for random w in the first instance and
z0, z1 − w in the second; combining the results of the two schemes would allow
the receiver to decrypt z0γ+w+z0(α−γ)+z1−w = z0α+z1. This would prevent
the selective failure attack: we argue that (under appropriate, indistinguishable
CRS) B1 information theoretically hides γ, so the probability that the resulting
linear combination of two invalid ciphertexts decrypts correctly is negligible.5

Of course, we must ensure that the malicious sender uses the same z0 in both
instances; thus we require that all the ciphertexts are related, using the same
randomness.

4 This is because the first component of the ciphertext, br contains no information
about r mod N .

5 There is a minor subtlety here, where because G2p′q′ has an order 2 subgroup an
extra component in this subgroup might not be detected; to prevent this, we actu-
ally square all the elements during decryption to eliminate this subgroup, and then
decrypt the final result divided by 2.

480 M. Chase et al.

3 Preliminaries

We consider sender-receiver functions that take inputs from a sender Sam and a
receiver Rachel and deliver the output to Rachel. Two simple but useful exam-
ples for such functions are OT and OLE. In this work, we consider the reusable
extension of such sender-receiver functions, allowing Sam to invoke the function
on polynomially many inputs, where Rachel’s input is fixed. In each such invo-
cation, Rachel obtains a separate output. We will sometimes use an r-prefix (as
in rOT, rOLE, or rNISC) to stress that we consider the reusable variant.

3.1 Sender-Receiver Functions and Reusable Two-Party
Computation

In this section we give a generic definition of reusable non-interactive secure
computation (rNISC). Our complete rNISC construction for arbitrary functions
is quite complex. To make it as modular as possible, we define intermediate
functionalities, namely rNISC for arithmetic circuits (see the full version) and
linear functions (see Sect. 3.2).

Notation 1 (Sender-receiver functions). A sender-receiver function is spec-
ified by three sets Rin, Sin, Rout and a mapping f : Rin × Sin → Rout. The intu-
ition is that we have two parties: a receiver Rachel and a sender Sam. Rachel
chooses an input x ∈ Rin, Sam chooses an input y ∈ Sin, and Rachel learns the
corresponding output z := f(x, y) ∈ Rout.

Fig. 2. Generic ideal functionality for reusable non-interactive secure computation.

Reusable Non-Interactive Secure Computation 481

We emphasize that it is not enforced that the receiver’s input x is fixed
before the sender chooses an input y for a corresponding send phase. Neither
do we forbid that the receiver provides an input (sid′, x) after having learned
an output (sid, z, i), as long as sid �= sid′. Our main application just provides a
setting where all receiver inputs are chosen before the sender takes any action,
but this is not required for the security proofs of our protocols.

The ideal functionality for reusable NISC tailored to arithmetic circuit eval-
uation is formally defined in the full version.

3.2 Reusable Oblivious Linear Function Evaluation

We aim at an OLE-based implementation of F (Φ)
rNISC for arbitrary arithmetic cir-

cuits Φ over a given ring R, where the ring size |R| is determined by a statistical
security parameter. More particularly, the security parameter is log |R|. How-
ever, we will need to restrict ourself to circuits Φ that are given as collections of
formulas (i.e., the underlying graph G is a forest).

The primitive we take for granted lets Rachel pick an input x ∈ R and then
Sam send his tuples (a, b) ∈ R × R, such that she learns the corresponding
OLE-outputs a · x + b. In particular, Sam can send several tuples (a, b) for the
same receiver input x. In other words, the ideal functionality for oblivious linear
function evaluation with reusable receiver input is another special instance of
the functionality F (F)

rNISC from Fig. 2, namely with Sin = R×R, Rin = Rout = R,
and f : Rin × Sin → Rout, (x, (a, b)) �→ a · x + b (Fig. 3).

Fig. 3. Ideal functionality for reusable oblivious linear function evaluation over a ring R.

482 M. Chase et al.

4 A Reusable OLE Construction Based on Paillier

In this section, we show a reusable OLE construction ΠrOLE based on the Paillier
assumption. Our construction proceeds as follows.

– CRSSetup(1λ): Sample primes p′, q′ of the appropriate length for security
parameter k such that p = 2p′ + 1, q = 2q′ + 1 are also primes. Let N = pq,
h = N + 1 and T = 2λN2. All operations will be in ZN2 unless otherwise
specified. Sample w′,W ′

0 ← Z
∗
N2 and let w = (w′)2N ,W0 = (W ′

0)
2Nh.

Output crs = (N,h,w,W0, T).
– CRSDualSetup(1λ): Sample N,h,w, T the same way as in CRSSetup(1λ). Sam-

ple W ′
0 ← Z

∗
N2 and let W0 = (W ′

0)
2N .

Output crs = (N,h,w,W0, T).
– ReceiverRequest(crs, x): Parse crs = (N,h,w,W0, T). Sample sk1, sk2, x1 ←

[T], let x2 := x − x1. Send W1 = wsk1W−x1
0 and W2 = wsk2W−x2

0 to the
sender. Output state (sk1, sk2, x1, x2).

– SenderResponse(crs, (W1,W2), a, b): Parse crs = (N,h,w,W0, T). Sample
r ← [T], b1 ← ZN . Let b2 := b − b1. Send v = wr, V0 = W0

rha, V1 = W1
rhb1

and V2 = W2
rhb2 to the receiver.

– ReceiverReceive(crs, (v, V0, V1, V2), (sk1, sk2, x1, x2)): Compute Z1 = V0
x1

V1/vsk1 and Z2 = V0
x2V1/vsk2 . If it is not the case that Z2

1 and Z2
2 are

of the form 1 + z1N and 1 + z2N for some z1, z2 ∈ ZN , then output ⊥.
Otherwise output z = (z1 + z2)/2.

We first show correctness when both parties are honest. Then the response
is computed as follows, for i ∈ {0, 1}

Zi = V0
xiVi/vski (from ReceiverReceive)

= (W0
rha)xiW r

i hbi/(wr)ski (from SenderResponse)

= (W0
xiWi/wski)rhaxi+bi

= (wski/wski)rhaxi+bi (from ReceiverRequest)

= haxi+bi .

Note that (Zi)2 = h2(axi+bi) = 1 + 2(axi + bi)N . So the zi = 2(axi + bi) and the
receiver will output z = (z1 + z2)/2 = a(x1 + x2) + (b1 + b2) = ax + b mod N .

Theorem 4.1. ΠrOLE is a UC-secure realization of the reusable OLE function-
ality FrOLE over the ring ZN . Moreover, the statistical simulation error against
malicious receiver is negligible when the CRS is generated by CRSSetup; the sta-
tistical simulation error against malicious sender is negligible when the CRS is
generated by CRSDualSetup.

4.1 Indistinguishability of CRS

Lemma 4.2. The CRS generated from CRSDualSetup is indistinguishable from
the CRS generated by CRSSetup as long as the decisional composite residuosity
assumption (DCRA) holds.

Reusable Non-Interactive Secure Computation 483

Proof. Let N,h,w, T be generated as in CRSSetup, and W ′
0 be sampled uniformly

from Z
∗
N2 . By DCRA, W ′

0 and (W ′
0)

N are indistinguishable even given N,h,w, T .
Therefore, (W ′

0)
2 and (W ′

0)
2N are indistinguishable, and (W ′

0)
2h and (W ′

0)
2Nh

are also indistinguishable. Moreover, (W ′
0)

2 equals (W ′
0)

2h in distribution as
h = hN+1 = (h

N+1
2)2 is also a quadratic residue.

In a nutshell,
[

W0 = (W ′
0)

2N

︸ ︷︷ ︸
generated by CRSDualSetup

]
≈C

[
W0 = (W ′

0)
2
]

d
=

[
W0 = (W ′

0)
2h

︸ ︷︷ ︸
a random quadratic residue

]
≈C

[
W0 = (W ′

0)
2Nh

︸ ︷︷ ︸
generated by CRSSetup

]
.

The CRS distributions produced by CRSSetup and CRSDualSetup are indis-
tinguishable. Thus the statistical UC-security against malicious sender in dual
mode implies the computational version of the same security in primal mode; and
vice versa, the statistical UC-security against malicious receiver in primal mode
implies the computational version of the same security in dual mode. Moreover,
the computational UC-security would be preserved if the CRS is sampled from
any other computationally indistinguishable distribution.

4.2 Statistical Security Against Malicious Receiver

Let G4p′q′ be the subgroup of Z∗
N2 consisting of elements of the form w = (w′)N

for w′ ∈ Z
∗
N2 . G4p′q′ is isomorphic to Z

∗
N and Zp′ ×Z2 ×Zq′ ×Z2. Consider the

following simulator S.

– CRS is generated as in CRSSetup, but stores the factorization of N .
– When the adversary sends (w,W1,W2), the simulator proceeds as follows:

Use the factorization of N to compute U0, U1, U2 ∈ G4p′q′ and x̂1, x̂2 ∈ ZN

such that W0 = U0h, W1 = U1h
−x̂1 and W2 = U2h

−x̂2 . Send x̂1 + x̂2 to F .
– When receive z from F : Sample random r ← Z2p′q′ , s0, s1 ← ZN , and com-

pute

v = wr,

V0 = Ur
0 hs0 ,

V1 = Ur
1 hs1 ,

V2 = Ur
2 hz−s0(x̂1+x̂2)−s1 .

Send (v, V0, V1, V2) to A.

Lemma 4.3. The environment’s view in the real world is statistically close to
its view when interacting with simulator S and functionality F as defined above.

Proof. The sender samples r ← [T] in the real game. Let r′ be its mod-2p′q′

component and r′′ be its mod-N component. Since T/2p′q′N is exponential in
the security parameter, the joint distribution of (r′, r′′) is statistically close to
uniform distribution over Z2p′q′ ×ZN . In the real game, the sender will response

484 M. Chase et al.

v = wr = wr′
,

V0 = W0
rha = Ur

0 hr+a = Ur′
0 hr′′+a,

V1 = W1
rhb1 = Ur

1 h−rx̂1+b1 = Ur′
1 h−r′′x̂1+b1 ,

V2 = W2
rhb2 = Ur

2 h−rx̂2+b2 = Ur′
2 h−r′′x̂2+b2 .

Now we will argue that the environment’s view here is identical to its view
when interacting with simulator S and functionality F . Set s0 := r′′ + a and
s1 := −r′′x̂1 + b1. Then (s0, s1) is uniformly random in ZN × ZN due to the
(uniform) randomness of r′′ and b1. The resulting (v, V0, V1, V2) is as follows:

v = wr′
,

V0 = Ur′
0 hr′′+a = Ur′

0 hs0 ,

V1 = Ur′
1 h−r′′x̂1+b1 = Ur′

1 hs1 ,

V2 = Ur′
2 h−r′′x̂2+b2 = Ur′

2 h−r′′x̂1+b−b1 = Ur′
2 h−r′′(x̂1+x̂2)+b−s1

= Ur′
2 h(a−s0)(x̂1+x̂2)+b−s1 = Ur′

2 hz−s0(x̂1+x̂2)−s1

for z := a(x̂1 + x̂2) + b. Finally, note that this is exactly the distribution that
would be produced by the simulator.

4.3 Statistical Security Against Malicious Sender in Dual Mode

The group Z
∗
N2 is isomorphic to ZN × (Z2)2 ×Zp′q′ . Thus it can be decomposed

into the following three groups. Let GN be the subgroup of Z∗
N2 expended by h,

which is isomorphic to ZN . Let G4 be the subgroup of Z∗
N2 consisting of elements

of the form x = x′p′q′N for x′ ∈ Z
∗
N2 , which is isomorphic to Z2×Z2. Let Gp′q′ be

the subgroup of Z∗
N2 consisting of elements of the form x = x′2N for x′ ∈ Z

∗
N2 ,

which is isomorphic to Zp′q′ . For every element x ∈ Z
∗
N2 , there exists an unique

decomposition (a, b, c) ∈ Gp′q′ × G4 × ZN such that x = ab(1 + cN).
Consider the following simulator S.

– To generate the CRS, the simulator generates N,h,w, T as in CRSDualSetup.
It then sample random sk0 ← Z

∗
p′q′ , let W0 = wsk0 , and outputs crs =

(N,h,w,W0, T).
– The simulator generates W1,W2 as follows: sample random sk ′

1, sk
′
2 ← Zp′q′

and send W1 = wsk ′
1 and W2 = wsk ′

2 .
– When the adversary responses (v, V0, V1, V2), proceed as follows: Compute

C0 = V0/vsk0 , C1 = V1/vsk ′
1 , and C2 = V2/vsk ′

2 . If it is not the case that
C2

0 , C2
1 , and C2

2 are of the form 1 + c0N , 1 + c1N and 1 + c2N for some
c0, c1, c2 ∈ ZN , then send ⊥ to F . Otherwise send c0/2 and (c1 + c2)/2 to F .

Lemma 4.4. The environment’s view when interacting with simulator S and F
as defined above, is statistically close to its view in the real game when the CRS
is generated by CRSDualSetup.

Reusable Non-Interactive Secure Computation 485

Proof. The CRS produced by the simulator S is statistically close to the CRS
produced by CRSDualSetup. CRSDualSetup generates W0 as a fresh sample from
uniform distribution over Gp′q′ . When w is a generator of Gp′q′ , which happens
with overwhelming probability 1 − 1

p′ − 1
q′ , the simulator will also sample W0

uniformly from Gp′q′ .
We consider a variation of the real game where the receiver samples

(sk1, sk2, x1) from Zp′q′ × Zp′q′ In the real game, the receiver will sends
W1 = wsk1W−x1

0 = wsk1−sk0x1 and W2 = wsk2W−x2
0 = wsk2−sk0x2 . Let

sk ′
1 := sk1 − sk0x1 mod p′q′, sk ′

2 := sk2 − sk0x2 mod p′q′, then (sk ′
1, sk

′
2, x1)

is statistically close to the uniform distribution over Zp′q′ × Zp′q′ × [T], and the
receiver will send W1 = wsk ′

1 and W2 = wsk ′
2 , which is the same as what the

simulator S will send.
Finally, the environment responses the receiver with message (v, V0, V1, V2).

We show how the receiver’s behavior is simulated with negligible statistical error.
The simulator defines intermediate variables C0 = V0/vsk0 , C1 = V1/vsk ′

1 , C2 =
V2/vsk ′

2 . The intermediate variables used by the receiver can be expressed as

Zi = V xi
0 Vi/vski = V xi

0 Vi/vsk0xi+sk ′
i = (C0)xiCi.

The receiver in the real game will abort unless both (Z1)2 and (Z2)2 lay inside
GN . We decompose (C0)2, (C1)2, (C2)2 into their components in Gp′q′ , G4, GN .
Let D0,D1,D2 ∈ Gp′q′ , c0, c1, c2 ∈ ZN be such that (Ci)2 = Di(1 + ciN), note
that squaring erases the component in G4.

In the case when D0 = D1 = D2 = 1, the receiver will compute (Z1)2 =
1 + (c0x1 + c1)N and (Z2)2 = 1 + (c0x2 + c2)N , then output

z = (z1 + z2)/2 =
c0x1 + c1 + c0x2 + c2

2
= c0x + (c1 + c2)/2.

In the ideal world, the simulator will feed c0 and (c1 + c2)/2 to the functionality
F , and the functionality will produce the same output.

In the case when at least one of D0,D1,D2 is not the identity element,
the simulator S will output ⊥. We show the receiver will also abort with over-
whelming probability. W.l.o.g. assume (D0,D1) �= (1, 1), the receiver will abort
if (Z1)2 /∈ GN where

(Z1)2 = (C0)2xiC1 = (D0)x1D1h
c0x1+c1 .

This condition is satisfied with overwhelming probability as x1 is uniformly ran-
dom in [T].

Acknowledgements. Y. Dodis was supported in part by gifts from VMware Labs,
Facebook and Google, and NSF grants 1314568, 1619158, 1815546. Y. Ishai was sup-
ported by ERC Project NTSC (742754), ISF grant 1709/14, NSF-BSF grant 2015782,
and a grant from the Ministry of Science and Technology, Israel and Department of
Science and Technology, Government of India. D. Kraschewski Supported by the Euro-
pean Union’s Tenth Framework Programme (FP10/2010-2016) under grant agreement

486 M. Chase et al.

no. 259426 - ERC Cryptography and Complexity. Work mostly done while at the Tech-
nion. T. Liu was supported in part by NSF Grants CNS-1350619, CNS-1414119 and
CNS-1718161, an MIT-IBM grant and a DARPA Young Faculty Award. R. Ostrovsky
was supported by NSF grant 1619348, BSF grant 2015782, DARPA SafeWare subcon-
tract to Galois Inc., DARPA SPAWAR contract N66001-15-C-4065, JP Morgan Faculty
Research Award, OKAWA Foundation Research Award, IBM Faculty Research Award,
Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research
Award, and Lockheed-Martin Corporation Research Award. The views expressed are
those of the authors and do not reflect position of the Department of Defense or the
U.S. Government. V. Vaikuntanathan was supported in part by NSF Grants CNS-
1350619, CNS-1414119 and CNS-1718161, an MIT-IBM grant and a DARPA Young
Faculty Award.

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 22

2. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 8

3. Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 223–254. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 8

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. SIAM
J. Comput. 43(2), 905–929 (2014)

5. Bellare, M., Micali, S., Ostrovsky, R.: The (true) complexity of statistical zero
knowledge. In: Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, Baltimore, Maryland, USA, 13–17 May 1990 (1990)

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988
(1988)

7. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 336–365.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 12

8. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018 (2018)

9. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October 2011 (2011)

10. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D.: Fiat-Shamir from simpler assumptions. Cryptology ePrint Archive, Report
2018/1004 (2018)

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-319-70700-6_12

Reusable Non-Interactive Secure Computation 487

11. Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-
knowledge proofs of knowledge. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018, Part III. LNCS, vol. 10822, pp. 193–221. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 7

12. Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: efficient
actively secure two-party computation from oblivious linear function evaluation.
In: CCS 2017 (2017)

13. Döttling, N., Kraschewski, D., Müller-Quade, J.: Statistically secure linear-rate
dimension extension for oblivious affine function evaluation. In: Smith, A. (ed.)
ICITS 2012. LNCS, vol. 7412, pp. 111–128. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32284-6 7

14. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: STOC 2014 (2014)

15. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, 31 May–2 June 2009 (2009)

17. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 22

18. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 22

19. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 23

20. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

21. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D.A. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

22. Kim, S., Wu, D.J.: Multi-theorem preprocessing NIZKs from lattices. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 733–765.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 25

23. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

24. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the
Twelfth Annual Symposium on Discrete Algorithms, Washington, DC, USA, 7–9
January 2001 (2001)

25. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-642-32284-6_7
https://doi.org/10.1007/978-3-642-32284-6_7
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-319-96881-0_25
https://doi.org/10.1007/3-540-48910-X_16

488 M. Chase et al.

26. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

27. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. In: DeMillo, R.A., Dobkin, D.P., Jones, A.K., Lipton, R.J. (eds.) Founda-
tions of Secure Computation (1978)

28. Rothblum, R.D., Sealfon, A., Sotiraki, K.: Towards non-interactive zero-knowledge
for NP from LWE. IACR Cryptology ePrint Archive 2018, 240 (2018)

29. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: Pro-
ceedings of FOCS 1986 (1986)

https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

	Reusable Non-Interactive Secure Computation
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Overview of the Techniques
	2.1 Impossibility of rNISC/OT
	2.2 Construction of Information-Theoretic rNISC/OLE
	2.3 Paillier-Based 2-Message OLE Protocol

	3 Preliminaries
	3.1 Sender-Receiver Functions and Reusable Two-Party Computation
	3.2 Reusable Oblivious Linear Function Evaluation

	4 A Reusable OLE Construction Based on Paillier
	4.1 Indistinguishability of CRS
	4.2 Statistical Security Against Malicious Receiver
	4.3 Statistical Security Against Malicious Sender in Dual Mode

	References

