
Alexandra Boldyreva
Daniele Micciancio (Eds.)

LN
CS

 1
16

94

39th Annual International Cryptology Conference
Santa Barbara, CA, USA, August 18–22, 2019
Proceedings, Part III

Advances in Cryptology –
CRYPTO 2019

Lecture Notes in Computer Science 11694

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Alexandra Boldyreva • Daniele Micciancio (Eds.)

Advances in Cryptology –

CRYPTO 2019
39th Annual International Cryptology Conference
Santa Barbara, CA, USA, August 18–22, 2019
Proceedings, Part III

123

Editors
Alexandra Boldyreva
Georgia Institute of Technology
Atlanta, GA, USA

Daniele Micciancio
University of California at San Diego
La Jolla, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-26953-1 ISBN 978-3-030-26954-8 (eBook)
https://doi.org/10.1007/978-3-030-26954-8

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-26954-8

Preface

The 39th International Cryptology Conference (Crypto 2019) was held at the
University of California, Santa Barbara, California, USA, during August 18–22, 2019.
It was sponsored by the International Association for Cryptologic Research (IACR). As
in the previous year, a number of workshops took place on the days (August 17 and
August 18, 2019) immediately before the conference. This year, the list of affiliated
events included a Workshop on Attacks in Cryptography organized by Juraj Somor-
ovsky (Ruhr University Bochum); a Blockchain Workshop organized by Rafael Pass
(Cornell Tech) and Elaine Shi (Cornell); a Workshop on Advanced Cryptography
Standardization organized by Daniel Benarroch (QEDIT) and Tancrède Lepoint
(Google); a workshop on New Roads to Cryptopia organized by Amit Sahai (UCLA);
a Privacy Preserving Machine Learning Workshop organized by Gilad Asharov
(JP Morgan AI Research), Rafail Ostrovsky (UCLA) and Antigoni Polychroniadou
(JP Morgan AI Research); and the Mathcrypt Workshop organized by Kristin Lauter
(Microsoft Research), Yongsoo Song (Microsoft Research) and Jung Hee Cheon
(Seoul National University).

Crypto continues to grow, year after year, and Crypto 2019 was no exception. The
conference set new records for both submissions and publications, with a whopping
378 papers submitted for consideration. It took a Program Committee (PC) of 51
cryptography experts working with 333 external reviewers for over two months to
select the 81 papers which were accepted for the conference.

As usual, papers were reviewed in the double-blind fashion, with each paper
assigned to three PC members. Initially, papers received independent reviews, without
any communication between PC members. After the initial review stage, authors were
given the opportunity to comment on all available preliminary reviews. Finally, the PC
discussed each submission, taking all reviews and author comments into account, and
selecting the list of papers to be included in the conference program. PC members were
limited to two submissions, and their submissions were held to higher standards. The
two Program Chairs were not allowed to submit papers.

The PC recognized three papers and their authors for standing out amongst the rest.
“Cryptanalysis of OCB2: Attacks on Authenticity and Confidentiality”, by Akiko
Inoue, Tetsu Iwata, Kazuhiko Minematsu and Bertram Poettering was voted Best Paper
of the conference. Additionally, the papers “Quantum cryptanalysis in the RAM model:
Claw-finding attacks on SIKE” by Samuel Jaques and John M. Schanck, and “Fully
Secure Attribute-Based Encryption for t-CNF from LWE” by Rotem Tsabary, were
voted Best Papers Authored Exclusively By Young Researchers.

Beside the technical presentations, Crypto 2019 featured a Rump session, and two
invited talks by Jonathan Katz from University of Maryland, and Helen Nissenbaum
from Cornell Tech.

We would like to express our sincere gratitude to all the reviewers for volunteering
their time and knowledge in order to select a great program for 2019. Additionally, we
are very appreciative of the following individuals and organizations for helping make
Crypto 2019 a success:

– Muthu Venkitasubramaniam (University of Rochester) - Crypto 2019 General Chair
– Carmit Hazay (Bar-Ilan University) - Workshop Chair
– Jonathan Katz (University of Maryland) - Invited Speaker
– Helen Nissenbaum (Cornell Tech) - Invited Speaker
– Shai Halevi - Author of the IACR Web Submission and Review System
– Anna Kramer and her colleagues at Springer
– Whitney Morris and UCSB Conference Services

We would also like to say thank you to our numerous sponsors, the workshop
organizers, everyone who submitted papers, the session chairs, and the presenters.
Lastly, a big thanks to everyone who attended the conference at UCSB.

August 2019 Alexandra Boldyreva
Daniele Micciancio

vi Preface

CRYPTO 2019

The 39th International Cryptology Conference

University of California, Santa Barbara, CA, USA
August 18–22, 2019

Sponsored by the International Association for Cryptologic Research

General Chair

Muthu Venkitasubramaniam University of Rochester, USA

Program Chairs

Alexandra Boldyreva Georgia Institute of Technology, USA
Daniele Micciancio University of California at San Diego, USA

Program Committee

Manuel Barbosa INESC TEC, University of Porto, Portugal
Zvika Brakerski Weizmann Institute of Science, Israel
Mark Bun Simons Institute, Boston University, USA
Ran Canetti Tel Aviv University, Israel, and Boston University,

USA
Dario Catalano University of Catania, Italy
Alessandro Chiesa UC Berkeley, USA
Sherman S. M. Chow Chinese University of Hong Kong, SAR China
Kai-Min Chung Academia Sinica, Taiwan
Jean-Sebastien Coron Luxembourg University, Luxembourg
Jean Paul Degabriele TU Darmstadt, Germany
Nico Döttling Cispa Helmholtz Center (i.G.), Germany
Orr Dunkelman University of Haifa, Israel
Rosario Gennaro City College, CUNY, USA
Tim Güneysu Ruhr University Bochum, DFKI, Germany
Felix Günther UC San Diego, USA
Siyao Guo NYU Shanghai, China
Sean Hallgren Pennsylvania State University, USA
Carmit Hazay Bar-Ilan University, Israel
Susan Hohenberger Johns Hopkins University, USA
Sorina Ionica Université de Picardie, France
Bhavana Kanukurthi Indian Institute of Science, India
Vladimir Kolesnikov Georgia Institute of Technology, USA

Anja Lehmann IBM Research Zurich, Switzerland
Vadim Lyubashevsky IBM Research Zurich, Switzerland
Ilya Mironov Google
Michael Naehrig Microsoft Research
Svetla Nikova KU Leuven, Belgium
Ryo Nishimaki NTT Secure Platform Labs, Japan
Omer Paneth MIT, USA
Charalampos Papamanthou University of Maryland, USA
Chris Peikert University of Michigan, USA
Giuseppe Persiano University of Salerno, Italy
Christophe Petit University of Birmingham, UK
Thomas Peyrin Nanyang Technological University, Singapore
Benny Pinkas Bar Ilan University, Israel
Bertram Poettering Royal Holloway, University of London, UK
Mariana Raykova Yale University, USA
Silas Richelson UC Riverside, USA
Adeline Roux-Langlois University Rennes, CNRS, IRISA, France
Peter Scholl Aarhus University, Denmark
Dominique Schröder Friedrich-Alexander-Universität, Germany
Thomas Shrimpton University of Florida, USA
Damien Stehlé ENS Lyon, France
Björn Tackmann IBM Research Zurich, Switzerland
Keisuke Tanaka Tokyo Institute of Technology, Japan
Eran Tromer Tel Aviv University, Israel, and Columbia University,

USA
Daniele Venturi Sapienza, University of Rome, Italy
Xiao Wang MIT, Boston University, USA
Xiaoyun Wang Tsinghua University, China
Bogdan Warinschi University of Bristol, UK
Mor Weiss IDC Herzliya, Israel

Additional Reviewers

Ittai Abraham
Shweta Agrawal
Gorjan Alagic
Navid Alamati
Younes Talibi Alaoui
Martin Albrecht
Joel Alwen
Prabhanjan Ananth
Elena Andreeva
Benny Applebaum
Marcel Armour
Gal Arnon

Vivek Arte
Gilad Asharov
Tomer Ashur
Nuttapong Attrapadung
Benedikt Auerbach
Roberto Avanzi
Saikrishna

Badrinarayanan
Josep Balasch
Foteini Baldimtsi
Marshall Ball
Achiya Bar-On

Paulo S. L. M. Barreto
James Bartusek
Carsten Baum
Gabrielle Beck
Amos Beimel
Sonia Belaid
Fabrice Benhamouda
Pauline Bert
Rishabh Bhadauria
Olivier Blazy
Jeremiah Blocki
Jonathan Bootle

viii CRYPTO 2019

Cecilia Boschini
Katharina Boudgoust
Florian Bourse
Elette Boyle
Jacqueline Brendel
Anne Broadbent
Wouter Castryck
Andrea Cerulli
Yilei Chen
Nai-Hui Chia
Ilaria Chillotti
Arka Rai Choudhuri
Michele Ciampi
Benoit Cogliati
Ran Cohen
Sandro Coretti
Craig Costello
Geoffroy Couteau
Jan Czajkowski
Dana Dachaman-Soled
Wei Dai
Anders Dalskov
Hannah Davis
Akshay Degwekar
Ioannis Demertzis
Patrick Derbez
David Derler
Itai Dinur
Mario Di Raimondo
Benjamin Dowling
Minxin Du
Léo Ducas
Yfke Dulek
Francois Dupressoir
Frédéric Dupuis
Stefan Dziembowski
Gautier Eberhart
Christoph Egger
Maria Eichlseder
Daniel Escudero
Antonio Faonio
Franz Aguirre Farro
Pooya Farshim
Omar Fawzi
Katharina Fech
Ben Fisch

Marc Fischlin
Emmanuel Fouotsa
Danilo Francati
Daniele Friolo
Ariel Gabizon
Tommaso Gagliardoni
Steven Galbraith
Chaya Ganesh
Lydia Garms
Romain Gay
Ran Gelles
Adela Georgescu
David Gerault
Essam Ghadafi
Satrajit Ghosh
Federico Giacon
Aarushi Goel
Junqing Gong
Alonso Gonzalez
Rishab Goyal
Vipul Goyal
Nicola Greco
Daniel Grosse
Zichen Gui
Tim Güneysu
Chethan Kamath Hosdurg
Mohammad Hajiabadi
Lucjan Hanzlik
Patrick Harasser
Carmit Hazay
Julia Hesse
Minki Hhan
Kuan-Yi Ho
Justin Holmgren
Akinori Hosoyamada
Patrick Hough
James Howe
Pavel Hubácek
Shih-Han Hung
Kathrin Hövelmanns
Takanori Isobe
Mitsugu Iwamoto
Malika Izabachène
Joseph Jaeger
Christian Janson
Dirmanto Jap

Stas Jarecki
Zhengzhong Jin
Charanjit Jutla
Guillaume Kaim
Mustafa Kairallah
Yael Kalai
Chethan Kamath
Marc Kaplan
Shuichi Katsumata
Shinagawa Kazumasa
Mojtaba Khalili
Dmitry Khovratovich
Ryo Kikuchi
Sam Kim
Elena Kirshanova
Fuyuki Kitagawa
Susumu Kiyoshima
Karen Klein
Michael Klooss
Kamil Kluczniak
Markulf Kohlweiss
Ilan Komargodski
Venkata Koppula
Evgenios Kornaropoulos
Takeshi Koshiba
Luke Kowalczyk
Stephan Krenn
Mukul Kulkarni
Ranjit Kumaresan
Gijs Van Laer
Russell W. F. Lai
Thalia Laing
Changmin Lee
Eysa Lee
Moon Sung Lee
Tancrède Lepoint
Jyun-Jie Liao
Han-Hsuan Lin
Huijia (Rachel) Lin
Helger Lipmaa
Qipeng Liu
Tianren Liu
Alex Lombardi
Patrick Longa
Julian Loss
Atul Luykx

CRYPTO 2019 ix

Julio López
Fermi Ma
Jack P. K. Ma
Bernardo Magri
Mohammad Mahmoody
Christian Majenz
Hemanta Maji
Giulio Malavolta
Mary Maller
Nathan Manohar
Peter Manohar
Daniel Masny
Takahiro Matsuda
Alexander May
Sogol Mazaheri
Jeremias Mechler
Simon-Philipp Merz
Peihan Miao
Romy Minko
Takaaki Mizuki
Amir Moradi
Kirill Morozov
Travis Morrison
Nicky Mouha
Tamer Mour
Pratyay Mukherjee
Jörn Müller-Quade
Kartik Nayak
Gregory Neven
Ka-Lok Ng
Ruth Ng
Ngoc Khanh Nguyen
Ventzislav Nikov
Ariel Nof
Sai Lakshmi Bhavana

Obbattu
Maciej Obremski
Tobias Oder
Sabine Oechsner
Wakaha Ogata
Miyako Ohkubo
Cristina Onete
Claudio Orlandi
Emmanuela Orsini
Carles Padro
Jiaxin Pan

Lorenz Panny
Dimitris Papadopoulos
Anat Paskin-Cherniavsky
Christopher Patton
Alice Pellet-Mary
Zack Pepin
Jeroen Pijnenburg
Oxana Poburinnaya
Antigoni Polychroniadou
Bart Preneel
Ben Pring
Emmanuel Prouff
Chen Qian
Luowen Qian
Willy Quach
Srinivasan Raghuraman
Adrián Ranea
Divya Ravi
Vincent Rijmen
Peter Rindal
Felix Rohrbach
Razvan Rosie
Dragos Rotaru
Ron Rothblum
Arnab Roy
Paul Rösler
Luisa Siniscalchi
Mohamed Sabt
Rajeev Anand Sahu
Cyprien de Saint Guilhem
Kazuo Sakiyama
Pratik Sarkar
Pascal Sasdrich
Alessandra Scafuro
Falk Schellenberg
Thomas Schneider
Tobias Schneider
Jacob Schuldt
Gregor Seiler
Sruthi Sekar
Karn Seth
Yannick Seurin
Aria Shahverdi
Abhishek Shetty
Sina Shiehian
Javier Silva

Siang Meng Sim
Mark Simkin
Luisa Siniscalchi
Fang Song
Pratik Soni
Katerina Sotiraki
Nicholas Spooner
Caleb Springer
Akshayaram Srinivasan
François-Xavier Standaert
Douglas Stebila
Damien Stehlé
Ron Steinfeld
Noah

Stephens-Davidowitz
Christoph Striecks
Patrick Struck
Banik Subhadeep
Gelo Noel Tabia
Stefano Tessaro
Sri Aravinda Krishnan

Thyagarajan
Mehdi Tibouchi
Elmar W. Tischhauser
Yosuke Todo
Junichi Tomida
Patrick Towa
Monika Trimoska
Itay Tsabary
Rotem Tsabary
Sulamithe Tsakou
Ida Tucker
Dominique Unruh
Bogdan Ursu
Vinod Vaikuntanathan
Kerem Varici
Prashant Vasudevan
Muthu

Venkitasubramaniam
Fernando Virdia
Madars Virza
Ivan Visconti
Satyanarayana Vusirikala
Riad Wahby
Adrian Waller
Alexandre Wallet

x CRYPTO 2019

Michael Walter
Haoyang Wang
Jiafan Wang
Meiqin Wang
Xiuhua Wang
Yuyu Wang
Gaven Watson
Hoeteck Wee
Weiqiang Wen

Harry W. H. Wong
Tim Wood
Joanne Woodage
Huangting Wu
Keita Xagawa
Shota Yamada
Takashi Yamakawa
Avishay Yanai
Kenji Yasunaga

Kevin Yeo
Eylon Yogev
Yu Yu
Mark Zhandry
Jiapeng Zhang
Yupeng Zhang
Yongjun Zhao
Yu Zheng

Sponsors

CRYPTO 2019 xi

xii CRYPTO 2019

Contents – Part III

Trapdoor Functions

Trapdoor Hash Functions and Their Applications . 3
Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta,
Tamer Mour, and Rafail Ostrovsky

CCA Security and Trapdoor Functions
via Key-Dependent-Message Security . 33

Fuyuki Kitagawa, Takahiro Matsuda, and Keisuke Tanaka

Zero Knowledge I

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 67
Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa,
and Yuval Ishai

Non-Uniformly Sound Certificates with Applications to Concurrent
Zero-Knowledge . 98

Cody Freitag, Ilan Komargodski, and Rafael Pass

On Round Optimal Statistical Zero Knowledge Arguments. 128
Nir Bitansky and Omer Paneth

Signatures and Messaging

It Wasn’t Me! Repudiability and Claimability of Ring Signatures 159
Sunoo Park and Adam Sealfon

Two-Party ECDSA from Hash Proof Systems and Efficient Instantiations . . . 191
Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie,
Federico Savasta, and Ida Tucker

Asymmetric Message Franking: Content Moderation for Metadata-Private
End-to-End Encryption . 222

Nirvan Tyagi, Paul Grubbs, Julia Len, Ian Miers,
and Thomas Ristenpart

Obfuscation

Statistical Zeroizing Attack: Cryptanalysis of Candidates of BP Obfuscation
over GGH15 Multilinear Map. 253

Jung Hee Cheon, Wonhee Cho, Minki Hhan, Jiseung Kim,
and Changmin Lee

Indistinguishability Obfuscation Without Multilinear Maps:
New Paradigms via Low Degree Weak Pseudorandomness
and Security Amplification . 284

Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt,
and Amit Sahai

Watermarking

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs. . . . 335
Sam Kim and David J. Wu

Watermarking Public-Key Cryptographic Primitives 367
Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters,
and David J. Wu

Secure Computation

SpOT-Light: Lightweight Private Set Intersection from Sparse
OT Extension . 401

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai

Universally Composable Secure Computation with Corrupted Tokens 432
Nishanth Chandran, Wutichai Chongchitmate, Rafail Ostrovsky,
and Ivan Visconti

Reusable Non-Interactive Secure Computation . 462
Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski,
Tianren Liu, Rafail Ostrovsky, and Vinod Vaikuntanathan

Efficient Pseudorandom Correlation Generators: Silent OT Extension
and More . 489

Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl,
and Peter Scholl

Various Topics

Adaptively Secure and Succinct Functional Encryption:
Improving Security and Efficiency, Simultaneously 521

Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka,
and Takashi Yamakawa

Non-interactive Non-malleability from Quantum Supremacy 552
Yael Tauman Kalai and Dakshita Khurana

Cryptographic Sensing . 583
Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai

xiv Contents – Part III

Public-Key Cryptography in the Fine-Grained Setting 605
Rio LaVigne, Andrea Lincoln, and Virginia Vassilevska Williams

Zero Knowledge II

Exploring Constructions of Compact NIZKs from Various Assumptions 639
Shuichi Katsumata, Ryo Nishimaki, Shota Yamada,
and Takashi Yamakawa

New Constructions of Reusable Designated-Verifier NIZKs 670
Alex Lombardi, Willy Quach, Ron D. Rothblum, Daniel Wichs,
and David J. Wu

Scalable Zero Knowledge with No Trusted Setup . 701
Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation. . . . 733
Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou,
and Dawn Song

Key Exchange and Broadcast Encryption

Highly Efficient Key Exchange Protocols with Optimal Tightness 767
Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen,
Håkon Jacobsen, and Tibor Jager

Strong Asymmetric PAKE Based on Trapdoor CKEM. 798
Tatiana Bradley, Stanislaw Jarecki, and Jiayu Xu

Broadcast and Trace with Ne Ciphertext Size from Standard Assumptions . . . 826
Rishab Goyal, Willy Quach, Brent Waters, and Daniel Wichs

Author Index . 857

Contents – Part III xv

Trapdoor Functions

Trapdoor Hash Functions and Their
Applications

Nico Döttling1, Sanjam Garg2, Yuval Ishai3, Giulio Malavolta4(B),
Tamer Mour5(B), and Rafail Ostrovsky6

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
doettling@cispa.saarland

2 UC Berkeley, Berkeley, CA, USA
sanjamg@berkeley.edu
3 Technion, Haifa, Israel

yuvali@cs.technion.ac.il
4 Carengie Mellon University, Pittsburgh, PA, USA

giulio.malavolta@hotmail.it
5 Weizmann Institute of Science, Rehovot, Israel

tamer@weizmann.ac.il
6 UCLA, Los Angeles, CA, USA

rafail@cs.ucla.edu

Abstract. We introduce a new primitive, called trapdoor hash functions
(TDH), which are hash functions H : {0, 1}n → {0, 1}λ with additional
trapdoor function-like properties. Specifically, given an index i ∈ [n],
TDHs allow for sampling an encoding key ek (that hides i) along with a
corresponding trapdoor. Furthermore, given H(x), a hint value E(ek, x),
and the trapdoor corresponding to ek, the ith bit of x can be efficiently
recovered. In this setting, one of our main questions is: How small can
the hint value E(ek, x) be? We obtain constructions where the hint is
only one bit long based on DDH, QR, DCR, or LWE.

This primitive opens a floodgate of applications for low-
communication secure computation. We mainly focus on two-message
protocols between a receiver and a sender, with private inputs x and y,
resp., where the receiver should learn f(x, y). We wish to optimize the
(download) rate of such protocols, namely the asymptotic ratio between
the size of the output and the sender’s message. Using TDHs, we obtain:
1. The first protocols for (two-message) rate-1 string OT based on

DDH, QR, or LWE. This has several useful consequences, such as:
(a) The first constructions of PIR with communication cost poly-

logarithmic in the database size based on DDH or QR. These
protocols are in fact rate-1 when considering block PIR.

(b) The first constructions of a semi-compact homomorphic encryp-
tion scheme for branching programs, where the encrypted output
grows only with the program length, based on DDH or QR.

G. Malavolta—Part of the work done while at Friedrich-Alexander-Universität
Erlangen-Nürnberg.
T. Mour—Part of the work done while at Technion.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 3–32, 2019.
https://doi.org/10.1007/978-3-030-26954-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_1

4 N. Döttling et al.

(c) The first constructions of lossy trapdoor functions with input to
output ratio approaching 1 based on DDH, QR or LWE.

(d) The first constant-rate LWE-based construction of a 2-message
“statistically sender-private” OT protocol in the plain model.

2. The first rate-1 protocols (under any assumption) for n parallel OTs
and matrix-vector products from DDH, QR or LWE.

We further consider the setting where f evaluates a RAM program y
with running time T � |x| on x. We obtain the first protocols with com-
munication sublinear in the size of x, namely T · √|x| or T · 3

√|x|, based
on DDH or, resp., pairings (and correlated-input secure hash functions).

1 Introduction

Seminal results from the 1980s [31,55] showed that it is possible for a group of
mutually distrustful parties to compute a joint function on their private inputs
without revealing anything more than the output of the computation. These
foundational results were seen as providing the first theoretical proofs of concept.
However, significant theoretical and practical advances over the years provide
support for the idea that perhaps secure computation can be as practical and
ubiquitous as public-key cryptography.

In the quest to make secure computation efficient, realizing communica-
tion efficient secure computation protocols has emerged as a central theme of
research. Moreover, secure computation protocols with large communication cost
can often be prohibitive in practice. Consequently, substantial effort has been
put towards realizing communication efficient protocols. Nonetheless, our under-
standing of communication efficient secure computation protocols remains sig-
nificantly limited. Specifically, known protocols for circuits with communication
independent of the circuit size are only known using fully homomorphic encryp-
tion (FHE) [27] and can only be based on variants of LWE. In the two-party case,
the communication complexity of such protocols is comparable to the length of
the shorter input plus the length of the output. For simpler functions that can be
represented by log-depth circuits or polynomial-size branching programs, similar
protocols were recently constructed from other assumptions such as DDH [9] or
a circular-secure flavor of DCR [23]. Here the communication is comparable to
the total length of both inputs plus the length of the output.

The above state of affairs leaves several types of gaps between secure and
insecure communication complexity.1 First, even when applying the best known
FHE schemes, there is a constant-factor gap for functions whose output length
is comparable to (or longer than) the length of the shorter input.2 Second, the
communication gap can be even bigger when considering restricted interaction.
1 It seems plausible that these gaps can be closed using indistinguishability obfuscation

[25]. However, the focus of this work is on constructions that can be based on more
traditional assumptions.

2 A simple “hybrid FHE” technique [28] can generically convert any FHE scheme into
one whose encrypted (long) input is roughly as long as the input. However, no such
generic technique is known for compressing the encrypted output.

Trapdoor Hash Functions and Their Applications 5

For instance, when one input is much shorter than the other, FHE cannot be
used to get communication-efficient 2-message protocols where the party holding
the long input sends the first message. Finally, and most importantly for this
work, under standard assumptions other than LWE, the gaps between secure and
insecure communication are much bigger, especially when considering functions
with unbalanced input sizes.

To illustrate the current gaps, consider the fundamental problem of private
information retrieval (PIR) [17,44] over m-bit records, where a client wants to
privately learn the ith record of a server’s database that consists of n records of
length m each. Here, a protocol that achieves near-optimal communication from
the server to the client (i.e., roughly m bits) is only known under DCR [18,45].
For the case of retrieving m different 1-bit records, the situation is even worse.
In the best known protocol, the gap between the server’s message length and
the output length is a big multiplicative constant [33]. Finally, even for the case
m = 1, obtaining polylog(n) communication under (subexponential variants of)
standard assumptions such as DDH or QR is open.

1.1 Our Setting and Questions of Interest

Setting: Two-Message Secure Computation. We consider two-party protocols in
which a receiver and a sender have private inputs x and y, respectively. We
consider protocols for evaluating a function f(x, y) using only two messages.
First, based on its input x, the receiver sends the first message msg1 to the
sender who, based on its input y, responds with the second message msg2. Finally,
the receiver uses its secret state and msg2 to compute f(x, y). Sender’s privacy
requires that the receiver learns nothing more about y than f(x, y) and the
length of y. Similarly, receiver’s privacy requires that the sender learns nothing
about x other than its length. By default, we only consider security against
semi-honest parties.3

Case I: Large Receiver Output. We are primarily interested in the case where
the output of f is long, and define the download rate of such a 2-message pro-
tocol (or rate for short) as the asymptotic ratio between |f(x, y)| and |msg2|.
We will also consider the overall rate, defined as the asymptotic ratio between
the insecure communication complexity of f and that of the protocol. A fun-
damental functionality in this regime is oblivious transfer (OT). We start with
the special case of string OT, implemented via a two-message protocol. Recall
that in the string OT functionality the inputs of the sender and receiver are two
strings s0, s1 ∈ {0, 1}n and a bit i ∈ {0, 1}, respectively. For this functionality, the
receiver’s output should be si. Here the download and overall rate are the asymp-
totic ratios n

|msg2| and n
|msg1|+|msg2| , respectively, when the security parameter λ

tends to infinity and n is a sufficiently big polynomial in λ (see Definition 3.1

3 Our protocols can be efficiently extended to provide security against malicious parties
(under the same assumptions) using sublinear arguments [46]. This increases the
number of rounds, but does not affect the asymptotic communication.

6 N. Döttling et al.

for a precise formulation). We also consider batch OT ; this functionality allows
n parallel instances of bit-OT (string OT with 1-bit strings).

Even for the special case of OT, the state-of-the-art with optimal overall
rate (or optimal download rate) is quite unsatisfactory.4 Any 2-message string-
OT protocol can be compiled into a similar protocol with rate 1/2 using hybrid
encryption as follows: Given a string-OT protocol for messages of size λ, the
sender uses the OT protocol to transmit one out of two symmetric keys to
the receiver, and uses these keys with a rate-1 symmetric encryption scheme
to encrypt the actual messages. The two ciphertexts are sent along with the
OT sender message. The receiver recovers one of the two keys and decrypts the
corresponding ciphertext. However, going beyond rate 1/2 seems to hit barriers!
Interestingly enough, for information-theoretic OT in the correlated randomness
model, rate 1/2 (as e.g. in Beaver’s standard reduction [6]) is optimal [38,54].
In the computational setting, constructions based on additively homomorphic
encryption or homomorphic secret sharing hit a similar barrier [10,42,53]. Cur-
rently, the only construction of OT known to achieve rate better than 1/2 is based
on the Damg̊ard-Jurik cryptosystem [18], which relies on the DCR assumption.
Even here, optimal rate in only achieved by undesirably letting the size of the
group used in the scheme grow with the size of the inputs.5 Moreover, in the
more general case of batch OT, rate 1 could not even be achieved based on DCR.
This brings us to our first motivating question:

Can we realize OT with rate> 1
2 from assumptions other than DCR?

Can we realize such batch OT from any assumption?

Why care about OT with rate > 1
2? As mentioned earlier, there is a large body

of work on minimizing the communication complexity of secure computation.
The special case of OT is not only natural and useful as a standalone appli-
cation, but it also serves as a stepping stone for other applications. Indeed,
high-rate 2-message OT implies: (i) high-rate PIR with polylogarithmic com-
munication complexity in the number of records [40,44]; (ii) a semi-compact
homomorphic encryption scheme that supports evaluation of bounded-length
branching programs (in particular, finite automata, decision trees and OBDDs)
over encrypted data [40], (iii) a high-rate lossy-trapdoor function [51], and (iv)
statistically sender-private (SSP) two-message OT with constant rate [4,11]. We
will elaborate on these applications below. To sum up, while high-rate OT is a
powerful primitive with important consequences, very little is known about how
to construct it.

4 The work of Cho et al. [16] on laconic OT gives a batch OT protocol where |msg1|
is independent of |x|. This generalizes to arbitrary functions f ; however, even in the
simple case of batch OT the download rate is sub-constant. The same applies to the
more recent work of Quach et al. [52] on laconic function evaluation.

5 In this work, we consider this question in the more stringent two-message setting.
However, we note that no other protocols with rate > 1

2
are known even when

additional rounds of communication are allowed.

Trapdoor Hash Functions and Their Applications 7

Case II: Large Receiver Input. Up to this point, we were mainly concerned with
functions f(x, y) that have a long output, where our goal was to make the com-
munication from the sender to the receiver very close to |f(x, y)|. Even multi-
round protocols of this type were not known prior to our work. A second setting
we consider applies to two-round protocols in the case where |x| � |y| and the
output is short. In this case, an insecure protocol for f can simply have the sender
communicate y to the receiver. Since secure computation with only one message
is impossible (except in trivial cases), our goal is to obtain a two-message secure
protocol with similar efficiency features, namely where the total communication
complexity is comparable to |y| rather than |x|. As a motivating example, con-
sider the case where the receiver has a large n-bit database x, the sender’s input
y describes a small RAM machine M whose running time is T � n, and the
receiver’s output is M(x). For instance, M can select a single entry y ∈ [n] of
x, outputting M(x) = xy. Note that a natural FHE-based protocol where the
receiver sends an encryption of x and receives an encryption of M(x) does not
meet our efficiency goal of using less than n bits of communication. On the other
hand, allowing for a higher round complexity, our goal can be met using any PIR
protocol [46].

From here on, we restrict the attention to 2-message protocols with o(n)
communication. The recent laconic function evaluation primitive [52] provides
such a protocol with overall communication of |y| + poly(λ, T), where λ is a
security parameter. However, results in this setting are only known under LWE
(with subexponential modulus-to-noise ratio). This brings us to our second main
question:

Are there 2-message protocols computing M(x) with o(n) bits of
communication from any assumptions other than LWE?

1.2 Our Results

In this work, we introduce a new primitive that we call trapdoor hash func-
tions (TDHs).6 TDHs are hash functions H : {0, 1}n → {0, 1}λ with additional
trapdoor-function-like properties. Specifically, given an index i ∈ [n], TDHs allow
for sampling an encoding key ek (that hides i) along with a corresponding trap-
door. Furthermore, given H(x), a hint value E(ek, x), and the trapdoor corre-
sponding to ek, the ith bit of x can be efficiently recovered. In this setting, one
of our main questions is: how small can the hint value E(ek, x) be? We define
the rate of TDH as the inverse of the size of the hint.

We obtain constructions of rate-1 TDHs from standard assumptions, namely
DDH, QR, DCR, and LWE. The surprising twist in these constructions is the
close integration of techniques developed in two very recent and seemingly unre-
lated lines of investigation: (i) A new type of hash function for constructing

6 The notion of trapdoor hash functions is inspired by the closely related notion of
hash encryption [13,21,22,26] and somewhere statistically binding hash functions
[36,43,49].

8 N. Döttling et al.

identity-based encryption by Döttling and Garg [21] and its extension to con-
structions of trapdoor functions by Garg, Gay and Hajiabadi [24,26] and (ii)
techniques for homomorphic secret sharing by Boyle, Gilboa and Ishai [9].

Main Result: Rate-1 Two-Message String OT. Our TDHs yield the first con-
struction of string OT with rate-1 from the {DDH, QR, LWE} assumption. Addi-
tionally, we get a new construction under DCR, for which, unlike the Damg̊ard-
Jurik construction [18], the size of the group used is independent of the size
of the inputs. We stress that while our constructions use only two messages;
previously, even multi-round constructions with rate > 1

2 were not known under
these assumptions.7 This allows us to obtain the following new results:

1. Private Information Retrieval : We obtain the first constructions of private
information retrieval (PIR) from {DDH, QR, LWE} with download rate 1 (for
retrieving long records). The total communication complexity grows only log-
arithmically with the number of records.8 Previously, such PIR protocols were
only known under DCR [45]. This also resolves the longstanding open ques-
tion of building PIR with polylogarithmic communication (for 1-bit records)
from {DDH, QR} [44]. Such protocols were only known under DCR, LWE,
and the Phi-hiding assumptions [14,15,45,50]. For example, the best known
construction from DDH required O(2

√
log n · λ) bits of communication, for

database size n and security parameter λ [44,53].
2. Semi-Compact Homomorphic Encryption for Branching Programs: We obtain

the first encryption schemes based on {DDH, QR} that allow evaluating a
branching program on an encrypted input, where the encrypted output grows
only with the length of the branching program and not with its size. Previ-
ously, such schemes were only known under {DCR, LWE} [40].

3. Lossy Trapdoor Functions: We obtain the first construction of lossy trapdoor
functions [51] with rate 1 from the {DDH, QR, LWE} assumption. Here, rate
is defined as the ratio of the input length and output length for the trapdoor
function. Very recently, Garg et al. [24] obtained construction from DDH with
a small constant rate. However, besides that, no constructions with constant
rate were known under these assumptions.

4. Malicious Statistically Sender Private OT: We obtain the first LWE-based 2-
message OT protocol in the plain model that offers statistical sender privacy
against a malicious receiver and has a constant rate. This improves over the
1/ log(λ) rate of a recent LWE-based protocol of Brakerski and Döttling [11].
Similar protocols were previously known under {DDH, DCR} [1,34,48].

7 Our protocols achieve asymptotic download rate 1, which is clearly optimal. However,
the (additive) difference between the sender’s message length and the output length
grows with the security parameter λ. In the full version we show that that this gap is
necessary even in the more liberal setting of secure computation with preprocessing.

8 More specifically, as our group-based constructions are black-box in the underlying
group, we can count the communication complexity in terms of the number of group
elements, which in our case is log n · poly(λ), where n is the size of the database and
λ is the security parameter.

Trapdoor Hash Functions and Their Applications 9

Rate-1 Protocols for Functionalities Generalizing OT. We generalize the tech-
niques for rate-1 OT to yield secure 2-message protocols with download rate 1
for other useful functionalities. In these cases, we obtain the first protocols under
any assumption. We obtain such protocols for the following functionalities.

1. Batch OT: Batch OT allows n instances of bit-OT to be performed in parallel.
We obtain 2-message batch OT protocol with download rate 1 (but sub-
constant upload rate) from QR and LWE. Allowing for inverse polynomial
error probability, we obtain a similar protocol under DDH. Protocols with
smaller constant download rates (and constant overall rate) were known under
a variety of assumptions; see [8,10,39] and references therein.

2. Batch OLE: An oblivious linear function evaluation (OLE) scheme allows
the sender to evaluate an affine function f(x) = ax + b over the receiver’s
private input x. We obtain the first batch OLE (over either a field of a small
characteristic or smooth modulus) with download rate 1 based on QR or
LWE. We also get a DDH-based construction if we allow inverse-polynomial
error. For the case of fields, smaller constant download rate (and constant
overall rate) could be realized under LWE [20,42] or code-based assumptions
[2,41,47].

3. Matrix-Vector Products: We generalize the above to oblivious matrix-vector
product evaluation (OMV), where the sender has a matrix M , the receiver
holds a vector v, and the output is Mv. A two-message OMV protocol can be
thought as a relaxed form of additively homomorphic encryption. Our tech-
niques can be generalized to construct OMVs over F2 with optimal download
rate, based on QR or LWE. We can also generalize the LWE-based construc-
tion to fields modulo small primes or smooth integers. Compared to previous
LWE-based constructions (e.g., [42]), we get better (optimal) download rate
but worse overall rate.

As mentioned for rate-1 OT, all the aforementioned results were known only
under the DCR assumption (and in the case of functionalities generalizing OT,
were not known under any standard assumptions), where optimal rate was
achieved by letting the size of the group grow with the size of the inputs. Our
work improves in this setting. Specifically, assuming only DCR, our work implies
all of the above results in groups of size independent of the message length.

As in the context of rate-1 OT, while we consider only two-message protocols,
we stress that, prior to our work, none of the above-mentioned results were known
even when additional rounds of communication are allowed.

Beyond OT: Two-Message SFE with Sublinear Communication. Armed with
our new techniques, we attempt to broaden the class of functionalities for which
two-message secure-function evaluation (SFE) can be achieved with sublinear
communication. Specifically, we start with the following example setting: Alice
would like to share her DNA sequence online so that various medical researchers
can use it to provide her with valuable insights about her health. However, Alice
wants to keep her “large” genetic information confidential and each researcher
wants to keep the specific parts of the genetic code it looks at private. In a bit

10 N. Döttling et al.

more detail, Alice wants to publish a hash h(x) of her input x (of length n)
online, such that any contractor Bob, with a private machine M with “small
running time” (denoted by T) can send Alice a “short” message, enabling her to
learn M x, where M has random access to x. In summary, we are interested in a
setting that allows Alice to evaluate Bob’s private small machine on her private
large input with sublinear communication.

Positive results for the above setting with sublinear communication are only
known from lattice assumptions—namely, using laconic function evaluation [52].
In contrast, for the case of DDH-based constructions, such protocols need com-
munication complexity proportional to n. We note that constructions based on
laconic OT [16] do not keep the locations accessed by M private and thus, do
not suffice for this application.9

We obtain the first protocol for non-interactive secure computation on large
inputs from DDH with communication proportional to T · √

n, where T is the
running time of the machine and n is the size of the database. Furthermore, using
pairings (and appropriate correlated-input secure hash functions [3,7,30,32,37])
we obtain a protocol with communication cost proportional to T · 3

√
n.

Further, in a scenario where Bob’s machine M is repeatedly executed over
different large inputs (possibly owned by different Alices), we achieve protocols
with communication proportional to T , and independent of n, per execution,
assuming a non-interactive “offline phase” where Bob publishes an “encoding”
of M of length proportional to n or

√
n (from DDH or pairings, resp.), which

can be amortized over all executions.
Our results are obtained by constructing a variant of laconic OT [16], that

keeps the locations accessed by M private. We call this primitive private laconic
OT. The key technical challenge here is to realize this primitive with communi-
cation cost sublinear in the size of Alice’s large input. By using private laconic
OT, rather than laconic OT, in the constructions from in [16], we obtain SFE
for RAM programs with sublinear communication which, as opposed to the pro-
tocol from [16], also hides the access pattern made by the machine to the input
database and therefore achieves a full notion of security.

1.3 Concurrent Work

In a concurrent work, Gentry and Halevi [29] constructed an efficient rate-1 FHE
schemes from LWE, which in particular also yield rate-1 OT constructions. When
instantiated from LWE with polynomial modulus-to-noise ratio, their construc-
tion achieves rate 1 − ε for any constant ε. In comparison, our OT constructions
achieve rate 1 − 1/λ in this regime and can also be based on DDH or QR.

1.4 Paper Organization

In the following sections, we give a high level overview of the technical contri-
butions of our work. We first introduce trapdoor hash functions, and present
9 For this application, we insist on the two-message setting. Allowing O(T) rounds of

interaction, similar protocols can be based on any single-server PIR scheme [46].

Trapdoor Hash Functions and Their Applications 11

the ideas behind our constructions from the different assumptions. We then pro-
ceed to discuss the applications of trapdoor hash. More technical details and full
formal analysis are provided in the full version.

2 Trapdoor Hash Functions

We start by providing a notational framework for the new primitive, then give
an overview of our constructions.

2.1 Defining Trapdoor Hash

A trapdoor hash scheme (TDH) defines a family of samplable publicly-
parameterized hash functions Hhk : {0, 1}n → {0, 1}η, accompanied with the
following three algorithms:

– Key generation: given the public hash key, Bob generates a pair of an encoding
key and a trapdoor (ek, td) ← G(hk, i), corresponding to a private index i ∈
[n].

– Encoding: using the encoding key ek, Alice, with a private input x ∈ {0, 1}n,
can compute a hint e ← E(ek, x), which essentially encodes the bit x[i].

– Decoding: Bob, who has the secret trapdoor td, can now decode any encoding e
generated for some input x as above, to recover xi, given only the hash Hhk(x).
In fact, Bob would be able to generate two encodings (e0, e1) ← D(td, h),
where it is guaranteed that e = ex[i].

We actually consider a more general notion of TDH where Bob with a private
predicate f : {0, 1}n → {0, 1}, chosen from a predefined class of predicates F ,
generates a key ek, using which Alice encodes the bit f(x), and a corresponding
trapdoor, using which Bob decodes. Such a scheme is called trapdoor hash for
F , and the above special case is referred to as trapdoor hash for index predicates.

Definition 2.1 (Trapdoor Hash Scheme). Let F = {Fn}n∈N be a class of
predicates, where each Fn is a set of predicates defined over {0, 1}n, and let
ω := ω(λ) ∈ N for any λ ∈ N. A rate- 1ω trapdoor hash scheme (TDH) for F is a
tuple of five PPT algorithms TDH = (S,G,H,E,D) with the following properties.

– Syntax :
• hk ← S(1λ, 1n). The sampling algorithm takes as input a security param-

eter λ and an input length n, and outputs a hash key hk.
• (ek, td) ← G(hk, f). The generating algorithm takes as input a hash key

hk and a predicate f ∈ Fn, and outputs a pair of an encoding key ek and
a trapdoor td.

• h ← H(hk, x; ρ). The hashing algorithm takes as input a hash key hk,
a string x ∈ {0, 1}n and randomness ρ ∈ {0, 1}∗, and deterministically
outputs a hash value h ∈ {0, 1}η.

12 N. Döttling et al.

• e ← E(ek, x; ρ). The encoding algorithm takes as input an encoding key
ek, string x ∈ {0, 1}n and randomness ρ ∈ {0, 1}∗, and deterministically
outputs an encoding e ∈ {0, 1}ω.

• (e0, e1) ← D(td, h). The decoding algorithm takes as input a trapdoor td,
a hash value h ∈ {0, 1}η, and outputs a pair of a 0-encoding and a 1-
encoding (e0, e1) ∈ {0, 1}ω × {0, 1}ω.

– Correctness: TDH is (1 − ε)-correct (or has ε error probability), for ε :=
ε(λ) < 1, if the following holds for any λ, n ∈ N, any x ∈ {0, 1}n and any
predicate f ∈ Fn.

Pr[e = ef(x)] ≥ 1 − negl(λ) Pr[e 	= e1−f(x)] ≥ 1 − ε − negl(λ)

where hk := S(1λ, 1n), (ek, td) := G(hk, f), h := H(hk, x; ρ) and e := E(ek, x; ρ)

for ρ
$←− {0, 1}∗, and (e0, e1) := D(td, h).

– Function Privacy: TDH is function-private if for any polynomial-length
{1nλ}λ∈N and any {fn}n∈N and {f ′

n}n∈N such that fn, f ′
n ∈ Fn for all n ∈ N,

it holds that

{(hkλ, ekλ)}λ∈N

c≡ {(hkλ, ek′
λ)}λ∈N

where hkλ
$←− S(1λ, 1nλ), (ekλ, tdλ) $←− G(hkλ, fnλ

) and (ek′
λ, td′

λ) $←−
G(hkλ, f ′

nλ
).

– Input Privacy: TDH is input-private if for any polynomial-length {xλ}λ∈N

and {x′
λ}λ∈N such that nλ := |xλ| = |x′

λ|, it holds that

{(hkλ, hλ)}λ∈N

c≡ {(hkλ, h′
λ)}λ∈N

where hkλ
$←− S(1λ, 1nλ), hλ = H(hkλ, xλ; ρ) and h′ = H(hkλ, x′

λ; ρ′) for ρ, ρ′ $←−
{0, 1}∗. We also define statistical input privacy in the natural sense.

– Compactness: we require that the image length of the hash function, η, is
independent of n, and is bounded by some polynomial in λ.

For this outline, we think of trapdoor hashing as a protocol where Alice
and Bob play the roles of a sender with input x and, respectively, a receiver who
wants to learn x[i] (or, generally, f(x)). For now, we will mostly focus on receiver
privacy, i.e. function privacy, as sender’s privacy is much easier to achieve. Our
main goal is to construct trapdoor hash with optimal rate of 1, that is a scheme
where the hint e consists of a single bit.

2.2 Trapdoor Hash from DDH

We start with our DDH-based construction of trapdoor hash for index predicates.
Recall that, roughly speaking, the Decisional Diffie-Hellman (DDH) assumption
says that an element gab of a group G with prime order p, where g ∈ G is a
generator and a, b ∈ Zp are uniform, is indistinguishable from a uniform group
element, given ga and gb. We formally state our first result below.

Theorem 2.2. There exists a rate-1 trapdoor hash scheme for index predicates
with error probability 1/λ, statistical input privacy, and function privacy based
on the DDH assumption.

Trapdoor Hash Functions and Their Applications 13

The Basic Hash Function. The starting point of is the following group-based
hash function mapping {0, 1}n to a group G:

H(A, x) =
n∏

j=1

gj,x[j]

where x ∈ {0, 1}n is the input and A = (gj,b)j∈[n],b∈{0,1}
$←− G

2×n is chosen
uniformly at random and serves as the hash key hk. By choosing n larger than the
representation size of a group element in G, this function becomes compressing.
Collision resistance of this function can be routinely established from the discrete
logarithm assumption in G.

This surprisingly powerful function plays a central role in recent construc-
tions of identity based encryption [21], trapdoor functions [26], deterministic
encryption and lossy trapdoor functions [24].

Adding Trapdoors. We show how this function can be made invertible, using tech-
niques of [24]. Clearly, the hash value h ← H(hk, x) is too short to information-
theoretically specify x. Thus we will add additional hints, which we also call
encodings, to allow recovery of x. We will first discuss how the receiver can
recover a single bit x[i] of x.

Let i ∈ [n] be an index of the receiver’s choice. The receiver will generate a
matrix B ∈ G

2×n, that serves as an encoding key ek, such that the following
holds for all x ∈ {0, 1}n: If H(A, x) = h, then H(B, x) = hs · gx[i] for some s ∈ Zp.

We can construct such a matrix B = (uj,b)j∈[n],b∈{0,1} by choosing s
$←− Zp

uniformly at random, and setting

uj,b = gs
j,b

for all j 	= i and

ui,b = gs
i,b · gb. (2.1)

Since s is uniform, we immediately get, via the DDH assumption, that all gs
j,b

are pseudorandom, and consequently, the matrix B is pseudorandom as well.
Thus, the matrix B computationally hides the index i.

Given the values h = H(A, x) and the hint e = H(B, x), as well as a trapdoor
consisting of s, the receiver can recover x as follows. As by the above property
it holds that e = hs · gx[i], we can recover x[i] by testing e

?= hs · gb for both
b ∈ {0, 1} and setting x[i] ← b for the b which satisfies this test. While we can
construct a trapdoor hash function in this way, its rate will be far from 1: To
encode a single bit x[i] of x, we need to spend one full group element e. Assuming
that a group element has size λ, this will give us a construction of rate 1/λ.

14 N. Döttling et al.

Towards Rate 1. Clearly, sending a group element e to encode a single bit x[i]
is wasteful. However, we make the following observation: The term e can only
assume two different values, namely hs and hs · g, depending on whether the bit
x[i] is 0 or 1. So what we need is a way for the sender to signal to the receiver
that either e = hs or e = hs · g, without actually sending e. Yet, since the sender
does not know i, he generally does not know whether he is encoding 0 or 1, that
is, he does not know whether e is of the form hs or hs · g.

However, assume the sender could somehow determine the distance to a
nearby reference point of e which is insensitive to small perturbations. This
would for instance be the case if the group G had a subgroup G

′, such that we
can efficiently test membership in G

′ and the quotient G/G′ is of polynomial size.
Since |G/G′| is only of polynomial size, we can efficiently compute the distance
to G

′ for every e ∈ G. That is, the function Dist(e) which exhaustively searches
for the smallest z ∈ Z such that e · gz ∈ G

′ is efficiently computable. Assuming
further for simplicity that |G/G′| is even, it holds for every e ∈ G that

Dist(e · g) mod 2 = (Dist(e) + 1) mod 2.

This means that hs and hs ·g never map to the same bit under the function Dist(·)
mod 2. Via this observation, the sender can signal to the receiver whether e is
hs or hs · g as follows. Instead of sending e itself to the receiver, he just sends
the bit ê = Dist(e) mod 2 ∈ {0, 1} to the receiver.

Modifying the recovery procedure of above, the receiver can recover x[i] by
testing ê

?= Dist(hsgb) mod 2 for b ∈ {0, 1} and setting x[i] ← b for the b
which satisfies this test. This procedure recovers the correct bit x[i] with ê =
Dist(hs · gx[i]), as the value e computed by the sender must have been either hs

or hs · g, and by the above Dist(hs) mod 2 	= Dist(hs · g) mod 2.

Achieving Rate 1. Alas, since G is typically a cyclic group of prime order, it has
no non-trivial subgroups. But upon closer inspection, the signalling technique
above does not really rely on any additional group structure. All we need is that
Dist(e · g) = Dist(e) + 1.

Fortunately, a technique to determine the distance to a reference point was
proposed by Boyle, Gilboa and Ishai [9] in the context of homomorphic secret
sharing. In a nutshell, instead of computing the distance to a subgroup, we
compute the distance to a moderately dense pseudorandom subset of G. Such a
pseudorandom subset can be succinctly represented via the key of a pseudoran-
dom function by setting SK to be the set of all points h ∈ G for which PRFK(h)
starts with k = O(log(λ)) zeros. By tuning the parameter k appropriately, one
can achieve an average separation of the points in SK by an arbitrary polynomial
amount. We can now define Dist(e) to be the smallest z ∈ Z such that e·gz ∈ SK ,
i.e. PRFK(e · gz) starts with k zeros. Note that this function can be computed
efficiently for the above choice of k.

However, as the vigilant reader might have observed already, when using this
distance function, the above signalling procedure does not have perfect correct-
ness anymore. If hs and hs · g decode to different points in SK , it might be that

Trapdoor Hash Functions and Their Applications 15

Dist(hs) mod 2 = Dist(hs · g) mod 2, in which case the receiver cannot infer
whether x[i] = 0 or x[i] = 1 and must declare an erasure.

Fortunately, by choosing k large enough, we can make the probability of such
an erasure happening an arbitrarily small polynomial fraction 1/p(λ), while still
ensuring that the decoding procedure runs in polynomial time10 As it turns out,
in many applications, we can deal with this small erasure probability by resorting
to standard coding techniques.

Sender Privacy. So far we have not addressed issues concerning the privacy of
the sender’s inputs. However, in our DDH-based construction this is easy to
achieve by providing an additional random input to the hash function H. That
is, we define H as

H(A, x; r) = gr ·
n∏

j=1

gj,x[j],

for a uniformly random r
$←− Zp. The hash value h = H(A, x; r) is now uniformly

random (over the choice of r) and therefore does not leak information about x.
Furthermore, given the trapdoor s and a single bit x[j] of the input x we can
perfectly simulate e by computing e ← hs · gx[j]. From e we can compute ê as
before. Thus, the modified construction has perfect sender privacy.

2.3 Trapdoor Hash from QR and LWE

We now briefly discuss instantiations of these techniques based on the Quadratic
Residuosity (QR) and Learning With Errors (LWE) assumptions to achieve trap-
door hash for the even more general class of linear predicates. As it turns out,
in both these cases we will have structures with exact subgroups. However, in
both cases there will also be new challenges which will have to be addressed with
slightly different ideas.

Theorem 2.3. There exists a rate-1 trapdoor hash scheme for linear predicates
with negligible error probability, statistical input privacy, and function privacy
based on the {QR,LWE} assumption.

Construction from QR. We will start with the QR-based construction. Instead
of relying on the QR assumption directly, we will use the fact that we can
construct a group G in which the subgroup indistinguishability problem is hard
under QR [12]. More specifically, the group G we use has a subgroup G

′ such
that |G/G′| = 2. We can represent every h ∈ G as h = (−1)b ·a, where b ∈ {0, 1}
10 We can ensure that both sender and receiver run in strict polynomial time by intro-

ducing a suitable polynomial upper bound for the number of trials in the exhaustive
search step of Dist(·). For small erasure probabilities, a near-quadratic improvement
in the running time can be obtained via the recent optimal “distributed discrete log”
algorithm of Dinur, Keller, and Klein [19].

16 N. Döttling et al.

and a ∈ G
′. For the hash function H, we can use exactly the same construction

as above, that is H(hk, x) =
∏n

j=1 gj,x[j]. The only difference is that we choose
the elements in the key hk = A from the subgroup G

′ instead of G, that is,
A = (gj,b)j∈[n],b∈{0,1}

$←− G
′2×m. Similar as in the DDH-based construction,

for an index i ∈ [n], the matrix B generated by G now has the form B =
(uj,b)j∈[n],b∈{0,1} where

uj,b = gs
j,b

for all j 	= i and

ui,b = gs
i,b · (−1)b.

Here, s is uniformly random in an appropriate domain. The crucial difference is
that in ui,b, we have replaced the generator g in the DDH-based construction
by −1. It follows directly via the subgroup indistinguishabilty assumption that
gs

i,b · (−1)b is indistinguishable from gs
i,b. Thus, as before, the index i is hidden.

By a similar analysis as before, it holds that if h = H(A, x), then e =
H(B, x) = hs · (−1)x[i]. However, there is a crucial difference now: As e =
hs · (−1)x[i], the sender can also compute e · (−1) = hs · (−1)1−x[i]. That is,
one of these two elements is hs and the other one is hs · (−1). Recall that the
receiver can also compute these two elements using the hash value h and the
trapdoor s. Thus, the only task left for the sender is to signal to the receiver
which one of the two elements the element e he got is. This can be easily done
by communicating a single bit: The sender compares e and e · (−1) under some
total order �, say, by representing both elements as bit strings, and computing
the lexicographic order. Now, he sends the bit ê = 0 if e � e · (−1) and ê = 1
otherwise. The receiver can recover x[i] as follows: If hs � hs · (−1) and ê = 0 he
sets x[i] = 0, otherwise x[i] = 1.

The main difference of this instantiation compared to our DDH-based con-
struction is that there is no decoding error. We can even leverage this fact to
achieve a stronger functionality. So far, we have only discussed how the receiver
can recover individual bits x[i] of the sender’s input, namely realize trapdoor
hash for index predicates. We will now show how this can be upgraded in a way
such that the receiver can learn an inner product 〈y, x〉 mod 2, and therefore
obtain trapdoor hash for the more general class of linear predicates. The vector
y is chosen by the receiver and is used to generate the matrix B. Concretely, for
a vector y ∈ {0, 1}n the receiver sets

uj,b = gs
j,b · (−1)b·y[j]

for all j ∈ [n] and b ∈ {0, 1}. As before, we can use the subgroup indistinguisha-
bility assumption to establish that the matrix B hides the vector y.

A simple calculation shows that H(B, x) = hs · (−1)〈y,x〉. The encoding and
decoding procedures are exactly the same as before, with the difference that now
the receiver learns the inner product 〈y, x〉 mod 2. While this modification to
our construction is nearly straightforward, it has several important applications.

Trapdoor Hash Functions and Their Applications 17

Construction from LWE. We will finally turn to our construction from LWE. On
a conceptual level, the construction is very similar to the QR-based construction.
We will directly explain the construction for linear predicates, i.e. inner products
over F2. In this instantiation, let q = 2p be an even modulus. The hashing key
hk = A is a 2×n matrix of uniformly random column vectors aj,b ∈ Z

k
q , that is,

each component of this matrix is a vector itself. The hash of an input x ∈ {0, 1}n

is now computed as the sum of the corresponding aj,b, that is

H(A, x) =
n∑

j=1

aj,x[j].

The encoding key contains a matrix B = (uj,b)j∈[n],b∈{0,1}, which consists of
elements uj,b ∈ Z

k
q which are computed by

uj,b = s	aj,b + ej,b + y[j] · b · (q/2),

where s is chosen uniformly from Z
k
q and the ej,b are sampled from a short

LWE-error distribution such as a discrete gaussian. By the LWE assumption, we
immediately get that the values s	aj,b+ej,b are pseudorandom, and consequently
the matrix B hides the vector y. Assume further that PRF is a pseudorandom
function from Z

k
q to Zq. For this instantiation, the receiver will also include a

uniformly random PRF-key K
$←− {0, 1}λ into the encoding key.

As before, the sender computes h = H(A, x) and e = H(B, x). Notice that it
holds that

e =
n∑

j=1

uj,x[j] = s	
n∑

j=1

aj,x[j] +
n∑

j=1

ej,x[j] + 〈y, x〉 · (q/2) = s	h + e′ + 〈y, x〉 · (q/2),

where e′ =
∑n

j=1 ej,x[j] is a small error.
The challenge in this instantiation is that e is noisy, so the comparison-based

technique from the QR-based construction will not work here. Nevertheless, a
standard tool to robustly deal with this kind of error in the world of LWE is the
rounding technique, introduced by Banerjee, Peikert and Rosen [5]. Define the
rounding function �·�2 by �z�2 = �z · 2/q� mod 2. The sender now computes ê
by

ê = �H(B, x) + PRFK(h)�2
and sends h along with the bit ê to the receiver. The receiver now computes and
outputs (ê − �s	h + PRFK(h)�2) mod 2.

To establish correctness, we will use the fact that, for a sufficiently large q, the
rounding function is insensitive to small perturbations. That is, for a uniformly
random z

$←− Zq, and a sufficiently small noise e, it holds that �z + e�2 = �z�2,
except with small probability over the choice of z. Now, since the term PRFK(h)
is pseudorandom in Zq, it holds that

ê = �H(B, x) + PRFK(h)�2 = �s	h + e′ + 〈y, x〉 · (q/2) + PRFK(h)�2
= �s	h + PRFK(h)�2 + 〈y, x〉,

18 N. Döttling et al.

Fig. 1. Overview of the results in this work, Part I: optimal-rate protocols for OT-
like sender-receiver functionalities and their applications. Dotted lines correspond to
corollaries from prior work.

except with small probability over the choice over K. This is the reason why
we include the key K in the receiver’s message, that is, to enable the sender to
randomize H(B, x) without increasing the size of the sender message. Correctness
of the scheme follows.

The magnitude of the correctness error depends on the modulus-to-noise
ratio. If we choose a superpolynomial modulus-to-noise ratio, the correctness
error becomes negligible. For a polynomial modulus-to-noise ration the correct-
ness error will be inverse polynomial and we have to compensate with coding
techniques.

3 Rate-1 Oblivious Transfer and More

We now present the first family of applications of trapdoor hash (Fig. 1). We
show how to use rate-1 trapdoor hash to securely realize basic sender-receiver
functionalities through two-message protocols with optimal sender-receiver com-
munication, i.e. optimal download rate.

Formally speaking, a two-message protocol for functionality f : X × Y → Z
is defined through a triple of PPT algorithms Π = (Π1,Π2,Π3) where, at first,
the receiver computes a message msg1 ← Π1(1λ, x) for security parameter λ and
input x ∈ X and sends it to the sender. The sender with input y ∈ Y responds
by a message msg2 ← Π2(msg1, y). Lastly, given the second message msg2 and
possibly a local state st computes the output f(x, y) = Π3(msg2, st). We require
standard notions of receiver privacy and sender privacy (against a semi-honest
receiver). The download rate of a two-message is defined as follows.

Trapdoor Hash Functions and Their Applications 19

Definition 3.1 (Download Rate of a Two-Message Protocol). Let 0 ≤
ω ≤ 1. We say that a two-message protocol Π for functionality f : X×Y → Z has
download rate ω if there exists a polynomial B(λ) such for all polynomial-length
input sequences {(xλ, yλ)}λ∈N in the domain of f such that |f(xλ, yλ)| ≥ B(λ)
for all λ, we have

lim inf
λ→∞

|f(xλ, yλ)|
mλ

= ω

where mλ is the maximal length of the sender-receiver message when Π runs on
inputs (xλ, yλ) and security parameter λ.

The first fundamental functionality we investigate is oblivious transfer (OT),
where a receiver with private input bit i ∈ {0, 1} communicates with a sender
with secrets s0, s1 in order to obtain secret si. Rate-1 OT has several important
applications, for which we are able to achieve the first constructions under various
assumptions, using our trapdoor hash constructions. We also discuss a couple of
related primitives: oblivious linear function evaluation (OLE), where the sender
has a linear function f(x) = ax+b and the goal is to evaluate f on the receiver’s
private input x, and the more general matrix-vector product where the sender
has a matrix M , the receiver has a vector v, and the goal is to compute the
product Mv	.

3.1 Rate-1 Oblivious Transfer from Trapdoor Hash

Equipped with our newly developed tool, we show how to construct 2-message
OT protocols with rate 1 given any trapdoor hash with the same rate. We
consider two flavours of OT where download-rate-1 can be achieved. The first is
batch OT, where a batch of OT instances with single-bit secrets are invoked in
parallel, and the second is string OT, which consists of a single OT instance with
secrets that are assumed to be sufficiently long. In the latter case, we get optimal
overall rate (where also receiver-sender communication is taken into account).

Batch OT. Recall that a trapdoor hash scheme for index predicates allows one
to recover the ith bit of a string x given the hash value H(hk, x) and a single
additional bit e (which we denote ê above). With this tool at hand, we can
realize the 1-out-of-2 bit OT functionality by letting the receiver specify the
hash key hk and the encoding key ek corresponding to the choice bit i ∈ {0, 1}.
The sender then sets its input x := s0‖s1 to be the concatenation of the two
secret bits and computes h = H(hk, x) together with the encoding e. Given
such an information, the receiver can recover the chosen secret bit by running
the decoding algorithm. The obvious shortcoming of this approach is that it is
wasteful in terms of download rate, in the sense that the hash of the string must
be included to recover a single bit.

The key observation here is that the hash key hk can be reused across several
executions. Therefore the size of the hash h can be amortized across multiple
independent bit OT protocols. That is, if the bit OTs are executed in a batch,

20 N. Döttling et al.

we can boost the download rate of the construction to approach 1: Given n
independent instances of bit OT, the receiver samples a hash key hk as before,
this time for inputs of length 2n rather than 2, and samples a set of encoding
keys (ek1, . . . , ekn), where the jth key allows the receiver to learn the input bit
at position (2j + ij), where ij ∈ {0, 1} is the choice bit of the jth OT instance. It
is important that all of the encoding keys are generated with respect to the same
hk, since it will allow us to re-use the corresponding hash. The sender defines
x := s1,0‖s1,1‖ . . . , ‖sn,0‖sn,1, where sj,0, sj,1 are the secrets for the jth instance,
and computes the hash h = H(hk, x) as before, in addition to the additional
hints, i.e. TDH encodings, (e1, . . . , en). The recovery procedure is then run in
parallel for each bit OT instance. Note that the sender’s message consists of a
hash (i.e., a single group element) and n bits. That is, the impact of h in the
communication vanishes as n grows, and thus, the download rate of the scheme
approaches 1. The above outline gives the following theorem.

Theorem 3.2. Assume there exists a rate-1 trapdoor hash scheme TDH, with
error probability ε(λ). Then, there exists a 2-message batch OT protocol with
download rate 1 and independent error probability of ε(λ) in every (single-bit)
OT instance. Further, if TDH is statistically input-private, then the obtained
batch OT protocol is statistically sender-private.

String OT. We showed how to obliterate the impact of the hash value h in the
second OT message by executing multiple bit OT instances in a batch. The same
can be accomplished for a single OT instance, when executed on sufficiently long
secret strings (rather than single bits)11. The protocol can be derived generically
from the batch OT by adapting the encodings of the inputs: The receiver executes
the batch OT protocol of above by replicating the same choice bit i over each
of the n instances, whereas the sender parses the two strings (s0, s1) ∈ {0, 1}n

as n pairs of bits and encodes the string x as before. Since the choice bit of
the receiver is the same in all positions, the decoding algorithm will recover the
string si in its entirety.

In the above discussion we omitted a few important aspects of our transfor-
mation that need to be addressed in order to obtain a fully-fledged rate-1 OT.
More specifically, (i) some instances of trapdoor hash have a correctness error,
in the sense that the secret might not be recoverable with a certain probability ε.
Furthermore, (ii) the upload rate of the construction is inverse polynomial in λ.
To resolve the former point we preprocess the sender’s inputs with a sufficiently
strong error-correcting code. One has to be careful that the encoding function
does not affect the download rate of the protocol. Fortunately, our error prob-
ability ε lies in a regime of parameters that allow us to efficiently instantiate
the encoding function. For the latter issue, we show that any string OT with
download rate 1 can be generically bootstrapped to a string OT with overall
rate 1. Our method is based upon the simple observation that the first message
of an OT is always reusable and therefore can be amortized by executing the
11 In fact, string OT can be thought of as a special case of batch OT, where all the

choice bits ij are equal.

Trapdoor Hash Functions and Their Applications 21

same OT over blocks of a sufficiently long string. Thus, overall, our main result
in this context is as follows.

Theorem 3.3. Assume there exists a 2-message batch OT protocol with down-
load rate 1 and independent error probability of ε(λ) = O(1/λ) in every (single-
bit) OT instance. Then, there exists a 2-message string OT protocol with overall
rate 1 and negligible error.

The same techniques can be generalized to 1-out-of-k OT, for any k ∈ N.

3.2 Applications of Rate-1 OT

We now discuss few interesting applications of rate-1 OT.

Private Information Retrieval. Given a 1-out-of-2 string OT with rate 1, a
(block) single-server PIR protocol [44], with optimal download rate and polyloga-
rithmic overall communication, follows as a simple corollary of the main theorem
of Ishai and Paskin [40]. We hereby recall the transformation for completeness.

Recall that in (block) PIR, a client queries a server, that holds a database
consisting of N blocks, each of length β bits, in order to privately retrieve a
block of his choice. Observe that a 1-out-of-2 string OT can be seen as a hash
function that compresses the size of its input by a factor of roughly two. The
idea is to use such a hash function and let the server compute a Merkle tree
over the database x ∈ {0, 1}N ·β . Every node in the tree consists of a block and,
for simplicity, we assume that N = 2d for some d ∈ N, which is the depth of
the tree. Thus, the lowest level in the tree consists of the N database blocks:
x0, . . . , xN−1, and every other level 	 = 1, . . . , d in the tree consists of N/2�-many
blocks: h�,0, . . . , h�,N/2�−1, that are hashes of the nodes in level 	. Notice that
every index i ∈ {0, . . . , N −1} corresponds to a path in the tree, which we denote
by (i1, . . . , id), which represents the path from database block xi to the root of
the tree.

The protocol proceeds as follows: First, the client generates the receiver mes-
sage msg

(�)
1 of an OT for strings of appropriate length, for each layer 	 = 1, . . . , d

in the tree, where the choice bit is set to be the index i�. Then the client sends
(msg

(1)
1 , . . . ,msg

(�)
1) to the server, who computes all of the hash values in the

Merkle tree, i.e. OT sender messages, and sends the root msg
(d)
2 to the client.

The client can recover the entry of interest by recursively applying the decoding
algorithm of the OT, starting from the top level d.

Evaluating Branching Programs over Encrypted Data. Another result in the
work of Ishai and Paskin [40], which can be seen as a generalization of the
above, is a compiler that takes any 2-message rate-1 OT12 into a semi-compact
homomorphic encryption scheme for branching programs (a superclass of NC1),

12 In fact they require an OT protocol with a strong notion of sender privacy, which is
satisfied by all of our constructions.

22 N. Döttling et al.

Fig. 2. Overview of the results in this work, Part II: secure function evaluation with
sublinear communication. Thin lines correspond to non-generic transformations. (∗We
also assume correlated-input secure hash over bilinear groups.)

where the size of the evaluated ciphertexts depends only on the length of the
branching program but not on its size. This immediately yields a sublinear secure
function evaluation protocol where the client’s work is independent of the size
of the branching program (which is in fact hidden to its eyes).

Lossy Trapdoor Functions. As a yet another application, we show a simple
construction of lossy trapdoor functions [35,51] with optimal rate from any 2-
message rate-1 OT, and therefore obtain schemes based on DDH, QR, or LWE.
Prior to our work, rate optimal schemes were known to exist only under the
DCR assumption.

3.3 Rate-Optimal Protocols for Other OT-like Functionalities

It turns out that using trapdoor hash for index predicates, we can already cap-
ture a wide variety of predicate classes through a simple transformation. More
specifically, if a given predicate class F is “small”, i.e. contains poly(n) predi-
cates for input size n, then we can obtain TDH for F on input x by applying
TDH for index predicates on input x′, where the ith bit in x′ is the evaluation of
the ith predicate in F on x.

We use this observation to extend the range of functionalities for which we
can construct rate-optimal protocols. For instance, an interesting special case of
small predicate classes are functions f(x) = ax + b over F2, which essentially
allow realizing batch oblivious linear function evaluation (OLE) [47] by replacing
the TDH for index predicates, in the batch OT construction described above,
with TDH for such predicates. Further, one can extend the idea to OLE over
other constant size rings (e.g. fields Fp for constant prime p), by evaluating each
output bit separately.

An even more general functionality, that allows evaluating matrix-vector
products over F2 (with the vector and matrix respectively being the receiver’s
and sender’s input), can be realized using the same technique by relying on TDH

Trapdoor Hash Functions and Their Applications 23

for linear predicates, which can be instantiated, as mentioned earlier, under
the LWE and QR assumptions. The LWE-based TDH scheme can be further
extended to allow trapdoor-evaluation of linear functions over small fields, thus
yielding oblivious matrix vector multiplication (OMV) over such fields. It is worth
mentioning that OMV can be also seen as a variant of rate-1 additively homomor-
phic encryption, where inner products (and in particular matrix multiplication)
can be evaluated over encrypted vectors.

Lastly, we note that using OLE and OMV schemes over small fields, we
can realize similar functionalities over larger algebraic structures through stan-
dard algebraic manipulations. More specifically, we can get OLE and OMV over
smooth rings, via the Chinese Remainder Theorem, and over extension fields of
small characteristic using basic extension field algebra.

4 Private Laconic Oblivious Transfer

In this section we outline another application of trapdoor hash: private laconic
oblivious transfer (Fig. 2). As discussed in the introduction, private laconic OT
has strong applications in secure computation. In particular, following the outline
presented in [16] to utilize laconic OT for non-interactive secure RAM computa-
tion with unprotected memory access, we can use private laconic OT to obtain
secure RAM computation where the access pattern to the memory is also hidden,
and therefore achieve a stronger notion of security.

Recall that in laconic OT (OT) [16], a receiver with an input database
x ∈ {0, 1}n communicates with a sender, with two secrets s0, s1 ∈ {0, 1} and an
index i ∈ [n] as input, in order to learn sx[i] ,while keeping both x and s1−x[i]

private. In private laconic OT (p	OT), we also require that the index i remains
hidden from the receiver.

Our end goal is to realize the p	OT functionality through a two-message
protocol where the overall communication is sublinear in n in order to obtain
sublinear SFE protocols (due to [16]).

As a start, however, we aim for receiver-compact p	OT where the upload
communication (i.e., the communication from the receiver to the sender) is inde-
pendent of the receiver’s database size n, and set no restrictions on the communi-
cation from the sender to the receiver. We then describe such a receiver-compact
p	OT construction with linear sender-receiver communication through our DDH-
based trapdoor hash, and then show to get sublinear communication (namely√

n) using pairings.
Lastly, we show that if we are willing to compromise receiver-compactness,

then we can balance our protocols using what we call reusable private laconic
OT and obtain more efficient SFE protocols with sublinear communication under
both DDH and pairings. We start with the basic definition of private laconic OT.

Definition 4.1 (Private Laconic OT). A private laconic OT scheme is a
tuple of four PPT algorithms p	OT = (Gen,Hash,Send,Receive) with the follow-
ing properties.

24 N. Döttling et al.

– Syntax:
• pp ← Gen(1λ, 1n). The generating algorithm takes as input the security

parameter 1λ, and the size of the database n, and outputs public parame-
ters pp ∈ {0, 1}∗.

• h ← Hash(pp, x; ρ). The hashing algorithm takes as input the public
parameters pp, a database x ∈ {0, 1}n, and randomness ρ ∈ {0, 1}∗, and
deterministically outputs a hash value h ∈ {0, 1}η.

• ct ← Send(pp, h, i, (s0, s1)). The sending algorithm takes as input the pub-
lic parameters pp, a hash value h, an index i ∈ [n], and a pair of secrets
(s0, s1) ∈ {0, 1} × {0, 1}, and outputs a ciphertext ct ∈ {0, 1}∗.

• s ← Receive(pp, ct, x; ρ). The receiving algorithm takes as input the public
parameters pp, a ciphertext ct, a database x ∈ {0, 1}n, and randomness
ρ ∈ {0, 1}∗, and deterministically outputs a secret s ∈ {0, 1}.

– Correctness: p	OT is correct if there exists a negligible function ε(λ) such
that the following holds for all λ, n ∈ N, any database x ∈ {0, 1}n, any index
i ∈ [n], and any pair of secrets s0, s1 ∈ {0, 1}.

Pr

⎡

⎢⎢⎢⎢⎣
s = sx[i]

∣∣∣∣∣∣∣∣∣∣

pp ← Gen(1λ, n)

ρ
$←− {0, 1}∗

h ← Hash(pp, x; ρ)
ct ← Send(pp, h, i, (s0, s1))
s ← Receive(pp, ct, x; ρ)

⎤

⎥⎥⎥⎥⎦
≥ 1 − ε(λ).

– Receiver Privacy: p	OT is statistically, resp., computationally, receiver-
private if for any polynomial-length {xλ, x′

λ}λ∈N where nλ := |xλ| = |x′
λ| for

all λ ∈ N, the following two distribution ensembles

{(ppλ, hλ)}λ∈N {(ppλ, h′
λ)}λ∈N

where ppλ
$←− Gen(1λ, 1nλ) and hλ := Hash(ppλ, xλ; ρ), h′

λ := Hash(ppλ, x′
λ; ρ′)

for ρ, ρ′ $←− {0, 1}∗, are statistically, resp. computationally, indistinguishable.
– Sender Privacy (against a semi-honest receiver): p	OT is (compu-

tationally) sender-private if there exists a PPT algorithm Sim such that for
any s0, s1 ∈ {0, 1}, any polynomial-length {xλ}λ∈N and any {iλ}λ∈N, where
nλ := |xλ| and iλ ∈ [nλ] for all λ ∈ N, the distribution ensembles {Realλ}λ∈N

and {Idealλ}λ∈N, where

Realλ = (ppλ, xλ, (ctλ, ρ)) Idealλ = (ppλ, xλ,Sim(1λ, ppλ, xλ, sxλ[i]))

such that ρ
$←− {0, 1}∗, ppλ

$←− Gen(1λ, 1nλ) and ctλ
$←− Send(ppλ, hλ, iλ,

(s0, s1)) for hλ = Hash(ppλ, xλ; ρ), are computationally indistinguishable.
– Receiver Compactness: p	OT is receiver-compact if the output length of

Hash, η, is independent in n, and is bounded by some polynomial in the secu-
rity parameter λ.

Trapdoor Hash Functions and Their Applications 25

4.1 Basic Construction from Trapdoor Hash

Let us first try to realize the relaxed notion of 	OT using trapdoor hash in a
straight-forward way. In order to that, the roles of Alice and Bob from Sect. 2,
as a sender and a receiver, must be swapped.

Given a TDH for index predicates, the construction proceeds as follows. The
public parameters of the 	OT scheme simply consist of a hash key hk of the
TDH. The receiver (which is now played by Alice) computes a hash value of his
database h = H(hk, x), which he sends to the sender (now Bob). Observe that
the size of h is independent of the size of x, and thus satisfying our requirement
regarding upload communication.

The sender generates a pair (ek, td) of an encoding key and a trapdoor corre-
sponding to the hash key hk and his input index i. Using td and h, he computes
two symmetric encryption keys (e0, e1) = D(td, h), using which he encrypts his
secret inputs s0 and s1, respectively, to obtain two ciphertexts. He now sends the
key ek as well as the two ciphertexts to the receiver, who will be able to decrypt
one of them by recovering ex[i] using the encoding algorithm E of the TDH.

To establish security of this 	OT construction, we need the following to ensure
that (i) the hash h hides x (receiver privacy), and (ii) the encoding key ek hides
e1−x[i] (sender privacy). While receiver privacy is implied directly from the input
privacy of the underlying TDH, sender privacy does not generically follow. Thus,
we need to augment our definition of TDH with the requirement that, for every i,
the value e1−x[i] is uniformly random given hk, ek and x, where (ek, td) $←− G(hk, i)
and (e0, e1) = D(td,H(hk, x)). A TDH that satisfies this requirement is said to
have secret encoding.

Notice that the secret encoding property is in conflict with achieving high rate
in a TDH. In particular, in any rate-1 TDH, correctness requires that e1−x[i] =
1 − ex[i] with a high probability.

Fortunately, the basic DDH-based TDH construction without the rate opti-
mization, which is sketched above, fulfills the secret encoding property under
DDH. This is not surprising, as so far, this construction is very similar to the
original 	OT construction of [16].

In fact, the above outlined protocol realizes the stronger notion of p	OT. By
relying on the function privacy of the underlying TDH, we immediately get that
the sender’s input index i is kept hidden from the receiver, and hence, we get
the following theorem.

Theorem 4.2. There exists a receiver-compact p	OT scheme, with statistical
receiver privacy and sender privacy under the DDH assumption, that has com-
munication complexity O(poly(λ)n).

As hinted earlier, the above construction suffers from an undesired property:
download communication is linear in the size of the receiver’s database. We
propose two solutions. The first relies on the SXDH assumption over bilinear
groups and uses pairings in order to reduce the communication to O(

√
n). In

the second, we introduce a reusability notion of p	OT, that can be realized

26 N. Döttling et al.

under both DDH and SXDH with similar communication. We then show how to
transform any reusable p	OT into a (non-reusable) p	OT scheme while reducing
the overall communication complexity, to obtain efficient p	OT protocols under
DDH, resp. SXDH, with download communication proportional to

√
n and 3

√
n,

respectively.

4.2 Shrinking the Keys Using Pairings

The bottleneck in the efficiency of the DDH-based p	OT scheme from above lies
in the size of the public parameters and sender’s message, namely the keys hk
and ek of the trapdoor hash, which both grow linearly in n.

Towards achieving sublinear communication, we start with the following
observation. The high entropy of the public parameters, i.e. matrix A in hk,
is not essential for security in the DDH-based TDH scheme. Thus, if we could
produce such a matrix A = (gj,b)j∈[n],b∈{0,1} using a shorter “seed”, and then
let Alice compute a short “seed” that expands to a matrix B = (uj,b)j∈[n],b∈{0,1}
which can be used as an encoding key ek, then we are able to reduce the size of
hk and ek and, therefore, the communication of the resulted p	OT.

Roughly speaking, we choose the seed for A to be two 2 × √
n matrices,

A1 ∈ G
2×√

n and A2 ∈ H
2×√

n, for two different groups G and H. We then use a
bilinear map e : G×H → Ĝ to pair elements in A1 with elements in A2 and get
2 × n elements in Ĝ, which we use as the hash key hk = A ∈ Ĝ

2×n. To generate
a seed to the corresponding encoding key B, we begin by defining B1 = A1

s1

and B2 = A2
s2 , which would expand to B = As1+s2 using the pairing. To

achieve functionality, we would want to “puncture” the (i, 1)th entry in B and
multiplying it by a random group element (see Eq. 2.1). For this task, we use a
bilinear pairing with a special property, that allows us to multiply every element
in B1 and B2 by carefully sampled random elements from G and H (resp.). We
do this in a way that when pairing elements from the two matrices to generate
B, these random factors cancel each other out, except at the (i, 1)th element,
which will be randomly distributed. The above idea gives us the following result.

Theorem 4.3. There exists a receiver-compact p	OT scheme, with statistical
receiver privacy and sender privacy under the SXDH assumption, that has com-
munication complexity O(poly(λ)

√
n).

4.3 Balanced Protocols Through Resuable Private Laconic OT

Having shown how to obtain receiver-compact private laconic OT from DDH
and SXDH, we next describe in a high level how to transform such “unbalanced”
schemes to p	OT schemes which, despite being non-receiver-compact, have lower
overall communication, and in particular, give us sublinear non-interactive secure
computation protocols also from DDH.

Trapdoor Hash Functions and Their Applications 27

Theorem 4.4. There exists a (non-receiver-compact) p	OT scheme, with statis-
tical receiver privacy and sender privacy under the {DDH, SXDH13} assumption,
that has overall communication complexity {O(poly(λ)

√
n), O(poly(λ) 3

√
n)}.

How to Reuse the Sender’s Message. Let us reexamine the p	OT scheme from
TDH. The sender’s message consists of an encoding key ek and encryptions of the
two sender’s secrets, each under a corresponding TDH encoding. We observe that
the encoding key ek, which is actually the larger part of the sender’s message, is
actually independent of the hash value h = H(hk, x). It can therefore be reused
for different p	OT invocations corresponding to different values of the receiver’s
database x and the sender’s secrets s0, s1 (but that share the same index i).

This brings us to define a notion of reusable p	OT, where we distinguish
between two parts of the sender’s message: (i) a reusable part, of size sublinear
in n, that depends only on i and, therefore, can be reused for different inputs
x, s0, s1, and (ii) a compact part, of size independent in n, that is generated w.r.t.
a specific receiver’s database x and sender’s secrets s0 and s1.

As mentioned above, the p	OT construction from TDH already gives reusabil-
ity, with ek being reusable. However, a subtle issue concerning the sender privacy
has to be resolved. Take for instance the p	OT construction from the DDH-based
TDH. Above, we argued that the encoding e1−x[i] is uniformly distributed given
hk and ek, in what we called the secret encoding property. Notice, however,
that this is not sufficient for reusable p	OT, where many such encodings e1−x[i],
namely symmetric encryption keys, are generated w.r.t. different values of x.
Although each of these encryption keys is individually uniform, they are highly
correlated. Encryption under correlated keys is clearly insecure. Thus, we do not
get sender privacy when ek is reused.

We handle this issue by defining a related reusable secret encoding prop-
erty for TDH. Both the DDH-based and pairings-based TDH schemes can be
extended to have reusable secret encoding using suitable correlated-input secure
hash [3], which can be fortunately realized under DDH and, resp., appropriate
hardness assumptions over bilinear groups.

Reusable p	OT can be useful by itself for applications in secure computation,
in particular when we allow to amortize the communication cost over many
computations of the same functionality on different inputs. Further, as mentioned
earlier, reusable p	OT turns out to be useful to achieve p	OT schemes which,
although non-reusable, have smaller download communication.

Exploiting Reusability for More Efficient Schemes. Lastly, we show how to use
reusable p	OT to achieve more efficient p	OT schemes. Our final results are
a DDH-based p	OT with communication proportional to

√
n, and a pairing-

based p	OT with communication proportional to 3
√

n. Although the construction
is generic, it is parameterized differently according to the underlying reusable
p	OT. For presentation, we take the DDH-based reusable p	OT, where the public
parameters and sender’s message grow linearly in n as a special case.
13 for the SXDH-based construction we further assume the existence of correlated-input

secure hash for group-induced correlations over bilinear groups [3,32].

28 N. Döttling et al.

The idea is as follows. We divide the receiver’s database x to
√

n smaller
databases, x1, . . . , x√

n, each of size
√

n. Consequently, every index j ∈ [n] is
interpreted as (j1, j2) ∈ [

√
n]2 (particularly, i = (i1, i2)) where xj := xj1 [j2]. On

the sender’s side, each of the secrets s0, s1 is additively shared to s0,1, . . . , s0,
√

n ∈
{0, 1} and, respectively, s1,1, . . . , s1,

√
n ∈ {0, 1} s.t.

∑
j sj,b = sb for b ∈ {0, 1}. In

fact, the sender generates the shares such that sj,0 = sj,1 for any j 	= i1.
The idea is to use the underlying reusable p	OT to send to the receiver, for

every j ∈ [
√

n], either sj,0 or sj,1, conditioned on xj [i2]. For any j 	= i1, both
bits are equal, and therefore, the receiver obtains sj , regardless of the value of
xj [i2]. The only database bit that matters is x[i] := xi1 [i2], which determines
whether the receiver receives sj := sj,0, and therefore can compute

∑
j sj = s0,

or sj := sj,1, which would allow him to compute
∑

j sj = s1.

Acknowledgments. We thank Craig Gentry, Shai Halevi, Srinath Setty, and Vinod
Vaikuntanathan for helpful discussions and pointers.

S. Garg supported by DARPA/ARL SAFEWARE Award W911NF15C0210, AFOSR
Award FA9550-15-1-0274, AFOSR YIP Award, DARPA and SPAWAR under contract
N66001-15-C-4065, a Hellman Award and research grants by the Okawa Foundation,
Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The views
expressed are those of the author and do not reflect the official policy or position of
the funding agencies.

Y. Ishai supported by ERC Project NTSC (742754), ISF grant 1709/14, NSF-BSF
grant 2015782, and a grant from the Ministry of Science and Technology, Israel and
Department of Science and Technology, Government of India.

G. Malavolta supported by a gift from Ripple, a gift from DoS Networks, a grant
from Northrop Grumman, a Cylab seed funding award, and a JP Morgan Faculty
Fellowship.

T. Mour supported by BSF grant 2012378, and NSF-BSF grant 2015782.
R. Ostrovsky supported by NSF grant 1619348, BSF grant 2015782, DARPA Safe-

Ware subcontract to Galois Inc., DARPA SPAWAR contract N66001-15-C-4065, JP
Morgan Faculty Research Award, OKAWA Foundation Research Award, IBM Faculty
Research Award, Xerox Faculty Research Award, B. John Garrick Foundation Award,
Teradata Research Award, and Lockheed-Martin Corporation Research Award. The
views expressed are those of the authors and do not reflect position of the Department
of Defense or the U.S. Government.

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 8

2. Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 223–254. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 8

3. Attrapadung, N., Matsuda, T., Nishimaki, R., Yamada, S., Yamakawa, T.: Con-
strained PRFs for NC1 in traditional groups. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 543–574. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 19

https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-319-96881-0_19

Trapdoor Hash Functions and Their Applications 29

4. Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness
indistinguishability and secure computation in the plain model from new assump-
tions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol.
10626, pp. 275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 10

5. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

6. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995). https://doi.org/10.
1007/3-540-44750-4 8

7. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 666–684. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 36

8. Block, A.R., Maji, H.K., Nguyen, H.H.: Secure computation with constant commu-
nication overhead using multiplication embeddings. In: Chakraborty, D., Iwata, T.
(eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 375–398. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9 20

9. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

10. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing
rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56614-6 6

11. Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from
LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol.
11240, pp. 370–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03810-6 14

12. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 1

13. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 535–564.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 20

14. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 28

15. Chang, Y.-C.: Single database private information retrieval with logarithmic com-
munication. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004.
LNCS, vol. 3108, pp. 50–61. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-27800-9 5

16. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO

https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/978-3-030-05378-9_20
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/978-3-540-27800-9_5
https://doi.org/10.1007/978-3-540-27800-9_5

30 N. Döttling et al.

2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0 2

17. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee,
Wisconsin, 23–25 October 1995, pp. 41–50. IEEE Computer Society Press (1995)

18. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

19. Dinur, I., Keller, N., Klein, O.: An optimal distributed discrete log protocol with
applications to homomorphic secret sharing. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 213–242. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96878-0 8

20. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol.
9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53015-3 4

21. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp.
537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

22. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-
based and key-dependent message secure encryption schemes. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 3–31. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76578-5 1

23. Fazio, N., Gennaro, R., Jafarikhah, T., Skeith, W.E.: Homomorphic secret sharing
from Paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.) ProvSec
2017. LNCS, vol. 10592, pp. 381–399. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-68637-0 23

24. Garg, S., Gay, R., Hajiabadi, M.: New techniques for efficient trapdoor functions
and applications. Cryptology ePrint Archive, Report 2018/872 (2018). https://
eprint.iacr.org/2018/872

25. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual Symposium on Foundations of Computer Science, Berkeley, CA, USA, 26–
29 October 2013, pp. 40–49. IEEE Computer Society Press (2013)

26. Garg, S., Hajiabadi, M.: Trapdoor functions from the computational Diffie-Hellman
assumption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS,
vol. 10992, pp. 362–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96881-0 13

27. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st Annual ACM Symposium on Theory of Computing, Bethesda, MD,
USA, 31 May–2 June 2009, pp. 169–178. ACM Press (2009)

28. Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using fully
homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs.
J. Cryptol. 28(4), 820–843 (2015)

29. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. Technical
report (2019). (Personal communication)

30. Goldenberg, D., Liskov, M.: On related-secret pseudorandomness. In: Micciancio,
D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 255–272. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11799-2 16

https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-319-96878-0_8
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-76578-5_1
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/978-3-319-68637-0_23
https://eprint.iacr.org/2018/872
https://eprint.iacr.org/2018/872
https://doi.org/10.1007/978-3-319-96881-0_13
https://doi.org/10.1007/978-3-319-96881-0_13
https://doi.org/10.1007/978-3-642-11799-2_16

Trapdoor Hash Functions and Their Applications 31

31. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual
ACM Symposium on Theory of Computing, New York City, NY, USA, pp. 218–
229, 25–27 May 1987. ACM Press (1987)

32. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19571-6 12

33. Groth, J., Kiayias, A., Lipmaa, H.: Multi-query computationally-private informa-
tion retrieval with constant communication rate. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 107–123. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13013-7 7

34. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Cryptol. 25(1), 158–193 (2012)

35. Hemenway, B., Ostrovsky, R.: Extended-DDH and lossy trapdoor functions. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
627–643. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-
8 37

36. Hubacek, P., Wichs, D.: On the communication complexity of secure function
evaluation with long output. Cryptology ePrint Archive, Report 2014/669 (2014).
http://eprint.iacr.org/2014/669

37. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

38. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On
the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36594-2 34

39. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: STOC 2008, pp. 433–442 (2008)

40. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 31

41. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

42. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency
framework for secure neural network inference. In: USENIX Security Symposium,
pp. 1651–1669 (2018)

43. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th
Annual ACM Symposium on Theory of Computing, Portland, OR, USA, 14–17
June 2015, pp. 419–428. ACM Press (2015)

44. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In: 38th Annual Symposium on
Foundations of Computer Science, Miami Beach, Florida, 19–22 October 1997,
pp. 364–373. IEEE Computer Society Press (1997)

45. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314–328. Springer, Heidelberg (2005). https://doi.org/10.1007/11556992 23

https://doi.org/10.1007/978-3-642-19571-6_12
https://doi.org/10.1007/978-3-642-13013-7_7
https://doi.org/10.1007/978-3-642-30057-8_37
https://doi.org/10.1007/978-3-642-30057-8_37
http://eprint.iacr.org/2014/669
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-540-70936-7_31
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/11556992_23

32 N. Döttling et al.

46. Naor, M., Nissim, K.: Communication preserving protocols for secure function
evaluation. In: 33rd Annual ACM Symposium on Theory of Computing, Crete,
Greece, 6–8 July 2001, pp. 590–599. ACM Press (2001)

47. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st Annual
ACM Symposium on Theory of Computing, Atlanta, GA, USA, 1–4 May 1999, pp.
245–254. ACM Press (1999)

48. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA 2001, pp.
448–457 (2001)

49. Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere
statistically binding hashing and positional accumulators. In: Iwata, T., Cheon,
J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 121–145. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 6

50. Ostrovsky, R., Skeith, W.E.: A survey of single-database private information
retrieval: techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-71677-8 26

51. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th Annual ACM Symposium on Theory of Computing,
Victoria, British Columbia, Canada, 17–20 May 2008, pp. 187–196. ACM Press
(2008)

52. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In:
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 859–870 (2018)

53. Stern, J.P.: A new and efficient all-or-nothing disclosure of secrets protocol. In:
Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1 28

54. Winkler, S., Wullschleger, J.: On the efficiency of classical and quantum oblivious
transfer reductions. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 707–
723. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 38

55. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In:
27th Annual Symposium on Foundations of Computer Science, Toronto, Ontario,
Canada, 27–29 October 1986, pp. 162–167. IEEE Computer Society Press (1986)

https://doi.org/10.1007/978-3-662-48797-6_6
https://doi.org/10.1007/978-3-540-71677-8_26
https://doi.org/10.1007/978-3-540-71677-8_26
https://doi.org/10.1007/3-540-49649-1_28
https://doi.org/10.1007/978-3-642-14623-7_38

CCA Security and Trapdoor Functions
via Key-Dependent-Message Security

Fuyuki Kitagawa1(B), Takahiro Matsuda2, and Keisuke Tanaka3

1 NTT Secure Platform Laboratories, Tokyo, Japan
fuyuki.kitagawa.yh@hco.ntt.co.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

t-matsuda@aist.go.jp
3 Tokyo Institute of Technology, Tokyo, Japan

keisuke@is.titech.ac.jp

Abstract. We study the relationship among public-key encryption
(PKE) satisfying indistinguishability against chosen plaintext attacks
(IND-CPA security), that against chosen ciphertext attacks (IND-CCA
security), and trapdoor functions (TDF). Specifically, we aim at finding
a unified approach and some additional requirement to realize IND-CCA
secure PKE and TDF based on IND-CPA secure PKE, and show the fol-
lowing two main results.

As the first main result, we show how to achieve IND-CCA secu-
rity via a weak form of key-dependent-message (KDM) security. More
specifically, we construct an IND-CCA secure PKE scheme based on an
IND-CPA secure PKE scheme and a secret-key encryption (SKE) scheme
satisfying one-time KDM security with respect to projection functions
(projection-KDM security). Projection functions are very simple func-
tions with respect to which KDM security has been widely studied. Since
the existence of projection-KDM secure PKE implies that of the above
two building blocks, as a corollary of this result, we see that the existence
of IND-CCA secure PKE is implied by that of projection-KDM secure
PKE.

As the second main result, we extend the above construction of IND-
CCA secure PKE into that of TDF by additionally requiring a mild
requirement for each building block. Our TDF satisfies adaptive one-
wayness. We can instantiate our TDF based on a wide variety of compu-
tational assumptions. Especially, we obtain the first TDF (with adaptive
one-wayness) based on the sub-exponential hardness of the constant-
noise learning-parity-with-noise (LPN) problem.

Keywords: Chosen ciphertext security · Trapdoor functions ·
Key-dependent-message security

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 33–64, 2019.
https://doi.org/10.1007/978-3-030-26954-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_2

34 F. Kitagawa et al.

1 Introduction

1.1 Background

Public-key encryption (PKE) is one of the most fundamental cryptographic
primitives. The most basic security requirement for PKE is indistinguishabil-
ity against chosen plaintext attacks (IND-CPA security) [23]. However, in many
practical applications, PKE schemes should satisfy the stronger notion of indis-
tinguishability against chosen ciphertext attacks (IND-CCA security) [15,35] in
order to take active adversaries into consideration [10].

Since IND-CCA security is stronger than IND-CPA security, the existence
of IND-CCA secure PKE implies that of IND-CPA secure one. However, the
implication of the opposite direction is not known. While a partial negative
result was shown by Gertner, Malkin, and Myers [21], the question whether an
IND-CCA secure PKE scheme can be constructed from an IND-CPA secure one
has still been standing as a major open question in cryptography.

In addition to IND-CCA secure PKE, a family of trapdoor functions (TDF)
is also a fundamental primitive whose relationship with IND-CPA secure PKE
has been widely studied. It was shown that an IND-CPA secure PKE can be
constructed from TDF [6,40]. For the opposite direction, Gertner, Malkin, and
Reingold [22] showed a negative result stating that TDF cannot be built from
PKE in a black-box way.

In fact, in the random oracle model [7], we can construct both IND-CCA
secure PKE and TDF based solely on IND-CPA secure PKE using a simple and
unified derandomization technique [6,19]. However, in the standard model, we
cannot use such a simple derandomization technique successfully. Especially, in
order to construct IND-CCA secure PKE and TDF in the standard model by cir-
cumventing the impossibility results [21,22], we need non-black-box techniques
or some additional requirements for the building block PKE scheme.

Hajiabadi and Kapron [24] tackled the above question, and as a main result,
they built a TDF based on a PKE scheme satisfying circular security [14] and
a randomness re-usability property called reproducibility [5]. Since their TDF
satisfies one-wayness under correlated products, based on the same assumption,
they also obtained a construction of IND-CCA secure PKE by relying on the
result by Rosen and Segev [38]. Their TDF construction is elegant and can
also be extended to deterministic encryption [4]. However, due to the somewhat
strong additional requirement of randomness re-usability, its instantiations are
limited to specific number theoretic assumptions.

In this work, we further study the above question. Especially, we aim at
finding a unified approach and some additional requirement to realize IND-CCA
secure PKE and TDF based on IND-CPA secure PKE.

1.2 Our Results

We show a unified approach to build IND-CCA secure PKE and TDF based
on IND-CPA secure PKE by additionally using secret-key encryption (SKE)

CCA Security and TDF via KDM Security 35

satisfying a weak form of key-dependent-message (KDM) security [9]. Roughly
speaking, an encryption scheme is said to be KDM secure if it can securely
encrypt a message of the form f(sk), where sk is the secret key and f is a
function. The details of our results are as follows.

IND-CCA Security via Key-Dependent-Message Security. As the first main
result, we construct an IND-CCA secure PKE scheme based on an IND-CPA
secure PKE scheme and an SKE scheme satisfying KDM security. The building
block SKE scheme is required to be one-time KDM secure with respect to pro-
jection functions (projection-KDM secure). Projection functions are very simple
functions such that each output bit depends on at most a single bit of an input.
An SKE scheme satisfying one-time projection-KDM security can be built from
a wide variety of computational assumptions [3,11–13,16]. We obtain this result
based on a construction technique used by Koppula and Waters [30] who showed
how to construct IND-CCA secure attribute-based encryption (ABE) from IND-
CPA secure one using a pseudorandom generator (PRG) with a special security
property called hinting PRG. We extend the techniques of Koppula and Waters
in several aspects. See Sect. 2 for the details.

The existence of PKE satisfying projection-KDM security against chosen
plaintext attacks implies that of the above two building blocks. Therefore, as a
corollary of this result, we see that the existence of IND-CCA secure PKE is
implied by that of PKE with projection-KDM security (against CPA!).

Given our result and the result by Koppula and Waters, it is natural to ask
what is the relationship between hinting PRG and one-time KDM secure SKE.
To clarify this, we show that a one-time projection-KDM secure SKE scheme
can be built from a hinting PRG. This means that one-time projection-KDM
secure SKE is not a stronger assumption than hinting PRG.

Previously, Matsuda and Hanaoka [33] constructed an IND-CCA secure PKE
scheme from a PKE scheme satisfying the sender non-committing property and
an SKE scheme satisfying one-time KDM security with respect to circuits of
a-priori bounded size. We improve their result in the sense that our construction
requires weaker security properties for both of the underlying PKE and SKE
schemes compared to theirs.

On Black-Box Usage of Building Blocks. Our construction of an IND-CCA secure
PKE scheme is fully-black-box [36] and non-shielding [21]. A construction of a
PKE scheme is said to be shielding if the decryption algorithm of the scheme does
not call the encryption algorithm of the building block schemes, and otherwise it
is called non-shielding. We show that our construction being a non-shielding con-
struction is essential by showing that a fully-black-box and shielding construction
of an IND-CCA secure PKE scheme based on our assumptions is impossible by
extending the impossibility result shown by Gertner et al. [21]. More specifically,
we show that there is no fully-black-box and shielding construction of an IND-
CCA secure PKE scheme based on a projection-KDM secure PKE scheme that
trivially implies both of our building blocks.

36 F. Kitagawa et al.

Extension to TDF. As the second main result, we extend the above construction
of an IND-CCA secure PKE scheme into that of a TDF by additionally requiring
a mild requirement for each building block. Our TDF satisfies adaptive one-
wayness [27]. Adaptive one-wayness ensures that an adversary cannot invert a
function in the family even under the existence of the inversion oracle, and thus
it is a much stronger security property compared to ordinary one-wayness.

The additional requirements for the building blocks are as follows.

– First, we require that the underlying IND-CPA secure PKE scheme have the
pseudorandom ciphertext property. Namely, a ciphertext of the underlying
IND-CPA secure PKE scheme needs to be indistinguishable from a uniformly
random element sampled from the ciphertext space of the scheme.

– Second, we require that the underlying projection-KDM secure SKE scheme
be randomness-recoverable. Namely, random coins used to encrypt a message
needs to be recovered together with the message in the decryption process.

Both of the above two requirements are mild in the following sense.
For the first requirement, a number of IND-CPA secure PKE schemes based

on concrete computational assumptions naturally have this property. In fact,
as far as we know, an IND-CPA secure PKE scheme satisfying the pseudoran-
dom ciphertext property can be constructed from any concrete computational
assumption implying IND-CPA secure PKE.

For the second requirement, the randomness-recovering property is easy to
achieve in the secret-key setting while this property is so hard to achieve in the
public-key setting that it immediately yields a TDF. Projection-KDM secure
PKE schemes based on projective hash functions [11,12,39] can easily be trans-
formed into SKE variants satisfying the randomness-recovering property. Also,
projection-KDM secure SKE schemes based on the learning-parity-with-noise
(LPN) and learning-with-errors (LWE) assumptions proposed by Applebaum,
Cash, Peikert, and Sahai [3] already satisfy this property. Moreover, even the
recent constructions of KDM secure PKE schemes based on the computational
Diffie-Hellman (CDH) and factoring assumptions [13,16] can be transformed into
one-time projection-KDM secure SKE with the randomness-recovering property.

As noted above, the additional requirements needed to realize a TDF are
mild. As a result, we can instantiate our TDF based on a wide variety of com-
putational assumptions. Especially, by combining the previous results [3,42], we
obtain the first TDF (with adaptive one-wayness) based on the sub-exponential
hardness of the constant-noise LPN problem. Moreover, we also obtain the first
TDF satisfying adaptive one-wayness based on the low-noise LPN assumption.
Previously to our work, a TDF satisfying ordinary one-wayness based on the
low-noise LPN assumption was shown by Kiltz, Masny, and Pietrzak [26].

1.3 Concurrent and Subsequent Works

Very recently, in a concurrent work, Lombardi, Quach, Rothblum, Wichs, and
Wu [31] showed how to construct a reusable designated-verifier non-interactive

CCA Security and TDF via KDM Security 37

zero-knowledge (DV-NIZK) argument system based on the combination of an
IND-CPA secure PKE scheme and a hinting PRG. In one of the steps in their con-
struction, they employed the construction methodology of Koppula and Waters
[30], and a hinting PRG is used in the step.

Based on our technique in this paper, Lombardi et al. [32] (in their latest
update on May 23, 2019) and Kitagawa and Matsuda [28] independently and
concurrently observe that a hinting PRG used in Lombardi et al.’s reusable DV-
NIZK argument system can also be replaced with a one-time P-KDM secure
SKE in exactly the same way as we do in our work. That is, these works show
that a reusable DV-NIZK argument system can be constructed from an IND-
CPA secure PKE scheme and a one-time P-KDM secure SKE scheme. This leads
to the first reusable DV-NIZK argument system based on the LPN assumption.

Furthermore, Kitagawa and Matsuda [28] show that using the reusable DV-
NIZK argument system above and our result on IND-CCA secure PKE, we
can transform a KDM-CPA secure PKE scheme into a KDM-CCA secure one
without requiring any additional assumption. This leads to the first KDM-CCA
secure PKE schemes based on the CDH and LPN assumptions.

1.4 Paper Organization

In Sect. 2, we show an overview of our techniques. In Sect. 3, we review defini-
tions of cryptographic primitives. In Sect. 4, we show our proposed IND-CCA
secure KEM. In Sect. 5, we prove the impossibility of fully-black-box shielding
constructions. Finally, in Sect. 6, we present our proposed TDF.

Many of the details are omitted due to the space limitation. See the full
version [29] for all the details.

2 Technical Overview

We give an overview of our techniques.

2.1 Achieving IND-CCA Security via Randomness-Recovering

One of classical mechanisms for achieving IND-CCA security is adopting a valid-
ity checking by re-encryption in the decryption process. In this technique, we
make an encryption scheme randomness-recoverable, that is, a randomness used
to generate a ciphertext is recovered during the decryption process. Then, when
decrypting the ciphertext, we can check that the ciphertext was well-formed by
re-encrypting the decrypted message using the recovered randomness.

Such a mechanism can be easily implemented in the random oracle model.
Fujisaki and Okamoto [19] showed that by designing the encryption algorithm as
Enc(pk, r‖m;H(r‖m)), we can construct an IND-CCA secure PKE scheme based
on the above strategy, where Enc(pk, ·; ·) is the encryption algorithm of an IND-
CPA secure PKE scheme and H is a hash function modeled as a random oracle.
On the other hand, in the standard model, realizing a randomness-recoverable

38 F. Kitagawa et al.

encryption scheme is difficult. Almost all existing such schemes are based on a
TDF with advanced security properties [27,34,38]. The main theme of this work
is how we implement the mechanism in the standard model when starting from
an IND-CPA secure PKE scheme.

A naive idea for our goal would be to design the encryption algorithm as
Enc(pk, r‖m; r), where Enc(pk, ·; ·) again denotes the encryption algorithm of an
IND-CPA secure PKE scheme. Unfortunately, it seems difficult to prove the
security of this construction based on its IND-CPA security, since in order to
rely on IND-CPA security, we need to ensure that a message to be encrypted is
completely independent of the encryption randomness r.

A natural idea to remove the dependency is to use a variant of the
hybrid encryption paradigm. Namely, we design the encryption algorithm as
(Enc(pk, s; r),E(s, r‖m)), where E(s, ·) is the encryption algorithm of an SKE
scheme. At first glance, the dependency is removed, but the construction is
in fact at a “dead-lock” and it also seems difficult to prove its security. We
can solve the dead-lock by using the signaling technique1 recently introduced by
Koppula and Waters [30] who showed how to construct IND-CCA secure ABE
from IND-CPA secure one using a PRG with a special security property called
hinting PRG.

2.2 Partial Randomness-Recovering Using the Signaling Technique

We now use 2n public keys (pkv
i)i∈[n],v∈{0,1} of the IND-CPA secure PKE scheme

to encapsulate a secret key s = (s1, . . . , sn) ∈ {0, 1}n of the SKE scheme, where
[n] := {1, . . . , n}. Below, let (skv

i)i∈[n],v∈{0,1} be secret keys corresponding to
(pkv

i)i∈[n],v∈{0,1}. Roughly, we “encode” each bit si of s as (ct0i , ct
1
i), where

ctsii = Enc(pksii , 1; rsii) and ct1−si
i = Enc(pk1−si

i , 0; r1−si
i).

Namely, we encapsulate s by using 2n ciphertexts (ct0i , ct
1
i)i∈[n]. During the

decapsulation, we decrypt ct0i by using sk0i and set si := 0 if the decryption
result is 1 and si := 1 otherwise.

Of course, if we encrypt all of the random coins (rvi)i∈[n],v∈{0,1} used to
encapsulate s by the SKE scheme to make the resulting scheme randomness-
recoverable, it leads to a dead-lock as before. However, by using the signaling
technique used by Koppula and Waters, we can perform the validity check by
re-encrypting n out of 2n ciphertexts of the IND-CPA secure PKE scheme in
the decryption process, and solve the dead-lock as follows.

We say that “an encoding (ct0i , ct
1
i) signals α” when ctαi encrypts 1. By

using an (ordinary) PRG and adding a “tag” Ti to each encoding (ct0i , ct
1
i) as

(ct0i , ct
1
i ,Ti), we can build a mechanism ensuring that it is statistically impossible

to generate an encoding (ct0i , ct
1
i ,Ti) that signals both 0 and 1 at the same time.

In order to implement this mechanism, we also add some random strings to the
public key that are used to generate tags, but we ignore them for simplicity in

1 Garg, Gay, and Hajiabadi [20] also used a similar technique called mirroring.

CCA Security and TDF via KDM Security 39

this overview. In this case, we can perform the validity check of the key encap-
sulation part (ct0i , ct

1
i ,Ti)i∈[n] by checking whether (ctsii)i∈[n] are well-formed

encryptions of 1 by re-encryption. This is intuitively because if we confirm that
these n ciphertexts are encryptions of 1, we can also be sure that the remaining n
ciphertexts (ct1−si

i)i∈[n] are not encrypting 1 due to the added mechanism based
on the PRG and tags (Ti)i∈[n], and thus we can finish the pseudo-validity-check
of all 2n ciphertexts of the key encapsulation part. Thus, in this construction, in
addition to a message to be encrypted, the SKE scheme needs to encrypt only
n random coins (rsii)i∈[n] used to generate (ctsii)i∈[n].

2.3 Outline of the Proof: Necessity of KDM Secure SKE

We explain how to prove the IND-CCA security of the above construction. A
ciphertext of the scheme is of the form

(
(ct0i , ct

1
i ,Ti)i∈[n], E(s, (rsii)i∈[n]‖m)

)
.

The general picture of the security proof is the same as that for the ordinary
hybrid encryption scheme, and thus we first eliminate the information of s from
the key encapsulation part (ct0i , ct

1
i ,Ti)i∈[n] and then complete the entire proof

by using the security of SKE.
We first explain how to eliminate the information of s from the key encapsu-

lation part. In the security proof, thanks to the validity check by re-encryption
in the decryption process, we can simulate the decryption oracle correctly by
using (sksii)i∈[n] instead of (sk0i)i∈[n]. In this case, we can change the distribu-
tion of (ct1−si

i)i∈[n] in the challenge ciphertext by using the IND-CPA secu-
rity of the PKE scheme since (r1−si

i)i∈[n] used to generate (ct1−si
i)i∈[n] are not

encrypted by the SKE scheme and the decryption oracle can be simulated with-
out (sk1−si

i)i∈[n]. We can eliminate the information of s from the key encapsula-
tion part (ct0i , ct

1
i ,Ti)i∈[n] by changing (ct1−si

i)i∈[n] encrypting 0 into ciphertexts
encrypting 1. This means that after this change, every encoding (ct0i , ct

1
i ,Ti)

contained in the challenge ciphertext signals 0 and 1 at the same time. While
an adversary cannot generate such an encoding that signals 0 and 1 at the same
time as noted above, the reduction algorithm can do it by programming random
strings contained in the public key that are used to generate tags (Ti)i∈[n].

Since we eliminate the information of s from the key encapsulation part
above, it seems that we can complete the entire security proof by using the
security of the SKE scheme. However, in order to do so, we need an SKE scheme
that satisfies KDM security. This is because the underlying SKE scheme needs to
encrypt (rsii)i∈[n], which is a message depending on the key s. Concretely, (rsii)i∈[n]

can be seen as f(s) for the function f that has (rvi)i∈[n],v∈{0,1} hardwired, and
given s ∈ {0, 1}n outputs (rsii)i∈[n]. Such a function is described as a very simple
form of functions called projection functions, for which KDM security has been
widely studied [2,3,11–13,16]. In our construction, we need an SKE scheme
satisfying only one-time KDM security with respect to projection functions,

40 F. Kitagawa et al.

since our construction is basically a hybrid encryption scheme. This is the reason
KDM secure SKE is needed for our construction of IND-CCA secure PKE.

The Construction by Koppula and Waters [30]. The construction we explained
so far is in fact almost the same as the PKE variant of the construction proposed
by Koppula and Waters, except that a one-time KDM secure SKE scheme is used
instead of a hinting PRG. Here, we briefly explain the notion of hinting PRG
and how it is used in their construction.

A hinting PRG is a PRG that, given an n-bit string x, outputs an (n+1) · �-
bit string y0‖y1‖ · · · ‖yn, where yi is an �-bit string for every i ∈ [n]. Then,
its security property requires that Y := y0‖(yi,0‖yi,1)i∈[n] ∈ {0, 1}(2n+1)·� be
indistinguishable from a uniformly random string in {0, 1}(2n+1)·�, where yi,xi

=
yi and yi,1−xi

is a uniformly random string in {0, 1}� for every i ∈ [n]. We see
that the locations where y1, · · · yn are placed in Y depend on the seed x, and
thus Y itself can be seen as a “hint” of the seed x. Therefore, we can say that the
security property of a hinting PRG requires that its output be pseudorandom
even if such a hint of the seed is revealed.

Koppula and Waters used a hinting PRG HPRG in their construction as
follows. When encrypting a message m, their scheme first generates a seed x =
(x1, · · · , xn) ∈ {0, 1}n of HPRG and computes y0‖y1‖ · · · ‖yn ← HPRG(x). Then,
it generates an encapsulation of x by generating an encoding (ct0i , ct

1
i ,Ti) of xi

in which yi is used as the encryption randomness for ctxi
i for every i ∈ [n]. Note

that ct1−xi
i is generated by using truly random coins. Moreover, it generates the

data encapsulation part as m ⊕ y0. The resulting ciphertext is of the form
(

(ct0i , ct
1
i ,Ti)i∈[n], m ⊕ y0

)
.

When decrypting the ciphertext, we can first recover x and thus y0‖y1‖ · · · ‖yn ←
HPRG(x) from the encapsulation part. Since (y1, · · · , yn) are random coins used
to generate (ctxi

i)i∈[n], we can also perform the pseudo-validity-check of all 2n
ciphertexts of the key encapsulation part as we explained above. The security
proof of their construction also goes through in a similar fashion to the proof of
our construction, except that the security property of HPRG is utilized instead
of KDM security.

2.4 Extension to TDF

We explain how we extend the above construction of IND-CCA secure PKE
based on IND-CPA secure PKE and one-time KDM secure SKE, into a TDF.
More concretely, we explain how we make the above construction completely
randomness-recoverable.

In the above construction, there are two types of encryption randomness
that are not recovered in the decryption process. The first one is (r1−si

i)i∈[n] for
the underlying IND-CPA secure PKE scheme. The other one is the encryption
randomness for the underlying SKE scheme. We require an additional require-
ment for each building block to make it possible to recover these two types of
encryption randomness.

CCA Security and TDF via KDM Security 41

First, to deal with (r1−si
i)i∈[n] for the IND-CPA secure PKE scheme, we

require the underlying IND-CPA secure PKE scheme have the pseudorandom
ciphertext property. Namely, we require that a ciphertext of the underlying IND-
CPA secure PKE scheme be indistinguishable from a uniformly random element
sampled from the ciphertext space of the scheme. In the above construction,
recall that we encode each bit si of s as (ct0i , ct

1
i ,Ti), where ctsii = Enc(pksii , 1; rsii)

and ct1−si
i = Enc(pk1−si

i , 0; r1−si
i). We now modify the way si is encoded so that

ct1−si
i is an element sampled from the ciphertext space uniformly at random.

We can still decode si correctly with overwhelming probability thanks to the
signaling technique even if we add this modification.2 Then, we see that the issue
of recovering (r1−si

i)i∈[n] is solved by designing the TDF such that (ct1−si
i)i∈[n]

are directly sampled from the ciphertext space as part of an input to the TDF.
Second, to deal with the random coins for the SKE scheme, we simply require

that the SKE scheme be randomness-recoverable. Namely, we require that ran-
dom coins used to encrypt a message be recovered with the message in the
decryption process. The randomness-recovering property is easy to achieve in the
secret-key setting, and it is also the case even if we require the SKE scheme to be
KDM secure. In fact, we can easily construct a one-time projection-KDM secure
SKE scheme that is randomness-recoverable by modifying existing projection-
KDM secure PKE schemes [11–13,16,39]. Moreover, the projection-KDM secure
SKE schemes based on the LPN and LWE assumptions proposed by Applebaum
et al. [3] already satisfy this property.

With the help of these two additional requirements, we can modify our IND-
CCA secure PKE scheme into a TDF. Since our TDF is an extension of IND-CCA
secure PKE, it naturally satisfies adaptive one-wayness [27].

2.5 Optimizations and Simplifications

Finally, we explain several optimizations and simplifications that are applied in
the actual constructions.

The first optimization is on the number of key pairs of the underlying IND-
CPA secure PKE scheme. In the above overview, 2n key pairs of the underlying
IND-CPA secure PKE scheme are used to construct the key encapsulation part
(ct0i , ct

1
i ,Ti)i∈[n]. In our actual constructions, we use only two key pairs of the

underlying IND-CPA secure PKE scheme. More concretely, in our actual con-
structions, every encoding (ct0i , ct

1
i ,Ti) is generated by using the same pair of

public keys (pk0, pk1). In fact, if we allow a public parameter shared by all users
of the resulting schemes, even one of these public keys, pk1, can be put into the
public parameter, and a public key of the resulting IND-CCA secure scheme and
an evaluation key of the resulting TDF consist only of a single public key pk0 of
the underlying IND-CPA secure scheme. This optimization is possible by devis-
ing at which step of the hybrid games we switch the secret keys of the underlying
IND-CPA secure PKE scheme used to simulate the decryption oracle.

2 While we cannot achieve perfect correctness by this modification, we can still achieve
almost-all-keys correctness [18]. For its formal definition, see Sect. 3.

42 F. Kitagawa et al.

The second optimization is on how to make each tag Ti contained in each
encoding (ct0i , ct

1
i ,Ti). In the original signaling technique, a one-time signa-

ture scheme is additionally used in order to generate tags. We show that we
can replace a one-time signature scheme with a target collision resistant hash
function. Such a technique was previously used by Matsuda and Hanaoka [33].
Although both of these primitives can be realized using only a one-way function
as an assumption [37], this improvement is critical when constructing a TDF
since if we attempt to use a one-time signature scheme for constructing a TDF,
we would need to recover the random coins used to generate a key pair of the
one-time signature scheme during the inversion process. We can avoid this issue
by the use of a target collision resistant hash function instead. This modification
is made possible due to the use of a deferred analysis technique in the security
proof.

Third, we make a simplification by using key encapsulation mechanism
(KEM) instead of PKE. In this overview, we have explained how to construct an
IND-CCA secure PKE scheme and a TDF based on IND-CPA secure PKE by
additionally using KDM secure SKE. In our actual proposals, we construct an
IND-CCA secure KEM (and a TDF) based on IND-CPA secure KEM and KDM
secure SKE. As explained above, in the original signaling technique, we use an
(ordinary) PRG. More precisely, in the original signaling technique, ctsii in each
encoding is generated as ctsii = Enc(pksii , 1‖ui; rsii), where ui is a seed of PRG.
In our actual construction, in order to hide the use of a PRG from the descrip-
tion and simplify the construction, we use a KEM whose session-key space is
sufficiently larger than its randomness space. We can generically transform an
IND-CPA secure PKE scheme into a KEM with such a property. We show that
the signaling technique can be implemented by using such a KEM.

For the construction of TDF, we also add an optimization that is made
possible by the pseudorandom ciphertext property of the underlying IND-CPA
secure PKE scheme. By this optimization, an image of a function consists of n
ciphertexts of the IND-CPA secure PKE scheme corresponding to (ctsi

i)i∈[n], n
tags (Ti)i∈[n], and a ciphertext of the SKE scheme.

We finally remark that all of the above optimizations and simplifications can
be brought back to the construction of an IND-CCA secure ABE scheme based
on an IND-CPA secure one and a hinting PRG by Koppula and Waters [30].

3 Preliminaries

In this section, we review the basic notation and the definitions of main crypto-
graphic primitives. For the definitions of primitives that are not reviewed here,
see the full version of this paper [29].

Basic Notation. N denotes the set of natural numbers, and for n ∈ N, we define
[n] := {1, . . . , n}. For a discrete finite set S, |S| denotes its size, and x

r←− S
denotes choosing an element x uniformly at random from S. For strings x and
y, x‖y denotes their concatenation. For a (probabilistic) algorithm or a function

CCA Security and TDF via KDM Security 43

A, y ← A(x) denotes assigning to y the output of A on an input x, and if we
need to specify a randomness r used in A, we denote y ← A(x; r) (in which case
the computation of A is understood as deterministic on input x and r). Sup(A)
denotes the support of A. For any values x, y, (x ?= y) is defined to be 1 if x = y
and 0 otherwise. λ denotes a security parameter. (P)PT stands for (probabilistic)
polynomial time. A function f(λ) is said to be negligible if f(λ) tends to 0 faster
than 1

λc for every constant c > 0. We write f(λ) = negl(λ) to denote that f(λ)
is a negligible function. poly(·) denotes an unspecified positive polynomial.

3.1 Key Encapsulation Mechanism

Here, we review the definitions for a KEM. For the definition of correctness,
we formalize “almost-all-keys” correctness, which is naturally adapted from the
definition for PKE formalized by Dwork, Naor, and Reingold [18].

A key encapsulation mechanism (KEM) KEM consists of the three PPT algo-
rithms (KKG,Encap,Decap). KKG is the key generation algorithm that takes 1λ

as input, and outputs a public/secret key pair (pk, sk). We assume that the
security parameter λ determines the ciphertext space C, the session-key space
K, and the randomness space R of Encap. Encap is the encapsulation algorithm
that takes a public key pk as input, and outputs a ciphertext/session-key pair
(ct, k). Decap is the (deterministic) decapsulation algorithm that takes a secret
key sk and a ciphertext ct as input, and outputs a session-key k or the invalid
symbol ⊥ /∈ K.

Letting ε : N → [0, 1], we say that a KEM KEM = (KKG,Encap,Decap) is
ε-almost-all-keys correct if we have

ErrKEM(λ) := Pr
(pk,sk)←KKG(1λ)

[
∃r ∈ R s.t.

Encap(pk; r) = (ct, k)
∧ Decap(sk, ct)
= k

]
= ε(λ).

(A public key pk under which incorrect decapsulation could occur is called erro-
neous.) Furthermore, we just say that KEM is correct (resp. almost-all-keys cor-
rect) if ErrKEM(λ) is zero (resp. negl(λ)).

Now we review the security definitions for a KEM used in this paper, which
are IND-CCA security, IND-CPA security, and the pseudorandom ciphertext
property. For convenience, we will define the multi-challenge versions for the
latter two notions, which are polynomially equivalent to the single-challenge
versions via a standard hybrid argument.

Definition 1 (Security Notions for a KEM). Let KEM = (KKG,Encap,
Decap) be a KEM whose ciphertext and session-key spaces are C and K, respec-
tively. We say that KEM satisfies

– IND-CCA security if for all PPT adversaries A, we have AdvccaKEM,A(λ) :=
2 · |Pr[ExptccaKEM,A(λ) = 1] − 1/2| = negl(λ), where ExptccaKEM,A(λ) is defined as
in Fig. 1 (left), and in the experiment, A is not allowed to submit ct∗ to the
decapsulation oracle Decap(sk, ·).

44 F. Kitagawa et al.

Fig. 1. Security experiments for a KEM: IND-CCA experiment (left), (Multi-challenge)
IND-CPA experiment (center), and the (multi-challenge) pseudorandom ciphertext
property experiment (right).

– IND-CPA security if for all PPT adversaries A and all polynomials � = �(λ),
we have Advmcpa

KEM,�,A(λ) := 2 · |Pr[Exptmcpa
KEM,�,A(λ) = 1] − 1/2| = negl(λ), where

Exptmcpa
KEM,�,A(λ) is defined as in Fig. 1 (center).

– the pseudorandom ciphertext property if for all PPT adversaries A and all
polynomials � = �(λ), we have Advmprct

KEM,�,A(λ) := 2 · |Pr[Exptmprct
KEM,�,A(λ) =

1] − 1/2| = negl(λ), where Exptmprct
KEM,�,A(λ) is defined as in Fig. 1 (right).

3.2 Secret-Key Encryption

A secret-key encryption (SKE) scheme SKE consists of the three PPT algorithms
(K,E,D). K is the key generation algorithm that takes 1λ as input, and outputs
a secret key sk. We assume that the security parameter λ determines the secret
key space K and the message space M. E is the encryption algorithm that takes
a secret key sk and a plaintext m as input, and outputs a ciphertext ct. D is the
(deterministic) decryption algorithm that takes a secret key sk and a ciphertext
ct as input, and outputs a plaintext m or the invalid symbol ⊥ /∈ M. An SKE
scheme SKE = (K,E,D) is said to be correct if for all sk ∈ K and all m ∈ M, it
holds that D(sk,E(sk,m)) = m.

In our proposed constructions of a TDF, we will use an SKE scheme that
satisfies the “randomness-recovering decryption” property, which requires that
for an honestly generate ciphertext, the randomness used to generate it can be
recovered in the decryption process. We formally define the property as follows.

Definition 2 (Randomness-Recovering Decryption). Let SKE = (K,E,D)
be an SKE scheme whose secret key space is K, whose plaintext space is M,
and the randomness space of whose encryption algorithm E is R. We say that
SKE satisfies the randomness-recovering decryption property, if there exists a
deterministic PT algorithm RD (called the randomness-recovering decryption
algorithm) such that for all sk ∈ K, all m ∈ M, and all r ∈ R, we have
RD(sk,E(sk,m; r)) = (m, r).

Here, we recall KDM security of an SKE scheme. For simplicity, we only give
the definition for the single key setting, which is sufficient for our purpose.

CCA Security and TDF via KDM Security 45

Fig. 2. The KDM security experiment for an SKE (left) scheme, the KDM-encryption
oracle used in the KDM security experiment (center), and the adaptive one-wayness
experiment for a TDF (right).

Definition 3 (KDM Security). Let SKE = (K,E,D) be an SKE scheme with
a secret key space K and a plaintext space M. For a family of functions F
with domain K and range M and an adversary A, consider the experiment
ExptkdmSKE,F,A(λ) defined as in Fig. 2 (left), where the KDM-encryption oracle Okdm

is described in Fig. 2 (center).
We say that SKE is F-KDM secure if for all PPT adversaries A, we have

AdvkdmSKE,F,A(λ) := 2 · |Pr[ExptkdmSKE,F,A(λ) = 1] − 1/2| = negl(λ).
Furthermore, we say that SKE is one-time F-KDM secure if AdvkdmSKE,F,A(λ)

= negl(λ) for all PPT adversaries A that make a single KDM-encryption query.

Function Families for KDM Security. We will deal with the following function
families for KDM security of an SKE scheme with key space K and plaintext
space M:

– P (Projection functions): A function is said to be a projection function if
each of its output bits depends on at most a single bit of its input. We denote
by P the family of projection functions with domain K and range M.

– Bsize (Circuits of a-priori bounded size size): We denote by Bsize, where size =
size(λ) is a polynomial, the function family with domain K and range M such
that each member in Bsize can be described by a circuit of size size.

3.3 Trapdoor Function

Here, we review the definitions for a TDF. As in the KEM case, for correctness,
we will define almost-all-keys correctness.

A trapdoor function (TDF) TDF consists of the four PPT algorithms (Setup,
Samp,Eval, Inv): Setup is the setup algorithm that takes 1λ as input, and outputs
an evaluation key/trapdoor pair (ek, td). We assume that the security parame-
ter λ determines the domain X . Samp is the domain sampling algorithm that
takes 1λ as input, and outputs a domain element x ∈ X . Eval is the evaluation
algorithm that takes an evaluation key ek and a domain element x as input, and
outputs some element y. Inv is the (deterministic) inversion algorithm that takes
a trapdoor td and an element y as input, and outputs some element x which
could be the invalid symbol ⊥ /∈ X .

46 F. Kitagawa et al.

Letting ε : N → [0, 1], we say that a TDF TDF = (Setup,Samp,Eval, Inv) is
ε-almost-all-keys correct if we have

ErrTDF(λ) := Pr
(ek,td)←Setup(1λ)

[
∃x ∈ X s.t. Inv(td,Eval(ek, x))
= x

]
= ε(λ).

Furthermore, we just say that TDF is correct (resp. almost-all-keys correct) if
ErrTDF(λ) is zero (resp. negl(λ)).

Definition 4 (Adaptive One-wayness/(Ordinary) One-wayness). Let
TDF = (Setup,Samp,Eval, Inv) be a TDF with domain X . We say that TDF
is adaptively one-way if for all PPT adversaries A, we have AdvaowTDF,A(λ) :=
Pr[ExptaowTDF,A(λ) = 1] = negl(λ), where ExptaowTDF,A(λ) is defined as in Fig. 2
(right), and in the experiment, A is not allowed to submit y∗ to the inversion
oracle Inv(td, ·).

Furthermore, we say that TDF is one-way if AdvaowTDF,A(λ) = negl(λ) for all
adversaries that never use the inversion oracle Inv(td, ·).

4 Chosen Ciphertext Security via KDM Security

In this section, we show our proposed construction of an IND-CCA secure KEM.
Specifically, in Sect. 4.1, we present the formal description of our proposed

KEM, state theorems regarding its correctness/security, and discuss its conse-
quences and extensions. Then, in Sects. 4.2 and 4.3, we prove the correctness
and IND-CCA security of our proposed construction, respectively.

4.1 Our Construction

Let � = �(λ) be a polynomial, which will denote the session-key length of the
constructed KEM. Our construction uses the building blocks KEM, SKE, and
Hash with the following properties:

– KEM = (KKG,Encap,Decap) is a KEM such that (1) its session-key space is
{0, 1}4λ, (2) the randomness space of Encap is {0, 1}λ, and (3) the image size
of Decap(sk, ·) for any sk output by KKG(1λ) (other than ⊥) is at most 2λ.3

– SKE = (K,E,D) is an SKE scheme whose secret key space is {0, 1}n for some
polynomial n = n(λ) and whose plaintext space is {0, 1}n·λ+�, and we denote
the randomness space of E by RSKE.

– Hash = (HKG,H) is a keyed hash function such that the range of H is {0, 1}λ,
which we are going to assume to be target collision resistant.

Using these building blocks, the proposed KEM KEMcca = (KKGcca,Encapcca,
Decapcca) is constructed as in Fig. 3. Its session-key space is {0, 1}�, and the
randomness space R of Encapcca is R = {0, 1}n × ({0, 1}λ)2n × {0, 1}� × RSKE.

For the correctness and security of KEMcca, the following theorems hold.
3 These three requirements are without loss of generality for an IND-CPA secure

KEM: The properties (1) and (3) can be achieved by stretching a session-key of a
KEM with session-key space {0, 1}λ by using a PRG G : {0, 1}λ → {0, 1}4λ, and the
randomness space of Encap can also be freely adjusted by using a PRG.

CCA Security and TDF via KDM Security 47

Fig. 3. The proposed KEM KEMcca.
(†) h ∈ {0, 1}λ is treated as an element of {0, 1}4λ

by some canonical injective encoding (say, putting the prefix 03λ), and the arithmetic
is done over GF(24λ) where we identify {0, 1}4λ with GF(24λ). (�) We call this step the
find step.

Theorem 1. Let ε = ε(λ) ∈ [0, 1]. If KEM is ε-almost-all-keys correct and SKE
is correct, then KEMcca is (ε + n · 2−λ)-almost-all-keys correct.

Theorem 2. Assume that KEM is almost-all-keys correct and IND-CPA secure,
SKE is one-time P-KDM secure, and Hash is target collision resistant. Then,
KEMcca is IND-CCA secure.

The proofs of Theorems 1 and 2 are given in Sects. 4.2 and 4.3, respectively.

Implications to Black-Box Constructions/Reductions. It is straightforward to
see that our construction uses the underlying primitives in a black-box manner.
As will be clear from our security proof, our reduction algorithms also treat
the underlying primitives and an adversary in a black-box manner. In fact, our
construction/reduction is fully black-box in the sense of [36]. Since there exists
a black-box construction of a target collision resistant hash function from a one-
way function, which can be trivially constructed from an IND-CPA secure PKE
scheme/KEM in a black-box manner, and since an IND-CCA/CPA PKE scheme
and KEM imply each other (in a black-box manner), we obtain the following
result as a corollary of our theorems.

48 F. Kitagawa et al.

Corollary 1. There exists a fully black-box construction of an IND-CCA secure
PKE scheme/KEM from an IND-CPA secure PKE scheme/KEM and a one-time
P-KDM secure SKE scheme that can encrypt plaintexts of length Ω(n ·λ), where
n = n(λ) is the secret key length of the SKE scheme.

Furthermore, since a P-KDM secure PKE scheme trivially implies both an IND-
CPA secure PKE scheme/KEM and a one-time P-KDM secure SKE scheme, we
obtain another corollary.

Corollary 2. There exists a fully black-box construction of an IND-CCA secure
PKE scheme/KEM from a P-KDM secure PKE scheme.

In contrast to Corollary 2, in Sect. 5, we will show that there exists no shield-
ing black-box construction [21] of an IND-CCA1 secure PKE scheme from a
P-KDM secure PKE scheme.

In [33], Matsuda and Hanaoka showed a construction of an IND-CCA secure
PKE scheme/KEM from a PKE scheme satisfying the security notion called
the sender non-committing property and a one-time Bsize-KDM secure SKE
scheme (where size is related to the running time of the sender non-committing
encryption scheme). Although their construction uses the underlying primitives
as black-boxes, their security reduction (to the Bsize-KDM security of the under-
lying SKE scheme) is non-black-box in the sense that the reduction needs to use
the description of one of the algorithms in the sender non-committing encryption
scheme as a KDM-encryption query. Compared to the result by Matsuda and
Hanaoka, our results are superior in terms of both the strength of the assump-
tions on the building blocks (IND-CPA security is weaker than the sender non-
committing property, and P-KDM security is weaker than Bsize-KDM security),
and the “black-boxness” of the reductions.

Hinting PRG vs. KDM Secure SKE. As mentioned earlier, the result of Koppula
and Waters [30], when specialized to PKE, implies that if there exists an IND-
CPA secure PKE scheme and a hinting PRG, one can realize an IND-CCA secure
PKE scheme. Given our result in this section and the result of [30], it is natural to
ask whether there exists an implication/separation between a (one-time) KDM
secure SKE scheme and a hinting PRG. We give a partial affirmative answer to
this question. Specifically, we show the following theorem.

Theorem 3. If there exists a hinting PRG, then for any polynomials m = m(λ)
and size = size(λ) ≥ m, there exists a one-time Bsize-KDM secure SKE scheme
whose plaintext space is {0, 1}m. Furthermore, for any polynomial m = m(λ),
there exists a fully black-box construction of a one-time P-KDM secure SKE
scheme with plaintext space {0, 1}m from a hinting PRG.

The formal proof of this theorem is given in the full version of this paper [29].
This result shows that the existence of a KDM-secure SKE scheme is not stronger
(as an assumption) than that of a hinting PRG. At this moment, it is not clear
if the implication of the opposite direction can be established.

CCA Security and TDF via KDM Security 49

Additional Remarks.

– If we adopt the syntax of a KEM in which there is a public parameter shared
by all users, then we can push pk1, (Ai)i∈[n], B, and hk in PK to a public
parameter, so that a key pair of each user consists only of a single key pair
(pk0, sk0) of the underlying IND-CPA secure KEM.

– Although our proposed construction satisfies only almost-all-keys correctness,
a minor variant of our construction can achieve perfect correctness, by using
a PKE scheme and a PRG, instead of a KEM, as done in the Koppula-Waters
construction [30].

4.2 Proof of Correctness (Proof of Theorem 1)

Let PK = (pk0, pk1, (Ai)i∈[n],B, hk) be a public key. Using pk0, pk1, and B in PK,
we define the function f : {0, 1}3λ → {0, 1}4λ by

f(r, r′, h) :
[
(ct, k) ← Encap(pk0; r); (ct′, k′) ← Encap(pk1; r′); Return k − k′ − B · h

]
.

We say that a public key PK is bad if (1) pk0 is erroneous, or (2) some of (Ai)i∈[n]

belongs to the image of f . Note that the image size of f is at most 23λ. Since each
Ai is chosen uniformly at random from {0, 1}4λ, when KKGcca(1λ) is executed,
the probability that a bad PK is output is at most ε + n · 23λ

24λ = ε + n · 2−λ.
Now, consider the case that (PK,SK) is output by KKGcca and PK is not bad.

Let R = (s = (s1, . . . , sn), (r0i , r
1
i)i∈[n], k, rSKE) ∈ {0, 1}n × ({0, 1}λ)2n × {0, 1}� ×

RSKE be a randomness for Encapcca, and let (CT = ((ct0i , ct
1
i ,Ti)i∈[n], ctSKE), k) =

Encapcca(PK;R). Moreover, for each i ∈ [n], let s′i := 1 − (Decap(sk0, ct0i)
?= Ti).

Note that if s′i = si holds for all i ∈ [n], then the decryption result of ctSKE
using s′ = (s′1, . . . , s

′
n) as a secret key is exactly (rsii)i∈[n]‖k due to the correctness

of SKE. Thus, the validity check done in the last step of Decapcca never fails, and
Decapcca(SK,CT) will output k.

Hence, it remains to show that s′i = si holds for all i ∈ [n].

– For positions i with si = 0, we have (ct0i , k
0
i = Ti) = Encap(pk0; r0i). Thus, the

property that pk0 is not erroneous implies Decap(sk0, ct0i) = Ti, and we have
s′i = 0.

– For positions i with si = 1, we have (ct0i , k
0
i) = Encap(pk0; r0i) and (ct1i , k

1
i =

Ti −Ai −B · h) = Encap(pk1; r1i), where h = H(hk, (ct0i , ct
1
i)i∈[n]‖ctSKE). Since

Ai is not in the image of f , we have

Ai �= f(r0i , r
1
i , h) = k0i − k1i − B · h = k0i − (Ti − Ai − B · h) − B · h ⇐⇒ k0i �= Ti.

Furthermore, since pk0 is not erroneous, we have Decap(sk0, ct0i) = k0i . These
together imply that we must have s′i = 1.

The above shows that s′i = si holds for all i ∈ [n].
Putting everything together, except for a probability at most ε+n · 2−λ over

(PK,SK) ← KKGcca(1λ), there exists no randomness R satisfying Encapcca(PK;R)
= (CT, k) and Decapcca(SK,CT)
= k simultaneously. � (Theorem 1)

50 F. Kitagawa et al.

4.3 Proof of IND-CCA Security (Proof of Theorem 2)

Let ε : N → [0, 1] be such that KEM is ε-almost-all-keys correct. Let A be
any PPT adversary that attacks the IND-CCA security of KEMcca and makes
qdec = qdec(λ) > 0 decapsulation queries. We will show that for this A, there
exist PPT adversaries Btcr, {Bj

cpa}j∈[4], B′
cpa, and Bkdm (which makes a single

KDM-encryption query) satisfying

AdvccaKEMcca,A(λ) ≤
2 · AdvtcrHash,Btcr

(λ) + 2 ·
∑
j∈[4]

Advmcpa

KEM,n,Bj
cpa

(λ) + 2qdec · Advmcpa
KEM,n,B′

cpa
(λ)

+ 2 · AdvkdmSKE,P,Bkdm
(λ) + 8ε + n · 2−λ+3 + n(qdec + 1) · 2−4λ+1. (1)

This is negligible by our assumption, and thus will prove the theorem.
Our proof is via a sequence of games argument using the following six games.

Game 1: This is the IND-CCA experiment ExptccaKEMcca,A(λ). However, for making
it easier to describe the subsequent games, we change the ordering of the
operations for how the key pair (PK,SK) and the challenge ciphertext/session-
key pair (CT∗, k∗

b) are generated so that the distribution of (PK,SK,CT∗, k∗
b)

is identical to that in the original IND-CCA experiment.
Specifically, the description of the game is as follows:

– Generate PK = (pk0, pk1, (Ai)i∈[n],B, hk), SK = (sk0,PK), and CT∗ =
((ct∗0i , ct∗1i ,T∗

i)i∈[n], ct
∗
SKE) as follows:

1. Compute (pkv, skv) ← KKG(1λ) for v ∈ {0, 1}, and pick B
r←− {0, 1}4λ.

2. Compute s∗ = (s∗1, . . . , s
∗
n) ← K(1λ), and pick r∗01 , . . . , r∗0n , r∗11 , . . . , r∗1n

r←− {0, 1}λ and k∗
1

r←− {0, 1}�.
3. Compute ct∗SKE ← E(s∗, (r∗(s

∗
i)

i)i∈[n]‖k∗
1).

4. Compute (ct∗v
i , k∗v

i) ← Encap(pkv; r∗v
i) for every (i, v) ∈ [n] × {0, 1}.

5. Compute hk ← HKG(1λ) and h∗ ← H(hk, (ct∗0i , ct∗1i)i∈[n]‖ct∗SKE).
6. Pick A1, . . . ,An

r←− {0, 1}4λ.
7. Compute T∗

i ← k
∗(s∗i)
i + s∗i · (Ai + B · h∗) for every i ∈ [n].

8. Set PK ← (pk0, pk1, (Ai)i∈[n],B, hk), SK ← (sk0,PK), and CT∗ ←
((ct∗0i , ct∗1i ,T∗

i)i∈[n], ct
∗
SKE).

– Then, pick the random session-key k∗
0

r←− {0, 1}� and the challenge bit
b

r←− {0, 1}, and run A(PK,CT∗, k∗
b). From here on, A may start making

decapsulation queries.
– Decapsulation queries CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE) are answered as fol-

lows: First, compute h ← H(hk, (ct0i , ct
1
i)i∈[n]‖ctSKE). Next, compute si ←

1−(Decap(sk0, ct0i)
?= Ti) for every i ∈ [n], and set s ← (s1, . . . , sn). Then,

compute m ← D(s, ctSKE) and parse m as ((rsii)i∈[n], k) ∈ ({0, 1}λ)n ×
{0, 1}�. Finally, if Encap(pksi ; rsii) = (ctsii ,Ti − si · (Ai + B · h)) holds for
all i ∈ [n], then return k to A. Otherwise, return ⊥ to A.

– At some point, A terminates with output b′ ∈ {0, 1}.

CCA Security and TDF via KDM Security 51

For convenience, in the following we will use the following sets:

Szero :=
{

j ∈ [n]
∣∣∣ s∗j = 0

}
and Sone :=

{
j ∈ [n]

∣∣∣ s∗j = 1
}

= [n] \ Szero.

Game 2: Same as Game 1, except for an additional rejection rule in the
decapsulation oracle. Specifically, in this game, if A’s decapsulation query
CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE) satisfies h = H(hk, (ct0i , ct

1
i)i∈[n]‖ctSKE) = h∗,

then the decapsulation oracle immediately returns ⊥ to A.
Game 3: Same as Game 2, except for how Ai’s for the positions i ∈ Szero are gen-

erated. Specifically, in this game, Ai for every position i ∈ Szero is generated
by

Ai ← k∗0
i − k∗1

i − B · h∗. (2)

(At this point, Ai’s for the remaining positions i ∈ Sone are unchanged.)
Game 4: Same as Game 3, except for the behavior of the decapsulation oracle.

Specifically, for answering A’s decapsulation queries CT = ((ct0i , ct
1
i ,Ti)i∈[n],

ctSKE), the oracle in this game first computes h = H(hk, (ct0i , ct
1
i)i∈[n]‖ctSKE),

and returns ⊥ to A if h = h∗. (This rejection rule is the same as in Game 3.)
Otherwise, the oracle uses the “alternative decapsulation algorithm” AltDecap
and the “alternative secret key” SK′ defined below for computing the decap-
sulation result k returned to A.
AltDecap takes SK′ := (sk1,PK) and CT as input, and proceeds identically
to Decapcca(SK,CT), except that the “find step” (i.e. the step for computing
si’s) is replaced with the following procedure:

∀i ∈ [n] : si ←
(
Decap(sk1, ct1i)

?= Ti − Ai − B · h
)

=

{
1 if Decap(sk1, ct1i) = Ti − Ai − B · h
0 otherwise

.

Note that due to this change, the decapsulation oracle answers A’s queries
without using sk0.

Game 5: Same as Game 4, except for how Ai’s for the positions i ∈ Sone are
generated. Specifically, in this game, Ai for i ∈ Sone is also generated as in
Eq. 2.
Note that due to this change, all of (Ai)i∈[n] are generated as in Eq. 2. Fur-
thermore, T∗

i = k∗0
i holds for every i ∈ [n], no matter whether s∗i = 0 or

s∗i = 1. Indeed, this is the case for the positions i ∈ Szero by design. For the
positions i ∈ Sone, we have

T∗
i = k∗1

i + Ai + B · h∗ = k∗1
i + (k∗0

i − k∗1
i − B · h∗) + B · h∗ = k∗0

i .

Hence, in this game, values dependent on s∗ appear only in the plaintext of
ct∗SKE (i.e. (r∗(s

∗
i)

i)i∈[n]‖k∗
1).

52 F. Kitagawa et al.

Game 6: Same as Game 5, except that the information of the challenge bit b
is erased from the SKE ciphertext ct∗SKE. Specifically, in this game, ct∗SKE in
the challenge ciphertext CT∗ is generated by ct∗SKE ← E(s∗, 0n·λ+�), instead
of ct∗SKE ← E(s∗, (r∗(s

∗
i)

i)i∈[n]‖k∗
1).

For j ∈ [6], let SUCj be the event that A succeeds in guessing the challenge
bit (i.e. b′ = b occurs) in Game j. By definition, we have AdvccaKEMcca,A(λ) =
2 · |Pr[SUC1] − 1/2|. Thus, the triangle inequality implies

AdvccaKEMcca,A(λ) ≤ 2 ·
⎛
⎝∑

j∈[5]

|Pr[SUCj] − Pr[SUCj+1]| +
∣∣∣∣Pr[SUC6] − 1

2

∣∣∣∣

⎞
⎠ . (3)

In the following, we show how the terms appearing in Eq. 3 are bounded.

Lemma 1. There exist PPT adversaries Btcr, {Bj
cpa}j∈[2], and B′

cpa satisfying

|Pr[SUC1] − Pr[SUC2]| ≤ AdvtcrHash,Btcr
(λ) +

∑
j∈[2]

Advmcpa

KEM,n,Bj
cpa

(λ)

+ qdec · Advmcpa
KEM,n,B′

cpa
(λ) + 3ε + n · 2−λ+1 + n(qdec + 1) · 2−4λ. (4)

Due to the space limitation, we give the formal proof of Lemma 1 in the full
version of this paper [29]. The proof relies on the target collision resistance of
the underlying keyed hash function Hash, and uses a deferred analysis (up to
Game 4) with (slight variants of) the arguments used in the proofs of Lemmas 2
to 4 stated below.

Lemma 2. There exists a PPT adversary B3
cpa such that |Pr[SUC2] − Pr[SUC3]| =

Advmcpa
KEM,n,B3

cpa
(λ).

In Games 2 and 3, sk1 is not used. Moreover, r∗1i used to generate ct∗1i , is not
encrypted into ct∗SKE for i ∈ Szero. Thus, from A, we can construct a PPT adver-
sary B3

cpa that attacks the IND-CPA security of KEM under the key pk1 with the
advantage stated in the lemma. For the formal proof, see the full version [29].

Lemma 3. |Pr[SUC3] − Pr[SUC4]| ≤ 2ε + n · 2−λ+1 holds.

Proof of Lemma 3. Note that Game 3 and Game 4 proceed identically unless
A makes a decapsulation query CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE) such that h =

H(hk, (ct0i , ct
1
i)i∈[n]‖ctSKE)
= h∗ and Decapcca(SK,CT)
= AltDecap(SK′,CT) hold

simultaneously. We call such a decapsulation query bad. In the following, we will
show that if PK is not “bad” in the sense specified below, a bad decapsulation
query does not exist in Game 3 and Game 4, and the probability that PK becomes
bad is bounded by 2ε + n · 2−λ+1. This will prove the lemma.

Fix the following values in Game 3:

– (pk0, sk0), (pk1, sk1) ∈ Sup(KKG(1λ)) such that pk0 and pk1 are not erroneous,
and hk ∈ Sup(HKG(1λ)).

CCA Security and TDF via KDM Security 53

– s∗ = (s∗1, . . . , s
∗
n) ∈ Sup(K(1λ)), r∗01 , . . . , r∗0n , r∗11 , . . . , r∗1n ∈ {0, 1}λ, k∗

1 ∈ {0, 1}�,
and r∗SKE ∈ RSKE.

– (ct∗v
i , k∗v

i) = Encap(pkv; r∗v
i) for all (i, v) ∈ [n] × {0, 1}.

– ct∗SKE = E(s∗, (r∗(s
∗
i)

i)i∈[n]‖k∗
1; r

∗
SKE) and h∗ = H(hk, (ct∗0i , ct∗1i)i∈[n]‖ct∗SKE).

Let C be the ciphertext space of KEM. To define the notion of “badness” for a
public key, we introduce two types of functions based on the above fixed values.

– For each i ∈ Szero and v ∈ {0, 1}, we define the function ĝi,v : {0, 1}λ × C ×
({0, 1}λ \ {h∗}) → {0, 1}4λ ∪ {⊥} by

ĝi,v(r, ct′, h) :

[
(ct, k) ← Encap(pkv; r); k′ ← Decap(sk1−v, ct′);
If k′ = ⊥ then return ⊥ else return (k−k′)·(−1)v−k∗0

i +k∗1
i

h−h∗

]
.

We say that a string B ∈ {0, 1}4λ is bad if B belongs to the image of ĝi,v

for some (i, v) ∈ Szero × {0, 1}. Due to the property that the image size
of Decap(sk1−v, ·) is bounded by 2λ, the image size of ĝi,v (excluding ⊥) is
at most 23λ for every i ∈ Szero and v ∈ {0, 1}. Hence, when choosing B

r←−
{0, 1}4λ, the probability that B is bad is at most |Szero|·2· 23λ

24λ = |Szero|·2−λ+1.
– For each B′ ∈ {0, 1}4λ and v ∈ {0, 1}, we define the function gB′,v : {0, 1}λ ×

C × {0, 1}λ → {0, 1}4λ ∪ {⊥} by

gB′,v(r, ct′, h) :
[

(ct, k) ← Encap(pkv; r); k′ ← Decap(sk1−v, ct′);
If k′ = ⊥ then return ⊥ else return (k − k′) · (−1)v − B′ · h

]
.

For each B′ ∈ {0, 1}4λ, we say that a string A′ ∈ {0, 1}4λ is bad with respect to
B′ if A′ belongs to the image of gB′,0 or that of gB′,1. Again, due to the property
that the image size of Decap(sk1−v, ·) is bounded by 2λ, the image size of gB,v

(excluding ⊥) is at most 23λ for every B′ ∈ {0, 1}4λ and v ∈ {0, 1}. Hence,
for any fixed B′ ∈ {0, 1}4λ, when choosing Ai

r←− {0, 1}4λ for all i ∈ Sone,
the probability that some of {Ai}i∈Sone is bad with respect to B′ is at most
|Sone| · 2 · 23λ

24λ = |Sone| · 2−λ+1.

We say that a public key PK generated in Game 3 is bad if (1) either pk0

or pk1 is erroneous, or (2) either B is bad or Ai for some i ∈ Sone is bad with
respect to B. By the union bound, the probability that PK is bad in Game 3 is
bounded by 2ε + |Szero| · 2−λ+1 + |Sone| · 2−λ+1 = 2ε + n · 2−λ+1.

To complete the proof, below we show that if PK = (pk0, pk1, (Ai)i∈[n],B,
hk) is not bad, then for any ciphertext CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE) such

that h = H(hk, (ct0i , ct
1
i)i∈[n]‖ctSKE)
= h∗, we always have Decapcca(SK,CT) =

AltDecap(SK′,CT).
Let CT = ((ct0i , ct

1
i ,Ti)i∈[n], ctSKE) be an arbitrary ciphertext satisfying h =

H(hk, (ct0i , ct
1
i)i∈[n]‖ctSKE)
= h∗. For each i ∈ [n], define

si := 1 −
(
Decap(sk0, ct0i)

?= Ti

)
, and

s′i :=
(
Decap(sk1, ct1i)

?= Ti − Ai − B · h
)
.

54 F. Kitagawa et al.

We consider two cases and show that Decapcca(SK,CT) = AltDecap(SK′,CT)
holds in either case.

– Case 1: For all positions i ∈ [n], there exists a pair (r, v) ∈ {0, 1}λ ×
{0, 1} satisfying Encap(pkv; r) = (ctvi ,Ti − v · (Ai + B · h)).
In this case, we show that si = s′i holds for all i ∈ [n]. This in turn implies
that the output of Decapcca and that of AltDecap agree since these algorithms
proceed identically after they respectively compute s.
Fix i ∈ [n]. The condition of this case directly implies Decap(skv, ctvi) =
Ti − v · (Ai + B · h). This in turn implies that if v = 0 then we have si = 0,
while if v = 1 then we have s′i = 1. In the following, we will show that

k′ := Decap(sk1−v, ct1−v
i)
= Ti − (1 − v) · (Ai + B · h) (5)

holds, which implies that if v = 0 then we have s′i = 0, while if v = 1 then we
have si = 1. Hence, combined together, we will obtain the desired conclusion
si = s′i (regardless of the value of v). Also, if k′ = ⊥, then Eq. 5 is obviously
satisfied. Thus, below we consider the case k′
= ⊥.
The argument for showing Eq. 5 differs depending on whether i ∈ Szero or
i ∈ Sone. If i ∈ Szero, then since B is not bad, it is not in the image of ĝi,v.
Hence, we have

B
= ĝi,v(r, ct1−v
i , h) =

(
Ti − v · (Ai + B · h) − k′

)
· (−1)v − k∗0

i + k∗1
i

h − h∗

⇐⇒ k′
= Ti − v · (Ai + B · h) − (−1)v ·
(
(k∗0

i − k∗1
i − B · h∗) + B · h

)

(∗)
= Ti −

(
v + (−1)v

)
· (Ai + B · h) (∗∗)

= Ti − (1 − v) · (Ai + B · h),

where the equality (*) uses Ai = k∗0
i − k∗1

i − B · h∗, which is how Ai is
generated for the positions i ∈ Szero in Game 3; The equality (**) is due to
v + (−1)v = 1 − v for v ∈ {0, 1}.
Similarly, if i ∈ Sone, then since Ai is not bad with respect to B, it is not in
the image of gB,v. Hence, we have

Ai
= gB,v(r, ct1−v
i , h) =

(
Ti − v · (Ai + B · h) − k′

)
· (−1)v − B · h

⇐⇒ k′
= Ti − v · (Ai + B · h) − (−1)v · (Ai + B · h)
= Ti −

(
v + (−1)v

)
· (Ai + B · h) = Ti − (1 − v) · (Ai + B · h),

where the last equality is again due to v + (−1)v = 1 − v for v ∈ {0, 1}.
We have seen that Decap(sk1−v, ct1−v

i)
= Ti − (1 − v) · (Ai + B · h) holds
regardless of whether i ∈ Szero or i ∈ Sone, as required. Hence, as men-
tioned earlier, si = s′i holds for all i ∈ [n], and consequently we have
Decapcca(SK,CT) = AltDecap(SK′,CT).

– Case 2: There exists a position i ∈ [n] for which there exists no pair
(r, v) ∈ {0, 1}λ × {0, 1} satisfying Encap(pkv; r) = (ctvi ,Ti − v · (Ai + B · h)).

CCA Security and TDF via KDM Security 55

In this case, both Decapcca and AltDecap return ⊥. Indeed, the condition of
this case implies that there exists a position i ∈ [n] for which there exists
no r ∈ {0, 1}λ satisfying Encap(pksi ; r) = (ctsii ,Ti − si · (Ai + B · h)). Hence,
the validity check done in the last step of Decapcca cannot be satisfied at
the position i, and thus Decapcca outputs ⊥. Exactly the same argument
applies to AltDecap, and thus it also outputs ⊥. Hence, in this case we have
Decapcca(SK,CT) = AltDecap(SK′,CT) = ⊥.

As seen above, if PK is not bad, then for any CT with h
= h∗, we have
Decapcca(SK,CT) = AltDecap(SK′,CT), as desired. � (Lemma 3)

Lemma 4. There exists a PPT adversary B4
cpa such that |Pr[SUC4] − Pr[SUC5]| =

Advmcpa
KEM,n,B4

cpa
(λ).

With a similar reason to for Lemma 2 above, from A, we can construct a PPT
adversary B4

cpa that attacks the IND-CPA security of KEM under the key pk0

with the advantage stated in the lemma. For the formal proof, see the full version
[29].

Lemma 5. There exists a PPT adversary Bkdm that makes a single KDM-
encryption query and satisfies |Pr[SUC5] − Pr[SUC6]| = AdvkdmSKE,P,Bkdm

(λ).

In Games 5 and 6, s∗ is used only when generating ct∗SKE. Furthermore, we
can regard the message (r∗(s

∗
i)

i)i∈[n]‖k∗
1 encrypted in ct∗SKE as an output of a

projection function of s∗. Thus, from A, we can straightforwardly construct a
PPT adversary Bkdm that attacks the one-time P-KDM security of SKE with the
advantage stated in the lemma. For the formal proof, see the full version [29].

Lemma 6. Pr[SUC6] = 1/2 holds.

Proof of Lemma 6. This lemma is true because in Game 6, the information of
the challenge bit b is completely erased from A’s view. � (Lemma 6)

Due to Lemmas 1 to 6 and Eq. 3, we can conclude that there exist PPT adver-
saries Btcr, {Bj

cpa}j∈[4], B′
cpa, and Bkdm (that makes a single KDM-encryption

query) satisfying Eq. 1, as desired. � (Theorem 2)

5 Impossibility of Shielding Black-Box Constructions

Gertner et al. [21] showed that there exists no shielding black-box construction
of an IND-CCA1 secure PKE scheme from an IND-CPA secure one. Recall that
a shielding black-box construction of a PKE scheme PKE = (KG,Enc,Dec) from
another PKE scheme pke = (kg, enc, dec) is such that the decryption algorithm
Dec in PKE does not use the encryption algorithm enc of pke. Put differently,
we have PKEpke = (KGkg,enc,dec,Enckg,enc,dec,Deckg,dec).

In this section, we extend Gertner et al.’s result and show the following result.

56 F. Kitagawa et al.

Theorem 4. There exists no shielding black-box construction of an IND-CCA1
secure PKE scheme from a P-KDM secure PKE scheme.

This theorem is proved as a corollary of Theorems 5 and 6 stated below.
We emphasize that this result does not contradict our result in Sect. 4.1

(in particular, Corollary 2), because our construction KEMcca is a non-shielding
black-box construction in which the decapsulation algorithm Decapcca uses the
encapsulation algorithm Encap of the underlying IND-CPA secure KEM.

We also note that our result seems incomparable to a similar result by Haji-
abadi and Kapron [24], who showed that a PKE scheme satisfying a form of
randomness-dependent-message (RDM) security is a primitive from which a non-
shielding black-box construction of an IND-CCA secure PKE scheme is possible
while shielding black-box constructions of an IND-CCA1 secure PKE scheme
are impossible. (We note that they used a tailored definition of RDM secu-
rity that is different from the original definition by Birrell, Chung, Pass, and
Telang [8].4)

Our impossibility of shielding black-box constructions is shown based largely
on the framework and technique of [21] and the technique of [24]. Informally,
[21] defined a distribution Φ of an oracle O = (O1,O2) such that O1 syntacti-
cally constitutes a PKE scheme, O2 is an attacker’s “breaking” oracle, and they
showed that the following two items hold with high probability over the choice
of O = (O1,O2) ← Φ:

1. O1 constitutes an IND-CPA secure PKE scheme against any computationally
unbounded adversary AO1,O2 that makes polynomially many queries.

2. The IND-CCA1 security of any candidate shielding black-box construction
PKEO1 is broken (with more than a constant advantage) by some computa-
tionally unbounded adversary A′O1,O2 with polynomially many queries.

These two items imply (via a standard argument used in black-box separation
results) the impossibility of shielding black-box constructions of an IND-CCA1
secure PKE scheme from an IND-CPA secure one.

Since we use exactly the same distribution Φ of oracles O used by Gertner
et al., and the second item was already shown by them, for our result, we only
need to prove an extension of the first item, namely, O1 constitutes a P-KDM
secure PKE scheme with high probability over the choice of O = (O1,O2) ← Φ.

In the following, we first recall the definition of the distribution Φ of oracles
O used by Gertner et al., then state their result corresponding to the item 2
above. Finally, we state our result corresponding to the item 1 above.

4 Roughly speaking, RDM security used by Hajiabadi and Kapron requires that n
ciphertexts encrypting the bit-decomposition of r = (r1, . . . , rn) are indistinguishable
from n ciphertexts that all encrypt 0 even if they are all encrypted under the same
random coin r itself. In the actual definition, an adversary is given multiple sets of
the above n ciphertexts. This setting is somewhat unnatural in the usage of PKE,
and a PKE scheme satisfying this security notion immediately implies a TDF with
one-wayness under correlated products.

CCA Security and TDF via KDM Security 57

Definition 5 (Oracle Distribution for Separation [21]). Consider an ora-
cle O consisting of the suboracles (g, e,d,w,u) that are defined for each length
parameter n ∈ N and satisfy the following syntax5:

g : {0, 1}n → {0, 1}3n: This is an injective function. This oracle can be thought
of as the key generation process that takes a secret key sk ∈ {0, 1}n as input
and outputs a public key pk ∈ {0, 1}3n.

e : {0, 1}3n × {0, 1} × {0, 1}n → {0, 1}3n: For each pk ∈ {0, 1}3n, e(pk, ·, ·) :
{0, 1}×{0, 1}n → {0, 1}3n is an injective function. This oracle can be thought
of as the encryption process that takes a public key pk ∈ {0, 1}3n, a plaintext
m ∈ {0, 1}, and a randomness r ∈ {0, 1}n as input, and outputs a ciphertext
ct ∈ {0, 1}3n.

d : {0, 1}n×{0, 1}3n → {0, 1,⊥}: This oracle takes sk ∈ {0, 1}n and ct ∈ {0, 1}3n

as input, and if there exists (pk,m, r) ∈ {0, 1}3n × {0, 1} × {0, 1}n such that
pk = g(sk) and ct = e(pk,m, r), then it outputs m. Otherwise, this oracle
outputs ⊥. This oracle can be thought of as the decryption process.

w : {0, 1}3n × {0, 1}n → {0, 1}3n×n ∪ {⊥}: This oracle is associated with a
“randomness deriving” function Fw : {0, 1}3n × {0, 1}n → {0, 1}n×n.6 This
oracle takes pk ∈ {0, 1}3n and an index z ∈ {0, 1}n as input, and if there exists
no sk ∈ {0, 1}n such that pk = g(sk), then the oracle outputs ⊥. Otherwise,
let sk = (s1, . . . , sn) ∈ {0, 1}n be such that pk = g(sk). The oracle computes
(r1, . . . , rn) ← Fw(pk, z), and then cti ← e(pk, si, ri) for every i ∈ [n]. Finally,
the oracle outputs (cti)i∈[n]. This oracle is a “weakening” oracle that helps
breaking the IND-CCA1 security of any shielding construction.

u : {0, 1}3n × {0, 1}3n → {�,⊥}: This oracle takes pk ∈ {0, 1}3n and ct ∈
{0, 1}3n as input, and if there exists (sk,m, r) ∈ {0, 1}n ×{0, 1}×{0, 1}n such
that pk = g(sk) and ct = e(pk,m, r), then the oracle outputs �. Otherwise,
the oracle outputs ⊥. This oracle can be thought of as the validity checking
process of a ciphertext ct with respect to a public key pk.
We define the distribution Φ of an oracle O = (g, e,d,w,u) as follows: For
each n ∈ N, pick g, e, and Fw uniformly at random, and then define d, w,
and u satisfying the above syntax.7

Note that (g, e,d) in O naturally constitutes a 1-bit PKE scheme. Gertner
et al. [21] showed the following result, which states that with high probabil-
ity over O ← Φ, the IND-CCA1 security of any candidate shielding black-box
construction from the PKE (g, e,d) (defined in O) is broken with more than a
constant advantage by some adversary making polynomially many queries.

Theorem 5 (Corollary of Theorem 2 in [21]). Let PKE = (KG,Enc,Dec) be
a shielding construction of a 1-bit PKE scheme based on another 1-bit PKE
5 Among O = (g, e,d,w,u), (g, e,d) (resp. (w,u)) corresponds to O1 (resp. O2) in

the above explanation.
6 The purpose of Fw is to make w deterministic (after chosen according to the dis-

tribution Φ). When an oracle O is chosen from Φ, Fw will work as a truly random
function. This treatment is done implicitly in [21].

7 Note that the behavior of O is completely determined by g, e, and Fw used in w.

58 F. Kitagawa et al.

scheme. For each O = (g, e,d,w,u) ∈ Sup(Φ), let PKEg,e,d := (KGg,e,d,
Encg,e,d,Decg,d). Then, there exists a computationally unbounded adversary A
that makes at most polynomially many queries and satisfies the following for all
sufficiently large λ ∈ N:

Pr
O=(g,e,d,w,u)←Φ

[
Advcca1PKEg,e,d,AO(λ) ≥ 1

2

]
≥ 1 − 4

λ
.

We now show our theorem, which states that with overwhelming probability
over the choice of O ← Φ, (g, e,d) constitutes a 1-bit P-KDM secure PKE
scheme (secure in the presence of multiple KDM-encryption queries). Since the
bit-by-bit encryption preserves P-KDM security, the existence of a 1-bit (many-
time) P-KDM secure PKE scheme implies a P-KDM secure PKE scheme that
can encrypt plaintexts of arbitrary length in the black-box sense.

Theorem 6. For any computationally unbounded adversary A that makes at
most polynomially many queries, there exist negligible functions μ(·) and μ′(·)
such that for all sufficiently large λ ∈ N, we have

Pr
O=(g,e,d,w,u)←Φ

[
Advkdm(g,e,d),P,AO(λ) ≤ μ(λ)

]
≥ 1 − μ′(λ).

We remark that Theorems 5 and 6 imply Theorem 4 via a standard technique in
black-box separation results (using the Borel-Cantelli lemma) (see, e.g. [25]).

Due to the space limitation, the proof of Theorem4 is given in the full ver-
sion of this paper [29], and here we give its overview. We call the P-KDM secu-
rity experiment of the PKE scheme (g, e,d) that takes into account the choice
O = (g, e,d,w,u) ← Φ the extended KDM security experiment. Let A be any
computationally unbounded adversary that makes q = q(λ) = poly(λ) queries.
To prove the theorem, it is sufficient to show that the advantage of AO,Okdm in
the extended KDM security experiment is negligible. This is shown by two steps.
In the first step, we show that among the suboracles given access to A, d, w, and
u do not help A much. More specifically, we essentially show that for AO,Okdm ,
there exists another computationally unbounded adversary Bg,e,Okdm that make
at most poly(q) queries and whose advantage in the extended KDM experiment
is negligibly close to that of A’s. Then, in the second step, we show that the
advantage of Bg,e,Okdm in the extended KDM experiment is negligible by relying
on the property that the suboracles g(·) and e(pk, ·, ·) for each pk are random
(almost) length-tripling injective functions when chosen according to Φ.

6 TDF via KDM Security

In this section, we show our proposed TDF with adaptive one-wayness, which is
an extension of our IND-CCA secure KEM presented in Sect. 4.

Construction. Let � = �(λ) be a polynomial. Our TDF uses the building blocks
KEM, SKE, and Hash with the following properties:

CCA Security and TDF via KDM Security 59

– KEM = (KKG,Encap,Decap) is a KEM such that (1) its session key space is
{0, 1}3λ, (2) the randomness space of Encap is {0, 1}λ, and (3) the ciphertext
space C forms an abelian group (where we use the additive notation) and
satisfies |C| ≥ 22λ.

– SKE = (K,E,D) is an SKE scheme such that (1) it has the randomness-
recovering decryption property (with the randomness-recovering decryption
algorithm RD), (2) its secret key space is {0, 1}n for some polynomial n =
n(λ), and (3) the plaintext space is {0, 1}n·λ+�.
We denote the randomness space of E by RSKE.

– Hash = (HKG,H) is a keyed hash function such that the range of H is {0, 1}λ,
which we are going to assume to be target collision resistant.

Using these building blocks, the proposed TDF TDF = (Setup,Samp,Eval, Inv)
is constructed as described in Fig. 4. The domain X of TDF is X = {0, 1}n ×
{0, 1}n·λ × {0, 1}� × RSKE.

For the correctness and security of TDF, the following theorems hold.

Fig. 4. The proposed TDF TDF. (†) h ∈ {0, 1}λ is treated as an element of {0, 1}3λ by
some canonical injective encoding (say, putting the prefix 02λ), and the arithmetic is
done over GF(23λ) where we identify {0, 1}3λ with GF(23λ). (‡) The addition is done
over C. (�) We call this step the find step.

60 F. Kitagawa et al.

Theorem 7. Let ε = ε(λ) ∈ [0, 1]. If KEM is ε-almost-all-keys correct and SKE
has the randomness-recovering decryption property, then TDF is (ε + n · 2−λ)-
almost-all-keys correct.

Theorem 8. Assume that KEM satisfies the pseudorandom ciphertext property
and almost-all-keys correctness, SKE is one-time P-KDM secure, and Hash is
target collision resistant. Then, TDF is adaptively one-way.

The proofs of Theorems 7 and 8 are given in the full version [29]. Other than using
additional properties of the building blocks, the proofs for the above theorems
go similarly to those for our IND-CCA secure KEM in Sect. 4.

Adaptively One-Way TDFs Based on the LPN Assumptions. By instantiating
the building blocks in our construction TDF properly, we obtain the first adap-
tively one-way TDF based on the sub-exponential hardness of the constant-noise
LPN problem. We note that previously, even a TDF with ordinary one-wayness
was not known based on the constant-noise LPN assumption. Specifically, the
following LPN-based building blocks can be used.

– For KEM, we use the KEM-analogue of the IND-CPA secure PKE scheme
based on the sub-exponential hardness of the constant-noise LPN problem
proposed by Yu and Zhang [42]. Their security analysis in fact shows that it
satisfies the pseudorandom ciphertext property. However, the scheme does not
satisfy almost-all-keys correctness as it is. Thus, we apply the transformation
by Dwork, Naor, and Reingold [18] that transforms any PKE scheme whose
correctness is imperfect into one with almost-all-keys correctness. (This trans-
formation preserves the pseudorandom ciphertext property of the underlying
scheme.)

– For SKE, we can use the P-KDM secure SKE scheme proposed by Apple-
baum et al. [3] based on the (polynomial) hardness of the constant-noise LPN
problem. Their scheme clearly admits the randomness-recovering decryption
property. In particular, whenever a plaintext is recovered in the decryption,
the decryptor can also compute the “noise” used in the encryption process,
which is the only encryption randomness of this scheme. In addition, their
scheme can be easily made perfectly correct.

Moreover, we can also obtain the first adaptively one-way TDF based on
the (polynomial) hardness of the low-noise LPN problem, by replacing the Yu-
Zhang scheme in the above instantiation with the existing PKE schemes based
on the low-noise LPN assumption [1,17,26] (which all satisfy the pseudoran-
dom ciphertext property). Previously, a TDF satisfying ordinary one-wayness
based on the low-noise LPN assumption was proposed by Kiltz, Masny, and
Pietrzak [26].

Flexible Hard-Core Bits k. We note that k ∈ {0, 1}� can be directly used as hard-
core bits of an input x = (s = (s1, . . . , sn), (rsii)i∈[n], k, rSKE), even in the presence
of the inversion oracle. Its proof is a straightforward extension of the proof of

CCA Security and TDF via KDM Security 61

Theorem 8, and thus omitted. Since an adaptively one-way TDF with �-bit hard-
core bits can be seen as an IND-CCA secure KEM with session-key space {0, 1}�,
TDF can be viewed as an IND-CCA secure KEM in which the randomness used
to generate a ciphertext is fully recovered during the decapsulation.

Additional Remarks. We remark that due to the structural similarity of our
construction TDF to KEMcca, several properties satisfied by KEMcca are inherited
to TDF. Specifically, as in the case of our IND-CCA secure KEM KEMcca, if we
adopt the syntax that allows a system-wide public parameter shared by all users,
pk1, (Ai)i∈[n], (Ci)i∈[n], B, and hk in ek can be put in it, so that an evaluation
key/trapdoor pair of each user consists only of (pk0, sk0) of the underlying KEM
KEM. Moreover, we can consider another variant of TDF in which the underlying
P-KDM secure SKE scheme is replaced with a hinting PRG, in a similar manner
it is used in the Koppula-Waters construction [30].

Unlike KEMcca, however, we cannot make TDF perfectly correct even if we
replace the underlying KEM KEM with the combination of a PKE scheme and
a PRG. This is because the standard correctness of PKE does not guarantee
anything about the decryption result of an element chosen randomly from the
ciphertext space, which naturally occurs in the inversion process of TDF.

Acknowledgments. A part of this work was supported by NTT Secure Platform Lab-
oratories, JST OPERA JPMJOP1612, JST CREST JPMJCR14D6 and JPMJCR19F6,
and JSPS KAKENHI JP16H01705 and JP17H01695.

References

1. Alekhnovich, M.: More on average case vs approximation complexity. In: FOCS,
pp. 298–307 (2003)

2. Applebaum, B.: Key-dependent message security: generic amplification and com-
pleteness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–
546. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 29

3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

4. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 30

5. Bellare, M., Boldyreva, A., Staddon, J.: Randomness re-use in multi-recipient
encryption schemeas. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp.
85–99. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6 7

6. Bellare, M., Halevi, S., Sahai, A., Vadhan, S.: Many-to-one trapdoor functions
and their relation to public-key cryptosystems. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 283–298. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0055735

7. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: CCS, pp. 62–73 (1993)

https://doi.org/10.1007/978-3-642-20465-4_29
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/3-540-36288-6_7
https://doi.org/10.1007/BFb0055735
https://doi.org/10.1007/BFb0055735

62 F. Kitagawa et al.

8. Birrell, E., Chung, K.-M., Pass, R., Telang, S.: Randomness-dependent message
security. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 700–720. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 39

9. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7 6

10. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716

11. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 7

12. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 1

13. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 20

14. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

15. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC, pp. 542–552 (1991)

16. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-
based and key-dependent message secure encryption schemes. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 3–31. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5 1

17. Döttling, N., Müller-Quade, J., Nascimento, A.C.A.: IND-CCA secure cryptog-
raphy based on a variant of the LPN problem. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 485–503. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 30

18. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryp-
tion errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 21

19. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-7 5

20. Garg, S., Gay, R., Hajiabadi, M.: New techniques for efficient trapdoor functions
and applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11478, pp. 33–63. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 2

21. Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA
security for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol.
4392, pp. 434–455. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-70936-7 24

https://doi.org/10.1007/978-3-642-36594-2_39
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/BFb0055716
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-319-76578-5_1
https://doi.org/10.1007/978-3-642-34961-4_30
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/3-540-49162-7_5
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-540-70936-7_24
https://doi.org/10.1007/978-3-540-70936-7_24

CCA Security and TDF via KDM Security 63

22. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: FOCS, pp. 126–135 (2001)

23. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: STOC, pp. 365–377 (1982)

24. Hajiabadi, M., Kapron, B.M.: Reproducible circularly-secure bit encryption: appli-
cations and realizations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 224–243. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 11

25. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 92–105. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
28628-8 6

26. Kiltz, E., Masny, D., Pietrzak, K.: Simple chosen-ciphertext security from low-
noise LPN. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 1–18. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 1

27. Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and chosen-
ciphertext security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
673–692. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-
5 34

28. Kitagawa, F., Matsuda, T.: CPA-to-CCA transformation for KDM security. IACR
Cryptology ePrint Archive, 2019:609

29. Kitagawa, F., Matsuda, T., Tanaka, K.: CCA security and trapdoor functions via
key-dependent-message security. IACR Cryptology ePrint Archive, 2019:291

30. Koppula, V., Waters, B.: Realizing chosen ciphertext security generically in
attribute-based encryption and predicate encryption. IACR Cryptology ePrint
Archive, 2018:847. To appear in CRYPTO 2019

31. Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New construc-
tions of reusable designated-verifier NIZKs. IACR Cryptology ePrint Archive,
2019:242. (Dated on Feb 27, 2019.) To appear in CRYPTO 2019

32. Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New construc-
tions of reusable designated-verifier NIZKs. IACR Cryptology ePrint Archive,
2019:242. (Dated on May 23, 2019.) To appear in CRYPTO 2019

33. Matsuda, T., Hanaoka, G.: Constructing and understanding chosen ciphertext
security via puncturable key encapsulation mechanisms. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 561–590. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46494-6 23

34. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC,
pp. 187–196 (2008)

35. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-
1 35

36. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 1

37. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: STOC, pp. 387–394 (1990)

38. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00457-5 25

https://doi.org/10.1007/978-3-662-47989-6_11
https://doi.org/10.1007/978-3-662-47989-6_11
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-642-54631-0_1
https://doi.org/10.1007/978-3-642-13190-5_34
https://doi.org/10.1007/978-3-642-13190-5_34
https://doi.org/10.1007/978-3-662-46494-6_23
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-642-00457-5_25

64 F. Kitagawa et al.

39. Wee, H.: KDM-security via homomorphic smooth projective hashing. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol.
9615, pp. 159–179. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49387-8 7

40. Yao, A.C.-C.: Theory and applications of trapdoor functions (extended abstract).
In: FOCS, pp. 80–91 (1982)

41. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

42. Yu, Y., Zhang, J.: Cryptography with auxiliary input and trapdoor from constant-
noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
214–243. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 9

https://doi.org/10.1007/978-3-662-49387-8_7
https://doi.org/10.1007/978-3-662-49387-8_7
https://doi.org/10.1007/978-3-662-53018-4_9
https://doi.org/10.1007/978-3-662-53018-4_9

Zero Knowledge I

Zero-Knowledge Proofs on Secret-Shared
Data via Fully Linear PCPs

Dan Boneh1(B), Elette Boyle2(B), Henry Corrigan-Gibbs1, Niv Gilboa3,
and Yuval Ishai4

1 Stanford University, Stanford, USA
{dabo,henrycg}@cs.stanford.edu

2 IDC Herzliya, Herzliya, Israel
eboyle@alum.mit.edu

3 Ben-Gurion University, Be’er Sheva, Israel
gilboan@bgu.ac.il

4 Technion, Haifa, Israel
yuvali@cs.technion.ac.il

Abstract. We introduce and study the notion of fully linear probabilis-
tically checkable proof systems. In such a proof system, the verifier can
make a small number of linear queries that apply jointly to the input
and a proof vector.

Our new type of proof system is motivated by applications in which
the input statement is not fully available to any single verifier, but can
still be efficiently accessed via linear queries. This situation arises in sce-
narios where the input is partitioned or secret-shared between two or
more parties, or alternatively is encoded using an additively homomor-
phic encryption or commitment scheme. This setting appears in the con-
text of secure messaging platforms, verifiable outsourced computation,
PIR writing, private computation of aggregate statistics, and secure mul-
tiparty computation (MPC). In all these applications, there is a need for
fully linear proof systems with short proofs.

While several efficient constructions of fully linear proof systems are
implicit in the interactive proofs literature, many questions about their
complexity are open. We present several new constructions of fully linear
zero-knowledge proof systems with sublinear proof size for “simple” or
“structured” languages. For example, in the non-interactive setting of
fully linear PCPs, we show how to prove that an input vector x ∈ F

n,
for a finite field F, satisfies a single degree-2 equation with a proof of size
O(

√
n) and O(

√
n) linear queries, which we show to be optimal. More

generally, for languages that can be recognized by systems of constant-
degree equations, we can reduce the proof size to O(log n) at the cost of
O(log n) rounds of interaction.

We use our new proof systems to construct new short zero-knowledge
proofs on distributed and secret-shared data. These proofs can be used
to improve the performance of the example systems mentioned above.

Finally, we observe that zero-knowledge proofs on distributed data
provide a general-purpose tool for protecting MPC protocols against
malicious parties. Applying our short fully linear PCPs to “natural”

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 67–97, 2019.
https://doi.org/10.1007/978-3-030-26954-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_3

68 D. Boneh et al.

MPC protocols in the honest-majority setting, we can achieve uncondi-
tional protection against malicious parties with sublinear additive com-
munication cost. We use this to improve the communication complexity
of recent honest-majority MPC protocols. For instance, using any pseu-
dorandom generator, we obtain a 3-party protocol for Boolean circuits in
which the amortized communication cost is only one bit per AND gate
per party (compared to 10 bits in the best previous protocol), matching
the best known protocols for semi-honest parties.

1 Introduction

In this work, we develop new techniques for proving in zero knowledge state-
ments that are distributed (i.e., partitioned or secret-shared) across two or more
verifiers. Recall that in a standard interactive proof system [8,10,14,53] a verifier
holds an input x ∈ {0, 1}∗ and a prover tries to convince the verifier that x is a
member of some language L ⊆ {0, 1}∗. We consider instead the setting in which
there are multiple verifiers, and each verifier holds only a piece of the input,
such as a share of x generated using a linear secret-sharing scheme. Critically,
no single verifier holds the entire input x. The prover, who holds the entire input
x, must convince the verifiers, who only hold pieces of x, that x ∈ L. At the
same time, we require that the proof system be strongly zero knowledge: every
proper subset of the verifiers should learn nothing about x, apart from the fact
that x ∈ L.

Special cases of this type of proof system appear in existing systems for
anonymous messaging [38], verifiable function secret sharing [30], and systems
for the private computation of aggregate statistics [37]. We observe that such
proof systems also provide a powerful tool for protecting protocols for secure
multiparty computation over point-to-point channels against malicious parties,
analogous to the role that standard zero-knowledge proofs play in the GMW
compiler [50]. Indeed, in protocols that involve point-to-point communication,
the task of proving compliance with the protocol exactly requires executing a
zero-knowledge proof on distributed data.

We introduce the central new abstraction of a fully linear proof system. Such
proof systems apply not only to efficiently proving (in zero-knowledge) state-
ments on distributed or secret-shared data, but also to data that is encrypted
or committed using a linearly homomorphic system. While several efficient con-
structions of fully linear proof systems are implicit in the literature on interactive
and probabilistically checkable proofs (in particular, the linear PCPs from [6,49]
and the interactive proofs from [52,76] can be cast as such proof systems), many
questions about their complexity are open. We present several new constructions
of fully linear zero-knowledge proof systems that achieve sublinear proof size for
“simple” or “structured” languages. Finally, we present several applications of
such proof systems in the context of the motivating applications discussed above.

We now give a more detailed overview of our contributions.

Contribution I: Fully Linear Proof Systems. We begin by introducing the
notion of a fully linear proof system, which captures the information-theoretic

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 69

object at the core of all of our constructions. We consider the non-interactive
variant of such proof systems, called fully linear PCPs, and then we describe a
natural extension to the interactive setting.

A fully linear PCP is a refinement of linear PCPs [6,23,58]. Recall that in
a standard linear PCP over a finite field F, a polynomial-time verifier holds
an input x ∈ F

n and a prover produces a proof π ∈ F
m to the assertion that

x ∈ L, for some language L ⊆ F
n. The verifier checks the proof by reading x and

making linear queries (i.e., inner-product queries) to the proof π. In particular,
the verifier can make a bounded number of queries to the proof of the form
qj ∈ F

m, and receives answers aj = 〈qj , π〉 ∈ F.
In a fully linear PCP, we further restrict the verifier: the verifier cannot

read the entire input x directly, but only has access to it via linear queries.
Concretely, the verifier in a fully linear PCP makes linear queries qj to the
concatenated input-proof vector (x‖π) ∈ F

n+m and must accept or reject the
assertion that x ∈ L based on the answers aj to these linear queries. Motivated
by the applications we consider, we would also like fully linear PCPs to satisfy
the following strong zero-knowledge requirement: the queries qj together with
the answers aj reveal no additional information about x other than the fact that
x ∈ L. This is stronger than the standard notion of zero-knowledge proofs in
which x is essentially public and the interaction need not hide x. See Sect. 3 for
formal definitions of fully linear PCPs and their strong zero knowledge variant.

The full linearity restriction is naturally motivated by applications in which
the input statement is not fully available to any single verifier, but can still be
efficiently accessed via linear queries. This situation arises in scenarios where the
input x is distributed or secret-shared between two or more parties, or alterna-
tively is encoded using an additively homomorphic encryption or commitment
scheme. In these scenarios, verifiers can readily compute answers to public linear
queries via local computations on their view of x. While fully linear PCPs can
be meaningfully applied in all of the above scenarios, we will primarily focus on
their applications to proofs on distributed or secret-shared data.

We stress again that in a fully linear PCP, the verifier only has linear query
access to x. An interesting consequence is that even if L is an easy language that
can be decided in polynomial time, a verifier making a bounded (e.g., constant)
number of such queries typically cannot decide whether x ∈ L without the
aid of a proof, even if the verifier can run in unbounded time. This makes the
existence of fully linear proof systems with good parameters meaningful even for
finite languages and even if, say, P = PSPACE.1 The same fact makes possible a
connection between fully linear PCPs and communication complexity [3,64,66].

1 This is akin to proofs of proximity [21], which place a more stringent restriction on
the verifier’s access to the input. However, unlike proofs of proximity, in fully linear
PCPs the verifier is guaranteed that the input is actually in the language rather
than being “close” to some input the language. Another related notion is that of a
holographic proof [9,57], where the verifier gets oracle access to an encoding of the
input using an arbitrary error-correcting code.

70 D. Boneh et al.

Using this connection, we prove unconditional lower bounds on the efficiency
properties of fully linear PCPs.

Different kinds of linear PCPs were used, either explicitly or implicitly, in
the vast literature on succinct arguments for NP (see [22,23,25,29,49,55,58,
68,75,77,78,83,86] and references therein). These linear PCPs, including the
“Hadamard PCP” [6,58] and ones obtained from quadratic span programs or
quadratic arithmetic programs [23,49,74], can be cast into the fully linear frame-
work. This fact was implicitly used in previous proof systems on committed or
secret-shared data [11,37,39]. Our notion of fully linear PCPs provides a conve-
nient abstraction of the properties on which such systems can be based.

Contribution II: Shorter Proofs for Structured and Simple Languages.
When using fully linear PCPs to build zero-knowledge proof systems on dis-
tributed or secret-shared data, as discussed in Contribution IV below, the proof
length determines the number of bits that the prover must send to the verifiers.
As such, we aim to design short proofs. This goal is especially important when
many different assertions are proved about the same input statement x. In such a
scenario, the initial setup cost of distributing x is amortized away. Having short
fully linear PCPs yields similar efficiency benefits in the settings of encryption
and commitments.

These applications motivate the need for fully linear PCPs with short proofs.
For general NP relations, all known linear PCPs have size at least linear in
the size of an arithmetic circuit recognizing the relation. In Sect. 4, we achieve
significant length savings by designing new sublinear sized fully linear PCPs
for languages recognized by deterministic circuits with repeated sub-structures
(Theorem 11) or by a degree-2 polynomial (Corollary 13). In the latter case, we
can even prove that the O(

√
n) complexity of our construction is optimal up to

low-order terms (see full version). These and other proof systems constructed in
this work satisfy the notion of strong zero knowledge discussed above.

Theorem 1 (Informal - short fully linear PCP for a degree-2 polyno-
mial). If membership in L ⊆ F

n can be recognized by a single degree-2 polyno-
mial, then L admits a fully linear PCP with strong zero knowledge that has proof
length and query complexity Õ(

√
n) and soundness error O(

√
n/|F|). Further-

more, there exists a language L as above such that the sum of the proof length
and query complexity must be Ω(

√
n), even when we allow constant soundness

error and do not require zero knowledge.

See Corollary 13 for a more precise and general statement.

Contribution III: Reducing Proof Size by Interaction. To further drive
down the proof length, we consider a generalization of fully linear PCPs that
allows multiple rounds of interaction between the prover and verifier. These fully
linear interactive oracle proofs, or fully linear IOPs, are the linear analogue of
interactive oracle proofs (IOP) [20], also known as probabilistically checkable
interactive proofs [76]. We note that without the zero-knowledge requirement,
several existing interactive proof systems from the literature, including the GKR

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 71

protocol [51], the CMT protocol [35], and the RRR protocol [76] can be viewed
as fully linear IOPs.

For the case of “well-structured” languages, we show in Sect. 5 that interac-
tion can dramatically shrink the proof size, while maintaining the required strong
zero-knowledge property. In particular, any language whose membership can be
verified by a system of constant-degree equations over a finite field admits a fully
linear IOP with strong zero-knowledge in O(log n) rounds and only O(log n)
proof length, provided that the underlying field is sufficiently large. Even for
degree-2 languages, this provably gives an exponential reduction in proof size
over the non-interactive case.

Theorem 2 (Informal - fully linear zero-knowledge IOPs for low-
degree languages). Suppose L ⊆ F

n can be recognized by a system of constant-
degree equations. Then, L admits a fully linear IOP with strong zero knowledge,
O(log n) rounds, and proof length and query complexity O(log n).

See Theorem 15 for a more precise and general statement, including an exten-
sion to rings.

Contribution IV: Zero-Knowledge Proofs on Distributed or Secret-
Shared Data. The primary motivation for our new types of proof systems is
the fact that in many cases, data can be efficiently accessed via linear queries.
This includes several different scenarios, but our main focus in this work is on
the case of distributed or secret-shared data. (See full version for application to
proofs on encrypted or committed data.) More precisely, the prover knows x in
its entirety and each of k verifiers V1, . . . , Vk only has a piece (or a secret share)
of x.

In the full version we show that any fully linear PCP and IOP can be compiled
into a zero-knowledge proof system on distributed or secret-shared data in the
following natural way. Instead of sending a proof vector π to a single verifier, the
prover P secret-shares the proof vector π between the k verifiers using a linear
secret-sharing scheme. The verifiers can now locally apply each linear query to
the concatenation of their share of the input x and their share of π, and exchange
the resulting answer shares with the other verifiers. The verifiers then reconstruct
the answers to the linear queries and apply the decision predicate to decide to
accept or reject x. We present different variants of this compiler that further
optimize this approach and that achieve zero-knowledge even when up to k − 1
verifiers are malicious.

Theorem 3 (Informal - distributed zero-knowledge proofs for low-
degree languages on secret-shared data: malicious prover or verifiers).
Suppose L ⊆ F

n can be recognized by a system of constant-degree equations.
Then, assuming ideal coin-tossing, there is an O(log n)-round distributed zero-
knowledge protocol for proving that x ∈ L, where x is additively shared between
k verifiers, with communication complexity O(k log n). The protocol is sound
against a malicious prover and is strongly zero-knowledge against t = k − 1
malicious verifiers.

72 D. Boneh et al.

We also give a Fiat-Shamir-style compiler that uses a random oracle to col-
lapse multiple rounds of interaction into a single message sent by P to each Vj

over a private channel, followed by a single message by each Vj .
Given a robust encoding (or robust secret sharing) of the input x, we present

distributed zero-knowledge protocols that maintain their soundness even when
a malicious prover colludes with t < k/2 malicious verifiers. In contrast, we
note that previous sublinear proof systems on secret-shared data either do not
attempt to protect against malicious verifiers [30], or assume a majority of honest
verifiers [38]. Neither considers soundness against a malicious prover colluding
with malicious verifiers.

Table 1 summarizes the communication and round complexity of the proof
systems on secret-shared data for languages that frequently come up in practice,
for example in the Prio system [37] for privately aggregating data, and in the
Riposte [38] system for anonymous communication. The table illustrates the
strong benefits of interactive fully linear proof systems over non-interactive ones.

We note that interactive proofs with distributed verifiers were recently stud-
ied in [65,71] for the purpose of proving properties of a communication graph

Table 1. Communication and round complexity for proof systems where the input
data is secret shared among a number of parties. We assume the proofs are over a
finite field F with |F| � n. Prio [37] is a system for private data aggregation that uses
proofs on secret shared data for data integrity. Riposte [38] is a system for anonymous
communication that uses proofs on secret shared data to prevent data corruption.
Verifiable function secret sharing (FSS) [30] enables secret sharing of simple functions.

Language Proof system Comm. complexity Rounds

Hamming weight 1:
x̄ ∈ F

n,weight(x̄) = 1
Prio [37] O(n) 1

Theorem15 O(
√
n) 2

Theorem15 O(log n) O(log n)

Implicit in [41] O(1) 2

Riposte∗∗ [38] O(
√
n) 1

Verifiable FSS∗∗ [30] O(1) 1

x̄ ∈ {0, . . . , B}n ⊆ F
n Prio [37] O(B · n) 1

Theorem15 O(B · √
n) 2

Theorem15 O(B · logn) O(log n)

n Beaver triples:
x̄, ȳ, z̄ ∈ F

n where
xi · yi = zi for all i ∈ [n]

Prio [37] O(n) 1

Theorem15 O(
√
n) 2

GKR [52] O(log2 n) O(log2 n)

Theorem15 O(log n) O(log n)

Arbitrary circuit C, C(x̄) = 1
(size n, depth d, fan-in 2)

Prio [37] O(n) 1

GKR [52] O(d logn) O(d logn)
∗∗ All systems in the table, except Riposte, verifiable FSS, and GKR, maintain zero knowledge
when all but one of the verifiers are malicious. In contrast, 3-server Riposte tolerates only
one corruption. Verifiable FSS tolerates only semi-honest verifiers and GKR does not provide
zero-knowledge.

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 73

connecting a large number of verifiers. The relevance of the interactive proofs
of GKR [51] and RRR [76] to this setting has been observed in [71]. Our focus
here is quite different; we are motivated by the goal of proving in zero knowledge
simple properties of data distributed among a small set of verifiers. As a result,
our abstractions, constructions, and applications are very different from those
in prior work [65,71].

Contribution V: Applications to Honest-Majority MPC. We next
demonstrate applications of our zero-knowledge fully linear proof systems for
protecting protocols for secure multiparty computation (MPC) in the honest-
majority setting against malicious parties, with vanishing amortized commu-
nication overhead, and without resorting to the heavy machinery of succinct
(two-party) zero-knowledge argument systems for NP.

Compiling “natural” honest-majority protocols. Dating back to the
work of Goldreich, Micali, and Wigderson (GMW) [50], the standard approach
to secure protocol design begins by attaining semi-honest (passive) security, then
compiling the protocol in some way to enforce semi-honest behavior. The GMW
compiler relies on standard zero-knowledge proofs, which apply to public state-
ments. As a result, it does not apply directly to the case of protocols that employ
communication over secure point-to-point channels. To get around this limita-
tion, we employ our distributed zero-knowledge proofs in the following way.

As observed in recent works, the vast majority of semi-honest MPC protocols
from the literature share the following natural form:

– Up to the final exchange of messages, the protocol reveals no information
about parties’ inputs, even if parties act maliciously.

– The messages sent by a party Pi in each round are degree-2 functions (or, more
generally, low-degree functions) of messages received in previous rounds.

The first property means that parties can safely execute all but the final round
of the underlying protocol unchanged, and then simultaneously verify that in
all prior rounds the parties acted semi-honestly. The second property means
that this verification can be expressed as satisfaction of a collection of several
degree-2 constraints on parties’ incoming and outgoing messages. More con-
cretely, each party Pi must convince the remaining parties in zero knowledge
that the statement Mi consisting of all his round-by-round incoming and outgo-
ing messages—and which is distributed across the remaining parties—is indeed
contained within some appropriate language Li verifiable by a degree-2 circuit.
This is precisely the setting of our zero knowledge proofs on distributed data.

We demonstrate an approach for compiling semi-honest protocols of the
above “natural” form (formally defined in the full version) in the honest-majority
setting, to malicious security with abort, with sublinear additive communication
overhead. This is achieved by adding a phase in the penultimate round of the
base protocol, in which each party Pi executes a single interactive proof on dis-
tributed data that the entire interaction thus far has been performed honestly.
The necessary zero-knowledge protocols that we develop induce communication
that is sublinear in the circuit size.

74 D. Boneh et al.

Note that while many efficient MPC protocols from the literature implement
batch-verification of shared secrets by revealing random linear combinations, this
technique only applies to checking linear relations between the secrets. Fully
linear proof systems provide a powerful extension of this approach to batch-
verification of non-linear relations with sublinear communication cost.

The case of 3-party computation. A specific motivated setting is that of
3-party computation with 1 malicious corruption (and security with abort). The
task of minimizing communication in such protocols has attracted a significant
amount of research effort (e.g., [4,5,34,44,48,54,67,70,72]). To date, the best
protocols communicate: 2 field elements per multiplication gate per party over
large fields (size comparable to 2σ for statistical security parameter σ) [34,72], or
alternatively 10 bits per multiplication gate per party over Boolean circuits [48].

Applying our compiler to a 3-party semi-honest protocol of Katz et al. [62]2

(see also [5,40,43]), we obtain a 3-party protocol guaranteeing security with
abort against 1 malicious party, with 1 ring element communicated per party
per multiplication (amortized over large circuit size). Our result holds over any
finite field or modular arithmetic ring Zw; in particular, also for Boolean circuits.

Theorem 4 (Informal - Malicious 3PC, 1 ring element/gate/party).
There exists a 3-party protocol for securely computing any R-arithmetic circuit
C (for R field of arbitrary size or R = Zw) with the following features:

– The protocol makes black-box use of any pseudorandom generator. If R is a
field, it also makes a black-box use of R.

– The protocol is computationally secure with abort against one malicious party.
– The communication complexity is |C|+o(|C|) elements of R per party, where

|C| denotes the number of multiplication and input gates in C.

We also describe an application of a variant of our compiler in the more
general honest majority case where t < n/2 for constant n, building from a
semi-honest protocol à la Damg̊ard and Nielsen [42]. Overall, our resulting pro-
tocol achieves malicious security with 3t/(2t + 1) (always ≤ 1.5) ring elements
communicated per gate per party.

2 A Taxonomy of Information-Theoretic Proof Systems

One of the contributions of this work is to introduce and formalize the notions
of fully linear PCPs and IOPs. To situate these new types of proof systems in
the context of prior work, we briefly survey the landscape of existing systems.
This discussion will be relatively informal; see Sect. 3 for formal definitions of
linear and fully linear proof systems.

2 Our compiler can analogously apply to the 3-party semi-honest protocol of Araki
et al. [5]. We build on the protocol from [62] since its dealer-party structure offers a
slightly simpler description within our framework and the advantage of lower online
(input-dependent) cost.

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 75

A tremendously successful paradigm for the construction of cryptographic
proof systems is the following: First, construct a proof system that provides
security guarantees (soundness and possibly zero-knowledge) against computa-
tionally unbounded parties. We will refer to this as an “information-theoretic
proof system,” or sometimes as a probabilistically checkable proof (PCP). This
information-theoretic system is often useless as a standalone object, since it typ-
ically makes idealized assumptions (such as independence between two messages
or restricted access to the proof) that are difficult to enforce. Next, use cryp-
tographic assumptions and/or an augmented model of computation (e.g., the
random-oracle model [12]) to “compile” the information-theoretic proof system
into one that can be directly implemented. This compiler may also provide extra
desirable properties, such eliminating interaction, improved communication com-
plexity, or sometimes even an extra zero knowledge property, at the possible cost
of security against computationally bounded prover and/or verifier. We refer to
this type of compiler as a “cryptographic compiler.”

Different kinds of information-theoretic proof systems call for different cryp-
tographic compilers. The main advantage of this separation is modularity:
information-theoretic proof systems can be designed, analyzed and optimized
independently of the cryptographic compilers, and their security properties
(soundness and zero-knowledge) do not depend on any cryptographic assump-
tions. It may be beneficial to apply different cryptographic compilers to the same
information-theoretic proof system, as different compilers may have incompara-
ble efficiency and security features. For instance, they may trade succinctness
for better computational complexity or post-quantum security or, more relevant
to this work, apply to different representations of the input statement.

To give just a few examples of this methodology: Micali [69] uses a random
oracle to compile any classical PCP into a succinct non-interactive argument
system for NP. As another example, Ben-Or et al. [13] compile any interactive
proof system into a zero-knowledge interactive proof system using cryptographic
commitments. Finally, Bitansky et al. [23] compile a linear PCP into a succinct
non-interactive argument of knowledge (SNARK) using either a “linear-only
encryption” for the designated-verifier setting or a “linear-only one-way encod-
ing,” instantiated via bilinear groups, for the public verification setting.3 In this
work we compile fully linear PCPs and IOPs into proofs on distributed, secret-
shared, encrypted, or committed data.

2.1 Comparison with Other Proof Systems

In the following we survey some information-theoretic proof systems used in
prior work. For simplicity, we ignore the zero-knowledge feature that is typically
added to all proof systems.

3 For instantiating the publicly verifiable variant with bilinear groups, the linear PCP
needs to have a verification predicate of algebraic degree 2. Such linear PCPs can
be obtained either directly or via quadratic span programs or quadratic arithmetic
programs [23,49,74].

76 D. Boneh et al.

Let L ⊆ {0, 1}∗ be a language. Speaking informally, a proof system for L is
a pair of (possibly interactive) algorithms (P, V). Both the prover P and verifier
V take a string x ∈ {0, 1}∗ as input (e.g., a SAT formula), and the prover’s task
is to convince the verifier that x ∈ L (e.g., that x is satisfiable). We sometimes
view x as a vector over a finite field F. We require the standard notions of
completeness and soundness.

In the simplest such proof system, the prover sends the verifier a single proof
string π of size poly(|x|), the verifier reads x and π, and accepts or rejects.
When the verifier is randomized and efficient, this setting corresponds to a
Merlin-Arthur proof system [8]. There are a number of modifications to this
basic paradigm that yield interesting alternative proof systems. In particular,
we can:

– Allow interaction between the prover and verifier. In an interactive proof, the
prover and verifier exchange many messages, after which the verifier must
accept or reject. Allowing interaction may increase the power of the proof
system [81] and makes it possible to provide zero-knowledge [53] in the plain
model. (Alternatively, a common reference string is sufficient [24].)

– Restrict the verifier’s access to the proof. Another way to modify the basic
paradigm is to restrict the means by which the verifier interacts with the
proof. In particular, we can view the proof as an oracle, and only allow the
verifier to make a bounded (e.g., constant) number of queries to the proof
oracle.
In the classical PCP model [7,45,46], the proof is a string π ∈ Σm, for some
finite alphabet Σ, and the verifier can only read a small number of symbols
from the proof. On input i, the oracle returns the ith bit of the proof string
π. (We call these “point queries.”)
In the linear PCP model [23,58], the proof is a vector π ∈ F

m, for some finite
field F, and the verifier can only make a small number of “linear queries” to
the proof. That is, the proof oracle takes as input a vector q ∈ F

m and returns
the inner-product 〈π, q〉 ∈ F.

– Restrict the verifier’s access to the input. Yet another way to modify the basic
paradigm is to restrict the verifier’s access to the input x. In particular, we
can view the input as an oracle, and only allow the verifier to make a bounded
(e.g., constant) number of queries to the input oracle. The strong motivation
for this is explained later in this section. We consider two variants.
The model in which we view the input as a string, and only allow the verifier
to make a limited number of point queries to the input, corresponds to a PCP
of proximity [21]. With a few point queries, it is not possible to distinguish
between an input x ∈ L, and an input x “close to L” (in Hamming distance).
For this reason, PCPs of proximity necessarily provide only a relaxed notion
of soundness: if x is “far from L,” then the verifier will likely reject.
Alternatively, we can view the input as a vector x ∈ F

n, for some finite field
F, and only allow the verifier to make a small number of linear queries to the
input x. That is, the input oracle takes as input a vector q ∈ F

n and returns
the inner-product 〈x, q〉 ∈ F. We show that this notion, introduced and stud-

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 77

ied in this work, is sufficient to provide a standard notion of soundness (unlike
the relaxed notion of soundness provided by PCPs of proximity).

We now have three attributes by which we can classify information-theoretic
proof systems: interactivity (yes/no), proof query type (read all/point/linear),
and input query type (read all/point/linear). Taking the Cartesian product of
these attributes yields 18 different possible proof systems, and we list ten of
particular interest in Table 2.

Table 2. A comparison of information-theoretic proof systems. The bolded proof
system models are ones that we introduce explicitly in this work. “Read all” refers to
reading the entire data field, “Point” refers to reading a small number of cells of the
data, and “Linear” refers to a small number of linear queries to the data.

58

21

53
20

63
58 80

69
49

74, 75 23

60

20

83 85,86

For example, interactive oracle proofs (IOPs) are interactive proofs in which
the verifier has unrestricted access to the input but may make only point queries
to proof strings [20]. Ben-Sasson et al. [20] show how to compile such proofs into
SNARGs in the random-oracle model and recent hash-based SNARGs, including
Ligero [2], STARK [15], and Aurora [19] are built using this technique.

Why Fully Linear Proof Systems? It is often the case that the verifier only
has access to an additively homomorphic encoding of a statement x, and the
prover convinces the verifier that the encoded statement is true. For example
the verifier may be given an additively homomorphic commitment or encryption
of the statement x. Or the verifier may be implemented as a set of two or more
servers who have a linear secret sharing of the statement x, or who hold different
parts of x.

In all these settings, the verifiers can easily compute an encoding of the inner
product of the statement x with a known query vector q. In some cases (such
as the case of encrypted or committed data), the verifiers may need the prover’s
help to “open” the resulting inner products.

78 D. Boneh et al.

When we compile fully linear PCPs into proof systems on shared, encrypted,
or committed data, our compilers have the same structure: the prover sends an
additively homomorphic encoding of the proof to the verifier. The verifier makes
linear queries to the proof and input, and (if necessary) the prover provides
“openings” of these linear queries to the verifier. The verifier checks that the
openings are consistent with the encodings it was given, and then runs the fully
linear PCP verifier to decide whether to accept or reject the proof.

The Need for New Constructions. In current applications of PCPs and
linear PCPs, the length of the proof is not a complexity metric of much relevance.
For example, in the BCIOP compiler [23] for compiling a linear PCP into a
succinct non-interactive argument of knowledge (SNARK), the size of the proof
corresponds to the prover’s running time.

If the language L in question is decided by circuits of size |C|, then having
proofs of size |C| is acceptable, since the prover must run in time Ω(|C|) no
matter what. A similar property holds for Micali’s CS proofs [69], Kilian’s PCP
compiler [63], the BCS compiler [20] of interactive oracle proofs, and so on.

In our compilers, the prover must materialize the entire fully linear PCP
proof, encode it, and send it to the verifier. For us, the size of the fully linear
PCP proof not only dictates the running time of the prover, but also dictates
the number of bits that the prover must communicate to the verifier. For this
reason, in our setting, minimizing the proof size is an important goal.

Furthermore, when compiling linear PCPs into SNARKs using the existing
compilers [23,56,75] it is critical that the linear PCP verifier be expressible as
an arithmetic circuit of degree two. This is because the linear PCP verification
checks are essentially run “in the exponent” of a bilinear group. In contrast,
the settings we consider allow for more flexibility: the arithmetic degree of the
verifier typically does not play a role in the final applications, except perhaps
for a possible influence on proof verification time.

Relating Fully Linear PCPs to Streaming Proof Systems. The setting
of stream annotations [33], introduced by Chakrabarti, Cormode, McGregor,
and Thaler, restricts not only the verifier’s access to the input and proof, but
also the space usage of the verifier. In this model, the verifier is a space-bounded
streaming algorithm: it may take a single pass over the input and proof, and must
decide whether to accept or reject. For example, the verifier might be allowed
only O(

√
n) bits of working space to decide inputs of length n. The streaming

interactive proof model [36] is a generalization in which the prover and verifier
may interact.

Fully linear interactive proofs naturally give rise to stream annotation proof
systems. The reason is that if a fully linear PCP verifier makes qπ linear proof
queries and qx linear input queries, then the verifier can compute the responses
to all of its queries by taking a single streaming pass over the input and proof
while using (qx + qπ) log2 |F| bits of space. Thus, fully linear PCPs with small
proof size and query complexity give rise to stream annotation proof systems
with small proof and space requirements. Similarly, fully linear IOPs give rise to
streaming interactive proofs.

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 79

The implication in the other direction does not always hold, however, since
stream annotation systems do not always give rise to fully linear PCPs with good
parameters. The reason is that a streaming verifier may, in general, compute
some non-linear function of the input that is difficult to simulate with linear
queries.

Other Proof Systems. We briefly mention a number of other important classes
of proof systems in the literature that are out of scope of this discussion. Linear
interactive proofs are a model of interactive proof in which each message that
the prover sends is an affine function of all of the verifier’s previous messages
(but is not necessarily an affine function of the input) [23].

The fully linear PCP model is well matched to the problem of proving state-
ments on data encoded with an additively homomorphic encoding, such as Pail-
lier encryption [73] or a linear secret-sharing scheme. A different type of encoding
is a succinct encoding, in which the prover can commit to a vector in F

m with a
string of size sublinear in m [32,61]. Bootle et al. [28] introduce the “Ideal Lin-
ear Commitment” (ILC) model as an abstraction better suited to this setting.
In the ILC proof model, the prover sends the verifier multiple proofs vectors
π1, . . . , πk ∈ F

m in each round. The verifier is given a proof oracle that takes as
input a vector q ∈ F

k and returns the linear combination qT · (π1 . . . πk) ∈ F
m.

It is possible to translate linear IOP proofs into ILC proofs (and vice versa)
up to some looseness in the parameters. A linear IOP in which the prover sends
a length-m proof in each round implies an ILC proof with the same query com-
plexity in which the prover sends m proofs of length 1 in each round. An ILC
proof in which the prover sends k proofs of length m and makes � queries in
each round implies a linear IOP with proof length k · m and query complexity
� · m. ILC-type proofs underlie the recent succinct zero-knowledge arguments of
Bootle et al. [27] and Bünz et al. [31], whose security is premised on the hardness
of the discrete-log problem.

Finally, another related notion from the literature is that of a holographic
proof [9,57], where the verifier gets oracle access to an encoding of the input using
an arbitrary error-correcting code, typically a Reed-Muller code. Our notion of
fully linear PCPs can be viewed as a variant of this model where the input is
(implicitly) encoded by the Hadamard code and the proof can be accessed via
linear queries (as opposed to point queries). In fact, our model allows a single
linear query to apply jointly to the input and the proof.

We have not discussed multi-prover interactive proofs [14], in which multiple
non-colluding provers interact with a single verifier, or more recently, multi-
prover proofs in which a verifier gets access to multiple (possibly linear) proof
oracles [26,58].

“Best-of-Both-Worlds” Proof Systems. To conclude this section, we point
to an interesting direction for future work on proof systems. A very desirable
type of proof system, which is not listed in Table 2, would be one in which the
verifier makes linear queries to the input and point queries to the proof. This
type of proof system, which we call a strongly linear proof, achieves in some sense
the “best of both worlds:” the verifier has restricted access to the input (as in a

80 D. Boneh et al.

PCP of proximity or fully linear PCP) and yet achieves the standard notion of
soundness (as in a classical PCP). While it is possible in principle to construct
such strongly linear PCPs and IOPs by combining standard PCPs or IOPs of
proximity [17,21] with linear error-correcting codes, this generic combination
may not yield the best achievable parameters.

3 Definitions

Notation. For n ∈ N, let [n] = {1, . . . , n}. Let ‖ denote concatenation, 〈·, ·〉
inner product and ⊥ the empty string. When C is an arithmetic circuit over
a finite field F, we use |C| to denote the number of multiplication gates in the
circuit. When |F| > n, we let 1, 2, . . . , n denote distinct nonzero field elements.

On Concrete vs. Asymptotic Treatment. Since our new types of proof sys-
tems are meaningful even when all of algorithms involved are computationally
unbounded, our definitions refer to languages and NP-relations as finite objects
and do not refer to running time of algorithms. All of our definitions can be natu-
rally extended to the standard asymptotic setting of infinite languages and rela-
tions with polynomial-time verifiers, honest provers, simulators, and knowledge
extractors. Our positive results satisfy these asymptotic efficiency requirements.

Fully Linear PCPs. Our new notion of fully linear PCPs build upon the
definitions of standard linear PCPs from Ishai et al. [58] and Bitansky et al.
[23]. We start by recalling the original notion.

Definition 5 (Linear PCP). Let F be a finite field and let R ⊆ F
n × F

h be
a binary relation. A linear probabilistically checkable proof system for R over
F with proof length m, soundness error ε, and query complexity � is a pair of
algorithms (PLPCP, VLPCP) with the following properties:

– For every (x,w) ∈ R, the prover PLPCP(x,w) outputs a proof π ∈ F
m.

– The verifier VLPCP consists of a query algorithm QLPCP and a decision algo-
rithm DLPCP. The query algorithm QLPCP takes no input and outputs � queries
q1, . . . , q� ∈ F

m and state information st. The decision algorithm DLPCP takes
as input the state st, the statement x, and the � answers 〈π, q1〉, . . . , 〈π, q�〉 ∈ F

to QLPCP’s queries. It outputs “accept” or “reject.”

The algorithms additionally satisfy the following requirements:

– Completeness. For all (x,w) ∈ R, the verifier accepts a valid proof:

Pr
[
DLPCP(st, x, 〈π, q1〉, . . . , 〈π, q�〉) = “accept” :

π ← PLPCP(x, w)
(st, q1, . . . , q�) ← QLPCP()

]
= 1.

– Soundness. For all x∗
∈ L(R), and for all false proofs π∗ ∈ F
m, the proba-

bility that the verifier accepts is at most ε:

Pr
[
DLPCP(st, x

∗, 〈π∗, q1〉, . . . , 〈π∗, q�〉) = “accept” : (st, q1, . . . , q�) ← QLPCP()
]

≤ ε.

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 81

In some applications, one also needs a knowledge property [23]: there exists
an extractor ELPCP such that if VLPCP(x) accepts a proof π, then ELPCP on input
π outputs a witness w such that (x,w) ∈ R. The linear PCPs we introduce
in this work satisfy this property, though we only prove the simpler soundness
property.

Remark (Linear PCPs for languages). On occasion we refer to linear PCPs for
a language L ⊆ F

n, rather than for a binary relation R ⊆ F
n × F

h. This will
typically be the case when L is efficiently recognizable, in which case the prover
does not require an additional witness w. Essentially the same notions of com-
pleteness and soundness apply in this setting: if x ∈ L, the verifier always accepts
and for all x
∈ L the verifier rejects except with at most ε probability.

We now define our main new notion of fully linear PCPs and their associated
strong zero knowledge property.

Definition 6 (Fully linear PCP - FLPCP). We say that a linear PCP is
fully linear if the decision predicate DLPCP makes only linear queries to both the
statement x and to the proof π. More formally, the query algorithm QLPCP out-
puts queries q1, . . . , q� ∈ F

m+n, and state information st. The decision algorithm
DLPCP takes as input the query answers a1 = 〈(x‖π), q1〉, . . . , a� = 〈(x‖π), q�〉,
along with the state st, and outputs an accept/reject bit.

Remark. If we do not restrict the running time of the linear PCP verifier and
we do not restrict the manner in which the verifier can access the statement x,
then all relations have trivial a linear PCPs: an inefficient linear PCP verifier
can simply iterate over every possible witness w and test whether (x,w) ∈ R.
To make the definition non-trivial, the standard notion of PCPs [82] (and also
linear PCPs [23,58]) restricts the verifier to run in polynomial time. In contrast,
a fully linear PCP restricts the verifier’s access to the statement x by permitting
the verifier to make a bounded number of linear queries to x. This restriction
makes the definition non-trivial: even if the verifier can run in unbounded time,
it cannot necessarily decide whether x ∈ L(R) without the help of a proof π.

Definition 7 (Strong zero-knowledge fully linear PCPs). A fully linear
PCP is strong honest-verifier zero knowledge (strong HVZK) if there exists a
simulator SLPCP such that for all (x,w) ∈ R, the following distributions are
identical:

SLPCP() ≡
{

(q1, . . . , q�)(〈(x‖π), q1〉, . . . , 〈(x‖π), q�〉
) :

π ← PLPCP(x,w)
(q1, . . . , q�) ← QLPCP()

}
.

Remark. The strong zero-knowledge property here departs from the traditional
zero-knowledge notion in that it essentially requires that an honest verifier learn
nothing about the statement x by interacting with the prover, except that x ∈
L(R). This notion is meaningful in our applications, since the statement x could
be encrypted or secret-shared (for example), and thus it makes sense for a verifier
to learn that x ∈ L(R) without learning anything else about x.

82 D. Boneh et al.

Fully Linear Interactive Oracle Proofs. In a linear PCP, the interaction
between the prover and verifier is “one-shot:” the prover produces a proof π,
the verifier makes queries to the proof, and the verifier either accepts or rejects
the proof. We define fully linear interactive oracle proofs (“fully linear IOPs”),
generalizing linear PCPs to several communication rounds. This sort of linear
proof system is inspired by the notion of IOPs from [20,76] (generalizing an
earlier notion of interactive PCPs [59]) that use point queries instead of linear
queries.

In the ith round of a linear IOP interaction, the prover sends the verifier
a proof πi ∈ F

m, where F is a finite field and m is a proof length parameter.
The verifier issues linear queries to the proof πi and then sends a challenge
ri ∈ {0, 1}∗ to the prover. The verifier’s queries in round i, along with the
challenges it produces, may depend on all of the messages it has seen thus far.
The prover’s next proof πi+1 may depend on the challenge ri, and all of the
messages it has seen so far.

As with a linear PCP, we also introduce the notion of fully linear IOPs, in
which the verifier makes only linear queries to the input, and define the strong
zero-knowledge property in a natural way. The fully linear IOPs constructed in
this work are all public-coin in the following sense.

Definition 8 (Public-coin fully linear IOP). We say that a t-round �-query
fully linear IOP is public coin if it satisfies the following additional properties:

1. In every round i ∈ {1, . . . , t} of interaction, first the prover provides a proof
πi and then a public random challenge ri is picked uniformly at random from
a finite set Si. (The choice of ri is made independently of the proof πi of the
same round.) The public randomness ri can influence all proofs generated
by the prover in the following rounds. Following the final round, � queries
(q1, . . . , q�) (made to x‖π1‖ . . . ‖πt) are determined by the random challenges
(r1, . . . , rt).

2. The verifier’s decision predicate is a function only of the public random chal-
lenges (r1, . . . , rt) and the answers to the verifier’s queries (q1, . . . , q�).

When the first round does not involve a proof but only a random challenge
πi, we deduct 1/2 from the number of rounds. In particular, a 1.5-round public-
coin fully linear IOP is one that involves (in this order): a random challenge r, a
proof π (that may depend on r), queries (q1, . . . , q�) to x‖π that may depend on
fresh public randomness r′, and decision based on r, r′ and the answers to the
queries.

4 Constructions: Fully Linear PCPs

In this section we first show how to construct fully linear PCPs from existing
linear PCPs. Next, we introduce a new fully linear PCP that yields shorter proofs
for languages that are recognized by arithmetic circuits with certain repeated
structure; the only cost is an increase in the algebraic degree of the verifier,

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 83

which is irrelevant for the main applications we consider. This new fully linear
PCP is used by our fully linear IOP constructions in Sect. 5.

We begin by observing that the Hadamard [6,23] and GGPR-style linear
PCPs [18,23,49,79], as described in the work of Bitansky et al. [23, Appendix
A], satisfy our new notions of full linearity and strong zero knowledge (Table 3).

Table 3. A comparison of existing and new fully linear PCP constructions for satisfi-
ability of an arithmetic circuit C : Fn → F. Proof length measures the number of field
elements in F. For the G-gates construction, G : FL → F is an arithmetic circuit of
degree deg G and M is the number of G-gates in the circuit C.

Linear PCP Proof length Queries Verifier deg Soundness error

Hadamard LPCP [6,23] O(|C|2) 3 2 O(1)/|F|
GGPR-style [49] O(|C|) 4 2 O(|C|)/|F|
G-gates (Theorem 11) M · deg G L + 2 deg G M · deg G/(|F| − M)

Degree-two (Corollary 13) O(
√|C|) O(

√|C|) 2 O(
√|C|)/|F|

Claim 9 (Informal). The Hadamard linear PCP and the GGPR-based linear
PCP are constant-query fully linear PCPs, in the sense of Definition 6. Moreover,
they yield fully linear PCPs with strong HVZK.

We now describe a fully linear PCP for arithmetic circuit satisfiability, for
circuits C with a certain type of repeated structure. When applied to arithmetic
circuits of size |C|, it can yield proofs of length o(|C|) field elements. In contrast,
the existing general-purpose linear PCPs in Claim 9 have proof size Ω(|C|).

This new linear PCP construction applies to circuits that contain many
instances of the same subcircuit, which we call a “G-gate.” If the arithmetic
degree of the G-gate is small, then the resulting linear PCP is short. More for-
mally, we define:

Definition 10 (Arithmetic circuit with G-gates). We say that a gate in
an arithmetic circuit is an affine gate if (a) it is an addition gate, or (b) it is a
multiplication gate in which one of the two input is a constant. Let G : FL → F

be an arithmetic circuit composed of affine gates and multiplication gates. An
arithmetic circuit with G-gates is an arithmetic circuit composed of affine gates
and G-gates.

The following theorem is the main result of this section. Recall that |G| refers
to the number of non-constant multiplication gates in the arithmetic circuit
for G.

Theorem 11. Let C be an arithmetic circuit with G-gates over F such that:

(a) the gate G : FL → F has arithmetic degree deg G,
(b) the circuit C consists of M instances of a G-gate and any number of affine

gates, and

84 D. Boneh et al.

(c) the field F is such that |F| > M deg G.

Then, there exists a fully linear PCP with strong HVZK for the relation RC =
{(x,w) ∈ F

n × F
h | C(x,w) = 0} that has:

– proof length h+L+M deg G+1 elements of F, where h is the witness length
and L is the arity of the G-gate,

– query complexity L + 2,
– soundness error M deg G/(|F| − M), and
– a verification circuit of degree deg G containing |G| multiplication gates.

Furthermore, if we require a fully linear PCP that is not necessarily strong
HVZK, then the proof length decreases to h + (M − 1) deg G + 1 elements of
F and the soundness error decreases to M deg G/|F|.

The proof of Theorem 11 uses the following simple fact about the linearity of
polynomial interpolation and evaluation.

Fact 12. Let F be a finite field and let π ∈ F
m. For some integer n < |F|, let

A1, . . . , An be affine functions that map F
m to F. Define f to be the polynomial

of lowest-degree such that f(i) = Ai(π) for all i ∈ {1, . . . , n}. Then for all r ∈ F

and all choices of the Ai, there exists a vector λr ∈ F
m and scalar δr ∈ F, such

that f(r) = 〈λr, π〉 + δr for all π ∈ F
m.

Fact 12 says that given the values of a polynomial f at the points 1, . . . , n
as affine functions of a vector π ∈ F

m, we can express f(r) as an affine function
of π, and this affine function is independent of π. This follows from the fact
that polynomial interpolation applied to the n points

{
(i, Ai(π))

}n

i=1
followed

by polynomial evaluation at the point r is an affine function of π.

Proof of Theorem 11. The construction that proves Theorem11 is a generaliza-
tion of the linear PCP implicit in the construction used in the Prio system [37]
and is closely related to a Merlin-Arthur proof system of Williams for batch
verification of circuit evaluation [84]. Figure 1 gives an example of the proof
construction, applied to a particular simple circuit.

Label the G-gates of the circuit C in topological order from inputs to outputs;
there are M such gates in the circuit. Without loss of generality, we assume that
the output of the circuit C is the value on the output wire of the last G-gate in
the circuit.

FLPCP Prover. On input (x,w) ∈ F
n × F

h, the prover evaluates the circuit
C(·, ·) on the pair (x,w). The prover then defines L polynomials f1, . . . , fL ∈
F[X] such that, for every i ∈ {1, . . . , L},

(i) the constant term fi(0) is a value chosen independently and uniformly at
random from F, and

(ii) for all j ∈ {1, . . . , M}, fi(j) ∈ F is the value on the i-th input wire to the
j-th G-gate when evaluating the circuit C on the input-witness pair (x,w).

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 85

Furthermore, the prover lets f1, . . . , fL be the polynomials of lowest degree that
satisfy these relations. Observe that each of the polynomials f1, . . . , fL has degree
at most M .

Next, the prover constructs a proof polynomial p = G(f1, . . . , fL) ∈ F[X].
By construction of p, we know that, for j ∈ {1, . . . , M}, p(j) is the value on
the output wire from the j-th G-gate in the evaluation of C(x,w). Moreover,
p(M) = C(x,w). Let d be the degree of the polynomial p and let cp ∈ F

d+1 be
the vector of coeffcients of p ∈ F[X]. By construction, the degree of p satisfies
d ≤ M deg G.

The prover outputs π = (w, f1(0), . . . , fL(0), cp) ∈ F
h+L+d+1 as the linear

PCP proof.
(Note: If we do not require strong HVZK to hold, then the prover need not

randomize the constant terms of the polynomials f1, . . . , fL. In this case, the
prover does not include the values f1(0), . . . , fL(0) in the proof, and the degree
of the polynomial p decreases to (M −1) deg G. Thus, if we do not require strong
HVZK, the proof length falls to h + (M − 1) deg G + 1.)

FLPCP Queries. We can parse the (possibly maliciously crafted) proof π ∈
F

h+L+d+1 as: a purported witness w′ ∈ F
h, the values (z′

1, . . . , z
′
L) ∈ F

L repre-
senting the constant terms of some polynomials f ′

1, . . . , f
′
L, and the coefficients

c′
p ∈ F

d+1 of a polynomial p′ ∈ F[X] of degree at most d. If the proof is well-
formed, the polynomial p′ is such that p′(j) encodes the output wire of the jth
G-gate in the circuit C(·, ·) when evaluated on the pair (x,w′).

Given p′, we define L polynomials f ′
1, . . . , f

′
L ∈ F[X] such that:

(i) the constant term satisfies f ′
i(0) = z′

i, where z′
i is the value included in the

proof π′, and
(ii) f ′

i(j) ∈ F is the value on the i-th input wire to the j-th G-gate in the circuit,
under the purported assignment of values to the output wires of the G-gates
implied by the polynomial p′ and witness w′.

More precisely, we define f ′
i(j) inductively: The value on the ith input wire

to the jth G-gate in the circuit C(x,w′) is some affine function Aij of

– the input x ∈ F
n,

– the purported witness w′ ∈ F
h, and

– the purported outputs of the first j − 1 G-gates in the circuit: p′(1), . . . ,
p′(j − 1) ∈ F.

So, for all i ∈ {1, . . . , L}, we define f ′
i to be the polynomial of least degree

satisfying:

f ′
i(0) = z′

i

f ′
i(j) = Aij(x,w′, p′(1), . . . , p′(j − 1)) for 1 ≤ j ≤ M,

where Aij is a fixed affine function defined by the circuit C.

86 D. Boneh et al.

The verifier’s goal is to check that:

1. p′ = G(f ′
1, . . . , f

′
L), and,

2. the circuit output p′(M) satisfies p′(M) = 0.

As we argue below, the first condition ensures that p′(M) is equal to the output
of the circuit C(x,w′). The second check ensures that the output is 0.

To implement the first check, the verifier samples a random point r ←R

F\{1, . . . , M} and outputs query vectors that allow evaluating p′ and f ′
1, . . . , f

′
L

at the point r. (For the honest-verifier zero knowledge property to hold, it is
important that we exclude the set {1, . . . , M} from the set of choices for r.)
The verifier has linear access to the input x, witness w′, constant terms z′ =
(z′

1, . . . , z
′
L), and the coefficients c′

p ∈ F
d+1 of the polynomial p′. Hence, using

Fact 12, it follows that the query algorithm can compute vectors λ1, . . . , λL ∈
F

n+h+L+d+1 and scalars δ1, . . . , δL ∈ F such that f ′
i(r) = 〈λi, (x‖w′‖z′‖c′)〉+ δi

for i = 1, . . . , L, where r ∈ F is the random point chosen above. Simi-
larly, the query algorithm can compute a vector λ ∈ F

n+h+L+d+1 such that
p′(r) = 〈λ, (x‖w′‖z′‖c′)〉.

The verifier can execute the second check, to ensure that p′(M) = 0, with a
single linear query.

FLPCP Decision. The decision algorithm takes as input the state value r ∈
F\{1, . . . , M}, along with the query answers a, a1, . . . , aL, b ∈ F, where a =
p′(r), ai = f ′

i(r) for i ∈ {1, . . . , �}, and b = p′(M). The verifier accepts if
a = G(a1, . . . , aL) and b = 0.

Security Arguments. We show completeness, soundness, and strong HVZK.

Completeness. If the prover is honest, then p′ = G(f ′
1, . . . , f

′
L) and p′(M) = 0

by construction. The verifier will always accept in this case.

Soundness. Fix a circuit C, a statement x ∈ F
n, and a proof π′ ∈ F

h+L+d+1.
We show that if x
∈ L(RC) then the verifier accepts with probability at most
M deg G/(|F| − M).

As in the description of the query algorithm, we can view:

– the first h elements of the proof as a witness w′ ∈ F
h,

– the next L elements of the proof as constant terms z′
1, . . . , z

′
L ∈ F, and

– the latter elements as the coefficients of a polynomial p′ of degree at most
d ≤ M deg G.

We may assume that p′(M) = 0, since otherwise the verifier always rejects. In
the discussion that follows, let the polynomials f ′

1, . . . , f
′
L be the ones defined in

the description of the linear PCP query algorithm.
We claim that if for all j ∈ {1, . . . , M}, it holds that p′(j) =

G(f ′
1(j), . . . , f

′
L(j)), then for all j ∈ {1, . . . , M}, p′(j) encodes the value of the

output wire of the jth G-gate in the circuit C when evaluated on input (x,w′).
We prove this claim by induction on j:

– Base case (j = 1). The values (f ′
1(1), . . . , f ′

L(1)) depend only on the pair
(x,w′). By construction, the values (f ′

1(1), . . . , f ′
L(1)) are exactly the values

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 87

of the input wires to the first G-gate in the evaluation of C(x,w′). Then if
p′(1) = G(f ′

1(1), . . . , f ′
L(1)), p′(1) encodes the value on the output wire of the

first G-gate.
– Induction step. Assume that, for all k ∈ {1, . . . , j − 1}, p′(k) =

G(f ′
1(k), . . . , f ′

L(k)). Then, by the induction hypothesis, (p′(1), . . . , p′(j − 1))
are the values on the output wires of the first j − 1 G-gates of C, when eval-
uated on (x,w′).
The values (f ′

1(j), . . . , f
′
L(j)) are affine functions of x, w′ and the values

p′(1), . . . , p′(j − 1). Then, by construction of the polynomials (f ′
1, . . . , f

′
L),

the values (f ′
1(j), . . . , f

′
L(j)) encode the values on the input wires to the j-th

G-gate in the evaluation of the circuit C(x,w′). Finally, if we assume that
p′(j) = G(f ′

1(j), . . . , f
′
L(j)), then p′(j) must be the value on the output wire

of the jth G-gate.
We have thus proved the induction step.

This completes the proof of the claim.
If p′(M) = 0 (as we have assumed), but there exists no witness w′ such that

C(x,w′) = 0, then p′(M) does not encode the output value of the Mth G-gate in
the evaluation of the circuit C(x,w′). By the claim just proved, this implies that
for some j∗ ∈ {1, . . . , M}, p′(j∗)
= G(f ′

1(j
∗), . . . , f ′

L(j∗)). Thus, when we view
p′, f ′

1, . . . , f
′
L ∈ F[X] as univariate polynomials, we have that p′
= G(f ′

1, . . . , f
′
L).

Now, if p′
= G(f ′
1, . . . , f

′
L) then p′ − G(f ′

1, . . . , f
′
L) ∈ F[X] is a non-zero

univariate polynomial of degree at most M deg G. Such a polynomial can have at
most M deg G roots over F. Therefore the probability, over the verifier’s random
choice of r ←R

F\{1, . . . , M}, that p′(r) − G(f ′
1(r), . . . , f

′
L(r)) = 0 is at most

M deg G/(|F| − M). We conclude that the verifier accepts a false proof with
probability at most M deg G/(|F| − M).

See full version for a proof that the construction satisfies strong HVZK. ��
If we define the G-gate to be a multiplication gate, so that deg G = 2, then

the construction of Theorem 11 matches the complexity of the GGPR-based
linear PCP [49,79] and provides what is essentially an alternative formulation
of that proof system. In contrast, if deg G � |G|, then this construction can
yield significantly shorter proofs than the GGPR-based linear PCP, at the cost
of increasing the algebraic degree of the verifier from 2 to deg G.

Remark. We can generalize Theorem 11 to handle circuits with many distinct
repeated subcircuits G1, . . . , Gq with Mi instances of each gate Gi : FLi → F, for
i ∈ {1, . . . , q}. The resulting fully linear PCP with strong HVZK has proof length
at most h + (

∑q
i=1 Li) + (

∑q
i=1 Mi deg Gi) + q elements of F, query complexity

1+
∑q

i=1(Li +1), a verifier of algebraic degree maxi deg Gi, and soundness error∑q
i=1

(
Mi deg Gi/(|F| − Mi)

)
.

Remark. To get good soundness when applying the proof system of Theorem11,
the field F must be such that |F| � M deg G. In many applications, the input
x ∈ F

n is a vector in a small field, such as the binary field F2. In this case, we
apply Theorem 11 by lifting x into an extension field F̃ of F, and carrying out
the linear PCP operations in the extension.

88 D. Boneh et al.

The randomization technique we use to achieve honest-verifier zero-
knowledge in Theorem 11 is inspired by the one that appears in the work of
Bitansky et al. [23] for achieving HVZK in the Hadamard linear PCP construc-
tion.

Application: Short Proofs for Degree-Two Relations. As an application
of Theorem 11 we demonstrate a special-purpose fully linear PCP for relations
recognized by arithmetic circuits of degree two. When applied to an arithmetic
circuit C : Fn ×F

h → F, we obtain a proof that consists of only O(h +
√

n) field
elements and whose query complexity is only O(

√
n + h). For general-purpose

Fig. 1. An example of the fully linear PCP proof of Theorem 11.

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 89

linear PCPs, such as the Hadamard or GGPR-based linear PCPs, the proof
length plus query complexity is much larger: Ω(n + h).

A special case of this proof yields a linear PCP for the language of vectors
whose inner product is equal to a certain value. To give one application of such a
proof system: Given encryptions of two sets, represented by their characteristic
vectors, this proof system would allow a prover to succinctly show that the sets
are disjoint.

This construction also reveals the close connection between fully linear PCPs
and communication complexity. Without zero knowledge, this proof protocol
boils down to the Merlin-Arthur communication complexity protocol of Aaron-
son and Wigderson [1]. Furthermore, as we show in the full version of this work,
we can use lower bounds on the communication complexity of inner-product to
show that this fully linear PCP construction has essentially optimal parameters.

Corollary 13 (FLPCP for degree-two circuits). Let F be a finite field, let
C : Fn × F

h → F be an arithmetic circuit of degree two, and let RC = {(x,w) ∈
F

n × F
h | C(x,w) = 0}. There is a fully linear PCP with strong HVZK for RC

that has proof length h+O(
√

n + h) elements of F, query complexity O(
√

n + h),
a verifier of algebraic degree 2, and soundness error O(

√
n+h)

|F|−�√
n+h� .

The idea of Corollary 13 is that any degree-two circuit C : Fn → F can be
expressed as a circuit that computes an inner-product of dimension-n vectors,
along with some number of affine gates. This property is special to degree-two
circuits—the idea does not easily generalize to circuits of higher constant degree.

Proof of Corollary 13. Without loss of generality we can assume that C imple-
ments a quadratic form C(x,w) = (x‖w)T · A · (x‖w) for some matrix A ∈
F
(n+h)×(n+h). Indeed, a proof system for quadratic forms yields a proof system

for any circuit of degree 2. We can re-write C(x,w) as the inner-product of
the vectors y = (x‖w) and z = A · (x‖w) in F

n+h. Hence, it suffices to design
a fully linear PCP for the inner-product relation R′

C =
{
(x,w) ∈ F

n × F
h |〈

(x‖w) , A · (x‖w)
〉

= 0
}
.

Let L2 be the closest perfect square greater than or equal to n + h, and pad
the vectors y = (x‖w) and z = A(x‖w) with zeros so that both are in F

(L2).
Next, arrange the vector y into a matrix Y ∈ F

L×L, and arrange z into a matrix
Z ∈ F

L×L in the same way. Then C(x,w) = 〈y, z〉 = trace(Y · ZT).
Because the trace is a linear function, we can compute C(x,w) using a circuit

C ′ consisting of only addition gates and a total of L gates G : FL × F
L → F

defined as G(u, v) = 〈u, v〉 for u, v ∈ F
L. Clearly deg G = 2 and L = O(

√
n + h).

Applying Theorem11 to this G-gate circuit gives a fully linear PCP for RC′

with strong HVZK with the parameters stated in the corollary, as required. The
proof needs at most 2L additional linear queries to verify that the padding in y
and z is all zero, but this does not change the parameters in the corollary. ��
Remark. A simple extension of Corollary 13 yields a two-round (in fact, 1.5-
round) fully linear IOP for relations recognized by general degree-two circuits

90 D. Boneh et al.

C : Fn × F
h → F

k, for k ≥ 1. To sketch the idea behind this extension, write
the circuit C as C(x) = (C1(x), C2(x), . . . , Ck(x)) ∈ F

k, where each Ci is a
degree-two circuit. In the first round of the protocol, the verifier sends a random
value r ∈ F. Then the prover and verifier define the degree-two circuit Cr(x) =∑k

i=1 ri ·Ci(x) ∈ F. The prover then uses the fully linear PCP of Corollary 13 to
convince the verifier that Cr accepts the input x ∈ F

n. The efficiency parameters
match those of the corollary, except that the soundness error increases by an
additive term k/|F| to account for the failure event that some Ci(x) outputs a
non-zero value and yet the sum Cr(x) is zero. See Theorem 15 for a more general
version of this protocol.

Application: Short Proofs for Parallel-Sum Circuits. As a second appli-
cation of Theorem 11, we give a special-purpose fully linear PCP for languages
recognized by circuits that take as input a vector x ∈ F

n and:

– apply an affine transformation to the input,
– apply the same sub-circuit C : FL → F in parallel to each block of L values,
– sum the outputs of the C circuits.

More formally, let C : FL → F be an arithmetic circuit. Let A : Fn → F and
A1, . . . , AM : Fn → F

L be affine functions. This linear PCP construction applies
to the language of values x ∈ F

n such that
∑M

i=1 C(Ai(x)) = A(x).

Corollary 14 (FLPCP for parallel-sum circuits). Let C : FL → F be an
arithmetic circuit over F that has arithmetic degree deg C. Let A : Fn → F and
A1, . . . , AM ∈ F

n → F
L be affine functions. Then, there exists a strong HVZK

fully linear PCP for the language LC,A,A1,...,AM
= {x ∈ F

n | ∑M
i=1 C(Ai(x)) =

A(x)} that has:

– proof length O(
√

M · (L + deg C)) elements of F,
– query complexity O(

√
M · L),

– soundness error
√

M ·deg C

|F|−√
M

, and

– an arithmetic verification circuit of degree deg C containing O(
√

M · |C|)
multiplication gates.

Proof of Corollary 14. We define an appropriate G-gate and then invoke Theo-
rem 11. Assume that M is a perfect square, since otherwise we can pad M up to
the nearest square. The gadget G : F

√
ML → F applies the circuit C to

√
M

blocks of L inputs. So, on input (x̄1, . . . , x̄√
M) ∈ F

√
ML, where x̄j ∈ F

L for all
j ∈ {1, . . . ,

√
M}, the G-gate outputs:

G(x̄1, . . . , x̄√
M) =def

√
M∑

j=1

C(x̄j) ∈ F. (1)

Then the language LC,A,A1,...,AM
is recognized by a circuit containing M ′ =√

M instances of the G-gate, along with some number of affine gates. Applying
Theorem 11 using this G-gate yields a fully linear PCP as required. ��

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 91

5 Constructions: Fully Linear Interactive Oracle Proofs

In this section, we describe an extension of our fully linear PCPs to fuller linear
interactive oracle proofs (linear IOPs). These extra rounds of interaction can
buy efficiency improvements in total proof length and verifier time.

For example, a corollary of our general construction gives an O(log n) round
strong HVZK fully linear IOP for proving that a vector x ∈ F

n consists entirely
of 0/1 entries, where the proof size is only O(log n) field elements. In comparison,
linear PCPs yield proofs of size Ω(n).

Several protocols from the literature, including notably the “Muggles” pro-
tocol of Goldwasser, Kalai, and Rothblum [51,52] are implicitly linear IOPs. See
full version for connections between our notion and these protocols.

A Recursive Linear IOP for Parallel-Sum Circuits. Corollary 14 gives a
linear PCP for “parallel-sum” circuits whose length grows as the square root of
the degree of parallelism. Here, we show that by increasing the number of rounds
between the prover and verifier, we can decrease the proof size to logarithmic in
the degree of parallelism. The key observation is that in Corollary 14, the linear
PCP verifier is itself a parallel-sum circuit. So rather than having the verifier
evaluate this circuit on its own, the verifier can outsource the work of evaluating
the verification circuit to the prover. The prover then uses a secondary linear
PCP to convince the verifier that it executed this step correctly.

To get the optimal bounds we rebalance the parameters used in the proof of
Corollary 14. Instead of a G-gate containing

√
M copies of C, as in (1), we use a

G-gate containing M/2 copies of C, and then recursively verify one input/output
pair for that G-gate.

A useful application of this technique is to the case of “low-degree languages,”
namely languages in which membership can be checked by a system of low-
degree equations. The following theorem, whose proof appears in the full version,
describes fully linear IOPs for such low-degree languages, over both finite fields
and rings of the form R = Zw.

Theorem 15 (ZK-FLIOP for low-degree languages). Let R be a ring, let
C : Rn → Rm be an arithmetic multi-output circuit of degree d defined by
C(x) = (C1(x), . . . , Cm(x)) and let M be the number of distinct monomials in the
representation of C1, . . . , Cm as polynomials. Let LC = {x ∈ Rn | C(x) = 0m}
and let ε be a required soundness error bound. Then, there is a fully linear IOP Π
over R with strong HVZK for the language LC that has the following efficiency
features.

– Degree d = 2, constant rounds: If d = 2 then Π has 1.5 rounds, proof
length O(η

√
n), challenge length O(η), and query complexity O(

√
n), where

η = log|R|((m +
√

n)/ε) if R is a finite field or η = log2((m +
√

n)/ε) if
R = Z2k . The computational complexity is Õ(M)

– Degree d, logarithmic rounds: If d ≥ 2 then Π has O(log M) rounds, proof
length O(ηd log M), challenge length O(η), and query complexity O(log M),

92 D. Boneh et al.

where η = log|R|((m + d log M)/ε) if R is a finite field or η = log2((m +
d log M)/ε) if R = Z2k . The computational complexity is Õ(dM).

Trading Communication for Computation. Most of our motivating appli-
cations involve low-degree verification circuits that have constant output locality.
For instance, this is the case for checking that x ∈ {0, 1}n or for languages corre-
sponding to standard MPC protocols (e.g., checking Beaver triples). In this case,
we can reduce computational cost while maintaining sublinear communication
via the following simple tradeoff technique. Chop the m outputs into blocks of
size �, viewing each block as a low-degree circuit with O(�) inputs and � outputs,
and apply a separate FLIOP to each block. This gives a smooth tradeoff between
communication and computation, which may be useful for tuning concrete effi-
ciency depending on the available bandwidth and computational power.

6 Conclusions

We have demonstrated that fully linear proof systems capture many existing
techniques for zero-knowledge proof on secret-shared, encrypted, or committed
data. We presented new constructions of zero-knowledge fully linear PCPs and
IOPs for “simple” languages with sublinear proof size, and demonstrated the
usefulness of such proof systems to protecting secret-sharing based MPC proto-
cols against malicious parties with low communication overhead.

Despite some progress obtained in this work and in prior related works, there
is a lot more to understand about the power of (fully) linear PCPs and their
interactive variants. We mention a couple of concrete open questions:
– To what extent are the tradeoffs we obtain for low-degree languages optimal?

In particular, is there a linear PCP of size o(n) for the language L{0,1}n =def

{x ∈ F
n | x ∈ {0, 1}n}? Our sublinear constructions require interaction.

– Are there linear PCPs for general arithmetic circuit satisfiability with con-
stant query complexity and proof size sublinear in the circuit size? In the full
version, we show a lower bound result that unconditionally rules out such suc-
cinct fully linear PCPs. Standard PCPs with succinctness properties cannot
exist unless the polynomial hierarchy collapses [47]. Does the same restriction
apply to general linear PCPs?

Acknowledgments. We thank Shai Halevi, Ariel Nof, Ron Rothblum, David J. Wu,
and Eylon Yogev for helpful discussions and comments. Justin Thaler gave us many
useful references to related work on sum-check-based proof protocols and helped us
understand the relationship between those protocols and our own.

E. Boyle, N. Gilboa, and Y. Ishai supported by ERC grant 742754 (project NTSC).
E. Boyle additionally supported by ISF grant 1861/16 and AFOSR Award FA9550-
17-1-0069. N. Gilboa additionally supported by ISF grant 1638/15, and a grant by
the BGU Cyber Center. Y. Ishai additionally supported by ISF grant 1709/14, NSF-
BSF grant 2015782, and a grant from the Ministry of Science and Technology, Israel
and Department of Science and Technology, Government of India. D. Boneh and H.
Corrigan-Gibbs are supported by NSF, ONR, DARPA, the Simons Foundation, CISPA,
and a Google faculty fellowship.

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 93

References

1. Aaronson, S., Wigderson, A.: Algebrization: a new barrier in complexity theory.
ACM Trans. Comput. Theory (TOCT) 1(1), 2 (2009)

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: CCS (2017)

3. Andrew, C.C.Y.: Some complexity questions related to distributed computing. In:
STOC (1979)

4. Araki, T., et al.: Optimized honest-majority MPC for malicious adversaries - break-
ing the 1 billion-gate per second barrier. In: IEEE Symposium on Security and
Privacy (2017)

5. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: ACM CCS
(2016)

6. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

7. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.
J. ACM 45(1), 70–122 (1998)

8. Babai, L.: Trading group theory for randomness. In: STOC (1985)
9. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-

logarithmic time. In: STOC (1991)
10. Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a

hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)
11. Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical

and privacy-preserving proofs on authenticated data. In: 2015 IEEE Symposium
on Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015 (2015)

12. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS (1993)

13. Ben-Or, M., et al.: Everything provable is provable in zero-knowledge. In: Gold-
wasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York
(1990). https://doi.org/10.1007/0-387-34799-2 4

14. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive
proofs: how to remove intractability assumptions. In: STOC (1988)

15. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018)

16. Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner, N.:
On probabilistic checking in perfect zero knowledge. In: Electronic Colloquium on
Computational Complexity (ECCC), no. 156 (2016)

17. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive
oracle proofs with constant rate and query complexity. In: ICALP (2017)

18. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

19. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. Cryptology ePrint Archive,
Report 2018/828 (2018). https://eprint.iacr.org/2018/828

20. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/978-3-642-40084-1_6
https://eprint.iacr.org/2018/828
https://doi.org/10.1007/978-3-662-53644-5_2

94 D. Boneh et al.

21. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Robust PCPs
of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36(4),
889–974 (2006)

22. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, 8–10
January 2012 (2012)

23. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

24. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988 (1988)

25. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their appli-
cation to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 9

26. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear multi-
prover interactive proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10822, pp. 222–255. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78372-7 8

27. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

28. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 12

29. Bootle, J., Groth, J.: Efficient batch zero-knowledge arguments for low degree
polynomials. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp.
561–588. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 19

30. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: CCS (2016)

31. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
efficient range proofs for confidential transactions. Cryptology ePrint Archive,
Report 2017/1066 (2017)

32. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 5

33. Chakrabarti, A., Cormode, G., McGregor, A., Thaler, J.: Annotations in data
streams. ACM Trans. Algorithms 11(1), 7 (2014)

34. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 2

35. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: ITCS (2012)

36. Cormode, G., Thaler, J., Yi, K.: Verifying computations with streaming interactive
proofs. Proc. VLDB Endow. 5(1), 25–36 (2011)

https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-319-78372-7_8
https://doi.org/10.1007/978-3-319-78372-7_8
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-319-76581-5_19
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-319-96878-0_2

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 95

37. Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of
aggregate statistics. In: NSDI (2017)

38. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous messaging
system handling millions of users. In: Symposium on Security and Privacy (2015)

39. Costello, C., et al.: Geppetto: versatile verifiable computation. In: 2015 IEEE Sym-
posium on Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015
(2015)

40. Couteau, G.: A note on the communication complexity of multiparty computation
in the correlated randomness model. IACR Cryptology ePrint Archive 2018, 465
(2018)

41. Damg̊ard, I., Luo, J., Oechsner, S., Scholl, P., Simkin, M.: Compact zero-knowledge
proofs of small hamming weight. In: Abdalla, M., Dahab, R. (eds.) PKC 2018.
LNCS, vol. 10770, pp. 530–560. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-76581-5 18

42. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

43. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The tinytable protocol for
2-party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 167–187. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 6

44. Eerikson, H., Orlandi, C., Pullonen, P., Puura, J., Simkin, M.: Use your brain!
Arithmetic 3PC for any modulus with active security. IACR Cryptology ePrint
Archive 2019, 164 (2019)

45. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique
is almost NP-complete. In: FOCS (1991)

46. Fortnow, L., Rompel, J., Sipser, M.: On the power of multi-prover interactive
protocols. Theor. Comput. Sci. 134(2), 545–557 (1994)

47. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. In: STOC (2008)

48. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 8

49. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

50. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC (1987)

51. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: STOC (2008)

52. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. J. ACM 62(4), 27 (2015)

53. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

54. Gordon, S.D., Ranellucci, S., Wang, X.: Secure computation with low communica-
tion from cross-checking. IACR Cryptology ePrint Archive 2018, 216 (2018)

55. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

https://doi.org/10.1007/978-3-319-76581-5_18
https://doi.org/10.1007/978-3-319-76581-5_18
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-17373-8_19

96 D. Boneh et al.

56. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

57. Gur, T., Rothblum, R.D.: A hierarchy theorem for interactive proofs of proxim-
ity. In: 8th Innovations in Theoretical Computer Science Conference, ITCS 2017,
Berkeley, CA, USA, 9–11 January 2017 (2017)

58. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs.
In: Conference on Computational Complexity (2007)

59. Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS,
vol. 5126, pp. 536–547. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70583-3 44

60. Kalai, Y.T., Rothblum, R.D.: Arguments of proximity. In: Gennaro, R., Robshaw,
M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 422–442. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48000-7 21

61. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

62. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge
with applications to post-quantum signatures. Technical report, Cryptology ePrint
Archive, Report 2018/475 (2018)

63. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: STOC
(1992)

64. Klauck, H.: Rectangle size bounds and threshold covers in communication com-
plexity. In: Conference on Computational Complexity (2003)

65. Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: Proceedings
of the 2018 ACM Symposium on Principles of Distributed Computing, PODC
2018, Egham, United Kingdom, 23–27 July 2018 (2018)

66. Kushilevitz, E.: Communication complexity. Adv. Comput. 44, 331–360 (1997)
67. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-

cuits with malicious adversaries and an honest-majority. In: ACM SIGSAC Con-
ference on Computer and Communications Security, CCS (2017)

68. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

69. Micali, S.: CS proofs. In: FOCS (1994)
70. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:

the garbled circuit approach. In: ACM SIGSAC Conference on Computer and
Communications Security, CCS (2015)

71. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive
proofs. http://arxiv.org/abs/1812.10917 (2018)

72. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-majority
MPC by batchwise multiplication verification. In: Preneel, B., Vercauteren, F.
(eds.) ACNS 2018. LNCS, vol. 10892, pp. 321–339. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-93387-0 17

73. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

74. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: Symposium on Security and Privacy (2013)

https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-662-48000-7_21
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-28914-9_10
http://arxiv.org/abs/1812.10917
https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1007/3-540-48910-X_16

Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs 97

75. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. Commun. ACM 59(2), 103–112 (2016)

76. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: Proceedings of the Forty-Eighth Annual ACM Sym-
posium on Theory of Computing (2016)

77. Rothblum, G.N., Vadhan, S.P.: Are PCPs inherent in efficient arguments? Comput.
Complex. 19(2), 265–304 (2010)

78. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In:
Symposium on Security and Privacy (2014)

79. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the
conflict between generality and plausibility in verified computation. In: EuroSys
(2013)

80. Setty, S.T., McPherson, R., Blumberg, A.J., Walfish, M.: Making argument systems
for outsourced computation practical (sometimes). In: NDSS (2012)

81. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)
82. Sudan, M.: Probabilistically checkable proofs. Commun. ACM 52(3), 76–84 (2009)
83. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient

zkSNARKs without trusted setup (2018)
84. Williams, R.: Strong ETH breaks with Merlin and Arthur: short non-interactive

proofs of batch evaluation. arXiv preprint arXiv:1601.04743 (2016)
85. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: ver-

ifying arbitrary SQL queries over dynamic outsourced databases. In: Symposium
on Security and Privacy (2017)

86. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-
knowledge version of vSQL. Cryptology ePrint Archive, Report 2017/1146 (2017)

http://arxiv.org/abs/1601.04743

Non-Uniformly Sound Certificates
with Applications to Concurrent

Zero-Knowledge

Cody Freitag(B), Ilan Komargodski, and Rafael Pass

Cornell Tech, New York, NY 10044, USA
{cfreitag,rafael}@cs.cornell.edu, komargodski@cornell.edu

Abstract. We introduce the notion of non-uniformly sound certificates:
succinct single-message (unidirectional) argument systems that satisfy a
“best-possible security” against non-uniform polynomial-time attackers.
In particular, no polynomial-time attacker with s bits of non-uniform
advice can find significantly more than s accepting proofs for false state-
ments. Our first result is a construction of non-uniformly sound certifi-
cates for all NP in the random oracle model, where the attacker’s advice
can depend arbitrarily on the random oracle.

We next show that the existence of non-uniformly sound certifi-
cates for P (and collision resistant hash functions) yields a public-coin
constant-round fully concurrent zero-knowledge argument for NP.

1 Introduction

We consider the following compression task for a language L in NP. An efficient
prover holds an input x and a witness w to the fact that x ∈ L and wishes
to send to a verifier a “short” certificate π testifying to the validity of x. The
length of the certificate should be independent of the length of the statement x,
the witness w, and the time needed to verify that w is a witness for x. In other
words, the same proof length n can be used for every NP language L and all
statements x with arbitrary polynomial length in n. The verifier should be able
to determine whether π is a valid certificate for a statement x in time polynomial
in |x|, |π|. We refer to this “witness compression” task as a succinct certificate
system, or simply a certificate system.

By the result of Goldreich and H̊astad [29], certificate systems for NP with
statistical soundness (i.e., soundness against unbounded provers) imply that NP
can be decided in subexponential time, and thus are unlikely to exist. Even
for P, certificate systems imply that non-determinism can speed up arbitrary
polynomial-time computation, contradicting widely believed derandomization
assumptions (e.g., Barak et al. [4,5]). Thus, we are interested in certificate
systems with computational soundness, where soundness holds against efficient

Supported in part by NSF Award CNS-1561209, NSF Award SATC-1617676, NSF
Award SATC-1704788, and AFOSR Award FA9550-15-1-0262.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 98–127, 2019.
https://doi.org/10.1007/978-3-030-26954-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_4

Non-Uniformly Sound Certificates with Applications 99

attackers. Note that the notion of SNARGs (succinct non-interactive arguments)
[26,45] satisfies our efficiency and soundness requirements, but are actually not
“unidirectionally” non-interactive: rather, the verifier (or some other trusted
entity) must first generate and send a public parameter (which can be reused
over multiple proofs) to the prover which the prover can use to produce its
proof. Rather, in a certificate system, there is no a priori agreed-upon public
parameters and no communication from the verifier to the prover.

The problem in such a fully non-interactive setting is that the standard notion
of computational soundness (against non-uniform polynomial-time attackers)
trivially collapses down to the notion of statistical soundness: if a cheating cer-
tificate π exists for some statement x (violating statistical soundness), then an
efficient non-uniform attacker can simply get the pair (x, π) as non-uniform
advice and consequently break computational soundness. Note that this attack
is no longer possible for SNARGs when the non-uniform advice cannot be chosen
as a function of the public parameters.

On Best-Possible Security. One approach to overcome the above problem
is to settle for soundness against only uniform polynomial-time attackers. Cer-
tificate systems satisfying such a uniform notion of soundness were considered
for P under the name P-certificates by Chung, Lin, and Pass [14]. They also
observed that Micali’s CS-proofs [45] satisfy uniform soundness in the random
oracle model. But, there is a reason security against non-uniform attackers has
become the standard notion of security in the cryptographic literature: it cap-
tures the natural idea that an adversary may have been designed to attack spe-
cific instances, guaranteeing security against an expensive preprocessing stage
or any unknown future attacks.

Of course, s bits of non-uniform advice can be used to encode roughly s
accepting proofs for false statements. But can they be used to encode much more?
This motivates the following definition of best-possible soundness in the language
of computational Kolmogorov complexity: the computational Kolmogorov com-
plexity of K accepting proofs of different false statements cannot be significantly
smaller than K. In other words, false certificates are “incompressible.”

Equivalently, in a more complexity-theoretic language, we consider a notion
of “multi-statement” soundness which requires that no non-uniform polynomial-
time adversary having non-uniform advice of length s can produce accepting
certificates for significantly more than s false statement. For a class of problems
C, we call argument systems that satisfy such a notion as non-uniformly sound
certificates for C, or nuCerts for C in short.

On the Existence of nuCerts. We initiate the study of nuCerts. We first note
that whereas [14] observed that Micali’s CS-proofs are uniformly sound in the
random-oracle model, they do not satisfy multi-statement soundness. In fact, an
efficient cheating prover with just polynomially-many bits of advice about the
random oracle can produce proofs for exponentially many false statements! The
same happens for other SNARG constructions which use only a random string as
a public parameter (and for SNARGs that use a non-random public parameter,
it is not clear how to turn them into certificates).

100 C. Freitag et al.

Our first main result is a construction of nuCerts in the random oracle model.
Formally, we prove that our construction satisfies multi-statement soundness in
the auxiliary-input random oracle model. The auxiliary-input random oracle
model (AI-ROM), introduced by Unruh [55], captures preprocessing attacks,
where the non-uniform advice string given to the attacker can depend arbitrarily
on the random oracle.

Theorem 1 (Informal). There exist nuCerts for NP in the auxiliary-input
random oracle model.

At a very high level, we present a construction which mimics Micali’s construc-
tion of CS-proofs. Micali’s construction works as follows: (1) start off with an
efficient multi-round argument systems for NP and next (2) collapse the rounds
to make it non-interactive using the Fiat-Shamir heuristic [22] (i.e., use the ran-
dom oracle to generate verifier messages for the interactive protocol). Whereas
the Fiat-Shamir heuristic indeed leads to a sound round reduction for uniform
attackers in the random oracle model, in general it does not for non-uniform
ones (where a non-uniform attacker can perform unbounded preprocessing on
the random oracle). Indeed, as mentioned above, Micali’s CS-proofs do not sat-
isfy multi-statement soundness w.r.t. non-uniform attackers. As a warm-up, we
show that if the underlying interactive proofs system has 3 rounds and has sta-
tistical soundness, then Fiat-Shamir with a minor modification in fact works.
Unfortunately, this modification of Fiat-Shamir does not suffice for making any
argument non-interactive. Rather, we present a different variant of Kilian’s effi-
cient arguments for NP and prove that for this particular argument system,
the Fiat-Shamir paradigm does lead to a multi-statement sound non-interactive
proof (although it does not work for Kilian’s original argument). Our proof relies
on a quite interesting compression argument which we believe may be of inde-
pendent interest.

Application: Public-Coin Constant-Round Concurrent Zero-Knowle-
dge. Given a language L ∈ NP and an instance x, zero-knowledge (ZK)
proofs [30] allow (paradoxically) for a prover to convince a verifier of the validity
of a mathematical statement x ∈ L, while providing zero additional knowledge
to the verifier. This is formalized by requiring that the view of every efficient
adversarial verifier interacting with the honest prover be simulated by an efficient
machine called the simulator. Concurrent ZK models the (realistic) asynchronous
and concurrent setting, where a single adversary can “attack” the prover by act-
ing as a verifier in many concurrent executions. Starting with the original work
of Dwork, Naor, and Sahai [19], there has been a long line of constructions of
concurrent ZK protocols. These include constructions with black-box simulation
(e.g., [40,53,54]) nearly matching the almost logarithmic-round lower bound
of [11] (by [51], these protocols are inherently private-coin), constructions based
on different setup assumptions (e.g., [10,17,20,28,32,50]) and constructions in
alternative less standard models (e.g., super-polynomial-time simulation [48,52]
or based on knowledge assumptions [33]).

Non-Uniformly Sound Certificates with Applications 101

Using nuCerts for P, we give a public-coin, constant-round, (fully) concurrent
ZK argument for NP. Public-coin protocols are ones where the verifier’s mes-
sages are simply random coin tosses. This is a natural and appealing property
of a protocol, which is useful in various applications such as public verifiability,
leakage resilience [24], constructing resettably-sound protocols [3,51], and many
more. The security of our construction relies on the following assumptions: the
existence of a nuCert for P and a family of collision resistant hash functions
(both with slightly super-polynomial security).

Theorem 2 (Informal). Assume the existence of families of collision-resistant
hash functions, and the existence of a nuCert for P (both with slightly super-
polynomial security). Then, there exists a public-coin constant-round concurrent
ZK argument for NP.

Barak’s breakthrough work [1] gives a public-coin constant-round protocol
but with bounded concurrency. Canetti, Lin, and Paneth [12] achieve full con-
currency but require O(log1+ε n) rounds in the global hash model, and similarly
Goyal [31] requires O(nε) rounds based on more standard assumptions (where
in both n is the security parameter and ε > 0 is an arbitrary small constant).
Chung, Lin, and Pass [14] achieve constant rounds assuming P-certificates but
only with a less standard notion of soundness (uniform soundness).

We stress that the construction from Theorem 2 is in the standard model
assuming the existence of collision resistant hash functions and nuCerts for P.
Using Theorem 1, we can instantiate nuCerts for P using a (non-programmable)
random oracle and get a public-coin constant-round concurrent ZK argument
for NP.

Corollary 1. In the auxiliary-input random oracle model, there exists a public-
coin constant-round concurrent zero-knowledge argument for NP.

Note that our protocol comes with an explicit ZK simulator. For the instan-
tiation in the random oracle model, only soundness relies on the random oracle
while ZK holds with any concrete function. Prior to this work, there were no
public-coin constant-round constructions that provably satisfy concurrent ZK
and even heuristically satisfy non-uniform soundness.

Lastly, even ignoring the public-coin aspect of our protocol, our result is
meaningful: The only previously known (private-coin) constant-round fully con-
current ZK protocols rely on obfuscation-type assumptions (Chung, Lin, and
Pass [15] rely on indistinguishability obfuscation and Pandey, Prabhakaran and
Sahai [47] rely on differing-input obfuscation). Based on the protocol of Chung
et al. [15], Chongchitmate, Ostrovsky, and Visconti [13] show a transformation
to achieve simultaneously resettable ZK [3,10] in constant rounds based on the
same assumptions (including indistinguishability obfuscation). Since our proto-
col is public-coin, we immediately get a constant-round simultaneously-resettable
ZK protocol using known transformations [3,18,51] based on nuCerts for P (and
hence also in the auxiliary-input random oracle model).

Paper Organization. In Sect. 2, we give an overview of our main techniques.
In Sect. 3, we provide preliminary definitions and standard notation. In Sect. 4,

102 C. Freitag et al.

we formally define nuCerts, and in Sect. 5, we present our candidate nuCert con-
struction. Lastly, in Sect. 6, we show how to use nuCerts for P to get a public-coin
constant-round concurrent zero-knowledge protocol.

1.1 Related Work

The idea to define the best-possible security for setup-free non-interactive prim-
itives is inspired by the work of Bitansky, Kalai, and Paneth [7] that considered
keyless multi-collision resistant hash functions. These are compressing functions
where it is assumed that no efficient adversary with s bits of non-uniform advice
can find significantly more than s values all of which collide relative to a fixed
hash function. They used such functions to shave off one round of communication
in various zero-knowledge protocols. Multi-collision resistant hashing [6,7,41–43]
was also studied in the keyed setting as a relaxation of plain collision resistance.

In a recent work, Bitansky and Lin [8] considered one-message zero-knowledge
arguments, where the soundness guarantee is that the number of false statements
that an efficient non-uniform adversary can convince the verifier to accept is not
much larger than the size of its non-uniform advice. They constructed such zero-
knowledge arguments based on keyless collision resistant hash functions. Note
that their construction is not succinct and thus cannot be used in place of our
non-uniform certificates.

2 Technical Overview

In this section we provide a high-level overview of our constructions. We start
with the non-uniformly sound certificates and then present our concurrent zero-
knowledge protocol.

2.1 Non-uniformly Sound Certificates

Let us start with a more elaborate description of Micali’s CS-proofs [45] and why
they give only uniformly sound certificates [14]. Micali’s protocol is obtained by
applying the Fiat-Shamir heuristic [22] to Kilian’s 4-round argument system [38].
In Kilian’s protocol, the verifier sends a description of a collision resistant hash
function to the prover. Using this hash function, the prover computes a Merkle
hash a of a PCP proof for the statement q and sends it back to the verifier. The
verifier then sends b, defining a set of PCP challenge queries, and the prover
replies with the authentication paths c in the Merkle tree for all openings in the
PCP proof specified by b. Micali’s protocol collapses Kilian’s protocol to one
message by using a random oracle to compute the Merkle tree with root a, then
uses the random oracle on a to derive the challenge b specifying openings with
authentication paths c. The final proof π = (a, b, c) is sent to the verifier to be
checked.

One way to argue uniform soundness of Micali’s non-interactive protocol is
to reduce the security to Kilian’s interactive protocol (using the same random

Non-Uniformly Sound Certificates with Applications 103

oracle for the Merkle tree). Basically, we receive a random challenge b from
the interactive protocol and then simulate the non-interactive cheating prover.
When the cheating prover queries the random oracle for the value b′, we respond
instead with the challenge b. (We identify the query for b′ by just guessing,
which is okay since there are polynomially-many queries.) Since the adversary
is uniform, it cannot distinguish b from b′, so with noticeable probability, it
will output accepting authentication paths, which we forward to the interactive
verifier.

The above proof fails to go through when the adversary has non-uniform
advice depending on the random oracle. The query for b′ is not necessarily ran-
dom, so the adversary may be able to distinguish b from b′ and as a result will
fail to output accepting authentication paths. Concretely, a non-uniform attacker
for the non-interactive protocol can have hardwired a triple (a, b, c) which causes
the verifier to accept for a fixed random oracle. In this case, we cannot change
the value of b to make the above reduction go through. But, could it be the
case that if the adversary needs to come up with many accepting proofs for false
statements, at least one will have a random b value? The answer is “no.” When
the adversary has unbounded preprocessing time, there are many more cheating
strategies. For example, the adversary may have hardcoded collisions relative to
the random oracle that allow him to explain the root value of the Merkle tree of
the statement in exponentially many ways.

Multi-statement Sound Fiat-Shamir. A natural first question is to under-
stand how to modify the Fiat-Shamir heuristic to get multi-statement soundness.
As a warm-up, let us start with a 3-message, public-coin, succinct proof system.
Can we make it non-interactive and multi-statement sound? The security guar-
antee of this protocol is that for any false instance and every message a from
the prover, there is a small set of b values that will allow the prover to come up
with a c message which causes the verifier to accept. A first attempt to make
it non-interactive is to use the random oracle to derive the b value given the a
value, b = O(a). This is completely insecure as it could be the case that there is
a b message which always causes the verifier to accept, so all the cheating prover
has to do is to find one a that is mapped to b (which it can do in the preprocess-
ing stage). The natural fix is to index the random oracle O with the statement
q, O(q, ·). Then, intuitively, if he wishes to cheat on many statements by sending
the bad b message, it needs to find many statements q′ with corresponding a′

values such that for all pairs, it holds that O(q′, a′) = b.
Regarding security, we need to prove that our construction has defended

against all possible attacks in the auxiliary-input random oracle model. The first
proof approach to consider in this model is using the bit-fixing random oracle
model of Unruh [55] (see also Coretti et al. [16]). At a high level, this approach
says that any result in the “uniform” random oracle model can be translated
into a hybrid model where some of the locations of the random oracle have been
fixed but the rest are lazily sampled. Then, as long as we can show the adversary
will likely query outside the set of fixed points, we can argue soundness just as
in the uniform setting. This elegant model unfortunately does not work in the

104 C. Freitag et al.

fully non-interactive setting where there is no high entropy setup independent
of the adversary’s advice. Thus, the adversary may only query fixed points for
which it has encoded information.

Our proof of security is done via a compression argument, à la Gennaro and
Trevisan [25]. We show that if an adversary with only s bits of non-uniform
advice can come up with significantly more than s accepting proofs for false
statements, then we can use the adversary to compress the random oracle. The
idea in the proof, at a very high level, is to carefully map all possible ways the
adversary can cheat to first encode the random oracle O in a way that we can
still answer all of the adversary’s queries. Then, we can run the adversary to
uniquely reconstruct O. If the encoding has been compressed more than the
adversary’s advice, then the adversary can succeed only on a small fraction of
random oracles. In the compression argument, we crucially use the fact that the
protocol is statistically sound and that we can uniquely extract the statement
corresponding to each query in order to enumerate the small set of accepting b
values (which is limited by soundness).

Caveat 1: While it may seem like we are done, there is a significant caveat
in the above scheme. The issue is that we cannot use the statement q itself to
index the random oracle O since q has no a priori size bound. The most we
could hope for is to use a short commitment to the statement as an index to the
random oracle. One could try to use a Merkle tree to implement this approach,
i.e., index O with q̃ = MerHashO(·)(q), but it is again completely insecure – a
cheating prover can simply encode collisions and use a mix-and-match attack to
find exponentially different statements with the same hash value.

Solution 1: A similar issue came up in recent works on domain extension of
multi-collision resistant hash functions [7,42]. In both works, they propose to
encode the input using a specific code before hashing via a Merkle tree. Follow-
ing [42], we use list-recoverable codes (LRC) to encode each statement before
applying a Merkle tree to hash the statement to a short value. That is, for a
statement q, we compute q̃ = MerHashO(·)(LRC(q)). The LRC guarantees that if
the adversary can open each leaf in the Merkle tree to only a polynomial number
of values, then there are only a polynomial (rather than exponential) number of
possible statements with valid codewords. It follows that the prover can cheat
on only a bounded number of hash values and can find only a bounded number
of statements per hash value.

Caveat 2: Recall that our compression argument requires us to know how to
map each oracle query for b back to the statement q. However, the solution to
the previous problem, was to index the queries only with a short commitment
to the statement b = O(q̃, a). So, we need a way to map this commitment q̃ to
a unique statement q (in the proof).

Solution 2: We append to the proof a Merkle hash of the statement using
the random oracle O(q̃, ·) indexed by q̃: q̂ = MerHashO(q̃,·)(q). Additionally, we
derive b by indexing O with both q̃ and q̂: b = O(q̃, q̂, a). Then, in our compression
argument, we try to use the adversary’s queries to O(q̃, ·) (which it must make to

Non-Uniformly Sound Certificates with Applications 105

compute q̂) to reconstruct the statement q and be able to compress the possible b
values by statistical soundness. In doing so, we will compress the random oracle
in one of three ways. Either:

1. there is a unique way to reconstruct q, so we can use statistical soundness to
compress the oracle query for b = O(q̃, q̂, a);

2. there is more than one way to reconstruct q, so the adversary must have found
a collision in O(q̃, ·); or

3. there is no way to reconstruct q, so the adversary must “know” the preimage
of some point in O(q̃, ·).
In summary, the variant of Fiat-Shamir we introduce is to first encode the

statement q with a good list-recoverable code LRC(q) and hash it down to get
q̃ = MerHashO(·)(LRC(q)). Then, hash down the statement using a random oracle
that is indexed by q̃ to get q̂ = MerHashO(q̃,·)(q). Then, compute b = O(q̃, q̂, a)
with a random oracle indexed by q̃ and q̂.

Multi-statement Soundness for Arguments. While the above approach
works for proof systems, it does not hold generically for arguments (by the
same reason that the original Fiat-Shamir heuristic fails on Barak’s protocol [1]).
However, we show that it does work for Kilian’s protocol [38] relying on some
specific properties of this protocol.

Our main idea is to leverage the soundness of the underlying PCP proof
system. By PCP soundness, for any statement q and any fixed PCP proof string
Π = PCP(q), the number of accepting b values must be small. The main technical
difficulty is that to use PCP soundness, we need to make sure the adversary
is bound to a single PCP proof Π, which we need to know to determine the
accepting b values. We use the same compression idea as before in order to
extract the statement. Namely, we compute a = MerHashO(q̃,·)(Π). Then, in the
compression argument, either (1) we can uniquely extract a PCP proof string Π
from the prover’s queries and can compress the query for b = O(q̃, q̂, a) by PCP
soundness; (2) we reconstruct more than one PCP proof string, so the adversary
must know a collision in O(q̃, ·); or (3) we cannot reconstruct a valid PCP proof,
so the adversary must know some preimage for O(q̃, ·). We show that this covers
all possibilities, and for each commitment value q̃ that the adversary cheats on,
we will compress the random oracle at a new point.

In summary, our construction consists of a prover and verifier with the fol-
lowing strategies. The prover’s strategy given a statement q is:

– Encode the statement with a good list-recoverable code LRC(q) and hash it
down to get q̃ = MerHashO(·)(LRC(q)).

– Hash down the statement using a random oracle that is indexed by q̃ to get
q̂ = MerHashO(q̃,·)(q).

– Compute a commitment to a PCP of q using a random oracle indexed by q̃
and q̂: a = MerHashO(q̃,q̂,·)(PCP(q)).

– Compute b = O(q̃, q̂, a) with a random oracle indexed by q̃ and q̂.
– Let c be the authentication paths corresponding to the indices given by b.

106 C. Freitag et al.

– Output: The certificate is π = (a, b, c).

The verifier on input π = (a, b, c) and q first computes q̃ and q̂ in the same way
as the prover (this is allowed since the LRC is efficient and the verifier can run in
time polynomial in |q|). Then it checks that b = O(q̃, q̂, a) and checks the validity
of all authentications paths in c using the PCP verifier. We refer to Sect. 5 for
the full details.

2.2 Concurrent Zero-Knowledge

Let us first explain at a very high-level the challenges that we are faced with. In
Barak’s protocol [1], if one tries to obtain unbounded concurrency, the simulation
overhead grows polynomially with every nested execution. The idea of Chung,
Lin, and Pass [14] was to leverage P-certificates, i.e., succinct non-interactive
proofs, to shortcut some of the nested computations. Particularly, P-certificates
allowed them to reuse proofs that some computation was done correctly without
the need to recompute it. This makes sense in the uniform setting where we
assume that no false P-certificates can be found. However, using nuCerts in
the non-uniform setting, it seems to be a problem because—intuitively—false
nuCerts can be combined to get many more false proofs: a false proof that A
implies B can be combined with a correct proof that B implies C to get a false
proof that A implies C. The way we overcome this is by combining the proofs
and the statements that we prove in a sequence such that if the adversary comes
up with a false proof for one statement, it changes the entire sequence and forces
the adversary to come up with many false proofs for new statements. In what
follows, we discuss in detail the shortcomings with the protocols of Barak [1]
and of Chung et al. [14], and then we explain how we avoid the aforementioned
mix-and-match attack using nuCerts.

Barak’s Protocol. We recall Barak’s non-black-box constant-round zero-
knowledge protocol [1] that achieves bounded concurrency. On common input
1n and x ∈ {0, 1}poly(n), the Prover P and Verifier V , proceed in two phases. In
phase 1, P sends a commitment c ∈ {0, 1}n of 0n to V , and V replies with a
challenge r ∈ {0, 1}2n. In phase 2, P shows (using a witness indistinguishable
argument of knowledge) that either x is true, or there exists a “short” string
σ ∈ {0, 1}n such that c is a commitment to a program M such that M(σ) = r.
Soundness follows from the fact that even if a malicious prover P ∗ tries to com-
mit to some program M (instead of committing to 0n), with high probability,
the string r sent by V will be different from M(σ) for every string σ ∈ {0, 1}n.
This relies on the fact that r is longer than σ. To prove ZK, consider the non-
black-box simulator S that commits to the code of the malicious verifier V ∗;
note that by definition it thus holds that M(c) = r, and the simulator can use
σ = c as a “fake” witness in the final proof. To formalize this approach, the wit-
ness indistinguishable argument in Stage 2 must be a witness indistinguishable
universal argument (WIUA) [2,45] since the statement “c is a commitment to
a program M of arbitrary polynomial size and M(c) = r within some arbitrary
polynomial time,” is not in NP.

Non-Uniformly Sound Certificates with Applications 107

To show (bounded) concurrency, we need to simulate the view of a verifier
that has m = poly(n) concurrent executions of the protocol. The above simulator
no longer works in this setting: the problem is that the verifier’s code is now a
function of all the prover messages sent in different executions. So one solution
is to increase the length of r in the above protocol to depend on the number
of concurrent sessions, then we would be done by a similar argument. However,
such an approach can handle only an a priori bounded number of sessions. A
natural idea is to let the simulator commit not only to the code of V ∗, but also to
a program M that generates all other prover messages. Implementing this idea
naively results with exponential blowup in the running time of the simulation
since the verifier may nest concurrent sessions [49].

Uniform Soundness via P-certificate. The main idea of Chung, Lin, and
Pass [14] is to use P-certificates to overcome this blowup to achieve unbounded
concurrency. At a very high level, their idea is that once the simulator has
generated a P-certificate π to certify some partial computation performed by S
in one session i, then the same certificate may be reused (without any additional
cost) to certify the same computation also in other sessions i′ �= i, providing
a “shortcut” for the simulator. It is crucial that the P-certificates are both
fully non-interactive and succinct. Without the former, the certificates cannot
be reused, and without the latter, we will not gain anything by reusing proofs.

Chung et al. [14] define a sequence of protocols Π1,Π2, . . ., where protocol
Πk satisfies zero-knowledge for nk concurrent sessions. The “trapdoor” for the
simulation in Π1, in contrast to Barak’s protocol, now only requires that the
a cheating prover can open the commitment to a machine M1 and provide a
P-certificate π1 certifying that M1 outputs the challenge r. However, we have
not really gained anything over Barak’s protocol yet since the challenge r can
depend on the P-certificates in all previous sessions. Protocol Πk uses k “lev-
els” of P-certificates in a tree structure, where each higher level P-certificate
certifies the correct generation of n lower level P-certificates. Then in protocol
Πk, the trapdoor requires that a cheating prover can open the commitment to a
sequence of M1, . . . ,Mk such that: (1) for i > 1, the cheating prover can provide
a P-certificate πi certifying that Mi (given all higher level P-certificates) out-
puts the certified level i − 1 P-certificates, and (2) π1 certifies that M1 outputs
r (again given all higher level P-certificates). The challenge r then only needs to
depend on the non-certified P-certificates, which, because of the tree structure,
is significantly smaller (and in particular apriori bounded) than the number of
concurrent session.

Achieving Non-uniform Soundness via nuCerts for P. For security, the
resulting concurrent zero-knowledge protocol shares the soundness guarantee
of the underlying P-certificates. As we previously discussed, P-certificates can
only satisfy uniform soundness (under standard assumptions), so our approach
to overcome this is to replace P-certificates with nuCerts for P, which guaran-
tee non-uniform soundness at the cost of allowing the adversary to cheat on a
bounded number of statements. To argue soundness, we need to use a cheating
prover in the zero-knowledge protocol to extract many false nuCerts. We can

108 C. Freitag et al.

rewind the cheating prover many times until we extract a large collection of
accepting proofs for false statements. While seemingly simple, there are several
technicalities with this argument.

First, the adversary may be able to use different false proofs per statement
and mix-and-match statements to cheat in an exponential number of ways. In
general, this indeed seems like an unavoidable problem. Chung et al. [14] sug-
gested a way around it if one assumes a strong version of P-certificates, called
unique P-certificates, which guarantee that every statement has at most one
accepting proof. Using indistinguishablity obfuscation, Chung et al. [15] con-
structed a slightly weaker primitive, called delegatable unique P-certificates,
and modified the protocol of [14] to work with this object (at the cost of making
it private-coin).

We get around this by noticing that this is not a problem for us! In short, the
thing that saves us is that we require the entire sequence of proofs to be certified
(not just individually, thus the order matters). If the adversary tries to use a
different false proof at any level, it yields an entirely new sequence that it must
cheat on. In more detail, recall that the construction consists of a tree of nuCerts
that certify the whole computation. At level 1 (the leaves), we have a sequence
of nk “certified” nuCerts λ1. At level 2, we have a sequence of nk−1 nuCerts λ2,
and so on until level k when we don’t have any certified nuCerts. As the name
suggests, the role of each level i is to certify the total computation that happens
below level i, and level 1 certifies the randomness r. So, π1 is a nuCert certifying
that there is a (deterministic) machine M1 such that M1 on input λ≥1 outputs
r, where λ≥1 consists of all certificates at or above level 1. π2 certifies that M2

on input λ≥2 outputs λ1. π3 certifies that M3 on input λ≥3 outputs λ2, and so
on until πk, which certifies that Mk on a short input outputs λk−1.

The machines M1, . . . ,Mk are deterministic and are committed to by the
adversary before seeing r. So, even though there could be a single certificate
that explains multiple values of r, when we fix the machines ahead of time it
can only output one of them. Namely, the adversary can come up with many
inputs for M1 that output any value of r just by having many “options” for the
sequence λ1. Since there are many choices for λ1 and M2 is deterministic, either
the adversary has many accepting proofs π2 for false statements that look like
“M2 on input λ≥2 outputs λ1” with a small set of λ≥2, or the statements are
in fact true and there are many different sequences λ≥2 explaining them. In the
former case, we are done as we can extract these proofs from the adversary. In the
latter case, we must have many different sequences λ≥2. We can continue with
the same argument in level 3 that should output and explain all options for λ2,
and so on until the root of the tree at level k. At this point, we have that a short
input is used to explain many possible random outputs, which is information
theoretically impossible unless the adversary knows many accepting proofs for
false statements. We formalize this intuition by a compression argument, and we
refer to Sect. 6 for the full details of the argument.

Non-Uniformly Sound Certificates with Applications 109

3 Preliminaries

For a distribution X we denote by x ← X the process of sampling a value x
from the distribution X. We use N to denote the set of positive integers and [n]
to denote the set {1, 2, . . . , n}.

We consider interactive Turing machines, denoted ITM, and interactive pro-
tocols. Given a pair of ITMs, A and B, we denote by (A(x), B(y))(z) the ran-
dom variable representing the (local) output of B on common input z and
private input y, when interacting with A on private input x, when the ran-
dom tape of each machine is uniformly and independently chosen. We also let
ViewB(A(x), B(y))(z) be the random variable representing B’s view in such an
interaction.

The term negligible is used for denoting functions that are asymptotically
smaller than any inverse polynomial. We say that an event happens with notice-
able probability if it happens with non-negligible probability, i.e. greater than
1/p(·) probability for polynomial p. We say that an event happens with over-
whelming probability if it occurs with all but negligible probability, i.e. at least
1 − ν(·) probability for negligible ν.

(Non)-uniformity. We use the acronym PPT for probabilistic polynomial-time.
A uniform PPT machine can be thought of as a fixed Turing machine that has
access to an input tape and performs some computation on the given input. If
the computation is randomized, the machine has access to a random tape as
well. A non-uniform machine can be thought of as a family of machines, one for
each input length. Equivalently, one can think of a non-uniform machine as a
single machine for all input lengths that has access to an advice string which
might be different for every input length.

Witness Relations for NP. We recall the definition of a witness relation for
an NP language [27]. A witness relation for a language L ∈ NP is a binary
relation RL that is polynomially bounded, polynomial time recognizable, and
characterizes L by L = {x : ∃w s.t. (x,w) ∈ RL}. We say that w is a witness
for the membership x ∈ L if (x,w) ∈ RL. We also let RL(x) denote the set of
witnesses for the membership x ∈ L, i.e. RL(x) = {w : (x,w) ∈ RL}.

Commitments and Collision Resistant Hashing. Commitment protocols
allow a sender to commit itself to a value while keeping it secret from the receiver;
this property is called hiding. At a later time, the commitment can only be
opened to a single value as determined during the commitment protocol; this
property is called binding. We consider non-interactive, computationally-hiding,
statistically-binding commitment schemes. Such commitment schemes can be
based on one-way functions [37,46] in the common random string (CRS) model,
but we ignore this for simplicity as the CRS can be generated honestly by the
receiver.

We also consider families of collision resistant hash functions. A family of
functions F = {Fn : {0, 1}2n → {0, 1}n} is collision resistant if for any non-
uniform PPT adversary, the probability (over a random function in the family)

110 C. Freitag et al.

that it can output a collision is negligible. It is known that a secure fixed-length
hash function family can be used to obtain a secure variable-input-length hash
function family, i.e., we can hash arbitrarily long inputs while guaranteeing col-
lision resistance.

We say that a commitment scheme or a collision resistant hash function
family is T -secure if every non-uniform poly(T)-time attacker can break the
corresponding security property with at most negligible in T probability.

3.1 Interactive Protocols

We define interactive proofs [30] and arguments systems (a.k.a. computationally
sound proofs) [9]. In our definition of arguments, we distinguish between uniform
soundness, where soundness only needs to hold against a uniform PPT adversary,
and non-uniform soundness, where it holds against non-uniform polynomial-
time algorithms. Typically, in the literature on zero-knowledge arguments, non-
uniform soundness is more commonly used.

Definition 1 (Interactive Proof System). A pair of interactive machines
(P, V) is called an interactive proof system for a language L if there is a negligible
function ν(·) such that the following two conditions hold:

– Completeness: For every n ∈ N, x ∈ L and every w ∈ RL(x),

Pr[(P (w), V)(1n, x) = 1] = 1.

– Soundness: For every machine P ∗ and every n ∈ N,

Pr[(x, z) ← P ∗(1n) : x �∈ L ∧ (P ∗(z), V)(1n, x) = 1] ≤ ν(n).

If the soundness condition only holds against all non-uniform PPT (resp. uni-
form PPT) machines P ∗, the pair (P, V) is called a non-uniformly sound (resp.
uniformly sound) interactive argument system.

Witness Indistinguishability. An interactive protocol is witness indistin-
guishable (WI) [21] if the verifier’s view is “independent” of the witness used
by the prover for proving the statement.

Definition 2 (Witness Indistinguishability). An interactive protocol (P, V)
for L ∈ NP is witness indistinguishable for RL if for every PPT adver-
sarial verifier V ∗, and for every two sequences {w1

n,x}n∈N,x∈L∩{0,1}poly(n) and
{w2

n,x}n∈N,x∈L∩{0,1}poly(n) such that w1
n,x, w2

n,x ∈ RL(x) for every n ∈ N and
x ∈ L ∩ {0, 1}poly(n), the following ensembles are computationally indistinguish-
able over N:

– {ViewV ∗(P (w1
n,x), V ∗(z))(1n, x)}n∈N,x∈L∩{0,1}poly(n),z∈{0,1}∗

– {ViewV ∗(P (w2
n,x), V ∗(z))(1n, x)}n∈N,x∈L∩{0,1}poly(n),z∈{0,1}∗

Non-Uniformly Sound Certificates with Applications 111

Universal Arguments. Universal arguments, introduced by Barak and Gol-
dreich [2], are used in order to provide “efficient” proofs to statements of the
universal language LU with witness relation RU defined in [2]. This notion is
closely related to the notion of CS-proofs [45]. A triplet q = (M,x, t) is in LU if
the non-deterministic machine M accepts input x within t < T (|x|) steps, for a
slightly super-polynomial function T (n) = nlog log n. We denote by TM (x,w) the
running time of M on input q using the witness w. Notice that every language
in NP is linear time reducible to LU . Thus, a proof system for LU allows us to
handle all NP-statements.

Definition 3 (Universal Argument [2]). A pair of interactive Turing
machines (P, V) is called a universal argument system if it satisfies the following
properties:

– Efficient verification: There exists a polynomial pV such that for any q =
(M,x, t), the total time spent by the (probabilistic) verifier strategy V , on com-
mon input 1n, q, is at most pV (n+ |q|). In particular, all messages exchanged
in the protocol have length smaller than pV (n + |q|).

– Completeness by a relatively efficient prover: For every n ∈ N, q = (M,x, t) ∈
LU , and w ∈ RU (q),

Pr[(P (w), V)(1n, q) = 1] = 1.

Furthermore, there exists a polynomial pP such that the total time spent by
P (w), on common inputs 1n and (M,x, t), is at most pP (n + |q| + t).

– Computational soundness: For every non-uniform PPT algorithm P ∗ =
{P ∗

n}n∈N, there is a negligible function negl, such that, for every n ∈ N and
every triplet (M,x, t) ∈ {0, 1}poly(n)\LU ,

Pr[(P ∗
n , V)(1n, q) = 1)] ≤ negl(n).

– Global proof of knowledge: For every polynomial p1 there exists a polynomial
p2 and a probabilistic oracle machine E(·) such that the following holds:
for every non-uniform PPT algorithm P ∗ = {P ∗

n}n∈N, every sufficiently large
n ∈ N, and every q = (M,x, t) ∈ {0, 1}poly(n), if Pr[(P ∗

n , V)(1n, q) = 1] ≥
1/p1(n), then

Pr
r

[∃w ∈ RU (q), Er
P ∗

n (1n, q) = w] ≥ 1/p2(n),

where Er
P ∗

n runs in time poly(n, t), uses randomness fixed to r, and has oracle
access to P ∗

n .

The notion of witness indistinguishability of universal argument for RU is
defined similarly as that for interactive proofs/argument for NP relations; we
refer the reader to [2] for a formal definition. [2] (based on [39,45]) presents a
witness indistinguishable universal argument based on the existence of families
of collision resistant hash functions.

112 C. Freitag et al.

3.2 List-Recoverable Codes

List-recoverable codes were introduced Guruswami and Sudan [34] to handle
a setting where an adversary is allowed to submit a set S ⊆ F (where F is
the alphabet of the code) of possible symbols and then construct any codeword
using only those symbols. In this model, it is impossible to completely recover
a codeword given the lists, but these codes guarantee that there is only a small
list of codewords that are consistent with all the lists.

More precisely, a mapping LRC : Fv → F
m from length v messages to length m

codewords, is called (α, 	, L)-list-recoverable if there is a procedure that is given
a set S of size 	, is able to output all messages x ∈ F

v such that LRC(x)i /∈ S for
at most 1−α fraction of the coordinates i ∈ [n]. The code guarantees that there
are at most L such messages. For our purposes, we need a list-recoverable code
with α = 1, which we refer to as an (, L)-list-recoverable code, defined formally
as follows.

Definition 4 (List-Recoverable Codes). We say that a tuple x ∈ ({0, 1}k)m

is consistent with sets S1, . . . , Sm ⊆ {0, 1}k if xi ∈ Si for all i ∈ [m].
A function LRC : {0, 1}v → ({0, 1}k)m is (, L)-list-recoverable, if for any

sets S1, . . . , Sm ⊆ {0, 1}k each of size at most 	, there are at most L strings
x ∈ {0, 1}v such that LRC(x) is consistent with S1, . . . , Sm. The strings in the
image of LRC are referred to as codewords.

It is well-known (see e.g., [36]) that the notion of list-recoverable codes is
equivalent to unbalanced expanders with a certain expansion property. The left
set of vertices in the graph is {0, 1}v, the right set of vertices is {0, 1}k and the left
degree is m. This graph naturally induces a mapping LRC : {0, 1}v → ({0, 1}k)m

which on input x ∈ {0, 1}v (left vertex) outputs n neighbors (right vertices). The
mapping LRC is (, L)-list-recoverable if and only if for every set S ⊆ {0, 1}k of
size larger than L of nodes on the right, the set of left neighbors of S is of size
larger than 	.

The following instantiation of locally-recoverable codes based on the explicit
construction of unbalanced expanders of [35] is taken (with minor modifications)
from [36].

Theorem 3 ([35,36]). For every k < v ∈ N, there exists a poly(v)-time

computable function LRCv : {0, 1}v → ({0, 1}k
)v2k3

that defines an (, L)-list-
recoverable code for any L ≥ 	2 such that L ≤ 2k/2. The list-recovery algorithm
runs in time poly(v,).

3.3 Concurrent Zero-Knowledge

An interactive proof is said to be zero-knowledge, denoted as ZK, if it yields
nothing beyond the validity of the statement being proved [30].

Definition 5 (Zero-Knowledge). An interactive protocol (P, V) for language
L is zero-knowledge if for every PPT adversarial verifier V ∗, there exists a PPT
simulator S such that the following ensembles are computationally indistinguish-
able over n ∈ N:

Non-Uniformly Sound Certificates with Applications 113

– {ViewV ∗(P (w), V ∗(z))(1n, x)}n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

– {S(1n, x, z)}n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

In this work, we consider the setting of concurrent composition. Given an
interactive protocol (P, V) and a polynomial m, an m-session concurrent adver-
sarial verifier V ∗ is a PPT machine that, on common input x and auxiliary input
z, interacts with up to m(|x|) independent copies of P concurrently. The different
interactions are called sessions. There are no restrictions on how V ∗ schedules
the messages among the different sessions, and V ∗ may choose to abort some
sessions but not others. For convenience of notation, we overload the notation
ViewV ∗(P, V ∗(z))(1n, x) to represent the view of the cheating verifier V ∗ in the
above mentioned concurrent execution, where V ∗’s auxiliary input is z, both
parties are given common input 1n, x ∈ L, and the honest prover has a valid
witness w of x.

Definition 6 (Concurrent Zero-Knowledge [19]). An interactive protocol
(P, V) for language L is concurrent zero-knowledge if for every concurrent adver-
sarial verifier V ∗ (i.e. any m-session concurrent adversarial verifier for any poly-
nomial m), there exists a PPT simulator S such that the following two ensembles
are computationally indistinguishable over n ∈ N:

– {ViewV ∗(P (w), V ∗(z))(1n, x)}n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

– {S(1n, x, z)}n∈N,x∈L∩{0,1}poly(n),w∈RL(x),z∈{0,1}poly(n)

4 Non-uniformly Sound Certificates

We give a definition of a certificate system that captures non-uniform attackers.
Roughly speaking, a certificate system, (P, V), is a non-interactive (unidirec-
tional) argument system (i.e., the prover send a single message to the verifier,
who either accepts or rejects) such that (1) P can efficiently convince V the
validity of some statement x ∈ L using a “certificate” π of fixed polynomial
length independent of the statement and (2) V can efficiently check the valid-
ity of π in fixed polynomial time in the statement size yet independent of the
language’s verification time. To capture non-uniform attackers, we additionally
require (3) that no non-uniform cheating prover P ∗ should be able to falsely
convince V of the validity of substantially more statements than the size of P ∗’s
non-uniform advice. In what follows, we first formalize these requirements for P
and later discuss (in Remark 1) how to generalize them to NP.

Following Micali’s CS-proofs [45], we first define the efficiency properties
required for any certificate system for P. We consider a canonical language Lc

for TIME(nc): for every constant c ∈ N, let Lc be the language that consists of
triples (M,x, y) such that machine M on input x outputs y when executed for
|x|c steps. That is,

Lc = {(M,x, y) : M(x) = y within |x|c steps}.

Let TM (x) denote the running time of M on input x.

114 C. Freitag et al.

Definition 7 (Certificates for P). Let (P, V) be a pair of probabilistic inter-
active Turing machines in a non-interactive protocol. We say that (P, V) is a
certificate system for P if it satisfies the following two efficiency conditions:

– Completeness by a relatively-efficient prover: There exist polynomials gP , 	
such that for every c, n ∈ N and every q = (M,x, y) ∈ Lc, it holds that

Pr[π ← P (c, 1n, q) : V (c, 1n, q, π) = 1] = 1.

Furthermore, P on input (c, 1n, q) outputs a certificate π of length 	(n) in
time bounded by gP (n + |q| + TM (x)).

– Efficient verification: There exists a polynomial gV such that for every c, n ∈
N, q = (M,x, y) ∈ Lc and π ∈ {0, 1}∗, the running time of Vnu(c, 1n, q, π) is
bounded by gV (n + |q|).

Best-Possible Soundness. At a high level, we require non-uniformly sound
certificates to achieve the best-possible soundness against non-uniform attackers.
This means that our notion of soundness allows the adversary to come up with
some accepting certificates for false statements, but not too many more than the
size of its advice. We formalize this intuition with the notion of (K,T)-soundness,
which intuitively says that a non-uniform adversary running in time T cannot
output false proofs for more than K statements. We define this as follows.

Definition 8 ((K,T)-soundness). Let K,T : N → N be functions. We say that
a certificate system for P, (P, V), is (K,T)-sound if there exists a function
B(n) ∈ ω(1) such that the following holds:
For every probabilistic algorithm P ∗ and any sequence of polynomial-size advice
{zn}n∈N where P ∗(1n, zn) runs in time at most T (n), there exists a negligible
function negl(·) such that for every n ∈ N, letting K = K(n),

Pr

⎡

⎢
⎢
⎣{(ci, qi, πi)}i∈[K] ← P ∗(1n, zn) :

∀i �= j : qi �= qj ,
∀i ∈ [K] : ci ≤ B(n) ∧

qi �∈ Lci
∧

V (ci, 1n, qi, πi) = 1

⎤

⎥
⎥
⎦ ≤ negl(n).

We are now ready to define non-uniformly sound certificates (nuCerts) for
P. Intuitively, we require that no non-uniform cheating prover with polynomial-
size advice can output a super-polynomial number of accepting proofs for false
statements where we allow the cheating prover to run in super-polynomial time
per false proof it outputs.

Definition 9 (nuCerts for P). Let (P, V) be a pair of probabilistic interactive
Turing machines in a non-interactive protocol. We say that (P, V) is a non-
uniformly sound certificate system (nuCert) for P if it is a certificate system for
P and is (K,T)-sound for some K(n) ∈ nω(1) and T (n) ∈ K(n) · nω(1).

Some remarks are in order.

Non-Uniformly Sound Certificates with Applications 115

Remark 1. The above definition generalizes to NP by considering non-
deterministic languages Lc corresponding to NTIME(nc) where we provide the
prover with a witness w and let TM (x) be the time to verify that (x,w) ∈ RL.

Remark 2. The notion of (K,T)-sound certificate systems for P is a general-
ization of strong P-certificates (of Chung et al. [14]) as they coincide when the
number of false proofs is just one, i.e., K(n) = 1, and the running time of the
adversary is a (slightly) super-polynomial function, i.e., T (n) ∈ nω(1).

Remark 3. The definition of (K,T)-soundness as defined can only be achieved
for super-polynomial K(n) ∈ nω(1). This notion is sufficient for our concurrent
zero-knowledge protocol given in Sect. 6. However, one can consider a more fine-
grained notion where we allow the number of false proofs to depend on the size of
the advice and accepting statements. We actually achieve this (stronger) notion
in our nuCerts construction in Sect. 5.

Remark 4. The size of accepting statements q = (M,x, y) for Lc must be
bounded by O(|x|c) without loss of generality since V would not accept q for
the language Lc if |y| > |x|c.
Remark 5. We could consider an alternative definition of (K,T)-soundness
where we remove the restriction that statements are unique and just require that
the proofs are. These notions are equivalent up to a factor that depends expo-
nentially on the certificate size for K.

In more detail, one trivial way to bound the number of false proofs in general
is to bound the number of false proofs for specific statements. In the worst case,
if you can find a false proof for an accepting statement, then all proofs for that
statement may be accepted. So, if a (K,T)-sound certificate system has proofs
π with length bounded by 	π(n), this implies it is (K · 2�π(n), T)-sound when the
statements need not be unique.

Relation to Kolmogorov Complexity. Our definition has a natural inter-
pretation in the language of computational Kolmogorov complexity. Recall that
the Kolmogorov function C(x) is the length of the smallest program generating
x. Namely, C(x) = minp{|p| : U(p) = x}, where U is a universal machine. There
are many resource-bounded variants to Kolmogorov complexity [23]. Our defi-
nition is parametrized by an efficiently recognizable set X and a time bound t.
We define Ct(X) as the smallest machine that runs in time t and outputs an
element in X. Namely,

Ct(X) = min
p

{|p| : U(p) outputs x ∈ X in t(|x|) steps}.

Claim 1. Let (P, V) be a certificate system, K ∈ nω(1), T ∈ K(n) · nω(1), and
let X be a set of sets such that every set is a collection of accepting proofs for
K false statements. (P, V) is (K,T)-sound if and only if CT (X) ∈ nω(1).

116 C. Freitag et al.

Proof. Assume for contradiction that CT (X) ∈ poly(n). This means there is a
polynomial size encoding that in time T can be used to generate K accepting
proofs for false statements, contradicting (K,T)-soundness of (P, V). In the other
direction, assume that (P, V) satisfies (K,T)-soundness. Then, there is a cheating
prover with polynomial-size advice running in time T that is able to find K
accepting proofs for false statements. This implies a machine of polynomial size
that encodes an element in X, contradicting CT (X) ∈ nω(1).

5 The Construction

In this section, we give a construction of a nuCert system for P as defined
in Sect. 4. Our construction is in the auxiliary input random oracle model, intro-
duced by Unruh [55]. In this model all parties have access to a public random
function. Additionally, the adversary has an unbounded preprocessing stage (the
offline phase) where he can compute arbitrarily an advice string for the online
phase where he attacks the system. The output of the offline phase can be
thought of as the process that generates the non-uniform advice. In the online
phase, the adversary can use the advice string and a bounded number of queries
(though his running time is unbounded).

Theorem 4. In the auxiliary-input random oracle model, there exists a certifi-
cate system for P that satisfies (K,T)-soundness for any K(n) ≥ (3s)25α and
T (n) ≤ 2n/6 against non-uniform adversaries with advice {zn}n of size s = s(n)
that output accepting statements of size at most nα.

The protocol we present is actually a nuCert for NP (with essentially the
same proof). In Sect. 6, we will use the result only for P so we focus on this
setting here.

We note that if the adversary outputs statements of super-polynomial size,
we may assume that they will not be accepted by a verifier for the universal
language for P. Still, the adversary may output accepting statements of arbitrary
polynomial size, so without assuming anything about the adversary, the theorem
holds for any slightly super-constant α ∈ ω(1). In this case, we guarantee that
no adversary can output a slightly super-polynomial number of accepting proofs
for unique false statements, e.g., K(n) = nlog log n. Additionally, we can set
T (n) = nlog n so that T (n) ∈ K(n) · nω(1). Thus, we get the following corollary
to Theorem 4 by Definition 9.

Theorem 5 (Restatement of Theorem1). In the auxiliary-input random oracle
model, there exists a nuCert system for P.

We devote the rest of this section to the proof of Theorem 4 which is based
on a compression technique (à la Gennaro and Trevisan [25]). In Sect. 5.1 we
describe our nuCert construction and then prove security in the auxiliary-input
random oracle model in Sect. 5.2.

Non-Uniformly Sound Certificates with Applications 117

5.1 Construction

Our nuCert system, denoted (Pnu, Vnu), builds off of Micali’s CS-proofs but makes
significant modifications. Recall that in Micali’s protocol, the prover uses a ran-
dom oracle to compute a Merkle hash a of a PCP proof for the statement q. The
prover then uses a random oracle to compute b, defining a set of PCP challenge
queries. Finally, it computes the authentication paths c in the Merkle tree for
all openings in the PCP proof specified by b. The final proof π = (a, b, c) is sent
to the verifier to be checked.

Merkle Trees and PCPs. In the construction, we will use Merkle trees and
probabilistic checkable proofs (PCPs).

A Merkle tree [44] is a method to succinctly commit on a string while allowing
to open a specific location without revealing the whole input string. The latter
property is called local opening. The security of the commitment is based on the
existence of a collision resistant hash function family. More precisely, a Merkle
tree procedure MTf(·) has oracle access to a compressing function f : {0, 1}λ →
{0, 1}n, which it uses to hash a long string into a short one. This is done by
“breaking” the input into blocks of the right size and hasing each consecutive
pair using the hash function. We continue this recursively in a tree-like fashion
until we are left with a single string of size n.

A PCP system is a proof system that allows for local verification of a lan-
guage. It consists of two algorithms (PCP.Prove,PCP.Ver). PCP.Prove(x) is a
deterministic algorithm that takes as input a statement x from some language L
and computes a proof Π to the fact that x ∈ L. PCP.VerΠ(x, r) is a randomized
algorithm using r as its randomness source that takes as input a statement x
and has query access to a (possibly partial) PCP proof Π and outputs a bit b.

The Construction. We split (Pnu, Vnu) into two different phases: a commitment
and a proof phase. The commitment phase forces Pnu to succinctly commit to
the statement it is proving. The proof phase is exactly as Micali’s CS-proofs with
the modification that the random oracles used are indexed by the statement’s
commitment.

In more detail, the commitment consists of two parts. The first part, which
we denote by q̃, is a Merkle hash of a list-recoverable code encoding of q. The
list-recoverable code provides a weak binding property for any particular com-
mitment; no non-uniform adversary can find too many statements consistent
with q̃. In the second part of the commitment, which we denote by q̂, the prover
Merkle hashes q using a random oracle indexed by q̃. q̂ guarantees that a cheat-
ing prover that provides an accepting proof of a false statement q either uses
specific knowledge that depends on q̃ or can be used to extract q.

The proof phase computes π = (a, b, c) as in Micali’s CS-proofs except that
we index both the Merkle tree and FS-heuristic random oracles with the com-
mitment (q̃, q̂). This guarantees that each false proof with a unique commitment
requires the adversary to use fresh information about the random oracle. The
full description of the non-interactive protocol, (Pnu, Vnu), is given in Fig. 1.

118 C. Freitag et al.

Fig. 1. A nuCert for P defined in the auxiliary-input random oracle model.

Efficiency and Completeness. We first argue that (Pnu, Vnu) is a valid certifi-
cate system for P by showing the completeness by a relatively efficient prover
and efficient verification properties.

Completeness follows from the completeness of the underlying PCP proof
system. For prover efficiency, note that computing q̃ and q̂ in the commitment
phase only takes time polynomial in the statement size. This uses the efficiency
of the list-recoverable code. Recall that a proof π = (a, b, c) consists of a n
bit Merkle tree root, the randomness for the PCP proof, and the authentication
paths for locations specified by the PCP proof. In order to compute a, the prover
computes the PCP proof for q, which takes time polynomial in the machine’s
running time. Since the protocol uses a PCP proof system with soundness error
2−n, the prover has to open and authenticate O(n) bits using O(log n) bits
of randomness per location, which takes polynomial time only in the security

Non-Uniformly Sound Certificates with Applications 119

parameter n. Each authentication path in the Merkle tree has size O(n log n).
This implies a polynomial length bound of 	π(n) ∈ O(n2 log n).

The verifier also needs to compute q̃ and q̂, but does not need to compute
the PCP proof for q. Thus, the verifier’s running time is independent of the
machine’s running time, and depends only polynomially on the statement size
|q| and the proof length 	π(n).

5.2 Proof of Theorem 4

The proof of (K,T)-soundness proceeds in two steps. We first show that a non-
uniform adversary can only find a bounded number of statements per q̃ value in
the commitment. Then we show that a non-uniform adversary cannot come up
with a false proof for too many q̃ values.

Bounding Statements Per q̃. Recall that q̃ is a Merkle hash of a list-
recoverable code encoding of some statement q. We show that a non-uniform
cheating prover cannot find too many statements that yield the same q̃ value.

Lemma 1. Let O be a random function from n2 to n bits. For any functions
K, s : N → N and sequence of advice {zn}n∈N of size s = s(n) ≥ 4, let AO be
a non-uniform algorithm that on input (1n, zn) makes at most 2n/2 queries and
outputs K = K(n) unique statements q1, . . . , qK . Define N = (3s)24·α where α

satisfies |qi| ≤ nα for all i ∈ [K], and define q̃i = MTO(·)(LRC|qi|(qi)). Then, for
every n ∈ N, it holds that

Pr
O

[
(q1, . . . , qK) ← AO(1n, zn) :

∀i �= j ∈ [K] : qi �= qj

|{q̃i : i ∈ [K]}| ≤ K/N

]
≤ 2−n.

The proof of this lemma appears in the full version.

Bounding False Proofs Per q̃. We show that if a cheating prover comes
up with a false proof for a statement with a new q̃ value, it must have used
some knowledge to either find (1) a new collision, (2) a new pre-image of a
previously queried point, or (3) a new challenge message b that comes from a
small set. We use each scenario to compress the random oracle’s description on
some input, which bounds the number of oracles a cheating prover can succeed
on. We note that we can use a single oracle O with large enough domain and
range to represent all four oracles defined in Fig. 1. We can simply modify each
query to first specify an index for which oracle it wants to query and then
restrict the input and output to the correctly defined length. We formalize this
compression-style argument in the following lemma.

Lemma 2. Let (Pnu, Vnu) be the nuCert system from Fig. 1 with random oracle
O = (O1,O2,O3,O4). For any functions K, s : N → N and sequence of advice
{zn}n∈N of size s = s(n), let AO be a non-uniform algorithm that on input
(1n, zn) makes T oracle queries and outputs (C1, q1, π1), . . . , (CK , qK , πK) where
K = K(n). Then, for every n ∈ N, it holds that

120 C. Freitag et al.

Pr
O

⎡
⎢⎢⎣{(Ci, qi, πi)}i∈[K] ← AO(1n, zn) :

∀i �= j ∈ [K] : q̃i �= q̃j
∧ qi �= qj ,

∀i ∈ [K] : qi �∈ LCi

∧ Vnu(Ci, 1
n, qi, πi) = 1

⎤
⎥⎥⎦ ≤ 2−K(n−3 log T)+s.

Proof. For each proof that AO(1n, zn) outputs, parse πi = (ai, bi, ci). We assume
without loss of generality that AO(1n, zn) makes every query that Vnu checks
exactly once. Otherwise, we can modify AO to make all such queries at the end
and never make the same query twice, which uses at most K · poly(n) extra
queries by the efficiency of Vnu. Let Q1, . . . , QT be the unique random oracle
queries that AO(1n, zn) makes.

Before explicitly defining our representation of O, we introduce some nota-
tion. For every statement q and PCP proof Π, we define B(q,Π) to be the set
of all b values for which PCP.VerΠ(q, b) accepts, i.e.,

B(q,Π) = {b | PCP.VerΠ(q; b) = 1}.

By the 2−n soundness error of the underlying PCP proof system, |B(q,Π)| ≤
2�b−n for all statements q not in the specified language where recall 	b is the
length of b. When we refer to the mth element of the set B(q,Π), we mean
the mth element in the lexicographic enumeration of the set, which is uniquely
defined.

We now define a procedure to generate a representation of a particular ran-
dom oracle O using AO(1n, zn). We assume for simplicity that zn starts with
the description of A.

1. Initialize lists Lcol, Lpre, Lpcp, Lquery, and Lother to be empty.
2. Run AO(1n, zn) to get false proofs πi = (ai, bi, ci) for statements qi with

unique q̃i values for i ∈ [K].
3. For each query Qj in order, do exactly one the following.

(a) If O(Qj) = O(Qm) for m < j, add (j,m) to Lcol.
(b) If O(Qj) = Qm[pos·n+1 : (pos+1)·n] (where Qm[i1 : i2] is the substring

from index i1 to i2 inclusive) for m < j and pos ∈ {0, . . . , n + 1}, add
(j,m, pos) to Lpre.

(c) If the following conditions hold, add (j,m) to Lpcp.
i. Qj = (q̃, q̂, ai) and O4(q̃, q̂, ai) = bi for some i ∈ [K].
ii. It is possible to uniquely extract a statement q that Merkle hashes to

q̂ using only previous O2(q̃, ·) queries.
iii. It is possible to uniquely extract a partial PCP proof Π that Merkle

hashes to ai using only previous O3(q̃, q̂, ·) queries.
iv. bi is the mth element of B(qi,Π).

(d) Otherwise, add O(Qj) to Lquery.
4. For all other inputs x, add O(x) to Lother in lexicographic order.
5. Output zn, Lcol, Lpre, Lpcp, Lquery, Lother as the representation.

Using only the representation, we define a procedure to compute all O queries.

Non-Uniformly Sound Certificates with Applications 121

1. Run A(·)(1n, zn) and simulate its queries to O.
2. On the jth query Qj , do the following.

(a) If (j,m) is in Lcol for m < j, output O(Qm).
(b) If (j,m, pos) is in Lpre for m < j and pos ∈ {0, . . . , n+1}, output Qm[pos ·

n + 1 : (pos + 1) · n].
(c) If (j,m) is in Lpcp, do the following.

i. Parse Qj = (q̃, q̂, a).
ii. Extract a statement q that Merkle hashes to q̂ using only previous

queries to O2(q̃, ·).
iii. Extract a partial PCP proof Π that Merkle hashes to a using only

previous queries to O3(q̃, q̂, ·).
iv. Output the mth element of B(q,Π).

(d) Otherwise, output the next value in the list Lquery.
3. Compute all other outputs for O using Lother.

In the following claim, we prove that for any machine AO(1n, zn), the above
procedure defines a valid and unique representation for O.

Claim 2. For every machine AO(1n, zn), the representation of O defined above
is correct and unique.

The proof of this claim appears in the full version.
We next show that the representation of O is actually compressing when

AO(1n, zn) succeeds. Note that all random oracle outputs are added to exactly
one of the lists Lcol, Lpre, Lpcp, Lquery, or Lother. Any output that is added to
Lcol, Lpre, or Lpcp requires fewer bits to represent than the full output. At a high
level, we argue that at least K outputs will be added to these lists.

Claim 3. Suppose that AO(1n, zn) outputs a false proof π = (a, b, c) for a state-
ment q mapping to q̃. Then, there is some query unique to q̃ that was added to
either Lcol, Lpre, or Lpcp in the representation defined above.

Proof. Suppose there is no query of the form (q̃, ·) or (q̃, q̂, ·) added to Lcol or
Lpre. It suffices to prove there is some query Qj of the form (q̃, q̂, a) that is added
to Lpcp. Recall that we assume AO(1n, zn) queries everything checked by Vnu.
This implies that AO(1n, zn) queries Qj = (q̃, q̂, a) at some point. We show that
each of the conditions required for Qj to be added to Lpcp hold. Namely, it is
possible to uniquely extract q and Π such that b = O(q̃, q̂, a) is contained in
B(q,Π).

First suppose it is not possible to uniquely extract q using previous queries
to O2(q̃, ·). We have assumed the entire Merkle tree computing MTO2(q̃,·)(q) is
queried at some point. If we are not able to extract the correct statement q,
then some query in the Merkle tree must be made after query Qj . This would
require that some pre-image will be queried using O2(q̃, ·), which contradicts
the assumption that no query containing q̃ is added to Lpre. If it is possible to
extract the statement q but it is not unique, then there must be some collision
queried in the Merkle tree using O2(q̃), but this contradicts that no query of the
form (q̃, ·) was added to Lcol. Thus, we must be able to uniquely extract q when
query Qj is made.

122 C. Freitag et al.

Similarly, we must be able to use previous queries to O3(q̃, q̂, ·) to uniquely
reconstruct a partial PCP proof Π. If it is not unique, there must be a collision
in O3(q̃, q̂, ·), which is a contradiction. If all authenticating paths are not queried
before Qj , there will be some pre-image queried with O3(q̃, q̂, ·), which again is
a contradiction.

Lastly, because (a, b, c) is an accepting proof for the statement q, b must be in
the set B(q,Π), which has bounded size since q is not in the specified language.
We conclude that Qj must be added to Lpcp.

By the above claim, we add at least one query to Lcol, Lpre, or Lpcp for each
unique q̃ value. Each query added to Lcol uses at most 2 log T bits to represent,
Lpre uses at most 2 log T +log(n+2) bits, and Lpcp uses at most log T +	b−n bits
to represent a value of size 	b. Since AO queries everything that Vnu queries, T
is at least n+2, so log(n+2) ≤ log T . This implies that we compress by at least
n − 3 log T bits per query added to Lcol, Lpre, or Lpcp. The total representation
in bits in this case is at most

n · (22n + 23n + 24n) + 	b · 23n + s − K(n − 3 log T).

Because the representation is unique, this bounds the total number of oracles
that AO(1n, zn) succeeds by 2n·(22n+23n+24n)+�b·23n+s−K(n−3 log T) but there are
2n·(22n+23n+24n)+�b·23n

oracles in total. So the probability AO(1n, zn) succeeds
on a randomly chosen oracle is at most 2−K(n−3 log T)+s.

We finish the proof of Theorem4 next.

Proof (of Theorem 4). Let P ∗O(1n, zn) be a non-uniform cheating prover that
makes T queries to the random oracle and outputs (C1, q1, π1), . . . , (CK , qK , πK)
for unique statements. We will show that

Pr
O

⎡

⎣{(Ci, qi, πi)}i∈[K] ← P ∗O(1n, zn) :
∀i �= j ∈ [K] : qi �= qj ,

∀i ∈ [K] : qi �∈ LCi

∧ Vnu(Ci, 1n, qi, πi) = 1

⎤

⎦ ≤ 2−n+1.

Let SUCC be the event that P ∗O(1n, zn) succeeds, i.e., the condition above holds.
Consider an execution of P ∗O(1n, zn) for a random function O that outputs

(C1, q1, π1), . . . , (CK , qK , πK). Define α to be the smallest constant such that
such that |qi| ≤ nα for all i ∈ [K], and define N = (3s)24·α. Let BAD be the
event that |{q̃i = MTO(LRC|qi|(qi)) : i ∈ [K]}| ≤ K/N . Since Pr[SUCC] ≤
Pr[BAD] + Pr[SUCC | ¬BAD], it suffices to bound each term separately.

By Lemma 1, Pr[BAD] ≤ 2−n. Given that BAD does not occur, we can find
a set of statements X ⊆ {q1, . . . , qK} with false proofs and with a unique q̃
value where |X| = K/N . By Lemma 2, this can succeed with probability at most
2−(K/N)·(n−3 log T)+s over the choice of O. When K/N = 3s and T ≤ 2n/6, this
is at most 2−n. In this case, K = (3s)24α+1 ≤ (3s)25·α, and Pr[SUCC] ≤ 2−n+1.

Remark 6. As discussed in Remark 5, Theorem4 immediately implies a corol-
lary for a definition of (K,T)-soundness where the statements do not need

Non-Uniformly Sound Certificates with Applications 123

to be unique. Specifically, we argued in Sect. 5.1 that (Pnu, Vnu) has a proof
length bound of 	π = O(n2 log n). It follows that (Pnu, Vnu) is (K ′, T)-sound for
K ′ = (3s)25α · nn2

in the case where only the proofs need to be unique rather
than the statements.

6 Concurrent Zero-Knowledge Protocol

In this section, we present our concurrent zero-knowledge protocol and prove
that it satisfies non-uniform soundness when instantiated with our notion of
nuCerts for P.

Theorem 6 (Restatement of Theorem 2). Suppose there exist super-
polynomially-secure families of collision resistant hash functions and nuCerts for
P. Then, there exists a public-coin constant-round concurrent zero-knowledge
protocol for NP with non-uniform soundness and an explicit simulator.

We recall from Theorem 5 that we construct a nuCert for P in the auxiliary-
input random oracle model. By a similar compression argument as in Sect. 5, it
is easy to show that a compressing random oracle is a secure collision resistant
hash function even in the auxiliary-input random oracle model. Thus, we get the
following corollary to Theorems 5 and 6.

Corollary 2 (Restatement of Corollary 1). In the auxiliary-input random
oracle model, there exists a public-coin constant-round concurrent zero-knowledge
protocol for NP.

Our protocol is very similar to that of Chung et al. [14] which, in turn, is
a variant of Barak’s [1] constant-round (bounded concurrency) zero-knowledge
protocol. At a very high level, Barak’s simulator uses the verifier’s code as a
trapdoor to convince the verifier of the validity of the statement at hand. The
simulator of Chung et al. instead uses to a succinct proof to certify that it knows
a program that does the required task. To be able to provide such proofs for con-
current verifiers that may start nested sessions, rather than redoing computation
multiple times, they design a way to provide succinct proofs to “shortcut” some
of the computation. Specifically, they use k levels of uniformly sound certificates
for P (P-certificates). The first layer of P-certificates is used to certify the veri-
fier’s messages in its interaction with the prover, and all above layers certify the
correct generation of lower level P-certificates in a tree-like fashion.

In our construction, we use nuCerts for P in place of the P-certificates of [14].
We describe a sequence of protocols Π1,Π2, . . . , where protocol Πk uses k levels
of nuCerts and allows us to simulate nk concurrent sessions. Thus, to capture
full concurrency, our final instantiation is Πk for any k ∈ ω(1).

We proceed with the description of our protocol Πk = (Pk, Vk) for a language
L ∈ NP. We present the protocol assuming that , is non-interactive, statisti-
cally binding commitment scheme, but this can be naturally replaced by any
constant-round commitment scheme (for example, the scheme of Naor [37,46]
which consists of two rounds and relies on the existence of one-way functions).

124 C. Freitag et al.

We further assume Hn = {h : {0, 1}poly(n) → {0, 1}n} is a family of collision resis-
tant hash functions mapping strings of arbitrary polynomial length to strings
of length n. We can instantiate this using a Merkle tree based on any family of
compressing collision resistant hash functions. Lastly, we assume nuCerts for P
with length bounded by 	(n) ∈ poly(n).

Let 1n and x be common inputs to (Pk, Vk) and w be a private input to
Pk such that (x,w) ∈ RL. The protocol proceeds in two phases. In the first
phase, the prover commits to a message before receiving a “challenge” r from
the verifier. In the second phase, the prover provides a WIUA proving either that
x is in the NP language or that the message it committed to in phase 1 was
actually a sequence of machines that outputs r. We summarize this protocol Πk

as follows:

Phase 1: Pk and Vk exchange the following three messages.
1. Vk chooses a randomly sampled hash function h

$←− Hn and sends h to
Pk.

2. Pk sends a commitment to 0n using , with randomness ρ.
3. Vk replies with a random “challenge” r

$←− {0, 1}6�nk.
Phase 2: Pk provides a WIUA of the statement that either x ∈ L OR there

exists 〈 �M, j,�s, �π, �σ,�λ, ρ〉 such that:
1. Commitment Consistency: c is a commitment to h(�M) using random-

ness ρ,
2. Input Certification:

(a) |�σ| ≤ 	nk.
(b) For 2 ≤ i ≤ k, πi certifies that Mi(1n, ζ(j, i), si, ([λ≥i]≤ζ(j,i),

[σ≥i]≤ζ(j,i))) = λi−1.
3. Prediction Correctness: π1 certifies that M1(1n, j, s1, ([λ≥1]≤j ,

[σ≥1]≤j)) = r.
We define ζ(j, i) � j − (j mod ni−1), γ≥i = (γi, γi+1, . . .), and [γ]≤j �
{(j′, ·, ·) ∈ γ : j′ ≤ j}. These are used to “filter out” all unnecessary messages
from future rounds.

There are two things we need to show: (1) there exists a simulator that can
communicate with a cheating verifier in arbitrarily (yet polynomial) number
of concurrent sessions and be able to convince it that the instance is in the
language, even without having the witness, and (2) any non-uniform efficient
cheating prover cannot convince the verifier the validity of a false statement. For
(1), the ZK simulator is identical to [14] as nuCerts for P and P-certificates have
the same completeness and efficiency guarantees. We refer to the full version of
the paper for the proof of (2) and hence Theorem6.

References

1. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual
Symposium on Foundations of Computer Science, FOCS, pp. 106–115 (2001)

2. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J.
Comput. 38(5), 1661–1694 (2008)

Non-Uniformly Sound Certificates with Applications 125

3. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-
knowledge and its applications. In: 42nd Annual Symposium on Foundations of
Computer Science, FOCS, pp. 116–125 (2001)

4. Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box zero knowl-
edge. J. Comput. Syst. Sci. 72(2), 321–391 (2006)

5. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. SIAM J.
Comput. 37(2), 380–400 (2007)

6. Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi-collision resis-
tant hash functions and their applications. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 133–161. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 5

7. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for
keyless hash functions. In: 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC, pp. 671–684 (2018)

8. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commit-
ments. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp.
209–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 8

9. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

10. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: 32nd Annual ACM Symposium on Theory of Computing,
STOC, pp. 235–244 (2000)

11. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-
knowledge requires (almost) logarithmically many rounds. SIAM J. Comput. 32(1),
1–47 (2002)

12. Canetti, R., Lin, H., Paneth, O.: Public-coin concurrent zero-knowledge in the
global hash model. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 80–99.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 5

13. Chongchitmate, W., Ostrovsky, R., Visconti, I.: Resettably-sound resettable zero
knowledge in constant rounds. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS,
vol. 10678, pp. 111–138. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70503-3 4

14. Chung, K., Lin, H., Pass, R.: Constant-round concurrent zero knowledge from
p-certificates. In: 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS, pp. 50–59 (2013)

15. Chung, K.-M., Lin, H., Pass, R.: Constant-round concurrent zero-knowledge from
indistinguishability obfuscation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 287–307. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47989-6 14

16. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.P.: Random oracles and non-
uniformity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10820, pp. 227–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 9

17. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 30

18. Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability conjecture
and a new non-black-box simulation strategy. In: 50th Annual IEEE Symposium
on Foundations of Computer Science, FOCS, pp. 251–260 (2009)

19. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM (JACM)
51(6), 851–898 (2004)

https://doi.org/10.1007/978-3-319-78375-8_5
https://doi.org/10.1007/978-3-030-03807-6_8
https://doi.org/10.1007/978-3-642-36594-2_5
https://doi.org/10.1007/978-3-319-70503-3_4
https://doi.org/10.1007/978-3-319-70503-3_4
https://doi.org/10.1007/978-3-662-47989-6_14
https://doi.org/10.1007/978-3-662-47989-6_14
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/3-540-45539-6_30

126 C. Freitag et al.

20. Dwork, C., Sahai, A.: Concurrent zero-knowledge: reducing the need for timing
constraints. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 442–457.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055746

21. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Com-
puting, pp. 416–426. ACM (1990)

22. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

23. Fortnow, L.: Kolmogorov complexity and computational complexity. Complexity
of Computations and Proofs. Quaderni di Matematica, vol. 13 (2004)

24. Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 17

25. Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: 41st Annual Symposium on Foundations of Computer Science,
FOCS, pp. 305–313 (2000)

26. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: 43rd ACM Symposium on Theory of Computing, STOC,
pp. 99–108 (2011)

27. Goldreich, O.: The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press, Cambridge (2001)

28. Goldreich, O.: Concurrent zero-knowledge with timing, revisited. In: 34th Annual
ACM Symposium on Theory of Computing, STOC, pp. 332–340 (2002)

29. Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with bounded
communication. Inf. Process. Lett. 67(4), 205–214 (1998)

30. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

31. Goyal, V.: Non-black-box simulation in the fully concurrent setting. In: Symposium
on Theory of Computing Conference, STOC, pp. 221–230. ACM (2013)

32. Goyal, V., Jain, A., Ostrovsky, R., Richelson, S., Visconti, I.: Constant-round con-
current zero knowledge in the bounded player model. In: Sako, K., Sarkar, P.
(eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 21–40. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42033-7 2

33. Gupta, D., Sahai, A.: On constant-round concurrent zero-knowledge from a knowl-
edge assumption. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014.
LNCS, vol. 8885, pp. 71–88. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-13039-2 5

34. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-
geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999)

35. Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness
extractors from parvaresh-vardy codes. J. ACM 56(4), 20:1–20:34 (2009)

36. Haitner, I., Ishai, Y., Omri, E., Shaltiel, R.: Parallel hashing via list recoverability.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 173–190.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 9

37. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

38. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 723–
732. ACM (1992)

https://doi.org/10.1007/BFb0055746
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-22792-9_17
https://doi.org/10.1007/978-3-642-42033-7_2
https://doi.org/10.1007/978-3-319-13039-2_5
https://doi.org/10.1007/978-3-319-13039-2_5
https://doi.org/10.1007/978-3-662-48000-7_9

Non-Uniformly Sound Certificates with Applications 127

39. Kilian, J.: Improved efficient arguments. In: Coppersmith, D. (ed.) CRYPTO 1995.
LNCS, vol. 963, pp. 311–324. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-44750-4 25

40. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In: 33rd Annual ACM Symposium on Theory of Computing,
STOC, pp. 560–569 (2001)

41. Komargodski, I., Naor, M., Yogev, E.: White-box vs. black-box complexity of
search problems: Ramsey and graph property testing. In: 58th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS, pp. 622–632 (2017)

42. Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for paranoids:
dealing with multiple collisions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 162–194. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8 6

43. Komargodski, I., Yogev, E.: On distributional collision resistant hashing. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 303–
327. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 11

44. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

45. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

46. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991)

47. Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-box simu-
lation and four message concurrent zero knowledge for NP. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 638–667. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46497-7 25

48. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 10

49. Pass, R., Rosen, A., Tseng, W.D.: Public-coin parallel zero-knowledge for NP. J.
Cryptol. 26(1), 1–10 (2013)

50. Pass, R., Tseng, W.D., Venkitasubramaniam, M.: Concurrent zero knowledge,
revisited. J. Cryptol. 27(1), 45–66 (2014)

51. Pass, R., Tseng, W.D., Wikström, D.: On the composition of public-coin zero-
knowledge protocols. SIAM J. Comput. 40(6), 1529–1553 (2011)

52. Pass, R., Venkitasubramaniam, M.: On constant-round concurrent zero-knowledge.
In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 553–570. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78524-8 30

53. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: 43rd Symposium on Foundations of Computer Science
FOCS, pp. 366–375. IEEE Computer Society (2002)

54. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 29

55. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74143-5 12

https://doi.org/10.1007/3-540-44750-4_25
https://doi.org/10.1007/3-540-44750-4_25
https://doi.org/10.1007/978-3-319-78375-8_6
https://doi.org/10.1007/978-3-319-78375-8_6
https://doi.org/10.1007/978-3-319-96881-0_11
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-662-46497-7_25
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/978-3-540-78524-8_30
https://doi.org/10.1007/3-540-48910-X_29
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12

On Round Optimal Statistical Zero
Knowledge Arguments

Nir Bitansky1(B) and Omer Paneth2(B)

1 Tel Aviv University, Tel Aviv-Yafo, Israel
nbitansky@gmail.com

2 MIT and Northeastern University, Cambridge, USA
omerpa@gmail.com

Abstract. We construct the first three message statistical zero knowl-
edge arguments for all of NP, matching the known lower bound. We
do so based on keyless multi-collision resistant hash functions and the
Learning with Errors assumption—the same assumptions used to obtain
round optimal computational zero knowledge.

The main component in our construction is a statistically witness
indistinguishable argument of knowledge based on a new notion of sta-
tistically hiding commitments with subset opening.

1 Introduction

Since their introduction three decades ago [GMR89], the concept of zero knowl-
edge protocols has played a central role in the development of modern cryptog-
raphy. Different flavors of zero knowledge protocols have been studied according
to the level of soundness and zero knowledge achieved. Either property can be
statistical or computational, meaning that it holds against unbounded or compu-
tationally bounded adversaries, respectively. Protocols that satisfy both prop-
erties statistically, known as statistical zero knowledge proofs, are only possible
for languages in AM ∩ coAM [For89,AH91]; however, once either property is
relaxed to computational, protocols for all of NP can be constructed assuming
one way functions [GMW91,Nao91,BCC88,NOVY98,HNO+09].

In this work, we focus on statistical zero knowledge arguments for NP;
namely, computationally sound protocols where the view of any efficient verifier
can be efficiently simulated up to a negligible statistical difference. Such protocols
are especially appealing due to their everlasting zero knowledge guarantee—even
if the verifier stores conversations with the prover and post-processes them for as
long as it wants, it does not learn anything that cannot be simulated efficiently.

N. Bitansky—Member of the Check Point Institute of Information Security. Supported
by ISF grant 18/484, the Alon Young Faculty Fellowship, and by Len Blavatnik and
the Blavatnik Family Foundation.
O. Paneth—Supported by NSF Grants CNS-1413964, CNS-1350619 and CNS-1414119,
and the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army
Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 128–156, 2019.
https://doi.org/10.1007/978-3-030-26954-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_5

On Round Optimal Statistical Zero Knowledge Arguments 129

A foundational question is the round complexity of such protocols. Four
message protocols can be constructed based on collision resistant hash func-
tions [BJY97]. In terms of lower bounds, at least three messages are necessary
even for computational zero knowledge [GO94]. Constructing zero knowledge
arguments with matching round complexity has so far appeared more difficult
in the statistical setting than in the computational one. Computational zero
knowledge in three messages has been long known under unfalsifiable knowledge
assumptions [HT98,BP04,CD09,BCC+14] and recently also under a falsifiable
multi-collision resistance assumption on keyless hash functions [BKP18]. In con-
trast, three message statistical zero knowledge has been out of reach (even under
knowledge assumptions).

The difference between the statistical and computational settings seems to
run somewhat deeper, and manifests itself even in witness indistinguishability, a
relaxation of zero knowledge. While computational witness indistinguishability
has been long known in three [GMW91,FLS99], two [DN07], or even one mes-
sage [BOV07,GOS12], statistical witness indistinguishability in less than four
messages has only been very recently achieved [KKS18]. In fact, witness indis-
tinguishable arguments of knowledge, which are essential in the constructions of
three message computational zero knowledge, are still not known in less than
four messages in the statistical setting.
All and all, we are faced with the question:

What is the round complexity of statistical zero knowledge arguments?

1.1 Results

We construct the first round optimal statistical zero knowledge argument under
the same assumptions on which computational zero knowledge arguments are
currently known.

Theorem 1.1 (Informal). Assuming keyless multi-collision resistant hash
functions and LWE, both quasi-polynomially hard, there exist three message sta-
tistical zero knowledge arguments.1

Keyless multi-collision resistant hash functions, introduced in [BKP18], are func-
tions H : {0, 1}2λ → {0, 1}λ guaranteeing that no efficient adversary with non-
uniform description of polynomial size S can find more than poly(S) elements
that collide under H. Here poly is some fixed polynomial and the adversary’s run-
ning time may be an arbitrarily larger polynomial, or even quasipolynomial (as
required in the above theorem). While at this point non-standard, multi-collision
resistance of keyless hash functions is a falsifiable and relatively simple assump-
tion, which plausibly holds for existing keyless hash functions (see discussion in
[BKP18]).

Four Message Protocols from Weaker Assumptions. When considering
keyed hash functions, multi-collision resistance becomes a standard assumption
1 Here LWE is used to realize several generic primitives, which we address in the body.

130 N. Bitansky and O. Paneth

that relaxes the classical notion of collision resistance. A recent line of work
explores such hash functions demonstrating that their power goes beyond one-
way functions to achieve some of the applications of collision resistance [BDRV18,
BKP18,KNY17,KNY18,BHKY19]. Our second result is along this vein showing
that four message statistical zero knowledge arguments can be based on (keyed)
multi-collision resistance instead of full fledged collision resistance.

Theorem 1.2 (Informal). Assuming (keyed) multi-collision resistant hash
functions, there exist four message statistical zero knowledge arguments.

A main building block in both of the above results is a new statistically witness
indistinguishable argument of knowledge, which was so far known from collision
resistance in four messages.

Theorem 1.3 (Informal). Assuming multi-collision resistant hash functions,
there exist four message statistically witness indistinguishable arguments of
knowledge. If the hash functions are keyless the arguments have three messages.

Most of the technical effort in this work is devoted toward proving this theorem.

1.2 Technical Overview

We now provide an overview of the main ideas and techniques behind our results.
We start with our construction of statistically witness indistinguishable argu-
ments of knowledge and then move on to explain how they are used to construct
statistical zero knowledge arguments.

Classical Witness Indistinguishable Protocols from Bit Commitments.
To understand the challenge, let us recall how classical witness indistinguishable
arguments of knowledge are designed. Such protocols traditionally involve three
basic steps: a prover commitment, a verifier challenge, and a prover decommit-
ment. The prover commitment consists of multiple bit commitments, a subset of
which are opened in the decommitment step according to the challenge given by
the verifier. For instance, in Blum’s Hamiltonicity protocol [Blu86], the prover
commits to the entries of the adjacency matrix of a graph and then, according
to the challenge, either opens a subset of edges corresponding to a Hamiltonian
cycle or the entire graph. This is repeated in parallel to decrease the soundness
error to negligible. (The protocol contains additional details that we omit.)

Indeed, given statistically hiding bit commitments, such protocols can be
shown to be statistically witness indistinguishable. However, focusing on round
complexity, such commitments inherently require at least two messages—if the
commitment was non-interactive, a cheating prover could have equivocal open-
ings for some commitments non-uniformly hardwired into its code; such openings
always exist due to statistical hiding.

Weakly Binding Commitments. While standard binding cannot be achieved
non-interactively for statistically hiding bit commitments, keyless multi-collision
resistant hash functions are known to imply non-interactive statistically hiding

On Round Optimal Statistical Zero Knowledge Arguments 131

commitments with weak binding [BKP18]. Weak binding says that an attacker
could only ever open a given commitment to values from some polynomial-size
set. Intuitively, this means that even if it has equivocal openings of some com-
mitment hardwired in its code, these cannot be used to sample more openings
(except with negligible probability). Weak binding, however, is only meaningful
in commitments for long strings and is completely meaningless for bit commit-
ments, where the prover can open commitments to both zero and one. Accord-
ingly, it is not clear how to use it in classical witness indistinguishable protocols
that are all based on bit commitments.

An analogous problem is encountered in the work of [BKP18]. They define
commitments for long strings with a subset opening property that enables to
open only a given subset of bits, without having to open the entire string. While
traditionally we require that every individual bit is fixed by the commitment,
they suggest a relaxed definition suited for the setting of weak binding. They
require that for any fixed adversary, a commitment to a long string X ∈ {0, 1}L

fixes a global set of strings X ⊆ {0, 1}L of polynomial size K, so that whenever
the adversary opens some subset of bits I ⊆ [L], they must all be simultaneously
consistent with one string in the set X (except with negligible probability over
the adversary’s coins).

Our first observation is that commitments with subset opening and the
above weak, but global, binding guarantee is sufficient for establishing soundness
and also knowledge extraction in classical protocols. Roughly speaking, this is
because for any prover that convinces the verifier of accepting with noticeable
probability ε, there must be a single string X ∈ X, such that with probability
ε/K, the prover convinces the verifier while answering consistently with X. Since
ε/K is still noticeable, soundness and knowledge extraction essentially reduce to
those of the original protocol in the fully binding setting.

The work of [BKP18] constructs commitments with subset opening that fall
short of achieving statistical hiding (indeed they focus on succinctness rather
than hiding). In their construction, an opening of a given subset also reveals
information regarding unopened bits, thus making them unfit for instantiating
witness indistinguishable protocols. At high level, the reason they do not achieve
statistical hiding is that to enforce consistency, subsets of bits are always opened
in a correlated way and the correlations also pertain to unopened bits (this will
become more clear below when we describe our construction).

Statistically Hiding Commitments with Subset Opening. We provide a
construction that also achieves statistical hiding. Specifically, commitments to
any two vectors X,X ′ are statistically indistinguishable, even given an opening
of any subset of entries where X and X ′ agree. Our construction combines ideas
from [BKP18] along with new ideas aimed toward statistical hiding.

The construction is based on statistically hiding weakly binding string com-
mitments (with no subset opening) and Shamir secret sharing [Sha79]. At
abstract level, Shamir secret sharing with parameters (n, d) allows to sample
an encoding b̂ ∈ Σn over some alphabet Σ of a secret bit b ∈ {0, 1}, so that
two properties are guaranteed. First, any two encodings 0̂ and 1̂ of zero and

132 N. Bitansky and O. Paneth

one agree on at most d entries. Second, any d entries of a random encoding b̂
perfectly hide the bit b.
The commitment scheme works as follows:

– Commitment: to commit to a string X ∈ {0, 1}L, we sample encodings
̂Xi for all bits Xi of X. Then, considering the matrix ̂X =

(

̂Xi,j

)

whose

rows are the encodings ̂Xi, we compute a statistically hiding weakly-binding
commitment to each row and each column of the matrix ̂X.

– Opening: opening a subset of entries I ⊆ [L] consists of two messages:
a receiver challenge C, and a corresponding decommitment. The challenge
consists of d random indices C ⊆ [n]. A decommitment involves opening
the commitments to all rows i ∈ I and all columns j ∈ C. The receiver
verifies that the individual decommitments are valid and are consistent (on
the intersection of corresponding rows and columns).

Let us explain at high level how the scheme satisfies statistical hiding and (global)
weak binding. To show that any unopened entry i /∈ I remains statistically
hidden, we rely on the fact that the commitment corresponding to its row ̂Xi

is statistically hiding and never opened. Since only d column commitments are
opened, only d entries of ̂Xi are revealed and thus the Shamir hiding property
guarantees that the bit Xi remains statistically hidden.

Proving weak (global) binding is inspired by ideas from [BKP18]. Roughly
speaking, the weak binding of individual row commitments guarantees that for
every row i, the sender can only ever open the corresponding commitment to
encodings ̂Xi from some fixed set Si of polynomial size K = poly(λ) in the
security parameter λ. We then use the fact that encodings of two distinct bits
are far apart to argue that with overwhelming probability the answers to the
random challenge (columns) uniquely fix all the bits of the string X. We further
show that due to the individual weak binding of column commitments, these
answers come from a polynomial set, and accordingly the string X determined
by these answers must also come from a polynomial-size set X.

In a bit more detail, we choose the parameters (n, d) of Shamir secret sharing
so that the relative agreement of encodings of distinct bits is polynomially small
d/n < λ−Ω(1). Then choosing a large enough constant τ such that

L · K2 · (d/n)τ � 1

guarantees that for τ random locations T ⊆ [n], for all bits i ∈ [L], any two
encodings in Si that agree on T must encode the same bit.

By the weak binding of column commitments, any opened column j ∈ T is
taken from a fixed set S′

j of polynomial size K, which means that all opened
bits must simultaneously be consistent with some X taken from a set XT of
polynomial size Kτ . The actual construction chooses d random challenges C for
super-logarithmic d, so that with overwhelming probability they include a fixing
set T ⊆ C, and the set X is the union of all corresponding sets XT (the number
of which is at most dτ and thus polynomial).

On Round Optimal Statistical Zero Knowledge Arguments 133

Statistical Zero Knowledge. We now explain how the statistical zero knowl-
edge protocols behind Theorems 1.1 and 1.2 is obtained. The four message pro-
tocol from (keyed) multi-collision resistance is obtained in a black-box way by
replacing the statistically witness indistinguishable argument of knowledge (from
collision resistance) in the protocol of [BJY97] with our witness indistinguish-
able argument from multi-collision resistance. We focus on explaining how three-
message statistical zero knowledge is obtained from keyless multi-collision resis-
tant hashing.

Our starting point is the three-message computational zero knowledge argu-
ment of [BBK+16] and its subsequent extension in [BKP18] based on multi-
collision resistant hash functions. At high level, their protocol follows the recipe
of Barak’s non-black-box simulation technique [Bar01]. To prove an NP state-
ment x ∈ L, the prover sends a shrinking commitment cmt to the code of some
(potentially long) program Π and the verifier responds with a random string r.
Then, the prover gives a succinct witness indistinguishable argument of knowl-
edge proving that either x ∈ L or that the committed program Π(cmt) outputs
r. At high level, by committing to the code of the verifier itself, a non-black-box
simulator is able to produce an accepting transcript without using the witness,
while a cheating prover, who does not know the verifier’s randomness r, can only
commit to such a program with negligible probability.

In [BBK+16,BKP18], the succinct witness indistinguishable argument of
knowledge is constructed from a (non-succinct) witness indistinguishable argu-
ment of knowledge, a secure function evaluation scheme, and a weak memory
delegation scheme, which they construct based on keyless multi-collision resis-
tant hashing. Upgrading the protocol from computational zero knowledge to
statistical zero knowledge requires two main changes. First, the prover com-
mitment cmt is replaced with a statistically hiding commitment that is weakly
binding, which as already observed in [BKP18] is sufficient. Second, the succinct
witness indistinguishable argument of knowledge is replaced with a statistically
witness indistinguishable one.

To obtain the succinct witness indistinguishable argument, we replace the
(computationally) witness indistinguishable argument with our statistically wit-
ness indistinguishable argument. In addition, need the secure function evaluation
scheme to satisfy statistical function hiding, which can be achieved assuming
LWE [OPP14,BD18]. The actual construction requires that the witness indis-
tinguishable argument possesses additional properties, such as adaptive witness
indistinguishability and adaptive argument of knowledge, when the statement
proven is adversarially chosen after the first two messages of the protocol. The
protocol we construct is a slightly tweaked version of the protocol described in
this introduction that satisfies these properties.

1.3 More Related Work

We next address additional related work in more detail.

More on Statistical Zero Knowledge Arguments. From the early con-
structions of zero knowledge protocols [GMW91,BCC88] it was evident that

134 N. Bitansky and O. Paneth

statistically hiding commitments are sufficient to obtain statistically zero knowl-
edge arguments in a super logarithmic number of rounds. (See [HNO+09] for a
survey on statistically hiding commitments.) Early constant round constructions
[BCY91] were based on specific number theoretic assumptions. The work of Bel-
lare, Jakobson, and Yung constructed computational zero knowledge arguments
in four messages from one-way functions; however, their construction in fact uses
a four message witness indistinguishable argument of knowledge in a generic
manner. Using two-message statistically hiding commitments [DPP93,HM96],
such arguments can be obtained from collision resistant hashing.

The Round Complexity of Zero Knowledge Proofs. This paper focuses
on the notion of (statistical zero knowledge) arguments. The round complexity
of zero-knowledge proofs (which are statistically sound) for NP has also been
studied extensively. Four-message proofs are impossible to achieve via black-
box simulation, except for languages in NP ∩ coAM [Kat12]. Four message
proofs with non-black-box simulation are only known assuming multi-collision-
resistance keyless hash functions [BKP18]. Recent evidence [FGJ18] suggests
that, differently from zero-knowledge arguments, zero-knowledge proofs may be
impossible to achieve in three messages (even with non-black-box simulation).

The Black Box Barrier. Goldreich and Krawczyk show that three mes-
sage computational (let alone, statistical) zero knowledge arguments cannot be
achieved with black box simulation [GK96]. The seminal work of Barak was the
first to show that non-black-box simulation could potentially cross such black box
barriers [Bar01]. Works of Bitansky et al. [BCPR14,BBK+16] obtain three mes-
sage (computational) zero knowledge arguments in case where either the (adver-
sarial) verifier or prover have an a-priori bounded description (and arbitrary
polynomial running time). Following, the work of [BKP18] obtains such argu-
ments also against non-uniform verifiers and provers relying on keyless multi-
collision resistance.

A Stronger Notion of Statistical Zero Knowledge. The literature (e.g.
[HNO+09]) also considers a stronger form of statistical zero knowledge than the
one presented in this introduction where the simulator is not only required to
statistically simulate the view of efficient verifiers, but also of inefficient ones,
given oracle access to the verifier. We note that this notion is outright impossible
in three messages where black box simulation is impossible [GK96]. Our four
message protocol, in fact, does achieve this stronger notion.

2 Preliminaries

We rely on the standard computational concepts and notation:

– A PPT is a probabilistic polynomial-time algorithm.
– A uniform algorithm is T -time if it runs in time polynomial in T . (T may be

super-polynomial in its input size.)

On Round Optimal Statistical Zero Knowledge Arguments 135

– We follow the standard habit of modeling any efficient adversary strategy as
a family of polynomial-size circuits. For an adversary A corresponding to a
family of polynomial-size circuits {Aλ}λ∈N

, we often omit the subscript λ,
when it is clear from the context.

– We say that a function f : N → R is negligible if for all constants c > 0, there
exists N ∈ N such that for all n > N , f(n) < n−c. We sometimes denote
negligible functions by negl.

– We say that a function f : N → R is noticeable if there exists a constant c > 0
and N ∈ N such that for all n > N , f(n) ≥ n−c.

– We denote statistical distance by SD.
– For two random variables X,Y and ε ∈ [0, 1], we write X ≈ε Y to denote the

fact that SD(X,Y) ≤ ε.
– For two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we say that X and Y are

statistically indistinguishable if there exists a negligible μ(·), such that for all
λ, Xλ ≈μ(λ) Yλ. We denote this by X ≈s Y.

– For a string X of length n, and a subset I ⊆ [n], we denote by X|I its
restriction to the entries in I.

2.1 Statistical Zero-Knowledge Arguments

In what follows, we denote by 〈P � V〉 a protocol between two parties P and V.
For input w for P, and common input x, we denote by 〈P(w) � V〉(x) the output
of V in the protocol. For honest verifiers this output will be a single bit indicating
acceptance (or rejection), whereas malicious verifiers output their entire view.
Throughout, we assume that honest parties in all protocols are uniform PPT
algorithms.

Definition 2.1. A protocol 〈P � V〉 for an NP relation R(x,w) is a statistical
zero-knowledge argument if it satisfies:

Completeness: For any λ ∈ N, x ∈ L(R) ∩ {0, 1}λ, w ∈ R(x):

Pr [〈P(w) � V〉(x) = 1] = 1.

Computational Soundness: For every polynomial-size circuit family of
provers P∗ = {P∗

λ}λ, there exists a negligible function μ, such that for any
x ∈ {0, 1}λ \ L(R),

Pr [〈P∗
λ � V〉(x) = 1] ≤ μ(λ).

Statistical Zero-Knowledge: There exists a PPT simulator S such that for
every polynomial-size circuit family V∗ = {V∗

λ}λ:

{〈P(w) � V∗
λ〉(x)}(x,w)∈R

|x|=λ

≈s {S(x,V∗
λ)}(x,w)∈R

|x|=λ

.

136 N. Bitansky and O. Paneth

2.2 Weakly Binding Commitments and Multi-collision Resistant
Hash Functions

We define weakly-binding statistically-hiding commitments [BKP18]. The defi-
nition addresses both the setting of keyed hash functions as well as keyless ones.

Syntax: A commitment scheme is associated with an input length function �(λ)
and polynomial-time algorithms SHC = (SHC.Gen,SHC.Com) with the following
syntax:

– pk ← SHC.Gen(1λ): a probabilistic algorithm that takes the security param-
eter 1λ and outputs a key pk ∈ {0, 1}λ. In the keyless setting, this algorithm
is deterministic and outputs a fixed key pk ≡ 1λ.

– cmt ← SHC.Com(X; pk): a probabilistic algorithm that takes the key pk and
an input X ∈ {0, 1}�(λ) and outputs a commitment cmt. When we want to
be explicit about the randomness r used by the algorithm, we may write
SHC.Com(X; pk, r).

Definition 2.2 (Weakly-Binding Statistically-Hiding Commitments).
For a polynomial �(·), a weakly-binding statistically-hiding commitment SHC =
(SHC.Gen, SHC.Com), for messages of length �, satisfies:

Statistical Hiding: For any key and any two plaintexts, the corresponding
commitments are statistically close:

{SHC.Com(X; pk)}λ∈N,pk∈{0,1}λ,

X,X′∈{0,1}�(λ)

≈2−λ {SHC.Com(X ′; pk)}λ∈N,pk∈{0,1}λ,

X,X′∈{0,1}�(λ)

.

Weak Binding: For any non-uniform polynomial-size probabilistic A =
{A1

λ,A2
λ

}

λ
there exists a polynomial K(·) and a negligible μ(·), such that for

all λ ∈ N,

Pr
pk←SHC.Gen(1λ)

(cmt,st)←A1
λ(pk)

⎡

⎣

∃X of size K(λ) :

Pr(X,r)←A2
λ(st)

[

cmt = SHC.Com(X; pk, r)
X /∈ X

]

≤ μ(λ)

⎤

⎦ ≥ 1 − μ(λ).

Multi-collision Resistance. We also define multi-collision resistant hash func-
tions [BKP18], which are similar to weakly binding commitments, only that the
hiding requirement is replaced with the requirement that they shrink their input
(accordingly, they are also deterministic).

Syntax: A hashing scheme is associated with an input length function �(λ) and
polynomial-time algorithms H = (H.Gen,H.Hash) with the following syntax:

– pk ← H.Gen(1λ): a probabilistic algorithm that takes the security parameter
1λ and outputs a key pk ∈ {0, 1}λ. In the keyless setting, this algorithm is
deterministic and outputs a fixed key pk ≡ 1λ.

– Y ← H.Hash(X; pk): a deterministic algorithm that takes the key pk and an
input X ∈ {0, 1}�(λ) and outputs a hash value Y .

On Round Optimal Statistical Zero Knowledge Arguments 137

Definition 2.3 (Multi-collision Resistant Hash). For a polynomial �(·), a
multi-collision resistant hash H = (H.Gen,H.Hash), for messages of length �,
satisfies:

Compression: �(λ) > λ and |H.Hash(X)| = λ for all λ ∈ N, key pk ∈ {0, 1}λ,
and X ∈ {0, 1}�(λ). If � = λ · (1 + Ω(1)) we say that H is linearly compressing
and if � = λ1+Ω(1) we say that H is polynomially compressing.

Multi-collision Resistance: For any non-uniform polynomial-size probabilis-
tic A =

{A1
λ,A2

λ

}

λ
there exists a polynomial K and a negligible μ(·), such that

for all λ ∈ N,

Pr
pk←SHC.Gen(1λ)

(Y,st)←A1
λ(pk)

[∃X of size K(λ) :
PrX←A2

λ(st)
[Y = H.Hash(X; pk) ∧ X /∈ X] ≤ μ(λ)

]

≥ 1 − μ(λ).

We also consider a generalized notion of T -secure multi-collision resistant
hashing that allows addressing attackers that run in super-polynomial time. The
constructions in this paper all rely on the above polynomial notion. Quasipoly-
nomial security is used in [BKP18] to construct weak memory delegation as
defined in Sect. 2.3. We state the definition here for completeness.

T -Secure Multi-collision Resistance: For any non-uniform polynomial-
size probabilistic A =

{A1
λ

}

and any uniform T -time A2 there exists a poly-
nomial K and a negligible μ(·), such that for all λ ∈ N,

Pr
pk←SHC.Gen(1λ)

(Y,st)←A1
λ(pk)

[∃X of size K(λ) :
PrX←A2(st) [Y = H.Hash(X; pk) ∧ X /∈ X] ≤ μ(λ)

]

≥ 1 − μ(λ).

Remark 2.1. Note that for polynomial T (λ) = poly(λ), T -security coincides with
(plain) security. Indeed, the non-uniformity of A2 can always be pushed to A1

who passes a state to A2.

In [BKP18], it is shown that multi-collision resistant hashing implies weakly
binding string commitments.

Theorem 2.1 ([BKP18]). Assuming a multi-collision-resistant keyless hash
that is either:

– polynomially compressing
– or, linearly compressing and quasipoly(λ)-secure

there exist, for every polynomial L(·), a weakly-binding statistically-hiding com-
mitment and multi-collision-resistant keyless hash, both for messages of length L.

2.3 Weak Memory Delegation

The notion of weak memory delegation was defined in [BKP18] as a relaxation
of memory delegation [CKLR11,KP16]. In a two-message memory delegation

138 N. Bitansky and O. Paneth

scheme, an untrusted server provides the client a short commitment or digest
dig of a large memory D. The client can then delegate any arbitrary deterministic
computation M to be executed over the memory. The server responds with the
computation’s output y, as well as a short proof of correctness that can be verified
by the client in time that is independent of that of the delegated computation
and the size of the memory.

In the definition of memory delegation in [KP16], the soundness requirement
says that having provided the digest dig, a cheating prover should not be able
to prove that a given computation M results in more than a single outcome y.
In weak memory delegation, the prover should not be able to prove consistency
with too many outcomes y.

Syntax: A two-message memory delegation scheme is associated with
polynomial-time algorithms

(MD.Mem,MD.Query,MD.Prove,MD.Ver) with the following syntax:

– dig ← MD.Mem(1λ,D): a deterministic polynomial-time algorithm that given
the security parameter 1λ and memory D, outputs a digest dig ∈ {0, 1}λ of
the memory.

– (q, vst) ← MD.Query(1λ): a randomized polynomial-time algorithm that given
the security parameter 1λ, outputs a query q and a secret state vst.

– π ← MD.Prove(1λ,D, (M, 1t, y), q): a deterministic algorithm that takes
the security parameter 1λ, a memory string D, a (deterministic) Turing
machine M , an output string y, and time bound 1t such that |D| ≤ t ≤ 2λ

and M(D) outputs y within t steps. It outputs a proof π.
– b ← MD.Ver(1λ, dig, (M, t, y), vst, π): a deterministic polynomial time oracle

algorithm that takes the security parameter 1λ, a digest dig, a (deterministic)
Turing machine M , a time bound t, an output string y, a secret state vst and
a proof π. It outputs an acceptance bit b.

Definition 2.4 (Entropic Distribution Ensemble). We say that an effi-
ciently samplable distribution ensemble {Yλ}λ∈N

is entropic if

H∞(Yλ) := − log max
y∈supp(Yλ)

Pr[Yλ = y] = Ω(λ).

Definition 2.5 (Weak Memory Delegation). A two-message delegation
scheme
MD = (MD.Mem,MD.Query,MD.Prove,MD.Ver) satisfies:

Efficiency: There exists a polynomial p such that for every λ ∈ N and D such
that |D| ≤ 2λ, MD.Mem(1λ,D) outputs a digest dig of length at most p(λ).

Correctness: For every security parameter λ ∈ N, every (M, t, y) ∈ {0, 1}λ,
and every D such that M(D) outputs y within t steps, and |D| ≤ t ≤ 2λ:

Pr

⎡
⎣MD.Ver(1λ, dig, (M, t, y), vst, π) = 1

∣∣∣∣∣∣
dig ← MD.Mem(1λ, D)

(q, vst) ← MD.Query(1λ)

π ← MD.Prove(1λ, D, (M, 1t, y), q)

⎤
⎦ = 1.

On Round Optimal Statistical Zero Knowledge Arguments 139

Weak Soundness for Time-T: For every non-uniform polynomial-size proba-
bilistic (A1,A2), there exists a negligible function μ, such that for every ensemble
of samplable entropic distributions {Yλ}λ∈N

, λ ∈ N and t ≤ T (λ):

Pr

⎡

⎢

⎢

⎣

MD.Ver(1λ, dig, (M, t, y), vst, π) = 1

∣

∣

∣

∣

∣

∣

∣

∣

(dig,M, st) ← A1(1λ)
(q, vst) ← MD.Query(1λ)
y ← Yλ

π ← A2(q, y; st)

⎤

⎥

⎥

⎦

≤ μ(λ).

Theorem 2.2 ([BKP18]). Assuming a linearly compressing quasipoly(λ)-
secure multi-collision-resistant keyless hash and quasipoly(λ)-secure fully-
homomorphic encryption, there exists a two-message memory-delegation scheme
with weak soundness for time-quasipoly(λ).

2.4 Function Hiding Secure Function Evaluation

We define two-message secure function evaluation protocols with statistical func-
tion hiding.

Syntax: Let C = {Cλ}λ be a family of circuits. A two-message secure func-
tion evaluation protocol for C is associated with polynomial-time algorithms
(SFE.Enc, SFE.Eval, SFE.Dec) with the following syntax:

– (sk, ct) ← SFE.Enc(1λ, x): a probabilistic algorithm that takes a security
parameter 1λ and a string x ∈ {0, 1}∗ and outputs a secret key sk and a
ciphertext ct.

– ̂ct ← SFE.Eval(C, ct): a probabilistic algorithm that takes a circuit C ∈ C and
a ciphertext ct and outputs an evaluated ciphertext ̂ct.

– x̂ ← SFE.Dec(̂ct; sk): a deterministic algorithm that takes a ciphertext ̂ct and
the secret key sk and outputs a string x̂.

Definition 2.6. A two-message secure function evaluation protocol (SFE.Enc,
SFE.Eval, SFE.Dec) for a family of circuits C = {Cλ}λ satisfies:

– Perfect Correctness: For any λ ∈ N, x ∈ {0, 1}∗ and circuit C ∈ Cλ

Pr
[

SFE.Dec(̂ct; sk) = C(x)
∣

∣

∣

∣

(sk, ct) ← SFE.Enc(x; 1λ)
̂ct ← SFE.Eval(C, ct)

]

= 1.

– Semantic Security: For any polynomial �(λ) and non-uniform polynomial-
size probabilistic A = {Aλ}λ, there exists a negligible function ν such that
every λ ∈ N, and pair of messages x0, x1 ∈ {0, 1}�(λ):

Pr
[

Aλ(ct) = b

∣

∣

∣

∣

b ← {0, 1}
(sk, ct) ← SFE.Enc(xb; 1λ)

]

≤ 1
2

+ μ(λ).

– Statistical Circuit Privacy: There exist unbounded algorithms Sim,Ext
such that:

{SFE.Eval(C, ct∗)} λ∈N,C∈Cλ

ct∗∈{0,1}poly(λ)
≈s

{

Sim(C(Ext(ct∗; 1λ)); 1λ)
}

λ∈N,C∈Cλ

ct∗∈{0,1}poly(λ)
.

Such secure function evaluation schemes are known based on LWE [OPP14,
BV11,BD18].

140 N. Bitansky and O. Paneth

2.5 Shamir Secret Sharing

We define Shamir secret sharing schemes.

Syntax: A Shamir secret sharing scheme is associated with functions δ(λ), n(λ),
a field Fλ and a probabilistic polynomial-time encoding algorithm ̂S ←
SSS.Enc(S; 1λ) that takes a secret S ∈ F and a parameter 1λ and outputs an
encoding ̂S ∈ F

n.

Definition 2.7 (Shamir Secret Sharing). For polynomials δ(·), n(·) A
Shamir secret sharing encoding SSS.Enc satisfies:

Perfect Hiding: Any δ coordinates in the encoding are perfectly hiding:
{

SSS.Enc(S0; 1λ)|I
}

λ∈N,
S0,S1∈F,

I∈([n]
δ)

≡ {

SSS.Enc(S1; 1λ)|I
}

λ∈N,
S0,S1∈F,

I∈([n]
δ)

,

where
(

[n]
δ

)

denotes the collection of subsets I ⊆ [n] of size δ.

Distance: For any λ ∈ N and distinct secrets S0, S1 ∈ F,

Δ(SSS.Enc(S0; 1λ),SSS.Enc(S1; 1λ)) ≥ 1 − δ/n,

where Δ denotes the relative hamming distance over F
n.

Shamir secret sharing schemes are known to exist unconditionally [Sha79].

3 Weakly-Binding Commitments with Subset Opening

In this section, we define and construct weakly-binding statistically hiding com-
mitments with subset opening.

3.1 Definition

The definition addresses both the setting of keyed hash functions as well as
keyless ones.

Syntax: A commitment with subset opening is associated with a length function
L(λ) and polynomial-time algorithms SHC = (CSO.Gen,CSO.Com, CSO.Chal,
CSO.Open, CSO.Ver) with the following syntax:

– pk ← CSO.Gen(1λ): a probabilistic algorithm that takes the security param-
eter 1λ and outputs a key pk ∈ {0, 1}λ. In the keyless setting, this algorithm
is deterministic and outputs a fixed key pk ≡ 1λ.

– (cmt, st) ← CSO.Com(X; pk): a probabilistic algorithm that takes the key
pk and a string X ∈ {0, 1}L(λ) and outputs a commitment cmt and private
state st.

– C ← CSO.Chal(pk): a probabilistic algorithm that takes the key pk and out-
puts a challenge C.

On Round Optimal Statistical Zero Knowledge Arguments 141

– d ← CSO.Open(I, C, st): a deterministic algorithm that takes an index set I,
a challenge C and private state st and outputs a decommitment d.

– b ← CSO.Ver(cmt, α, I, C, d): a deterministic algorithm that takes a commit-
ment cmt, an index set I, an assignment α : I → {0, 1}, and decommitment
d and outputs an acceptance bit b.

Definition 3.1 (Weakly-Binding Statistically-Hiding Commitments
with Subset Opening). For a polynomial L(·), a weakly-binding statistically-
hiding commitment with subset opening CSO = (CSO.Gen,CSO.Com, CSO.Chal,
CSO.Open, CSO.Ver), for strings of length L, satisfies:

Subset Statistical Hiding: There exists a negligible μ(·) such that for all λ ∈
N, no unbounded adversary A wins the following game with probability greater
than 1/2 + μ(λ):

1. A submits to a challenger pk ∈ {0, 1}λ, X0,X1 ∈ {0, 1}L(λ).
2. The challenger samples a random b ← {0, 1} and (cmtb, stb) ←

CSO.Com(Xb; pk), and gives cmtb to A.
3. A submits a commitment challenge C.
4. The challenger computes d = CSO.Open(I, C, st) where I = {i ∈ [L] : X0[i] =

X1[i]} is the set of indices on which the strings X0,X1 agree.
5. A wins if it correctly guesses the bit b.

Weak Binding: For any non-uniform polynomial-size probabilistic A =
{A1

λ,A2
λ

}

λ
there exists a polynomial K(·) and a negligible μ(·), such that for

all λ ∈ N,

Prpk←CSO.Gen(1λ)

(cmt,st)←A1
λ(pk)

⎡

⎢

⎣

∃X of size K(λ) :

PrC←CSO.Chal(1λ)

(α,I,d)←A2
λ(C;st)

[

CSO.Ver(cmt, α, I, C, d) = 1
α /∈ XI

]

≤ μ(λ)

⎤

⎥

⎦

≥ 1 − μ(λ),

where XI denotes the set of assignments X|I : I → {0, 1} to indices in I induced
by every X ∈ X.

Succinct Commitment: |cmt| = λ for any pk ∈ {0, 1}λ and any cmt in the
support of CSO.Com(·; pk).

In the remainder of this section we construct weakly-binding statistically
hiding commitments with subset opening.

Theorem 3.1. Assuming a polynomially compressing multi-collision-resistant
keyless hash there exists a weakly-binding statistically-hiding commitment with
subset opening for strings of length L for any polynomial L.

142 N. Bitansky and O. Paneth

3.2 Construction

We provide a construction of weakly-binding statistically-hiding commitments
with subset opening from (plain) weakly-binding statistically-hiding commit-
ments and multi-collision resistant hash functions.

Ingredients

– SSS.Enc a Shamir secret sharing encoding with parameters δ(λ) =
√

λ, n(λ) =
λ, and field F = {Fλ}λ.

– SHC a weakly binding statistically hiding commitment for strings of length
� = |Fλ| · max(L, n). We denote the size of commitment in this scheme by
t(λ).

– H a multi-collision resistant hash for strings of length �′ = (L + n) · t.

The Scheme CSO

– CSO.Gen(1λ): Runs the key generator for the underlying commitment pk1 ←
CSO.Gen(1λ) and hash pk2 ← H.Gen(1λ), and outputs pk = (pk1, pk2).

– CSO.Com(X; pk):
• For i ∈ [L], compute an encoding ̂Xi ← SSS.Enc(Xi; 1λ).
• Consider the matrix ̂X =

(

̂Xi,j

)

i∈[L],j∈[n]
.

• Compute commitments to the rows rowcmti ← SHC.Com(̂Xi,1, . . . ,
̂Xi,n; pk1).

• Compute commitments to the columns colcmtj ← SHC.Com(̂X1,j , . . . ,
̂XL,j ; pk1).

• Compute a hash of all of the above commitments Y ← H.Hash((rowcmti)i,
(colcmtj)j ; pk2) and output cmt = Y as the commitment.

• Output as the state st all the commitments (rowcmti)i, (colcmtj)j , all the
randomness (̂ri)i, (rri)i, (rcj)j used to generate the encodings ̂Xi and com-
mitments rowcmti, colcmtj , respectively, and the encoding ̂Xi themselves.

– CSO.Chal(pk1): sample δ random column indices j1, . . . , jδ ← [n] and output
C = (ji)i∈[δ].

– CSO.Open(I, C, st): output as the decommitment information d all the com-
mitments (rowcmti)i, (colcmtj)j , the randomness (̂ri, rri)i∈I used to compute
the encodings and commitments corresponding to all rows i ∈ I, the random-
ness (rcj)j∈C and the columns

(

̂X1,j , . . . , ̂XL,j

)

j∈C
themselves, correspond-

ing to all challenge columns j ∈ C.
– CSO.Ver(cmt, α, I, C, d):

• Parse d as (rowcmti)i, (colcmtj)j , (rri, r̂i)i∈I , (rcj , ̂X1,j , . . . , ̂XL,j)j∈C .
• Verify that cmt = H.Hash(((rowcmti)i, (colcmtj)j); pk2).
• For every i ∈ I, compute α̂i := SSS.Enc(α(i); r̂i) and verify that

rowcmti = SHC.Com(α̂i; pk1, rri).
• For every j ∈ C, verify that colcmtj = SHC.Com(̂X1,j , . . . , ̂XL,j ; pk1, rcj)

and that for every i ∈ I, αi,j = ̂Xi,j .

On Round Optimal Statistical Zero Knowledge Arguments 143

3.3 Analysis

We now analyze the construction. We first prove subset statistical hiding and
then prove weak binding.

Proposition 3.1. The construction is subset statistically hiding.

Proof. We first claim that statistical hiding holds for any fixed challenge set C.

Claim 3.2. Fix any pk and C ∈ [n]δ, and set of indices I ⊆ [n]. There exists a
simulator S such that for any X ∈ {0, 1}L,

cmt, d ≈2−Ω(λ) S(X|I),
where (cmt, st) ← CSO.Com(X; pk) and d ← CSO.Open(I, C, st).

Proof. We describe how the simulator samples the commitments
rowcmti, colcmtj :

– For every i ∈ I, compute an encoding ̂Xi of Xi, and sample a commitment
rowcmti to this encoding.

– For every i /∈ I, sample a commitment rowcmti to the all-zero string.
Also sample an encoding ̂Yi of for an arbitrary bit Y , and store ̂Yi.

– For every j ∈ C, sample a commitment colcmtj to the j-th column of the
matrix whose rows are given by the encodings ̂Xi for i ∈ I and by the encod-
ings ̂Yi for i /∈ I.

– For every j /∈ C sample a commitment colcmtj to the all-zero string.

We now argue that the commitments rowcmti, colcmtj produced above along
with an opening with respect to I, C are 2−Ω(λ)-close to their distribution in a
commitment to X.

Consider a hybrid distribution cmt∗, d∗ where we change the distribution
of commitments to X as follows. For all unopened rows i /∈ I, we change the
commitment rowcmti from a commitment to ̂Xi to a commitment to an all-zero
string, and for all unopened columns j /∈ C, we change the commitment colcmtj
from a commitment to the j-column of the matrix (̂Xi,j)i,j to a commitment to
the all zero string.

Then by the statistical hiding of the underlying commitment SHC,

cmt, d ≈2−λ·(L+n) cmt∗, d∗,

where 2−λ(L + n) ≤ 2−Ω(λ).
Next, note that the only difference between the hybrid distribution cmt∗, d∗

and the simulated distribution S(X|I) is in the commitments to the columns
j ∈ C. In the first, the plaintexts are the columns of the matrix

(

̂Xij

)

i∈[L],j∈C
,

whereas in the second its the concatenation of
(

̂Xij

)

i∈I,j∈C
and

(

̂Yij

)

i∈[L]\I,j∈C
.

However, since |C| ≤ δ, the perfect hiding of the Shamir secret sharing implies
that these two matrices are identically distributed.

144 N. Bitansky and O. Paneth

Now fix any key pk and any two X,X ′ ∈ {0, 1}L, and let I ⊆ [L] be the
set of indices on they agree. Then by Claim 3.2, for any fixed challenge C, the
distributions cmt, d and cmt′, d′ corresponding to X and X ′, respectively, are
2−Ω(λ)-close.

To complete the proof, we now show that they remain close also when C is
chosen adaptively.

Claim 3.3. For any (unbounded) adversary A,

cmt, C, d ≈2Ω(λ) cmt′, C ′, d′,

where (cmt, st) ← CSO.Com(X; pk), C ← A(cmt) and d ← CSO.Open(I, C, st),
and cmt′, C ′, d′ is sampled similarly with respect to X ′.

Proof.

SD((cmt, C, d),(cmt′, C′, d′)) =
∑

α,β,γ

| Pr [(cmt, C, d) = (α, β, γ)] − Pr
[
(cmt′, C′, d′) = (α, β, γ)

] | ≤
∑

β∈[n]δ

2−Ω(λ) = λ
√

λ · 2−Ω(λ) ≤ 2−Ω(λ),

where the first inequality follows from Claim 3.2.
This completes the proof of Proposition 3.1.

Proposition 3.2. The construction is weakly binding.

Proof. Fix a polynomial-size adversary A =
{A1

λ,A2
λ

}

λ
against the commit-

ment. The proof is divided to two main claims. We first prove a (computa-
tional) claim attesting that with overwhelming probability A’s commitment fixes
a polynomial-size set of strings S, such that any valid opening of the underlying
weakly-binding commitment is to a string from S. This claim relies on the weak
binding of the underlying commitment and the multi-collision resistance of the
hash function. Then we prove an information-theoretic claim that shows that
provided the restriction to the set S there also exists a polynomial-size global
set of strings X, such that any opening of some subset must be consistent with
one of the strings in X.
The following claim asserts that a commitment from the adversary A, fixes a
polynomial-size set of strings S ⊆ {0, 1}�, such that the adversary can only open
any commitments rowcmti, colcmtj to a string from S.

Claim 3.4. There exist a polynomial K(·) and a negligible function μ(·) such
that for all λ ∈ N, except with probability μ(λ) over pk ← CSO.Gen(1λ) and
(cmt, st) ← A1

λ(pk) there exists a set S ⊆ {0, 1}� of size K(λ) such that

Pr
C←CSO.Chal(1λ)

(α,I,d)←A2
λ(C;st)

[

CSO.Ver(cmt, α, I, C, d) = 1 ∧ ̂X(α, I, d) �⊆ S
]

≤ μ(λ),

where ̂X(α, I, d) ⊆ {0, 1}� is the set of rows and columns of the matrix (̂X)ij,
which A opens in its decommitment.

On Round Optimal Statistical Zero Knowledge Arguments 145

Proof. Assume toward contradiction that for any polynomial K, there exists a
noticeable function ε, such that for infinitely many λ ∈ N, with probability ε(λ)
over pk ← CSO.Gen(1λ) and (cmt, st) ← A1

λ(pk) for any set S ⊆ {0, 1}� of size
K(λ)

Pr
C←CSO.Chal(1λ)

(α,I,d)←A2
λ(C;st)

[

CSO.Ver(cmt, α, I, C, d) = 1 ∧ ̂X(α, I, d) �⊆ S
]

≥ ε(λ).

We consider two complementary cases:

1. For infinitely many λ, except with probability ε/2 over pk, cmt, st there exists
a set S′ ⊆ {0, 1}�′

of size
√

K such that except with probability ε/2, A never
opens the hash value cmt to S = ((rowcmti)i , (colcmtj)j) /∈ S′.

2. For infinitely many λ, with probability at least ε/2 over pk, cmt, st for any set
S′ ⊆ {0, 1}�′

of size
√

K, with probability ε/2, A opens the hash value cmt
to S = ((rowcmti)i , (colcmtj)j) /∈ S′.

First, note that the second case implies that A breaks the multi-collision resis-
tance of the underlying hash H. Thus, we can assume that the first case holds.
It follows that

Claim 3.5. For infinitely many λ, with probability at least ε/2 over pk, cmt, st,
there exists a set S′ ⊆ {0, 1}�′

of size
√

K as required by the first condition, but
for any set S of size K and with probability ε/2 over the decommitment phase
̂X(α, I, d) �⊆ S whereas the opened S = ((rowcmti)i , (colcmtj)j) ∈ S′.

Proof. This follows directly from our assumption toward contradiction and the
fact that the first case above holds.

From hereon fix pk, cmt, st such that Claim 3.5 holds. We next argue that

Claim 3.6. There exists S′ = ((rowcmti)i , (colcmtj)j) ∈ S′ and cmt′ ∈ S′ such
that for any set X ⊆ {0, 1}� of size

√
K/(L+n), with probability ε/2(L+n)

√
K

over the decommitment phase cmt is opened to S′, but cmt′ is opened to X /∈ X.

Proof. Otherwise, for each S′ ∈ S′ and cmt′ ∈ S′, we can choose X(S′, cmt′)
such that the above does not hold, and obtain

S =
⋃

S′∈S,cmt′∈S′
X(S′, cmt′)

of size K, which violates Claim 3.5.

We now obtain an adversary B =
{B1

λ,B2
λ

}

λ
that breaks the weak bind-

ing of the commitment SHC. B1
λ(pk1) first samples pk2 ← H.Gen(1λ), sets

pk = (pk1, pk2), runs A1
λ(pk) and obtains a state st, it then simulates a random

challenge C ← C(1λ) and runs A2
λ(C; st. It then takes the set of commitments

S′ = (rowcmti)i∈L , (colcmtj)j∈[n] and outputs a random commitment cmt′ ∈ S′

along with the state st. B2
λ(st) samples a new random challenge C ′ and runs

A2
λ(C ′; st), and outputs whatever opening A2

λ outputs for cmt′, or ⊥ if there is
no such opening.

146 N. Bitansky and O. Paneth

Claim 3.7. B breaks weak binding.

Proof. By construction and Claims 3.5 and 3.6, with probability at least ε
2 ·

ε
2(L+n)

√
K

over the commitment phase of B1
λ, for any set X ⊆ {0, 1}� of size√

K/(L + n), B2
λ opens that commitment to a value X /∈ X with probability at

least ε/2(L + n)
√

K.

This complete the proof of Claim 3.4.

We now proceed to prove the binding property of the scheme. The following
claim asserts that whenever all strings ̂X are consistent with some set S, there
exists a polynomial-size set of strings X ⊆ {0, 1}L such that all openings are
consistent with X, which will conclude the proof.

Claim 3.8. Let K be the polynomial given by Claim 3.4 and let τ be a constant
such that τ > 2 logλ(2K2). Fix λ, pk, cmt, st such that Claim 3.4 holds with
respect to a set S. Then there exists X ⊆ {0, 1}L of size K ′ = (nK)τ such that

Pr
C←CSO.Chal(1λ)

(α,I,d)←A2
λ(C;st)

[CSO.Ver(cmt, α, I, C, d) = 1 ∧ α /∈ X|I] ≤ μ(λ).

Proof. We first argue that random τ locations fix at most a single encoding in S.

Claim 3.9. Let T ⊆ [n] be a set of τ indices chosen independently at random,
then

Pr
T

[

∃̂S0, ̂S1 ∈ S such that ̂S0|T = ̂S1|T
∣

∣

∣

∣

̂Sb ∈ SSS.Enc(Sb)
S0 �= S1

]

≤ 1/2.

We call any set T as above fixing.

Proof. The proof follows directly from the distance of Shamir encodings, the
bound K on the size of S, and the definition of τ . Specifically the above can be
bounded by

|S|2
(

δ

n

)τ

≤ K2

(√
λ

λ

)2 logλ(2K2)

=
1
2
.

Now, let T be any fixing set and consider any set of τ columns

Q = {(Q1,j , . . . , QL,j) : j ∈ [T]} .

Then, T,Q fix a unique string X(T,Q) ∈ {0, 1,⊥}L defined as follows:

– If T is not fixing, set X(T,Q) = ⊥. Otherwise, proceed to the following.
– For any i ∈ [L], if for some b ∈ {0, 1}, there exists a Shamir encoding ̂Xi ∈

SSS.Enc(b; 1λ) such that ̂Xi ∈ S and ̂Xi,j = Qi,j for all j ∈ T , set Xi(T,Q) =
b. Otherwise, set Xi(T,Q) = ⊥.
(Since T is fixing, there exists at most a single b ∈ {0, 1} that satisfies the
condition.)

On Round Optimal Statistical Zero Knowledge Arguments 147

We now define the set X as follows:

X := {X(T,Q) | T ∈ [n]τ , Q ∈ Sτ} .

First, note that X is of size at most (n · |S|)τ = (nK)τ , which is polynomial in
λ. We now argue that

Pr
C←CSO.Chal(1λ)

(α,I,d)←A2
λ(C;st)

[CSO.Ver(cmt, α, I, C, d) = 1 ∧ α /∈ X|I] ≤ μ(λ).

Recall that C ⊆ [n] consists of λ indices chosen independently at random.
In particular, by Claim 3.9, C contains a fixing set T except with probability
(1/2)δ/τ = 2− ˜Ω(

√
λ). Recall that except with negligible probability all row and

column commitments opened by A are consistent with some string in S. From
hereon we assume that the latter occurs and that C contains a fixing T .

Then when CSO.Ver(cmt, α, I, C, d) = 1, A opens the columns in T to some
Q = (Q1,j , . . . , QL,j)j∈[T] ∈ Sτ . Also the assignment α : I → {0, 1} is such that
for every i ∈ I, there exists an encoding α̂i ∈ SSS.Enc(αi; 1λ) ∈ S and α̂ is
consistent with Q. By definition, it follows that for every i ∈ I, αi = Xi(T,Q);
namely, α ∈ X|I as required.

This completes the proof of Claim 3.8.
This completes the proof of Proposition 3.2.

4 Offline-Online Statistically WI Arguments
of Knowledge

In this section, we define and construct offline-online statistically witness indis-
tinguishable arguments of knowledge.

4.1 Definition

In offline-online statistically WI arguments of knowledge, the protocol 〈P � V〉
can be divided to:

– an offline protocol 〈OffP � OffV〉(1λ, 1�), where the parties take as common
input the security parameter 1λ and an input size 1� and output each a state
stP, stV.

– an online protocol 〈OnP(stP, w) � OnV(stV)〉(x), where the parties, in addi-
tion to their previous state, take as common input an instance x ∈ L∩{0, 1}�

and the prover obtains also obtain as input a witness w ∈ RL(x).

We now formally define the properties that such systems are required to satisfy.

Definition 4.1 (Offline-Online SWIAOK). 〈P � V〉 is an offline-online
statistically witness indistinguishable argument of knowledge for L if it satisfies:

148 N. Bitansky and O. Paneth

Completeness: For any �, λ ∈ N, x ∈ L ∩ {0, 1}�, and w ∈ RL(x):

Pr
[〈OffP � OffV〉(1λ, 1�) = (stP, stV)

〈OnP(stP, w) � OnV(stV)〉(x) = 1

]

= 1.

Adaptive Statistical Witness Indistinguishability: For any polynomial �(·)
and unbounded verifier V∗, there exists a negligible function μ(·) such that for
all λ ∈ N:

Pr [〈OnP(stP, wb) � OnV∗(stV)〉(x) = b |
〈OffP � OffV∗〉(1λ, 1�(λ)) = (stP, (stV, x, w0, w1))
b ← {0, 1}

]

≤ 1
2

+ μ(λ),

where x ∈ L ∩ {0, 1}�(λ) and w0, w1 ∈ RL(x).

Adaptive Proof of Knowledge: There is a uniform PPT extractor E such
that for any polynomial �(·) and any non-uniform polynomial-size prover P∗ =
{P∗

λ}λ∈N
there is a polynomial K(·) and a negligible μ(·) such that for all λ ∈ N:

if
Pr [〈OnP∗

λ(stP) � OnV(stV)〉(x) = 1 |
〈OffP∗ � OffV〉(1λ, 1�(λ)) = ((stP, x), stV)

]

= ε,

then

Pr

⎡

⎣

〈OnP∗
λ(stP) � OnV(stV)〉(x) = 1

w ← EP∗
λ(x, stP, stV)

w ∈ RL(x)

∣

∣

∣

∣

∣

∣

〈OffP∗ � OffV〉(1λ, 1�(λ)) = ((stP, x), stV)
]

≥ poly
(

ε
K(λ)

)

− μ(λ),

where x ∈ {0, 1}�(λ).

Offline Succinctness: All messages sent by OffP in the offline stage are of
length λ (independently of �).

In the remainder of this section we construct offline-online statistically wit-
ness indistinguishable arguments of knowledge.

Theorem 4.1. Assuming a polynomially-compressing multi-collision-resistant
keyless hash there exists an offline-online statistically witness indistinguishable
argument of knowledge for NP with two messages in the offline part and one
message in the online part.

4.2 A Protocol for Hamiltonicity

We now give an offline-online protocol for the NP complete problem of Hamil-
tonicity. The protocol is essentially the Lapidot-Shamir protocol [LS90a] whereas
instead of using standard (binding) commitments, we rely on the notion of
weakly-binding commitments with subset opening from the previous section.

On Round Optimal Statistical Zero Knowledge Arguments 149

Ingredients and Notation

– Let n(·) be a polynomial and let (CSO.Gen,CSO.Com,CSO.Chal,CSO.Open)
be a weakly binding statistically hiding commitment with subset opening for
strings of length n2 · λ.

– A graph G with n nodes will be represented by its n × n adjacency matrix.
Sometimes we may think of G as a string in the natural way.

– Let G,H be two graphs on the same set of nodes [n] and let ϕ : [n] → [n]
be a permutation. We write H ⊆ G to denote the fact that H’s set of edges
is contained in G’s set of edges. We write ϕ(G) = H to denote the fact that
Hϕ(i),ϕ(j) = Gi,j for every i, j ∈ [n].

– A Hamiltonian cycle graph H is a graph that consists of a Hamiltonian cycle
(and no additional edges).

4.3 Analysis

The offline succinctness property follows directly from the succinct commitment
property of the underlying commitment with subset opening. We focus on prov-
ing the argument of knowledge and the statistical witness indistinguishability
properties.

Proposition 4.1. Protocol 1 is an adaptive argument of knowledge.

Proof. Fix a non-uniform polynomial-size prover P∗ = {P∗
λ}λ∈N

such that

Pr
[
〈OnP∗

λ(stP) � OnV(stV)〉(x) = 1
∣∣∣ 〈OffP∗ � OffV〉(1λ, 1�) = ((stP, x), stV)

]
= ε.

We now describe how the witness extractor E(P∗
λ, x, stP, stV) operates. E first

emulates the last prover message corresponding to the state of the offline phase
it is given. It obtains (I,H|I,ϕ). E then rewinds the prover P∗

λ back to the
offline phase, and sends it a fresh random challenge σ′, C ′. It then obtains in
the online phase corresponding (I′,H′|I′ ,ϕ′). E now looks for an i ∈ [λ] such
that σi = antiedges and σ′

i = cycle, and returns the cycle ϕ−1
i (H ′

i). If any of the
above fail, it aborts (Fig. 1).

Claim 4.2. There exists a polynomial K(·) and a negligible μ(·) such that

Pr

⎡

⎣

〈OnP∗
λ(stP) � OnV(stV)〉(x) = 1

w ← E(P∗
λ, x, stP, stV)

w ∈ RL(x)

∣

∣

∣

∣

∣

∣

〈OffP∗ � OffV〉(1λ, 1�(λ)) = ((stP, x), stV)
] ≥ ε3

8K2(λ) − μ(λ).

Proof. First, by an averaging argument with probability at least ε/2 over the
choice of the first two messages in the protocol, namely the key pk and commit-
ment cmt, it holds that with probability at least ε/2 over the rest of the protocol
the prover convinces the verifier of accepting. In addition, by the weak bind-
ing property of the underlying commitment with subset opening, there exists a

150 N. Bitansky and O. Paneth

Fig. 1. A 3-message SWI argument of knowledge for Hamiltonicity.

polynomial K, such that except with negligible probability ν(λ) over the first
two messages, there exists a set X of size at most K, consisting of strings
H ∈ {0, 1}n2×λ, such that except with negligible probability ν(λ), any valid
opening of the commitment by the prover is consistent with some H ∈ X.
Also, note that for two random challenges σ,σ′ there exists some i such that
σi = antiedges and σ′

i = cycle except with probability (3/4)λ.
It follows that with probability at least ε/2 − ν over the choice of the first

two messages, there exists a single string H∗ ∈ X, such that with probability at
least (ε/2K)2 − (3/4)λ, in both executions performed by E :

On Round Optimal Statistical Zero Knowledge Arguments 151

1. The prover convinces the verifier.
2. Both openings H|I and H′|I′ obtained by E are consistent with H.
3. For some i, σi = antiedges and σ′

i = cycle.

Since the verifier accepts in the second execution, Hi is a Hamiltonian cycle
graph. Since the verifier accepts in the first execution, and Hi is a Hamiltonian
cycle, ϕ−1

i (Hi) is a Hamiltonian cycle in G, since all anti-edges in G are mapped
to anti-edges in Hi.

Overall, the extractor succeeds with probability at least ε3/8K2 − λ−ω(1).

Proposition 4.2. Protocol 1 satisfies adaptive statistical witness indistinguisha-
bility.

The proof of witness indistinguishability is similar to that of the original Lapidot-
Shamir protocol [LS90a]. The main difference is that there it is convenient to
first prove WI for a single instance (with a single challenge σ) and then rely on a
generic hybrid argument, whereas in our protocol the commitment with subset
opening correlates the λ instances. The proof accordingly proceeds via a slightly
less generic hybrid argument. The proof the proposition can be found in the full
version of this work.

5 A Three Message Statistical Zero Knowledge Argument

In this section, we construct a three message statistical zero knowledge argument.

Theorem 5.1. Assuming a linearly compressing quasipoly(λ)-secure multi-
collision-resistant keyless hash, a quasipoly(λ)-secure fully-homomorphic
encryption, and a two-message secure function evaluation protocol with statisti-
cal function hiding, there exists a statistical zero knowledge argument for NPwith
three messages.

Ingredients and Notation

– A two-message weak memory delegation scheme (MD.Mem, MD.Query,
MD.Prove, MD.Ver) with weak soundness for time-T for T = quasipoly(λ),
as in Definition 2.5.

– A two-message secure function evaluation protocol (SFE.Enc,SFE.Eval,
SFE.Dec) with statistical function hiding as in Definition 2.6.

– An offline-online statistically witness indistinguishable argument of knowl-
edge 〈P � V〉 where the offline part of the protocol 〈OffP � OffV〉 consists
of two messages and the online part of the protocol 〈OnP � OnV〉 consists of
one message. Such a protocol is defined and constructed in Sect. 4.

– A weakly-binding statistically-hiding keyless commitment SHC.Com as in Def-
inition 2.2.

– For a string x, denote by Mx a Turing machine that given memory D = V∗,
emulates the Turing machine encoded by V∗ on the input x, parses the result
as (u,wi2, q, ̂ctτ), and outputs u.

152 N. Bitansky and O. Paneth

– Denote by Vparam a circuit that has the string param hardcoded and operates
as follows. Given as input a secret state vst for the delegation scheme:

• parse param = (x, q, u, dig, t, π),
• return 1 (“accept”) if either of the following occurs:

∗ the delegation verifier accepts: MD.Ver(1λ, dig, (Mx, t, u), vst, π) = 1,
∗ the query and secret state are inconsistent: (q, vst) �∈ MD.Query(1λ).

(We can assume without loss of generality that the state vst contains
the random coins of MD.Query and, therefore, consistency can be
tested efficiently.)

In words, Vparam, given the secret state vst, first verifies the proof π that
“Mx(D) = (u, · · ·)” where D is the database corresponding to the digest dig.
In addition, it verifies that q is truly consistent with the coins vst.

– Denote by 1 a circuit of the same size as Vparam that always returns 1.

We describe our three-message zero-knowledge protocol in Fig. 2.

Proposition 5.1. Protocol 2 is a statistical zero-knowledge argument.

Proof (Sketch). As explained in the introduction, the protocol is based on the
zero-knowledge protocols in [BBK+16,BKP18]. In particular, Bitansky et al.
[BBK+16] show a three-message computational zero knowledge protocol in the
global hash model, where parties have access to a collision-resistant hash function
sampled during a setup phase. The main differences between our protocol and
theirs is:

– Their two-message memory delegation scheme has full soundness instead of
weak soundness.

– Their secure function evaluation has computational function-hiding instead
of statistical.

– Their offline-online argument of knowledge is computationally witness indis-
tinguishable instead of statistically.

– The non-interactive commitment is perfectly binding and computationally
hiding instead of weakly binding and statistically hiding.

Next we outline the analysis of [BBK+16] and explain how to modify it for
our protocol.

Soundness. Assuming that x /∈ L, in order to pass the witness indistinguishable
argument of knowledge with respect to an evaluated cipher ̂ct that decrypts
to 1, the prover must know a proof π ∈ {0, 1}λ and an opening of cmt to a
digest dig ∈ {0, 1}λ and a time bound t ≤ T (λ) such that Vparam(vst) = 1.
This, by definition, means that (dig, π, t) are such that the delegation verifier
MD.Ver is convinced that the digest dig corresponds to a machine V∗ such that
V∗(wi1, cmt) = (u, . . .).

By the weak binding of cmt, the prover can only open the commitment to
a polynomial number of different digests. Therefore, there must exist one digest
dig for which the prover can convince delegation verifier MD.Ver with high prob-
ability for an output u with high entropy, contradicting the weak soundness of

On Round Optimal Statistical Zero Knowledge Arguments 153

Fig. 2. A three-message statistical ZK argument of knowledge for NP.

the delegation scheme. In order to break the underlying delegation scheme we
also rely on the semantic security of the encryption scheme to hide the secret
verification state vst from the prover.

Statistical Zero Knowledge. To show statistical zero knowledge, we construct
a non-black-box simulator following the simulator of Barak [Bar01]. At high-
level, the simulator uses the code of the (malicious) verifier V∗ as the memory
for the delegation scheme, and completes the witness indistinguishable argument
of knowledge using a witness for the trapdoor statement Ψ2. The witness consists
of (dig, π, t) where dig is the digest corresponding to V∗, t ≈ |V∗| and π is the

154 N. Bitansky and O. Paneth

corresponding delegation proof that V∗(wi1, cmt) = (u, . . .), which is now true
by definition.

By the perfect completeness of the delegation scheme, we know that for
any encrypted secret state vst, given a query q that is consistent with vst, the
delegation verifier MD.Ver will accept the corresponding proof. Thus, the perfect
function hiding of the secure function evaluation (which holds also if the verifier
produces a malformed ciphertext) guarantees that the evaluated ciphertext ̂ct
in the simulated proof is statistically close to that computed in the real proof
where the prover actually evaluates the constant 1 circuit.

Relying also on the statistical witness indistinguishability of the argument of
knowledge and the statistical hiding of cmt we deduce that V∗’s view in the real
proof and the simulated view are statistically close.

References

[AH91] Aiello, W., H̊astad, J.: Statistical zero-knowledge languages can be recog-
nized in two rounds. J. Comput. Syst. Sci. 42(3), 327–345 (1991)

[Bar01] Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd
Annual Symposium on Foundations of Computer Science, FOCS 2001, Las
Vegas, Nevada, USA, 14–17 October 2001, pp. 106–115 (2001)

[BBK+16] Bitansky, N., Brakerski, Z., Kalai, Y.T., Paneth, O., Vaikuntanathan, V.:
3-message zero knowledge against human ignorance. In: Hirt, M., Smith, A.
(eds.) TCC 2016, Part I. LNCS, vol. 9985, pp. 57–83. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53641-4 3

[BCC88] Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)

[BCC+14] Bitansky, N., et al.: The hunting of the SNARK. IACR Cryptology ePrint
Archive, 2014:580 (2014)

[BCPR14] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of
extractable one-way functions. In: Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, 31 May–03 June 2014, pp. 505–514
(2014)

[BCY91] Brassard, G., Crépeau, C., Yung, M.: Constant-round perfect zero-
knowledge computationally convincing protocols. Theoret. Comput. Sci.
84(1), 23–52 (1991)

[BD18] Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT
from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II.
LNCS, vol. 11240, pp. 370–390. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03810-6 14

[BDRV18] Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi-
collision resistant hash functions and their applications. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 133–
161. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 5

[BHKY19] Bitansky, N., Haitner, I., Komargodski, I., Yogev, E.: Distributional colli-
sion resistance beyond one-way functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11478, pp. 667–695. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17659-4 23

https://doi.org/10.1007/978-3-662-53641-4_3
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-319-78375-8_5
https://doi.org/10.1007/978-3-030-17659-4_23

On Round Optimal Statistical Zero Knowledge Arguments 155

[BJY97] Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge argu-
ments based on any one-way function. In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 280–305. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 20

[BKP18] Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm
for keyless hash functions. In: Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, 25–29 June 2018, pp. 671–684 (2018)

[Blu86] Blum, M.: How to prove a theorem so no one else can claim it (1986)
[BOV07] Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography.

SIAM J. Comput. 37(2), 380–400 (2007)
[BP04] Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-

round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-28628-8 17

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October
2011, pp. 97–106 (2011)

[CD09] Canetti, R., Dakdouk, R.R.: Towards a theory of extractable functions.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 595–613. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 35

[CKLR11] Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 9

[DN07] Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6),
1513–1543 (2007)

[DPP93] Damg̊ard, I.B., Pedersen, T.P., Pfitzmann, B.: On the existence of statisti-
cally hiding bit commitment schemes and fail-stop signatures. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 250–265. Springer, Heidel-
berg (1994). https://doi.org/10.1007/3-540-48329-2 22

[FGJ18] Fleischhacker, N., Goyal, V., Jain, A.: On the existence of three round
zero-knowledge proofs. IACR Cryptology ePrint Archive, 2018:167 (2018)

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

[For89] Fortnow, L.: The complexity of perfect zero-knowledge. Adv. Comput. Res.
5, 327–343 (1989)

[GK96] Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge
proof systems for NP. J. Cryptol. 9(3), 167–190 (1996)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems. J. ACM
38(3), 691–729 (1991)

[GO94] Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof
systems. J. Cryptol. 7(1), 1–32 (1994)

[GOS12] Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11 (2012)

https://doi.org/10.1007/3-540-69053-0_20
https://doi.org/10.1007/3-540-69053-0_20
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-642-00457-5_35
https://doi.org/10.1007/978-3-642-22792-9_9
https://doi.org/10.1007/3-540-48329-2_22

156 N. Bitansky and O. Paneth

[HM96] Halevi, S., Micali, S.: Practical and provably-secure commitment schemes
from collision-free hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol.
1109, pp. 201–215. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-68697-5 16

[HNO+09] Haitner, I., Nguyen, M.-H., Ong, S.J., Reingold, O., Vadhan, S.P.: Statis-
tically hiding commitments and statistical zero-knowledge arguments from
any one-way function. SIAM J. Comput. 39(3), 1153–1218 (2009)

[HT98] Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge proto-
cols. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055744

[Kat12] Katz, J.: Which languages have 4-round zero-knowledge proofs? J. Cryptol.
25(1), 41–56 (2012)

[KKS18] Kalai, Y.T., Khurana, D., Sahai, A.: Statistical witness indistinguishability
(and more) in two messages. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part III. LNCS, vol. 10822, pp. 34–65. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7 2

[KNY17] Komargodski, I., Naor, M., Yogev, E.: White-box vs. black-box complexity
of search problems: Ramsey and graph property testing. In: 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, 15–17 October 2017, pp. 622–632 (2017)

[KNY18] Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for para-
noids: dealing with multiple collisions. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 162–194. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 6

[KP16] Kalai, Y.T., Paneth, O.: Delegating RAM computations. In: Hirt, M.,
Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 91–118. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 4

[LS90a] Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge
proofs. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol.
537, pp. 353–365. Springer, Heidelberg (1991). https://doi.org/10.1007/3-
540-38424-3 26

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–
158 (1991)

[NOVY98] Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge
arguments for NP using any one-way permutation. J. Cryptol. 11(2), 87–
108 (1998)

[OPP14] Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously
circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 536–553. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44371-2 30

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

https://doi.org/10.1007/3-540-68697-5_16
https://doi.org/10.1007/3-540-68697-5_16
https://doi.org/10.1007/BFb0055744
https://doi.org/10.1007/978-3-319-78372-7_2
https://doi.org/10.1007/978-3-319-78375-8_6
https://doi.org/10.1007/978-3-662-53644-5_4
https://doi.org/10.1007/3-540-38424-3_26
https://doi.org/10.1007/3-540-38424-3_26
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-662-44371-2_30

Signatures and Messaging

It Wasn’t Me!
Repudiability and Claimability of Ring Signatures

Sunoo Park1 and Adam Sealfon2(B)

1 MIT and Harvard, Cambridge, USA
2 MIT, Cambridge, USA

asealfon@mit.edu

Abstract. Ring signatures, introduced by [RST01], are a variant of digi-
tal signatures which certify that one among a particular set of parties has
endorsed a message while hiding which party in the set was the signer.
Ring signatures are designed to allow anyone to attach anyone else’s
name to a signature, as long as the signer’s own name is also attached.
But what guarantee do ring signatures provide if a purported signatory
wishes to denounce a signed message—or alternatively, if a signatory
wishes to later come forward and claim ownership of a signature? Prior
security definitions for ring signatures do not give a conclusive answer to
this question: under most existing definitions, the guarantees could go
either way. That is, it is consistent with some standard definitions that
a non-signer might be able to repudiate a signature that he did not pro-
duce, or that this might be impossible. Similarly, a signer might be able
to later convincingly claim that a signature he produced is indeed his
own, or not. Any of these guarantees might be desirable. For instance, a
whistleblower might have reason to want to later claim an anonymously
released signature, or a person falsely implicated in a crime associated
with a ring signature might wish to denounce the signature that is fram-
ing them and damaging their reputation. In other circumstances, it might
be desirable that even under duress, a member of a ring cannot produce
proof that he did or did not sign a particular signature. In any case, a
guarantee one way or the other seems highly desirable.

In this work, we formalize definitions and give constructions of the
new notions of repudiable, unrepudiable, claimable, and unclaimable ring
signatures. Our repudiable construction is based on VRFs, which are
implied by several number-theoretic assumptions (including strong RSA
or bilinear maps); our claimable construction is a black-box transforma-
tion from any standard ring signature scheme to a claimable one; and our
unclaimable construction is derived from the lattice-based ring signatures
of [BK10], which rely on hardness of SIS. Our repudiable construction
also provides a new construction of standard ring signatures.

1 Introduction

Ring signatures, introduced by [RST01], are a variant of digital signatures which
certify that one among a particular set of parties has signed a particular message,
c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 159–190, 2019.
https://doi.org/10.1007/978-3-030-26954-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_6

160 S. Park and A. Sealfon

without revealing which specific party is the signer. This set is called a “ring.”
Ring signatures can be useful, for example, to certify that certain leaked infor-
mation comes from a privileged set of government or company officials without
revealing the identity of the whistleblower, to issue important orders or direc-
tives without setting up the signer to be a scapegoat for repercussions, or to
enable untraceable transactions in cryptocurrencies (as in Monero [Mon]).

In a ring signature scheme, just as in a traditional digital signature scheme,
any party can create a key pair for signing and verification, and publish the
verification key. Signers can produce signatures that verify with respect to any
set of verification keys that includes their own, and unforgeability guarantees
that no party can produce a valid signature with respect to a set of verification
keys without possessing a corresponding secret key.

But what guarantee does a ring signature scheme provide if a purported
signatory wishes to denounce a signed message—or alternatively, if a signa-
tory wishes to later come forward and claim ownership of a signature? Given
the motivation of anonymity behind the notion of a ring signature, a natural
first intuition might be that parties should be able neither to denounce nor to
claim a signature in a convincing way. However, depending on the threat model,
we believe that the opposite guarantees—that is, to guarantee the ability to
denounce or claim signatures—may be useful too, as elaborated below. Further-
more, whatever one’s preference, a guarantee one way or the other seems more
desirable than no guarantee either way.

Prior security definitions for ring signatures do not conclusively provide these
guarantees one way or the other. That is, a non-signer might be able to repudiate
a signature that he did not produce (“repudiability”), or this might be impossible
(“unrepudiability”). Similarly, a signer might be able to later convincingly claim
that a signature he produced is indeed his own (“claimability”), or be unable to
do so (“unclaimability”).

The most detailed taxonomy of security definitions for ring signatures was
given by [BKM09], which presents a series of anonymity guarantees of increasing
strength. A natural anonymity guarantee defined by [BKM09], called “anonymity
against adversarially chosen keys,” is informally described as follows: an adver-
sary who controls all but t ≥ 2 parties in a ring, and who may produce his own
malformed key pairs as well as corrupt honest parties’ keys, must have negligible
advantage at guessing which of the t honest parties produced a given signature.
This anonymity definition might allow a party to ascertain whether a given sig-
nature was produced by her own signing key, and perhaps also to convince others
of this fact—but it does not guarantee or prohibit either of these capabilities.

On the other hand, the strongest of the anonymity definitions of [BKM09]
(called “anonymity against full key exposure”) requires that even if an adversary
compromises every single party in a ring, the adversary cannot identify the
signers of past signatures. It is relatively straightforward to see that under such
a strong anonymity guarantee, Alice would have no way to convince anyone that
she did not produce the objectionable message; indeed, she herself cannot tell
the difference between a signature produced using her own signing key and one
produced using someone else’s.

It Wasn’t Me! 161

The ability to identify whether one’s own signing key was used to produce
a particular signature can be a feature or a bug. To protect anonymity of past
signatures against a very strong adversary who might compromise all the secret
keys in a ring, it seems desirable to prevent distinguishing one’s own signatures
from those generated by someone else. On the other hand, without the ability
to distinguish, it would be virtually impossible to tell if someone had stolen
your signing key. Moreover, as discussed below, it could be beneficial in certain
circumstances for members of a ring to have the ability to disown signatures of
messages that they have strong reasons to denounce; and conversely, in some
circumstances the signer of a message might later wish to prove to the world
that he was the one who produced a particular signature in the past.

We have now identified four potentially useful notions for ring signatures:
repudiability, unrepudiability, claimability, and unclaimability. The main contri-
butions in this paper consist both of new definitions and constructions of each of
these notions. Before diving into an overview of definition and constructions, we
provide some discussion of why each of these notions—some of which directly
oppose each other—may be meaningful and desirable: the following scenarios
explore a few of the circumstances in which various of the above guarantees might
be appropriate. Though some of the scenarios are phrased somewhat whimsically,
we believe that each scenario illustrates a meaningful threat model motivating
the definition concerned.

Scenario 1 (Repudiability). Let us consider a hypothetical tale, wherein two
candidates Alice and Bob are running for president in the land of Oz. Oz is
notorious for its petty partisan politics and its tendency to prefer whomever
appears friendlier in a series of nationally televised grinning contests between
the main-party candidates. At the peak of election season, a disgruntled citizen
Eve decides to help out her preferred candidate Bob by publishing the following
message, which goes viral on the social networks of Bob supporters:

I created a notorious terrorist group and laundered lots of money!
Signed: Alice or Eve or Alice’s campaign chairman.

Of course, the virally publicized message does not actually incriminate Alice
at all, since any one of the signatories could have produced it. However, perhaps
there is nothing that Alice can do to allay the doubt in the minds of her suspicious
detractors. As mentioned above, ring signatures are deliberately designed to
allow anyone to attach anyone else’s name to a signature, without the latter’s
knowledge or consent. Despite this, there could be realistic situations in which
non-signing members of a ring associated with a particular message could suffer
serious consequences through no fault of their own, perhaps due to the real signer
adversarially trying to damage their reputation. In light of this, perhaps it would
be desirable in some contexts for the owner of a verification key to be able to
denounce messages, e.g., to clear her name of a crime or hate speech accusation
that might otherwise impact her life in terms of reputation, job prospects, or
incarceration.

162 S. Park and A. Sealfon

Scenario 2 (Claimability). Our next story concerns a talented brewery employee
who developed new statistical techniques to test the quality of beers. Naturally,
his employer was protective of its competitive advantage since other breweries at
the time may not have been using similar statistical methods. Yet, in the interest
of science, they allowed him to publish his results—on condition of anonymity.1

A credible way to prove authorship at a later date, after the need for anonymity
has ceased to exist, might be very useful—especially in case of competing claims
by impostors. As we see here, claiming authorship of an anonymous work may
become appropriate after a passage of time. The next example illustrates quite
a different type of situation in which claimability at the signer’s discretion may
be valuable.

Consider an employee Emily who is concerned about unethical practices at
her company, and takes it upon herself to expose what is going on and publish a
critical commentary. Concerned about her job security and possible retribution,
as well as the credibility of her allegations, she maintains her anonymity using
ring signatures. It emerges, in fact, that similar practices are prevalent across
the industry: related revelations drive a wider movement of reform. Some time
later, after her company has substantially reformed its practices and her fears
of retribution have been allayed—perhaps by her promotion, or by a change in
leadership—Emily seeks to reveal her identity and add her voice to the growing
movement, providing her solidarity, legitimation, and follow-up story. In addi-
tion, if following the reforms, those involved in the earlier unethical practices
were subject to stigma or even prosecution, claimability of her earlier ring sig-
natures would allow Emily to exculpate herself.

Scenario 3 (Unrepudiability and Unclaimability). Let us return to the govern-
ment of the fictional country of Oz. The parliament of Oz is mired in partisan
gridlock, with legislators from each party ruthlessly voting down any bills, how-
ever reasonable, proposed by members of the opposing party—preventing any
laws at all from being enacted and effectively shutting down the government,
which is in no party’s interest. Suppose that instead of directly proposing a new
law, a legislator of Oz anonymously publishes the text of the proposed bill using
a ring signature scheme:

Proposed: that free ice cream shall be provided every Tuesday.2

Signed: a member of the Parliament of Oz.

If the signer used an unclaimable ring signature scheme, then she could not
decide to reveal her identity upon a later change of heart, allowing legislators of
both parties to support or oppose the bill on its merits without worrying about
purely political considerations.

1 This is the true story of William Sealy Gosset’s invention of the Student’s t-test at
Guinness Brewery in 1908 [Man00].

2 Even if each party might support this legislation, they may be unwilling to do so if
it were proposed by the other party, decrying their respective opponents as either
fiscally irresponsible or in the pocket of Big Ice Cream.

It Wasn’t Me! 163

Unclaimability and unrepudiability may be particularly useful guarantees
in scenarios where the placement of whole groups of people under duress is a
substantial concern. For instance, in circumstances where an employer or author-
itarian government may coercively compel individuals to provide a repudiation
or proof of authorship (e.g. signing randomness) for a signature, the provable
inability to do so convincingly may be essential. Unrepudiability may also be
desirable in situations in which members of a ring are likely to have conflict-
ing individual incentives but there is a possibility of collective benefit in case of
cooperation, as in a prisoner’s dilemma scenario.

Summary of Technical Contributions. We formalize repudiability, unrepu-
diability, claimability, and unclaimability of ring signatures, as well as strength-
ened anonymity and unforgeability definitions which are compatible with each of
these notions. We show that unclaimability implies unrepudiability (intuitively,
because a failed repudiation can be used as a claim). Anonymity against adver-
sarially chosen keys is the strongest anonymity notion compatible with repudi-
ability and claimability, and anonymity against full key exposure is implied by
unclaimability and equivalent to unrepudiability.

We provide three constructions based on different assumptions, one for each
of the three notions of repudiability, claimability, and unclaimability. Perhaps
the most surprising of these is unclaimability, which guarantees that the signer
cannot later credibly convince others that she produced a particular signature.
A natural first intuition is that meaningful notions of unclaimability might be
impossible to achieve, since a signer can always remember the signing random-
ness (and later present it as “proof” of having produced a signature). The key
insight for our definition and construction of unclaimable ring signatures is that
the signing randomness does not constitute a convincing claim if anyone in the
ring can also produce credible signing randomness for any signature in which they
are implicated. Our construction of unclaimable ring signatures is an augmen-
tation of the lattice-based ring signature scheme of [BK10] that adds additional
algorithms allowing anyone in the ring to generate credible signing randomness;
this capability is achieved via lattice trapdoors.

Our construction of repudiable ring signatures is based on verifiable random
functions (VRFs), which are implied by either the (strong) RSA assumption,
assumptions on bilinear maps, or NIWIs and commitments; see [Bit17,GHKW17]
and references therein for more detailed discussion of the assumptions that imply
VRFs. Our construction does not use standard ring signatures as a building block,
and as such can also be viewed as a new construction of standard ring signatures.
Our construction of claimable ring signatures, on the other hand, is a simple and
generic black-box transformation from any standard ring signature scheme to a
claimable one. We overview our contributions in more detail below.

1.1 Definitional Contributions

Repudiability. We define a repudiable ring signature scheme as a ring signature
scheme that is equipped with additional algorithms Repudiate and VerRepud as

164 S. Park and A. Sealfon

follows. Repudiate takes as input a signing key sk, a ring signature σ, and a “ring”
R (i.e., a set of verification keys), and outputs a repudiation ξ. VerRepud takes
as input a ring R, a signature σ, a repudiation ξ, and a verification key vk, and
outputs a single bit indicating whether or not ξ is a valid repudiation attesting
that σ was not produced by vk. The two requirements for a ring signature scheme
to be repudiable are, informally, as follows.

1. Correctness: Any member of a ring must be able to produce valid repudiations
of any signature that he did not produce.

2. Soundness: A cheating signer must not be able to produce a valid signature
with respect to a ring, and also be able to produce valid repudiations of that
signature under every verification key in that ring that he owns.

Once a ring signature scheme is equipped with these additional repudiation
algorithms, the standard definitions of unforgeability and anonymity against
adversarially chosen keys are insufficient to capture the natural guarantees
that would be desired for a repudiable ring signature scheme: we need the
release of repudiations not to compromise the unforgeability or anonymity of
any future signatures. Accordingly, we modify the definitions of unforgeability
and anonymity for repudiable ring signatures (Definitions 12 and 13), by addi-
tionally giving the adversary access to a repudiation oracle. This ensures that
repudiations of past signatures do not affect the security guarantees of future
signatures. See Sect. 3.1 for formal definitions of repudiability.

Claimability. We define a claimable ring signature scheme as a ring signature
scheme equipped with additional algorithms Claim and VerClaim as follows. Claim
takes as input a signing key sk, a signature σ, and a ring R, and outputs a claim
ζ. VerClaim takes a input a ring R, a verification key vk, a signature σ, and a
claim ζ, and outputs a single bit indicating whether or not ζ is a valid claim
attesting that σ was produced by vk. The three requirements for a claimable
ring signature scheme are, informally, as follows.

1. Correctness: Any honest signer must be able to produce a valid claim with
respect to any signature that he produced.

2. Soundness: No adversary can produce a valid claim with respect to a signature
produced by an honest signer, even if the adversary can choose the message
and ring with respect to which the signature is produced, and can insert
malformed verification keys into the ring.

3. No framing: No adversary can produce a signature together with a valid claim
of that signature on behalf of an honest (non-signing) party.

As above, once a ring signature scheme is equipped with these additional
claiming algorithms, the standard definitions of unforgeability and anonymity
against adversarially chosen keys are insufficient. We modify the definitions of
anonymity and unforgeability for claimable ring signatures (Definitions 18 and
19), by additionally giving the adversary access to a claim oracle. See Sect. 3.3
for formal definitions of repudiability.

It Wasn’t Me! 165

Repudiability and claimability are compatible, i.e., a ring signature scheme
can be both repudiable and claimable. Indeed, our repudiable and claimable
constructions together give rise to such a scheme. Notably, the unforgeability
and anonymity definitions corresponding to the natural notion of a repudiable-
and-claimable ring signature scheme are not the conjunction of unforgeabil-
ity and anonymity for repudiable ring signatures and for claimable ring signa-
tures. Rather, the unforgeability and anonymity definitions for a repudiable-and-
claimable ring signature scheme involve a stronger adversary which is simultane-
ously given access to both a repudiation oracle and a claim oracle. See Sect. 3.5
for further discussion on repudiable-and-claimable schemes.

Unclaimability. We also introduce unclaimable ring signature schemes, in
which the signer provably cannot convincingly claim that she was the one who
produced the signature. As briefly mentioned above, while the signer can always
save the signing randomness and reveal it along with her secret key in an attempt
to claim authorship of a signature, it is not always true that this constitutes a
convincing claim. In particular, such a claim is not credible if any member of
the ring can take a valid signature and produce fake randomness that produces
the desired signature using her own signing key.

The idea that a non-signer can adaptively produce fake randomness is remi-
niscent of deniable encryption [CDNO97], in which an encryptor and/or recipient
is required to produce fake randomness “explaining” that a particular ciphertext
is an encryption of an adversarially chosen message.

We define an unclaimable ring signature scheme to capture just this require-
ment: that is, any member of the ring must be able to produce fake signing
randomness for a signature that is distributed indistinguishably from real sign-
ing randomness. Intuitively, the only information potentially possessed by a
signer but not by the other members of the ring is the signing randomness,
so non-signers that can generate convincing simulated signing randomness can
also convincingly simulate any additional information that might be released by
the signer in an attempt to claim the signature. We consider a strong flavor of
this definition in which the indistinguishability property, described informally
below, is statistical.

1. Indistinguishability: Any member of a ring must be able to produce fake sign-
ing randomness given a signature. The signature and fake signing randomness
must be distributed statistically close to an honestly generated signature and
corresponding signing randomness used by that individual to sign the same
message, even given all verification keys and signing keys.

Remark 1. Even under this definition, if the signer chooses a message to sign
that corresponds to a secret known only to herself, then she may still be able to
convince others that she was the signer. For instance, if the signed message is the
output of a one-way function, she may be able to convince others that she was the
signer by subsequently revealing the preimage. Even more flagrantly, the signed
message could contain a signature using a standard (non-ring) signature scheme,
directly identifying the signer. This property is rather inherent: if knowledge of

166 S. Park and A. Sealfon

Repudiable VRF (Section 4)

Unrepudiable RS anonymous against
FKE (Section 3.2)

Claimable Transformation from
any RS (Section 5)

Unclaimable SIS (Section 6)

Claimable

Repudiable
Unrepudiable

Unclaimable

Fig. 1. Summary of our results and assumptions relied on. VRF = verifiable random
function, RS = ring signature, FKE = full key exposure, SIS = short integer solution
problem.

the contents of the message itself at the time of signing are enough to identify
the signer, then no security property on the signature scheme can enforce that
the signer remains hidden, since the identification of the signer is unrelated to
the signature and based only on the signed message (Fig. 1).

Indeed, ring signatures were not designed to provide anonymity for signers
who want to identify themselves, but rather for those who desire anonymity.
Similarly, our unclaimability definition does not guarantee unclaimability for
those who want to identify themselves, but rather provides credibility for a
signer who wants to later be able to claim (e.g., under duress) that she could
not convincingly claim the signature even if she wanted to. In particular, even
an adversary with unlimited computational power who obtains the secret keys
belonging to every member of the ring and a purported signing randomness from
an alleged signer, he still will not be convinced of the identity of the signer, since
fake signing randomness from the right distribution can be produced for every
member of the ring.

Unrepudiability. Unclaimability intuitively guarantees that no member of the
ring can convincingly prove that she was the signer. A related, weaker notion
that might be desirable in some circumstances is that of unrepudiability, which
guarantees that no member of the ring can convincingly prove that she was not
the signer. Unrepudiability is equivalent to anonymity against full key exposure
and is implied by unclaimability.

1.2 Overview of Our Constructions

Our Repudiable Construction. Our construction relies on ZAPs (two-round
public-coin witness-indistinguishable proofs) and verifiable random functions
(VRFs) as building blocks.3 Our building blocks have some overlap with those of
the ring signature construction of [BKM09], which uses ZAPs, public-key encryp-
tion (PKE), and a digital signature scheme. Both our scheme and theirs use ZAPs
to achieve anonymity of the ring signatures, but with different approaches: the
statements proven by the ZAPs are quite unrelated in the two constructions.

3 VRFs imply ZAPs, so it suffices to assume VRFs [GO92,DN07].

It Wasn’t Me! 167

Moreover, in our scheme, we do not need PKE or signature schemes, and instead
use VRFs directly to achieve unforgeability and repudiability. The structure of
our construction is thus very different from that of [BKM09].

At a very high level, each signing key in our construction contains a tuple of
four VRF keys. A signature consists of the output of each of the signer’s VRFs
on the message, along with a ZAP proof that (several of) the VRF values in
the signature are correct w.r.t. the VRF verification key of some member of the
ring. A repudiation for individual i consists of a ZAP proof that some of the
VRF values in the signature are different from the correct values for party i’s
VRFs evaluated at the message. One complication arises because we must guar-
antee that the release of a repudiation for individual i on a message does not
subsequently allow a different member of the ring to produce a signature on the
message that cannot be repudiated by individual i. We overcome this difficulty
by relying on the witness indistinguishability property of the ZAP and ensuring
that the repudiation does not reveal the actual VRF outputs of the repudia-
tor; that is, the ZAP proof is produced with the VRF proof as a witness. The
specific statement proven by the ZAPs is that some specific combination of at
least two of the purported VRF outputs is correct. Although in the honest usage
of the scheme, all four are produced correctly, we design the specific structure
of the statements proved in order to allow a hybrid argument to argue indis-
tinguishability between signatures of different signers in a ring. This scheme of
proving the correctness of VRF outputs turns out also to imply unforgeability,
not only repudiability, so we do not need to rely on any underlying signature
scheme as building block. (In other words, our scheme can also be seen as a new
construction of standard ring signatures based on VRFs.)

Our Claimable Construction. We give a generic transformation from any
standard ring signature scheme RS to a claimable one. The transformation uses
commitment schemes, standard signatures, and PRFs (which are all achievable
from one-way functions). The basic idea is to take a signature σRS under RS and
append to it a commitment c to (vk, σRS) where vk is the verification key of
the signer. The verification algorithm simply checks whether σRS verifies. The
claim consists of a decommitment revealing that c is a commitment to (vk, σRS).
Intuitively, by the hiding property of the commitment scheme, the identity of
the signer is hidden until he chooses to publish a claim.

The simple transformation just described runs into a couple of problems
when examined in detail. First, what if a signer commits to (σRS, vk′) where
vk′ is not his own key but that of someone else in the ring? This ability would
violate Eq. (6) of Definition 17 (claimability). To prevent such behavior, our con-
struction actually commits to a standard (non-ring) signature on (vk, σRS). The
unforgeability property of standard signatures then guarantees, intuitively, that
a signer cannot convincingly make a claim with respect to any verification key
unless he knows a corresponding signing key.

A second issue encountered by the scheme thus far described is that the signer
must remember the commitment randomness in order to produce a claim. It is
preferable that the signer not be stateful between signing and claiming; indeed,

168 S. Park and A. Sealfon

Definition 17 requires this. To resolve this, our construction derives commitment
randomness from a PRF. For similar reasons, the signing randomness for the
standard (non-ring) signature in our construction is also derived from a PRF.

Remark 2. Among the constructions presented in this paper, claimability is by
far the simplest. Moreover, as a generic transformation, it has the advantage of
adding minimal efficiency overhead to the existing state of the art in ring signa-
tures. The simplicity of achieving claimability is perhaps unsurprising in light of
the natural intuition that claiming should be possible simply by remembering the
signing randomness. As evidenced by unclaimability, this intuition is not strictly
true in general, as in certain schemes, producing signing randomness may not
prove authorship. In a nutshell, our generic transformation ensures that signing
randomness is indeed a convincing proof of authorship in the resulting scheme,
and moreover builds into the scheme a simple method of efficiently recovering
the signing randomness without storing it explicitly.

Our Unclaimable Construction. Our construction of unclaimable ring sig-
natures is an extension of the SIS-based ring signature scheme of Brakerski and
Kalai [BK10]. The construction is based on trapdoor sampling. In this overview,
we describe a simplified version of the scheme. The full scheme is described in
Sect. 6. The basic idea for obtaining unclaimability is that each identity corre-
sponds to a public matrix Ai ∈ Z

n×m
q sampled together with a secret trapdoor

Ti. A signature will consist of short vectors xi ∈ Z
m
q such that

∑

i

Aixi = y,

where y is a target value. For this overview, we can think of y as the output of
a random oracle on the message; in the actual construction, y will be obtained
as the sum of additional matrix-vector products. In order to sign the message,
signer i first samples short vectors xj for each j �= i. Then, using the lattice
trapdoor Ti, he samples a short vector xi such that the equation

xi = y −
∑

j �=i

Ajxj

is satisfied. The signature is the list of vectors σ = (xi)i. Using properties of lat-
tice trapdoors, it follows that the distribution over (xi)i can be made statistically
close no matter which trapdoor was used to produce the signature. Moreover,
given a vector x∗ to be produced, we can sample random coins that will yield that
vector under either the ordinary sampling algorithm or the trapdoor sampling
algorithm. Consequently, we obtain an algorithm that can produce explanatory
randomness for a signature under any identity in the ring.

Removing the random oracle to obtain ring signatures in the plain model
(and unclaimable ones) requires several complications. [BK10] first describes a
basic ring signature scheme with weaker unforgeability properties, in which the

It Wasn’t Me! 169

target vector y is determined using additional matrix-vector products for matri-
ces that depend on the bits of the message. They then amplify the security
of the scheme through a sequence of transformations that ultimately yield a
scheme with full unforgeability. In Sect. 6, we first define an algorithm for pro-
ducing explanatory randomness for their basic scheme, and then describe how
to modify this algorithm for each modification of the basic scheme, ultimately
yielding an unclaimable ring signature scheme based on the SIS assumption.

Remark 3. The idea that a non-signer of a given signature can adaptively pro-
duce fake signing randomness is reminiscent of deniable encryption [CDNO97],
in which an encryptor of a given ciphertext can adaptively produce fake ran-
domness consistent with it being an encryption of a different message. In this
context, it may seem somewhat surprising that our construction relies on a rel-
atively standard assumption (SIS) while many natural definitions of deniable
encryption are not known to be achievable without heavier assumptions such
as indistinguishability obfuscation [SW14,CPP18]. A subtle difference that is
significant here is that a deniably encrypted message must still be recoverable
by the honest decryptor, while in the unclaimable ring signature setting, the
signer’s identity need not be recoverable by anyone.

1.3 Other Related Work

Several constructions of ring signatures based on lattice assumptions have been
proposed (e.g., [BK10,MBB+13,BLO18]). The only other construction of ring
signatures based on ZAPs is [BKM09], to our knowledge. Numerous other ring
signature constructions have been proposed, mostly based on various assump-
tions on bilinear maps, many but not all of which are in the random oracle model
(e.g., [Ngu05,SS10,BCC+15]).

Two additional works in the lattice trapdoor literature bear mentioning: the
seminal [Ajt99], and the more recent [MP12]. The latter is more recent than
[GPV08], whose trapdoors our unclaimable construction relies on (this reliance
is carried over from the [BK10] construction).

Ring Signatures with Additional Guarantees. Since the original proposal of ring
signatures by [RST01], various variant definitions have been proposed. For exam-
ple, linkable ring signatures [LWW04] allow identification of signatures that were
produced by the same signer, without compromising the anonymity of the signer
within the ring. An enhancement to this notion called designated linkability
[LSW06] does not allow linkability by default, but instead allows links to be
revealed at will by a designated party. Another notion called traceable ring sig-
natures [FS07] considers a setting where signatures are generated with respect
to “tags” and each member may sign at most a single message (say, a vote) with
respect to a particular tag, or else his identity will be revealed. Accountable ring
signatures [XY04,BCC+15] allow a signer to assign the power to de-anonymize
her signature to a specific publicly identified party.

It may seem that some of these variants of ring signature schemes have
properties that would be useful for constructing claimable ring signatures as

170 S. Park and A. Sealfon

introduced in this paper. This implication is unsurprising in the context of our
results: all of the above types of ring signature schemes in fact imply claimable
ring signatures, since our construction of claimable ring signatures is a generic
transformation from any ring signature scheme. It is unclear if leveraging the
additional features of variant schemes would be more desirable than applying
our generic transformation, which has very low overhead and moreover can be
applied to a simpler, more efficient ring signature scheme that may lack these
additional properties.

Group Signatures. Group signatures [CvH91] are a different type of signature
that allow signing w.r.t. a set of verification keys and provide anonymity of the
signer within that set. This concept differs most strikingly from ring signatures
in that there is a central authority that (1) sets up the group (i.e., set of signers)
and issues keys to members of the group and (2) has the power to revoke the
anonymity of the signer of a signature. Notions such as (un)linkability, described
above, have been applied to the group signature setting as well. Notably, there
has also been proposed a notion of deniable group signatures [IEH+16], in which
the group manager may issue proofs that a particular group member did not
sign a particular signature. This bears a little resemblance to our notion of
repudiability in ring signatures; however, the presence of a central authority in
the group signature setting means these problems are technically rather dis-
parate. [LNWX17] construct lattice-based deniable group signatures; however,
their technique for deniability is very different from ours, and relies on zero-
knowledge proofs of plaintext inequality for LWE ciphertexts, which do not
suffice in our setting.

2 Anonymity and Unforgeability of Ring Signatures

This section overviews standard ring signature definitions: syntax, correctness,
anonymity, and unforgeability. We express the anonymity and unforgeability def-
initions differently from prior work, as explained in their respective subsections.
However, our definitions are equivalent to the correspondingly named definitions
from prior work. Throughout the paper, k denotes the security parameter.

Definition 1 (Ring signature). A ring signature scheme is a triple of PPT
algorithms RS = (Gen,Sign,Verify), satisfying the three properties of correct-
ness (Definition 2), anonymity (Definitions 5 and 6), and unforgeability (Defi-
nition 8). The syntax of Gen, Sign, and Verify follows.

– Gen(1k) takes k as input and outputs verification key vk and signing key sk.
– Sign(R, sk,m) takes as input a signing key sk, a message m, and a set of

verification keys R = {vk1, . . . , vkN}, and outputs a signature σ. The set R
is also known as a “ring.”

– Verify(R, σ,m) takes as input a set R of verification keys, a signature σ, and
a message m, and outputs a single bit indicating whether or not σ is a valid
signature on m w.r.t. R.

It Wasn’t Me! 171

Where it may not be clear from context, we sometimes write RS.Gen,RS.Sign,
RS.Verify to denote the Gen,Sign,Verify algorithms belonging to RS.

Definition 2 (Correctness). A ring signature scheme RS = (Gen,Sign,Verify)
satisfies correctness if there is a negligible function ε s.t. for any N = poly(k),
any (vk1, sk1), . . . , (vkN , skN) ← Gen(1k), any i ∈ [N], and any message m,

Pr [Verify(R,Sign(R, ski,m),m) = 1] = 1 − ε(k), (1)

where R = {vk1, . . . , vkN}. RS satisfies perfect correctness if (1) holds for ε = 0.

2.1 Anonymity

Prior work, notably [RST01,BKM09], has presented several ring signature
anonymity definitions. Two of the definitions from prior work are relevant to
this paper: anonymity against adversarially chosen keys and against full key
exposure.

This section presents a new, generalized anonymity definition parametrized
by oracle sets, and expresses the two relevant anonymity definitions as instanti-
ations of the generalized definition. This generalized definition is useful to con-
solidate the existing definitions and make clear their relationship to one another;
it captures not only the two definitions we rely on here, but also others from
prior work. Moreover, the generalized definition will be essential to concisely
express the new anonymity definitions that we introduce in later sections for
anonymity of repudiable and claimable ring signature schemes (in Sects. 3.1 and
3.3 respectively). In a nutshell, this is because the new definitions need to allow
the adversary access to additional oracles related to repudiation and/or claiming.

The generalized definition follows. It is parametrized by sets of oracles O1,O2

and an additional parameter α ∈ {0, 1, 2} that limits the adversary’s corruptions.

Definition 3 ((O1,O2, α)-anonymity). Let O1,O2 be sets of oracles, where
each oracle in the set is parametrized by a list of key-pairs. Define
Corr(vk1,sk1),...,(vkN ,skN) to take as input i ∈ [N] and output ωi ←
Gen−1(vki, ski).4

A ring signature scheme RS = (Gen,Sign,Verify) satisfies (O1,O2, α)-
anonymity if for any PPT adversary A and any polynomial N = poly(k),
Pr[b′ = b] in the above game is negligibly close to 1/2. That is, formally, ∀
PPT A = (A1,A2), N = poly(k), there is a negligible function ε such that

4 The function Gen−1 takes as input a verification key vk and signing key sk produced
by Gen, and produces the randomness used by Gen to produce this key pair. That
is, it samples from the set {ω : Gen(1k; ω) = (vk, sk)}. In practice we will only ever
invoke Gen−1 on a key pair produced by Gen, so we could invert efficiently by simply
remembering the randomness used by Gen, but for the purposes of this definition
we will describe it as a sampling procedure. Upon the first invocation on an input i,
Corr samples ωi ← Gen−1(vki, ski), stores it, and outputs it. If Corr is queried twice
on the same input i then it outputs the same ωi that was previously stored.

172 S. Park and A. Sealfon

Pr

⎡
⎢⎢⎢⎢⎢⎣

(vk1, sk1), . . . , (vkN , skN) ← Gen(1k)

((m∗, i∗
0 , i∗

1 , R∗), s) ← AO1,Corr
1 (vk1, . . . , vkN)

b ← {0, 1}
σ ← Sign(R∗ ∪ {vki∗0 , vki∗1 }, ski∗

b
, m∗)

b′ ← AO2,Corr
2 (s, σ)

: b′ = b ∧ |{i∗
0 , i∗

1} ∩ I| ≤ α

⎤
⎥⎥⎥⎥⎥⎦

<
1

2
+ ε(k), (2)

where I is the set of queries to the corruption oracle; and the notation AO,Corr

means that for each oracle O in O, A has oracle access to O(vk1,sk1),...,(vkN ,skN),
and A also has oracle access to Corr(vk1,sk1),...,(vkN ,skN).

Definitions 5 and 6 are instantiations of Definition 3. They are equivalent to
the correspondingly named definitions in [BKM09].

Definition 4 (Signing oracle OSign). For a ring signature scheme RS, the
oracle OSign(vk1,sk1),...,(vkN ,skN) is defined to take as input i ∈ [n], a message m,
and a set R, and output RS.Sign(R ∪ {vki}, ski,m). When the oracle is invoked
with respect to a single key pair (i.e., OSign(vk,sk)), we treat the oracle as taking
only two inputs, m and R, since i is superfluous in this case.

Definition 5 (Anonymity against adversarially chosen keys). A ring sig-
nature scheme RS = (Gen,Sign,Verify) satisfies anonymity against adversarially
chosen keys if it is ({OSign}, ∅, 0)-anonymous. Moreover, RS satisfies adap-
tive anonymity against adversarially chosen keys if it is ({OSign}, {OSign}, 0)-
anonymous.

Definition 5 captures the guarantee that as long as there are at least two
honest parties in a ring (represented by i∗0, i

∗
1), even if all other parties in the

ring are corrupted by an adversary, the adversary cannot tell which of the honest
parties produced a signature. One can also consider an even stronger definition
where the adversary may corrupt all but one or even all of the parties in the
ring, as in Definition 6.

Definition 6 (Anonymity against full key exposure). A ring signature
scheme RS = (Gen,Sign,Verify) satisfies anonymity against full key exposure if
it is ({OSign}, ∅, 2)-anonymous.

Remark 4. Adaptive variants of anonymity were not discussed in prior work. In
this paper, we refer primarily to adaptive anonymity against adversarially chosen
keys: this is the strongest notion compatible with repudiability and claimability.
Definition 6 does not include an adaptive version because adaptivity does not
give the adversary any additional power when he can corrupt all the keys.

2.2 Unforgeability

The first unforgeability definition that follows is parametrized by an oracle set,
taking a similar approach to our anonymity definitions above. In this section,
we only give one instantiation of the parametrized definition of unforgeability.
We will give other instantiations of Definition 7 in Sects. 3.1 and 3.3.

It Wasn’t Me! 173

Definition 7 (O-unforgeability). Let O be a set of oracles, where each oracle
in the set is parametrized by a list of key-pairs. A ring signature scheme RS =
(Gen,Sign,Verify) is O-unforgeable if for any PPT A and any N = poly(k),
there is a negligible function ε such that

Pr

⎡
⎣

(vk1, sk1), . . . , (vkN , skN) ← Gen(1k)

(R∗, m∗, σ∗) ← AO,OSign,Corr(vk1, . . . , vkN)
b ← Verify(R∗, σ∗, m∗)

:
b = 1 ∧ R∗ ⊆ {vk1, . . . , vkN} \ I
∧ Q ∩ {(·, m∗, R∗)} = ∅

⎤
⎦ < ε(k),

where the notation AO,OSign,Corr is defined as in Definition 3, and I and Q are
the sets of queries made to the corruption and signing oracles respectively.

We refer to the event that the conditions on the right-hand side of the colon
in the above probability expression are met as a “successful forgery.”

Definition 8 (Unforgeability of ring signatures). A ring signature scheme
RS = (Gen,Sign,Verify) is unforgeable if it is ∅-unforgeable.

3 New Definitions: (Un)repudiability and
(Un)claimability

3.1 Repudiable Ring Signatures

Repudiability addresses the question of whether ring members can prove that
they did not sign a particular message (when they in fact did not sign it).

Definition 9 (Repudiable ring signature). A repudiable ring signature
scheme is a ring signature scheme with an additional pair of algorithms
(Repudiate,VerRepud), satisfying the four properties of correctness (Defini-
tion 2), repudiability (Definition 11), anonymity (Definition 12), and unforge-
ability (Definition 13). The syntax of Repudiate and VerRepud follows.

– Repudiate(R, sk, σ) takes as input a signing key sk, a ring signature σ, and a
set of verification keys R = {vk1, . . . , vkN}, and outputs a repudiation ξ.

– VerRepud(R, vk, σ, ξ) takes as input a set R of verification keys, a signature
σ, a repudiation ξ, and an identity vk, and outputs a single bit indicating
whether or not ξ is a valid repudiation of signature σ for identity vk.

Definition 10 (Repudiation oracle ORpd). For a repudiable ring signature
scheme RS, the oracle ORpd(vk1,sk1),...,(vkN ,skN) is defined to take as input i ∈ [n],
a signature σ, and a set R, and output RS.Repudiate(R ∪ {vki}, ski, σ). When
the oracle is invoked with respect to a single key pair (i.e., ORpd(vk,sk)), we treat
the oracle as taking only two inputs, σ and R, since i is superfluous in this case.

Additionally, we define the oracle ORpd
〈σ∗〉
(vk1,sk1),...,(vkN ,skN) to output ⊥ when

it receives the signature σ∗ as input, and otherwise to give the same response as
ORpd(vk1,sk1),...,(vkN ,skN).

174 S. Park and A. Sealfon

Repudiability requires two conditions, expressed by Eqs. (3) and (4) below.
Intuitively, (3) captures the requirement “good people can repudiate,” i.e., that
for any (possibly maliciously generated) signature, an honest party who did not
produce it should be able to successfully repudiate. (4) captures the requirements
that “bad people cannot repudiate a signature they produced,” i.e., addressing
the case where the malicious signature and repudiation are both produced using
the key being verified, and thus we want the signer to be unable to produce a
valid repudiation.

Definition 11 (Repudiability). A ring signature scheme Σ = (Gen,Sign,
Verify) satisfies repudiability if equipped with algorithms (Repudiate,VerRepud)
such that the following conditions hold.

1. (Non-signers can repudiate). Let O = {OSign}. For any (possibly adversarial)
PPT signing algorithm ASign, there exists a negligible function ε such that

Pr

⎡
⎢⎢⎢⎢⎣

(vk, sk) ← Gen(1k)

(σ, m, R′) ← AO,ORpd(vk,sk)
Sign (vk)

ξ ← Repudiate(R′, sk, σ)
b ← VerRepud(R′, vk, σ, ξ)
b′ ← Verify(R′, σ, m)

:
b = 1 ∨ b′ = 0
∨Q ∩ {(·, m, R′)} �= ∅

⎤
⎥⎥⎥⎥⎦

> 1 − ε(k). (3)

2. (Signer cannot repudiate). For any (possibly adversarial) sign-and-repudiate
algorithm AS&R, there is a negligible function ε such that for any N = poly(k),

Pr

⎡
⎢⎢⎢⎣

(vk1, sk1), . . . , (vkN , skN) ← Gen(1k)

(σ, R′, m, {ξvk}vk∈R′\R) ← AO
S&R(R)

∀vk ∈ R′ \ R, bvk ← VerRepud(R′, vk, σ, ξvk)

b′ ← Verify(R′, σ, m)

:

R′ ∩ R = ∅ ∨
∨

vk∈R′\R

bvk = 0

∨b′ = 0 ∨ Q ∩ {(·, m, R′)} �= ∅

⎤
⎥⎥⎥⎦ > 1 − ε(k), (4)

where R = {vk1, . . . , vkN}, O = {OSign,ORpd}, and Q is the set of OSign
queries.

Remark 5. Equation 4 guarantees that a party possessing a set of signing keys
cannot repudiate under all of these keys, as long as some key in the ring is
honestly generated. If the adversary generates all keys in the ring, then he may be
able to produce a repudiation under every key in the ring. However, this does not
undermine the purpose of repudiability: indeed, if presented with repudiations
under every key in a ring, one can confidently conclude that all keys in the
ring were generated dishonestly, and thus that all parties in the ring effectively
colluded to produce each signature under that ring. Similarly, given repudiations
for a subset of the identities in a ring, one can conclude that either one of the
remaining identities in the ring produced the signature or all of the remaining
identities in the ring colluded maliciously to produce the signature. That is,
either way, at least one of the remaining identities is responsible for the signature.

It Wasn’t Me! 175

Anonymity and Unforgeability of Repudiable Ring Signatures. The
definitions of anonymity and unforgeability need to be adapted for repudiable
ring signature schemes, to incorporate a repudiation oracle as described next.

Definition 12 (Anonymity of repudiable ring signatures). A repu-
diable ring signature scheme (Gen,Sign,Verify, (Repudiate,VerRepud)) satis-
fies anonymity against adversarially chosen keys if (Gen,Sign,Verify) is
({OSign,ORpd}, ∅, 0)-anonymous (Definition 3) Moreover, it satisfies adap-
tive anonymity against adversarially chosen keys if (Gen,Sign,Verify) is
({OSign,ORpd}, {OSign,ORpd〈σ〉}, 0)-anonymous, where σ is the challenge sig-
nature in Eq. 2.

Recall from Remark 4 that adaptive anonymity against adversarially chosen
keys is the strongest anonymity notion compatible with repudiability.

Definition 13 (Unforgeability of repudiable ring signatures). A repudia-
ble ring signature scheme (Gen,Sign,Verify, (Repudiate,VerRepud)) is unforgeable
if (Gen,Sign,Verify) is {ORpd}-unforgeable (Definition 7).

3.2 Unrepudiable Ring Signatures

We next consider a notion where it is not possible for a party to prove to others
that he did not produce a particular signature. In fact, though it may not be
immediately apparent, a natural formalization of this notion is expressed by
the definition of anonymity against full key exposure (Definition 6): that is, the
strongest of the anonymity definitions given in Sect. 2. The following paragraphs
justify this claim with detailed intuition.

Recall that anonymity against full key exposure (FKE) preserves signer
anonymity even against an adversary that obtains all of the secret keys of all
members of a ring. A ring signature scheme that satisfies repudiability could not
also satisfy anonymity against FKE, because of the following attack: the adver-
sary obtains all secret keys in the ring, attempts to repudiate using each secret
key, and identifies as the signer the one secret key with respect to which the
repudiation algorithm does not produce a valid repudiation. With overwhelming
probability, by definition of repudiability, there is exactly one such secret key.

This informal argument establishes that anonymity against FKE must imply
any reasonable notion of unrepudiability. Then are the two notions equivalent?
While there arguably exist meaningful definitions of unrepudiability that are
weaker than anonymity against FKE, we believe anonymity against FKE is the
most reasonable definition of unrepudiability, as explained next.

Any reasonable definition of unrepudiability should capture the intuitive
requirement that non-signers cannot behave distinguishably from signers. A lit-
tle more precisely, for any protocol that could be executed by a non-signer Nancy
with respect to a signature σ and her verification key vk′, the signer Sigmund
of that signature must be able to engage in the same protocol with respect to
his own verification key vk and behave indistinguishably from Nancy. In other

176 S. Park and A. Sealfon

words, we require that if Nancy’s secret key were stolen, the thief would be
unable to tell whether σ was produced by Nancy or by someone else. Indeed, if
Nancy were stateless and did not remember what signatures she had produced
in the past, or simply lent her secret key to someone else who used it to produce
signatures, then she herself would not be able to tell. The definition of anonymity
against FKE embodies almost exactly this requirement—but instead of requiring
anonymity against the thief who steals just Nancy’s key, the definition makes
the stronger requirement that anonymity must hold even against a thief who has
every secret key in the ring corresponding to σ.

Is a weaker definition, which only rules out unilateral repudiations by a single
party, a meaningful definition of unrepudiability? Perhaps. However, it is more
in keeping with the intuitive goals and standard properties of ring signatures to
protect against adversaries that may have many or all secret keys in a ring: that
is, to rule out even the possibility of multiple ring members colluding to produce
a repudiation for some ring member. Thus we arrive at the following definition.

Definition 14 (Unrepudiable ring signature scheme). A ring signature
scheme is unrepudiable if it satisfies anonymity against full key exposure.

3.3 Claimable Ring Signatures

Claimability addresses whether the actual signer can prove later that they were
the signer, without remembering the signing randomness.

Definition 15 (Claimable ring signature). A claimable ring signature
scheme is a ring signature scheme with an additional pair of algorithms
(Claim,VerClaim), satisfying the four properties of correctness (Definition 2),
claimability (Definition 17), anonymity (Definition 18), and unforgeability (Def-
inition 19). The syntax of Claim and VerClaim follows.

– Claim(R, sk, σ) takes as input a signing key sk, a ring signature σ, and a set
of verification keys R = {vk1, . . . , vkN}, and outputs a claim ζ.

– VerClaim(R, vk, σ, ζ) takes as input a set R of verification keys, a signature
σ, a claim ζ, and an identity vk, and outputs a single bit indicating whether
or not ζ is a valid claim of signature σ for identity vk.

Definition 16 (Claim oracle OClaim). For a claimable ring signature scheme
RS, the oracle OClaim(vk1,sk1),...,(vkN ,skN) is defined to take as input i ∈ [n], a set
R, and a signature σ, and output RS.Claim(R, sk, σ). When the oracle is invoked
with respect to a single key pair (i.e., OClaim(vk,sk)), we treat the oracle as taking
only two inputs, R and σ, since i is superfluous in this case.

Additionally, we define the oracle OClaim
〈σ∗〉
(vk1,sk1),...,(vkN ,skN) to output ⊥

when it receives the signature σ∗ as input, and otherwise to give the same
response as OClaim(vk1,sk1),...,(vkN ,skN).

Claimability requires three conditions, expressed by Eqs. (5), (6), and (7)
below. Informally, (5) requires that honest signers can successfully claim their

It Wasn’t Me! 177

signatures, (6) requires that adversarial parties cannot successfully claim a signa-
ture that they did not produce, and (7) requires that adversarial parties cannot
produce a signature along with a claim that appears to be produced by an honest
party (that is, falsely framing the honest party as the signer).5

Definition 17 (Claimability). A ring signature scheme (Gen,Sign,Verify) is
claimable if equipped with algorithms (Claim,VerClaim) such that the following
conditions hold.

1. (Honest signer can claim). There exists a negligible function ε such that for
any N = poly(k) and (vk1, sk1), . . . , (vkN , skN) ← Gen(1k) and any i ∈ [N],
it holds for any message m that

Pr [σ ← Sign(R, ski, m) : VerClaim(R, vki, σ,Claim(R, ski, σ)) = 1] > 1 − ε(k),(5)

where R = {vk1, . . . , vkN}.
2. (Non-signers cannot claim). Let O = {OSign}. For any (possibly adversar-

ial) PPT sampling-and-claiming algorithm AClaim = (A1,A2), there exists a
negligible function ε such that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(vk, sk) ← Gen(1k)

(R′, m, s) ← AO,OClaim(vk,sk)
1 (vk)

σ ← Sign(R′ ∪ {vk}, sk, m)

(ζ, vk′) ← AO,OClaim(vk,sk)
2 (R′ ∪ {vk}, σ, s)

b ← VerClaim(R′ ∪ {vk}, vk′, σ, ζ)
b′ ← Verify(R′ ∪ {vk}, σ, m)

:
b = 1 ∧ b′ = 1
∧vk′ �= vk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< ε(k). (6)

3. (Malicious signer cannot frame an honest party). For any PPT adversary
AS&C, there exists a negligible function ε such that

Pr

⎡
⎢⎢⎣

(vk, sk) ← Gen(1k)

(R′, m, σ, ζ) ← AO,OClaim(vk,sk)
S&C (vk)

b ← VerClaim(R′ ∪ {vk}, vk, σ, ζ)
b′ ← Verify(R′ ∪ {vk}, σ, m)

:
b = 1 ∧ b′ = 1
∧Q ∩ {(·, σ)} = ∅

⎤
⎥⎥⎦ < ε(k). (7)

where O = {OSign} and Q is the set of queries made to oracle OClaimvk,sk.

Anonymity and Unforgeability of Claimable Ring Signatures. The def-
initions of anonymity and unforgeability must be adapted for claimable ring
signature schemes, to allow the adversary a claim oracle as described next.

Definition 18 (Anonymity of claimable ring signatures). A claimable
ring signature scheme (Gen,Sign,Verify, (Claim,VerClaim)) satisfies anonymity
against adversarially chosen keys if (Gen,Sign,Verify) is ({OSign,OClaim}, ∅, 0)-
anonymous (Definition 3). Moreover, the repudiable ring signature satisfies
adaptive anonymity against adversarially chosen keys if (Gen,Sign,Verify) is

({OSign,OClaim}, {OSign,OClaim〈σ〉}, 0)-anonymous,
5 Our definition does not guarantee that all signatures that verify (possibly a superset

of all honestly generated signatures) can be claimed by someone; requiring this could
be a reasonable alternative definition. See the full version [PS19] for more discussion.

178 S. Park and A. Sealfon

where σ is the challenge signature in the anonymity experiment (Eq. (2)).

Recall from Remark 4 that adaptive anonymity against adversarially chosen
keys is the strongest anonymity notion compatible with claimability.

Definition 19 (Unforgeability of claimable ring signatures). A claimable
ring signature scheme (Gen,Sign,Verify, (Claim,VerClaim)) is unforgeable if
(Gen,Sign,Verify) is {OClaim}-unforgeable (Definition 7).

3.4 Unclaimable Ring Signatures

An unclaimable ring signature scheme has the property that the signer cannot
later convince anyone of her identity. That is, for any function that the true
signer can compute given the signing randomness and the secret key, any other
member of the ring can compute an indistinguishable function. The result is that
even an adversary holding all ring members under duress cannot figure out who
produced a given signature. This is true even if the ring members under duress
attempt to cooperate with the adversary.

To achieve this, it suffices for any member of the ring to be able to extract
signing randomness distributed indistinguishably from true signing randomness,
that would produce the given signature under their secret key. More formally,
the following guarantee should hold.

Definition 20 (Unclaimable ring signatures). A unclaimable ring signa-
ture scheme is a ring signature scheme augmented with an additional algorithm
ExtractRandomness as follows.

– ExtractRandomness(R, sk, σ,m) takes as input a ring R, a secret key sk, a
signature σ and a message m. If sk is one of the secret keys for ring R, and
σ is a signature on m with respect to R, then it outputs randomness ρ.

ExtractRandomness must satisfy the following condition.

– (Statistical unclaimability). Let R be the distribution of signing random-
ness. For any N = poly(k) there is a negligible function ε such that
the following holds. Let (vk1, sk1), (vk2, sk2) ← Gen(1k). For any message
m and any vk3, . . . , vkN and sk3, . . . , skN , let R = {vk1, . . . , vkN} and
S = {(i, vki, ski)}i∈[N]. Let ρ ← R, σ1 ← Sign(R, sk1,m; ρ), and ρ1 ←
ExtractRandomness(R, sk2, σ1,m). Let ρ2 ← R and σ2 ← Sign(R, sk2,m; ρ2).
Then (S, ρ1, σ1) ≈ε (S, ρ2, σ2).

Definition 20 is unusual among the definitions in this paper, in that it gives
a statistical rather than a computational guarantee. We opted to give the sta-
tistical definition because it is simpler, it is a stronger guarantee, and our con-
struction in this case achieves the statistical guarantee. One could also consider
a computational definition.

It Wasn’t Me! 179

Remark 6 (Claimability is not the opposite of unclaimability). According to these
definitions, unclaimability is not technically the opposite of claimability (even
when ignoring the fact that the formal definitions give a statistical guarantee
for unclaimability but a computational guarantee for claimability). Claimability
requires the ability to “voluntarily claim” a signature without remembering the
signing randomness, whereas unclaimability rules out the ability to “claim under
duress” even given the signing randomness. For voluntary claims, the natural and
stronger definition is to guarantee the ability to claim adaptive, without “plan-
ning ahead” and without the storage requirement of remembering the signing
randomness. In contrast, when considering attempts to claim under duress, the
natural and stronger definition is to rule out the possibility of successful claims
even in the presence of the signing randomness.

Remark 7 (Unclaimability protects honest signers). An adversarial signer who
wants to claim can devise ways of credibly later claiming a ring signature, even
when using an unclaimable ring signature scheme.6 This does not decrease the
utility of an unclaimable ring signature scheme for honest signers who want their
signatures to be unclaimable.

Unclaimability Implies Unrepudiability. Any unclaimable ring signature
scheme is also unrepudiable. Recall that the definition of unclaimability captures
the idea that for any function that the true signer can compute given the signing
randomness and the secret key, any other member of the ring can compute an
indistinguishable function. Intuitively, the implication follows from the fact that
repudiation would require a non-signer to behave in a way that distinguishable
from any possible behavior of the actual signer.

Theorem 1. Any unclaimable ring signature scheme is also unrepudiable.

3.5 Repudiable-and-Claimable Ring Signatures

Suppose that (Gen,Sign,Verify) is a ring signature scheme, and there are algo-
rithms Repudiate, VerRepud, Claim, and VerClaim such that, taken together with
(Gen,Sign,Verify), they form a repudiable ring signature scheme and a claimable
ring signature scheme respectively. The seven algorithms together do not nec-
essarily satisfy the natural notion of a “repudiable-and-claimable” scheme. This
is not only syntactic: in certain cases, security might in fact not hold in the 7-
algorithm scheme. The natural security definition for a repudiable-and-claimable
ring signature scheme is to include both repudiation and claim oracles through-
out the repudiability, claimability, anonymity, and unforgeability definitions.
More discussion and formal definitions are given in the full version.

6 For example, an adversarial signer might use a PRG output as his signing random-
ness, or append it to his message, and remember the preimage. If he later revealed
the preimage, it would likely serve as a credible claim to authorship of the signature.

180 S. Park and A. Sealfon

4 Repudiable Construction

Due to space constraints, all proofs are deferred to the full version [PS19]. We
begin by defining the building blocks.

ZAPs are two-message public coin witness indistinguishable proofs [DN07].

Definition 21 (ZAP). A ZAP for an NP language L with witness relation
RL is a triple of algorithms ZAPL = (ZAP.SetupL,ZAP.ProveL,ZAP.VerifyL),
where ZAP.Setup and ZAP.Prove are PPT and ZAP.Verify is polynomial-time
and deterministic, satisfying the following properties.

Public coin. For some polynomial � = �(k), ZAP.Setup is the algorithm that
on input 1k, outputs a uniformly random element of {0, 1}�.

Completeness. For any (x,w) ∈ RL, ρ ∈ {0, 1}�(k), we have
Prπ←ZAP.Prove(ρ,x,w)[ZAP.Verify(ρ, π, x) = 1] = 1.

Adaptive soundness. There exists a negligible function ε such that
Prρ←ZAP.Setup(1k)[∃(x, π) : x /∈ L ∧ ZAP.Verify(ρ, π, x)] ≤ ε(k).

Witness indistinguishability. For any sequences {ρk}k∈N, {xk}k∈N,
{w0,k}k∈N, {w1,k}k∈N, where for all k, ρk ∈ {0, 1}�(k), xk ∈
L and (xk, w0,k), (xk, w1,k) ∈ RL, the following pair of ensem-
bles is computationally indistinguishable: {ZAP.Prove(ρk, xk, w0,k)}k∈N

c≈
{ZAP.Prove(ρk, xk, w1,k)}k∈N.

In this work, for simplicity, we will assume use of a ZAP for some NP-
complete language LNP (with witness relation RLNP) and for any L ∈ NP with
witness relation RL, we define ZAP.ProveL and ZAP.VerifyL as follows.

– ZAP.ProveL takes as input a triple (ρ, x, w). If (x,w) /∈ RL, then output ⊥.
Otherwise, use an NP reduction on (x,w) to get a pair (xNP, wNP) ∈ RLNP ,
and output ZAP.Prove(ρ, x, w).

– ZAP.VerifyL takes as input a triple (ρ, π, x), uses the same NP reduction to
obtain xNP (which is in LNP iff x ∈ L), and outputs ZAP.Verify(ρ, π, x).

Next, we recall the definition of verifiable random functions (VRFs) [MRV99].

Definition 22 (VRF). A verifiable random function (VRF) is a tuple of algo-
rithms VRF = (VRF.Gen,VRF.Eval,VRF.Prove,VRF.Verify), where Gen and Verify
are PPT and Eval and Prove are polynomial time and deterministic, satisfying:

Complete provability. With probability at least 1−2−Ω(k) over (pk, sk) ←
VRF.Gen(1k), we have for all inputs x that Pr[VRF.Verify(pk, x,VRF.Eval
(sk, x),VRF.Prove(sk, x)) = 1] > 1 − 2−Ω(k).

Unique provability. For all pk, x, y1, y2, τ1, τ2 with y1 �= y2, for either i = 1
or i = 2 it holds that Pr[VRF.Verify(pk, x, yi, τi) = 1] < 2−Ω(k).

Residual pseudorandomness. Let A = (A1,A2) be a PPT adver-
sary, where both A1 and A2 get oracle access to the VRF evaluation
and prove algorithms. Let (pk, sk) ← VRF.Gen(1k), and let (x, s) ←

It Wasn’t Me! 181

AVRF.Eval(sk,·),VRF.Prove(sk,·)
1 (1k, pk). Let b ← {0, 1}, and let v be either

VRF.Eval(sk, x) or uniformly random, depending on the choice bit b. Let
b′ = AVRF.Eval(sk,·),VRF.Prove(sk,·)

2 (1k, v, s). Then there is a negligible function
ε such that Pr[b = b′ and x /∈ Q] < 1/2 + ε(k), where Q is the set of oracle
queries made by A to either oracle.

For simplicity, we assume that Eval takes inputs x of any length, i.e., x ∈ {0, 1}∗.

Definition 23. The verification failure probability of a VRF VRF is

Pr
[

(pk, sk) ← VRF.Gen(1k)
b ← VRF.Verify(pk, x,VRF.Eval(sk, x),VRF.Prove(sk, x)) : b = 0

]
.

The residual pseudorandomness property still holds even if the adversary
queries many key pairs at once, and may adaptively learn some of the secret
keys (then, residual pseudorandomness holds for the uncorrupted keys only).

Lemma 1 (Parallel VRF Game). Let VRF be a a VRF. Then ∀ PPT A =
(A1,A2) and all N = poly(k), there is a negligible function ε such that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(pk1, sk1), . . . , (pkN , skN) ← VRF.Gen(1k)

(m∗, s) ← AV,Corr
1 (vk1, . . . , vkN)

∀i ∈ [N], yi,0 ← VRF.Eval(ski, m∗)

∀i ∈ [N], yi,1 ← $

b ← {0, 1}
b′ ← A2(s, (yi,b)i∈[N]\C)

: b = b′ ∧ ∀i ∈ [N] \ C, (i, m∗) /∈ Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 1/2 + ε(k), (8)

where oracle V maps (i,m) to (y, τ) = (VRF.Eval(ski,m),VRF.Prove(ski,m)),
oracle Corr maps i to ski, and C,Q are the sets of queries to Corr,V respectively.

4.1 Construction

Construction 1. Our construction R-RS is parametrized by ZAP, VRF, and M ,
where: ZAP is a ZAP; VRF is a VRF with input domain {0, 1}∗, whose Verify
algorithm takes ν bits of randomness and whose verification failure probability
(Definition 23) is ε; and M is a polynomial satisfying M ≥ (ν + k)/ log2(1/ε).7

R-RS.Gen(1k)
1. (vk1

VRF, sk
1
VRF), . . . , (vk4

VRF, sk
4
VRF) ← VRF.Gen(1k).

Let vkVRF = (vk1
VRF, . . . , vk4

VRF) and skVRF = (sk1
VRF, . . . , sk

4
VRF).

2. ρ ← ZAP.Setup(1k).
3. α = (α1, . . . , αM) ← ({0, 1}ν)M .
4. Output vk = (vkVRF, ρ,α) and sk = (skVRF, vk).

Hereafter, we (implicitly) use the following convention to parse a ring R.

Write R = {vk1, . . . , vkN}.

For each i ∈ [N],write vki = (vki
VRF = (vki,1

VRF, . . . , vki,4
VRF), ρi, αi = (αi

1, . . . , α
i
M)).

(9)
7 As explained in the full version, a satisfactory value of M can be set even without

knowledge of ε. If ε happens to be known, a smaller value of M can be chosen.

182 S. Park and A. Sealfon

Definition 24. Let L be the following NP language.
{(

R, m, ϕ, (y1, y2, y3, y4)
)

: ∃i∗, τ1, τ2, τ3, τ4, γ s.t. (b1 ∨ b2) ∧ (b3 ∨ b4)

where ∀η ∈ {1, 2, 3, 4}, bη =
∧

i∈[N],j∈[M]

VRF.Verify(vki∗,η
VRF , (R, m, ϕ), yη, τη; αi

j ⊕ γ)
}
.

We now present the Sign and Verify algorithms of our construction.

R-RS.Sign(R, sk,m)
1. Parse R as described above and sk = ((sk1

VRF, . . . , sk
4
VRF), vk).

2. If vk /∈ R output ⊥ and halt.
3. Define i∗ ∈ [N] such that vki∗ = vk.
4. γ ← {0, 1}ν . (This is used as part of the ZAP witness in Step 6.)
5. ϕ ← {0, 1}k. (This is used as a salt for the VRF input in Step 7, and output

in Step 8.)
6. For η ∈ {1, 2, 3, 4}, let yη = VRF.Eval(skη

VRF, (R,m,ϕ)) and τη =
VRF.Prove(skη

VRF, (R,m,ϕ)). Let y = (y1, . . . , y4).
7. For each i ∈ [N], let πi ← ZAP.ProveL(ρi, (R,m,ϕ,y), (i∗, τ1,⊥, τ3,⊥, γ)).

Let π = (π1, . . . , πN).
8. Output σ = (π,y, ϕ).

R-RS.Verify(R, σ,m)
1. Parse R as above and σ = ((π1, · · · , πN),y, ϕ).
2. Output

∧
i∈[N] ZAP.VerifyL(ρi, πi, (R,m,ϕ,y)).

Next, we describe the repudiation algorithms for R-RS.

Definition 25. Let L′ be the following NP language:
{

(
R,m,ϕ, (y1, . . . , y4), vk = (vkVRF, ρ,α)

)
: ∃i∗, y′

1, . . . , y
′
4, τ

′
1, . . . , τ

′
4, γ s.t.

((b′
1 ∧ b′

2) ∨ (b′
3 ∧ b′

4)) ∧ vk = vki∗ , where ∀η ∈ {1, 2, 3, 4},

b′
η =

(
y′

η �= yη ∧
∧

i∈[N],j∈[M]

VRF.Verify(vki∗,η
VRF, (R,m,ϕ), y′

η, τ ′
η;αi

j ⊕ γ)

)}
.

R-RS.Repudiate(R, sk, σ)
1. Parse R as above, sk = ((sk1

VRF, . . . , sk
4
VRF), vk), and σ = (π,y, ϕ).

2. If vk /∈ R output ⊥ and halt.
3. Define i∗ ∈ [N] such that vki∗ = vk.
4. For η ∈ {1, 2}: let y′

η = VRF.Eval(skη
VRF, (R,m,ϕ)) and let τ ′

η =
VRF.Prove(skη

VRF, (R,m,ϕ)).
5. γ ← {0, 1}ν . (This is used as part of the ZAP witness in Step 6.)
6. For each i ∈ [N], let ξi ← ZAP.ProveL′(ρi, (R,m,ϕ,y, vk), (i∗, y′

1, y
′
2,⊥,⊥,

τ ′
1, τ

′
2,⊥,⊥, γ)).

7. Output ξ = (ξ1, . . . , ξN).

It Wasn’t Me! 183

R-RS.VerRepud(R, vk, σ, ξ)
1. Parse R as above. If vk �∈ R, output 1 and halt.
2. Parse σ = (π,y, ϕ), and ξ = (ξ1, . . . , ξN).
3. Output

∧
i∈[N] ZAP.VerifyL′(ρi, ξi, (R,m,ϕ,y, vk)).

Remark 8. As written, the size of the VRF input (R,m,ϕ) scales with the size
of R, and we have assumed that the VRF can take variable-length inputs. When
this is not the case, or when a smaller-input VRF is desirable for efficiency
reasons, the scheme can be straightforwardly modified using a collision-resistant
hash function h, and evaluating the VRF on h(R,m,ϕ).

Theorem 2. Let VRF be a VRF and ZAP be a ZAP. Then R-RS is a repudiable
ring signature scheme.

Proofs are deferred to the full version [PS19].

5 Claimable Transformation

In this section, we give a simple black-box transformation from any ring signature
to a claimable ring signature scheme. If the original scheme is repudiable, the
resulting scheme is moreover claimable-and-repudiable. We assume familiarity
with the standard notions of commitments, standard signatures, and PRFs. We
use standard syntax for these; the full version gives detailed syntax definitions.

5.1 The Transformation

Construction 2. Our transformation C-RS is parametrized by the following:
RS, a ring signature scheme; Σ, a standard signature scheme; Com, a commit-
ment scheme; and PRF, a PRF. For convenience, and w.l.o.g., we assume that
the randomness of Com and Σ and the output of PRF.Eval are all in {0, 1}ν .

C-RS.Gen(1k)
1. Let (vkRS, skRS) ← RS.Gen(1k).
2. Let (vkΣ , skΣ) ← Σ.Gen(1k).
3. Let skPRF ← PRF.Gen(1k).
4. Output vk = (vkRS, vkΣ) and sk = (vk, skRS, skΣ , skPRF).

Hereafter, we implicitly parse verification and signing keys of C-RS as
vk = (vkRS, vkΣ) and sk = (vk, skRS, skΣ , skPRF) respectively. Also, for a ring
R =

(
vk1 = (vk1

RS, vk1
Σ), . . . , vkN = (vkN

RS, vkN
Σ)

)
, we write RS(R) to denote

(vk1
RS, . . . , vkN

RS).

C-RS.Sign(R, sk,m)
1. Let σRS ← RS.Sign(RS(R), skRS,m).
2. Let rΣ = PRF.Eval(skPRF, (vk, σRS, 0)).
3. Let σΣ = Σ.Sign(skΣ , (vk, σRS); rΣ).
4. Let rCom = PRF.Eval(skPRF, (vk, σRS, 1)).

184 S. Park and A. Sealfon

5. Let c = Com((vk, σΣ); rCom).
6. Let σ = (σRS, c).
7. If C-RS.VerClaim(R, vk, σ,C-RS.Claim(R, sk, σ)) = 1, output σ.
8. Otherwise, output (⊥,⊥).

C-RS.Verify(R, σ = (σRS, c),m)
1. If σRS = ⊥, output 0.
2. Otherwise, output RS.Verify(RS(R), σRS,m).

C-RS.Claim(R, sk, σ = (σRS, c))
1. Let r′

Σ = PRF.Eval(skPRF, (vk, σRS, 0)).
2. Let r′

Com = PRF.Eval(skPRF, (vk, σRS, 1)).
3. Let σ′

Σ = Σ.Sign(skΣ , (vk, σRS); r′
Σ).

4. If c �= Com(σ′
Σ , r′

Com), output ζ = ⊥.
5. Otherwise, output ζ = (r′

Com, σ′
Σ).

C-RS.VerClaim(R, vk, σ = (σRS, c), ζ = (r′
Com, σ′

Σ))
1. Let c′ = Com((vk, σ′

Σ); r′
Com).

2. Output (c = c′) ∧ Σ.Verify(vkΣ , σ′
Σ , (vk, σRS)).

If RS is a repudiable ring signature scheme then we additionally define
C-RS.Repudiate and C-RS.VerRepud as follows.

C-RS.Repudiate(R, sk, σ = (σRS, c))
1. Output RS.Repudiate(RS(R), sk, σRS).

C-RS.VerRepud(R, vk, σ = (σRS, c), ξ)
1. Output RS.VerRepud(RS(R), sk, σRS, ξ).

Theorem 3. C-RS is a claimable ring signature scheme. Moreover, if RS is a
repudiable ring signature scheme, then C-RS is repudiable-and-claimable.

6 Unclaimable Construction

In this section we show how to construct unclaimable ring signatures from lat-
tice assumptions. The scheme is exactly the SIS-based ring signature scheme
of Brakerski and Kalai [BK10], augmented with an additional algorithm
ExtractRandomness.

It Wasn’t Me! 185

6.1 Lattice Trapdoor Sampling

We first give a very brief summary of necessary background on lattice trapdoors;
see [GPV08] and the full version [PS19] for details Let q ∈ N, m′ ∈ N, and β ∈ Z

be functions of security parameter n. The (inhomogeneous, average-case) short
integer solution (SISq,m,β) assumption states that given A ← Z

n×m′
q , v ← Z

n
q ,

it is computationally hard to find x ∈ Z
m′
q such that Ax = v and ‖x‖ ≤ β.

For polynomial m′, β and prime q ≥ β · ω(
√

n log n), the SIS problem is known
to be as hard as approximating worst-case lattice problems, in particular the
Shortest Independent Vectors Problem (SIVP), to within a factor of β · Õ(

√
n)

[MR07,GPV08].
Let DΛ,s,c denote the discrete Gaussian distribution over n-dimensional lat-

tice Λ, centered at c ∈ R
n and with parameter s. We note the existence of the

following algorithms, described in [GPV08].

– There is an algorithm TrapdoorSamp that on input a security parameter 1n

produces a matrix A ∈ Z
n
q and a trapdoor T , where A is statistically close to

uniform and T is a short basis for the lattice Λ⊥(A).
– There is an algorithm SampleDist sampling from the discrete Gaussian

D
Zm′ ,s,0.

– There is an algorithm SampleCond that on input a matrix A, trapdoor T ,
parameter s and vector u, produces a sample x distributed statistically close
to the discrete Gaussian distribution D

Zm′ ,s,0 conditioned on Ax = u. We
have that ‖x‖2 ≤ s

√
n with probability 1.

We will also require additional algorithms that given output values of the
algorithms SampleDist and SampleCond, respectively, sample randomness under
which the algorithm produces the desired output.

– There is an algorithm ExplainDist that on input an image vector x and param-
eter s, samples from the distribution {ρ|SampleDist(s; ρ) = x}.

– There is an algorithm ExplainCond that on input matrix A, trapdoor T ,
parameter s, vector u and image vector x, samples randomness ρ that yields
output x under algorithm SampleCond with inputs (A, T, s, u), i.e. samples
from the distribution {ρ|SampleCond(A, T, s, u; ρ) = x}.

We describe the algorithms ExplainDist and ExplainCond in the full version. We
will use a slight modification of the SampleCond algorithm of [GPV08] that uses
the basis randomization technique of [CHKP10]. We need the following lemma.

Lemma 2. Let (A1, T1) and (A2, T2) be sampled from TrapdoorSamp, let y ∈
Z

n
q , and let s ≥ max(‖T̃1‖, ‖T̃2‖) · ω(

√
log n), where the tilde denotes Gram-

Schmidt orthogonalization. Sample vectors x1 and x′
2 from SampleDist. Let x2 ←

SampleCond(A2, T2, s, y − A1x1), and let x′
1 ← SampleCond(A1, T1, s, y − A2x

′
2).

Then (A1, T1, A2, T2, x1, x2) and (A1, T1, A2, T2, x
′
1, x

′
2) are statistically close.

Intuitively, this lemma says that the two trapdoors induce the same distribution
on sampled vectors. This follows immediately from Lemma 3.3 of [CHKP10].

186 S. Park and A. Sealfon

6.2 The Basic Construction of [BK10]

We now describe the construction of [BK10], which first constructs a “basic”
scheme, then augments it to fully secure ring signatures in a series of steps.

Let the message space be {0, 1}�, and let X = {x ∈ Z
m′
q : ‖x‖2 ≤ s

√
m′} for

some s = ω(
√

n log n log q) be the set of “short” vectors.
The key generation algorithm samples a matrix with an SIS trapdoor, and

an additional set of 2� matrices, two corresponding to each bit of the message.
It additionally samples a target vector y, and outputs the matrices and target
vector as the verification key and the trapdoor as the signing key.

BK-RS.Gen(1k)
1. Let (A, T) ← TrapdoorSamp(1k).
2. For (i, b) ∈ [�] × {0, 1}, let Ai,b ← Z

n×m′
q .

3. Let y ← Z
n
q .

4. Output vk = (A, (Aj,b)(j,b)∈[�]×{0,1}, y) and sk = (vk, T).

The signing algorithm proceeds as follows. A target vector y is selected from
the lexicographically first verification key. For each identity in the ring, short
vectors are sampled for matrices corresponding to each bit of the message to be
signed, as well as the additional matrix. Finally, the trapdoor is used to obtain
a short vector sampled from the same distribution conditioned on Eq. 10. The
signature consists of the list of short vectors.

BK-RS.Sign(R, sk,m; ρ)
1. Parse R = (vk1, . . . , vkN) and sk = (vk, T).
2. For i ∈ [N], parse vki = (Ai, (A

(i)
j,b)(j,b)∈[�×{0,1}, yi).

3. Let y = yi, where i ∈ [N] is such that vki is lexicographically first.
4. If vk �∈ R, output ⊥ and halt.
5. Define i∗ ∈ [N] be such that vki∗ = vk.
6. Using trapdoor TA for Ai∗ , we can sample (x(i)

j)i∈[N],j∈{0}∪[�] such that

∑

i∈[N]

Aix
(i)
0 +

∑

i∈[N]
j∈[�]

A
(i)
j,mj

x
(i)
j = y. (10)

That is, for (i, j) ∈ [N] × {0} ∪ [�] other than the pair (i∗, 0), we invoke algo-
rithm SampleDist to sample x

(i)
j ∈ independently from the discrete Gaussian

distribution X . Finally, we invoke algorithm SampleCond use the trapdoor T

for Ai∗ to sample x
(i∗)
0 from a distribution statistically close to the distribu-

tion X conditioned on Eq. 10 being satisfied.
7. Output σ = (x(i)

j)i∈[N],j∈{0}∪[�].

The verification procedure simply checks that each vector in the signature
has short entries and that Eq. 10 is satisfied.

It Wasn’t Me! 187

BK-RS.Verify(R, σ,m)
1. Parse R = (vk1, . . . , vkN).
2. For i ∈ [N], parse vki = (Ai, (A

(i)
j,b)(j,b)∈[�×{0,1}, yi).

3. Parse σ = (x(i)
j)i∈[N],j∈{0}∪[�].

4. For each x
(i)
j for i ∈ [N], j ∈ {0} ∪ [�], if x

(i)
j /∈ X then immediately reject.

5. Let y = yi, where i ∈ [N] is such that Ai∗ is lexicographically first.
6. Accept if Eq. 10 above is satisfied, and otherwise reject.

We now augment the basic [BK10] ring signature scheme with additional
algorithm ExtractRandomness that produces “explaining randomness.” The algo-
rithms ExplainDist and ExplainCond referenced below are described in the full
version.

BK-RS.ExtractRandomness(R, sk, σ,m)
1. Parse R = (vk1, . . . , vkN) and sk = (vk, T).
2. For i ∈ [N], parse vki = (Ai, (A

(i)
j,b)(j,b)∈[�×{0,1}, yi).

3. Parse σ = (x(i)
j)i∈[N],j∈{0}∪[�].

4. If vk �∈ R, output ⊥ and halt.
5. Define i∗ ∈ [N] be such that vki∗ = vk.
6. For (i, j) ∈ [N] × {0} ∪ [�] s.t. (i, j) �= (i∗, 0), run ExplainDist to sample

randomness ρ
(i)
j giving output x

(i)
j from discrete Gaussian sampling.

7. Run ExplainCond to sample random coins ρ
(i∗)
0 that produce output x

(i∗)
0

under the conditional random sampling algorithm using trapdoor T .
8. Output (ρ(i)j).

Theorem 4. Under the SISq,m′,β assumption, BK-RS is a unclaimable ring sig-
nature scheme satisfying a weak notion of unforgeability in which the challenge
is sampled at random at the beginning of the experiment.

6.3 Unclaimability for the Full Ring Signature Scheme of [BK10]

The ring signature scheme above satisfies a weak notion of unforgeability, in
which the forgery message is sampled at random by the challenger and sent to the
forger in the beginning of the experiment. To achieve full unforgeability, [BK10]
provide a sequence of four reductions to construct schemes satisfying successively
stronger notions of unforgeability. We give a brief overview of these reductions
and the corresponding modifications of the ExtractRandomness algorithm.

The first modified scheme appends a description of the ring to the message
to be signed, so ExtractRandomness is simply invoked on a different message.

The second modification is the most complicated, and introduces a variant
of chameleon hash functions. A chameleon hash function h is sampled during
Gen and is included in the verification key vk. During Sign, randomness r is
sampled from a certain distribution, and a value y = h(m, r) is computed, where
m is the message to be signed and h is the hash function corresponding to

188 S. Park and A. Sealfon

the lexicographically first identity in the ring. The previous signature scheme is
invoked on y = h(m, r), where m is the message and h is the hash function for the
lexicographically first identity in the ring; then, r is appended to the resulting
signature. Now the only randomness to explain is r and the previous signature
scheme’s randomness. So the only change to ExtractRandomness is that it now
also gives random coins resulting in a particular r, which is straightforward.

The third modification simply computes a signature under the previous
scheme of every prefix of the message, and outputs these |m| signatures as its
signature. The final modification has Gen additionally output a random pad α,
and computes a signature on m ⊕ α1 where α1 is the pad for the lexicographi-
cally first identity in the ring. For each of these we simply invoke the previous
ExtractRandomness algorithm on a different message. This yields the following.

Theorem 5. Assuming SISq,m′,β, [BK10] ring signatures augmented with the
above ExtractRandomness algorithm is an unclaimable ring signature scheme.

Acknowledgements. We thank Yael Tauman Kalai for advice on an earlier draft,
and anonymous reviewers for their comments. Both authors’ research was supported
by the following grants: NSF MACS (CNS-1413920), DARPA IBM (W911NF-15-C-
0236), Simons Investigator award agreement dated June 5th, 2012, and the Center
for Science of Information (CSoI), an NSF Science and Technology Center, under
grant agreement CCF-0939370. Sunoo Park was additionally supported by the MIT
Media Lab’s Digital Currency Initiative. Adam Sealfon was additionally supported by
a DOE CSGF fellowship, DARPA/NJIT Palisade 491512803, Sloan/NJIT 996698, and
MIT/IBM W1771646.

References

[Ajt99] Ajtai, M.: Generating hard instances of the short basis problem. In: Wie-
dermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48523-6 1

[BCC+15] Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short
accountable ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A.,
Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 13

[Bit17] Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS,
vol. 10678, pp. 567–594. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70503-3 19

[BK10] Brakerski, Z., Kalai, Y.T.: A framework for efficient signatures, ring sig-
natures and identity based encryption in the standard model. IACR Cryp-
tology ePrint Archive 2010/086 (2010)

[BKM09] Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions,
and constructions without random oracles. J. Cryptol. 22(1), 114–138
(2009)

[BLO18] Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time
linkable ring signatures. Cryptology ePrint Archive 2018/107 (2018)

https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/978-3-319-24174-6_13
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-319-70503-3_19

It Wasn’t Me! 189

[CDNO97] Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052229

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to
delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13190-5 27

[CPP18] Canetti, R., Park, S., Poburinnaya, O.: Fully bideniable interactive encryp-
tion. IACR Cryptology ePrint Archive, 2018:1244 (2018)

[CvH91] Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-46416-6 22

[DN07] Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6),
1513–1543 (2007)

[FS07] Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71677-8 13

[GHKW17] Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach
to constructing and proving verifiable random functions. In: Kalai, Y.,
Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 18

[GO92] Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive
zero-knowledge proofs are equivalent (extended abstract). In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 228–245. Springer, Hei-
delberg (1993). https://doi.org/10.1007/3-540-48071-4 16

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC (2008)

[IEH+16] Ishida, A., Emura, K., Hanaoka, G., Sakai, Y., Tanaka, K.: Group signa-
ture with deniability: how to disavow a signature. In: Foresti, S., Persiano,
G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 228–244. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48965-0 14

[LNWX17] Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures:
achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi,
H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61204-1 15

[LSW06] Liu, J.K., Susilo, W., Wong, D.S.: Ring signature with designated linkabil-
ity. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawa-
mura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 104–119. Springer,
Heidelberg (2006). https://doi.org/10.1007/11908739 8

[LWW04] Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous
group signature for ad hoc groups (extended abstract). In: Wang, H.,
Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp.
325–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
27800-9 28

[Man00] Mankiewicz, R.: The Story of Mathematics. Princeton University Press,
Princeton (2000)

[MBB+13] Aguilar Melchor, C., Bettaieb, S., Boyen, X., Fousse, L., Gaborit, P.:
Adapting Lyubashevsky’s signature schemes to the ring signature setting.
In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013.
LNCS, vol. 7918, pp. 1–25. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38553-7 1

https://doi.org/10.1007/BFb0052229
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/3-540-48071-4_16
https://doi.org/10.1007/978-3-319-48965-0_14
https://doi.org/10.1007/978-3-319-61204-1_15
https://doi.org/10.1007/11908739_8
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-642-38553-7_1
https://doi.org/10.1007/978-3-642-38553-7_1

190 S. Park and A. Sealfon

[Mon] Monero. Monero: private digital currency. https://www.getmonero.org
[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,

smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4 41

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

[MRV99] Micali, S., Rabin, M.O., Vadhan,S.P.: Verifiable random functions. In:
FOCS (1999)

[Ngu05] Nguyen, L.: Accumulators from bilinear pairings and applications. In:
Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 19

[PS19] Park, S., Sealfon, A.: It wasn’t me! Repudiability and unclaimability of
ring signatures. IACR Cryptology ePrint Archive, 2019:135 (2019)

[RST01] Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C.
(ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidel-
berg (2001). https://doi.org/10.1007/3-540-45682-1 32

[SS10] Schäge, S., Schwenk, J.: A CDH-based ring signature scheme with short
signatures and public keys. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052,
pp. 129–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14577-3 12

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: STOC, pp. 475–484 (2014)

[XY04] Xu, S., Yung, M.: Accountable ring signatures: a smart card approach.
In: Quisquater, J.J., Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.)
CARDIS 2004. IFIPAICT, vol. 153, pp. 271–286. Springer, Boston (2004).
https://doi.org/10.1007/1-4020-8147-2 18

https://www.getmonero.org
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-642-14577-3_12
https://doi.org/10.1007/978-3-642-14577-3_12
https://doi.org/10.1007/1-4020-8147-2_18

Two-Party ECDSA from Hash Proof
Systems and Efficient Instantiations

Guilhem Castagnos1(B), Dario Catalano2(B), Fabien Laguillaumie3,
Federico Savasta2,4, and Ida Tucker3

1 Université de Bordeaux, Inria, CNRS, IMB UMR 5251, F-33405 Talence, France
guilhem.castagnos@math-u.bordeaux.fr

2 Università di Catania, Catania, Italy
catalano@dmi.unict.it

3 Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342 Lyon Cedex 07, France
4 Scuola Superiore di Catania, Catania, Italy

Abstract. ECDSA is a widely adopted digital signature standard.
Unfortunately, efficient distributed variants of this primitive are noto-
riously hard to achieve and known solutions often require expensive zero
knowledge proofs to deal with malicious adversaries. For the two party
case, Lindell [Lin17] recently managed to get an efficient solution which,
to achieve simulation-based security, relies on an interactive, non stan-
dard, assumption on Paillier’s cryptosystem. In this paper we generalize
Lindell’s solution using hash proof systems. The main advantage of our
generic method is that it results in a simulation-based security proof
without resorting to non-standard interactive assumptions.

Moving to concrete constructions, we show how to instantiate our
framework using class groups of imaginary quadratic fields. Our imple-
mentations show that the practical impact of dropping such interactive
assumptions is minimal. Indeed, while for 128-bit security our scheme is
marginally slower than Lindell’s, for 256-bit security it turns out to be
better both in key generation and signing time. Moreover, in terms of
communication cost, our implementation significantly reduces both the
number of rounds and the transmitted bits without exception.

1 Introduction

Threshold cryptography [Des88,DF90,GJKR96,SG98,Sho00,Boy86,CH89,MR04]

allows n users to share a common key in such a way that any subset of t parties can
use this key to decrypt or sign, while any coalition of less than t can do nothing.
The key feature of this paradigm is that it allows to use the shared key without
explicitly reconstructing it in the clear. This means a subset of t parties have to
actively participate in the protocol whenever the secret key is used.

Applications of threshold cryptography range from contexts where many sign-
ers need to agree to sign one common document to distributed scenarios where
sensitive documents should become accessible only by a quorum. This versatility
sparked intense research efforts that, mainly in the decade from the early 1990s
c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 191–221, 2019.
https://doi.org/10.1007/978-3-030-26954-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_7

192 G. Castagnos et al.

to the early 2000s, produced efficient threshold versions of most commonly used
cryptographic schemes. Recent years have seen renewed interest in the field (e.g.
[GGN16,Lin17,GG18,DKLs18,LN18,GG18,DKLs19]) for several reasons. First
a number of start-up companies are using this technology to protect keys in real
life applications [Ser,Unb,Sep]. Moreover, Bitcoin and other cryptocurrencies –
for which security breaches can result in concrete financial losses – use ECDSA
as underlying digital signature scheme. While multisignature-based countermea-
sures are built-in to Bitcoin, they offer less flexibility and introduce anonymity
and scalability issues (see [GGN16]). Finally, some of the schemes developed
twenty years ago are not as efficient as current applications want them to be. This
is the case, for instance, for ECDSA/DSA signatures. Indeed, while for many
other schemes fast threshold variants are known (e.g. RSA decryption/signing
and ECIES decryption) constructing efficient threshold variant of these signa-
tures proved to be much harder. The main reason for this unfair distribution
seems to result from the inversion step that requires one to compute k−1 mod q
from an unknown k. To explain why this is the case, let us first briefly recall
how ECDSA actually works1. The public key is an elliptic curve point Q and the
signing key is x, such that Q ← xP , where P is a generator of the elliptic curve
group of points of order q. To sign a message m one first hashes it using some
suitable hash function H and then proceeds according to the following algorithm

1. Choose k random in Z/qZ
2. Compute R ← kP
3. Let r ← rx mod q where R = (rx, ry)
4. Set s ← k−1(H(m) + rx) mod q
5. Output (r, s)

Now, the natural approach to make the above algorithm distributed would
be to share x additively among the participants and then start a multiparty
computation protocol to produce the signature. In the two party case, this means
that players start with shares x1 and x2 such that Q = (x1 + x2)P . The players
can then proceed by generating random shares k1, k2 such that R = (k1 + k2)P .
At this point, however, it is not clear how to compute, efficiently, shares k′

1, k
′
2

such that k′
1 + k′

2 = k′−1 mod q.
Starting from [MR04] two party ECDSA signature protocols started adopting

a less common multiplicative sharing both for x and k. The basic idea of these
constructions is very simple. Players start holding shares x1, x2 such that Q =
x1x2P = xP . Whenever a new signature has to be generated they generate
random k1, k2 such that R = k1k2P = kP . This immediately allows to get
shares of the inverse k′ as clearly (k1)−1(k2)−1 = (k1k2)−1 mod q. As a final
ingredient, the parties use Paillier’s homomorphic encryption to secretly add
their shares and complete the signature. For instance, player P1 computes c1 ←
Enc((k1)−1H(m)) and c2 ← Enc((k1)−1x1r). P2 can then complete the signature,

1 From now on we will focus on the elliptic curve variant of the scheme, as this is the
most commonly used scheme in applications. We stress that our reasoning apply to
the basic DSA case as well.

Two-Party ECDSA from HPS and Efficient Instantiations 193

using the homomorphic properties of the scheme as follows

c ← c
k−1
2

1 c
k−1
2 x2

2 = Enc(k−1H(m))Enc(k−1xr) = Enc(k−1(H(m) + xr))

P2 concludes the protocol by sending back c to P1. Now, if P1 also knows the
decryption key, he can extract the signature s ← k−1(H(m) + xr)) from c.

However, proving that each party followed the protocol correctly turns out
to be hard. Initial attempts [MR04] addressed this via expensive zero knowledge
proofs. More recently Lindell in [Lin17] managed to provide a much simpler and
efficient protocol. The crucial idea of Lindell’s protocol is the observation that,
in the above two party ECDSA signing protocol, dishonest parties can create
very little trouble. Indeed, if in a preliminary phase P2 receives both Paillier’s
encryption key and an encryption Enc(x1) of P1’s share of the secret signing
key, essentially, all a corrupted P1 can do is participate in the generation of
R ← k1k2P . Notice however that the latter is just the well established Diffie-
Hellman protocol for which very efficient and robust protocols exist.

On the other hand, if P2 is corrupted all she can do (except again participate
in the generation of R) is to create a bad c as a final response for P1. However,
while P2 can certainly try that, this would be easy to detect by simply checking
the validity of the resulting signature.

Turning this nice intuition into a formal proof induces some caveats though.
A first problem comes from the fact that Paillier’s plaintexts space is Z/NZ (N
is a large composite) whereas ECDSA signatures live in Z/qZ (q is prime). Thus
to avoid inconsistencies one needs to make sure that N is taken large enough
so that no wraps around occur during the whole signature generation process.
This also means that, when sending Enc(x1) to P2, P1 needs to prove that the
plaintext x1 is in the right range (i.e., sufficiently small).

A more subtle issue arises from the use of Paillier’s encryption in the proof.
Indeed, if one wants to use the scheme to argue indistinguishability of an adver-
sary’s view in real and simulated executions, it seems necessary to set up a
reduction to the indistinguishability of Paillier’s cryptosystem. This means one
must design a proof technique that manages to successfully use Paillier’s scheme
without knowing the corresponding secret key. In Lindell’s protocol the issue
arises when designing the simulator’s strategy against a corrupted player P2. In
such a case, P2 might indeed send a wrong ciphertext c (i.e., one that does not
encrypt a signature) that the simulator simply cannot recognize as bad.

Lindell [Lin17] proposes two alternative proofs to overcome this. The first
one relies on a game-based definition and avoids the problem by simply allowing
the simulator to abort with a probability that depends on the number of issued
signatures qs. This results in a proof of security that is not tight (as the reduc-
tion actually looses a factor qs). The second proof is simulation based, avoids
the aborts, but requires the introduction of a new (interactive) non standard
assumption regarding Paillier’s encryption. Thus, it is fair to say that, in spite
of recent progress in the area, the following question remains open.

194 G. Castagnos et al.

Is it possible to devise a two party ECDSA signing protocol which is practical
(both in terms of computational efficiency and in terms of bandwidth consump-
tion), does not require interactive assumptions and allows for a tight security
reduction?2

1.1 Our Contribution

In this paper we provide a positive answer to the question above. In this sense,
our contribution is twofold.

First, we provide a generic construction for two-party ECDSA signing from
hash proof systems (HPS). Our solution can be seen as a generalization of Lin-
dell’s scheme [Lin17] to the general setting of HPSs that are homomorphic in the
sense of [HO09]. This generic solution is not efficient enough for practical appli-
cations as, for instance, it employs general purpose zero knowledge as underlying
building block. Still, beyond providing a clean, general framework which is of
interest in its own right, it allows us to abstract away the properties we want to
realize. In particular, our new protocol allows for a proof of security that is tight
and does not require artificial interactive assumptions when proving simulation
security. Indeed, in encryption schemes based on HPSs, indistinguishability of
ciphertexts is not compromised by the challenger knowing the scheme’s secret
keys as it relies on a computational assumption and a statistical argument.

The correctness of our protocol follows from homomorphic properties that
we require of the underlying HPS. We define the notion of homomorphically-
extended projective hash families which ensure the homomorphic properties of
the HPS hold for any public key sampled from an efficiently recognisable set,
thus no zero-knowledge proofs are required for the public key.

Towards efficient solutions, we then show how to instantiate our (homo-
morphic) HPS construction using class groups of imaginary quadratic fields.
Although the devastating attack from [CL09] shows that large families of pro-
tocols built over such groups are insecure, Castagnos and Laguillaumie [CL15]
showed that, if carefully designed, discrete logarithm based cryptosystems within
such groups are still possible and allow for very efficient solutions. Algorithms to
compute discrete logarithms in such groups have been extensively studied since
the 80’s and the best ones known to date have a subexponential complexity3 of
O(L[1/2, o(1)]) (compared to an O(L[1/3, o(1)]) complexity for factorisation or
discrete logarithm computation in finite fields). In [BH03], Bauer and Hamdy
also showed that, for the specific case of imaginary quadratic fields, better com-
plexities seem unlikely. Thus, the resulting schemes benefit from (asymptoti-
cally) shorter keys. Moreover, interest in the area has recently been renewed
as it allows versatile and efficient solutions such as encryption switching pro-
tocols [CIL17], inner product functional encryption [CLT18] or verifiable delay
functions [BBBF18,Wes19].
2 We note here that the very recent two party protocol of [DKLs18] is very fast in

signing time and only relies on the ECDSA assumption. However its bandwidth
consumption is much higher than [Lin17].

3 L[α, c] denotes Lα,c(x) := exp(c log(x)α log(log(x))1−α).

Two-Party ECDSA from HPS and Efficient Instantiations 195

Concretely, the main feature of the Castagnos and Laguillaumie cryptosystem
and its variants (CL from now on) is that they rely on the existence of groups
with associated easy discrete log subgroups, for which hard decision problems
can be defined. More precisely, in [CL15] there exist a cyclic group G := 〈g〉 of
order qs where s is unknown, q is prime and gcd(q, s) = 1, and an associated
cyclic subgroup of order q, F := 〈f〉. Denoting with Gq := 〈gq〉 the subgroup
of q-th powers in G (of unknown order s), one has G = F × Gq, and one can
define an hard subgroup membership problem. Informally, and deferring for later
the necessary mathematical details, this allows to build a linearly homomorphic
encryption scheme where the plaintext space is Z/qZ for arbitrarily large q. This
also means that if one uses the very same q underlying the ECDSA signature,
one gets a concrete instantiation of our general protocol which naturally avoids
all the inefficiencies resulting from N and q being different!

We remark that, similarly to Lindell’s solution, our schemes require P2 to
hold an encryption Enc(x1) of P1’s share of the secret key. As for Lindell’s case,
this imposes a somewhat heavy key registration phase in which P1 has to prove,
among other things, that the public key is correctly generated. While, in our set-
ting we can achieve this without resorting to expensive range proofs, difficulties
arise from the fact that (1) we work with groups of unknown order and (2) we
cannot assume that all ciphertexts are valid (i.e., actually encrypt a message)4.
We address this by developing a new proof that solves both issues at the same
time. Our proof is inspired by the Girault et al. [GPS06] identification protocol
but introduces new ideas to adapt it to our setting and to make it a proof of
knowledge. As for Lindell’s case, it uses a binary challenge, which implies that
the proof has to be repeated t times to get soundness error 2t. We believe that
it should be possible to enlarge the challenge space using techniques similar to
those [CKY09] adapted to work in the context of class groups. Exploring the
actual feasibility of this idea is left as a future work. Clearly, advances in this
direction would lead to substantial efficiency improvements.

As final contribution, we propose a C implementation of our protocol5. Our
results show that our improved security guarantees come almost at no additional
cost. Indeed, while our scheme is slightly slower (by a factor 1.5 for key gener-
ation and 3.5 for signing) for 128-bit security level, we are actually better for
larger parameters: for 256-bit security, we are more efficient both in terms of key
generation and signing time (by respective factors of 4.2 and 1.3).

Intuitively, this behavior is due to the fact that our interactive key generation
requires fewer exponentiations than that of Lindell’s protocol (160 vs. 360), but
an exponentiation in a class group is more expensive than an exponentiation in
Z/nZ. The effect of the L1/2 complexity and the fewer number of exponentiations
starts at 192 bit of security. In terms of bandwidth, our protocol dramatically
improves the communication cost by factors varying from 5 (112 bit security)
to 10 (256 bit security) for key generation, and from 1.2 to 2.1 for signatures.
It reduces the number of rounds from 175 (in Lindell’s protocol) to 126 for the

4 For Paillier’s scheme, used in [Lin17], this is not an issue: every ciphertext is valid.
5 We also re-implemented Lindell’s protocol to ensure a fair comparison.

196 G. Castagnos et al.

key generation process (the two signatures have the same number of rounds).
We refer to Sect. 5 for precise implementation considerations and timings.

As a final remark, our HPS methods also allow a concrete implementation
based on Paillier’s decisional composite residuosity assumption, competitive with
Lindell’s for 112 and 128 bits of security as detailed in [CCLST19, Sect. 6].

2 Preliminaries

Notations. For a distribution D, we write d ←↩ D to refer to d being sampled
from D and b

$←− B if b is sampled uniformly in the set B. In an interactive
protocol IP, between parties P1 and P2, we denote by IP〈x1;x2〉 → 〈y1; y2〉 the
joint execution of parties {Pi}i∈{1,2} in the protocol, with respective inputs xi,
and where Pi’s private output at the end of the execution is yi.

The Elliptic Curve Digital Signature Algorithm. ECDSA is the elliptic curve
analogue of the Digital Signature Algorithm (DSA). It was put forth by Vanstone
[Van92] and accepted as ISO, ANSI, IEEE and FIPS standards. It works in a
group (G,+) of prime order q (of say μ bits) of points of an elliptic curve over
a finite field, generated by P and consists of the following algorithms.

KeyGen(G, q, P) → (x,Q) where x
$←− Z/qZ is the secret signing key and Q ← xP

is the public verification key.
Sign(x,m) → (r, s) where r and s are computed as follows:

1. Compute m′: the μ leftmost bits of SHA256(m) where m is to be signed.

2. Sample k
$←− (Z/qZ)∗ and compute R ← kP ; denote R = (rx, ry) and let

r ← rx mod q. If r = 0 chose another k.
3. Compute s ← k−1 · (m′ + r · x) mod q

Verif(Q,m, (r, s)) → {0, 1} indicating whether or not the signature is accepted.

Two-Party ECDSA. This consists of the following interactive protocols:

IKeyGen〈(G, q, P); (G, q, P)〉 → 〈(x1, Q); (x2, Q)〉 such that KeyGen(G, q, P) →
(x,Q) where x1 and x2 are shares of x.

ISign〈(x1,m); (x2,m)〉 → 〈∅; (r, s)〉 or 〈(r, s); ∅〉 or 〈(r, s); (r, s)〉 where ∅ is the
empty output, signifying that one of the parties may have no output and
Sign(x,m) → (r, s).

The verification algorithm is non interactive and identical to that of ECDSA.

Interactive Zero-Knowledge Proof Systems. A zero-knowledge proof system
(P, V) for a language L is an interactive protocol between two probabilistic
algorithms: a prover P and a polynomial-time verifier V . Informally P , detain-
ing a witness for a given statement, must convince V that it is true without
revealing anything other to V . See [Gol01] for interactive proofs and [GMR89]
for zero-knowledge.

Two-Party ECDSA from HPS and Efficient Instantiations 197

Simulation-Based Security and Ideal Functionalities. To prove a protocol is
secure, one must first define what secure means. Basically, the Ideal/Real
paradigm is to imagine what properties one would have in an ideal world; then if
a real world (constructed) protocol has similar properties it is considered secure.
We consider static adversaries, that choose which parties are corrupted before
the protocol begins. [Lin16] provides a detailed explanation of the simulation
paradigm.

We will use ideal functionalities for commitments, zero-knowledge proofs
of knowledge (ZKPoK) and commitments to non interactive zero-knowledge
(NIZK) proofs of knowledge between two parties P1 and P2. We give the intu-
ition behind these ideal functionalities with the example of ZKPoK. We consider
the case of a prover Pi with i ∈ {1, 2} who wants to prove the knowledge of a
witness w for an element x which ensures that (x,w) satisfy the relation R, i.e.
(x,w) ∈ R. In an ideal world we can imagine an honest and trustful third party,
which can communicate with both Pi and P3−i. In this ideal scenario, Pi could
give (x,w) to this trusted party, the latter would then check if (x,w) ∈ R and tell
P3−i if this is true or false. In the real world we do not have such trusted parties
and must substitute them with a cryptographic protocol between P1 and P2.
Roughly speaking, the Ideal/Real paradigm requires that whatever information
an adversary A (corrupting either P1 or P2) could recover in the real world, it
can also recover in the ideal world. The trusted third party can be viewed as the
ideal functionality and we denote it by F. If some protocol satisfies the above
property regarding this functionality, we call it secure.

Formally, we denote F〈x1;x2〉 → 〈y1; y2〉 the joint execution of the parties
via the functionality F, with respective inputs xi, and respective private outputs
at the end of the execution yi. Each transmitted message is labelled with a
session identifier sid, which identifies an iteration of the functionality. The ideal
ZKPoK functionality [HL10, Sect. 6.5.3], denoted Fzk, is defined for a relation
R by Fzk〈(x,w); ∅〉 → 〈∅; (x,R(x,w))〉, where ∅ is the empty output, signifying
that the first party receives no output (cf. Fig. 1).

Fig. 1. The FR
zk functionality

The ideal commitment functionality, denoted Fcom, is depicted in Fig. 2. We
also use an ideal functionality FR

com−zk for commitments to NIZK proofs for a
relation R (cf. Fig. 3). Essentially, this is a commitment functionality, where the
committed value is a NIZK proof.

198 G. Castagnos et al.

The Ideal Functionality for Two-Party ECDSA. The ideal functionality FECDSA

(cf. Fig. 4) consists of two functions: a key generation function, called once, and
a signing function, called an arbitrary number of times with the generated keys.

Fig. 2. The Fcom functionality

Fig. 3. The FR
com−zk functionality

Fig. 4. The FECDSA functionality

3 Two-Party ECDSA from Hash Proof Systems

In this section we provide a generic construction for two-party ECDSA sign-
ing from hash proof systems (HPS) which we prove secure in the simulation

Two-Party ECDSA from HPS and Efficient Instantiations 199

based model. Throughout the section we consider the group of points of an
elliptic curve G of order q, generated by P . In Subsect. 3.1, we first recall some
basic definitions on the HPS framework from [CS02], before defining the specific
properties we require for our construction in Subsect. 3.2, in particular, to guar-
antee correctness of the protocol (in order for party P2 to be able to perform
homomorphic operations on ciphertexts provided by P1, which are encryptions
of elements in Z/qZ) the HPS must be homomorphic; and for security to hold
against malicious adversaries we also require that the subset membership prob-
lem underlying the HPS be hard, and that the HPS be smooth. We note that
diverse group systems (often used as a foundation for constructions of HPSs)
imply all the aforementioned properties. Such HPSs define linearly homomor-
phic encryption schemes as described in Subsect. 3.3. Finally, before presenting
the overall two party signing protocol and proving its security, we describe the
zero-knowledge proofs (ZKP) related to the aforementioned HPSs, and justify
that they fulfil the Fcom/Fcom−zk hybrid model.

3.1 Background on Hash Proof Systems

Hash proof systems were introduced in [CS02] as a generalisation of the tech-
niques used in [CS98] to design chosen ciphertext secure public-key encryp-
tion schemes. Consider a set of words X, an NP language L ⊂ X s.t.
L := {x ∈ X | w ∈ W : (x,w) ∈ R} where R is the relation defining the
language, L is the language of true statements in X, and for (x,w) ∈ R, w ∈ W

is a witness for x ∈ L. The set (X,L,W,R) defines an instance of a subset
membership problem, i.e. the problem of deciding if an element x ∈ X is in L

or in X\L.
A HPS associates a projective hash family (PHF) to such a subset member-

ship problem. The PHF defines a key generation algorithm PHF.KeyGen which
outputs a secret hashing key hk sampled from distribution of hashing keys Dhk

over a hash key space Khk, and a public projection key hp ← α(hk) in projec-
tion key space Khp (where α : Khk 	→ Khp is an efficient auxiliary function).
The secret hashing key hk defines a hash function Hhk : X 	→ Π, and hp
allows for the (public) evaluation of the hash function on words x ∈ L, i.e.
Hhp(x,w) = Hhk(x) for (x,w) ∈ R. A projective hash family PHF is thus defined
by PHF := ({Hhk}hk∈Khk

,Khk,X,L,Π,Khp, α).

3.2 Required Properties

δs-Smoothness. The standard smoothness property of a PHF requires that for
any x /∈ L, the value Hhk(x) be uniformly distributed knowing hp. In this work
messages will be encoded in a subgroup F of Π of order q, indeed, for integration
with ECDSA it must hold that the group in which the message is encoded has
order q, since the message space is dictated by the order of the elliptic curve
group G. In some instantiations F = Π, but F may also be a strict subgroup
of Π. For m ∈ Z/qZ we denote Encode(m) the encoding of m in F, where
Encode : (Z/qZ,+) 	→ (F, ·) is an efficient isomorphism. We denote Decode the
inverse isomorphism, which must also be efficiently computable.

200 G. Castagnos et al.

If F � Π, we require smoothness over X on F [CS02, Subsect. 8.2.4]. A PHF
is δs-smooth over X on F if for any x ∈ X\L, a random π ∈ F and a randomly
sampled hashing key hk ←↩ Dhk, the distributions U := {x, α(hk), π · Hhk(x)}
and V := {x, α(hk),Hhk(x)} are δs-close.

δL−Hard Subset Membership Problem. For security to hold (X,L,W,R) must be
an instance of a hard subset membership problem, i.e. no polynomial time algo-
rithm can distinguish random elements of X\L from those of L with significant
advantage. We say (X,L,W,R) is a δL−hard subset membership problem if δL
is the maximal advantage of any polynomial time adversary in distinguishing
random elements of X\L from those of L.

Linearly Homomorphic PHF. In order for the homomorphic operations per-
formed by P2 to hold in the two party ECDSA protocol, we require that the
PHF also be homomorphic as defined in [HO09].

Definition 1 ([HO09]). The family PHF := ({Hhk}hk∈Khk
,Khk,X, L,Π,Khp, α)

is homomorphic if (X, �) and (Π, ·) are groups, and for all hk ∈ Khk, and u1, u2 ∈
X, we haveHhk(u1)·Hhk(u2) = Hhk(u1�u2), that is to sayHhk is a homomorphism
for each hk.

This clearly implies that for hp ← α(hk) the public projective hash function
is linearly homomorphic with respect to elements u1, u2 ∈ L.

Homomorphically Extended PHF. Note that the co-domain of α, which specifies
the set of valid projection keys, may not be efficiently recognisable. Though we
do not require – as did the protocol of [Lin17] – a costly ZKPoK of the secret
key associated to the public key, it is essential in our protocol that even if a
public key is chosen maliciously (i.e. there does not exist hk ∈ Khk such that
hp ← α(hk), which may go unnoticed to honest parties in the protocol), the
homomorphic properties of the public projective hash function still hold. We
thus require that the co-domain of α, which defines valid projection keys, be
contained in an efficiently recognisable space K ′

hp, such that for all hp′ ∈ K ′
hp,

Hhp′ is a homomorphism (respectively to its inputs in L).

Definition 2 (Homomorphically extended PHF). We say that the family
PHF := ({Hhk}hk∈Khk

,Khk,X, L,Π,Khp,K
′
hp, α) is homomorphically extended

if PHF := ({Hhk}hk∈Khk
, Khk,X, L,Π,Khp, α) is a homomorphic PHF and that

there exists an efficiently recognizable space K ′
hp ⊇ Khp such that for any hp′ ∈ K ′

hp,
the projective hash function associated to hp′ is a homomorphism (respectively to
its inputs in L).

ECDSA-Friendly HPS. We here define the notion of an ECDSA-friendly HPS,
essentially it is a HPS which meets all of the aforementioned properties, and
which suffices to ensure simulation based security in the protocol of Subsect. 3.5.

Definition 3 (δs/δL−ECDSA-friendly HPS). Let X,Π and F be groups
such that F is a subgroup of Π of prime order q, and such that there exists

Two-Party ECDSA from HPS and Efficient Instantiations 201

an efficient isomorphism Encode : (Z/qZ,+) 	→ (F, ·), whose inverse Decode
is also efficiently computable. A δs/δL−ECDSA-friendly HPS is a HPS which
associates to a δL−hard subset membership problem a homomorphically extended
projective hash family PHF := ({Hhk}hk∈Khk

,Khk,X, L,Π,Khp,K
′
hp, α) which is

δs−smooth over X on F.

3.3 Resulting Encryption Scheme

We use the standard chosen plaintext attack secure encryption scheme which
results from a HPS [CS02]. The key generation algorithm simply runs
PHF.KeyGen and sets hk ∈ Khk as the secret key, and the associated public key is
hp ← α(hk). Encryption of a plaintext message m in Z/qZ is done by sampling a
random pair (u,w) ∈ R and computing Enc(hp,m) ← (u,Hhp(u,w) ·Encode(m)).
To specify the randomness used in the encryption algorithm, we sometimes use
the notation Enc((u,w); (hp,m)). To decrypt a ciphertext (u, e) ∈ X × Π with
secret key hk do: Dec(hk, (u, e)) ← Decode(e

Hhk(u)
). The scheme is indistinguish-

able under chosen plaintext attacks assuming both the smoothness of the HPS
and the hardness of the underlying subset membership problem.

Homomorphic Properties. Given encryptions (u1, e1) and (u2, e2) of respectively
m1 and m2, and a ∈ Z, we require that there exist two procedures EvalSum and
EvalScal such that Dec(hk,EvalSum(hp, (u1, e1), (u2, e2))) = m1+m2 and Dec(hk,
EvalScal(hp, (u1, e1), a)) = a · m1; which is the case if the PHF is homomorphic.

3.4 Zero-Knowledge Proofs

Proofs of Knowledge. We use the Fzk, Fcom−zk hybrid model. Ideal ZK function-
alities are used for the following relations, were the parameters of the elliptic
curve (G, P, q) are implicit public inputs:

1. RDL := {(Q,w)|Q = wP}, proves the knowledge of the discrete log of an
elliptic curve point.

2. RHPS−DL := {(hp, (c1, c2), Q1); (x1, w)|(c1, c2) = Enc((u,w); (hp, x1)) ∧
(c1, w) ∈ R ∧ Q1 = x1P}, proves the knowledge of the randomness used
for encryption, and of the value x1 which is both encrypted in the ciphertext
(c1, c2) and the discrete log of the elliptic curve point Q1.

The functionalities FRDL

zk , FRDL

com−zk can be instantiated using Schnorr proofs
[Sch91]. For the RHPS−DL proof, Lindell in [Lin17] uses a proof of language
membership as opposed to a proof of knowledge. Though his technique is quite
generic, it cannot be used in our setting. Indeed, his approach requires that the
ciphertext be valid, which means that the element c must be decryptable. As
Lindell uses Paillier’s encryption scheme, any element of (Z/N2Z)× is a valid
ciphertext. This is not the case for a HPS-based encryption scheme, since it
incorporates redundancy so that any pair in X × Π is not a valid ciphertext.

For our instantiations, we will introduce specific and efficient proofs. Note
that in any case, we needn’t prove that x1 ∈ Z/qZ since both the message space
of our encryption scheme and the elliptic curve group G are of order q.

202 G. Castagnos et al.

3.5 Two-Party ECDSA Signing Protocol with Simulation-Based
Security

We here provide our generic construction for two-party ECDSA signing from
HPSs (Fig. 5), along with a proof that the protocol is secure in the Ideal/Real
paradigm (Theorem 1). To this end, we must argue the indistinguishability of
an adversary’s view – corrupting either party P1 or P2 – in real and simu-
lated executions. In Cramer-Shoup like encryption schemes (resulting from HPSs
as described in Subsect. 3.3), the chosen plaintext attack indistinguishability of
ciphertexts allows for the challenger in the security game to sample the secret
hashing key hk, and compute the resulting projection key hp. Thus hk is known to
the challenger. Indeed here, in order to prove indistinguishability, the challenger
first replaces the random masking element u ∈ L in the original encryption
scheme with an element sampled outside the language u′ ∈ X\L. Note that in
order to perform this change the challenger must know the secret hashing key.
The hardness of the subset membership problem ensures this goes unnoticed to
any polynomial time adversary. Then the smoothness of the PHF allows one to
replace the plaintext value by some random element from the plaintext space,
thus guaranteeing the indistinguishability of the resulting encryption scheme. We
insist on this point since in Lindell’s protocol [Lin17], many issues arise from the
use of Paillier’s cryptosystem, for which the indistinguishability of ciphertexts no
longer holds if the challenger knows the secret key. In particular this implies that
in Lindell’s game based proof, instead of letting the simulator use the Paillier
secret key to decrypt the incoming ciphertext (and check the corrupted party P2

did not send a different ciphertext c than that prescribed by the protocol), the
simulator guesses when the adversary may have cheated by simulating an abort
with a probability depending on the number of issued signatures. This results in
a proof of security which is not tight.

Moreover, though this technique suffices for a game-based definition, it does
not for simulation-based security definitions. Thus, in order to be able to prove
their protocol using simulation, they use a rather non-standard assumption,
called Paillier-EC assumption [Lin17, Appendix A]. Thanks to the framework
we have chosen to adopt, we are able to avoid such an artificial interactive
assumption. Moreover, should one write a game based proof for our construction,
the security loss present in [Lin17] would not appear.

Finally we note that the correctness of our protocol follows from the fact
Encode is an efficient isomorphism, and from the fact the hash function is linearly
homomorphic for any public key in the efficiently recognisable space K ′

hp.

Theorem 1. Assume HPS is a δs/δL−ECDSA-friendly HPS then the protocol
of Fig. 5 securely computes FECDSA in the (Fzk,Fcom−zk)-hybrid model in the
presence of a malicious static adversary (under the ideal/real definition). Indeed
there exists a simulator for the scheme such that no polynomial time adversary –
having corrupted either P1 or P2 – can distinguish a real execution of the protocol
from a simulated one with probability greater than 2δL + δs.

Two-Party ECDSA from HPS and Efficient Instantiations 203

Proof. In this proof, the simulator S only has access to an ideal functionality
FECDSA for computing ECDSA signatures, so all it learns in the ideal world
is the public key Q which it gets as output of the KeyGen phase from FECDSA

and signatures (r, s) for messages m of its choice as output of the Sign phase.
However in the real world, the adversary, having either corrupted P1 or P2 will
also see all the interactions with the non corrupted party which lead to the
computation of a signature. Thus S must be able to simulate A’s view of these
interactions, while only knowing the expected output. To this end S must set
up with A the same public key Q that it received from FECDSA, in order to be
able to subsequently simulate interactively signing messages with A, using the
output of FECDSA from the Sign phase.

Fig. 5. Two-party ECDSA key generation and signing protocols from HPSs

S Simulates P2 – Corrupted P1: We first show that if an adversary A1 corrupts
P1, one can construct a simulator S s.t. the output distribution of S is indistin-
guishable from A1’s view in an interaction with an honest party P2. The main
difference here with the proof of [Lin17] arises from the fact we no longer use
a ZKP from which S can extract the encryption scheme’s secret key. Instead,
S extracts the randomness used for encryption and the plaintext x1 from the
ZKPoK for RHPS−DL, which allows it to recompute the ciphertext and verify it

204 G. Castagnos et al.

obtains the expected value ckey. Moreover since the message space of our encryp-
tion scheme is Z/qZ, if A1 does not cheat in the proofs (which is guaranteed by
the (Fzk,Fcom−zk)-hybrid model), the obtained distributions are identical in the
ideal and real executions (as opposed to statistically close as in [Lin17]).

Key Generation Phase

1. Given input KeyGen(G, P, q), the simulator S sends KeyGen(G, P, q) to the
ideal functionality FECDSA and receives back a public key Q.

2. S invokes A1 on input IKeyGen(G, P, q) and receives the commitment to a
proof of knowledge of x1 such that Q1 = x1P denoted (com − prove, 1, Q1, x1)
as A1 intends to send to FRDL

com−zk, such that S can extract x1 and Q1.
3. Using the extracted value x1, S verifies that Q1 = x1P . If so, it computes

Q2 ← x−1
1 Q (using the value Q received from FECDSA); otherwise S samples

a random Q2 from G.
4. S sends (proof, 2, Q2) to A1 as if sent by FRDL

zk thereby S simulating a proof
of knowledge of x2 s.t. Q2 = x2P .

5. S receives (decom − proof, 1) as A1 intends to send to FRDL

com−zk and simulates
P2 aborting if Q1 �= x1P . S also receives (prove, 3, (hp, ckey, Q1), (x1, w)) as
A1 intends to send to F

RHPS−DL

zk .
6. S computes u from w such that (u,w) ∈ R, and using the extracted value x1

verifies that ckey = Enc((u,w); (hp, x1)), and simulates P2 aborting if not.
7. S sends continue to FECDSA for P2 to receive output, and stores (x1, Q, ckey).

When taking Fzk and Fcom−zk as ideal functionalities, the only difference
between the real execution as ran by an honest P2, and the ideal execution
simulated by S is that in the former Q2 ← x2P where x2

$←− Z/qZ, whereas
in the latter Q2 ← x−1

1 Q, where Q is the public key returned by the ideal
functionality FECDSA. However since FECDSA samples Q uniformly at random
from G, the distribution of Q2 in both cases is identical.

Signing Phase

1. Upon input Sign(sid,m), simulator S sends Sign(sid,m) to FECDSA and
receives back a signature (r, s).

2. S computes the elliptic curve point R = (r, ry) using the ECDSA verification
algorithm.

3. S invokes A1 with input ISign(sid,m) and simulates the first three inter-
actions such that A1 computes R. The strategy is similar to that used to
compute Q, in brief, it proceeds as follows:
(a) S receives (com − prove, sid||1, R1, k1) from A1.
(b) If R1 = k1P then S sets R2 ← k−1

1 R; otherwise it chooses R2 at random.
S sends (proof, sid||2, R2) to A1.

(c) S receives (decom − proof, sid||1) from A1. If R1 �= k1P then S simulates
P2 aborting and instructs the trusted party computing FECDSA to abort.

4. S computes c3 ← Encpk(k1 · s mod q), where s was received from FECDSA,
and sends c3 to A1.

Two-Party ECDSA from HPS and Efficient Instantiations 205

As with the computation of Q2 in the key generation phase, R2 is distributed
identically in the real and ideal executions since R is randomly generated by
FECDSA. The zero-knowledge proofs and verifications are also identically dis-
tributed in the Fzk, Fcom−zk-hybrid model. Thus, the only difference between a
real execution and the simulation is the way that c3 is computed. In the sim-
ulation it is an encryption of k1 · s = k1 · k−1(m′ + r · x) = k−1

2 · (m′ + r · x)
mod q, whereas in a real execution c3 is computed from ckey, using the homo-
morphic properties of the encryption scheme. However, notice that as long as
there exist (u,w) such that ckey = Enc((u,w); (hp, x1)) where Q = x1P – which
is guaranteed by the ideal functionality F

RHPS−DL

zk – and as long as the homomor-
phic operations hold – which is guaranteed for any hp in the efficiently verifiable
ensemble K ′

hp (cf. Subsect. 3.2) – the c3 obtained in the real scenario is also an
encryption of s′ = k−1

2 · (m′ + r · x) mod q. Thus c3 is distributed identically in
both cases.

This implies that the view of a corrupted P1 is identical in the real and
ideal executions of the protocol (in the Fzk, Fcom−zk-hybrid model), i.e., the
simulator perfectly simulates the real environment, which completes the proof
of this simulation case.

S Simulates P1 – Corrupted P2: We now suppose an adversary A2 corrupts P2

and describe the ideal execution of the protocol. We demonstrate via a sequence
of games – where the first game is a real execution and the last game is a
simulated execution – that both executions are indistinguishable. This proof
methodology differs considerably to that of [Lin17] since the main differences
between a real and simulated execution are due to the ciphertext ckey, so the
indistinguishability of both executions reduces to the ind-cpa security of the
underlying encryption scheme. The necessity for the properties required of HPS
will thus here become apparent. We first describe an ideal execution of the
protocol:

Key Generation Phase

1. Given input KeyGen(G, P, q), the simulator S sends KeyGen(G, P, q) to the
functionality FECDSA and receives back Q.

2. S invokes A2 upon input IKeyGen(G, P, q) and sends (proof − receipt, 1) as
A2 expects to receive from FRDL

com−zk.
3. S receives (prove, 2, Q2, x2) as A2 intends to send to FRDL

zk .
4. Using the extracted value x2, S verifies that Q2 is a non zero point on the

curve and that Q2 = x2P . If so it computes Q1 ← (x2)−1Q and sends
(decom − proof, 1, Q1) to A2 as it expects to receive from FRDL

com−zk. If not
it simulates P1 aborting and halts.

5. S samples hk ←↩ Dhk and computes hp ← α(hk). It also samples x̃1
$←− Z/qZ

and (u,w) ∈ R and computes ckey ← Enc((u,w); (hp, x̃1)).
6. S sends (proof, 3, (hp, ckey, Q1)) to A2, as A2 expects to receive from

F
RHPS−DL

zk .
7. S sends continue to FECDSA for P1 to receive output, and stores Q.

206 G. Castagnos et al.

Signing Phase

1. Upon input Sign(sid,m), simulator S sends Sign(sid,m) to FECDSA and
receives back a signature (r, s).

2. S computes the point R = (r, ry) using the ECDSA verification algorithm.
3. S invokes A2 with input ISign(sid,m) and sends (proof − receipt, sid||1) as

A2 expects to receive from FRDL

com−zk.
4. S receives (prove, sid||2, R2, k2) as A2 intends to send to FRDL

zk .
5. Using the extracted value k2, S verifies that R2 is a non zero point and that

R2 = k2P . If so it computes R1 ← k−1
2 R and sends (decom − proof, sid||1, R1)

to A2 as it expects to receive from FRDL

com−zk. If not it simulates P1 aborting
and instructs the trusted party computing FECDSA to abort.

6. S receives c3 = (ū, ē) from A2, which it can decrypt using hk, i.e. α ←
Decode

(
ē

Hhk(ū)

)
. If α = k−1

2 ·(m′+r·x2 ·x̃1) mod q then S sends continue to

the trusted party FECDSA, s.t. the honest party P1 receives output. Otherwise
it instructs FECDSA to abort.

We now describe the sequence of games. Game0 is the real execution of the
protocol, and we finish in Game6 which is the ideal simulation described above.
In the following intermediary games, only the differences in the steps performed
by S are depicted.

Game0 Game1 Game2

Q ← x1x2P Q ← x1x2P Q ← x1x2P
...

...
...

hk ←↩ Dhk hk ←↩ Dhk hk ←↩ Dhk

hp ← α(hk) hp ← α(hk) hp ← α(hk)

Sample (u, w) ∈ R ũ
$←− X\L

ckey ← Enc(hp, x1) ckey ← (u,Hhk(u) · Encode(x1)) ckey ← (ũ,Hhk(ũ) · Encode(x1))
...

...
...

R ← k1k2P R ← k1k2P R ← k1k2P

We now demonstrate that the previous games are indistinguishable from the
view of A2. Intuitively, in Game1 the simulator uses the secret hashing key hk
instead of the public projection key hp to compute ckey. Though the values are
computed differently, they are distributed identically, and are perfectly indis-
tinguishable. Next in Game2 we replace the first element of the ciphertext (in
Game1 this is u ∈ L) with an element ũ ∈ X\L. By the hardness of the subset
membership problem Game1 and Game2 are indistinguishable. Next in Game3
we multiply the second element of the ciphertext by a random element of the
subgroup group F in which messages are encoded (or equivalently, add a ran-
dom element of Z/qZ to x1 such that this sum will be encoded in F), under

Two-Party ECDSA from HPS and Efficient Instantiations 207

Game3 Game4

Q ← x1x2P Q ← x1x2P
...

...

hk ←↩ Dhk hk ←↩ Dhk

hp ← α(hk) hp ← α(hk)

ũ
$←− X\L, γ

$←− Z/qZ Sample (u, w) ∈ R, γ
$←− Z/qZ

ckey ← (ũ,Hhk(ũ) · Encode(x1 + γ)) ckey ← (u,Hhk(u) · Encode(x1 + γ))
...

...

R ← k1k2P R ← k1k2P

Game5 Game6

Q ← x1x2P Q ← FECDSA

...
...

hk ←↩ Dhk hk ←↩ Dhk

hp ← α(hk) hp ← α(hk)

Sample γ
$←− Z/qZ Sample γ

$←− Z/qZ

ckey ← Enc(hp, x1 + γ)) ckey ← Enc(hp, x1 + γ))
...

...

R ← k1k2P R ← FECDSA

the assumption that the HPS is δs−smooth over X in F, the obtained distribu-
tions of the public key and ciphertext (as seen by an adversary) are δs−close. So
both games are indistinguishable. We then again use the hardness of the subset
membership problem underlying the hash proof to hop from Game3 to Game4,
such that in the latter the first element of the ciphertext is once again in L; and
again Game4 to Game5 are identical from an adversary’s point of view since we
simply use the public evaluation function of the hash function H instead of the
private one. And finally in Game6 we change the way R and Q are generated.

We denote by Ei the probability that an algorithm interacting with the sim-
ulator in Gamei outputs 1. Thus by demonstrating that |Pr[E0] − Pr[E6]| is
negligible, we demonstrate that – from A2’s view, the real and ideal executions
are indistinguishable.

Invalid Ciphertexts: We define the notion of invalid ciphertexts as these will
be useful in our game steps. A ciphertext is said to be invalid if it is of the
form (u′, e′) := (u′,Hhk(u′) · Encode(m′)) where u′ ∈ X\L. Note that one can
compute such a ciphertext using the secret hashing key hk, but not the public
projection key hp; that the decryption algorithm applied to (u′, e′) with secret
key hk recovers m′; and that an invalid ciphertext is indistinguishable of a valid
one under the hardness of the subset membership problem.

208 G. Castagnos et al.

Homomorphic Properties over Invalid Ciphertexts: It is easy to verify that homo-
morphic operations hold even if a ciphertext is invalid, whether this be between
two invalid ciphertexts of between a valid and invalid ciphertext. This is true
since the homomorphic properties we required of the hash family hold over the
whole group X (and not only in L).

Game0 to Game1. In Game0 and in Game1, Q and R are computed in the same
way. The only difference between Game0 and Game1 is the way ckey is computed,
namely we use the secret hashing key hk instead of the public projection key
hp and the witness w to compute ckey. Though the values are computed differ-
ently, they are distributed identically, and are perfectly indistinguishable from
an adversary’s point of view: |Pr[E1] − Pr[E0]| = 0.

Game1 to Game2. Suppose that D is able to distinguish, with non negligible
advantage, between the distribution generated in Game1 from that generated
in Game2. Then we can devise Ŝ that can use D to break the hard subset
membership assumption, i.e., distinguish random elements of L from those of
X\L. The input of Ŝ is a hard subset membership challenge x∗ which is either
an element in L or an element of X\L. Precisely Ŝ works as S would in Game1,
interacting with the distinguisher D instead of A2, the only difference being that
instead of sampling (u,w) ∈ R it sets u := x∗ and computes ckey ← (u,Hhk(u) ·
Encode(x1)). When D returns a bit b (relative to Gameb+1), Ŝ returns the same
bit, where 0 represents the case x∗ ∈ L and 1 represents the case x∗ ∈ X\L.

Analysis – Case x∗ ∈ L: There exists w ∈ W such that (x∗, w) ∈ R and
Hhp(x∗, w) = Hhk(x∗). So ckey = (u, e) is an encryption of x1 as computed
in Game1. Case x∗ ∈ X\L: The ciphertext is (x∗,Hhk(x∗) · Encode(x1)), which
is exactly the distribution obtained in Game2. So the advantage of Ŝ in breaking
the hard subset membership assumption is at least that of D in distinguishing
both games. Thus: |Pr[E2] − Pr[E1]| ≤ δL.

Game2 to Game3. Let us denote x̃1 := x1 +γ mod q. Under the assumption that
the HPS is δs-smooth over X in F (i.e. the co-domain of Encode), it holds that
the distribution of (x∗,Hhk(x∗) · Encode(x1)) and of (x∗,Hhk(x∗) · Encode(x1) ·
Encode(γ) = Hhk(x∗) · Encode(x̃1)) for some random x̃1 ∈ Z/qZ are δs−close.
Thus replacing (x∗,Hhk(x∗) · Encode(x1)) by (x∗,Hhk(x∗) · Encode(x̃1)) – as is
done from Game2 to Game3 – cannot be noticed by any PT adversary with
advantage greater than δs and: |Pr[E3] − Pr[E2]| ≤ δs.

Game3 to Game4. The change here is exactly that between Game1 and Game2, thus
both games are indistinguishable under the hardness of the subset membership
problem on which relies the HPS and: |Pr[E4] − Pr[E3]| ≤ δL.

Game4 to Game5. The change here is exactly that between Game0 and Game1, thus
both games are perfectly indistinguishable, even for an unbounded adversary,
thus: |Pr[E5] − Pr[E4]| = 0.

Game5 to Game6. The only differences between Game5 and Game6 are the ways
Q and R are generated. In Game5, Q and R derive from a Diffie-Hellman

Two-Party ECDSA from HPS and Efficient Instantiations 209

Key Exchange, which can be simulated. Moreover, since the ideal function-
ality FECDSA samples Q and R uniformly at random from the group G, it
holds that x−1

2 Q and x1P have the same distribution, as do k−1
2 R and k1P . All

other steps of Game5 and Game6 are identical. We conclude that, in the Fzk,
Fcom−zk hybrid model, Game5 and Game6 are identical from A2’s view, and so:
|Pr[E6] − Pr[E5]| = 0.

Real/Ideal Executions. Putting together the above probabilities, we get that:
|Pr[E6] − Pr[E0]| ≤ 2δL + δs, and so, assuming the hardness of the subset mem-
bership problem underlying HPS, and assuming the smoothness of HPS, it holds
that the real and ideal executions are computationally indistinguishable from
A2’s view, which concludes the proof of the theorem. ��

4 Instantiation in Class Groups of an Imaginary
Quadratic Field

In this section, we give an instantiation of a hash proof system with the required
properties in order to apply the generic construction of the previous section.
For that we will use a linearly homomorphic encryption scheme modulo a prime
number, denoted CL in the following, introduced in [CL15] using a group with an
easy Dlog subgroup, with a concrete instantiation using class groups of quadratic
fields. In order to define a HPS, we use the recent results of [CLT18] that
enhance the CL framework by introducing a hard subgroup membership assump-
tion (HSM). We first give the definition of this assumption in the context of a
group with an easy Dlog subgroup, then the instantiation with class groups, and
then define a HPS from HSM and prove that it has the required properties to
instantiate the generic construction in Sect. 3.

4.1 A Hard Subgroup Membership Assumption

To start with, we explicitly define the generator GenGroup used in the framework
of a group with an easy Dlog subgroup introduced in [CL15] and enhanced in
[CLT18], with small modifications as discussed below.

Definition 4. Let GenGroup be a pair of algorithms (Gen,Solve). The Gen algo-
rithm is a group generator which takes as inputs a parameter λ and a prime
q and outputs a tuple (s̃, g, f, gq, Ĝ, G, F,Gq). The set (Ĝ, ·) is a finite abelian
group of order q · ŝ where the bitsize of ŝ is a function of λ and gcd(q, ŝ) = 1.
The algorithm Gen only outputs an upper bound s̃ of ŝ. It is also required that
one can efficiently recognise valid encodings of elements in Ĝ. The set (F, ·) is
the unique cyclic subgroup of Ĝ of order q, generated by f . The set (G, ·) is a
cyclic subgroup of Ĝ of order q · s where s divides ŝ. By construction F ⊂ G,
and, denoting Gq := {xq, x ∈ G} the subgroup of order s of G, it holds that
G = Gq × F . The algorithm Gen outputs f , gq and g := f · gq which are respec-
tive generators of F , Gq and G. Moreover, the Dlog problem is easy in F , which

210 G. Castagnos et al.

means that the Solve algorithm is a deterministic polynomial time algorithm that
solves the discrete logarithm problem in F :

Pr
[
x = x� : (s̃, g, f, gq, Ĝ, G, F,Gq) ← Gen(1λ, q), x $←− Z/qZ,X ← fx,

x� ← Solve(q, s̃, g, f, gq, Ĝ, G, F,Gq,X)
]

= 1.

Remark 1. In this definition, there are a few modifications compared to the
definition of [CLT18]. Namely we take as input the prime q instead of having
Gen generating it, and we output the group Ĝ from which the group G with an
easy Dlog subgroup F is produced. In practice, with the concrete instantiation
with class groups, this is a just a matter of rewriting: the prime q was generated
independently of the rest of the output in [CL15,CLT18] so it can be an input
of the algorithm, and the group Ĝ would be the class group which was implicitly
defined by its discriminant. We note that it is easy to recognise valid encodings
of Ĝ while it will be not so for elements of G ⊂ Ĝ. This is an important difference
with Paillier’s encryption, and one of the reason why Lindell’s LPDL proof does
not work in our setting.

We recall here the definition of a hard subgroup membership (HSM) problem
within a group with an easy Dlog subgroup as defined in [CLT18]. HSM is closely
related to Paillier’s DCR assumption. Such hard subgroup membership problems
are based on a long line of assumptions on the hardness of distinguishing powers
in groups. In short, DCR and HSM are essentially the same assumption but in
different groups, hence there is no direct reduction between them. We emphasise
that this assumption is well understood both in general, and for the specific case
of class groups of quadratic fields, which we will use to instantiate GenGroup.
It was first used by [CLT18] within class groups, this being said, cryptography
based on class groups is now well established, and is seeing renewed interest
as it allows versatile and efficient solutions such as encryption switching pro-
tocols [CIL17], inner product functional encryption [CLT18] or verifiable delay
functions [BBBF18,Wes19].

In Definition 4, one has G = F × Gq. The assumption is that it is hard to
distinguish the elements of Gq in G.

Definition 5 (HSM assumption). We say that GenGroup is the generator of
a HSM group with easy Dlog subgroup F if it holds that the HSM problem is hard
even with access to the Solve algorithm. Let D (resp. Dq) be a distribution over
the integers such that the distribution {gx, x ←↩ D} (resp. {gx

q , x ←↩ Dq}) is at
distance less than 2−λ from the uniform distribution in G (resp. in Gq). Let A
be an adversary for the HSM problem, its advantage is defined as:

AdvHSMA (λ) =
∣∣∣∣2 · Pr

[
b = b� : (s̃, g, f, gq, Ĝ, G, F,Gq) ← Gen(1λ, q),

x ←↩ D, x′ ←↩ Dq, b
$←− {0, 1}, Z0 ← gx, Z1 ← gx′

q ,

b� ← A(q, s̃, g, f, gq, Ĝ, G, F,Gq, Zb,Solve(.))
] − 1

∣∣∣∣

Two-Party ECDSA from HPS and Efficient Instantiations 211

The HSM problem is said to be hard in G if for all probabilistic polynomial time
attacker A, AdvHSMA (λ) is negligible.

Class Groups. Our instantiation makes use of class groups of orders of imagi-
nary quadratic fields. We refer the interested reader to [BH01] for background on
this algebraic object and its early use in cryptography. We here briefly sketch an
instantiation of algorithm GenGroup in Definition 4, following [CL15, Fig. 2]. The
formal description is given in Fig. 6 below and concrete details can be found in
[CL15]. Let q be a prime. We construct a fundamental discriminant ΔK := −q · q̃
where q̃ is a prime such that q · q̃ ≡ −1 (mod 4) and (q/q̃) = −1. We then con-
sider the non-maximal order of discriminant Δq := q2 · ΔK and its class group
Ĝ := Cl(Δq) whose order is h(Δq) = q · h(ΔK) where h(ΔK) is the class num-
ber, i.e., the order of Cl(ΔK), the class group of fundamental discriminant Δk.
This number is known to satisfy the following inequality (see [Coh00, p. 295]
for instance): h(ΔK) < 1

π log |ΔK |√|ΔK | which is the bound we take for s̃ (a
slightly better bound can be computed from the analytic class number formula).

Elements of Ĝ are classes of ideals of the order of discriminant Δq. Such
classes can be represented by a unique reduced ideal. Moreover, ideals can be
represented using the so-called two elements representation which correspond
to their basis as a lattice of dimension two. Informally, classes can be uniquely
represented by two integers (a, b), a, b <

√|Δq| and one can efficiently verify
that this indeed defines an element of Ĝ (by checking if b2 ≡ Δq (mod 4a)).
The arithmetic in class groups (which corresponds to reduction and composition
of quadratic forms) is very efficient: the algorithms have a quasi linear time
complexity using fast arithmetic (see [Coh00]).

Following [CL15, Fig. 2], we build a generator gq of a cyclic subgroup of
q−th powers of Ĝ, and denote Gq := 〈gq〉. Then we build a generator f for
the subgroup F of order q, and then set g := f · gq as a generator of a cyclic
subgroup G of Cl(Δq) of order q · s, where s is unknown. Computing discrete
logarithms is easy in F thanks to the following facts. We denote the surjection
ϕ̄q : Cl(Δq) −→ Cl(ΔK). From [CL09, Lemma 1], its kernel is cyclic of order q
and is generated by f represented by (q2, q). Moreover, if 1 � m � q − 1 then,
once reduced, fm is of the form (q2, L(m)q) where L(m) is the odd integer in
[−q, q] such that L(m) ≡ 1/m (mod q), which gives the efficient algorithm to
compute discrete logarithms in 〈f〉.

Note that following [CL15] the bit size of q must have at least λ bits, where
λ is the security parameter, which is the case for ECDSA: q will be the order
of the elliptic curve. The size η(λ) of ΔK is chosen to resist the best practical
attacks, which consists in computing discrete logarithms in Cl(ΔK) (or equiv-
alently the class number h(ΔK)). An index-calculus method to solve the Dlog
problem in a class group of imaginary quadratic field of discriminant ΔK was
proposed in [Jac00]. It is conjectured in [BJS10] that a state of the art implemen-
tation of this algorithm has complexity O(L|ΔK |[1/2, o(1)]), which allows to use
asymptotically shorter keys compared to protocols using classical problems that

212 G. Castagnos et al.

Fig. 6. Group generator Gen

are solved in subexponential complexity O(L[1/3, o(1)]) (see Sect. 5 for concrete
sizes for η).

4.2 A Smooth Homomorphic Hash Proof System from HSM

We set X := G and L := Gq then X ∩ L = Gq and the HSM assumption
states that it is hard to distinguish random elements of G from those of Gq.
This clearly implies the hardness of the subset membership problem, i.e., it is
hard to distinguish random elements of G\Gq from those of Gq.

Let D be a distribution over the integers such that the distribution {gw, w ←↩
D} is at distance δD ≤ 2−λ of the uniform distribution in G.

Associated Projective Hash Family. Let PHF be the projective hash family associ-
ated to the above subset membership problem, the description of which specifies:

– A hash key space K := Z.
– A keyed hash function, with input and output domain G, s.t., for hk ←↩ D,

and for x ∈ G, Hhk(x) := xhk.
– An auxiliary function α : K 	→ Gq such that for hk ∈ K, α(hk) := Hhk(gq) =

ghkq . Notice that for a hash key hk, and for x ∈ Gq, the knowledge of α(hk)
completely determines the value Hhk(x).

– An efficient public evaluation function, such that, for x ∈ Gq with witness
w such that x = gw

q one can efficiently compute Hhk(x) = α(hk)w = xhk

knowing only the value of the auxiliary function α(hk) (but not hk).

Lemma 1 (Smoothness). The projective hash family PHF is δs-smooth over G

in F , with δs � 2δD, i.e., for any x ∈ G\Gq, π ← fγ ∈ F ⊂ G where γ
$←− Z/qZ

and k ←↩ D, the distributions D1 := {x, gk
q , π ·xk} and D2 := {x, gk

q , xk} are less
than 2δD-close.

Two-Party ECDSA from HPS and Efficient Instantiations 213

Proof. For x ∈ G\Gq, there exist a ∈ Z/sZ and b ∈ (Z/qZ)∗ such that x = ga
q f b.

Thus we can write D1 = {ga
q f b, gk

q , ga·k
q f b·k+γ} and D2 = {ga

q f b, gk
q , ga·k

q f b·k}.
It remains to study the statistical distance of the third coordinates of the two
distributions, given the two first coordinates, i.e, if (a mod s), (b mod q), and
(k mod s) are fixed. This is the statistical between X := b · k + γ and Y := b · k
in Z/qZ. Since γ is uniform in Z/qZ, X is the uniform distribution. As D is by
definition at statistical distance δD from the uniform distribution modulo q · s,
and gcd(q, s) = 1, one can prove (cf. [CCLST19, Appendix 2]) that even knowing
(k mod s), the distribution of (k mod q) is at distance less than 2δD from the
uniform distribution over Z/qZ. As a result, the distance between X and Y is
bounded by 2δD , which concludes the proof. ��

Linearly Homomorphic. For all hk ∈ Z, and u1, u2 ∈ G, Hhk(u1) · Hhk(u2) =
uhk
1 · uhk

2 = (u1 · u2)hk = Hhk(u1 · u2). Thus Hhk is a homomorphism for each hk.

Resulting Encryption Scheme. A direct application of Subsect. 3.3 using the
above HPS results in the encryption scheme called HSM-CL in [CLT18], which
is linearly homomorphic modulo q and ind−cpa under the HSM assumption. We
describe this scheme in Fig. 7 for completeness. Note that here the secret key x
(and the randomness r) is drawn with a distribution Dq such that {gx

q , x ←↩ Dq}
is at distance less than 2−λ from the uniform distribution in Gq, this does not
change the view of the attacker. Let S := 2λ−2 · s̃. In practice, we will use for
Dq the uniform distribution on {0, . . . , S}.

4.3 A Zero-Knowledge Proof for RCL−DL

We describe here the ZKPoK for RHPS−DL used for our instantiation with the
encryption scheme of Fig. 7 and denote it RCL−DL. It relies on the Schnorr-like
GPS (statistically) zero-knowledge identification scheme [GPS06] that we turn
into a zero-knowledge proof of knowledge of the randomness used for encryption
and of the discrete logarithm of an element on an elliptic curve, using a binary
challenge. This proof is partly performed in a group of unknown order.

Fig. 7. Description of the HSM-CL encryption scheme

214 G. Castagnos et al.

We denote ckey := (c1, c2). If ckey is a valid encryption of x1 under public
key pk it holds that ckey = (gr

q , fx1pkr) for some r ∈ {0, . . . , S}. The protocol
RCL−DL provides a ZKPoK for the following relation:

RCL−DL := {(pk, (c1, c2), Q1); (x1, r) | c1 = gr
q ∧ c2 = fx1pkr ∧ Q1 = x1G}.

Fig. 8. The zero-knowledge proof of knowledge RCL−DL

Theorem 2, whose proof is given in the full version of the paper [CCLST19,
Appendix 3], states the security of the zero-knowledge proof of knowledge
RCL−DL.

Theorem 2. The protocol described in Fig. 8 is a statistical zero-knowledge
proof of knowledge with soundness 2−�, as long as is polynomial and S/A
is negligible, where A is a positive integer.

4.4 Two-Party Distributed ECDSA Protocol from HSM

The protocol results from a direct application of Subsect. 3.5 using the HPS
defined in Subsect. 4.2, an the RCL−DL proof of the previous subsection. Therefore
we defer the detailed protocol to the full version [CCLST19, Appendix 4], and
simply state the following theorem.

Theorem 3. Assuming GenGroup is the generator of a HSM group with easy
Dlog subgroup F , then the generic construction of Fig. 5, instantiated with the
HSM-based PHF of Subsect. 4.2 securely computes FECDSA in the (Fzk,Fcom−zk)-
hybrid model in the presence of a malicious static adversary (under the ideal/real
definition).

Two-Party ECDSA from HPS and Efficient Instantiations 215

5 Implementation and Efficiency Comparisons

In this section we compare an implementation of our protocol with Lindell’s
protocol of [Lin17]. For fair comparison, we implement both protocols with the
Pari C Library ([PAR18]), as this library handles arithmetic in class groups,
Z/nZ and elliptic curves. In particular, in this library, exponentiations in Z/nZ
and in class groups both use the same sliding window method. The running
times are measured on a single core of an Intel(R) Core(TM) i7-7700 CPU @
3.60 GHz (even if key generation can easily be parallelized). We do not implement
commitments (this does not bias the comparison as they appear with equal
weight in both schemes), and we only measure computation time and do not
include communication (again this is fair as communication is similar).

As in [Lin17], we ran our implementation on the standard NIST curves P-256,
P-384 and P-521, corresponding to levels of security 128, 192 and 256. For the
encryption scheme, we start with a 112 bit security, as in [Lin17], but also study
the case where its level of security matches the security of the elliptic curves.

Again as in [Lin17], we fixed the number of rounds in zero knowledge proofs
to reach a statistical soundness error of 2−40. For the distributions we also set
the parameters to get statistical error of 2−40. The zero knowledge proofs for
RDL are implemented with the Schnorr protocol.

In the following, we review the theoretical complexity and experimental
results of both schemes, before comparing them. In terms of theoretical com-
plexity, exponentiations in the encryption schemes dominate the computation
as elliptic curve operations are much cheaper. Thus, we only count these expo-
nentiations; we will see this results in an accurate prediction of experimental
timings.

5.1 Lindell’s Protocol with Paillier’s Encryption Scheme

The key generation uses on average 360 Paillier exponentiations (of the form
rN mod N2) but not all of them are full exponentiations. The signing phase
uses only 2 Paillier exponentiations.

The timings corresponds to the mean of several experiments (30 to 1000
depending on the security level). The timings are quite stable other than the
generation of the RSA modulus in the key generation. We use standard RSA
integers (i.e., not strong prime factors) as this would be too slow for high security
levels. For example, for 256 bits security (15360 bits modulus), the generation
of the modulus takes 95 s (mean of 30 experiments) with a standard deviation
of 56 s. For the rest of the protocol the experimental timings are roughly equal
to the number of exponentiations multiplied by the cost of one exponentiation.

The result are summarized in Fig. 9a. Timings are given in milliseconds and
sizes in bits. The columns corresponds to the elliptic curve used for ECDSA, the
security parameter in bits for the encryption scheme, the corresponding modulus
bit size, the timings of one Paillier exponentiation, of the key generation and of
the signing phase and the total communication in bits for two phases. Modulus
sizes are set according to the NIST recommendations.

216 G. Castagnos et al.

Note that for the first line, we use a 2048 bits modulus as in [Lin17] and we
obtain a similar experimental result.

Fig. 9. Experimental results (timings in ms, sizes in bits)

5.2 Our Protocol with HSM-CL Encryption Scheme

The key generation uses a total of 160 class group exponentiations (of the form
gr

q in the class group of discriminant Δq = −q3 · q̃). This corresponds to the
40 rounds of the RCL−DL zero-knowledge proof of knowledge of Fig. 8. Note that
exponentiations in 〈f〉 are almost free as seen in Subsect. 4.1. Signing uses 3 class
group exponentiations (one encryption and one decryption).

We use the same number of experiments as for Lindell’s protocol. Here tim-
ings are very stable. Indeed during key generation, we only compute the public
key h ← gx

q with one exponentiation, as the output of Gen (mainly the discrimi-
nant Δq of the class group and the generator gq) is a common public parameter
that only depends on the cardinality q of the elliptic curve. As a result this can
be considered as an input of the protocol, as the same group can be used by all
users. Moreover, doing this does not change the global result of the comparison
with Lindell’s protocol: the running time of Gen is dominated by the generation
of q̃, a prime of size much smaller than the factor of the RSA modulus. So even if
we add this running time in the Keygen column, this does not affect the results
of our comparisons for any of the considered security levels.

The results are summarized in Fig. 9b. Timings are in milliseconds and sizes in
bits. The columns correspond to the elliptic curve used for ECDSA, the security
parameter in bits for the encryption scheme, the corresponding fundamental
discriminant ΔK = −q · q̃ bit size, the timings of one class group exponentiation,
of the key generation and of the signing phase and the total communication in
bits for two phases. The discriminant sizes are chosen according to [BJS10].

Two-Party ECDSA from HPS and Efficient Instantiations 217

5.3 Comparison

Figure 9 shows that Lindell’s protocol is faster for both key generation and sign-
ing for standard security levels for the encryption scheme (112 and 128 bits of
security) while our solution remains of the same order of magnitude. However
for high security levels, our solution becomes faster (in terms of key generation
from a 192-bits security level and for both key generation and signing from a
256-bits security level).

In terms of communications, our solution outperforms the scheme of Lindell
at all level of security by a factor 5 to 10 for Keygen. For Signing, we gain 15%
for basic security to a factor 2 at 256-bits security level. In terms of rounds, our
protocol uses 126 rounds for Keygen and Lindell’s protocol uses 175 rounds, so
we get a 28% gain. Both protocol use 7 rounds for Signing.

This situation can be explained by the following facts. Firstly we use less
than half the number of exponentiations in the key generation as we do not
need a range proof: our message space is Z/qZ as the CL encryption scheme is
homomorphic modulo a prime. Secondly, with class groups of quadratic fields
we can use lower parameters than with Z/nZ (as shown in the introduction, the
best algorithm against the discrete logarithm problem in class groups has com-
plexity O(L[1/2, o(1)]) compared to an O(L[1/3, o(1)]) for factoring). However,
the group law is more complex in class groups. By comparing the Expo. time
columns in the tables, we see that exponentiations in class groups are cheaper
from the 192 bits level. So even if we use half as many exponentiations, the
key generation for our solution only takes less time from that level (while being
of the same order of magnitude below this level). For signing, we increase the
cost by one exponentiation due to the Elgamal structure of the CL encryption
scheme. However, one can note that we can pre process this encryption by com-
puting (gτ

q , hτ) in an offline phase and computing c1 ← (gτ
q , hτfk−1

2 m′
) which

results in only one multiplication in the online phase (cf. the description of the
protocol in the full version [CCLST19, Appendix V]). As a result we will have
only one exponentiation in the online signing for the decryption operation. The
same holds for Lindell’s protocol with Paillier. Using that both protocols take
the same time for signing at the 192 bits level.

Obtaining a 2−60 Soundness Error. Increasing the number of rounds only impacts
KeyGen, where Lindell’s scheme and ours both use 40 iterations of ZK proofs to
achieve a 2−40 soundness error. Lindell’s protocol performs 9 exponentiations
per iteration while ours performs 4. All timings will thus be multiplied by 3/2
to achieve a 2−60 soundness error, and indeed this is what we observe in prac-
tice. Complexity is linear in the number of iterations and the ratio between our
timings and those of [Lin17] remains constant.

6 Conclusion

Inspired by Lindell’s scheme, we have provided the first generic construction
for two-party ECDSA signing from hash proof systems which are homomorphic

218 G. Castagnos et al.

modulo a prime number. Theoretically, our construction allows for a simulation-
based proof of security that is both tight and requires no artificial interactive
assumptions, due to the structure of the underlying semantically secure homo-
morphic encryption schemes. Practically, we provide a detailed instantiation,
and C implementation, from class groups of imaginary quadratic fields using
the CL framework. This yields a better performance than Lindell’s Paillier-
based scheme for high levels of security, and same order of magnitude for stan-
dard levels. Our solution becomes faster than Lindell’s from 192-bits of security
upwards. Improvements could come from advances in ideal arithmetic in imag-
inary quadratic fields (see [IJS10] for instance). Recent proposals of verifiable
delay functions based on class groups should also motivate research in this area
(for example the Chia Network [Chi] has opened a competition for this).

Moreover, the bottleneck of our instantiation is the use of binary challenges in
a zero knowledge proof of knowledge, used during key generation, in order to cope
with the fact we are working in a cyclic subgroup of a group of unknown order
and that we can not check that elements belong to the subgroup. There have been
many proposals to deal with generalized Schnorr proofs in groups of unknown
order (see for instance the framework of [CKY09] using safeguard groups, or
[TW12]). For the case of subgroups of (Z/nZ)×, efficient solutions for this type
of proofs enlarge the challenge space, and rely on variants of the strong RSA
assumption. For class groups, there have been informal proposals (see [DF02] for
instance). However, computing square roots or finding elements of order 2 can
be done efficiently in class groups knowing the factorization of the discriminant
(which is public in our case). Moreover, as suggested in [BBF18], there may be
other approaches to find low order elements in class groups. Advances in our
understanding of class groups would lead to substantial efficiency improvements
in several areas of cryptography.

Last but not least, our work focuses on the two party case. We believe that
the ideas of our generic construction will lead to improvements in the general
case of threshold ECDSA signatures. We leave this for future work.

Acknowledgements. The authors would like to thank Benôıt Libert for fruitful dis-
cussions. This work was supported by the Universita’ degli Studi di Catania, “Piano
della Ricerca 2016/2018 Linea di intervento 2”, and the French ANR ALAMBIC project
(ANR-16-CE39-0006).

References

[BBBF18] Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol.
10991, pp. 757–788. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96884-1 25

[BBF18] Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712 (2018). https://eprint.iacr.
org/2018/712

[BH01] Buchmann, J., Hamdy, S.: A survey on IQ cryptography. In: Proceedings
of Public Key Cryptography and Computational Number Theory (2001)

https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712

Two-Party ECDSA from HPS and Efficient Instantiations 219

[BH03] Bauer, M.L., Hamdy, S.: On class group computations using the number
field sieve. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp.
311–325. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
40061-5 19

[BJS10] Biasse, J.-F., Jacobson, M.J., Silvester, A.K.: Security estimates for
quadratic field based cryptosystems. In: Steinfeld, R., Hawkes, P. (eds.)
ACISP 2010. LNCS, vol. 6168, pp. 233–247. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14081-5 15

[Boy86] Boyd, C.: Digital multisignature. In: Baker, H., Piper, F. (eds.) Cryptog-
raphy and Coding, pp. 241–246. Clarendon Press (1989)

[CCLST19] Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.:
Two-party ECDSA from hash proof systems and efficient instantiations.
Cryptology ePrint Archive, Report 2019/503 (2019). https://eprint.iacr.
org/2019/503

[CH89] Croft, R.A., Harris, S.P.: Public-key cryptography and reusable shared
secrets. In: Baker, H., Piper, F. (eds.) Cryptography and Coding, pp. 189–
201. Clarendon Press, Oxford (1989)

[Chi] Chia. https://www.chia.net/
[CIL17] Castagnos, G., Imbert, L., Laguillaumie, F.: Encryption switching pro-

tocols revisited: switching modulo p. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10401, pp. 255–287. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 9

[CKY09] Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized
schnorr proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 425–442. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-01001-9 25

[CL09] Castagnos, G., Laguillaumie, F.: On the security of cryptosystems with
quadratic decryption: the nicest cryptanalysis. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 260–277. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-01001-9 15

[CL15] Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from
DDH. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2 26

[CLT18] Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unre-
stricted inner product functional encryption modulo p. In: Peyrin, T.,
Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 733–
764. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-
3 25

[Coh00] Cohen, H.: A Course in Computational Algebraic Number Theory.
Springer, Heidelberg (2000)

[CS98] Cramer, R., Shoup, V.: A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055717

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 4

[CS03] Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption
of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol.
2729, pp. 126–144. Springer, Heidelberg (2003). https://doi.org/10.1007/
978-3-540-45146-4 8

https://doi.org/10.1007/978-3-540-40061-5_19
https://doi.org/10.1007/978-3-540-40061-5_19
https://doi.org/10.1007/978-3-642-14081-5_15
https://eprint.iacr.org/2019/503
https://eprint.iacr.org/2019/503
https://www.chia.net/
https://doi.org/10.1007/978-3-319-63688-7_9
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/978-3-642-01001-9_15
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1007/978-3-030-03329-3_25
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/978-3-540-45146-4_8

220 G. Castagnos et al.

[Des88] Desmedt, Y.: Society and group oriented cryptography: a new concept.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 8

[DF90] Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 28

[DF02] Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment
scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36178-2 8

[DKLs18] Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold
ECDSA from ECDSA assumptions. In: 2018 IEEE Symposium on Security
and Privacy, pp. 980–997. IEEE Computer Society Press (2018)

[DKLs19] Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Threshold ECDSA from
ECDSA assumptions: the multiparty case. In: 2019 IEEE Symposium on
Security and Privacy, pp. 980–997. IEEE Computer Society Press (2019)

[GG18] Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast
trustless setup. In: ACM CCS 2018. ACM Press (2018)

[GGN16] Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal
DSA/ECDSA signatures and an application to bitcoin wallet secu-
rity. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016.
LNCS, vol. 9696, pp. 156–174. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-39555-5 9

[GJKR96] Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS
signatures. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 354–371. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
68339-9 31

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18, 186–208 (1989)

[Gol01] Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge Uni-
versity Press, Cambridge (2001)

[GPS06] Girault, M., Poupard, G., Stern, J.: On the fly authentication and signa-
ture schemes based on groups of unknown order. J. Cryptol. 19, 463–487
(2006)

[HL10] Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols: Techniques
and Constructions, 1st edn. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14303-8

[HO09] Hemenway, B., Ostrovsky, R.: Lossy trapdoor functions from smooth
homomorphic hash proof systems. In: Electronic Colloquium on Compu-
tational Complexity (ECCC), vol. 16, no. 127 (2009). 01

[IJS10] Imbert, L., Jacobson Jr., M.J., Schmidt, A.: Fast ideal cubing in imaginary
quadratic number and function fields. Adv. Math. Commun. 4, 237–260
(2010)

[Jac00] Jacobson Jr., M.J.: Computing discrete logarithms in quadratic orders.
J. Cryptol. 13, 473–492 (2000). https://doi.org/10.1007/s001450010013.
Springer, Heidelberg

[Lin16] Lindell, Y.: How to simulate it - a tutorial on the simulation proof tech-
nique. Cryptology ePrint Archive, Report 2016/046 (2016). http://eprint.
iacr.org/2016/046

https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/s001450010013
http://eprint.iacr.org/2016/046
http://eprint.iacr.org/2016/046

Two-Party ECDSA from HPS and Efficient Instantiations 221

[Lin17] Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 613–644. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 21

[LN18] Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical dis-
tributed key generation and applications to cryptocurrency custody. In:
ACM CCS 2018, pp. 1837–1854. ACM Press, October 2018

[MR04] MacKenzie, P.D., Reiter, M.K.: Two-party generation of DSA signatures.
Int. J. Inf. Secur. 2, 218–239 (2004). https://doi.org/10.1007/s10207-004-
0041-0

[PAR18] PARI Group, University Bordeaux. PARI/GP version 2.11.1 (2018).
http://pari.math.u-bordeaux.fr/

[Sch91] Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol.
4, 161–174 (1991)

[Sep] Sepior. http://www.sepior.com
[Ser] I. D. P. Services. https://security.intuit.com/

[SG98] Shoup, V., Gennaro, R.: Securing threshold cryptosystems against cho-
sen ciphertext attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 1–16. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054113

[Sho00] Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 15

[TW12] Terelius, B., Wikström, D.: Efficiency limitations of
∑

-protocols for group
homomorphisms revisited. In: Visconti, I., De Prisco, R. (eds.) SCN 2012.
LNCS, vol. 7485, pp. 461–476. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32928-9 26

[Unb] Unboundtech. https://www.unboundtech.com/
[Van92] Vanstone, S.: Responses to NIST’s proposal. Commun. ACM 35, 50–52

(1992). Communicated by John Anderson
[Wes19] Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen,

V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 13

https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/s10207-004-0041-0
https://doi.org/10.1007/s10207-004-0041-0
http://pari.math.u-bordeaux.fr/
http://www.sepior.com
https://security.intuit.com/
https://doi.org/10.1007/BFb0054113
https://doi.org/10.1007/BFb0054113
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/978-3-642-32928-9_26
https://doi.org/10.1007/978-3-642-32928-9_26
https://www.unboundtech.com/
https://doi.org/10.1007/978-3-030-17659-4_13

Asymmetric Message Franking: Content
Moderation for Metadata-Private

End-to-End Encryption

Nirvan Tyagi1(B), Paul Grubbs1(B), Julia Len1, Ian Miers1,2,
and Thomas Ristenpart1

1 Cornell Tech, New York City, USA
{nt355,pag225,jl3836,imiers,ristenpart}@cornell.edu

2 University of Maryland, College Park, USA

Abstract. Content moderation is crucial for stopping abusive and
harassing messages in online platforms. Existing moderation mecha-
nisms, such as message franking, require platform providers to be able
to associate user identifiers to encrypted messages. These mechanisms
fail in metadata-private messaging systems, such as Signal, where users
can hide their identities from platform providers. The key technical chal-
lenge preventing moderation is achieving cryptographic accountability
while preserving deniability.

In this work, we resolve this tension with a new cryptographic prim-
itive: asymmetric message franking (AMF) schemes. We define strong
security notions for AMF schemes, including the first formal treatment
of deniability in moderation settings. We then construct, analyze, and
implement an AMF scheme that is fast enough to use for content mod-
eration of metadata-private messaging.

Keywords: Message franking · Designated verifier signatures ·
Deniability · End-to-end encryption · Content moderation

1 Introduction

Billions of users communicate via private messaging on platforms like Facebook,
Twitter, and Signal. Their success means these platforms are increasingly used
for large-scale spam, harassment, and propagation of misinformation. One way
platform operators address these threats is via content moderation: the receiver
of a message can report it to a moderator. If the moderator determines (via
human judgment, machine learning algorithm, or both) that the message violated
the platform’s policies, the platform can ban its sender.

To ensure moderation is not itself abused, the platform must be able to
verify both the content of the reported message and associated metadata, e.g.
the sender and receiver identity. Doing this is challenging for end-to-end (E2E)
encrypted messaging because the platform does not see the cleartext messages. In

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 222–250, 2019.
https://doi.org/10.1007/978-3-030-26954-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_8

Asymmetric Message Franking 223

Fig. 1. Settings for content moderation of messaging. The solid arrow denotes sending
a message across the platform and the dashed arrow denotes reporting a message to the
moderator. In the standard setting, messages sent across the platform are associated
with sender and receiver identities and the platform is the moderator. In the metadata-
private setting, the associated sender and receiver identities of messages are hidden
from the platform, and by extension, the moderator. In the third-party setting, the
moderator is separate from the platform, and thus also cannot associate sender and
receiver identities to messages. Our AMF primitive targets the latter two settings.

practice, moderating E2E encrypted messaging has been done via message frank-
ing [34,39]. Message franking has two main components. First, the E2E encryp-
tion uses specially-constructed ciphertexts that include a compact commitment
to the plaintext. Second, the platform cryptographically binds the sender and
receiver identities to the ciphertexts using a reporting tag (concretely, a MAC
over the relevant metadata and the commitment). Because this approach only
uses symmetric-key cryptography, we call it symmetric message franking (SMF).

SMF carefully navigates the three security requirements of content mod-
eration for E2E encrypted messaging. First, messages not included in reports
should remain private. Second, moderation should achieve accountability : given
a reported message and sender identity, the moderator should always be able
to verify the sender sent that message. Finally, moderation for E2E-encrypted
messages should be deniable: only the moderator should be able to verify the
report. This protects users from backlash or embarrassment if their messages
are posted publicly after a compromise. Deniability was an explicit goal of Face-
book’s SMF-based moderation system [34]. If implemented correctly, SMF meets
these goals because the commitments are hiding and binding and the identities
are bound to the reporting tag.

There are settings, however, where it is impossible to associate identities to
encrypted messages and SMF cannot be used for moderation. One such setting is
metadata-private messaging, depicted in the middle diagram of Fig. 1. Metadata-
private messaging systems not only use E2E encryption, but also hide the sender
and/or receiver identities of messages from the platform. (In these systems the
platform knows the identities of all registered parties but does not learn those
identities during communication.) For example, Signal’s recent sealed sender
feature, which hides the sender identity, now accounts for over 80% of all Sig-
nal traffic [5,55]. Achieving even stronger metadata privacy, such as also hiding
the receiver identity, is an active research area [7,28,29,41,47–49,52,53,62,71].

224 N. Tyagi et al.

Similarly, one may consider decentralized or federated settings where the moder-
ator is decoupled from the platform. (See the right-hand diagram of Fig. 1; more
detail on this setting is given below.)

A naive solution for moderation in these settings is per-message digital sig-
natures. These provide accountability even if the moderator cannot see meta-
data or messages, but not deniability: anyone can verify signatures, not just
the moderator. Indeed, this and other approaches based on existing primitives
fail because of a fundamental tension between accountability and deniability. To
make moderation a reality for metadata-private messaging and other settings,
new cryptography is needed.

Asymmetric Message Franking. This work defines and constructs asym-
metric message franking (AMF) schemes. AMF schemes are special signatures
in which a sender signs a message so that only one of two designated parties, the
receiver or the moderator, can verify it. The signature also proves to the receiver
that the signature can be verified by the moderator. AMF schemes are deniable
and do not require the platform to associate identities with encrypted messages.
Thus, AMF schemes resolve the main technical barrier to content moderation
for metadata-private messaging.

Using AMF schemes in moderation involves three parties: the sender,
receiver, and moderator (or judge). Each one has a key pair and knows the public
keys of the other two (we assume a PKI is available). The sender of a message
uses the AMF scheme’s franking algorithm Frank to generate a signature on
the message. Then the sender E2E-encrypts the message and the signature and
sends the ciphertext to the receiver. The receiver first decrypts the ciphertext
then verifies the signature using the receiver verification algorithm Verify. To
make a report, the receiver sends the message and signature to the moderator,
who verifies using the moderator verification algorithm Judge. The receiver and
moderator verification algorithms are different because the receiver and moder-
ator have independent secret keys. Next, we explain security for AMF schemes
along two axes: accountability and deniability.

AMF Accountability. For accountability, we want that a malicious sender
cannot bypass moderation and a malicious receiver cannot report a message it
did not receive. To formalize this we give three security notions for AMF schemes:
sender binding, receiver binding, and unforgeability.

Sender binding requires that an attacker who can choose a sender key pair
and adaptively query Verify and Judge oracles cannot create a message and
signature pair the receiver will accept but the moderator will not. An attacker
that can do this can essentially bypass moderation entirely. Similar attacks arise
in practice: for example, Dodis et al. demonstrated how to bypass Facebook’s
SMF scheme [33]. Receiver binding is a complementary notion that requires that
no adversary can trick the moderator into accepting a message not actually sent
to its designated receiver, even if the adversary can choose the receiver’s keys.
Unforgeability requires that an attacker that only knows public keys cannot
output a forged message and signature pair that fools the receiver. In our full

Asymmetric Message Franking 225

version [72], we prove unforgeability is implied by the combination of receiver
binding and sender binding.

AMF Deniability. Deniability guarantees that convincing-looking forgeries can
be created even if some parties are compromised or malicious. Our threat model
for deniability is very strong: we allow all keys to be compromised (even the mod-
erator’s). Providing meaningful deniability definitions for AMF schemes in the
context of moderation is challenging as deniability can often contradict account-
ability. Prior work in this area [34,39] did not attempt to formalize their denia-
bility guarantees, despite deniability being an explicit goal. Take, for example, a
deniability definition which requires that an adversary can produce a signature
indistinguishable from a legitimate one, given just the public keys of sender,
receiver, and moderator. This contradicts unforgeability, since it suggests that
anyone can generate signatures that a receiver and moderator would accept as
valid.

We navigate this tension between deniability and accountability by equipping
AMF schemes with three forgery algorithms (Forge, RForge, and JForge) and
three associated security definitions: universal deniability, receiver compromise
deniability, and judge compromise deniability. The three forgery algorithms are
not intended to be run by legitimate users: instead, the existence of each of
the three algorithms guarantees deniability in a particular compromise scenario
formalized in its associated definition.

We limit our first deniability definition, universal deniability, to hold against
everyone except the receiver and moderator. Meeting this goal guarantees the
outputs of Forge and Frank are indistinguishable to everyone except those two
parties. But this leaves open another way to render AMF signatures undeniable: a
receiver (or the moderator) could post their secret key to the internet along with
a received message and AMF signature, allowing anyone to run Judge or Verify
and rule out a forgery. This could serve as undeniable cryptographic evidence
that the sender authored the message.

Because of this, we introduce two additional deniability notions: receiver com-
promise deniability and judge compromise deniability. Meeting these notions
implies deniability holds even if the receiver and/or moderator are compro-
mised or malicious. The former definition corresponds to the case where the
receiver’s secret key is known and the latter the case where both the receiver
and moderator’s keys are known. The forgeries generated (by RForge and JForge,
respectively) should be indistinguishable from the output of Frank, even to a dis-
tinguisher that knows the receiver or both the receiver and moderator’s secret
keys. This means that a receiver or the moderator cannot offer an undeniable
proof that a sender sent a message simply by disclosing their secrets: they could
equally well have just generated a forgery.

These three deniability definitions are not the only ones possible, and there
exists a large space of possible definitions, though many are at odds with account-
ability. We explore this broader landscape in more detail in our full version [72],
and discuss how our deniability targets compare to others in Sect. 2.

226 N. Tyagi et al.

Constructing AMFs. We build a practical AMF scheme that meets the above
definitions. As described above, we want to be able to sign messages so that only
the receiver and moderator can verify them. Thus, a natural starting point is
(strong) designated verifier signatures [44], in which a sender signs a message
so that only a particular recipient can verify it. We designate the moderator as
one verifier, and extend to allow a receiver (with its own key pair separate from
the moderator’s) to be a second designated verifier. However, designated verifier
signatures alone do not suffice: the receiver (without the moderator’s secret key)
must be able to verify that the moderator can verify the signature. If this is
missing, the scheme would not be sender binding.

Our eventual construction is based on a non-interactive zero-knowledge proof-
of-knowledge of a carefully crafted language that balances the needed verification
properties with the ability to forge required for deniability. The formal analy-
sis is non-trivial: our definitions give the adversary oracle access to Judge and
Verify, both of which need secret keys. In some of our reductions the output of
these oracles must be simulated without secret keys, necessitating both standard
assumptions like discrete log and the knowledge-of-exponent assumption (KEA),
a more exotic (but nevertheless well-studied) assumption [9,30]. In [72], we show
a variation of our scheme (with slightly larger signatures) can be proven secure
using the standard Gap Diffie-Hellman assumption [14].

We prototype our AMF construction to demonstrate its practicality. Our
AMF signatures are relatively compact, requiring less than 500 bytes. Even in
our unoptimized implementation, signing and verification (by a receiver or the
moderator) takes 7.3 ms or less. We plan to make our AMF implementations
open source to support development of new moderation tools.

Other Applications. AMF schemes may prove useful in settings beyond
metadata-private encrypted messaging. As described above, existing moderation
tools based on SMF cannot support third-party moderation, which decouples
the platform and moderator (see Fig. 1, right diagram). Third-party modera-
tion is necessary in decentralized or federated messaging systems like Matrix [4]
or Mastodon [3]. In such systems no single party operates the platform, so the
moderator must be distinct. Even in centralized systems like Twitter, third-party
moderation is advantageous if the platform cannot adequately moderate mes-
sages, or if sub-communities want to enforce their own content policies. Allowing
the moderator to be distinct can also enable cross-platform moderation of mul-
tiple messaging systems.

Similarly to the metadata-private setting, a third-party moderator does not
learn the needed sender and receiver identities associated with messages. In
metadata-private settings, this information is cryptographically hidden, whereas
in third-party settings it is simply unavailable because the moderator doesn’t
run the identity infrastructure. Because AMF schemes are public-key, they can
be used in conjunction with PKI to build third-party moderation.

Asymmetric Message Franking 227

Summary. This work makes the following contributions:

• We highlight the need for content moderation for metadata-private messaging,
and identify a key cryptographic challenge: balancing accountability with
deniability.

• We introduce and formalize a new cryptographic primitive called asymmet-
ric message franking that simultaneously provides the needed authenticity
properties for content moderation, while ensuring cryptographic deniability.

• We show how to build an efficient AMF scheme and formally analyze its secu-
rity. A prototype implementation indicates that our AMF scheme is practical.

2 Deniability in Messaging

We want AMFs to provide deniability in the event that keys or messages are
posted publicly after a compromise. Our setting is therefore most similar to the
deniability guarantees sought for designated verifier signatures and proofs [44],
but different than settings that allow one to deny encrypted message contents
even to an eavesdropper that sees all traffic [21]. An adversary that observes the
actual transmission of a message or ciphertext is totally convinced of its origin
in our setting. Instead, our concern is not this adversary’s conviction, but its
ability to convince others. As long as the attacker cannot use what it learns
through network manipulation or endpoint compromise to convince others, we
have achieved deniability.

The types of deniability guarantees we target have long been a goal in var-
ious contexts [23,25], including messaging [34]. The inability to prevent major
compromises has made lack of deniability an increasingly pressing concern. In
the 2016 United States’ and 2017 French presidential elections, certain candi-
dates’ systems were compromised and sensitive data was dumped publicly online.
DKIM email signatures prevented the Clinton campaign from denying author-
ship for hacked emails posted by Wikileaks in 2016 [58]. In contrast, in 2017 the
Macron campaign was able to effectively deny the authenticity of leaked mes-
sages by including decoy messages as a countermeasure [60]. This defense was
only possible because of a lack of cryptographic evidence. One result of these
breaches is that politicians and others increasingly use E2E encrypted messag-
ing systems that provide deniability [67]. If E2E encryption provides deniability,
the cryptography used for moderation must preserve this deniability. This is a
crucial reason why AMFs must be deniable.

These examples additionally demonstrate that deniability in messaging is
practically important: it is necessary, but not always sufficient, for (what we
call) social deniability, i.e., that people are convinced by a denial. Our goal is to
ensure that whatever prior belief people have about the likelihood a message is
valid should remain unchanged by the use of cryptography, and to have a system
that works with other techniques for increasing the success of social deniability
(e.g., use of decoys). We do note that because of pervasive propaganda campaigns
an awareness has developed among the general public that malicious parties will

228 N. Tyagi et al.

try to influence popular sentiment by forging content. This would seem to make
social deniability more feasible, as people are unlikely to be convinced by an
unverified attribution in the era of “fake news”.

An important implication of all this is that, to issue a denial that will con-
vince the general public, it is not sufficient to demonstrate the (perhaps non-
constructive) existence of a forger who could have forged a message—there must
exist concrete and runnable forgery algorithms that could have been used by
influence campaigns or other adversaries. Our eventual construction has three
such implemented algorithms for different compromise scenarios; see Sect. 4 for
more details.

3 Syntax and Security Notions

We introduce a new primitive, asymmetric message franking (AMF), that pro-
vides the cryptographic algorithms needed for secure metadata-private modera-
tion. We will present the algorithms and security definitions of an AMF scheme
in three parts. First, we present a brief preliminary on key generation. Then, we
describe the accountability algorithms and definitions. Finally, we present the
three algorithms used for deniability and definitions.

As you will see, we choose to decouple our security treatment of AMFs from
the accompanying end-to-end (E2E) encryption scheme to simplify and mod-
ularize the analysis. Indeed in the applications we envision, the accountability
and deniability of the system would be determined by the composition of AMFs
with an E2E encryption scheme, which we discuss further in Sect. 7.

Formally, an asymmetric message franking scheme AMF = (KeyGen, Frank,
Verify, Judge, Forge, RForge, JForge) is a tuple of seven algorithms. An AMF
scheme is associated with a public key space PK, secret key space SK, message
space M, and signature space Σ. To simplify notation of inputs in the algorithms,
we assume all pk inputs are in PK, all sk inputs are in SK, all msg inputs are
in M, and all σ inputs are in Σ.

AMF Key Generation. AMF key generation, (pk, sk) ←$ KeyGen, is a ran-
domized key generation algorithm which outputs a public key pair (pk, sk) ∈
PK × SK. We assume the public key pk can be uniquely recovered from the
private key sk. Our schemes have this property. We also assume for simplicity
that the judge, senders, and receivers all use the same key generation algorithm.

We will assume that key pairs can be confirmed to be valid. More precisely,
we will use later a deterministic algorithm WellFormed : PK × SK → {0, 1}
which takes as input a key pair (pk, sk) ∈ PK×SK and outputs a bit b denoting
whether the key pair is a valid pair (b = 1) or not (b = 0). The purpose of
this procedure is to verify that a (possibly adversarially chosen) key pair is well-
formed relative to some relationship between pk and sk. In our schemes this will
be a single exponentiation.

Our formalization of AMFs excludes deployment considerations such as the
public key infrastructure and identity-to-public key mappings: see Sects. 6 and
7 for more discussion.

Asymmetric Message Franking 229

3.1 AMF Algorithms and Security Notions: Accountability

For an AMF = (KeyGen, Frank, Verify, Judge, Forge, RForge, JForge), the three
accountability algorithms are Frank, Verify, and Judge. These algorithms are used
for creating and verifying signatures. We explain the syntax of each algorithm
in turn, then describe the corresponding accountability security notions.

• σ ←$ Frank(sks,pkr,pkj ,msg): The (randomized) message signing or franking
algorithm takes as input a receiver public key pkr, a judge public key pkj , a
sender secret key sks, and a message msg . It outputs a signature σ.

• b ← Verify(pks, skr,pkj ,msg , σ): The deterministic receiver verification algo-
rithm takes as input a sender public key pks, receiver secret key skr, judge
public key pkj , message msg , and signature σ, then outputs a bit. The receiver
runs this to ensure the message, signature pair (msg , σ) is well-formed and
reportable to the judge.

• b ← Judge(pks,pkr, skj ,msg , σ): The deterministic judge authentication algo-
rithm takes as input a sender public key pks, receiver public key pkr, judge
secret key skj , message msg , and signature σ, then outputs a bit. This algo-
rithm is used by the judge to check the authenticity of reported messages,
ensuring the message was really sent from the sender and was meant for the
recipient.

This formalization restricts attention to non-interactive schemes for which frank-
ing, verification, and judging requires sending just a single message. Such non-
interactive schemes have important practical benefits, but it is conceivable that
there might be some benefits of generalizing our treatment to include interactive
schemes, which we leave for future work.

Correctness. Informally, we require AMF signatures created by the franking
algorithm are both verified and judged successfully. Formally, for all messages,
msg , and for all pairs of public keys, (pk{s,r,j}, sk{s,r,j}), it holds that

Pr
[
Verify(pks, skr,pkj ,msg , Frank(sks,pkr,pkj ,msg)) = 1

]
= 1

and

Pr
[
Judge(pks,pkr, skj ,msg , Frank(sks,pkr,pkj ,msg)) = 1

]
= 1

where the probabilities are taken over the random coins used in Frank.

Security Notions for Accountability. First and foremost an AMF scheme
should prevent a party from impersonating a sender to a receiver. This goal,
which we call unforgeability, is a lifting of standard digital signature unforgeabil-
ity to the setting of AMF schemes. As discussed above, AMFs should also (1)
prevent any sender from creating a signature that can be verified by the receiver
but not the moderator, and (2) prevent any receiver from framing a sender by
creating a signature on a message that wasn’t sent. Following the terminology
used in symmetric message franking [39] we refer to these goals as sender binding
and receiver binding, respectively.

230 N. Tyagi et al.

Fig. 2. Accountability games for AMF schemes: receiver binding (left) and sender
binding (right).

It turns out sender binding and receiver binding together imply unforgeabil-
ity. In this section, we proceed by formalizing the sender binding and receiver
binding accountability notions. The formalization of unforgeability along with
its reduction to receiver binding and sender binding is deferred to [72].

We formalize security using the code-based game approach of Bellare and
Rogaway [11]. We will use a concrete security approach in which we account
for adversarial resources explicitly in theorem statements, rather than defining
security asymptotically. Asymptotic notions can be derived from our treatment
in a straightforward way.

Receiver binding is specified formally in game r-BIND on the left-hand side
of Fig. 2. The adversary plays the role of a reciever and attempts to create a
signature that from a sender pks to an adversarially chosen pkr that correctly
judges by pkj . The adversary is given a Frank oracle for some (honest) sender,
to which it can query messages signed to chosen receiver and judge public keys.
We also give the adversary access to a Judge oracle to query chosen message
and signature pairs. It tries to output a message and signature, distinct from
all Frank oracle outputs, for which Judge outputs 1. For an adversary A and
message franking scheme AMF we define the r-BIND advantage of A against
AMF as

Advr-bind
AMF (A) = Pr

[
r-BINDA

AMF ⇒ 1
]
,

where the probability here (and for subsequent use of games) is over all the
random coins used in the game, including those of the adversary.

Sender binding is specified formally in game s-BIND on the right-hand side
of Fig. 2. The adversary plays the role of a sender and its goal is to generate,
for some adversarially chosen pks, an AMF signature that Verify validates but
Judge rejects with pkr and pkj . The adversary is given a pair of oracles for Verify
and Judge to which it can query message and signature pairs. For an adversary

Asymmetric Message Franking 231

A and message franking scheme AMF we define the s-BIND advantage of A
against AMF as

Advs-bind
AMF (A) = Pr

[
s-BINDA

AMF ⇒ 1
]
.

3.2 AMF Algorithms and Security Notions: Deniability

To support deniability, we equip AMF schemes with three deniability algorithms
and associate to each a security notion. We include the forging algorithms as part
of the scheme to emphasize their importance in providing practically-meaningful
deniability guarantees. They will be efficient to execute and as easy to imple-
ment as the other algorithms. The deniability algorithms for an AMF scheme
AMF = (KeyGen, Frank, Verify, Judge, Forge, RForge, JForge) are Forge, RForge,
and JForge. We give a formal description of each along with some intuition about
the deniability setting they correspond to.

Universal deniability requires that any non-participating party (no access
to sender, receiver, or judge secret keys) can forge a signature that is indis-
tinguishable from honestly-generated signatures to other non-participating par-
ties. Intuitively, this allows the sender to claim a message originated from any
non-participating party. This is the purpose of the Forge algorithm of an AMF
scheme.

• σ ←$ Forge(pks,pkr,pkj ,msg): The forge algorithm takes a sender public key
pks, receiver public key pkr, a judge public key pkj , and a message msg , then
outputs a “forged” AMF signature σ.

We formalize universal deniability in game UnivDen, the leftmost in Fig. 3. The
adversary is given access to a frank oracle that outputs a signature created from
Frank or Forge depending on a challenge bit that is the adversary’s goal to guess.
In this deniability game and all subsequent deniability games, the adversary is
given access to the sender’s secret key sks to model sender compromise. For
an adversary A and asymmetric message franking scheme AMF we define the
UnivDen advantage of A against AMF as

Advuniv-den
AMF (A) =

∣
∣
∣ Pr

[
UnivDenA,0

AMF ⇒ 1
]

− Pr
[

UnivDenA,1
AMF ⇒ 1

] ∣
∣
∣.

Receiver compromise deniability requires that a party with access to the
receiver’s secret key can forge a signature that is indistinguishable from honestly-
generated signatures to other parties with access to the receiver’s secret key. This
captures deniability in the case where the receiver’s secret key is compromised,
and allows the sender to claim a message originates from a compromising party
or malicious receiver. The RForge algorithm is used for receiver compromise
deniability.

• σ ←$ RForge(pks, skr,pkj ,msg): The receiver forge algorithm takes a sender
public key pks, receiver secret key skr, a judge public key pkj , and a message
msg , then outputs a “forged” AMF signature σ.

232 N. Tyagi et al.

Fig. 3. Deniability security games for AMF schemes: universal deniability (left),
receiver compromise deniability (middle), and judge compromise deniability (right).

We formalize receiver compromise deniability in two-stage game RecCompDen,
the middle game in Fig. 3. The second-stage adversary A2 is given access to a
frank oracle that outputs a signature created from Frank or RForge depending
on a challenge bit. The goal is to guess the challenge bit given the sender and
receiver secret keys, sks and skr. We strengthen the definition by answering the
frank oracle queries using a public key pair for the receiver generated in the first
stage by adversary A1. For an adversary A = (A1,A2) and message franking
scheme AMF, we define the RecCompDen advantage of A against AMF as

Advr-den
AMF(A) =

∣
∣
∣ Pr

[
RecCompDenA,0

AMF ⇒ 1
]

− Pr
[

RecCompDenA,1
AMF ⇒ 1

] ∣
∣
∣.

Judge compromise deniability requires that a party with access to the judge’s
secret key can forge a signature that is indistinguishable from honestly-generated
signatures to other parties even with access to the judge’s secret key and
receiver’s secret key. This captures deniability in the case where the judge’s
secret key has become compromised, and allows the sender to claim a message
originates from a compromising party or malicious judge. Our definition main-
tains deniability even in the case where the receiver’s secret key is compromised
as well. We discuss alternate, weaker deniability notions at the end of this section.
The JForge algorithm is used for judge compromise deniability.

• σ ←$ JForge(pks,pkr, skj ,msg): The judge forge algorithm takes a sender
public key pks, receiver public key pkr, a judge secret key skj , and a message
msg , then outputs a “forged” AMF signature σ.

We formalize judge compromise deniability in two-stage game JudgeCompDen,
the right-most game in Fig. 3. The second-stage adversary A2 is given access to a
frank oracle that outputs a signature created from Frank or JForge depending on
a challenge bit. In contrast to receiver compromise deniability, A1 generates the

Asymmetric Message Franking 233

judge public key pair in addition to the receiver public key pair and A2 is given
access to all secret keys. For an adversary A = (A1,A2) and message franking
scheme AMF we define the JudgeCompDen advantage of A against AMF as

Advj-den
AMF(A) =

∣
∣
∣ Pr

[
JudgeCompDenA,0

AMF ⇒ 1
]

− Pr
[

JudgeCompDenA,1
AMF ⇒ 1

] ∣
∣
∣.

Random Oracle Model. Looking ahead, we will prove security in the random
oracle model. In this model, to each definition we add another procedure Oro.
The adversary A and algorithms Forge, Verify, Judge, Forge, JForge, RForge all
have access to it as an oracle. The oracle accepts queries on arbitrary length
bit strings m and returns a random bit string r of length hlen. It stores r in a
table T indexed by m to answer future queries consistently. In some security
proofs we will use a technique referred to as programming the random oracle
(setting certain RO outputs to values in a way advantageous to a reduction).
Importantly, however, our definitions ensure that the AMF forging algorithms
only have access to the oracle (as does the adversary), forcing them to forge
without modifying the RO mapping. This means that when we apply the ROM
heuristic, instantiating the RO with a hash function such as SHA-256, the forge
algorithms can still be executed. This is essential for social deniability.

Space of Deniability Definitions. Notice that our deniability definitions are
implicitly parameterized by the combination of secrets keys given to the forger
and the combination of secret keys given to the distinguisher, i.e., who is able to
fool whom. In this work, we target three specific deniability definitions within
this space that we believe have real-world significance. However, this is not
the only set of meaningful deniability definitions that one might desire from
a scheme. Consider the following two examples. First, our definitions give the
distinguisher access to the sender’s secret key which models deniability in the
face of sender compromise. An alternative definition may dispense with this
goal in favor of an accountability notion, disavowability, in which a sender has
the ability to cryptographically prove forged signatures were not created using
their sender secret key, i.e., disavow forgeries. Second, our judge compromise
deniability definition conflicts with strong authentication between sender and
receiver—forgeries by the moderator cannot be detected by the receiver. Instead,
a stronger unforgeability definition could be satisfied in which the judge’s secret
key alone is not sufficient to forge messages accepted by the receiver.

Ultimately, there exist many different trade-offs between deniability and
accountability within this definition space. We provide a more detailed explo-
ration of the space of possible deniability definitions along with their relation-
ships to various accountability notions in [72].

4 Construction

In this section, we present our construction for building an asymmetric message
franking scheme. First, we give intuition for our approach by drawing connections

234 N. Tyagi et al.

to the literature on designated verifier signatures [44]. Then, we describe our
particular instantiation built using signatures of knowledge [19] and detailed in
Fig. 5.

4.1 Intuition: AMF from Designated Verifiers

Designating the Moderator as Verifier. The tension between accountability
and deniability arises from the desire for franking signatures to be forgeable
(deniability) as well as verifiable by certain special parties, e.g. the moderator
(accountability). This suggests designated verifier signatures [44] as a natural
starting point from which to build asymmetric message franking. The sender
would designate the moderator as a verifier for a signature of the message.

A designated verifier signature or, more generally, a designated verifier proof
system allows a prover to provide a proof of a statement that convinces a des-
ignated verifier but no one else. The designated verifier can efficiently forge the
proof such that the forged proof is indistinguishable from a real proof even with
access to the designated verifier’s secret key. This security property, known as
non-transferability, ensures there are two possible parties that could have created
the signature, the alleged sender or the (compromised) moderator. It matches
closely to receiver compromise deniability and judge compromise deniability for
AMFs which extends the idea of non-transferability to relationships between
three parties.

Universal Deniability from Strong Designated Verifiers. To expand the
set of possible forgers to any non-participating party, i.e. universal deniability,
we additionally make use of a strong deniability property of strong designated
verifier signatures [42,44,68]. This property allows anyone to forge a signature
between two parties such that the resulting forgery is indistinguishable from
real signatures to anyone without secret key access. Without care, universal
deniability poses a problem for accountability. Consider a franking signature
that consists of the sender creating a strong designated verifier signature for
the moderator. A sender can send an abusive message and sign with a universal
forgery. If the recipient of the message attempts to report to the moderator,
the moderator will not be convinced the message was sent by the sender. This
violates sender binding.

Chaining Designated Verifier Proofs. To achieve sender binding, the
receiver must have some way of verifying whether messages it receives are
reportable to the moderator. Specifically, the receiver must be able to verify the
sender’s strong designated verifier signature for the moderator is well-formed
and not a forgery. This leads us to the final step: the sender can attach a strong
designated verifier proof for the receiver proving that the strong designated ver-
ifier signature for the moderator is well-formed. By using a strong designated
verifier proof for this step, the deniability goals are preserved.

The challenge in building AMFs with this approach is in instantiating
schemes such that the signing algorithm of the strong designated verifier sig-
nature falls into a language compatible with the strong designated verifier proof

Asymmetric Message Franking 235

system. Existing strong designated verifier signatures [42,44,68] do not appear
to have this desired structure-preserving property [6] that would lend to using
efficient proof systems. Additionally, we are not aware of any general-purpose
strong designated verifier proof systems for arbitrary languages. While such a
proof system can presumably be constructed using non-interactive zero knowl-
edge proof systems for arbitrary languages [38], such a solution would likely be
prohibitively expensive for low latency messaging. Despite these challenges, the
question of building AMFs from designated verifier primitives remains interest-
ing and we discuss such a generic construction in [72]. We next turn to building
practical AMFs.

4.2 AMF from Signatures of Knowledge

While we do not build off the abstraction of designated verifiers, our construction
is modeled off the intuition that an AMF can be composed of a strong designated
verifier proof to the receiver of the well-formedness of a strong designated sig-
nature to the moderator. Our construction is inspired by the strong designated
verifier signature scheme of Huang et al. built using signatures of knowledge [42],
which we modify to allow for proofs of well-formedness.

Our construction can be based on any suitable cyclic group. In the following
we let G be a group, let p be its order, and g be a generator for G. We use
multiplicative notation, though note that we use elliptic curve groups in our
implementation (Sect. 6). Secret keys are uniformly chosen from SK = Zp, and
public keys are set to be pk = gsk. We denote this key generation as PKKeyGen.
Note that it is easy to check the well-formedness of such keys.

Signatures of Knowledge. First, we introduce our treatment of signatures of
knowledge. These can be thought of as a cross between non-interactive proofs
of knowledge and digital signatures. We use a standard Fiat-Shamir signature
scheme [36] in which we can produce signatures of knowledge from basic Sigma
protocols by including the message in the hash producing the challenge. Our
construction uses Schnorr proofs of knowledge of discrete logarithm [69] and
Chaum-Pedersen proofs of equality of discrete log [26], extended with conjunc-
tions and disjunctions (logical ANDs and ORs) [15].

Our notation follows closely to that of Camenisch [19]. A signature of knowl-
edge scheme SPoKR = (prove, verify) is a pair of algorithms associated with a
witness-statement relation R. A relation R ⊆ X ×Y is defined relative to a set X
called the witness space and set Y called the statement space. The randomized
proving algorithm, prove, outputs a signature proof of the statement for a mes-
sage given a witness, π ←$ SPoKR.prove(msg , x). The proving algorithm should
return a dedicated symbol ⊥ if (x, y) �∈ R though for brevity we exclude such
checks from pseudocode. The deterministic verification algorithm, verify, takes
as input a message, signature proof, and statement, then returns a bit indicating
whether verification is successful, b ← SPoKR.verify(msg , π, y). As an example,
this allows us to create signature proofs of the form: R = {((α, β), (g,A,B)

)
:

A = gα ∨ B = gβ}, which can be proved with knowledge of either α or β with

236 N. Tyagi et al.

Fig. 4. Summary of how AMF signing and forging algorithms construct signatures.
The rightmost columns indicate with a checkmark (�) which verification algorithms
accept that signature and with a cross (×) which will reject that signature.

witnesses (α,⊥) or (⊥, β) respectively. Note that the inclusion of ⊥ symbols in
the witness explicitly indicates which side of the disjunction is satisfied.

We will utilize two security properties of the Sigma protocols from which
we derive our Fiat-Shamir signatures of knowledge: knowledge soundness and
honest-verifier zero knowledge. Briefly, knowledge soundness ensures that a
prover that generates a valid signature proof for a message must actually “know”
a witness for the statement. A scheme being zero knowledge ensures that verifi-
cation of a proof does not reveal anything about the witness to the verifier other
than if it is valid or not. The complete descriptions for constructing signatures
of knowledge from Sigma protocols along with formalizations of these security
properties are deferred to [72].

Overview of Construction. Consider the strong designated verifier signature
(between sender and moderator) derived as a signature of knowledge from the
following relation:

RSDVS = {(
(t, u), (g, pks, J)

)
: pks = gt ∨ J = gu},

in which an honest sender will construct Diffie-Hellman value J = (pkj)α for
random choice of α ←$ Zp, and send ephemeral value EJ = gα along with the
SPoKRSDVS signature proof, where pks and pkj are the public keys of the sender
and moderator, respectively. If J is indeed constructed in this manner, J =
gu = gα·skj , then knowledge of u cannot be proved by anyone who does not
know the moderator’s secret key skj . This means a moderator that receives a
valid signature and well-formed J will be convinced that the signature comes
from a sender with knowledge of t = sks.

On the other hand, anyone can create a valid signature of SPoKRSDVS by using
a malformed J set as a random group element, J = gγ for γ ←$ Zp, proving
knowledge of u = γ, and sending EJ = gα for independent α ←$ Zp. Impor-
tantly, only the moderator has the ability to distinguish between well-formed
and malformed J , by using the secret key skj to check whether (pkj , EJ , J)

forms a valid Diffie-Hellman triple (J ?= E
skj
J). This means that anyone can cre-

ate a forged signature that is indistinguishable from a valid sender signature to
everyone but the moderator.

Following the intuition from the previous section, to achieve accountability,
the sender must prove to the receiver that the strong designated verifier signature

Asymmetric Message Franking 237

Fig. 5. Algorithms for our deniable AMF scheme. The relation R defining our SPoK
is depicted at the top.

for the moderator is well-formed. This corresponds to proving that J is well-
formed, i.e., (pkj , EJ , J) form a Diffie-Hellman triple. Putting it together, our
final AMF construction is the signature of knowledge derived from the following
relation:

R =
{(

(t, u, v, w), (g, pks, pkr, pkj , J, R, EJ)
)

:
(
pks = gt ∨ J = gu

) ∧ (
(J = (pkj)

v ∧ EJ = gv) ∨ R = gw
)}

.

An honest sender constructs J = (pkj)α and R = (pkr)β for (α, β) ←$ (Zp)2, and
sends ephemeral values (EJ = gα, ER = gβ) along with the SPoKR signature,
where pkr is the public key of the receiver. The first conjunction clause repre-
sents the strong designated verifier signature to the moderator and the second
conjunction clause represents the strong designated proof to the receiver that
the first clause is constructed properly. Forgeries for universal deniability are
created with malformed J and R, forgeries for receiver compromise deniability
with malformed J , and forgeries for judge compromise deniability do not use any
malformed elements. Lastly, the receiver’s public key is added to the statement
even though it does not appear in the proof relation, so that it is bound by
the Fiat-Shamir hash challenge. This prevents certain types of identity misbind-
ing attacks. A complete summary of how different signatures and forgeries are
proved is given in Fig. 4 and our full construction is detailed in pseudocode in
Fig. 5.

238 N. Tyagi et al.

5 Security Analysis

We now explore the security of our deniable AMF scheme, arguing it achieves
the accountability and deniability properties detailed in Sect. 3. We treat each
set of properties in turn.

5.1 Accountability

As we discussed in the last section, the accountability properties intuitively fol-
low from the underlying signature of knowledge’s soundness properties: demon-
strating forgeries that fool the recipient (unforgeability or sender binding) or the
judge (receiver binding) implies the ability to generate a proof without a wit-
ness. However, it is not clear how to modularly define a suitably strong knowledge
soundness property of the signature of knowledge underlying our construction.
Our analyses therefore take a different tack, reducing to the soundness properties
of the underlying Sigma protocol.

We discuss receiver binding, which shares the same high level strategy as
sender binding. Our strategy is to show a winning adversary A breaks the one-
wayness of the witness-statement relation R, which we can use to build a dis-
crete log adversary B extracting secret keys from the witness. The approach of
the proof uses some techniques related to the proof of existential unforgeability
under chosen message attack (EUF-CMA) for Fiat-Shamir-derived signatures
(c.f., [15]), but the need of B to simulate A’s oracle queries requires a more
nuanced analysis. In fact performing this simulation leads us to make an addi-
tional knowledge-of-exponent assumption (KEA) assumption [9] about G. We
detail the needed KEA assumption in [72]. The full theorem is given below.

Theorem 1. Let AMF be the asymmetric message franking scheme using sig-
nature of knowledge SPoK defined in Fig. 5, where SPoK is derived using the
Fiat-Shamir heuristic as described in [72] using hash function H. If H is modeled
as a random oracle, for any r-BIND adversary A making at most QFrank franking
oracle queries, QJudge judge oracle queries, and Qro random oracle queries, we
give adversaries B and C such that

Advr-bind
AMF (A) ≤ QFrank(QFrank + Qro + 1)

p4
+ (QJudge + 1) · Advkea

G,g(C, EC)

+
Qro + 1

p
+

√
2(Qro + 1) · Advdl

G,g(B)

where p is the order of G and if A runs in time T and KEA extractor EC runs
in time tE , then B runs in time T ′ ≈ 2T + 2(QJudge + 1) · tE and C runs in time
T ′ ≈ T .

We use ≈ above to hide small constants. We give a proof sketch here. The
theorem statements and proofs for sender binding and unforgeability are similar.
We defer the full proof details for all three accountability properties to [72].

Asymmetric Message Franking 239

Proof sketch: Our proof proceeds via a sequence of games. The first set of
game hops show how the game can be modified to answer A’s franking queries
without using the sender’s secret key sks. Similarly to proving non-interactive
zero knowledge for Fiat-Shamir-derived proofs [15, Theorem 20.3], this is done
by programming the random oracle H to be consistent with the commitments
used in the underlying Sigma protocol. This programming fails if a (randomly
chosen) commitment collides with a value previously used as input to the random
oracle. This happens with low probability as commitments are four uniformly
chosen group elements. The birthday-bound term accounts for the probability
of such a commitment collision.

The second set of game hops handles simulating the judge oracle without the
judge’s secret key. To do so we argue that one can simulate the queries using
KEA extractors and, if that fails, we can build an adversary C that violates the
KEA. In fact this step uses a hybrid argument which gradually replaces each
oracle call with an extractor-utilizing simulation of the check. This accounts for
the second term of the theorem’s advantage bound.

Finally we are in a game now in which the only use of the judge and sender
secret keys is to define the public keys. We use a rewinding lemma [15, Lemma
19.2]. If A succeeds at forging in one execution against a particular message,
we can rerun A (“rewind” it) with a different random oracle output for that
message. The rewinding lemma lower bounds the probability that A succeeds
twice in a row by the probability that it succeeds once. In turn, if one can
forge twice with different hash outputs, this allows extracting a witness from the
Fiat-Shamir proof of knowledge. The last step involves a case analysis over the
relation R to show that extracting a witness implies learning sks or skj , which
we use to build our desired discrete log adversary B. A subtlety in this final step
is that extracting a witness implies learning u = skj · α, but not skj directly.
We use a KEA extractor again to extract α, and thus complete the proof. This
accounts for the final two terms of the advantage relation.

Replacing KEA with Gap-CDH. The KEA [9] is a somewhat exotic assump-
tion, and a natural question to ask is if we can prove our scheme secure without
it. By extending our franking signature by two group elements and reducing to
Gap-CDH instead of DL, we can dispense with KEA. The assumption is used
in two places in our proof while building DL adversary B, (1) to answer judge
oracle queries, and (2) to learn skj from the witness. In our alternate proof,
the Gap-CDH oracle is used to answer judge oracle queries, and the extended
franking signature directly proves knowledge of α and β so KEA is not needed
to learn skj from the witness. This gives us the following theorem:

Theorem 2. Let AMF be the asymmetric message franking scheme using sig-
nature of knowledge SPoK defined in Fig. 5 over relation R′ defined in [72], where
SPoK is derived using the Fiat-Shamir heuristic as described in [72] using hash
function H. If H is modeled as a random oracle, for any r-BIND adversary A
making at most QFrank franking oracle queries, QJudge judge oracle queries, and
Qro random oracle queries, we give adversary B and C such that

240 N. Tyagi et al.

Advr-bind
AMF (A) ≤ QFrank(QFrank + Qro + 1)

p4
+

Qro + 1
p

+
√

2(Qro + 1) · Advgapcdh
G,g (B)

where p is the order of G and if A runs in time T , then B runs in time T ′ ≈ 2T .

We provide the theorem statements for the other two accountability properties,
as well as assumption definitions and proof details in [72].

5.2 Deniability

Intuitively, the deniability properties fall out of the non-interactive zero knowl-
edge property of the signature proofs of knowledge. Our signature proof of knowl-
edge is carefully designed so that a variety of different witnesses can satisfy the
statement relation R (as laid out in Fig. 4). This allows forgers to create sig-
natures that can only be caught by checking well-formedness of the statement
using secret keys.

In more detail, the deniability proofs all follow the same outline. First notice
that there are two high level differences between the frank algorithm and the
forge algorithms: (1) the witnesses used to prove the statement are different, and
(2) how the elements of the statement are formed is different. Different witnesses
are handled by using the zero-knowledge property of the signature proof to switch
between witnesses by hopping to a simulated proof and back. In fact, for judge
compromise deniability, witness indistinguishability [35] is all that is needed since
elements of the statement are well-formed and identical in Frank and JForge.
Extra care needs to be taken for Forge and RForge, since some elements of the
statement are malformed. Well-formed means, for example, that J is constructed
as J ← (pkj)α forming a Diffie-Hellman triple, (pkj = gskj , EJ = gα, J = gα·skj).
While malformed means J ← gγ is constructed as a random group element.
In RForge, J is malformed, while in Forge both J and R are malformed. This
leads to an additional DDH term to bound the advantage of an adversary in
distinguishing between each well-formed and malformed statement elements.

The theorem statement for universal deniability is given below. The first term
of the advantage comes from hopping between two witnesses through a simulator.
The second term of the advantage comes from a decisional Diffie-Hellman hop
for each of the two malformed elements of Forge.

Theorem 3. Let AMF be the asymmetric message franking scheme defined in
Fig. 5 using signature of knowledge SPoK defined in [72]. For all simulators S
for SPoK, for any UnivDen adversary A, we give adversaries B and C such that

Advuniv-den
AMF (A) ≤ 2 · Advnizk

SPoK,S(B) + 2 · Advddh
G,g (C).

where if A runs in time T and makes at most Q queries to the frank oracle, then
B and C run in time T ′ ≈ T and B makes at most Q queries to its proof oracle.

The advantage terms for receiver compromise deniability and judge com-
promise deniability follow a similar structure. The full proofs for all deniability
properties are deferred to [72].

Asymmetric Message Franking 241

5.3 Measuring Concrete Security

Performing a concrete security analysis allows us to verify the efficiency of our
reductions and inform parameter choices. The full details of our analysis are
given in [72]. The reductions for accountability are not tight, due both to inher-
iting the quadratic loss seemingly fundamental to Schnorr-based Sigma protocols
(c.f., [10]) and use of a KEA extractor to respond to each oracle query. The KEA
poses a challenge for interpreting the concrete security analyses since the extrac-
tor is not concretely instantiated.

Strictly interpreted, our analysis suggests that we need a group G of more
than twice the recommended size—i.e., > 512 bit elliptic curve groups to achieve
about 128 bits of security. That said, we are not aware of any attacks against our
schemes better than solving a discrete log, which is the same situation for stan-
dard Schnorr signatures and other uses of Fiat-Shamir. Therefore, in our imple-
mentations we also evaluate using 256-bit groups. This is standard in related
settings (see [12,18]). It remains a long-standing open question to understand
if this heuristic is dangerous, i.e., if one can show an attack against Schnorr
signatures (or similar) built from groups with conjectured 128-bit hardness that
succeeds in time closer to 264.

6 Implementation and Evaluation

To evaluate our protocol, we implemented our signature proof of knowledge con-
struction in Python 3 using the petlib [32] library which relies on OpenSSL
for elliptic curve operations. Our implementation consists of a generic inter-
face for implementing and composing Sigma protocols that may be of indepen-
dent interest. For our AMF construction, we implemented the Schnorr protocol,
Chaum-Pedersen protocol, and conjunction and disjunction protocols, as well as
a Fiat-Shamir transform to create non-interactive proofs from the generic Sigma
protocol interface.

We aim to evaluate the practicality of integrating our AMF scheme into
existing messaging platforms. First, we are interested in the timing overhead
in creating franking signatures as well as the space overhead in the signatures
themselves. To this end, we present microbenchmarks to evaluate the overhead
costs in our scheme. Second, we discuss what the deployment of an end-to-
end moderation system incorporating asymmetric message franking would look
like and present one such proof-of-concept for direct messaging on the Twitter
platform. The AMF library as well as the deployment prototype are available
open source at https://github.com/julialen/asymmetric-message-franking.

Benchmarks. We present timing and size benchmarks for our implementation
of the signature of knowledge AMF construction. These experiments were con-
ducted on an AWS t3.small EC2 virtual machine running Ubuntu 18.04 on a
2.5 GHz Intel Scalable Processor using the NIST elliptic curve groups P-256 and
P-521 and the hash function SHA-256.

https://github.com/julialen/asymmetric-message-franking

242 N. Tyagi et al.

Fig. 6. Measured timing statistics and group operation accounting for the AMF algo-
rithms from Fig. 5 including a baseline comparison to a (undeniable) Schnorr signature.
The measured times show the average and standard deviation over 1000 runs using a
message size of 4KB instantiated over NIST elliptic curve groups P-256 and P-521.
The group operations give the count of scalar multiplications (Mul), group additions
(Add), and group inversions (Inv).

The table in Fig. 6 shows the measured time in milliseconds to run each of the
algorithms from Fig. 5. The measured times are the average over 1000 runs using
a message size of 4 KB. We compare to a baseline of a basic Schnorr signature of
sks, which is undeniable. These numbers are as expected—our algorithms per-
form about ten times as many group operations as a Schnorr signature, and take
roughly ten times as long. Though our scheme is slower, it is still fast enough
to be used in practical settings where network latency dominates communica-
tion cost. We also provide the number of group operations (scalar multiplica-
tions, group additions, and group inversions) performed in each algorithm. These
experiments were conducted using a fixed message size of 4 KB, but we note that
the only message-size dependent operation is a single hash for the Fiat-Shamir
signature.

The size of an AMF signature is not message-dependent. Our algorithms all
output nine group elements (i.e., elliptic curve points) and six scalars in Zp.
In our implementation, AMF signatures are 489 bytes in size for elliptic curve
group P-256 and 795 bytes in size for elliptic curve group P-521. In contrast, a
Schnorr signature is one group element and one scalar and is 65 bytes in size for
P-256 and 99 bytes in size for P-521.

Deployment. We build a proof-of-concept third-party moderation system using
AMFs which we can test by integrating it over already existing messaging plat-
forms. Instantiating a third-party moderation system with asymmetric message
franking involves three main services: (1) a judging service that receives and
arbitrates abuse reports from users, (2) a publish-subscribe service to maintain
an up-to-date community membership list amid new user enrollment and abusive
user blocks, and (3) a public key infrastructure (PKI) to map platform identities
to public keys. A user registers by enrolling with the membership service and
delivering their public key to the PKI. To bind a platform identity to a key, the
PKI should check some kind of proof-of-ownership of both the account and the
secret key. This can be done using a challenge-response protocol, where the PKI

Asymmetric Message Franking 243

delivers a random challenge to the user, who must sign the challenge with their
private key and post the signed challenge on the platform. This will prevent
rogue-key attacks that utilize malformed keys (q.v., [65]). Our proof-of-concept
interfaces with Keybase [1] which provides the PKI service as described above.

The judging service can be performed by human moderators, automated
tools, or some combination of the two. In our proof-of-concept, judging abuse
reports is automated through the use of the Perspective conversation API [2]
which uses machine learning to assign a “toxicity” score to a message; users are
blocked based on a threshold of the score. We note that in a production deploy-
ment, use of automated moderation tools would need to be carefully tuned and
likely also paired with human decision-making. Finally, we provide a client with
a command-line interface to allow users to send, receive, and report direct mes-
sages on Twitter. The client automatically creates, appends, and parses franking
signatures, as well as filters messages that are malformed or sent from a blocked
user.

Lastly, we find that the cryptographic overhead of creating and verifying
franking signatures is dwarfed by the overhead incurred by the rest of the infras-
tructure needed for moderation, e.g. PKI; sending a message over Twitter in
our proof-of-concept takes ≈0.5 s. Much of this identity-binding infrastructure is
needed for any moderation service—augmenting cryptographic verification using
asymmetric message franking is not a significant overhead.

7 Discussion

Here we discuss some limitations of the use of AMF schemes.

Strong Authentication. Our scheme does not ensure forgeries by the moder-
ator can be detected by the receiver, and so the receiver cannot rely on AMF
signatures alone to authenticate authorship if there is risk of the moderator being
malicious. This is fundamental given our strong deniability notions (specifically,
judge compromise deniability rules it out). One might weaken our deniability
goals to achieve this, however. We explore such an alternate deniability target
in [72] and informally present a modification to our scheme that achieves it.

Alternatively, one could rely on the accompanying E2E encryption scheme
to provide strong authentication. To preserve deniability properties, the E2E
encryption should itself be deniable (otherwise a receiver could potentially con-
vince others that a message was sent by providing a transcript of E2E cipher-
texts and keys). Some E2E encryption systems appear to have the requisite
deniability properties, such as Signal based on 3DH (Triple Diffie-Hellman) key
exchange [45,56]. Others have slightly weaker deniability properties, such as Sig-
nal’s newer handshake X3DH which extends 3DH with signed prekeys [57]. That
said we have not provided a formal treatment of E2E encryption and future work
could build off ours to do so.

Transcript Consistency. In Facebook’s current moderation solution [34], an
abuse report contains context of surrounding messages sent by both users. In

244 N. Tyagi et al.

metadata-private moderation, it is difficult to ensure the moderator, sender, and
receiver all have a consistent view of an interleaved message transcript because
the moderator does not know what was sent or when. We might include sequence
numbers and acknowledgment receipts to protect ordering. However, such tech-
niques should be introduced with care so as not to obviate the system’s denia-
bility properties.

Moderator Accountability via Thresholding. Another issue is that our
deniability goals may make holding moderators accountable for their actions
more difficult. A fundamental property of asymmetric message franking is that
the moderator cannot prove someone authored a message. At best they can
prove a message was authored either by them or by the sender. As a result, the
moderator cannot prove they had a valid reason for banning someone.

One potential mitigation for this would be to split the moderator’s functional-
ity across multiple parties. To do so, the key would need to be shared and a secure
multi-party protocol used to test well-formedness of J in the franking signature,
which can be done using techniques from verifiable secret sharing [61,63,70].
With threshold moderation, it takes the parties holding some t out of n moder-
ator key shares to invoke Judge. This makes the moderator functionality more
robust to accusations of unfair treatment, since t of them would need to act
unfairly to falsely accuse someone. This also provides a natural defense against
moderator key compromise, since to reconstruct the moderator key, t distinct
parties would need to be breached.

Deniable Channels. Finally, care must be taken when composing our AMF
scheme with other cryptographic primitives, as those primitives may compromise
or prevent deniability. In particular, one might worry about the deniability of the
underlying authenticated channels, like TLS, through which AMF signed mes-
sages are sent. In general, if the sender uses one-way authentication for TLS, a
TLS transcript is (cryptographically) universally deniable. In this authentication
mode, the server is authenticated and the client generates and sends a randomly
chosen ephemeral prekey to the server from which a session key is derived. Any
party can create a session key with the platform server and use that session key
to create a forged transcript. The IP address of the sender is learned by the plat-
form server at the time of sending, but any transcript recording the IP address is
unconvincing since it is not bound to the client-chosen randomness. Thus while
there exist stronger notions of deniable channels [64,73], it seems TLS channels
preserve universal deniability for arbitrary message platforms.

Yet, messaging platforms presumably perform their own user authentication
on top of TLS, and this may be problematic for receiver compromise deniability
in some scenarios. Due to the deniability properties of TLS described above, a
transcript of messages served by the platform would be unconvincing. However,
instead, if the receiver were to reveal their platform credentials, someone can use
those credentials to retrieve the messages directly from the platform. This inter-
action would convince someone that the messages were sent by the sender, given
they trust the platform’s underlying user authentication. One way to prevent
this breach in deniability is if the platform does not serve archived messages.

Asymmetric Message Franking 245

Platforms such as Signal, WhatsApp, and Facebook secret conversations do not
back-up messages, and thus, already fit this model.

8 Related Work

Message Franking Schemes. Symmetric message franking has been stud-
ied in several works [27,33,34,39,43]. All of these schemes consider the sym-
metric setting where a centralized server holds a MAC key that authenticates
the ciphertext, sender, recipient tuple. They do not transfer to settings where
this communication metadata is not available. Moreover, while deniability is the
motivating goal, the actual studied primitive is compactly committing authen-
ticated encryption [39]. They do not formalize deniability.

Special Purpose Signature Schemes. A variety of special purpose signature
schemes have been proposed that do not work in our setting. In undeniable signa-
tures [23,25], verification requires interacting with the signer precisely to prevent
them from denying messages they wrote. This is the same limitation as desig-
nated confirmer signatures [24], with the added problem that any compromise
of the confirmer—who holds keys which can confirm but not issue signatures—
removes any doubt about the authenticity of a signature.

Group signatures [8,13,17,20] allow members of a specified group to sign
messages indicating they are a part of the group without revealing the individ-
ual signer’s identity. Group membership is determined by a group coordinator
who has the additional capability of learning the individual signer from a sig-
nature. One can imagine a moderation protocol built from group signatures in
which all users are part of the “global” group and the moderator is the group
coordinator. Other than the efficiency issues of maintaining a global group with
dynamic joins and revocations, these schemes do not achieve judge compromise
deniability for the group coordinator’s secret key. Ring signatures [66] similarly
allow verification of group membership, but are not applicable to moderation,
since they do not provide a way for the moderator to learn individual signer
identities.

Designated verifier signatures [44,46,50,54], in particular, strong designated
verifier signatures [42,68] provide nearly the functionality we need, but do not
alone capture the relationship between the moderator and recipient parties. We
informally describe an AMF construction (see Sect. 4.1 and [72]) consisting of a
strong designated verifier proof [22,31] to the receiver of the well-formedness of
a strong designated verifier signature to the moderator. This approach can also
be considered as a new variant of multi-designated verifier signatures [51] with
a special relationship between designated verifiers, moderator and receiver.

Anonymous Blacklisting Systems. An anonymous blacklisting scheme [40]
allows a user to produce a series of unlinkable tokens from a private key. To
send a message, they provide a fresh token and prove that no tokens linked to
their private key are on some blacklist. In this manner, moderators can blacklist
sender tokens without learning the sender’s identity—different from AMF where

246 N. Tyagi et al.

the sender’s identity is learned by the moderator. However, the need for the
sender to be able to identify and disavow tokens on the blacklist means that
there is no deniability in the case an attacker compromises the sender (e.g., as in
the DNC email breach). Our scheme, in contrast, protects the user’s deniability
even if their key is compromised.

Other Work in Deniability. Deniability has also been considered in other
cryptographic contexts. Canetti et al. proposed deniable encryption [21], which
allows the denial of contents of a ciphertext by giving a different opening of it.
This doesn’t deal with authorship or authentication and hence is not applica-
ble. Borisov et al. [16] explored deniability as a feature for messaging systems.
Deployed in OTR [16] and Signal [56], deniable messaging protocols ensure that
messages can be authenticated by the receiver but not by third parties. On their
own, they do not allow for moderation because the deniability is too strong: no
one can authenticate the message, including the moderator. They can be com-
bined with an AMF scheme to get an end-to-end encrypted and moderatable
messaging scheme.

Automated Moderation Systems. A variety of works have explored ad-hoc
moderation [37] and automated moderation systems [59]. We do not attempt to
provide an exhaustive list here. One of the more notable projects is Google Jig-
saw’s Perspective API [59], which aims to build automated moderation tools to
combat toxicity. While these works are promising, they cannot be used effectively
if messages cannot be properly attributed to users.

9 Conclusion

In this paper, we investigated moderation for metadata-private messaging sys-
tems like Signal. Because user identities are hidden from the platform, existing
moderation tools (including symmetric message franking) cannot be used. Other
seeming solutions break deniability. Similar issues prevent third-party modera-
tion, in which the messaging platform and moderator are decoupled.

We showed that the main technical challenge is cryptographic: how to balance
the need for accountability in abuse reporting with the desire for deniability.
We resolved this tension by introducing a new cryptographic primitive called
asymmetric message franking (AMF), and showed how to construct one efficient
enough for practice.

Acknowledgments. This work was supported in part by NSF awards DGE-1650441,
CNS-1704296, and CNS-1558500.

References

1. Keybase (2014). https://keybase.io/docs/server security
2. Perspective API (2017). https://www.perspectiveapi.com/
3. Mastodon social network (2018). https://joinmastodon.org/

https://keybase.io/docs/server_security
https://www.perspectiveapi.com/
https://joinmastodon.org/

Asymmetric Message Franking 247

4. Matrix: an open network for secure, decentralized communication (2018). https://
matrix.org/

5. Sealed sender represents 80% of signal traffic (2019). https://twitter.com/
signalapp/status/1075918894521495552

6. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

7. Angel, S., Setty, S.T.: Unobservable communication over fully untrusted infras-
tructure. In: OSDI (2016)

8. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

9. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-
8 17

10. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: a
framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 15

11. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 25

12. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Crypt. Eng. 2, 77–89 (2012)

13. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

14. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1 30

15. Boneh, D., Shoup, V.: A Graduate Course in Applied Cryptography (2017). Version
0.4

16. Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why not
to use PGP. In: ACM WPES (2004)

17. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 26

18. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: IEEE S&P (2018)

19. Camenisch, J.: Group signature schemes and payment systems based on the dis-
crete logarithm problem. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (1998)

20. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

21. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052229

https://matrix.org/
https://matrix.org/
https://twitter.com/signalapp/status/1075918894521495552
https://twitter.com/signalapp/status/1075918894521495552
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/11761679_26
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/BFb0052229

248 N. Tyagi et al.

22. Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-
knowledge proofs of knowledge. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10822, pp. 193–221. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78372-7 7

23. Chaum, D.: Zero-knowledge undeniable signatures. In: Damg̊ard, I.B. (ed.) EURO-
CRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991). https://
doi.org/10.1007/3-540-46877-3 41

24. Chaum, D.: Designated confirmer signatures. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995). https://doi.org/10.
1007/BFb0053427

25. Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 20

26. Cham, D., Pederson, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740. Springer, Berlin (1993). https://doi.org/10.1007/
3-540-48071-4 7

27. Chen, L., Tang, Q.: People who live in glass houses should not throw stones:
targeted opening message franking schemes. Cryptology ePrint Archive, Report
2018/994 (2018)

28. Corrigan-Gibbs, H., Boneh, D., Mazieres, D.: Riposte: An anonymous messaging
system handling millions of users. In: IEEE S&P (2015)

29. Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anonymous group messaging.
In: ACM CCS (2010)

30. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 36

31. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 3

32. Danezis, G.: Petlib library (2018). https://github.com/gdanezis/petlib
33. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: from

invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 155–186. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1 6

34. Facebook: Messenger secret conversations technical whitepaper (2017). https://
fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-conversations-
technical-whitepaper.pdf

35. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC (1990)

36. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

37. Geiger, R.S.: Bot-based collective blocklists in twitter: the counterpublic modera-
tion of harassment in a networked public space. Inf. Commun. Soc. 19, 787–803
(2016)

38. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems. J. ACM 38, 690–728
(1991)

39. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403,
pp. 66–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 3

https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/3-540-46877-3_41
https://doi.org/10.1007/3-540-46877-3_41
https://doi.org/10.1007/BFb0053427
https://doi.org/10.1007/BFb0053427
https://doi.org/10.1007/0-387-34805-0_20
https://doi.org/10.1007/0-387-34805-0_20
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/11681878_3
https://github.com/gdanezis/petlib
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1007/978-3-319-96884-1_6
https://fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-63697-9_3

Asymmetric Message Franking 249

40. Henry, R., Goldberg, I.: Formalizing anonymous blacklisting systems. In: IEEE
S&P (2011)

41. van den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: scalable private
messaging resistant to traffic analysis. In: SOSP (2015)

42. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Efficient strong designated verifier
signature schemes without random oracle or with non-delegatability. Int. J. Inf.
Secur. 10, 373 (2011)

43. Huguenin-Dumittan, L., Leontiadis, I.: A message franking channel. Cryptology
ePrint Archive, Report 2018/920 (2018)

44. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 13

45. Kudla, C., Paterson, K.G.: Modular security proofs for key agreement protocols.
In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 549–565. Springer,
Heidelberg (2005). https://doi.org/10.1007/11593447 30

46. Kudla, C., Paterson, K.G.: Non-interactive designated verifier proofs and unde-
niable signatures. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS,
vol. 3796, pp. 136–154. Springer, Heidelberg (2005). https://doi.org/10.1007/
11586821 10

47. Kwon, A., Corrigan-Gibbs, H., Devadas, S., Ford, B.: Atom: horizontally scaling
strong anonymity. In: SOSP (2017)

48. Kwon, A., Lazar, D., Devadas, S., Ford, B.: Riffle. PoPETs 2016, 115–134 (2016)
49. Kwon, A., Lu, D., Devadas, S.: XRD: scalable messaging system with cryptographic

privacy. arXiv preprint arXiv:1901.04368 (2019)
50. Laguillaumie, F., Vergnaud, D.: Designated verifier signatures: anonymity and effi-

cient construction from Any bilinear map. In: Blundo, C., Cimato, S. (eds.) SCN
2004. LNCS, vol. 3352, pp. 105–119. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-30598-9 8

51. Laguillaumie, F., Vergnaud, D.: Multi-designated verifiers signatures. In: Lopez, J.,
Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 495–507. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30191-2 38

52. Lazar, D., Gilad, Y., Zeldovich, N.: Karaoke: distributed private messaging immune
to passive traffic analysis. In: OSDI (2018)

53. Lazar, D., Zeldovich, N.: Alpenhorn: bootstrapping secure communication without
leaking metadata. In: OSDI (2016)

54. Lipmaa, H., Wang, G., Bao, F.: Designated verifier signature schemes: attacks, new
security notions and a new construction. In: Caires, L., Italiano, G.F., Monteiro,
L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 459–471.
Springer, Heidelberg (2005). https://doi.org/10.1007/11523468 38

55. Lund, J.: Technology preview: sealed sender for Signal (2018). https://signal.org/
blog/sealed-sender/

56. Marlinspike, M.: Simplifying OTR deniability (2013). https://signal.org/blog/
simplifying-otr-deniability/

57. Marlinspike, M., Perrin, T.: The X3DH key agreement protocol (2016). https://
signal.org/docs/specifications/x3dh/

58. Masnick, M.: The Clinton campaign should stop denying that the Wikileaks emails
are valid; they are and they’re real (2016). https://www.techdirt.com/articles/
20161024/22533835878/clinton-campaign-should-stop-denying-that-wikileaks-
emails-are-valid-they-are-theyre-real.shtml

https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/11593447_30
https://doi.org/10.1007/11586821_10
https://doi.org/10.1007/11586821_10
http://arxiv.org/abs/1901.04368
https://doi.org/10.1007/978-3-540-30598-9_8
https://doi.org/10.1007/978-3-540-30598-9_8
https://doi.org/10.1007/978-3-540-30191-2_38
https://doi.org/10.1007/11523468_38
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://www.techdirt.com/articles/20161024/22533835878/clinton-campaign-should-stop-denying-that-wikileaks-emails-are-valid-they-are-theyre-real.shtml
https://www.techdirt.com/articles/20161024/22533835878/clinton-campaign-should-stop-denying-that-wikileaks-emails-are-valid-they-are-theyre-real.shtml
https://www.techdirt.com/articles/20161024/22533835878/clinton-campaign-should-stop-denying-that-wikileaks-emails-are-valid-they-are-theyre-real.shtml

250 N. Tyagi et al.

59. Mullin, B.: The New York Times is teaming up with Alphabet’s Jigsaw to expand
its comments (2017). https://www.poynter.org/news/new-york-times-teaming-
alphabets-jigsaw-expand-its-comments

60. Nossiter, A., Sanger, D.E., Perlroth, N.: Hackers Came, but the French were
prepared (2017). https://www.nytimes.com/2017/05/09/world/europe/hackers-
came-but-the-french-were-prepared.html

61. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

62. Piotrowska, A.M., Hayes, J., Elahi, T., Meiser, S., Danezis, G.: The loopix
anonymity system. In: USENIX Security (2017)

63. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC (1989)

64. Raimondo, M.D., Gennaro, R., Krawczyk, H.: Deniable authentication and key
exchange. In: CCS (2006)

65. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty
signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72540-4 13

66. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

67. Roose, K.: As elites switch to texting, watchdogs fear loss of trans-
parency (2017). https://www.nytimes.com/2017/07/06/business/as-elites-switch-
to-texting-watchdogs-fear-loss-of-transparency.html

68. Saeednia, S., Kremer, S., Markowitch, O.: An efficient strong designated verifier
signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 40–54. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-
6 4

69. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

70. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-68339-9 17

71. Tyagi, N., Gilad, Y., Leung, D., Zaharia, M., Zeldovich, N.: Stadium: a distributed
metadata-private messaging system. In: SOSP (2017)

72. Tyagi, N., Grubbs, P., Len, J., Miers, I., Ristenpart, T.: Asymmetric message frank-
ing: content moderation for metadata-private end-to-end encryption. Cryptology
ePrint Archive, Report 2019/565 (2019)

73. Unger, N., Goldberg, I.: Deniable key exchanges for secure messaging. In: CCS
(2015)

https://www.poynter.org/news/new-york-times-teaming-alphabets-jigsaw-expand-its-comments
https://www.poynter.org/news/new-york-times-teaming-alphabets-jigsaw-expand-its-comments
https://www.nytimes.com/2017/05/09/world/europe/hackers-came-but-the-french-were-prepared.html
https://www.nytimes.com/2017/05/09/world/europe/hackers-came-but-the-french-were-prepared.html
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/3-540-45682-1_32
https://www.nytimes.com/2017/07/06/business/as-elites-switch-to-texting-watchdogs-fear-loss-of-transparency.html
https://www.nytimes.com/2017/07/06/business/as-elites-switch-to-texting-watchdogs-fear-loss-of-transparency.html
https://doi.org/10.1007/978-3-540-24691-6_4
https://doi.org/10.1007/978-3-540-24691-6_4
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-68339-9_17
https://doi.org/10.1007/3-540-68339-9_17

Obfuscation

Statistical Zeroizing Attack:
Cryptanalysis of Candidates of BP

Obfuscation over GGH15
Multilinear Map

Jung Hee Cheon1,2,3, Wonhee Cho1, Minki Hhan1, Jiseung Kim1(B),
and Changmin Lee4

1 Department of Mathematical Sciences, SNU, Seoul, Republic of Korea
{jhcheon,wony0404,hhan ,tory154}@snu.ac.kr

2 Research Institute of Mathematics (RIM), SNU, Seoul, Republic of Korea
3 Cryptolab, Seoul, Republic of Korea

4 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL),
Lyon, France

changmin.lee@ens-lyon.fr

Abstract. We present a new cryptanalytic algorithm on obfuscations
based on GGH15 multilinear map. Our algorithm, statistical zeroizing
attack, directly distinguishes two distributions from obfuscation while it
follows the zeroizing attack paradigm, that is, it uses evaluations of zeros
of obfuscated programs.

Our attack breaks the recent indistinguishability obfuscation candi-
date suggested by Chen et al. (CRYPTO’18) for the optimal parameter
settings. More precisely, we show that there are two functionally equiv-
alent branching programs whose CVW obfuscations can be efficiently
distinguished by computing the sample variance of evaluations.

This statistical attack gives a new perspective on the security of the
indistinguishability obfuscations: we should consider the shape of the
distributions of evaluation of obfuscation to ensure security.

In other words, while most of the previous (weak) security proofs
have been studied with respect to algebraic attack model or ideal model,
our attack shows that this algebraic security is not enough to achieve
indistinguishability obfuscation. In particular, we show that the obfus-
cation scheme suggested by Bartusek et al. (TCC’18) does not achieve
the desired security in a certain parameter regime, in which their alge-
braic security proof still holds.

The correctness of statistical zeroizing attacks holds under a mild
assumption on the preimage sampling algorithm with a lattice trapdoor.
We experimentally verify this assumption for implemented obfuscation
by Halevi et al. (ACM CCS’17).

Keywords: Cryptanalysis · Indistinguishability obfuscation ·
Multilinear map

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 253–283, 2019.
https://doi.org/10.1007/978-3-030-26954-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_9

254 J. H. Cheon et al.

1 Introduction

Indistinguishability obfuscation (iO) is one of the most powerful tools used to
construct many cryptographic applications such as non-interactive multiparty
key exchange and functional encryption [5,18,34]. While constructing a general-
purpose iO has been posed as a longstanding open problem, Garg et al. [18] first
proposed a plausible candidate for the general-purpose iO exploiting a multilin-
ear map in 2013. Starting from this work, many subsequent studies have proposed
plausible constructions of iO upon candidate multilinear maps [1–3,6,18,19,25–
28,31,32,36].

However, all of the current constructions of multilinear map, essentially clas-
sified as GGH13, CLT13 and GGH15 [16,17,20], are merely candidates. These
constructions are not known to have the desired security of the multilinear map
due to the first class of zeroizing attacks, such as the CHLRS attack and Hu-Jia
attack [11,15,26]; these attacks commonly exploits several encodings of zero to
show the multi-party key exchange protocol instantiated by candidate multilin-
ear maps are not secure.

On the other hand, the first class of zeroizing attacks does not damage the
security of current iO constructions from the candidate multilinear maps. It
later turns out that most candidates iO fail to achieve the desired security due
to subsequent works, the second class of zeroizing attacks [9,10,12–15,33], which
employs algebraic relations of the top level encodings of zero. In this light, many
researches focus on algebraic security of obfuscation using the weak multilinear
map models [4,19,29] to capture the currently known techniques to analyze
obfuscations and multilinear map itself.

Recently, GGH15 multilinear map has been in the spotlight because it is
shown that GGH15 and its variants can be exploited to construct provable secure
special-purpose obfuscations and other cryptographic applications including con-
straint pseudorandom functions under the hardness of LWE and its variants
[7,8,10,22,35]. Therefore, the GGH15 multilinear map has been believed to be
the most plausible candidate for constructing the general-purpose obfuscation.

In this respect, Chen et al. [10] proposed a new iO candidate over GGH15,
called CVW obfuscation, to be secure against all known attacks. Then, Bartusek
et al. [4] provided a new candidate over GGH15, called BGMZ obfuscation, which
is provably secure against generalized algebraic zeroizing attacks. The security
of these two schemes in more general setting remains as an open problem.

1.1 Our Result

We give a new polynomial time cryptanalysis, statistical zeroizing attack, on the
candidates of iO based on the GGH15 multilinear map. This attack directly dis-
tinguishes the distributions from zeros of obfuscated programs instead of finding
algebraic relations of evaluations. We particularly exploit the sample variance
as a distinguisher of the distributions, while this attack introduces wide class of
distinguishing methods. In particular, under an assumption on lattice preimage
sampling algorithm with a trapdoor, our attack breaks the security of

Statistical Zeroizing Attack 255

• CVW obfuscation for the optimal parameter choice. Further, our attack still
works for the relatively small variance σ2 of Gaussian distribution such as
σ = poly(λ) for the security parameter λ, and

• BGMZ obfuscation for large variance of Gaussian distribution, e.g. σ = 2λ,
which still enables the security proof in the weak GGH15 multilinear map
model.1

This result refutes the open problem posed in [10] in a certain parameter
regime: the CVW obfuscation is not secure even when the adversary gets ora-
cle access to the honest evaluations as matrix products instead of obfuscated
program.

Our attack leads a new perspective to the study of iO: we should focus on
the statistical properties such as shapes of distributions as well to achieve indis-
tinguishability obfuscation. In particular, the distributions of evaluations should
be (almost) the same regardless of the choice of target branching program. Pre-
viously, most attacks and constructions only focused on the algebraic structure
of evaluations.

Attack Overview. Suppose that the adversary has two functionally equivalent
branching programs M and N, and an obfuscated program O(P) where P = M
or N. The purpose of the adversary is to determine whether P = M or N. Note
that the recent obfuscation constructions compute its output via two processes:
the first step is to compute a value, we call evaluation here according to the
evaluating rules, which is usually to compute a product of given matrices. The
second step is to determine the output from the size of the evaluation in the first
step.

The basic form of statistical zeroizing attack is incredibly simple; just com-
pute the evaluation of obfuscated program (right before computing output) and
check if an entry is larger than a threshold value. Since two evaluations of obfus-
cated programs O(M) and O(N) have the different variance, this attack may
work.

Technically speaking, we consider a bit complex form of statistical zeroizing
attack in this paper to give a rigorous analysis. The above form is simple, but it
is hard to check the correctness of attack.2 Thus we consider the multiple-sample
problem instead of one evaluation, and then compute the sample variance. Then
we determine P by checking the inequality of the sample variance and a thresh-
old value. Note that these distributions of evaluations are polynomial-time con-
structible, i.e. the sampling algorithm is done in polynomial time, since every
parameter to do obfuscation process is given to adversary. Therefore the dis-
tinguishing algorithm of two distributions implies the distinguishability of two
corresponding evaluations by the standard hybrid argument.

Though the attack is conceptually simple, it is difficult to verify that the
attack works well for certain obfuscation schemes, and this verification requires
1 That is, our attack is lying outside the considered attack class in [4].
2 The difference of variance is even not enough to distinguish. For example, the dis-

tributions that 0 with overwhelming probability cannot be efficiently distinguished
though these can have any variance.

256 J. H. Cheon et al.

several complex computational tasks. Thus we give the sufficient conditions that
attack works well using sample variance for a simpler description of the attack.
And we assign many pagesost papers including appendix and technical compu-
tations, which can be found in the full version of this paper [11], to show that
those conditions hold under an assumption, dealing with many random variables
that might be dependent themselves. We derive many lemmas to deal with such
intertwined random variables.

Assumption on Lattice Preimage Sampling. The analysis of attack requires
an assumption on lattice preimage sampling algorithm. This assumption states
that the variance and kurtosis of products of matrices from preimage sampling
have almost the same size as one assumed the independency of those matrices.
This assumption is experimentally verified for matrices used in implemented
obfuscation scheme [23]. For more detailed description, see Assumption 1 and
AppendixC.

Example of Statistical Zeroizing Attack. We give an example to show
how our attack intuitively works. We consider a simple construction of GGH15-
obfuscation without all safeguards. For brevity we only give the result of evalu-
ation. A detailed description of this simple obfuscation is given in AppendixA.
We also do not give a computational analysis of the attack here, but this example
still is enough to shows that the two distributions of evaluations from different
branching programs may have quite different shape.

We consider two functionally equivalent branching programs

M = {Mi,b}i∈[h],b∈{0,1} and N = {Ni,b}i∈[h],b∈{0,1}

where

Mi,b = 0w×w for all i, b and Ni,b =

{
Iw×w if i = 1
0w×w otherwise

.

For these BPs, the evaluations are of the form

O(M)(x) = E1,xinp(1) ·
h∏

k=2

Dk,xinp(k) and

O(N)(x) = E1,xinp(1) ·
h∏

k=2

Dk,xinp(k) + I · E2,xinp(2) ·
h∏

k=3

Dk,xinp(k) .

Here D’s are preimage-sampled matrices and E’s are error matrices, whose
entries are all following discrete Gaussian distribution.

If we choose polynomial-size variances for those matrices, these two distribu-
tions have noticeably different shape. Therefore one can hope to distinguish two
distribution; indeed, the sample variance will be served as a distinguisher in this
paper. Or, more efficiently, one can distinguish them by looking at the size of
sample, but this is not easy to show the correctness as noted in above without
strong assumption on shape of distributions.

Statistical Zeroizing Attack 257

Applicability and Limitation. The class of branching programs constructed
from CNF formulas, suggested in [10, Construction 6.4], is in the range of our
attack as well. For example, as we choose two branching programs N = {Ni,b}
and M = {Mi,b} as follows: N1,b as the identity matrix with w × w size and all
other matrices of M and N as the zero matrix. These two branching programs
M and N correspond to some CNF formulas following the construction. This is
exactly the same to the target branching programs described in Sect. 4.2 as an
attack example.

On the other hand, there is a class of branching programs that seems robust
against our attack: permutation matrix branching programs. For this class of
branching programs, the distributions of evaluations except bookend vectors are
the same for any choice of permutation branching program M in many obfusca-
tion constructions (under the assumption on trapdoor matrices). Interestingly,
(a variant of) the first candidate iO over the GGH15 multilinear map [18,20]
has targeted such branching programs so it is robust against our attack.

Further, the obfuscation schemes over the CLT13 or GGH13 multilinear maps
seems to be secure against statistical zeroizing attack. This is due to the structure
of those schemes; encodings CLT13 and GGH13 have large randomness in the
zero-testing results compared to the message-dependent parts. In other words,
the randomness dominates the zero-testing values and the message only gives
negligible perturbation on the zero-testing distributions.

Counter Measures. There are two countermeasures on our attack: (1) modify-
ing construction to obfuscate permutation branching programs and (2) adjusting
parameters to rule out our attack. We remark that both countermeasures are
plausibly blocking the attack but not in the provable security level.

As noted above, we can simply use the known obfuscations to obfuscate
permutation branching programs only. Unfortunately, CVW and BGMZ obfus-
cations in the suggested form are not appropriate to obfuscate the permutation
branching programs.3 We can modify CVW obfuscation to obfuscate the permu-
tation branching programs; this modified construction is secure against all exist-
ing attacks including the attack suggested in this paper. This can be done by
choosing the bookends appropriately for permutations. A more precise descrip-
tion is placed in AppendixB. The similar modification works well in BGMZ
obfuscation.

Another simple countermeasure for our attack is to take another parameter
choice for variance σ, especially to adjust the variance of several discrete Gaus-
sian distributions appropriately. For example, one can consider the following
modifications.

3 Though there is a general transformation from permutation branching program into
Type I branching program [10, Claim 6.2], this induces the bookend vector of the
form (v|−v) rather than the implicitly supposed bookend 11×w in CVW obfuscation.
If we directly obfuscate permutation branching programs, the functionality of them
is all-rejection. Indeed, if we obfuscate permutation branching programs using CVW
obfuscation as this trivial functionality (without transformation), the iO security for
these trivial BPs can be proven by the proof technique of [7].

258 J. H. Cheon et al.

• For CVW obfuscation, the condition of our attack (using sample variance)
does not hold for large σ2, e.g. σ2 = Ω(m�) for the sampled dimension m of
preimage sampling and the length � of branching program.

• For BGMZ obfuscation, the small choice of σ, e.g. σ2 = O(ν) for the size
bound of the bookend vector’s entry ν.

Both countermeasures yield the exponential bound in the first attack condition
(See Proposition 3.1). We remark that the preimage sampling procedure with
large σ can be done in polynomial time using [21].

It is interesting that the large σ yields countermeasure on CVW obfuscation
while it allows the attack on BGMZ obfuscation. This difference comes from
the structure of scheme, or the dominating term of evaluation’s variance. More
precisely, the main parts to induce the difference are

– In BGMZ obfuscation, there are auxiliary random matrices terms, which flood
other terms. For large σ, a dominating term moves to the message dependent
terms.

– In CVW obfuscation, auxiliary random matrices are only larger than the
message dependent terms up to polynomial factor, which gives the enough
difference to distinguish. When σ is increased, the ratio is going to exponential
and yields noise-flooding.

Open Questions. We also leave some open problems:

1. The presented attack shows some weakness of obfuscation for non-
permutation branching program, while this class of branching programs is
known to have several advantages compared to permutation branching pro-
grams including efficiency [10]. Can we construct a provably secure obfusca-
tion against all zeroizing attack without choosing the permutation branching
programs?

2. On the other hand, can we extend the zeroizing attack to more general
obfuscation or branching programs such as evasive functions or permutation
branching programs? Can we derive a new attack that combines algebraic
and statistical structure of evaluations?

3. The candidate witness encryption in [10] shares almost the same structure
with the CVW obfuscation but we do not know whether it is secure or not.

Organization. In Sect. 2, we introduce preliminary related to the branching
program, iO, and lattices. We describe the statistical zeroizing attack in Sect. 3.
In Sect. 4, we briefly describe CVW obfuscation and its cryptanalysis. In addi-
tion, we review BGMZ obfuscation and its cryptanalysis in Sect. 5.

2 Preliminaries

Notations. N,Z,R denote the sets of natural numbers, integers, and real num-
bers, respectively. For an integer q ≥ 2, Zq is the set of integers modulo q.

Statistical Zeroizing Attack 259

Elements are in Zq are usually considered as integers in [−q/2, q/2). We denote
the set {1, 2, · · · , h} by [h] for a natural number h.

Lower bold letters means row vectors and capital bold letters denote matrices.
In addition, capital italic letters denote random matrices or random variables.
For a random variable X , we let E(X) be the expected value of X , V ar(X) the
variance of X .

The n-dimensional identity matrix is denoted by In×n. For a row vector v,
a i-th component of v is denoted by vi, and for a matrix A, a (i, j)-th entry
of a matrix A is denoted by ai,j , respectively. A notation 1a×b means a a × b
matrix such that all entries are 1. The �p norm of a vector v = (vi) is denoted
by ‖v‖p = (

∑
i |vi|p)1/p. We denote ‖A‖∞ by the infinity norm of a matrix A,

‖A‖∞ = maxi,j ai,j with A = (ai,j).
We use a notation x ← χ to denote the operation of sampling element x

from the distribution χ. Especially, if χ is the uniform distribution on a finite
set X, we denote x ← U(X).

For two matrices A = (ai,j) ∈ R
n×m, B ∈ R

k×�, the tensor product of matrix
A and B is defined as

A ⊗ B :=

⎛
⎜⎜⎝

a1,1 · B · · · a1,m · B
...

. . .
...

an,1 · B, · · · , an,m · B

⎞
⎟⎟⎠ .

For four matrices A,B,C,D such that one can form products A ·C and B ·D,
the equation (A ⊗ B) · (C ⊗ D) = (A · C) ⊗ (B · D) holds.

2.1 Matrix Branching Program

A matrix branching program (BP) is the set which consists of an index-to-input
function and several matrix chains.

Definition 2.1. A width w, length h, and a s-ary matrix branching program P
over a �-bit input is a set which consists of index-to-input maps {inpμ : [h] →
[�]}μ∈[s], sequences of matrices, and two disjoint sets of target matrices.

P = {(inpμ)μ∈[s], {Pi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}s ,P0,P1 ⊂ Z
w×w}.

The evaluation of P on input x = (xi)i∈[�] ∈ {0, 1}� is computed by

P(x) =

{
0 if

∏h
i=1 Pi,(xinpμ(i))μ∈[s]

∈ P0

1 if
∏h

i=1 Pi,(xinpμ(i))μ∈[s]
∈ P1

.

When s = 1 (s = 2), the BP is called a single-input (dual-input) BP. In this
paper, we usually use P0 = 0w×w and P1 is the set of all nonzero matrices
in Z

w×w. Also, we call {Pi,b}b∈{0,1}s the i-th layer of the BP. Remark that
CVW obfuscation and BGMZ obfuscation take as input different BP type (e.g.
single and dual BP) and the required properties of BP for each obfuscation are
different. Therefore, we mention the required properties used to construct an
obfuscation again before describing each obfuscation.

260 J. H. Cheon et al.

2.2 Indistinguishability Obfuscation

Definition 2.2 (Indistinguishability Obfuscation). A probabilistic polyno-
mial time machine O is an indistinguishability obfuscation for a circuit class
C = {Cλ} if the following conditions are satisfied:

– For all security parameters λ ∈ N, for all circuits C ∈ Cλ, for all inputs x,
the following probability holds:

Pr [C ′(x) = C(x) : C ′ ← O(λ,C)] = 1.

– For any p.p.t distinguisher D, there exists a negligible function α satisfying
the following statement: For all security parameters λ ∈ N and all pairs of
circuits C0, C1 ∈ Cλ, C0(x) = C1(x) for all inputs x implies

|Pr [D(O(λ,C0)) = 1] − Pr [D(O(λ,C1)) = 1] | ≤ α(λ).

2.3 Lattice Trapdoor Background

A lattice L of dimension n is a discrete additive subgroup of Rn. If L is generated
by the set {b1, · · · ,bn}, all elements in L are of the form

∑n
i=1 xi · bi for some

integers xi’s. In this case, the lattice L is called the full rank lattice. Throughout
this paper, we only consider the full rank lattice. Now we give several definitions
and lemmas used in this paper.

For any σ > 0, the Gaussian function on R
n centered at c with parameter σ

is defined as

ρσ,c(x) = e−π‖x−c‖/σ2
for all x ∈ R

n.

Definition 2.3 (Discrete Gaussian Distribution on Lattices). For any
element c ∈ R

n, σ > 0 and any full rank lattice L of Rn, the discrete Gaussian
distribution over L is defined as

DL,σ,c(x) =
ρσ,c(x)
ρσ,c(L)

for all x ∈ L

where ρσ,c(L) =
∑

x∈L ρσ,c(x).

Lemma 2.4 ([30]). For integers n ≥ 1, q ≥ 2 and m ≥ 2n log q, there is a p.p.t
algorithm TrapSam(1n, 1m, q) that outputs a matrix A ∈ Z

n×m
q and a trapdoor τ

such that A is statistically indistinguishable from U(Zn×m
q) with a trapdoor τ .

Lemma 2.5 ([21]). There is a p.p.t. algorithm Sample(A, τ,y, σ) that outputs
a vector d from a distribution DZm,σ. Moreover, if σ ≥ 2

√
n log q, then with all

but negligible probability, we have

{A,d,y : y ← U(Zn
q),d ← Sample(A, τ,y, σ)} ≈s {A,d,y : d ← DZm,σ,Ad = y}.

Statistical Zeroizing Attack 261

3 Statistical Zeroizing Attack

In this section, we introduce our attack, statistical zeroizing attack. We give an
abstract model for branching program obfuscation and the attack description in
this model. In this attack, we are given two functionally equivalent branching
programs M and N, which will be specified later, and an obfuscated program
O(P) for P = M or N. Our purpose is to distinguish whether P = M or P = N.
The targeted branching programs of the obfuscation output 0 when the product
corresponding to input is zero. The obfuscated program O(P) consists of{

S, {Di,b}1≤i≤h,b∈{0,1}s ,T, inp = (inp1, · · · , inps) : [h] → [�]s, B
}

where every element is a matrix over Zq (possibly identity) except the input
function inp. The output of the obfuscated program at x = (x1, · · · , x�) ∈ {0, 1}�

is computed by considering the value

O(P)(x) = S ·
h∏

i=1

Di,xinp(i) · T

where xinp(i) = (xinp1(i)
, · · · , xinps(i)

). Note that O(P)(x) can be a matrix, vector
or an element (over Zq). Regard it as matrix/vector/integer over Z and check the
value: if ‖O(P)(x)‖∞ < B < q then it outputs 0, otherwise outputs 1. We call
O(P)(x) the evaluation of the obfuscated program (at x). We also call O(P)(x)
evaluation of zero if P(x) = 0 in the plain program. We stress that the output and
evaluation of the obfuscated program is different; the output of the obfuscated
program is the same to output of original program, and the evaluation is the
value O(P)(x), which is computed right before determining the output.

To distinguish two different obfuscated programs, we see the distribution of
valid evaluations of zero of O(M) and O(N). For the evaluation of zero, the size
of these products is far smaller than q (or B), thus we can obtain the integer
value rather than the element in Zq. Now, if the evaluation is of the matrix or
vector form, we consider only the first entry, namely (1, 1) entry of the matrix
or the first entry of the vector, in the whole procedure of the attack. We call
all of these entries by the first entry of the evaluation, including the case of the
evaluation is just a real value.

Our strategy is to compute the sample variance of the first entries of many
independent evaluations which follow the same distribution. The key of the
attack is that this variance heavily depends on the plain program of the obfus-
cated program and the variance is sufficiently different to distinguish for two
certain programs. Therefore, from the variance of the several evaluations, we
can decide that the obfuscated program is from which program.

Note that one can sample an element following the distribution of obfus-
cation or its evaluation at fixed point x = x0 in polynomial time when the
corresponding program is given, since there is no private key in the obfuscation
procedure. In this regard, we consider a more general problem which is eas-
ier to analyze: Given two polynomial-time constructible distribution DM and

262 J. H. Cheon et al.

DN and x sampled from one of them, determine that the sample is from which
distribution. In our scenario, DM and DN are the distribution of O(M)(x) and
O(N)(x), respectively where the distribution is over all randomness to construct
obfuscations.

Since the adversary has one sample in our setting, the actual algorithm pro-
ceeds by sampling multiple evaluations itself as follows.

Data: DM,DN, x, κ

1. set B = (σ2
M + σ2

N)/2 for σ2
M = V ar(DM) and σ2

N = V ar(DN)
2. i ← [κ] and let si = x
3. sample {sj}j∈[i−1] from DM and {sj}i+1≤j≤κ from DN

4. compute the sample variance S2 of {sj}j∈[κ]

5. if S2 < B, decides DM, otherwise DN.

The choice of κ is specified later in Proposition 3.1. We also remark that the
overall time complexity of algorithm is O(κ · Tsample) plus small computation for
sample variance, where Tsample is the time complexity for sampling algorithms.
The advantage of this algorithm is, by the standard hybrid argument, advmult/κ
where advmult = 0.98 is the advantage of distinguishing algorithm by sample
variance when κ samples are given as inputs instead of one sample as in Propo-
sition 3.1.

In the next subsection, we analyze the distinguishing algorithm using sample
variance for general distributions instead of iO when the multiple samples are
given. Then we go back to the actual attack for iO for the concrete obfuscations
in Sects. 4 and 5 by showing the attack conditions hold well.

3.1 Distinguishing Distributions Using Sample Variance

Now we give the detailed analysis of distinguishing by sample variance. In this
algorithm, we compute the variance of the samples, and check whether the dis-
tance between the sample variance and the expected variance of DM and DN.
If the distance from the sample variance to the variance of DM is less than the
distance to the variance of DN, we decide the given samples are from DM. Oth-
erwise we decide the samples are from DN. The result of this method is stated
in the following proposition.

Proposition 3.1. Suppose that two random variables XM and XN that follow
polynomial time constructible distributions DN and DM and have the means μM

and μN and the variances σ2
N and σ2

M, respectively. For the security parameter
λ and polynomials p, q, r = poly(λ), there is a polynomial time algorithm that
distinguishes DM and DN with non-negligible advantage when O(p·(√q+

√
r)) =

poly(λ) independent samples from DP are given and the following conditions
hold:∣∣∣∣max(σ2

N , σ2
M)

σ2
N − σ2

M

∣∣∣∣ ≤ p

∣∣∣∣E[(XN − μN)4]
σ4
N

∣∣∣∣ ≤ q, and
∣∣∣∣E[(XM − μM)4]

σ4
M

∣∣∣∣ ≤ r.

Statistical Zeroizing Attack 263

In other words, if two known distributions satisfy the conditions, we can solve
the distinguishing problem of two distribution with multiple samples. Thus to
cryptanalyze the concrete obfuscation schemes, it suffice to show the conditions
in Proposition 3.1. We conclude this section by giving the proof of this proposi-
tion.

Proof (Proposition 3.1). We call a definition and useful lemmas first.

Lemma 3.2 (Chebyshev’s inequality). Let X be a random variable with a
finite expected value μ and a finite variance σ2 > 0. Then, it holds that

Pr[|X − μ| ≥ kσ] ≤ 1/k2

for any real number k > 0.

Definition 3.3 (Sample variance). Given random n samples x1, x2, · · · , xn

of D, the sample variance of D is defined by

S2 =
1

n − 1

n∑
i=1

(xi − x̄)2

where x̄ = 1
n

∑n
i=1 xi is the sample mean.

Definition 3.4 (Kurtosis). Let X be a random variable with a finite expected
value μ and a finite variance σ2 > 0. The kurtosis of X is defined by

Kurt[X] =
E[(X − μ)4]
E[(X − μ)2]2

=
E[(X − μ)4]

σ4
.

Lemma 3.5. Let S2 be the sample variance of size κ samples of a distribution
D. Let X be a random variable following D and μn = E[(X − E[X])n] be the
n-th central moment. Then the variance of S2 satisfies

V ar(S2) =
1
κ

(
μ4 − κ − 3

κ − 1
μ2
2

)
.

Now we return to the proof. Suppose that all of the conditions hold for
polynomials p, q, r ∈ poly(λ) and σ2

M < σ2
N. By Lemmas 3.2 and 3.5, we compute

the 99% confidence interval of variance of S2 as follows

Pr

[
|S2 − σ2

P | ≥ 10 ·
√

1
κ

·
(

E[(XP − μP)4] − κ − 1
κ − 3

· σ4
P

)]
≤ 1

100

with κ number of samples. If κ is sufficiently large, the two intervals of sample
variance for M and N are disjoint. So we can distinguish two distributions by
checking the size of sample variance.

More precisely, if κ ≥ 100 · (p · √
q + p · √

r)2 that is poly(λ), we have σ2
M +

10σ2
M ·

√
1
κ

·
(

E[(XM−μM)4]
σ4
M

− κ−1
κ−3

)
< σ2

N −10σ2
N ·

√
1
κ

·
(

E[(XN−μN)4]
σ4
N

− κ−1
κ−3

)
.

264 J. H. Cheon et al.

Thus the algorithm decides the answer by checking if the sample variance is
included in which interval; we do not care the case that it is not included both.
This algorithm succeeds with probability at least 0.99 for each input, i.e. the
advantage of algorithm is at least 0.98. Note that this algorithm only does the
polynomial number of sampling and computing the variance, thus the running
time is polynomial. ��

4 Cryptanalysis of CVW Obfuscation

In this section, we briefly describe the construction of CVW obfuscation scheme
and show that the statistical zeroizing attack works well for CVW obfuscation.

4.1 Construction of CVW Obfuscation

Chen, Vaikuntanathan and Wee proposed a new candidate of iO which is robust
against all existing attacks. We here give a brief description of the candidate
scheme. For more details, we refer to original paper [10].

First, we start with the description of BPs they used. The authors use single-
input binary BPs, i.e., inp = inp1. They employ a new function, called an input-
to-index map ω̄: {0, 1}� → {0, 1}h such that ω̄(x)i = xinp(i) for all i ∈ [h],
x ∈ {0, 1}�. As used in the paper [10], we denote the

∏h
i=1 Mi,ω̄(x)i

by Mω̄(x) or
simply Mx. We sometimes abuse the notion Mi,xi

to denote Mi,ω̄(x)i
.

A target BP P = {inp, {Pi,b}i∈[h],b∈{0,1},P0,P1}, which is called Type I BP
in the original paper, satisfies the following conditions.

1. All the matrices Pi,b are w × w matrices.
2. For a vector v = 11×w, the target sets P0,P1 satisfies v · P0 = {01×w},

v · P1 = {01×w}.4

3. An index length h is set to (λ + 1) · � with the security parameter λ.
4. An index-to-input function satisfies inp(i) = (i mod �). Thus, index-to-input

function iterates λ + 1 times.

Construction. CVW obfuscation is a probabilistic polynomial time algorithm
which takes as input a BP P with an input length �, and outputs an obfuscated
program preserving the functionality. The algorithm process consists of the fol-
lowing steps. Here we use new parameters n,m, q, t := (w + 2n�) · n, σ for the
construction. We will specify the parameter settings later.

• Sample bundling matrices {Ri,b ∈ Z
2n�×2n�}i∈[h],b∈{0,1} such that (11×2� ⊗

In×n) · Rx′ · (12�×1 ⊗ In×n) = 0 ⇐⇒ x′ ∈ ω̄({0, 1}�) for all x′ ∈ {0, 1}h.

4 As noted in the remark of introduction, it is assumed implicitly that v = 11×w for
the targeted BP, while the definition of Type I BP uses v ∈ {0, 1}1×w.

Statistical Zeroizing Attack 265

More precisely, Ri,b is a block diagonal matrix diag(R(1)
i,b ,R(2)

i,b , · · · ,R(�)
i,b).

Each R(k)
i,b ∈ Z

2n×2n is one of the following three cases.

R(k)
i,b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I2n×2n if inp(i) = k(
R̃(k)

i,b

In×n

)
, R̃(k)

i,b ← Dn×n
Z,σ if inp(i) = k and i ≤ λ�⎛

⎜⎜⎝
−In×n

λ−1∏
j=0

R̃(k)
k+j�,b

⎞
⎟⎟⎠ if inp(i) = k and i > λ�

• Sample matrices {Si,b ← Dn×n
Z,σ }i∈[h],b∈{0,1} and compute

J := (11×(w+2n�) ⊗ In×n) ∈ Z
n×t

Ŝi,b :=

(
Pi,b ⊗ Si,b

Ri,b ⊗ Si,b

)
∈ Z

t×t

L := (1(w+2n�)×1 ⊗ In×n) ∈ Z
t×n

• Sample (Ai, τi) ← TrapSam(1t, 1m, q) for 0 ≤ i ≤ h − 1, Ah ← U(Zn×n
q),

{Ei,b ← Dt×m
Z,σ }i∈[h−1],b∈{0,1} and {Eh,b ← Dt×n

Z,σ }b∈{0,1}.
• Run Sample algorithms to obtain

Di,b ∈ Z
m×m ← Sample(Ai−1, τi−1, Ŝi,b · Ai + Ei,b, σ) for 1 ≤ i ≤ h − 1,

Dh,b ∈ Z
m×n ← Sample(Ah−1, τh−1, Ŝh,b · L · Ah + Eh,b, σ).

• Define AJ as a matrix J · A0 ∈ Z
n×m and outputs matrices{

inp,AJ, {Di,b}i∈[h],b∈{0,1}
}

.

Evaluation. Evaluation process consists of two steps. The first step is to
compute a matrix AJ · Dω̄(x) mod q. The last step is size comparison: If
‖AJ · Dω̄(x) mod q‖∞ ≤ B, output 0 for some fixed B. Otherwise, output 1.

Parameters. Let λ and λLWE for the security parameters of obfuscation itself
and underlying LWE problem satisfying λLWE = poly(λ) and the following
constraints. Set n = Ω(λLWE log q) and χ = D

Z,2
√

λLW E
. Moreover, for the

trapdoor functionality, m = Ω(t log q) and σ = Ω(
√

t log q) for t = (w + 2n�) · n.
B ≥ (w+2n�) ·h · (m ·σ2

√
n(w + 2n�)σ)h and q = B ·ω(poly(λ)) for correctness,

and q ≤ (σ/λLWE) · 2λ1−ε
LW E for a fixed ε ∈ (0, 1) for security. For more details,

we refer readers to the original paper [10].

Remark 1. The original paper [10] only uses one security parameter λ, but the
correctness does not hold in that setting. Instead, the trick that uses two security
parameters λ and λLWE resolves this problem as in [4].

266 J. H. Cheon et al.

Zerotest Functionality. From the construction of the obfuscation, the follow-
ing equality always holds, which is essentially what we need.

[AJ · Dω̄(x)]q =

⎡
⎣J ·

(
h∏

i=1

Ŝi,xi

)
· Ah + J ·

h∑
j=1

⎛
⎝

(
j−1∏
i=1

Ŝi,xi

)
· Ej,xj ·

h∏
k=j+1

Dk,xk

⎞
⎠

⎤
⎦

q

The honest evaluation with Px = 0w×w gives Ŝx = 0t×t due to the con-
struction of Ri,b is zero for the valid evaluation. Then, the following inequality
holds:

‖[AJ · Dω̄(x)]q‖∞ =

∥∥∥∥∥∥
⎡
⎣J ·

h∑
j=1

⎛
⎝
(

j−1∏
i=1

Ŝi,xi

)
· Ej,xj

·
h∏

k=j+1

Dk,xk

⎞
⎠
⎤
⎦

q

∥∥∥∥∥∥
∞

(1)

≤
∥∥∥∥∥∥J ·

h∑
j=1

⎛
⎝
(

j−1∏
i=1

Ŝi,xi

)
· Ej,xj

·
h∏

k=j+1

Dk,xk

⎞
⎠
∥∥∥∥∥∥

∞

(2)

≤ h ·
(

max
i,b

‖Ŝi,b‖ · σ · m

)h

≤ B (3)

for all but negligible probability due to the choice of B. If Px is not the zero
matrix, then Ŝx is also not the zero matrix with overwhelming probability. It
implies that ‖[AJ · Dω̄(x)]q‖∞ is larger than B with overwhelming probability
because of Ah ← U(Zn×n

q).

4.2 Cryptanalysis of CVW Obfuscation

We apply the statistical zeroizing attack to the CVW obfuscation. As stated in
Sect. 3, it is enough to show that the conditions of Proposition 3.1 hold. We only
consider small variance σ2 so that σ = poly(λ), and sufficiently large �.5 This
includes the optimal parameter choice as well.

Our targeted two functionally equivalent BPs M = {Mi,b}i∈[h],b∈{0,1} and
N = {Ni,b}i∈[h],b∈{0,1} are of the form

Mi,b = 0w×w for all i, b and Ni,b =

{
1w×w if i = 1
0w×w otherwise

.

Suppose that we have an obfuscated program O(P) for P = M or P = N. Our
goal is to determine whether the program O(P) is an obfuscation of M or N.

By the standard hybrid argument, it suffices to distinguish the distributions
DM or DN where DM and DN is the distributions of the (1,1) entry of evalua-
tion at a fixed vector x of the obfuscated program of M or N, respectively. To
exploit Proposition 3.1, we transform the CVW construction into the language

5 Indeed, the attack requires the condition σ4 < m�/n�+1.

Statistical Zeroizing Attack 267

of random variables. We denote the random matrix by the capital italic words
whose entry follows a distribution that corresponds to the distribution of entry
of the bold matrix. For example, the entry of random matrix Ei,b follows the
distribution DZ,σ since the matrix Ei,b is chosen from Dt×m

Z,σ in the CVW con-

struction. More precisely, we define random matrices R̃(k)
i,b following Dn×n

Z,σ , Si,b

following Dn×n
Z,σ and Ai as in the trapdoor sampling algorithm. Then we obtain

random matrices Ŝ (P)
i,b , R(P)

i,b , E (P)
i,b and D (P)

i,b as in the construction of CVW

obfuscation for the branching programs P = M or N. We note that only Ŝ (P)
i,b

and D (P)
i,b depend on the choice of branching program, but we put P in some

other random variables for convenience of distinction.
Under this setting, it suffices to show the following proposition.

Proposition 4.1. For a security parameter λ, fix the Gaussian variance param-
eter σ = poly(λ). Then, there are two functionally equivalent branching programs
M and N with sufficiently large input length � satisfying the following statement:
let ZM and ZN be random variables satisfying

ZM =
[(

J · A0 · D (M)
ω̄(x)

)
(1,1)

]
q

, ZN =
[(

J · A0 · D (N)
ω̄(x)

)
(1,1)

]
q

where every random matrix is defined as the above. Let μM and μN, σ2
M and

σ2
N be mean and variance of the random variables of ZM and ZN, respectively.

Then, it holds that∣∣∣∣max(σ2
N , σ2

M)
σ2
N − σ2

M

∣∣∣∣ ≤ p,

∣∣∣∣E[(ZN − μN)4]
σ4
N

∣∣∣∣ ≤ q, and
∣∣∣∣E[(ZM − μM)4]

σ4
M

∣∣∣∣ ≤ q.

for some p, q = poly(λ) under Assumption 1.

We remark that since the random matrices D’s are dependent each other, we
need to assume the statistical property for verifying conditions of Proposition 4.1
as follows.

Assumption 1. For an integer 0 ≤ k ≤ h − 2 and P = M or N, let D̂ (P)
k be a

random matrix such that D̂ (P)
k =

∏h
i=k+2 D (P)

i , where D (P)
i is the random matrix

which follows a distribution corresponding preimage-sampled matrix D(P)
i . Then,

the following equations hold

1. the variance is approximated by the same one assumed that D’s are indepen-
dent Gaussian, that is, it holds that

V ar[D̂ (P)
k] = Θ

(
mh−k−2(σ2)h−k−1

)
.

2. the kurtosis is bounded by constant, that is, it holds that

E[(D̂k
(P) − E[D̂k

(P)])4]
V ar[D̂k

(P)]2
= O(poly(λ)).

268 J. H. Cheon et al.

We experimentally verify this assumption using the implementation of GGH15
BP obfuscation by Halevi et al. [23]. More detailed experimental results are
presented in AppendixC. We remark that if we assume that D ’s are independent
matrices that have discrete Gaussian entry with the variance σ2, the following
computations hold:

– the variance of D̂ (P)
k is exactly mh−k−2 · (σ2)h−k−1, and

– the kurtosis of D̂ (P)
k is 3 · (1 + 2/m)h−k = Θ(1).

The honest evaluation of the CVW obfuscation [AJ · D(P)
ω̄(x)]q is the matrix

of the form

J ·
h−1∑
j=0

⎛
⎝
(

j∏
i=1

Ŝi,xi

)
· Ej+1,xj+1 ·

h∏
k=j+2

D(P)
k,xk

⎞
⎠ ,

which does not contain the term including the trapdoor matrices Ai for i =
0, · · · , h − 1. Thus, to establish the statistical properties including variance in
Proposition 4.1, it suffices to analyze the statistical properties of the random
matrices Ŝ (P)

i,b , E (P)
i,b , D (P)

i,b and their products.
By the definition of ZP with P = M or P = N, it is rewritten as

ZP = J ·
h−1∑
j=0

⎛
⎝
(

j∏
i=1

Ŝi,xi

)
· Ej+1,xj+1 ·

h∏
k=j+2

D (P)
k,xk

⎞
⎠ .

Now we give the lemmas to prove Proposition 4.1. The proofs of lemmas can
be found in the full version of this paper [11]. The proof of Proposition 4.1 using
the lemmas is placed in the concluding part of this section.

For the convenience of the statement, let (Z(M)
1,1)j be random variables of

(1, 1)-th entry of the random matrices

J ·
j∏

i=1

Ŝ (M)
i · E (M)

j+1 ·
h∏

k=j+2

D (M)
k

for j = 0, 1, · · · , h − 1. In this notation, ZM is the summation of (Z(M)
1,1)j for

j ∈ {0, 1, · · · , h − 1}. Similarly, we define (Z(N)
1,1)j for all j = 0, · · · , h − 1. We

employ additional notations constants c, d and (possibly polynomial) c0 such
that for all 0 ≤ k ≤ h − 2,

c ≤ V ar[D̂ (P)
k]

mh−k−2(σ2)h−k−1
≤ d and

E[(D̂k
(P) − E[D̂k

(P)])4]
V ar[D̂k

(P)]2
≤ c0.

We remark that variances of many terms for M and N are exactly the same
since the only D1, Ŝ1 are different and the different terms in products of Ŝ are
canceled for j ≥ 2. Note that most of lemmas hold under Assumption 1, but we
omit this repeated statement under Assumption 1 for brevity.

Statistical Zeroizing Attack 269

Lemma 4.2. E[(Z(M)
1,1)j] = E[(Z(N)

1,1)j] = 0 for all j = 0, · · · , h − 1.

Lemma 4.3. E[(Z(M)
1,1)μ1 · (Z(M)

1,1)μ2] = E[(Z(N)
1,1)μ1 · (Z(N)

1,1)μ2] = 0 for μ1 = μ2.

Lemma 4.4. (j = 0) It holds that

V ar[(Z(M)
1,1)0] = V ar[(Z(N)

1,1)0] = Θ
(
(w + 2n�) · mh−1 · σ2h

)
and∣∣∣∣∣ E[(Z(M)

1,1)40]

V ar[(Z(M)
1,1)0]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z(N)

1,1)40]

V ar[(Z(N)
1,1)0]2

∣∣∣∣∣ ≤ 3c0 · (w + 2n�)2 · m2 ·
(

d

c

)2

= poly(λ).

Lemma 4.5. (j = 1) It holds that

V ar[(Z(M)
1,1)1] = Θ

((
n3σ2 + (2� − 1) · n2

)
· mh−2(σ2)h

)
,

V ar[(Z(N)
1,1)1] = Θ

(
w3 · n · mh−2(σ2)h

)
+ V ar[(Z(M)

1,1)1]∣∣∣∣∣ E[(Z(M)
1,1)41]

V ar[(Z(M)
1,1)1]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z(N)

1,1)41]

V ar[(Z(N)
1,1)1]2

∣∣∣∣∣ ≤ 27c0 · (w + 2n�)4n2m2 ·
(

d

c

)2

= poly(λ).

Lemma 4.6. (1 < j ≤ λ · �) Let j be a fixed integer with j = � · j1 + j2 > 1 for
0 ≤ j2 < � and 2 ≤ j ≤ λ · �. Then, it holds that

V ar[(Z(M)
1,1)j] = V ar[(Z(N)

1,1)j]

= Θ
((

j2n
j+j1+2(σ2)j1+1 + (� − j2)nj+j1+1(σ2)j1 + �nj+1

)
mh−j−1(σ2)h

)
.

Moreover, it holds that∣∣∣∣∣ E[(Z(M)
1,1)4j]

V ar[(Z(M)
1,1)j]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z(N)

1,1)4j]

V ar[(Z(N)
1,1)j]2

∣∣∣∣∣≤27c0(w + 2n�)4n2m2

(
1 +

2
n

)j1+j−1(
d

c

)2

= poly(λ).

Lemma 4.7. (j > λ · �) Let j be a fixed integer with j = � · j1 + j2 > 1 for
0 ≤ j2 < � and j > λ · �. Then, it holds that

V ar[(Z(M)
1,1)j] = V ar[(Z(N)

1,1)j]

= Θ
((

(� + j2) · nλ+j+1 · (σ2)λ + (� − j2) · nj+1
)

· mh−j−1 · (σ2)h
)

.

In addition, it holds that∣∣∣∣∣ E[(Z(M)
1,1)4j]

V ar[(Z(M)
1,1)j]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z(N)

1,1)4j]

V ar[(Z(N)
1,1)j]2

∣∣∣∣∣ ≤ 27c0(w + 2n�)4n2m2

(
1 +

2
n

)λ+j−2(
d

c

)2

= poly(λ).

Now we give a proof of the Proposition 4.1 using above lemmas.

270 J. H. Cheon et al.

Proof (of Proposition 4.1). Fix � be a sufficiently large so that σ4 < m�/n�+1

and choose BP M and N as the given in the first page of this section. These two
branching programs have the same functionality and length.

Using the results of lemmas, we can prove the proposition by analyzing the
summation of random matrices. We first verify the results for ZM. The similar
result holds for ZN since the bounds of lemmas are almost same.

From Lemmas 4.2, 4.3 and the definition of ZM, we have

V ar[ZM] = E

⎡
⎣(

h−1∑
j=0

(Z(M)
1,1)j)2

⎤
⎦ = E

⎡
⎣h−1∑

j=0

(Z(M)
1,1)2j

⎤
⎦ =

h−1∑
j=0

V ar[(Z(M)
1,1)j].

On the other hands, applying to the Cauchy-Schwarz inequality, it also holds

E[Z4
M] = E

⎡
⎣(

h−1∑
j=0

(Z(M)
1,1)j)4

⎤
⎦ ≤ E

⎡
⎣h3 · (

h−1∑
j=0

(Z(M)
1,1)4j)

⎤
⎦ .

When dividing both sides by V ar[ZM]2, we obtain the inequality

∣∣∣∣ E[Z4
M]

V ar[ZM]2

∣∣∣∣ ≤
∣∣∣∣∣E[h3 · (

∑h−1
j=0 (Z(M)

1,1)4j)]
V ar[ZM]2

∣∣∣∣∣ = h3 ·
∣∣∣∣∣E[

∑h−1
j=0 (Z(M)

1,1)4j]
V ar[ZM]2

∣∣∣∣∣
= h3 ·

h−1∑
j=0

∣∣∣∣∣E[(Z(M)
1,1)4j]

V ar[ZM]2

∣∣∣∣∣ ≤ h3 ·
h−1∑
j=0

∣∣∣∣∣ E[(Z(M)
1,1)4j]

V ar[(Z(M)
1,1)j]2

∣∣∣∣∣ .

By Lemmas 4.4, 4.5, 4.6 and 4.7,

∣∣∣∣∣ E[(Z(M)
1,1)4j]

V ar[(Z(M)
1,1)j]2

∣∣∣∣∣ is bounded by poly(λ) for

all j = 0, 1, · · · , h − 1. Therefore, the following inequality holds.∣∣∣∣ E[Z4
M]

V ar[ZM]2

∣∣∣∣ ≤ poly(λ) =: q(λ)

The same holds for N as well.
Moreover, V ar[ZN] − V ar[ZM] = Θ

(
w3 · n · mh−2(σ2)h

)
holds by

Lemma 4.5. Then the values
∣∣∣V ar[(Z (M)

1,1)j]/(V ar[ZN] − V ar[ZM])
∣∣∣ is bounded

by poly(λ) for every j since σ4 < m�/n�+1. This implies the first condition also
holds. ��
Remark 2. In the original paper [10], the authors give two different choice of
the distributions of Ei,b; DZ,σ with corresponding dimension in Sect. 11, and
χ = D

Z,2
√

λLW E
with appropriate dimension in Sect. 5. This paper focus on DZ,σ

but the result still holds for χ = D
Z,2

√
λLW E

with slight modification.

Statistical Zeroizing Attack 271

5 Cryptanalysis of BGMZ Obfuscation

In this section, we briefly review the BGMZ obfuscation and apply the statistical
zeroizing attack on BGMZ obfuscation for exponentially large variance σ. Note
that the security proof of BGMZ obfuscation under GGH15 zeroizing model
(and underlying BPUA assumption) is independent of the parameter σ, so our
attack implies that the algebraic security proof is not enough to achieve the ideal
security of iO.

5.1 Construction of BGMZ Obfuscation

Bartusek et al. proposed a new candidate of iO which is provably secure in the
GGH15 zeroizing model. We briefly review the construction of this scheme. For
more detail, we refer to the original paper [4].

We start with the conditions of BP they used. The authors use a dual-input
binary BP’s. i.e., inp(i) = (inp1(i), inp2(i)). For simplicity, they use the notation
x(i) = (xinp1(i)

, xinp2(i)
). Moreover, they employ the new parameter η = poly(�, λ)

with η ≥ �4 which decides the minimum number of the BP layer for the security
parameter λ and input length �.

The targeted BP P also satisfies the following conditions.

1. All the matrices {Pi,b}i∈[h],b∈{0,1}2 are w × w matrices.
2.
∏h

i=1 Pi,x(i) = 0w×w.
3. Each pair of input bits (j, k) is read in at least 4�2 different layers of branching

program.
4. There exist layers i1 < i2 < · · · < iη such that inp1(i1), · · · , inp1(iη) cycles

η/� times through [�].

To obfuscate a branching program that does not satisfy the condition 3 or 4,
one pads the identity matrices to satisfy the conditions while preserving the
functionality.

Remark 3. The original construction consider the straddling set and asymmetric
level structures to prohibit invalid evaluations. The description below omitted
them because our attack only exploits the valid evaluations whose results are
the same regardless of them.

Construction. BGMZ obfuscation is a probabilistic polynomial time algorithm
which takes as input a BP P with a length h, and outputs an obfuscated program
with the same functionality. We use several parameter such as n,m, q, t := (w +
1) ·n, σ, ν, g in the construction. We will describe the setting for new parameters
such as g, ν later.

The obfuscation procedure consists of the following steps.

• Sample (Ai, τi) ← TrapSam(1t, 1m, q) for 0 ≤ i ≤ h − 1, Ah ← U(Zt×m
q),

{Ei,b ← χt×m}i∈[h−1],b∈{0,1}2 and Eh ← χt×m where t := (w + 1) · n.

272 J. H. Cheon et al.

• Sample matrices Bi,b ∈ Z
g×g
ν and invertible matrices Ri ∈ Z

(m+g)×(m+g)
q

randomly.
• Sample matrices {Si,b ← Dn×n

Z,σ }i∈[h−1],b∈{0,1}2 and a final encoding Dh as

Dh ∈ Z
m×m ← Sample(Ah−1, τh−1,

(
Iwn×wn

0n×n

)
· Ah + Eh, σ),

and compute bookend vectors v and w as

v = [v′ · J · A0 | bv] · R1,

Ŝi,b :=

(
Pi,b ⊗ Si,b

Si,b

)
∈ Z

t×t

wT = R−1
h ·

(
Dh · w′T

bT
w

)

where v′ ← Dn
Z,σ, w′ ← Dm

Z,σ, bv,bw ← U(Zk
ν) and J := [J′|In×n] with a

randomly chosen matrix J′ ← {0, 1}n×wn.
• Compute matrices

Di, ∈ Z
m×m ← Sample(Ai−1, τi−1, Ŝi,b · Ai + Ei,b , σ) with 1 ≤ i ≤ h − 1,

and Ci,b = R−1
i ·

(
Di,b

Bi,b

)
· Ri+1 with i = 1, · · · , h − 1.

Evaluation. Outputs 0 if |v ·∏h−1
i=1 Ci,x(i) · wT | ≤ B. Otherwise, outputs 1.

Parameters. We first consider several security parameters. Let λ and λLWE =
poly(λ) be security parameters depending on the obfuscation itself and the hard-
ness of LWE satisfying following constraints, respectively. Set n = Ω(λLWE log q),
χ = DZ,s with s = Ω(

√
n). Moreover, for the trapdoor functionality, we set

m = Ω(t log q) and σ = Ω(
√

t log q). In addition, they use parameters g = 5 and
ν = 2λ. For correctness we set zerotest bound B = (m · β · σ · √t)h+1 + (k · ν)h+1

and B · ω(poly(λ)) ≤ q ≤ (σ/λLWE) · 2λ1−ε
LW E for some fixed ε ∈ (0, 1). For more

detail we refer readers to the original paper [4].

Zerotest Functionality. From the construction of obfuscation, the following
equality always holds if C :=

∏h−1
i=1 Ci,x(i) is an encoding of zero computed by

honest evaluation.

‖[v · C · wT]q‖∞

=

∥∥∥∥∥∥

⎡
⎣v′ · J ·

h∑
j=1

((

j−1∏
i=1

Ŝi,x(i)) · Ej,x(j) ·
h∏

k=j+1

Dk,x(k) · w′T + bv ·
h−1∏
i=1

Bi,x(i) · bT
w

⎤
⎦

q

∥∥∥∥∥∥
∞

≤
∥∥∥∥∥∥
v′ · J ·

h∑
j=1

((

j−1∏
i=1

Ŝi,x(i)) · Ej,x(j) ·
h∏

k=j+1

Dk,x(k) · w′T + bv ·
h−1∏
i=1

Bi,x(i) · bT
w

∥∥∥∥∥∥
∞

≤ σ2 · m2 · (m · β · σ · √
t)h−1 + (k · ν)h+1

Statistical Zeroizing Attack 273

Since ‖[v ·C ·wT]q‖∞ is bounded by σ2 ·m2 ·(m ·β ·σ ·√t)h−1+(k ·ν)h+1 ≤ B

for all but negligible probability. Moreover, if
∏h

i=1 Pi,x(i) is a nonzero matrix,
then

∏h
i=1 Ŝi,x(i) is also nonzero matrix. Thus, ‖[v ·C ·wT]q‖∞ is larger than B

with overwhelming probability because of Ah ← U(Zt×m
q).

5.2 Cryptanalysis of BGMZ Obfuscation

In this section, we analyze the conditions for the statistical zeroizing attack on
the BGMZ obfuscation when we assume σ ≥ ν = 2λ. (More precisely, the same
result holds when σ2 ≥ ν2g/12m). As in Sect. 4.2, the notation written in the
capital italic words are regarded as the random matrix whose entry follows a
distribution that corresponds to the distribution of entry of the bold-written
matrix.

The targeted BPs are M = {Mi,b}i∈[h],b∈{0,1}2 and N = {Ni,b}i∈[h],b∈{0,1}2

such that

Mi,b = 0w×w for all i, b and Ni,b =

{
Iw×w if i = 1
0w×w otherwise

.

Note that two branching programs always output zero. Now we suppose that we
have polynomially many samples from the one of two distributions DM and DN,
where DM and DN are the distributions of the evaluations of obfuscations of M
and N.

Then our purpose is to distinguish whether the samples come from DM or
DN by Proposition 3.1. We obtain random matrices S (P)

i,b , E (P)
i,b , D (P)

i,b and C (P)
i,b

as in the construction of BGMZ obfuscation for branching programs P = M or
N. Thus, it suffices to prove the following proposition.

Proposition 5.1. Let λ be a security parameter and σ the Gaussian variance
parameter satisfying σ2 ≥ ν2g/12m for parameters m, ν and g of BGMZ obfus-
cation. Then, there are two functionally equivalent branching programs M and N
satisfying the following statement: let ZM and ZN be random variables satisfying

ZM =

[
v ·

h−1∏
i=1

C (M)
i,x(i) · wT

]
q

and ZN =

[
v ·

h−1∏
i=1

C (N)
i,x(i) · wT

]
q

.

where every random matrix is defined as the above. Let μM and μN, σ2
M and σ2

N

be mean and variance of the random variables of ZM and ZN, respectively.
Then, it holds that∣∣∣∣max(σ2

N , σ2
M)

σ2
N − σ2

M

∣∣∣∣ ≤ p,

∣∣∣∣E[(ZN − μN)4]
σ4
N

∣∣∣∣ ≤ q, and
∣∣∣∣E[(ZM − μM)4]

σ4
M

∣∣∣∣ ≤ q.

for some p, q = poly(λ) under Assumption 1.

274 J. H. Cheon et al.

Note that Assumption 1 (for BGMZ obfuscation) is also needed to verify the
proposition. With the honest evaluation

[
v ·∏h−1

i=1 Ci,x(i) · wT
]

q
of the BGMZ

obfuscation, we obtain the integer of the form

v′ · J
h∑

j=1

(
j−1∏
i=1

Ŝi,x(i))Ej,x(j)

h∏
k=j+1

Dk,x(k) · w′T + bv ·
h−1∏
i=1

Bi,x(i) · bT
w

which does not contain the term including trapdoor matrices Ai’s. Thus, simi-
larly to the CVW obfuscation case, we need to analyze the statistical properties
of the random vectors v ′(P),w ′(P), b(P)

v , b(P)
w and random matrices Ŝ (P)

i,b , E (P)
i,b ,

D (P)
i,b and their products to prove the statistical properties including the variance

in Proposition 5.1.
The proof of Proposition 5.1 is based on the following lemmas and placed in

the concluding part of this section. All proofs of these lemmas can be found in the
full version [11]. Note that most lemmas in this section also hold under Assump-
tion 1 as the Sect. 4.2, so we omit repeated under Assumption 1 in statements.
Notations c0, c, and d are similarly defined as Sect. 4.

For j = 0, 1, · · · , h − 1, let (Z (M))j be a random variable of the form

v ′(M) · J (M) ·
j∏

i=1

Ŝ (M)
i,x(i) · E (M)

j+1,x(j+1) ·
h∏

k=j+2

D (M)
k,x(k) · w ′(M)T

,

and for j = h, (Z (M))h a random variable of the form

b(M)
v ·

h−1∏
i=1

B (M)
i,x(i) · b(M)T

w .

We similarly define (Z (N))j for j = 0, 1, · · · , h, and ZP =
∑h

i=0(Z
(P))j for

P = M and N.

Lemma 5.2. E[(Z (M))j] = E[(Z (N))j] = 0 for all j = 0, 1, · · · , h.

Lemma 5.3. E[(Z (M))μ1 · (Z (M))μ2] = E[(Z (N))μ1 · (Z (N))μ2] = 0 for μ1 = μ2.

Lemma 5.4. (j = 0) It holds that

V ar[(Z (M))0] = V ar[(Z (N))0] = Θ
(
wn · mh · (σ2)h+1 · s2

)
,∣∣∣∣ E[(Z (M))40]

V ar[(Z (M))0]2

∣∣∣∣ ,
∣∣∣∣ E[(Z (N))40]
V ar[(Z (N))0]2

∣∣∣∣ ≤ 108c0(w + 1)2 · n2m4 ·
(

d

c

)2

= poly(λ).

Lemma 5.5. (j = 1) It holds that

V ar[(Z (M))1] = Θ
(
n2mh−1 · (σ2)h+1 · s2

)
,

V ar[(Z (N))1] = Θ
(
wn3mh−1 · (σ2)h+1 · s2

)
+ V ar[(Z (M))1]

Statistical Zeroizing Attack 275

Moreover, it holds that∣∣∣∣ E[(Z (M))41]
V ar[(Z (M))1]2

∣∣∣∣ ≤ 81c0 · n4m4 ·
(

d

c

)2

= poly(λ),

∣∣∣∣ E[(Z (N))41]
V ar[(Z (N))1]2

∣∣∣∣ ≤ 324c0(w + 1)2 · n6m4 ·
(

d

c

)2

= poly(λ).

Lemma 5.6. (2 ≤ j ≤ h − 1) It holds that

V ar[(Z (M))j] = V ar[(Z (N))j] = Θ
(
nj+1mh−j · (σ2)h+1 · s2

)
.

Moreover, it holds that∣∣∣∣∣ E[(Z (M))4j]
V ar[(Z (M))j]2

∣∣∣∣∣ ,
∣∣∣∣∣ E[(Z (N))4j]
V ar[(Z (N))j]2

∣∣∣∣∣ ≤ 81c0 · n4m4

(
1 +

2
n

)j−1(
d

c

)2

= poly(λ).

Lemma 5.7. (j = h) It holds that

V ar[(Z (M))h] = V ar[(Z (N))h] = gh ·
{

1
12

· ν(ν + 2)
}h+1

.

Moreover, it holds that

E[(Z (M))4h], E[(Z (N))4h] ≤ 27 · (g2)4 · {g(g + 2)}h−2 ·
{

1
12

· ν(ν + 2)
}2(h+1)

.

Now we give a proof of the Proposition 5.1 using the above lemmas.

Proof (of Proposition 5.1). Choose BPs M and N as given in the first page of
this section. They have the same functionality and length.

Note that elements (Z (M))j in the above Lemmas are of the form

(Z (M))j = v ′(M) · J (M) ·
j∏

i=1

Ŝ
(M)

i,x(i) · E (M)

j+1,x(j+1) ·
h∏

k=j+2

D
(M)

k,x(k) · w ′(M)T

for j < h

(Z (M))h = b(M)
v ·

h−1∏
i=1

B
(M)

i,x(i) · b(M)T

w

Let ZM be the summation of (Z (M))j for j ∈ {0, 1, · · · , h}. From Lemma 5.3, we
have

V ar[ZM] = E

[
(

h∑
i=0

(Z (M))i)2
]

= E

[
h∑

i=0

(Z (M))2i

]
=

h∑
i=0

V ar[(Z (M))i],

E[Z 4
M] = E

[
(

h∑
i=0

(Z (M))i)4
]

≤ E

[
(h + 1)3 · (

h∑
i=0

(Z (M))4i)

]
.

276 J. H. Cheon et al.

After dividing both sides by V ar[ZM]2, we obtain the following inequality

∣∣∣∣ E[Z 4
M]

V ar[ZM]2

∣∣∣∣ ≤
∣∣∣∣∣E[(h + 1)3 · (

∑h
i=0(Z

(M))4i)]
V ar[ZM]2

∣∣∣∣∣ = (h + 1)3 ·
∣∣∣∣∣E[

∑h
i=0(Z

(M))4i]
V ar[ZM]2

∣∣∣∣∣
= (h + 1)3 ·

h∑
i=0

∣∣∣∣E[(Z (M))4i]
V ar[ZM]2

∣∣∣∣
≤ (h + 1)3 ·

(
h−1∑
i=0

∣∣∣∣ E[(Z (M))4i]
V ar[(Z (M))i]2

∣∣∣∣+
∣∣∣∣E[(Z (M))4h]

V ar[ZM]2

∣∣∣∣
)

By Lemmas 5.4, 5.5, 5.6 and 5.7,
∣∣∣∣ E[(Z (M))4i]
V ar[(Z (M))i]2

∣∣∣∣ is bounded by poly(λ) for all

i = 0, 1, · · · , h − 1 regardless of P = M or P = N. Since σ2 ≥ ν2g/12m, we
obtain the following upper bound.∣∣∣∣E[(Z (M))4h]

V ar[ZM]2

∣∣∣∣ ≤
∣∣∣∣ E[(Z (M))4h]
V ar[(Z (M))0]2

∣∣∣∣
= O

(
(g2)4 ·

(
g(g + 2)

m2

)h−2

·
(

ν(ν + 2)
12σ2

)h+1
)

= poly(λ)

Thus the kurtosis is bounded by polynomial of security parameter λ.
Moreover, by the definition of ZN and ZM and lemmas, we obtain the equal-

ity |σ2
N − σ2

M| = Θ
(
wn3mh−1 · (σ2)h+1 · s2

)
. Using lemmas,

∣∣∣∣max(σ2
N, σ2

M)
σ2
N − σ2

M

∣∣∣∣ is

bounded by poly(λ). ��

Acknowledgments. We sincerely thank to James Bartusek, Fermi Ma and anony-
mous reviewers of Eurocrypt 2019 for noting the errors in the earlier version of this
paper. We also thank to the anonymous reviewers of Crypto 2019 for their careful
comments.

The authors of Seoul National University were supported by Institute for Informa-
tion & communication Technology Promotion (IITP) grant funded by the Korea gov-
ernment (MSIT) (No. 2016-6-00598, The mathematical structure of functional encryp-
tion and its analysis), and the ARO and DARPA under Contract No. W911NF-15-
C-0227. The author of ENS de Lyon was supported by the LABEX MILYON (ANR-
10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir”
(ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

A Simple GGH15 Obfuscation

We briefly describe the construction of single input BP obfuscation based GGH15
without safeguard.

Statistical Zeroizing Attack 277

For an index to input function inp : [h] → [�], let

P =
{
inp, {Pi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1},P0 = 0w×w,P1 = Z

w×w \ P0

}
be a single input BP.

For parameters w,m, q,B ∈ N and σ ∈ R
+, the BP obfuscation based GGH15

consists of the matrices and input function, namely

O(P) =
{
inp,A0, {Di,b ∈ Z

m×m}i∈[h],b∈{0,1}
}

.

In this case, the matrix T in the abstract model is the identity matrix and
S = A0. The output of the obfuscation at x is computed as follows: compute
the matrix A0 ·∏h

i=1 Di,xinp(i) mod q and compare its ‖ · ‖∞ to a zerotest bound
B. If it is less than B, outputs zero. Otherwise, outputs 1.

The algorithm to construct an obfuscated program O(P) proceeds as follows:

• Sample matrices (Ai, τi) ← TrapSam(1w, 1m, q) for i = 0, 1, · · · , h − 1, Ah ←
U(Zw×m

q) and Ei,b ← χw×m where χ is a distribution related to the hardness
of LWE problem.

• By using the trapdoor τi, sample matrices

Di,b ∈ Z
m×m ← Sample(Ai−1, τi−1,Pi,b · Ai + Ei,b, σ) with 1 ≤ i ≤ h.

• Output matrices {A0, {Di,b ∈ Z
m×m}i∈[h],b∈{0,1}}.

Then, we observe the product O(P)(x) = [A0 ·∏h
i=1 Di,xinp(i)]q is equal to

h∏
i=1

Pi,xinp(i) · Ah +
h∑

j=1

⎛
⎝
(

j−1∏
i=1

Pi,xinp(i)

)
· Ej,xinp(j) ·

h∏
k=j+1

Di,xinp(k)

⎞
⎠

over Zq. If
∏h

i=1 Pi,xinp(i) = 0w×w, then O(P)(x) can be regarded as a summation
of matrices over integers instead of Zq under the certain choice of parameters as
follows

O(P)(x) =

[
A0 ·

h∏
i=1

Di,xinp(i)

]

q

=
h∑

j=1

⎛
⎝

(
j−1∏
i=1

Pi,xinp(i)

)
· Ej,xinp(j) ·

h∏
k=j+1

Di,xinp(k)

⎞
⎠

since the infinity norm of the above matrix is less than B � q. Note that
the evaluation values only rely on the matrices Pi,b, Ei,b and Di,b. Thus, the
evaluation result depends on the message matrices Pi,b.

Suppose that we have two functionally equivalent BPsM = {Mi,b}i∈[h],b∈{0,1}
and N = {Ni,b}i∈[h],b∈{0,1} satisfies

Mi,b = 0w×w for all i, b and Ni,b =

{
Iw×w if i = 1
0w×w otherwise

,

278 J. H. Cheon et al.

and an obfuscated program O(P). The goal of adversary is to determine whether
P is M or not. For all x ∈ {0, 1}�, the evaluation of the obfuscation is of the
form

O(M)(x) = E1,xinp(1) ·
h∏

k=2

Dk,xinp(k) and

O(N)(x) = E1,xinp(1) ·
h∏

k=2

Dk,xinp(k) + I · E2,xinp(2) ·
h∏

k=3

Dk,xinp(k) .

Note that they correspond to the distributions DM and DN for a fixed vector x.
These equations show the difference of two distributions in this case.

B Modified CVW Obfuscation

We give a modification of CVW obfuscation, which can obfuscate the permuta-
tion matrix branching programs. This modification is, as far as we know, robust
against all existing attacks. We first describe the transformation of branching
programs. Then, we describe the modification of CVW obfuscation.

B.1 Transformation of Branching Programs

We first introduce the transformation from single-input permutation matrix
branching programs to Type I BP. This transformation is applicable to BPs
which outputs 0 when the product of BP matrices is the identity matrix. The
output of transformation is a new branching program that outputs 0 when the
product of BP matrices is the zero matrix. Through this transformation, the
width of branching program is doubled. Note that this is adapted version of [10,
Claim 6.2].

We are given a branching program with input size �

P =
{{Pi,b ∈ {0, 1}w×w}i∈[h],b∈{0,1}, inp : [h] → [�]

}
where the evaluation of P at x ∈ {0, 1}� is computed by

P(x) =

{
0 if

∏h
i=1 Pi,(xinp(i)) = Iw

1 otherwise

Then the transformation is done by changing branching program matrices as

P′ =

⎧⎨
⎩
{
P′

i,b =

(
Pi,b 0
0 Iw

)
∈ {0, 1}2w×2w

}
i∈[h],b∈{0,1}

, inp : [h] → [�]

⎫⎬
⎭

and the evaluation is similar but uses new vectors v′ = (v|−v) and w′ = (w|w)
for v,w ∈ Z

w:

P′(x) =

{
0 if v′ ·∏h

i=1 P
′
i,(xinp(i))

· w′T = 0

1 otherwise

Statistical Zeroizing Attack 279

We will choose v and w as random Gaussian vectors. Note that the resulting
branching program is also a permutation BP.

B.2 Modification of CVW Obfuscation

We give here how to modify the CVW obfuscation to be applicable to the result-
ing permutation BPs of the above transform. We also assume that the index
length h = (λ+1) ·� and the index-to-input function satisfies inp(i) = (i mod �)
as in the CVW obfuscation. We also assume that the BP is (λ + 1)-input repe-
tition BP as in the original construction. The changed parts are written in red.
Note that the targeted BPs have width 2w. Thus we set t := (2w + 2n�) · n.

• Sample bundling matrices {Ri,b ∈ Z
2n�×2n�}i∈[h],b∈{0,1} such that (11×2� ⊗

In×n) · Rx′ · (12�×1 ⊗ In×n) = 0 ⇐⇒ x′ ∈ ω̄({0, 1}�) for all x′ ∈ {0, 1}h.
More precisely, Ri,b is a block diagonal matrix diag(R(1)

i,b ,R(2)
i,b , · · · ,R(�)

i,b).

Each R(k)
i,b ∈ Z

2n×2n is one of the following three cases.

R(k)
i,b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I2n×2n if inp(i) = k(
R̃(k)

i,b

In×n

)
, R̃(k)

i,b ← Dn×n
Z,σ if inp(i) = k and i ≤ λ�⎛

⎜⎜⎝
−In×n

λ−1∏
j=0

R̃(k)
k+j�,b

⎞
⎟⎟⎠ if inp(i) = k and i > λ�

• Sample matrices {Si,b ← Dn×n
Z,σ }i∈[h],b∈{0,1}, bookend vectors v ← Dw

Z,σ and
w ← Dw

Z,σ and compute

J := ((v| − v|11×2n�) ⊗ In×n) ∈ Z
n×t

Ŝi,b :=

(
Pi,b ⊗ Si,b

Ri,b ⊗ Si,b

)
∈ Z

t×t

L := ((w|w|11×2n�)T ⊗ In×n) ∈ Z
t×n

• Sample (Ai, τi) ← TrapSam(1t, 1m, q) for 0 ≤ i ≤ h − 1, Ah ← U(Zn×n
q),

{Ei,b ← Dt×m
Z,σ }i∈[h−1],b∈{0,1} and {Eh,b ← Dt×n

Z,σ }b∈{0,1}.
• Run Sample algorithms to obtain

Di,b ∈ Z
m×m ← Sample(Ai−1, τi−1, Ŝi,b · Ai + Ei,b, σ) for 1 ≤ i ≤ h − 1,

Dh,b ∈ Z
m×n ← Sample(Ah−1, τh−1, Ŝh,b · L · Ah + Eh,b, σ).

• Define AJ as a matrix J · A0 ∈ Z
n×m and outputs matrices{

inp,AJ, {Di,b}i∈[h],b∈{0,1}
}

.

We omit the procedure and correctness of evaluation that are almost the same
as the original one.

280 J. H. Cheon et al.

C Assumptions of Lattice Preimage Sampling

In this section we provide the experimental results of Assumption 1. Our experi-
ments are built upon the preimage sampling algorithm in the [24], an implemen-
tation of BP obfuscation [23].6 The results imply that the variance and kurtosis
move almost the same as one assumed independency, the correctness of attack
only requires much relaxed assumption (Table 1).

Table 1. Experiment results on statistical value of preimage sampling. #products
stands for the number of producted preimage matrices, σ2

x the variance of preimage
sampling, S2 the sample variance, E[X4]/σ4 the sample kurtosis and σ2 the expected
variance. Every experiment is done using 100 samples. The expected variance is com-
puted under the assumption on independency of D’s. Every expected kurtosis assuming
independency of D’s is about 3.

Parameters Experiments Expected

#products m log2 σ2
x log2 S2 E[X4]/σ4 log2 σ2

2 2191 34.9 80.8 2.937 80.8

2 2771 35.2 81.4 2.702 81.7

2 3352 35.4 82.4 2.677 82.5

3 2771 35.2 128.7 3.025 128.4

4 3352 35.4 177.0 2.900 176.8

5 3932 35.6 225.9 3.068 225.9

7 5621 36.1 328.1 3.210 327.5

References

1. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Avoiding Barrington’s theorem:
optimizing obfuscation. In: ACM CCS 2014, pp. 646–658 (2014)

2. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-
S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 27

3. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 13

6 We also verify the correctness of the attack itself for [23], but with large entry
BPs. It requires very large number of samples (say 220 but polynomially many) to
verify the attack with binary entry BPs, which is not easy to experiment because
the obfuscation/evaluation of [23] takes long time (say few minutes to obtain one
evaluation).

https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13

Statistical Zeroizing Attack 281

4. Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Return of GGH15: provable security
against zeroizing attacks. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS,
vol. 11240, pp. 544–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03810-6 20

5. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. Algorithmica 79(4), 1233–1285 (2017)

6. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 1

7. Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions
under entropic ring LWE. In: ITCS 2016, pp. 147–156 (2016)

8. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE.
In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp.
446–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 16

9. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 10

10. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching
programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 20

11. Cheon, J.H., Cho, W., Hhan, M., Kim, J., Lee, C.: Statistical zeroizing attack:
cryptanalysis of candidates of BP obfuscation over GGH15 multilinear map (2018).
Full version of this paper: https://eprint.iacr.org/2018/1081

12. Cheon, J.H., Hhan, M., Kim, J., Lee, C.: Cryptanalyses of branching program
obfuscations over GGH13 multilinear map from the NTRU problem. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 184–210. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 7

13. Cheon, J.H., Hhan, M., Kim, J., Lee, C.: Cryptanalysis on the HHSS obfuscation
arising from absence of safeguards. IEEE Access 6, 40096–40104 (2018)

14. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 12

15. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indis-
tinguishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10174, pp. 41–58. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-
54365-8 3

16. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 26

17. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

18. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49 (2013)

https://doi.org/10.1007/978-3-030-03810-6_20
https://doi.org/10.1007/978-3-030-03810-6_20
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-96881-0_20
https://eprint.iacr.org/2018/1081
https://doi.org/10.1007/978-3-319-96878-0_7
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-38348-9_1

282 J. H. Cheon et al.

19. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53644-5 10

20. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

21. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: 40th STOC, pp. 197–206 (2008)

22. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 58th FOCS, pp.
612–621 (2017)

23. Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing BP-
obfuscation using graph-induced encoding. In: ACM CCS 2017, pp. 783–798. ACM
(2017)

24. Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing BP-
obfuscation using graph-induced encoding (2017). https://github.com/shaih/
BPobfus

25. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 2

26. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 20

27. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 21

28. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: 57th FOCS, pp. 11–20 (2016)

29. Ma, F., Zhandry, M.: The MMap strikes back: obfuscation and new multilinear
maps immune to CLT13 zeroizing attacks. In: Beimel, A., Dziembowski, S. (eds.)
TCC 2018. LNCS, vol. 11240, pp. 513–543. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03810-6 19

30. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

31. Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic attacks.
IACR Cryptology ePrint Archive 2014:878 (2014)

32. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 28

33. Pellet-Mary, A.: Quantum attacks against indistinguishablility obfuscators proved
secure in the weak multilinear map model. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10993, pp. 153–183. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 6

34. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC 2014, pp. 475–484 (2014)

https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-46497-7_20
https://github.com/shaih/BPobfus
https://github.com/shaih/BPobfus
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-030-03810-6_19
https://doi.org/10.1007/978-3-030-03810-6_19
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-319-96878-0_6
https://doi.org/10.1007/978-3-319-96878-0_6

Statistical Zeroizing Attack 283

35. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: 58th FOCS, pp. 600–611 (2017)

36. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 15

https://doi.org/10.1007/978-3-662-46803-6_15

Indistinguishability Obfuscation Without
Multilinear Maps: New Paradigms

via Low Degree Weak Pseudorandomness
and Security Amplification

Prabhanjan Ananth1(B), Aayush Jain2(B), Huijia Lin3, Christian Matt4,
and Amit Sahai2

1 MIT, Cambridge, USA
prabhanjan@csail.mit.edu
2 UCLA, Los Angeles, USA

{aayushjain,sahai}@cs.ucla.edu
3 University of Washington, Seattle, USA

rachel@cs.washington.edu
4 Concordium, Zurich, Switzerland

cm@concordium.com

Abstract. The existence of secure indistinguishability obfuscators (iO)
has far-reaching implications, significantly expanding the scope of prob-
lems amenable to cryptographic study. All known approaches to con-
structing iO rely on d-linear maps. While secure bilinear maps are well
established in cryptographic literature, the security of candidates for
d > 2 is poorly understood.

We propose a new approach to constructing iO for general circuits.
Unlike all previously known realizations of iO, we avoid the use of d-
linear maps of degree d ≥ 3.

At the heart of our approach is the assumption that a new weak
pseudorandom object exists. We consider two related variants of these
objects, which we call perturbation resilient generator (ΔRG) and pseudo
flawed-smudging generator (PFG), respectively. At a high level, both
objects are polynomially expanding functions whose outputs partially
hide (or smudge) small noise vectors when added to them. We further
require that they are computable by a family of degree-3 polynomials
over Z. We show how they can be used to construct functional encryption
schemes with weak security guarantees. Finally, we use novel amplifica-
tion techniques to obtain full security.

As a result, we obtain iO for general circuits assuming:
– Subexponentially secure LWE
– Bilinear Maps
– poly(λ)-secure 3-block-local PRGs
– ΔRGs or PFGs

This paper is a merge of two independent works, one by Ananth, Jain, and
Sahai [AJS18], and the other by Lin and Matt [LM18].

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 284–332, 2019.
https://doi.org/10.1007/978-3-030-26954-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_10

Indistinguishability Obfuscation Without Multilinear Maps 285

1 Introduction

Program obfuscation considers the problem of building an efficient randomized
compiler that takes as input a computer program P and outputs an equivalent
program O(P) such that any secrets present within P are “as hard as pos-
sible” to extract from O(P). This property can be formalized by the notion
of indistinguishability obfuscation (iO) [BGI+01,GR07]. Formally, iO requires
that given any two equivalent programs P1 and P2 of the same size, it is
not possible for a computationally bounded adversary to distinguish between
the obfuscated versions of these programs. Recently, starting with the works
of [GGH+13b,SW14], it has been shown that iO would have far-reaching
applications, significantly expanding the scope of problems to which cryptog-
raphy can be applied (e.g., [SW14,KLW15,GGHR14,CHN+16,GPS16,HSW14,
BPR15,GGG+14,HJK+16,BFM14]).

The work of [GGH+13b] gave the first mathematical candidate iO con-
struction, and since then more than a dozen candidates have been proposed
and studied [GGH13a,CLT13a,GGH15a,CLT15a,Hal15,BR14a,BGK+14a,PST14a,

AGIS14a], [BMSZ16,CHL+15,BWZ14,CGH+15,HJ15,BGH+15,Hal15,CLR15,
MF15,MSZ16,DGG+16a]. Furthermore, more recent candidates [Lin16a,LV16,
AS17,LT17] based iO on simple primtives and assumptions. However, all these
iO constructions rely on multi-linear maps with degree at least 3. Unfortunately,
all known candidates for degree-3 multilinear maps [GGH13a,CLT13a,GGH15a]
have poorly understood security properties, and even security models [MSZ16,
BGMZ18,MZ18].

Our Results in a Nutshell. Securely building iO remains a central challenge in
cryptography. In this paper, we report on the works of [AJS18,LM18], in which
we develop new techniques that enables building iO without multilinear maps
of degree ≥ 3. Instead, we rely on (relatively) standard assumptions including
(subexponentnailly secure) bilinear maps, LWE, and block-local PRGs [LT17] (a
relaxation of local PRGs, a.k.a. Goldreich’s PRGs [Gol00]), as well as new types
of “weak” pseudo-randomness generators with certain “simple” structures—
either perturbation resilient generators [AJS18] or pseudo flawed-smudging gen-
erators [LM18].

Along the way, we study the notion of Functional Encryption, which was
introduced by [SW05], and formalized by [BSW11,O’N10]. We provide new gen-
eral security amplification theorems for amplifying Functional Encryption with
(1/λc)-indistinguishability-based security to Functional Encryption with stan-
dard security [AJS18], and security amplification for amplifying certain leaky
forms of Functional Encryption to standard security [LM18]. We now elaborate.

Prior iO from Multilinear Maps with Degree ≥ 3. The first-generation
iO constructions [GGH+13b,BR14a,BGK+14a,PST14a,AGIS14a,GLSW14,
Zim15,AB15,GMM+16a,DGG+16a] rely on polynomial-degree multilinear
maps or graded encodings. An L-linear map [BS02] essentially allows to eval-
uate degree-L polynomials on secret encoded values, and to test whether the

286 P. Ananth et al.

output of such polynomials is zero or not. While bilinear maps (i.e., L = 2)
can be efficiently instantiated from elliptic curves, instantiation of L-linear
maps for L ≥ 3 has remained elusive—While candidate constructions of such
graded encoding schemes exist [CLT13a,LSS14,GGH15a,CLT15a], their secu-
rity is poorly understood due to several known explicit attacks on certain dis-
tributions of encoded values [CHL+15,BWZ14,CGH+15,HJ15,BGH+15,Hal15,
CLR15,MF15,MSZ16]1.

A line of recent works [Lin16a,LV16,Lin17,AS17] aimed at finding the min-
imal degree of multilinear maps sufficient for constructing iO, and has success-
fully reduced the required degree to L = 3. A key ingredient in these second-
generation constructions are PRGs with small locality2. They showed that to
construct iO, it suffices to have multilinear maps with degree matching exactly
the locality of the PRG [Lin16a,AS17], or even the relaxed notion of block local-
ity [LT17]. These constructions essentially use degree-L multilinear maps to eval-
uate a PRG with (block-)locality L, and then bootstrap from there to hide
arbitrary complex computation. Unfortunately, the locality of a PRG cannot
be smaller than 5 [CM01,MST03], and recent attacks [LV17,BBKK18] showed
that block-locality cannot be smaller than 3.3 This raises the following natural
question:

Can we build iO without cryptographic multilinear maps of degree ≥ 3?
Are there new types of simple and weak pseudo-randomness generators

that can help?

Our Simple and Weak Pseudorandomness Generators. We answer the above
questions positively, relying on either the new notion of perturbation-resilient
generators, ΔRG for short, proposed by [AJS18] (AJS), or pseudo flawed-
smuding generators, PFG for short, proposed by [LM18] (LM). They are weak
pseudo-randomness generators with the same simple structure, and similar intu-
itive security guarantees. However, their concrete security formalizations are very
different, requiring different techniques of using them in iO constructions as done
in [AJS18,LM18].

We start with explaining their shared simple structure. A ΔRG/PFG is given
by a polynomially expanding function G from n input (or seed) elements to
m = n1+α output elements in Zp, together with a seed distribution S over Z

n
p

that samples a pair s = (s1, s2) of public and private seeds4. G has the simple
structure that (1) it is a degree 3 polynomial over Zp with degree 1 in the public

1 Note that this does not necessarily mean that the resulting iO constructions are
insecure; in particular, there have been efforts (e.g., [GMM+16a]) in constructing
iO in more complex security models for multilinear maps (e.g. [MSZ16]) that have
resisted polynomial-time attacks. There have also been several other iO candidates
proposed which are not known to polynomial-time broken (e.g. [CVW18,BGMZ18]).

2 A function has locality � if every output element depends on at most � input elements.
3 The attacks actually leave open a very small window of expansion. Nevertheless,

they have weakened our confidence on the security of PRGs with block-locality 2.
4 n, m, p are parameterized by the security parameter λ.

Indistinguishability Obfuscation Without Multilinear Maps 287

seed s1 and degree 2 in the private seed s2, and (2) its output distribution G(S)
is polynomially bounded. At a very high-level, these two structural properties
ensure that we can essentially compute G in the exponent of bilinear pairing
groups (property 1) and extract the output in the clear via brute force discrete
logarithm (property 2). An acute reader may be curious about the purpose of
the public seed s1. In short, it is a relaxation to requiring G having total degree
2, and as we shall see later, is crucial for the security of the instantiation of G.

Intuitively, the security of ΔRG/PFG guarantees that its output when added
to a small noise vector, producing G(s)+e, weakly “smudge” or “hide” e. In the
literature, noise smudging (or noise flooding) is a commonly used technique for
hiding small noises in LWE samples, which is also our purpose. However, to com-
pletely hide the noise vector e, the smudging noises must be super-polynomially
large. This stands in contrast with the fact that G(s) is polynomially bounded.
To circumvent this, ΔRG and PFG formalizes different weakly hiding require-
ments:

– ΔRG guarantees that the distributions ΔRG(s) and (ΔRG(s)+e) are some-
what hard to distinguish as long as the perturbation e is relatively small.
More specifically, it suffices if efficient adversaries fail to distinguish these
two distributions with at least some fixed 1/poly(λ) probability. Thus, a can-
didate ΔRG would be secure, for instance, if an adversary could distinguish
between ΔRG(s) and (ΔRG(s) + e) with probability 99%, but no adversary
could distinguish with probability over 99.5%.

– PFG guarantees that G(s) is computationally indistinguishable to a so-called,
flawed-smudging distribution Y ← Y, satisfying that given Y + e, the val-
ues of e at a few o(λ) coordinates are revealed, while the values at the rest
coordinates are hidden.

We elaborate on the security definitions of these generators, and possible instan-
tiations, in Sect. 2.

Hardness of Polynomials over the Reals. The security of our candidate
ΔRGs/PFGs crucially relies on the hardness of solving certain over-determinined
systems of degree-3 polynomial equations over the reals, and a LWE leakage
assumption. Solving systems of polynomials over the reals has been studied by
mathematicians, scientists, and engineers for hundreds of years. This is precisely
why we are taking this approach: we want to relate iO to simple-to-state prob-
lems related to areas of mathematics with long histories of study. Aside from
that, our work also fundamentally diversifies the kinds of assumptions from which
iO can be constructed.

In Sect. 2.4, we describe specific candidates suggested in follow-up work
by [BHJ+19] that were inspired by the hardness of RANDOM 3-SAT. We hope
that our work will motivate further cryptanalytic study of simple pseudorandom
objects.

Using respectively ΔRG and PFG, we show how to construct iO without
multilinear maps of degree ≥ 3 in two concurrent works [AJS18,LM18]. Next,
we describe the results in each work slightly more formally.

288 P. Ananth et al.

Results in AJS in More Detail. AJS constructs iO based on bilinear maps, LWE,
ΔRG, and block-locality 3 PRG. For the latter, in fact AJS require only a weak-
ened forms of 3-blockwise-local PRGs [LT17] where efficient adversaries fail to
distinguish the PRG output distribution from the uniformly random distribution
with some polynomial probability5.

Theorem 1 (AJS Main Theorem, Informal). For every constants c, there
is a construction of indistinguishability obfuscation for all polynomial-sized cir-
cuits from,

–
(
1 − 1

λc

)
-indistinguishable perturbation-resilient generators with aforemen-

tioned structure and security against sub-exponential size adversaries,
– 1

2λc -indistinguishable three-block-local pseudorandom generators [LT17] with
polynomial stretch and security against sub-exponential size adversaries,

– learning with errors secure against sub-exponential size adversaries, and
– assumptions on bilinear maps secure against sub-exponential size adversaries

(that hold unconditionally in the generic bilinear map model).

Here κ-indistinguishability refers to security where the distinguishing advantage
of such adversaries is bounded by κ. Thus, standard security would be negl(λ)-
security, where negl is a negligible function. In contrast (1 − p)-security allows
for an adversary that fails to distinguish only with probability p.

Along the way to proving the result above, AJS also obtains a security ampli-
fication theorem for functional encryption:

Theorem 2 (AJS security amplification theorem, informal). Assume
there exists a constant c > 0, and

– (1 − 1/λc)-indistinguishable sublinearly compact secret key FE schemes for
polynomial size circuits of depth λ, and

– learning with errors secure against sub-exponential size adversaries.

There exists sublinearly compact secret key FE schemes for polynomial size cir-
cuits of depth λ with negl(λ)-indistinguishability.

Note that the amplification theorem above relies only on subexponential LWE,
and no new assumptions. Moreover, if we assume the underlying FE schemes to
be secure against subexponential size, then the resulting schemes satisfy subex-
ponential security. Please refer [AJS18] for a complete formulation.

Results in LM in More Detail. LM constructs iO based on bilinear maps, LWE,
PFGs, and constant block-local PRGs.

Theorem 3 (LM Main Theorem, informal). There is a construction of
indistinguishability obfuscation for all polynomial-sized circuits from,

5 There is be a tradeoff between how much AJS can weaken the indistinguishability
requirements of the ΔRG and the 3-block-local PRG.

Indistinguishability Obfuscation Without Multilinear Maps 289

– pseudo flawed-smudging generators with aforementioned structure and secu-
rity against sub-exponential size adversaries,

– constant-block-local pseudorandom generators [LT17] with mild structural
properties described in Remark 1, and security against sub-exponential size
adversaries,

– learning with errors secure against sub-exponential size adversaries, and
– the SXDH assumption on bilinear maps secure against sub-exponential size

adversaries.

Remark 1. The block-local PRGs used in LM map n bits to n1+α bits for an
arbitrarily small constant α, where every PRG is defined by a predicate P and an
input-output dependency graph G, such that the i’th output bit yi = P (SeedG(i))
is computed by evaluating the predicate P on a subset of seed bits SeedG(i)

specified by G(i). LM requires the output locality (i.e., maxi |G(i)|) to be a
constant, and the input locality (i.e., the maximal number of output bits that
an input bit influences) to be bounded by o(n1−α). Most candidate constant-
locality PRGs [Gol00,MST03,OW14,AL16] satisfy these structural properties.
In particular, the input-output dependency graph is often chosen at random in
which case the input locality is indeed bounded by o(n1−α). The security of local
PRGs, especially ones with large constant locality, has been studied extensively,
for instance in [CM01,MST03,CEMT09,BQ12,OW14,AL16].

Partially Hiding Functional Encryption. In order to evaluate ΔRGs/PFGs using
bilinear map, we develop the primitive of Partially Hiding Functional Encryption
schemes (PHFE), introduced under the name 3-restricted FE by [AJS18]. The
notion of PHFE is a natural modification of partially-hiding Predicate Encryp-
tion (PE) of [GVW15] by strengthening the security requirement from that of PE
to FE. PHFE schemes can evaluate functions of the form g(x,y) and guarantee
that ciphertexts and secret keys reveal only the outputs and part of its input x,
referred to as the public input, while hiding the remaining part y, referred to
as the private input. Partially-hiding FE naturally interpolates attribute-based
encryption and functional encryption: if the public input x is empty, it is equiv-
alent to functional encryption, and if g is such that it outputs y when some
predicate on x evaluates to 1, then it corresponds to attribute-based encryption.

In the literature, there are constructions of secret-key FE schemes for
quadratic polynomials from bilinear map groups [Lin17,BCFG17]. In AJS and
LM, we extend these constructions to allow for additional linear computation on
a public input.

Theorem 4 (PHFE in AJS and LM, Informal). There are constructions
of secret-key partially-hiding FE schemes for computing multilinear cubic poly-
nomials g(x, (y, z)) over Zp with polynomially bounded outputs and x as the
public input, from bilinear pairing groups of order p. The schemes have linear
encryption time poly(λ)N in the input length N = max(|x|, |y|, |z|).
The constructions of PHFE in AJS and LM differ in details. The scheme orig-
inally developed in AJS, referred to as 3-restricted FE there, follows the semi-
functional FE framework and is based on assumptions over bilinear maps that

290 P. Ananth et al.

hold unconditionally in the generic bilinear map model. The scheme subsequently
developed in LM, referred to as degree-(1,2) PHFE there, satisfies simulation
security for one ciphertext (meaning that the outputs evaluated on one encryp-
tion input can be programmed) and is based on SXDH.

Finally, we mention that in followup works, our approach has been extended
to (i) use ΔRGs/PFGs implementable by polynomials of any constant-
degree [JLMS19], (ii) remove the need for block-local PRGs completely [JLS19],
and (iii) construct PHFE supporting NC1 public computation and degree 2 pri-
vate computation [JLS19].

1.1 History

We provide a timeline describing how the results were conceived, to clarify how
this line of work has developed.

06/17/2018: [AJS18] Received by Eprint (2018/615)
[AJS18] introduced ΔRGs, 3-restricted FE, and a new general FE amplification
theorem.

Historical notes: Earlier weaker versions of [AJS18] were submitted to EC
2018 (on 9/19/2017) and Crypto 2018 (on 2/13/2018). These earlier versions
contained the notions of 3-restricted FE, and Tempered Cubic Encoding. How-
ever, they did not contain either the notion of ΔRG nor the FE amplification
theorem. The authors of [AJS18] were not aware of the relevant concurrent work
by [Agr18a] or [LM18] until seeing Eprint papers appear.

06/17/2018: [Agr18a] Received by Eprint (2018/633)
To hide decryption noises, [Agr18a] introduced different notions of (smudg-
ing) noise generators, which all *perfectly* hides the noises. Hence [Agr18a]
did not develop any FE security amplification technique. In terms of instantia-
tion, [Agr18a] proposed using MQ or 2 block-local PRG as degree 2 candidates
and used off-the-shelf deg 2 FE to evaluate them. [Agr18a] contains a gap in the
construction: It proposes to use known deg 2 FE to compute the noise generator.
Known deg 2 FE restricts the outputs of the noise generator to be poly-large.
On the other hand, [Agr18a] needs the noise generator to perfectly hide the HE
decryption noise e, which requires the outputs to be super-poly large. (Note: this
is why [AJS18]’s ΔRG and [LM18]’s PFG only provide weak guarantees. This
allows for having poly-large outputs, but opens many challenges in order to deal
with the weak guarantees.)

07/02/2018: [LM18] Received by Eprint (2018/646)
In Aug 2017, Lin discussed with Agrawal about her ideas and Agrawal shared
a manuscript. After the discussion, Agrawal and Lin proceeded independently.
Since the shared manuscript has large overlap with the later posted [Agr18a,
LM18] simply treats entire [Agr18a] as prior work for clarity.

Prior to posting, [LM18] has developed for over a year. [LM18] introduced
the notion of Pseudo Flawed-smudging Generator (PFG) and the leakage-based

Indistinguishability Obfuscation Without Multilinear Maps 291

security amplification technique. They analyzed PFG properties and proposed
using deg 2 polynomials sampled from a special distribution as the candidates.

07/08/2018: [AJS18] Updated on Eprint (2018/615)
Added explicit degree 3 ΔRG candidate and associated explicit ΔRG assump-
tion.

08/17/2018: [Agr18a] Updated on Eprint (2018/633)
[Agr18a] cites [AJS18] for fixing the aforementioned gap. This means using the
notion of ΔRG and the FE security amplification theorem of [AJS18].

08/19/2018: [BHJ+19] Announced at “Beyond Crypto” Workshop at
CRYPTO 2018
This work gave empirical and theoretical evidence of polynomial-time attacks on
all known explicit degree-2 candidates considered in [AJS18,Agr18a,LM18]. It is
explicitly noted that the attacks do not extend to the degree 3 ΔRG candidate
of [AJS18].

10/4/2018: [JS18,BHJ+19] Submitted to Eurocrypt 2019
[JS18] showed how to construct constant-restricted FE for any constant (i.e.,
(deg-O(1), deg (2)-PHFE) assuming SXDH. This enables using constant degree
candidates, for any constant. [JS18] is clearly marked as a follow-up work
to [AJS18,Agr18a,LM18].

10/9/2018: The Second Version of [LM18] was Updated on Eprint
(2018/646). Added construction of (deg 1, deg 2)-PHFE, which is a variant of
3-restricted FE, and proposed to use the degree 3 candidate of [AJS18] as can-
didate PFGs, which are not subject to [BHJ+19] attacks. This updated [LM18]
clearly cites [AJS18] for this candidate and the idea of using weak deg-3 FE to
evaluate it. However, note that this just replaces the previous deg 2 candidate
and deg 2 FE in [LM18], which are very simple and not the main technical
contributions of [LM18].

In this update, there is also a construction of PHFE able to handle public
computation of poly degree, but subject to certain size constraints. This con-
struction does not appear in this current paper for two reasons: (1) Lin and Matt
were added as authors to [JS18] in credit for this concurrent PHFE construction,
and (2) it is later superseded by a full (NC1, deg 2) PHFE construction in a
follow-up [JLS19].

10/11/2018: [JS18] Received by Eprint (2018/973)

02/01/2019: [JS18,BHJ+19] Accepted at Eurocrypt 2019
The authors of [JS18] emailed Chairs to add Lin and Matt as authors, resulting
in publication [JLMS19]. The paper [JLMS19] is clearly marked as a follow-up
work to [AJS18,Agr18a,LM18].

1.2 Comparison of Techniques

We provide a detailed comparison of the works of [AJS18,LM18,Agr18b,
BHJ+19,JLMS19].

292 P. Ananth et al.

Comparison of the Works of [AJS18] and [LM18]. We first start by comparing
the notions of PFGs and ΔRGs. Both notions are geared for the purpose of
generating a smudging noise Y to hide a small polynomially bounded noise e,
however, with different guarantees. The output O of PFGs is computationally
indistinguishable to flawed smudging noises Y such that (e,Y+e) and (e′,Y+e)
are statistically close with probability δ. On the other hand, the output O of
ΔRGs directly guarantees that (e,O + e) and (e′,O + e) are computationally
indistinguishable up to advantage 1−δ. Furthermore, in the good case with prob-
ability δ, the output of PFGs may still reveal e at a few coordinates (i.e., e and
e′ agree at a few coordinates), whereas ΔRG ask for weak indistinguishability
between the two cases (i.e. e and e′).

Besides the use of different weak notions of randomness generators, other
differences between [AJS18] and [LM18] include: (i) [LM18] rely on constant-
locality PRGs with mild structural properties, while [AJS18] use block-locality 3
PRGs. (ii) [AJS18] first showed security in the generic bilinear map model, sub-
sequently [LM18] relied on the SXDH assumption over bilinear pairing groups.

In terms of techniques, both works start with constructing some weak notions
of FE: [LM18] construct FE for constant-degree polynomials that may leak a
small portion of the input, whereas [AJS18] construct FE for degree 3 polyno-
mials that bounds the adversarial advantage only by 1 − 1/poly(λ). Both works
then design different methods to amplify their respective weak FE to full-fledged
FE. The amplification techniques are similar in parts, for instance, both works
use threshold FHE, but also have differences, for instance, while [LM18] relies
on the use of random permutations and a careful analysis to ensure that the
effect of compromising a few bits of the seed of a constant-locality PRG can be
“controlled”. On the other hand, [AJS18] use techniques from the dense model
theorem to give a general security amplification for Functional Encryption with
weak distinguishing advantage, into Functional Encryption satisfying the stan-
dard notion of security.

Comparison of [AJS18,LM18] with the Work of Agrawal [Agr18a]. Follow-
ing [AR17], to obtain compact ciphertexts, Agrawal [Agr18b] (as mentioned in
the timeline, an early version of [Agr18a] was shared by the author of [Agr18b]
with the authors of [LM18]) proposed the approach of using a noise generator
to generate Y. As an abstraction of that, they introduced the notion of noisy
linear functional encryption that adds the smudging noises Y to the outputs.
The noise generator in [Agr18b] is able to produce super-polynomially large
smudging noises, and they propose a constant degree FE scheme supporting
super-polynomially large outputs from a new assumption on NTRU Rings. The
works of [AJS18] and [LM18] explore what happens when Y is polynomially
bounded and e may be leaked, which allows us to use FE schemes supporting
only polynomially large outputs from multilinear maps.

Subsequent to [AJS18], Agrawal notes that their construction is compatible
with the approach of [AJS18] using ΔRG with polynomially large outputs and
weak security, and later amplifying the security of FE in a black-box way. Thus,

Indistinguishability Obfuscation Without Multilinear Maps 293

the construction in the updated version can use known constructions of FE
schemes with restricted output size.

Comparison with the Work by Jain, Lin, Matt and Sahai [JLMS19]. As a follow-
up to [AJS18,LM18,Agr18a], Jain, Lin, Matt and Sahai [JLMS19] construct FE
schemes for degree d + 2 functions multilinear in their inputs x1, . . . ,xd, y, z,
where x1, . . . ,xd are public, y and z are private, and d can be any constant. They
further improve upon [AJS18] by only relying on the SXDH assumption instead
of the generic bilinear map model. Moreover, their work provides new candidates
of ΔRGs that can be computed by their FE schemes. Similar to [AJS18,LM18],
their candidates hide the public inputs as noises in LWE samples.

Comparison of [AJS18,LM18] and [GKP+13,GVW15,BTVW17,AR17]. Both
the works of [AJS18,LM18] use a homomorphic encryption scheme (HE) in con-
junction with the newly introduced pseudorandom generators to construct FE.
This approach of using a homomorphic encryption scheme to construct FE is
not new has already been explored in several works [GVW12,GKP+13,GVW15,
BTVW17,AR17,Agr18a]. The challenges to build FE from HE are twofold: (1)
privacy—decrypt a ciphertext CTf,x encrypting an output f(x) = y securely
revealing only y, and (2) integrity—enforce that only ciphertexts for “legiti-
mate” functions f (ones for which secret keys are generated) can be decrypted.
Below, we briefly discuss how this approach was adopted in previous works.

The work of Goldwasser et al. [GKP+13] use the above template to build
a single-functional encryption scheme. They use an attribute-based encryption
scheme to ensure integrity and garbled circuits to ensure privacy. Then they
combine both these tools along with HE to achieve their result.

Gorbunov, Vaikuntanathan, and Wee [GVW15], also using the above app-
roach, construct a predicate encryption scheme based on learning with errors;
recall that predicate encryption is a weaker form of functional encryption. They
propose a novel primitive, called partial-hiding predicate encryption scheme and
then combine it with HE to obtain a predicate encryption scheme. Their notion of
partial-hiding predicate encryption scheme incorporates both the privacy and the
integrity properties. In terms of techniques, the starting point to their construc-
tion of partial-hiding predicate encryption scheme is the observation that the HE
decryption corresponds to computing an inner product followed by a threshold
function. Moreover, there are lattice-based constructions of predicate encryp-
tion schemes for threshold of inner product [AFV11,GMW15]. They then pro-
pose a novel method to combine a lattice-based predicate encryption for thresh-
old of inner product with a lattice-based attribute-based encryption scheme to
achieve a partial-hiding predicate encryption scheme. Natural attempts to extend
their construction to achieve functional encryption have been shown to be bro-
ken [Agr17a].

In [AR17], to ensure privacy of HE decryption, they use an FE scheme to
perform linear HE half-decryption and add super-polynomially large smudging
noises Y to hide the decryption noise e. In their scheme, the smudging noises
Y are sampled and encoded into the ciphertext. As a result, the ciphertext
size grows with the output length of the computation, which is non-compact. In

294 P. Ananth et al.

addition, they also developed a new approach to ensure integrity. Instead of rely-
ing on primitives like attribute based encryption or PHFE to ensure integrity as
in [GVW12,GKP+13,GVW15], they employ a special HE scheme whose decryp-
tion equation has the form y + e = cf − Afs, where Af depends only on the
public and reusable random matrix A in LWE samples and the evaluated func-
tion f . Thus, to ensure integrity, it suffices to enforce that only linear functions
Afs for legitimate f can be evaluated on s. The work of [LM18] follows their
approach for integrity. The work of [AJS18], however, takes a different path, by
introducing the notion of 3-restricted FE (that we call partially hiding functional
encryption here).

1.3 Open Questions

Our work opens many interesting questions. First, we call for more study of the
candidate ΔRGs/PFGs. Studying their security as well as finding new candi-
dates may build interesting connection with algorithm and complexity theory as
already demonstrated in the attack by [BHJ+19] using SOS algorithms.

Secondly, can we further strengthen the construction of FE or iO in order to
further weaken the requirements on the structure and security of ΔRGs/PFGs?
Follow-up works show how to construct PHFE schemes that can perform
constant-degree [JLMS19] computation or even up to NC1 computation [JLS19]
in the public input, instead of just linear (still quadratic in the private input).
Such scheme allows for having more candidate ΔRGs/PFGs.

Thirdly, the reason that we can only work with polynomially bounded smudg-
ing noises is because we do not have constant-degree FE schemes that sup-
port super-polynomially large outputs from multilinear maps and/or standard
assumptions. For instance, can we build a quadratic FE scheme for super-
polynomially large outputs from standard assumptions? That would lead to a
significant simplification of our construction of NC1-FE as there would be no
more leakage.

2 New PRG Assumptions

This section is organized as follows. In Sect. 2.1 we define the notion of perturba-
tion resilient generator ΔRG proposed by [AJS18]. In Sect. 2.2 we define pseudo-
flawed smudging generators (PFGs) proposed by [LM18]. Then, in Sect. 2.3 we
give an algorithmic framework to realise ΔRG and PFG. Both of them are PRGs
which has seed consisting of one public input and two secret input. These PRGs
evaluate degree-3 multilinear polynomials over Zp over these inputs. In the same
section, we give an intuition as to why this structure can be realised using bilinear
maps. In Sect. 2.4 we give candidate polynomials which can be used to instantiate
these primitives. In Sect. 2.5, we illustrate a single assumption which will imply
the notion of a perturbation resilient generator sufficient to build iO [AJS18]. In
Sect. 2.6 we present the state of art in cryptanalysis of the candidate polynomials.

Indistinguishability Obfuscation Without Multilinear Maps 295

2.1 Perturbation Resilient Generator

A perturbation-resilient generator, denoted by ΔRG, consists of the following
algorithms:

– Setup, Setup(1λ, 1n, B): On input security parameter λ, the length parameter
n and a polynomial B = B(λ), it outputs a seed Seed and public parameters pp.

– Evaluation, Eval(pp,Seed): It takes as input public parameters pp, seed Seed
and outputs a vector (h1, ..., h�) ∈ Z

�. The parameter � is defined to be the
stretch of ΔRG.

The following properties are associated with a ΔRG scheme.

Efficiency: The following conditions need to be satisfied.

– The time taken to compute Setup(1λ, 1n, B) is n · poly(λ) for some fixed
polynomial poly.

– For all i ∈ [�], |hi| = poly(λ, n). That is, the norm of each component hi in Z

is bounded by some polynomial in λ and n.

Perturbation Resilience: For every polynomial B(λ), for every large enough poly-
nomial n = n(λ) and for all large enough λ, the following holds: for every
a1, ..., a� ∈ Z, with |ai| ≤ B(λ), we have that for any distinguisher D of size 2λ,

∣
∣
∣
∣
∣

Pr
x

$←−D1

[1 ← D(x)] − Pr
x

$←−D2

[1 ← D(x)]

∣
∣
∣
∣
∣
< 1 − 1/λ,

where the sampling algorithms of D1 and D2 are defined as follows:

– Distribution D1: Compute (pp,Seed) ← Setup(1λ, 1n, B) and (h1, ..., h�) ←
Eval(pp,Seed). Output (pp, h1, ..., h�).

– Distribution D2: Compute (pp,Seed) ← Setup(1λ, 1n, B) and (h1, ..., h�) ←
Eval(pp,Seed). Output (pp, h1 + a1, ..., h� + a�).

Note that as is, we are not able to use the notion of a ΔRG to construct iO. We
now define the notion of a perturbation-resilient generator implementable by a
three-restricted FE scheme (3ΔRG for short). This notion turns out to be useful
for our construction of iO.

ΔRG Implementable by Three-Restricted FE. A ΔRG scheme imple-
mentable by Three-Restricted FE (3ΔRG for short) is a perturbation resilient
generator with some additional structural properties. We describe syntax again
for a complete specification.

– Setup(1λ, 1n, B) → (pp,Seed). The setup algorithm takes as input a secu-
rity parameter λ, the length parameter 1n and a polynomial B = B(λ)
and outputs a seed Seed and public parameters pp. Here, Seed = (Seed.pub,
Seed.priv(1),Seed.priv(2)) is a vector on Zp for a modulus p, which is also
the modulus used in three-restricted FE scheme. There are three components

296 P. Ananth et al.

of this vector, where one of the component is public and two components
are private, each in Z

npoly(λ)
p . Also each part can be partitioned into sub-

components as follows. Seed.pub = (Seedpub,1, ...,Seedpub,n), Seed.priv(1) =
(Seedpriv(1),1, ...,Seedpriv(1),n) and Seed.priv(2) = (Seedpriv(2),1, ...,Seedpriv(2),n).
Here, each sub component is in Z

poly(λ)
p for some fixed polynomial poly inde-

pendent of n. Also, pp = (Seed.pub, q1, .., q�) where each qi is a cubic multi-
linear polynomial described in the next algorithm. We require syntactically
there exists two algorithms SetupSeed and SetupPoly such that Setup can be
decomposed follows:
1. SetupSeed(1λ, 1n, B) → Seed. The SetupSeed algorithm outputs the seed.
2. SetupPoly(1λ, 1n, B) → q1, ..., q�. The SetupPoly algorithm outputs

q1, .., q�.
– Eval(pp,Seed) → (h1, ..., h�), evaluation algorithm output a vector

(h1, ..., h�) ∈ Z
�. Here for i ∈ [�], hi = qi(Seed) and � is the stretch of 3ΔRG.

Here qi is a cubic polynomial which is multilinear in public and private com-
ponents of the seed.

The security and efficiency requirements are same as before.

Remark 2. To construct iO we need the stretch of 3ΔRG to be equal to � = n1+ε

for some constant ε > 0.

We can construct 3ΔRG from a succinctly stated, instance independent and
a falsifiable assumption stated in Sect. 2.5.

2.2 Pseudo-Flawed Smudging Generators

In this section, we first define what it means for a distribution over Z
� to be

smudging and flawed-smudging, and then introduce pseudo flawed-smudging
generators.

First, the distribution of a random variable X is smudging if the statistical
distance between X and X + e is small for all e with bounded magnitude.

Definition 1 (Smudging distributions). Let � be a positive integer, let ε ∈
[0, 1], and let B either be a positive integer or an �-dimensional vector of positive
integers. We say a distribution X over Z

� is (B, ε)-smudging if for X ← X and
for all B-bounded e ∈ Z

�, we have δ(X,X + e) ≤ ε.

We next define distributions obtained by fixing some positions in the output
of a distribution. This will be used for defining flawed-smudging distributions.

Definition 2 (Bit-fixing distributions). Let D be a distribution over strings
in Δ� for some set Δ and some integer �. Let I ⊆ [�] be a set of indices, and
x an arbitrary string in Δ|I|. Define D|x,I to be the distribution of sampling x
from D conditioned on xI = x. For convenience, we sometimes also write I as
its characteristic vector v, where vi = 1 iff i ∈ I.

We say that D is bit-fixing efficiently samplable if D|x,I is efficiently sam-
plable for any x, I.

Indistinguishability Obfuscation Without Multilinear Maps 297

We now define flawed-smudging distributions. On a high level, the distribu-
tion of X is flawed-smudging for a random variable E if there are a few “bad”
coordinates such that X +E “hides” E at all coordinates that are not bad. This
means, given X + E and which coordinates are bad, one cannot distinguish E
from E, where E is a fresh sample conditioned on agreeing with E on the bad
coordinates.

Definition 3 (Flawed-smudging distributions). Let � be a positive integer
and let X and E be distributions over Z

�. Further let K ∈ N and μ ∈ [0, 1].
We say that X is (K,μ)-flawed-smudging for E if there exist randomized pred-
icates

{
BADi : Z�+1 → {0, 1}}

i∈[�]
such that the following two distributions are

identical:

D1 =

⎧
⎨

⎩

E ← E
X ← X

bad =
(
badi ← BADi(Ei,X)

)
i∈[�]

: (E, X + E, bad)

⎫
⎬

⎭
,

D2 =

⎧
⎪⎪⎨

⎪⎪⎩

E ← E
X ← X

bad =
(
badi ← BADi(Ei,X)

)
i∈[�]

E ← E|Ebad,bad

:
(
E, X + E, bad

)

⎫
⎪⎪⎬

⎪⎪⎭
,

and in addition, with probability at least 1 − μ, the 1-norm of bad is bounded by
|bad|1 ≤ K.

We say the distribution X is (K,μ)-flawed-smudging for B-bounded distribu-
tions if it is (K,μ)-flawed-smudging for every B-bounded distribution E, where
B can either be a positive integer or a vector in Z

�.

Remark 3. A more direct generalization of the definition of smudging distribu-
tions (see Definition 1) would be that for all e, the distribution of X + e is equal
(or statistically close) to the distribution of Y , where Yi = Xi + ei for all bad i,
and Yi = Xi for non-bad i. This is, however, not sufficient for our purposes:
We need that no information about the non-bad coordinates is leaked. While Xi

itself does not leak anything about ei, the fact that i is not a bad coordinate can
leak something about ei, since the predicate BAD depends on ei. Definition 3
resolves this issue by sampling the non-bad coordinates freshly after sampling
bad.

Pseudo Flawed-Smudging Generators. We now define pseudo flawed-
smudging generators (PFGs). A PFG is a distribution of efficiently computable
functions and seeds for which the output of the functions is indistinguishable
from a flawed-smudging distribution.

Definition 4. (Pseudo Flawed-Smudging Generator) Let n,m,K,B be polyno-
mials. A family of (K,μ)-pseudo flawed-smudging generators ((K,μ)-PFG) for
B-bounded distributions is an ensemble of distributions PFG = {PFGλ}λ∈N

satisfying the following properties:

298 P. Ananth et al.

Syntax: For every λ ∈ N, every (PFG,Dsd) in the support of PFGλ defines a
function PFG: Zn(λ) → Z

m(λ) and a distribution Dsd over seeds.
Efficiency: There is a uniform Turing machine M satisfying that for every

λ ∈ N, every (PFG,Dsd) ∈ Support(PFGλ) and Seed ∈ Support(Dsd),
M(PFG,Seed) runs in time poly(λ) and we have M(PFG,Seed) =
PFG(Seed). Furthermore, PFG and all Dsd in the support of PFGλ are effi-
ciently samplable.

(K,μ)-pseudo-flawed-smudging for B-bounded distributions: There
exists an ensemble {Xλ} of distributions, such that the distribution Xλ is
(K(λ), μ(λ))-flawed-smudging for all B(λ)-bounded distributions, and the fol-
lowing ensembles are μ-indistinguishable:

{
(PFG,Dsd) ← PFGλ;Seed ← Dsd : (PFG,PFG(Seed))

}

λ∈N

,
{

(PFG,Dsd) ← PFGλ;X ← Xλ : (PFG,X)
}

λ∈N

.

Degree 3 PFG with Partial Public Input. As mentioned in the introduction
and as described w.r.t. ΔRG, it suffices if our PFG has the simple structure that
every function PFG sampled from PFGλ is a degree 2 polynomial over Zp, where
p is a modulus that eventually matches the modulus that our PHFE supports,
which in turn is the modulus associated with the bilinear maps. However, so
far, we do not know how to instantiate a truly degree 2 PFG. Instead, we can
work with the following slightly weaker structure, where the PFG is a degree
3 multilinear polynomial, and the first input vector can be made public, more
specifically:

Structure: For every λ, every (PFG,Dsd) ∈ PFGλ satisfies that Dsd is a dis-
tribution over (x,y, z) ∈ Z

3
p for some modulus p, and PFG(x,y, z) is a mul-

tilinear degree 3 polynomial over Z
3
p.

Security with partial public input: The security in Definition 4 is strength-
ened so that the following distributions are indistinguishable:
{

(PFG,Dsd) ← PFGλ;Seed = (x,y, z) ← Dsd : (PFG,x,PFG(Seed))
}

λ∈N

,
{

(PFG,Dsd) ← PFGλ;Seed = (x,y, z) ← Dsd;X ← Xλ : (PFG,x,X)
}

λ∈N

.

Weaker Variant: Flawed-Smudging with 1/poly(λ) Probability. In the
full version [LM18], we show how to further weaken the requirements on PFGs.
Roughly speaking, the PFG outputs are indistinguishable to a flawed-smudging
distribution only with some 1/poly(λ) probability. We show that using essentially
the same technique for handling the partial hiding guarantee of PFG can also
be used to handle this weakening. We omit details here; see [LM18] for more
details.

Indistinguishability Obfuscation Without Multilinear Maps 299

Properties of (Flawed-)Smudging Distributions. In the full ver-
sion [LM18], we prove some properties of smudging and of flawed-smudging
distributions. More specifically, we show the following:

– Polynomially bounded distributions cannot be smudging with negligible ε.
More precisely, if X is B-bounded and (B′, ε)-smudging, then ε ≥ 1

2B+1 .
– Adding independent values preserves the (flawed-)smudging property, i.e., if

X and Y are independent and the distribution of X is (flawed-)smudging, then
the distribution of X + Y is (flawed-)smudging with the same parameters.

– Probabilistically mixing (flawed-)smudging distributions yields a (flawed-)
smudging distribution. That is, if the distributions of Xi are (B, εi)-smudging
(or (K,μi)-flawed-smudging) and αi ∈ [0, 1] such that

∑
i αi = 1, then the dis-

tribution of X with Pr[X = x] =
∑

i αi Pr[Xi = x] is
(
B,

∑
i αiεi

)
-smudging

(or
(
K,

∑
i αiμi

)
-flawed-smudging).

– The joint distribution of mutually independent smudging distributions is
flawed-smudging. More precisely, we show that if X is a distribution over
Z

� such that for (X1, . . . , X�) ← X , X1, . . . , X� are mutually independent
and the distribution of each Xi is (B, ε)-smudging for ε ≤ K+1

22�·(2B+1) , then X
is (K, 2−K)-flawed-smudging for B-bounded distributions.

– The product of flawed-smudging distributions is flawed-smudging. That is, for
distributions X (1) and X (2) such that X (i) is

(
K(i), μ(i)

)
-flawed-smudging, we

have that X (1) × X (2) is
(
K(1) + K(2), μ(1) + μ(2)

)
-flawed-smudging.

– If the distribution of X is flawed-smudging for the distribution of E and
E = E(V) is a function of some random vector V such that each coordinate
of E(V) depends only on a few coordinates of V , then E(V) + X hides V at
all but a few locations.

2.3 Framework for Algorithms of 3ΔRG and PFG

We now describe a framework of algorithms that can be used to instantiate
ΔRG and PFG. However for the sake of succinctness and clarity we describe it
in terms of a perturbation resilient generator 3ΔRG. For concreteness, we use a
large enough prime modulus p = O(2λ), which is the same as the modulus used
by 3−restricted FE/(1,2)-PHFE. Then, let χ be a distribution used to sample
input elements over Z. Let Q denote a polynomial sampler. Next we describe the
algorithms in terms of χ and Q but give concrete instantiations later in Sect. 2.4.

– Setup(1λ, 1n, B) → (pp,Seed). Sample a secret s ← Z
1×d
p for d = poly(λ)

such that LWEd,n·d,p,χ holds. Here χ is a bounded distribution with bound
poly(λ). Let Q denote an efficiently samplable distribution of homogeneous
degree 3 polynomials (instantiated later). Then proceed with SetupSeed as
follows:
1. Sample ai ← Z

1×d
p for i ∈ [n] along with ei, yi, zi ← χ for i ∈ [n].

2. Compute LWE samples wi = (ai, ri = 〈ai, s〉 + ei mod p) for i ∈ [n].
3. Output Seed.pub(i) = wi for i ∈ [n], Seed.priv(1, j) = yi ⊗ (−s, 1) for

j ∈ [n] and Seed.priv(2, k) = zk for k ∈ [n].

300 P. Ananth et al.

– SetupPoly : Now we describe SetupPoly. Fix η = n1+ε.
1. Sample polynomials q′

� for � ∈ [η] as follows. q′
�(e1, ..., en, y1, ...,

yn, z1, ..., zn) = ΣI=(i,j,k)cIei · yj · zk where coefficients cI are bounded
by poly(λ). These polynomials {q′

�} are sampled according to Q
2. Define qi be a multilinear homogeneous degree 3 polynomial takes as

input Seed = ({wi}i∈[n],y′
1, . . . ,y

′
n, z). Then it computes each monomial

cIeiyj · zk as follows and then adds all the results:
• Compute cI〈wi, (−s, 1)〉 · yj · zk. This step requires y′

i = yi ⊗ (−s, 1)
to perform this computation.

3. Output q1, ..., qη. Observe that qi(Seed) = q′
i(e,y, z) for all i.

– Eval(pp,Seed) → (h1, ..., hη), evaluation algorithm output a vector
(h1, ..., hη) ∈ Z

η. Here for i ∈ [η], hi = qi(Seed) and η is the stretch of
3ΔRG. Here qi is a degree 3 homogenenous multilinear polynomial (defined
above) which is degree 1 in public and 2 in private components of the seed.

We prove that the above candidate satisfies the efficiency property of a
perturbation-resilient generator.

Efficiency:

1. Note that Seed contains n LWE samples wi for i ∈ [n] of dimension d. Along
with the samples, it contains elements y′

i = yi ⊗ t for i ∈ [n] and elements zi

for i ∈ [n]. Note that the size of these elements are bounded by poly(λ) and
is independent of n.

2. The values hi = qi(Seed) = ΣI=(i,j,k)cIei · yj · zk. Since χ is a bounded
distribution, bounded by poly(λ, n), and coefficients cI are also polynomially
bounded, each |hi| < poly(λ, n) for i ∈ [m].

Intuition Behind Candidate with Partially-Public Inputs. Starting from
a cubic multilinear candidate g(x,y, z) where all inputs are private, and the first
input x is from a distribution that can be used as LWE noises, we transform
it into another function h(C,y′, z) where the first input can be made public.
The key idea is hiding x in LWE samples C = (A,As′ + x) mod p as the noise
terms. Then computing g translates into computing another function h where x
is replaced with Cs mod p for s = (−s′||1),

h(C, y′ = (y ⊗ s), z):=
∑

j

g(C[�, j], sjy, z) = g (Cs,y, z) = g(x,y, z) (mod p),

where C[, j] is the vector containing the j’th element of all LWE samples.
Now C is the public input of h. By providing the tensor y ⊗ s as input, the
polynomial h is multilinear. For h to be secure when C is public, the output of g
needs to be indistinguishable from a pseudo flawed-smudging distribution, say
D, even when its first input is hidden in some LWE samples,

{g(x,y, z), C = (A,As′ + x)} ≈ {Δ ← D, C = (A,As′ + x)} .

The family of cubic polynomials with partially-public input of [AJS18] corre-
sponds exactly to h obtained by applying the above transformation to the degree

Indistinguishability Obfuscation Without Multilinear Maps 301

d = 3 candidates g(x,y, z) =
∑

i1,i2,i3
ci1,i2,i3xi1yi2zi3 with small inputs and

coefficients described in Instantiation 1. We observe that for every fixed public
input C, the function h is quadratic in y and z, but its computation over Zp does
not degenerate to computation over Z, as it does trigger wrap-around modulo p
due to LWE “decryption”.

2.4 Our Instantiation of Polynomials for ΔRG and PFG

We now give various instantiations of Q. Let χ be the discrete gaussian distribu-
tion with 0 mean and standard deviation n. The following candidate is proposed
by [BHJ+19] and [AJS18] based on the investigation of the hardness of families
of expanding polynomials over the reals. For any vector v, denote by v[i], the
ith component of the vector.

Instantiation: 3XOR Based Candidate. Let t = B2λ. Sample each polynomial q′
i

for i ∈ [η] as follows. q′
i(x1, . . . ,xt,y1, . . . ,yt, z1, . . . , zt) = Σj∈[t]q

′
i,j(xj,yj, zj).

Here xj ∈ χd×n and yj , zj ∈ χn for j ∈ [t]. In other words, q′
i is a sum of t

polynomials q′
i,j over t disjoint set of variables.

Now we describe how to sample q′
i,j for j ∈ [η].

1. To sample q′
i,j do the following. Sample three indices randomly and indepen-

dently i1, i2, i3 ← [n].
2. Set q′

i,j(xj,yj, zj) = xj[i1] · yj [i2] · zj [i3]

Remark: The candidate above was generalised to have a constant degree d
in a followup. This can be found in [JLMS19]. One could also consider arithmetic
versions of various boolean predicates. For example, any clause of the form a1 ∨
a2∨a3 can be written as 1−(1−a1)(1−a2)(1−a3) over integers where a1, a2, a3

are literals in first case and take values in {0, 1}, and thus any random satisfiable
3SAT formula can be converted to polynomials in this manner.

2.5 Pseudorandomness Assumption in Ananth-Jain-Sahai

Below we describe the actual hardness assumption needed by [AJS18], when
combined with subexponentially secure LWE, bilinear maps, and 3-block-local
PRGs, to imply iO.

The AJS Assumption. This assumption states the following. There exists a poly-
nomially bounded distribution χ over the integers, and there exists a polynomial
sampler Q over families of multilinear degree-3 polynomials. Let δi ∈ Z be output
by the adversary given only the parameters (1λ, 1n), such that for all i ∈ [n1+ε],
we have that |δi| < λc for some constant c. Then consider the following two
distributions:

Distribution D1: Fix a prime modulus p = O(2λ). Run Q(n, λc, ε) to obtain
polynomials (q1, ..., q�n1+ε�). Sample a secret s ← Z

λ
p and sample ai ← Z

λ
p for

302 P. Ananth et al.

i ∈ [n]. Finally, for every i ∈ [n], sample ei, yi, zi ← χ, and write e = (e1, . . . , en),
y = (y1, . . . , yn), z = (z1, . . . , zn). Output:

{ai, 〈ai, s〉 + ei mod p}i∈[n]

along with

{qk, qk(e,y, z)}k∈[n1+ε]

Distribution D2 is the same as D1, except that we consider polynomial eval-
uations perturbed with δi. The output is now

{ai, 〈ai, s〉 + ei mod p}i∈[n]

along with

{qk, qk(e,y, z) + δk}k∈[n1+ε]

Then we require that for all subexponential-time adversary A it holds that:

| Pr
Z

$←−D1

[A(Z) = 1] − Pr
Z

$←−D2

[A(Z) = 1]| ≤ 1 − 1/λ

Remark 4. For concreteness, the candidate for the sampler Q can be found in
Sect. 2.4.

Decomposing the Assumption into Two Parts. To help understand the assump-
tion above, next we make the following observation. The assumption described
above is sufficient to build iO and it turns out the assumption above is true if
the following two simpler assumptions are true. This implication is one sided
and indeed it may be true that one of the two assumptions below is false but
the assumption above still holds. We present the assumptions below only to help
the reader conceptually understand the assumption above. The first assumption
called “Weak LWE with Leakage” states that given the polynomial samples, it
is computationally hard to determine whether the LWE sample is chosen with
the same error over which the polynomials are evaluated or a completely inde-
pendently chosen error.

Explaining the AJS Assumption, Part 1. Weak LWE with Leakage. This assump-
tion states that there exists a polynomially bounded distribution χ over the
integers, and there exists a polynomial sampler Q over families of multilinear
degree-3 polynomials such that the following two distributions are weakly indis-
tinguishable (specified later).

Distribution D1: Fix a prime modulus p = O(2λ). Run Q(n, λc, ε) to obtain
polynomials (q1, ..., q�n1+ε�) for some constant c > 0. Sample a secret s ← Z

λ
p

and sample ai ← Z
λ
p for i ∈ [n]. Finally, for every i ∈ [n], sample ei, yi, zi ← χ,

and write e = (e1, . . . , en), y = (y1, . . . , yn), z = (z1, . . . , zn). Output:

{ai, 〈ai, s〉 + ei mod p}i∈[n]

Indistinguishability Obfuscation Without Multilinear Maps 303

along with

{qk, qk(e,y, z)}k∈[n1+ε]

Distribution D2 is the same as D1, except that we additionally sample e′
j ← χ

for i ∈ [n]. The output is now

{ai, 〈ai, s〉 + e′
i mod p}i∈[n]

along with

{qk, qk(e,y, z)}k∈[n1+ε]

Then it holds that for any adversary A of subexponential size:

| Pr
Z

$←−D1

[A(Z) = 1] − Pr
Z

$←−D2

[A(Z) = 1]| ≤ 1/λ

We can think of the polynomials qk(e,y, z) as “leaking” some information
about the LWE errors ei. The assumption above states that such leakage provides
only a limited advantage to the adversary. Critically, the fact that there are
n2 > n1+ε quadratic monomials involving just y and z above, which are not
used in the LWE samples at all, is crucial to avoiding linearization attacks over
Zp in the spirit of Arora-Ge [AG11]. For more discussion of the security of the
above assumption in the context of D = 3, see [BHJ+19].

The second assumption deals only with expanding degree-3 polynomials over
the reals, and requires that these polynomials are weakly perturbation resilient.

Explaining the AJS Assumption, Part 2. Weak Perturbation-Resilience. This
assumption states that for the same distribution of polynomials and inputs as
above the following distributions are weakly indistinguishable. Let δi ∈ Z be
output by the adversary given only the parameters (1λ, 1n), such that for all
i ∈ [n1+ε], we have that |δi| < λc for some constant c. Consider the following
two distributions:

Distribution D1 consists of the evaluated polynomial samples. That is, we
output:

{qk, qk(e,y, z)}k∈[n1+ε]

Distribution D2 consists of the evaluated polynomial samples with added
perturbations δi for i ∈ [n1+ε]. That is, we output:

{qk, qk(e,y, z) + δk}k∈[n1+ε]

Then it holds that for any adversary A of subexponential size:

| Pr
Z

$←−D1

[A(Z) = 1] − Pr
Z

$←−D2

[A(Z) = 1]| ≤ 1 − 3/λ

304 P. Ananth et al.

2.6 Known Cryptanalysis

Now, we discuss various preliminary cryptanalysis attempts made on these can-
didates. These attacks can be categorised in the following categories:

Linearisation Attacks: The system of degree-3 polynomials described above can
be converted to a degree-2 system over Zp by performing back substitution of
ei, from the LWE sample (ai, 〈ai, s〉+ei mod p). However, the resulting system
has about Ω(n) variables y ⊗ s and z, but only about n1+ε equations. Thus, all
known linearization attack fail. This was considered in the work of [BHJ+19].

Sum-of-Squares Attacks: [BHJ+19] systematically studies SDP attacks on such
system and they gave an evidence why the assumptions above instantiated using
degree-2 polynomials over reals is unlikely to be true. However, they also con-
jecture that for degree-3 and higher, these systems exhibit SoS lower bounds (at
least, the lower bounds are known to hold in the case when inputs are chosen
from {−1, 1} [Gri01,Sch08]). The lower bounds hold when number of equations
m ≤ nd/2 for a general degree d ≥ 3. Thus for our case when m = n1+ε for any
ε > 0, the SoS algorithm is unlikely to attack such systems in polynomial time.
Please refer [BHJ+19] for further details.

Gradient Descent: We implemented gradient descent to cryptanalyze all our
candidates. It seems like given the signs of the planted inputs, gradient descent
was able to recover the planted inputs in most cases. For degree-2 candidates,
gradient descent was able to recover the planted inputs even with random start-
ing points (even with no information on the signs). For degree-3 and higher,
our implementation of gradient descent did not yield any attack starting from
random signs. This matches our intuition developed in SoS literature, since the
lower bounds hold when inputs are sampled from {+1,−1} (thus implying find-
ing signs is hard).

3 Technical Overview of Ananth-Jain-Sahai 18

We now begin with a very high-level overview of our techniques in [AJS18].

The Story So Far. Prior work, culminating in the most recent works of [AS17,
Lin17,LT17] showed us that the powerful primitive of indistinguishability obfus-
cation can be based on trilinear maps and (sub-exponential) 3-block-local pseu-
dorandom generators. Importantly for us, these works also (implicitly) demon-
strate that in order to achieve indistinguishability obfuscation, it suffices to con-
struct (sub-exponentially secure) secret-key sublinear FE for cubic polynomials,
satisfying semi-functional security. Unfortunately, these prior approaches neces-
sarily relied on multilinear maps with degree at least 3 to build such a cubic FE
scheme.

That is because intuitively such a cubic FE scheme guarantees a way to eval-
uate a cubic polynomial on encrypted inputs without revealing any information

Indistinguishability Obfuscation Without Multilinear Maps 305

about the input except the evaluation of the polynomial. In other words, such a
scheme provides a way to output the decryption of a degree-3 polynomial eval-
uated “homomorphically” on encoded inputs. However, we seek to accomplish
this without the use of degree-3 maps.

Since we seek to operate homomorphically on encoded values, a natural
starting idea is to use fully homomorphic encryption (for concreteness and
simplicity, in this paper we rely on the GSW fully homomorphic encryption
scheme [GSW13]) with polynomially bounded error in order to perform cubic
evaluations on encrypted inputs. The main challenge, however, is to reveal the
output of cubic evaluation without compromising security.

Initial Approach. Our first observation is that computing the inner product
〈GSW.sk,GSW.CT〉 of a GSW secret key with a GSW ciphertext encrypting
message M , outputs (M · q/2� + e) where the LWE modulus is q and e is a
small error. With the assistance of a bilinear map, this inner product can be
carried out via pairings, such that the output (M · q/2� + e) appears as an
exponent in the target group. Next, one can hope to test whether the message
M is zero by computing a discrete logarithm by brute-force checking all possible
values, provided the output range is polynomial, which would happen if M = 0.

A reader familiar with GSW will observe that this approach already runs
into major hurdles. The first problem is that brute-force computing the message
M also reveals the error e to a potential adversary, which is problematic when
we try to invoke the semantic security of GSW. In fact, recent work shows how
knowledge of such error can be used to build devastating attacks [Agr17a]. We
will crucially deal with this issue, but before we tackle this, let us first consider
how we can force the adversary to obtain only inner products 〈GSW.sk,GSW.CT〉
where the messages correspond to cubic computations that the adversary is
allowed to obtain.

3-Restricted FE. To accomplish this, we first define a restricted version of func-
tional encryption (FE) – which allows for the computation of multilinear cubic
polynomials of three inputs, where one remains unencoded and is called the pub-
lic component and the other two are encoded; these are the private components.
In other words, our restricted FE is a partially hiding FE, or PHFE for short.
The input to the encryption algorithm is split into three parts x,y, and z, where
x is not hidden by the encryption, but y and z are kept hidden.

One of our key technical contributions is to achieve a new way of (indistin-
guishably) enforcing the output of such a 3-restricted FE scheme, despite the
fact that one of the encodings is publicly known to the adversary. We use these
techniques to achieve security for this 3-restricted variant of FE relying solely
on asymmetric bilinear maps. While we only need the resulting 3-restricted FE
to be sublinear, our construction in fact achieves compactness, where the size of
encoding is only linear in the input length.

Constructing Three-Restricted FE. Before getting to 3 restricted FE, let’s first
recap how secret key quadratic functional encryption schemes [AS17,Lin17] work

306 P. Ananth et al.

at a high level. Let’s say that the encryptor wants to encrypt y, z ∈ Z
n
p. The

master secret key consists of two secret random vectors β, γ ∈ Z
n
p that are used

for enforcement of computations done on y and z respectively. The idea is that
the encryptor encodes y and β using some randomness r, and similarly encodes
z and γ together as well. These encodings are created using bilinear maps in one
of the two base groups. These encodings are constructed so that the decryptor
can compute an encoding of [g(y, z) − rg(β, γ)]t in the target group for any
quadratic function g. The function key for the given function f is constructed in
such a manner that it allows the decryptor to compute the encoding [rf(β, γ)]t
in the target group. Thus the output [f(y, z)]t can be recovered in the exponent
by computing the sum of [rf(β, γ)]t and [f(y, z)−rf(β, γ)]t in the exponent. As
long as f(y, z) is polynomially small, this value can then be recovered efficiently.

Clearly the idea above only works for degree-2 computations, if we use
bilinear maps. However, we build upon this idea nevertheless to construct a
3-restricted FE scheme. Recall, in a 3-restricted FE one wants to encrypt three
vectors x,y, z ∈ Z

n
p. While y and z are required to be hidden, x is not required

to be hidden.
Now, in addition to β, γ ∈ Z

n
p in case of a quadratic FE, another vector

α ∈ Z
n
p is also sampled that is used to enforce the correctness of the x part of

the computation. As before, given the ciphertext one can compute [y[j]z[k] −
rβ[j]γ[k]]t for j, k ∈ [n]. But this is clearly not enough, as these encodings do not
involve x in any way. Thus, in addition, an encoding of r(x[i]−α[i]) is also given
in the ciphertext for i ∈ [n]. Inside the function key, there are corresponding
encodings of β[j]γ[k] for j, k ∈ [n] which the decryptor can pair with encoding
of r(x[i]−α[i]) to form the encoding [r(x[i]−α[i])β[j]γ[k]]t in the target group.

Now observe that,

x[i] · (y[j]z[k] − rβ[j]γ[k]
)

+ r(x[i] − α[i]) · β[j]γ[k]
=x[i]y[j]z[k] − rα[i]β[j]γ[k]

Above, since x[i] is public, the decryptor can herself take (y[j]z[k]−rβ[j]γ[k]),
which she already has, and multiply it with x[i] in the exponent. This allows her
to compute encoding of [x[i]y[j]z[k]−rα[i]β[j]γ[k]]t. Combining these encodings
appropriately, she can obtain [g(x,y, z)− rg(α, β, γ)]t for any degree-3 multilin-
ear function g. Given the function key for f and the ciphertext, one can compute
[rf(α, β, γ)]t which can be used to unmask the output. This is because the cipher-
text contains an encoding of r in one of the base groups and the function key
contains an encoding of f(α, β, γ) in the other group and pairing them results
in [rf(α, β, γ)]t.

In full version [AJS18], we provide details of our 3-restricted FE; specifically,
we define a notion of semi-functional security [AS17] (variant of function-hiding)
associated with a three-restricted FE scheme. Once we have such a restricted FE,
making the leap to cubic FE would require us to also keep the public encoding
hidden. Therefore, it is not clear whether we have achieved anything meaningful
yet.

Indistinguishability Obfuscation Without Multilinear Maps 307

Applying Three-Restricted FE. One way that we can hope to protect or hide the
input that goes into the public component of the 3-restricted FE, is to let this
component itself be a GSW-based fully homomorphic encryption of the input.
We can then rely on 3-restricted FE to homomorphically evaluate the cubic func-
tion itself and obtain a GSW encryption of the output of cubic evaluation. Note,
however, that releasing such a GSW encryption by itself is useless, because it
does not allow even an honest evaluator to recover the output of cubic evaluation.

At this point, let us go back to the initial approach described at the begin-
ning of this section. Notice that instead of relying on 3-restricted FE to only
homomorphically evaluate the cubic function itself, we can also perform a GSW
decryption via 3-restricted FE. The secret key for GSW decryption can be embed-
ded as input into one of the private components of the 3-restricted FE. We show
how this can be carefully done via degree three operations only, to obtain output
the GSW plaintext with some added error, that is, we obtain out = μ q

2�+e. Our
actual method of bootstrapping three-restricted FE to sublinear FE for cubic
polynomials involves additional subtleties, and in particular, we define and con-
struct what we call tempered cubic encodings that serve as a useful abstraction
in this process. We now further discuss one of the main technical issues that
arises in this process.

Because the error e is sampled from a (bounded) polynomial-sized domain,
it is possible to iterate, in polynomial time, over all possible values of out cor-
responding to μ = 0 and μ = 1, and therefore recover μ. Unfortunately, this
process also reveals the error e, which can be devastating as we noted before.

Preventing the Revelation of Error Terms. To prevent this issue, we will reveal
the value out = μ q

2�+e but with some added noise, so as to hide the error e via
noise flooding. Unfortunately, this idea still suffers from two major drawbacks:

– How should we generate such noise? A natural idea is to rely a pseudoran-
dom generator that can be computed via quadratic operations only. However,
this is exactly the reason why previous approaches from the literature could
not rely on bilinear maps – in fact, the recent works of [LV17,BBKK17]
showed that such PRGs are quite difficult to construct. To overcome this
problem, we introduce and rely on a very weak variant of a pseudorandom
object, that instead of guaranteeing pseudorandomness, only guarantees per-
turbation resilience. Furthermore, we will implement this object with degree-3
polynomials. We will soon explain this object in more detail.

– For an honest evaluator to recover μ by iterating over all possible values of
out = μ q

2� + e, we crucially require the added noise be sampled from a
polynomial-sized domain. But such noise appears to be insufficient for secu-
rity, in particular, an adversary would have advantage at least 1

poly(λ) in
distinguishing a message with added noise from a message without noise.
Another key technical contribution of our work is to find a way to amplify
security, via tools inspired by the dense model theorem. In the next two
bullets, we describe these ideas in additional detail.

308 P. Ananth et al.

The Challenge of Constructing Degree-3 Pseudorandomness: A Barrier at Degree
2. As we’ve outlined above, we need a way to create pseudorandomness to
(at least partially) hide noise values. The most straightforward way to do this
would be to build a degree-2 pseudorandom generator (PRG) whose output
is indistinguishable from some nice m-dimensional distribution, like a discrete
gaussian. Intuitively, if such a degree-2 object existed, a bilinear map would
be sufficient to implement it. However, the works of [BBKK17,LV17] showed
that there are fundamental barriers to constructing such PRGs due to attacks
arising from the Sum of Squares paradigm. Because we will propose a direction
to overcome this barrier, we now review how these attacks work at a high level.

For simplicity, let’s restrict our attention to polynomials where every mono-
mial is of degree exactly 2. We can represent any such polynomial p as a sym-
metric n-by-n matrix P , where Pi,j = Pj,i is equal to half the coefficient of the
monomial xixj if i �= j, and Pi,i is equal to the coefficient of the monomial x2

i .
Then we observe that p(x) = x�Px. Suppose, then, we have a candidate PRG
consisting of m degree-2 polynomials that we represent by matrices M1, . . . ,Mm.
Thus, to sample from this PRG, we sample a seed vector x from a bounded-norm
distribution, and obtain the outputs yi = x�Mix. The goal of an attack would be
to distinguish such outputs from a set of independent random values r1, . . . , rm,
say from a discrete gaussian distribution centered around zero.

The works of [BBKK17,LV17] suggest the following attack approach: Sup-
pose we receive values z1, . . . , zm. Then we construct the matrix

M =
m∑

i=1

ziMi

Observe now, that if zi = yi corresponding to some seed vector x, then we have:

x�Mx =
m∑

i=1

yix
�Mix =

m∑

i=1

y2
i

Intuitively, because the above sum is a sum of squares, this will be a quite large
positive value, showing that there exists x of bounded norm such that x�Mx
can be quite large.

However, if the zi = ri, then the entries of the matrix M arise from a “random
walk,” and thus intuitively, the matrix M should behave a lot like a random
matrix. However a random matrix has bounded eigenvalues, and thus we expect
that there should not exist any x of bounded norm such that x�Mx is large.
Indeed, this intuition can be made formal and gives rise to actual attacks on many
degree-2 PRGs [BBKK17,LV17]. The attack above was generalized further in a
followup work to this paper [BHJ+19], showing that several families of degree-2
pseudorandom objects cannot exist. While there are still potential caveats to
known degree-2 attacks, we propose a different, more conservative, way forward:

Perturbation-Resilient Generators (ΔRG). We observe that even though the
most natural way to “drown out” the GSW error term above is by adding

Indistinguishability Obfuscation Without Multilinear Maps 309

some nice noise distribution, all we actually need is something we will call a
perturbation-resilient generator (ΔRG): Informally speaking, we want that for
every polynomial bound B(λ), there should exist a low-degree6 ΔRG using poly-
nomially bounded seeds and coefficients, such that for any perturbation vector
a ∈ [−B,B]m, it should be true that all efficient adversaries must fail to distin-
guish between the distributions ΔRG(x) and (ΔRG(x) + a) with probability at
least 1/poly(λ), which is a fixed inverse polynomial in the security parameter.
We stress again that we are not seeking a ΔRG with standard negligible security,
but only some low level of security. Indeed, even if an efficient adversary could
distinguish between ΔRG(x) and (ΔRG(x) + a) with probability 1− 1/poly(λ),
but still fail to distinguish on at least 1/poly(λ) probability mass, our approach
will succeed due to amplification (see below).

Crucially, instead of requiring the ΔRG to be computable via polynomials
of degree two, we define a notion of ΔRG implementable by degree three poly-
nomials via our notion of 3-restricted FE.

The seed for a ΔRG consists of one public and two private components,
and perturbation-resilience is required even when the adversary has access to
the public component of the seed. Furthermore, the use of cubic (as opposed
to quadratic) polynomials gives reason to hope that our ΔRGs do not suffer
from inversion attacks and achieve the weak form of security described above.
Further in-depth research is certainly needed to explore our new assumptions.
Indeed, we see our work as strongly motivating the systematic exploration of
the limits of various types of low degree pseudorandom objects over Z using the
Sum of Squares paradigm and beyond. Indeed, our work reveals a fascinating
connection between achieving iO and studying distributions of expanding low-
degree polynomials over the reals that are hard to solve. We refer the reader
to [BHJ+19] for further discussion on this topic.

Implementing Degree-3 ΔRGs. Having constructed a three-restricted FE scheme,
we now describe how to implement the degree-3 ΔRG as described above. Let
e = (e1, . . . , en), y = (y1, . . . , yn) and z = (z1, ..., zn) and we want to compute
degree three polynomials of the form q�(e,y, z) = ΣI=(i,j,k)cI · ei · yj · zk where
� ∈ [η] is the stretch. Here all variables and coefficients are polynomially bounded
in absolute value.

At first glance, one could think to could encrypt e in the public component
and y, z in the private component of the three restricted FE scheme. Then, one
could issue function keys for polynomials q� for � ∈ [η]. However, such a scheme
would essentially yield a degree 2 system of polynomials in y and z as e is public,
and not provide any additional security beyond using degree-2 polynomials. In
order to fix this issue, we take a different approach.

Encrypting e as an LWE-Style Error. Instead, we sample a secret s ∈ Z
d
p where

d is some polynomial in the security parameter. We also sample vectors ai ← Z
d
p

6 In an earlier version of this paper, this overview focused on constructing degree-2
ΔRGs. However, as we describe now, our technical approach is more general, and
we describe it in greater generality here.

310 P. Ananth et al.

for i ∈ [n]. Then we compute ri = 〈ai, s〉 + ei. Let wi = (ai, ri) for i ∈ [n]. Thus
we have encrypted e using the secret s. Now to implement degree-3 randomness
generator we consider the polynomial:

q�(e,y, z) = ΣI=(i,j,k)cI · ei · yj · zk

This polynomial can be re-written as:

q�(e,y, z) = ΣI=(i,j,k)cI · (ri − 〈ai, s〉) · yj · zk

Now suppose in the private component that contained y, we also put y ⊗ s
(where ⊗ denotes the tensor operation). Then observe that if wi for i ∈ [n]
are all public values, then the entire polynomial can now be computed using a
three-restricted FE scheme.

For this approach to be secure, intuitively we want that e is sampled from
an “error” distribution with respect to which the LWE assumption holds. (For
simplicity, we can think of y and z also being sampled from such a distribution.)
The security of our ΔRG would then rely on a variant of the LWE assumption.
Experience teaches that one should be cautious when considering the security
of variants of LWE, and our case is no exception. This variant was studied in
a follow-up work of [BHJ+19], where several unsuccessful attacks were consid-
ered. We briefly review one of these now. The most common source of devas-
tating attacks to LWE variants is linearization. However, a key barrier to such
attacks in our setting is the fact that the LWE-based public values wi contain
no information whatsoever about y and z. Thus, over Zp, we would obtain a
set of roughly n1+ε quadratic equations in y ⊗ s and z, but crucially with large
coefficients in Zp. These large coefficients would arise from the fact that ri and
ai are large values. Such systems, called MQ systems, have been widely studied
cryptanalytically and are widely believed to be hard to solve [Wol02,KS99] in
general. We again refer the reader to [BHJ+19] for further discussion. Specific
candidates for the degree-3 polynomials q� above, inspired by the hardness of
RANDOM 3-SAT and suggested by [BHJ+19], are also given in Sect. 2.

Security Amplification. Crucially, we want allow an adversary to have a very
large distinguishing advantage when attempting to distinguish between ΔRG(x)
and (ΔRG(x) + a), since this is a new assumption. For simplicity for this tech-
nical overview, we will assume that the ΔRG we introduce above is 1

λ -secure.
(More generally, we can tolerate any fixed inverse polynomial in the security
parameter).

Using ideas already discussed above, it is possible to show (as we do in our
technical sections) that relying on 1

λ -secure ΔRG in the approach outlined above,
allows us to achieve a “weak” form of sublinear FE (sFE), that only bounds
adversarial advantage by 1

λ . Unfortunately, such an FE scheme it not known
to yield iO, and for our approach to succeed, we must find a way to amplify
security of sublinear FE.

How should we amplify security? An initial idea is to implement a direct-
product type theorem for functional encryption. However, a simple XOR trick

Indistinguishability Obfuscation Without Multilinear Maps 311

does not suffice: since we are trying to amplify security of a complex primitive
like FE while retaining correctness, we will additionally need to rely on a special
kind of secure computation. More precisely, we will use (subexponentially secure)
n-out-of-n threshold fully homomorphic encryption (TFHE [MW16,BGG+18]),
that is known to exist based on LWE [Reg05]. Recall that such a threshold (public
key) fully homomorphic encryption scheme allows to encrypt a ciphertext in such
a way that all secret key holders can partially decrypt the ciphertext, and then
can recover the plaintext by combining these partial decryptions. However, any
coalition of secret key holders of size at most n − 1 learns no information about
the message.

A simplified overview of our scheme, that makes use of t = λ2 weak sublinear
FEs, is as follows:

– The setup algorithm outputs the master secret keys mski for all weak sub-
linear FEs.

– In order to generate the encryption of a plaintext M , generate a public key
TFHE.pk and t fresh secret keys TFHE.ski for a threshold FHE, and encrypt
M using the public key for threshold FHE to obtain ciphertext TFHE.ct.
Additionally, for all i, encrypt (TFHE.ct,TFHE.ski) using the master secret
key mski for the ith weak sublinear FE.

– To generate a function secret key for circuit C, generate t function secret
keys for the sFEs, each of which computes the output of the ith TFHE par-
tial decryption of the result of homomorphic evaluation of the circuit C on
TFHE.ct.

– Finally, to evaluate a functional secret key for circuit C on a ciphertext,
combine the results of the TFHE threshold decryptions obtained via the t
outputs of sFE evaluation of the t function secret keys.

The correctness of our scheme follows immediately from the correctness prop-
erties of the TFHE scheme. Intuitively, security seems to hold because of the
following argument. Upon combining λ2 independent, random instances of the
weak sFE, with overwhelming probability, at least one must remain secure. As
long as a single instance remains secure, the corresponding secret key for TFHE
will remain hidden from the adversary. Now, TFHE guarantees semantic secu-
rity against any adversary that fails to obtain even one secret key, and as a
result, the resulting FE scheme should be secure. While this intuition sounds
deceptively simple, many of these intuitive leaps assume information-theoretic
security. Thus, this template evades a formal proof in the computational setting,
and we must work harder to obtain our proof of security, as we now sketch.

From a cryptographic point of view, one of the early hurdles when trying to
obtain such a proof is the following. A reduction must rely on an adversary that
breaks security of the final FE scheme with any noticeable probability, in order
to break 1

λ security of one of the λ2 “weak” FEs. However, the reduction does not
know which of the λ2 repetitions is secure, and therefore does not directly know
where to embed an external challenge. To deal with this, we rely on the concept
of a hardcore measure [Imp95,MT10]. Roughly speaking, we obtain measures of
probability mass roughly 1

λ over the randomness of the sFE schemes, such that

312 P. Ananth et al.

no efficient adversary can break the security of the sFE scheme even with some
inverse subexponential probability.

However, unfortunately these hardcore measures can depend on other param-
eters in our system, such as the TFHE public key. And unfortunately, this depen-
dence is via extreme inefficiency; the hardcore measure is not efficiently sam-
pleable. This means that, for example, the hardcore measure could in principle
contain information about the TFHE master secret key. If this information is
leaked to the adversary, this would destroy the security of our scheme.

We overcome this issue through the following idea, which can be made formal
via the work on simulating auxiliary input [JP14,CCL18]. Because the hardcore
measure has reasonable probability mass 1

λ , it cannot verifiably contain useful
information to the adversary. For example, even if the hardcore distribution
revealed the first few bits of the TFHE master secret key, the adversary could
not know for sure that these bits were in fact the correct bits. Indeed, we use the
works of [JP14,CCL18] to make this idea precise, and show that the hardcore
measures can be simulated in a way that fools all efficient adversaries, with a
simulation that runs in subexponential time.

Finally, using complexity leveraging, we can set the security of the TFHE
scheme to be such that its security holds against adversaries whose running time
exceeds this simulation. Thus, for example, even if the original hardcore measure
was revealing partial information about the TFHE master secret key, we show
that we can give the adversary access to a simulated hardcore measure that
provably does not reveal any useful information about the TFHE master secret
key, and the adversary can’t tell the difference!

In this way, we accomplish security amplification for sFE, which allows us to
achieve iO for general circuits when combined with previous work [AS17,LT17].
Along the way, our amplification technique also shows that we can weaken the
security requirement on the relatively new notion of a 3-block-local PRG due
to [LT17], in a way that still allows us to achieve iO. Our amplification result
can be stated as the following theorem.

Theorem 5. Assuming there exists a constant c > 0 and there exists:

– (2λc

, adv = 1 − 1/λ)–secure sublinear semi-functional FE scheme for Cn′,s′ .
– (2λc

, 2−λc

)–secure threshold homomorphic encryption scheme.
– (2λc

, 2−λc

)–secure PRFs in NC1.
– (2λc

, 2−λc

)–secure statistically binding commitments.

There exists a sublinear secret key FE scheme for circuit class Cn,s with

(2λc′
, 2−λc′

) security for some constant c′ > 0.

Combining these ideas, we obtain the following result.

Theorem 6. Assuming

– LWE secure against subexponential sized circuits.
– Secure Three restricted FE scheme.
– PRGs with

Indistinguishability Obfuscation Without Multilinear Maps 313

• Stretch of k1+ε (length of input being k bits) for some constant ε > 0.
• Block locality three.
• Security with negl distinguishing gap against adversaries of subexponential

size.
– Perturbation resilient generators implementable by three restricted FE scheme

with:
• Stretch of k1+ε for some ε > 0.
• Security with distinguishing gap 1 − 1/λ against adversaries of subexpo-

nential size.

there exists a secure iO scheme for P/poly.

In a follow-up to our work [JLMS19] showed a construction of a d-restricted
FE scheme for any constant d ≥ 3 from SXDH over bilinear maps.

Theorem 7 ([JS18,LM18,JLMS19]). Assuming SXDH over bilinear maps,
there exists a construction of a three-restricted FE scheme.

Thus, in full generality we can prove the following result.

Theorem 8. Let adv1, adv2 be two distinguishing gaps such that adv1 + adv2 ≤
1 − 1/p(λ) for any fixed polynomial p(λ) > 1. Then assuming,

– LWE secure against adversaries of subexponential size.
– SXDH secure against adversaries of subexponential size.
– PRGs with

• Stretch of k1+ε (length of input being k bits) for some constant ε > 0.
• Block locality three.
• Security with distinguishing gap bounded by adv1 against adversaries of

subexponential size.
– Perturbation resilient generators implementable by three restricted FE scheme

with:
• Stretch of k1+ε for some ε > 0.
• Security with distinguishing gap adv2 against adversaries of subexponen-

tial size.

there exists a secure iO scheme for P/poly.

3.1 Reader’s Guide

In the technical overview and the introduction, we have already described
our notions of three restricted FE scheme and perturbation resilient genera-
tor (ΔRG). In the sequel, for clarity, we will denote by 3ΔRG a ΔRG that is
implementable by three restricted FE. Below we give a high level description of
various terms used above that we have not already discussed.

Tempered Cubic Encoding: Tempered cubic encoding is a natural abstraction
encapsulating a 3ΔRG and cubic homomorphic evaluation. This framework is
compatible with our notion of a three restricted FE scheme and is used to build
Functional Encryption for cubic polynomials.

314 P. Ananth et al.

Semi-Functional FE for Cubic Polynomials. A semi-functional FE scheme for
cubic polynomials (FE3 for short) is a secret key functional encryption scheme
supporting evaluation for cubic polynomials where the size of the ciphertext is
linear in the number of inputs. It satisfies semi-functional security: where you
can hard code secret values in the function key which will be decrypted only
using a single special ciphertext (known as a semi-functional ciphertext). Note
that all our primitives satisfy 1 − 1/poly(λ) security. They are finally amplified
to construct fully secure primitives.

Fig. 1. Steps involved in the construction of iO in [AJS18].

Semi-Functional FE for Circuits. A semi-functional FE scheme for circuits is a
secret key functional encryption scheme supporting evaluation of circuits where

Indistinguishability Obfuscation Without Multilinear Maps 315

Fig. 2. Overview of constructions in [LM18] leading to iO.

the size of the ciphertext is sublinear in the maximum size of circuit supported.
This notion also satisfies semi-functional security.

We present a diagrammatic view of construction of iO in Fig. 1.

4 Technical Overview of Lin-Matt 18

We now describe techniques in [LM18] in more detail. An overview is depicted
in Fig. 2.

NC1-FE from PFGs and FE that Computes Them. It is known that to
construct iO, it suffices to construct secret-key FE schemes for computing NC1

circuits that have sublinearly compact ciphertexts of size polynomial in the secu-
rity parameter λ and input length N , and sublinear in the size S of the circuits
computed. Towards constructing functional encryption schemes for NC1, we fol-
low the same two-step approach as previous works [Lin16a,LV16,Lin17,AS17]:
They showed that the task of constructing NC1-FE can be reduced to the task
of constructing FE for computing NC0 functions, i.e., constant-degree constant-
locality polynomials, by converting any NC1 function into a NC0 function using
randomized encoding and a low locality PRG. In this work, we develop a new
technique for constructing constant-degree FE and a new bootstrapping method
to NC1-FE that is “leakage resilient”.

Basic Ideas: Constant-degree FE via HE and Noisy Linear FE. Exist-
ing compact constant-degree FE schemes [GGHZ16,AS17,Lin17] use multilinear
map groups to directly compute the constant-degree polynomial in the expo-
nent. We here explore a different natural approach, that has already appeared
in the literature [GVW12,GVW15,BTVW17,GKP+13,AR17,Agr18b] and that
performs the computation homomorphically over the encrypted input via an HE
scheme. The output ciphertext is eventually decrypted using multilinear maps.

The rough template is as follows: Let the FE scheme encrypt an input x
using an HE scheme and a secret vector s to obtain a ciphertext c. To compute
a function f on x, the decryptor can homomorphically evaluate f on c and

316 P. Ananth et al.

obtain a ciphertext CTf encrypting the output y = f(x). The two challenges
are

– privacy—how to decrypt CTf in a secure way that reveals only y and hides
all other information about x, and

– integrity—how to enforce that only ciphertexts associated with a “legiti-
mate” function f (ones for which secret keys have been generated) can be
decrypted.

Previous works [GVW12,GKP+13,GVW15,BTVW17,AR17,Agr18b] devel-
oped novel techniques for achieving privacy and integrity, using various tools
from garbled circuits, partially hiding predicate encryption, to noisy lin-
ear FE. But the resulting schemes either achieve weaker security guarantees
as in Predicate Encryption [GVW15,BTVW17], or lose ciphertext compact-
ness [GKP+13,AR17], or make use of strong primitives that are themselves hard
to instantiate [GVW12,Agr18b]. Building upon their techniques, we propose new
ones toward solving the challenges.

Observe that the decryption of most HE schemes, such as [BV11,BGV12]
based on LWE, involves (i) a linear operation, Ldec(CTf , s) (e.g., 〈CTf , s〉), which
produces an approximate output, y + 2e, perturbed by a small noise vector e,
referred to as “half-decrypt”, (ii) followed by a threshold function (complex, in
NC1) to remove the noise. Privacy entails that we must hide the secret s and the
noise e. Hiding the secret is relatively easy as we have FE schemes for computing
a linear function, here L, over a secret, here s, from various assumptions (e.g.,
DDH, LWE, Paillier). However, the output of the linear FE would be the approx-
imate output y+2e, and the noise e is sensitive, revealing information about the
input x, the noises used for generating the original ciphertext c encrypting x,
and (indirectly) the secret s. On the other hand, removing the noise e requires a
high-degree computation (such as mod2). The works of [AR17,Agr18b] propose
to hide e using another bigger smudging noise—compute instead the approx-
imate output y + 2e + 2Y further shifted by a large noise Y that hides e.
Agrawal [Agr18b] further encapsulated the task to be done in a primitive called
noisy linear FE, which performs a linear computation, here the half-decrypt,
and adds a fresh noise to the decrypted output of every pair of ciphertext and
secret key. Let us now delve deeper into noisy linear FE.

4.1 Noisy Linear Functional Encryption

Noisy secret-key FE schemes have the same syntax as regular secret-key FE
schemes, but decrypting a ciphertext nct of v with a secret key nskL for a linear
function L yields a perturbed output L(v) + Y (over Zp for some modulus p),
where the noise Y is distributed indistinguishably to a distribution η—we call
such a scheme a η-noisy linear FE. We further only require weak correctness in
the sense that decryption only needs to succeed if all coordinates of L(v) lie in
a polynomially sized range, and Y is polynomially bounded.

In terms of security, we require a notion of 1-ciphertext simulation security
in the sense that the simulator is required to be able to “program” the output of

Indistinguishability Obfuscation Without Multilinear Maps 317

computation on the encrypted input of a challenge ciphertext. More specifically,
there exists a simulator that can simulate a secret key nskL and a ciphertext
nct� for input v� given only L and L(v�) + Y, where Y is sampled from η.
However, in the secret key setting, adversaries cannot produce ciphertexts on
their own and we must directly model security when multiple ciphertexts are
available. On the other hand, is well know that simulation security is impossible
when the number of ciphertexts is unbounded and ciphertexts are sublinearly
compact. Instead, we do not require the simulator to “program” the outputs for
all encrypted input, it only needs to do so for one challenge ciphertexts, and
is given with the actual encrypted inputs for all other ciphertexts—hence the
name 1-ciphertext simulation security. Note that this notion is not new, as many
works achieve indistinguishability based security via showing such 1-ciphertext
simulation security. More precisely, we require

{
nskL, nct�, {ncti}i∈[t]

}
≈

{
e ← η : Sim

(
L, L

(
x�

)
+ e, {xi}i∈[t]

)}
.

where nskf and nct� are the challenge key and ciphertext and every ncti is an
honestly generated ciphertext for an arbitrary input xi, which is given to the
simulator.

Compared to noisy linear function encryption by Agrawal [Agr18a], our
notion differs in three points: First, we parametrize the notion by the noise distri-
bution η, while Agrawal’s notion is parametrized by a bound on the decryption
error and distributions restricting the adversary’s challenge messages. Secondly,
we only require weak correctness. And thirdly, we consider simulation-security,
whereas Agrawal defines indistinguishability-based security.

Construction from PHFE and Noise Generator. There is a simple con-
struction of an η-noisy secret-key linear FE scheme if there is a PHFE scheme for
a function class G and a noise generator G in the same class whose outputs are
indistinguishable to η. Take for example our PHFE scheme from bilinear map
(Theorem 4) for computing multilinear cubic polynomials g(z1, z2, z3) in Zp with
z1 public and z2, z3 private. Assume there is a family of noise generators and
seed distributions (G,Dsd) ← NG observing the same structure, whose output
distribution G(s1, s2, s3) with (s1, s2, s3 ← Dsd) is indistinguishable to η when
s1 is made public. We can construct η-noisy linear FE as follows:

– To encrypt a vector v, the encryptor samples a seed (s1, s2, s3) and encrypts
z1 = s1 as the public input, and z2 = (v||s2), z3 = s3 as the private inputs.

– To generate a key for a function f , it generates a key for the function
g(z1, z2, z3) = L(v) + Y where Y = G(s1, s2, s3).

Decryption clearly recovers L(v)+Y, where by the property of the noise gener-
ator G, Y is distributed indistinguishably to η. For the 1-ciphertext simulation
security to hold, we correspondingly need the underlying PHFE to satisfy 1-
ciphertext simulation security (defined similarly that a simulator can “program”
the output for a single challenge ciphertext), which our construction achieves.

318 P. Ananth et al.

Finally, observe that the ciphertexts are sublinear compact, as long as G has
superlinear stretch. We provide a formal description and proofs of the construc-
tion in the full version [LM18].

Back to Constant-Degree FE. Recall that we want to use a noisy linear
FE scheme to perform the linear half decryption on the output ciphertext CTf ,
Ldec(CTf , s), and obtain y+2e+2Y (think of η as a distribution over 2Y). We
still face two challenges:

– privacy: Our PHFE from bilinear maps (and all known sublinearly compact
degree-d FE from degree-d multilinear maps) only allows decryption if out-
puts reside in a polynomially sized range. (This is because computation is
performed in the exponent, and outputs are extracted via brute force dis-
crete logarithm.) This means y + 2e + 2Y must be polynomially bounded.
However, as argued in the introduction, a polynomially-bounded Y cannot
hide e entirely. But revealing e at even one coordinate potentially reveals
information about x.

– integrity: How can we ensure that only output ciphertexts CTf for legitimate
constant-degree polynomials f can be decrypted? To ensure that, we would
like to give out a noisy linear FE secret key nsk for the function Ldec(CTf ,)
and ciphertext nct encrypting the HE secret key s. However, the key generator
has no idea what CTf is.

For the privacy problem, we weaken the requirements on the noise generators,
formulating PFG, so that outputs are polynomially bounded and e is guaranteed
to be partially hidden; then, we manage the leakage on e to still achieve meaning-
ful security. For the integrity problem, we follow the approach of [AR17,Agr18a]
of using special (1-time) HE that has a special decryption equation. We elaborate
in the next section.

4.2 Weak and Leaky Constant-Degree FE

Let’s first consider the privacy problem: How to manage leakage of the value ei’s
at a few coordinates i’s? Since ei does depend on x, some information of x is for
sure leaked. Hence, we aim for what is the best possible: ensuring that revealing e
at a few coordinates translates to revealing x at a few coordinates, if the function
computed has small locality. We show that this can be done, and construct
constant-degree FE with (1-key) weak and leaky 1-ciphertext simulation security.
Roughly speaking, it guarantees that for every distribution of f ← FN and every
distribution of x ← X , the secret key skf for f and the ciphertext CTx for x
can be simulated a simulator Sim using the output y = f(x), as well as the
value of x at a few coordinates. In addition, in the multi-ciphertext setting, the
adversaries also see a set of additional ciphertexts CTxi

for arbitrary inputs xi,
and the simulator is required to simulate them given the actual inputs xi. More
precisely, there is correlated random variables K and x∗ representing the set of

Indistinguishability Obfuscation Without Multilinear Maps 319

leaked coordinates and their values, such that |x∗| = |K| = o(λ) and

{x, skf ,CTx, {CTxi
}} ≈ {x, Sim ((x∗,K), f, y = f(x), {xi})} ,

where (x∗,K) ← Fix, and x ← X|x∗,K .

In other words, given skf ,CTx, and many other ciphertexts the encrypted input
x appears random up to a few coordinates being fixed and the output being y.

We now give some intuition on why weak and leaky simulation security is
achievable. Assume that Y + e reveals a few coordinates of e, say with index
set J , and hides all other coordinates. We carefully analyze what information eJ

depends on: if the function computed has small locality, output elements in J
depend only on a few input elements at coordinates J ′. Suppose an ideal case
where the HE scheme satisfies the following properties:

HE properties:

1. Preserving locality: the homomorphic evaluation preserves this locality and
eJ depends only on ciphertexts cJ ′ encrypting xJ ′ ,

2. Preserving entropy: revealing information related to a few ciphertexts cJ ′ only
reduces the entropy of s by a small amount, and

3. Robustness: the HE scheme used is robust to small leakage of the secret key.

We can assert that ciphertexts encrypting other coordinates of x outside J ′

remain hiding, and hence only a few coordinates of x at J ′ are leaked.
For the above argument to go through, we need a slightly stronger version

of the flawed-smudging property: For any B-bounded noise vector distribution
χ = e(R), where the noise e is the output of a local function over another
distributional secret w ← R, there is a correlated random variable I such that

{I, w, Y + e(w)} ≈ {I, w′, Y + e(w)} , where w′ ← χ|wI ,I .

This means given Y + e(w), only a few coordinates of w get fixed and leaked.
In our construction, w depends on the input x, the HE secret s, and the noises
used originally for encrypting x. The above property then allows us to bound
what information of them is leaked through e. We further show that this stronger
flawed-smudging property is in fact implied by the normal flawed-smudging prop-
erty that is agnostic of how e is generated.

Let us now consider the integrity problem: How can we ensure only CTf for
the right f is decrypted? The works of [AR17,Agr18b] presented HE schemes
whose ciphertexts cx consists of A, hCTx, where A is public and independent
of the input x (e.g., A could be LWE matrices, or RLWE scalars) and only
hCTx depends on x. Furthermore, homomorphic evaluation operates on A and
(A, hCTx) respectively to obtain Af and hCTf , and decryption does7:

7 The schemes in [AR17,Agr18a] has more complicated decryption equation, where
the decryption noise is of form

∑
i piei where {pi} is a set of increasing moduli. Here

we omit this complexity.

320 P. Ananth et al.

4. Special decryption equation:

sf = Ldec(Af , s), hCTf + sf = f(x) + 2e (mod p)

We can view sf as a decryption key for f and it is computed from s independently
of hCTf ! We can now ensure integrity as follows:

– Fix A at set-up time. This means the same A is reused for all HE ciphertexts.
– The key generator publishes a noisy linear FE key nsk for Ldec(Af ,)
– The encryptor publishes hCTx encrypting x using secret s and generates a

noisy linear FE ciphertext nct encrypting s.
– The decryptor decrypts nct, nsk to obtain sf + 2Y, and computes hCTf from

hCT, from which y + 2e + 2Y is revealed.

Note that since A is fixed and reused for all HE ciphertext, each secret key s
can only be used once. This is not a problem as the encryptor can sample a fresh
secret key s for each encryption.

Instantiating the HE Scheme. The question now is whether there is a HE
scheme that simultaneously has the special decryption equation (property 4)
and is robust to leakage (properties 1–3). The schemes in [AR17,Agr18a] unfor-
tunately are complicated and we do not know how to analyze their robustness
to leakage. Nevertheless, we manage to construct a HE scheme satisfying all 4
properties, based on the simple HE scheme by [BV11] from LWE. We sketch our
design. First, it was shown in [GKPV10,AKPW13], that the LWE assumption
is robust, in the sense that when the LWE secret s comes from a small domain
(e.g., [−1, 0, 1]λ), the hardness of LWE holds as long as s has sufficient entropy.
Thus, it is easy to observe that the HE schemes of [BV11,BGV12] are robust.
Furthermore, the simple BV-scheme without relinearization, which can already
handle constant-degree computations, also satisfies properties (1) and (2).

However, the simple-BV scheme does not have the special decryption equa-
tion. Inspired by [AR17,Agr18a], we use a recursive construction to homomor-
phically evaluate the BV-decryption itself similar to bootstrapping, but for a
different purpose. In slightly more details, we can decompose the BV evaluation-
and-decryption procedure HE.Dec(s,HE.Eval(f, hCT)) into a public part Pub that
does not depend on the secret key s and a private part Priv that depends on s.

CTf = Pub(f, hCT,A) sf = Priv(f,A, hCT, s)
CTf + sf = f(x) + 2e

A wishful thinking is giving out noisy linear FE key nsk for Priv(f,A, ,) and
ciphertext nct for (hCT, s), to enable computing sf . This does not work as Priv
has degree d in s and degree d − 1 in hCT, where d is the degree of f . The
high degree in s can be dealt with as the encryptor can compute all degree d
monomials in s and encrypt them, and there are only nd of them where n = |s| =
poly(λ). But, the same cannot be applied to hCT which is long (length S1−ε,
where S is the output length of L) and encrypting even the quadratic monomials

Indistinguishability Obfuscation Without Multilinear Maps 321

would make the ciphertexts non-compact. However, the good news is that the
degree in hCT is d−1—one less than the degree of the computation f . Therefore,
by recursively encrypting ((hCT, 1)⊗(s, 1)⊗(s, 1)) in a ciphertext hCT′ using an
independent secret key s′, we can compute sf by homomorphically evaluating
Priv on hCT′ in degree d − 1 and then decrypt. The key observation is that the
new private computation Priv′(Priv,A′, hCT′, s′) now has only degree d − 2 in
hCT′. Thus, we can recursively reduce the degree of private computation, till we
obtain a scheme whose Priv is linear in its ciphertext hCT and degree 2 in its
secret key s. Hence,

Priv(f,A, hCT, s) = Lf,A((hCT, 1) ⊗ (s, 1) ⊗ (s, 1))

where the total the number of monomials to be encrypted is |hCT|n2, keeping
sublinear compactness. In summary, our weak and leaky FE for local constant
degree computation operates as follows:

– Fix A at set-up time.
– The key generator publishes a noisy linear FE key nsk for Lf,A.
– The encryptor publishes a ciphertext hCT encrypting x under secret key s

using our recursively constructed HE scheme, and generates a noisy linear FE
ciphertext nct encrypting (hCT, 1) ⊗ (s, 1) ⊗ (s, 1).

– The decryptor decrypts nct, nsk to obtain sf + 2Y and computes hCTf =
Pub(f, hCT,A), from which y + 2e + 2Y is revealed.

The above description is simplified; please see the full paper [LM18] for a formal
description and analysis of our constant degree FE scheme.

4.3 New Bootstrapping to FE for NC1

We next present a new bootstrapping technique to FE for NC1 from weak and
leaky constant-degree FE. Our bootstrapping follows the same paradigm as
previous works [Lin16a,LV16,Lin17,AS17,LV17]: it uses a randomized encod-
ing [IK02,AIK04] to transform an NC1 computation g(v) into a simple constant-
degree constant-locality polynomial ĝ(v; r), and uses a constant locality PRG to
supply pseudorandom coins r = PRG(Seed) needed for the randomized encoding.
The fact that the underlying constant-degree FE is weak and leaky means both
the input v, as well as the PRG seed Seed may be fixed and leaked at a few
coordinates. To deal with this, we introduce a new primitive called Bit-Fixing
Homomorphic Sharing in order to make the original computation g robust.

Our (T, t1, t2)-bit-fixing homomorphic sharing resembles the recent new con-
cept of Homomorphic Secret Sharing (HSS) [BGI15] in syntax, but differs in
security and efficiency requirements. It enables compiling a single computation
g(v) into a collection of computations o1 = h1(x1), . . . , oT = hT (xT) that oper-
ate on a secret sharing x1, . . . , xT of the original input v, and from the collection
of output shares o1, . . . , oT , the original output g(v) can be reconstructed. Secu-
rity ensures that the original input v remains hidden, given all output shares
o1, . . . , oT and a subset of t2 input shares. Moreover, the security is robust to a

322 P. Ananth et al.

few t1 bits in the input shares being fixed. In terms of efficiency, we allow the
output share size to scale with the size of the computation g, however, it should
not depend on the number of computations to be preformed—in other words,
the shares are reusable.

In comparison, HSS shares need to be succinct and output reconstruction
needs to be simple, which are not required here. In terms of security, HSS is
secure against an adversary seeing a subset of the input shares only. From these
input shares, the adversaries can always derive the corresponding output shares,
but not all output shares. In contrast, our bit-fixing homomorphic sharing is
secure against adversaries seeing all output shares. Note, however, HSS with
additive reconstruction i.e., o =

∑
i oi, does satisfy this stronger security, since

the adversaries knowing the output o can easily reverse sample the missing addi-
tive output shares8.

We give a construction of bit-fixing homomorphic sharing BF from multi-key
FHE with threshold decryption as constructed in [MW16], which roughly works
as follows:

– BFsetup samples a CRS crs for the multi-key FHE.
– BFshare shares a string v as follow: It additively shares v into v = ss1 ⊕

. . . ⊕ ssT , generates T key-pairs (PKi, ski) of the multi-key FHE scheme, and
encrypts the ith share ssi under PKi to obtain ciphertext CTi. It additionally
samples a PRF key Ki. Finally, the i’th share is set to

xi =
{

{CTi,PKi}i∈[T] , ski,Ki

}

– BFeval on input crs, xi, i, g evaluates g on the i’th share as follows: It homo-
morphically evaluates the function g on all ciphertexts CT1, . . . ,CTT obtain-
ing CTf . By properties of the multi-key FHE scheme, this output ciphertexts
can be decrypted in a distributed way using each secret key ski independently.
Hence, the i’th output share oi is set to the value decrypted from CTg by ski.
(The decryption procedure of MKFHE is actually randomized. BFeval uses
the PRF Ki to generate the pseudorandom coins).

– BFdec reconstructs the final output o from o1, · · · , oT using the reconstruction
procedure of the multi-key FHE.

Security of this scheme follows simply from the security of the multi-key FHE
scheme and the fact that less than T additive shares ssi reveal nothing about v.

Next, to construct FE for NC1, instead of using our weak and leaky constant-
degree FE to compute the randomized encodings {RE(gj , v; PRGj(Seed))}j

for each output bit gj(v) directly, where PRGi(Seed) denotes the j’th
chunck of output bits of PRG, we compute the randomized encodings
{RE(BFeval, (crs, xi, i, gj);PRGi,j(Seed))}i∈[T],j for evaluating each gj on each
input share xi. By the weak and leaky security of constant-degree FE, only a
few coordinates of its encrypted input, here {(crsxi, i, g)} and Seed, are leaked.
Small leakage on {(crsxi, i, g)} alone is harmless, as the security of bit-fixing

8 Thanks Yuval Ishai and Elette Boyal for pointing this out.

Indistinguishability Obfuscation Without Multilinear Maps 323

homomorphic sharing ensures that the original input v would remain hidden
under such leakage.

However, small leakage on Seed is problematic. Consider a typical local PRG
where every output bit depends on O(1) randomly chosen seed bits. Since PRG
maps S1−α bits to S bits where S is proportional the size of g, each seed bit Seedk

influences a large number, Sε on average, of output bits. If Seedk is leaked, all
these output bits are no longer pseudorandom—call them corrupted. In turn, all
the randomized encodings that use these output bits are no longer hiding, which
may leak all input shares xi. To circumvent this, instead of having only a single
set of shares {xi}i∈[T], we will have M = S1−α sets of shares {xt

i}t∈[M],i∈[T]. We
divide the output bits of g into M chunks, each containing Sα bits, and the t’th
chunk is computed using the t’th set of input shares as described above. Why
does this help? Suppose that the locations of the corrupted PRG output bits are
distributed randomly. Since there are only about poly(λ)Sα corrupted output
bits, whereas way more M = S1−α chunks, with overwhelming probability, no
chunk ends up using more than λ corrupted PRG output bits. As a result, for
each set of input shares {xt

i}, at most λ input shares are leaked, and the security
of bit fixing homomorphic sharing kicks in again, and hence v is hidden. To
ensure that corrupted PRG output bits indeed distribute randomly, we apply
a random permutation π to the output of the PRG. In other words, the i’th
pseudorandom bit is the π(i)’th PRG output bit.

In summary, our FE scheme for NC1 depth Dep proceeds as follows: DFE is
our weak and leaky FE for local constant degree computation.

FE.Setup(1λ): Generate a DFE master secret key DMSK, and a CRS for the
bit-fixing homomorphic sharing scheme crs. Output MSK = (DMSK, crs).

FE.KeyGen(MSK, g): g is a NC1 function with input-length N , output-length S,
and depth Dep. Assume w.l.o.g. that every output bit gi is computable in some
fixed polynomial size = poly(λ).9

– Generate a polynomial f as follows:
• Divide the output bits of g into M = S1−α (assume for convenience that

M divides S) consecutive chunks I1, . . . , IM , where chunk Ij includes
output bits (j − 1)S/M + 1, . . . , jS/M . For every j ∈ [M], let gIj

=
{gk}k∈Ij

denote the collection of circuits that computes output bits in
chunk Ij .

• For every j ∈ [M] and i ∈ [λ], let Dj
i be the circuit that on input the i’th

share xj
i of the j’th sharing xj of v, homomorphically evaluates gIj

, i.e.,

Dj
i (x

j
i) = BFeval(crs, xj

i , i, gIj
) = oj

i .

• Choose a random permutation π : [λ] × [M] × [φ] → [λMφ]. For every
j ∈ [M] and i ∈ [λ], let f j

i be the following function:

f j
i (xj

i ,Seed) = REnc
(
Dj

i , x
j
i ; PRGΠj

i
(Seed)

)
.

9 If not, one can always use garbled circuits to turn g into another circuit where every
output bit is computable in size poly(λ), at the cost of increasing the size, input
length, and output length of the circuit by a multiplicative poly(λ) factor.

324 P. Ananth et al.

Above, PRGΠj
i
(Seed) contains PRG output bits at locations {π(i, j, k)}k∈[φ]

determined by the random permutation π and is sufficiently long for sup-
plying the random coins needed for computing the randomized encoding.

Finally, set

f

({
xj =

{
xj

i

}
i∈[λ]

}

j∈[M]
,Seed

)
:=

{
f j

i (xj
i ,Seed)

}
j,i

.

– Generate a DFE secret key of f , Dsk ← DFE.KeyGen(DMSK, f).
This can be done since by the efficiency of the bit-fixing homomorphic sharing
and randomized encoding, the input length and size of f is N ′ = |{xj

i}| +
|Seed| = poly(λ, s)λM + poly(λ)S1−α = poly(λ)S1−α and S′ = |f j

i |λM =
poly(λ)S. Since the AIK randomized encoding algorithm REnc and PRG both
have constant locality, f also has constant locality �. Moreover, over the field
Z2, it has at most degree �.

Output sk = Dsk.
FE.Enc(MSK, v): On input MSK = (DMSK, crs) and v ∈ {0, 1}N , do:

– For every j ∈ [M], generate the j’th BF sharing of v, xj =
{
xj

i

}
i∈[λ]

←
BFshare(crs, v).

– Sample randomly a PRG seed Seed.
– Encrypt X =

({xj}j ,Seed
)

using DFE, DCT ← DFE.Enc(DMSK,X).

Output CT = DCT.
FE.Dec(sk,CT): On input sk = Dsk and CT = DCT, do

– Decrypt the DFE ciphertext DCT with the secret key Dsk to obtain y =
f(X) = DFE.Dec(Dsk,DCT).

– Parse y = {yj
i }, and for every j ∈ [M] and i ∈ [λ], decode yj

i using REval to
obtain oj

i = REval(yj
i).

– For every j ∈ [M], decode the output shares {oj
i}i∈[λ] to obtain the actual

output uj = BFdec(crs, {oj
i}).

Output u = {uj}.
Correctness of the construction can be shown as follows: By the correctness

of DFE, we have

y = f(X) =
{
yj

i = f j
i (xj

i ,Seed)
}

j,i
,

yj
i = REnc(Dj

i , x
j
i ; PRGΠj

i
(Seed)).

By the correctness of RE, we have that

oj
i = REval(yj

i) = Dj
i (x

j
i) = BFeval(crs, xj

i , i, gIj
) = oj

i .

By the correctness of BF, we have that uj = gIj
(v).

In the full version [LM18], we formally prove that the above construction
is a sublinearly compact secret key FE scheme for NC1 satisfying standard
indistinguishability-based security, which implies iO.

Indistinguishability Obfuscation Without Multilinear Maps 325

Acknowledgments. Huijia Lin and Christian Matt thank Shweta Agrawal for sharing
an early version of [Agr18a], and Stefano Tessaro for many general discussions. This
work was done in part when both of these two authors were at the University of
California, Santa Barbara.

Prabhanjan Ananth, Aayush Jain and Amit Sahai thank Dakshita Khurana for col-
laboration in the initial stages of this research, for contributing to the writeup, and for
countless discussions and comments supporting this work and improving the write up.
Eventually, the current set of authors had to reluctantly agree to Dakshita’s repeated
requests to not be listed in the set of authors, and hence she is in these acknowledge-
ments instead. We thank Boaz Barak, Sam Hopkins and Pravesh Kothari for insights
and extremely helpful suggestions about how attacks based on the Sum of Squares
paradigm could impact our new assumptions on perturbation-resilient generators.

Huijia Lin and Christian Matt were supported by NSF grants CNS-1528178, CNS-
1514526, CNS-1652849 (CAREER), a Hellman Fellowship, the Defense Advanced
Research Projects Agency (DARPA) and Army Research Office (ARO) under Contract
No. W911NF-15-C-0236, and a subcontract No. 2017-002 through Galois. The views
expressed are those of the authors and do not reflect the official policy or position of
the Department of Defense, the National Science Foundation, or the U.S. Government.

Prabhanjan Ananth, Aayush Jain and Amit Sahai were supported in part from
a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, and NSF grant
1619348, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty
Research Award, an equipment grant from Intel, and an Okawa Foundation Research
Grant. Aayush Jain is also supported by a Google PhD fellowship award in Privacy
and Security. This material is based upon work supported by the Defense Advanced
Research Projects Agency through the ARL under Contract W911NF-15-C- 0205. The
views expressed are those of the authors and do not reflect the official policy or position
of the Department of Defense, the National Science Foundation, the U.S. Government
or Google.

References

[AB15] Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order
graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 528–556. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 21

[AFV11] Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryp-
tion for inner product predicates from learning with errors. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 2

[AG11] Arora, S., Ge, R.: New algorithms for learning in presence of errors. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755,
pp. 403–415. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22006-7 34

[AGIS14a] Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation:
avoiding Barrington’s theorem. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2014, pp. 646–658. ACM, New York (2014)

https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-642-22006-7_34

326 P. Ananth et al.

[Agr17a] Agrawal, S.: Stronger security for reusable garbled circuits, general def-
initions and attacks. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 3–35. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7 1

[Agr18a] Agrawal, S.: New methods for indistinguishability obfuscation: boot-
strapping and instantiation. Cryptology ePrint Archive, Report
2018/633 (2018). https://eprint.iacr.org/2018/633

[Agr18b] Agrawal, S.: Personal communication and a previous version of eprint
report 2018/633 (2018)

[AIK04] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In:
45th Annual IEEE Symposium on Foundations of Computer Science,
pp. 166–175, October 2004

[AJS18] Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without
multilinear maps: iO from LWE, bilinear maps, and weak pseudoran-
domness. Cryptology ePrint Archive, Report 2018/615 (2018). https://
eprint.iacr.org/2018/615

[AKPW13] Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding,
revisited. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 57–74. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 4

[AL16] Applebaum, B., Lovett, S.: Algebraic attacks against random local func-
tions and their countermeasures. In: Proceedings of the Forty-Eighth
Annual ACM Symposium on Theory of Computing, STOC 2016, pp.
1087–1100. ACM, New York (2016)

[AR17] Agrawal, S., Rosen, A.: Functional encryption for bounded collusions,
revisited. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677,
pp. 173–205. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70500-2 7

[AS17] Ananth, P., Sahai, A.: Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210,
pp. 152–181. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 6

[BBKK17] Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.: Limits on low-
degree pseudorandom generators (or: sum-of-squares meets program
obfuscation). Electron. Colloq. Comput. Complex. (ECCC) 24, 60 (2017)

[BBKK18] Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on
low-degree pseudorandom generators (or: sum-of-squares meets program
obfuscation). In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10821, pp. 649–679. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 21

[BCFG17] Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical func-
tional encryption for quadratic functions with applications to predicate
encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 67–98. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63688-7 3

[BFM14] Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfusca-
tion and UCEs: the case of computationally unpredictable sources. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp.
188–205. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2 11

https://doi.org/10.1007/978-3-319-63688-7_1
https://doi.org/10.1007/978-3-319-63688-7_1
https://eprint.iacr.org/2018/633
https://eprint.iacr.org/2018/615
https://eprint.iacr.org/2018/615
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-319-70500-2_7
https://doi.org/10.1007/978-3-319-70500-2_7
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-319-78375-8_21
https://doi.org/10.1007/978-3-319-78375-8_21
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-662-44371-2_11
https://doi.org/10.1007/978-3-662-44371-2_11

Indistinguishability Obfuscation Without Multilinear Maps 327

[BGG+18] Boneh, D., et al.: Threshold cryptosystems from threshold fully homo-
morphic encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 565–596. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1 19

[BGH+15] Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi,
M.: Cryptanalysis of the quadratic zero-testing of GGH. Cryptology
ePrint Archive, Report 2015/845 (2015). http://eprint.iacr.org/

[BGI+01] Barak, B., et al.: On the (im)possibility of obfuscating programs. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 1

[BGI15] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 12

[BGK+14a] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting
obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 13

[BGMZ18] Bartusek, J., Guan, J., Ma, F., Zhandry, M.: Return of GGH15: provable
security against zeroizing attacks. In: Beimel, A., Dziembowski, S. (eds.)
TCC 2018. LNCS, vol. 11240, pp. 544–574. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03810-6 20

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homo-
morphic encryption without bootstrapping. In: Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, ITCS 2012,
pp. 309–325. ACM, New York (2012)

[BHJ+19] Barak, B., Hopkins, S.B., Jain, A., Kothari, P., Sahai, A.: Sum-of-
squares meets program obfuscation, revisited. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 226–250. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 8

[BMSZ16] Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing
obfuscation: new mathematical tools, and the case of evasive circuits. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666,
pp. 764–791. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 27

[BPR15] Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of
finding a nash equilibrium. In: FOCS (2015)

[BQ12] Bogdanov, A., Qiao, Y.: On the security of Goldreich’s one-way function.
Comput. Complex. 21(1), 83–127 (2012)

[BR14a] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all
circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54242-8 1

[BS02] Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptog-
raphy. Contemp. Math. 324, 71–90 (2002)

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-
6 16

https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
http://eprint.iacr.org/
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-030-03810-6_20
https://doi.org/10.1007/978-3-030-17653-2_8
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16

328 P. Ananth et al.

[BTVW17] Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private con-
strained PRFs (and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70500-2 10

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryp-
tion from (standard) LWE. In: 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, pp. 97–106, October 2011

[BWZ14] Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps
against zeroizing attacks. IACR Cryptology ePrint Archive 2014:930
(2014)

[CCL18] Chen, Y.-H., Chung, K.-M., Liao, J.-J.: On the complexity of simulating
auxiliary input. IACR Cryptology ePrint Archive 2018:171 (2018)

[CEMT09] Cook, J., Etesami, O., Miller, R., Trevisan, L.: Goldreich’s one-way
function candidate and myopic backtracking algorithms. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 521–538. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00457-5 31

[CGH+15] Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP
attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47989-6 12

[CHL+15] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the
multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 1

[CHN+16] Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs,
D.: Watermarking cryptographic capabilities. In: STOC (2016)

[CLR15] Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new CLT multilin-
ear maps. Cryptology ePrint Archive, Report 2015/934 (2015). http://
eprint.iacr.org/

[CLT13a] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 476–493. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 26

[CLT15a] Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the
integers. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 267–286. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 13

[CM01] Cryan, M., Miltersen, P.B.: On pseudorandom generators in NC0. In:
Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp.
272–284. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44683-4 24

[CVW18] Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation
branching programs: proofs, attacks, and candidates. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 577–607.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 20

[DGG+16a] Döttling, N., Garg, S., Gupta, D., Miao, P., Mukherjee, P.: Obfusca-
tion from low noise multilinear maps. IACR Cryptology ePrint Archive,
Report 2016/599 (2016). https://eprint.iacr.org/2016/599

https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-642-00457-5_31
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-46800-5_1
http://eprint.iacr.org/
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-662-47989-6_13
https://doi.org/10.1007/978-3-662-47989-6_13
https://doi.org/10.1007/3-540-44683-4_24
https://doi.org/10.1007/3-540-44683-4_24
https://doi.org/10.1007/978-3-319-96881-0_20
https://eprint.iacr.org/2016/599

Indistinguishability Obfuscation Without Multilinear Maps 329

[GGG+14] Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–
602. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
55220-5 32

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-38348-9 1

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: 54th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2013, Berkeley, CA, USA, 26–29 October 2013,
pp. 40–49. IEEE Computer Society (2013)

[GGH15a] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps
from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 498–527. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46497-7 20

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC
from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54242-8 4

[GGHZ16] Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption
without obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016.
LNCS, vol. 9563, pp. 480–511. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49099-0 18

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In:
Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on The-
ory of Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4
June 2013, pp. 555–564. ACM (2013)

[GKPV10] Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robust-
ness of the learning with errors assumption. In: Proceedings of the Inno-
vations in Computer Science - ICS 2010, Tsinghua University, Beijing,
China, 5–7 January 2010, pp. 230–240 (2010)

[GLSW14] Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishabil-
ity obfuscation from the multilinear subgroup elimination assumption.
IACR Cryptology ePrint Archive 2014:309 (2014)

[GMM+16a] Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry,
M.: Secure obfuscation in a weak multilinear map model. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 241–268. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 10

[GMW15] Gay, R., Méaux, P., Wee, H.: Predicate encryption for multi-dimensional
range queries from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol.
9020, pp. 752–776. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46447-2 34

[Gol00] Goldreich, O.: Candidate one-way functions based on expander graphs.
Electron. Colloq. Comput. Compl. (ECCC) 7(90) (2000)

[GPS16] Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hard-
ness of finding a nash equilibrium. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 20

https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-662-49099-0_18
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-46447-2_34
https://doi.org/10.1007/978-3-662-46447-2_34
https://doi.org/10.1007/978-3-662-53008-5_20

330 P. Ananth et al.

[GR07] Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-70936-7 11

[Gri01] Grigoriev, D.: Linear lower bound on degrees of positivstellensatz calcu-
lus proofs for the parity. Theor. Comput. Sci. 259(1–2), 613–622 (2001)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learn-
ing with errors: conceptually-simpler, asymptotically-faster, attribute-
based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 5

[GVW12] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption
with bounded collusions via multi-party computation. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 11

[GVW15] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for
circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48000-7 25

[Hal15] Halevi, S.: Graded encoding, variations on a scheme. IACR Cryptology
ePrint Archive 2015:866 (2015)

[HJ15] Hu, Y., Jia, H.: Cryptanalysis of GGH map. IACR Cryptology ePrint
Archive 2015:301 (2015)

[HJK+16] Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry,
M.: How to generate and use universal samplers. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 715–744. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 24

[HSW14] Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full
domain hash from indistinguishability obfuscation. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-
5 12

[IK02] Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation
via perfect randomizing polynomials. In: Widmayer, P., Eidenbenz, S.,
Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002.
LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45465-9 22

[Imp95] Impagliazzo, R.: Hard-core distributions for somewhat hard problems.
In: FOCS, pp. 538–545 (1995)

[JLMS19] Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of
constant-degree expanding polynomials over R to build iO. In: Ishai,
Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 251–
281. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-
2 9

[JLS19] Jain, A., Lin, H., Sahai, A.: Removing the need block-local PRGs to
build iO. IACR Cryptology ePrint Archive 2019 (2019)

[JP14] Jetchev, D., Pietrzak, K.: How to fake auxiliary input. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 566–590. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54242-8 24

https://doi.org/10.1007/978-3-540-70936-7_11
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/978-3-642-55220-5_12
https://doi.org/10.1007/978-3-642-55220-5_12
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-030-17653-2_9
https://doi.org/10.1007/978-3-030-17653-2_9
https://doi.org/10.1007/978-3-642-54242-8_24

Indistinguishability Obfuscation Without Multilinear Maps 331

[JS18] Jain, A., Sahai, A.: How to leverage hardness of constant-degree poly-
nomials over R to build iO. IACR Cryptology ePrint Archive 2018:973
(2018)

[KLW15] Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation
for turing machines with unbounded memory. In: STOC (2015)

[KS99] Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosys-
tem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 19–30. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48405-1 2

[Lin16a] Lin, H.: Indistinguishability obfuscation from constant-degree graded
encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49890-3 2

[Lin17] Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps
and locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7 20

[LM18] Lin, H., Matt, C.: Pseudo flawed-smudging generators and their appli-
cation to indistinguishability obfuscation. IACR Cryptology ePrint
Archive 2018:646 (2018)

[LSS14] Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient mul-
tilinear maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-55220-5 14

[LT17] Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps
and block-wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10401, pp. 630–660. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63688-7 21

[LV16] Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from
DDH-like assumptions on constant-degree graded encodings. In: FOCS,
pp. 11–20. IEEE (2016)

[LV17] Lombardi, A., Vaikuntanathan, V.: Limits on the locality of pseudoran-
dom generators and applications to indistinguishability obfuscation. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 119–137.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 5

[MF15] Minaud, B., Fouque, P.-A.: Cryptanalysis of the new multilinear map
over the integers. Cryptology ePrint Archive, Report 2015/941 (2015).
http://eprint.iacr.org/

[MST03] Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NC0.
In: Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, pp. 136–145, October 2003

[MSZ16] Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear
maps: cryptanalysis of indistinguishability obfuscation over GGH13. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
629–658. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 22

[MT10] Maurer, U., Tessaro, S.: A hardcore lemma for computational indis-
tinguishability: security amplification for arbitrarily weak PRGs with
optimal stretch. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 237–254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 15

https://doi.org/10.1007/3-540-48405-1_2
https://doi.org/10.1007/3-540-48405-1_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-70500-2_5
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-642-11799-2_15
https://doi.org/10.1007/978-3-642-11799-2_15

332 P. Ananth et al.

[MW16] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 26

[MZ18] Ma, F., Zhandry, M.: The MMap strikes back: obfuscation and new
multilinear maps immune to CLT13 zeroizing attacks. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 513–543.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 19

[O’N10] O’Neill, A.: Definitional issues in functional encryption. IACR Cryptol-
ogy ePrint Archive 2010:556 (2010)

[OW14] O’Donnell, R., Witmer, D.: Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In: 2014 IEEE 29th Conference on Computational
Complexity (CCC), pp. 1–12, June 2014

[PST14a] Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from
semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-44371-2 28

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: STOC, pp. 84–93 (2005)

[Sch08] Schoenebeck, G.: Linear level lasserre lower bounds for certain k-CSPs.
In: 49th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2008, Philadelphia, PA, USA, 25–28 October 2008, pp. 593–602
(2008)

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11426639 27

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In Shmoys, D.B. (ed) Symposium on Theory
of Computing, STOC 2014, 31 May–03 June 2014, pp. 475–484. ACM,
New York (2014)

[Wol02] Wolf, C.: “Hidden field equations” (HFE) - variations and attacks. Mas-
ter’s thesis, Universität Ulm, December 2002. http://www.christopher-
wolf.de/dpl

[Zim15] Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 15

https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-030-03810-6_19
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/11426639_27
http://www.christopher-wolf.de/dpl
http://www.christopher-wolf.de/dpl
https://doi.org/10.1007/978-3-662-46803-6_15
https://doi.org/10.1007/978-3-662-46803-6_15

Watermarking

Watermarking PRFs from Lattices:
Stronger Security via Extractable PRFs

Sam Kim1(B) and David J. Wu2

1 Stanford University, Stanford, CA, USA
skim13@cs.stanford.edu

2 University of Virginia, Charlottesville, VA, USA
dwu4@virginia.edu

Abstract. A software watermarking scheme enables one to embed a
“mark” (i.e., a message) within a program while preserving the pro-
gram’s functionality. Moreover, there is an extraction algorithm that
recovers an embedded message from a program. The main security goal
is that it should be difficult to remove the watermark without destroying
the functionality of the program. Existing constructions of watermark-
ing focus on watermarking cryptographic functions like pseudorandom
functions (PRFs); even in this setting, realizing watermarking from stan-
dard assumptions remains difficult. The first lattice-based construction
of secret-key watermarking due to Kim and Wu (CRYPTO 2017) only
ensures mark-unremovability against an adversary who does not have
access to the mark-extraction oracle. The construction of Quach et al.
(TCC 2018) achieves the stronger notion of mark-unremovability even if
the adversary can make extraction queries, but has the drawback that
the watermarking authority (who holds the watermarking secret key)
can break pseudorandomness of all PRF keys in the family (including
unmarked keys).

In this work, we construct new lattice-based secret-key watermarking
schemes for PRFs that both provide unremovability against adversaries
that have access to the mark-extraction oracle and offer a strong and
meaningful notion of pseudorandomness even against the watermarking
authority (i.e., the outputs of unmarked keys are pseudorandom almost
everywhere). Moreover, security of several of our schemes can be based
on the hardness of computing nearly polynomial approximations to worst-
case lattice problems. This is a qualitatively weaker assumption than that
needed for existing lattice-based constructions of watermarking (that sup-
port message-embedding), all of which require quasi-polynomial approx-
imation factors. Our constructions rely on a new cryptographic primitive
called an extractable PRF, which may be of independent interest.

1 Introduction

A software watermarking scheme enables a user or an authority to embed a
“mark” within a program in a way that the marked program behaves almost

The full version of this paper is available at https://eprint.iacr.org/2018/986.pdf.

D.J. Wu—Part of this work was done while a student at Stanford University.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 335–366, 2019.
https://doi.org/10.1007/978-3-030-26954-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_11&domain=pdf
https://eprint.iacr.org/2018/986.pdf
https://doi.org/10.1007/978-3-030-26954-8_11

336 S. Kim and D. J. Wu

identically to the original program. It should be difficult to remove the watermark
from a marked program without significantly altering the program’s behavior,
and moreover, it should be difficult to create new (or malformed) programs that
are considered to be watermarked. The first property of unremovability is useful
for proving ownership of software (e.g., in applications to digital rights man-
agement) while the second property of unforgeability is useful for authenticating
software (e.g., for proving that the software comes from a trusted distributor).

1.1 Background and Motivation

Barak et al. [9,10] and Hopper et al. [35] introduced the first rigorous mathemat-
ical framework for software watermarking. Realizing the strong security require-
ments put forth in these works has been difficult. Early works [42,43,51] made
partial progress by considering weaker security models and imposing restrictions
on the adversary’s capabilities. This changed with the work of Cohen et al. [27],
who gave the first positive construction of software watermarking (for classes
of cryptographic functionalities) that achieved unremovability against arbitrary
adversarial strategies from indistinguishability obfuscation.

More formally, a software watermarking scheme consists of two main algo-
rithms. First, the marking algorithm takes a circuit C and outputs a “marked”
circuit C ′ with the property that C ′ and C agree almost everywhere. Second, a
verification algorithm takes a circuit C and outputs marked or unmarked. In
the message-embedding setting, the marking algorithm also takes a message m in
addition to the circuit and embeds the message m within the circuit as the water-
mark. In this case, we replace the verification algorithm with a mark-extraction
algorithm that takes a circuit as input and which outputs either the embed-
ded message or unmarked. A watermarking scheme is robust against arbitrary
removal strategies if the adversary is given complete flexibility in crafting a cir-
cuit C̃ ′ that mimics the behavior of a marked circuit C ′, but does not contain the
watermark. This most directly captures our intuitive notions of unremovability
and is the setting that we focus on in this work.

Since the work of Cohen et al., there has been many works on building
stronger variants of software watermarking [49,50] and constructing watermark-
ing (and variants) from simpler assumptions [5,16,38,45]. While this latter line
of work has made tremendous progress and has yielded constructions of water-
marking from standard lattice assumptions [38], CCA-secure encryption [45], and
even public-key encryption (in the stateful setting) [5], these gains have come at
the price of relaxing the watermarking security requirements. As such, there is
still a significant gap between the security and capabilities of the Cohen et al.
construction [27] from indistinguishability obfuscation and the best schemes we
have from standard assumptions. In this work, we narrow this gap and introduce
a new lattice-based software watermarking scheme for pseudorandom functions
(PRFs) that satisfies stronger security and provides more functionality than the
previous constructions from standard assumptions.

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs 337

Watermarking PRFs. While the notion of software watermarking is well-
defined for general functionalities, Cohen et al. [27] showed that watermark-
ing is impossible for any class of learnable functions. Consequently, research
on watermarking has focused on cryptographic functions like PRFs. In their
work, Cohen et al. gave the first constructions of watermarking for PRFs (as
well as several public-key primitives) from indistinguishability obfuscation. The
Cohen et al. watermarking construction has the appealing property in that the
scheme supports public mark-extraction (i.e., anyone is able to extract the embed-
ded message from a watermarked program). The main drawback though is their
reliance on strong (and non-standard) assumptions. Subsequently, Boneh et al.
[16] introduced the concept of a private puncturable PRF and showed how to con-
struct secretly-extractable watermarking schemes from a variant of private punc-
turable PRFs (called private programmable PRFs). Building on the Boneh et al.
framework, Kim and Wu [38] showed that a relaxation of private programmable
PRFs also sufficed for watermarking, and they gave the first construction of
watermarking from standard lattice assumptions. Neither of these constructions
support public extraction, and constructing watermarking schemes that support
public extraction from standard assumptions remains a major open problem.

Towards Publicly-Extractable Watermarking. Not only did the schemes
in [16,38] not support public extraction, they had the additional drawback that
an adversary who only has access to the extraction oracle for the watermark-
ing scheme can easily remove the watermark from a marked program (using the
algorithm from [27, §2.4]). Thus, it is unclear whether these schemes bring us
any closer to a watermarking scheme with public extraction. A stepping stone
towards a publicly-extractable watermarking scheme is to construct a secretly-
extractable watermarking scheme, except we give the adversary access to the
extraction oracle. The difficulty in handling extraction queries is due to the “ver-
ifier rejection” problem that also arises in similar settings such as constructing
designated-verifier proof systems or CCA-secure encryption. Namely, the adver-
sary can submit carefully-crafted circuits to the extraction oracle and based on
the oracle’s responses, learn information about the secret watermarking key.

Recently, Quach et al. [45] gave an elegant and conceptually-simple construc-
tion of secretly-extractable watermarking that provided unremovability in this
stronger model where the adversary has access to the extraction oracle. More-
over, their scheme also supports public marking: namely, anyone is able to take
a PRF and embed a watermark within it. The basic version of their scheme
is mark-embedding (i.e., programs are either marked or unmarked) and can be
instantiated from any CCA-secure public-key encryption scheme. To support full
message-embedding, their construction additionally requires private puncturable
PRFs (and thus, the only standard-model instantiation today relies on lattices).
In both cases, however, their scheme has the drawback in that the holder of the
watermarking secret key completely compromises pseudorandomness of all PRF
keys in the family (including unmarked keys). In particular, given even two eval-
uations of a PRF (on distinct points), the watermarking authority in the scheme

338 S. Kim and D. J. Wu

of [45] can already distinguish the evaluations from random. While it might be
reasonable to trust the watermarking authority, we note here that users must
fully trust the authority (even if they generate a PRF key only for themselves
and never interact with the watermarking authority). Even if the authority pas-
sively observes PRF evaluations (generated by honest users), it is able to tell
those evaluations apart from truly random values. As we discuss below, this is a
significant drawback of their construction and limits its applicability. Previous
constructions [16,27,38] did not have this drawback.

Security Against the Watermarking Authority. Intuitively, it might seem
like in any secret-key watermarking scheme, users implicitly have to trust the
watermarking authority (either to mark their keys, or to verify their keys, or
both), and so, there is no reason to require security against the watermarking
authority. However, we note that this is not the case. For example, the mark-
ing and extraction algorithms can always be implemented by a two-party com-
putation between the watermarking authority and the user, in which case the
watermarking authority never sees any of the users’ keys in the clear, and yet,
the users still enjoy all of the protections of a watermarking scheme. In existing
schemes that do not provide security against the watermarking authority [45],
the PRF essentially has a “backdoor” and the watermarking authority is able
to distinguish every evaluation or every PRF in the family from random. This
is a significant increase in the amount of trust the user now has to place in the
watermarking authority. The constructions we provide in this work provide a
meaningful notion of security even against the watermarking authority. Namely,
as long as the users never evaluate the PRF on a restricted set of points (which
is a sparse subset of the domain and statistically hidden from the users), then
the input/output behavior of both unmarked and marked keys remain pseudo-
random even against the watermarking authority.

More generally, as noted above, a watermarking scheme that supports extrac-
tion queries is an intermediate primitive between secretly-extractable water-
marking and publicly-extractable watermarking. If the intermediate scheme is
insecure in the presence of a party who can extract, then the techniques used
in that scheme are unlikely to extend to the public-key setting (where everyone
can extract). Handling extraction queries (with security against the authority)
is closer to publicly-extractable watermarking compared to notions from past
works. We believe our techniques bring us closer towards publicly-extractable
watermarking from standard assumptions.

1.2 Our Contributions

In this work and similar to [45], we study secretly-verifiable watermarking
schemes for PRFs that provide unremovability (and unforgeability) against
adversaries that have access to both the marking and the extraction oracles.
Our goal is to achieve these security requirements while maintaining security
even against the watermarking authority. We provide several new construc-
tions of secretly-verifiable watermarking schemes for PRFs from standard lattice

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs 339

Table 1. Comparison of our watermarkable family of PRFs to previous construc-
tions. We focus exclusively on message-embedding constructions. For each scheme, we
indicate whether it supports public marking and public extraction, whether mark-
unremovability holds in the presence of an extraction oracle, whether unmarked keys
remain pseudorandom against the watermarking authority, and the hardness assump-
tion each scheme is based on. In the above, “iO” denotes indistinguishability obfusca-
tion and “RO” denotes a random oracle

Scheme
Public Public Extraction PRF Security Hardness

Marking Extraction Oracle (Authority) Assumption

Cohen et al. [27] ✗ ✓ ✓ ✓ iO

Boneh et al. [16] ✗ ✗ ✗ ✓ iO

Kim-Wu [38] ✗ ✗ ✗ ✓ LWE∗

Quach et al. [45] ✓ ✗ ✓ ✗ LWE∗

Yang et al. [50] ✗ ✓ ✓ ✓ iO

This Work
✗ ✗ ✓ ✓† LWE‡

✓ ✗ ✓ ✓† LWE‡ + RO
∗LWE with a quasi-polynomial modulus-to-noise ratio (i.e., 2logc n for constant c > 1).
†Our construction provides a weaker notion of restricted pseudorandomness against the
watermarking authority.
‡ LWE with a nearly polynomial modulus-to-noise ratio (i.e., nω(1)).

assumptions where the adversary has access to the extraction oracle. Moreover,
we show that all of our constructions achieve a relaxed (but still meaningful)
notion of pseudorandomness for unmarked keys even in the presence of the
watermarking authority. Our constructions also simultaneously achieve unre-
movability and unforgeability (with parameters that match the lower bounds in
Cohen et al. [27]). In fact, we show that meaningful notions of unforgeability
(that capture the spirit of unforgeability and software authentication as dis-
cussed in [27,35,50]) are even possible for schemes that support public marking.
Our constructions are the first to provide all of these features. Moreover, we are
able to realize these new features while relying on qualitatively weaker lattice-
based assumptions compared to all previous watermarking constructions from
standard assumptions (specifically, on the hardness of computing nearly poly-
nomial (i.e., nω(1)) approximations to worst-case lattice problems as opposed to
computing quasi-polynomial (i.e., 2log

c(n) for constant c > 1) approximations; see
Remark 4.13). We provide a comparison of our new watermarking construction
to previous schemes in Table 1, and also summarize these results below.

Extractable PRFs. The key cryptographic building block we introduce in this
work is the notion of an extractable PRF. An extractable PRF is a standard PRF
family F : K×X → Y outfitted with an extraction trapdoor td. The extractability
property says that given any circuit that computes F(k, ·), the holder of the
trapdoor td can recover the PRF key k (with overwhelming probability). In

340 S. Kim and D. J. Wu

fact, the extraction process is robust in the following sense: given any circuit
C : X → Y whose behavior is “close” to F(k, ·), the extraction algorithm still
extracts the PRF key k. The notion of closeness that we use is ε-closeness: we
say that two circuits C0 and C1 are ε-close if C0 and C1 only differ on at most an
ε-fraction of the domain. Of course, for extraction to be well-defined, it must be
the case that for any pair of distinct keys k1, k2, the functions F(k1, ·) and F(k2, ·)
are far apart. We capture this by imposing a statistical requirement on the PRF
family called key-injectivity,1 which requires that F(k1, ·) and F(k2, ·) differ on
at least an ε′-fraction of points where ε′ � ε. This ensures that if C is ε-close
to some PRF F(k, ·), then k is unique (and extraction recovers k). In Sect. 2,
we provide a detailed technical overview on how to construct extractable PRFs
from standard lattice assumptions. We give the formal definition, construction,
and security analysis in Sect. 4.

From Extractable PRFs to Watermarking. The combination of
extractability and key-injectivity gives a natural path for constructing a secret-
key watermarking scheme for PRFs. We begin with a high-level description of
our basic mark-embedding construction which illustrates the main principles.
First, we will need to extend our extractable PRF family to additionally sup-
port puncturing. In a puncturable PRF [18,19,37], the holder of a PRF key k can
puncture k at a point x∗ to derive a “punctured key” kx∗ with the property that
kx∗ can be used to evaluate the PRF on all points x �= x∗. Moreover, given the
punctured key kx∗ , the value of the PRF F(k, x∗) at x∗ is still indistinguishable
from a uniformly random value.

Suppose now that we have an extractable PRF where the PRF keys can
be punctured. To construct a mark-embedding watermarkable family of PRFs
F : K × X → Y, we take the watermarking secret key to be the trapdoor for the
extractable PRF family. To mark a PRF key k ∈ K, the watermarking authority
derives a special point x(k) ∈ X from k (using a PRF key that is also part of
the watermarking secret key), and punctures k at x(k) to obtain the punctured
key kx(k) . The watermarked program just implements PRF evaluation using the
punctured key kx(k) . To check whether a circuit C : X → Y is marked, the
watermarking authority applies the extraction algorithm to C to obtain a key
k ∈ K (or ⊥ if extraction does not output a key). If the extraction algorithm
outputs a key k ∈ K, the verification algorithm computes the special point x(k)

from k and outputs marked if C(x(k)) �= F(k, x(k)) and unmarked otherwise.
If the extraction algorithm outputs ⊥, the algorithm outputs unmarked.

Unremovability of this construction essentially reduces to puncturing secu-
rity. By robust extractability (and key-injectivity), if the adversary only corrupts
a small number of points in a marked key (within the unremovability thresh-
old), then the extraction algorithm successfully recovers k (with overwhelming
probability). To remove the watermark, the adversary’s task is to “fix” the value
of the PRF at the punctured point x(k). Any adversary that succeeds to do so
1 Key-injectivity also played a role in previous watermarking constructions, though in

a different context [27,38].

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs 341

breaks puncturing security (in particular, the adversary must be able to recover
the real value of the PRF at the punctured point given only the punctured key).
Note that here, we do require that the range Y of the PRF be super-polynomial
(if the range was polynomial, then the adversary can guess the correct value of
the PRF at x(k) with noticeable probability and remove the watermark). Note
that this basic scheme neither provides unforgeability (i.e., it is easy to con-
struct circuits that are considered marked even without the watermarking key)
nor supports message-embedding. As we discuss in greater detail below, both of
these properties can be achieved with additional work.

Handling Extraction Queries. A primary objective of this work is to con-
struct a watermarking scheme for PRFs where unremovability holds even against
an adversary that has access to the extraction oracle. At first glance, our marking
algorithm may appear very similar to that in [16,38], since all of these construc-
tions rely on some form of puncturable PRFs. These previous constructions do
not satisfy unremovability in the presence of an extraction oracle because they
critically rely on the adversary not being able to identify the special point x(k).
Namely, in these constructions, to check whether a circuit C is marked or not,
the authority derives the special point x(k) from the input/output behavior of
C and then checks whether C(x(k)) has a specific structure. If the adversary is
able to learn the point x(k), then it can tweak the value of the marked circuit
at x(k) and remove the watermark. In fact, even if the puncturable PRF com-
pletely hides the special point x(k), the binary search attack from Cohen et al.
[27] allows the adversary to use the extraction oracle to recover x(k), and thus,
defeat the watermarking scheme.

In our construction, to decide whether a circuit C is marked or not, the
authority first extracts a key k and checks whether C(x(k)) = F(k, x(k)). There-
fore, in order to remove the watermark, it is not enough for the adversary to
just recover the special point x(k) via the extraction oracle (in fact, the special
point x(k) is public). To succeed, the adversary has to recover the original value
of the PRF at x(k), which is hard when the PRF has a super-polynomial range
and the PRF satisfies puncturing security. The fact that we do not rely on the
unpredictability of the special point for security is a subtle but important dis-
tinction in our construction. In Sect. 5, we show that assuming the underlying
PRF provides robust extractability (and key-injectivity), the adversary can sim-
ulate for itself the behavior of the extraction oracle. Thus, the presence of the
extraction oracle cannot help the adversary break unremovability.

Unforgeability and Message-Embedding via Multi-puncturing. While
the basic construction above provides unremovability, it is easy to forge water-
marked programs. Namely, an adversary can simply take a circuit that imple-
ments a PRF F(k, ·) and randomly corrupt a (1/poly(λ))-fraction of the output
(where λ is a security parameter). Then, with noticeable probability, the adver-
sary will corrupt the PRF at the special point x(k) associated with k, thereby
causing the verification algorithm to conclude that the circuit is marked. This

342 S. Kim and D. J. Wu

is easily prevented by puncturing k at λ points x
(k)
1 , . . . , x

(k)
λ . We now say that

a circuit C is marked only if C(x(k)
i) �= F(k, x

(k)
i) for all i ∈ [λ]. Of course, this

modification does not affect unremovability. Now, to forge a watermarked pro-
gram, the adversary has to construct a circuit C whose behavior closely resembles
F(k, ·), and yet, C and F(k, ·) disagree on all of the special points x

(k)
1 , . . . , x

(k)
λ ,

which are derived pseudorandomly from the key k. This means that unless the
adversary previously made a request to mark k (in which case its circuit C would
no longer be considered a forgery), the points x

(k)
1 , . . . , x

(k)
λ associated with k

look uniformly random to A. But now, if C and F(k, ·) are close, they will not
differ on λ random points, except with negligible probability. We formalize this
argument in Sect. 5.2.

The same technique of puncturing at multiple points also enables us to extend
our basic mark-embedding watermarking scheme into a scheme that supports
message-embedding. We take a basic bit-by-bit approach similar in spirit to the
ideas taken in [38,43,45]. Specifically, to support embedding messages of length
t in a PRF key k, we first derive from k a collection of λ pseudorandom points
for each index and each possible bit: S

(k)
i,b = {x

(k)
i,b,1, . . . , x

(k)
i,b,λ} for all i ∈ [t] and

b ∈ {0, 1}. To embed a message m ∈ {0, 1}t in the key k, the marking algorithm
punctures k at all of the points in the sets S

(t)
i,mi

for i ∈ [t]. To recover the water-
mark, the extraction algorithm proceeds very similarly as before. Specifically, on
input a circuit C, the extraction algorithm uses the trapdoor for the underlying
extractable PRF to obtain a candidate key k (or outputs unmarked if no key
is extracted). Given a candidate key k, the extraction algorithm derives the sets
S
(k)
i,b for each index i ∈ [t] and bit b ∈ {0, 1}. For each index, the algorithm

counts the number of points in S
(k)
i,0 and S

(k)
i,1 on which C and F(k, ·) disagree.

For correctly-watermarked keys, C and F(k, ·) will disagree on all of the points in
one of the sets and none of the points in the other set. This difference in behavior
allows the extraction algorithm to recover the bit at index i. We provide the full
description and analysis in the full version of this paper [39].

Public Marking in the Random Oracle Model. In the mark-embedding
and message-embedding watermarking constructions we have described so far,
both marking and extraction require knowledge of the watermarking secret key.
If we look more closely at the marking algorithm, however, we see that the
only time the watermarking key is used during marking is to derive the set
of points to be punctured (specifically, the set of points to be punctured is
derived by evaluating a PRF on the key k). Critically, we do not require that the
set of punctured points be hidden from the adversary (and indeed, the water-
marked key completely reveals the set of punctured points), but only that they
are unpredictable (without knowledge of k). Thus, instead of using a PRF to
derive the points to be punctured, we can use a random oracle. This gives a
construction of a message-embedding watermarking scheme that supports public
marking. We provide the full description and analysis of this scheme in the full
version of this paper [39]. We note that Quach et al. [45] were the first to give

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs 343

a watermarking scheme that supported public marking without random oracles
(for mark-embedding, they only needed CCA-secure public-key encryption while
for full message-embedding, they relied on lattices). However, as noted before,
their scheme does not provide any security against a malicious watermarking
authority (or provide unforgeability, which we discuss below).

Unforgeability and Public Marking. Recall that unforgeability for a water-
marking scheme says that no efficient adversary should be able to construct
a marked circuit that is significantly different from marked circuits it already
received. This property seems at odds with the semantics of a watermarking
scheme that supports public marking, since in the latter, anyone can mark pro-
grams of their choosing. However, we can still capture the following spirit of
unforgeability by requiring that the only marked circuits that an adversary can
construct are those that are close to circuits that are contained in the func-
tion class. In the case of watermarking PRFs, this means that the only circuits
that would be considered to be watermarked are those that are functionally
close to a legitimate PRF. This property is useful in scenarios where the pres-
ence of a watermark is used to argue authenticity of software (e.g., to prove to
someone that the software implements a specific type of computation). In this
work, we introduce a weaker notion of unforgeability that precisely captures this
authenticity property. We then show that our watermarking construction sup-
ports public-marking while still achieving this form of weak unforgeability. The
only previous candidate of software watermarking that supports public mark-
ing [45] does not satisfy this property, and indeed, in their scheme, it is easy
to construct functions that are constant everywhere (which are decidedly not
pseudorandom), but nonetheless would be considered to be marked.

Optimal Bounds for Unremovability and Unforgeability. We say that
a watermarking scheme is ε-unremovable if an adversary who only changes an
ε-fraction of the values of a marked circuit cannot remove the watermark,2 and
that it is δ-unforgeable if an adversary cannot create a new marked program
that differs on at least a δ-fraction of points from any marked circuits it was
given. Conceptually, larger values of ε means that the watermark remains intact
even if the adversary can corrupt the behavior of the marked program on a
larger fraction of inputs, while smaller values of δ means that the adversary’s
forgery is allowed to agree on a larger fraction of the inputs of a marked program.
Previously, Cohen et al. [27] showed that any message-embedding watermarking
scheme can at best achieve ε = 1/2 − 1/poly(λ) and δ = ε + 1/poly(λ). Our
constructions in this work achieve both of these bounds (for any choice of poly(λ)
factors). Previous constructions like [27,45] did not provide unforgeability while
[16,38] could only tolerate ε = negl(λ) (and any δ = 1/poly(λ)).

2 This definition is the complement of the definition from previous works on water-
marking [16,27,38,45,49,50], but we adopt this to maintain consistency with our
definition for robust extractability.

344 S. Kim and D. J. Wu

Security Against the Watermarking Authority. The key property of
extractable PRFs that underlies our watermarking constructions is that there is
an extraction trapdoor td that can be used to extract the original PRF key k
from any circuit whose behavior is sufficiently similar to that of F(k, ·). In the
case of watermarking, the watermarking authority must hold the trapdoor to
use it to extract watermarks from marked programs. This raises a new security
concern as the watermarking authority can now break security of all PRFs in
the family, including unmarked ones. As discussed in Sect. 1.1, this was the main
drawback of the Quach et al. [45] watermarking construction.

Due to our reliance on extractable PRFs, our watermarkable family of PRFs
also cannot satisfy full pseudorandomness against the watermarking authority.
However, we can show a weaker property against the watermarking authority we
call T -restricted pseudorandomness. Namely, we can associate a set S ⊆ X of
size at most T with our watermarkable family of PRFs such that any adversary
(even if they have the extraction trapdoor) is unable to break pseudorandomness
of any (unmarked) PRF, provided that they do not query the function on points
in S. The distinguisher is also provided the set S. In other words, our family of
PRFs still provides pseudorandomness everywhere except S. In our concrete con-
structions (Construction 4.5), the restricted set S consists of λ randomly-chosen
points in X . This means that if the domain of the PRF is super-polynomial,
our notion of T -restricted pseudorandomness strictly interpolates between weak
pseudorandomness (or even non-adaptive pseudorandomness)3 and strong pseu-
dorandomness. It is also worth noting that from the perspective of a user who
does not hold the watermarking secret key, the points in S are statistically hid-
den. This means that in any standard usage of the PRF between honest users,
with overwhelming probability, the PRF would never be evaluated on one of the
restricted points. Equivalently, if the watermarking authority only sees passive
evaluations of the PRF, then it will not be able to break pseudorandomness
of the underlying PRF. This notion of “passive” security against the water-
marking authority strictly improves upon the lattice-based message-embedding
watermarking construction in [45]. In their setting, the watermarking author-
ity is able to break pseudorandomness given any two (distinct) evaluations of
the PRF; that is, their scheme does not even satisfy weak pseudorandomness
against the watermarking authority. It is an interesting and important question
to obtain watermarking with security in the presence of an extraction oracle and
which retrains full pseudorandomness even against the watermarking authority.
The only constructions that satisfy this notion rely on obfuscation.

Watermarking Without Private Puncturing. All existing constructions
of message-embedding watermarking from standard assumptions have relied

3 In the weak pseudorandomness game, the adversary is given outputs of the PRF on
random inputs, while in the non-adaptive pseudorandomness game, the adversary
must declare all of its evaluation queries before seeing any evaluations of the PRF
or the public parameters.

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs 345

on private puncturable PRFs4 in some form [38,45]. Our message-embedding
watermarking construction is the first that does not rely on private puncturing;
standard puncturing in conjunction with key-extractability suffices. While this
might seem like a minor distinction, we note that constrained PRFs can be con-
structed from weaker assumptions. For instance, puncturable PRFs can be built
from one-way functions [18,19,30,37] while the simplest constructions of private
puncturable PRFs rely on lattice-based assumptions [14,21,25,26,44]. If we just
consider lattice-based constrained PRFs, the Brakerski-Vaikuntanathan punc-
turable PRF [23] can be based on the (polynomial) hardness of solving worst-
case lattice problems with a nearly polynomial approximation factor (i.e., nω(1)),5

while constructions of private puncturable PRFs from lattices [14,21,25,26,44]
can only be based on the hardness of solving worst-case lattice problems with
a quasi-polynomial approximation factor (i.e., 2log

c n for some constant c > 1).
Since all of the existing constructions of message-embedding watermarking from
standard assumptions rely on private puncturing in some form, they can only
be reduced to worst-case lattice problems with quasi-polynomial approximation
factors at best. In this work, we show that a variant of our construction (satisfy-
ing a relaxed notion of unforgeability as in [38]) can be based solely on worst-case
lattice problems with a nearly polynomial approximation factor (Remark 4.13).
Concretely, we give the first (message-embedding) watermarking scheme whose
security can be based on computing nearly polynomial approximations to worst-
case lattice problems (Corollary 5.4).

1.3 Additional Related Work

We now survey some additional works that use similar techniques as those in
our construction.

Lattice-Based PRFs. The study of lattice-based PRFs started with the
seminal work of Banerjee et al. [8]. Subsequently, [7,15] constructed the first
lattice-based key-homomorphic PRFs. The first circuit-constrained PRFs were
constructed in [6,23] and were later extended to private constrained PRFs in
[14,21,25,26,44].

Matrix Embeddings. The matrix embedding techniques used in this work
build on a series of works in the areas of attribute-based encryption [47] and
predicate encryption [17,36] from LWE. These include the attributed-based
4 A private puncturable PRF [16] is a puncturable PRF where the punctured key also
hides the punctured point. There are several lattice-based constructions of private
puncturable PRFs (and more generally, private constrained PRFs) [14,21,25,26,44].

5 While the general construction described in [23] relies on worst-case lattice problems
with sub-exponential approximation factors, when restricted to just puncturing con-
straints (which can be computable by log-depth circuits), it can be based on worst-
case lattice problems with a nearly polynomial approximation factor by leveraging
the techniques for branching program evaluation [22].

346 S. Kim and D. J. Wu

encryption constructions of [1,12,20,24,31,33] and the (one-sided) predicate
encryption constructions of [2,21,28,32,34,48].

2 Technical Overview

In this section, we provide a technical overview of our construction of extractable
PRFs from standard lattice assumptions. As described in Sect. 1.2, this is the key
cryptographic primitive we rely on in our watermarking constructions (described
formally in Sect. 5). We believe that the algebraic techniques we develop for con-
structing our extractable PRF are general and will find applications beyond
the study of PRFs and watermarking. We highlight the core principles and
techniques here, but defer the formal definitions, constructions, and analysis
to Sect. 4.

The LWE Assumption. The learning with errors (LWE) assumption [46],
parameterized by n, m, q, χ, states that for a uniformly random vector s ∈ Z

n
q ,

a uniformly random matrix A ∈ Z
n×m
q , and a noise vector e sampled from a

(low-norm) error distribution χ, the distribution (A, s·A+e)6 is computationally
indistinguishable from the uniform distribution over Z

n×m
q × Z

m
q . Equivalently,

rather than explicitly adding noise, the LWE assumption can instead be defined
with respect to a rounding modulus p < q and the component-wise round-
ing operation �·	p : Zq → Zp [8]. This variant of the LWE assumption states
that the distribution (A, �s · A	p) is computationally indistinguishable from the
uniform distribution over Z

n×m
q × Z

m
p ; this is also known as the learning with

rounding (LWR) assumption [8]. For the parameter setting we consider in this
work, hardness of LWE implies hardness of LWR [8].

Lattice-Based PRFs. A natural way to construct a pseudorandom function
F : K × X → Y from the LWE assumption is to take the PRF key k ∈ K to be
the LWE secret s ∈ Z

n
q and define F(s, x) to output an LWE sample �s · Ax	p

for a matrix Ax that is uniquely determined by the input x ∈ X . Note that
when the domain X is super-polynomial, the matrix Ax cannot be a uniformly
random matrix as required by the LWE assumption since F(s, ·) must be an
(efficiently-computable) deterministic function. Constructing a PRF from LWE
thus amounts to designing a suitable mapping x
→ Ax such that the vector
�s · Ax	p is still pseudorandom under LWE.

Nearly all existing LWE-based PRF constructions follow this general
blueprint; we refer to Sect. 1.3 for a more comprehensive discussion of related
work. Specifically, these PRF families are defined with respect to a set of public
matrices pp = (A1, . . . ,Aρ) and an input-to-matrix mapping Evalpp : X → Z

n×m
q

(that implements the mapping x
→ Ax) such that the outputs of

F(s, x) := �s · Ax	p where Ax ← Evalpp(x) (2.1)

6 For notational simplicity, we drop the transpose notation when it is clear from con-
text.

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs 347

are computationally indistinguishable from uniform vectors over Z
n
p under the

LWE assumption. In this overview, rather than focusing on a particular PRF
construction, we show how to obtain an extractable PRF from any lattice-based
PRF family that follows this blueprint.

Key Extraction Via Lattice Trapdoors. Recall from Sect. 1 that in an
extractable PRF family, the holder of a trapdoor td (for the PRF family) can
recover the PRF key k ∈ K given only oracle access to the PRF F(k, ·). Using the
basic structure of lattice-based PRF candidates from Eq. (2.1), a natural starting
point is to design the mapping Evalpp : X → Z

n×m
q such that for a special input

x∗ ∈ X , the matrix D ← Evalpp(x∗) has a known (lattice) trapdoor tdD, which
can be included as part of the trapdoor for the extractable PRF family (together
with the special input x∗).

A lattice trapdoor tdD for a matrix D ∈ Z
n×m
q enables sampling short

preimages under the matrix D [3,4,29,40,41]. Specifically, given an arbitrary
target matrix T ∈ Z

n×m
q , the trapdoor tdD enables sampling a short matrix

RT ∈ Z
m×m
q such that D · RT = T. Additionally, the trapdoor for D can be

used to solve the search version of the LWE problem: given an LWE instance
(D, �s · D	p), one first computes a short matrix RG using the trapdoor D and
then derive the vector

�s · D	p · RG = �s · D · RG	p + noise = �s · G	p + noise ∈ Z
m
p ,

where noise is a small error vector that occurs from the modular rounding and
G ∈ Z

n×m
q is the standard powers-of-two gadget matrix [41]. Since GT is the

generator matrix for a linear error-correcting code, recovering s form �s · G	p +
noise is straightforward (c.f., [41]).

Given the trapdoor tdD, it is straightforward to implement the Extract algo-
rithm. Namely, Extract first queries F(s, ·) on the special point x∗ ∈ X to obtain
the output �s · D	p. It then uses the trapdoor information tdD to recover the
secret key s.

Programming the Trapdoor. The problem of constructing an extractable
PRF family now boils down to generating a set of public parameters pp and a
suitable mapping Evalpp : X → Z

n×m
q such that the matrix Ax∗ ← Evalpp(x∗)

can be programmed to be a trapdoor matrix D. At the same time, Evalpp must be
designed so that the basic blueprint from Eq. (2.1) still satisfies pseudorandom-
ness. The concept of programming the output of a PRF was previously explored
in the context of constrained PRFs [16,25,38,44]. These works study the notion
of a private programmable PRF where constrained keys can be programmed to
a specific value at a particular point (or set of points). However, the techniques
used in these works do not directly apply to our setting as our goal is fundamen-
tally different. To construct an extractable PRF, we need a PRF family such that
the evaluation of every PRF key from the family is programmed to a trapdoor
matrix. In fact, our notion is completely independent of constraining, and an
extractable PRF family need not even support constraining. In other words, we

348 S. Kim and D. J. Wu

want programmability with respect to the public parameters of the PRF family
rather than just an individual PRF key.

The way we construct the function Evalpp is quite simple and general. We
take any existing PRF construction F′ : Zm

q × X → Z
m
p following the blueprint

from Eq. (2.1) that is defined respect to a set of matrices pp′ = (A1, . . . ,Aρ)
and mapping Eval′pp′ : X → Z

n×m
q , and define a new shifted mapping

Evalpp(x) := Eval′pp′(x) + W = Ax + W,

for some shift matrix W ∈ Z
n×m
q and a new set of public matrices pp =

(A1, . . . ,Aρ,W). First, observe that given a point x∗ ∈ X and a trapdoor matrix
D, it is easy to generate a programmed set of public parameters:

1. Generate the matrices A1, . . . ,Aρ ∈ Z
n×m
q as in the original PRF family.

2. Set W = D − Ax∗ where Ax∗ ← Eval′pp′(x∗).

It is easy to see that security of the original PRF family is preserved. Specifically,
we now have

F(s, x) = �s · (Ax + W)	p ≈ �s · Ax	p + �s · W	p = F′(s, x) + �s · W	p , (2.2)

Since a randomly sampled trapdoor matrix D is statistically close to uniform, the
matrix W is also statistically close to uniform. This means that the additional
vector offset w = �s · W	p introduced by W looks indistinguishable from a
uniformly random vector under LWE. Moreover,

F(s, x∗) = �s · (Ax∗ + W)	p = �s · D	p ,

so given the trapdoor tdD, it is easy to recover the key s.

2.1 Robust Extractability

The PRF family F : Zn
q × X → Z

n
p defined in Eq. (2.2) already satisfies a basic

notion of key-extractability. Namely, any authority who holds the trapdoor infor-
mation (x∗, tdD) is able to extract the PRF key given just oracle access to the
function F(s, ·); moreover, F(s, ·) remains pseudorandom to anyone who does not
possess the trapdoor. To support watermarking, however, we require a stronger
security property called robust extractability (Definition 4.3).

Robustness and Key-Injectivity. At a high level, robust extractability says
that the Extract algorithm should successfully recover the PRF key even if it is
just given access to a function (modeled as a circuit) whose behavior is “close”
to F(s, ·). In fact, even if the adversary has oracle access to Extract, it should not
be able to produce a circuit C whose behavior is sufficiently “close” to F(s, ·)
for some key s ∈ Z

n
q , and for which, the extraction algorithm fails to extract s

from C. The closeness metric that we use in this work is ε-closeness; namely, we
say that two circuits C and C ′ are ε-close if they agree on all but an ε-fraction

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs 349

of elements in the domain. In all of our constructions, ε = 1/poly(λ). Of course,
for the extractability property to be well-defined, it should be the case that for
distinct keys s1, s2 ∈ Z

n
q , F(s1, ·) and F(s2, ·) should be “far” apart. As discussed

in Sect. 1.2, we capture this by defining a notion of key-injectivity similar in fla-
vor to previous definitions from [27,38], and then show (Theorem 4.8) that over
the randomness used to sample the public parameters, the basic construction in
Eq. (2.2) satisfies our key-injectivity property. Thus, in the subsequent discus-
sion, we assume without loss of generality that if a circuit C is ε-close to F(s, ·)
for any ε = 1/poly(λ), then s is unique.

The basic PRF construction from Eq. (2.2) does not satisfy robust
extractability (for any closeness parameter ε = 1/poly(λ)). Specifically, the
adversary can recover the special point x∗ ∈ X using binary search. To mount
the attack, the adversary first chooses a key s ∈ Z

n
q , and constructs the circuit

F(s, ·). The adversary then (arbitrarily) partitions the domain into two halves X1

and X2 and queries the extraction oracle on a circuit C that agrees with F(s, ·)
on X1 and outputs ⊥ on X2. Depending on whether the extraction algorithm
succeeds in recovering s or not, the adversary learns which of X1 or X2 con-
tains the special point x∗. After a polynomial number of queries, the adversary
learns x∗. Once the adversary learns the special point x∗, it can always cause
extraction to fail on a circuit by simply having the circuit output ⊥ on x∗ (and
F(s, x) on all x �= x∗). Moreover, this circuit agrees with F(s, ·) on all but a single
point (i.e., they agree on all but a negligible fraction of the domain when |X | is
super-polynomial), which breaks robust extractability.

Defending Against Binary Search. Effectively, the binary search attack
relies on the fact that the adversary can easily construct circuits C such that
the behavior of Extract on C (specifically, whether Extract succeeds or not) is
correlated with the secret extraction trapdoor (specifically, the point x∗). To
defend against this, we develop a way to ensure that the behavior of Extract on a
circuit C depends only on properties of the circuit C (and not on the extraction
trapdoor). If this is the case, then the extraction oracle does not leak information
about the extraction trapdoor, and in turn, robust extractability holds. We note
that this type of approach is conceptually very similar to the notion of strong
soundness in the context of constructing multi-theorem argument systems in the
designated-verifier setting [11,13].7 To achieve this, we proceed in two steps.

7 In designated-verifier argument systems, an adversary who has oracle access to the
verifier can observe the verifier’s behavior on different statements and proof strings.
When the verifier’s responses are correlated with its secret verification state, the
prover can potentially leverage the leakage and compromise soundness. This is the
so-called “verifier rejection” problem. Strong soundness is a property that says that
the responses of the verifier depend only on the statement or proof string, and not
on the secret verification state (the analog in our setting is that the behavior of the
extraction oracle only depends on the input circuit and not the extraction trapdoor).
This property is very useful for arguing soundness in the presence of a verification
oracle for designated-verifier argument systems.

350 S. Kim and D. J. Wu

First, we modify the Extract algorithm to force the adversary to only submit
circuits that are very close to an actual PRF circuit F(s, ·). Then, we tweak the
construction to ensure that extraction queries on circuits C that are too close
to a real PRF circuit are not helpful to the adversary. We describe this below.

– Testing for closeness. After the Extract algorithm recovers a candidate key
s ∈ Z

n
q from a circuit C, it additionally checks whether the behavior of the cir-

cuit C and F(s, ·) are “similar.” While computing the exact distance between
C and F(s, ·) cannot be done in polynomial time, it is straightforward to con-
struct a randomized algorithm that accepts (with overwhelming probability)
whenever C and F(s, ·) are ε1-close and rejects (with overwhelming probabil-
ity) whenever C and F(s, ·) are ε2-far, for any choice of ε2 > ε1 + 1/poly(λ).
This can be done by sampling random points x1, . . . , xξ

r← X and counting
the number of inputs where C(xi) = F(s, xi). If the number of points on
which the two circuits differ is greater than ξ · (ε1 + ε2)/2, then the Extract
algorithm outputs ⊥. By choosing ξ = poly(λ) accordingly, we can appeal
to standard concentration bounds and show that Extract will only output
a candidate key when C and F(s, ·) are at least ε2-close. When applied to
watermarking, the parameter ε1 corresponds to the unremovability threshold
while the parameter ε2 corresponds to the unforgeability threshold.

– Embedding multiple trapdoors. The closeness test prevents the adversary
from querying the extraction oracle on circuits that are more than ε2-far from
valid PRF circuits F(s, ·), since the output of Extract on these queries is ⊥ with
overwhelming probability. However, since ε2 = 1/poly(λ), the adversary can
still query the extraction oracle on circuits that are ε2-close to the real PRF
circuit F(s, ·). In this case, each query still (roughly) allows the adversary to rule
out at least an ε2-fraction of the domain, and so, in time poly(1/ε2) = poly(λ),
the adversary is again able to extract the special point x∗ for the PRF family.

The second ingredient in our construction is to embed multiple trapdoors.
Specifically, instead of just embedding a single lattice trapdoor at x∗, we
instead embed λ distinct trapdoors at λ special points x∗

1, . . . , x
∗
λ

r← X . Now,
on input a circuit C, the Extract algorithm evaluates C at each special point x∗

i ,
and use the lattice trapdoor inversion algorithm to obtain candidate keys si. It
performs the closeness test described above on each candidate key si and out-
puts si if the closeness test succeeds, and ⊥ if none succeed. By key-injectivity,
there can only be one key s where F(s, ·) is ε2-close to C whenever ε2 < 1/2. At
a very high level, the benefit of having multiple trapdoors is that the adversary
has to corrupt the value at all of the trapdoors in order to cause the output of
the Extract algorithm to differ (in a manner that is correlated with the secret
extraction state). Since the special points x∗

1, . . . , x
∗
λ are independently and

uniformly distributed, and the adversary is effectively constrained to choosing
circuits C which are ε2-close to some F(s, ·), the probability that the adversary
succeeds in constructing such a circuit is ελ

2 = negl(λ). We refer to Sect. 4.2
and Theorem 4.12 for the formal analysis.

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs 351

2.2 Puncturing and Pseudorandomness Given the Trapdoor

Recall from Sect. 1.2 that to obtain a watermarking scheme from an extractable
PRF, we additionally require that the extractable PRFs support puncturing con-
straints. Since our techniques for building extractable PRFs are broadly appli-
cable to many lattice-based PRFs, we can take an existing candidate with the
structure from Eq. (2.1) and derive from it an extractable PRF. In particular, we
can apply our general construction to the Brakerski-Vaikuntanathan constrained
PRF [23], and obtain a puncturable extractable PRF. To achieve the stronger
security notion of (T -restricted) pseudorandomness against an authority that
holds the extraction trapdoor, we have to develop new techniques. We discuss
the challenges below.

Security Against the Authority. As discussed in Sect. 1.2, a key contribu-
tion of our work is showing that the keys in our watermarkable PRF family
still provide a relaxed form of pseudorandomness even against the holder of the
watermarking secret key. This property amounts to showing that the underlying
extractable PRF satisfies T -restricted pseudorandomness against an adversary
who is given the extraction trapdoor. Specifically, we show that as long as the
adversary (who has the trapdoor) is not allowed to query the PRF on the spe-
cial points x∗

1, . . . , x
∗
λ, then pseudorandomness holds. This set of special points

constitute the restricted set in the T -restricted pseudorandomness experiment.
First, recall from Eq. (2.2) that

F(s, x) = �s · (Ax + W)	p ≈ F′(s, x) + �s · W	p ,

where F′(s, x) is the existing PRF (specifically, the Brakerski-Vaikuntanathan
PRF [23]). At first glance, one might be tempted to believe that T -restricted
pseudorandomness against the authority follows immediately from the security of
F′ since the value F(s, x) is just F′(s, x) shifted by �s · W	p where W = D−Ax∗ .
Without the extraction trapdoor, D is statistically close to uniform, so we can
appeal to LWE to argue that the shift �s · W	p is uniformly random (and looks
independent of F′(s, x)). But given the trapdoor matrix D, this is no longer the
case; the shift �s · W	p is correlated with the PRF key s, and not easily simulated
without knowing s itself. Thus, it is unclear how to directly reduce security of F
to security of the underlying PRF F′.

Consider a potential reduction algorithm B that uses an adversary for F in
the T -restricted pseudorandomness security game to break the security of F′.
In this case, B is given the extraction trapdoor. If the reduction algorithm B
is able to correctly simulate the evaluation F(s, x) on all points x ∈ X , then
it can use its trapdoor information tdD to extract s and break security of F′

itself. Thus, for the proof to go through, we minimally need to rely on some type
of “puncturing” argument (c.f., [23]). A possible starting point is to give the
reduction algorithm B a punctured key k′

S for F′ that enables evaluation of F′ at
all points except the restricted points S = (x∗

1, . . . , x
∗
λ). Then, B can simulate the

correct PRF evaluations at all non-restricted points, but it is unable to compute
the evaluations at the special points for itself.

352 S. Kim and D. J. Wu

Unfortunately, this basic puncturing approach is still insufficient to prove
security. Namely, even if the reduction algorithm can simulate the non-shifted
PRF evaluation F′(s, x) at all of the non-restricted points, it must still sim-
ulate the shift �s · W	p without knowledge of the key s. To address this, we
additionally need to “program” the evaluations of the punctured key kS at the
non-punctured points. Specifically, we program the key kS to introduce a shift
by the key-dependent vector �s · W	p at all of the non-punctured points. This
latter step relies on an adaptation of the technique of programmable matrix
embeddings from [38]. This enables B to simulate the full PRF evaluation
F(s, x) = F′(s, x) + �s · W	p for the adversary. We refer to Sect. 4.2 for the
full details of the construction and security analysis.

3 Preliminaries

We begin by introducing some of the notation we use in this work. For an integer
n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}. For a distribution D,
we write x ← D to denote that x is sampled from D; for a finite set S, we write
x

r← S to denote that x is sampled uniformly from S.
Unless specified otherwise, we use λ to denote the security parameter. We

say a function f(λ) is negligible in λ, denoted by negl(λ), if f(λ) = o(1/λc)
for all c ∈ N. We say that an event happens with overwhelming probability
if its complement happens with negligible probability. We say an algorithm is
efficient if it runs in probabilistic polynomial time in the length of its input. We
use poly(λ) to denote a quantity whose value is bounded by a fixed polynomial
in λ. For two families of distributions D1 and D2, we write D1

s≈ D2 if the
two distributions are statistically indistinguishable (i.e., the statistical distance
between D1 and D2 is negligible). We now define the circuit-similarity metric we
use in this work.

Definition 3.1 (Circuit Similarity). Fix a circuit class C on ρ-bit inputs. For
two circuits C,C ′ ∈ C and for a non-decreasing function ε : N → N, we write
say that C is ε-close to C ′, denoted C ∼ε C ′, if C and C ′ agree on all but an
ε-fraction of inputs. More precisely, we write

C ∼ε C ′ ⇐⇒ Pr[x r← {0, 1}ρ : C(x) �= C ′(x)] ≤ ε.

Similarly, we write C �∼ε C ′ to denote that C and C ′ differ on at least an ε-
fraction of inputs.

We provide additional background on lattice-based cryptography in the full
version of this paper [39].

4 Extractable PRF

In this section, we introduce the core notion of an extractable PRF that we use
throughout this work. Due to space limitations, we just present our definition

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs 353

of robust extractability. In the full version of this paper [39], we provide the
formal definitions of both pseudorandomness as well as our relaxed notion of
T -restricted pseudorandomness from Sect. 1, where pseudorandomness holds on
all but a small number (i.e., up to T) points.

Definition 4.1 (Extractable PRF). An extractable PRF with key-space K,
domain X , and range Y consists of a tuple of efficient algorithms ΠEPRF =
(PrmsGen,SampleKey,Eval,Extract) with the following syntax:

– PrmsGen(1λ) → (pp, td): On input the security parameter λ, the parameter-
generation algorithm outputs a set of public parameters pp and a trapdoor
td.

– SampleKey(pp) → k: On input the public parameters pp, the key-generation
algorithm outputs a PRF key k ∈ K.

– Eval(pp, k, x) → y: On input the public parameters pp, a PRF key k ∈ K, and
input x ∈ X , the PRF evaluation algorithm outputs a value y ∈ Y.

– Extract(pp, td, C) → k/⊥: On input the public parameters pp, the trapdoor td,
and a circuit C : X → Y, the extraction algorithm outputs a key k ∈ K∪{⊥}.
Without loss of generality, the Extract algorithm can also be defined to take a
circuit whose domain is any superset of the PRF domain X .

The public parameters pp of an extractable PRF induces a PRF family Fpp : K×
X → Y where Fpp(k, x) := Eval(pp, k, x) and Fpp.KeyGen(1λ) computes and
returns k ← SampleKey(pp). Note that the description of the induced PRF family
F does not include the trapdoor td.

Definition 4.2 (Extract-and-Test). An extractable PRF ΠEPRF =
(PrmsGen,SampleKey,Eval,Extract) with key-space K has an “extract-and-test”
extraction algorithm if Extract can additionally be decomposed into two algo-
rithms (ExtractCandidates,TestCandidate) with the following properties:

– ExtractCandidates(pp, td, C) → S: On input the public parameters pp, the
trapdoor td, and a circuit C, the candidate extraction algorithm outputs a
(possibly empty) set S ⊆ K of candidate keys, where |S| = poly(λ).

– TestCandidate(pp, td, C, k) → b: On input the public parameters pp, the trap-
door td, a circuit C : X → Y, and a candidate key k ∈ K, the test candidate
algorithm outputs a bit b ∈ {0, 1}. Note that we allow TestCandidate to be a
randomized algorithm.

Moreover, the Extract(pp, td, C) algorithm can be written as follows:

– Extract(pp, td, C): First invoke ExtractCandidates(pp, td, C) to obtain a
set S ⊆ K of candidate keys. For each k ∈ S, compute bk ←
TestCandidate(pp, td, C, k). Output any k ∈ S where bk = 1. If bk = 0 for
all k ∈ S, output ⊥.

Definition 4.3 (Robust Extractability). Fix a security parameter λ and
closeness parameters ε1, ε2. Let ΠEPRF = (PrmsGen,SampleKey,Eval,Extract) be

354 S. Kim and D. J. Wu

an extractable pseudorandom function with key-space K, domain X , and range Y.
Suppose ΠEPRF has an extract-and-test extraction algorithm where for (pp, td) ←
PrmsGen(1λ) and ε1 < ε2, the TestCandidate algorithm satisfies the following two
properties:

– For all k ∈ K and C(·) ∼ε1 Eval(pp, k, ·), Pr[TestCandidate(pp, td, C, k) =
1] = 1 − negl(λ).

– For all k ∈ K and C(·) �∼ε2 Eval(pp, k, ·), Pr[TestCandidate(pp, td, C, k) =
1] = negl(λ).

Next, for an adversary A, we define two experiments ExtRealA(λ, ε1, ε2) and
ExtIdealA(λ, ε1, ε2):

– Setup phase: At the start of both experiments, the challenger samples
(pp, td) ← PrmsGen(1λ) and gives pp to A.

– Query phase: Adversary A can issue any (polynomial) number of extraction
queries to the challenger. On an extraction oracle query C : X → Y, the
challenger in the two experiments responds as follows:

• ExtReal : In the real experiment, the challenger replies with Extract
(pp, td, C).

• ExtIdeal : In the ideal experiment, the challenger proceeds as follows:
– If there exists a unique k ∈ K where C(·) ∼ε2 Eval(pp, k, ·), the chal-

lenger computes bk ← TestCandidate(pp, td, C, k). It replies with k if
bk = 1 and ⊥ if bk = 0.

– Otherwise, the challenger replies with ⊥.
– Output phase: Once the adversary A is done making queries, it outputs a

bit b ∈ {0, 1}. This is the output of the experiment.

We say that ΠEPRF satisfies (ε1, ε2)-robust extractability if for all (possibly
unbounded) adversaries A making any polynomial number Q = poly(λ) queries,
we have that

∣
∣Pr

[

ExtRealA(λ, ε1, ε2) = 1
] − Pr

[

ExtIdealA(λ, ε1, ε2) = 1]
∣
∣ = negl(λ).

Remark 4.4 (Generalized Candidate Testing). In our constructions, we will
require a generalized version of TestCandidate with the following properties:

– The TestCandidate algorithm is publicly-computable; namely, TestCandidate
does not depend on the trapdoor td. To make this explicit, in the case
where TestCandidate is publicly-computable, we write the algorithm as
TestCandidate(pp, C, k).

– If C1, C2 satisfy C1 ∼ε C2 for some ε = negl(λ), then for all pp and all k ∈ K,

Pr[TestCandidate(pp, C1, k) �= TestCandidate(pp, C2, k)] = negl(λ).

– Instead of taking as input a candidate key k ∈ K as input, the TestCandidate
can also take as input an arbitrary circuit C ′ : X → Y, with the property

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs 355

that for (pp, td) ← PrmsGen(1λ) and k ← SampleKey(pp), and any circuit
C ′ : X → Y where C ′ ∼ε Eval(pp, k, ·) and ε = negl(λ),

{TestCandidate(pp, C, k)} s≈ {TestCandidate(pp, C, C ′)},

where the randomness is taken over the random coins in PrmsGen, SampleKey,
and TestCandidate.

Key-Injectivity. As discussed in Sect. 2, a property that is often useful in
conjunction with robust extractability is key-injectivity. We give the formal def-
inition in the full version of this paper [39].

4.1 Puncturable Extractable PRFs

In a puncturable PRF [18,19,37], the PRF key k can be used to derive a punc-
tured key kx∗ that can be used to evaluate the PRF everywhere except the
punctured point x∗ ∈ X . Moreover, the actual PRF value F(k, x∗) remains pseu-
dorandom even given the punctured key. More generally, we can consider punc-
turing the PRF at a set S ⊆ X . In this case, the punctured key kS can be used
to evaluate the PRF at all points in X \ S, while the PRF values at points in S
remain pseudorandom. This is also called a constrained PRF [18]. In our setting,
we primarily consider puncturing at sets containing up to poly(λ) elements. We
review the formal definitions in the full version of this paper [39].

4.2 Constructing Extractable PRFs

In this section, we present our extractable PRF family from standard lattice
assumptions. Although our construction follows the main ideas that we outlined
in Sect. 2, implementing these ideas algebraically is non-trivial. We begin with
a brief algebraic overview of our construction.

Construction Overview. As discussed in Sect. 2, our PRF family is defined
with respect to a set of public matrices in Z

n×m
q , which we denote by (Aj)j∈[ρ],

(Ãα,β)α∈[n],β∈[m], (Bi,j)i∈[t],j∈[ρ], (Cj)j∈[ρ], V, and W. Here, n,m, q are lattice
parameters, t is the number of punctured points, and ρ is the bit-length of the
PRF input. These matrices can be logically partitioned into three sets of matrices
that handle different correctness or security goals.

– The matrices (Aj)j∈[ρ], (Ãα,β)α∈[n],β∈[m] are used for the T -restricted pseu-
dorandomness proof. As discussed in Sect. 2.2, handling the evaluation queries
in T -restricted pseudorandomness requires generating a punctured key that
is specifically programmed to enable simulation of the key-dependent shift
(i.e., the �s · W	p term in Eq. (2.2)).

– The matrices (Bi,j)i∈[t],j∈[ρ], (Cj)j∈[ρ], V implement the constrained PRF
construction of [23].

356 S. Kim and D. J. Wu

– The matrix W is the shift matrix. As described in Sect. 2, matrix W is
generated by first evaluating Evalpp on the rest of the matrices (Aj)j∈[ρ],
(Ãα,β)α∈[n],β∈[m], (Bi,j)i∈[t],j∈[ρ], (Cj)j∈[ρ], V, and then defining it as a cor-
responding shifted matrix from a trapdoor matrix D.

As discussed in Sect. 2.1, to achieve robust extractability, we need to embed
multiple trapdoors. We support this by simply concatenating together multiple
copies of the PRF, where each copy is associated with one of the trapdoors. We
now give the formal construction.

Construction 4.5 (Puncturable Extractable PRFs). Let λ be a security
parameter, and ε1, ε2 be distance parameters where 0 < ε1 < ε2 < 1/2, and
ε2 ≥ ε1 + 1/poly(λ). We define the following scheme parameters:

– (n,m, q, χB) – lattice parameters, where χB is a B-bounded distribution,
– p – the rounding modulus,
– t – a bound on the number of points to be punctured (indexed by i),
– ρ – the bit-length of the PRF input (indexed by j),
– η – the number of special points where we embed the extraction trapdoor

(indexed by
).

Throughout this section and in the analysis, we will assume that n,m, t, ρ, η =
poly(λ). Let (TrapGen, Invert) be the lattice trapdoor algorithms (see full version
of this paper [39]). For an input x ∈ {0, 1}ρ, we define the equality function
f eq

x : {0, 1}ρ → {0, 1} where

f eq
x (x∗) =

{

1 if x = x∗

0 otherwise.

More generally, for a set of points S ⊆ {0, 1}ρ of size t (represented as a
concatenation of the bit-strings in S), we define the containment function
f con

x : {0, 1}tρ → {0, 1} where

f con
x (S) =

{

1 if x ∈ S

0 otherwise.

Note that both the equality circuit f eq
x and the containment circuit f con

x for any
x ∈ {0, 1}ρ can be computed by a circuit of depth d = O(log ρ+log t) = O(log λ).
Our (puncturable) extractable PRF ΠPRF = (PrmsGen,SampleKey,Eval,Extract,
Puncture,PunctureEval) with key-space K = [−B,B]n, domain X = {0, 1}ρ\{0},
and range Y = Z

ηm
p is defined as follows:8

– PrmsGen(1λ): On input the security parameter λ, the PrmsGen algorithm
begins by sampling (A(
)

j)j∈[ρ], (Ã(
)
α,β)α∈[n],β∈[m], (B(
)

i,j)i∈[t],j∈[ρ], (C(
)
j)j∈[ρ],

V(
) uniformly at random from Z
n×m
q for every
 ∈ [η]. It also samples a set of

η special points h(
) r← {0, 1}ρ along with trapdoor matrices (D(
), tdD(�)) ←
TrapGen(1λ) for all
 ∈ [η]. Then, for all
 ∈ [η], it computes

8 We refer to the full version of this paper [39] for the specification of the Evalpk, Evalct,
EvalPpk, and EvalPct algorithms for computing on matrix embeddings [12,38].

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs 357

• A(
)

h(�) ← EvalPpk

(

f eq
h(�) , (A

(
)
j)j∈[ρ], (Ã

(
)
α,β)α∈[n],β∈[m]

)

,

• B(
)

h(�) ← Evalpk
(

f con
h(�) , (B

(
)
i,j)i∈[t],j∈[ρ]

)

,

• C(
)

h(�) ← Evalpk
(

f eq
h(�) , (C

(
)
j)j∈[ρ]

)

,
and defines the matrix

W(
) = A(
)

h(�) + B(
)

h(�)G
−1

(

C(
)

h(�)

)

G−1
(

V(
)
)

+ D(
) ∈ Z
n×m
q . (4.1)

Finally, it outputs

pp =
(
W

(�)
,
(
A

(�)
j

)
j∈[ρ]

,
(
Ã

(�)
α,β

)
α∈[n],β∈[m]

,
(
B

(�)
i,j

)
i∈[t],j∈[ρ]

,
(
C

(�)
j

)
j∈[ρ]

,V
(�)

)
�∈[η]

, (4.2)

and td =
(

h(
), tdD(�)

)

∈[η]
.

– SampleKey(pp): On input the public parameters pp, the key-generation algo-
rithm samples a key s ← χn, and outputs the PRF key k = s.

– Eval(pp, k, x): On input the public parameters pp (as specified in Eq. (4.2)),
a PRF key k = s, and an input x ∈ {0, 1}ρ \ {0}, the evaluation algorithm
first computes the matrices

• A(
)
x ← EvalPpk

(

f eq
x , (A(
)

j)j∈[ρ], (Ã
(
)
α,β)α∈[n],β∈[m]

)

,

• B(
)
x ← Evalpk

(

f con
x , (B(
)

i,j)i∈[t],j∈[ρ]

)

,

• C(
)
x ← Evalpk

(

f eq
x , (C(
)

j)j∈[ρ]

)

,
for all
 ∈ [η]. Then, it sets

Z(
)
x = A(
)

x + B(
)
x G−1(C(
)

x)G−1(V(
)), (4.3)

for all
 ∈ [η], and computes the vector

ỹx = s
(

W(1) − Z(1)
x | · · · | W(η) − Z(η)

x

) ∈ Z
ηm
q . (4.4)

Finally, it outputs the rounded vector yx = �ỹ	p ∈ Z
ηm
p .

– Extract(pp, td, C): The extraction algorithm is defined with respect to two sub-
algorithms ExtractCandidates and TestCandidate (as in Definition 4.2) that are
defined as follows:

• ExtractCandidates(pp, td, C): On input the public parameters pp (as spec-
ified in Eq. (4.2)), a trapdoor td =

(

h(
), tdD(�)

)

∈[η]
, and a circuit

C : {0, 1}ρ → Z
ηm
p , the candidate extraction algorithm evaluates the cir-

cuit on the test points to get y(
) ← C
(

h(
)
)

for all
 ∈ [η]. Then, for
all
 ∈ [η], it parses the vector y(
) = (y(
)

1 | · · · | y(
)
η) where each

y(
)
1 , . . . ,y(
)

η ∈ Z
m
p . Then, it extracts s(
) ← Invert(tdD(�) ,y(
)

) and out-
puts the set of all s(
) for which s(
) �= ⊥ and s(
) ∈ [−B,B]n.

• TestCandidate(pp, C, k): Let δ = (ε2 − ε1)/2 = 1/poly(λ), ε = ε1 + δ, and
ξ = λ/δ2 = poly(λ). On input the public parameters pp, a key k = s,
and a circuit C : {0, 1}ρ → Z

ηm
p , the test candidate algorithm samples

358 S. Kim and D. J. Wu

x∗
1, . . . , x

∗
ξ

r← {0, 1}ρ and computes the number Ns of indices i ∈ [ξ] where
C(x∗

i) �= Eval(pp, s, x∗
i). If Ns ≤ εξ, then output 1. Otherwise, output

0. Note that TestCandidate is publicly-computable (it does not require a
trapdoor).

The full extraction algorithm follows the extract-and-test procedure described
in Definition 4.2.

– Puncture(pp, k, S): On input the public parameter pp (as specified in
Eq. (4.2)), a PRF key k = s, and a set of points to be punctured S = {xi}i∈[t],
the Puncture algorithm first samples error vectors e(
)A,j , e

(
)
˜A,α,β

, e(
)B,i,j , e
(
)
W ←

χm for all i ∈ [t], j ∈ [ρ], α ∈ [n], β ∈ [m], and
 ∈ [η]. Then, for each
 ∈ [η]
it defines the vectors

• a(
)j = sA(
)
j + e(
)A,j for all j ∈ [ρ],

• ã(
)α,β = sÃ(
)
α,β + e(
)

˜A,α,β
for all α ∈ [n] and β ∈ [m],

• b(
)
i,j = s

(

B(
)
i,j + xi,j · G)

+ e(
)B,i,j for all i ∈ [t] and j ∈ [ρ],

• w(
) = sW(
) + e(
)W .
Finally, it outputs the punctured key

kS =
(

S,
(

w(
), (a(
)j)j∈[ρ], (ã
(
)
α,β)α∈[n],β∈[m], (b

(
)
i,j)i∈[t],j∈[ρ]

)

∈[η]

)

. (4.5)

– PunctureEval(pp, kS , x): On input the public parameters pp (as specified in
Eq. (4.2)), the punctured key kS (as specified in Eq. (4.5)), and an input
x ∈ {0, 1}ρ \ {0}, the punctured evaluation algorithm computes the following
for each
 ∈ [η]:

• a(
)x ← EvalPct

(

f eq
x ,0, (A(
)

j)j∈[ρ], (Ã(
)
α,β)α∈[n],β∈[m], (a(
)j)j∈[ρ],

(ã(
)α,β)α∈[n],β∈[m]

)

,

• b(
)
x ← Evalct

(

f con
x , S, (B(
)

i,j)i∈[t],j∈[ρ], (b
(
)
i,j)i∈[t],j∈[ρ]

)

,
• C(
)

x ← Evalpk
(

f eq
x , (C(
)

j)j∈[ρ]

)

.
Then, for each
 ∈ [η], it sets

z(
)x = a(
)x + b(
)
x G−1(C(
)

x)G−1(V(
)), (4.6)

and computes the vector

yx = (w(1) − z(1)x | · · · | w(η) − z(η)x) ∈ Z
ηm
q . (4.7)

Finally, it outputs the rounded vector yx = �ỹx	p ∈ Z
ηm
p .

Security Analysis. We now show that under the LWE and 1D-SIS-R [14,
23] assumptions (with suitable parameters),9 the puncturable extractable PRF
construction from Construction 4.5 satisfies correctness, puncturing security, and
robust extractability. We give the formal theorem statements here, but defer the
formal proofs to the full version of this paper [39]. We also discuss adaptive
security in the full version.
9 We refer to full version of this paper [39] for the formal statements of these assump-

tions.

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs 359

Theorem 4.6 (Perfect Correctness for Most Keys). Fix a security param-
eter λ and lattice parameters n,m, q, p,B. Suppose m = Ω(n log q), q =
Ω(np

√
log q), and 2ρB · mO(log λ) · p/q = negl(λ). Then, the extractable PRF

ΠEPRF from Construction 4.5 satisfies perfect correctness for most keys.

Theorem 4.7 (Almost-Functionality-Preserving for All Keys). Fix
a security parameter λ and lattice parameters n,m, q, p,B. Suppose m =
Ω(n log q), q = Ω(np

√
log q), and ρ = ω(log λ). Then, under the

1D-SIS-Rm′,p,q,E assumption for m′ = nmη and E = B ·mO(log λ), the extractable
PRF ΠEPRF from Construction 4.5 is almost-functionality-preserving for all keys.

Theorem 4.8 (Key-Injectivity). Fix a security parameter λ and lattice
parameters n,m, q, p,B. Suppose m = Ω(n log q), q = Ω(np

√
log q), and

2ρ(4B + 1)n/pηm = negl(λ). Then, the extractable PRF ΠEPRF from Construc-
tion 4.5 satisfies key-injectivity.

Theorem 4.9 (Puncturing Security). Fix a security parameter λ and lattice
parameters n,m, q, p,B. Suppose m = Ω(n log q), q = Ω(np

√
log q), and 2ρB ·

mO(log λ) · p/q = negl(λ). Then, under the LWEn,m′,q,χ assumption for m′ =
ηm(nm + (t + 2)ρ + 1) + ηm, the extractable PRF ΠEPRF from Construction 4.5
satisfies selective puncturing security.

Corollary 4.10 (Pseudorandomness). Fix a security parameter λ and lat-
tice parameters n,m, q, p,B. Suppose the conditions in Theorem 4.9 hold. Then,
the extractable PRF ΠEPRF from Construction 4.5 satisfies selective pseudoran-
domness.

Theorem 4.11 (T -Restricted Psueodrandomness). Fix a security param-
eter λ and lattice parameters n,m, q, p,B. Suppose m = Ω(n log q) and q =
Ω(np

√
log q) and 2ρB · mO(log λ) · p/q = negl(λ). Then, under the LWEn,m′,q,χ

assumption for m′ = ηm(nm + ρ(t + 2)) + ηm, the extractable PRF ΠEPRF from
Construction 4.5 satisfies selective T -restricted pseudorandomness for T = η.

Theorem 4.12 (Robust Extractability). Fix a security parameter λ and
lattice parameters n,m, q, p,B. Take any 0 < ε1 < ε2 < 1/2 where ε2 −
ε1 ≥ 1/poly(λ). Let ΠEPRF be the extractable PRF from Construction 4.5. Sup-
pose m = Ω(n log q), q = Ω(np

√
log q), m ≥ 2n log q, �q/p	 ≤ q/4, and

η = ω(log λ), and that ΠEPRF satisfies key-injectivity. Then, ΠEPRF satisfies
(ε1, ε2)-robust extractability (Definition 4.3). Moreover, the TestCandidate algo-
rithm in Construction 4.5 satisfies the generalized candidate testing properties
from Remark 4.4.

4.3 Concrete Parameter Instantiations

In the full version of this paper [39], we describe one possible instantiation for the
parameters of the extractable PRF scheme in Construction 4.5. We choose our
parameters so that the underlying LWE and 1D-SIS assumptions that we rely on
reduce to approximating worst-case lattice problems to within a sub-exponential
factor 2Õ(n1/c) for some constant c where n is the lattice dimension.

360 S. Kim and D. J. Wu

Remark 4.13 (Extractable PRFs from Weaker Lattice Assumptions). If we relax
the requirements on the extractable PRF and only require the standard notion
of correctness (Theorem 4.6), then it is possible to instantiate the parameters
such that all of the remaining properties only rely on the hardness of solving
worst-case lattice problems with a nearly polynomial approximation factor. We
provide more details in full version of this paper [39].

5 Watermarking from Puncturable Extractable PRFs

In this section, we show how to use our extractable PRF to construct a mark-
embedding watermarking scheme in the secret-key setting. In the full version
of this paper [39], we show how to extend this construction to obtain message-
embedding watermarking from the same assumptions. We also show to obtain a
scheme that supports public marking in the random oracle model.

5.1 Watermarking PRFs

We begin by formally introducing the notion of a watermarkable PRF family.

Definition 5.1 (Watermarkable Family of PRFs). Fix a security parame-
ter λ and a message space M. A secretly-extractable, message-embedding water-
markable family of PRFs with key-space K, a domain X , and a range Y is a
tuple of algorithms ΠWM = (Setup,Mark,Extract) with the following properties:

– Setup(1λ) → (pp,wsk): On input the security parameter λ, the setup algorithm
outputs public parameters pp and the watermarking secret key wsk.

– Mark(wsk, k,m) → C: On input the watermarking secret key wsk, a PRF
key k ∈ K, and a message m ∈ M, the mark algorithm outputs a circuit
C : X → Y.

– Extract(wsk, C) → m: On input the watermarking secret key wsk and a circuit
C : X → Y, the extraction algorithm outputs a string m ∈ M ∪ {⊥}.

Moreover, ΠWM includes the description of a PRF family F : K × X → Y. The
description of the PRF family may include the public parameters pp for the
watermarkable PRF family, as sampled by the Setup algorithm. We often refer
to ΠWM as a watermarking scheme for the PRF family F : K × X → Y.

Remark 5.2 (Mark-Embedding Watermarking). To simplify the description of
our construction (and just focus on the main ideas), we also consider the weaker
notion of mark-embedding watermarking where programs are either considered to
be marked or unmarked. Equivalently, this corresponds to Definition 5.1 where
M = {marked}. When describing a mark-embedding watermarking scheme,
we simplify the Mark algorithm to only take in two parameters: the watermark-
ing secret key wsk and the PRF key k. In this case, we will also often write
unmarked in place of ⊥.

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs 361

Correctness. The two correctness requirements on a software watermarking
scheme are that the watermarked keys (approximately) implement the same
functionality as the original key. Moreover, the extraction algorithm should suc-
cessfully extract the embedded message from a marked key. We give the formal
definitions and some discussion in the full version of this paper [39].

Pseudorandomness. The second property we require on a watermarkable fam-
ily of PRFs is the usual notion of pseudorandomness for the PRF family. As
discussed in Sect. 1, we also consider a stronger notion where pseudorandom-
ness should hold even against the watermarking authority (i.e., the holder of the
watermarking secret key). While many existing watermarking schemes based
on obfuscation or lattices [16,27,38] naturally satisfy this property, both our
scheme and that of Quach et al. [45] do not provide full pseudorandomness.
However, in our case, we can achieve the weaker notion of T -restricted pseu-
dorandomness against the watermarking authority. Intuitively, this means that
pseudorandomness is ensured even against the watermarking authority provided
that the authority does not see the PRF evaluations on any of T “special” points.
We define this formally in the full version of this paper [39].

Unforgeability and Unremovability. The main security notions for a crypto-
graphic watermarking scheme we consider are unremovability and unforgeability.
Conceptually, unremovability says that an efficient adversary cannot should not
be able to remove a watermark from a marked program while unforgeability says
that an adversary should not be able to construct a new marked program. We
provide the formal definitions in the full version of this paper [39].

5.2 Mark-Embedding Watermarking

In this section, we present our basic construction of a mark-embedding water-
markable family of PRFs (in the secret-key setting) from extractable PRFs.
We refer to Sect. 1.2 for a high-level overview of this construction. In the full
version of this paper [39], we build upon this construction to obtain message-
embedding watermarking (and, in the random oracle model, message-embedding
watermarking with public marking).

Construction 5.3 (Mark-Embedding Watermarkable PRFs). Let λ be
a security parameter. Our mark-embedding watermarkable PRF relies on the
following primitives:

– Let ΠEPRF = (EX.PrmsGen,EX.SampleKey,EX.Eval,EX.Extract,EX.Puncture,
EX.PunctureEval) be a puncturable extractable PRF with key-space KEPRF,
domain X , and range Y.

– Let PRF : KPRF × KEPRF → X λ be a pseudorandom function.

We construct a watermarkable PRF ΠWM = (Setup,Mark,Extract) as follows:

362 S. Kim and D. J. Wu

– Setup(1λ): On input the security parameter λ, the setup algorithm samples a
PRF key kPRF

r← KPRF, and parameters for the extractable PRF (pp, td) ←
EX.PrmsGen(1λ). It outputs the public parameters pp and the watermarking
secret key wsk = (kPRF, pp, td).

– Mark(wsk, k): On input the watermarking secret key wsk = (kPRF, pp, td),
and a key k ∈ KEPRF, the marking algorithm derives points (x∗

1, . . . , x
∗
λ) ←

PRF(kPRF, k) and a punctured key k′ ← EX.Puncture(pp, k, (x∗
1, . . . , x

∗
λ)). It

outputs the circuit C : X → Y that implements the punctured evaluation
algorithm EX.PunctureEval(pp, k′, ·).

– Extract(wsk, C): On input the watermarking secret key wsk = (kPRF, pp, td),
and a circuit C : X → Y, the extraction algorithm first extracts a key k ←
EX.Extract(pp, td, C). If k = ⊥, output unmarked. Otherwise, it computes
(x∗

1, . . . , x
∗
λ) ← PRF(kPRF, k). If C(x∗

i) �= EX.Eval(pp, k, x∗
i) for all i ∈ [λ],

then output marked. Otherwise, output unmarked.

The underlying PRF family F : KEPRF × X → Y (induced by the public parame-
ters pp for the watermarking scheme) is defined as F(k, x) := Eval(pp, k, x) and
F.KeyGen simply returns EX.SampleKey(pp). Note that the description of the
PRF family F includes the public parameters pp, but not the other components
in the watermarking secret key wsk.

In the full version of this paper [39], we show that assuming ΠEPRF is a punc-
turable extractable PRF and PRF is a secure pseudorandom function, then ΠWM

from Construction 5.3 is a mark-embedding watermarking scheme that provides
unremovability, unforgeability, and T -restricted pseudorandomness against the
watermarking authority.

5.3 Watermarking Instantiations from Lattices

In this section, we summarize our main results on constructing new lattice-based
watermarking schemes from our puncturable extractable PRF. We refer to the
full version of this paper [39] for the full details of our constructions (as well as
extensions to the main construction).

Corollary 5.4 (Message-Embedding Watermarking from Lattices). Fix
a security parameter λ. Take any 0 < ε < δ < 1/2 where δ > ε + 1/poly(λ).
Then, assuming it is difficult to approximate to worst-case lattice problems
(e.g., GapSVP or SIVP) with a nearly polynomial approximation factor, there
exists a secret-key message-embedding watermarking scheme that satisfies ε-
unremovability, a relaxed version of δ-unforgeability (see the full version of
this paper [39]), and T -restricted pseudorandomness against the watermarking
authority for T = λ. Assuming hardness of approximating worst-case lattice
problems with a sub-exponential approximation factor, the resulting watermark-
ing scheme satisfies the standard notion of δ-unforgeability. Moreover, under the
same assumptions in the random oracle model, we obtain watermarking schemes
that satisfy weak δ-unforgeability (and all of the other properties) that addition-
ally supports public marking.

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs 363

Acknowledgments. We thank Willy Quach, Sina Shiehian, Daniel Wichs, and Gior-
gos Zirdelis for many insightful conversations. We thank the anonymous CRYPTO
reviewers for helpful feedback on the presentation. This work was funded by NSF,
DARPA, a grant from ONR, and the Simons Foundation. Opinions, findings and con-
clusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of DARPA.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0 2

3. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

4. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In:
STACS (2009)

5. Baldimtsi, F., Kiayias, A., Samari, K.: Watermarking public-key cryptographic
functionalities and implementations. In: Nguyen, P., Zhou, J. (eds.) ISC 2017.
Lecture Notes in Computer Science, vol. 10599. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-69659-1 10

6. Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-
homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 2

7. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom
functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp.
353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-
2 20

8. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

9. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

10. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2),
6 (2012)

11. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

12. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/978-3-319-69659-1_10
https://doi.org/10.1007/978-3-319-69659-1_10
https://doi.org/10.1007/978-3-662-46497-7_2
https://doi.org/10.1007/978-3-662-46497-7_2
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30

364 S. Kim and D. J. Wu

13. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their appli-
cation to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 9

14. Boneh, D., Kim, S., Montgomery, H.W.: Private puncturable PRFs from stan-
dard lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 15

15. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 23

16. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately.
In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54388-7 17

17. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

18. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-
0 15

19. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

20. Brakerski, Z., Cash, D., Tsabary, R., Wee, H.: Targeted homomorphic attribute-
based encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
330–360. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 13

21. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs
(and More) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 10

22. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS,
pp. 1–12 (2014)

23. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46497-7 1

24. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes
and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9816, pp. 363–384. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53015-3 13

25. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE.
In: EUROCRYPT (2017)

26. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching
programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 20

27. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: STOC (2016)

https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-319-56617-7_9
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-662-53644-5_13
https://doi.org/10.1007/978-3-662-53644-5_13
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-96881-0_20

Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs 365

28. Gay, R., Méaux, P., Wee, H.: Predicate encryption for multi-dimensional range
queries from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 752–776.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 34

29. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC (2008)

30. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: FOCS (1984)

31. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC (2013)

32. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 25

33. Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for
branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 550–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 23

34. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: FOCS (2017)
35. Hopper, N., Molnar, D., Wagner, D.A.: From weak to strong watermarking. In:

Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 362–382. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 20

36. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: EUROCRYPT (2008)

37. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: ACM CCS (2013)

38. Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from standard lat-
tice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 503–536. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 17

39. Kim, S., Wu, D.J.: Watermarking prfs from lattices: stronger security via
extractable prfs. IACR Cryptology ePrint Archive 2018: 986 (2018)

40. Lyubashevsky, V., Wichs, D.: Simple lattice trapdoor sampling from a broad class
of distributions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 716–730.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 32

41. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

42. Naccache, D., Shamir, A., Stern, J.P.: How to copyright a function? In: Imai, H.,
Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 188–196. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-49162-7 14

43. Nishimaki, R.: How to watermark cryptographic functions. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 111–125. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 7

44. Peikert, C., Shiehian, S.: Privately constraining and programming PRFs, the LWE
way. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 675–701.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 23

45. Quach, W., Wichs, D., Zirdelis, G.: Watermarking PRFs under standard assump-
tions: public marking and security with extraction queries. In: Beimel, A., Dziem-
bowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 669–698. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03810-6 24

https://doi.org/10.1007/978-3-662-46447-2_34
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-540-70936-7_20
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-662-46447-2_32
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/3-540-49162-7_14
https://doi.org/10.1007/978-3-642-38348-9_7
https://doi.org/10.1007/978-3-319-76581-5_23
https://doi.org/10.1007/978-3-030-03810-6_24

366 S. Kim and D. J. Wu

46. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC (2005)

47. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

48. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: FOCS (2017)

49. Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Collusion resistant watermarking
schemes for cryptographic functionalities. IACR Cryptology ePrint Archive (2017)

50. Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Unforgeable watermarking schemes
with public extraction. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS,
vol. 11035, pp. 63–80. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98113-0 4

51. Yoshida, M., Fujiwara, T.: Toward digital watermarking for cryptographic data.
IEICE Trans. 94(A(1)), 270–272 (2011)

https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-319-98113-0_4
https://doi.org/10.1007/978-3-319-98113-0_4

Watermarking Public-Key Cryptographic
Primitives

Rishab Goyal1(B), Sam Kim2(B), Nathan Manohar3, Brent Waters1,4,
and David J. Wu5

1 UT Austin, Austin, TX, USA
{rgoyal,bwaters}@cs.utexas.edu

2 Stanford University, Stanford, CA, USA
skim13@cs.stanford.edu

3 UCLA, Los Angeles, CA, USA
nmanohar@cs.ucla.edu

4 NTT Research, East Palo Alto, CA, USA
5 University of Virginia, Charlottesville, VA, USA

dwu4@virginia.edu

Abstract. A software watermarking scheme enables users to embed a
message or mark within a program while preserving its functionality.
Moreover, it is difficult for an adversary to remove a watermark from
a marked program without corrupting its behavior. Existing construc-
tions of software watermarking from standard assumptions have focused
exclusively on watermarking pseudorandom functions (PRFs).

In this work, we study watermarking public-key primitives such as the
signing key of a digital signature scheme or the decryption key of a public-
key (predicate) encryption scheme. While watermarking public-key prim-
itives might intuitively seem more challenging than watermarking PRFs,
our constructions only rely on simple assumptions. Our watermarkable
signature scheme can be built from the minimal assumption of one-way
functions while our watermarkable public-key encryption scheme can
be built from most standard algebraic assumptions that imply public-
key encryption (e.g., factoring, discrete log, or lattice assumptions). Our
schemes also satisfy a number of appealing properties: public marking,
public mark-extraction, and collusion resistance. Our schemes are the
first to simultaneously achieve all of these properties.

The key enabler of our new constructions is a relaxed notion of
functionality-preserving. While traditionally, we require that a marked
program (approximately) preserve the input/output behavior of the orig-
inal program, in the public-key setting, preserving the “functionality”
does not necessarily require preserving the exact input/output behavior.
For instance, if we want to mark a signing algorithm, it suffices that the
marked algorithm still output valid signatures (even if those signatures
might be different from the ones output by the unmarked algorithm).
Similarly, if we want to mark a decryption algorithm, it suffices that
the marked algorithm correctly decrypt all valid ciphertexts (but may
behave differently from the unmarked algorithm on invalid or malformed
ciphertexts). Our relaxed notion of functionality-preserving captures the

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 367–398, 2019.
https://doi.org/10.1007/978-3-030-26954-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_12

368 R. Goyal et al.

essence of watermarking and still supports the traditional applications,
but provides additional flexibility to enable new and simple realizations
of this powerful cryptographic notion.

1 Introduction

Watermarking is a way to embed special information called a “mark” into digital
objects such as images, videos, audio, or software so that the marked object has
the same appearance or behavior of the original object. Moreover, it should be
difficult for an adversary to remove the mark without damaging the object itself.
Watermarking is a useful tool both for protecting ownership and for preventing
unauthorized distribution of digital media.

Software Watermarking. In this work, we focus on software watermarking for
cryptographic functionalities. Barak et al. [8,9] and Hopper et al. [35] provided the
first rigorous mathematical framework for software watermarking. Very briefly, a
software watermarking scheme consists of two main algorithms. First, there is a
marking algorithm that takes as input a program, modeled as a Boolean circuit C,
and outputs a new marked circuit C ′ with the property that C and C ′ agree almost
everywhere. Second, there is an extraction algorithm that takes as input a circuit
C and outputs a bit indicating whether the program is marked or not. In the case
of message-embedding watermarking, the marking algorithm additionally takes
a message τ as input, and the extraction algorithm will either output the mark
τ or a special symbol ⊥ to indicate an unmarked program. The primary security
requirement is unremovability, which says that given a marked circuit C ′ with an
embedded message τ , no efficient adversary can construct a new circuit C̃ ′ that
has roughly the same behavior as C ′, and yet the extraction algorithm on C̃ ′ fails
to output τ . Notably, there are no restrictions on the circuit the adversary can
output (other than the requirement that the adversary be efficient). This notion
of security is often referred to as security against arbitrary removal strategies and
captures the intuitive notion of watermarking where an adversary cannot replicate
a program’s functionality without also preserving the watermark.

Realizing the strong security requirements put forth in the early works on
cryptographic watermarking [8,9,35] has proven challenging. In fact, Barak et al.
showed an impossibility result (under indistinguishability obfuscation) on the
existence of watermarking schemes that are perfectly functionality-preserving
(i.e., schemes where the input/output behavior of the marked function is iden-
tical to that of the original function). In light of this lower bound, early works
[44,48,60] provided partial results for watermarking specific classes of crypto-
graphic functionalities by imposing limitations on the adversary’s ability to mod-
ify the program and remove the watermark.

The first positive result on constructing watermarking schemes with secu-
rity against arbitrary adversarial strategies was due to Cohen et al. [27] who
showed that if we relax the perfect functionality-preserving requirement to only
require statistical functionality-preserving (i.e., the marked function only has
to implement the original function almost everywhere), then watermarking is
possible. Moreover, Cohen et al. showed how to watermark several classes of

Watermarking Public-Key Cryptographic Primitives 369

cryptographic primitives, including pseudorandom functions (PRFs) and public-
key encryption, with strong security from indistinguishability obfuscation. Since
the seminal work of Cohen et al., a number of works have studied how to build
watermarkable families of PRFs from weaker assumptions such as lattice-based
assumptions [37,38] or CCA-secure encryption [52].

Watermarking Public-Key Primitives. Existing constructions of software
watermarking from standard cryptographic assumptions all focus on watermark-
ing symmetric primitives, notably, PRFs [37,38,52]. The one exception is the
work of Baldimtsi et al. [6], who showed how to watermark public-key crypto-
graphic primitives, but in a stateful setting, and under a modified security model
where a trusted watermarking authority generates both unmarked and marked
keys.1 Our focus in this work is constructing software watermarking schemes
for two classes of public-key cryptographic primitives: digital signatures and
(CPA-secure) public-key encryption (and more generally, public-key predicate
encryption [19,36,55]).

1.1 Our Contributions

In this work, we show how to construct a watermarkable signature scheme, where
the signing functionality can be marked, as well as a watermarkable public-key
(predicate) encryption scheme, where the decryption functionality can be marked.
Moreover, all of our constructions are based on very weak assumptions: namely,
our watermarkable signature scheme can be constructed based on any vanilla sig-
nature scheme (say, from one-way functions [31]), and our watermarkable public-
key predicate encryption scheme can be based on any public-key encryption
scheme together with a low-complexity pseudorandom generator (implied by most
standard intractability assumptions [7,45–47]). One caveat is that our watermark-
able predicate encryption scheme is only bounded-collusion secure.

Relaxing Functionality-Preserving. In spite of the recent progress in real-
izing new constructions of cryptographic watermarking from standard assump-
tions, watermarking remains a challenging notion to realize. Existing construc-
tions of watermarking [37,38,52] from standard assumptions do not support
properties like collusion resistance (where the watermark remains unremovable
even if a user sees multiple marked versions of the program) or public verifi-
ability (where anyone is able to tell if a program is marked). Moreover, these
constructions rely on heavy cryptographic machinery, such as fully homomorphic
encryption, even to watermark a PRF.

Our starting point, in this work, is to take a step back and revisit some of the
definitions underlying software watermarking. Much like Cohen et al. [27] started
by relaxing perfect functionality-preserving to statistical functionality-preserving
and used that as the basis for obtaining the first positive results on watermarking,
we also start by identifying another meaningful relaxation of the functionality-
preserving requirement. As discussed above, functionality-preserving is typically
1 In the standard watermarking model, anyone can generate keys (without going

through or trusting the watermarking authority), and at a later time, decide if they
want to mark the keys or not.

370 R. Goyal et al.

synonymous with preserving a program’s input/output behavior: namely the
input/output behavior of a marked circuit C ′ should be almost identical to that
of the original circuit C. In many settings, such as when C implements a PRF,
this is indeed the most natural notion of functionality-preserving. However, when
considering the signing functionality of a signature scheme or the decryption
functionality of an encryption scheme, there is additional flexibility:

– Suppose the circuit C implements the signing algorithm for a signature
scheme. The functionality we care about is that on input a message m, C(m)
outputs a valid signature (with respect to the verification key vk). In this case,
we can preserve this functionality without preserving the exact input/output
behavior. Namely, we can allow the marked circuit C ′ to behave differently
from C, as long as C ′(m) still outputs a valid signature (under vk) on the
message m. In particular, the marked circuit is just as good as the original
signing circuit even if they do not have identical input/output behavior. For
instance, if we are watermarking the signing key used in a signature-based
challenge-response authentication scheme, it suffices that the marked key still
produces valid signatures, even if those signatures are not exactly the same
as the ones output by an unmarked key.

– Suppose the circuit C implements the decryption algorithm for a public-key
encryption scheme. In this case, the functionality we care about is that on
input a valid ciphertext ct (i.e., one output by the encryption algorithm),
C(ct) outputs the underlying message m. In this case, the set of valid cipher-
texts (i.e., those in the support of the honest encryption algorithm) might
form a sparse subset of a larger space. In this case, we can define our
functionality-preserving requirement to just require the marked circuit C ′

to correctly decrypt the set of valid ciphertexts. If we invoke C ′ on an invalid
or malformed ciphertext, then C ′ and C are allowed to disagree. Analogous
to the case with the signature scheme, the marked circuit C ′ is just as useful
as a decryption circuit. Since the behavior of the decryption algorithm on a
malformed ciphertext is usually unspecified, preserving this behavior seems
non-essential for most applications. For example, if we are watermarking the
decryption key (e.g., for a Blu-Ray player), it suffices that the marked key
correctly decrypts valid ciphertexts.

To summarize, in the public-key setting, we can capture the spirit of
“functionality-preserving” watermarking without requiring that the marked cir-
cuit and the unmarked circuit have identical input/output behaviors. It turns
out that this added degree of freedom enables new constructions of software
watermarking from simple assumptions (e.g., one-way functions or public-key
encryption) that also satisfy a number of desirable properties that have eluded
all existing watermarking constructions: collusion resistance, public marking,
and public extraction. We discuss these properties in greater detail below and
then comment more broadly on their implications.

Our Results. By working with our relaxed notion of functionality-preserving,
we construct watermarkable signatures and watermarkable public-key predicate
encryption schemes that simultaneously achieve all of the following properties:

Watermarking Public-Key Cryptographic Primitives 371

– Collusion resistance: Existing constructions of watermarking [14,27,37,38,
52] only provide unremovability against adversaries that see a single marked
key. While this is the natural notion in the setting where programs are either
marked or unmarked, this is not true in the message-embedding case. In fact,
in all the aforementioned constructions, an adversary that obtains two copies
of a key marked with different messages τ �= τ ′ can efficiently construct a new
program that is functionally-similar to the marked program, and yet does not
contain the watermark. Such watermarking schemes are not collusion resis-
tant. We say that a watermarking scheme is collusion resistant if an adversary
who sees marked versions of a circuit C with marks τ1, . . . , τn cannot con-
struct a new circuit C ′ that is functionally-close to C and yet, on input C ′,
the extraction algorithm fails to produce one of τ1, . . . , τn.2 In applications
where keys are watermarked with different identities (for instance, when the
decryption key embedded in a Blu-Ray player is marked with the owner’s
name), collusion resistant unremovability is a critical property. In this work,
we construct a watermarkable signature scheme that is fully collusion resistant
(i.e., collusion resistant against an adversary who can see an arbitrary polyno-
mial of marked circuits) and a watermarkable public-key predicate encryption
scheme that provides bounded-collusion resistance.

– Public marking: A watermarking scheme supports public marking if any-
one is able to run the marking algorithm. Conversely, a scheme supports
secret marking if only the holder of a secret watermarking key is able to
watermark programs. Public marking is a desirable feature because users are
able to watermark their secret keys without having to share them with a
watermarking authority. Several previous watermarking schemes for PRFs
[38,52] provided public marking, but at the expense of giving the watermark-
ing authority a trapdoor that allows it to break security of all of the keys in
the system (including unmarked keys). Our schemes naturally support public
marking without this drawback (and, in fact, our schemes do not require the
existence of a central watermarking authority at all).

– Public extraction: A watermarking scheme supports public mark-
extraction if anyone can run the extraction algorithm and obtain the water-
mark within a piece of software. This is useful if users want to directly
prove software ownership (or authenticity) without going through a trusted
watermarking authority. Obtaining watermarkable PRFs with public extrac-
tion from standard assumptions remains a major open problem, and existing
watermarking schemes with this property [27] all rely on indistinguishability
obfuscation. In this work, all of our schemes support public mark-extraction.

– Security against a malicious watermarking authority: A watermark-
ing scheme that supports public marking and public mark-extraction is very
appealing because users do not need to trust a central watermarking authority
for marking or extraction. Our schemes give the first watermarking scheme that
supports public marking and public extraction. This resolves a key open ques-

2 This is conceptually very similar to the closely-related cryptographic primitive of
traitor tracing, and we discuss the similarities and differences in greater detail later
in this section and in Sect. 1.2.

372 R. Goyal et al.

tion in the work of Cohen et al. [27], although under a relaxed (but still meaning-
ful) notion of functionality-preserving. In fact, our schemes remain secure even
if the public parameters of the watermarking scheme are chosen maliciously.

Our relaxed notion of functionality-preserving is certainly much weaker than
the more stringent requirement of preserving input/output behavior. But, as
we discussed above, our relaxed notion still seems to capture the essence of the
requirement in the context of watermarking signatures and encryption schemes.
By relaxing this functionality-preserving requirement, we are able to achieve
stronger security notions from weaker cryptographic assumptions. At a philo-
sophical level, our work highlights the need to further explore and identify the
“right” set of definitions for software watermarking that enable useful and mean-
ingful constructions from simple assumptions while still supporting the standard
applications of software watermarking.

Watermarking Digital Signatures. Our watermarkable digital signature
scheme relies on constrained signatures (also known as policy-based signatures)
[10,59]. In a constrained signature scheme over a message space M, the signing
key sk can be used to derive a constrained signing key skf for a particular predi-
cate f : M → {0, 1} with the property that the constrained key skf can be used
to sign all messages m where f(m) = 1. The security property is that an adver-
sary who is given constrained keys sk1, . . . , skn for functions f1, . . . , fn cannot
produce a valid signature on any message m where fi(m) = 0 for all i ∈ [n]. It
is straightforward to construct constrained signatures from any standard signa-
ture scheme using certificates [10], and we briefly recall this basic construction
in Sect. 3.3.

A constrained signature scheme that supports the class of “prefix-based”
constraints immediately gives rise to a watermarkable signature scheme. In more
detail, if we want to construct a watermarkable signature with message space M
and mark space T , we use a prefix-constrained signature scheme with message
space T × M. Signing and verification keys for the watermarkable signature
directly correspond to signing and verification keys for the underlying prefix-
constrained signature scheme. A signature on a message m consists of a tuple
σm = (⊥, σ′) where σ′ is a signature on (⊥,m). To verify a signature σ = (τ, σ′)
on a message m, the verification algorithm checks that σ′ is a valid signature
on the pair (τ,m). Now, to mark a signing key with mark τ∗ ∈ T , the user
constrains the signing key sk to the prefix-based constraint fτ∗ : T ×M → {0, 1}
where fτ∗(τ, x) = 1 if τ∗ = τ and 0 otherwise. The marked circuit Cτ∗ is
a circuit that takes as input a message m and outputs (τ∗, σ′), where σ′ is
a signature on (τ∗,m) using the constrained key skτ∗ . To extract a watermark
from a candidate circuit C ′, simply sample a random message m ←R M,3 compute
3 More generally, we can consider a stronger notion of unremovability where we

replace the uniform distribution over M with any (adversarially-chosen) efficiently-
sampleable distribution over M where the circuit succeeds in generating valid signa-
tures with non-negligible probability. Notably, the support of this distribution may
have negligible density in M. We provide more details in the full version of this
paper.

Watermarking Public-Key Cryptographic Primitives 373

(τ, σ′) ← C ′(m), and output τ if σ′ is a valid signature on (τ,m). Note that if C ′

only succeeds in producing valid signatures with ε probability (for non-negligible
ε), then this procedure can be repeated λ/ε times. If no marks are extracted after
λ/ε iterations, then output ⊥ (to indicate an unmarked circuit).

By correctness of the underlying constrained signature scheme, the marked
circuit Cτ∗ outputs valid signatures on all messages m ∈ M, so the marked
circuit is functionality-preserving (even though the signatures output by C are
noticeably different than the signatures output by the original signing algo-
rithm). Unremovability follows from security of the underlying constrained signa-
ture. Namely, an adversary who only has signing circuits marked with τ1, . . . , τn

should only be able to compute signatures on tuples of the form (τi,m) for i ∈ [n].
Thus, if the extraction algorithm outputs some τ ′ �= τi for all i ∈ [n], then the
adversary’s circuit must have forged a valid signature on (τ ′,m) for some message
m ∈ M, which breaks security of the underlying constrained signature scheme.
In addition, if the underlying constrained signature scheme is collusion resistant
(i.e., security holds against adversaries that obtain an a priori unbounded poly-
nomial number of constrained keys), then the resulting watermarkable signature
scheme is also collusion resistant. We describe this construction and its security
analysis in greater detail in Sect. 3.

Watermarking Public-Key Encryption and Traitor Tracing. Turning
now to (CPA-secure) public-key encryption, we first describe a correspondence
between watermarkable public-key encryption and traitor tracing [24]. In traitor
tracing, there is a set of n honest users, each associated with a numeric identity
i ∈ [n]. In addition, there is a central authority that generates a public key
pk for the scheme as well as secret decryption keys ski for each user i ∈ [n].
Anyone can encrypt a message under the public key pk, and each legitimate user
is able to decrypt the resulting ciphertext using their individual secret key ski.
The tracing property says that there is an efficient tracing algorithm that, given
black-box access to any valid decryption circuit, is able to recover at least one of
the secret decryption keys ski that went into constructing the private decoder.
As noted by Nishimaki et al. [49], a collusion resistant watermarkable public-key
encryption scheme can be used to build a traitor tracing scheme: namely, the
secret decryption keys for each user would correspond to watermarked decryption
keys, where the watermark is the user’s index.

With a few syntactic changes, the converse also holds; namely, any traitor
tracing scheme that supports public tracing also implies a watermarkable public-
key encryption scheme under our relaxed notion of functionality-preserving. Typ-
ically, in a traitor tracing scheme, there is a central authority that generates the
public key and all of the decryption keys at the same time. In watermarking,
however, anyone should be able to sample a public/private key-pair and, later
on, have the ability to watermark their decryption key. However, this distinction
is superficial, as we can always take the master secret key of the traitor tracing
scheme to be the setup randomness and let that be the secret key in the water-
markable public-key encryption scheme. To mark the secret key with an identity
i ∈ [n], the marking algorithm would run the setup algorithm of the traitor

374 R. Goyal et al.

tracing scheme and output decryption key ski. Unremovability of the scheme
follows directly from the traceability of the underlying traitor tracing scheme.4

Watermarking Advanced Public-Key Functionalities. Having established
a correspondence between traitor tracing schemes with public tracing and water-
markable public-key encryption schemes, we ask whether we can watermark more
complex public-key functionalities like identity-based encryption [13,26,54],
attribute-based encryption [34,53], or predicate encryption [19,36,55]. In the
following description, we focus on predicate encryption, the most general notion
among these primitives. In a (key-policy) predicate encryption scheme, cipher-
texts are associated with an attribute x as well as a message m, while secret keys
are associated with functions or predicates f . A secret key skf for a predicate
f can decrypt all ciphertexts encrypted with respect to an attribute x where
f(x) = 1. The security property is that an adversary who has keys sk1, . . . , skn

for predicates f1, . . . , fn cannot learn anything about ciphertexts encrypted to
an attribute x where fi(x) = 0 for all i ∈ [n]. Moreover, in a predicate encryption
scheme, the ciphertexts hide the attribute x (whereas in the similar setting of
attribute-based encryption, the attribute is public).

The question we ask is whether we can watermark the decryption keys skf in
a predicate encryption scheme. As an example application, imagine an organi-
zation that uses a predicate encryption scheme for enforcing access control (e.g.,
ciphertexts are tagged with different classification levels), and it wants to issue
decryption keys to different clients, each marked with the client’s identity. Then,
if a client uses their key to construct an unauthorized decryption device, it is
possible to identify the identity of the client (by extracting the watermark).

Constructing a Watermarkable Predicate Encryption Scheme. In this
work, we show that a generalization of the traitor tracing scheme by Nishi-
maki et al. [49] in combination with a hierarchical functional encryption scheme
[22] gives a watermarkable (bounded-collusion) predicate encryption scheme
based only on public-key encryption and the existence of pseudorandom gen-
erators (PRGs) computable in NC1 (which follow from standard intractability
assumptions such as factoring, discrete log, or lattice-based assumptions [7,45–
47]). This notion is conceptually similar to the notion of attribute-based traitor
tracing, and we compare and contrast the two notions in Sect. 1.1. In con-
trast to the setting of watermarking public-key encryption, watermarking pred-
icate encryption does not appear to follow from attribute-based traitor tracing
(although the converse does follow).

The starting point of our construction is the classic approach for constructing
traitor tracing via a private linear broadcast encryption (PLBE) introduced by
4 Traditionally, in a traitor tracing scheme, the tracing algorithm requires a secret

tracing key output by the tracing algorithm [16,23,30,33]. A traitor tracing scheme
supports public tracing [2,18,49] if the tracing algorithm does not depend on any
secret information. In this simple construction of watermarkable public-key encryp-
tion from traitor tracing, the extraction algorithm would not have access to the
tracing key, so instantiating this basic blueprint will require a traitor tracing scheme
that supports public tracing.

Watermarking Public-Key Cryptographic Primitives 375

Boneh et al. [16]. In a PLBE scheme with n users, each associated with an index
i ∈ [n], it is possible to construct a ciphertext that can only be decrypted by
users whose index i < T is smaller than some threshold T . Moreover, ciphertexts
encrypted to two different thresholds T < T ′ are only distinguishable if a user
possesses a secret key for an index i ∈ {T, T + 1, . . . , T ′ − 1}. A PLBE scheme
that supports n users implies a traitor tracing scheme with identity space [n]:
namely, to trace a circuit C, the tracing algorithm encrypts (random) messages
to indices i = 0, 1, . . . , n, and tests whether C correctly decrypts the ciphertext
or not. When i = 0, decryption always fails, while at i = n, decryption should
succeed with noticeable probability. Thus, there must be some index i where
there is a “big jump” in the decryption success probability, which corresponds
to the user possessing the decryption key for index i. When n is polynomial, the
tracing algorithm can simply do a linear scan over the entire identity space to
identify the big jumps. Nishimaki et al. [49] show how to generalize this approach
to the setting where the identity space is exponential (which allows embedding
arbitrary information in the decryption keys).

As described above, a traitor tracing scheme that supports public tracing
directly implies a watermarkable public-key encryption scheme. To extend this
to the setting of watermarking a predicate encryption scheme, we use a hierar-
chical functional encryption scheme. In a standard functional encryption (FE)
scheme [17,50], encryption keys are associated with functions f , and decrypting
a ciphertext encrypting a value x with a function key skf for f yields the value
f(x). It is not difficult to see that a FE scheme can be used to build a predi-
cate encryption scheme as well as a PLBE scheme (this is the approach taken
by Nishimaki et al. [49] in their traitor-tracing construction). In a hierarchical
FE scheme [22], there is an additional delegation function that allows one to
take a function key skf for a function f and delegate it to a key skg◦f for the
function g ◦ f . At a high-level, our construction of a watermarkable predicate
encryption scheme relies on a two-level hierarchical FE scheme, where the ordi-
nary function keys are used to implement a predicate encryption scheme, while
the marked keys consist of a delegated key that embeds a PLBE functionality
(used to embed the watermark).

In more detail, to encrypt a message m with attribute x, we construct an FE
encryption of the triple (x,m, 1), where the last component is a special flag (used
for mark extraction). A predicate encryption key for the predicate f consists of
an FE key for the associated function gf where

gf (x,m, b) =

⎧
⎪⎨

⎪⎩

(x,m) b = 0
(0�, 0n) b = 1 and f(x) = 0
(1�,m) b = 1 and f(x) = 1.

By construction, decrypting an honestly-generated ciphertext with attribute x
and message m with a key f where f(x) = 1 will always yield the pair (1�,m),
from which the message can be recovered. Now, to mark a key skf with a mark
τ ∈ {0, 1}� \

{
1�

}
, we take skf and use the delegation mechanism to issue a

function key for the function hτ ◦ gf where

376 R. Goyal et al.

hτ (x,m) =

{
(0�, 0n) x ≤ τ

(1�,m) x > τ,

where we interpret x, τ ∈ {0, 1}� as the binary representation of an �-bit integer.
We make two observations. First, the marked key can still be used to decrypt all
honestly-generated ciphertexts (namely, ciphertexts where the flag is set to 1).
However, notice that when the flag b = 0, the marked key can only decrypt
ciphertexts where the encrypted attribute x exceeds the threshold τ associated
with the marked key. This precisely coincides with the semantics of a PLBE
scheme. We can now apply the techniques developed by Nishimaki et al. [49] to
extract the associated identity τ , thereby recovering the watermark. We provide
the full description of this scheme and its analysis in Sect. 4. Overall, we show
that we can obtain a bounded-collusion resistant watermarkable family of pred-
icate encryption schemes from public-key encryption and low-complexity PRGs;
both of these assumptions can be instantiated by most assumptions that imply
public-key encryption (e.g., factoring, discrete log, or lattice-based assumptions
[7,45–47]).

The parameter sizes of the resulting bounded-collusion watermarkable pred-
icate encryption scheme are directly inherited from those of the underlying
bounded-collusion hierarchical functional encryption scheme, which can in turn
be built from a standard bounded-collusion functional encryption scheme [22].
For instance, instantiating the underlying functional encryption scheme with [32]
yields a watermarkable predicate encryption scheme where the ciphertext size
scales with O(Q4), where Q is the collusion bound. Alternatively, with the FE
scheme from [3], the ciphertext size scales with O(Q2) and with the scheme from
[5], the ciphertext size scales with O(Q).

1.2 Additional Related Work

In this section, we survey some additional related work as well as compare our
new watermarking notions to related notions studied in prior work.

Constrained Signatures. Numerous works [10,21,43,59] have studied con-
structing constrained signatures (and variants thereof) together with properties
like privacy, anonymity, succinct keys, or succinct signatures.

Traitor Tracing. Since the work of Chor et al. [24], there have been a vast
number of constructions of fully collusion resistant traitor tracing from com-
binatorial constructions [15,56], pairing-based assumptions [16,18,29,30,41,42],
lattice-based assumptions [23,33], and indistinguishability obfuscation [20,49].
With the exception of [49], the existing constructions only support efficient trac-
ing over a polynomial-size identity space (this is referred to as “flexible” traitor
tracing [49]). There are also numerous constructions that provide security in the
bounded-collusion setting [1,2,11,12,24,25,28,39,40,51,57,58].

Attribute-Based Traitor Tracing. Directly relevant to our notion of water-
markable predicate encryption is the notion of attribute-based traitor tracing

Watermarking Public-Key Cryptographic Primitives 377

[1,23,41,42], which is a hybrid of attribute-based encryption and traitor trac-
ing. The main difference between these two notions is that in the traitor-tracing
setting, the marking and key-generation algorithms are combined (namely, the
key-generation algorithm takes as input the function together with the mark). In
watermarking, we have the additional flexibility that we can embed the water-
mark after issuing the key as well as support watermarking adversarially-chosen
keys. When considering the simpler notion of watermarkable public-key encryp-
tion and traitor tracing, we can equate these two notions with a suitable redef-
inition of the traitor tracing schema (assuming that the traitor tracing scheme
supports a public tracing algorithm). However, this equivalence does not seem
to extend to the setting of attribute-based encryption or predicate encryption.
Another key difference is that existing constructions of attribute-based traitor
tracing from standard assumptions only support tracing over a polynomial-size
identity space, while in the standard notions of message-embedding watermark-
ing, the identity space is exponential. Note that since a watermarkable predicate
encryption scheme implies an attribute-based traitor tracing scheme, our results
give a bounded-collusion attribute-based traitor tracing scheme that supports
an exponential number of possible identities.

2 Preliminaries

We begin by introducing the notation that we use in this work. We use λ (often
implicitly) to denote the security parameter. We write poly(λ) to denote a quan-
tity that is bounded by a fixed polynomial in λ and negl(λ) to denote a function
that is o(1/λc) for all c ∈ N. We say that an event occurs with overwhelming
probability if its complement occurs with negligible probability. We say an algo-
rithm is efficient if it runs in probabilistic polynomial time in the length of its
input. For two families of distributions D1 = {D1,λ}λ∈N

and D2 = {D2,λ}λ∈N
,

we write D1
c≈ D2 if the two distributions are computationally indistinguishable

(i.e., no efficient algorithm can distinguish distribution D1 from D2 except with
negligible probability), and D1

s≈ D2 if the two distributions are statistically
indistinguishable (i.e., the statistical distance between D1 and D2 is negl(λ)).

For an integer n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}.
For integers n ≥ m ≥ 1, we write [m,n] to denote the set of integers
{m,m + 1, . . . , n}, and [m,n]R to denote the closed interval between m and
n (inclusive) over the real numbers. For a distribution D, we write x ← D to
denote that x is drawn from D. For a finite set S, we write x ←R S to denote that
x is drawn uniformly at random from S. For sets X and Y, we write Funs[X ,Y]
to denote the set of all functions from X to Y. In the the full version of this
paper, we also recall the definition of a digital signature scheme and a public-key
predicate encryption scheme.

3 Watermarking Digital Signatures

In this section, we show how to watermark a digital signature scheme. We begin
by formally introducing the notion of a watermarkable signature scheme. Our

378 R. Goyal et al.

definitions are based on adaptations of existing definitions of watermarking PRFs
[14,27,37,38,52] as well as the candidate definitions for watermarking public-
key functionalities put forward in the work of Cohen et al. [27]. We present our
construction in the fully public-key setting (namely, both marking and extraction
are public operations, and there is no watermarking secret key).

Definition 3.1 (Watermarkable Signature). A watermarkable digital sig-
nature scheme with message space M and mark space T is a tuple of algorithms
(Setup,KeyGen,Sign,Verify,Mark,Extract) with the following properties:

– Setup(1λ) → wpp: On input the security parameter λ, the setup algorithm
outputs a set of watermarking public parameters wpp.

– The public parameters wpp induce a digital signature scheme (KeyGen,Sign,
Verify) with message space M, verification key space VK, signing key space
SK, and signature space SIG. Note that we implicitly allow KeyGen, Sign,
and Verify to take wpp as input.

– Mark(wpp, sk, τ) → C: On input the watermarking parameters wpp, a signing
key sk ∈ SK, and a mark τ ∈ T , the marking algorithm outputs a circuit
C : M → SIG.

– Extract(wpp, vk, C) → τ/⊥: On input the watermarking parameters wpp, a
verification key vk ∈ VK, and a circuit C : M → SIG, the extraction algo-
rithm either outputs a mark τ ∈ T or a special symbol ⊥.

Remark 3.2 (Comparison with Cohen et al. [27]). There are several differences
between our watermarking schema and that introduced by Cohen et al. [27]. We
summarize these below:

– Extraction semantics: Our extraction algorithm Extract additionally takes
the verification key associated with the signing circuit as an additional input.
This does not seem like a substantial limitation to the usefulness of the scheme
since in most applications, the verification key associated with a signature
scheme is assumed to be publicly known.

– Independent key-generation and marking algorithms: In addition, we
have independent key-generation and marking algorithms. The schema from
Cohen et al. for public-key primitives introduced an additional restriction that
the watermark is generated at the same time as the signing key, while in our
scheme, the signing key can be generated independently, and later on, a user
can decide to mark the key. Thus, our schema provides additional flexibility
in how keys are generated and marked. In particular, our definition allows
a user to take the same signing key and mark it with different messages
(for instance, to give to different users). This definition is more similar to
existing definitions for watermarking secret-key primitives, which consider
independent key-generation and marking algorithms.
We additionally note that if we allow the verification key to depend on the
mark (i.e., as in the Cohen et al. construction), there is a simple way to

Watermarking Public-Key Cryptographic Primitives 379

satisfy their definition.5 In particular, we simply include the mark τ as part
of the signing key and verification key. A signature on a message m is just
the pair (τ, σ), where σ is a vanilla signature on m. Verification first affirms
that the first component of the signature is the mark τ and then checks σ as
usual. If the adversary constructs a circuit that outputs valid signatures with
probability better than ε > 1/2 + 1/poly(λ),6 then the output of the circuit
contains the mark τ on a majority of inputs. In this case, the extraction
algorithm can evaluate the circuit on poly(λ) random inputs and output the
majority tag. This basic construction does not apply in our setting because
we require that the signing/verification keys be generated independently of
the mark.

– Collusion resistance: Since our definition separates the key-generation and
marking algorithms, the same signing key can be marked with different mes-
sages. Correspondingly, we can define a notion of collusion resistant water-
marking, where unremovability holds even if the adversary sees the same
signing key marked with distinct messages. This is a critical property for any
realistic application of watermarking where a single key might be marked
with multiple identities.

Correctness. Next, we introduce the correctness requirements of a watermark-
ing scheme. There are three main properties we care about. The first is the
usual notion of extraction correctness, which says that the extraction algorithm
should successfully recover the watermark from an honestly-marked key. The sec-
ond property is a “meaningfulness” or “non-triviality” property, which says that
most circuits should not be marked. Finally, the third property is functionality-
preserving. As noted in Sect. 1.1, one of the main differences between this work
and previous works on software watermarking is we consider a relaxed notion of
functionality-preserving, where we require that a marked signing key can sign
arbitrary messages (that verify with respect to the same verification key), but
we allow the resulting signatures to be different from the signatures output by
the original signing key. In other words, the marked key implements a perfectly
valid signing algorithm, but it does not have to preserve the exact input/output
behavior of the unmarked signing key. We give the precise definition below:

Definition 3.3 (Correctness). Let ΠWM = (Setup,KeyGen,Sign,Verify,Mark,
Extract) be a watermarkable signature scheme with message space M, signature
space SIG, and verification key space VK. Then, ΠWM is correct if for all wpp ←

5 This basic construction also directly extends to their notion of watermarkable
public-key encryption, which considers the analogous restriction where the encryp-
tion/decryption keys are sampled jointly with the watermark.

6 As noted in Remark 3.9, the unremovability definition in Cohen et al. [27]
(for message-embedding watermarking) is satisfiable only when the adversary is
restricted to constructing circuits that agree with the marked circuit on strictly
more than half of the inputs. This coincides with the setting where our simple con-
struction applies.

380 R. Goyal et al.

Setup(1λ), the induced signature scheme (KeyGen,Sign,Verify) is correct, and the
following properties also hold:

– Extraction correctness: For all marks τ ∈ T ,

Pr[(vk, sk) ← KeyGen(1λ,wpp) : Extract(wpp, vk,Mark(wpp, sk, τ)) �= τ] = negl(λ).

– Meaningfulness: For all fixed circuits C : M → SIG (independent of the
public parameters wpp) and all verification keys vk ∈ VK,

Pr[Extract(wpp, vk, C) �= ⊥] = negl(λ),

and for (vk, sk) ← KeyGen(wpp),

Pr[Extract(wpp, vk,Sign(wpp, sk, ·)) �= ⊥] = negl(λ).

– Functionality-preserving: For all marks τ ∈ T and all messages m ∈ M,
if we take (vk, sk) ← KeyGen(1λ,wpp) and C ← Mark(wpp, sk, τ),

Pr[Verify(wpp, vk,m,C(m)) �= 1] = negl(λ).

Remark 3.4 (Unique Signature Schemes and Functionality-Preserving). We note
that if we have a unique signature scheme (i.e., a signature scheme where for every
message m ∈ M, there is a unique signature σ that verifies with respect to the
verification key), then our notion of functionality-preserving precisely coincides
with preserving the input/output behavior of the original signing circuit. We
do not know how to watermark a unique signature scheme and leave this as an
intriguing open problem.

Security of the Underlying Signature Scheme. The first security require-
ment is that the underlying signature scheme associated with a watermarkable
signature scheme satisfies the usual notion of unforgeability. In fact, we would
like the stronger property that even if the watermarking parameters wpp are cho-
sen in a malicious manner, the resulting signature scheme remains secure (i.e.,
provides unforgeability). Recent constructions of watermarking for PRFs [38,52]
have the drawback that even a semi-honest watermarking authority is able to
break security of the unmarked keys in the system (and previous constructions
from standard assumptions [37] become insecure if the watermarking author-
ity generates the parameters maliciously). Our security notion ensures that a
malicious party cannot generate the parameters in such a way as to embed a
“trapdoor” into the signature scheme. In fact, since our watermarking scheme
supports both public marking and public verification, this property means that
users can use the scheme without needing to trust any central authority; this is
an appealing property that is not satisfied by any existing watermarking scheme.

Definition 3.5 (Signature Unforgeability). Let ΠWM = (Setup,KeyGen,
Sign,Verify,Mark,Extract) be a watermarkable signature scheme. We say that
ΠWM satisfies signature unforgeability if the induced signature scheme (KeyGen,

Watermarking Public-Key Cryptographic Primitives 381

Sign,Verify) satisfies unforgeability. We say that ΠWM satisfies signature unforge-
ability in the presence of a malicious authority if the induced signature scheme
satisfies unforgeability even if the adversary can choose the public parameters
wpp for ΠWM.

Unremovability. The main security requirement we require from a watermark-
ing scheme is unremovability: namely, an adversary that obtains one or more
marked keys cannot produce a new key that preserves the same functionality
as the original key and, yet, does not contain the watermark. Our definition is
the direct generalization of the corresponding notion of unremovability in the
setting of watermarking PRFs [14,27], with the following differences:

– First, we use the same relaxation of functionality-preserving discussed above:
namely, the adversary is allowed to construct any circuit that outputs
valid signatures with noticeable probability (that verify under the signature
scheme’s verification key); it does not have to preserve the input/output
behavior of the marked circuits it is given. This gives the adversary more
power, but is consistent with our relaxed view of what it means to be
“functionality-preserving” in the public-key setting.

– Second, we allow the adversary to make multiple marking queries: namely,
the adversary can see the same signing key marked with different and
adversarially-chosen identities, and, even then, we require that the adver-
sary cannot produce a new circuit whose watermark is not one of the ones
corresponding to a signing circuit already given to the adversary. Namely, if
an adversary sees a signing key marked with identities τ1 and τ2, it cannot
create a new functional signing circuit where the watermark is not one of
τ1 or τ2. We discuss this notion of collusion resistance in greater detail in
Remark 3.8.

– Finally, because of our relaxed notion of functionality-preserving, signatures
output by the unmarked key can look different from signatures output by the
marked key, so we additionally give the adversary access to the signing oracle
with the unmarked key.

We give our formal definition below:

Definition 3.6 (Watermarking Signatures Security Experiment). Let
ΠWM = (Setup,KeyGen,Sign,Verify,Mark,Extract) be a watermarkable signature
scheme with message space M, mark space T , and signature space SIG. Then,
for an adversary A, we define the watermarking signatures security experiment
as follows:

1. The challenger begins by sampling wpp ← Setup(1λ) and (vk, sk) ←
KeyGen(1λ,wpp). The challenger gives (wpp, vk) to the adversary.

2. The adversary is now given access to the following oracles:
– Marking oracle: On input a mark τ ∈ T , the challenger replies with

Cτ ← Mark(wpp, sk, τ).
– Signing oracle: On input a message m ∈ M, the challenger replies with

σ ← Sign(sk,m).

382 R. Goyal et al.

3. The adversary outputs a circuit C∗ : M → SIG.

The output of the experiment, denoted ExptWMSig[λ,A] is Extract(wpp, vk, C∗).

Definition 3.7 (ε-Unremovability). Let ΠWM be a watermarkable signature
scheme with message space M and signature space SIG. We say an adversary
A is ε-unremovable admissible if the adversary’s circuit C∗ : M → SIG in the
watermarking signatures security experiment satisfies

Pr[m ←R M : Verify(wpp, vk,m,C∗(m)) = 1] ≥ ε.

In the watermarking signatures security experiment, let Q ⊆ T be the set of
marks the adversary submitted to the marking oracle. Then, ΠWM satisfies ε-
unremovability if for all efficient and ε-unremovability admissible adversaries A,
Pr[ExptWMSig[λ,A] /∈ Q] = negl(λ).

Remark 3.8 (Collusion Resistance). We say that a watermarking scheme is fully
collusion resistant if unremovability holds against all efficient adversaries that
can make any a priori unbounded poly(λ) queries to the marking oracle. We
say that it is q-bounded collusion resistant if unremovability hold only against
efficient adversaries that make at most q marking queries. Existing watermarking
schemes for cryptographic functionalities from standard assumptions are only 1-
collusion resistant [37,38,52].

Remark 3.9 (Small Unremovability Thresholds). Previously, Cohen et al.
[27] showed that message-embedding watermarking schemes satisfying ε-
unremovability are possible only when ε ≥ 1/2 + 1/poly(λ). This lower bound
does not apply to our notion of ε-unremovability (Definition 3.7). In fact, our
constructions satisfy ε-unremovability for any non-negligible ε = 1/poly(λ). The
reason is that our mark-extraction algorithm takes in the verification key as
input, while the Cohen et al. definition does not (i.e., their extraction algorithm
only takes the circuit as input).

To provide some additional detail, we first recall the attack from Cohen et al.
when ε = 1/2. Let C be the challenge circuit marked with a message m in the
unremovability security game, and let C ′ be an arbitrary circuit (for a different
function) marked with a message m′ �= m. In both the secret and public marking
setting, the adversary can generate C ′ by either using the marking oracle (secret-
marking setting) or using the public marking algorithm (public-marking setting).
To carry out the attack, the adversary constructs a challenge circuit C∗ that
agrees with C on half of the points (chosen randomly) and agrees with C ′ on
the other half. By symmetry, the extraction algorithm on C∗ outputs m and
m′ with equal probability, where the probability is taken over the coins of the
Extract algorithm and the adversary’s randomness used to determine m, m′, and
C∗. This means that the probability that the extraction algorithm outputs m is
at most 1/2, and so the adversary succeeds with probability at least 1/2.

The above attack critically relies on the fact that the adversary is able to obtain
a marked circuit C ′ where the extraction algorithm on C ′ outputs m′ �= m. In

Watermarking Public-Key Cryptographic Primitives 383

order to mount the same attack in our setting, the adversary needs to be able
to obtain a circuit C ′ such that Extract(wpp, vk, C ′) = m′, where vk is the ver-
ification key chosen by the challenger. In the security game, there is no mecha-
nism for the adversary to obtain a marked circuit with respect to vk other than by
making a marking query on m′. If the adversary makes a marking query on m′,
then as long as the extraction algorithm recovers either m or m′, the adversary
does not break unremovability. Observe that if, on the contrary, vk is not pro-
vided as input to Extract, then the adversary can easily construct a circuit with
an embedded mark m′ (by marking an arbitrary key of its choosing) and mount
the Cohen et al. attack. This distinction, where the extraction algorithm is defined
with respect to a specific verification key, enables us to circumvent the lower bound
for ε-unremovability when ε ≤ 1/2.

3.1 Building Block: Constrained Signatures

As discussed in Sect. 1.1, the main building block we use to construct a water-
markable signature scheme is a prefix-constrained signature (which can be built
generically from any signature scheme, or more generally, any one-way function).
We recall the formal definition below:

Definition 3.10 (Constrained Signatures [10,59]). A constrained signature
scheme with message space M and constraint family F ⊆ Funs[M, {0, 1}] is a
tuple of algorithm ΠCSig = (Setup,Sign,Verify,Constrain,ConstrainSign) with the
following properties:

– Setup(1λ) → (vk,msk): On input the security parameter λ, the setup algorithm
outputs the verification key and the master secret key msk.

– Sign(msk,m) → σ: On input the master signing key msk and a message m ∈
M, the signing algorithm outputs a signature σ.

– Verify(vk,m, σ) → b: On input the verification key vk, a message m ∈ M,
and a signature σ, the verification algorithm outputs a bit b ∈ {0, 1}.

– Constrain(msk, f) → skf : On input the master signing key msk and a function
f ∈ F , the constrain algorithm outputs a constrained key skf .

– ConstrainSign(skf ,m) → σ: On input a constrained key skf and a message
m ∈ M, the signing algorithm outputs a signature σ.

Definition 3.11 (Correctness). A constrained signature scheme ΠCSig =
(Setup,Sign,Verify,Constrain,ConstrainSign) with message space M and con-
straint family F is correct if for all messages m ∈ M and taking (vk,msk) ←
Setup(1λ),

Pr[Verify(vk,m,Sign(msk,m)) = 1] = 1.

In addition, for all constraints f ∈ F where f(m) = 1, if we compute skf ←
Constrain(msk, f),

Pr[Verify(vk,m,ConstrainSign(skf ,m)) = 1] = 1.

384 R. Goyal et al.

Definition 3.12 (Constrained Unforgeability). Let ΠCSig = (Setup,Sign,
Verify,Constrain,ConstrainSign) be a constrained signature scheme with message
space M and constraint family F . We define the constrained unforgeability exper-
iment between an adversary A and a challenger as follows:

1. At the beginning of the experiment, the challenger samples (vk,msk) ←
Setup(1λ) and gives vk to the adversary.

2. The adversary is then given access to the following oracles:
– Constrain oracle: On input a function f ∈ F , the challenger replies

with skf ← Constrain(msk, f).
– Signing oracle: On input a message m ∈ M, the challenger replies with

a signature σ ← Sign(msk,m).
– At the end of the game, the adversary outputs a message-signature pair

(m∗, σ∗).

The output of the experiment, denoted ExptCSig[A, λ] is 1 if the following con-
ditions hold:

– The adversary did not make a signing query on message m∗.
– The adversary did not make a constrain query on any function f ∈ F where

f(m∗) = 1.
– Verify(vk,m∗, σ∗) = 1.

We say that ΠCSig is secure if for all efficient adversaries A, Pr[ExptCSig[A, λ] =
1] = negl(λ).

3.2 Watermarking Signatures from Constrained Signatures

In this section, we show how to construct a fully collusion-resistant watermarking
scheme for digital signatures from prefix-constrained signatures.

Construction 3.13 (Watermarkable Signatures from Prefix-Constrai-
ned Signatures). Fix a message space M and a mark space T . Let ε =
1/poly(λ) be an unremovability parameter. We define the following primitives:

– Let Z be a tag space, and let T ′ = T ∪ {⊥}.
– For a mark τ∗ ∈ T , let fτ∗ : T ′ × M → {0, 1} be the function where

fτ∗(τ,m) = 1 if τ = τ∗ and 0 otherwise.
– Let ΠCSig = (CSig.Setup,CSig.Sign,CSig.Verify,CSig.Constrain,CSig.Constrain

Sign) be a constrained signature scheme with message space M′ = T ′ × M
and function class F = {τ∗ ∈ T : fτ∗}. Let SIG′ be the signature space of
ΠCSig.

We construct a watermarkable signature scheme ΠWM = (Setup,KeyGen,Sign,
Verify,Mark,Extract) with signature space SIG = Z × T ′ × SIG′ as follows:

– Setup(1λ) → wpp: On input the security parameter λ, sample z ←R Z, and
output wpp = z.

Watermarking Public-Key Cryptographic Primitives 385

– KeyGen(1λ,wpp) → (vk, sk): On input the security parameter λ and pub-
lic parameters wpp = z, the key-generation algorithm outputs a sign-
ing/verification key-pair (vk, sk) ← CSig.Setup(1λ).

– Sign(wpp, sk,m) → σ: On input the public parameters wpp = z, a sign-
ing key sk, and a message m ∈ M, the signing algorithm signs σ′ ←
CSig.Sign(sk, (⊥,m)), and outputs the signature σ = (z,⊥, σ′).

– Verify(wpp, vk,m, σ) → b: On input the public parameters wpp = z, a ver-
ification key vk, a message m ∈ M, and a signature σ = (z′, τ ′, σ′), the
verification algorithm outputs 0 if z′ �= z, and, otherwise, it outputs the bit
b ← CSig.Verify(vk, (τ ′,m), σ′).

– Mark(wpp, sk, τ) → C: On input the public parameters wpp = z, a sign-
ing key sk, and a mark τ ∈ T , the marking algorithm computes skτ ←
CSig.Constrain(sk, fτ) and outputs a circuit Cτ : M → SIG where Cτ (·) :=
(z, τ,CSig.ConstrainSign(skτ , (τ, ·))).

– Extract(wpp, vk, C) → τ/⊥: On input the public parameters wpp = z, a verifi-
cation key vk, and a circuit C : M → SIG, the extraction algorithm performs
the following procedure T = λ/ε = poly(λ) times:

• For i ∈ [T], sample mi ←R M and compute (z′
i, τ

′
i , σ

′
i) ← C(m). If z′

i = z
and CSig.Verify(vk, (τ ′

i ,mi), σ′
i) = 1, abort and output τ ′

i .
If the above procedure does not abort with some output τ , then output ⊥.

Correctness and Security Analysis. We now state our correctness and secu-
rity theorems, but defer their formal analysis to the full version of this paper.

Theorem 3.14 (Correctness). Suppose 1/ |Z| = negl(λ) and ΠCSig is correct.
Then, the watermarkable signature scheme ΠWM from Construction 3.13 is cor-
rect (Definition 3.3).

Theorem 3.15 (Signature Unforgeability). If ΠCSig satisfies constrained
unforgeability (Definition 3.12), then the watermarkable signature scheme ΠWM

from Construction 3.13 satisfies signature unforgeability in the presence of a
malicious watermarking authority (Definition 3.5).

Theorem 3.16 (Unremovability). Take any ε = 1/poly(λ). If 1/ |M| =
negl(λ) and ΠCSig satisfies constrained unforgeability (Definition 3.12), then the
watermarkable signature scheme ΠWM from Construction 3.13 is ε-unremovable.

3.3 Instantiations and Extensions

As noted by Bellare and Fuchsbauer [10], fully collusion resistant constrained sig-
natures (for arbitrary circuit constraints) satisfying unforgeability follow imme-
diately from any standard signature scheme (which can in turn be based on
one-way functions [31]). We briefly recall the “certificate-based” construction
here. The public parameters for the constrained signature scheme is a verifica-
tion key vk for a standard signature scheme, and the master secret key is the
associated signing key sk. To issue a constrained key for a function f , the author-
ity generates a fresh pair of signing and verification keys (vk′, sk′), and constructs

386 R. Goyal et al.

a signature (“certificate”) σ on (vk′, f) with the master signing key sk. The con-
strained key is the tuple (vk′, sk′, f, σ). A signature on m using the constrained
key consists of a signature σ′ on m using sk′ together with the tuple (vk′, f, σ).
To verify, one checks that σ is a valid signature on (vk′, f) with respect to the
master verification key vk, that f(m) = 1, and that σ′ is a valid signature on m
with respect to vk′. From this construction, we obtain the following corollary:

Corollary 3.17 (Watermarkable Signatures from One-Way Functions).
Take any ε = 1/poly(λ) and mark space T = {0, 1}�, where � = poly(λ). Assum-
ing one-way functions exist, there exists a fully collusion resistant watermarkable
family of signatures with mark space T that satisfies ε-unremovability (Defini-
tion 3.7) and where the underlying signature scheme is unforgeable even against
a malicious authority (Definition 3.5).

In the full version of this paper, we describe a variant of our watermarkable
signature scheme that achieves mark-unforgeability in the secret-marking setting
(i.e., no efficient adversary is able to come up with a marked circuit of its own).

4 Watermarking Public-Key Predicate Encryption

In this section, we show how to watermark a public-key predicate encryption
scheme. In particular, this notion implies watermarking for simpler classes of
public-key primitives like public-key encryption,7 identity-based encryption, and
attribute-based encryption. We begin by formally introducing the notion of
watermarking public-key predicate encryption schemes. Our definitions have a
very similar flavor to our corresponding definitions for watermarking digital sig-
nature schemes from Sect. 3 and the previous definitions of Cohen et al. [27].

Definition 4.1 (Watermarkable Public-Key Predicate Encryption). A
watermarkable public-key predicate encryption scheme with message space M,
attribute space X , function space F ⊆ Funs[X , {0, 1}], and mark space T is a
tuple of algorithms (WMSetup,PESetup,KeyGen,Encrypt,Decrypt,Mark,Extract)
with the following properties:

– WMSetup(1λ) → wpp: On input the security parameter λ, the watermarking
setup algorithm outputs a set of watermarking public parameters wpp.

– The watermarking parameters wpp induces a public-key predicate-encryption
scheme (PESetup,KeyGen,Encrypt,Decrypt) with message space M, attribute
space X , and function space F . We implicitly allow PESetup, KeyGen,
Encrypt, and Decrypt to take the watermarking parameters wpp as input. Let
PK denote the space of master public keys, SK denote the space of function
keys, and CT denote the ciphertext space of the induced predicate encryption
scheme.

7 As noted in Sect. 1.1, a traitor-tracing scheme that supports public tracing (e.g.,
[2,18,49]) directly gives a watermarkable public-key encryption scheme.

Watermarking Public-Key Cryptographic Primitives 387

– Mark(wpp, sk, τ) → Cτ : On input the watermarking parameters wpp, a secret
key sk ∈ SK, and a mark τ ∈ T , the marking algorithm outputs a circuit
Cτ : CT → M ∪ {⊥}.

– Extract(wpp,mpk, C) → τ/⊥: On input the watermarking parameters wpp, a
master public key mpk ∈ PK and a circuit C : CT → M∪{⊥}, the extraction
algorithm either outputs a mark τ ∈ T or a special symbol ⊥.

Definition 4.2 (Correctness). Let ΠWM = (WMSetup,PESetup,KeyGen,
Encrypt,Decrypt,Mark,Extract) be a watermarkable predicate encryption scheme
for function family F . Then, ΠWM is correct if for wpp ← Setup(1λ), the induced
public-key predicate encryption scheme (PESetup,KeyGen,Encrypt,Decrypt) is
correct and the following properties also hold:

– Extraction correctness: For all marks τ ∈ T and all functions f ∈ F ,
if we take (mpk,msk) ← PESetup(1λ,wpp) and skf ← KeyGen(wpp,msk, f),
then

Pr[Extract(wpp,mpk,Mark(wpp, skf , τ)) �= τ] = negl(λ).

– Meaningfulness: For all fixed circuits C : CT → M ∪ {⊥} (independent of
the public parameters wpp) and all master public keys mpk ∈ PK,

Pr[Extract(wpp,mpk, C) �= ⊥] = negl(λ),

and for all functions f ∈ F , (mpk,msk) ← PESetup(1λ,wpp), and skf ←
KeyGen(wpp,msk, f),

Pr[Extract(wpp,mpk,Decrypt(wpp, skf , ·)) �= ⊥] = negl(λ).

– Functionality-preserving: For all marks τ ∈ T , all messages m ∈ M,
all attributes x ∈ X , and all functions f ∈ F where f(x) = 1, if we
take (mpk,msk) ← PESetup(1λ,wpp), skf ← KeyGen(wpp,mpk, f) and C ←
Mark(wpp, skf , τ), we have that

Pr[C(Encrypt(wpp,mpk, x,m)) �= m] = negl(λ).

Definition 4.3 (Security). Let ΠWM = (WMSetup,PESetup,KeyGen,Encrypt,
Decrypt,Mark,Extract) be a watermarkable predicate encryption scheme. Then,
ΠWM is secure if the induced predicate encryption scheme (PESetup,KeyGen,
Encrypt,Decrypt) is secure. We say that ΠWM satisfies security in the presence
of a malicious authority if the induced predicate encryption scheme is secure even
if the adversary is allowed to choose the watermarking parameters wpp.

Definition 4.4 (Watermarking PE Security Experiment). Let ΠWM =
(WMSetup,PESetup,KeyGen,Encrypt,Decrypt,Mark,Extract) be a watermarkable
predicate encryption scheme with message space M, attribute space X , function
space F ⊆ Funs[X , {0, 1}], and mark space T . Let CT denote the ciphertext
space for ΠWM. For an adversary A, we define the watermarking PE security
experiment as follows:

388 R. Goyal et al.

1. The challenger begins by sampling wpp ← WMSetup(1λ) and (mpk,msk) ←
KeyGen(1λ,wpp). It gives (wpp,mpk) to the adversary A.

2. The adversary specifies a function f ∈ F it would like to target. The chal-
lenger computes a secret key skf ← KeyGen(wpp,msk, f), but does not give
skf to the adversary.

3. The adversary can then make marking oracle queries. On each marking query,
the adversary specifies a mark τ ∈ T , and the challenger replies with the
circuit Cτ ← Mark(wpp, skf , τ).

4. At the end of the experiment, the adversary outputs a circuit C∗ : CT →
M ∪ {⊥} and an attribute x ∈ X .

The output of the experiment, denoted ExptWMPE(λ,A), is Extract(wpp,mpk, C ′).

Definition 4.5 (ε-Unremovability). Let ΠWM be a watermarkable public-key
encryption scheme with message space M and ciphertext space CT . We say an
adversary A is ε-unremovable admissible if the adversary in the watermarking
security game outputs an attribute x ∈ X and a circuit C∗ : CT → M ∪ {⊥}
where

Pr[m ←R M : C∗(Encrypt(wpp,mpk, x,m)) = m] ≥ ε.

In the watermarking PE security experiment, let Q ⊆ T be the set of
marks the adversary submitted to the marking oracle. Then, ΠWM satisfies ε-
unremovability if for all efficient and ε-unremovability admissible adversaries
A, Pr[ExptWMPE[λ,A] �∈ Q] = negl(λ).

Remark 4.6 (Collusion Resistance). We say that a watermarkable predicate
encryption scheme ΠWM is (qkey, qmark)-collusion resistant if the induced predi-
cate encryption scheme is qkey-bounded collusion resistant and the watermarking
adversary in the unremovability game can make at most qmark marking queries.
When qkey and qmark can be arbitrary and a priori unbounded polynomials, we
say ΠWM is fully collusion resistant.

Remark 4.7 (Stronger Notions of Unremovability). Our definitions of unremov-
ability (Definitions 4.4 and 4.5) only allows the adversary to request (multiple)
marked version of a single predicate encryption key skf . A stronger notion would
allow the adversary to specify both a decryption function f as well as a mark
τ on each marking oracle query. Such a scheme would then be secure even if an
adversary could obtain marked versions of different decryption keys. Our con-
struction does not achieve this stronger notion and we leave this as an open
problem.

Remark 4.8 (Watermarking Functional Encryption). A further generalization
of watermarking predicate encryption is to watermark the decryption keys in
a functional encryption scheme. One challenge here is characterizing the set
of decryption keys that can be marked. For example, it is not possible to
watermark a decryption key for a constant-valued function, since the adver-
sary can implement the decryption functionality with a circuit that just com-
putes the constant function (which, of course, removes the watermark). It seems

Watermarking Public-Key Cryptographic Primitives 389

plausible that we can watermark decryption keys corresponding to functions
with “high min-entropy:” namely, functions f : X → Y where for any y ∈ Y,
Pr[x ←R X : f(x) = y] = negl(λ). While it is straightforward to modify our con-
struction of watermarkable predicate encryption to support marking function
keys of this form, in the resulting construction, we would additionally have to
provide the Extract algorithm a description of the function f associated with
a particular decryption circuit. Whether this a reasonable modeling assump-
tion will depend on the particular application. It is an interesting question to
both develop a better understanding of the types of function families that can
be watermarked as well as identify a suitable schema for watermarking general
functional encryption schemes.

4.1 Building Blocks: Functional Encryption and Traitor Tracing

In this section, we review the main building blocks we use to construct our
scheme for watermarking predicate encryption.

Hierarchical Functional Encryption. Our main building block for construct-
ing a watermarkable predicate encryption scheme is a general-purpose hierarchi-
cal functional encryption scheme. Below, we recall the formal definition from
[4,22]:

Definition 4.9 (Hierarchical Functional Encryption [4,22]). A hierarchi-
cal functional encryption (FE) scheme with domain X , range Y, and func-
tion space F is a tuple of algorithms ΠHFE = (Setup,KeyGen,Encrypt,Decrypt,
Delegate) with the following properties:

– Setup(1λ) → (mpk,msk): On input the security parameter λ, the setup algo-
rithm outputs the master public key mpk and the master secret key msk.

– KeyGen(msk, f) → skf : On input the master secret key msk and a function
f ∈ F , the key-generation algorithm outputs a secret key skf .

– Encrypt(mpk, x) → ctx: On input the master public key mpk and an input
x ∈ X , the encryption algorithm outputs a ciphertext ctx.

– Decrypt(sk, ct) → y/⊥: On input a secret key sk and a ciphertext ct, the
decryption algorithm either outputs a value y ∈ Y or a special symbol ⊥.

– Delegate(skf , g) → skg◦f : On input a secret key skf and a function g ∈ F ,
the delegate algorithm outputs a secret key skg◦f .

A hierarchical functional encryption scheme should satisfy the following proper-
ties:

– Correctness: For all x ∈ X and functions f ∈ F , if we sample (mpk,msk) ←
Setup(1λ), skf ← KeyGen(msk, f), and ctx ← Encrypt(mpk, x), then

Pr[Decrypt(skf , ctx) = f(x)] = 1.

390 R. Goyal et al.

– Delegation correctness: For all x ∈ X and functions f, g ∈ F where g◦f ∈
F , if we sample (mpk,msk) ← Setup(1λ), skf ← KeyGen(msk, f), skg◦f ←
Delegate(skf , g), and ctx ← Encrypt(mpk, x), then

Pr[Decrypt(skg◦f , ctx) = g(f(x))] = 1.

Note that this definition only considers correctness for single-hop delegation.
We can define a corresponding notion of multi-hop delegation correctness.
However, single-hop delegation already suffices for our construction.

– Security: Due to space limitations, we defer the security definition of hier-
archical functional encryption to the full version of this paper.

Remark 4.10 (Collusion Resistance). We say that a (hierarchical) functional
encryption scheme ΠHFE is q-bounded collusion resistant if the security property
holds against all efficient adversaries that make at most q key-generation queries
and that it is fully collusion resistant if security holds against all adversaries that
can make an a priori unbounded polynomial number of key-generation queries.

The Jump-Finding Problem. We recall the jump-finding problem introduced
in the work of Nishimaki et al. [49] for constructing flexible traitor tracing
schemes (i.e., traitor tracing schemes where the space of identities that can be
traced is exponential). We rely on similar techniques to watermark the decryp-
tion keys in a predicate encryption scheme.

Definition 4.11 (Noisy Jump Finding Problem [49, Definition 3.6]).
The (N, q, δ, ε)-jump-finding problem is defined as follows. An adversary chooses
a set C ⊆ [N] of q unknown points. Then, the adversary provides an oracle
P : [0, N] → [0, 1]R with the following properties:

– |P (N) − P (0)| ≥ ε.
– For any x, y ∈ [0, N] where x < y and [x+1, y]∩C = ∅, then |P (y) − P (x)| <

δ.

The (N, q, δ, ε)-jump finding problem is to interact with the oracle P and output
an element in C. In the (N, q, δ, ε)-noisy jump finding problem, the oracle P is
replaced with a randomized oracle Q : [0, N] → {0, 1} where on input x ∈ [0, N],
Q(x) outputs 1 with probability P (x). A fresh independent draw is chosen for
each query to Q(x).

Theorem 4.12 (Noisy Jump Finding Algorithm [49, Theorem 3.7]).
There is an efficient algorithm QTraceQ(λ,N, q, δ, ε) that runs in time t =
poly(λ, log N, q, 1/δ) and makes at most t queries to Q that solves the (N, q, δ, ε)-
noisy-jump-finding problem whenever ε > δ(5 + 2(�log N − 1�)q). In particu-
lar, QTraceQ(λ,N, q, δ, ε) will output at least one element in C with probability
1 − negl(λ) and will never output an element outside C. Moreover, any element
x output by QTraceQ(λ,N, q, δ, ε) has the property that P (x) − P (x − 1) > δ,
where P (x) = Pr[Q(x) = 1].

Watermarking Public-Key Cryptographic Primitives 391

4.2 Watermarking Predicate Encryption from Hierarchical FE

In this section, we show how to construct a (bounded) collusion resistant water-
markable predicate encryption scheme for general predicates from any (bounded)
collusion resistant hierarchical functional encryption scheme for general circuits.

Construction 4.13 (Watermarkable PE from Hierarchical FE). Let
M = {0, 1}n be a message space, X = {0, 1}� \

{
1�

}
be an attribute space,

F ⊆ Funs[{0, 1}�, {0, 1}] be a class of predicates, and T ⊆ X = {0, 1}� \
{
1�

}
be

a mark space. Let ε = 1/poly(λ) be an unremovability parameter. We rely on the
following ingredients:

– Let Z = M = {0, 1}n be a tag space.
– Let qmark = poly(λ) be a bound on the number of marking oracle queries

the watermarking adversary is allowed to make. In Remark 4.17, we describe
a simple adaptation of the extraction algorithm that achieves full collusion
resistance (assuming a fully collusion resistant hierarchical FE scheme)

– For a function f ∈ F , let gf : {0, 1}�+n+1 → {0, 1}�+n be the function defined
as follows:

gf (x,m, b) =

⎧
⎪⎨

⎪⎩

(x,m) b = 0
(0�, 0n) b = 1 and f(x) = 0
(1�,m) b = 1 and f(x) = 1,

(4.1)

where x ∈ {0, 1}�, m ∈ {0, 1}n, and b ∈ {0, 1}. Define the function class
G = {f ∈ F : gf}.

– For a mark τ ∈ {0, 1}�, define the function hτ : {0, 1}�+n → {0, 1}�+n as
follows:

hτ (x,m) =

{
(0�, 0n) x ≤ τ

(1�,m) x > τ,
(4.2)

where x ∈ {0, 1}� and m ∈ {0, 1}n, and are interpreted as values in [0, 2� − 1]
and [0, 2n − 1], respectively.

– Let ΠHFE = (HFE.Setup,HFE.KeyGen,HFE.Encrypt,HFE.Decrypt,HFE.
Delegate) be a hierarchical FE scheme with domain {0, 1}�+n+1, range
{0, 1}�+n, and function class G. Let CT be the space of ciphertexts for ΠHFE.

We construct a watermarkable predicate encryption scheme ΠWM = (WMSetup,
PESetup,KeyGen,Encrypt,Decrypt,Mark,Extract) as follows:

– WMSetup(1λ) → wpp: On input the security parameter λ, sample z ←R {0, 1}n

and output wpp = z.
– PESetup(1λ,wpp) → (mpk,msk): On input the security parameter λ and the

watermarking parameters wpp = z, the key-generation algorithm outputs a
key-pair (mpk,msk) ← HFE.Setup(1λ).

– KeyGen(wpp,msk, f) → skf : On input the watermarking parameters wpp = z,
a master secret key msk, and a function f ∈ F , the key-generation algo-
rithm outputs a secret key skf ← HFE.KeyGen(msk, gf), where gf is defined
in Eq. (4.1).

392 R. Goyal et al.

– Encrypt(wpp,mpk, x,m) → ctx,m: On input the watermarking parameters
wpp = z, a master public key mpk, an attribute x ∈ {0, 1}�, and a mes-
sage m ∈ {0, 1}n, the encryption algorithm outputs a ciphertext ctx,m ←
HFE.Encrypt(mpk, (x,m ⊕ z, 1)) ∈ CT .

– Decrypt(wpp, sk, ct) → m/⊥: On input the watermarking parameter wpp = z,
a secret key sk, and a ciphertext ct, the decryption algorithm computes y ←
HFE.Decrypt(sk, ct). If y = ⊥, then output ⊥. Otherwise, it parses y = (x,m′)
where x ∈ {0, 1}� and m′ ∈ {0, 1}n. It outputs m′ ⊕ z if x = 1� and ⊥
otherwise.

– Mark(wpp, sk, τ) → Cτ : On input the watermarking parameters wpp = z, a
secret key sk, and a mark τ ∈ {0, 1}t, the marking algorithm constructs a new
key skτ ← HFE.Delegate(sk, hτ), where hτ is defined in Eq. (4.2). Finally, it
outputs the circuit C : CT → M ∪ {⊥} that computes the marked function
P [z, skτ] defined as follows (Fig. 1):

Fig. 1. The marked function P [z, skτ]

– Extract(wpp,mpk, C) → τ/⊥: On input the watermarking parameters wpp =
z, a master public key mpk, and a circuit C : CT → M ∪ {⊥}, the extraction
algorithm first performs the following decryption check T = λ/ε = poly(λ)
times:

• For each i ∈ [T], sample mi ←R M and compute the ciphertext cti ←
HFE.Encrypt(mpk, (1�,mi ⊕ z, 0)) and yi ← C(cti).

If for all i ∈ [T], yi �= mi, then output ⊥. Otherwise, the extraction algorithm
constructs the following function QC : {0, 1}� → {0, 1} (Fig. 2):

Fig. 2. The extraction test function QC

Watermarking Public-Key Cryptographic Primitives 393

Let δ = ε/(5+2(�−1)qmark) and compute τ ← QTraceQC (λ, 2� −1, qmark, δ, ε).
If τ = 1�, then output ⊥. Otherwise, output τ . In Remark 4.17, we describe a
variant of the Extract algorithm that does not require an explicit bound qmark

to be provided as input.

Correctness and Security Analysis. We now state our correctness and secu-
rity theorems, but defer their formal analysis to the full version of this paper.

Theorem 4.14 (Correctness). Suppose 1/ε = poly(λ), 1/ |M| = negl(λ), and
ΠHFE is correct and secure (Definition 4.9). Then, the watermarkable predicate
encryption scheme ΠWM from Construction 4.13 is correct.

Theorem 4.15 (Predicate Encryption Security). If ΠHFE is secure (Defi-
nition 4.9), then Construction 4.13 is secure even in the presence of a malicious
authority (Definition 4.3).

Theorem 4.16 (ε-Unremovability). Take any ε = 1/poly(λ). If 1/ |M| =
negl(λ) and ΠHFE is secure (Definition 4.9), then the watermarkable predicate
encryption scheme ΠWM from Construction 4.13 is ε-unremovable.

Remark 4.17 (Extraction Without an A Priori Bound). As described, the Extract
algorithm in Construction 4.13 assumes there is an a priori bound qmark on the
number of marked keys the adversary sees (and this bound is provided as an
input to the Extract algorithm). It is straightforward to extend Extract to operate
when no explicit bound is provided. Namely, instead of running QTraceQ with
q = qmark, the algorithm instead runs QTrace on successive powers of two q =
20, 21, 22, . . . , 2� where δ = ε/(5 + 2(� − 1)q)). By Theorem 4.12, if QTraceQ

succeeds, it produces a τ ∈ {0, 1}� such that |Pr[Q(τ) = 1] − Pr[Q(τ − 1) = 1]| >
δ. Moreover, we can show that for all efficiently-computable τ /∈ Q, we have that
Pr[Q(τ) = 1] − Pr[Q(τ − 1) = 1] = negl(λ). Thus, if QTraceQ outputs a mark τ ,
then τ ∈ Q, as required. Moreover, once q > qmark, we can appeal to Theorem 4.12
to conclude that with overwhelming probability, the extraction algorithm will
output a τ such that this condition holds. This algorithm will terminate after at
most O(log qmark) = poly(λ) iterations.

4.3 Instantiations and Extensions

In the full version of this paper, we describe two ways to instantiate our water-
markable predicate encryption scheme: one secure against bounded collusions
based on the existence of public-key encryption and low-depth pseudorandom
generators (PRGs)8 and one secure against unbounded collusions based on indis-
tinguishability obfuscation (and one-way functions). We also describe a simple
variant of our construction that provides watermarking unforgeability in the
secret-marking setting. We state the main conclusions below:
8 These are known to follow from most algebraic cryptographic assumptions such as

the hardness of factoring, the discrete log assumption, or standard lattice assump-
tions [7,45–47].

394 R. Goyal et al.

Corollary 4.18 (Bounded Collusion-Resistant Watermarkable Pred-
icate Encryption). Take any ε = 1/poly(λ), any fixed polynomials
q, qkey, qmark = poly(λ), and mark space T = {0, 1}�, where � = poly(λ).
Assuming public-key encryption and a PRG computable in NC1, there exists
a (qkey, qmark)-bounded collusion resistant watermarkable family of predicate
encryption schemes with mark space T that satisfies ε-unremovability (Defini-
tion 4.5, Remark 4.6). Moreover, the associated predicate encryption scheme is
q-bounded collusion resistant and remains secure even in the presence of a mali-
cious watermarking authority (Definition 4.3).

Corollary 4.19 (Fully Collusion-Resistant Watermarkable Predicate
Encryption). Take any ε = 1/poly(λ) and mark space T = {0, 1}�. Assum-
ing indistinguishability obfuscation and the existence of one-way functions, there
exists a fully collusion resistant watermarkable family of predicate encryption
schemes with mark space T that provides ε-unremovability (Definition 4.5) and
where the associated predicate encryption scheme is fully collusion resistant
and secure even in the presence of a malicious watermarking authority (Defi-
nition 4.3).

Acknowledgments. We thank Aayush Jain for helpful discussions on this work and
the anonymous CRYPTO reviewers for useful feedback on the presentation. R. Goyal
was supported by an IBM PhD fellowship. S. Kim was supported by NSF, DARPA,
a grant from ONR, and the Simons Foundation. N. Manohar was supported in part
by a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants
1619348, 1228984, 1136174, and 1065276, and BSF grant 2012378. B. Waters was sup-
ported by NSF CNS-1908611, CNS-1414082, a DARPA/ARL SAFEWARE award and
a Packard Foundation Fellowship. Opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily reflect
the official policy or position of the Department of Defense, the National Science Foun-
dation, or the U.S. Government.

References

1. Abdalla, M., Dent, A.W., Malone-Lee, J., Neven, G., Phan, D.H., Smart, N.P.:
Identity-based traitor tracing. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 361–376. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71677-8 24

2. Agrawal, S., Bhattacherjee, S., Phan, D.H., Stehlé, D., Yamada, S.: Efficient public
trace and revoke from standard assumptions: extended abstract. In: ACM CCS,
pp. 2277–2293 (2017)

3. Agrawal, S., Rosen, A.: Functional encryption for bounded collusions, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 173–205. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 7

4. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. IACR Cryptology ePrint Archive 2013 (2013)

5. Ananth, P., Vaikuntanathan, V.: Optimal bounded-collusion secure functional
encryption. IACR Cryptology ePrint Archive 2019, 314 (2019)

https://doi.org/10.1007/978-3-540-71677-8_24
https://doi.org/10.1007/978-3-540-71677-8_24
https://doi.org/10.1007/978-3-319-70500-2_7

Watermarking Public-Key Cryptographic Primitives 395

6. Baldimtsi, F., Kiayias, A., Samari, K.: Watermarking public-key cryptographic
functionalities and implementations. In: Nguyen, P., Zhou, J. (eds.) ISC 2017.
LNCS, vol. 10599, pp. 173–191. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69659-1 10

7. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

8. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

9. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2),
1–48 (2012). Article no. 6

10. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 30

11. Billet, O., Phan, D.H.: Efficient traitor tracing from collusion secure codes. In:
Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 171–182. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-85093-9 17

12. Boneh, D., Franklin, M.K.: An efficient public key traitor tracing scheme. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48405-1 22

13. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

14. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately.
In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54388-7 17

15. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: ACM CCS
(2008)

16. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 34

17. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

18. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, revoke system.
In: ACM CCS (2006)

19. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

20. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 27

21. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

22. Brakerski, Z., Chandran, N., Goyal, V., Jain, A., Sahai, A., Segev, G.: Hierarchical
functional encryption. In: ITCS (2017)

https://doi.org/10.1007/978-3-319-69659-1_10
https://doi.org/10.1007/978-3-319-69659-1_10
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-540-85093-9_17
https://doi.org/10.1007/3-540-48405-1_22
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-642-54631-0_29

396 R. Goyal et al.

23. Chen, Y., Vaikuntanathan, V., Waters, B., Wee, H., Wichs, D.: Traitor-tracing
from LWE made simple and attribute-based. In: Beimel, A., Dziembowski, S. (eds.)
TCC 2018. LNCS, vol. 11240, pp. 341–369. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03810-6 13

24. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 25

25. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Trans. Inf. Theory
46(3), 893–910 (2000)

26. Cocks, C.C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 32

27. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: STOC (2016)

28. Fazio, N., Nicolosi, A., Phan, D.H.: Traitor tracing with optimal transmission rate.
In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS,
vol. 4779, pp. 71–88. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75496-1 5

29. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 3

30. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully
collusion-resilient traitor tracing and revocation schemes. In: ACM CCS (2010)

31. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, Cambridge (2004)

32. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

33. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning
with errors. In: STOC (2018)

34. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS (2006)

35. Hopper, N., Molnar, D., Wagner, D.A.: From weak to strong watermarking. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 362–382. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 20

36. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

37. Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from standard lat-
tice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 503–536. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 17

38. Kim, S., Wu, D.J.: Watermarking PRFs from lattices: Stronger security via
extractable PRFs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 335–366. Springer, Cham (2019)

39. Kurosawa, K., Desmedt, Y.: Optimum traitor tracing and asymmetric schemes.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 145–157. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054123

https://doi.org/10.1007/978-3-030-03810-6_13
https://doi.org/10.1007/978-3-030-03810-6_13
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/978-3-540-75496-1_5
https://doi.org/10.1007/978-3-540-75496-1_5
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-540-70936-7_20
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/978-3-319-63688-7_17
https://doi.org/10.1007/BFb0054123

Watermarking Public-Key Cryptographic Primitives 397

40. Ling, S., Phan, D.H., Stehlé, D., Steinfeld, R.: Hardness of k -LWE and applications
in traitor tracing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 315–334. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2 18

41. Liu, Z., Cao, Z., Wong, D.S.: Blackbox traceable CP-ABE: how to catch people
leaking their keys by selling decryption devices on eBay. In: ACM CCS (2013)

42. Liu, Z., Wong, D.S.: Practical ciphertext-policy attribute-based encryption: traitor
tracing, revocation, and large universe. In: Malkin, T., Kolesnikov, V., Lewko, A.B.,
Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 127–146. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 7

43. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19074-2 24

44. Naccache, D., Shamir, A., Stern, J.P.: How to copyright a function? In: Imai, H.,
Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 188–196. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-49162-7 14

45. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. In: FOCS (1995)

46. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: FOCS, pp. 458–467 (1997)

47. Naor, M., Reingold, O., Rosen, A.: Pseudo-random functions and factoring
(extended abstract). In: STOC, pp. 11–20 (2000)

48. Nishimaki, R.: How to watermark cryptographic functions. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 111–125. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 7

49. Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: how to embed
arbitrary information in a key. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 388–419. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 14

50. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive 2010 (2010)

51. Phan, D.H., Safavi-Naini, R., Tonien, D.: Generic construction of hybrid public
key traitor tracing with full-public-traceability. In: Bugliesi, M., Preneel, B., Sas-
sone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 264–275. Springer,
Heidelberg (2006). https://doi.org/10.1007/11787006 23

52. Quach, W., Wichs, D., Zirdelis, G.: Watermarking PRFs under standard assump-
tions: public marking and security with extraction queries. In: Beimel, A., Dziem-
bowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 669–698. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03810-6 24

53. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

54. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

55. Shi, E., Bethencourt, J., Chan, H.T., Song, D.X., Perrig, A.: Multi-dimensional
range query over encrypted data. In: IEEE S&P (2007)

56. Sirvent, T.: Traitor tracing scheme with constant ciphertext rate against powerful
pirates. IACR Cryptology ePrint Archive 2006 (2006)

57. Staddon, J., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and
traceability codes. IEEE Trans. Inf. Theory 47(3), 1042–1049 (2001)

https://doi.org/10.1007/978-3-662-44371-2_18
https://doi.org/10.1007/978-3-662-44371-2_18
https://doi.org/10.1007/978-3-319-28166-7_7
https://doi.org/10.1007/978-3-642-19074-2_24
https://doi.org/10.1007/3-540-49162-7_14
https://doi.org/10.1007/978-3-642-38348-9_7
https://doi.org/10.1007/978-3-662-49896-5_14
https://doi.org/10.1007/978-3-662-49896-5_14
https://doi.org/10.1007/11787006_23
https://doi.org/10.1007/978-3-030-03810-6_24
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/3-540-39568-7_5

398 R. Goyal et al.

58. Stinson, D.R., Wei, R.: Combinatorial properties and constructions of traceability
schemes and frameproof codes. SIAM J. Discrete Math. 11(1), 41–53 (1998)

59. Tsabary, R.: An equivalence between attribute-based signatures and homomorphic
signatures, and new constructions for both. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017. LNCS, vol. 10678, pp. 489–518. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70503-3 16

60. Yoshida, M., Fujiwara, T.: Toward digital watermarking for cryptographic data.
IEICE Trans. 94-A(1), 270–272 (2011)

https://doi.org/10.1007/978-3-319-70503-3_16
https://doi.org/10.1007/978-3-319-70503-3_16

Secure Computation

SpOT-Light: Lightweight Private Set
Intersection from Sparse OT Extension

Benny Pinkas1(B), Mike Rosulek2, Ni Trieu2, and Avishay Yanai1(B)

1 Bar-Ilan University, Ramat Gan, Israel
benny@pinkas.net, ay.yanay@gmail.com
2 Oregon State University, Corvallis, USA

{rosulekm,trieun}@oregonstate.edu

Abstract. We describe a novel approach for two-party private set inter-
section (PSI) with semi-honest security. Compared to existing PSI pro-
tocols, ours has a more favorable balance between communication and
computation. Specifically, our protocol has the lowest monetary cost of
any known PSI protocol, when run over the Internet using cloud-based
computing services (taking into account current rates for CPU + data).
On slow networks (e.g., 10 Mbps) our protocol is actually the fastest.

Our novel underlying technique is a variant of oblivious transfer (OT)
extension that we call sparse OT extension. Conceptually it can be
thought of as a communication-efficient multipoint oblivious PRF eval-
uation. Our sparse OT technique relies heavily on manipulating high-
degree polynomials over large finite fields (i.e. elements whose represen-
tation requires hundreds of bits). We introduce extensive algorithmic and
engineering improvements for interpolation and multi-point evaluation of
such polynomials, which we believe will be of independent interest.

Finally, we present an extensive empirical comparison of state-of-
the-art PSI protocols in several application scenarios and along several
dimensions of measurement: running time, communication, peak mem-
ory consumption, and—arguably the most relevant metric for practice—
monetary cost.

1 Introduction

Private set intersection (PSI) allows two parties, who each hold a set of items,
to learn the intersection of their sets without revealing anything else about the
items. PSI has many privacy-preserving applications: e.g., private contact dis-
covery [8,15,47]1, DNA testing and pattern matching [51], remote diagnostics
[5], record linkage [25], and measuring the effectiveness of online advertising [30].
1 See also https://whispersystems.org/blog/contact-discovery/.

B. Pinkas—Supported by the BIU Center for Research in Applied Cryptography and
Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime
Minister’s Office, and by a grant from the Israel Science Foundation.
M. Rosulek—Partially supported by NSF award 1617197, a Google faculty award, and
a Visa faculty award.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 401–431, 2019.
https://doi.org/10.1007/978-3-030-26954-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_13&domain=pdf
https://whispersystems.org/blog/contact-discovery/
https://doi.org/10.1007/978-3-030-26954-8_13

402 B. Pinkas et al.

Over the last several years PSI has become truly practical with extremely fast
implementations [7,8,11,12,16,20,24,35,36,45,47,48] that can process millions
of items in seconds.

In this paper we focus on two-party PSI with semi-honest security (with
one variant of our protocol achieving malicious security for one party). While we
describe our protocols in terms of any number of items, our evaluation focuses
on the case where the two parties have sets of the same size. We discuss the
setting of unequal set sizes in the full version.

1.1 What Should We Value in a PSI Protocol?

The standard ways to measure the cost of a protocol are running time and
communication. Depending on which of these metrics is prioritized, a different
protocol will be preferred.

Minimizing Time. The fastest known PSI protocols are all based on efficient
oblivious transfers (OT). The idea is to reduce the PSI computation to many
instances of oblivious transfer. This approach is the fastest because modern
OT extension protocols [1,3,31,34] use only a small (fixed) number of public-
key operations (e.g., elliptic curve multiplications) but otherwise use only cheap
symmetric-key operations. The approach to PSI was introduced by Pinkas et al.
[45] and refined in a sequence of works [35,44]. The state-of-the-art protocol [35]
computes an intersection of million-item sets in about 4 s.

Minimizing Communication. To the best of our knowledge, the PSI protocol
with lowest communication in this setting is due to Ateniese et al. [2]. This
protocol requires communication that is only marginally more than a näıve and
insecure protocol (in which one party sends just a short hash of each item),
and also has the nice property of hiding the size of the input set. However, the
protocol requires at least n log n RSA exponentiations (for PSI of n items). These
requirements make the protocol prohibitively expensive in practice.2

A more popular (as well as the earliest) approach to low-communication PSI
is based on the commutative property of Diffie-Hellman key agreement (DH-
PSI), and appears in several works [28,39,50]. The idea is for the parties to
compute the intersection of {(H(x)α)β) | x ∈ X} and {(H(y)β)α) | y ∈ Y } in
the clear, where α and β are secrets known by Alice and Bob, respectively. The
DH-PSI protocol strikes a more favorable balance between communication and
computation than the RSA-based protocol. It requires n exponentiations in a
Diffie-Hellman group, which are considerably cheaper than RSA exponentiations
but considerably more expensive than the symmetric-key operations used in OT
extension. In terms of communication, it requires less than 3 group elements per
item. When instantiated with compact elliptic curve groups (ECDH-PSI), the
communication complexity is very small. For example, Curve25519 [4] provides
128-bit security with only 256-bit group elements (around 600 bits of communi-
cation per item).
2 We are not aware of any prior implementation of this protocol, but estimated the

running time through benchmark RSA exponentiations. For the set sizes we consider
in this work, the protocol would require many hours or even a day.

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension 403

An Ideal Balance. Communication cost and overall running time are clearly
both important, but which metric best reflects the balance between the two
costs, and the true suitability of a protocol for practice? We argue that the
most appropriate metric which balances the two costs is the monetary cost
to run the protocol on a cloud computing service. First, a typical real-
world application of PSI is likely to use such a service rather than in-house
computing. Second, the pricing model of such services already takes into account
the difference in cost to send a bit vs. perform a CPU clock cycle.

1.2 Our Contributions

We present a new PSI protocol paradigm that is secure against semi-honest
adversaries under standard-model assumptions. We offer two variants of our
protocol: one is optimized for low communication and the other for fast com-
putation. The variant that is optimized for low communication is also secure
against a malicious sender in the (non-programmable) random oracle model.

Better Balance of Computation and Communication. Compared to DH-
PSI and RSA-based PSI [2], both of our protocol variants have much faster
running time, since ours are based on OT extension (i.e., dominated by cheap
symmetric-key operations). The low-communication variant has smaller com-
munication overhead than DH-PSI (even on a 256-bit elliptic curve) while the
fast-computation variant has about the same communication cost as DH-PSI.

Compared to [35], both of our protocol variants require much less commu-
nication. Our protocols perform more computation in the form of finite field
operations, making our protocols slower over high-bandwidth networks. How-
ever, the variant optimized for fast computation has a competitive running time
and is the fastest over low-bandwidth networks (e.g., 30 Mbps and less).

Extensive Cost Comparison. In Sect. 6 we perform an extensive benchmark
of state-of-the-art PSI protocols for various set sizes and bandwidth configu-
rations. To the best of our knowledge, our analysis is the first to assess PSI
protocols in terms of their monetary costs. Our experiments show that in all
settings we considered, the fast variant of our protocol has the least monetary
cost of all protocols—up to 40% less in some cases. A summary of the state of
the art (including this work) is depicted in Fig. 1.

Sparse OT Extension Technique. Our main technique, which we call sparse
OT extension, is a novel twist on oblivious transfer (OT) extension. Roughly
speaking, the idea allows the receiver to obliviously pick up a chosen subset of
k out of N random secrets (where N may be exponential), with communication
cost proportional only to k.

The concept is similar to an oblivious PRF [19] on which the receiver can
evaluate k chosen points. Other PSI protocols like [35,44] can also be expressed
as a construction of OPRF from OT extension. However, these involve an OPRF
that the receiver can evaluate on only a single value, resulting in significantly
more effort to build PSI. This qualitative difference in OPRF flavor is the main
source of our performance improvements.

404 B. Pinkas et al.

Fig. 1. Communication and running time for different PSI protocols, with n = 220

items, on 3 network configurations. Curved lines are lines of equal monetary cost on a
representative AWS configuration (see Sect. 6).

New Hashing Techniques. It is common in PSI literature to assign items
randomly to bins, and then perform a PSI within each bin. For security reasons,
it is necessary to add dummy items to each bin. With existing techniques, dummy
items account for 20–80% of the protocol cost! Our speed-optimized protocol
variant is the first to use a kind of 2-choice hashing [49] that requires almost
no dummy items (e.g., 2.5%). This 2-choice hashing technique requires placing
many items per bin, while previous PSI techniques are only efficient with 1 item
per bin (due to their qualitatively different OPRF flavor). Hence, this hashing
technique does not immediately benefit existing PSI protocols.

New Polynomial Interpolation Techniques. Our communication-optimized
protocol variant requires interpolation and multi-point evaluation of a polyno-
mial, which turns out to be the main bottleneck for the following reasons: (1)
The polynomial is over a large field of � 2400 elements, since the polynomial
encodes values related to an underlying OT-extension protocol. (2) The num-
ber of interpolation points depend on the parties’ set size, which could be in
the millions. (3) The best algorithms, which incur O(n log n) field operations,
require a special set of interpolation points, namely, the x-values should be the
roots of unity of the field or have a special algebraic structure. In contrast, in
the context of our protocol the interpolation points (the x-values) are the parties
PSI input items, which are arbitrary. The best algorithms with an arbitrary set
of interpolation points incur O(n log2 n) field operations [40].

We develop and demonstrate new techniques, called Slice & Stream and
Subproduct-Tree Reuse, to speed up the concrete efficiency of these tasks by
up to 2× for the special case in which the x and y-coordinates of the points are
drawn from the domains Dx and Dy where |Dx| � |Dy|. We believe those tech-
niques could have a general interest (even outside of the field of cryptography).

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension 405

1.3 Related Work and Comparison

We compare our results to relevant related work here, focusing on qualitative
differences between the protocols. A quantitative comparison is given later in
Sect. 6.

DH-PSI. Our protocol uses less communication than DH-PSI, even when the
latter is instantiated with the most compact elliptic curve known. In terms of
computation, our protocol uses only symmetric-key operations (apart from a
fixed number of base OTs). Its main computational bottleneck is computing
polynomial interpolation, requiring either O(n log2 λ) or O(n log2 n) finite field
operations (i.e., multiplications), depending on the variant, where n is the set
size and λ is the statistical security parameter. The DH-PSI protocol computes
O(n) exponentiations (or elliptic curve multiplications, which are each computed
using log |G| multiplication operations in the underlying cyclic group G). If we
consider the basic unit of computation to be a multiplication in the underlying
field/group, then our protocol uses at most O(n log2 n) multiplications whereas
DH-PSI uses O(n log |G|) multiplications. The experiments that we describe in
Sect. 6 demonstrate that our protocol is substantially faster than DH-PSI for all
realistic set sizes and on all network configurations.

Our communication-optimized protocol variant has security against one mali-
cious party. In contrast, DH-PSI is not easily adapted to malicious security, even
against just one party.3 In order to harden DH-PSI against malicious parties,
the leading protocol of De Cristofaro et al. [12] requires both parties to run
zero-knowledge proofs involving all of their input items. Thus, even one-sided
malicious security requires significant overhead to the semi-honest protocol.

While we do not formally consider security against quantum adversaries, we
do point out that our protocol exclusively uses primitives that can be instantiated
with post-quantum security (OT, PRFs, and hash functions). DH-PSI on the
other hand is trivially broken against quantum adversaries.

Protocols Based on an RSA Accumulator. The protocol of [2] has a very
low communication overhead of roughly λ + log2 n bits per item, which may
even be optimal (even for an insecure protocol). On the other hand, it computes
O(n log n) RSA exponentiations, and as such is slower than DH-PSI by at least
an order of magnitude (due to the log n factor, and to RSA exponentiations
being slower than elliptic curve multiplications). Our protocols are substantially
faster than both of these protocols (see Sect. 6). This protocol also requires a
random oracle, whereas for semi-honest security ours is in the standard model.

OT-Based Protocols. Our protocol requires 40–50% less communication com-
pared to [35] and is the fastest over low-bandwidth networks (30 Mbps and
lower). Over high-bandwidth networks, even though our protocol is slower than
[35], ours still requires less monetary cost (see Sect. 6).

3 The main challenge is that a simulator would have to extract effective inputs
{x1, . . . , xn} from a corrupt party, seeing only {H(x1)

α, . . . , H(xn)α}.

406 B. Pinkas et al.

Independently, Lambæk [37] and Patra et al. [43] showed how to enhance
the protocols of [35,45] with a security against a malicious receiver with almost
no additional overhead. Interestingly, our protocol naturally provides security
against a malicious sender. In both of these protocols, if the parties have sets
of very different sizes then the party with more items should play the role of
sender. Providing a different flavor of one-sided malicious security is therefore
potentially valuable.

Ghosh and Nilges [22] proposed a PSI protocol based on oblivious linear
function evaluation (OLE). This protocol requires 2n passive OLE invocations,
polynomial interpolations at 3 times (one of degree n, and two of degree 2n), and
polynomial evaluation on 2n + 1 points at 4 times. In terms of communication,
the required passive OLE instances [21,32] require 8(n + 1) elements sent from
the receiver to the sender to create a noisy encoding, and the cost of doing
4n-out-of-8(n + 1) OT which incurs an overhead of at least 8(n + 1) on the
number of Correlated OT. Hence, this OLE-based PSI protocol requires at least
8(n+1)(κ+2�) bits communication, where � is bit-length of item. For example,
when � = 128, our protocols show a factor of 4.8 − 6.3× improvement in terms
of communication.

Recently, Falk, Noble and Ostrovsky [18] presented a protocol for PSI that
achieves linear communication complexity relying on standard assumption (i.e.
in the OT-hybrid model, assuming the existence of correlation robust hash and
one-way functions) and in the standard model (i.e. without a random oracle).
This is in contrast to previous protocols that achieve linear communication but
rely on stronger assumptions (like [12,13] that are based on the one-more RSA
assumption and a random oracle); and to previous OT-based protocols that
achieve only super-linear communication complexity due to the stash handling.
In the protocol of [18], just like previous OT-based protocols, Bob maps his n
items to O(n) bins using a Cuckoo hashing, hence, it has at most one item in
each bin. Bob also maintains a special bin for items that could not be mapped
to the ‘regular’ bins, this special bin is called the stash and it contains ω(1)
items. Alice maps her items to O(n) bins using simple hashing, hence, she has at
most O(log n/ log log n) items in each bin with high probability. Then, Bob can
obtain the intersection between items in its ‘regular’ bins and Alice’s set using the
BaRK-OPRF technique of [35] with communication complexity O(n · κ) (where
κ is the computational security parameter). It remains to compare the items in
Bob’s stash to all Alice’s items; since the stash is of size ω(1) this comparison
would naively require ω(n · κ) communication overall. However, the observation
in [18] is that this comparison can be performed using a separate PSI protocol
that is specialized for unbalanced set sizes in which Alice has much more items
than Bob; such a protocol can achieve communication complexity that depends
only on the larger set size, therefore, the overall communication complexity of
[18] is O(n · κ) rather than ω(n · κ). We note that in concurrent to their work,
in this paper we achieve the same (linear) communication complexity, under the
same standard assumptions and without a random oracle, using a new primitive,
namely the Sparse OT Extension.

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension 407

Other Paradigms. Other approaches for PSI have been proposed, including
ones based on Bloom filters [16] and generic MPC [27]. Pinkas et al. [44,45]
performed a comprehensive comparison of semi-honest PSI techniques and found
the OT-extension paradigm to strictly dominate others in terms of performance.
They found that the best Bloom-filter approach is 2× worse in runtime, 4×
worse in communication; best generic-MPC-based approach is 100× worse in
runtime and 10× worse in communication. For this reason, we do not include
these protocol paradigms in further comparisons.

Asymmetric Set Sizes. Several recent PSI protocols are optimized specifi-
cally for the case of highly asymmetric set sizes [8,33,44,47]. We discuss these
protocols in the full version.

Other Related Work. One way of viewing our new technique is that we
covertly embed some protocol messages into a polynomial. Similar ideas appear
in [9,38]. In particular, [9] explicitly propose to embed private equality-test pro-
tocol messages into a polynomial, to yield a PSI protocol. Their protocol is based
on the DH paradigm, and therefore requires a linear number of exponentiations.
They also achieve a stronger covertness property (participants cannot distin-
guish other participants from random noise, until the protocol terminates). In
our case, we look inside IKNP OT extension and identify the minimal part of
the protocol that needs to be covertly embedded into a polynomial, in order to
achieve standard (semi-honest or malicious) security.

2 Technical Preliminaries

2.1 Notation

Throughout the paper we use the following notation: We let κ, λ denote the
computational and statistical security parameters, respectively. We write [m] to
denote a set {1, . . . ,m}. The notation dH(x,y,) denotes the Hamming distance
between bit vectors (strings) x and y of the same length and wH(x) = dH(x,0)
denotes the Hamming weight of x. For a bit vector v we let vi denote the bit
in the ith coordinate. If a = a1‖ · · · ‖ap and b = b1‖ · · · ‖bp are two vectors, the
notation a⊕b denotes the vector (a1 ⊕b1)‖ · · · ‖(ap ⊕bp). Similarly, the notation
a · b represents the bitwise-AND of vectors: (a1 · b1)‖ · · · ‖(ap · bp).

2.2 Oblivious Transfer

Oblivious Transfer (OT) is a central cryptographic primitive in the area of secure
computation, which was introduced by Rabin [46]. 1-out-of-2 OT [17] refers to
the setting where a sender with two input strings (m0,m1) interacts with a
receiver who has a input choice bit b. As the result, the receiver learns mb with-
out learning anything about m1−b , while the sender learns nothing about b.
Rabin OT protocol requires expensive public-key operations. In 2003, Ishai et al.
[31] proposed a construction of OT extension (refer as IKNP) that allows a large

408 B. Pinkas et al.

Fig. 2. The Fκ
ROT ideal functionality for Random Oblivious Transfer.

number of OTs executions at the cost of computing a small number of expen-
sive OTs [41]. Later, Kolesnikov and Kumaresan [34] improved IKNP for short
secrets. It gives O(log(κ)) factor performance improvement in communication
and computation. In the same year, [1] presented several IKNP optimizations
and several weaker variants of OT. In Random OT (ROT), the sender’s OT
inputs (m0,m1) are chosen at random, therefore, it allows the protocol itself
to give him the values (m0,m1) randomly. With ROT, the bandwidth require-
ment is significantly reduced since the sender sends nothing to receiver. In our
construction, we require this weaker variant, random OT, whose functionality is
described in Fig. 2.

2.3 (Hamming) Correlation Robustness

Our PSI construction is proven secure under a correlation robust assumption
which was introduced for IKNP OT extension [31] and later generalized in [35]
to the version we use in this work.

Definition 1 [35]. Let H be a function with input length n. Then
H is d-Hamming correlation robust function (CRF) if, for any
a1, . . . ,am , b1, . . . , bm with ai , bi ∈ {0, 1}n and wH(bi) ≥ d for all i ∈ [m],
the following distribution, induced by random sampling of s ← {0, 1}n, is pseu-
dorandom:

H(a1 ⊕ [b1 ∧ s]), . . . , H(am ⊕ [bm ∧ s])

The IKNP protocol uses this assumption with n = d = κ. In that case,
the only valid choice for bi is 1κ, and the distribution simplifies to H(a1 ⊕
s), . . . , H(am ⊕ s). In our case, we use n > d = κ, so other choices for the bi
values are possible.

2.4 Private Set Intersection

PSI is a special case of secure two-party computation, and we use the stan-
dard security definitions for two-party computation in this work. The guarantees
of PSI are captured in the ideal functionality FPSI defined in Fig. 3. For secu-
rity against malicious parties, we use the framework of universal composability
(UC) [6].

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension 409

Fig. 3. PSI ideal functionality FPSI.

Fig. 4. The IKNP protocol for OT extension.

2.5 The IKNP OT Extension: A Reminder

It is well-known that oblivious transfer cannot be obtained from scratch using
only symmetric-key primitives [29]. OT extension [3] refers to the idea that
parties can perform only a small number κ of OTs (using public-key primitives),
and then, using only symmetric-key operations thereafter, obtain N � κ effective
instances of OT. Modern OT extension protocols follow the overall structure of
the IKNP protocol [31]. In Fig. 4 we review the variant of the IKNP protocol
where the sender’s OT payloads are chosen uniformly.

410 B. Pinkas et al.

From the correctness of the base OTs, we have that:

qi = ti ⊕ si · (ti ⊕ ui) =

{
ti if si = 0
ui if si = 1

This relationship can be extended across the rows of the N × κ matrices to
obtain: Q(i) = T (i) ⊕ s · (T (i) ⊕ U(i)), where T (i) and U(i) correspond to the
rows of T and U . Then:

Q(i) ⊕ s · P (i) =
(
T (i) ⊕ s · (T (i) ⊕ U(i))

)
⊕ s · (T (i) ⊕ U(i) ⊕ C(i))

= T (i) ⊕ s · C(i) =

{
T (i) if ri = 0
T (i) ⊕ s if ri = 1

From this we can deduce that Bob’s output is m∗
i = mi,ri

, whereas mi,1−ri
=

H(T (i) ⊕ s). From the correlation-robust property of H, this value is pseudo-
random from Bob’s perspective.

3 Our Main Protocol

3.1 A Conceptual Overview: PSI from a Multi-point OPRF

A conceptually simple way to realize PSI is with an oblivious PRF (OPRF)
[19,23], which allows a sender Alice to learn a [pseudo]random function F , and
allows the receiver Bob to learn F (yi) for each chosen item in his set {y1, . . . , yn}.
If Alice has items {x1, . . . , xn}, she can send F (x1), . . . , F (xn) to Bob. If the
output of F is sufficiently long, then except with negligible probability we have
F (xi) = F (yj) if and only if xi = yj . Hence, Bob can deduce the intersection
of the two sets. The fact that F is pseudorandom ensures that for any item
xi
∈ {y1, . . . , yn}, the corresponding F (xi) looks random to Bob. Hence, no
information about such items is leaked to Bob.

Sparse OT Extension: Key Idea. We can interpret IKNP OT extension
(Fig. 4) as an OPRF as follows: Define the function F (i) = mi,0. Clearly the
sender who knows the key of F can compute F (i) for any i. The receiver can set
his i’th choice bit in the OT to be ri = 0 if he chooses to learn F (i) (in this case
he learns mi,0), and use ri = 1 if he chooses not to learn F (i) (now he learns
mi,1). To learn k OPRF outputs, the receiver includes k 0s among his choice
bits. The security of OT extension implies that the receiver learns nothing about
F (i) whenever ri = 1, and the sender learns nothing about the ri bits.

This yields an OPRF of the form F : [N] → {0, 1}κ, where N is the number of
rows in the OT extension matrix. To be useful for PSI, N should be exponentially
large, making this simple approach extremly inefficient. The following two key
observations allow us to make the above approach efficient:

1. The parties require only random access to the large OT extension matrices.
In the PSI application, they only read the n � N rows indexed by their

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension 411

PSI inputs. While IKNP defines the matrices T,U,Q by expanding base OT
values via a PRG, we instead expand with a PRF4.

2. Besides the base OTs, the only communication in IKNP is when Bob sends
the N × κ matrix P . In PSI, Bob only has knowledge of the n � N rows of
P indexed by his PSI input. Yet he must not let Alice identify the indices
of these rows. Our idea is to have Bob interpolate a degree-n polynomial P
where P (y) is the correct “target row” of the IKNP OT extension matrix, for
each y in his PSI input set. He then sends this polynomial P instead of
a huge matrix. This change reduces Bob’s communication from O(Nκ) to
O(nκ), allowing N to be exponential.

The polynomial P is distributed as a random polynomial (hiding Bob’s
inputs) since all rows of the IKNP matrix are pseudorandom from Alice’s point
of view. The more important concern is whether Bob learns too much. For exam-
ple, suppose Bob interpolates P on points {y1, . . . , yn}, but P happens to match
the correct “IKNP target value” on some other y∗
∈ {y1, . . . , yn} as well. This
would allow Bob to learn whether Alice holds y∗, violating privacy. We argue
that: (1) When the OT extension matrix is sufficiently wide, all relevant values
P (y∗) are sufficiently far in Hamming distance from their “target value”. (2)
When this is true, then Bob gets no information about Alice’s items not in the
intersection.

Comparison to Other PSI Paradigms. Other state-of-the-art PSI protocols
(e.g., [35,45]) can also be interpreted as constructing an OPRF from OT exten-
sion ([35] is explicitly described this way). These works construct an OPRF that
the receiver can evaluate on only one point, and use various hashing tricks to
reduce PSI to many independent instances of such an OPRF. In contrast, we
construct a single instance of an OPRF where the receiver can evaluate many
points. With such a multi-point OPRF it is trivial to achieve PSI, as illustrated
above.

3.2 Protocol Details, Correctness, Performance

The formal details of our protocol are given in Fig. 5. We use n1 for the size of
Alice’s set and n2 for the size of Bob’s. We write InterpF({(x1, y1), . . . , (xd, yd)})
to denote the unique polynomial P over field F of degree less than d where
P (xi) = yi. In IKNP, the width of the matrices (and number of base OTs) is κ
whereas the width in our instantiation is � > κ, where � is determined by the
security analysis.

Costs. The main computational cost is evaluating the degree-n2 polynomial for
Alice and interpolating the polynomial for Bob. In the case of n1 = n2 = n this
can be done with O(n log2 n) field operations (details in Sect. 5.1).

4 In [26, Sect. 3.2] they also use a PRF rather than PRG, but for a completely different
purpose: random access to the OT extension matrix was used to parallelize OT
extension and reduce memory footprint.

412 B. Pinkas et al.

Fig.

Fig. 5. Our PSI protocol.

In the communication costs of the protocol, we exclude the cost of the base
OTs. These are fixed and don’t depend on the parties’ set sizes. Bob sends n2�
bits, while Alice sends n1(λ + log(n1n2)) bits. Generally speaking, � is much
larger than λ+log(n1n2), which suggests that the party with more items should
play the role of Alice. Concrete values are discussed later in Sect. 6.

Correctness. The idea behind the protocol is that for every row which Bob
uses to interpolate the polynomial P (namely, a row corresponding to an input
of Bob), Alice sends a value which is equal to the corresponding hash value that
Bob computes in the last step of the protocol.

Namely, following the discussion of IKNP, we can see that

Q(x) = T (x) ⊕ s · (
T (x) ⊕ U(x)

)
= T (x) ⊕ s · R(x)

and therefore in Step 5 Alice computes:

Q(x) ⊕ s · P (x) = T (x) ⊕ s · (P (x) ⊕ R(x)
)

(1)

Now, consider the case that both parties have a common item x∗. Bob constructs
P so that P (x∗) = R(x∗). Alice computes H(Q(x∗)⊕s ·P (x∗)) which from Eq. 1
gives Alice H(T (x∗)). Hence, Bob will include x∗ in his output.

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension 413

In case that x
∈ Y , P (x) and R(x) will be different in at least κ bits with over-
whelming probability (see the analysis below). Therefore, H

(
Q(x) ⊕ s · P (x)

)
is

pseudorandom from Bob’s view, under the Hamming correlation robust assump-
tion. If σ is the output length of H, then the probability that this random value
equals H(T (y)) for some y ∈ Y is n22−σ. By a union bound over the items of
X \ Y , the overall probability of Bob including an incorrect value in the output
is at most n1n22−σ. Hence, choosing σ = λ + log2(n1n2) ensures that this error
probability is negligible (2−λ).

3.3 Properties of Polynomials

We first prove some simple lemmas about polynomials that are used in the
security proof of our PSI protocol.

Hiding Bob’s Input. For security against a corrupt sender Alice, we simply
need Bob’s polynomial to hide his input:

Proposition 1. If z1, . . . , zd are uniformly distributed over F, then for all dis-
tinct x1, . . . , xd, the output of InterpF({(x1, z1), . . . , (xd, zd)}) is uniformly dis-
tributed. In particular, the distribution does not depend on the xi’s.

Proof. Viewing polynomial interpolation as a linear operation, we have the fol-
lowing, where p0, . . . , pd−1 are the coefficients of the polynomial.⎡

⎢⎢⎢⎣
p0
p1
...

pd−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 x1 x2
1 · · · xd−1

1

1 x2 x2
2 · · · xd−1

2
...

...
...

. . .
...

1 xd x2
d · · · xd−1

d

⎤
⎥⎥⎥⎦

−1

×

⎡
⎢⎢⎢⎣

z1
z2
...
zd

⎤
⎥⎥⎥⎦

Since the polynomial is computed as a nonsingular matrix times a uniform vector,
the polynomial’s distribution is also uniform. �

Security for Alice. In our protocol, Bob generates a polynomial P such that
P (y) = R(y) for his input points y ∈ Y . The security of the protocol relies on
the property that for all other points x
∈ Y , P (x) is far from R(x) in Hamming
distance (with very high probability).

Definition 2. (Bad polynomial). Let BadPolyR
F
(X,Y) be the procedure

defined as follows:

1. P := InterpF({(y,R(y)) | y ∈ Y })
2. Output 1 iff ∃x ∈ X \ Y s.t. dH(P (x), R(x)) < κ

Proposition 2. The probability that a polynomial interpolated over points in Y
also passes “too close” to another point in X is bounded by n1

|F|
∑

i<κ

(
log2 |F|

i

)
.

Formally, for all X,Y with |X| = n1,

Pr[BadPolyR
F
(X,Y) = 1] ≤ n1

|F|
∑
i<κ

(
log2 |F|

i

)
,

where the probability is over choice of random function R : F → F.

414 B. Pinkas et al.

Fig. 6. Field size log2 |F| for our protocol, with κ = 128.

Proof. For a fixed element v ∈ F, the probability of a uniformly chosen element
u ← F being closer than Hamming distance κ to v is

∑
i<κ

(
log2 |F|

i

)
/|F|. This

is the case when entering to the second step of the procedure in Definition 2,
where each P (x) is already fixed and R(x) is uniform in F. The claim follows by
a union bound over the (at most n1) items in X \ Y . �

On the Communication Complexity of the Protocol. Let � = log2 |F|. In our
protocol a small � leads to a bad event where two terms are close in Hamming
distance. Since this bad event is a one-time event, it suffices to bound its prob-
ability by the statistical security parameter λ. Since the bad event involves a
union bound over n, the concrete analysis involves both λ and n.

However, we could also just compute � assuming the worst case n = 2κ

(where κ is the computational security parameter), and we would get � = poly(κ)
and a bad-event probability of poly(n)/2κ. For our specific protocol/analysis,
� = 4.3 · κ appears sufficient to achieve bad event probability n/2κ (robust to a
wide range of κ). As an analogy: in any OPRF-based PSI protocol, receiver learns
F (y1), F (y2), . . . and sender sends F (x1), F (x2), For correctness it suffices to
truncate F to λ + 2log(n) bits, but of course it is quite enough to let F have
O(κ) bits.

In summary, asymptotically O(n · κ) bits do suffice for correctness/security,
but so do O(n · �) bits, where � is some function of λ, κ, n. The more fine-grained
analysis of � leads to less concrete communication, and that is why our concrete
analysis displays a dependency of � on n.

Hence, given a desired κ, n1, and Pr[BadPoly] one can solve for the smallest
compatible field size. A table of such field sizes is provided in Fig. 6.

3.4 Semi-honest Security

Theorem 1. The protocol in Fig. 5 securely realizes the PSI functionality of
Fig. 3 in a semi-honest setting, when F is a pseudo-random function, H is a κ-
Hamming correlation robust (Definition 1), and the parameter � is chosen accord-
ing to the table in Fig. 6.

Proof. Due to space limitation we only sketch here the simulators for the two
cases of corrupt Alice and corrupt Bob. The full security proof including (via
hybrid arguments) is defered to the full version.

Corrupt Alice. The simulator observes Alice’s inputs to the FROT primitive
and gives random qi as OT outputs in Step 2. The only other message Alice

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension 415

receives is the polynomial P in Step 4. Instead of P := InterpF({y,R(y)}y∈Y),
the simulator sends a uniformly random polynomial to Alice.

Briefly, this simulation is indistinguishable for the following reasons: R(y)
is pseudorandom from Alice’s view (by the security of the PRF which defines
the conceptual OT-extension matrices). Hence, the polynomial P is distributed
uniformly (from Proposition 1).

Corrupt Bob. The simulator for a corrupt Bob first obtains X ∩ Y from
the ideal PSI functionality. It simulates random outputs ti , qi from FROT. The
only other message received by Bob is the set O in Step 5. To simulate this
message, the simulator computes n′ = n1 − |X ∩ Y | and uniformly samples
values z1, . . . , zn′ . It then simulates O = {H(T (x)) | x ∈ X ∩ Y } ∪ {z1, . . . , zn′}.

This simulation is indistinguishable because P (x) and R(x) will differ in at
least κ bits for every x ∈ X \ Y (Proposition 2), and as long as that is true, the
corresponding outputs of H will be pseudorandom (Definition 1).

3.5 Optimizations: Reducing Alice’s Communication

Recall that Alice’s communication consists of n1 OPRF outputs, each of length
λ + log(n1n2). In the full version, we discuss techniques to reduce this cost to
roughly λ + log n1 bits per item.

3.6 Security Against Malicious Sender

Our protocol is secure against a malicious sender if F is modeled as a non-
programmable random oracle. (In the full version we show that our protocol is
insecure against a malicious receiver.)

Theorem 2. The protocol in Fig. 5 securely realizes the PSI functionality
of Fig. 3 against a malicious sender Alice, when F is modeled as a (non-
programmable) random oracle.

Proof (Proof Sketch). The simulator plays the role of honest receiver Bob and the
ideal FROT functionalities in steps 1 and 2, observing Alice’s FROT-input s and
generating random outputs {qi}i∈[�]. Throughout the protocol, the simulator
also observes all of Alice’s queries to the random oracle F . Without loss of
generality, we can assume that whenever Alice makes a query of the form F (qi , x)
to the random oracle, where qi is one of the FROT-outputs, it also queries F (qj , x)
for all j ∈ [�]. The simulator observes Alice’s oracle queries and maintains a list

C = {x | Alice queried F on some F (qi , x)}.

In step 4, the simulator sends a random polynomial P . In step 5, the simulator
receives a set O from the corrupt Alice and computes

X̃ = {x ∈ C | H(Q(x) + s · P (x)) ∈ O},
and finally sends X̃ to the PSI ideal functionality.

In the full version we use a hybrid argument to formally prove the indistin-
guishability of this simulator. ��

416 B. Pinkas et al.

4 The Fast Protocol Variant

The biggest performance bottleneck in our protocol is interpolating and evaluat-
ing extremely high-degree (e.g., d = 220) polynomials over large (e.g., |F| > 264)
finite fields. To reduce this computational cost, we employ a technique of hash-
ing the items into bins, and performing PSI (involving lower-degree polynomials)
within each bin. This general technique is quite common in the PSI literature,
and two different types of hashing have been suggested in previous work. How-
ever, we introduce a new hashing technique that (to the best of our knowledge)
has not been suggested previously for PSI. As we illustrate, previous protocols
are not able to immediately benefit from this new hashing technique—only our
approach enjoys the advantages of this new approach.

4.1 Previous Hashing Techniques

In simple hashing, parties choose a random hash function h : {0, 1}∗ → [m]
and assign each item x to bin with index h(x). Since if Alice and Bob have the
same item they both map it to the same bin, then they can perform a separate
PSI within each bin. The load of each bin leaks information (i.e., it cannot be
simulated just given the intersection), and therefore the parties must pad each
bin up to a maximum size with dummy items. For example, with n items and
m = O(n/ log n) bins, the expected load of each bin is n/m = O(log n) and
the maximum load B is O(log n) with high probability. In practice, B may be
4 to 5 times higher than n/m, meaning that about 80% of the items are
dummies.

In Cuckoo hashing (used in [35,45]), the parties choose two hash function
h1, h2 : {0, 1}∗ → [m]. The receiver Bob places his items into m bins so that
x is placed in either h1(x) or h2(x), and each bin contains at most one item.
Alice places each of her items x in both locations h1(x) and h2(x). As above,
Bob must pad each bin with dummy items to contain exactly one item (we can
avoid dummy items for Alice). The parties perform a PSI in each bin. Cuckoo
hashing leads to roughly 20% dummy items (this is for Cuckoo hashing with
three hash functions; Cuckoo hashing with two hash functions has even more
dummy items), not to mention extra protocol costs associated with the stash (a
special bin for items that cannot find a home in the Cuckoo hashing).

4.2 Our High-Level Approach

An important feature of Cuckoo hashing is that it results in at most one item
per bin for Bob. This situation is the ideal fit for the underlying OPRF primitive
of [35,45], which allows the receiver (Bob in this case) to evaluate the OPRF
on a single value. With Cuckoo hashing, the PSI performed in each bin can be
achieved with such an OPRF.

But our sparse OT extension technique results in a multi-point OPRF prim-
itive that allows the receiver to evaluate on many values. Hence we have no
need to constrain the receiver Bob to have only one item per bin. We propose

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension 417

to use a generalization of Cuckoo hashing called 2-choice hashing. Similar to
Cuckoo hashing, there are two hash functions h1 and h2, and item x can be
placed in either h1(x) or h2(x). Unlike Cuckoo hashing, there is no restriction
on the number of items per bin.

Cuckoo hashing is also often synonymous with an online hashing procedure,
where all the items are processed in a single pass. For the application to PSI,
though, all items are known upfront. We are free to make the best assignment
of items to bins, taking into account global information about all items.5

These facts about 2-choice hashing indeed lead to much better performance
(in terms of dummy items). The following theorem of Czumaj, Riley, and Schei-
deler [14] shows that when the bins are allowed to contain significantly many
items, no dummy items are needed at all!

Theorem 3 ([14]). Let h1, h2 : {0, 1}∗ → [m] be two random functions. Suppose
there are n items and m bins, where each item x can be placed in either h1(x) or
h2(x). Let L = �n/m�. If n = Ω(m log m) then with high probability there exists
an optimal assignment, where each bin contains no more than L items.

The proof uses an explicit randomized algorithm to generate an optimal
assignment. However, we found that the algorithm takes prohibitively long to
converge. Also, its analysis of error probability is not concrete. However, if we
are willing to settle for merely an “almost optimal” assignment of items to bins,
the following theorem of Sanders, Egner, and Korst [49] suggests that one can
be found quite efficiently:

Theorem 4 ([49]). Let n,m, h1, h2 be as above, with L = �n/m�. There is a
deterministic algorithm running in time O(n log n) that assigns at most L + 1
items to each bin, with probability 1 − O(1/m)L over the choice of h1, h2.

Algorithm 1. FindAssignment(X,m, h1, h2)

1: for x ∈ X do
2: Assign item x to bin h1(x)

3: for x ∈ X do
4: Assign item x to whichever of

h1(x), h2(x) currently has fewest items

We propose the two-pass heuristic
in Algorithm 1 for assigning items to
bins. This very simple, linear time
algorithm seems to perform well. In
our experience, it never fails to find
a near-optimal assignment with max-
imum load L+1 = �n/m�+1, for the
parameters we use. In the rare event
that it does fail, more iterations of the
final loop are likely to succeed.

With such a near-optimal assignment, we can see that for each of the n/m
bins there is only one dummy item. In practice, we set n/m to be the statistical
security parameter λ so that an assignment exists with overwhelming probability.
Setting n/m = λ = 40 leads to the most dummy items one would ever consider
for our protocol, but still there are only 2.5% (= 1/40) dummy items.
5 This observation was concurrently and independently noted in [18]; however, their

focus is exclusively on Cuckoo hashing, with at most one item per bin. They do not
consider our generalized 2-choice hashing.

418 B. Pinkas et al.

Fig. 7. PSI protocol using 2-choice hashing optimization.

In the overall PSI protocol, Bob will send a polynomial of degree �n/m� + 1
for each bin. For each item of Alice x ∈ X, she considers both locations h1(x)
and h2(x) and derives an OT-extension/OPRF output for both possibilities. She
then sends these 2 outputs for each item.

4.3 Protocol Details

The details of the protocol are given in Fig. 7. It mostly follows the outline
given above, with one important exception. Most of the time, Alice computes
two distinct mask values for each x ∈ X: one for h1(x) and one for h2(x). But
h1(x) = h2(x) is possible with probability 1/m. In that case, depending on how
one specifies this edge case, Alice will either send a repeated mask or send less
masks overall. Either way, this event leaks to Bob that Alice holds such an item
satisfying h1(x) = h2(x). This issue is common to all PSI protocols that use
Cuckoo hashing as well.

To address this issue, we let Bob append to each item y a bit b ∈ {1, 2}
indicating which hash function hb was used to assign it to this bin. If h1(y) =
h2(y) we just choose b arbitrarily. Then the OT extension & polynomials are
done with respect to these “extended” values. Now in the case of h1(y) = h2(y),
Bob will only learn the OT-extension output for one variant y‖b, but Alice (if
she has such an item) will still be able to compute two distinct OT-extension
outputs for the two variants.

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension 419

Theorem 5. The protocol in Fig. 7 securely realizes the PSI functionality of
Fig. 3 in a semi-honest setting, with F,H as in Theorem1 and � according to the
column indexed by 2n1 in Table Fig. 6.

The semi-honest security of the modified protocol follows with a very similar
proof as the original protocol, therefore we omit it for the sake of space. Unlike
the original protocol, this new one is not secure against malicious adversaries
(details are given in the full version).

Efficiency. Theorem 4 suggests that a near-optimal assignment of items to bins
exists with probability at least 1 − 2−n2/m. Hence, we must have n2/m ≥ λ, the
statistical security parameter, to ensure that Bob’s hashing step succeeds with
overwhelming probability. Setting m = n2/λ, the cost of all interpolations is now
m·O(λ log2 λ) = O(n2 log2 λ) field operations if using the asymptotically efficient
algorithm, or m · O(λ2) = O(n2λ) using the simpler quadratic interpolation
algorithm (which is indeed faster in practice for such small polynomials). In
either case, this is a significant improvement over O(n2 log2 n2) of the basic
protocol (not to mention that distinct bins allow for easy parallelization). The
cost of Alice’s polynomial evaluation is similarly improved.

No matter what m we choose (assuming n2/m is an integer), there will always
be exactly m dummy items for Bob. The percentage of dummy items is m/n2,
so Alice’s communication will increase by a multiplicative factor of (1 + m/n2).
We suggest m = n2/λ, so Alice’s communication increases by a (1+1/λ) factor.
As mentioned above, for λ = 40, this increase is only 2.5%.

Recall from Sect. 3.3 that the parameter � (width of OT extension matrix)
depends on the number of rows of the OT extension matrix that Alice accesses.
With this new optimization, she accesses twice as many rows (rows x‖1 and x‖2
for every x ∈ X). This leads to a slight increase in �. For the concrete parameters
we consider (see Fig. 6), � must increase by only 2 bits.

5 Optimizations for High-Degree Polynomials

Despite using fast polynomial algorithms, having one party (the interpolating
party) interpolating the huge-degree polynomial leads to a long idle time by
the other party (evaluating party), which implies a serious computational bot-
tleneck. In this section we show that in case that the x and y coordinates of
the interpolation points are drawn from the domains Dx and Dy, respectively,
such that Dx � Dy, the idle time can be significantly shrinked. To this end,
we developed new techniques, namely, slice & stream and sub-product tree reuse
that allow a significant reduction of the overall time of the protocol. The former
technique means that we “slice” the interpolation points into several parts, then
we can interpolated each part over a smaller field and hence faster; when a slice
is ready it is sent immediately to the other party for evaluation (i.e. streaming
of polynomials). The latter technique is based on our observation that one sub-
algorithm that constructs a sub-product tree (which is used both in interpolation

420 B. Pinkas et al.

and evaluation) depends only on the x-values of the interpolation points. Since
all polynomial slices use the same x-values and differ only on their y-values we
can reuse the same sub-product tree for all slices! We believe our techniques are
valuable for other applications that require an implementation of high-degree
polynomial algorithms over large fields. As demonstrated in Sect. 5.2, our tech-
niques reduce the overall interpolation and evaluation time by up to 60%.

In Sect. 5.1 we give an overview on known polynomial algorithms and in
Sect. 5.2 we introduce our techniques in detail.

5.1 Background: Interpolation and Multi-point Evaluation

Trivial implementations of polynomial interpolation and multi-point evaluation
of arbitrary points adopt the O(n2) algorithms as they are sufficient for the typi-
cal use cases of low-degree polynomials. However, in our case the degree is in the
millions, so the O(n2) algorithms are completely impractical. Faster algorithms,
by Moenck and Borodin from 1972 [40], achieve computational complexity of
O(n log2 n). In the following we present a high level overview on the algorithms,
while a detailed description is given in the full version.

Let X = {x1, . . . , xn} ⊂ {0, 1}α and Y = {y1, . . . , yn} ⊂ {0, 1}β .

– Given X and Y , the problem of polynomial interpolation is to find the unique
(n − 1)-degree polynomial P that passes through the points {(xi, yi)}i∈[n].

– Given X and an (n − 1)-degree polynomial Q, the problem of multi-point
evaluation is to compute Q(X) = {Q(xi)}i∈[n].

Algorithms for both problems follow the divide-and-conquer approach such
that in every iteration the problem is reduced to two half-size problems. Combin-
ing the solutions of the half-size problems to a solution of the full-size problem
has a computational complexity of O(n log n). Formally, let T (n) be the time to
solve the interpolation and multi-point evaluation problems for |X| = |Y | = n,
then the recurrence relation is: T (n) = 2 ·T (

n
2

)
+O(n log n) = O(n log2 n) where

the second equality follows from the Master theorem [10, Chap. 4].
The evaluation and interpolation algorithms are separated to two and four

sub-procedures, respectively, as follows.

Evaluation. Algorithm MultipointEvaluate(Q,X) invokes M ←
BuildTree(X) and outputs Y ← Evaluate(Q,M).

– BuildTree(X) constructs and outputs a binary tree of polynomials, denoted
M . Its leaves are the 1-degree polynomials {(x − a)}a∈X and each node is
the multiplication of its two children. Thus, if the degrees of the childs are d1
and d2 then the node’s degree is d1 · d2. If n is a power of 2 then the degree
of M ’s root is n.

– Evaluate(Q,M) evaluates the polynomial Q on X, note that X is implicitly
“encoded” within M . The idea is that for every node m ∈ M (recall that m is
a polynomial), if (x − a) divides m then Q(a) = R(a) where R = Q mod m

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension 421

(i.e. it is the remainder of the division of Q by m). To obtain Q(a) we replace
each node m with (Parent(m) mod m) and finally output the result on
that leaf. The remainder is computed in O(n log n) arithmetic operations in
the underlying field.

Interpolation. Algorithm Interpolate(X,Y) invokes M ← BuildTree(X)
as described above. Let M0 be M ’s root, it computes M0’s deriva-
tive by M ′

0 ← Derivative(M0) and then evaluates M ′
0 over X

by A ← MultipointEvaluate(M ′
0,X). Finally it invokes P ←

InternalInterpolate(M,A) and outputs P . The purpose of the sub-
algorithms is to enable the division of a n-size problem to two n

2 -size prob-
lems. Note that within MultipointEvaluate there is a construction of
the same sub-product tree as in BuildTree, therefore we can skip this
and construct M only once. The time of the algorithm is the sum of
the times of these four sub-algorithms, TInterpolate(n) = TBuildTree(n) +
TDerivative(n) + TMultipointEvaluate(n) + TInternalInterpolate(n) = O(n log2 n) +
O(n) + O(n log2 n) + O(n log2 n) = O(n log2 n).

5.2 Polynomial Slicing and Streaming

Let x1, . . . , xn ∈ {0, 1}α and y1, . . . , yn ∈ {0, 1}β (where β > α) then we interpo-
late the polynomial P using points {(xi, yi)}i∈[n] over a field F where |F| = 2β .
For the sake of exposition suppose that α divides β and let ρ = β

α . For each i we
define yj

i for j ∈ [ρ] such that |yj
i | = α and yi = y1

i || . . . ||yρ
i . We can “cut” P into ρ

slices P1, . . . , Pρ such that for every xi it holds that P (xi) = P1(xi)|| . . . ||Pρ(xi).
This is done by interpolating the polynomial Pj (for j ∈ [ρ]) using the points
{(xi, y

j
i)}i∈[n]. This requires a smaller field, i.e. we need that |F| = 2α, hence Pj

is produced in a shorter time.
To demonstrate the above let us fix some parameters. Assume that the

parties’ only task is to interpolate P using n = 220 points and then perform
a multi-point evaluation of n points; also assume an ideal network with zero
latency. Consider first performing this task directly to a “single-slice” polynomial
over a field of size 2β where β = 512. Interpolation and multi-point evaluation
take 233 + 167 = 400 s (detailed measurements are given in the full version. We
ignore milliseconds here and in the following). Utilizing the slicing technique with
α = 128 we have ρ = β

α = 512
128 = 4 slices. This means that the interpolating party

produces the sliced polynomials one after the other and sends them immediately
(i.e. without waiting until for all polynomials to be ready) and the evaluating
party evaluates them one by one upon reception. This leads to 67 · 4 + 49 = 317 s
which is 81% of the trivial implementation.

Further Utilizing the Slicing Technique. As shown above, the slicing and
streaming technique leads to an improvement over the trivial implementation.
The following observation significantly pushes forward the slicing technique:

422 B. Pinkas et al.

Building the polynomials tree M in the evaluation process depends only on
x1, . . . , xn, which means this can be performed only once for all slices. Similarly,
in the interpolation algorithm the tasks of building the polynomials tree, cal-
culating the derivative and evaluating it depends only on x1, . . . , xn and can
be performed once and for all slices. Thus, taking β = 512, α = 128 and
n = 220 the one-time tasks of building the sub-product tree, calculating the
derivative and evaluating it takes 12889 + 86 + 33144 = 46119 ms. The one-time
task of the evaluating party (building the sub-product tree) takes 13959 ms and
can surely be done simultaneously. Then the interpolating party produces 4
polynomial slices, each takes 19471 ms, and the evaluating party evaluates them
upon reception. Since the evaluation task is more expensive than the interpo-
lating task (the part being performed for each slice) the total running time is
46119+4·35835 = 189459 ms. This is less than 60% of the initial slicing technique
and 48% of the trivial implementation. Both of our optimizations, together with
the trivial implementation are illustrated in Fig. 8.

Fig. 8. Illustrating the slicing technique. The lines between •’s represent the interpo-
lating party and the lines between the ✕’s represent the evaluating party. Solid (blue)
lines illustrate the trivial implementation (overall 400 s), dashed (black) lines illustrate
the initial slicing technique (overall 317 s) and dotted-dashed (red) lines illustrate the
final optimization (overall 189 s). (Color figure online)

Communication. Observe that this technique does not increase the communi-
cation complexity of the protocol. This is due to the fact that instead of sending
2n coefficients of P , each of size β, we send 2n coefficients of Pj , each of size α,
for every j. This leads to exactly same communication size of 2n · α · ρ = 2n · β.

6 Implementation and Performance Comparison

Recall that we have presented two variants of our protocol. In this section we
will refer to them as:

spot-low: the communication-optimized variant presented in Fig. 5, in which
Bob sends one large polynomial and Alice sends one OPRF output
per item.

spot-fast: the speed-optimized variant presented in Fig. 7, in which Bob uses
2-choice hashing and Alice sends two OPRF outputs per item.

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension 423

Table 1. Theoretical communication costs of PSI protocols (in bits), calculated using
computational security κ = 128 and statistical security λ = 40. Ignores cost of base
OTs (in our protocol and KKRT) which are independent of input size. φ is the size
of elliptic curve group elements (256 is used here). � is width of OT extension matrix
(depends on n1 and protocol).

Protocol Communication n = n1 = n2

216 220 224

KKRT (3 + s)(λ + log(n1n2))n1 + 1.2�n2 1042n 1018n 978n

DH-PSI φn1 + (φ + λ + log(n1n2))n2 584n 592n 600n

spot-low 1.02(λ + log2(n2) + 2)n1 + �n2 488n 500n 512n

spot-fast 2(λ + log(n1n2))n1 + �(1 + 1/λ)n2 583n 609n 634n

We also compare our protocols to the following:

KKRT: the leading OT-extension-based protocol from [35].
DH-PSI: Diffie-Hellman-based PSI, instantiated with either Koblitz-283 (K283)

or Curve25519 (25519) elliptic curves.

Our focus in this section is on the case where n1 = n2, i.e., the parties have
sets of equal size. We report some findings also for the case of unequal set sizes in
the full version. Our complete implementation is available on GitHub: https://
github.com/osu-crypto/SpOT-PSI.

6.1 Theoretical Analysis of Communication

We first compare the theoretical communication complexity of protocols
(Table 1). This measures how much communication the protocols require on an
idealized network where we do not care about protocol metadata, realistic encod-
ings, byte alignment, etc. In practice, data is split up into multiples of bytes (or
CPU words), and different data is encoded with headers, etc.—empirical mea-
surements of such real-world costs are given later in Table 2.

For set sizes in the range 216 to 224, our spot-low variant has the least commu-
nication of any of the protocols we consider: ∼15% less than DH-PSI and ∼50%
less than KKRT. Our spot-fast variant uses up to ∼5% more communication
than DH-PSI but 35–43% less than KKRT.

We note that KKRT uses a parameter � similar to ours (corresponding to
the width of the OT extension matrix), but their parameter is always slightly
larger. This is because (as in our protocol) � depends on how many rows of the
OT matrix the sender accesses, which is more than in ours ((3+s)n1 in KKRT).

The communication optimization (described in Sect. 3.5) can indeed be
applied to other protocols as well (DH-PSI, KKRT, and spot-fast). For example,
when n = 220 it saves 16 bits per item (only 2.6 MB in total), so the effect
does not have significant impact on any comparisons. However, the optimization
would be much more expensive or cumbersome to implement since it requires all

https://github.com/osu-crypto/SpOT-PSI
https://github.com/osu-crypto/SpOT-PSI

424 B. Pinkas et al.

OPRF outputs to be computed and sorted, but without this optimization they
can be sent as they are computed.

6.2 Experimental Comparison

We now present a comparison based on implementations of all protocols.

Implementation Details. We used the implementation of KKRT provided by
the authors. We implemented DH-PSI using the Miracl library implementations
of Koblitz K-283 and Curve25519 elliptic curves.

For our own protocols, we implemented the polynomial interpolation and
evaluation algorithms using a field of prime order p, where p is the smallest prime
greater than 2� and � is bit length of the output of our sparse-OT extension (the
� in Fig. 6). We discuss this choice in the full version. The polynomial operations
are implemented using the NTL library v10.5.0.

Note that both KKRT and our protocols require the same underlying prim-
itives: a Hamming correlation-robust function H, a pseudorandom function F ,
and base OTs for OT extension. We instantiated these primitives exactly as
KKRT: both H and F instantiated using AES, and base OTs instantiated using
Naor-Pinkas [42]. We use the implementation of base OTs from the libOTe
library6.

All protocols use a computational security κ = 128 bits and a statistical
security λ = 40 bits.

Fig. 9. Gbps between AWS sites.

Experimental Setup: AWS Bench-
mark. We performed a series of
benchmarks on the Amazon web ser-
vices (AWS) EC2 cloud computing
service. We use the M5.large machine
class, which is classified as the cur-
rent state-of-the-art “general pur-
pose” instance. These machines have
2 vCPU (2.5 GHz Intel Xeon) and 8
GB RAM. We considered other kinds
of instances, but ultimately rejected
them. The cheaper T2 class (“burstable”) was found to be too unstable for our
workloads, while the more expensive C5 class (“compute-optimized”) resulted in
more monetary cost than M5 in all cases.

Based on the geographic region of the two parties, we can realize different
network speeds, as illustrated in Fig. 9. The network speeds given in the table
were measured using the iperf3 command.7 This collection of AWS sites was
chosen to give a large range of bandwidth performance.

6 https://github.com/osu-crypto/libOTe.
7 See https://iperf.fr/iperf-download.php.

https://github.com/osu-crypto/libOTe
https://iperf.fr/iperf-download.php

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension 425

Experimental Setup: Local Benchmark. The AWS benchmarks use a real
network connection which is sometimes unpredictable. For a highly controlled
experimental network, we benchmarked protocols on a single machine: Intel Xeon
2.30 GHz, 256 GB RAM, 36 physical cores (note that all implementations are
single-threaded unless otherwise indicated). We simulated a network connection
using the Linux tc command, communicating via localhost network. We simulated
a LAN setting with 10 Gbps network bandwidth and 0.2 ms round-trip latency,
and various WAN settings with 100 Mpbs, 10 Mpbs, 1 Mpbs and 80 ms round-trip
latency.

AWS Pricing Scheme. Part of our motivation for evaluating protocols on
AWS is to report and compare their real-world monetary costs. Hence we describe
now the pricing scheme for AWS at the time of our comparison.8 Costs are
associated with both running time and data transfer, and both depend on the
data center (geographic location) at which the instance runs.

The running-time cost per hour (in USD) for our instance type M5.large is
0.096 (USA), 0.101 (Mumbai), 0.12 (Sydney), 0.153 (Sao Paolo).

The data transfer cost differ depending on whether both endpoints are within
AWS, and the data-center of the endpoints. We consider two network settings:

– In a business-to-business (B2B) setting between two fixed organizations
that want to regularly perform PSI on their dynamic data, both endpoints
may be within the AWS network.

– In an internet setting where one organization wishes to regularly perform
PSI with a dynamically changing partner, only one party may be within the
AWS network.

These considerations have the following effect on the cost of data transfer on
AWS:

– Inbound data transfer from the Internet to EC2 is free.
– Outbound data transfer from EC2 to the Internet incurs the highest cost.

Rates in USD per 1 GB are 0.09 (USA), 0.1093 (Mumbai), 0.114 (Sydney),
0.25 (Sao Paolo).

– Outbound data transfer between two instance at the same site cost 0.01
USD/GB per direction.

– Outbound data transfer to another AWS site costs (in USD/GB): 0.02 (USA),
0.086 (Mumbai), 0.14 (Sydney) and 0.16 (Sao Paolo)

– Additional cost is for using a public IP address, which is indeed required for
the scenarios we consider; this costs 0.01 USD/GB for all sites.

We compute the total monetary cost of a protocol execution as follows. Let
T be the runtime in hours of the protocol; let X1 and X2 be the outbound
communication of the first and second parties, resp.; let CT1,CT2 be the uptime

8 The pricing can be found in https://aws.amazon.com/ec2/pricing/on-demand/.

https://aws.amazon.com/ec2/pricing/on-demand/

426 B. Pinkas et al.

Fig. 10. Monetary cost (in USD) per 1000 runs of PSI on 216 (left) and 220 (right)
items, in the B2B network scenario.

Fig. 11. Monetary cost (in USD) per 1000 runs of PSI on 216 (left) and 220 (right)
items, in the ‘Internet’ network scenario.

rate of the machines run by the parties; and let CX1,CX2 be the outbound data
transfer rates for the machines/regions of the parties. The cost in USD is then:

TotalCost = T · (CT1 + CT2) + X1 · CX1 + X2 · CX2 + 0.01 · (X1 + X2)

6.3 Experimental Results

AWS Monetary Cost. To limit the number of protocol executions performed
on AWS, we focus on set sizes of 216 and 220 as they are representative of realistic
set sizes for aformentioned applications of PSI.

The monetary cost of PSI protocols is presented in Figs. 10 and 11. We see
that our spot-fast protocol variant is the cheapest protocol in all of the settings
we consider. In the B2B scenarios it is 4%–35% for PSI of 216 items and 10%–
40% cheaper for PSI of 220 items, compared to the second cheapest protocol
(KKRT). In the ‘Internet’ scenarios it is 13%–38% cheaper for PSI of 216 items
and 30%–40% cheaper for 220 items. The numerical costs can be found in the
full version.

Break-Even Point with KKRT. Our protocol has less communication than
the faster KKRT protocol. As the network becomes slower, the protocol becomes
more network-bound and our advantage in communication eventually leads to

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension 427

Fig. 12. Evaluated run times over AWS EC2 with descending bandwidth. Solid and
dotted lines are for PSI over 216 and 220 items respectively. The 1–5 numbers at the
x-axis of the figure represent the configurations 1–5 described in the table to the right.

Table 2. Total communication cost in MB and running time in seconds comparing our
protocol to [35] and HD-PSI, with T ∈ {1, 4} threads; each item has 128-bit length.
10Gbps network assumes 0.2 ms RTT, and others use 80 ms RTT. Cells with “—”
denote setting not supported or program out of memory.

Params. Protocol Comm. Total time (seconds)

n1 n2 (MB) 10Gbps 100Mbps 10Mbps 1Mbps

T = 1 4 1 4 1 4 1 4

224 224 DH-PSI (K-283) — — — — — — — — —

DH-PSI (25519) — — — — — — — — —

KKRT 1955.2 63.3 — 261.9 — 1852.1 — — —

spot-low — — — — — — — — —

spot-fast 1254.5 440.1 146.1 474.6 173.3 1071.8 1062.8 — —

220 220 DH-PSI (K-283) 84.0 1141.8 338.5 1152.5 336.9 1158.2 334.2 1472.4 854.3

DH-PSI (25519) 76.1 2110.6 632.8 2290.5 634.5 2325.7 673.0 2497.8 1014.0

KKRT 127 4.61 — 17.47 — 120.1 — 1154.5 —

spot-low 63.1 270.3 179.2 273.4 185.3 299.6 206.67 687.2 311.16

spot-fast 76.4 25.6 7.6 27.8 10.53 66.2 66.0 646.3 645.3

216 216 DH-PSI (K-283) 5.2 69.8 20.20 70.77 21.93 71.10 22.8 80.1 44.4

DH-PSI (25519) 4.7 136.9 39.4 140.4 40.1 142.8 40.8 151.3 48.2

KKRT 8.06 0.43 — 1.99 — 8.4 — 74.5 —

spot-low 3.9 12.8 8.8 13.7 9.8 15.1 10.9 41.1 39.1

spot-fast 4.71 1.90 0.77 2.91 2.02 5.46 5.36 40.19 40.08

212 212 DH-PSI (K-283) 0.32 4.59 1.87 4.65 1.67 4.82 1.56 5.18 2.75

DH-PSI (25519) 0.29 8.72 2.58 8.90 27.5 9.10 2.80 9.59 2.98

KKRT 0.53 0.22 — 0.87 — 1.24 — 5.7 —

spot-low 0.25 0.87 0.61 1.4 1.2 1.4 13.23 3.17 3.0

spot-fast 0.3 0.4 0.21 1.14 0.99 1.16 1.01 3.58 3.51

faster performance than KKRT. We compared the running time of the PSI pro-
tocols on networks of different speeds, in order to identify the “break-even point”
where our protocol (spot-fast) becomes faster than KKRT.

428 B. Pinkas et al.

From the running times in Fig. 12, we find that the spot-fast variant overtakes
KKRT as the fastest PSI protocol when network bandwidth drops below the 10–
30 Mbps range. The concrete times are detailed in the full version.

Detailed, Controlled Local Benchmarks. A more detailed benchmark for
set sizes 212 − 224 and controlled network configurations is given in Table 2. We
also considered the effect of multi-threading on protocol performance, with T ∈
{1, 4} threads. The implementation of KKRT does not support multi-threading.

The communication of our protocol is approximately 2× smaller than that
of [35]. For example, computing the intersection of sets of size n = 220, spot-fast
and spot-low variants require 76.43 MB and 63.18 MB respectively, whereas [35]
requires 127 MB of communication, (a 1.7 − 2.0× improvement).

In a single-threaded LAN setting, spot-fast variant is several times slower
than KKRT, requiring 25.62 s with n = 220. Applying the same parameters to
[35] results in a running time of 4.1 s. The running time of spot-fast variant is
improved significantly by multi-threading, improving to 7.61 s when utilizing 4
threads.

In the WAN setting, spot-fast becomes the fastest protocol on slow (10 Mbps
and 1 Mbps) network, due to its lower communication cost. For example, in the
10 Mpbs network, for sets of size n = 220, spot-fast takes 66.2 s, while [35] requires
120.13 s, a 1.8× improvement.

Both of our protocols outperformed DH-PSI. For example, spot-low requires
63 MB while DH-PSI (Curve25519) requires 76 MB, a ∼12% improvement.

In terms of computation, even our slower spot-low variant is based on
symmetric-key operations, and is significantly faster than DH-PSI. We also
examined the effect of multi-threading. Similar to DH-PSI, spot-fast variant is
extremely amenable to parallelization. Concretely, we parallelize our algorithm
at the level of bins. Both DH-PSI and spot-fast yield a similar speedup of about
3.5× by using 4 threads.

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: ACM CCS, pp. 535–548 (2013)

2. Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: size-hiding private
set intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19379-8 10

3. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: STOC, pp. 479–488 (1996)

4. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

5. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: ACM CCS, pp. 498–507 (2007)

https://doi.org/10.1007/978-3-642-19379-8_10
https://doi.org/10.1007/978-3-642-19379-8_10
https://doi.org/10.1007/11745853_14

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension 429

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

7. Cerulli, A., De Cristofaro, E., Soriente, C.: Nothing refreshes like a RePSI: reactive
private set intersection. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS,
vol. 10892, pp. 280–300. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93387-0 15

8. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: ACM CCS 2017, pp. 1243–1255 (2017)

9. Cho, C., Dachman-Soled, D., Jarecki, S.: Efficient concurrent covert computation
of string equality and set intersection. In: Sako, K. (ed.) CT-RSA 2016. LNCS,
vol. 9610, pp. 164–179. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29485-8 10

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

11. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality
of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.)
CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35404-5 17

12. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 13

13. De Cristofaro, E., Tsudik, G.: Experimenting with fast private set intersection.
In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang,
X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 55–73. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30921-2 4

14. Czumaj, A., Riley, C., Scheideler, C.: Perfectly balanced allocation. In: Arora, S.,
Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) APPROX/RANDOM -2003. LNCS,
vol. 2764, pp. 240–251. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45198-3 21

15. Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private contact
discovery. Proc. Priv. Enhancing Technol. 2018(4), 159–178 (2018)

16. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: ACM CCS 2013, pp. 789–800 (2013)

17. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28, 637–647 (1985)

18. Falk, B.H., Noble, D., Ostrovsky, R.: Private set intersection with linear commu-
nication from general assumptions. ePrint Archive, Report 2018/238 (2018)

19. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

20. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. Cryptology ePrint Archive, Report 2017/409
(2017). http://eprint.iacr.org/2017/409

21. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017, Part I. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8 22

22. Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure private set
intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478,
pp. 154–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 6

https://doi.org/10.1007/978-3-319-93387-0_15
https://doi.org/10.1007/978-3-319-93387-0_15
https://doi.org/10.1007/978-3-319-29485-8_10
https://doi.org/10.1007/978-3-319-29485-8_10
https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-30921-2_4
https://doi.org/10.1007/978-3-540-45198-3_21
https://doi.org/10.1007/978-3-540-45198-3_21
https://doi.org/10.1007/978-3-540-30576-7_17
http://eprint.iacr.org/2017/409
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-030-17659-4_6

430 B. Pinkas et al.

23. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78524-8 10

24. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol. 10174, pp. 175–203. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8 8

25. He, X., Machanavajjhala, A., Flynn, C.J., Srivastava, D.: Composing differential
privacy and secure computation: a case study on scaling private record linkage. In:
ACM CCS, pp. 1389–1406 (2017)

26. Henecka, W., Schneider, T.: Faster secure two-party computation with less memory.
In: ASIA CCS, pp. 437–446 (2013)

27. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS (2012)

28. Huberman, B.A., Franklin, M.K., Hogg, T.: Enhancing privacy and trust in elec-
tronic communities. In: EC, pp. 78–86 (1999). https://dblp.org/rec/conf/sigecom/
HubermanFH99

29. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2 2

30. Ion, M., et al.: Private intersection-sum protocol with applications to attributing
aggregate ad conversions. ePrint Archive 2017/738 (2017)

31. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

32. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

33. Kiss, Á., Liu, J., Schneider, T., Asokan, N., Pinkas, B.: Private set intersection for
unequal set sizes with mobile applications. PoPETs 2017(4), 177–197 (2017)

34. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short
secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 4

35. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched OPRF
with applications to PSI. In: ACM CCS (2016)

36. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 17, pp. 1257–1272. ACM
Press (2017)

37. Lambæk, M.: Breaking and fixing private set intersection protocols. Master’s thesis,
Aarhus University (2016)

38. Manulis, M., Pinkas, B., Poettering, B.: Privacy-preserving group discovery with
linear complexity. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
420–437. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-
2 25

39. Meadows, C.: A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In: IEEE S&P (1986)

40. Moenck, R., Borodin, A.: Fast modular transforms via division. In: Switching and
Automata Theory, pp. 90–96 (1972)

41. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st ACM
STOC, pp. 245–254. ACM Press, May 1999

https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-662-54365-8_8
https://dblp.org/rec/conf/sigecom/HubermanFH99
https://dblp.org/rec/conf/sigecom/HubermanFH99
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-642-13708-2_25
https://doi.org/10.1007/978-3-642-13708-2_25

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension 431

42. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.)
12th SODA, pp. 448–457. ACM-SIAM (2001)

43. Patra, A., Sarkar, P., Suresh, A.: Fast actively secure OT extension for short
secrets. In: NDSS (2017)

44. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: USENIX 2015 (2015)

45. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: USENIX 2014, pp. 797–812 (2014)

46. Rabin, M.O.: How to exchange secrets with oblivious transfer. ePrint Archive
2005/187, (2005)

47. Resende, A.C.D., Aranha, D.F.: Unbalanced approximate private set intersection.
ePrint Archive 2017/677 (2017)

48. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execu-
tion. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 17,
pp. 1229–1242. ACM Press (2017)

49. Sanders, P., Egner, S., Korst, J.: Fast concurrent access to parallel disks. Algorith-
mica 35(1), 21–55 (2003)

50. Shamir, A.: On the power of commutativity in cryptography. In: de Bakker, J., van
Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 582–595. Springer, Heidelberg
(1980). https://doi.org/10.1007/3-540-10003-2 100

51. Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.U.: Privacy preserving error
resilient DNA searching through oblivious automata. In: ACM CCS, pp. 519–528
(2007)

https://doi.org/10.1007/3-540-10003-2_100

Universally Composable Secure
Computation with Corrupted Tokens

Nishanth Chandran1(B), Wutichai Chongchitmate2(B), Rafail Ostrovsky3,
and Ivan Visconti4

1 Microsoft Research India, Bengaluru, India
nichandr@microsoft.com

2 Department of Mathematics and Computer Science, Faculty of Science,
Chulalongkorn University, Bangkok, Thailand

wutichai.ch@chula.ac.th
3 Department of Computer Science and Department of Mathematics,

University of California, Los Angeles, CA, USA
rafail@cs.ucla.edu

4 DIEM, University of Salerno, Fisciano, Italy
visconti@unisa.it

Abstract. We introduce the corrupted token model. This model gener-
alizes the tamper-proof token model proposed by Katz (EUROCRYPT
’07) relaxing the trust assumption on the honest behavior of tokens.
Our model is motivated by the real-world practice of outsourcing hard-
ware production to possibly corrupted manufacturers. We capture the
malicious behavior of token manufacturers by allowing the adversary to
corrupt the tokens of honest players at the time of their creation.

We show that under minimal complexity assumptions, i.e., the exis-
tence of one-way functions, it is possible to UC-securely realize (a variant
of) the tamper-proof token functionality of Katz in the corrupted token
model with n stateless tokens assuming that the adversary corrupts at
most n − 1 of them (for any n > 0). We apply this result to existing
multi-party protocols in Katz’s model to achieve UC-secure MPC in the
corrupted token model assuming only the existence of one-way functions.
Finally, we show how to obtain the above results using tokens of small
size that take only short inputs. The technique in this result can also
be used to improve the assumption of UC-secure hardware obfuscation
recently proposed by Nayak et al. (NDSS ’17). While their construction

W. Chongchitmate—Work done while the author was at Department of Computer
Science, University of California, Los Angeles.
R. Ostrovsky—Research supported in part by NSF-BSF grant 1619348, DARPA Safe-
Ware subcontract to Galois Inc., DARPA SPAWAR contract N66001-15-C-4065, US-
Israel BSF grant 2012366, JP Morgan Faculty Award, OKAWA Foundation Research
Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John
Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corpora-
tion Research Award. The views expressed are those of the authors and do not reflect
position of the Department of Defense or the U.S. Government.
I. Visconti—Work done in part while the author was visiting UCLA.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 432–461, 2019.
https://doi.org/10.1007/978-3-030-26954-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_14

Universally Composable Secure Computation with Corrupted Tokens 433

requires the existence of collision-resistant hash functions, we can obtain
the same result from only one-way functions. Moreover using our main
result we can improve the trust assumption on the tokens as well.

1 Introduction

UC-secure MPC. Secure multi-party computation [27] (MPC) allows mutually
distrustful parties to jointly compute a function f , while preserving the pri-
vacy of their inputs/outputs. Canetti [8] introduced the notion of universal
composability (UC) to model secure MPC in an environment where multiple
concurrent executions of different protocols take place. Unfortunately UC secu-
rity is significantly harder to achieve than plain secure computation. In fact,
in the plain model (i.e., without trusted set-up assumptions, physical assump-
tions, superpolynomial-time simulation and so on) most functionalities can not
be UC-realized [11,13]. Impossibility results exist even for the basic case of self-
concurrent composition with static inputs [1,4,25].

In light of these impossibility results, various trust assumptions have been
studied in order to obtain UC-secure constructions. Among these, one of the
most studied is that of tamper-proof hardware tokens. Hofheinz et al. [32], con-
sidered the notion of “tamper-proof devices” in the form of signature cards in
order to realize UC-secure protocols. They show how to construct UC-secure
commitment and zero-knowledge arguments using tamper-proof signature cards
as the setup assumption. The more general formalization of tamper-proof hard-
ware tokens was given by Katz [35]. Katz’s tamper-proof token functionality
abstractly captures a physical tamper-proof hardware token that is created and
sent by a sender to a receiver. The receiver can use the token to execute the
program stored in it multiple times as a black-box, on inputs of his choice.
Tokens can be either stateful (i.e., they retain an updatable memory between
executions; this is a stronger trust assumption because it additionally assumes a
tamper-proof updatable memory) or stateless (i.e., all executions start with the
same configuration). Motivated by the practical relevance of the model, as well
as the challenging open questions on the feasibility of protocols in this model,
UC-security with tamper-proof tokens has been widely explored with a focus on
the more challenging case of stateless tokens [5,14,15,17,20,29,31,36,39].

Token Manufacturing. Assuming that tokens are honestly generated is clearly a
very demanding assumption that essentially requires honest players to rely on the
honesty of a token manufacturer that they trust. Hence, while the tamper-proof
token model works as a physical assumption in theory, in practice it degener-
ates into a model where the security of an honest player depends on the honest
behavior of an external player chosen by the honest player1. All prior works that
consider hardware-based security critically rely on the honest player being able to
reliably construct tamper-proof tokens. An attempt to relax this assumption was
1 A similar question for the case of Common Reference String (CRS) generation was

answered in the multi-string model [30].

434 N. Chandran et al.

done in [23] focusing only on the set intersection functionality, without consider-
ing UC security. More recently, [2] considered the problem of outsourcing circuit
fabrication where a given circuit is compiled into smaller components, each of
which can be outsourced to a possibly malicious manufacturer. The components
(both honestly and maliciously manufactured) are then re-assembled honestly to
get a “secure hardware token”. Their (stand-alone) security model only allows
an adversary black-box access to the rebuilt circuit, and not the individual com-
ponents and additionally also requires one “small” tamper-proof token that can
be generated honestly in a trusted manner. In contrast, we do not wish to make
any assumptions on small trusted components and consider composability. The
above state of affairs brings us to the following natural question.

“Can we obtain UC-secure hardware-based security in a world
where most hardware token manufacturers may be corrupt?”

1.1 Our Results

We resolve the above open problem in the positive under minimal complexity
assumptions. We now discuss all our contributions in detail.

The Corrupted Token Model. We consider the concrete scenario where the sender
of a token does not have the ability to physically create a tamper-proof token, but
instead has to rely on possibly untrusted manufacturers. In case a manufacturer
is corrupted (and may be colluding with other parties), the program embedded
in the token may be leaked, or replaced in its entirety. In other words, tokens in
this model can be tampered arbitrarily at the time of creation.

To model security, we define a functionality for UC security allowing the
design of protocols that make use of tokens generated by potentially adversarial
manufacturers. In turn, we propose a new model extending the stateless version
of Katz’s tamper-proof token model in [35], that we call corrupted token model.
In our new model, the adversary is allowed to corrupt tokens when they are
created by honest parties. The attack happens during the token creation phase,
and the adversary learns all information that the honest player wanted to store
in the token. Moreover the adversary is allowed to replace the token with a
different token of its choice, including even a stateful one.

The corrupted token model abstractly represents the process of outsourcing
the production of hardware tokens to possibly corrupted manufacturers. This is
the reason why we allow corruption to occur only at the time the tokens are
created. Our model also allows adaptive corruption of the manufacturers, in the
sense that the adversary may choose to corrupt the next request of token gen-
eration of an honest player depending on what has been learnt so far. Finally,
the adversary can freely decide the content of corrupted tokens and can even
make it stateful. This is similar to dealing with a real-world hardware Trojan
as described in [21,38] with a few key differences. In the model of [21], there
exists an incorruptible “master circuit,” whose role is to manage communication
between tokens honestly. The model of [38] also has a “controller” circuit, whose

Universally Composable Secure Computation with Corrupted Tokens 435

role is similar to the master circuit in [21], but is allowed to be compromised. On
the other hand, our model does not have a token with a specific role and allows
any token to be corrupted. Both [21] and [38] do not consider UC security and
additionally the construction of [38] is based on variants of ElGamal public-key
encryption and Schnorr signature scheme, whose security are based on hard-
ness of elliptic curve Diffie-Hellman and discrete logarithm, respectively. Our
construction is UC-secure and is based on the minimal assumption of OWFs.

Katz’s Token Functionality in the Corrupted Token Model. We construct a pro-
tocol in the corrupted token model using n tokens that UC-realizes a stronger
variant of Katz’s tamper-proof token functionality. We call such a variant the
tamper-proof token with abort functionality. The difference between the tamper-
proof token with abort functionality and the original Katz’s tamper-proof token
functionality is that our variant allows the adversary to learn that a token has
been sent (even between honest parties), and can choose to abort and prevent
the delivery of that token. This captures the realistic scenario where an adver-
sary physically prevents token delivery and thus stops the protocol that relies on
tokens. Still the adversary learns nothing about the program in the uncorrupted
token generated by the honest party. The need for abort in the functionality is
unavoidable as seen through the following reasoning. Suppose the tamper-proof
token functionality (without abort) can be realized by n corruptible tokens.
Then, the adversary in the corrupted token model corrupts all but one of the
tokens and replaces them with corrupted tokens that do nothing. Now, if the
tamper-proof token functionality without abort is realized with the remaining
(uncorrupted) token, then this token must hold the complete program and secrets
of the honest party (so that it can carry out the computation by itself). However,
in an alternate corruption strategy, this token is also susceptible to corruption,
and if the adversary had instead corrupted only this token, she would have learnt
all secrets of the original honest token in Katz’s model resulting in the insecurity
of the protocol. Hence, the functionality must allow for aborts.

It is easy to see that this argument extends to the case of any dishonest major-
ity (i.e., even with only �n/2 + 1� corrupted tokens). Our protocol UC-realizes
the tamper-proof token with abort functionality assuming that the adversary
corrupts at most n − 1 tokens where n is the number of token creations invoked
by an honest party. We remark that, if we were willing to make the assumption
that a majority of token manufacturers were honest, then we can avoid aborting
the protocol when the adversary corrupts a (minority) fraction of the tokens.

The notion of token transfer across the environment in various sessions in
the Global-UC (GUC) framework has been studied recently by Hazay et al. [31].
Obtaining GUC security is more challenging and we leave the question of GUC
security in the corrupted token model to future research. Still, we stress that in
many natural scenarios, UC security already suffices and achieves a very strong
level of security under composition with any other protocol as long as there is a
way to avoid the sharing of the same setup among sessions.

A Compiler to Reduce Trust in Tokens. As our main result, we show how to
transform any protocol in Katz’s tamper-proof token model into a protocol in

436 N. Chandran et al.

our corrupted token model thereby improving the trust assumption of several
hardware token-based protocols. Indeed the transformed protocol remains secure
even when n−1 out of the n tokens created by honest parties are corrupted at the
time of creation. Our transformation preserves UC security and only assumes the
existence of one-way functions (OWF). We focus on stateless tokens since this is
the milder physical assumption and is the most challenging case. We remark here
that requiring one token to be uncorrupted is unavoidable. To see this, suppose
for the sake of contradiction, there is a protocol UC-realizing a tamper-proof
token functionality using n corruptible tokens that remains secure even when
an adversary corrupts all n tokens. Now suppose an adversary in the secure
computation protocol corrupts all but one of the parties and corrupts all the
tokens manufactured by this party. Now, if the resulting protocol still remains
secure, then this would give us a UC-secure MPC protocol (secure against all-
but-one corruption) with no trusted setup, as all “trusted” components created
by the honest party are corrupted (in more detail, generating and sending a token
could then be replaced by sending a message with the description of the program
of the token). This contradicts known impossibility results [11,13]. Hence, we
must assume that at least one hardware token created by every honest party
is uncorrupted. Additionally, the existence of OWFs is the minimal assumption
that one can hope for since, as argued in [29], any unbounded adversary can query
a stateless tokens exponentially many times to learn the programs embedded.

Our transformation can be applied to existing protocols in the Katz’s token
model to obtain new results in the corrupted token model. For instance, starting
with the recent UC-secure MPC constructions in the tamper-proof token model
based on OWFs [31], we get the same results in the corrupted token model
assuming only OWFs.

Other Results and Sub-protocols. As an additional result, we improve the result
of [39] by removing the need of collision-resistant hash functions, and apply our
transformation to obtain an obfuscation protocol in the corrupted token model
based solely on OWFs. Moreover, as a building block for our constructions, we
present a simultaneous resettable zero-knowledge (sim-res ZK) argument and
UC-secure MPC for any well-formed functionality in the correlated randomness
(CR) model assuming OWFs only. In the CR model, each party has access to
a private, input-independent, honestly generated, string before the execution of
the protocol by the correlated randomness functionality. These protocols may be
of independent interest. We stress that correlated randomness is not required as
a setup for our construction achieving UC security in the corrupted token model
and is only used as an intermediate building block.

1.2 High-Level Overview of Our Constructions

Realizing Katz’s Token Functionality. We begin by describing how to UC-realize
Katz’s token functionality in the (n, n−1)-token-corruptible hybrid model, (i.e.,
the model where n tokens are generated by an honest player and at most n − 1
are corrupted by the adversary at the time of token generation). We refer to

Universally Composable Secure Computation with Corrupted Tokens 437

the final protocol that realizes Katz’s functionality as Π. Protocol Π will make
use of a UC-secure n-party protocol Π ′ and a sim-res ZK argument ΠrsZK with
straight-line simulator, both in the CR model2. At a very high level, we construct
Π as follows. Given a description of the program P for Katz’s tamper-proof token
(such a description is specified by the protocol in Katz’s model) we first create
n shares of the description of P using an n-out-of-n threshold secret sharing
scheme. Then n tokens are created as follows. The program of the i-th token
includes: (1) the i-th share; (2) commitments of all shares; (3) decommitment
information for the i-th share; (4) correlated randomness to run the n-party UC-
secure MPC in the CR model; (5) correlated randomness to run a simultaneous
resettable ZK in the CR model; (6) seed for a PRF; and (7) random tape for
commitment of the seed.

When a user must query a Katz token implementing program P on input
x, he/she must first send each token this input value (a dishonest user may
send different values to different tokens). We shall refer to the “version” that
the ith token receives by xi. When queried with an input xi, the i-th token first
commits to its input (i.e., xi) and to its seed for the PRF (see point 6 above). The
randomness used for the first commitment comes from evaluating the PRF using
the above seed and the input xi while the randomness for the second commitment
is the string stored in the token (see point 7 above). These commitments provided
by all the tokens together is called the determining message. For the remaining
execution of Π, each token obtains the random tape needed by Π ′ and ΠrsZK by
computing the PRF on the determining message (and a unique ID value) using
its seed. The tokens will execute an n-party UC-secure MPC protocol in the CR
model, Π ′ (see point 4 above). More specifically, the i-th token, if honest, will run
the code of the i-th player of Π ′ on input the following pair: the received input
(i.e., xi) and the i-th share of P (see step 1 above). Π ′ will securely compute
the functionality that reconstructs P from the shares that are part of the inputs
of the players and then executes P on input x. The reconstruction aborts if
x �= xi for some i. Each Π ′ message m sent by the ith token is followed by a
simultaneous resettable ZK argument of knowledge (see step 5 above) proving
that the message m is computed correctly according to the committed PRF seed
and the i-th committed share (see step 2 and 3 above) of P .

The resettable soundness of the ZK argument guarantees that a corrupted
token cannot deviate from the underlying MPC protocol Π ′ even when the
adversary can execute any tokens any number of times on any inputs of his choice
(even after resetting the state of the honest token several times). Moreover, the
security of Π ′ guarantees that the adversary corrupting all but one token does
not learn anything about the inputs of uncorrupted tokens other than xi he
chooses and the output. This means the adversary only learns at most n − 1

2 The correlated randomness is the key that allows us to avoid the impossibility of
resettably-secure computation in the standard model proven in [25]. However, we
stress that correlated randomness is not required by our main theorem for UC secu-
rity with tamper-proof stateless corruptible tokens from OWFs.

438 N. Chandran et al.

shares of the program P , and thus learns nothing about P by the security of the
secret sharing scheme.

Since tokens are stateless, we employ the technique in [39] to encrypt the state
of the token and output it along with the message. Each subsequent invocation of
the token requires an encrypted previous state as additional input. A symmetric
key encryption scheme is used to prevent the adversary to learn or modify states
of uncorrupted tokens. This allows us to construct a simulator that simulates
both the MPC and ZK messages using their simulators.

Simultaneous Resettable ZK Argument in the CR Model. The above discussion
assumed the existence of a sim-res ZK argument ΠsrZK with straight-line simu-
lator in the CR model. We obtain this result in 2 steps starting from a 3-round
public-coin ZK argument Σ, in the CRS model with straight-line simulation
based on OWFs (such as the one in [37]).

First, we add the argument of knowledge (AoK) property with straight-line
witness extractor to Σ in the CR model. For this, we use a technique similar
to the one used in [24] where a prover encrypts a witness, sends the encryption
as a message, and then uses Σ to prove that it is the encryption of the right
witness. To avoid the use of stronger assumptions than OWFs, we replace a
public-key encryption scheme in [24] with a secret-key encryption scheme and
a commitment scheme. The commitment of a secret key and its corresponding
decommitment information are given to the prover while only the commitment
is given to the verifier as part of their correlated randomness. The resulting
protocol is still 3-round, public-coin and with straight-line simulation.

In the second step, we add a simultaneous resettable witness indistinguisha-
bility (sim-res WI) argument of knowledge from OWFs to construct a simulta-
neous resettable zero-knowledge argument in the CR model with straight-line
simulation. To prevent a malicious prover from resetting, the verifier uses a PRF
applied to the statement and the prover’s message to generate a string c to play
in the second round of Σ instead of uniformly sampling her message. Then, to
prevent a malicious verifier from resetting, the verifier runs the prover of the
sim-res WI to prove that c is generated honestly or that a given long string d
is an output of a PRG on input a short seed. Since d is uniformly chosen as
part of the correlated randomness, the verifier cannot maliciously manipulate c.
Resettable soundness can then be shown through a hybrid experiment where d
is generated from the PRG similarly to [19].

UC-secure n-party Computation in the CR Model. Our main result also assumed
Π ′, i.e., a UC-secure n-party computation protocol in the CR model for any well-
formed functionality. We next outline how we construct Π ′ based on OWFs.

First, we consider UC-secure MPC in the OT-hybrid model against a mali-
cious adversary corrupting all but one party such as the one in [34]. Since OT
can be generated using correlated randomness [6], we focus towards obtaining a
UC-secure MPC in the CR model. However, we face a new challenge. Since our
final protocol can be executed on polynomially many inputs, where the polyno-
mial is not apriori known to the correlated randomness generator, we must be
able to produce “different” randomness for any input on which the protocol is

Universally Composable Secure Computation with Corrupted Tokens 439

generated. This would require a stronger version of the OT extension technique
from [7] that allows the extension to super-polynomial number of OTs. This is
similar in spirit to constructing a PRF that can generate “super-polynomial”
randomness from a short seed (even though it will only be evaluated on polyno-
mially many inputs). In particular, we modify the technique in [7] to construct
UC-secure unbounded number of OTs from a small number of OTs distributed
as setup in the CR model. We do this as follows. In the OT extension protocol
in [7], a sender uses a circuit that first computes a PRG that takes a small input
and outputs a large random string and then uses the string to obtain a large
number of OTs. The circuit is then garbled using Yao’s garbled circuit and sent
to a receiver. The receiver then uses a small number of OTs to obtain a garbled
input correspond to its small random seed. In our approach, the sender uses a
PRF that allows us to generate super-polynomial number of such random strings.
While a computationally bounded sender cannot compute a garbled circuit of
super-polynomial size, it only needs to send a smaller subcircuit to compute
the ith string in each execution. This garbled circuit is of polynomial size as in
Beaver’s version, computing only the required amount of OTs at a time. This
is repeated to give an (apriori) unbounded number of OTs. Composing the UC-
secure unbounded number of OTs in the CR model and a UC-secure MPC in
the OT-hybrid model, we get UC-secure MPC in the CR model.

Getting Rid of Correlated Randomness. While the building blocks Π ′ and ΠrsZK

are in the CR model, our main protocol Π is not. Both subprotocols will be run
by n tokens created by a single honest party to emulate the token functionality of
a single well-formed token in Katz’s model. Therefore, in Π, the party requesting
the creation of a token can generate and give the correlated randomness to n
different manufacturers. Hence, the correlated randomness is not a setup of our
main result, and is computed by an honest player in our protocol to run subpro-
tocols that need it. An adversary can replace the correlated randomness in n−1
of those tokens arbitrarily, and still our protocol is secure because Π ′ and ΠrsZK

are secure with respect to such behavior. In fact, as a further optimization, if we
wish to create tokens that are completely independent of each other, then the
honest player in our protocol can create tokens that will only contain private
keys to encryption and MAC schemes – the correlated randomness and shares of
program required by the token can then be provided as encrypted and MACed
input by the honest player to the token when they need to be used.

Reducing the Token Size. In order to ensure that the queries to tokens are short
and the size of each token is small, we consider a technique used in [39] where a
large input is fed into a token in blocks of small size. To ensure the consistency
of the input, in [39] a Merkle’s tree based on CRHFs is used to commit to the
input beforehand. We improve on this technique by replacing the Merkle’s tree
with a new construction based on OWFs. At a very high level, we require the
user to “commit” to his/her input by feeding the input bit-by-bit into to the
token. The token will produce an authentication tag for every bit of the input
sequentially, such that the final authentication tag will act as a “commitment” to
the user’s input. This result is of independent interest as an improvement on the

440 N. Chandran et al.

assumption of [39]. We generalize the technique of “bounded-size” tokens to our
corrupted token protocol. We first give a variant of corrupted token functionality
where the token size is independent of program P and the token can only accept
queries of (apriori) fixed, constant size. We then construct a protocol that UC-
realizes the corrupted token functionality in the corrupted “bounded-size” token
hybrid model using the above technique. Finally, we combine this protocol with
our main result to give a protocol that UC-realizes ‘standard’ tamper-proof token
functionality in the corrupted “bounded-size” token hybrid model.

2 Preliminaries

A polynomial-time relation R is a relation for which it is possible to verify in
time polynomial in |x| whether R(x,w) = 1. Let us consider an NP-language L
and denote by RL the corresponding polynomial-time relation such that x ∈ L
if and only if there exists w such that RL(x,w) = 1. We will call such a w a valid
witness for x ∈ L. Let λ denote the security parameter. A negligible function ν(λ)
is a non-negative function such that for any constant c < 0 and for all sufficiently
large λ, ν(λ) < λc. We will denote by Prr[X] the probability of an event X over
coins r, and Pr[X] when r is not specified. The abbreviation “PPT” stands for
probabilistic polynomial time. For a randomized algorithm A, let A(x; r) denote
running A on an input x with random coins r. If r is chosen uniformly at random
with an output y, we denote y ← A(x). For a pair of interactive Turing machines
(P, V), let 〈P, V 〉(x) denote V ’s output after interacting with P upon common
input x. We say V accepts if 〈P, V 〉(x) = 1 and rejects if 〈P, V 〉(x) = 0. We
denote by view

P (w)
V (x,z) the view (i.e., its private coins and the received messages)

of V during an interaction with P (w) on common input x and auxiliary input
z. We will use the standard notion of computational indistinguishability [28].

2.1 Building Blocks

The main building blocks of our construction include simultaneous resettable ZK
arguments and MPC in the CR model. Please see the full version of this paper [9]
for various definitions related to interactive argument systems, zero-knowledge
arguments of knowledge, witness indistinguishability and resettability in the CR
model, adapted from their counterparts [3,12,22] in the plain model. We also
present other standard definitions of commitments, secret sharing schemes and
pseudorandom functions that we make use of in our construction.

2.2 UC Security in the Correlated Randomness (CR) Model

The correlated randomness (CR) model is an extension of the CRS model where
each party has access to a string generated by a trusted third party. Unlike in
the CRS model, the strings for parties may be different, but possibly correlated
and unlike in the augmented CRS model of [10], honest parties can access their

Universally Composable Secure Computation with Corrupted Tokens 441

strings privately. Thus, it can be considered as a variant of the key registration
(KR) model of [10].

Our CR model is defined to be consistent with the one of [33], taking into
account the UC setting. A protocol φ in the CR model is defined with the cor-
responding correlated randomness functionality Fφ

corr, which generates a corre-
lated random string for each party in the protocol φ independently of the parties’
input. Each party can access its string (but not other parties’ random strings)
by invoking Fφ

corr. In the security proof, the ideal world simulator is allowed to
obtain the correlated random strings associated to all parties, thereby having an
advantage over the real-world adversary.

Let φ be n-party protocol in the CR model. Let D be a distribution on
S1 × . . . × Sn where Si is the set of possible random strings for party Pi. The
correlated randomness functionality Fφ

corr is defined in Fig. 1.

Fφ
corr

When receiving (sid) from Pi:

1. If there is no tuple of the form (sid),
(a) Generate (s1, . . . , sn) ← D(1λ).
(b) Store (sid, s1, . . . , sn).
Otherwise, retrieve the stored (sid, s1, . . . , sn).

2. Send (sid, si) to Pi.

Fig. 1. Correlated randomness functionality Fφ
corr

Definition 1. Let F be an ideal functionality and let φ be a multi-party protocol.
Then the protocol φ UC realizes F in Fφ

corr-hybrid model if ∀ PPT hybrid model
adversary A, ∃ a uniform PPT simulator S such that for every non-uniform
environment Z, the following two ensembles are computationally indistinguish-
able

{ViewFφ
corr

φ,A,Z(λ)}λ∈N ≈c {ViewF,S,Z(λ)}λ∈N.

3 Simultaneous Resettable ZK from OWFs

In this section, we construct a simultaneous resettable ZK argument in the cor-
related randomness model with straight-line simulation. The security of our con-
struction relies only on the existence of OWFs. The main building block for our
construction is a 3-round public-coin ZK argument system in the CRS model

442 N. Chandran et al.

with straight-line simulation based on OWFs (such as in [37]). Using this public-
coin argument system, we first construct a zero-knowledge argument of knowl-
edge (ZKAoK) in the CR model with straight-line simulation and extraction.
We then use this ZKAoK protocol to construct a simultaneously resettable zero-
knowledge protocol in the correlated randomness model, based only on OWFs.
We do so, in the following way: As part of the correlated randomness, the prover
is given the commitment t, to the seed of a PRF, s, as well as a long random
string d. The verifier is given the decommitment information (s and random-
ness) to this commitment t as well as d. Now, we have the verifier prove, using a
simultaneous resettable WI (srWI) argument (based on OWFs [16]), that: either
the verifier’s random message c in the ZKAoK protocol is the output of a PRF
(using seed s) on input the transcript so far, or that d is the output of a PRG
on input a short string. The prover verifies the srWI argument and if this is
successful, will execute the remainder of the ZKAoK taking c as the verifier’s
message. More details follow.

3.1 ZKAoK in the Correlated Randomness Model from OWFs

We first show how to convert a 3-round public-coin ZK argument system in
the CRS model with straight-line simulation (based on OWFs) into one that is
also an argument of knowledge (with straight-line simulation and straight-line
witness extractor) in the CR model. Let ΠZK = (K,P, V) be the ZK argu-
ment in the CRS model with a straight-line simulator S = (S1,S2) (e.g. [37]).
Let (KeyGen,Enc,Dec) be a CPA-secure secret key encryption scheme. Define
(K ′, P ′, V ′) in the CR model as in Fig. 2.

Lemma 1. ΠZKAoK is ZKAoK with straight-line simulator and witness extrac-
tor in the correlated randomness model.

For a proof of the above lemma, please see the full version of this paper [9].
Note that if the protocol ΠZK is 3-round and public-coin, the resulting protocol
ΠZKAoK is also 3-round and public-coin.

3.2 Simultaneous Resettable ZK in the CR Model from OWFs

We now construct a simultaneous resettable ZK argument system in
the correlated randomness model based on OWFs. Let ΠZKAoK =
(KZKAoK , PZKAoK , VZKAoK) be a 3-round ZK argument of knowledge protocol
in the CR model with transcript (m1, c,m2) where c ∈ {0, 1}λ is chosen uniformly
at random, a straight-line simulator SZKAoK = (S1,S2), and a straight-line wit-
ness extractor EZKAoK = (E1, E2) from Lemma 1. Let (PWI , VWI) be a srWI
argument (e.g. [16]). Let {fs}s be a family of pseudorandom functions such that
for s ∈ {0, 1}�0(λ), fs outputs c ∈ {0, 1}λ. Let f : {0, 1}�1(λ) → {0, 1}�2(λ) be a
PRG. We define ΠsrZK as in Fig. 3.

The proof of resettable soundness goes as follows. We first consider the exper-
iment with an imaginary protocol ΠF where a truly random function is used

Universally Composable Secure Computation with Corrupted Tokens 443

ΠZKAoK = (K , P , V)

K (1λ):

1. σ ← K(1λ), sk ← KeyGen(1λ). Let k = com(sk) and γ0 be the decommitment
information.

2. K outputs sP = (σ, sk, k, γ0) and sV = (σ, k).

Execution phase: P on input (x, w) and private string sP ; V on input x and
private string sV

1. P parses sP = (σ, sk, k, γ0), computes e ← Enc(sk, w) and sends e to V .
2. V parses sV = (σ, k).
3. P and V run P (w), V (σ, x) where x = (x, e, k) and w = (w, sk, γ0) to

prove that there exists w, sk, γ0 such that (x, w) ∈ RL and w = Dec(sk, e)
and k can be decommitted to sk using γ0.

4. V outputs the output of V .

Fig. 2. ZKAoK argument protocol ΠZKAoK in the correlated randomness model

instead of the PRF, and the verifier uses an alternate witness for the sim-res
WI. We will show that ΠF is resettably sound by contradiction. Finally, we
show that the probability that any resetting adversary can prove a false theo-
rem in ΠsrZK is negligibly close to that of ΠF through a series of hybrids. This
implies that ΠsrZK is also resettably-sound.

Lemma 2. The protocol ΠsrZK in the CR model is resettably-sound.

Lemma 3. Protocol ΠsrZK is resettable ZK in the CR model with a straight-line
simulator.

For proofs of the above lemmas, please see the full version of this paper [9].
Lemmas 2 and 3 together gives us the following theorem:

Theorem 4. Assuming the existence of OWFs, there exists a simultaneous reset-
table ZK argument protocol in the CR model with a straight-line simulator.3

4 MPC in the Correlated Randomness Model

In this section, we construct a UC-secure MPC protocol in the CR model based
on OWFs. The key ingredients are an MPC protocol in the OT-hybrid model
UC-secure against an adversary corrupting all but one party, and a protocol UC-
realizing unbounded number of OTs in the CR model. In [34], Ishai, Prabhakaran

3 Our ZK argument protocol also has a straight-line witness extractor, but it is not
necessary for our applications.

444 N. Chandran et al.

ΠsrZK = (K, P, V)

K(1λ):

1. (σP , σV) ← KZKAoK(1λ), s ← U 0(λ), d ← U 2(λ). Let t = com(s) and γ be
the decommitment information.

2. K outputs sP = (σP , t, d) and sV = (σV , s, γ, t, d).

Execution phase: P on input (x, w) and private string sP ; V on input x and private
string sV

1. P parses sP = (σP , t, d), runs PZKAoK(x, w, σP) to compute m1, and sends
m1 to V .

2. V parses sV = (σV , s, γ, t, d), runs VZKAoK(x, σV) to sends c = fs(x||m1)
on behalf of VZKAoK to P (running PZKAoK), and runs PWI(y, (s, γ)), with
y = (t, c, d, x, m1), proving to P running VWI(y) that one of the following
statements hold
– there exists s and γ such that t can be decommitted to s using γ and

c = fs (x||m1).
– there exists d such that d = f(d).

3. If VWI accepts, P continues running PZKAoK(x,w, σP) to compute m2 and
send it to V .

4. V runs VZKAoK on (m1, c, m2) and outputs the output of VZKAoK .

Fig. 3. Simultaneous resettable ZK argument protocol ΠsrZK in the CR model

and Sahai introduce the IPS compiler which combines an MPC with an honest
majority and a protocol secure against semi-honest adversary in the OT-hybrid
model to get a protocol UC-secure against malicious adversaries in the setting of
no honest majority. One of their main applications, by applying the compiler to
a variant of the protocol in [18], gives an MPC protocol in the OT-hybrid model
that is UC-secure against a malicious adversary corrupting all but one party,
assuming only a PRG. Unlike their main result, however, this MPC protocol
requires a large number of OTs, proportional to the circuit size.

To address the number of OTs required, we then construct a UC-secure
protocol for unbounded number of OTs in the CR model. The first attempt is
to use Beaver’s OT extension [7] from a bounded number of OTs which can be
generated using correlated randomness [6]. The problem with this approach is
that we can only get polynomial number (in the number of original OTs) of
OTs for some fixed polynomial known in advance. However, in our protocol, we
would require (an apriori) unknown number of OTs to be generated from the
initial OTs – this is because the number of OTs needed depends on the number
of times the hardware token is executed.

To get around this problem, we do as follows. We have the sender construct
a super-polynomial size Yao’s garbled circuit that computes the OTs. Of course,

Universally Composable Secure Computation with Corrupted Tokens 445

the sender cannot compute this entire garbled circuit. So, instead of sending
the garbled circuit to the receiver, the sender commits to the first layer of the
garbled circuit and the seed for the PRF that is used to generate the rest of the
garbled circuit. When the receiver queries for the ith OT, the sender sends a
section of the garbled circuit that suffices to compute the output followed by the
ZK argument that it is consistent with committed values. However, this section
of the circuit is now of polynomial size. This technique is similar in spirit to the
GGM [26] technique for constructing a PRF. We now present more details.

4.1 Beaver’s OT Extension

Before we construct a UC-secure protocol computing unbounded number of OTs,
we first recall Beaver’s construction [7]. Beaver considers two notions of OT.

– 1
2OT: the sender S has x0 and x1. At the end of the protocol, the receiver
learns (b, xb) for a random bit b, the sender learns nothing about b.

–
(
2
1

)
OT: the sender has x0 and x1, the receiver has a bit b. At the end of the

protocol, the receiver learns xb, the sender learns nothing about b.

In [6], Beaver shows that O(n) instances of
(
2
1

)
OT can be generated from O(n2)

instances of 1
2OT. In [7], the sender constructs a garbled circuit that takes a

short input for a PRG, then expands it to a long string. Each bit of the string is
used to select one of each pair of the sender’s inputs. In order to get a garbled
input corresponding to the receiver’s seed and the garbled circuit, the sender
and the receiver only need to perform a small number of OTs for each bit of the
short input. This OT extension technique extends λ

(
2
1

)
OTs to poly(λ) 1

2OTs.
This small number of OTs can be precomputed [6] as part of the correlated
randomness. While this OT extension results in 1

2OT, smaller number (but still
polynomial) of

(
2
1

)
OT can be generated using the same number of starting OTs.

4.2 Unbounded Number of OTs

We now construct a UC-secure protocol computing unbounded number of OTs
in the correlated randomness model assuming only OWFs. We consider the fol-
lowing modification to the OT extension above. Instead of a PRG, we use a
PRF to generate a pseudorandom ri for any i ∈ {0, 1}λ using seed s1 given to
the sender on input s2||i where s2 plays the same role as the seed in Beaver’s
extension protocol. Each ri can be used to select the sender’s input in the same
way as in Beaver’s protocol. However, the entire circuit (for all i) will have
exponential size. To get around this problem, for each i, the sender only sends a
garbled circuit corresponding to a subcircuit that suffices to compute an output
based on the sender’s ith input and ri. We also use UC-secure ZK argument
and commitment to ensure that malicious parties cannot deviate from the pro-
tocol. Since the whole garbled circuit is fixed given the committed values, the
sender cannot change the circuit and still successfully provide the ZK argument.
Sender security is proved by arguing that the receiver does not learn more than
the intended output by the property of the garbled circuits.

446 N. Chandran et al.

OTunbounded = (K, S, R)

K(1λ):

1. (σS, σR) ← K0(1λ), σZK ← KZK(1λ), s1, s2, s3 ← S. For i = 1, 2, 3, let
(ci, γi) ← com(si) with decommitment information γi ∈ {0, 1} (λ).

2. K outputs sS = (σS, σZK , s1, γ1, s3, γ3, c2) and sR = (σR, σZK , s2, γ2, c1, c3).

Before 1st Execution phase: S on private string sS; R on private string sR

1. S parses sS = (σS, σZK , s1, γ1, s3, γ3, c2). Let C(s, i) = CX,s1,c2(s, i) be a
circuit that outputs (r1, . . . , rn) = Fs1(s||i). Let (G, π) = GC(C; fs3(0)).

2. R parses sR = (σR, σZK , s2, γ2, c1, c3). R runs R0(s2, σR) to query π(s2) from
S running S0(π, σS). R records the output s.

3. R runs PZK(σZK , (s2, γ2)) to prove to S running VZK(σZK) that c2 can be
decommitted to s2 using γ2 and R queries for s2. If VZK rejects, S aborts.

ith Execution phase: S on input Xi = {xi,j
0 , xi,j

1 }j∈[n], where xi,j
b ∈ {0, 1} and

private string sS; R on private string sR

1. S parses sS = (σS, σZK , s1, γ1, s3, γ3, c2). Let Ci(s) = Ci,X,s1,c2(s) be a
circuit that first computes r = C(s, i), and if r = (r1, . . . , rn) = ⊥, out-
puts ((r1, xi,1

r1), . . . , (rn, xi,n
rn)); otherwise, outputs ⊥. S computes (Gi, π) =

GC(Ci; fs3(0), fs3(i)) such that fs3(0) is used for input wires (for consistency
of π) and fs3(i) is used for the rest. S sends Gi to R

2. R parses sR = (σR, σZK , s2, γ2, c1, c3); S runs PZK(σZK , (s1, s3, γ1, γ3))) to
prove to R running VZK(σZK) that Gi is generated using s1 and s3, which
decommitted to c1 and c3 using γ1 and γ3, respectively. R aborts if VZK

rejects.
3. R outputs GE(Gi, s).

Fig. 4. UC-secure unbounded OT protocol

Let G = (GC,GE) be Yao’s garbling circuit scheme where each gate and wire
are encrypted. For a circuit C, let (G, π) ← GC(C) consist of a garbled cir-
cuit C and garbled input function π such that π(i, x) is a garbled input for ith
position input x ∈ {0, 1}. Let OT0 = (K0, S0, R0) be a protocol for λ

(
2
1

)
OTs

in the CR model. Let {fs}s∈S be a family of PRFs with seed space S and
fs : {0, 1}2λ → {0, 1}p1(λ) for some polynomial p1. The unbounded OT protocol
construction, OTunbounded, is provided in Fig. 4. Each execution of OTunbounded

gives n = p1(λ) 1
2OTs similar to Beaver’s, which can be turned into p2(λ)(

2
1

)
OT for a smaller polynomial p2. A computational-bounded receiver can exe-

cute OTunbounded polynomially many times for any polynomial not known at
construction time (as long as the polynomial is smaller than 2λ).

Theorem 5. Assuming OWFs, the protocol in Fig. 4 is a UC-secure protocol
computing unbounded number of OTs in the CR model.

Universally Composable Secure Computation with Corrupted Tokens 447

For a proof of the above theorem, please see the full version of this paper [9].

4.3 MPC in the OT-Hybrid Model

Ishai et al. [34], construct a compiler that turns an MPC protocol that is secure
against adversary corrupting less than half of the parties (honest majority) into
a UC-secure MPC protocol in the OT-hybrid model. They apply this transfor-
mation to a variant of the MPC protocol from [18] to obtain the following:

Theorem 6 (Theorem 3 in [34]). Assuming a PRG, for any n ≥ 2, ∃ an
n-party constant-round MPC protocol in the OT-hybrid model that is UC-secure
against an active adversary adaptively corrupting at most n − 1 parties.

Combining this theorem with our UC-secure protocol for unbounded number
of OTs in the CR model, we get the following corollary.

Corollary 1. Assuming OWFs, for any n ≥ 2, there exists an n-party constant-
round MPC protocol in the CR model that is UC-secure against an active adver-
sary adaptively corrupting at most n − 1 parties.

5 Corrupted Token Model

We consider a generalization of the Katz’s tamper-proof token model [35] where
tokens can be corrupted by adversaries even when they are created by honest
parties. Our model is inspired by the real world application where honest users
cannot create tokens themselves. They instead rely on a number of manufactur-
ers, some of whom could be malicious. Thus, the secrets embedded in the token
description can be revealed to the adversary. Furthermore, the adversary can
replace the tokens with ones of its choice.

5.1 Katz’s Stateless Tamper-Proof Token Functionality Ftoken

Our model is based on the stateless version of Katz’s tamper-proof token
model [35]. In this model, each user can create a stateless token by sending its
description to Ftoken. The token is tamper-proof in the sense that the receiver can
only access it through Ftoken functionality in a black-box manner. We consider
the case of stateless tokens where the tokens do not keep information between
each access and use the same random tape. Hence, without loss of generality,
we can assume that the function computed by the token is deterministic. In this
case, we may represent the function with a circuit.

Our protocol will UC-realize a variant of Ftoken, called Fabort
token , in which the

adversary is notified whenever a party creates a token and can choose to inter-
rupt its delivery. The receiver will not receive the token, but will be notified
with the special message interrupted. In such a case, the receiver aborts the pro-
tocol. This (otherwise unavoidable) change can be avoided by restricting the
adversary to corrupt less than half of the corruptible tokens, which will allow
the receiver to compute the output using the remaining uncorrupted tokens, but
will weaken the threshold of corruptions tolerated. For formal descriptions of the
two functionalities, please see the full version of this paper [9].

448 N. Chandran et al.

5.2 Corruptible Tamper-Proof Token Functionality Fcorruptible
token

We generalize the tamper-proof token model to accommodate such a scenario by
allowing an adversary to corrupt each token upon its creation. We define corrupt-
ible tamper-proof token functionality F corruptible

token in Fig. 5 by modifying Ftoken as
follows. Every time a user sends create command to the functionality Fcorruptible

token ,
it first notifies the adversary and waits for one of two possible responses. The
adversary may choose to learn the description of the token, and replace it with
another (possibly stateful) token of its choice. We call the token chosen by the
adversary a corrupted token. Alternately, the adversary may ignore the creation
of that token, and therefore, that token creation is completed successfully and in
this case, the adversary will not learn the description of the token. After uncor-
rupted tokens are created, they are tamper-proof in the same sense as in Katz’s
model. The stateful program for the corrupted token can be represented by a
Turing machine.

In the case that the adversary chooses not to corrupt any token created
by honest users, our model is identical to the model of Katz. Thus, our model
generalizes the standard tamper-proof token model. We show that we can achieve
UC-secure 2PC/MPC in the corrupted token model allowing the adversary to
corrupt one party and all but one token generated by every honest party.

6 A Compiler to the Corrupted Token Model

6.1 Protocol for Corruptible Tokens

In this section, we describe a multi-party protocol that the n corruptible tokens
will run in order to emulate the Katz’ stateless token functionality.

Let (KsrZK , PsrZK , VsrZK) be a simultaneous resettable ZK argument in the
correlated randomness model with straight-line simulator. Let S = (share, recon)
be an n out of n secret sharing scheme. Let Γ0 be a UC-secure MPC protocol in
the CR model for functionality F described in Fig. 6.

We define a multi-party protocol Γ = Γ (Π) on input (x1, . . . , xn) to compute
Π(x) when x = xi for all i ∈ [n] in Fig. 7.

6.2 Realizing a Tamper-Proof Token with Corruptible Tokens

Now we are ready to describe our protocol realizing the tamper-proof token
with n corruptible tokens. To compute Π, the corruptible tokens are given the
setup parameters for the MPC protocol Γ (Π). Up on execution with input xi,
they will run Γ (Π) to compute Π(x) only if x = xi for all i ∈ [n]. We let Γi

be the Turing machine computing messages Party Pi in Γ sends to other Pj ,
j ∈ [n]\{i} in each round of Γ . Since our token are stateless, Γi takes as input a
state statek−1 which stores internal memory of Pi in round k − 1 together with
in which consists of all incoming messages Pi receives in round k −1. Γi outputs
a new state statek and outgoing messages for round k.

Formally, Γi(statek−1, ink−1) = (statek, outk) where statek is the internal
state of Pi in round k and

Universally Composable Secure Computation with Corrupted Tokens 449

Fcorruptible
token

Upon receiving (create, sid, Pj , Π) from Pi with i = j:

1. If there is no tuple of the form (sid, Pi, Pj), store (sid, Pi, Pj , Π, creating).
2. Send (create, sid, Pi, Pj) to Adv.

Upon receiving (corrupt, sid, Pi, Pj) from Adv:

1. Find the stored tuple (sid, Pj , Pi, Π, creating). If no such tuple exists, abort.
2. Send Π to Adv.

Upon receiving (replace, sid, Pi, Pj , Π
∗, state0) from Adv:

1. Find and remove the unique stored tuple (sid, Pj , Pi, Π, creating). If no such
tuple exists, abort.

2. Store (sid, Pi, Pj , Π
∗, state0), send (done, sid) to Pi, send (create, sid, Pi) to Pj .

Upon receiving (notcorrupt, sid, Pi, Pj) from Adv:

1. Find and remove the unique stored tuple (sid, Pj , Pi, Π, creating). If no such
tuple exists, abort.

2. Store (sid, Pi, Pj , Π,⊥), send (done, sid) to Pi and send (create, sid, Pi) to Pj .

Upon receiving (execute, sid, Pi, inp) from Pj with i = j:

1. Find the stored tuple (sid, Pi, Pj , Π, state). If no such tuple exists, abort.
2. Run Π(state, inp) and let (state , out) be the output. If state = ⊥, set state =

state .
3. Send (sid, out) to Pj .

Upon receiving (read, sid, Pi, Pj) from Adv:

1. Find the unique stored tuple (sid, Pj , Pi, P, state). If no such tuple exists, abort.
2. Send (sid, state) to Adv.

Fig. 5. Token functionality F corruptible
token

– ink−1 = {mj,i,k−1}j∈[n]\{i} where mj,i,k−1 is the incoming message from
Party Pj to Party Pi in round k − 1. mj,i,k−1 = ⊥ if Pi does not receive
a message from Pj in round k − 1.

– outk = {mi,j,k}j∈[n]\{i} where mi,j,k is the outgoing message from Party Pi

to Party Pj in round k. mi,j,k = ⊥ if Party Pi does not send a message to
Party Pj in round k.

– Let state0 = ⊥ and in0 be Pi’s input for Γ .
– If Pi terminates at the end of round t, Γi(statet, int) = (done, output) where

output is Pi’s output for Γ .

450 N. Chandran et al.

F
On input ((Π1, x1), . . . , (Πn, xn))

1. If xi = xj for some i = j, output ⊥. Otherwise, let x be the common input.
2. Π = recon(Π1, . . . , Πn).
3. Output Π(x).

Fig. 6. Function F

Γ (Π)

Setup:

1. Let (Π1, . . . , Πn) ← share(Π). Let ci = com(Πi) with decommitment infor-
mation di for i ∈ [n].

2. For i = j ∈ [n], let (σi,j,P , σi,j,V) ← KsrZK(1λ) be the correlated randomness
for the simultaneous resettable ZK argument with prover Pi and verifier Pj .

3. Let (σ1, . . . , σn) ← SetUpΓ0
(1λ) be the correlated randomness for Γ0.

4. For i ∈ [n], send Σi = (Πi, σi, ci, di, {cj , σi,j,P , σj,i,V }j∈[n]\{i}) to Party Pi.

Execution: Party Pi on input xi, correlated string Σi and a random tape Ri =
(si, ri)

1. For each i ∈ [n], Pi commits to its input xi and its PRF seed si using random-
ness ri,x = PRFsi(xi) and ri, respectively. Pi sends its determining message
Mi = (com(xi; ri,x)||com(si; ri)) to all Pj , j = i.

2. For each i ∈ [n], Pi computes Ri = PRFsi(M1|| . . . ||Mn) consisting of Ri[0]
for running Γ0 and Ri[1] for running (PsrZK , VsrZK).

3. For each i ∈ [n], Pi executes as the ith party in Γ0 where Pi follows kth round
message mi,k by running PsrZK to prove that there exists αi = (xi, si) and
Πi such that
(a) Mi = (Mi[0], Mi[1]) where Mi[0] can be decommitted to xi and Mi[1] can

be decommitted to si;
(b) ci can be decommitted to Πi;
(c) mi,k is correctly computed using Ri[0] in Γ0 with (Πi, xi) as an input

where Ri = PRFsi(M1|| . . . ||Mn).

Fig. 7. Multi-party protocol Γ (Π) computing Π

In order to protect Γi’s state statek when a token is sent to a malicious party,
we use a symmetric key encryption scheme with a secret key embedded in the
token to encrypt a state state before outputting. Let S = (SetUp,Enc,Dec) be a
symmetric key encryption scheme. Let state denote an encryption of state using

Universally Composable Secure Computation with Corrupted Tokens 451

S. Let si consists of all information embedded in the ith token. Formally, we
define Ti = T (si) in Fig. 8.

On input (Initialize, xi)

1. Parse si = (i, ski, Ri, Πi, σi, ci, di, {cj , σi,j,P , σj,i,V }j∈[n]\{i}).
2. Initiate Γi on setup parameters (Πi, σi, ci, di, {cj , σi,j,P , σj,i,V)}j∈[n]\{i}), ran-

dom tape Ri

3. Let Γi(⊥, xi) = (state, out).
4. Output (Enc(ski, state), out).

On input (state, in)

1. Parse si = (i, ski, Ri, Πi, σi, ci, di, {cj , σi,j,P , σj,i,V }j∈[n]\{i}).
2. Initiate Γi on setup parameters (Πi, σi, ci, di, {cj , σi,j,P , σj,i,V)}j∈[n]\{i}), ran-

dom tape Ri.
3. Decrypt state = Dec(ski, state), abort if fail.
4. Let Γi(state, in) = (state , out)
5. Output (Enc(ski, state), out).

Fig. 8. Token Ti = T (si)

Finally, protocol Λ in F corruptible
token -hybrid model realizing Fabort

token is in Fig. 9.

6.3 Proof of Security

Let SsrZK = (S1,S2) be the straight-line simulator for the simultaneous reset-
table ZK, and SimMPC be the UC simulator for the UC-secure MPC.

Let Adv be an adversary corrupting up to n−1 tokens. Let nc be the number
of corrupted tokens, and nh = n − nc be the number of honest (uncorrupted)
tokens. We construct a UC simulator Sim in Fig. 10 internally running Adv such
that any environment E cannot distinguish between interacting with Adv running
Λ in the real world and interacting with Sim running Fabort

token in the ideal world.
Now consider the series of hybrids:

Hybrid H0: This hybrid is the real world execution.

Hybrid H1: This hybrid is similar to H0 except that every message to F corruptible
token

goes to Sim, and Sim acts honestly on behalf of F corruptible
token while recording the

messages. This hybrid is identical to H0.
Let t be the maximum number of call from Adv to execute uncorrupted

tokens. Let Hybrid H2.0 = H1. For k = 1, . . . , t

Hybrid H2.k: This hybrid is similar to H2.(k−1) except that Sim records and
replaces the kth encrypted state state from uncorrupted Tl with state

∗ =

452 N. Chandran et al.

Λ

To create a token running Π for Pj , Pi does the following:

1. Generate the setup parameters for Γ (Π):
(Πk, σk, ck, dk, {cl, σk,l,P , σl,k,V)}l∈[n]) for k ∈ [n] as defined in Figure 7.

2. Generate secret keys for decrypting share/state skk ← KeyGen(1λ) for all
k ∈ [n].

3. Let sk = (k, skk, Rk, Πk, σk, ck, dk, {cl, σk,l,P , σl,k,V }l∈[n]).
4. Send (create, sidk, Pj , Tk) to Fcorruptible

token where Tk = T (sk) for k ∈ [n].

To execute a token running Π sent by Pi, Pj does the following:

1. For k ∈ [n], initialize Tk by sending (execute, sidk, S, (initialize, inp)) to
Fcorruptible

token to compute Tk(initialize, inp) = (statek, outk).
2. While statek = done for all k ∈ [n], for k ∈ [n]

(a) Parse outk = {mk,l}l=k. Let ink = {ml,k}l=k.
(b) Send (execute, sidk, Pi, (statek, ink)) to Fcorruptible

token to compute
Tk(statek, ink) = (statek, outk).

(c) Replace statek by statek and outk by outk.
3. Let out = outk for k ∈ [n] such that statek = done.

Fig. 9. Protocol Λ in F corruptible
token -hybrid model UC realizing Fabort

token

Enc(skl, 0|state|) before sending it to Adv and replaces state
∗ with state before

applying Tl. Hybrid H2.(k−1) and H2.k are indistinguishable by the security of
the symmetric key encryption S.

Let Hybrid H3.0 = H2.t. For k = 1, . . . , nh · nc,

Hybrid H3.k: This hybrid is similar to H3.(k−1) except that Sim uses S1 to gener-
ate (σi,j,P , σi,j,V , τi,j) instead of KsrZK for honest token i and corrupted token j
with k = i(nc −1)+ j, and runs S2(τi,j) to generate the sim-res ZK messages for
token i by feeding the sim-res ZK messages from corrupted tokens. Sim records
the transcript leading to each sim-res ZK session. By the GUC-security of the
rZK, this hybrid is indistinguishable from H1.

Lemma 7. Hybrid H3.(k−1) and H3.k are indistinguishable.

Proof. Suppose there exists a poly-time D that can distinguish H3.(k − 1) and
H3.k with non-negligible probability. We construct a distinguisher D′ that can
distinguish an interaction of PsrZK with a resetting verifier V ∗

srZK and S2(τi,j)
for the sim-res ZK as follows. Given setup strings for the sim-res ZK, D′ generates
the setup for other pairs of tokens and the inputs for Γ (Π). D′ then runs H3.(k−
1) or H3.k until Adv queries the honest token to prove a statement x using the
sim-res ZK. D′ runs the interaction and passes the messages from and to Adv as
V ∗

srZK ’s messages. When V ∗
srZK resets PsrZK or S2(τi,j), D′ queries the token

Universally Composable Secure Computation with Corrupted Tokens 453

Sim

Whenever Sim receives (create, sid, Pi, Pj) from Fabort
token , Sim does the followings:

1. For each k ∈ [n], send (create, sidk, Pi, Pj) to Adv.
2. If Adv replies with (corrupt, sidk, Pi, Pj) for any k ∈ [n] or Pj is corrupted,

(a) Follow the protocol of Λ for creating a token, except that Sim uses
zero string 0|Π| instead of the actual token Π to create secret shares
Π1, . . . , Πn, and uses S1 to generate (σi,j,P , σi,j,V , τi,j) instead of KsrZK

and SimMPC to generate σi instead of SetUpΓ0
for the setup parame-

ters of Γ for the corruptible tokens. Sim stores the secret shares for later
comparison.

(b) Send Tk to Adv for each k Adv chose to corrupt.
(c) Store (replace, sidk, Pi, Pj , Tk, statek) from Adv.
(d) Send (interrupt, sid, Pi, Pj) to Fabort

token .
3. Otherwise, send (notinterrupt, sid, Pi, Pj) to Fabort

token .

Whenever Adv runs the protocol for execution that involves both corrupted and
uncorrupted tokens, Sim does the following:

1. Sim generates the Γ messages for uncorrupted Tk using S2(τk) and SimMPC

as follows:
(a) Sim generates and commits to αk honestly as in Γ .
(b) Sim runs SimMPC to generate messages for Γ0.
(c) Sim For each message generated by SimMPC , runs S2(τk) to generate

messages for the following sim-res ZK argument.
(d) When SimMPC queries the functionality of the function F on input

((Π1, x1), . . . , (Πn, xn)), if xk’s are all equal to x , send (execute, sid, Pi, x)
to Fabort

token and passes the output to SimMPC . Otherwise, Sim aborts.
2. Sim records and replaces every encrypted state state from uncorrupted Tk with

state∗ = Enc(skl, 0|state|) before sending it to Adv and replaces state∗ with state
before applying Tk.

3. Sim records all inputs/outputs to the tokens. If Adv queries with the same
input (state and incoming messages), Sim returns the recorded output (new
state and outgoing messages).

Fig. 10. UC Simulator Sim for Λ

using the saved state of the earlier round in the sim-res ZK. Finally, D′ outputs
the output of D. ��
Claim. Fix a combined determining message M = M1|| . . . ||Mn, any
polynomial-time resetting machine Adv can find only one transcript of Γ0 in
Γ (Π) that every following sim-res ZK argument convinces the verifier to accept.

Proof. Suppose not. Let tr = (. . . ,mi,k) and tr′ = (. . . ,m′
i,k) be the

partial transcripts of Γ0 generated by Adv up to the differing messages

454 N. Chandran et al.

mi,k,m′
i,k with accepting sim-res ZK argument. Note that we cannot have

both (ci,Mi,M, tr), (ci,Mi,M, tr′) ∈ RrsZK . Otherwise, either Mi or ci can
be decommitted to two different values, and thus can be reduced to the secu-
rity of the commitment scheme. Hence, either (ci,Mi,M, tr) /∈ RrsZK or
(ci,Mi,M, tr′) /∈ RrsZK . Thus, we can construct a resetting prover P ∗

srZK that
can prove a false statement. ��

Let Hybrid H4.0 = H3.(nh·nc). Let m be the number of distinct sessions of Γ0

based on combined determining message M1|| . . . ||Mn generated through Adv
querying the tokens. For k = 1, . . . , m,

Hybrid H4.k: This hybrid is similar to H4.(k−1) except that Sim runs SimMPC

to generate the MPC messages for uncorrupted tokens by feeding the MPC
messages from corrupted tokens in the execution of Γ (Π) following kth combined
determining message.

Lemma 8. Hybrid H4.(k−1) and H4.k are indistinguishable.

Proof. Suppose there exists a poly-time D that can distinguish H4.(k−1) and H4.k

with non-negligible probability. We construct a distinguisher D′ for SimMPC as
follows. Given the correlated randomness for the MPC, D′ generates the rest of
the setup parameters for Σ(Π) as in the experiment. D′ then passes the MPC
messages from Adv to D followed by the srZK messages from SimZK . Since
the accepting transcript is unique by the claim above, Adv cannot change the
messages. D′ outputs the output of D. ��

Let Hybrid H5.0 = H4.m. For k = 1, . . . , n,

Hybrid H5.k: This hybrid is similar to H5.(k−1) except that if the kth token is
uncorrupted, Sim replaces the PRF in Γ (Π) with truly random function F .

Lemma 9. Hybrid H5.(k−1) and H5.k are indistinguishable.

Proof. Suppose there exists a PPT distinguisher D that can distinguish H5.(k−1)

and H5.k with non-negligible probability p. We construct a PPT D′ that given
function f , it runs H5.(k−1) and outputs the output of D when PRFsi

is replaced
by f . By the property of the PRF, p is negligible. ��

Let Hybrid H6.0 = H5.n. For k = 1, . . . , n,

Hybrid H6.k: This hybrid is similar to H6.(k−1) except that if the kth token is
uncorrupted, Sim replaces the second half of the determining message Mi in
Γ (Π) with com(0|si|; ri) where si is the PRF seed in Γ (Π).

Lemma 10. Hybrid H6.(k−1) and H6.k are indistinguishable.

Proof. Suppose there exists a PPT distinguisher D that can distinguish H6.(k−1)

and H6.k with non-negligible probability p. We construct a PPT D′ that given a
commitment C of si or 0|si|, it runs H6.(k−1) or H6.k and outputs the output of
D when the second half of Mi is replaced by C. Since si is not used as a witness
nor as a PRF seed in H6.(k−1) or H6.k, D′ can generate the input for D. By the
hiding property of com, p is negligible. ��

Universally Composable Secure Computation with Corrupted Tokens 455

Hybrid H7: This is similar to H6.n except that Sim checks if inputs xk, k ∈ [n],
are the same. If not, Sim records xk’s and replaces outputs of Γ (Π) by ⊥.

Lemma 11. Hybrid H6.n and H7 are indistinguishable.

Proof. By the binding of com, Adv cannot find x′
k that com(xk; r) (where r is an

output of the truly random function f) decommitted to xk except with negligible
probability. In this case, by the soundness of rsZK, the output of Γ (Π) is ⊥. ��

Hybrid H8: This hybrid is similar to H7 except that Sim passes token creation
request from honest parties to Fabort

token and uses it to compute the output for
SimMPC .

Lemma 12. Hybrid H7 and H8 are indistinguishable.

Proof. Note that if Adv generates messages for the MPC honestly using the same
input xi and the share Πi given in the setup, then the output from Fabort

token must
be the same as the output of the MPC by the correctness of the MPC. Suppose
there exists a poly-time D that can distinguish H3 and H4 with non-negligible
probability p. There must be at least one MPC message m∗ from Adv that is not
generated honestly. Thus, we construct a resetting prover P ∗

srZK for the sim-res
ZK argument following m∗ by randomly choosing a Γ0 message and passing the
following prover messages to V . When Adv sends a different message using the
same token state, P ∗

srZK resets the verifier. It has at least 1/T probability of
choosing m∗ where T is the number of Γ0 messages sent by Adv. Thus, it has at
least p/T probability of proving a false statement, contradicting the resettable
soundness of the sim-res ZK. ��

Hybrid H9: This hybrid is similar to H8 except that Sim generates secret share
of zero string 0|Π| instead of the one received from an honest party.

Lemma 13. Hybrid H8 and H9 are indistinguishable.

Proof. Suppose there exists a poly-time D that can distinguish H8 and H9 with
non-negligible probability. We construct a distinguisher D′ for the secret sharing
scheme S as follows. D′ runs the experiment for D until it is given Adv shares
consisting of less than n shares. D′ then continues the experiment and D distin-
guishes between H8 and H9. Using the result of D, D′ can distinguish between
less than n shares of 0 and some program Π, contradicting the security of S. ��

Let Hybrid H10.0 = H9. For k = 1, . . . , n,

Hybrid H10.k: This hybrid is similar to H10.(k−1) except that if the kth token
is uncorrupted, Sim replaces the second half of the determining message Mi in
Γ (Π) with com(si; ri) where si is the PRF seed in Ri. Hybrid H10.(k−1) and
H10.k are indistinguishable by similar argument as Lemma10.

Let Hybrid H11.0 = H10.n. For k = 1, . . . , n,

456 N. Chandran et al.

Hybrid H11.k: This hybrid is similar to H11.(k−1) except that if the kth token
is uncorrupted, Sim replaces the truly random function F in Γ (Π) with
PRFsi

. Hybrid H10.(k−1) and H10.k are indistinguishable by similar argument
as Lemma 9. This hybrid is the ideal world execution.

Using these, we prove our main theorem below.

Theorem 14. Assuming an existence of OWFs, there exists a protocol with n
corruptible tokens in F corruptible

token -hybrid model UC-realizing Fabort
token.

7 RAM Obfuscation and Tokens with Bounded Memory

RAM Obfuscation. We now describe how to obtain program obfuscation with
stateless hardware tokens solely from OWFs. This improves the assumption from
the work of Nayak et al. [39], who additionally also assumed collision-resistant
hash functions. At a very high level, the protocol of Nayak et al. makes use of
OWFs and CRHFs. First, they make use of CRHFs for the authenticated ORAM
structure. We observe that we can replace the authenticated ORAM used in
Nayak et al. with an authenticated ORAM based on OWF (that can be built
from the work of Ostrovsky and Goldreich, Ostrovsky). Next, in order to obtain
a single starting seed for randomness that depends on the specific execution of
the program and input, Nayak et al. require the user to first feed in a hash of
the input to the token and then use this hash to derive all randomness (along
with a unique program id). This gives them a unique execution id. We derive a
unique value based on the input and program by having the user feed the input
one-by-one to the token. Upon receiving one input, the token will authenticate it
and provide an authentication tag (this process is deterministic) that will then
allow the user to input the next input. This process continues until the last input
is inserted into the token, upon which the authentication tag produced at this
stage is a unique id that can be used (in combination with the program id) to
derive all randomness needed by the token for program execution. This process
is similar in spirit to the GGM construction of deriving a PRF from a PRG.

7.1 High Level Description of the Protocol

Program Authentication. At a high level, the program creation by the sender
works as follows. Let the program to be obfuscated be RAM := (cpustate,mem)
where mem is a list of program instructions and cpustate is the initial cpu
state. Let the program comprise of t instructions. The sender first creates
the token containing a hardwired secret key K where K := (Ke,Kprf). Ke

is used as the encryption key for encrypting state, Kprf is used as the key
to a pseudorandom function used by the token to generate all randomness
needed for executing the ORAM, creating ciphertexts, and so on. The sender
creates a unique execution identity idexec, which is unique for every program
created. The sender then encrypts mem||idexec||idinstr (one instruction at a
time) to obtain mem (memi denotes the ciphertext obtained upon encrypting

Universally Composable Secure Computation with Corrupted Tokens 457

memi||idexec||i). The sender also computes a “tag” of the start ciphertext, mem1,
as τ1 = PRFKprf (start,mem1). The sender creates an encrypted program header
Header := EncKe

(cpustate, idexec, t). The receiver is sent mem,mem∗
1 and Header

as the obfuscated program.

Program Feed. At a very high level, the receiver will feed in the program, one
instruction at a time, to the token, as follows:

1. As the first message, the token receives (programauth, 1,mem1,
τ1,mem2,Header). It will check that PRFKprf (start,mem1,Header) =
τ1 and output ⊥ otherwise. Similarly, for all 2 ≤ i < t − 1, it
receives (programauth, i, τi−1,memi, τi,memi+1,Header). It will check that
PRFKprf (τi−1,memi,Header) = τi and output ⊥ otherwise.

2. Next, it decrypts memi and memi+1 to get memi and memi+1, and idexec as
well as decrypt Header to get idexec and t. It will check that idinstr = i and
i + 1 respectively (also that these values are ≤ t) and that the two idexec
values are the same and equal to the idexec value in Header. If these checks
do not pass, it will respond with ⊥. If the checks pass, the token will output
τi+1 = PRFKprf (τi,memi+1,Header).

Input Feed. Let the input to the program be denoted by x1, · · · , xn. The receiver
will send the following instructions, step-by-step, for every input, to the token.

1. On input, (inputauth, 1, τt−1,memt, τt, x1, n,Header), it checks that
PRFKprf (τt−1,memt,Header) = τt, that memt is the tth program instruction
(by decrypting memt to get idinstr and Header to get t and comparing) and
output ⊥ otherwise. It outputs τt+1 = PRFKprf (τt, 1, x1, n,Header).

2. On input, (inputauth, j, τt+j−2, xj−1, τt+j−1, xj , n,Header), for 2 ≤ j ≤ n, it
checks that PRFKprf (τt+j−2, j − 1, xj−1, n,Header) = τt+j−1 and outputs ⊥
otherwise. It then outputs τt+j = PRFKprf (τt+j−1, j, xj , n,Header).

Program/Input ORAM Insertion. Once the program and input authentication
is done, the program and input, henceforth collectively referred to as memory,
must be inserted into the Authenticated Oblivious RAM structure. There are t
program instructions and n inputs that must be inserted. Let � = t + n be the
total memory requirement of the program (we can assume this without loss of
generality as any additional memory needed by the program can be thought of
as dummy program instructions). First, a set of � “zeroes” are inserted into the
ORAM structure (i.e., the values of memory in all locations is set to 0)4. The
insertion of a set of � “zeroes” into the ORAM structure is done as follows:

1. For every memory location 1 ≤ i ≤ �, the user prepares the mes-
sage (ORAMsetup, i, �, τoraminit

i−1 , n, xn,Header, τoraminit
i , τ�) and gives it to the

4 Whenever, the state of the program (ORAM or otherwise) needs to be modified, this
is done by appending encrypted state with Header and then authenticating, similar
to Nayak et al. [39].

458 N. Chandran et al.

token, with τoraminit
1 = τ� and τoraminit

0 = τ�−1. The token checks
that PRFKprf (τ

oraminit
0 , n, xn, n,Header) = τoraminit

1 (for i = 1) and
PRFKprf (ORAMsetup, i, �,Header, τoraminit

i−1 , τ�) = τoraminit
i (for all other i)

and outputs ⊥ otherwise.
2. Otherwise, the token derives a key for the ORAM structure – this ORAM

key is derived as Koram = PRFKprf (ORAMKey, τ�).
(a) It creates an ORAM initialization structure (that is, creates an initial

random mapping of all virtual addresses to their real address); this ini-
tialization is done using randomness from the ORAM key Koram.

(b) In this map let address aj have been mapped to address i. In this case, the
token creates an authenticated encryption of (aj , 0) (again using keys and
randomness derived from Koram) to be inserted into the ORAM structure
at virtual address i.

(c) The token then outputs τoraminit
i+1 = PRFKprf (ORAMsetup, i, �,Header,

τoraminit
i , τ�).

Once all � memory locations have been inserted with 0 values, the user then
inserts the real input and program into the ORAM structure. This is done as
follows: in the reverse order, starting with the nth input to the first input, and
then the tth to the first program instruction. We now describe this process at a
high level. For ease of exposition, we shall assume that every ORAM operation is
a single step denoted as oramσ,Koram(i, vi, read/write,⊥/v∗

i) (this can be easily
extended to the case when the ORAM read/write is a set of operations, similar
to Nayak et al. [39]). The protocol is as follows:

1. The user will insert the ith memory location (� ≥ i ≥ 1, which
is either an input or a program instruction) by sending the mes-
sage (MemORAMInsert, i, �, τoraminit

2�−i , n, xn, n,Header, τoraminit
2�−i+1 , τi, τi−1, wi),

where wi = (i − t, xi−t, n) if the ith location has an input (i.e., � ≥ i ≥ t + 1)
and wi = memi if the ith location has a program instruction (i.e., t ≥ i ≥ 1).

2. If the ith location has an input:
(a) The token will check that τi = PRFKprf (τi−1, i − t, xi−t, n,Header) and

that τoraminit
2�−i+1 = PRFKprf (ORAMsetup, i, �,Header, τoraminit

2�−i , τ�).
(b) The token will then execute the ORAM instruction

oramσ,Koram(i, 0, write, xi−t).
(c) The token then outputs τoraminit

2�−i+2 = PRFKprf (ORAMsetup, i −
1, �,Header, τoraminit

2�−i+1 , τ�).
3. If the ith location has a program instruction:

(a) The token will check that τi = PRFKprf (τi−1,memi,Header) and that
τoraminit
2�−i+1 = PRFKprf (ORAMsetup, i, �,Header, τoraminit

2�−i , τ�).
(b) The token decrypts memi to get memi||idexec||i and executes the ORAM

instruction oramσ,Koram(i, 0, write,memi||idexec||i).
(c) The token then outputs τoraminit

2�−i+2 = PRFKprf (ORAMsetup, i −
1, �,Header, τoraminit

2�−i+1 , τ�).

Program Execution. The program execution is similar to Nayak et al. [39].

Universally Composable Secure Computation with Corrupted Tokens 459

8 Tokens with Small Memory

We consider a variant of F corruptible
token in Fig. 5, called F corruptible,short,L1,L2

token where
create and execute only take Π and inp of short size. We also allow a token
sender to send a message along with the token created through the functionality.
This allows the adversary to intercept the message when it chooses to corrupt a
token without neither sender nor receiver knowledge. This is unavoidable as we
represent a token in the standard corruptible model with both a token and an
additional auxiliary string from the sender. We use Fcorruptible,short

token when L1 and
L2 are clear from the context.

In theory, we would like L1 and L2 be of constant size in security parameter.
Though [39] suggests using logarithmic size in practice for better performance.
We define an implementation Token of F corruptible

token in F corruptible,short
token -hybrid model

and prove the following theorem in the full version of this paper [9].

Theorem 15. The protocol Token UC-realizes F corruptible
token in F corruptible,short

token -
hybrid model.

Combining the above result with the result in Sect. 6 gives:

Corollary 2. Assuming OWFs, there exists a protocol that UC realizes Fabort
token

functionality in F corruptible,short
token -hybrid model using n corruptible tokens with short

inputs and small size against an adversary corrupting up to n − 1 tokens.

References

1. Agrawal, S., Goyal, V., Jain, A., Prabhakaran, M., Sahai, A.: New impossibility
results for concurrent composition and a non-interactive completeness theorem for
secure computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 443–460. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 26

2. Ateniese, G., Kiayias, A., Magri, B., Tselekounis, Y., Venturi, D.: Secure outsourc-
ing of cryptographic circuits manufacturing. In: Baek, J., Susilo, W., Kim, J. (eds.)
ProvSec 2018. LNCS, vol. 11192, pp. 75–93. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01446-9 5

3. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-
knowledge and its applications. In: FOCS 2002, pp. 116–125 (2001)

4. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: FOCS 2006, pp. 345–354 (2006)

5. Badrinarayanan, S., Jain, A., Ostrovsky, R., Visconti, I.: Non-interactive secure
computation from one-way functions. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 118–138. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 5

6. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995). https://doi.org/10.
1007/3-540-44750-4 8

7. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: STOC 1996, pp. 479–488. ACM (1996)

https://doi.org/10.1007/978-3-642-32009-5_26
https://doi.org/10.1007/978-3-642-32009-5_26
https://doi.org/10.1007/978-3-030-01446-9_5
https://doi.org/10.1007/978-3-030-01446-9_5
https://doi.org/10.1007/978-3-030-03332-3_5
https://doi.org/10.1007/978-3-030-03332-3_5
https://doi.org/10.1007/3-540-44750-4_8
https://doi.org/10.1007/3-540-44750-4_8

460 N. Chandran et al.

8. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145. IEEE (2001)

9. Chandran, N., Chongchitmate, W., Ostrovsky, R., Visconti, I.: Universally com-
posable secure computation with corrupted tokens. Cryptology ePrint Archive,
Report 2017/1092 (2017)

10. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

11. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 2

12. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: STOC 2000, pp. 235–244 (2000)

13. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. J. Cryptol. 19(2),
135–167 (2006)

14. Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation
using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 545–562. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78967-3 31

15. Choi, S.G., Katz, J., Schröder, D., Yerukhimovich, A., Zhou, H.-S.: (Efficient) uni-
versally composable oblivious transfer using a minimal number of stateless tokens.
In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 638–662. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54242-8 27

16. Chung, K.-M., Ostrovsky, R., Pass, R., Visconti, I.: Simultaneous resettability from
one-way functions. In: FOCS 2013, pp. 60–69. IEEE (2013)

17. Dachman-Soled, D., Malkin, T., Raykova, M., Venkitasubramaniam, M.: Adaptive
and concurrent secure computation from new adaptive, non-malleable commit-
ments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp.
316–336. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-
7 17

18. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

19. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

20. Döttling, N., Kraschewski, D., Müller-Quade, J., Nilges, T.: General statisti-
cally secure computation with bounded-resettable hardware tokens. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 319–344. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46494-6 14

21. Dziembowski, S., Faust, S., Standaert, F.-X.: Private circuits iii: hardware trojan-
resilience via testing amplification. In: CCS 2016, pp. 142–153. ACM (2016)

22. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC 1990, pp. 416–426 (1990)

23. Fischlin, M., Pinkas, B., Sadeghi, A.-R., Schneider, T., Visconti, I.: Secure set
intersection with untrusted hardware tokens. In: Kiayias, A. (ed.) CT-RSA 2011.
LNCS, vol. 6558, pp. 1–16. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19074-2 1

https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/978-3-540-78967-3_31
https://doi.org/10.1007/978-3-540-78967-3_31
https://doi.org/10.1007/978-3-642-54242-8_27
https://doi.org/10.1007/978-3-642-42033-7_17
https://doi.org/10.1007/978-3-642-42033-7_17
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-662-46494-6_14
https://doi.org/10.1007/978-3-642-19074-2_1
https://doi.org/10.1007/978-3-642-19074-2_1

Universally Composable Secure Computation with Corrupted Tokens 461

24. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols
using signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
177–194. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 11

25. Garg, S., Kumarasubramanian, A., Ostrovsky, R., Visconti, I.: Impossibility results
for static input secure computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 424–442. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 25

26. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229
(1987)

28. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

29. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11799-2 19

30. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 18

31. Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in
the tamper-proof hardware model under minimal complexity. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 367–399. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53641-4 15

32. Hofheinz, D., Müller-Quade, J., Unruh, D.: Universally composable zero-knowledge
arguments and commitments from signature cards. In: 5th Central European Con-
ference on Cryptology (2005)

33. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On
the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36594-2 34

34. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–592.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

35. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4 7

36. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concur-
rent security: universal composability from stand-alone non-malleability. In: STOC
2009, pp. 179–188. ACM (2009)

37. MacKenzie, P., Yang, K.: On simulation-sound trapdoor commitments. In: Cachin,
C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–400.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 23

38. Mavroudis, V., Cerulli, A., Svenda, P., Cvrcek, D., Klinec, D., Danezis, G.: A
touch of evil: high-assurance cryptographic hardware from untrusted components.
In: CCS 2017, pp. 1583–1600. ACM (2017)

39. Nayak, K., et al.: HOP: hardware makes obfuscation practical. In: NDSS 2017
(2017)

https://doi.org/10.1007/3-540-39200-9_11
https://doi.org/10.1007/978-3-642-32009-5_25
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/978-3-662-53641-4_15
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-540-24676-3_23

Reusable Non-Interactive Secure
Computation

Melissa Chase1, Yevgeniy Dodis2, Yuval Ishai3(B), Daniel Kraschewski4,
Tianren Liu5(B), Rafail Ostrovsky6, and Vinod Vaikuntanathan5

1 Microsoft Research, Redmond, USA
melissac@microsoft.com

2 New York University, New York, USA
dodis@cs.nyu.edu

3 Technion, Haifa, Israel
yuvali@cs.technion.ac.il

4 TNG Technology Consulting GmbH, Unterföhring, Germany
daniel.kraschewski@tngtech.com

5 MIT, Cambridge, USA
{liutr,vinodv}@mit.edu

6 UCLA, Los Angeles, USA
rafail@cs.ucla.edu

Abstract. We consider the problem of Non-Interactive Two-Party
Secure Computation (NISC), where Rachel wishes to publish an encryp-
tion of her input x, in such a way that any other party, who holds an
input y, can send her a single message which conveys to her the value
f(x, y), and nothing more. We demand security against malicious par-
ties. While such protocols are easy to construct using garbled circuits and
general non-interactive zero-knowledge proofs, this approach inherently
makes a non-black-box use of the underlying cryptographic primitives
and is infeasible in practice.

Ishai et al. (Eurocrypt 2011) showed how to construct NISC proto-
cols that only use parallel calls to an ideal oblivious transfer (OT) oracle,
and additionally make only a black-box use of any pseudorandom gen-
erator. Combined with the efficient 2-message OT protocol of Peikert et
al. (Crypto 2008), this leads to a practical approach to NISC that has
been implemented in subsequent works. However, a major limitation of
all known OT-based NISC protocols is that they are subject to selective
failure attacks that allows a malicious sender to entirely compromise the
security of the protocol when the receiver’s first message is reused.

Motivated by the failure of the OT-based approach, we consider the
problem of basing reusable NISC on parallel invocations of a standard
arithmetic generalization of OT known as oblivious linear-function eval-
uation (OLE). We obtain the following results:

– We construct an information-theoretically secure reusable NISC pro-
tocol for arithmetic branching programs and general zero-knowledge
functionalities in the OLE-hybrid model. Our zero-knowledge proto-
col only makes an absolute constant number of OLE calls per gate in
an arithmetic circuit whose satisfiability is being proved. We also get

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 462–488, 2019.
https://doi.org/10.1007/978-3-030-26954-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_15

Reusable Non-Interactive Secure Computation 463

reusable NISC in the OLE-hybrid model for general Boolean circuits
using any one-way function.

– We complement this by a negative result, showing that reusable
NISC is impossible to achieve in the OT-hybrid model. This pro-
vides a formal justification for the need to replace OT by OLE.

– We build a universally composable 2-message reusable OLE proto-
col in the CRS model that can be based on the security of Paillier
encryption and requires only a constant number of modular exponen-
tiations. This provides the first arithmetic analogue of the 2-message
OT protocols of Peikert et al. (Crypto 2008).

– By combining our NISC protocol in the OLE-hybrid model and
the 2-message OLE protocol, we get protocols with new attractive
asymptotic and concrete efficiency features. In particular, we get the
first (designated-verifier) NIZK protocols for NP where following a
statement-independent preprocessing, both proving and verifying are
entirely “non-cryptographic” and involve only a constant computa-
tional overhead. Furthermore, we get the first statistical designated-
verifier NIZK argument for NP under an assumption related to fac-
toring.

1 Introduction

Non-interactive secure computation (NISC) refers to the problem where Rachel
wishes to publish an encryption of her input x, in such a way that any other
party, who holds an input y, can send her a single message which conveys to
her the value f(x, y), and nothing more. In the semi-honest setting, there are
several solutions to this problem including (i) garbled circuits [23,29] combined
with two-message oblivious transfer (OT) protocols (e.g., [2,24,26]) and (ii) fully
homomorphic encryption [9,16,27].

In reality, we care about security against potentially malicious parties and
indeed, we have tools to achieve this level of security. For example, one could
compile these protocols to be secure against malicious parties by using general
non-interactive zero-knowledge (NIZK) proofs in the common reference string
(CRS) model [6]. However, this requires making non-black-box use of the under-
lying cryptographic primitives, and is generally infeasible in practice. A recent
line of work [1,19] has come up with efficient maliciously secure NISC protocols
that make oracle calls to an oblivious transfer primitive. This model is referred
to as the OT-hybrid model, and we henceforth refer to NISC protocols in the
OT-hybrid model succinctly as NISC/OT protocols.

The paradigm of designing protocols in the OT-hybrid model that are either
information-theoretically secure or make use of symmetric cryptographic prim-
itives such as a pseudorandom generator, and plugging in fast implementations
of OT, has paid great dividends in cryptography for several reasons. First, we
have fast OT implementations under standard assumptions. Secondly, OT is self-
reducible, so the cryptographic cost of implementing it can be pushed to an offline
phase. OT can itself also be implemented with information-theoretic security
given correlated randomness. In short, combining efficient NISC/OT protocols

464 M. Chase et al.

with efficient 2-message OT implementations, we can get efficient “public-key”
non-interactive variants of secure computation, as was recently accomplished in
[1,19]. This approach is beneficial even in simpler special cases such as con-
structing (designated-verifier) NIZK. For these cases, and more generally for
functionalities computed by log-depth circuits or polynomial-size branching pro-
grams, such NISC/OT protocols can be made information-theoretically secure
(in particular, there is no need for the pseudorandom generator).

Selective Failure Attacks and (Non-)Reusability. The starting point of this work
is that this rosy picture belies a major defect of all known NISC/OT protocols.
To see this, imagine that Rachel wants to publish a reusable encryption of her
input x, obtain messages from anyone in the world with inputs yi, conveying
to her the value of f(x, yi). In the semi-honest setting, any NISC/OT protocol
is guaranteed to be reusable, in the sense that if we fix Rachel’s OT inputs
and let Sam choose fresh OT inputs in each invocation, security still holds.
However, in all known NISC/OT protocols (e.g., [1,19]), a malicious Sam can
mount a “selective failure attack”, feeding malformed OT messages to Rachel,
checking whether she aborts or not, and using this information to violate both the
secrecy of her input and the correctness of her output. The same holds for the
special case of zero-knowledge functionalities, namely for NIZK/OT protocols
(e.g., [5,20]). Such attacks have been previously considered in other contexts,
such as in the setting of verifiable outsourcing of computation [15], and seem
notoriously difficult to eliminate.

1.1 Our Contribution

We start by showing that the above limitation of OT-based protocols is inherent.
That is, we show:

Theorem 1.1 (Informal). There is no information-theoretic and reusably
secure implementation of NISC/OT for general functions, or even for NC1 func-
tions.

We also prove a similar result for zero-knowledge functionalities, though in a
more restricted “black-box” framework that is still broad enough to capture all
existing NIZK/OT protocols.

Achieving Reusability with OLE. Towards bypassing this negative result, we
make the following key observation: the inherent limitation of OT-based proto-
cols can be overcome if we replace OT by an arithmetic extension of OT known as
oblivious linear function evaluation (OLE). The OLE functionality maps sender
inputs (a, b) and receiver input x to receiver output ax + b, where a, b, x are
taken from some (typically large) field or ring. The high level intuition is that
by making the domain size of the receiver’s selections super-polynomial, we can
effectively eliminate the correlation between the receiver’s OT inputs and the
event of the receiver detecting failure. We note that OLE enjoys many of the

Reusable Non-Interactive Secure Computation 465

useful features of OT, including a self-reducibility property that enables shifting
almost all of the implementation cost to an offline phase.

Our main result shows that this relaxation from OT to OLE is indeed helpful.
We present a general-purpose reusable non-interactive secure computation proto-
col that only makes parallel OLE calls over a large field.1 Here reusability means
that the same receiver OLE inputs xi can be used for polynomially many func-
tion evaluations while still ensuring full simulation-based security. This implies
in particular that even if the sender learns full or partial information about the
receiver’s outputs (such as whether the receiver accepts or rejects), the sender
cannot obtain more influence on the receiver’s outputs than in an ideal function
evaluation. We denote such a reusable NISC protocol by rNISC/OLE.

Theorem 1.2. There exists a statistically secure rNISC/OLE protocol for
(arithmetic or boolean) branching programs and NC1 circuits. Evaluating an
t-node n-variant branching program costs O(nt3) OLE calls. It comes with
an efficient black-box straight-line simulator, the statistical simulation error is
O(nt3)/|F|.

Our rNISC/OLE protocol for branching programs is information-theoretic
and does not rely on any cryptographic assumptions. Its complexity is polyno-
mial in the size of an arithmetic branching program being computed. This is
sufficient to capture arithmetic log-depth (NC1) circuits. In the case of general
polynomial-size circuits, we obtain a similar result, except that we also make use
of a pseudorandom generator.

Theorem 1.3. If one-way functions exist, there exists an rNISC/OLE protocol
for circuits.

In the important special case of zero-knowledge functionalities, where ver-
ification can always be done by a shallow circuit, our rNISC/OLE protocol is
still information-theoretic and only makes a constant number of OLE calls per
gate in an arithmetic circuit whose satisfiability is being proved. Even in the
single-shot case (without a reusability requirement), and even in the special case
of zero-knowledge functionalities, similar NIZK/OLE protocols were not known
prior to our work.

Theorem 1.4. There exists a statistically secure rNIZK/OLE protocol (i.e.,
rNISC for zero-knowledge functionalities), such that proving the satisfiability
of an arithmetic or boolean circuit costs O(1) OLE calls per gate. It comes with
an efficient black-box straight-line simulator, the statistical simulation error is
O(circuit size)/|F|.

We optimize the concrete efficiency of our rNIZK/OLE protocol in the full
version, so that proving knowledge of a satisfying assignment of an arithmetic

1 Alternatively, settling for computational security, one can replace a field by a
“pseudo-field,” namely a ring whose description hides all zero-divisors. A useful
example is the ring ZN for an RSA modulus N with an unknown factorization.

466 M. Chase et al.

circuit costs 7 OLE calls per addition gate and 44 OLE calls per multiplication
gate. (Minimizing this constant is an interesting future research direction that
can be motivated by practical implementations.) We stress that since the pro-
tocol is information-theoretic in the OLE-hybrid model, each OLE involves only
a small number of field operations (without any exponentiations) in the online
phase.

Constructing Reusable OLE. We complement our rNISC/OLE protocol by
proposing an efficient secure implementation of the reusable OLE oracle which
is compatible with our efficiency goals. Concretely, assuming the security of
Paillier’s encryption scheme [25], we construct a universally secure 2-message
reusable OLE protocol in the CRS model (over the ring ZN for an RSA modu-
lus N). The communication cost of the protocol involves a constant number of
group elements and its computational cost is dominated by a constant number
of exponentiations. This protocol provides the first arithmetic analogue of the 2-
message OT protocol of PVW [26], which is commonly used in implementations
of secure two-party computation (in particular, it is used by the non-interactive
ones from [1]). Our efficient OLE protocol is independently motivated by other
applications of OLE in cryptography; see [3,17] and references therein.

Theorem 1.5 (Informal). Under the Paillier assumption, there is a reusable
OLE scheme in the common reference string (CRS) model with a communica-
tion complexity of O(1) group elements, and a computational cost of O(1) group
exponentiations. Moreover, depending on the CRS distribution, the OLE can be
statistically secure against either the sender or the receiver.

Combining our statistical NIZK/OLE with the OLE protocol in the statistical
sender security mode, we get the first statistical NIZK argument for NP under
an assumption related to factoring.

Theorem 1.6 (Informal). Under the Paillier assumption, there exists a sta-
tistical designated-verifier NIZK argument for NP.

On the Efficiency Benefits of Switching to OLE. The switch from OT to OLE
has some unexpected efficiency benefits. Beyond the reusability issue, OT-based
protocols in the malicious security model use a “cut and choose” approach that
has considerable (super-constant) overhead in communication and computation.
While there are effective techniques for amortizing the communication overhead
(cf. [21]), these come at the expense of a super-constant computational overhead
and apply only in the Boolean setting. Other approaches that employ OLE and
apply to the arithmetic setting, such as the ones from [12,14], are inherently
interactive.

The combination of our information-theoretic rNISC/OLE and the Paillier-
based OLE implementation yields NISC and designated-verifier NIZK protocols
with attractive new efficiency features. As discussed above, for general NISC
there was no previous approach that could offer reusable security, even for the

Reusable Non-Interactive Secure Computation 467

case of boolean circuits, without applying general-purpose NIZK on top of a
semi-honest secure NISC protocol.

Even for the special case of zero-knowledge, where many other competing
approaches are known, our approach is quite unique. In particular, we are the
first to construct any kind of (reusable-setup) NIZK protocol where one can push
all of the cryptographic operations to an offline phase; using the self-reducibility
of OLE, we can have an online phase that involves only arithmetic computations
in the “plaintext domain” and its security (given the preprocessed information)
is unconditional. Moreover, the online phase satisfies a strong notion of constant
computational overhead in the sense that both the prover and verifier only need
to perform a constant number of addition and multiplication operations for each
gate of the arithmetic verification circuit, in the same ring ZN over which the
circuit is defined. As additional bonus features, the preprocessing required for
implementing this highly efficient online phase consists only of a constant num-
ber of exponentiations per gate, and its security relies on a conservative, “20th
century” assumption.

In addition, even in the stand-alone (non-reusable) world, our approach has
its benefits. For example, as a corollary of our approach, we show that the
satisfiability of an arithmetic circuit of size s can be proved in zero knowledge
with soundness error O(s)/|F| via O(s) parallel calls to (regular, non-reusable)
OLE over F. We also get an analogous result for NISC where the number of OLE
calls depends polynomially on the arithmetic branching programs size.

1.2 Related Work

We briefly discuss several recent works that are relevant to the asymptotic effi-
ciency features of our protocol. As discussed above, a distinctive efficiency feature
of our rNIZK/OLE protocol for arithmetic verification circuits (more generally,
rNISC/OLE for constant-depth arithmetic circuits) is that, in an offline-online
setting, its online phase is non-cryptographic and has a constant computational
overhead. Moreover, the offline phase only requires a constant number of expo-
nentiations per arithmetic gate.

Bootle et al. [7] construct zero-knowledge protocols for arithmetic verification
circuits with constant computational overhead in the plain model, i.e., without
any offline phase. However, this protocol relies on constant-overhead implemen-
tations of cryptographic primitives (a plausible but non-standard assumption),
it requires multiple rounds of interaction (but can be made non-interactive via
the Fiat-Shamir heuristic) and, most importantly in the context of our work, the
cryptographic work in this protocol cannot be preprocessed. Finally, this proto-
col does not directly apply in the more general setting of secure computation.

Applebaum et al. [3] obtain (again, under plausible but non-standard assump-
tions) secure two-party protocols for evaluating arithmetic circuits that have
constant computational overhead in the plain model. However, these protocols
are inherently interactive (even when restricted to constant-depth circuits) and
are only secure against semi-honest parties.

468 M. Chase et al.

Finally, Chaidos and Couteau [11] construct an alternative Paillier-based
designated-verifier (reusable) NIZK protocol with a constant number of expo-
nentiations per arithmetic gate. The constant from [11] is significantly smaller
than ours and the protocol can be based on more general assumptions. How-
ever, whereas for NIZK there are several other competing approaches, including
succinct and publicly verifiable protocols, our NISC protocol provides the first
reusable solution for NISC that is efficient enough to be implemented. Moreover,
the NIZK protocol from [11] (which is based on Σ-protocols) does not have the
feature of a non-cryptographic online phase that our protocol inherits from the
underlying information-theoretic OLE-based protocol.

There has been recent interest in the goal of constructing reusable NIZK
protocols with different forms of setup from alternative assumptions such as
LWE [10,22,28]. Our work provides a new avenue for constructing such proto-
cols by reducing this goal to the construction of reusable 2-message OLE. The
usefulness of our approach has been demonstrated in the recent work of Boyle
et al. [8], which constructs (bounded) reusable NIZK with a correlated random-
ness setup from the Learning Parity with Noise (LPN) assumption over large
fields. This construction can rely on a simplified honest-verifier variant of our
rNIZK/OLE protocol, as the correlated randomness setup effectively restricts
the verifier to be honest.

There are two main qualitative differences between our work and all of the
recent NIZK-related works mentioned above. First, we obtain non-trivial (posi-
tive and negative) results on NIZK in a natural and well-motivated information-
theoretic setting, whereas all of the above works are inherently cast in a com-
putational setting. This information-theoretic aspect of our positive results is
crucial for obtaining reusable NIZK protocols that have a non-cryptographic
online phase given offline preprocessing. Second, our positive results apply to
NISC, which is more general than NIZK in a useful way. While many differ-
ent techniques for constructing NIZK protocols from different assumptions are
known, including black-box constructions from cryptographically hard groups,
our work provides the first black-box constructions of reusable NISC protocols
of any kind.

2 Overview of the Techniques

In this section we provide a high level overview of the proofs of our main results.

2.1 Impossibility of rNISC/OT

We show several negative results, which highlight the hardness of reusable secure
computation. The first negative result shows that for non-interactive two-party
computation protocols, even perfect security against malicious senders does not
imply reusable security. In particular, previous works that construct NISC/OT
protocols do not immediately imply rNISC/OT.

Reusable Non-Interactive Secure Computation 469

The second negative result shows that OLE is strictly stronger than OT in the
sense that there exists no information-theoretic rNISC/OT protocol for the OLE
functionality with composable security. Third and finally, assuming the existence
of one-way functions, in the OT-hybrid model, we show that there are no general
resettably sound, non-interactive zero-knowledge proofs with black-box simula-
tion. We describe below an outline of the second and third impossibility results.
For the technical details, we refer the reader to the full version.

OT is Not Sufficient for Reusability. The basic intuition behind the weakness
(“non-reusability”) of OT is the following: a malicious sender can learn the
receiver’s choice bits if the receiver uses the same randomness and input in
different protocol runs. In particular, suppose the receiver’s private OT choice
bit has been fixed in a set-up phase. In the first protocol run, a malicious sender
feeds (a, b) to the OT. In the second protocol run, the malicious sender feeds
(a′, b′) to the OT where either a �= a′ or b �= b′ (but not both). If the receiver
output is different in these two protocol runs, the malicious sender can deduce
the receiver’s choice bit.

Moreover, imagine implementing a functionality, such as reusable OLE or
reusable NIZK, in the OT hybrid model. Such an implementation will involve
the receiver calling the OT functionality using a vector of choice bits. Suppose
now that the receiver has different outputs in two protocol runs where the sender
chooses OT-input strings (a,b) and (a′,b′) respectively. The malicious sender
can now modify (a,b) to equal (a′,b′) by a sequence of single-bit modifications.
By observing the receiver’s output when the sender feeds these intermediate
OT-input strings, the malicious sender can always learn the sender’s j-th choice
bit for some j such that (a[j],b[j]) �= (a′[j],b′[j]).

In the OLE-hybrid model, this intuition does not work. Consider a similar
scenario: The receiver uses the same randomness and input in two protocol runs,
let x[i] ∈ F be the receiver’s input in the i-th OLE instance. The malicious sender
feeds (a[i],b[i]) and (a′[i],b′[i]) to the i-th OLE instance in these two protocol
runs respectively. Say the (a[j],b[j]) �= (a′[j],b′[j]) is the only difference between
(a,b) and (a′,b′) and the receiver outputs differently in these two protocol
runs. Given the above information, the malicious sender can only deduce that
x[j] �= −b[j]−b′[j]

a[j]−a′[j] . Such knowledge contains little information if x[j] has large
min entropy.

We now outline how to translate this intuition into concrete impossibility
results for the OLE functionality first, and then the zero-knowledge functionality.
Details can be seen in the full version.

First, we outline the impossibility of a statistically reusable non-interactive
OLE/OT protocol. The intuition behind our impossibility proof relies on a com-
mitment protocol. There is a statistically reusable commitment protocol in the
OLE-hybrid model: The receiver first samples a random x ∈ F as his OLE-input.
To commit si ∈ F, the sender samples random ri ∈ F and feeds (si, ri) to the
OLE oracle, so that the receiver gets OLE-output yi = si · x + ri. To unveil
the i-th commitment, send (si, ri) to the receiver. Such a protocol has statistical

470 M. Chase et al.

reusable security in the OLE-hybrid model. We show that in an OT-based imple-
mentation of the OLE primitive, a corrupted sender can recover the receiver’s
private input x after polynomially many rounds. The corrupted sender repeats
the following so that either he recovers x or he learns more about receiver’s
OT choice bits. The sender samples an honest run in which the sender chooses
(s, r,a,b), then samples (s′, r′,a′,b′) from the same distribution subject to the
condition that (a′,b′) agrees with (a,b) on the known receiver choice bits. The
sender can test whether (s′, r′) and (s, r) are consistent with the same x, i.e.
whether s′x + r′ = sx + r, by testing whether the receiver accepts (s′, r′) as an
unveil message when the sender’s OT-input strings are a,b. If so, the sender
recovers x = − r−r′

s−s′ and thus finish the attack (s �= s′ with high probability
because s is statistically hidden in the receiver’s view). Otherwise, the receiver
would reject (s′, r′) as an unveil message when the sender’s OT-input strings are
a,b, while accept it when the sender’s OT-input strings are a′,b′. The sender
will be able to learn at least one more receiver’s choice bit from such a difference.
At the end of this process, the sender learns all the relevant choice bits of the
receiver, upon which he can sample an (s, r) and (s′, r′) pair that results in the
same commitment sx + r = s′x + r′. This, by the calculation above, allows him
to extract x.

Also in the full version we show that there is no UC secure rNISC/OT proto-
col for general zero-knowledge proof functionality. Suppose such protocol exists.
This means the sender can prove statements x ∈ L just by transforming a cor-
responding witness w into sender’s OT-input strings. By assuming the existence
of one-way functions, we can define the language such that it is easy to sample
a random no instance y /∈ L or to sample a random yes instance x ∈ L together
with a witness w, while it’s computationally hard to distinguish a random yes
instance from a no instance. Now how can a malicious sender (prover) find some
y /∈ L but still convince the receiver to accept y? He just samples a true state-
ment (x,w) and starts off flipping bits in the corresponding OT-input strings,
then checks each time if the receiver still accepts. Of course, the sender only
flips the part of OT-input strings where he does not know the receiver’s choice
bits yet. As soon as the receiver starts rejecting, the malicious prover find out
one more receiver’s choice bit. This process can be repeated until the malicious
prover has learned sufficiently many of the receiver’s choice bits. There are so few
indices where the malicious prover doesn’t know the choice bits—denote these
indexes by U—such that even if the OT-input strings are replaced with random
bits on indexes in U , the receiver will still accept with high probability. Then by
the UC security, if the sender instead samples y /∈ L, generates OT-input strings
using the black-box simulator, and replaces the generated OT-input strings with
random bits on indexes in U , the receiver will also accept with high probability,
breaking soundness. The details of this impossibility result are in the full version.

2.2 Construction of Information-Theoretic rNISC/OLE

Semi-honest NISC/OLE Our rNISC/OLE construction is a complicated object
with many intermediate steps. Let us start with a warm-up question, namely,

Reusable Non-Interactive Secure Computation 471

how to construct NISC with semi-honest security. As a starting point, we present
a construction for the semi-honest model from the work of Ishai and Kushile-
vitz [18]. Then we will outline the main contribution of our work, namely, how
to obtain (reusable) security against malicious parties.

Let x denote the receiver Rachel’s input and let y denote the sender Sam’s
input. We consider arithmetic functionalities. Namely, both x,y are vectors over
a given finite field F. The functionality is computed by an arithmetic branching
program, defined as follows (see [18] for a more formal description). A t-node
arithmetic branching program is specified by affine functions g1,1, g1,2, . . . , gt,t.
The branching program maps input vectors x,y to the determinant of the matrix

G(x,y) Δ=

⎡
⎢⎢⎢⎢⎣

g1,1(x,y) · · · g1,t(x,y)

−1
. . .
.

...
−1 gt,t(x,y)

⎤
⎥⎥⎥⎥⎦

.

Branching programs can efficiently simulate arithmetic formulas and arithmetic
NC1 circuits. For example, the formula x1y1 + x2y2 + x3y3 can be computed by
the branching program

x1y1 + x2y2 + x3y3 = det

⎡
⎢⎢⎣

x1 x2 x3

−1 y1

−1 y2

−1 y3

⎤
⎥⎥⎦ .

The technique for securely reducing a branching program computation to
parallel OLE calls can be viewed as an arithmetic analogue of Yao’s garbled
circuit technique [4,29]. In a nutshell, the construction of the two-party pro-
tocol works as follows: The sender Sam samples two random upper triangular
matrixes R1, R2 with an all-one diagonal. Observe that the matrix R1G(x,y)R2

is a randomized encoding of detG(x,y) since:

– detG(x,y) can be computed from R1G(x,y)R2 because multiplying by R1

and R2 preserves the determinant; and
– the distribution of R1G(x,y)R2 merely depends on detG(x,y) and not on x

and y. (This depends crucially on the structure of G, in particular the fact
that the one-off diagonal of G consists of −1; we refer the reader to [18] for
more details.)

Therefore, if the receiver gets only R1G(x,y)R2, he will learn no information
other than detG(x,y).

Now to construct a semi-honest NISC/OLE protocol, we use the fact that
the OLE functionality allows secure evaluation of affine functions. Therefore,
the receiver chooses x as its input, and the sender feeds the affine function
x �→ R1G(x,y)R2 to the OLE oracle. Let us denote this affine function by G′, i.e.
G′(x) = G′

R1,R2,y(x) := R1G(x,y)R2. Eventually, the receiver gets R1G(x,y)R2,
which leaks detG(x,y) but perfectly hides all other information.

472 M. Chase et al.

Additionally, this NISC/OLE protocol is perfectly secure against malicious
receivers, if the underlying OLE protocol is reusable. Since this is the first time
reusability rears its head, let us explain in a bit more detail why this is the case.
The affine function in question can be thought of as

x �→ R1G(x,y)R2 := v0 +
∑
i∈[n]

xivi

for some vectors v0, . . . ,vn chosen by the sender (as functions of y, R1 and
R2.) Now, it turns out to be easy to create a functionality out of (non-
reusable) OLE where the sender inputs (v0[j],v1[j], . . . ,vn[j]), the receiver
inputs x := (x1, . . . , xn), and the receiver obtains v0[j]+

∑
i∈[n] xivi[j]. That is,

each coordinate of the computation above can be realized using (non-reusable)
OLE. However, using non-reusable OLE to compute the entire output by repeat-
ing this process once per co-ordinate runs into a serious issue when the receiver
Rachel is malicious: she can feed the different instances of OLE with different
values of x. On the other hand, if the underlying OLE functionality is reusable,
it permits the receiver to send a single message x that can be used for multiple
invocations of OLE, ipso facto forcing Rachel to be semi-honest.

However, the protocol is not secure against malicious senders. Indeed, the
sender can choose any affine G′ so that the receiver will output detG′(x). For
security against malicious senders, the sender needs to prove that G′, the affine
function he fed into the OLE satisfies an arithmetic constraint: namely, that the
sender knows two upper triangular matrixes R1, R2 and an input vector y such
that G′(·) ≡ R1G(·,y)R2.

This is the key problem that remains to be solved. We now describe how to
achieve this goal in a number of steps that make this task successively simpler,
eventually reducing everything to reusable OLE.

An Intermediate Primitive: Certified OLE. Certified OLE is a specialized OLE
wherein the sender can prove that the coefficients he chose satisfies some arith-
metic conditions. More precisely, we define certified OLE as a primitive that
allows:

– the receiver to learn the outputs of affine functions, where the inputs are
chosen by the receiver and the coefficients are chosen by the sender;

– the sender to convince the receiver that the sender-chosen coefficients satisfy
arbitrary arithmetic constraints.

We will implement a CertifiedOLE/OLE construction in the reusable world,
whose security is information-theoretic.

An Intermediate Primitive: Replicated OLE. Certified OLE allows the sender to
prove that his coefficients satisfy arbitrary arithmetic constraints. In particular,
the sender can prove an equality constraint, i.e., prove that two of the coefficients
she chose are equal. We isolate this ability into another (weaker) primitive called
replicated OLE. More precisely, we define replicated OLE as a primitive that
allows:

Reusable Non-Interactive Secure Computation 473

– the receiver to learn the outputs of affine functions, where, as before, the
inputs are chosen by the receiver and the coefficients by the sender;

– the sender to convince the receiver that some of the sender-chosen coefficients
are equal.

Replicated OLE is not as powerful as certified OLE, yet it is an important
stepping stone to our eventual construction. In the corresponding section in the
full version, we first construct replicated OLE directly from OLE, then construct
certified OLE from replicated OLE2. For now, let us assume that we already have
reusable replicated OLE, and we will construct (reusable) certified OLE using
replicated OLE as a black box.

To begin with, note that to construct certified OLE, it is sufficient to support
the following atomic operations.

1. Reveal ax + b to the receiver, where a, b ∈ F are coefficients chosen by the
sender, x ∈ F is an input chosen by the receiver, F is a finite field.
In this overview, all coefficients chosen by the sender will be denoted by the
first few letters in the alphabet such as a, b, c and inputs chosen by the receiver
will be denoted by the last few such as x, y, z.

2. Allow the sender to convince the receiver that two coefficients are equal.
3. Allow the sender to convince the receiver that three coefficients a, b, c satisfies

a + b = c.
4. Allow the sender to convince the receiver that three coefficients a, b, c satisfies

ab = c.

The first two atomic operations are already supported by replicated OLE.
We will implement latter two using calls to replicated OLE.

The third atomic operation, i.e., proving a + b = c, is implemented as the
following. The receiver samples an random x ∈ F and uses it as an input to OLE.
The sender samples random a′, b′ ∈ F and sets c′ = a′+b′. The replicated OLE is
used to reveal ax+a′, bx+ b′, cx+ c′ to the receiver. Clearly, the receiver cannot
cheat; no matter which x be picks, he will receive three values, the first two of
which are random and the third is the sum of the first two. How about a cheating
sender? Note that the receiver is convinced if and only if (ax + a′) + (bx + b′) =
(cx+c′). Since x is randomly chosen by the receiver and hidden from the sender,
in case the sender sets a + b �= c (or a′ + b′ �= c′), the receiver can detect this
with overwhelming probability.

The last atomic operation, i.e., proving ab = c, is implemented using a similar
idea. The receiver samples random x, y ∈ F, sets z = xy and uses x, y, z as
inputs to an OLE. Note that a malicious receiver might choose z �= xy and the
sender can never detect this. Therefore, we have to design a mechanism that
can “enforce” honest receiver behavior. More precisely, our mechanism should
prevent the receiver from learning any information in case he chooses z �= xy. We
will explain the details of this mechanism later; for now, let us simply assume
the receiver chooses z = xy.
2 The actual roadmap is somewhat different, and will be gradually revealed in this

overview. An impatient reader is referred to Fig. 1 at the end of the overview.

474 M. Chase et al.

The sender samples random a′, b′, c′ ∈ F, sets d = ab′, e = a′b and samples
d′, e′ ∈ F such that d′ + e′ = a′b′ − c′. The replicated OLE is used to reveal
ax + a′, by + b′, cz + c′, dx + d′, ey + e′ to the receiver. The receiver is convinced
if and only if (ax+ a′)(by + b′)− (cz + c′)− (dx+ d′)− (ey + e′) = 0. Notice that
if both sender and receiver are honest, then

(ax + a′)(by + b′) − (cz + c′) = a′by + b′ax + a′b′ − c′ = (dx + d′) + (ey + e′).

In case the sender behaves maliciously, the receiver will detect this with over-
whelming probability. To prove this, we consider (ax+a′)(by + b′)− (cxy + c′)−
(dx + d′) − (ey + e′) as a polynomial in variables x and y, which equals

(ab − c)xy + (ab′ − d)x + (a′b − e)y + a′b′ − c′ − d′ − e′,

This turns out to be a non-zero polynomial as long as the sender deviates from
the protocol. Thus by sampling random x, y ∈ F, the receiver will detect cheating
with overwhelming probability.

Now, there are two outstanding issues we have not handled: (1) in the descrip-
tion above, we assumed that the receiver chooses x, y, z such that z = xy hon-
estly; and (2) we haven’t yet shown how to construct replicated OLE, starting
from (reusable) OLE. We will both of these in turn.

An Intermediate Primitive: Half-Replicated OLE. Our replicated OLE is con-
structed on top of what we call half-replicated OLE. In each OLE call, the sender
chooses two coefficients. We separate them, and call them the multiplicative coef-
ficient and the additive coefficient respectively. Half-replicated OLE only sup-
ports two operations:

1. Reveal ax + b to the receiver, where x ∈ F is an input chosen by the receiver,
a ∈ F is a multiplicative coefficient chosen by the sender, b ∈ F is an additive
coefficient chosen by the sender (as before); and

2. Allow the sender to convince the receiver that two multiplicative coefficients
are equal.

Half-replicated OLE is even weaker than replicated OLE. We first construct
replicated OLE on top of half-replicated OLE by the following protocol: The
receiver samples random y and sets it as an input to OLE. For each receiver-
chosen input x, the receiver let x′ = xy and sets it as an extra input to OLE.
Notice that as before, the sender cannot detect whether the receiver generated
the tuple (x, y, x′) honestly. Therefore, we have to design a mechanism that can
enforce x′ = xy. Again, analogous to the construction of certified OLE from
replicated OLE, we will defer this to later; for now, just assume the receiver
chooses x′ = xy honestly.

The sender uses the replicated OLE to reveal ax + b and ax′ + by to the
receiver. (More precisely, the sender does this by sampling a random c and
revealing ax+b, ax′+c, by−c to the receiver.) The receiver then uses the identity
(ax + b) · y = (ax′ + c) + (by − c) to check whether the sender behaves honestly.

Reusable Non-Interactive Secure Computation 475

Using a completely analogous argument as before, we can show that the receiver
catches a cheating sender with high probability. (For this argument to work, we
need the fact that the sender uses the same a in the first two invocations, but
we already have this by the half-replicated guarantee since a is a multiplicative
coefficient.)

At this point, there are three outstanding issues we have not handled: (1)
in the construction of certified OLE from replicated OLE, we assumed that the
receiver chooses x, y, z such that z = xy honestly; (2) in the construction of
replicated OLE from half-replicated OLE, we assumed that the receiver chooses
x, y, x′ such that x′ = xy honestly; and (3) we haven’t yet shown how to construct
half-replicated OLE, starting from (reusable) OLE. (1) and (3) are issues we
already saw, but we just added (2) to our list. (In fact, as the reader might
observe, (1) and (2) are really the same issue.)

We will first solve issues (1) and (2) by introducing the primitive of half-
replicated OLE allowing CDS operations.

An Intermediate Primitive: Half-Replicated OLE Allowing CDS Operations. Our
replicated OLE and certified OLE require the receiver to choose three inputs
x, y, z such that z = xy. Unfortunately, there was no means for the sender to
detect whether the receiver behaves honestly, and we left this problem open.

We design a mechanism called conditional disclosure of secrets (CDS), in
which the sender can disclose a message to the receiver if and only if the receiver-
chosen inputs satisfy some arithmetic constraints. For example, in certified OLE,
the sender can encrypt his messages using one-time pad, and disclose the pad if
and only if the receiver chooses z = xy honestly.

We now show how to design a half-replicated OLE allowing CDS operations
starting from any half-replicated OLE.

As a first try, in order to disclose secret a ∈ F to the receiver if and only if
z = xy, the sender samples random b, c ∈ F and uses the half-replicated OLE to
disclose

[
y z
1 x

] [
b
c

]
+

[
a
0

]

to the receiver. (More precisely, this means the sender should also sample random
b′, c′ that b′ + c′ = a, and use the half-replicated OLE to disclose by + b′, cz +
c′, cx + b.) If z = xy is satisfied, then the receiver can recover a as

(1,−y) ·
([

y z
1 x

] [
b
c

]
+

[
a
0

])
= a.

It is not hard to verify security against malicious receiver. When z �= xy, the
matrix [y z

1 x] is invertible, in which case all information about a is erased by
one-time padding.

But this protocol is not secure against a malicious sender: As the protocol is
built on top of half-replicated OLE, the sender can deviate from the protocol by
changing the additive coefficients. In particular, the sender can choose a non-zero

476 M. Chase et al.

d ∈ F and uses the half-replicated OLE to disclose [y z
1 x][b

c] + [a
d] to the receiver.

Then the receiver will recover (1,−y) · ([y z
1 x][b

c] + [a
d]) = a − dy, which is a

function of the receiver’s inputs, and constitutes a deviation from the protocol.
An easy way to solve this problem is to rely on the fact that the (honest)

receiver samples y ∈ F uniformly at random, and we can use this ability to
fight against the malicious sender.3 The sender samples a random a′ as an extra
coefficient and uses the above insecure CDS protocol (with freshly sampled b′

and c′ in the place of b and c) to disclose a′ if z = xy. If the sender is malicious,
then the receiver gets a′ − d′y.

Finally, the receiver can now detect malicious behaviour, by running a third
subprotocol: sample a random w ∈ F as an extra input and ask the sender to
disclose aw + a′ using OLE.

In summary, there are three sub-protocols going on here:

1. In sub-protocol 1, the sender inputs (an arbitrary) a and uniformly random
b, c and the receiver inputs x, y, z and the receiver gets

[y z
1 x][b

c] + [a
0]

2. In sub-protocol 2, the sender inputs uniformly random a′, b′, c′ and the
receiver inputs (the same) x, y, z and the receiver gets

[y z
1 x][b′

c′] + [a′
0]

3. In sub-protocol 3, the sender inputs a and a′, the receiver inputs a random
w and gets a′ + wa.

The receiver has no cheating room here. The reusability of the underlying
(half-replicated) OLE forces her to use the same x, y and z in the subprotocols.
Furthermore, if she chooses z �= xy, she gets nothing, as we argued above. Finally,
choosing w arbitrarily in the third subprotocol doesn’t help her either due to
the randomness of a′.

As for a cheating sender, the details of the argument are somewhat more
complex but it is very similar in spirit to earlier arguments of the same flavor.

In turn, it is not hard to see that fortifying half-replicated OLE with CDS
operations (as we just did) solves both problems (1) and (2) discussed above.
It remains to solve (3), namely constructing a (reusable) half-replicated OLE
protocol starting from any reusable OLE.

Revisiting Half-Replicated OLE. The last missing piece is to construct half-
replicated OLE in the (reusable) OLE-hybrid model. The key idea of the con-
struction is the following.

The receiver samples a random w ∈ F and sets w as an input to the OLE.
For each multiplicative coefficient a ∈ F, the sender has to sample a random
a′ ∈ F and use OLE to disclose aw + a′. This OLE call works essentially as
3 In the main body, we do not need to assume that y is random. Moreover, we will

consider more general arithmetic conditions beyond z = xy.

Reusable Non-Interactive Secure Computation 477

Fig. 1. Primitives (and supported operations – described below in text – in the
bracket). We remark that “Replicated OLE” in this figure is only defined and used
in the overview. In the main body, our proof follows the other path, directly construct-
ing “Replicated Certified OLE”.

a commitment of a. For each half-replicated OLE input x ∈ F, the receiver
translates it into two OLE inputs y, z ∈ F such that y is sampled uniformly at
random, and z = x − wy.

Each half-replicated OLE call ax + b can be translated into three OLE calls
using the equation

ax + b = a(wy + x − wy) + b

= awy + az + b

= y(aw + c) − (cy + d) + (az + b + d),
(1)

where c, d are arbitrary numbers. More precisely, the sender should sample ran-
dom c, d ∈ F and use the OLE to disclose aw + c, cy + d and az + b + d to the
receiver. Finally, the receiver computes the right output using Eq. 1.

We refer to this half-replicated OLE protocol as Πα- 1
2repOLE

in the main body.
The correctness of such a half-replicated OLE protocol is straight-forward. In this
protocol, the sender can cheat without being detected by the receiver. Instead,
when the sender deviates from the protocol, the receiver will output a random
number. Moreover, as the randomness comes from w and y which are sampled
by the receiver, the receiver’s output is statistically close to the uniform distri-
bution, even conditioned on the sender’s view and x. Therefore it is not hard to
embed another mechanism which detects any malicious sender behaviour with
overwhelming probability. We leave the details to the full version.

Roadmap. We defer the detailed presentation of the results in this subsection to
the full version. There, starting from reusable OLE, we define and construct a

478 M. Chase et al.

sequence of increasingly more powerful primitives, the last of which eventually
supports all of the following operations.

1. Reveal ax + b to the receiver, where x ∈ F is an input chosen by the receiver,
a ∈ F is a multiplicative coefficient chosen by the sender, b ∈ F is an additive
coefficient chosen by the sender.

2. Convince the receiver that two multiplicative coefficients are equal.
3. Convince the receiver that two coefficients are equal.
4. Disclose a message to the receiver if receiver-chosen inputs x, y, z satisfies

z = xy.
5. Convince the receiver that three multiplicative coefficients a, b, c satisfies a +

b = c.
6. Convince the receiver that three multiplicative coefficients a, b, c satisfies

ab = c.

Such a primitive readily implies reusable NIZK and reusable NISC. The interme-
diate primitives are sorted in Fig. 1 by dependence. Each of them only supports
a subset of the operations.

A Corollary: Single-Shot (Non-reusable) NISC/OLE and NIZK/OLE. As a
corollary of our techniques, we get a (non-reusable) NISC/OLE protocol with
interesting features. In particular, we get a single-shot NISC/OLE proto-
col where the number of OLE calls depends polynomially on the arithmetic
branching program size, and the simulation is statistical with an error of
poly(branching program size)/|F|. In the special case of the zero-knowledge func-
tionality, we get a single-shot NIZK/OLE protocol which (a) uses O(1) (non-
reusable) OLE calls per gate of the verification circuit; and (b) is entirely non-
cryptographic in its online phase.

These results are proved by combining the following two facts:

– Our reusable NISC/OLE protocol immediately implies a single-shot NISC
protocol in the (non-reusable) vector-OLE hybrid model. Vector OLE is a
generalization of OLE where the receiver inputs a scalar x ∈ F and a number
k ∈ N, the sender gets k and inputs a pair of vectors (a,b) ∈ (Fk)2, and
the receiver obtains ax + b ∈ F

k. Vector OLE can be viewed as reusable
OLE under the constraints that the number of OLE calls is known in the
choice phase, and all OLE calls are non-adaptive. Our simulator also fits this
(non-reusable) protocol.

– The result of Döttling, Kraschewski and Müller-Quade [13] shows an efficient
equivalence between OLE and vector OLE. In particular, they show a constant
rate statistical vector-OLE protocol in OLE hybrid model. It also comes with
an efficient straight-line simulator achieving O(communication)/|F| statistical
soundness error.

Putting these together, we get our single-shot NISC/OLE and NIZK/OLE
protocols.

Reusable Non-Interactive Secure Computation 479

2.3 Paillier-Based 2-Message OLE Protocol

In this subsection, we provide a quick overview of our Paillier-based instantiation
of reusable OLE. For more details, we refer the reader to Sect. 4.

Consider a simplified OLE scheme as follows: The CRS will contain an ElGa-
mal public key (b,B0 = bsk0) in a Paillier group. (Paillier allows us to get additive
homomorphism, while ElGamal means that the receiver will be able to construct
related key pairs.) On input α, the receiver forms another related public key
b,B1, such that it knows the secret key corresponding to (b,B1B

α
0). It sends this

key pair to the sender. On input z0, z1, the sender encrypts z0 under (b,B0) and
z1 under (b,B1), using the same randomness, and sends both ciphertexts to the
receiver. The receiver can then combine the ciphertexts to obtain an encryption
of αz0 + z1 under (b,B1B

α
0), which it can decrypt.

Recall that in a Paillier group for N = (2p′ + 1)(2q′ + 1) all elements can be
decomposed into a component in a subgroup of order 2p′q′, and a component
of order N , call them G2p′q′ and GN ; the ElGamal encryption will encode the
message in the order N component. Intuitively, we can argue the scheme is secure
against a corrupt receiver as follows: First the CRS is indistinguishable from one
where b is only in G2p′q′ , but B0 has a component in GN . Then suppose that
the receiver chooses B1 whose GN component is (1 + N)α (and note that a
simulator can recover this α using the factorization of N). The GN components
of the resulting ciphertexts can be shown information theoretically to depend
only on z0α + z1, while the G2p′q′ components are independent of z0, z1.4

Security against a corrupt sender is more challenging, because it could send
invalid ciphertexts (i.e., ciphertexts in which decryption produces an element not
in GN). In particular, an adversarial sender could form a pair of ciphertexts that
decrypt correctly under a specific α and incorrectly otherwise, and thus perform
a selective failure attack. To prevent this, we need a way for the receiver to
identify bad ciphertext pairs that can’t be predicted based on α. Suppose the
receiver runs the scheme twice, once with a random input γ, and once with input
2α−γ, while the sender uses inputs z0, w for random w in the first instance and
z0, z1 − w in the second; combining the results of the two schemes would allow
the receiver to decrypt z0γ+w+z0(α−γ)+z1−w = z0α+z1. This would prevent
the selective failure attack: we argue that (under appropriate, indistinguishable
CRS) B1 information theoretically hides γ, so the probability that the resulting
linear combination of two invalid ciphertexts decrypts correctly is negligible.5

Of course, we must ensure that the malicious sender uses the same z0 in both
instances; thus we require that all the ciphertexts are related, using the same
randomness.

4 This is because the first component of the ciphertext, br contains no information
about r mod N .

5 There is a minor subtlety here, where because G2p′q′ has an order 2 subgroup an
extra component in this subgroup might not be detected; to prevent this, we actu-
ally square all the elements during decryption to eliminate this subgroup, and then
decrypt the final result divided by 2.

480 M. Chase et al.

3 Preliminaries

We consider sender-receiver functions that take inputs from a sender Sam and a
receiver Rachel and deliver the output to Rachel. Two simple but useful exam-
ples for such functions are OT and OLE. In this work, we consider the reusable
extension of such sender-receiver functions, allowing Sam to invoke the function
on polynomially many inputs, where Rachel’s input is fixed. In each such invo-
cation, Rachel obtains a separate output. We will sometimes use an r-prefix (as
in rOT, rOLE, or rNISC) to stress that we consider the reusable variant.

3.1 Sender-Receiver Functions and Reusable Two-Party
Computation

In this section we give a generic definition of reusable non-interactive secure
computation (rNISC). Our complete rNISC construction for arbitrary functions
is quite complex. To make it as modular as possible, we define intermediate
functionalities, namely rNISC for arithmetic circuits (see the full version) and
linear functions (see Sect. 3.2).

Notation 1 (Sender-receiver functions). A sender-receiver function is spec-
ified by three sets Rin, Sin, Rout and a mapping f : Rin × Sin → Rout. The intu-
ition is that we have two parties: a receiver Rachel and a sender Sam. Rachel
chooses an input x ∈ Rin, Sam chooses an input y ∈ Sin, and Rachel learns the
corresponding output z := f(x, y) ∈ Rout.

Fig. 2. Generic ideal functionality for reusable non-interactive secure computation.

Reusable Non-Interactive Secure Computation 481

We emphasize that it is not enforced that the receiver’s input x is fixed
before the sender chooses an input y for a corresponding send phase. Neither
do we forbid that the receiver provides an input (sid′, x) after having learned
an output (sid, z, i), as long as sid �= sid′. Our main application just provides a
setting where all receiver inputs are chosen before the sender takes any action,
but this is not required for the security proofs of our protocols.

The ideal functionality for reusable NISC tailored to arithmetic circuit eval-
uation is formally defined in the full version.

3.2 Reusable Oblivious Linear Function Evaluation

We aim at an OLE-based implementation of F (Φ)
rNISC for arbitrary arithmetic cir-

cuits Φ over a given ring R, where the ring size |R| is determined by a statistical
security parameter. More particularly, the security parameter is log |R|. How-
ever, we will need to restrict ourself to circuits Φ that are given as collections of
formulas (i.e., the underlying graph G is a forest).

The primitive we take for granted lets Rachel pick an input x ∈ R and then
Sam send his tuples (a, b) ∈ R × R, such that she learns the corresponding
OLE-outputs a · x + b. In particular, Sam can send several tuples (a, b) for the
same receiver input x. In other words, the ideal functionality for oblivious linear
function evaluation with reusable receiver input is another special instance of
the functionality F (F)

rNISC from Fig. 2, namely with Sin = R×R, Rin = Rout = R,
and f : Rin × Sin → Rout, (x, (a, b)) �→ a · x + b (Fig. 3).

Fig. 3. Ideal functionality for reusable oblivious linear function evaluation over a ring R.

482 M. Chase et al.

4 A Reusable OLE Construction Based on Paillier

In this section, we show a reusable OLE construction ΠrOLE based on the Paillier
assumption. Our construction proceeds as follows.

– CRSSetup(1λ): Sample primes p′, q′ of the appropriate length for security
parameter k such that p = 2p′ + 1, q = 2q′ + 1 are also primes. Let N = pq,
h = N + 1 and T = 2λN2. All operations will be in ZN2 unless otherwise
specified. Sample w′,W ′

0 ← Z
∗
N2 and let w = (w′)2N ,W0 = (W ′

0)
2Nh.

Output crs = (N,h,w,W0, T).
– CRSDualSetup(1λ): Sample N,h,w, T the same way as in CRSSetup(1λ). Sam-

ple W ′
0 ← Z

∗
N2 and let W0 = (W ′

0)
2N .

Output crs = (N,h,w,W0, T).
– ReceiverRequest(crs, x): Parse crs = (N,h,w,W0, T). Sample sk1, sk2, x1 ←

[T], let x2 := x − x1. Send W1 = wsk1W−x1
0 and W2 = wsk2W−x2

0 to the
sender. Output state (sk1, sk2, x1, x2).

– SenderResponse(crs, (W1,W2), a, b): Parse crs = (N,h,w,W0, T). Sample
r ← [T], b1 ← ZN . Let b2 := b − b1. Send v = wr, V0 = W0

rha, V1 = W1
rhb1

and V2 = W2
rhb2 to the receiver.

– ReceiverReceive(crs, (v, V0, V1, V2), (sk1, sk2, x1, x2)): Compute Z1 = V0
x1

V1/vsk1 and Z2 = V0
x2V1/vsk2 . If it is not the case that Z2

1 and Z2
2 are

of the form 1 + z1N and 1 + z2N for some z1, z2 ∈ ZN , then output ⊥.
Otherwise output z = (z1 + z2)/2.

We first show correctness when both parties are honest. Then the response
is computed as follows, for i ∈ {0, 1}

Zi = V0
xiVi/vski (from ReceiverReceive)

= (W0
rha)xiW r

i hbi/(wr)ski (from SenderResponse)

= (W0
xiWi/wski)rhaxi+bi

= (wski/wski)rhaxi+bi (from ReceiverRequest)

= haxi+bi .

Note that (Zi)2 = h2(axi+bi) = 1 + 2(axi + bi)N . So the zi = 2(axi + bi) and the
receiver will output z = (z1 + z2)/2 = a(x1 + x2) + (b1 + b2) = ax + b mod N .

Theorem 4.1. ΠrOLE is a UC-secure realization of the reusable OLE function-
ality FrOLE over the ring ZN . Moreover, the statistical simulation error against
malicious receiver is negligible when the CRS is generated by CRSSetup; the sta-
tistical simulation error against malicious sender is negligible when the CRS is
generated by CRSDualSetup.

4.1 Indistinguishability of CRS

Lemma 4.2. The CRS generated from CRSDualSetup is indistinguishable from
the CRS generated by CRSSetup as long as the decisional composite residuosity
assumption (DCRA) holds.

Reusable Non-Interactive Secure Computation 483

Proof. Let N,h,w, T be generated as in CRSSetup, and W ′
0 be sampled uniformly

from Z
∗
N2 . By DCRA, W ′

0 and (W ′
0)

N are indistinguishable even given N,h,w, T .
Therefore, (W ′

0)
2 and (W ′

0)
2N are indistinguishable, and (W ′

0)
2h and (W ′

0)
2Nh

are also indistinguishable. Moreover, (W ′
0)

2 equals (W ′
0)

2h in distribution as
h = hN+1 = (h

N+1
2)2 is also a quadratic residue.

In a nutshell,
[

W0 = (W ′
0)

2N

︸ ︷︷ ︸
generated by CRSDualSetup

]
≈C

[
W0 = (W ′

0)
2
]

d
=

[
W0 = (W ′

0)
2h

︸ ︷︷ ︸
a random quadratic residue

]
≈C

[
W0 = (W ′

0)
2Nh

︸ ︷︷ ︸
generated by CRSSetup

]
.

The CRS distributions produced by CRSSetup and CRSDualSetup are indis-
tinguishable. Thus the statistical UC-security against malicious sender in dual
mode implies the computational version of the same security in primal mode; and
vice versa, the statistical UC-security against malicious receiver in primal mode
implies the computational version of the same security in dual mode. Moreover,
the computational UC-security would be preserved if the CRS is sampled from
any other computationally indistinguishable distribution.

4.2 Statistical Security Against Malicious Receiver

Let G4p′q′ be the subgroup of Z∗
N2 consisting of elements of the form w = (w′)N

for w′ ∈ Z
∗
N2 . G4p′q′ is isomorphic to Z

∗
N and Zp′ ×Z2 ×Zq′ ×Z2. Consider the

following simulator S.

– CRS is generated as in CRSSetup, but stores the factorization of N .
– When the adversary sends (w,W1,W2), the simulator proceeds as follows:

Use the factorization of N to compute U0, U1, U2 ∈ G4p′q′ and x̂1, x̂2 ∈ ZN

such that W0 = U0h, W1 = U1h
−x̂1 and W2 = U2h

−x̂2 . Send x̂1 + x̂2 to F .
– When receive z from F : Sample random r ← Z2p′q′ , s0, s1 ← ZN , and com-

pute

v = wr,

V0 = Ur
0 hs0 ,

V1 = Ur
1 hs1 ,

V2 = Ur
2 hz−s0(x̂1+x̂2)−s1 .

Send (v, V0, V1, V2) to A.

Lemma 4.3. The environment’s view in the real world is statistically close to
its view when interacting with simulator S and functionality F as defined above.

Proof. The sender samples r ← [T] in the real game. Let r′ be its mod-2p′q′

component and r′′ be its mod-N component. Since T/2p′q′N is exponential in
the security parameter, the joint distribution of (r′, r′′) is statistically close to
uniform distribution over Z2p′q′ ×ZN . In the real game, the sender will response

484 M. Chase et al.

v = wr = wr′
,

V0 = W0
rha = Ur

0 hr+a = Ur′
0 hr′′+a,

V1 = W1
rhb1 = Ur

1 h−rx̂1+b1 = Ur′
1 h−r′′x̂1+b1 ,

V2 = W2
rhb2 = Ur

2 h−rx̂2+b2 = Ur′
2 h−r′′x̂2+b2 .

Now we will argue that the environment’s view here is identical to its view
when interacting with simulator S and functionality F . Set s0 := r′′ + a and
s1 := −r′′x̂1 + b1. Then (s0, s1) is uniformly random in ZN × ZN due to the
(uniform) randomness of r′′ and b1. The resulting (v, V0, V1, V2) is as follows:

v = wr′
,

V0 = Ur′
0 hr′′+a = Ur′

0 hs0 ,

V1 = Ur′
1 h−r′′x̂1+b1 = Ur′

1 hs1 ,

V2 = Ur′
2 h−r′′x̂2+b2 = Ur′

2 h−r′′x̂1+b−b1 = Ur′
2 h−r′′(x̂1+x̂2)+b−s1

= Ur′
2 h(a−s0)(x̂1+x̂2)+b−s1 = Ur′

2 hz−s0(x̂1+x̂2)−s1

for z := a(x̂1 + x̂2) + b. Finally, note that this is exactly the distribution that
would be produced by the simulator.

4.3 Statistical Security Against Malicious Sender in Dual Mode

The group Z
∗
N2 is isomorphic to ZN × (Z2)2 ×Zp′q′ . Thus it can be decomposed

into the following three groups. Let GN be the subgroup of Z∗
N2 expended by h,

which is isomorphic to ZN . Let G4 be the subgroup of Z∗
N2 consisting of elements

of the form x = x′p′q′N for x′ ∈ Z
∗
N2 , which is isomorphic to Z2×Z2. Let Gp′q′ be

the subgroup of Z∗
N2 consisting of elements of the form x = x′2N for x′ ∈ Z

∗
N2 ,

which is isomorphic to Zp′q′ . For every element x ∈ Z
∗
N2 , there exists an unique

decomposition (a, b, c) ∈ Gp′q′ × G4 × ZN such that x = ab(1 + cN).
Consider the following simulator S.

– To generate the CRS, the simulator generates N,h,w, T as in CRSDualSetup.
It then sample random sk0 ← Z

∗
p′q′ , let W0 = wsk0 , and outputs crs =

(N,h,w,W0, T).
– The simulator generates W1,W2 as follows: sample random sk ′

1, sk
′
2 ← Zp′q′

and send W1 = wsk ′
1 and W2 = wsk ′

2 .
– When the adversary responses (v, V0, V1, V2), proceed as follows: Compute

C0 = V0/vsk0 , C1 = V1/vsk ′
1 , and C2 = V2/vsk ′

2 . If it is not the case that
C2

0 , C2
1 , and C2

2 are of the form 1 + c0N , 1 + c1N and 1 + c2N for some
c0, c1, c2 ∈ ZN , then send ⊥ to F . Otherwise send c0/2 and (c1 + c2)/2 to F .

Lemma 4.4. The environment’s view when interacting with simulator S and F
as defined above, is statistically close to its view in the real game when the CRS
is generated by CRSDualSetup.

Reusable Non-Interactive Secure Computation 485

Proof. The CRS produced by the simulator S is statistically close to the CRS
produced by CRSDualSetup. CRSDualSetup generates W0 as a fresh sample from
uniform distribution over Gp′q′ . When w is a generator of Gp′q′ , which happens
with overwhelming probability 1 − 1

p′ − 1
q′ , the simulator will also sample W0

uniformly from Gp′q′ .
We consider a variation of the real game where the receiver samples

(sk1, sk2, x1) from Zp′q′ × Zp′q′ In the real game, the receiver will sends
W1 = wsk1W−x1

0 = wsk1−sk0x1 and W2 = wsk2W−x2
0 = wsk2−sk0x2 . Let

sk ′
1 := sk1 − sk0x1 mod p′q′, sk ′

2 := sk2 − sk0x2 mod p′q′, then (sk ′
1, sk

′
2, x1)

is statistically close to the uniform distribution over Zp′q′ × Zp′q′ × [T], and the
receiver will send W1 = wsk ′

1 and W2 = wsk ′
2 , which is the same as what the

simulator S will send.
Finally, the environment responses the receiver with message (v, V0, V1, V2).

We show how the receiver’s behavior is simulated with negligible statistical error.
The simulator defines intermediate variables C0 = V0/vsk0 , C1 = V1/vsk ′

1 , C2 =
V2/vsk ′

2 . The intermediate variables used by the receiver can be expressed as

Zi = V xi
0 Vi/vski = V xi

0 Vi/vsk0xi+sk ′
i = (C0)xiCi.

The receiver in the real game will abort unless both (Z1)2 and (Z2)2 lay inside
GN . We decompose (C0)2, (C1)2, (C2)2 into their components in Gp′q′ , G4, GN .
Let D0,D1,D2 ∈ Gp′q′ , c0, c1, c2 ∈ ZN be such that (Ci)2 = Di(1 + ciN), note
that squaring erases the component in G4.

In the case when D0 = D1 = D2 = 1, the receiver will compute (Z1)2 =
1 + (c0x1 + c1)N and (Z2)2 = 1 + (c0x2 + c2)N , then output

z = (z1 + z2)/2 =
c0x1 + c1 + c0x2 + c2

2
= c0x + (c1 + c2)/2.

In the ideal world, the simulator will feed c0 and (c1 + c2)/2 to the functionality
F , and the functionality will produce the same output.

In the case when at least one of D0,D1,D2 is not the identity element,
the simulator S will output ⊥. We show the receiver will also abort with over-
whelming probability. W.l.o.g. assume (D0,D1) �= (1, 1), the receiver will abort
if (Z1)2 /∈ GN where

(Z1)2 = (C0)2xiC1 = (D0)x1D1h
c0x1+c1 .

This condition is satisfied with overwhelming probability as x1 is uniformly ran-
dom in [T].

Acknowledgements. Y. Dodis was supported in part by gifts from VMware Labs,
Facebook and Google, and NSF grants 1314568, 1619158, 1815546. Y. Ishai was sup-
ported by ERC Project NTSC (742754), ISF grant 1709/14, NSF-BSF grant 2015782,
and a grant from the Ministry of Science and Technology, Israel and Department of
Science and Technology, Government of India. D. Kraschewski Supported by the Euro-
pean Union’s Tenth Framework Programme (FP10/2010-2016) under grant agreement

486 M. Chase et al.

no. 259426 - ERC Cryptography and Complexity. Work mostly done while at the Tech-
nion. T. Liu was supported in part by NSF Grants CNS-1350619, CNS-1414119 and
CNS-1718161, an MIT-IBM grant and a DARPA Young Faculty Award. R. Ostrovsky
was supported by NSF grant 1619348, BSF grant 2015782, DARPA SafeWare subcon-
tract to Galois Inc., DARPA SPAWAR contract N66001-15-C-4065, JP Morgan Faculty
Research Award, OKAWA Foundation Research Award, IBM Faculty Research Award,
Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research
Award, and Lockheed-Martin Corporation Research Award. The views expressed are
those of the authors and do not reflect position of the Department of Defense or the
U.S. Government. V. Vaikuntanathan was supported in part by NSF Grants CNS-
1350619, CNS-1414119 and CNS-1718161, an MIT-IBM grant and a DARPA Young
Faculty Award.

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 22

2. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 8

3. Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 223–254. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 8

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. SIAM
J. Comput. 43(2), 905–929 (2014)

5. Bellare, M., Micali, S., Ostrovsky, R.: The (true) complexity of statistical zero
knowledge. In: Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, Baltimore, Maryland, USA, 13–17 May 1990 (1990)

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988
(1988)

7. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 336–365.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 12

8. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018 (2018)

9. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October 2011 (2011)

10. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D.: Fiat-Shamir from simpler assumptions. Cryptology ePrint Archive, Report
2018/1004 (2018)

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-319-70700-6_12

Reusable Non-Interactive Secure Computation 487

11. Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-
knowledge proofs of knowledge. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018, Part III. LNCS, vol. 10822, pp. 193–221. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 7

12. Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: efficient
actively secure two-party computation from oblivious linear function evaluation.
In: CCS 2017 (2017)

13. Döttling, N., Kraschewski, D., Müller-Quade, J.: Statistically secure linear-rate
dimension extension for oblivious affine function evaluation. In: Smith, A. (ed.)
ICITS 2012. LNCS, vol. 7412, pp. 111–128. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-32284-6 7

14. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: STOC 2014 (2014)

15. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, 31 May–2 June 2009 (2009)

17. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 22

18. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 22

19. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 23

20. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

21. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D.A. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

22. Kim, S., Wu, D.J.: Multi-theorem preprocessing NIZKs from lattices. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 733–765.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 25

23. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

24. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the
Twelfth Annual Symposium on Discrete Algorithms, Washington, DC, USA, 7–9
January 2001 (2001)

25. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-642-32284-6_7
https://doi.org/10.1007/978-3-642-32284-6_7
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-319-96881-0_25
https://doi.org/10.1007/3-540-48910-X_16

488 M. Chase et al.

26. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

27. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. In: DeMillo, R.A., Dobkin, D.P., Jones, A.K., Lipton, R.J. (eds.) Founda-
tions of Secure Computation (1978)

28. Rothblum, R.D., Sealfon, A., Sotiraki, K.: Towards non-interactive zero-knowledge
for NP from LWE. IACR Cryptology ePrint Archive 2018, 240 (2018)

29. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: Pro-
ceedings of FOCS 1986 (1986)

https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

Efficient Pseudorandom Correlation
Generators: Silent OT Extension

and More

Elette Boyle1, Geoffroy Couteau2(B), Niv Gilboa3, Yuval Ishai4, Lisa Kohl2,
and Peter Scholl5(B)

1 IDC Herzliya, Herzliya, Israel
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

geoffroy.couteau@kit.edu
3 Ben-Gurion University of the Negev, Beersheba, Israel

4 Technion, Haifa, Israel
5 Aarhus University, Aarhus, Denmark

peter.scholl@cs.au.dk

Abstract. Secure multiparty computation (MPC) often relies on cor-
related randomness for better efficiency and simplicity. This is particu-
larly useful for MPC with no honest majority, where input-independent
correlated randomness enables a lightweight “non-cryptographic” online
phase once the inputs are known. However, since the amount of random-
ness typically scales with the circuit size of the function being computed,
securely generating correlated randomness forms an efficiency bottleneck,
involving a large amount of communication and storage.

A natural tool for addressing the above limitations is a pseudoran-
dom correlation generator (PCG). A PCG allows two or more parties
to securely generate long sources of useful correlated randomness via a
local expansion of correlated short seeds and no interaction. PCGs enable
MPC with silent preprocessing, where a small amount of interaction used
for securely sampling the seeds is followed by silent local generation of
correlated pseudorandomness.

A concretely efficient PCG for Vector-OLE correlations was recently
obtained by Boyle et al. (CCS 2018) based on variants of the learning
parity with noise (LPN) assumption over large fields. In this work, we
initiate a systematic study of PCGs and present concretely efficient con-
structions for several types of useful MPC correlations. We obtain the
following main contributions:

– PCG foundations. We give a general security definition for PCGs.
Our definition suffices for any MPC protocol satisfying a stronger
security requirement that is met by existing protocols. We prove that
a stronger security requirement is indeed necessary, and justify our
PCG definition by ruling out a stronger and more natural definition.

– Silent OT extension. We present the first concretely efficient PCG
for oblivious transfer correlations. Its security is based on a vari-
ant of the binary LPN assumption and any correlation-robust hash
function. We expect it to provide a faster alternative to the IKNP
OT extension protocol (Crypto 2003) when communication is the

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 489–518, 2019.
https://doi.org/10.1007/978-3-030-26954-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_16

490 E. Boyle et al.

bottleneck. We present several applications, including protocols for
non-interactive zero-knowledge with bounded-reusable preprocess-
ing from binary LPN, and concretely efficient related-key oblivious
pseudorandom functions.

– PCGs for simple 2-party correlations. We obtain PCGs for
several other types of useful 2-party correlations, including (authen-
ticated) one-time truth-tables and Beaver triples. While the latter
PCGs are slower than our PCG for OT, they are still practically
feasible. These PCGs are based on a host of assumptions and tech-
niques, including specialized homomorphic secret sharing schemes
and pseudorandom generators tailored to their structure.

– Multiparty correlations. We obtain PCGs for multiparty correla-
tions that can be used to make the (input-dependent) online commu-
nication of MPC protocols scale linearly with the number of parties,
instead of quadratically.

1 Introduction

Correlated secret randomness is a valuable resource for secure multi-party com-
putation (MPC). A simple example is a common random key that is given to two
parties, who can later use it as a one-time pad for secure message transmission.
In the context of MPC, a more useful example is a random oblivious transfer
(OT) correlation, in which one party is given a pair of random bits (more gen-
erally, strings) (s0, s1) and the other party is given the pair (r, sr) for a random
bit r. The OT correlation can serve as a basis for general MPC protocols with
no honest majority [40,49,54]. Other kinds of two-party correlations that are
useful for MPC include oblivious linear-function evaluation (OLE) correlations
[3,50,58], multiplication triples (also known as “Beaver triples”) [8,10,29], and
one-time truth tables [28,30,47].

The above types of correlated randomness are commonly used to imple-
ment efficient MPC protocols in the preprocessing model. Such protocols con-
sist of an offline, input-independent preprocessing phase, where many inde-
pendent instances of the correlated randomness are generated, followed by a
fast online phase that consumes this correlated randomness for the purpose
of securely evaluate a given function of the inputs. In many cases, the online
phase is “information-theoretic”1 and its computational complexity is only a
small-constant times higher than that of an insecure function evaluation. Most
importantly for the present work, the online phase of such protocols typically
outperforms all competing approaches in terms of concrete efficiency.

A major challenge in implementing such offline-online protocols is that the
preprocessing phase needs to securely generate and store a large amount of cor-
related randomness. This is typically done by using a special-purpose interactive
MPC protocol, which involves a significant amount of communication and com-
putation for each gate of a circuit that should be evaluated in the online phase.
1 This can be formalized by requiring that the joint states of the parties in the end of

the offline phase can be swapped by computationally indistinguishable states, given
which the online protocol is secure against computationally unbounded parties.

Efficient Pseudorandom Correlation Generators 491

A dream goal would be to replace this source of correlated randomness with
short correlated seeds, which can be “silently” expanded without any interac-
tion to produce a large amount of pseudorandom correlated randomness. This
process should emulate an ideal process for generating the target distribution
not only from the point of view of outsiders, but also from the point of view of
insiders who can observe the correlated seeds. We refer to such an object as a
pseudorandom correlation generator, or PCG for short.

A bit more precisely, a two-party PCG is defined as follows. Let (R0, R1) be a
target correlation, defined by some efficient sampling algorithm C that on input
1λ outputs a pair of correlated strings (r0, r1). For instance, C(1λ) may output
n = λ3 independent instances of an OT correlation. A PCG is a pair of efficient
algorithms (Gen,Expand) such that:

– Gen samples a pair of short correlated seeds (k0, k1)
$← Gen(1λ),

– Expand is a local deterministic seed expansion algorithm mapping ki to ri ←
Expand(i, ki), where |ri| > |ki|.

We would like the outputs (r0, r1) resulting from this process to be “indistin-
guishable” from an ideal sample (R0, R1) generated by C(1λ), even to a party
who receives one of the seeds kb.

A useful special case of PCG was recently considered by Boyle et al. [14], who
constructed (under variants of the Learning Parity with Noise assumption [12])
a concretely efficient PCG for the vector OLE (VOLE) correlation. The VOLE
correlation over a field F samples a random scalar x ∈ F and vectors u , v ∈ F

n,
and outputs r0 = (u , v) to one party (the “sender”) and r1 = (x,w = ux + v)
to the other party (the “receiver”). The VOLE correlation is useful for secure
computation of functions that employ scalar-vector products over large fields,
such as ones arising in the context of linear algebra and keyword search [3].

Designing efficient PCGs for a wider class of correlations is strongly moti-
vated by the goal of improving the efficiency of general MPC in the preprocess-
ing model, where the preprocessing phase is used to securely generate the PCG
seeds. We refer to this as MPC with silent preprocessing. More concretely, such
a protocol consists of three phases: (1) an interactive setup phase for securely
distributing the seed generation algorithm Gen; in the end of this phase, which
involves a small amount of communication, only the short seeds are stored for
later use; (2) a silent seed expansion phase, where the seeds are expanded into
long correlated randomness via a local computation of Expand and without any
interaction; (3) a final online phase where the correlated randomness is con-
sumed to evaluate a given function of the inputs. One could employ Phase 1
when deciding that an MPC interaction might take place in the future, Phase 2
when interaction seems likely to take place in the near future, and Phase 3 to
carry out the MPC interaction once the inputs are available. The low communi-
cation footprint of silent preprocessing can eliminate traffic analysis attacks that
aim to anticipate future MPC plans. Finally, another benefit of the PCG-based
approach is that it can help reduce the cost of protecting MPC protocols against
malicious parties. Indeed, since Phase 2 does not involve any interaction, it suf-
fices to protect Phase 1 and Phase 3 against malicious parties, which is typically
much cheaper.

492 E. Boyle et al.

Several different kinds of PCG constructions are implicit in the MPC liter-
ature. These include PCGs for simple multi-party linear correlations from any
pseudorandom generator [26,38], for general correlations from indistinguisha-
bility obfuscation [42,45], for so-called “bilinear” correlations from homomor-
phic secret sharing [16], for restricted variants of OT correlations from key-
homomorphic pseudorandom functions [60] and, most recently, for VOLE cor-
relation from LPN [14]. With the exception of linear multi-party correlations
[26,38] and VOLE correlations [14], none of these prior constructions seem
appealing from a practical point of view. In particular, there was no prior app-
roach (even a heuristic one) for constructing a concretely efficient PCG for OT
correlations.

1.1 Our Contributions

In this work, we initiate a more systematic study of pseudorandom correla-
tion generators. Our contributions are on both the foundational side, where we
present new definitions, impossibility results and connections with other primi-
tives, and the applied side, with concretely efficient constructions for commonly
used MPC correlations, including OT correlations and others. Our most practi-
cal PCG constructions handle restricted (yet still useful) classes of correlations,
while our more general constructions can handle much larger classes of corre-
lations, at the expense of a bigger seed size and higher computational costs
(and, for some of them, public-key-style assumptions such as lattice-based or
pairing-based cryptography).

We now give a more detailed account of our contributions. Unless noted
otherwise, we refer to MPC with computational security against semi-honest
(i.e., passive) and static (i.e., non-adaptive) adversaries who may corrupt an
arbitrary subset of parties.

Foundations of Pseudorandom Correlation Generators. Our first goal is
to present a general security definition for the intuitive notion of PCG described
above. As pointed out in [38], this is not quite as straightforward as one might
imagine, and previous works side-stepped the problem by taking an ad-hoc app-
roach. To motivate our general definition, we start by discussing the most natural
alternative.

Ruling Out a Simulation-Based Definition. Recall that the ultimate
desire would be that in any protocol, one can securely replace an ideal correlated
randomness functionality C with pseudo-randomness obtained from expanding
the correlated seeds of a PCG for C. This would indeed follow from a natu-
ral simulation-based security definition for PCG as a computationally secure,
dealer-assisted protocol for computing the randomized functionality defined by
C. Concretely, in the two-party case, the simulation-based definition requires
the existence of a simulator S such that the real distribution (kb,Expand(k1−b)),
where (k0, k1) are generated by Gen (capturing the view of a corrupted party b
jointly with the output of the uncorrupted party 1− b) is computationally indis-
tinguishable from the ideal distribution (S(rb), r1−b), where (r0, r1) are sampled

Efficient Pseudorandom Correlation Generators 493

by C. Unfortunately, we show (building on [45], and extending an informal argu-
ment from [38]) that such a definition is impossible to realize even for simple
correlations. Intuitively, the impossibility follows from the fact that in the real
distribution kb “explains” the output of the honest party in an efficiently veri-
fiable way, whereas such an explanation of r1−b cannot be generated from rb in
the ideal distribution.

A General PCG Definition. To get around the above impossibility, we
present a relaxed indistinguishability-based definition of PCG security, gener-
alizing the specialized security definition for the VOLE correlation from [14].
Our definition requires that given its PCG key kb, corrupted party b cannot dis-
tinguish the true expanded output of the honest party r1−b = Expand(1−b, k1−b)
from a random output r1−b consistent with the correlation C and its own
expanded output rb = Expand(b, kb). In other words, we replace the ideal distri-
bution in the above simulation-based definition by (kb, [r1−b |Rb = Expand(kb)]).
Note that the latter distribution involves reverse-sampling from R1−b condi-
tioned on a fixed value for Rb, which may not be well-defined. However, in this
work we only consider additive correlations, where (R0, R1) are additive secret
shares (over a finite Abelian group) of a sample from some core distribution. For
such additive correlations, the reverse-sampling is well-defined and is computa-
tionally efficient. More broadly, our general PCG definition is meaningful when
this reverse-sampling is efficient.

Limitations. Our PCG definition is not good enough for generating correlated
randomness in all applications. Indeed, the impossibility of the simulation-based
definition discussed above implies such simple counterexamples for randomized
functionalities. Concretely, for any C to which the impossibility result applies,
there is a trivial MPC protocol for C given correlated randomness from C in which
each party outputs its correlated randomness. However, the impossibility result
shows that using any PCG for C would render this simple protocol insecure. We
show, under standard cryptographic assumptions, that a similar impossibility
holds even if one restricts attention to MPC for deterministic functionalities.
Concretely, we show a protocol which uses correlated randomness C to realize
a deterministic functionality with statistical security against malicious parties,
but which becomes completely insecure (even against semi-honest parties) when
C is replaced by a specific PCG for C that meets our indistinguishability-based
definition.

A Plug-and-Play Use of PCG. We complement the above negative results
by a positive result, showing that our PCG definition does suffice to imply our
“ultimate desire” in the context of most applications. Concretely, we put forward
a slightly stronger security requirement for MPC with preprocessing, such that in
any protocol satisfying this requirement, a PCG can be used as a drop-in replace-
ment for correlated randomness. The stronger security requirement asserts that
security still hold even if the ideal correlation functionality (R0, R1) is replaced
by a corruptible functionality that allows corrupted party b to pick its own ran-
domness r∗

b , and then delivers to the uncorrupted party a sample r1−b from the

494 E. Boyle et al.

conditional distribution [r1−b |Rb = r∗
b]. It fortunately turns out that natural

MPC protocols in the preprocessing model already satisfy this stronger security
requirement. This allows for a plug-and-play use of PCGs in many application
scenarios.

Relation with Homomorphic Secret Sharing. A (two-party) homomor-
phic secret sharing (HSS) scheme [18,21] for a function class F splits a secret x
into two shares (x0, x1), such that given any f ∈ F one can efficiently evaluate
additive shares of f(x) via local computation on the shares. We show a two-way
relation between PCG and HSS. First, we show that a PCG for any additive
correlation (as defined above) can be reduced to HSS for a related function class
F , generalizing and formalizing a previous observation from [16]. In particular,
HSS for general circuits implies PCG for all additive correlations, which include
most of the useful MPC correlations as special cases. (This is only a feasibility
result, which does not directly imply concretely efficient constructions.) Second,
we show that some converse is also true: a PCG for the degree-d “tensoring”
correlation, obtained by picking a random vector X ∈ Rn and outputting addi-
tive shares of all products of at most d entries of X, implies HSS for the class F
of degree-d (n-variate) polynomials over Rn, where the share size grows linearly
with n and the homomorphic evaluation time grows linearly with nd.

Silent OT Extension. A central contribution of this work is the first concretely
efficient construction of PCG for the oblivious transfer (OT) correlation. From
an asymptotic point of view, our PCG can achieve an arbitrary polynomial
stretch, assuming: (1) The binary Learning Parity with Noise (LPN) assumption
[12] with a conservative choice of parameters, and (2) A correlation-robust hash
function [46]. The hash function primitive, which is only used in a black-box
way, can be instantiated in practice by a general-purpose hash function or block
cipher. Assuming LPN with a linear number of samples and inverse-polynomial
noise rate holds for the dual of a near-linear time encodable code (such as the
codes proposed in [1,3,34,44]), which is still a conservative assumption, the
computational complexity of Expand is nearly linear in the output length.2

In a nutshell, our efficient PCG for OT applies the PCG for VOLE from [14]
over a large extension field F2λ , except for restricting the sender’s output u to
be over the base field. This yields n correlated instances of random OT that can
be converted into standard OT by using a correlation-robust hash function, as
in [46]. See Sect. 2 for more details.

By applying a secure two-party protocol for distributing Gen, we obtain a
silent OT extension protocol that generates n pseudo-random OT instances
using a small number of OTs, with a total of O(nε) bits of communication
for any ε > 0. This should be compared with existing OT extension protocols
[9,46] that do not require the LPN assumption but where the communication
complexity is bigger than n.
2 In Sect. 1.1 below we describe an alternative LPN-based approach to constructing

PCG for OT that dispenses with assumption (2), but requires at least quadratic
computation in the output length n.

Efficient Pseudorandom Correlation Generators 495

Concrete Efficiency. Our LPN-based PCG for OT is very attractive in terms of
concrete efficiency, and we expect it to outperform state-of-the-art OT extension
protocols [7,46,55] in settings where communication is the bottleneck. To give
a few data points, our PCG can expand a pair of seeds of length 10KB into
a million instances of random 128-bit string-OT, of total size 16 MB (receiver)
and 32 MB (sender), in an estimated3 time of around a second on a single core
of a modern CPU. Alternatively, seeds of length 7 KB can be expanded into 65
thousand OTs at roughly half the amortized computational cost. Factoring in the
cost of securely distributing Gen (with semi-honest security, building on [32]), the
amortized communication complexity of our silent OT extension protocol is 0–3
bits for each random 128-bit string-OT. To put that into context, state-of-the-
art OT extension protocols [7,46] require 128 bits of communication per random
128-bit string-OT and can generate around 10 million OTs per second [41] over a
fast network, so the price we pay for the (much) lower communication complexity
seems quite modest. Even for the easier case of random bit-OT, the best previous
OT extension protocol [55] required roughly 80 bits of communication per OT.

Other PCG Constructions. We present an assortment of practically feasible
PCGs for other useful two-party correlations, based on a variety of underlying
tools and assumptions.

– PCG for Constant-Degree Polynomials from LPN. We show that a general-
ization of the LPN-based VOLE generator from [14] can be used to obtain a
PCG for any constant-degree additive correlation, namely a correlation that
additively secret-shares a vector of degree-d polynomials of a random X ∈ F

n

for some constant d ≥ 2. This PCG relies on LPN over F in a similar noise
regime as the PCG for OT from Sect. 1.1. In fact, by increasing the computa-
tion time (but still keeping it polynomial), one can use the LPN assumption
in a parameter regime that is not known to imply public-key encryption [2],
let alone OT. The main caveat is that even for generating simple degree-d
correlations, such as Ω(n) Beaver triples (d = 2), the computational com-
plexity of Expand is bigger than nd. While much slower than our PCG for
OT, this construction may still be practically feasible for d = 2 even with
reasonably large n. We leave the question of obtaining more efficient variants
of this construction to future work.
As discussed in Sect. 1.1, this PCG construction implies (2-party) HSS
schemes for constant-degree polynomials from LPN. By additionally assuming
a standard OT protocol, it implies secure two-party computation protocols
for constant-degree polynomials in which the communication complexity is
nearly linear in the input size. Using the techniques from [18,25], it also
implies an “almost-sublinear” general secure computation protocol: for any

3 We caution that we have not implemented our constructions. Our estimates are
based on counting basic operations and estimating their cost; the actual running
times may vary due to other costs we neglected such as cache misses. We leave the
task of optimizing and implementing our constructions to future work.

496 E. Boyle et al.

constant c > 1 and layered boolean circuit of size s (and assuming binary LPN
and OT), there is a secure two-party computation protocol with polynomial
computation and total communication bounded by s/c. We stress again that
these are mainly feasibility results because of the high computational cost of
this PCG construction.

– PCG for One-Time Truth Tables from any PRG. One-time truth tables
(OTTT) are a type of correlation that allow secure evaluation of a public
lookup table in MPC, on a secret-shared input [28,30,47], and are well-suited
to computations such as the S-box of AES. For MPC with active security,
the correlation outputs need to be authenticated with information-theoretic
MACs, as in the recent TinyTable protocol [28]. We present a very simple
PCG for authenticated OTTT using only a distributed point function (DPF)
[19,39], which in turn can be efficiently constructed from any pseudoran-
dom generator (PRG). This PCG follows naturally from a building block
of the silent OT extension construction (as we explain in Sect. 2). It com-
presses the storage cost of an authenticated OTTT from O(λn) bits down to
O(λ log n) bits, for a table of size n, giving a reduction in size of over 20x
for a length-256 table such as the AES S-box. There is a concretely efficient
protocol to distribute the seed generator Gen with semi-honest security by
using the distributed DPF key generation protocol from [32]. While a similar
protocol with malicious security is considerably more expensive, even a naive
approach based on general-purpose secure computation (e.g., using recent
protocols such as [51]) is feasible in practice, enabling the compressed storage
benefit of the PCG-based approach.

– PCGs from Homomorphic Secret Sharing. We give practically feasible PCG
constructions for OLE and (authenticated) Beaver triple correlations, which
are useful for arithmetic MPC protocols such as SPDZ [29]. For these con-
structions we use HSS based on ring-LWE [22,23,31] and the BGN (pairing-
based) cryptosystem [13,16,18]. To expand the seeds, we rely on a multivari-
ate quadratic (MQ) assumption based PRG, which limits the stretch to sub-
quadratic, but allows for reasonable computational efficiency. For example,
with our ring-LWE-based PCG we estimate that one should be able to expand
a pair of 3 GB seeds into 17 GB of authenticated Beaver triples in a 128-bit
field, at a rate of around 6 thousand triples per second; various tradeoffs are
possible between seed size and computation time, and we also explore an iter-
ative variant which produces triples in small batches. Securely computing Gen
to distribute the seeds is relatively cheap compared to the expansion phase,
and the overall performance should be comparable to recent work on actively
secure triple generation with much more interaction [53]. With BGN, we esti-
mate around 200 ms for computing an OLE correlation over ZN for small N
(say, N < 10). Although much more expensive than our silent OT extension,
an advantage of the ring-LWE-based constructions, beyond the richer class
of correlations, is that they can be extended to the multi-party setting, as we
discuss next.

Efficient Pseudorandom Correlation Generators 497

PCGs for Multi-party Correlations. Finally, we present a general transfor-
mation for extending certain classes of PCGs from the 2-party to the multi-party
setting. This can be applied to PCGs for simple bilinear correlations, including
VOLE and Beaver triples, giving the first non-trivial, efficient PCG constructions
in the multi-party setting. The transformation applies to most of our 2-party
PCGs, including the LPN-based PCG for constant-degree correlations.

On top of the silent preprocessing feature, an appealing application of our
multi-party PCGs is in obtaining secure M -party computation protocols with
total communication complexity O(Ms + M2 · sε) (for circuit size s and con-
stant 0 < ε < 1). The O(Ms) term is the cost of the (information-theoretic)
online phase, and the O(M2 · sε) term is the cost of distributing the PCG seed
generation, which is the only part of the protocol requiring pairwise communi-
cation. This should be contrasted with OT-based MPC protocols, which have
total communication complexity Ω(M2s) [40,43]. Protocols with such commu-
nication complexity (without the silent preprocessing feature) could previously
be based on different flavors of somewhat homomorphic encryption [27,29,35].
We get the first such protocol that only relies on LPN and OT, and the first
practically feasible protocol that has sublinear-communication offline phase and
information-theoretic online phase (Table 1).

Table 1. Summary of the New PCG Constructions. Costs are estimated based on one
core of a modern laptop.

PCG Section 5 [15] [15] [15] [15] [15]

Assumption LPN PRG* LPN deg-d HSS SXDH LWE

+ MQ/LPN + LPN + MQ

Correlations OT* OTTT* deg-d deg-d/2 deg-2 deg-d

Efficiency 1M OT/s† - - - 5 OLE/s‡ 6000/s**

Multiparty ✗ ✗ ✔ ✔ ✗ ✔

(bilinear corr.)

*PRG stands for an arbitrary pseudorandom generator, OT for random oblivious trans-
fer, and OTTT for authenticated one-time truth-table correlation.
†With average communication of 0.2 bits/OT.
‡For OLE correlation over a small (constant size) ring.
**For generating authenticated Beaver triples over a 128-bit prime field.

Additional Applications. From our silent OT extension protocol, we obtain
the following additional results:

– Oblivious Pseudorandom Functions (OPRFs). An OPRF [36] is a two-party
protocol for securely evaluating a pseudorandom function, whose key is known
by one party, on a secret input known by the second party. OPRFs serve as
the main building blocks in recent protocols for private set intersection [56].
Our silent OT construction can be used to obtain a form of batch OPRF with

498 E. Boyle et al.

cost as little as 1 bit of communication per OPRF evaluation on a random
input, leading to around a factor two reduction in communication for these
protocols.

– Reusable-Preprocessing NIZK. Consider the following setting for non-
interactive zero knowledge (NIZK) with reusable interactive setup: In an
offline setup phase, before the statements to be proved are known, the prover
and the verifier interact to securely generate correlated random seeds. The
seeds can then be used to prove any polynomial number of statements by hav-
ing the prover send a single message to the verifier for each statement. Such a
notion was recently constructed in [14], building on [24], using their PCG for
VOLE. Our silent OT extension can be used to obtain an improved reusable-
preprocessing NIZK system for NP, under the standard LPN assumption over
F2. As compared to the reusable NIZK of [14], our NIZK relies on a more
standard assumption (LPN over F2 versus large F), and the setup cost is inde-
pendent of both the number of statements and their size (whereas in [14], the
setup cost was independent of the number of statements, but grows linearly
with a bound on their size). On the down side, our OT-based NIZK protocols
do not have the computational complexity advantages of the VOLE-based
constructions from [14].

– Efficient Secure Matrix Multiplication. As a stepping stone towards silent OT
extension, we construct a PCG for a generalization of VOLE called subfield
VOLE. This can be seen as a form of batch VOLE where the u value is
reused across several instances, and can be applied to compute secret-shared
tensor products and matrix multiplication more efficiently. Compared with
naively using a PCG for standard VOLE, we reduce the seed size by at least
a O(log n) factor.

Finally, our PCG for OTTT yields the following application.

– Improved 2-PC with Sublinear Online Communication. Standard approaches
to secure computation with preprocessing (e.g., SPDZ) still require online
communication that is linear in the circuit size. Recently, Couteau [25]
demonstrated asymptotic feasibility of information-theoretic secure 2-party
computation (2-PC) in the preprocessing model for a natural class of cir-
cuits (namely, “layered” circuits), with sublinear online communication,
O(s/ log log s) for circuit size s. However, this comes at the cost of gener-
ating and storing O(s2) bits of correlated randomness.
Our compressed one-time truth-table (OTTT) construction allows one to
match the asymptotic complexity of [25], while reducing the amount of corre-
lated randomness from quadratic to quasilinear in the circuit size, in exchange
for settling for computational security and assuming the existence of one-way
functions.

1.2 Paper Organization

In this extended abstract we only present our main techniques and results. For
the full details of constructions and other results, we refer to the full version of

Efficient Pseudorandom Correlation Generators 499

this work [15]. We begin in Sect. 2 with an overview of our techniques, followed
by preliminaries in Sect. 3. In Sect. 4, we present our PCG definition and founda-
tional results. Section 5 contains our PCGs for subfield-VOLE and OT, leading
to our silent OT extension construction.

2 Technical Overview of Constructions

In this section we give a high-level overview of the techniques that underly our
different PCG constructions.

2.1 Background

Our PCG constructions rely on different types of homomorphic secret sharing
(HSS) and function secret sharing (FSS) schemes. Informally, HSS is a form of
secret sharing that allows a secret x to be split up into shares k0, k1, such that
a party holding ki can locally obtain an additive secret share of f(x), for some
function f . FSS is the dual notion: starting with a function f , and splitting
into shares f0, f1 such that each share fi hides f , but can be used to obtain
an additive sharing of f(x) for some public input x.4 FSS for a class of point
functions (i.e., functions f which evaluate to 0 on all but a single input) is
called a distributed point function [39], and can be constructed very efficiently
based on a pseudorandom generator (PRG) [19]. There are HSS constructions
for branching programs based on DDH [18] or lattices [22], or general circuits
from strong forms of fully homomorphic encryption [31].

2.2 Overall Methodology

At a high level, our constructions can all be seen as examples of the follow-
ing blueprint: construct an HSS scheme that can homomorphically evaluate the
composition of a pseudorandom generator (PRG) with a function f that uses
the expanded randomness to compute the desired correlation. This can be used
to obtain PCGs for any additive correlation; i.e., that outputs random additive
shares of some distribution. Of course, the main challenge lies in instantiating
this efficiently, since plugging in even a low-degree PRG to an off-the-shelf HSS
scheme is typically not practical. We instead use specialized HSS constructions
that pair well with our carefully chosen PRGs.

As a stepping stone, our constructions implicitly construct a compressible
form of HSS, which allows the sharing of inputs from some distribution D, such
that the share size is smaller than an uncompressed output of D, and we can still
compute some useful function f on the expanded inputs. We typically choose D
to be a sparse distribution on vectors, or another similarly compressible distri-
bution. We then convert these long D-vectors to slightly shorter (but still long)

4 FSS is actually equivalent to HSS for a related class of functions, but we differentiate
between the two for convenience, depending on the applications.

500 E. Boyle et al.

random-looking vectors, by homomorphically multiplying by a compressive lin-
ear map. Under a suitable LPN-type assumption, this combination of expanding
the compressed D-vector followed by linear compression acts as a PRG in the
above blueprint, and we can proceed to homomorphically compute the desired
correlation.

For example, when D samples a sparse, low-weight vector e over F2, and the
linear map is a random matrix H, then distinguishing (H, e ·H) from random is as
hard as the problem of decoding a random binary linear code, which corresponds
to the standard LPN assumption [2,12]. Another example is when D outputs a
tensor product of two short, uniform vectors. Recovering the short vectors given
only (x ⊗ y) · H is the problem of solving a random system of multivariate
quadratic equations (MQ problem), which is believed to be hard for a suitable
choice of parameters [4,11,57,63]. In particular, the decision version of MQ is
polynomially reducible to its search version [11].

We remark that the resulting PRGs do not necessarily conform to standard
metrics of simplicity, such as low degree or low locality, and in isolation may
appear somewhat unnatural. This exemplifies an interesting observation that
“HSS-friendliness” may indeed be a new type of metric that does not directly
align with those previously studied.

2.3 Silent OT Extension

As a building block for silent OT extension, we start by constructing a PCG for a
two-party correlation we call subfield vector oblivious linear evaluation (subfield
VOLE). This correlation works over a field Fq, and a subfield Fp, where q = pr.
It first samples a random x ∈ Fq, u ∈ F

n
p , v ∈ F

n
q , then outputs (u , v) to the

sender and (x,w = ux+v) to the receiver.5 Our construction is a generalization
of the vector-OLE construction from [14]: when p = q the correlation is exactly
vector-OLE, but using q > p opens up additional applications. For example,
viewing x ∈ Fq as a vector x ∈ F

r
p, subfield VOLE can be seen as computing

additive shares of the r ×n tensor product x ⊗u , which can be useful for secure
two-party matrix multiplication, and other linear algebra tasks. Compared with
using r copies of VOLE [14] to achieve the same task, we reduce the seed size
by a O(log n) factor and obtain more efficient computation.

To build a PCG for subfield VOLE, we consider a compressible distribution
D that outputs random sparse vectors of weight t and length n′. First, notice
that we can compress a secret-sharing of the j-th unit vector ej ∈ {0, 1}n′

, using
a distributed point function (DPF) for the point (j, 1): evaluating a DPF key on
input i produces a random share of 0 on all inputs except i = j, where it outputs
a share of 1. Hence, performing all n′ evaluations results in shares of the entire
vector ej . This easily extends to weight t vectors, by naively using t DPFs and
summing up the shares of the t unit vectors (this step can be optimized with a
multi-point DPF as described in [14]).

5 We view elements of Fp embedded into Fq throughout, so that the multiplication
u · x happens over Fq.

Efficient Pseudorandom Correlation Generators 501

Although it may appear that this only allows us to compress sparse vectors,
and not perform any useful HSS computations afterwards, we observe that with
a small tweak we can use this to build HSS for the family of randomized functions

F = {fH : Fq → F
n
q , x �→ x · e · H | e $← HWt,H ∈ F

n′×n
p } (1)

where HWt is the distribution that outputs a random weight-t vector over F
n′
p

(with each entry either 0 or uniform). We remark that a naive description of
the class F gives functions with very high degree, which could not be evaluated
using simple HSS schemes, which highlights the importance of tailoring a specific
solution.

To upgrade the above sketch to get HSS for F , we make one small modifica-
tion: using t DPFs that output shares over Fq, we specify the i-th DPF by the
point (ji, yi ·x) for some random index ji and yi ∈ F

∗
p, instead of (ji, 1) as before.

When evaluating the DPFs, the parties now obtain additive shares of e ·x, where
e contains all t yi’s in random positions. Since additive secret sharing is linear,
any linear map H can then be locally applied on the shares.

If H ∈ F
n′×n
p is a compressive linear map with n < n′, the vector u = e · H

is pseudorandom under a suitable form of the LPN (or syndrome decoding)
assumption. Concretely, we require that a t-noisy random codeword in the code
whose parity check matrix is H is pseudorandom. This immediately yields a
subfield VOLE generator, where each party’s seed contains a set of DPF seeds,
and the sender additionally gets the points (ji, yi), and the receiver gets x, since
additive shares of x · u can be locally converted to the (v ,w) components of a
VOLE correlation.

Our next observation, inspired by the OT extension protocol of Ishai et al.
[46], is that subfield VOLE already gives as a restricted form of oblivious transfer,
known as correlated OT or Δ-OT. If we run subfield VOLE over F2, embedded
in F2r , then the VOLE sender obtains a set of pairs ui

$← F2, vi
$← F2r , while

the VOLE receiver gets x
$← F2r and wi = x · ui + vi, for i = 1, . . . , n. Now

switch the roles of sender and receiver, so the VOLE sender becomes an OT
receiver with choice bit ui and string vi. If ui = 0 then vi = wi, whilst if ui = 1
then vi = wi − x, hence, this is exactly a 1-out-of-2 OT where the OT sender’s
(formerly VOLE receiver’s) messages are all of the form (wi, wi − x).

On its own, this type of Δ-OT is already useful for many applications such
as garbled circuits and secure computation with information-theoretic MACs
[59,61]. However, most importantly, following [46], the parties can locally convert
such a correlated OT into an OT on random strings, using a hash function
that is pseudorandom under correlated inputs. This gives us a PCG for random
oblivious transfer, where the seed size is essentially that of t distributed point
functions, or O(tλ log n) bits. Combining this with an efficient secure protocol for
setting up a pair of DPF keys [32], we obtain our silent OT extension protocol,
which produces n pseudorandom string-OTs with o(n) bits of communication.

502 E. Boyle et al.

2.4 One-Time Truth Tables

We next show how to adapt the above approach to produce authenticated, one-
time truth table correlations, which can be used to efficiently perform table
lookups in MPC [28,30,47]. This construction is straightforward given the above
description of our subfield-VOLE generator, so we informally explain it here and
defer the complete description to the full version.

The correlation we want to produce, for a lookup table T : [n] → {0, 1}m, is
an additive secret-sharing of

(
α, {yi, γi}i∈[n]

)
where yi = T (s + i mod n), γi = yi · α ∈ F2λ (2)

for α
$← F2λ , s

$← [n]. Here, the yi’s are equal to T shifted by a random offset
s, while the γi’s are information-theoretic MACs on yi under the key α, used to
obtain active security in the MPC protocol.

Our starting point is the observation from [52] that the yi’s can be generated
locally, given secret-shares of a random unit vector. This is because, if es ∈
{0, 1}n is the s-th unit vector, then we have

T (s + i mod n) =
n∑

j=1

es[j] · T (i + j mod n)

which is linear in es. We can further obtain the γi’s (namely, the authenticated
γi = yi · α) if we additionally have secret-shares of the corresponding scaled
vector α · es.

The core observation is that a DPF gives precisely a compressed secret sharing
of such a secret vector (1||α) · es ∈ ({0, 1}1+λ)n: requiring only O(λ log n) bits
in the place of O(λn).

More concretely, this leads to the following, simple approach for a PCG to
generate shares of (2): use the previous DPF-based construction of HSS for the
family in (1) over F2, with t = 1, x = (1‖α) for α

$← F2λ , and H the linear map
induced by T in the equation above. The resulting PCG has seed size essentially
the same as one DPF, which is O(λ log n) bits. This gives a large compression over
the previous, practical approach from [28], which required O(λn) bits per table.
Expanding the PCG is relatively cheap in practice, since in 2-PC applications
only a single entry of each table is ever used, and this can be computed on-the-fly
with O(n) PRG evaluations.

A downside of this construction is that it seems difficult to produce the
necessary PCG seeds with good concrete efficiency in the malicious setting, since
the only known approach in this setting requires evaluating a PRG inside 2-PC
[32]. However, our result is still interesting for a preprocessing phase with semi-
honest security, or when a trusted dealer is present. Alternatively, if one can
afford the cost of distributing Gen with malicious security via general-purpose
2-PC, the resulting correlated seeds only require a small amount of storage, and
their local expansion is (automatically) secure against malicious parties.

Efficient Pseudorandom Correlation Generators 503

2.5 PCGs for Constant-Degree Polynomials from LPN

We construct PCGs for constant-degree polynomials, using again function secret
sharing for multi-point functions together with LPN. At a high level, the con-
struction builds upon the fact that given two sparse vectors a , b, their tensor
product a ⊗ b is sparse as well, hence shares of a ⊗ b can be compressed using
an FSS, as for vector-OLE generators and silent OT extension. Then, a com-
pressive mapping can be applied to obtain x ⊗ y from a ⊗ b, where x = (a · H)
and y = (b · H) are pseudorandom under the LPN assumption, thanks to the
bilinearity of the tensor product (and linearity of H). This immediately leads
to a PCG for bilinear functions, which can be easily generalized to a PCG for
constant-degree polynomials. However, the share size grows as O(td), where t is
the number of noisy coordinates in the LPN instance, and d is the degree of the
polynomial. The computation cost grows as O(n2d), where n is the input size.

2.6 PCGs from Ring-LWE and BGN-based HSS

We construct PCGs for more general two-party correlations, building upon the
specific structure of homomorphic encryption-based HSS schemes [22,31] and
group-based HSS schemes [16,18,20]. Our key observation is that in both HSS
schemes encodings of large pseudorandom strings can be compressed efficiently
using an “HSS-friendly PRG” as described in Sect. 2.2. For the ring-LWE based
construction, we obtain compression with a PRG based on the multivariate
quadratic equations problem, and present several ways of optimizing this with
batching techniques for homomorphic encryption, which lead to different trade-
offs for seed size and computational cost.

The group-based approach requires more involved techniques: The underly-
ing HSS scheme uses two types of encodings, where so-called level-1 encodings
are ElGamal ciphertexts, and level-2 encodings are shares of sk · x for a vector
x , where sk is the secret key of the homomorphic encryption scheme. Then, a
special HSS operation allows to compute level-2 encodings of bilinear functions
applied to a level-1 encoding and a level-2 encoding. Using two parallel instances
of the PCG for vector-OLE of [14] allows us to efficiently compress shares of
y and sk · y , where y is a pseudorandom vector and sk is a shared value, to
only O(λt log n) bits, under the LPN assumption with t noisy coordinates. Fur-
thermore, encrypting short random sparse vectors suffices for homomorphically
evaluating a specific LPN-based PRG directly on the level-1 encodings, as long
as they support evaluation of degree-2 functions. This can be ensured by using
BGN-style pairing-based encryption for the group-based HSS. Since the HSS
comes with an inverse-polynomial error probability, we further develop a new
method to efficiently remove the faulty outputs, building upon our silent OT
extension protocol.

For both schemes, we discuss various optimizations and provide detailed effi-
ciency estimations.

504 E. Boyle et al.

2.7 Multi-party PCGs

As our final contribution, we construct multi-party PCGs for a useful class of
bilinear correlations. Concretely, for a given bilinear map e : G1 × G2 → GT ,
we consider M -party correlations of the form {(ai, bi, ci)}i∈[M], consisting of
additive secret shares of random elements a ∈ G1, b ∈ G2, and their image
c = e(a, b) ∈ GT . For appropriate choice of groups and bilinear operation, this
captures M -party OT, M -party vector OLE, M -party Beaver triples, and more.

Our construction approach provides a semi-generic transformation from any
PCG for a corresponding 2-party correlation {(a, c1), (b, c2)} for random a, b, and
c1 + c2 = e(a, b), if the PCG satisfies an additional programmability property.
Roughly, this property requires a way of “reusing” the inputs a and b across
instances without compromising security.

The M -party construction leverages this structure by executing M(M − 1)
pairwise instances of the underlying 2-party PCG, for all the “cross-terms.”
Namely, we think of each ai and bi from the final M -party correlation as playing
the role of a or b in the 2-party correlation, with all possible partners. The
desired M -party additive shares ci can then be derived by combining cii =
aibi (computable locally) together with {cij , cji}j∈[M]\{i} resulting from the 2-
party correlations for pairs (ai, bj) and (aj , bi). The resulting M -party PCG keys
consist of M(M −1) keys from the 2-party PCG, together with short expandable
shares of 0 for rerandomization.

We observe that the necessary programmability property is satisfied by our
subfield VOLE construction and the 2-party VOLE PCG from [14], as well as the
2-party bilinear PCGs constructed in this work (including OT and Beaver triples)
from group-based and lattice-based HSS and from LPN (in the full version [15]).
As a corollary, we obtain M -party variants of these correlations with quadratic
blowup in computation and share size. Interestingly, our silent OT extension
construction does not seem to support the necessary programmability, since the
resulting sender message pairs are implicitly defined as a function of the receiver’s
bit selections.

3 Preliminaries

We say that a function negl : N → R
+ is negligible if it vanishes faster than every

inverse polynomial. For two families of distributions X = {Xλ} and Y = {Yλ}
indexed by a security parameter λ ∈ N, we write X

c≈ Y if X and Y are com-
putationally indistinguishable (namely, any family of circuits of size poly(λ) has
a negligible distinguishing advantage), X

s≈ Y if they are statistically indistin-
guishable (namely, the above holds for arbitrary distinguishers), and X ≡ Y if
the two families are identically distributed.

Notation. We usually denote matrices with capital letters (A,B,C) and vectors
with bold lowercase (x ,y). By default, vectors are assumed to be row vectors.
We write A|i,j to denote the entry (i, j) of a matrix A. Given a vector x of length
|x | = n, the notation HW (x) denotes the Hamming weight x , i.e., the number

Efficient Pseudorandom Correlation Generators 505

of its nonzero entries. Given a distribution D, we denote by Im(D) the image of
D (i.e., its support set).

3.1 Function Secret Sharing

Informally, an FSS scheme for a class of functions C is a pair of algorithms
FSS = (FSS.Gen,FSS.Eval) such that:

– FSS.Gen given a function f ∈ C outputs a pair of keys (K0,K1);
– FSS.Eval, given Kb and input x, outputs yb such that y0 and y1 form additive

shares of f(x).

The security requirement is that each key Kb computationally hide f , except for
revealing the input and output domains of f . For a formal definition, see e.g.
[19].

Some applications of FSS require applying the evaluation algorithm on all
inputs. Following [14,19], given an FSS scheme (FSS.Gen,FSS.Eval), we denote
by FSS.FullEval an algorithm which, on input a bit b, and an evaluation key Kb

(which defines the input domain I), outputs a list of |I| elements of G corre-
sponding to the evaluation of FSS.Eval(b,Kb, ·) on every input x ∈ I (in some
predetermined order). While FSS.FullEval can always be realized with |I| invoca-
tions of FSS.Eval, it is typically possible to obtain a more efficient construction.
Below, we recall some results from [19] on FSS schemes for useful classes of
functions.

Distributed Point Functions. A distributed point function (DPF) [39] is an
FSS scheme for the class of point functions fα,β : {0, 1}� → G which satisfy
fα,β(α) = β, and fα,β(x) = 0 for any x �= α. A sequence of works [17,19,39]
has led to highly efficient constructions of DPF schemes from any pseudorandom
generator (PRG), which can be implemented in practice using block ciphers such
as AES.

Theorem 1 (PRG-based DPF [19], Theorems 3.3 and 3.4). Given a PRG
G : {0, 1}λ → {0, 1}2λ+2, there exists a DPF for point functions fα,β : {0, 1}� →
G with key size 	·(λ+2)+λ+�log2 |G| bits. For m = � log |G|

λ+2 , the key generation
algorithm Gen invokes G at most 2(+ m) times, the evaluation algorithm Eval
invokes G at most 	+m times, and the full evaluation algorithm FullEval invokes
G at most 2�(1 + m) times.

Note that a naive construction of FullEval from Eval would require 2�(+ m)
invocations of G.

FSS for Multi-point Functions. Similarly to [14], we use FSS for multi-point
functions. A k-point function evaluates to 0 everywhere, except on k specified
points. When specifying multi-point functions we often view the domain of the
function as [n] for n = 2� instead of {0, 1}�.

506 E. Boyle et al.

Definition 2 (Multi-point Function [14]). An (n, t)-multi-point function
over an abelian group (G,+) is a function fS,y : [n] → G, where S = (s1, · · · , st)
is an ordered subset of [n] of size t and y = (y1, · · · , yt) ∈ G

t, defined by
fS,y(si) = yi for any i ∈ [t], and fS,y(x) = 0 for any x ∈ [n] \ S.

We assume that the description of S includes the input domain [n] so that
fS,y is fully specified.

A Multi-Point Function Secret Sharing (MPFSS) is an FSS scheme for the
class of multi-point functions, where a point function fS,y is represented in a
natural way. We assume that an MPFSS scheme leaks not only the input and
output domains but also the number of points t that the multi-point function
specifies. An MPFSS can be easily obtained by adding t instances of DPF;
optimized constructions of MPFSS, using batch codes [48] to speed up the full
domain evaluation algorithm, were presented in [14].

3.2 Learning Parity with Noise

Our constructions rely on variants of the Learning Parity with Noise (LPN)
assumption [12] over either F2 or a large finite field F. Unlike the LWE assump-
tion, in LPN over F the noise is assumed to have a small Hamming weight.
Concretely, the noise is a random field element in a small fraction of the coor-
dinates and 0 elsewhere. Similar assumptions have been previously used in the
context of secure arithmetic computation [3,33,37,50,58]. Unlike most of these
works, the flavors of LPN on which we rely do not require the underlying code
to have an algebraic structure and are thus not susceptible to algebraic (list-)
decoding attacks.

Definition 3 (LPN). Let D(R) = {Dk,q(R)}k,q∈N denote a family of distri-
butions over a ring R, such that for any k, q ∈ N, Im(Dk,q(R)) ⊆ Rq. Let
C be a probabilistic code generation algorithm such that C(k, q,R) outputs a
matrix A ∈ Rk×q. For dimension k = k(λ), number of samples (or block length)
q = q(λ), and ring R = R(λ), the (D,C,R)-LPN(k, q) assumption states that

{(A, b) | A
$← C(k, q,R), e $← Dk,q(R), s $← F

k, b ← s · A + e}
c≈ {(A, b) | A

$← C(k, q,R), b $← Rq}

Here and in the following, all parameters are functions of the security param-
eter λ and computational indistinguishability is defined with respect to λ.

When R = F2 and D is the Bernoulli distribution over F
q
2, where each coor-

dinate is 1 with probability r and 0 otherwise, this corresponds to the standard
binary LPN assumption.

Note that the search LPN problem, of finding the vector can be reduced to
the decisional LPN assumption as defined above when the code generator C
outputs a uniform matrix A [5,12]. However, this is less relevant for us as we
are mainly interested in efficient variants with more structured codes. See [34]
for further discussion of search-to-decision reductions in the general case.

Efficient Pseudorandom Correlation Generators 507

Example: LPN with Fixed Weight Noise. For a finite field F, we denote by
HWr(F) the distribution of uniform, weight r vectors over F; that is, a sample
from HWr(F) is a uniformly random nonzero field element in r random positions,
and zero elsewhere. The (Berr(F)q,C,F)−LPN(k, q) assumption corresponds to
the standard (non-binary, fixed-weight) LPN assumption over a field F with code
generator C, dimension k, number of samples (or block length) q, and noise rate
r.

When the block length q and noise rate r are such that k random coordinates
will be all noiseless with non-negligible probability (e.g., when r is constant and
q = Ω(k2)), LPN can be broken via Gaussian elimination (cf. [6]). This attack
does not apply to our constructions, which typically have q = O(k).

Definition 4 (dual LPN). Let D(R) and C be as in Definition 3, n, n′ ∈ N

with n′ > n, and define C⊥(n′, n,R) = {B ∈ Rn′×n : A · B = 0, A ∈ C(n′ −
n, n′,R), rank(B) = n}.

For n = n(λ), n′ = n′(λ) and R = R(λ), the (D,C,R)-dual-LPN(n′, n)
assumption states that

{(H, b) | H
$← C⊥(n′, n,R), e $← D(R), b ← e · H}

c≈ {(H, b) | H
$← C⊥(n′, n,R), b $← Rn}

The search version of the dual LPN problem is also known as syndrome
decoding. The decision version defined above is equivalent to primal variant of
LPN from Definition 3 with dimension k = n′ −n and number of samples q = n′.
This follows from the simple fact that (s · A + e) · H = s · A · H + e · H = e · H,
when H is the parity-check matrix of A.

Remark 5. For any code generation algorithm C where dual-LPN is hard, it must
hold that for H

$← C⊥(n′, n′,R), H is full rank with overwhelming probability.
If that was not the case, then we could easily distinguish e ·H from uniform due
to a linear relation between some of its outputs.

Remark 6. As a concrete example of the actual flavor of the dual-LPN assump-
tion we will use, our construction of silent OT from Sect. 5 relies on the dual-LPN
assumption of Definition 3 with respect to a random linear code over the field
F2. For deriving our concrete parameters, we choose a regular error distribution
of weight t, where a length-n′ error vector has t non-zero coordinates spread
across weight-1 blocks of length n′/t. This is known as the regular-LPN or reg-
ular syndrome decoding problem. When n ≥ 216 and n′ = 4n, a fixed-weight
noise of t ≈ 32 suffices to achieve 80-bit security against the best known attacks
on this flavor of LPN, which all take time exponential in (n′/n) · t. We will also
consider alternative choices of linear codes (such as LDPC codes or quasi-cyclic
codes) to improve the concrete computational efficiency in our estimates; such
codes still lead to plausible variants of LPN and do not significantly improve
known attacks compared with random codes.

508 E. Boyle et al.

4 Pseudorandom Correlation Generators

In this section we put forward a general notion of pseudorandom correlation
generator (PCG) and study some of its limitations, capabilities, and relation
with other primitives. We start with our formal definition of PCG in Sect. 4.1.
We then discuss in Sect. 4.2 a simpler and more natural simulation-based defini-
tion of PCG, that would suffice for all applications, but is not realizable. As a
second-best alternative, we show in Sect. 4.3 that PCGs can be used as a drop-in
replacement for correlated randomness in every protocol that meets a slightly
stronger security requirement, which is indeed met by natural MPC protocols in
the correlated randomness model. In the full version [15], we also show a two-
way relation between PCGs for a useful class of “low-degree correlations” and
homomorphic secret sharing for low-degree polynomials.

4.1 Defining Pseudorandom Correlation Generators

At a high level, a pseudorandom correlation generator (PCG) for some relation
takes as input a pair of short, correlated seeds and outputs long correlated pseu-
dorandom strings, where the expansion procedure is deterministic and can be
applied locally.

For correctness we require that the expanded output of a PCG is indistin-
guishable from truly random correlated strings.

For security it would be natural and straightforward to require that we can
securely replace long correlated strings by short correlated seeds in any secure
protocol execution. Unfortunately, as shown in the following section, this security
requirement would be impossible to meet. Therefore, we will introduce (and
subsequently prove useful) an indistinguishability based security notion. Namely,
we require that an adversary given access to one of the short seeds kσ, cannot
distinguish the pseudorandom string R1−σ from a pseudorandom string that
is chosen at random conditioned on (R0, R1) being correlated (where Rσ =
PCG(kσ)). In other words, an adversary given access to a short seed cannot
learn more about the other party’s pseudorandom string than what is obvious
given access to its own pseudorandom string.

In order to formally define pseudorandom correlations, we first introduce the
concept of a correlation generator as a PPT algorithm outputting correlated
elements.

Definition 7 (Correlation Generator). A PPT algorithm C is called a cor-
relation generator, if C on input 1λ outputs a pair of elements in {0, 1}n×{0, 1}n

for n ∈ poly(λ).

In order to define security, we require the notion of a reverse-sampleable
correlation generator introduced in the following.

Definition 8 (Reverse-sampleable Correlation Generator). Let C be a
correlation generator. We say CC is reverse sampleable if there exists a PPT
algorithm RSample such that for σ ∈ {0, 1} the correlation obtained via:

Efficient Pseudorandom Correlation Generators 509

{(R′
0, R

′
1) |(R0, R1)

$← C(1λ), R′
σ := Rσ, R′

1−σ
$← RSample(σ,Rσ)}

is computationally indistinguishable from C(1λ).

The following definition of pseudorandom correlation generators can be
viewed as a generalization of the definition of the pseudorandom VOLE gen-
erator in [14]. Note though that we do not enforce perfect correctness.

Definition 9 (Pseudorandom Correlation Generator (PCG)). Let C be a
reverse-sampleable correlation generator. A pseudorandom correlation generator
(PCG) for CC is a pair of algorithms (PCG.Gen,PCG.Expand) with the following
syntax:

– PCG.Gen(1λ) is a PPT algorithm that given a security parameter λ, outputs
a pair of seeds (k0, k1);

– PCG.Expand(σ, kσ) is a polynomial-time algorithm that given party index σ ∈
{0, 1} and a seed kσ, outputs a bit string Rσ ∈ {0, 1}n.

The algorithms (PCG.Gen,PCG.Expand) should satisfy the following:

– Correctness. The correlation obtained via:

{(R0, R1) |(k0, k1) $← PCG.Gen(1λ), Rσ ← PCG.Expand(σ, kσ) for σ ∈ {0, 1}}

is computationally indistinguishable from C(1λ).
– Security. For any σ ∈ {0, 1}, the following two distributions are computa-

tionally indistinguishable:

{(k1−σ, Rσ) | (k0, k1)
$← PCG.Gen(1λ),Rσ ← PCG.Expand(σ, kσ)} and

{(k1−σ, Rσ) | (k0, k1)
$← PCG.Gen(1λ),R1−σ ← PCG.Expand(σ, k1−σ),

Rσ
$← RSample(σ,R1−σ)}

where RSample is the reverse sampling algorithm for correlation C.

Note that the above definition is trivial to achieve in general: We can let PCG.Gen
on input 1λ return (R0, R1) ← C(1λ), and simply define Expand to be the identity.
Typically, we will be interested in non-trivial constructions of PCGs, in which the
seed size is significantly shorter than the output size. A pseudorandom generator
with image in {0, 1}n is a simple example for an expanding PCG for the equality
correlation {(R,R) | R ∈ {0, 1}n}. In the following we will be interested in
constructing PCGs for a much broader class of correlations, like OT correlations,
OLE correlations and (authenticated) Beaver triples.

4.2 Impossibility of a Simulation-Based Definition

A natural and useful alternative to the security definition we gave in Sect. 4, is
the following: In any secure protocol (say against semi-honest adversaries), one
can replace sampling a pair of strings from the correlation C by generating a

510 E. Boyle et al.

pair of seeds (which are later expanded) using a PCG for C without compromis-
ing security. Unfortunately, as sketched in [38], a non-trivial PCG construction
cannot satisfy such a simulation-based definition. Consider the simple protocol,
where P0 samples a pair (R0, R1) ← C(1λ) and sends R1 to P1, who simply
outputs R1. This protocol obviously realizes the protocol dictated by C, with
one-sided security against P1. But, if P0 instead generates (k0, k1) according to
the seed generation algorithm of the PCG and sends k1 to P1, a possible simu-
lator runs into the following problem. Simulating the above protocol given only
the output R1 corresponds to finding a short seed k1 that can be (determinis-
tically) expanded to R1. If the entropy in the second output of C exceeds the
seed-length |k1|, such a compression violates correctness, as it could be used to
distinguish R1 from a string that is indeed chosen via C.

In the full version, we present a formal and more general version of the above
argument for ruling out a simulation-based definition for non-trivial correlations,
based on a lower bound of Hubáček and Wichs [45].

4.3 Applying PCGs in Protocols with Correlated Randomness

In this section we show that one can use PCGs in a “plug-and-play” fashion
in protocols consuming correlated randomness sampled by a given functionality.
More precisely, we show that PCGs can be directly applied to any protocol using
a weaker form of correlated randomness, where corrupted parties can influence
their outputs.

A simple example is random OT, where the weaker functionality we can
realize allows a corrupt sender/receiver to choose its outputs, then the other
party’s outputs are sampled at random correspondingly. When using OT in an
MPC protocol, the OT is typically implemented from random OT by masking
the actual OT inputs with fresh random OT outputs. Allowing a corrupt party
to choose its own OT outputs does not affect the security of these protocols,
since (intuitively) this can only weaken security for the corrupt party and not
for honest parties. More generally, it turns out that many practical MPC proto-
cols, including those based on preprocessed multiplication triples for arithmetic
circuits [10,29] and binary circuits [59,61,62], use this kind of corruptible, cor-
related randomness, since it is often easier to design a protocol that realizes
this.

More formally, the randomness is modelled by the functionality FC
corr∗ (Fig. 1),

where a corrupted party may first choose its own output, and then the honest
party’s output is computed with the reverse sampling algorithm for C. As we
show in the following, PCGs can be used to securely realize FC

corr∗, opening up
many important applications at no extra cost.

To realize FC
corr∗, we use a simple protocol, ΠC

corr∗, that calls FPCG.Gen
corr so

that each party obtains a seed kσ, which is then expanded to get the output
PCG.Expand(σ, kσ).

Theorem 10. Let PCG = (PCG.Gen,PCG.Expand) be a secure PCG for a
reverse-sampleable correlation generator, C. Then the protocol Πcorr∗ securely
realizes the FC

corr∗ functionality against a static, malicious adversary.

Efficient Pseudorandom Correlation Generators 511

Fig. 1. Corruptible correlated randomness functionality for a reverse-sampleable cor-
relation generator, C

5 Silent Oblivious Transfer Extension from LPN

In this section we present a protocol for silent OT extension, which allows to
generate n instances of random OT with sublinear communication complexity.
To this end, we first show how to tweak the construction of Boyle et al. [14] to
give correlated OT. Combining this observation with the OT extension technique
of Ishai et al. [46] we obtain a PCG for random OT. Finally, we show how to
use the protocol of Doerner and Shelat [32] for secure computation of the seed,
giving sublinear OT extension.

5.1 Subfield Vector-OLE

Here, we introduce the notion of subfield vector oblivious linear evaluation
(sVOLE), and show that sVOLE for Fq over subfield Fp ⊂ Fq gives 1-out-of-
p correlated OT. More precisely, a single big instance of sVOLE will give many
1-out-of-p OTs at once. Our construction of sVOLE comes with two additional
advantages: It enjoys lower computational costs, because matrix multiplications
are performed with a matrix over Fp, and for p = 2 we can reduce security to
the better-studied binary LPN problem, instead of its arithmetic variant over
larger fields.

Subfield VOLE is a form of vector oblivious linear evaluation (VOLE) over
Fq, which computes w = ux + v , where the vector u is restricted to lie over a
subfield Fp ⊂ Fq, for q = pr (and we multiply u with x ∈ Fq component-wise,
by viewing x as a vector over Fp). It outputs (u , v) to the sender and (x,w) to
the receiver.

The construction in Fig. 2 uses the function spreadn(S,y), which expands a
set S = (s1, . . . , s|S|) ⊂ [n] and a vector y ∈ F

|S|
p into the vector µ ∈ F

n
p , where

μsi
= yi for i = 1, . . . , |S|, and μj = 0 for j ∈ [n] \S. It is a generalization of the

VOLE generator from [14], which follows from the case p = q.

Theorem 11. Suppose the (HWt,C,Fp)-dual-LPN(n′, n) assumption holds,
and that MPFSS is a secure multi-point FSS scheme. Then the construction
GsVOLE (Fig. 2) is a secure PCG for the subfield vector-OLE correlation.

512 E. Boyle et al.

Fig. 2. PCG for subfield vector-OLE

Application to Correlated OT. Subfield VOLE immediately gives a PCG for
correlated OT (or Δ-OT). This is a batch of 1-out-of-2 OTs where the sender’s
strings are of the form (wi, wi ⊕ Δ) for some fixed string Δ, and is the main
building block in practical MPC protocols such as TinyOT [59] and authenti-
cated garbling [61,62].

To obtain correlated OT, we run subfield VOLE with p = 2 and q = 2r,
so the VOLE sender obtains ui ∈ F2, vi ∈ F2r , while the VOLE receiver gets
x ∈ F2r and wi = x · ui + vi, for i = 1, . . . , n. Now switching the roles of sender
and receiver, the VOLE sender can be seen as an OT receiver with choice bit
ui and string vi. This gives us a correlated OT, since the OT sender (formerly
VOLE receiver) can compute the strings (wi, wi + x), and we have vi = wi if
ui = 0 and vi = wi + x if ui = 1.

Application to Matrix Multiplication. Our construction for subfield VOLE
can alternatively be seen as a PCG for tensor product : writing x ∈ Fq as x =
(x1, . . . , xr) ∈ F

r
p, and u = (u1, . . . , un) ∈ F

n
p , sVOLE computes secret shares

of x ⊗ u , that is, xi · uj for every (i, j) ∈ [r] × [n]. This allows evaluation of

Efficient Pseudorandom Correlation Generators 513

secret-shared tensor products in 2-PC, which can in turn be used for matrix
multiplication.

The seed size scales linearly in r, but this still improves upon the naive
way of using r PCGs for VOLE over Fp; the latter approach (with the VOLE
from [14]) has seed size O(rt · (λ log n + log p)) bits, whereas we reduce this to
O(t · (λ log n + r log p)) bits, saving at least a log n factor when log p = O(λ).

5.2 PCG for Random Oblivious Transfer

In the full version [15], we give the formal construction of a PCG for the random
oblivious transfer correlation, based on GsVOLE. Given the above observation that
subfield VOLE implies correlated OT, this is straightforward, as we can apply
the OT extension technique of Ishai et al. [46], which converts correlated OTs
into random OTs using a suitable hash function. We extend this in a natural
way to generate 1-out-of-p random OTs using subfield VOLE over Fp. Note that
for security when applying the hash function, we now need q = λω(1).

We use a generalization of a correlation robust function, called Fp-correlation
robustness (defined in the full version). As recently shown in [41], this can be
instantiated with fixed-key AES modeled as a random permutation when p = 2.

Theorem 12. Suppose that H is an Fp-correlation robust hash function and
GsVOLE is a secure PCG. Then the silent OT construction (in the full version)
is a secure PCG for the random 1-out-of-p OT correlation.

5.3 From a PCG to Silent OT Extension

To construct an OT extension protocol, we can use 2-PC to securely compute the
Gen algorithm of GOT, and then have each party locally expand its output using
GOT.Expand. Applying Theorem 10 from Sect. 4.3, this realizes a corruptible form
of the ideal functionality for random oblivious transfer, where corrupt parties
may influence their random outputs.

To do this efficiently with semi-honest security, we use the black-box protocol
of Doerner and Shelat [32] (also used in [14]) for setting up distributed point
function keys. For a single point function of domain size n, this requires O(log n)
OTs on O(λ)-bit strings, giving O(t log n) OTs for a multi-bit point function.
Implementing each OT with (non-silent) OT extension [46] costs O(λ) bits of
communication, plus a setup phase of λ base OTs. Putting this together, we
obtain the following.

Theorem 13. Suppose the (HWt,C,Fp)-dual-LPN(n′, n) assumption holds,
and an Fp-correlation robust hash function exists. Then there is a protocol that
uses O(λ) 1-out-of-2 OTs to realize n instances of random 1-out-of-p OT with
semi-honest security, using O(tλ log n) + poly(λ) bits of communication.

We remark that this gives OT with sublinear communication when t =
o(n/(λ log n)), which translates to an instance of LPN with noise rate

514 E. Boyle et al.

1/ω(λ log n). If the matrix Hn′,n in GsVOLE is uniformly random, the compu-
tational complexity is dominated by O(n′ · n) arithmetic operations; using more
structured matrices based on LDPC codes or quasi-cyclic codes, we get respec-
tive costs of O(n′) or Õ(n′) arithmetic and PRG operations.

Concrete Efficiency. In the full version, we analyze these costs more con-
cretely and give a breakdown of the communication complexity, as well as some
approximate runtime estimates based on the cost of the main operations. For
example, for n ≤ 222 OTs, the PCG seed size is under 10 kB and requires less
than 30 kB of communication to create with the distributed setup procedure.
After setup, we estimate that these seeds can be expanded into 16 MB of OTs
on 128-bit strings at a rate of around 1 million per second, or 2 million per
second when expanding to 1 MB, using a single core of a CPU on a modern
laptop. When including the distributed setup procedure, in these two cases we
get an amortized communication complexity of just 0.2 and 2.6 bits per OT,
respectively.

Acknowledgements. We would like to thank Peter Rindal and Melissa Rossi for
helpful discussions and pointers, and the anonymous Crypto 2019 reviewers for their
comments.

E. Boyle, N. Gilboa, and Y. Ishai supported by ERC Project NTSC (742754). E.
Boyle additionally supported by ISF grant 1861/16 and AFOSR Award FA9550-17-
1-0069. G. Couteau supported by ERC Project PREP-CRYPTO (724307). N. Gilboa
additionally supported by ISF grant 1638/15 and a grant by the BGU Cyber Center.
Y. Ishai additionally supported by ISF grant 1709/14, NSF-BSF grant 2015782, and a
grant from the Ministry of Science and Technology, Israel and Department of Science
and Technology, Government of India. L. Kohl supported by ERC Project PREP-
CRYPTO (724307), by DFG grant HO 4534/2-2 and by a DAAD scholarship. This
work was done in part while visiting the FACT Center at IDC Herzliya, Israel. P. Scholl
supported by the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 731583 (SODA), and the Danish Independent Research
Council under Grant-ID DFF-6108-00169 (FoCC).

References

1. Aguilar, C., Blazy, O., Deneuville, J.C., Gaborit, P., Zémor, G.: Efficient encryption
from random quasi-cyclic codes. Cryptology ePrint Archive, Report 2016/1194
(2016). http://eprint.iacr.org/2016/1194

2. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th
FOCS. IEEE Computer Society Press, October 2003

3. Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 223–254. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 8

4. Applebaum, B., Haramaty, N., Ishai, Y., Kushilevitz, E., Vaikuntanathan, V.: Low-
complexity cryptographic hash functions. In: ITCS 2017. LIPIcs, January 2017

http://eprint.iacr.org/2016/1194
https://doi.org/10.1007/978-3-319-63688-7_8

Efficient Pseudorandom Correlation Generators 515

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input local-
ity. J. Cryptol. 22(4), 429–469 (2009)

6. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 34

7. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: ACM CCS 2013. ACM Press,
November 2013

8. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

9. Beaver, D.: Correlated pseudorandomness and the complexity of private compu-
tations. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp.
479–488 (1996). https://doi.org/10.1145/237814.237996

10. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

11. Berbain, C., Gilbert, H., Patarin, J.: QUAD: a practical stream cipher with prov-
able security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
109–128. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 8

12. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-
2 24

13. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

14. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: ACM
CCS 2018. ACM Press, October 2018

15. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent ot extension and more. Cryptology ePrint
Archive, Report 2019/448 (2019). https://eprint.iacr.org/2019/448

16. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrú, M.: Homomorphic secret
sharing: optimizations and applications. In: ACM CCS 2017. ACM Press, Octo-
ber/November 2017

17. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 337–367. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 12

18. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

19. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: ACM CCS 2016. ACM Press, October 2016

20. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing
rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56614-6 6

https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1145/237814.237996
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/11761679_8
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/978-3-540-30576-7_18
https://eprint.iacr.org/2019/448
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-319-56614-6_6

516 E. Boyle et al.

21. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: 9th Innovations in Theoretical Computer Science Conference,
ITCS 2018, Cambridge, MA, USA, 11–14 January 2018, pp. 21:1–21:21 (2018).
https://doi.org/10.4230/LIPIcs.ITCS.2018.21

22. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices with-
out FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS,
vol. 11477, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 1

23. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS 2012. ACM, January 2012

24. Chase, M., et al.: Reusable non-interactive secure computation. IACR Cryptology
ePrint Archive 2018, 940 (2018). https://eprint.iacr.org/2018/940

25. Couteau, G.: A note on the communication complexity of multiparty computation
in the correlated randomness model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019. LNCS, vol. 11477, pp. 473–503. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17656-3 17

26. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30576-7 19

27. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 18

28. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The tinytable protocol for
2-party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 167–187. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 6

29. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

30. Dessouky, G., Koushanfar, F., Sadeghi, A.R., Schneider, T., Zeitouni, S., Zohner,
M.: Pushing the communication barrier in secure computation using lookup tables.
In: NDSS 2017. The Internet Society, February/March 2017

31. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol.
9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53015-3 4

32. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: ACM CCS
2017. ACM Press, October/November 2017

33. Döttling, N., Ghosh, S., Nielsen, J.B., Nilges, T., Trifiletti, R.: TinyOLE: efficient
actively secure two-party computation from oblivious linear function evaluation.
In: ACM CCS 2017. ACM Press, October/November 2017

34. Druk, E., Ishai, Y.: Linear-time encodable codes meeting the Gilbert-Varshamov
bound and their cryptographic applications. In: ITCS 2014. ACM, January 2014

35. Franklin, M.K., Haber, S.: Joint encryption and message-efficient secure computa-
tion. J. Cryptol. 9(4), 217–232 (1996). https://doi.org/10.1007/BF00189261

36. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 17

https://doi.org/10.4230/LIPIcs.ITCS.2018.21
https://doi.org/10.1007/978-3-030-17656-3_1
https://doi.org/10.1007/978-3-030-17656-3_1
https://eprint.iacr.org/2018/940
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/BF00189261
https://doi.org/10.1007/978-3-540-30576-7_17

Efficient Pseudorandom Correlation Generators 517

37. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017, Part I. LNCS, vol. 10624, pp. 629–659. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8 22

38. Gilboa, N., Ishai, Y.: Compressing cryptographic resources. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 591–608. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 37

39. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 35

40. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game or a
completeness theorem for protocols with honest majority. In: 19th ACM STOC.
ACM Press, May 1987

41. Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty computation
from fixed-key block ciphers. Cryptology ePrint Archive, Report 2019/074 (2019).
https://eprint.iacr.org/2019/074

42. Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty com-
putation with general interaction patterns. In: ITCS 2016. ACM, January 2016

43. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: TinyKeys: a new approach to
efficient multi-party computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part III. LNCS, vol. 10993, pp. 3–33. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96878-0 1

44. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: an efficient
authentication protocol based on ring-LPN. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 346–365. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34047-5 20

45. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: ITCS 2015. ACM, January 2015

46. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

47. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On
the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36594-2 34

48. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their applica-
tions. In: 36th ACM STOC. ACM Press, June 2004

49. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

50. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

51. Katz, J., Ranellucci, S., Rosulek, M., Wang, X.: Optimizing authenticated garbling
for faster secure two-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 365–391. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96878-0 13

52. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster
secure multi-party computation of AES and DES using lookup tables. In: Goll-
mann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 229–
249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 12

https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/978-3-319-70694-8_22
https://doi.org/10.1007/3-540-48405-1_37
https://doi.org/10.1007/978-3-642-55220-5_35
https://eprint.iacr.org/2019/074
https://doi.org/10.1007/978-3-319-96878-0_1
https://doi.org/10.1007/978-3-319-96878-0_1
https://doi.org/10.1007/978-3-642-34047-5_20
https://doi.org/10.1007/978-3-642-34047-5_20
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-319-96878-0_13
https://doi.org/10.1007/978-3-319-61204-1_12

518 E. Boyle et al.

53. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

54. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the
20th Annual ACM Symposium on Theory of Computing, Chicago, Illinois, USA,
2–4 May 1988, pp. 20–31 (1988). https://doi.org/10.1145/62212.62215

55. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short
secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40084-1 4

56. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: ACM CCS 2016. ACM Press,
October 2016

57. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Barstow, D., Brauer, W., Brinch Hansen,
P., Gries, D., Luckham, D., Moler, C., Pnueli, A., Seegmüller, G., Stoer, J.,
Wirth, N., Günther, C.G. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–
453. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8 39

58. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

59. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

60. Scholl, P.: Extending oblivious transfer with low communication via key-
homomorphic PRFs. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS,
vol. 10769, pp. 554–583. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76578-5 19

61. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient mali-
ciously secure two-party computation. In: ACM CCS 2017. ACM Press, Octo-
ber/November 2017

62. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
ACM CCS 2017. ACM Press, October/November 2017

63. Wolf, C.: Multivariate quadratic polynomials in public key cryptography. Cryptol-
ogy ePrint Archive, Report 2005/393 (2005). http://eprint.iacr.org/2005/393

https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1145/62212.62215
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-319-76578-5_19
https://doi.org/10.1007/978-3-319-76578-5_19
http://eprint.iacr.org/2005/393

Various Topics

Adaptively Secure and Succinct
Functional Encryption: Improving

Security and Efficiency, Simultaneously

Fuyuki Kitagawa1(B), Ryo Nishimaki1(B), Keisuke Tanaka2,
and Takashi Yamakawa1

1 NTT Secure Platform Laboratories, Tokyo, Japan
{fuyuki.kitagawa.yh,ryo.nishimaki.zk,takashi.yamakawa.ga}@hco.ntt.co.jp

2 Tokyo Institute of Technology, Tokyo, Japan
keisuke@is.titech.ac.jp

Abstract. Functional encryption (FE) is advanced encryption that
enables us to issue functional decryption keys where functions are hard-
wired. When we decrypt a ciphertext of a message m by a functional
decryption key where a function f is hardwired, we can obtain f(m) and
nothing else. We say FE is selectively or adaptively secure when target
messages are chosen at the beginning or after function queries are sent,
respectively. In the weakly-selective setting, function queries are also cho-
sen at the beginning. We say FE is single-key/collusion-resistant when
it is secure against adversaries that are given only-one/polynomially-
many functional decryption keys, respectively. We say FE is sublinearly-
succinct/succinct when the running time of an encryption algorithm is
sublinear/poly-logarithmic in the function description size, respectively.

In this study, we propose a generic transformation from weakly-
selectively secure, single-key, and sublinearly-succinct (we call “building
block”) PKFE for circuits into adaptively secure, collusion-resistant, and
succinct (we call “fully-equipped”) one for circuits. Our transformation
relies on neither concrete assumptions such as learning with errors nor
indistinguishability obfuscation (IO). This is the first generic construc-
tion of fully-equipped PKFE that does not rely on IO.

As side-benefits of our results, we obtain the following primitives
from the building block PKFE for circuits: (1) laconic oblivious trans-
fer (2) succinct garbling scheme for Turing machines (3) selectively
secure, collusion-resistant, and succinct PKFE for Turing machines (4)
low-overhead adaptively secure traitor tracing (5) key-dependent mes-
sage secure and leakage-resilient public-key encryption. We also obtain
a generic transformation from simulation-based adaptively secure gar-
bling schemes that satisfy a natural decomposability property into adap-
tively indistinguishable garbling schemes whose online complexity does
not depend on the output length.

1 Introduction

1.1 Background

Achieving stronger cryptographic primitives by using weaker ones is one of
the central and fundamental tasks in cryptography. We would like to minimize
c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 521–551, 2019.
https://doi.org/10.1007/978-3-030-26954-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_17&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_17

522 F. Kitagawa et al.

assumptions to achieve more secure and advanced cryptography. A typical exam-
ple is how to achieve IND-CCA secure public-key encryption from IND-CPA
secure one [21,48,50]. The objective of this study is showing how to achieve
more secure and efficient functional encryption (FE) from less secure and effi-
cient one in a generic way.

FE [15] is an encryption scheme that enables us to issue functional decryp-
tion keys skf where a function f is hardwired. We can decrypt a ciphertext ctm
of a message m by using skf . A notable feature of FE is that we obtain f(m)
and nothing else when we decrypt ctm by skf . If we can encrypt messages by a
public-key (resp. a master secret key), then we call public-key (resp. secret-key)
FE (PKFE and SKFE for short). FE can control what information of messages
can be given to owners of functional decryption keys by using various func-
tions. Moreover, FE is a versatile tool to achieve useful cryptographic primitives
such as trapdoor permutations, universal samplers, non-interactive multi-party
key-exchange [28]. The most prominent application of FE is achieving indistin-
guishability obfuscation (IO) [10,24] from FE [3,13,14,41,43].

There are three main performance measures of FE. One is the number
of issuable functional decryption keys. Another is the level of security. The
other is the size of an encryption circuit. If an FE scheme can securely
release one/polynomially-many functional decryption key/s, we call it a single-
key/collusion-resistant scheme. Roughly speaking, an FE scheme is secure if
adversaries cannot distinguish whether a target ciphertext is an encryption of
m0 or m1 chosen by them. In the security game, adversaries can send functional
decryption key queries and receives skf for queried f as long as f(m0) = f(m1).
If adversaries are required to commit target messages (m0,m1) (resp. and queries
f1, . . . , fq) at the beginning of the game, we call it selective (resp. weakly selec-
tive) security. If adversaries can decide target messages after they send functional
decryption key queries1, then we call it adaptive security. The size of an encryp-
tion circuit must depend on the length of messages to be encrypted. Moreover,
the size might depend on the size of functions supported by the scheme as several
known FE schemes do [33,51]. The dependence on the size of functions should be
as low as possible to achieve better efficiency. FE is called succinct/sublinearly-
succinct if the dependence is logarithmic/sublinear.

It is desirable to achieve the best properties of all performance measures
simultaneously. Therefore, the following question is natural.

Can we achieve adaptively secure, collusion-resistant, and succinct PKFE for
circuits by using only weakly-selectively secure, single-key, and

sublinearly-succinct one?

This question has been extensively studied [1,4,14,29,30,35,37,44], but all
previous studies gave only partial answers. The work of Garg and Srinivasan [30]
is the most close to an answer to the above problem, but that is not sufficient
since they need an additional algebraic assumption and the ciphertext size of the
resulting scheme depends on output-length of circuits supported by the scheme.
1 Of course, adversaries can send queries after they decided a pair of target messages.

Adaptively Secure and Succinct Functional Encryption 523

In this study, we give an affirmative answer to the open question above, which
was clearly stated by Garg and Srinivasan [29]. We sometimes call the building-
block and goal-primitive in the question above obf-minimum2 and fully-equipped
PKFE, respectively in this paper.

One might wonder why we do not start with weakly-selectively secure, single-
key, and non-succinct FE. This is because there is a huge gap between non-
succinct FE and sublinearly-succinct one. We know that sub-exponentially-
secure sublinearly-succinct FE implies IO for circuits [3,14,29,39–42]. We also
know that non-succinct PKFE (resp. SKFE) is achieved by plain public-key
encryption (resp. one-way function) [33,51]. It is unlikely that we can achieve
IO from plain public-key encryption. Thus, we start with sublinearly-succinct
FE. We also emphasize that we focus on transformations with polynomial secu-
rity loss in this study. If sub-exponential security loss is allowed, we can achieve
IO from obf-minimum SKFE/PKFE. We rely on neither sub-exponential secu-
rity nor IO in this study. We stress that one of the big issues in cryptography
is to avoid sub-exponential security loss. Sub-exponential security loss signifi-
cantly degrades security and efficiency of cryptographic schemes in general. In
particular, in the area of obfuscation-based (or FE-based) cryptography, avoiding
sub-exponential security loss has been actively studied [2,5,6,27–29,31,46].

Hereafter, we use the following notations. Relationships between different
notions of PKFE and SKFE are parameterized by (#key,#ct, sec, eff). Here,
#key ∈ {1key, unbkey} and #ct ∈ {1ct, unbct} denote the number of functional-
decryption-keys/ciphertexts: unb means unbounded polynomially many, sec ∈
{w-sel, sel, ada} denotes weakly-selective, selective or adaptive security, and eff ∈
{ns, sls, fs} denotes the efficiency: ns, sls, and fs denote non-succinct, sublinearly-
succinct, and succinct, respectively. In the case of PKFE, we omit #ct3.

Known Transformations for Better Security and Efficiency. There are sev-
eral techniques to strengthen security and/or improve the efficiency of FE.
Ananth, Brakerski, Segev, and Vaikuntanathan [1] presented a transforma-
tion from selectively secure FE to adaptively secure FE. Unfortunately, this
transformation does not preserve (sublinear-)succinctness. This is because the
transformation uses a (unbkey, 1ct, ada, ns)-SKFE scheme4 [33] as a key building
block. Garg and Srinivasan [29], and Li and Micciancio [44] presented trans-
formations from single-key and sublinearly-succinct PKFE to collusion-resistant
one. More specifically, the transformation by Garg and Srinivasan [29] is from
(1key,w-sel, sls)-PKFE to (unbkey, sel, fs)-PKFE. However, these transformations
do not preserve adaptive security. Ananth, Jain, and Sahai [4] and Bitansky and
Vaikuntanathan [14] presented a transformation from (unbkey, sel, ns)-PKFE to

2 See the subsequent paragraph for the reason of naming “obf-minimum”.
3 In the case of PKFE, #ct is trivially unb.
4 In the setting of SKFE, only an entity that has a master secret-key can generate

ciphertexts. Thus, adversaries is allowed to send messages as queries and receives
ciphertexts in its security game. When adversaries can send one/polynomially-many
message(s), we say one/many-ciphertext SKFE.

524 F. Kitagawa et al.

(unbkey, sel, fs)-PKFE. This transformation also does not preserve adaptive secu-
rity. Ananth and Sahai [7] presented a transformation (denoted by AS16 trans-
formation) from (unbkey, sel, fs)-PKFE for circuits to (unbkey, ada, fs)-PKFE for
Turing machines (TMs) by using (1key, 1ct, ada, fs)-SKFE for TMs. If the building
block (1key, 1ct, ada, fs)-SKFE is for circuits, then the transformation also works
and we obtain the resulting PKFE for circuits. The difference from the trans-
formation by Ananth et al. [1] is that we can start with (1key, 1ct, ada, fs)-SKFE.
AS16 transformation is the closest to what we want, but not satisfactory since it
uses IO (that is, sub-exponentially secure FE). All these transformations sacrifice
either adaptive security or succinctness or rely on IO. Thus, the transformation
in the question above has been remaining open in the area of FE.

Crucial Ingredient: Adaptive Garbling. As we saw above, if we can obtain
(1key, 1ct, ada, fs)-SKFE for circuits from (1key,w-sel, sls)-PKFE, then we resolve
the open question above by using the transformations of Garg and Srini-
vasan [29] and Ananth and Sahai [7]. In fact, (1key, 1ct, ada, fs)-SKFE for cir-
cuits is essentially the same as adaptively indistinguishable garbling schemes
(indistinguishability-based definition [37]) whose online computational complex-
ity is poly(log |C|, n, λ) where C is a circuit to be garbled, n is the input length
of C, and λ is the security parameter5. Here, the online computational complex-
ity means the computational complexity to encode an input. We call garbling
schemes whose online computational complexity is poly(log |C|, n, λ) circuit-
succinct garbling schemes.6 Thus, we focus on adaptive and circuit-succinct
garbling schemes.

Several previous works [11,30,35–38] have proposed adaptively secure gar-
bling schemes. The garbling scheme of Bellare, Hoang, and Rogaway is not
circuit-succinct, that is, the online computational complexity is poly(|C|, λ). The
garbling scheme of Hemenway, Jafargholi, Ostrovsky, Scafuro, and Wichs [35]
achieves online computational complexity (n + m + w)poly(λ) where n, m, and
w are the input length, output length, and width of a circuit to be garbled,
respectively (they also presented a garbling scheme for NC1 circuits whose com-
plexity is (n + m)poly(λ)). Jafargholi, Scafuro, and Wichs [37] presented an
adaptively indistinguishable garbling scheme whose online computational com-
plexity is (n + w)poly(λ). The garbling scheme of Garg and Srinivasan [30]
(we call GS18 scheme in this paper) achieved online computational complexity
O(n+m)+poly(log |C|, λ). Others [36,38] are garbling scheme for NC1 circuits.
None of these is satisfactory for our goal since the complexity depends on a
polynomial of |C|, w, d, or m.

GS18 scheme is closest to our goal. However, there are two issues as follows.

1. GS18 scheme is based on a concrete assumption (the CDH, LWE, or factor-
ing assumptions). More specifically, the scheme is based on updatable laconic

5 In fact, there are subtle issues to transform a garbling scheme into a single-key and
single-ciphertext SKFE (the opposite is easy). See the full version for more details.

6 Note that this is different from succinct garbling schemes [5,12] since ours is for
circuits while succinct garbling schemes are for TMs.

Adaptively Secure and Succinct Functional Encryption 525

oblivious transfer (LOT) [19], which is achieved by the CDH, LWE, or fac-
toring assumptions [16,19,23].

2. GS18 scheme is simulation-based secure. Therefore, the online computational
complexity must be at least linear in m since Applebaum, Ishai, Kushilevitz,
and Waters [8] showed the lower bound of online complexity for simulation-
based secure garbled circuits.

Getting Rid of the Dependence on Output Length. If we can generically trans-
form a simulation-based adaptively secure garbling scheme whose online compu-
tational complexity is poly(n,m, g(|C|), λ) where g(·) is some function (such
as log(·)) into an adaptively indistinguishable garbling scheme whose online
computational complexity is poly′(n, g(|C|), λ), then we can solve the second
issue explained above by using GS18 scheme [30] as a building block. In fact,
Jafargholi et al. left such a transformation as an open problem [37]. We quote
their sentence in a footnote.7 This open question is related to our main question
since (1key, 1ct, ada, fs)-SKFE is the crucial ingredient as explained above.

1.2 Our Contributions

We solved the open problem explained in the previous section. In particular, we
prove the following theorem.

Theorem 1.1 (Main theorem). Assume that there exists weakly-selectively
secure, single-key, and sublinearly-succinct PKFE for circuits, then there exists
adaptively secure, collusion-resistant, and succinct PKFE for circuits.

All our constructions and transformations in this study incur only polyno-
mial security loss. To obtain our crucial ingredient, (1key, 1ct, ada, fs)-SKFE, we
will prove the (informal) theorems below, which are of independent interests,
and construct an adaptively secure garbling scheme whose online computational
complexity is poly(log |C|, n, λ) by combining (a variant of) GS18 scheme.

Theorem 1.2 (Informal, see Theorem 4.5). Assume that there exists
(1key,w-sel, sls)-PKFE for circuits, then there exists updatable laconic oblivious
transfer.

That is, we can generically construct updatable LOT from obf-minimum FE.
This solves the first issue of GS18 scheme. This itself is interesting since this
is the first construction of LOT that relies on neither specific number theoretic
assumptions nor IO.8 Therefore, we obtain an adaptively secure garbling scheme
whose online computational complexity is O(n + m) + poly(log |C|, λ) from obf-
minimum PKFE via GS18 scheme. Note that, to achieve this, we need some
7 Jafargholi et al. wrote “It remains an open problem whether it is possible to show a
more general transformation from garbled circuits with adaptive security (and maybe
other natural properties) to garbled circuits with indistinguishability based adaptive
security and online complexity independent of the output size.” [37].

8 Ananth and Lombardi present an LOT protocol based on IO [5].

526 F. Kitagawa et al.

tweaks for the garbling scheme since the security level of our updatable LOT is
slightly weaker than that used in GS18 scheme. In fact, we prove that such a
weaker LOT is sufficient to achieve an adaptively secure garbling scheme that we
need. However, for simplicity, we give only informal theorems here. See Sect. 2
for more details.

We propose two solutions for the second issue of GS18 scheme. One is propos-
ing an extension of AS16 transformation [7] in the following theorem.

Theorem 1.3 (Informal, see Theorem 6.1). If there exists (unbkey, sec, eff)-
PKFE for single-bit output circuits, then there exists (unbkey, sec, eff)-PKFE for
multi-bit output circuits where sec ∈ {w-sel, sel, ada} and eff ∈ {ns, sls, fs}. This
transformation preserves adaptive security and succinctness.

If we set m = 1 (that is, single-bit output) in adaptively secure garbling
scheme whose online computational complexity is O(n,m, log |C|, λ), then we
obtain adaptively secure circuit-succinct garbling scheme for single-bit output cir-
cuits. We plug this into AS16 transformation, and then we obtain (unbkey, ada, fs)-
PKFE for single-bit output circuits. Lastly, by applying the informal theorem
above, we can obtain fully-equipped PKFE. See the next section for more
details. Note that it is easy to transform our variant of GS18 scheme into
(1key, 1ct, ada, fs)-SKFE for single-bit output circuits. See the full version for
details.

The other is using the transformation in the following theorem.

Theorem 1.4 (Informal). Assume that there exists a simulation-based adap-
tively secure garbling scheme whose online computational complexity depends on
the output length of circuits and that satisfies a natural decomposability property,
then there exists an indistinguishability-based adaptively secure garbling scheme
whose online computational complexity does not depend on the output length
of circuits. The overhead of the transformation is not large, that is, the online
complexity affected by other parameters (|C|, n, and λ) do not change in an
asymptotic sense.

Known adaptive garbling schemes satisfy the natural decomposability prop-
erty. That is, we solve the open question by Jafargholi et al. [37]. Note that
the first solution is much simpler than the second one. However, the technique
used in the transformation in Theorem1.4 is related to other our techniques
in this study, and adaptively secure circuit-succinct garbling schemes are closely
related to our goal as we explained so far. Moreover, Theorem1.4 solves the open
problem presented by Jafargholi et al. [37] (We think this is of an independent
interest). Therefore, we also include the second solution in this paper.

More Implications of Our Results. Ananth and Lombardi [5] proved that if there
exists single-key and succinct PKFE for circuits and one of CDH/LWE/factoring
assumptions holds, then there exists succinct garbling scheme for TMs. The
concrete assumptions come from that they use LOT. We can replace their LOT
with our LOT based on FE9. Thus, we obtain the following corollary.
9 The security level of our LOT is sufficient for their purpose.

Adaptively Secure and Succinct Functional Encryption 527

Corollary 1.1. If there exists (1key,w-sel, sls)-PKFE for circuits, then there
exists a succinct garbling scheme for TMs.

We also obtain the following corollary by combining with the known
results [7,29].

Corollary 1.2. If there exists (1key,w-sel, sls)-PKFE for circuits, then there
exists (unbkey, sel, fs)-PKFE for TMs.

That is, we remove the concrete assumptions from the theorems of Ananth
and Lombardi.10 Agrawal and Maitra [6] also proved that if there exists succinct
PKFE for circuits, then there exists PKFE for TMs. However, their PKFE for
TMs supports only single/constant-bit output TMs. That is, our corollary above
improves their result since ours supports multi-bit output TMs.11

Nishimaki, Wichs, and Zhandry [49] presented a traitor tracing scheme that
supports an exponentially large identity space and whose ciphertext overhead
is O(log n) where n is the length of identities. Their scheme is based on fully-
equipped PKFE that was instantiated by IO previously. Thus, we obtain the
following corollary.

Corollary 1.3. If there exists (1key,w-sel, sls)-PKFE for circuits, there exists
an adaptively secure traitor tracing scheme whose master key size is poly(log n),
secret key size is poly(n), and ciphertext size is |m| + poly(log n) where |m| is
the message length.

Brakerski, Lombardi, Segev, and Vaikuntanathan [16] showed key-dependent
message (KDM) secure and leakage-resilient PKE can be based on batch encryp-
tion, which is essentially the same as LOT. Thus, we obtain the following corol-
lary (See the reference [16] for the details of parameters in the statement).

Corollary 1.4. If there exists (1key,w-sel, sls)-PKFE for circuits, then there
exists a PKE scheme that satisfies (1) KDM security with respect to affine func-
tions of the secret key and (2) leakage-resilience with leakage rate 1 − o(1).

To the best of our knowledge, except constructions based on IO [20,47],
all existing generic constructions of PKE satisfying KDM security or leakage
resilience of 1−o(1) rate assume some algebraic property such as homomorphism
to the underlying primitive. Our construction is a generic construction of PKE
satisfying the above security notions based on a polynomially secure primitive
without such algebraic properties.

2 Technical Overview

In this section, we give high level overviews of our techniques. We briefly summa-
rize how to arrive at fully-equipped PKFE from obf-minimum PKFE in Fig. 1.
10 Note that we cannot obtain an adaptively secure scheme in Corollary 1.2 since the

succinct garbling for TMs by Ananth and Lombardi is not adaptively secure.
11 Note that their FE for TMs satisfies a stronger security notion called distributional

indistinguishability than standard indistinguishability.

528 F. Kitagawa et al.

Fig. 1. Illustration of the path from our starting point to the goal: In this
figure, “SKFE single” denotes SKFE for single-bit output circuits. “Updatable sd-
LOT” denotes selective-database updatable laconic OT. Regarding garbling scheme,
“Garbling-Opt” denotes garbling schemes with nearly optimal online complexity and
“Output-independence” denotes the online complexity does not depends on output-
length (See Sects. 5 and 7 for more details). Ada-SIM/Ada-IND denote simulation-
/indistinguishability-based adaptively secure garbling schemes, respectively. Solid thin
arrows denote known or trivial implications. Thick solid and dotted arrows denote
implications that we prove in this study. Here, in the case of dotted lines, we assume
specific properties of underlying tools. See each section for details.

2.1 Laconic OT from Succinct PKFE

We first show an overview of our LOT protocol based on sublinearly succinct
PKFE. More precisely, we construct updatable LOT with arbitrary compression
factor based on (1,w-sel, sls)-PKFE.

By the transformation of Cho et al. [19] and an observation by Ananth and
Lombardi [5]12, we can transform non-updatable LOT with compression factor
2 into updatable one with arbitrary compression factor using Merkle tree. Thus,
to achieve our goal, we can focus on constructing non-updatable LOT with
compression factor 2. Our first observation is that we might construct such LOT

12 Cho et al.’s bootstrapping method is not sufficient for LOT whose security holds only
when an adversary declares the challenge database before seeing CRS. Therefore, we
cannot use the bootstrapping method of Cho et al. directly to make our selective-
database (explained later) LOT updatable. However, we can use a minor variant
of the bootstrapping method observed by Ananth and Lombardi [5] to bootstrap
selective-database LOT into updatable one.

Adaptively Secure and Succinct Functional Encryption 529

based on IBE. In this overview, let the length of a database D be s, that is
D ∈ {0, 1}s, and D[i] denotes the i-th bit of D.

Laconic OT Based on IBE and Its Problem. We first review the definition of
LOT. An LOT consists of four algorithms Gen,Hash,Send, and Receive. We gen-
erate a CRS crs using Gen. Hash, given crs and a database D, outputs a short
digest d and private state ̂D. The algorithm Send, given d, a database location
L, and two messages m0 and m1, outputs LOT’s ciphertext e. By using Receive,
a receiver who has the secret state ̂D can decrypt e and obtain mD[L]. For secu-
rity, we require that an honest receiver cannot obtain the other message m1−D[L]

even if he has ̂D.
Our basic idea for constructing LOT is as follows. When hashing a database

D, we first generate a master public-key and master secret-key (MPK,MSK) of
IBE and ski,D[i] ← KG(MSK, i‖D[i]) for every i ∈ [s]. Then, we set MPK as
a digest of D and {ski,D[i]}i∈[s] as a secret state ̂D. When generating LOT’s
ciphertext e for location L ∈ [s] and two messages m0 and m1, we generate
e = (Enc(MPK, L‖0,m0),Enc(MPK, L‖1,m1)). We see that a receiver who has
̂D = {ski,D[i]}i∈[s] can obtain mD[L]. If the receiver honestly generates ̂D and
deletes MSK, he cannot obtain mD[L] based on the security of IBE. Moreover,
if the size of a master public-key of IBE is independent of the identity length,
the size of a digest is also independent of the database size. This construction
resembles the one-time signature with encryption from IBE by Döttling and
Garg [22].

The above construction seems to satisfy the syntactic and security require-
ment of LOT. However, the construction has a problem that the hash procedure
is randomized. Though the definition of LOT by Cho et al. does not explicitly
require that the hash algorithm be deterministic, we observe that the hash algo-
rithm needs to be deterministic for the security notion defined by Cho et al. [19]
to be meaningful. In fact, the above basic construction has a crucial problem that
if a receiver computes a hash value by himself, he obtains a master secret-key of
IBE and can decrypt any ciphertext.

Moreover, it is not clear whether we can apply the bootstrap method pro-
posed by Cho et al. [19] if the hash function of the underlying LOT is random-
ized. Their bootstrapping method implicitly assumes the hash algorithm of the
underlying LOT is deterministic.

Derandomization Using IO. For the above reasons, we need to derandomize the
hash algorithm of the above construction. We can make the hash procedure of
the above construction deterministic by using IO and puncturable pseudorandom
function (PRF) as follows.

In a modified construction, we generate a CRS by obfuscating a circuit that,
given a database D, first generates a random coin by using D and a puncturable
PRF key and then perform the hash procedure of the basic construction using
the random coin. This circuit outputs a digest that is a master public-key of IBE
and secret state that is secret-keys of IBE corresponding to D, but not master
secret-key.

530 F. Kitagawa et al.

We can prove the security of the modified construction based on the punc-
tured programming technique proposed by Sahai and Waters [52]. However, to
complete the proof, we need to require an adversary to declare the challenge
database before seeing a CRS. This is because, in the security proof, we need
to generate a CRS as an obfuscated circuit that has the challenge database
hardwired. This security notion for LOT is weaker than that used by Garg and
Srinivasan [30] to construct adaptive garbling scheme.

Selective-Database Security. In this work, we show that we can construct an
adaptive garbling scheme based on LOT whose security holds only when the
challenge database is selectively determined. We call an LOT scheme satisfying
such a security notion selective-database LOT. Note that we allow an adver-
sary for LOT to adaptively choose the challenge location and messages. In fact,
in our construction of adaptive garbling scheme, we need LOT whose security
holds even if the challenge messages are adaptively chosen. In contrast, the secu-
rity notion defined by Cho et al. [19] that requires an adversary to declare all
challenge instances before seeing CRS is not sufficient for our adaptive garbling
scheme. In Sect. 2.2, we explain this issue in more detail.

By weakening the required security notion to selective-database security,
LOT no longer imply collision-resistant hash function while the LOT satisfying
an adaptive security notion used by Garg and Srinivasan does. This weakening
seems to be necessary to achieve LOT from IO due to the substantial barrier
that was shown by Asharov and Segev [9].

Replacing IO with Sublinearly Succinct PKFE. We can replace IO in the above
construction with sublinearly succinct PKFE by relying on the result shown by
Liu and Zhandry [46].

Liu and Zhandry generalized previous works [27–29], and showed we can
replace IO with decomposable obfuscation (dO) that can be based on polynomi-
ally secure (1,w-sel, sls)-PKFE if the circuit pair to be obfuscated satisfies some
condition. Roughly speaking, they showed that if there is a polynomial size “wit-
ness” for the functional equivalence of a circuit pair to be obfuscated, IO can
be replaced with dO. One particular situation where this condition is satisfied is
that in the security proof we modify a circuit to be obfuscated so that it outputs
a hardwired value for a single input and otherwise it runs in the same way as
the original one.

Using the terminology by Liu and Zhandry, hardwiring a single output for
an input into a circuit corresponds to decompose the circuit to the input. We
explain this in more detail. Let C be a circuit of 3-bit input. For a bit string x of
length less than 3, let Cx be a circuit C(x‖·), that is, C in which x is hardwired
as the first |x| bit of the input. We call such a circuit partial evaluation of
C. When decomposing C to the input say 100, we represent C as the tuple
of partial evaluations (C0, C11, C100, C101). When considering C as a complete
binary tree, (C0, C11, C100, C101) corresponds to the cover of minimum size that
contains 100. We see that computation of C on any input can be done using
(C0, C11, C100, C101). This is essentially the same as hardwiring a single output
C(100) on input 100 into C.

Adaptively Secure and Succinct Functional Encryption 531

Liu and Zhandry showed if C is obfuscated by dO, we can replace
it with an obfuscated circuit that is constructed from partial evalua-
tions (C0, C11, C100, C101) without affecting the behavior of an adversary.
At a high level, this change can be done by removing C and embedding
(C0, C11, C100, C101) into functional keys of the underlying PKFE. Then, we
can perform security proofs in a similar way as the punctured programming.

Consider a circuit of the form C(x) = C ′(x;FK(x)), where C ′ is a circuit, F
is a PRF, and K is a PRF key. For simplicity, let C be a circuit of 3 bit input
as above. We show how to change the distribution of C(100). By obfuscating
C with dO, we can decompose C to 100, that is, we can replace obfuscated C
with obfuscated circuit constructed from (C0, C11, C100, C101). Next, we change
FK(100) with a truly random string. To accomplish this step, we require that
FK(100) is pseudorandom even if partial evaluations of FK(·) for 0, 11, and 101
are given. Liu and Zhandry call such PRF decomposing compatible PRF and
the construction of PRF by Goldreich, Goldwasser, and Micali [32] satisfies such
a property. Once we can replace FK(100) with a truly random string, we can
change the distribution of C(100). Thus, we can complete the security proof.

Instantiating Our Construction with Sublinearly Succinct PKFE. The circuit to
be obfuscated in our construction is of the form C(x) = C ′(x;FK(x)), where C ′

is a circuit executes a setup and key generation algorithm of IBE. In a similar
manner as above, we can change the security game so that the master public-
key and secret-keys related to the challenge database are generated using a
truly random string. Then, we can prove the selective-database security of our
LOT based on the selective security of IBE. Note that in the reduction, the
challenge identity in the security game of IBE is L∗‖1 − D∗[L∗], where D∗ and
L∗ are challenge database and position in the security game of LOT. The identity
L∗‖1 − D∗[L∗] depends on the choice of L∗ by an adversary for LOT. However,
the reduction algorithm can guess the location with the probability at least 1

s+1 ,
which is inverse polynomial. Thus, a selectively secure IBE is sufficient for this
construction.

Therefore, we can replace IO in our construction with dO, which can be based
on (1key,w-sel, sls)-PKFE. Moreover, selectively secure IBE can be constructed
from (1key,w-sel, sls)-PKFE based on the result by Garg and Srinivasan [29].
Their collusion-resistant PKFE based on (1key,w-sel, sls)-PKFE can be used as
an identity-based key encapsulation mechanism the size of whose master public-
key is independent of the length of identities.13 Thus, we can construct selective-
database LOT based only on (1key,w-sel, sls)-PKFE.

Comparison with the Construction by Ananth and Lombardi [5]. Ananth and
Lombardi showed a construction of LOT based on IO. As they noted, it seems
difficult to replace IO in their construction with polynomially secure PKFE.

13 To achieve 1
2

compression in our construction, it is sufficient that the size of a master
public-key is logarithmic in the length of identities. This requirement is more natural
for IBE, and thus we assume only this mild condition in the actual construction.

532 F. Kitagawa et al.

The reason why they need IO is that they constructed LOT based on witness
encryption [25] by modifying the construction proposed by Cho et al. [19].

Witness encryption based on IO is outside of the framework by Liu and
Zhandry. Thus, we cannot construct witness encryption from sublinearly succinct
PKFE using the result by Liu and Zhandry. In fact, it is believed to be hard
to construct witness encryption based on some polynomially secure primitive
including PKFE [25].

2.2 Adaptive Garbling from Selective-Database Updatable Laconic
OT

The adaptive garbling scheme by Garg and Srinivasan (we write GS18 scheme
for short) is based on adaptively secure updatable LOT [30], where adversaries
can select a database after they see a CRS. However, our LOT achieves only
selective-database updatable LOT, where adversaries must commit a database
before a CRS is given. In fact, we prove that we can achieve an adaptive garbling
scheme by using a selective-database updatable LOT.

Where is the Adaptive Property of LOT Used in GS18 Scheme? In GS18 scheme,
a database of an updatable LOT is determined by an input x. More specifically,
the current database is determined by x, each intermediate wire values deter-
mined by x and each gate, and output values. A CRS crs of updatable LOT is
generated at the offline phase (i.e., when we generate a garbled circuit ˜C) and
crs is hardwired in circuits to be garbled by selectively secure garbling. At this
point, x might not be determined yet since we consider the adaptive setting.
Thus, a simulator must have crs before x (and a database) is fixed. This is why
Garg and Srinivasan used the adaptive security of LOT.

Overcoming the Issue. The issues is that we need crs at the offline phase. Our
idea is deferring using crs until we generate a garbled input (i.e., online phase).
To look closer at our idea, we need to explain more on GS18 scheme. In GS18
scheme, “step circuits” are garbled by selectively secure garbling. Each step
circuit has the description of each gate of the circuit C to be garbled by the
adaptive garbling scheme. Roughly speaking, a step circuit takes as input a
digest d of updatable LOT and does the following two procedures.

– Updating the database according to the output wire value of the gate com-
puted from input x.

– Outputting encrypted labels of selectively secure garbling for the next gate
via updatable LOT.

The important point is that crs of updatable LOT is hardwired in each step
circuit to run Send and SendWrite algorithms, which was explained in Sect. 2.1.
This is the problem since we do not fix crs at the offline phase. Here our idea
comes in.

Instead of hardwiring crs in each step circuit, we define modified step circuits
that take as input not only digest d but also crs. Now crs is an input for step

Adaptively Secure and Succinct Functional Encryption 533

circuits. By this change, to generate (simulated) garbled modified step circuits,
we do not need crs. As a result, crs need not be determined at the offline phase.
In the construction, we put crs in the state information though we generate crs
at the offline phase in the construction. In the proof, a simulator can adaptively
set the state information when the simulator needs it since the state information
is not revealed.

The CRS crs must be fixed when a garbled input x̃ is generated. However, at
this point, input x and a database were already determined. Therefore, we can
use the selective-database security of updatable LOT because, in the simulation,
an adversary of updatable LOT can simulate garbled step circuits without crs,
and when x is fixed, the adversary fixes a database based on x and can receive
crs in the reduction. This is the main idea behind our adaptive garbling scheme
based on selective-database updatable LOT.

Although we can generate crs at the online phase, we select that we put crs
in the state information for better online complexity and compatibility with the
transformation given in Sect. 7.

Note that, to make our proof work, reduction algorithms attacking updatable
LOT need to set the challenge messages as values computed by using CRS.
That is, we allow the challenge messages to depend on the CRS. This is why we
introduce a new security notion selective-database security for LOT. Our LOT
satisfies this security.

From Adaptive Garbling to Adaptively Secure 1-Key 1-Ciphertext SKFE. By
combining two transformations explained in this section and the previous section,
we obtain an adaptive garbling scheme whose online complexity is O(n + m) +
poly(log |C|, λ) based on (1key,w-sel, sls)-PKFE. Especially, by restricting circuits
supported by garbling schemes to single-bit output circuits, we obtain an adap-
tive garbling scheme whose online complexity is O(n)+poly(log |C|, λ) based on
the same assumption.

In the next step, we use the transformation proposed by Ananth and Sahai [7].
In order to use their transformation, we have to transform the constructed adap-
tive garbling scheme into (1key, 1ct, ada, fs)-SKFE. Although adaptive garbling
scheme with succinct online encoding and (1key, 1ct, ada, fs)-SKFE are essentially
the same primitives, there is a difference between them. The security game for
(1key, 1ct, ada, fs)-SKFE allows an adversary to make an encryption query and
key query in arbitrary order while that for adaptive garbling scheme requires
an adversary to always make circuit query first. We can solve this issue with a
simple transformation using a one-time pad. See the full version for details.

2.3 From Single-bit to Multi-bit Succinct FE by Leveraging
Collusion-Resistance

As explained in the previous section, we obtained (1key, 1ct, ada, fs)-SKFE for
single-bit output functions from (1key,w-sel, sls)-PKFE. By using (1key, 1ct,
ada, fs)-SKFE for single-bit output functions in the transformation by Ananth
and Sahai [7], we obtain (unbkey, ada, fs)-PKFE for single-bit output functions.

534 F. Kitagawa et al.

Here, we show that we can transform (unbkey, ada, fs)-PKFE for single-bit output
functions to one for multi-bit output functions.

The transformation is very simple. We construct a PKFE scheme MultiPKFE
for multi-bit output functions from a PKFE scheme OnePKFE for single-bit
output functions as follows. The encryption algorithm of MultiPKFE works com-
pletely in the same manner as that of OnePKFE. The key generation algorithm
of MultiPKFE, given a function f with m-bit output, first decomposes the func-
tion to {fi}i∈[m] where fi is a function that computes the i-th bit of f(m) on
input m. Then it generates decryption keys skfi

for the function fi for i ∈ [m]
by the key generation algorithm of OnePKFE, and outputs skf := {skfi

}i∈[m].
The decryption algorithm of MultiPKFE, given a ciphertext CT of a message m
and a decryption key skf = {skfi

}i∈[m], computes fi(m) for i ∈ [m] by using the
decryption algorithm of OnePKFE, and outputs f(m) = f1(m)‖ · · · ‖fm(m).

In the above construction, if OnePKFE is adaptively collusion-resistant, then
so is MultiPKFE since a decryption key of MultiPKFE consists of a polynomial
number of decryption keys of OnePKFE. Moreover, the transformation also pre-
serves the succinctness of a ciphertext since a ciphertext of MultiPKFE consists
of a ciphertext of OnePKFE.

We note that this transformation has not been explicitly pointed out before
despite its simplicity. Although researchers in this filed might already observe
this transformation, we explicitly write it since to the best of our knowledge,
nobody explicitly claims.

By combining the transformation with the results of previous sections, we
obtain fully-equipped PKFE for all polynomial-size functions from (1,w-sel, sls)-
PKFE.

2.4 Adaptively Indistinguishable Garbling with Near-Optimal
Online Complexity

We explained how to construct fully-equipped PKFE for all polynomial-size func-
tions from (1key,w-sel, sls)-PKFE through Sects. 2.1, 2.2, and 2.3. As mentioned
in Sect. 1, we have another option to achieve it.

In the option, after constructing adaptive garbling scheme as explained in
Sect. 2.2, we transform it into adaptively indistinguishable garbling with near-
optimal online complexity. More specifically, we construct an adaptively indistin-
guishable garbling scheme whose online complexity only logarithmically depends
on the size of a circuit being garbled, and does not depend on the output
length of the circuit. Similarly to adaptive garbling scheme, adaptively indis-
tinguishable garbling with such online complexity can be easily transformed
into (1key, 1ct, ada, fs)-SKFE for (multi-bit output) circuits using one-time pad.
Thus, by using the transformation by Ananth and Sahai [7] with the resulting
(1key, 1ct, ada, fs)-SKFE, we obtain fully equipped PKFE for circuits.

We can generalize the transformation from adaptive garbling scheme into
adaptively indistinguishable garbling that removes the dependence on the
output-length of online encoding so that it captures not only our (and GS18)
adaptive garbling scheme but also those proposed by Hemenway et al. [35] and

Adaptively Secure and Succinct Functional Encryption 535

Jafargholi and Wichs [38]. Thus, this transformation solves the open question
posed by Jafargholi et al. [37]. Here, we give an overview of the transformation.

Basic Idea. Our starting point is the simulation-based adaptive garbling given
in Sect. 5 (or in [30]), which we denote by adGC′

gs. Recall that the online commu-
nication complexity of adGC′

gs is n + m + poly(λ, log |C|) where C is the circuit
being garbled with n-bit input and m-bit output. Especially, we remark that
if we only consider circuits of single-bit output, then the online communication
complexity is n + poly(λ, log |C|). Our first attempt is to decompose a circuit of
m-bit output to circuits of single-bit output, and garble each of them by using
adGC′

gs. Namely, for garbling a circuit C of m-bit output, we garble Ci, which
is a circuit that outputs the i-th bit of an output of C, for each i ∈ [m]. For
an input x, the input garbling algorithm generates a single garbled input x̃ by
adGC′

gs.
At first glance, this idea would lead to a garbling scheme with online commu-

nication complexity n+poly(λ, log |C|) since we only garble circuits of single-bit
output. However, this idea does not work since a garbling scheme is defined so
that 1 garbled input is associated with 1 garbled circuit whereas we need a vari-
ant of garbling scheme where 1 garbled input is associated with multiple garbled
circuits. Here, we notice that such a variant of garbling scheme can be seen as a
single-key SKFE (with function privacy14) by interpreting garbled circuits and
garbled inputs as ciphertexts and decryption keys of SKFE, respectively. By
this interpretation, the online communication and computational complexity as
garbling are translated into the secret key length and running time of key genera-
tion, and the size of a circuit being garbled is translated into the message length.
Based on this observation, we can see that what we need to construct an adap-
tively indistinguishable garbling with succinct online complexity is an adaptively
secure single-key SKFE scheme with succinct decryption key and key generation
in the sense that they only logarithmically depend on the message-length.

Single-Key SKFE with Succinct Decryption Key and Key Generation. Our idea
to construct such an SKFE scheme is to plug adGC′

gs into the construction
of adaptively secure single-key SKFE by Gorbunov, Vaikuntanathan and Wee
[33].15 We first briefly review their construction. In their construction, for a mes-
sage m, the encryption algorithm garbles the universal circuit U(m, ·), which is
given a description of a function f as input and outputs f(m), by Yao’s gar-
bling scheme to generate a garbled circuit ˜U along with labels that are needed
to evaluate the garbled circuit. Then it encrypts ˜U and labels by a secret-key
non-committing encryption for receiver (SK-NCER) to generate a ciphertext of

14 We say that an SKFE scheme is function private if a decryption key does not reveal
the associated function. As shown by Brakerski and Segev [17], we can generically
add the function privacy to any SKFE scheme. Thus we do not care about function
privacy in this overview.

15 Though Gorbunov et al. [33] presented their construction in the public key setting,
the same construction works in the secret key setting.

536 F. Kitagawa et al.

the SKFE scheme.16 Here, SK-NCER is a special type of SKE in which we can
generate a “fake” ciphertext that can be opened to any message that is later
chosen along with a corresponding “fake” decryption key. We note that we can
construct an SK-NCER scheme whose decryption-key-length is proportional to
the message-length from any SKE scheme by “double-encryption” construction
similarly to some previous works [18,34]. Namely, we encrypt each bit of the
message under two different keys either of which is given to the decryptor. A
decryption key of the SKFE scheme for a function f consists of secret keys of
SK-NCER that enable one to recover labels corresponding to f . By using the
decryption key, one first recovers labels corresponding to f and then evaluates
the garbled circuit ˜U with these labels to obtain U(m, f) = f(m). Intuitively,
the security of the SKFE scheme holds since an adversary who has a decryption
key for f cannot obtain labels that do not correspond to f , and thus ˜U does not
reveal information of m beyond the value of U(m, f) = f(m) by the security of
Yao’s garbling. We note that it is essential to encrypt ˜U by SK-NCER for achiev-
ing the adaptive security since Yao’s garbling only has the selective security and
thus we cannot simulate ˜U before an input is determined.17 Since the size of ˜U is
proportional to the message-length of the SKFE scheme and the decryption-key-
length of SK-NCER depends on its message-length, the decryption-key-length of
their SKFE scheme is proportional to the message-length of the SKFE scheme.

Here, we observe that if we use an adaptive garbling scheme instead of Yao’s
garbling, then we need not encrypt ˜U since we can simulate ˜U before an input
is determined by the adaptive security, and we only need to encrypt labels by
SK-NCER. Since the number of labels corresponds to the online communication
complexity of the underlying garbling scheme, we expect that we could obtain
an SKFE scheme with succinct decryption key by plugging adGC′

gs into this con-
struction. However, there is a problem that adGC′

gs does not have the decompos-
ability, which means that a garbled input is obtained by choosing labels accord-
ing to each bit of the input whereas the above construction requires the garbling
scheme to have the decomposability. Nonetheless, we observe that adGC′

gs has a
similar property to the decomposability called the quasi-decomposability, which
we introduce in this paper. The quasi-decomposability roughly means that there
exists a hash function H such that a garbled input for an input x is generated
by choosing labels according to each bit of H(x) instead of x. We prove that the
quasi-decomposability is sufficient to realize the above idea.

16 Though Gorbunov et al. [33] does not use an abstraction as NCER, we observe that
their construction can be seen like this.

17 Though Jafargholi and Wichs [38] showed that Yao’s garbling scheme is adaptively
secure for certain class of circuits like NC1, we do not know how to prove its adaptive
security for all circuits.

Adaptively Secure and Succinct Functional Encryption 537

Now, we obtained adaptively secure single-key SKFE with succinct decryp-
tion key.18 We can also see that the key generation algorithm of the scheme
is also succinct. As discussed in the previous paragraph, such an SKFE scheme
yields an adaptively indistinguishable garbling scheme with succinct online com-
munication/computational complexity.

Other Instantiations. The above construction gives a generic construction of
an adaptively indistinguishable garbling scheme whose online complexity does
not depend on the output length of the circuit being garbled based on any
(quasi-)decomposable adaptive garbling scheme. For example, we can also instan-
tiate the construction with adaptive garbling schemes proposed by Hemenway
et al. [35] and Jafargholi and Wichs [38] (the latter is Yao’s garbling itself) since
they are decomposable. As a result, we obtain adaptively indistinguishable gar-
bling schemes for corresponding circuit classes whose online complexity do not
depend on output-length. Previously, such garbling schemes are constructed in
an ad hoc manner by Jafargholi et al. [37]. On the other hand, our construction
is generic, and thus resolves the open question posed by Jafargholi et al. [37].

Alternative Ad-hoc Way. Knowledgeable readers might think that we can achieve
an adaptively indistinguishable garbling scheme that we need by replacing selec-
tively secure garbling schemes in the somewhere adaptive garbling scheme by
Garg, Miao, and Srinivasan [26] with GS18 scheme. This idea might work. How-
ever, the idea is an ad-hoc solution. Moreover, to formally prove its security,
we must use the specific property (and internal structure) of Yao’s garbling
scheme [45,53] and GS18 scheme at least. We cannot use those schemes in a
black-box way.19 To avoid this issue, prove security in a modular way, and achieve
a general transformation, we selected the design explained above.

3 Preliminaries

Definitions of standard notations and primitives are omitted here. Omitted def-
initions can be found in the full version.

3.1 Known Results on Functional Encryption

Ananth and Sahai [7] proved the following theorem.

18 Strictly speaking, the SKFE scheme achieves a security notion called key-adaptive
security slightly weaker than the adaptive security, in which an adversary cannot
make any encryption queries after making the key query. We note that this is suf-
ficient for constructing an adaptively indistinguishable garbling scheme since the
adaptive security of a garbling scheme only considers the case where a garbled input
is generated after a garbled circuit is generated.

19 We can formally prove adaptive security of the somewhere adaptive garbling scheme
by Garg et al. [26] by using specific properties of Yao’s selectively secure garbling
scheme instead of using selective security in a black-box way.

538 F. Kitagawa et al.

Theorem 3.1 ([7]). If there exist (unbkey, sel, fs)-PKFE for circuits and
(1key, 1ct, ada, fs)-SKFE for multi-bit output (resp. single-bit output) circuits, then
there exists (unbkey, ada, fs)-PKFE for multi-bit output (resp. single-bit output)
circuits.

Garg and Srinivasan [29] proved the following theorem.

Theorem 3.2 ([29]). If there exists (1key,w-sel, sls)-PKFE for circuits, then
there exists (unbkey, sel, fs)-PKFE for circuits.

By combining these theorems, we obtain the following theorem.

Theorem 3.3 ([7,29]). If there exist (1key,w-sel, sls)-PKFE for circuits and
(1key, 1ct, ada, fs)-SKFE for multi-bit output (resp. single-bit output) circuits, then
there exists (unbkey, ada, fs)−PKFE for multi-bit output (resp. single-bit output)
circuits.

4 Selective-Database Laconic OT from PKFE

In this section, we show how to construct (updatable) laconic OT satisfying
a security notion we call selective-database security from sublinearly succinct
PKFE. We first show that by using IO, we can construct selective-database
laconic OT with the compression factor 2. Then, we show that we can replace
IO in our construction with sublinearly succinct PKFE by relying on the result
of Liu and Zhandry [46]. Finally, we transform our selective-database laconic OT
with compression factor 2 into updatable one based on the transformation using
Merkle tree proposed by Cho et al. [19].

4.1 Definition of Selective-Database Laconic OT

We use (updatable) laconic OT proposed by Cho et al. [19]. However, the security
level that we need in this work is slightly different from those by Cho et al., Garg
and Srinivasan [30], and Ananth and Lombardi [5].

Definition 4.1 (Selective-Database Laconic OT). A laconic OT (LOT) A
laconic OT protocol consists of four algorithms.

Gen(1λ) → crs: This algorithm takes as input the security parameter and outputs
a common reference string crs.

Hash(crs,D) =: (d, ̂D): This deterministic algorithm takes as input crs and a
database D ∈ {0, 1}∗ and outputs a digest d of D and a state ̂D.

Send(crs, d, L,m0,m1) → e: This algorithm takes as input crs, d, a database
location L ∈ N, and two messages m0 and m1 of length p(λ), and outputs a
ciphertext e.

Receive
̂D(crs, e, L) → m: This is a RAM algorithm with random read access to

̂D. It takes as input crs, e, and L ∈ N, and outputs a message m.

These algorithms satisfy the following three properties.

Adaptively Secure and Succinct Functional Encryption 539

Correctness. For any database D of size at most M = poly(λ), any mem-
ory location L ∈ [M], any pair of messages (m0,m1) ∈ {0, 1}p(λ), it holds
that mD[L] = Receive

̂D(crs,Send(crs, d, L,m0,m1), L), where crs ← Gen(1λ) and
(d, ̂D) := Hash(crs,D).

Selective-Database Adaptive-Message Sender Privacy Against Semi-honest
Receivers. There exists a PPT simulator Sim that satisfies |Pr[Realsel-db�OT (λ) =
1] − Pr[Simsel-db

�OT (λ) = 1]| ≤ negl(λ), where the experiments Realsel-db�OT (λ) and
Simsel-db

�OT (λ) are defined as follows.

Realsel-db�OT (λ)

1. (D, st) ← A(1λ)
2. crs ← Gen(1λ),
3. d := Hash(crs,D),
4. (L,m0,m1, st

′) ← A(st, crs),
5. e ← Send(crs, d, L,m0,m1),
6. b′ ← A(crs, e, st′)

Simsel-db
�OT (λ)

1. (D, st) ← A(1λ),
2. crs ← Gen(1λ),
3. d := Hash(crs,D),
4. (L,m0,m1, st

′) ← A(st, crs),
5. e ← Sim(crs,D, L,mD[L]),
6. b′ ← A(crs, e, st′)

where |D| = M = poly(λ), L ∈ [M], and m0,m1 ∈ {0, 1}p(λ).
We call this security selective-database sender privacy for short in this paper.

Efficiency. We require that |d| is bounded by a fixed polynomial in λ independent
of |D|, the running time of Hash is |D| · poly(log |D|, λ), and the running time
of Send and Receive are poly(log |D|, λ).

Selective-database adaptive-message sender privacy for updatable laconic
OT [19] is defined similarly. A formal definition can be found in the full ver-
sion.

4.2 Selective-Database Laconic OT with Compression Factor 2
from IO

We show how to construct laconic OT from IO in this subsection. Let IBE =
(IBE.Setup, IBE.KG, IBE.Enc, IBE.Dec) be an IBE scheme. For simplicity, we
assume that the randomness space of IBE.Setup is {0, 1}λ and IBE.KG is deter-
ministic.20 We let the length of a master public-key of IBE be bounded by
some fixed polynomial polyMPK(λ, n), where n is the length of identities. Then,
there exists a polynomial s = poly(λ) such that s ≥ polyMPK(λ, log s + 2). Let
PPRF = (F,Punc) be a puncturable PRF whose domain and range are {0, 1}2s

and {0, 1}λ, respectively. Let iO be an IO.
We construct an LOT protocol �OT = (Gen,Hash,Send,Receive) whose hash

algorithm Hash hashes a 2s bit database to a digest of polyMPK(λ, log s + 2) ≤ s
bits. Thus, our construction achieves compression factor 2. In the construction,
for an integer i ∈ [2s], str(i) denotes the bit representation of i.
20 We can always modify any IBE scheme so that it satisfies these two conditions by

using PRF.

540 F. Kitagawa et al.

Fig. 2. The description of SetupKG.

Gen(1λ) :
1. Generates K

r←− {0, 1}λ.
2. Computes crs ← iO (

1λ,SetupKG[K]
)

. The circuit SetupKG is defined in
Fig. 2.

3. Outputs crs.
Hash(crs,D) :

1. Outputs
(

d, ̂D
)

← crs(D).
Send(crs, d, L,m0,m1) :

1. Parses MPK ← d.
2. For α ∈ {0, 1}, computes CTα ← IBE.Enc(MPK, str(L)‖α,mα).
3. Outputs e := (CT0,CT1).

Receive
̂D(crs, e, L) :

1. Sets ̂D :=
(

D, {ski}i∈[2s]

)

.
2. Parses e ← (CT0,CT1).
3. Outputs m ← IBE.Dec

(

skL,CTD[L]

)

.

Theorem 4.1. Let IBE be a selectively secure IBE scheme and PPRF be a punc-
turable PRF. Let iO be IO. Then, �OT be a selective-database laconic OT.

The proof can be found in the full version.

4.3 Replacing IO with Sublinearly Succinct PKFE

IO in our construction can be replaced with sublinearly succinct PKFE by rely-
ing on the result of Liu and Zhandry [46]. Liu and Zhandry showed we can
replace IO with decomposable obfuscation (dO) that can be based on sublinearly
succinct PKFE if the circuit pair to be obfuscated satisfies some condition by
generalizing previous works [27–29]. Roughly speaking, they showed that if there
is a polynomial size “witness” for the functional equivalence of a circuit pair to
be obfuscated, IO can be replaced with dO. One particular situation where this

Adaptively Secure and Succinct Functional Encryption 541

condition is satisfied is that in the security proof we modify a circuit to be obfus-
cated so that it outputs a hard-wired value for a single input and otherwise it
runs in the same way as the original one. More formally, we obtain the following
theorem as a special case of the result by Liu and Zhandry.

Theorem 4.2 ([46]). Let C ′(x, r) be a circuit. Let PPRF = (F,Punc) be a punc-
tured PRF and K ∈ {0, 1}λ. Let Punc be deterministic. We define a circuit CK

as CK(x) = C ′(x,FK(x)). Moreover, we define a circuit C∗ as

C∗
x∗,K∗,y∗(x) =

{

y∗ (x = x∗)
C ′ (x,FK∗(x)) (otherwise)

,

where x∗, K∗ ← Punc(K,x∗), and y∗ = C(x∗) are hardwired into C∗. CK and
C∗

x∗,K∗,y∗ are parameterized by K and x∗, and they are functionally equivalent
for all K and x∗.

Assuming (1key,w-sel, sls)-PKFE, there exists a special type of punctured PRF
and decomposable obfuscation whose indistinguishability property holds for each
pair of circuits {(CK , C∗

x∗,K∗,y∗)}K,x∗ by implementing them using the PRF.

In the above theorem, “a special type of punctured PRF” is a primitive called
decomposing compatible PRF by Liu and Zhandry. Decomposing compatible
PRF can be constructed from one-way functions via the construction proposed
by Goldreich et al. [32], and thus its existence is implied by that of PKFE. See
Sect. 2.1 or the paper by Liu and Zhandry [46] for details.

In the construction of selective-database laconic OT based on IO in Sect. 4.2,
we apply IO for a pair of circuits SetupKG and SetupKG∗. We see that when we
apply IO to these circuits, they have exactly the same functional relationship as
C and C∗ in Theorem 4.2. That is, we obtain the following.

Lemma 4.1. Circuits SetupKG[K] and SetupKG∗[D∗,K{D∗},MPK∗, {sk∗
i }i∈[2s]]

in Sect. 4.2 fall into the circuit class CK and C∗
x∗,K∗,y∗ defined in Theorem4.2.

Therefore, from Theorem 4.2 and Lemma 4.1, IO that is needed in our con-
struction of selective-database laconic OT in Sect. 4.2 can be instantiated based
on sublinearly succinct PKFE.

Moreover, selectively secure IBE can be constructed from sublinearly succinct
PKFE [29], and puncturable PRF can be based on one-way functions. Thus, we
obtain the following theorem.

Theorem 4.3. Assume that there exists (1key,w-sel, sls)-PKFE for circuits.
Then, there exists selective-database laconic OT with compression factor 2.

4.4 From Non-updatable to Updatable

Cho et al. [19] showed we could bootstrap a laconic OT with the compression
factor 2 into an updatable laconic OT with arbitrary compression factor using
a garbling scheme and Merkle hash tree. Their bootstrapping method considers
laconic OT that satisfies a weak security notion where in addition to the challenge

542 F. Kitagawa et al.

database, the challenge location and messages are also fixed at the beginning of
the security game. As Ananth and Lombardi [5] pointed out, if we use selective-
database laconic OT as a building block for the bootstrapping method, then we
have to use a minor variant of the method to obtain selective-database updatable
laconic OT (the original bootstrapping method is not sufficient for us). More
specifically, we have to sample fresh crsj for each depth j of the Merkle hash
tree in the bootstrapping method. We use this variant since our laconic OT is
selective-database secure. That is, we have the following theorem.

Theorem 4.4 ([5,19]). Assume that there exists selective-database laconic OT
with the compression factor 2. Then, there exists selective-database updatable
laconic OT with arbitrary compression factor.

By combining Theorems 4.3 and 4.4, we obtain the following theorem.

Theorem 4.5. Assume that there exists (1key,w-sel, sls)-PKFE. Then, there
exists selective-database updatable laconic OT with arbitrary compression factor.

5 Adaptive Garbling from Selective-Database Laconic
OT

In this section, we present an adaptive garbling scheme with nearly optimal
online communication/computational complexity based on selective-database
updatable LOT. Garg and Srinivasan presented such an adaptive garbling
scheme based on adaptively secure updatable LOT [30], which is instantiated
by concrete assumptions such as CDH [16,19,23]. However, we cannot directly
use their adaptive garbling scheme due to the following two reasons.

1. Our goal in this section is achieving adaptive garbling scheme from succinct
PKFE (i.e., we do not rely on any specific assumption such as the CDH
assumption).

2. The updatable LOT protocol presented in Sect. 4 is selective-database updat-
able LOT.

We will show that we can achieve an adaptive garbling scheme with
nearly optimal online communication/computational complexity from selective-
database updatable LOT in the rest of this section.

5.1 Description of Our Adaptive Garbling Scheme

In this section, we present our adaptive garbling scheme and properties that it
satisfies.

Theorem 5.1. If there exist selective-database updatable LOT, somewhere
equivocal encryption, and selectively secure garbled circuits, then there exists an
adaptively secure garbling scheme for circuits with online communication com-
plexity n+m+poly(λ, log |C|) and online computational complexity O(n+m)+
poly(λ, log |C|).

Adaptively Secure and Succinct Functional Encryption 543

From this theorem, Theorem 4.5, and the fact that selectively secure garbled
circuits and somewhere equivocal encryption can be constructed from one-way
functions [35], we obtain the following theorem.

Theorem 5.2. If there exists (1key,w-sel, sls)-PKFE, then there exists an adap-
tively secure garbling scheme for circuits with online communication complex-
ity n + m + poly(λ, log |C|) and online computational complexity O(n + m) +
poly(λ, log |C|).

Conventions. Without loss of generality, we assume that circuits consist of only
NAND gates. Let n, m, and N − n be the input length, output length, and the
number of NAND gates of the circuit. An index is assigned to each input and
gate. That is, from 1 to n are input wires, from n+1 to N −m are intermediate
NAND gates, and N − m + 1 to N are output gates of the circuit. Note that a
gate whose inputs come from gate i and j has an index greater than i and j.
Each gate g ∈ [n + 1, N] is represented by a pair (i, j) ∈ [g − 1] × [g − 1]. That
is, the inputs of g are outputs of gates i and j. In this section, we use ri, xi, and
yi instead of r[i], x[i], and y[i] to mean the i-th bit of r, x, and y, respectively
for notational simplicity.

A Variant of GS18 Garbling Scheme. We prove Theorem 5.1 in the rest
of this section. First, we describe our adaptive garbling scheme. We put
red underlines at different points from the adaptive garbling scheme by Garg
and Srinivasan [30]. Let Σ := (KeyGen,Enc,Dec,SimEnc,SimKey), GC :=
(GC.Grbl,GC.Eval), and Π := (Gen,Hash,Send,Receive,SendWrite,ReceiveWrite)
be a somewhere equivocal encryption scheme, a (selectively secure) garbling
scheme with a corresponding simulator GC.Sim, and an updatable LOT proto-
col, respectively. Our adaptive garbling scheme adGC′

gs := (GbCkt,GbInp,GbEval)
is as follows.

GbCkt(1λ, C): This algorithm garbles a circuit C : {0, 1}n → {0, 1}m as follows.
1. Generates sek ← KeyGen(1λ), and chooses r ← {0, 1}N .
2. Generates crs ← Gen(1λ).
3. Chooses labelgk,b ← {0, 1}λ and labelg,crs

k,b ← {0, 1}λ for g ∈ [n + 1, N + 1],
k ∈ [λ], and b ∈ {0, 1}.

4. From g = N to g = n + 1 (decrement g), does the following.
(a) Interprets gate g as (i, j).
(b) Computes

˜SCg ← GC.Grbl(1λ,SC[(ri, rj , rg), (i, j),

{(labelg+1
k,b , labelg+1,crs

k,b)}k∈[λ],b∈{0,1} , 0],

({labelgk,b}k∈[λ],b∈{0,1} , {labelg,crs
k,b }k∈[λ],b∈{0,1})).

5. Generates c ← Enc(sek, {˜SCg}g∈[n+1,N]).
6. Outputs ˜C := c and st := (r, sek, {(labeln+1

k,b , labeln+1,crs
k,b)}k∈[λ],b∈{0,1} , crs).

544 F. Kitagawa et al.

GbInp(st, x): This algorithm garbles an input x ∈ {0, 1}n as follows.
1. Parses st := (r, sek, {(labeln+1

k,b , labeln+1,crs
k,b)}k∈[λ],b∈{0,1} , crs).

2. Sets D := r1 ⊕ x1‖ · · · ‖rn ⊕ xn‖0N−n.
3. Computes (d, ̂D) := Hash(crs,D).
4. Outputs x̃ := ({(labeln+1

k,d[k], labeln+1,crs
k,crs[k])}k∈[λ], crs, r1 ⊕ x1, . . . , rn ⊕

xn, sek, rN−m+1, . . . , rN).
GbEval(˜C, x̃): This evaluation algorithm does the following.

1. Parses ˜C = c and x̃ := ({(labelk,d[k], labelcrsk,crs[k])}k∈[λ], crs, r1⊕x1, . . . , rn⊕
xn, sek, rN−m+1, . . . , rN).

2. Sets D := r1 ⊕ x1‖ · · · ‖rn ⊕ xn‖0N−n.
3. Computes (d, ̂D) := Hash(crs,D).
4. Computes {˜SCg}g∈[n+1,N] ← Dec(sek, c).
5. Set label := {labelk,d[k]}k∈[λ] and label

crs
:= {labelcrsk,crs[k]}k∈[λ].

6. For g = n + 1, . . . , N
(a) Interprets g as (i, j).
(b) Computes (gout1, gout2) := GC.Eval(˜SCg, (label, label

crs
)).

(c) Computes (γ, e) := Receive
̂D(crs,Receive

̂D(crs, gout1, i), j).
(d) Sets label := ReceiveWrite

̂D(crs, g, γ, e) and label
crs

:= gout2.
7. Reads D from ̂D.
8. Outputs DN−m+1 ⊕ rN−m+1‖ · · · ‖DN ⊕ rN .

Remark 5.1. We assume that the length of crs is λ for ease of notation instead
of writing {labelg,crs

k′,b }k′∈[poly(λ)],b∈{0,1} . We often omit the region where indices
(k, b) run if it is clear from the context. That is, we often write {labelgk,b} and
{labelg,crs

k,b } to denote {labelgk,b}k∈[λ],b∈{0,1} and {labelg,crs
k,b }k∈[λ],b∈{0,1} .

Proofs of correctness and security can be found in the full version.

Online Complexity of GbInp. We confirm that our garbling scheme satisfies the
complexity described in Theorem5.2.

Online Communication Complexity: We see that |x̃| = λ2 + λ + |crs| + n +
m + |sek|. By the efficiency of updatable LOT, |crs| = λ holds21. Recall that
|sek| = t · s · poly(λ) where s is the block-length and t is the equivocation
parameter. In our setting, we set s := |˜SC| and t := log N . Moreover, by
the efficiency of updatable LOT, |˜SC| = poly(log N,λ). Therefore, |sek| =
poly(log N,λ). Thus, |x̃| = n + m + poly(log |C|, λ) (note that |C| = N).

Online Computational Complexity: The running time of our GbInp depends
on N since it computes Hash(crs,D). However, we can reduce the computa-
tional complexity using a specific structure of the updatable LOT by Cho
et al. [19] (recall that our updatable LOT in Sect. 4 also uses this structure)

21 In fact, in our LOT protocol in Sect. 4, |crs| = poly(λ). However, it does not matter
here since it is absorbed in poly(log |C|, λ) part.

Adaptively Secure and Succinct Functional Encryption 545

Fig. 3. The description of modified step circuit

by using the same technique as GS18 scheme. We briefly review it. The con-
struction uses Merkle hash tree technique. Therefore, we can efficiently update
a hash value. Let y and y′ consist of � blocks of λ-bits strings. Assume that
y is different from y′ only in the first k blocks. Given the Merkle hash on y
and a set of log |y| hash values, there exists an efficient algorithm that com-
putes the Merkle hash on y′ and whose running time is O(λ(k + log |y|)).
By using this efficient update algorithm, we can reduce the computational
complexity as follows. At offline phase, we compute a hash value on 0N .
We set each block length to be 1. That is, when x ∈ {0, 1}n is given, we
update the first 	n
 blocks. For updating the hash value on 0N to the hash
value on (r ⊕ x‖0N−n), it takes O(1 · (n + log N)) time. That is, the running
time of GbInp is O(n + m) + poly(log |C|, λ) since GbInp computes the hash
value and outputs poly(λ) + n + m values. Note that GbInp need not output
(rn+1, . . . , rN−m).

5.2 Secret-Key FE from Our Adaptive Garbling

We observe that adGC′
gs can be seen as a single-key and single-ciphertext adap-

tive SKFE by considering a garbled circuit and a garbled input to be a decryp-
tion key and a ciphertext, respectively, where a master secret key is set as
MSK := (r, sek, {labeln+1

k,b }, {labeln+1,crs
k,b }, crs).22 Moreover, if we only consider

single-bit output circuits as a function class, the scheme is fully succinct due
to the succinct online complexity of adGC′

gs. See the full version for details.

22 Actually, the direct adaptation only achieves ciphertext-adaptive security where a
decryption key must be queried before the challenge ciphertext is given to an adver-
sary. This can be easily overcome by using one-time pad without sacrificing succinct-
ness.

546 F. Kitagawa et al.

By combining Theorem 5.2 with the above observation, we obtain the following
theorem.

Theorem 5.3. If there exists (1key,w-sel, sls)-PKFE for circuits, then there
exists (1key, 1ct, ada, fs)-SKFE for single-bit output circuits.

By combining Theorems 3.3 and 5.3, we obtain the following theorem.

Theorem 5.4. If there exists (1key,w-sel, sls)-PKFE for circuits, then there
exists (unbkey, ada, fs)-PKFE for single-bit output circuits.

6 Adaptively Secure, Collusion-Resistant, and Succinct
FE

In this section, we show a conversion from collusion-resistant PKFE for single-bit
output circuits to one for multi-bit output circuits without sacrificing succinct-
ness. Combined with Theorem 5.4, this gives our main theorem, Theorem 1.1.

6.1 From Single-Bit to Multi-bit Succinct FE by Leveraging
Collusion-Resistance

Let OnePKFE = (OnePKFE.Setup,OnePKFE.KG,OnePKFE.Enc,OnePKFE.Dec)
be an PKFE scheme for M, Y ′ := {0, 1}, and single-bit output circuits. Then,
we construct an PKFE scheme MultiPKFE = (MultiPKFE.Setup,MultiPKFE.KG,
MultiPKFE.Enc,MultiPKFE.Dec) for M, Y := {0, 1}�, and circuits as follows.

MultiPKFE.Setup(1λ):
1. Computes (MPK,MSK) ← OnePKFE.Setup(1λ).
2. Outputs (MPK,MSK).

MultiPKFE.KG(MSK, f):
1. Computes ski ← OnePKFE.KG(MSK, fi) for every i ∈ [�] where fi(m)

outputs the i-th bit of f(m).
2. Outputs skf := {skfi

}i∈[�].
MultiPKFE.Enc(MPK,m):

1. Computes CTm ← OnePKFE.Enc(MPK,m).
2. Outputs CT := CTm.

MultiPKFE.Dec(skf ,CTm):
1. Parses {skfi

}i∈[�] ← skf .
2. Computes yi ← OnePKFE.Dec(skfi

,CTm) for every i ∈ [�].
3. Outputs y := y1‖ . . . ‖y�.

Correctness. Correctness of MultiPKFE easily follows from correctness of
OnePKFE.

Adaptively Secure and Succinct Functional Encryption 547

Security. The security of MultiPKFE can be stated as follows.

Theorem 6.1. If OnePKFE is (unbkey, sec, eff)-PKFE for single-bit output cir-
cuits, then MultiPKFE is (unbkey, sec, eff)-PKFE for multi-bit output circuits
where sec ∈ {w-sel, sel, ada} and eff ∈ {ns, sls, fs}.

This can be proven by a standard hybrid argument.

The Running Time of Encryption Algorithm. Since the encryption algorithm of
MultiPKFE only runs the encryption algorithm of OnePKFE, the running time of
MultiPKFE.Enc is the same as that of OnePKFE.Enc. OnePKFE.Enc is succinct,
so MultiPKFE.Enc is.

6.2 Fully-Equipped PKFE

By combining Theorems 5.4 and 6.1, we obtain the main theorem in this study,
that is, Theorem 1.1. We obtain adaptively secure, collusion-resistant, and suc-
cinct public-key FE for circuits from weakly-selectively secure, single-key, and
sublinearly-succinct public-key FE for circuits.

7 Adaptively Indistinguishable Garbling with
Near-Optimal Online Complexity

In this section, we give a construction of an adaptively indistinguishable garbling
scheme for all circuits whose online complexity does not depend on output-length
of the circuit to garble. Namely, the length of online part in our construction is
2n + poly(log |C|, λ) where n and |C| denote the input-length and circuit size,
respectively. This is done by transforming our adaptive garbling scheme given
in Sect. 4 (or the one by Garg and Srinivasan [30]). Our result can be stated as
follows.

Theorem 7.1. If one of the {CDH, Factoring, LWE} assumptions holds or
(1key,w-sel, sls)-PKFE for circuits exists, then there exists an adaptively indis-
tinguishable garbling scheme whose online communication complexity is 2n +
poly(log |C|, λ) and online computational complexity is O(n) + poly(log |C|, λ)
where C is the circuit being garbled of n-bit input.

We note the adaptively indistinguishable garbling scheme obtained by the
above theorem can be seen as (1key, 1ct, ada, fs)-SKFE for all circuits. This gives
an alternative way to construct fully-equipped PKFE by Theorem3.1.

Moreover, our construction gives a generic way to convert simulation-
secure adaptive garbling (with a particular structure which we call quasi-
decomposability) whose online complexity depends on output-length into adap-
tively indistinguishable garbling whose online complexity does not depend on
output-length. By instantiating the conversion with known adaptive garbling
schemes from one-way functions [35,38], we obtain the following corollary.

548 F. Kitagawa et al.

Corollary 7.1 (Also proven in [37]). If one-way function exists, the following
garbling schemes exist:

1. Adaptively indistinguishable garbling scheme for NC1 whose online communi-
cation/computational complexity are n · poly(λ).

2. Adaptively indistinguishable garbling scheme for all circuits whose online com-
munication/computational complexity are (n + w) · poly(λ).

where n is the input-length and w is the width of the circuit being garbled.

Though Jafargholi et al. [37] already proved the same statement, their con-
struction is obtained by modifying (simulation-based) adaptive garbling scheme
by Hemenway et al. [35] in an ad hoc and complicated manner. On the other
hand, our construction is generic, and gives a modular construction. See the full
version for the details of these results.

Acknowledgments. The third author was supported by NTT Secure Platform Lab-
oratories, JST OPERA JPMJOP1612, JST CREST JPMJCR14D6, JSPS KAKENHI
JP16H01705, JP17H01695.

References

1. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 32

2. Agrikola, T., Couteau, G., Hofheinz, D.: The usefulness of sparsifiable inputs: how
to avoid subexponential iO. Cryptology ePrint Archive, Report 2018/470 (2018)

3. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 15

4. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional
encryption for simple functions. Cryptology ePrint Archive, Report 2015/730
(2015)

5. Ananth, P., Lombardi, A.: Succinct garbling schemes from functional encryption
through a local simulation paradigm. In: Beimel, A., Dziembowski, S. (eds.) TCC
2018, Part II. LNCS, vol. 11240, pp. 455–472. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03810-6 17

6. Agrawal, S., Maitra, M.: FE and iO for turing machines from minimal assumptions.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp.
473–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 18

7. Ananth, P.V., Sahai, A.: Functional encryption for Turing machines. In: Kushile-
vitz, E., Malkin, T. (eds.) TCC 2016-A, Part I. LNCS, vol. 9562, pp. 125–153.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 6

8. Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with
constant online rate, or how to compress garbled circuit keys. SIAM J. Comput.
44(2), 433–466 (2015)

https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-030-03810-6_17
https://doi.org/10.1007/978-3-030-03810-6_17
https://doi.org/10.1007/978-3-030-03810-6_18
https://doi.org/10.1007/978-3-662-49096-9_6

Adaptively Secure and Succinct Functional Encryption 549

9. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation
and functional encryption. In: 56th FOCS, pp. 191–209 (2015)

10. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2),
6:1–6:48 (2012)

11. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 10

12. Bitansky, N., et al.: Indistinguishability obfuscation for RAM programs and suc-
cinct randomized encodings. SIAM J. Comput. 47(3), 1123–1210 (2018)

13. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.)
TCC 2016-B, Part II. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5 15

14. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: 56th FOCS, pp. 171–190 (2015)

15. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

16. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 535–564.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 20

17. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp.
306–324. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-
7 12

18. Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 9

19. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0 2

20. Dachman-Soled, D., Dov Gordon, S., Liu, F.-H., O’Neill, A., Zhou, H.-S.: Leakage-
resilient public-key encryption from obfuscation. In: Cheng, C.-M., Chung, K.-M.,
Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS, vol. 9615, pp. 101–128.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8 5

21. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput.
30(2), 391–437 (2000)

22. Döttling, N., Garg, S.: From selective IBE to Full IBE and selective HIBE. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 372–408.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 13

23. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-
based and key-dependent message secure encryption schemes. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 3–31. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76578-5 1

24. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

https://doi.org/10.1007/978-3-642-34961-4_10
https://doi.org/10.1007/978-3-662-53644-5_15
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-662-46497-7_12
https://doi.org/10.1007/978-3-662-46497-7_12
https://doi.org/10.1007/978-3-540-30576-7_9
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-662-49387-8_5
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-76578-5_1

550 F. Kitagawa et al.

25. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: 45th ACM STOC, pp. 467–476 (2013)

26. Garg, S., Miao, P., Srinivasan, A.: Two-round multiparty secure computation min-
imizing public key operations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part III. LNCS, vol. 10993, pp. 273–301. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 10

27. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of
finding a Nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part
II. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53008-5 20

28. Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential
barrier in obfustopia. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part III. LNCS, vol. 10212, pp. 156–181. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56617-7 6

29. Garg, S., Srinivasan, A.: Single-key to multi-key functional encryption with polyno-
mial loss. In: Hirt, M., Smith, A. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp.
419–442. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 16

30. Garg, S., Srinivasan, A.: Adaptively secure garbling with near optimal online com-
plexity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS,
vol. 10821, pp. 535–565. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78375-8 18

31. Garg, S., Srinivasan, A.: A simple construction of iO for Turing machines. In:
Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp.
425–454. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 16

32. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

33. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

34. Hazay, C., Patra, A., Warinschi, B.: Selective opening security for receivers. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp.
443–469. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 19

35. Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively
secure garbled circuits from one-way functions. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 149–178. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53015-3 6

36. Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs, D.: Be
adaptive, avoid overcommitting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 133–163. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7 5

37. Jafargholi, Z., Scafuro, A., Wichs, D.: Adaptively indistinguishable garbled circuits.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 40–71.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 2

38. Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In: Hirt, M.,
Smith, A. (eds.) TCC 2016-B, Part I. LNCS, vol. 9985, pp. 433–458. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 17

https://doi.org/10.1007/978-3-319-96878-0_10
https://doi.org/10.1007/978-3-319-96878-0_10
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-319-56617-7_6
https://doi.org/10.1007/978-3-662-53644-5_16
https://doi.org/10.1007/978-3-662-53644-5_16
https://doi.org/10.1007/978-3-319-78375-8_18
https://doi.org/10.1007/978-3-319-78375-8_18
https://doi.org/10.1007/978-3-030-03810-6_16
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-662-48797-6_19
https://doi.org/10.1007/978-3-662-48797-6_19
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-70503-3_2
https://doi.org/10.1007/978-3-662-53641-4_17

Adaptively Secure and Succinct Functional Encryption 551

39. Kitagawa, F., Nishimaki, R., Tanaka, K.: From single-key to collusion-resistant
secret-key functional encryption by leveraging succinctness. Cryptology ePrint
Archive, Report 2017/638 (2017)

40. Kitagawa, F., Nishimaki, R., Tanaka, K.: Indistinguishability obfuscation for all
circuits from secret-key functional encryption. Cryptology ePrint Archive, Report
2017/361 (2017)

41. Kitagawa, F., Nishimaki, R., Tanaka, K.: Obfustopia built on secret-key functional
encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS,
vol. 10821, pp. 603–648. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78375-8 20

42. Kitagawa, F., Nishimaki, R., Tanaka, K.: Simple and generic constructions of suc-
cinct functional encryption. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II.
LNCS, vol. 10770, pp. 187–217. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-76581-5 7

43. Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key func-
tional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
I. LNCS, vol. 10210, pp. 122–151. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 5

44. Li, B., Micciancio, D.: Compactness vs collusion resistance in functional encryption.
In: Hirt, M., Smith, A. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 443–468.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 17

45. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

46. Liu, Q., Zhandry, M.: Decomposable obfuscation: a framework for building appli-
cations of obfuscation from polynomial hardness. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part I. LNCS, vol. 10677, pp. 138–169. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70500-2 6

47. Marcedone, A., Pass, R., Shelat, A.: Bounded KDM security from iO and OWF. In:
Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 571–586. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-44618-9 30

48. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437 (1990)

49. Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: how to embed
arbitrary information in a key. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 388–419. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 14

50. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553 (1999)

51. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: ACM CCS 2010, pp. 463–472 (2010)

52. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: 46th ACM STOC, pp. 475–484 (2014)

53. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167 (1986)

https://doi.org/10.1007/978-3-319-78375-8_20
https://doi.org/10.1007/978-3-319-78375-8_20
https://doi.org/10.1007/978-3-319-76581-5_7
https://doi.org/10.1007/978-3-319-76581-5_7
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-662-53644-5_17
https://doi.org/10.1007/978-3-319-70500-2_6
https://doi.org/10.1007/978-3-319-70500-2_6
https://doi.org/10.1007/978-3-319-44618-9_30
https://doi.org/10.1007/978-3-662-49896-5_14
https://doi.org/10.1007/978-3-662-49896-5_14

Non-interactive Non-malleability
from Quantum Supremacy

Yael Tauman Kalai1(B) and Dakshita Khurana2,3(B)

1 Microsoft Research and MIT, Cambridge, USA
yael@microsoft.com

2 Microsoft Research, Cambridge, USA
dakshita@illinois.edu

3 UIUC, Urbana-Champaign, USA

Abstract. We construct non-interactive non-malleable commitments
without setup in the plain model, under well-studied assumptions.

First, we construct non-interactive non-malleable commitments w.r.t.
commitment for ε log log n tags for a small constant ε > 0, under the
following assumptions:
1. Sub-exponential hardness of factoring or discrete log.
2. Quantum sub-exponential hardness of learning with errors (LWE).

Second, as our key technical contribution, we introduce a new tag ampli-
fication technique. We show how to convert any non-interactive non-
malleable commitment w.r.t. commitment for ε log log n tags (for any
constant ε > 0) into a non-interactive non-malleable commitment w.r.t.
replacement for 2n tags. This part only assumes the existence of sub-
exponentially secure non-interactive witness indistinguishable (NIWI)
proofs, which can be based on sub-exponential security of the decisional
linear assumption.

Interestingly, for the tag amplification technique, we crucially rely on
the leakage lemma due to Gentry and Wichs (STOC 2011). For the con-
struction of non-malleable commitments for ε log log n tags, we rely on
quantum supremacy. This use of quantum supremacy in classical cryp-
tography is novel, and we believe it will have future applications. We
provide one such application to two-message witness indistinguishable
(WI) arguments from (quantum) polynomial hardness assumptions.

1 Introduction

Non-malleability, first introduced by Dolev, Dwork and Naor [11] aims to counter
the ubiquitous problem of man-in-the-middle (MIM) attacks on cryptographic
protocols. A MIM adversary participates in two or more instantiations of a
protocol, trying to use information obtained in one execution to breach security
in the other protocol execution. A non-malleable protocol should ensure that
such an adversary gains no advantage. A long-standing problem in this area has
been to build non-malleable protocols, without any additional setup or rounds of
interaction. In this paper, we develop techniques to address this question based
on well-studied assumptions. We focus on a core non-malleable primitive – a
commitment scheme.
c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 552–582, 2019.
https://doi.org/10.1007/978-3-030-26954-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_18

Non-interactive Non-malleability from Quantum Supremacy 553

Non-interactive Commitments. A non-interactive commitment scheme consists
of a commitment algorithm, that on input a message m and randomness r, out-
puts a commitment to m, which is denoted by com(m; r)1. A commitment scheme
is required to be both binding and hiding. The (statistical) binding require-
ment asserts that a commitment cannot be opened to two different messages
m �= m′, namely, there do not exist m �= m′ and randomness r, r′ such that
com(m; r) = com(m′; r′). The (computational) hiding property asserts that for
any two messages, m and m′ (of the same length), the distributions com(m) and
com(m′) are computationally indistinguishable. We note that one could also con-
sider computational binding and statistical hiding, however such commitment
schemes are known to require at least two rounds of interaction when dealing
with non-uniform adversaries. The focus of this work is on the non-interactive
setting.

Non-interactive Non-malleable Commitments. Loosely speaking, a commitment
scheme is said to be non-malleable if no MIM adversary, given a commitment
com(m), can efficiently generate a commitment com(m′), such that the message
m′ is related to the original message m.

Non-malleable commitments are among the core building blocks of various
cryptographic protocols such as coin-flipping, secure auctions, electronic voting,
general multi-party computation (MPC) protocols, and non-malleable proof sys-
tems. Therefore, they have a direct impact on the round complexity of such pro-
tocols. For example, many constructions of concurrent MPC against Byzantine
adversaries are bottlenecked by the round complexity of non-malleable commit-
ments.

As such, there has been a long line of work on obtaining constructions of
non-malleable commitments in the plain model in as few rounds as possible
(e.g [2,9–11,15,17–19,23,24,26,27,29–32,34–36]). So far, the only known con-
structions of non-interactive non-malleable commitments (without setup) are the
ones by Pandey, Pass and Vaikuntanathan [31], based on a strong non-falsifiable
assumption, and Bitansky and Lin [5], based on a relatively new assumption
about sub-exponential incompressible functions. We elaborate on these related
works in Sect. 1.3.

Indeed, constructing non-interactive non-malleable commitment schemes
(without setup) from standard assumptions, has been a long standing open prob-
lem and is the focus of this work. Three primary flavours of non-malleability have
been considered in the literature:

– Non-malleability w.r.t. commitment. Intuitively, non-malleability w.r.t.
commitment, which is the strongest of the three definitions, requires that
for any two messages m0,m1 ∈ {0, 1}p, the distributions (Com(m0), m̃0) and
(Com(m1), m̃1) are computationally indistinguishable. Here m̃b is the message
committed to by the MIM given Com(mb), and is set to ⊥ if the adversary
given Com(mb) outputs c̃ for which there do not exist any (m̃, r̃) such that
c̃ = com(m̃; r̃). Another definition that is considered in the literature is that of

1 We will sometimes omit explicitly writing the randomness r.

554 Y. T. Kalai and D. Khurana

CCA-security for commitment schemes. It is known [7] that in the case of non-
interactive commitments, non-malleability w.r.t. commitment is equivalent to
(one-to-one) CCA-security.

– Non-malleability w.r.t. replacement. A weaker, yet natural, notion of
malleability is non-malleability w.r.t. replacement [15]. This requires that for
any two messages m0,m1 ∈ {0, 1}p, the distributions (Com(m0), m̃0) and
(Com(m1), m̃1) are indistinguishable whenever m̃0, m̃1 �= ⊥.2 This is exactly
like non-malleability w.r.t. commitment, except that the adversary is allowed
to perform “selective abort” attacks, where the event that the adversary com-
mitted to an invalid message, is allowed to be correlated with the honest
message. This guarantees that a man-in-the-middle adversary cannot com-
mit to valid messages that are related to the message committed in an honest
protocol. We observe that the proofs in [7] demonstrate that non-interactive
non-malleability w.r.t. replacement is equivalent to a weaker form of CCA-
security. We further elaborate upon this in Sect. 1.2.

– Non-malleability w.r.t. opening. This is an even weaker3, yet natural
notion, which requires that for any two messages m0,m1, the joint distri-
bution of (Com(m0), m̃0) and (Com(m1), m̃1) are indistinguishable whenever
m̃0, m̃1 �= ⊥, where m̃b is the message opened by the MIM given Com(mb). The
crucial difference from both the previous definitions is that m̃0, m̃1 represent
the messages opened by the adversary, as opposed to the messages committed.
Informally, this allows an adversary to commit to a message that is related
to an honest message, as long the adversary is unable to convincingly open
these commitments.

This work focuses on the first two definitions. We also note that all non-
malleable commitment schemes assume that parties have “tags” (or id’s), and
require non-malleability to hold whenever the adversary is trying to commit
w.r.t. ˜tag that is different from an honest tag. We differentiate between the
following two settings:

– One-to-one setting, where the man-in-the-middle (MIM) gets a single com-
mitted message and generates a single commitment.

– Many-to-many (concurrent) setting, where the MIM receives many commit-
ments and is allowed to generate many commitments. Here, the guarantee is
that for any two sets of committed messages sent to the MIM, the joint distri-
bution of these committed messages and the messages that the MIM commits
to, are indistinguishable.

In this work, we focus on the one-to-one definition. But as a stepping stone,
we define and construct many-to-many same-tag non-malleable commitments.
This is similar to the many-to-many notion, except that it restricts the MIM to
use the same tag in all commitments that he outputs.

2 As earlier, m̃b denotes the message committed to by the MIM given Com(mb).
3 Non-malleability w.r.t. replacement implies non-malleability w.r.t. opening, as

defined by Goyal et al. [16].

Non-interactive Non-malleability from Quantum Supremacy 555

1.1 Our Results

In this paper, we first construct non-malleable commitments w.r.t. commitment
for ε log log n tags (for some small constant ε > 0) in the many-to-many same-
tag setting, based on well-studied hardness assumptions, which we elaborate on
below. Then we present a general “tag amplification” compiler that converts any
non-malleable commitment w.r.t. replacement with ε log log n tags in the many-
to-many same tag setting, into a non-malleable commitment w.r.t. replacement
with 2n tags in the one-to-one setting, assuming sub-exponential NIWI (which
can in turn be based on sub-exponential decisional linear (DLIN)).

For the first result, our contribution is primarily conceptual, and relies on
using quantum supremacy. Our second result contains the bulk of the technical
difficulty. In this part, we make a novel use of the leakage lemma due to Gentry
and Wichs [13]. The use of the leakage lemma in this context is surprising, since
a-priori the problem of non-malleability seems quite unrelated to leakage. In
what follows, we state our results in more detail.

Non-interactive Non-malleable Commitments for O(log log n) Tags.
We construct non-interactive non-malleable commitments w.r.t. commitment for
ε log log n tags (for a small constant ε > 0) assuming:

– Sub-exponential hardness of factoring or discrete log.
– Sub-exponential hardness of learning with errors (LWE) or learning parity

with noise (LPN) against quantum circuits.

More generally, we construct non-malleable commitments w.r.t. commitment
for ε log log n tags from any sub-exponentially secure bit commitment for 2 tags
(denoted by com0 and com1), for which the hiding property of com0 holds even
given an oracle that breaks com1, and similarly the hiding property of com1 holds
even given an oracle that breaks com0. Such commitments are known as adaptive
or CCA-secure commitments [28,31], and imply many-to-many non-interactive
non-malleable commitments w.r.t. commitment.

Informal Theorem 1. Assuming the existence of sub-exponentially CCA-
secure many-to-many non-interactive bit commitments for 2 tags, there exist
many-to-many same-tag non-interactive non-malleable string commitments
w.r.t. commitment for ε log log n tags (for a small constant ε > 0).

To achieve this, we start with the leveraging technique of Pass and Wee [35]
that allows us to construct, from any sub-exponentially secure non-interactive
commitment, a series of ε log log n commitments, each harder than the previous
one. But this only provides hardness in one direction, and in particular does not
even yield commitments for 2 tags that are non-malleable w.r.t. each other.

Our main conceptual novelty in this part, which we describe next, is the idea
of constructing a CCA secure commitment scheme for 2 tags using quantum
supremacy. Later, we describe how we can carefully combine this insight with
the technique of [35] to obtain non-malleable commitments for ε log log n tags.

556 Y. T. Kalai and D. Khurana

Using Quantum Supremacy. Loosely speaking, in order to construct a CCA-
secure commitment for 2 tags, we need two axes of hardness: One axis in which
com0 is harder than com1, and the other in which com1 is harder than com0.

We build such an axis by relying on quantum supremacy, which is the ability
of quantum computers to solve problems (such as factoring) that are believed
to be hard for classical computers. Namely, we construct two commitment algo-
rithms com0 and com1 such that for quantum algorithms, breaking com1 is harder
than breaking com0, and yet for classical algorithms, breaking com0 is harder
than breaking com1.

This is achieved by instantiating com1 as a post-quantum secure commitment
(such as one based on LWE or LPN [14]); and instantiating com0 as a post-
quantum insecure commitment (such as one based on factoring or discrete log),
albeit with a much larger security parameter. Now, given a BQP oracle, com1

is secure but com0 is not; at the same time, classical machines can break com1

faster than they can break com0. We prove the following claim:

Informal Claim 1. Assuming sub-exponential hardness of factoring/discrete
log and sub-exponential quantum hardness of LWE/LPN, there exist sub-
exponentially CCA secure many-to-many non-interactive commitments for 2
tags.

Combining this with Informal Theorem1, we have:

Informal Theorem 2. Assuming sub-exponential hardness of factoring/disc-
rete log, and sub-exponential quantum hardness of LWE/LPN, many-to-many
same-tag non-interactive non-malleable commitments w.r.t. commitment exist
for ε log log n tags, for a small constant ε > 0.

Prior to this work, obtaining non-interactive non-malleable commitments
w.r.t. commitment, even for just two tags, required the non-standard assumption
that there exist sub-exponential incompressible one-way functions, and either
sub-exponentially secure time-lock puzzles or sub-exponentially secure one-way
functions admitting hardness amplification [5]. The work of [29] constructed
non-interactive non-malleable commitments w.r.t. extraction (which is similar
to w.r.t. replacement) for O(log log n) tags assuming sub-exponentially secure
time-lock puzzles or sub-exponentially secure one-way functions that admit hard-
ness amplification [5]. We show that non-interactive non-malleable commitments
w.r.t. commitment for ε log log n tags (in fact, even parallel CCA commitments
for 2 tags) can be constructed based on much more well-studied assumptions
than previously known.

We also remark that one can substitute the assumption on sub-exponential
quantum hardness of LWE with sub-exponentially secure time-lock puzzles [29],
or sub-exponentially secure one-way functions [5] admitting hardness amplifica-
tion, to obtain (many-to-many) non-malleable commitments w.r.t. replacement
for ε log log n tags.

Non-interactive Non-malleability from Quantum Supremacy 557

We believe that this idea of using quantum supremacy may have other
applications in classical cryptography. In particular, the technique of complex-
ity leveraging, which breaks hardness of one primitive while retaining hard-
ness of another, is extensively used in cryptography. Typically, when this tech-
nique is used, the resulting scheme relies on super-polynomial (and often sub-
exponential) hardness. We believe that in several such applications, the com-
plexity leveraging technique can be replaced with quantum supremacy, thus
converting such super-polynomial hardness assumptions to quantum polynomial
hardness. For example, using our ideas, one can appropriately instantiate the
protocols in [21] to obtain two-message witness indistinguishable protocols based
on quantum-polynomial hardness of LWE, and polynomially hard one-way func-
tions (such as those based on factoring or discrete log) that are invertible in
BQP.

Non-interactive Tag Amplification from NIWIs. Our more involved tech-
nical contribution is a non-interactive tag amplification technique that relies only
on sub-exponentially secure non-interactive witness indistinguishable (NIWI)
proofs for NP.

Informal Theorem 3 (Tag Amplification from NIWIs). Assuming many-
to-many same-tag non-malleable commitments w.r.t. replacement for ε log log n
tags (for an arbitrarily small constant ε > 0) and sub-exponentially secure NIWIs
for NP, there exist non-interactive non-malleable commitments w.r.t. replace-
ment for 2n tags.

We note that sub-exponentially secure NIWIs can be constructed assuming the
sub-exponential hardness of the decisional linear problem [20], or from deran-
domization assumptions [3], or assuming indistinguishability obfuscation [6].
Interestingly, to prove this theorem, we crucially rely on the Gentry-Wichs leak-
age lemma [13]. We provide a high-level overview of this amplification technique,
as well as its proof, in Sect. 2.2. To summarize, assuming sub-exponential hard-
ness of factoring or discrete log, as well as sub-exponential quantum hardness of
LWE or LPN, there exist:

– Non-interactive non-malleable commitments w.r.t. commitment for ε log log n
tags.

– Non-interactive non-malleable commitments w.r.t. replacement for 2n tags,
additionally assuming sub-exponentially secure NIWIs for NP.

1.2 Applications and Directions for Future Work

As mentioned above, our final result (for 2n tags) satisfies non-malleability w.r.t.
replacement. In what follows, we give applications of this notion. Prior to our
work, these were only known under strong non-standard assumptions [5].

558 Y. T. Kalai and D. Khurana

Applications to Other Notions of Commitment

– Non-malleability w.r.t. Opening. As previously mentioned, non-
malleable commitments w.r.t. replacement imply non-malleable commit-
ments w.r.t. opening, as defined in [8,16]. Therefore, we obtain the first
non-interactive non-malleable commitments w.r.t. opening from well-studied
assumptions.

Informal Theorem 4. Assuming sub-exponential hardness of discrete log or
factoring, sub-exponential quantum hardness of LWE or LPN, and sub-
exponentially secure NIWIs, there exist non-interactive non-malleable commit-
ments w.r.t. opening (for 2n tags).

– CCA Secure Commitments. It was observed by [7] that the definitions
of (one-to-one) non-malleability w.r.t. commitment and (one-to-one) CCA-
security are equivalent in the non-interactive setting. We observe that in a
similar way, non-malleability w.r.t. replacement implies a weaker notion of
one-to-one CCA-security, where if the adversary queries the CCA oracle with
a commitment to an invalid value, the oracle self-destructs.

– Restricted Adversaries. When restricted to adversaries that only output
valid commitments, the notions of non-malleability w.r.t. replacement and
non-malleability w.r.t. commitment are equivalent. Therefore, non-malleable
commitments w.r.t. replacement can be combined with an appropriate ZK
proof of validity of the commitment (as is implicit in [9,19]) to obtain non-
malleable commitments w.r.t. commitment. For instance, (sub-exponential)
NIWI and (sub-exponential) keyless collision resistant hash functions against
uniform adversaries are known to imply one-message zero-knowledge with
soundness against uniform (sub-exponential time) adversaries [4,29], and
admitting a non-uniform simulator. Combining these with our non-malleable
commitments w.r.t. replacement, we have the following theorem.

Informal Theorem 5. Assuming sub-exponential hardness of discrete log or
factoring against non-uniform adversaries, sub-exponential quantum hardness
of LWE or LPN against non-uniform adversaries, sub-exponentially secure
keyless collision-resistant hash functions against uniform adversaries, and
sub-exponentially secure NIWIs against uniform adversaries, there exist non-
interactive non-malleable commitments w.r.t. commitment against uniform
adversaries.

In a similar way, our commitment with can be appended with one-message
ZK arguments of validity of the commitments, against any restricted class of
adversaries, to yield non-malleable commitments w.r.t. commitment, against the
same restricted classes of adversaries.

Non-interactive Non-malleability from Quantum Supremacy 559

Other Applications

– Upgrading NIZKs. Non-interactive non-malleable commitments can also
be used to upgrade NIZKs to satisfy a form of simulation soundness, without
modifying the CRS. Informally, to give a simulation sound NIZK for state-
ment x with witness w, the prover can generate a non-malleable commitment
to w with tag x, and provide a (standard) NIZK proof that the commitment
is a valid commitment to a witness for x. Note that non-malleability with
respect to replacement suffices for this application because the NIZK can be
used to provide a proof of validity of the commitment.

– Block-wise Non-Malleable Codes. Non-interactive non-malleable com-
mitments w.r.t. opening are known to be equivalent to block-wise non-
malleable codes [8] with two blocks. Block-wise non-malleable codes are a
strengthening of the notion of split-state non-malleable codes. Using our
result, we obtain the first block-wise non-malleable codes that only require
two blocks (or states), based on well-studied assumptions.

Informal Theorem 6. Assuming sub-exponential hardness of discrete log or
factoring, sub-exponential quantum hardness of LWE or LPN, and sub-
exponentially secure NIWIs, there exist 2-block blockwise non-malleable codes.

Directions for Future Work

– MPC. Non-malleable commitments w.r.t. replacement are known to be suffi-
cient for MPC [15]. We believe that our constructions of non-malleable com-
mitments w.r.t. replacement will help obtain constructions of two-message
concurrent secure computation against malicious adversaries (with super-
polynomial simulation) from well-studied assumptions. A detailed exploration
is beyond the scope of this work.

– Non-Malleable Cryptographic Primitives. The recent works of [12,25]
give constructions of non-malleable point obfuscation and non-malleable dig-
ital lockers from strong variants of the DDH assumption. We believe that our
commitments will find applications to achieving non-malleability in context
of witness encryption, obfuscation and many other inherently non-interactive
primitives, based on well-studied assumptions.

1.3 Prior Work

The work of [29] constructed non-interactive non-malleable commitments
w.r.t. commitment against a restricted class of uniform adversaries, assum-
ing sub-exponentially secure time-lock puzzles, sub-exponential NIWI and sub-
exponential collision-resistant hash functions against uniform adversaries. A very
recent independent work [1] constructs an object called non-interactive quasi-
non-malleable commitment (w.r.t. commitment), based on well-studied assump-
tions. This guarantees security against adversaries running in a-priori bounded
polynomial time O(nc), but allows honest parties to run in longer (polynomial)
time.

560 Y. T. Kalai and D. Khurana

In this paper, our focus is on the non-interactive setting in the plain model
against non-uniform adversaries with arbitrary polynomial running time. In
this setting, constructions of non-malleable commitments have remained elu-
sive, except based on non-standard assumptions. In particular, prior to our work,
there were only two known constructions, described below.

Pandey et al. [31] constructed non-interactive concurrent non-malleable com-
mitments w.r.t. commitment, starting from a non-falsifiable assumption, that
already incorporates a strong form of non-malleability called adaptive injec-
tive one-way functions. Very recently, Bitansky and Lin [5] constructed concur-
rent non-interactive non-malleable commitments w.r.t. commitment, based on
the (relatively new, non-standard) assumption that there exist sub-exponential
incompressible functions, sub-exponentially secure NIWI proofs, and either sub-
exponential injective one-way functions that admit hardness amplification or
sub-exponential time-lock puzzles.

Non-interactive Tag Amplification. Tag amplification has been extensively
studied in the non-malleability literature (e.g. [5,11,27,29,36]). Of these, only
the recent work of [5] considers tag amplification in the non-interactive set-
ting against general adversaries. They make a relatively non-standard assump-
tion about the existence of sub-exponential incompressible one-way functions, in
addition to assuming the existence of a sub-exponentially secure NIWI proofs.
Using this incompressibility assumption, they construct a variant of one-message
ZK proofs with weak soundness guarantees, and they use this variant of ZK to
emulate techniques used in prior work for tag amplification.

On the other hand, our tag amplification technique only assumes the exis-
tence of a sub-exponentially secure NIWI proof, and is therefore substantially dif-
ferent from prior techniques for tag amplification (all of which crucially required
ZK). However, while our tag amplification technique yields commitments that
are non-malleable w.r.t. replacement, the one in [5] yields commitments that are
(concurrent) non-malleable w.r.t. commitment.

2 Overview of Our Techniques

We now provide an informal overview of our techniques.

2.1 Non-malleable Commitments w.r.t. Commitment for ε log log n
Tags

As discussed earlier, we realize sub-exponential adaptive commitments for
two tags based on sub-exponential quantum hardness of LWE/LPN and sub-
exponential hardness of factoring/discrete log. We now describe how we use these
to obtain non-malleable commitments for a small number of tags (ε log log n tags
where ε > 0 is a small constant), which satisfy many-to-many same-tag non-
malleability w.r.t. commitment. We give a formal construction of non-malleable
commitments for ε log log n tags, and its proof in Sect. 4.

Non-interactive Non-malleability from Quantum Supremacy 561

Assume the existence of adaptive commitments com0, com1, and oracles
O0,O1 such that com0 is sub-exponentially hard to invert given oracle O1, but
com1 is invertible in the presence of O1. Similarly, com1 is sub-exponentially hard
to invert given oracle O0, but com0 is invertible in the presence of O0.

We show that from any such adaptive commitments, one can use complexity
leveraging to derive a sequence of (bit) commitments {comd,i}d∈{0,1},i∈[ζ], where
ζ = ε log log n for a small constant 0 < ε < 1, and where

comd,i : {0, 1} × {0, 1}�d,i(n) → {0, 1}∗

such that for each d ∈ {0, 1},

�d,1 = ω(log n) < �d,2 < . . . < �d,ζ−1 < �d,ζ � n

and for every i, j, k ∈ [ζ] for which k > i, inverting comd,k relative to the oracle
O1−d requires more time than jointly inverting comd,i and com1−d,j , relative to
the oracle O1−d. A variant of this technique was used by Pass and Wee [35].

Construction. In order to commit to a bit b with tag ∈ [ζ], the committer first
XOR secret shares the bit b to obtain two shares b1 and b2. The commitment to
b simply consists of

(

com0,tag(b1), com1,ζ−tag(b2)
)

.

Analysis. Suppose there exists a MIM (adversary) that on input a commitment
to a bit b w.r.t. tag tag, commits to a related bit b′ w.r.t. ˜tag �= tag. We have
the following possibilities:

– If tag > ˜tag, then breaking com0,tag relative to oracle O1 is harder than jointly
breaking com0,˜tag and com1,ζ−˜tag relative to O1.

– If tag < ˜tag, then breaking com1,ζ−tag relative to O0 is harder than jointly
breaking com0,˜tag and com1,ζ−˜tag relative to O0.

In the first case, we extract the bit b′ committed by the MIM by jointly breaking
com0,˜tag and com1,ζ−˜tag relative to O1, and if b′ is related to b, we get a contra-
diction to the hardness of breaking com0,tag relative to O1. We can use a similar
argument in the second case.

We also observe that we can allow the MIM to generate an arbitrary number
of commitments on the right with the same ˜tag, and rely on the same assump-
tions to argue that the joint distribution of bits committed by the MIM (in many
right commitments) remains independent of the honest bit. This gives us many-
to-many same tag non-malleable commitments w.r.t. commitment for ε log log n
tags. For simplicity, we only focused on bit commitments in this overview. How-
ever it is easy to extend this construction to obtain string commitments for
ε log log n tags, based on sub-exponential adaptive bit commitments for two tags.

2.2 Non-interactive Tag Amplification

Our starting point is the following basic idea. Start with a non-malleable com-
mitment scheme com for tags in [α] where α ≤ poly(n), and obtain a scheme

562 Y. T. Kalai and D. Khurana

Com for tags in
[

2α/2
]

, as follows: To commit to a message m w.r.t. a tag T ,
first compute {t1, t2, . . . tα/2}, such that each ti = (i||Ti) where Ti denotes the
ith bit of T 4. Let

ComT (m) � {comti
(m)}i∈[α/2].

Note that for any two tags T = {t1, t2, . . . , tα/2} and ˜T = {˜t1,˜t2, . . . ,˜tα/2}
such that ˜T �= T , there exists at least one index i such that ˜ti �∈
{t1, t2, . . . tα/2}. Therefore, if the underlying com is α/2-to-1 non-malleable, then
given ComT (m) = {comti

(m)}i∈[α/2], it should be hard to generate com
˜ti

(m′)
for a related message m′. Therefore, an adversary cannot generate a valid com-
mitment com

˜T (m̃) to a related message m̃, i.e., that the resulting scheme is
non-malleable w.r.t. replacement.

However, the security of this scheme completely breaks down even if
the adversary receives two commitments. Specifically, an adversary that
receives two commitments ComT (m) and ComT ′(m) with different tags T =
{t1, t2, . . . , tα/2} and T ′ = {t′1, t

′
2, . . . , t

′
α/2}, can easily output Com

˜T (m), where
˜T = {t1, . . . tα/4, t

′
α/4+1, . . . t

′
α2

}. In other words, the resulting scheme does not
satisfy many-to-1 non-malleability (or even 2-to-1 non-malleability), and is only
non-malleable in the 1-to-1 setting.

Thus, using this idea we can go from η log log n tags to 2
η
2 log log n = log

η
2 n

tags, but cannot continue further, since this compiler uses an underlying com-
mitment which is many-to-one non-malleable (or more specifically, α/2-to-1 non-
malleable).

The blueprint in Khurana and Sahai [24] describes how this problem can
be solved using a NIZK argument, which requires the existence of a common
random string (which we want to avoid). Namely, they show that if we append
to the commitment C = {comti

(m)}i∈[α/2] a NIZK proof that all these α/2
commitments comti

are to the same message m, then one can indeed prove that
this resulting scheme is many-to-one non-malleable5. Instead, in this work, we
rely on non-interactive proofs satisfying a weaker hiding property, i.e., witness
indistinguishability6. This introduces several problems that do not come up when
using NIZKs. In particular, techniques in [24] rely on the reduction’s ability to
generate “simulated” proofs, a notion that is not applicable when using NIWIs.
We discuss these barriers in further detail below.

Tag Amplification Using NIWIs: First Stab. While NIWI proofs have been
extremely useful in a wide variety of cryptographic settings, they often become
meaningless when trying to prove NP statements that have a single witness, such
4 Our actual encoding of T to {t1, t2, . . . tα/2} is slightly more sophisticated, but

achieves the same effect.
5 To be precise, they need to rely on the fact that the NIZK is “more secure” than

the underlying commitment scheme.
6 As with NIZKs used in [24], we also require our NIWI to be more secure than

the underlying commitment, which results in a sub-exponential assumption on the
NIWI.

Non-interactive Non-malleability from Quantum Supremacy 563

as the one described above. Typically, NIWI proofs are only useful for statements
that have at least two independent witnesses.

One can create a statement with two independent witnesses by repeating the
blueprint twice in parallel. Namely, commit to a message m by computing C1 =
{comti

(m; ri,1)}i∈[α/2], C2 = {comti
(m; ri,2)}i∈[α/2] where {ri,b}i∈[α/2],b∈{0,1}

$←
{0, 1}∗, and add a NIWI proving that all the commitments, in either C1 or C2,
are to the same message.

Indeed, one can easily prove that if the underlying scheme for α tags is (α/2)-
to-1 non-malleable, then the resulting scheme is one-to-one non-malleable w.r.t.
replacement (which was the case even before we started using NIWIs)7. Unfortu-
nately, it is not clear if the resulting scheme satisfies even 2-to-1 non-malleability
(w.r.t. replacement). Roughly speaking, the problem is as follows. For simplic-
ity, consider a MIM that obtains commitments which are both commitments to
m1 or both to m2, and tries to copy m1 (or m2). A natural approach to rule
out such a MIM would be to rely on an intermediate hybrid, in which the MIM
obtains a commitment to (m1,m2).8 Unfortunately, we have no way to use a
hybrid argument to rule out a MIM that does the following:

– In the first hybrid, on input commitments to (m1,m1), outputs a (valid)
commitment to m1.

– In the intermediate hybrid, on input commitments to (m1,m2), outputs an
invalid commitment where the first repetition in the MIM’s commitment con-
sists of all commitments to m1, and the second repetition consists of all com-
mitments to m2, and these commitments are accompanied with an accepting
NIWI proof.

– In the final hybrid, on input commitments to (m2,m2), outputs a (valid)
commitment to m2.

The problem is that neither of the two pairs of adjacent hybrids can be used
to get a contradiction to the one-to-one non-malleability, because neither are
violating the non-malleability criterium w.r.t. replacement9.

However, as we already noted above, many-to-one non-malleability is essen-
tial if we want to use the compiler again. In fact, it may seem like the NIWIs
were not useful at all, since we could get one-to-one non-malleability even for the
basic scheme described at the beginning of this overview, which did not require
any NIWI (or NIZK). While at first, this approach seems to be inherently prob-
lematic, we will now describe how we can nevertheless rely on NIWIs to obtain
our desired compiler, as follows.

7 On the other hand, if we used a NIZK, the resulting scheme would be many-to-1
non-malleable w.r.t. commitment.

8 This is the standard approach used in all previous work on this topic.
9 This problem can be avoided by relying on NIZKs which would prevent the MIM

from behaving as in the intermediate hybrid. However, we cannot rely on NIZKs
because they require a CRS.

564 Y. T. Kalai and D. Khurana

Overview of Our Compiler. Our idea is to have each commitment consist
of (� + 1) repetitions (as opposed to only 2), where � is the number of commit-
ments that the adversary can receive (on the left).

Namely, our new (outer) commitment scheme will consist of a matrix of
(inner) commitments corresponding to the underlying small tag commitment
scheme. This matrix contains (� + 1) rows, corresponding to each of the repe-
titions, and (α/2) columns, corresponding to the small tags of the underlying
scheme. The honest committer generates all (α/2) ·(�+1) inner commitments to
the same message (with independent randomness). Additionally, the committer
is required to provide a NIWI proof that � out of the (� + 1) rows satisfy the
following property: The message committed using the inner commitment scheme
across all α/2 tags is identical for this row (but this message is not required to
be identical across different rows).

Now, let us perform the same hybrid argument as above, where in the jth

hybrid, we change the jth left outer commitment from a commitment to m1 to a
commitment to m2. Then, for the outer commitment output by the MIM, which
is an (� + 1) × (α/2) matrix of inner commitments, the following must be true.

1. Recall that at least one small tag of the MIM differs from every small tag used
in the jth left outer commitment. Therefore, by the non-malleability of the
underlying commitment, the value committed by the MIM in all inner com-
mitments accross at least one column (corresponding to this differing small
tag) does not change.

2. Moreover, by the soundness of the NIWI provided by the MIM, at least � of
the rows satisfy the following property: the values committed across all α/2
tags is identical for this row.

Combining (1) and (2) implies that the values committed by the MIM across
at least � rows do not change. In other words, the MIM may change the values
committed in at most one row in every hybrid.

But since there are (� + 1) rows and only � hybrids, we deduce that there
exists at least one row for which the messages remained unchanged at the end
of all � hybrids10. Therefore, no adversary can commit to a valid message that
is related to the messages committed to in the left executions.

We show that this compiler works even if the underlying scheme is non-
malleable w.r.t. replacement (as opposed to being non-malleable w.r.t. commit-
ment). However, there is a loss in parameters when applying this compiler, i.e.,
the compiler converts any �-to-z non-malleable commitment w.r.t. replacement
into an �′-to-z′ non-malleable commitment w.r.t. replacement, where �′ and z′

are smaller than � and z. We do not discuss exact parameter constraints here,
but refer the reader to Theorem3 for details. We will give a more detailed expla-
nation in Sect. 2.2.

Technical Bottlenecks. The intuition above seems to imply that the adversary
cannot convert a commitment to m into a commitment to a related message m′.
10 To simplify our proof, we rely on 10� repetitions (instead of � + 1) repetitions, to

ensure that the messages in most repetitions remain unchanged.

Non-interactive Non-malleability from Quantum Supremacy 565

Proving this formally requires overcoming many technical difficulties. Specifi-
cally, the definition of non-malleability w.r.t. replacement11, requires that there
exist an (inefficient) extractor VReal that extracts the message committed by
the adversary from a transcript of a “real” experiment with honest messages
(m1, . . . m�), and an (inefficient) extractor VIdeal that extracts the message com-
mitted by the adversary from a transcript of an “ideal” experiment with honest
messages (0, 0, . . . , 0), such that the joint distribution of the view of the MIM in
the real experiment and the values output by VReal, is indistinguishable from the
joint distribution of the view of the MIM in the ideal experiment and the values
output by VIdeal. Furthermore, whenever the MIM generates a “valid” commit-
ment c̃ to a message m̃ in either the real or ideal experiment, VReal and VIdeal are
required to output m̃. Whenever the message committed by the MIM is invalid,
we impose no restrictions on the output of VReal and VIdeal. To formally prove
security, we will need to define these extractors VReal and VIdeal, and ensure that
their output distributions remain indistinguishable.

It is tempting to define VReal and VIdeal to output ˜M corresponding to the
MIM’s commitment string c̃, if there exists r̃ such that c̃ = com(˜M, r̃), and other-
wise output ⊥. However, as observed by the intuition above, these distributions
will not necessarily be indistinguishable.12 Namely, the adversary may generate
valid commitments when given commitments to m and commit to ⊥ when given
commitments to 0.

Intuitively, to make these distributions indistinguishable, we will introduce
some “slack”, and sometimes output a valid message even though the adversary
did not commit to a “perfectly valid” message. The question is the following:
Suppose that the adversary outputs a commitment that is “close to” being a valid
commitment to a message m̃. Should the extractors VReal or VIdeal output m̃ or
output ⊥? This is precisely where the leakage lemma of Gentry and Wichs [13]
plays a crucial role. More specifically, we define a function π that outputs the
decision bit of whether to output ⊥, or to output one of the extracted messages
(and also specifies which of the extracted messages should be output). This
function is inefficient.

Now informally, the leakage lemma states that for every two indistinguishable
distributions (X,Y) and every unbounded leakage function π, there exists a
relatively efficient simulator that outputs a leakage π′ such that (X,π(X)) is
indistinguishable from (Y, π′(Y)).

In our context, the decision of whether to output m̃ or output ⊥ in any
particular hybrid will be dictated by the leakage lemma. Specifically, we will
rely on the lemma where X and Y correspond to the view of the MIM in two
consecutive hybrids, and where π is the leakage function described above. The
leakage lemma will help us “carry over” this leakage across indistinguishable

11 We refer the reader to Definition 3 for a one-to-one definition, and Definition 2 for a
many-to-many definition.

12 We note that these distributions are indeed indistinguishable if the adversary always
generates valid commitments.

566 Y. T. Kalai and D. Khurana

hybrids in a relatively efficient manner. The proof of non-malleability of this
amplification step is the primary technical contribution of our paper.

There are many additional technical subtleties that were not discussed. For
instance, in order to argue that the compiler can be applied several times,
we work with a strong variant of non-malleability w.r.t. replacement (which
only strengthens our final result). We give a more detailed protocol description
towards the end of this section, and also refer the reader to Sect. 5 for details of
the construction.

Putting Things Together. We now describe how we use this compiler to obtain
our final result, i.e. non-malleable commitments for 2n tags. Our starting point
is our scheme for η log log n tags which is many-to-many same-tag non-malleable
w.r.t. commitment, and in particular is many-to-many same-tag non-malleable
w.r.t. replacement (we give an overview of this scheme in Sect. 2.1). We will
use the compiler above three times: First we convert the scheme for η log log n
tags into a scheme for logη/2(n) tags, then we convert the resulting scheme for
logη/2(n) tags into a scheme for 2log

ε n tags (for a small constant ε > 0). We
apply the compiler one final time to the scheme for 2log

ε n tags to get a scheme
for ω(nlog n) tags.

We note that it is not clear that we can run the compiler on itself many times,
since every time we run the compiler, there is a loss in parameters. However, we
set parameters carefully so that this nevertheless goes through.

To go from nlog n tags to 2n tags, we use the (standard) idea of relying on
sub-exponentially secure signatures. Specifically, to commit to a message m with
tag T ∈ [2n], we generate a random pair sk, vk of signing and verification keys
for the underlying scheme, where the verification key is of length log2 n bits.
We use vk as our “small” tag for the non-malleable commitment, and sign the
larger tag T ∈ [2n] with sk. The security of this construction follows by the
(sub-exponential) unforgeability of the underlying signature scheme. We refer
the reader to Sect. 6 for more details.

More Detailed Protocol Description. Finally, to help the reader navigate
our tag amplification protocol, we now give a slightly more detailed description
of our protocol, and the intuition for non-malleability. As mentioned above, to
commit to a message m with tag T = {t1, t2, . . . tα/2}, the committer commits
to the message k = 10� times in parallel with tags {t1, t2, . . . tα/2}, using fresh
randomness each time.

Our protocol is described informally in Fig. 1. Note that the resulting com-
mitment is not many-to-many, because as explained above, even for �-to-1 non-
malleability, the size of the resulting commitment grows linearly with �.

Roughly, we prove that if our underlying commitment scheme com is many-
to-z non-malleable w.r.t. replacement, and is secure against 2y-sized adversaries,
then the resulting scheme is �-to-y same-tag non-malleable w.r.t. replacement,
for any y and � such that � · y < z

10 . We require the NIWI to be WI against
poly(T)-time adversaries, where T is the time required to brute-force break com.

Non-interactive Non-malleability from Quantum Supremacy 567

Intuition for Non-malleability. For simplicity, let us consider a MIM that on
input � commitments, with corresponding tags T1, T2, . . . T�, outputs a single
commitment c̃ with tag ˜T (in our actual proof, the MIM is allowed to output
multiple commitments, albeit using the same tag).

We need to argue that the MIM on input � commitments to messages
m1, . . . ,m� cannot output a valid commitment to a related message m̃. As eluded
to earlier, this is done via hybrids. Let us suppose for contradiction that on input
commitments to m1, . . . ,m�, the adversary outputs a valid commitment to m̃.

Fig. 1. Round-preserving tag amplification

We consider a hybrid where the first honest commitment (on the left) is
generated as a commitment to 0 (but the rest are commitments to m2, . . . m�).
Letting T1 := {t1,1, t1,2, . . . t1,α/2}, one can argue that the distribution of the
message m̃ committed by the MIM in the column corresponding small tag ˜t1 �∈
{t1,1, t1,2, . . . t1,α/2} cannot change in all k rows. This follows from the many-to-z
non-malleability w.r.t. commitment of com for z ≥ k (and relying on the fact
that NIWI is hard against poly(T)-time adversaries).

Furthermore, by the soundness of the MIM’s NIWI, this implies that the MIM
continues to commit to m̃ in at least (k − 1) of the rows. This implies that the
MIM continues to commit to m̃ in least (k − 1) of the rows, for every tag. The
MIM continues to commit to m̃ in at least (k − 2) of the rows, for every tag.

Continuing this way, we observe that the MIM continues to commit to m̃ in
at least (k−�) of the rows, w.r.t. every tag, on input � commitments to messages
(0, 0, . . . , 0). Therefore on input (0, 0, . . . 0), the MIM either continues to commit
to m̃ or commits to an invalid value, and therefore, m̃ must be unrelated to m.
This is the key intuition for the security of our scheme.

568 Y. T. Kalai and D. Khurana

As explained above, the actual analysis of indistinguishability of the joint dis-
tribution of the protocol transcript and messages committed by the MIM is quite
involved, and requires multiple careful applications of the leakage lemma [13].
We refer the reader to Sect. 5 for details.

3 Definitions

Let n denote the security parameter. In all our definitions, the input message to
the commitment scheme will be sampled from {0, 1}p for a polynomially bounded
function p = p.

For any T = T (n), we use X ≈poly(T (n)) Y to denote two distributions such
that for every (T (n))O(1)-size distinguisher D,

Pr[D(x) = 1|x $← X] − Pr[D(x) = 1|x $← Y] = negl(n).

We denote by X ≈ Y, the event that X ≈poly(n) Y.

3.1 Non-malleable Commitments w.r.t. Replacement

In this section, we present the main definition of non-malleability that we achieve,
which is known as non-malleability w.r.t. replacement ([15]). This definition is
weaker than the original definition of non-malleability, which is known as non-
malleability with respect to commitment (and is formally defined in Sect. 3.2).

Non-malleability considers a man-in-the-middle that receives a commitment
to a message m ∈ {0, 1}p and generates a new commitment c̃. We say that
the man-in-the-middle commits to ⊥ if there does not exist any (m̃, r̃) such
that c̃ = com(m̃; r̃). Intuitively, the definition of non-malleability with respect
to commitment requires that for any two messages m0,m1 ∈ {0, 1}p, the joint
distributions of (Com(m0), m̃0) and (Com(m1), m̃1) are indistinguishable, where
m̃b is the message committed to by the MIM given Com(mb). The definition of
non-malleability w.r.t. replacement (that we achieve) intuitively requires this to
hold only conditioned on m̃0, m̃1 �= ⊥.

We emphasize that we consider the case where the MIM gets a single com-
mitted message and generates a single commitment. This is known as the “one-
to-one” definition. A stronger definition is the “many-to-many” definition (also
known as concurrent non-malleability), where the MIM receives many commit-
ments and is allowed to generate many commitments, and the guarantee is that
for any two sets of messages committed to and sent to the MIM, the joint distri-
bution of these commitments and the messages committed to by the MIM, are
indistinguishable.

Definition 1 (Non-malleable Commitments w.r.t. Replacement). A
non-interactive non-malleable (one-to-one) string commitment scheme with N
tags consists of a probabilistic poly-time algorithm C, that takes as input a mes-
sage m ∈ {0, 1}p, randomness r ∈ {0, 1}poly(n), and a tag ∈ [N], and outputs a
commitment comtag(m; r). It is said to be non-malleable w.r.t. replacement if the
following two properties hold:

Non-interactive Non-malleability from Quantum Supremacy 569

1. Statistical binding. There do not exist m0,m1 ∈ {0, 1}p, r0, r1 ∈
{0, 1}poly(n) and tag0, tag1 ∈ [N] such that m0 �= m1 and comtag0(m0; r0) =
comtag1(m1; r1).

2. One-to-One Non-malleability. For any poly-size adversary A, any m ∈
{0, 1}p and any tag ∈ [N], there exist (possibly inefficient) functions VReal

and VIdeal such that the following holds:

(a) Sample r
$← {0, 1}poly(n) and set c = comtag(m; r). Let (c̃, z) = A(c). If

there exists ˜tag ∈ [N] \ {tag}, ˜M ∈ {0, 1}p(n) and r̃ ∈ {0, 1}poly(n) such
that c̃ = com

˜tag(˜M ; r̃) then m̃ = ˜M , otherwise no restrictions are placed
on m̃. We require that

Pr[VReal(c, c̃) = m̃] = 1 − negl(n).

(b) Sample rIdeal
$← {0, 1}poly(n) and set cIdeal = comtag(0p; rIdeal). Let

(c̃Ideal, zIdeal) = A(cIdeal). If there exists ˜tag ∈ [N]\{tag}, ˜MIdeal ∈ {0, 1}p(n)

and r̃Ideal ∈ {0, 1}poly(n) such that c̃Ideal = com
˜tag(˜MIdeal; r̃Ideal) then

m̃Ideal = ˜MIdeal, otherwise no restrictions are placed on m̃Ideal. We require
that

Pr[VIdeal(cIdeal, c̃Ideal) = m̃Ideal] = 1 − negl(n).

(c) We require:
(

c, c̃, z,VReal(c, c̃)
)

≈c

(

cIdeal, c̃Ideal, zIdeal,VIdeal(cIdeal, c̃Ideal)
)

.

over the randomness of sampling r, rIdeal
13.

We next present an (intermediate) security definition that we use as a step-
ping stone to achieve our main result. This is a many-to-many version of Defini-
tion 1, that restricts the adversary to use the same tag in all commitments that
he outputs.

Definition 2 (�-to-y Same-tag Non-malleable Commitments w.r.t.
Replacement). A non-interactive non-malleable commitment scheme with N
tags consists of a probabilistic poly-time algorithm C, that takes as input a mes-
sage m ∈ {0, 1}p, randomness r ∈ {0, 1}poly(n), and a tag ∈ [N], and outputs a
commitment comtag(m; r). It is said to be �-to-y same-tag non-malleable w.r.t.
replacement for polynomials �(·) and y(·), if the following two properties hold:

1. Statistical binding. There do not exist m0,m1 ∈ {0, 1}p, r0, r1 ∈
{0, 1}poly(n) and tag0, tag1 ∈ [N] such that m0 �= m1 and comtag0(m0; r0) =
comtag1(m1; r1).

2. �-to-y Non-malleability. For any poly-size adversary A, any m1, . . . ,m� ∈
{0, 1}p, and any tag1, . . . , tag� ∈ [N], there exist (possibly inefficient) func-
tions VReal and VIdeal such that the following holds:

13 Note that this definition explicitly considers auxiliary information z, but is equivalent
to one that does not consider z. We explicitly consider z for convenience.

570 Y. T. Kalai and D. Khurana

(a) Sample r1, . . . , r�
$← {0, 1}poly(n), set ci = comtagi

(mi; ri) for every i ∈ [�],
and let (c̃1, . . . , c̃y, z) = A(c1, . . . , c�).

If there exists ˜tag ∈ [N] \ {tagi}i∈[�] such that c̃1, . . . c̃y all use ˜tag, then
continue. Otherwise set (m̃1, . . . m̃n) = abort.

For each i ∈ [y], if there exists ˜Mi ∈ {0, 1}p and r̃i ∈ {0, 1}poly(n) for
which c̃i = com

˜tag(˜Mi; r̃i), set m̃i = ˜Mi, and otherwise no restrictions
are placed on m̃i. We require that

Pr[VReal(c1, . . . , c�, c̃1, . . . c̃y) = (m̃1, . . . , m̃y)] = 1 − negl(n)

(b) Sample rIdeal,1, . . . , rIdeal,�
$← {0, 1}poly(n), set cIdeal,i = comtagi

(0p; rIdeal,i)
for every i ∈ [�], and let (c̃Ideal,1, . . . , c̃Ideal,y, zIdeal) = A(cIdeal,1, . . . , cIdeal,�).

If there exists ˜tag ∈ [N]\{tagi}i∈[�] such that c̃Ideal,1, . . . c̃Ideal,y all use ˜tag,
then continue. Otherwise set (m̃Ideal,1, . . . m̃Ideal,n) = abort.

For each i ∈ [y], if there exists ˜MIdeal,i ∈ {0, 1}p and r̃Ideal,i ∈ {0, 1}poly(n)
for which c̃Ideal,i = com

˜tag(˜MIdeal,i; r̃Ideal,i), set m̃Ideal,i = ˜MIdeal,i, and oth-
erwise no restrictions are placed on m̃Ideal,i. We require that

Pr[VIdeal(cIdeal,1, . . . , cIdeal,�, c̃Ideal,1, . . . , c̃Ideal,y) = (m̃Ideal,1, . . . , m̃Ideal,y)]
= 1 − negl(n)

(c) We require:
(

(c1, . . . c�), (c̃1, . . . c̃y), z,VReal(c1, . . . , c�.c̃1, . . . c̃y)
)

≈c

(

(cIdeal,1, . . . cIdeal,�), (c̃Ideal,1, . . . c̃Ideal,y), zIdeal,

VIdeal(cIdeal,1, . . . , cIdeal,�, c̃Ideal,1, . . . c̃Ideal,y)
)

over the randomness of sampling r1, . . . , r� and rIdeal,1, . . . , rIdeal,�.

In what follows, we define a slight strengthening of �-to-y same-tag non-
malleability w.r.t. replacement. Namely, in the definition below we allow the
MIM to obtain as input some restricted auxiliary information on the honest mes-
sages and randomness.

Definition 3 (�-to-y Same-tag Auxiliary-Input Non-malleable Com-
mitments w.r.t. Replacement). A non-interactive non-malleable commit-
ment scheme with N tags consists of a probabilistic poly-time algorithm C,
that takes as input a message m ∈ {0, 1}p, randomness r ∈ {0, 1}poly(n), and
a tag ∈ [N], and outputs a commitment comtag(m; r). It is said to be �-to-y
same-tag auxiliary-input non-malleable w.r.t. replacement for polynomials �(·)
and y(·), if the following two properties hold:

Non-interactive Non-malleability from Quantum Supremacy 571

1. Statistical binding. There do not exist m0,m1 ∈ {0, 1}p, r0, r1 ∈
{0, 1}poly(n) and tag0, tag1 ∈ [N] such that m0 �= m1 and comtag0(m0; r0) =
comtag1(m1; r1).

2. �-to-y Non-malleability. There exists a function tV : N → N such that the
following holds.

Fix any messages m1, . . . m� ∈ {0, 1}p, any tag1, . . . tag�, and any efficient
auxiliary input functions aux1, aux2, . . . , aux�, where for every i ∈ [�], auxi

takes as input the commitments (c1, . . . c�) together with the messages and
randomness used to compute (c1, . . . ci−1, ci+1, . . . , c�). Set TV (n) = 2tV (n).

For every β ∈ [�] define � commitments cβ,1, . . . , cβ,�, where cβ,i =
comtagi

(0p; ri) for every i ∈ [β], and cβ,i = comtagi
(mi; ri) for every i ∈

[β + 1, �], where r1, . . . , r�
$← {0, 1}poly(n).

Suppose that for every β ∈ [0, � − 1],
(

cβ,1, . . . , cβ,�, auxβ(cβ,1, . . . , cβ,�, (0p)×(β−1),mβ+1, . . . ,m�, (1)

r1, . . . , rβ−1, rβ+1, . . . , r�)
)

≈TV (n)

(cβ,1, . . . , cβ,�, auxβ+1(cβ,1, . . . , cβ,�, (0p)×(β),mβ+2, . . . ,m�,

r1, . . . , rβ , rβ+2, . . . , r�))

where aux0 � aux�.

Fix any polynomial-size adversary A, and for every β ∈ [0, �] let

(c̃β,1, . . . , c̃β,y, zβ) =

A(cβ,1, . . . , cβ,�, auxβ(cβ,1, . . . cβ,�, (0p)×(β−1),mβ+1, . . . ,m�,

r1, . . . , rβ−1, rβ+1, . . . , r�)).

We require that there exist (possibly inefficient) functions VReal and VIdeal,
each computable in time TV (n), such that:
(a) If there exists ˜tag ∈ [N] \ {tagi}i∈[�] such that c̃0,1, . . . c̃0,y all use tag ˜tag,

then continue. Otherwise set (m̃1, . . . m̃n) = abort.

For each i ∈ [y], if there exists ˜Mi ∈ {0, 1}p and r̃i ∈ {0, 1}poly(n) for
which c̃0,i = com

˜tag(˜Mi; r̃i), set m̃i = ˜Mi, and otherwise no restrictions
are placed on m̃i. We require that

Pr[VReal(c0,1, . . . , c0,�, a0, c̃0,1, . . . c̃0,y) = (m̃1, . . . , m̃y)] = 1 − negl(n)

where a0 = aux0(c0,1, . . . , c0,�,m1, . . . ,m�−1, r1, . . . r�−1).
(b) If there exists ˜tag ∈ [N] \ {tagi}i∈[�] such that c̃�,1, . . . c̃�,y all use tag ˜tag,

then continue. Otherwise set (m̃1, . . . m̃n) = abort.

572 Y. T. Kalai and D. Khurana

For each i ∈ [y], if there exists ˜Mi ∈ {0, 1}p and r̃i ∈ {0, 1}poly(n) for
which c̃�,i = com

˜tag(˜Mi; r̃i), set m̃i = ˜Mi, and otherwise no restrictions
are placed on m̃i. We require that

Pr[VIdeal(c�,1, . . . , c�,�, a�, c̃�,1, . . . , c̃�,y) = (m̃1, . . . , m̃y)] = 1 − negl(n)

where a� = aux�(c�,1, . . . , c�,�, (0p)×(�−1), r1, . . . r�−1).
(c) We require:

(

(c0,1, . . . c0,�), a0, (c̃0,1, . . . c̃0,y), z0,VReal(c0,1, . . . , c0,�, a0, c̃0,1, . . . c̃0,y)
)

≈c

(

(c�,1, . . . c�,�), a�, (c̃�,1, . . . c̃�,y), z�,VIdeal(c�,1, . . . , c�,�, a�, c̃�,1, . . . c̃�,y)
)

over the randomness of sampling c0,1, . . . , c0,� and c�,1, . . . , c�,�.

Remark 1. One can strengthen these definitions, to require non-malleability to
hold for any two sets of messages (m1

1, . . . m
1
�) and (m2

1, . . . ,m
2
�), such that VReal

(as before) considers an experiment where the honest committer generates com-
mitments to (m1

1, . . . m
1
�), whereas VIdeal considers an experiment where the hon-

est committer generates commitments to (m2
1, . . . ,m

2
�) (instead of generating

commitments to 0s). The proofs of Theorems 2 and 3 show that our construc-
tions also satisfy this stronger definition.

3.2 Non-malleable Commitments w.r.t. Commitment

We also consider the stronger definition of non-malleability with respect to com-
mitment [33]. This definition is standard in the literature; it is sometimes con-
sidered in the many-to-many setting (known as concurrent non-malleability),
where the adversary (man-in-the-middle) receives many commitments “on the
left” and generates many commitments “on the right”. It is also sometimes con-
sidered in the one-to-one setting, where the man-in-the-middle receives a single
commitment “on the left” and generates a single commitment “on the right”. In
this paper, we use a variant where we require the MIM to use the same tag in all
“right” commitments, and we refer to this as the many-to-k same-tag variant.
This definition is used as a stepping stone to achieve our main result, and is
omitted from this version due to space constraints.

4 Non-malleable Commitments for Small Tags

In this section, we construct a many-to-many same-tag non-malleable commit-
ment scheme w.r.t. commitment for ζ = η · log log n tags, for a small enough
constant η > 0, based on the following assumption.

Assumption 1. There exist non-interactive bit commitments com0 : {0, 1} ×
{0, 1}n → {0, 1}L(n) and com1 : {0, 1} × {0, 1}n → {0, 1}L(n) with the following
properties.

Non-interactive Non-malleability from Quantum Supremacy 573

1. There exists an oracle relative to which com0 is sub-exponentially
hiding, but com1 is extractable. There exists an (inefficient, possibly ran-
domized) oracle O1 and a poly-size algorithm A1 such that for every n ∈ N

and every (m, r) ∈ {0, 1} × {0, 1}n,

Pr[A1
O1(com1(m; r)) = (m, r)] = 1 − negl(n).

where the probability is over the randomness of O1. Moreover, on input any
string c for which � ∃(m, r) such that c = com1(m; r), we require that AO1

1

output ⊥.

Yet, there exists a constant δ > 0 such that for every n ∈ N, every poly
(

2nδ
)

-
size adversary A, and every pair of messages m1 and m2 in {0, 1},

∣

∣

∣Pr[AO1(com0(m1; r)) = 1] − Pr[AO1(com0(m2; r)) = 1]
∣

∣

∣ = negl(n),

where the probability is over r
$← {0, 1}n and over the randomness of O1.

2. There exists an oracle relative to which com1 is sub-exponentially
hard to invert but com0 is invertible. There exists an (inefficient, possibly
randomized) oracle O0 and a poly-size algorithm A0 such that for every n ∈ N

and every (m, r) ∈ {0, 1} × {0, 1}n,

Pr[AO0
0 (com0(m; r)) = (m, r)] = 1 − negl(n)

where the probability is over the randomness of O0. Moreover, on input any
string c for which � ∃(m, r) such that c = com0(m; r), we require that AO0

0

output ⊥.
Yet, there exists a constant δ > 0 such that for every n ∈ N, every poly

(

2nδ
)

-
size adversary A, and every pair of messages m1 and m2 in {0, 1},

∣

∣

∣Pr[AO0(com1(m1; r)) = 1] − Pr[AO0(com1(m2; r)) = 1]
∣

∣

∣ = negl(n),

where the probability is over r
$← {0, 1}n and over the randomness of O0.

In the full version, we formally show that it suffices to instantiate com0

as any commitment whose hiding is based on the sub-exponential hardness of
factoring/discrete log or any other problem that is invertible given a BQP oracle,
and it suffices to instantiate com1 as any commitment whose hiding holds against
sub-exponential quantum adversaries.

We note that Assumption 1 can be used to derive a sequence of commitments,
described below [35].

There exist inefficient (possibly randomized) oracles O0,O1, a small constant
η > 0, and a sequence {comb,i}b∈{0,1},i∈[ζ] of commitment functions, where ζ =
η · log log(n) and

comb,i : {0, 1} × {0, 1}�b,i(n) → {0, 1}L(�b,i(n))

574 Y. T. Kalai and D. Khurana

such that for each b ∈ {0, 1},

�b,1 = ω(log nlog log n) < �b,2 < . . . < �b,ζ−1 < �b,ζ � n

and for every i, j, k ∈ [ζ] such that k > i, inverting comb,k relative to the oracle
O1−b requires more time than jointly inverting comb,i and com1−b,j relative to
the oracle O1−b.

Formally, for every b ∈ {0, 1} and every i ∈ [ζ −1] there exists a Tb,i ·poly(n)-
size algorithm Ab,i such that for every j ∈ [ζ], every messages m1,m2 ∈ {0, 1},
every r ∈ {0, 1}�b,i and r′ ∈ {0, 1}�1−b,j ,

Pr
[

(

AO1−b

b,i (comb,i(m1; r)) = (m1, r)
)

∧
(

AO1−b

b,i (com1−b,j(m2; r′)) = (m2, r
′)

)

]

= 1 − negl(n),

where the probability is over the randomness of O1−b. Moreover, on input any
element outside the range of comb,i or com1−b,j , AO1−b

b,i outputs ⊥.
Yet, for every poly(Tb,i)-size adversary A and every k > i,
∣

∣

∣Pr[AO1−b(comb,k(m1; r)) = 1] − Pr[AO1−b(comb,k(m2; r)) = 1]
∣

∣

∣ = negl(n),

where the probability is over r ← {0, 1}�b,k(n) and over the randomness of O1−b.
An overview of the construction of this sequence of commitments, following the
technique of [35], can be found in the full version of the paper.

Our Construction of Non-malleable Commitments for ζ(n) Tags. To commit to
a message m = (m1, . . . ,mp) ∈ {0, 1} with respect to tag, using randomness
(ri, si, ai)i∈[p], where for every i ∈ [p], ri, si

$← {0, 1}�0,tag × {0, 1}�1,ζ−tag and ai
$←

{0, 1}, our commitment algorithm is defined by:

Comtag

(

m; (ri, si, ai)i∈[p]

)

=
(

tag,
(

com0,tag(ai; ri)
)

i∈[p]
,
(

com1,ζ−tag(mi ⊕ ai; si)
)

i∈[p]

)

.

Theorem 2. If Assumption 1 holds, then there exists a constant η > 0 such that
Comtag is a non-interactive many-to-many same-tag non-malleable commitment
scheme w.r.t. commitment for ζ = η · log log(n) tags, against all 2poly(log n)-size
adversaries.

Proof. The fact that Com is statistically binding follows from the fact that comb,i

are all statistically binding, which in turn follows from the fact that com0 and
com1 are statistically binding. We next argue that Com is many-to-many same-
tag non-malleable w.r.t. commitment against all 2poly(log n)-size adversaries. To
this end, it suffices to prove that it is 1-to-many same-tag non-malleable w.r.t.
commitment against all 2poly(log n)-size adversaries. This follows by a hybrid argu-
ment of [30], which proves that any commitment scheme that satisfies the one-
to-many definition also satisfies the many-to-many definition.

Non-interactive Non-malleability from Quantum Supremacy 575

To prove non-malleability, fix a 2poly(log n)-size adversary A, and fix any
k ≤ poly(n). Given a message m = (m1, . . . ,mp) ∈ {0, 1}p,14 we consider the
following distribution:

Choose at random b
$← {0, 1} and R

$← {0, 1}poly(n). If b = 0 then let c =
Comtag(0p;R). If b = 1 then let c = Comtag(m;R). Let

(˜tag, c̃1, . . . , c̃k) = A(c).

Consider the joint distribution

(c, c̃1, . . . c̃k, m̃1, . . . m̃k),

where for every i ∈ [k], if there exists ˜Mi ∈ {0, 1}p and randomness Ri ∈
{0, 1}poly(n) such that c̃i = com

˜tag(˜Mi, Ri), then m̃i = ˜Mi; else m̃i = ⊥.
To prove that this construction is secure, it suffices to prove that for every

2poly(log n)-size adversary D and every message m,

Pr[D(c, c̃1, . . . , c̃k, m̃1, . . . , m̃k) = b] =
1
2

+ negl(n).

To prove this, it suffices to show that for every 2poly(log n)-size adversary D and
every message m, if Pr[˜tag > tag] ≥ 1

poly(n) for some polynomial poly(·), then

Pr[D(c, c̃1, . . . , c̃k, m̃1, . . . , m̃k) = b| ˜tag > tag] =
1
2

+ negl(n),

and if Pr[˜tag < tag] ≥ 1
poly(n) for some polynomial poly(·), then

Pr[D(c, c̃1, . . . , c̃k, m̃1, . . . , m̃k) = b| ˜tag < tag] =
1
2

+ negl(n).

Suppose that Pr[˜tag > tag] = p̂ = 1
poly(n) . Note that ˜tag > tag implies, ζ − ˜tag <

ζ − tag. Suppose for the sake of contradiction that there exists a 2poly(log n)-size
distinguisher D and a non-negligible function Δ such that

Pr[D(c, c̃1, . . . , c̃k, m̃1, . . . , m̃k) = b| ˜tag > tag] ≥ 1
2

+ Δ. (2)

Consider the following hybrid distributions H0, . . . , Hp, where Hα is defined
by choosing m′ = (m1, . . . ,mα, 0, . . . 0) ∈ {0, 1}p and setting c = Comtag(m′; r)
for a randomly chosen r

$← {0, 1}poly(n).
By a standard hybrid argument, we conclude that there exists α ∈

{0, 1 . . . , p} and a 2poly(log n)-size distinguisher D′ such that

Pr[D′(c, c̃1, . . . c̃k, m̃1, . . . m̃k| ˜tag > tag,Hα) = 0]−

Pr[D′(c, c̃1, . . . c̃k, m̃1, . . . m̃k| ˜tag > tag,Hα+1) = 0] ≥ Δ

p + 1
. (3)

14 We overload notation, here mi denotes the ith bit of m, and below each m̃i consists
of p bits.

576 Y. T. Kalai and D. Khurana

Note that this implies that m̃α+1 = 1, since otherwise Hα and Hα+1 are identical.
We use D to construct a poly(T1,ξ−˜tag)-size adversary BO0 that breaks the

hiding property of com1,ζ−tag. Recall that

Comtag

(

m; (ri, si, ai)i∈[p]

)

=
(

tag,
(

com0,tag(ai; ri)
)

i∈[p]
,
(

com1,ζ−tag(mi ⊕ ai; si)
)

i∈[p]

)

.

Fix any tag ∈ [ζ]. The algorithm BO0 , given input a string C in the range of
com1,ζ−tag, and oracle access to D does the following:

1. For each j ∈ [p] sample rj
$← {0, 1}�0,tag and compute yj = com0,tag(aj ; rj).

2. For each j ∈ [α] ∪ [α + 2, p], sample sj
$← {0, 1}�1,ζ−tag and compute wj =

com1,ζ−tag(mj ⊕ aj ; sj).
3. Let wα+1 = C, c = (tag, {yj}j∈[p], {wj}j∈[p]). Set (˜tag, c̃1, . . . , c̃k) = A(c).
4. If ˜tag < tag, then output a randomly chosen b

$← {0, 1}.
5. For each κ ∈ [k], do the following:

– Parse c̃κ = (˜tag, {ỹκ
j }j∈[p], {w̃κ

j }j∈[p]).
– For each j ∈ [p], compute (ãκ

j , r̃κ
j) = AO0

1,ζ−˜tag
(ỹκ

j) and (˜a′κ
j , s̃κ

j) =

AO0

1,ζ−˜tag
(w̃κ

j).
– If there exists j ∈ [p] such that aκ

j = ⊥ or a′κ
j = ⊥, then set mκ = ⊥.

– Else, set mκ = (mκ
1 ,mκ

2 , . . . mκ
p), where mκ

j = aκ
j ⊕ a′κ

j .
Recall that for every ˜tag ∈ [ζ], AO0

1,ζ−˜tag
is a T1,ζ−˜tag ·poly(n)-size oracle-aided

algorithm that:
– Inverts com0,˜tag on any element in the image of com0,˜tag with overwhelm-

ing probability (over the randomness of O0), and outputs ⊥ on input any
element outside the image of com0,˜tag.

– Inverts com1,ζ−˜tag on any element in the image of com1,ζ−˜tag with over-
whelming probability (over the randomness of O0), and outputs ⊥ on
input any element outside the image of com1,ζ−˜tag.

Therefore, (m̃1, . . . m̃k) are extracted correctly w.h.p.
6. Compute e = D′(c, c̃1, . . . , c̃k, m̃1, . . . , m̃k).
7. If e = 0, output b′ = aα+1. If e = 1, output uniformly random b′.

By Eq. (3), together with the fact that m̃1, . . . , m̃k were computed correctly
with overwhelming probability,

Pr[e = 0|(˜tag > tag) ∧ (aα+1 ⊕ b = 0)]−

Pr[e = 0|(˜tag > tag) ∧ (aα+1 ⊕ b = 1)] ≥ Δ

p + 1
.

Non-interactive Non-malleability from Quantum Supremacy 577

Since aα+1
$← {0, 1} (independently of b), this implies that

Pr[(b′ = b) ∧ (e = 0)| ˜tag > tag] =
1
2
Pr[(e = 0)| ˜tag > tag] +

Δ

4(p + 1)

Also note that we sample b′ uniformly at random if e = 1. Therefore,

Pr[(b′ = b) ∧ (e = 1)| ˜tag > tag]−
Pr[(b′ �= b) ∧ (e = 1)| ˜tag > tag] = 0

which implies

Pr[(b′ = b) ∧ (e = 1)| ˜tag > tag] =
1
2
Pr[(e = 1)| ˜tag > tag]

This implies that

Pr[BO0(com1,ζ−˜tag(b)) = b| ˜tag > tag] ≥ 1
2

+
Δ

4(p + 1)
− negl(n),

contradicting Assumption 1. The case where Pr[˜tag < tag] = 1
poly(n) , is identical

to the previous case, with the roles of com0 and com1 reversed, thus we omit the
proof. This completes the proof of non-malleability.

5 Non-malleability Amplification

In this section, we present a non-interactive amplification technique to bootstrap
non-malleable commitments for small tags into non-malleable commitments for
large tags. We present a compiler that converts any 5�t-to-z same-tag auxiliary-
input non-malleable commitment scheme w.r.t. replacement (Definition 3) for
tags in [t] into an �-to-y same-tag auxiliary-input non-malleable commitment

scheme w.r.t. replacement (Definition 3) for tags in

[(

t
t/2

)]

, for any y and any

� such that �y ≤ z
10 . We describe our compiler in Fig. 2. We emphasize that the

size of the resulting commitment scheme grows linearly with �.
We denote the commitment scheme for tags in [t] by Com. We require the

scheme Com to be secure against T -size adversaries, for T = poly
(

n · 2y
)

.
Let TV : N → N denote the time bound associated with Com (i.e., the time

required to compute VReal and VIdeal). Our compiler assumes the existence of a
NIWI (non-interactive witness indistinguishable) proof system, where witness
indistinguishability holds against poly(TV , T)-size adversaries. From now, we
assume for simplicity (and without loss of generality) that TV ≥ T .

578 Y. T. Kalai and D. Khurana

Fig. 2. Round-preserving tag amplification

Theorem 3. For any polynomials y, z, � and t, where �y ≤ z
10 , assuming

Com is 5�t-to-z same-tag auxiliary-input non-malleable w.r.t. replacement (Def-
inition 3) for tags in [t] against poly

(

n · 2y
)

-size adversaries, and assum-
ing sub-exponentially secure NIWI, the scheme in Fig. 2 is �-to-y same-
tag auxiliary-input non-malleable w.r.t. replacement (Definition 3) for tags in
[(

t
t/2

)]

against polynomial size adversaries.

An overview of the intuition for this construction was provided in Sect. 2.2.
In the formal proof (please refer to the full version of the paper [22]), for every
β ∈ [�], we define τβ as the transcript generated by the MIM when the first
β left commitments are to 0, and the remaining are to mβ+1, . . . m�. We then
build a sequence of extractors Vβ,real and Vβ,ideal for β ∈ [�], where Vreal roughly
corresponds to V1,real and Videal to V�,ideal. These are such that the joint distri-
bution (τβ ,Vβ,ideal(τβ)) ≈c (τβ−1,Vβ,real(τβ−1)). Roughly, we also define a 2y-bit
inefficient leakage function πβ and an efficient function f such that for every τ ,

Non-interactive Non-malleability from Quantum Supremacy 579

Vβ,real(τ) = f(Vβ−1,ideal(τ), πβ − 1(τ)). Combining these equations implies that
for every β ∈ [2, �]:

(τβ ,Vβ,ideal(τβ)) ≈c τβ−1, f(Vβ−1,ideal(τβ−1), πβ − 1(τβ−1))

We then use the leakage lemma to simulate leakage π̂β−1 such that

(τβ ,Vβ,ideal(τβ)) ≈c τβ−1, f(Vβ−1,ideal(τβ−1), πβ−1(τβ−1))

≈c τβ−2, f(Vβ−2,ideal(τβ−2), πβ−2(τβ−2)), π̂β−1(τβ−2) ≈c τβ−3 . . .

Continuing this way, we obtain efficiently simulatable leakage η and an efficiently
computable function F such that τ�,V�,ideal(τ�) ≈c τ0, F (V1,real(τ0), η(τ0)). This
allows us to set Vreal as F (V1,real(τ0), η(τ0)) while preserving indistinguishability.
We refer the reader to the full version for a detailed proof.

6 Putting Things Together: Non-malleable Commitments
for All Tags

In this section, we describe how one can combine results from Sects. 4 and 5 to
obtain our main result.

Theorem 4. There exists a non-interactive non-malleable commitment w.r.t.
replacement satisfying Definition 1, assuming the following:

– Sub-exponential hardness of factoring or discrete log.
– Sub-exponential quantum hardness of LWE.
– Sub-exponential non-interactive witness indistinguishable (NIWI) proofs.

Proof. To obtain this theorem, we apply the following sequence of steps:

– Let C[η log log n] denote a many-to-many same-tag non-malleable commitment
w.r.t. commitment for η log log n tags where 0 < η < 1, secure against
2poly log n-size adversaries. Such a scheme is constructed in Theorem 2, assum-
ing sub-exponential hardness of factoring or discrete log, and sub-exponential
quantum hardness of LWE.

– Apply the compiler in Sect. 5 to C[η log log n].
Specifically, setting y = log3 n, � = log3 n, z = log7 n, t = η log log n in Theo-
rem 3, we note that z ≥ 10�y and C[η log log n] is 5�t-to-z same-tag auxiliary-
input non-malleable w.r.t. replacement against poly(n · 2y)-size adversaries.
Therefore, Theorem 3 gives a (log3 n)-to-(log3 n) same-tag auxiliary-input
non-malleable commitment w.r.t. replacement satisfying Definition 3, for
logε n tags, (for a small constant ε > 0), against polynomial-size adversaries.
Denote this resulting scheme by C[logε n].

580 Y. T. Kalai and D. Khurana

– Apply the compiler in Sect. 5 once again, this time to C[logε n].
Specifically, setting y = 10, � = 10 log2 n, z = 1000 log2 n, t = logε n in Theo-
rem 3, we note that z = 10�y and that C[logε n] is 5�t-to-z same-tag auxiliary-
input non-malleable w.r.t. replacement against poly(n · 2y)-size adversaries.
Therefore, Theorem 3 gives a 10 log2 n-to-10 same-tag auxiliary-input non-
malleable commitment w.r.t. replacement satisfying Definition 3, for 2 log2 n
tags, against polynomial-size adversaries. Denote this resulting scheme by
C[2 log2 n].

– Apply the compiler in Sect. 5 one final time, this time to To C[2 log2 n].
Specifically, setting � = y = 1, z = 10, t = 2 log2 n in Theorem 3, we note that
z = 10�y and that C[log2 n] is 5�t-to-z same-tag auxiliary-input non-malleable
w.r.t. replacement against poly(n · 2y)-size adversaries.
Therefore, Theorem 3 gives a 1-to-1 auxiliary-input non-malleable com-
mitment w.r.t. replacement satisfying Definition 3, for nlog n tags, against
polynomial-size adversaries. Denote this resulting scheme by C[nlog n].

– Next, assume the existence of a sub-exponentially secure digital signature
scheme. More specifically, assume the existence of a signature scheme such
that poly-size adversary cannot forge signatures w.r.t. verification keys of size
log2 n (except with negligible probability). Such a scheme is implied by sub-
exponential one-way functions. Denote the keys for such a scheme by (vk, sk),
the setup algorithm by Setup(1λ) and the signing algorithm by Sign(sk, ·).
Then starting with a non-malleable commitment scheme (w.r.t. replacement)
according to Definition 1 for tags in [nlog n] (denoted by C[nlog n]), we build
non-malleable commitments for tags in [2n], satisfying Definition 1 as follows:
To commit to message m with tag T ∈ [2n], sample (vk, sk) $← Setup(1log

2 n),
compute a commitment c ← Comvk(m), and a signature σ ← Sign(sk, T).
Output (vk, c, σ). Here Comvk(·) denotes the commitment algorithm of
C[nlog n] corresponding to tag vk, and we note that |vk| = log2 n bits.
For every PPT man-in-the-middle A that outputs (˜vk, c̃, σ̃), one of the fol-
lowing holds.

• Either ˜vk = vk, in which case by unforgeability of the signature scheme,
if ˜T �= T then σ̃ does not verify.

• Or ˜vk �= vk, in which case the message committed to in c̃ is “unrelated”
to the message committed to in c, i.e., it satisfies the non-malleability
condition of Definition 1, since we assume Comvk satisfies Definition 1.

References

1. Ball, M., Dachman-Soled, D., Kulkarni, M., Lin, H., Malkin, T.: Non-malleable
codes against bounded polynomial time tampering. IACR Cryptology ePrint
Archive 2018, 1015 (2018). https://eprint.iacr.org/2018/1015

2. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: FOCS 2002, pp. 345–355 (2002)

3. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. SIAM J.
Comput. 37(2), 380–400 (2007). https://doi.org/10.1137/050641958

https://eprint.iacr.org/2018/1015
https://doi.org/10.1137/050641958

Non-interactive Non-malleability from Quantum Supremacy 581

4. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-
8 17

5. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commit-
ments. IACR Cryptology ePrint Archive 2018, 613 (2018). https://eprint.iacr.org/
2018/613

6. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015.
LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 16

7. Broadnax, B., Fetzer, V., Müller-Quade, J., Rupp, A.: Non-malleability vs. CCA-
security: the case of commitments. In: Abdalla, M., Dahab, R. (eds.) PKC 2018,
Part II. LNCS, vol. 10770, pp. 312–337. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-76581-5 11

8. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise non-
malleable codes. In: 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, Rome, Italy, 11–15 July 2016, pp. 31:1–31:14 (2016).
https://doi.org/10.4230/LIPIcs.ICALP.2016.31

9. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 10

10. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concurrent non-
malleable commitments from one-way functions. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 127–157. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 5

11. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC 1991 (1991)

12. Fenteany, P., Fuller, B.: Non-malleable digital lockers. Cryptology ePrint Archive,
Report 2018/957 (2018). https://eprint.iacr.org/2018/957

13. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd
ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6–8
June 2011, pp. 99–108. ACM (2011). http://doi.acm.org/10.1145/1993636.1993651

14. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to con-
structing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70503-3 18

15. Goyal, V.: Constant round non-malleable protocols using one-way functions. In:
STOC 2011, pp. 695–704. ACM (2011)

16. Goyal, V., Khurana, D., Sahai, A.: Breaking the three round barrier for non-
malleable commitments. In: FOCS (2016)

17. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: a black-box approach. In: FOCS (2012)

18. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments.
In: STOC, pp. 1128–1141. ACM, New York (2016). http://doi.acm.org/10.
1145/2897518.2897657

19. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. In: FOCS 2014, pp. 41–50 (2014)

https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-540-28628-8_17
https://eprint.iacr.org/2018/613
https://eprint.iacr.org/2018/613
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-319-76581-5_11
https://doi.org/10.1007/978-3-319-76581-5_11
https://doi.org/10.4230/LIPIcs.ICALP.2016.31
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-319-63715-0_5
https://doi.org/10.1007/978-3-319-63715-0_5
https://eprint.iacr.org/2018/957
http://doi.acm.org/10.1145/1993636.1993651
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-319-70503-3_18
http://doi.acm.org/10.1145/2897518.2897657
http://doi.acm.org/10.1145/2897518.2897657

582 Y. T. Kalai and D. Khurana

20. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninterac-
tive zero-knowledge. J. ACM 59(3), 11:1–11:35 (2012). http://doi.acm.org/
10.1145/2220357.2220358

21. Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simula-
tion in two rounds and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 158–189. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0 6

22. Kalai, Y., Khurana, D.: Non-interactive non-malleability from quantum supremacy.
In: Electronic Colloquium on Computational Complexity (ECCC), vol. 25, p. 203
(2018). https://eccc.weizmann.ac.il/report/2018/203

23. Khurana, D.: Round optimal concurrent non-malleability from polynomial hard-
ness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp.
139–171. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 5

24. Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds. In:
58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, 15–17 October 2017, pp. 564–575 (2017). https://doi.org/10.
1109/FOCS.2017.58

25. Komargodski, I., Yogev, E.: Another step towards realizing random oracles: non-
malleable point obfuscation. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10820, pp. 259–279. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78381-9 10

26. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: STOC 2011, pp. 705–714 (2011)

27. Lin, H., Pass, R.: Non-malleability amplification. In: Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, pp. 189–198 (2009)

28. Lin, H., Pass, R.: Black-box constructions of composable protocols without set-up.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 461–
478. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 27

29. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-
malleable commitments from time-lock puzzles. Cryptology ePrint Archive, Report
2017/273 (2017). http://eprint.iacr.org/2017/273

30. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 571–588. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 31

31. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 4

32. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: Proceedings of
the 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2005, pp. 563–572 (2005)

33. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: STOC 2005, pp. 533–542 (2005)

34. Pass, R., Rosen, A.: New and improved constructions of nonmalleable crypto-
graphic protocols. SIAM J. Comput. 38(2), 702–752 (2008)

35. Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-
exponential one-way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 638–655. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13190-5 32

36. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: FOCS 2010, pp. 531–540 (2010)

http://doi.acm.org/10.1145/2220357.2220358
http://doi.acm.org/10.1145/2220357.2220358
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-319-63715-0_6
https://eccc.weizmann.ac.il/report/2018/203
https://doi.org/10.1007/978-3-319-70503-3_5
https://doi.org/10.1109/FOCS.2017.58
https://doi.org/10.1109/FOCS.2017.58
https://doi.org/10.1007/978-3-319-78381-9_10
https://doi.org/10.1007/978-3-319-78381-9_10
https://doi.org/10.1007/978-3-642-32009-5_27
http://eprint.iacr.org/2017/273
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-540-85174-5_4
https://doi.org/10.1007/978-3-642-13190-5_32
https://doi.org/10.1007/978-3-642-13190-5_32

Cryptographic Sensing

Yuval Ishai1(B), Eyal Kushilevitz1, Rafail Ostrovsky2, and Amit Sahai2

1 Technion, Haifa, Israel
{yuvali,eyalk}@cs.technion.ac.il

2 University of California, Los Angeles, USA
{rafail,sahai}@cs.ucla.edu

Abstract. Is it possible to measure a physical object in a way that
makes the measurement signals unintelligible to an external observer?
Alternatively, can one learn a natural concept by using a contrived
training set that makes the labeled examples useless without the line
of thought that has led to their choice? We initiate a study of “crypto-
graphic sensing” problems of this type, presenting definitions, positive
and negative results, and directions for further research.

1 Introduction

The traditional goal of cryptography is to design cryptographic algorithms for
well-defined tasks, such as public-key encryption. In this work we study the
following question: when can we embed a cryptographic function in a function
that was not designed for this purpose, say a function created by nature?

To make the question more concrete and illustrate a potential application
scenario, consider the goal of observing a physical object in total darkness. Is
it possible to design a flashlight, and a matching pair of glasses, such that the
flashlight will only make the object visible to the owner of the glasses? Note
that we are not attempting to hide the existence of the object and the flashlight.
Our goal is to embed in the physical implementation of the flashlight a hidden
secret (which is only explicitly found in the glasses), such that without knowing
this secret it is computationally infeasible to make sense of the signals directed
at and reflected from the object. The latter requirement should hold even if the
flashlight can be captured and analyzed completely by an adversary, and even if
the adversary can design its own pair of glasses based on this analysis.

A bit more rigorously and abstractly, we model the object being observed
as a vector x ∈ X , where X = {0, 1}n by default. The flashlight is modeled as
a randomized measurement algorithm Sen that can carefully choose a sequence
of measurement functions f1, f2, . . ., where each fi is taken from some fixed and
publicly known class F . For each function fi, the algorithm Sen learns the value
ai = fi(x). The choice of the measurement sequence fi may either be adaptive, in
the sense that each fi can depend on a1, . . . , ai−1, or non-adaptive, in the sense
that all fi are chosen together. We would like the following two requirements
to hold. First, given the randomness that was used to choose the measurement

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 583–604, 2019.
https://doi.org/10.1007/978-3-030-26954-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_19

584 Y. Ishai et al.

functions fi, it is possible to efficiently decode the object x from the sequence
(fi, ai). In the flashlight example, this decoding algorithm is performed by the
glasses. Second, we would like the object x to remain “hidden” (in a sense that
should be defined) from any polynomial-time (passive) external observer Adv
who can only view the measurements (fi, ai) without the randomness that was
used to generate them. We refer to such an algorithm Sen as a cryptographic
sensing algorithm for the measurement class F .

For the purpose of obtaining better efficiency or stronger security, it will
sometimes be useful to relax the above goal by settling for Sen learning only
partial information g(x) about x (e.g., a lower resolution version of an image x
or some targeted portion of x), or by allowing Adv to learn partial information
�(x) about x (e.g., the brightness level of an image). As long as Sen has a
meaningful advantage over Adv, we realize a non-trivial notion of cryptographic
sensing. A different type of relaxation is to consider a distributed setting, where
two or more instances of Sen can be executed. Here Adv only has access to a
bounded number of these instances (say, one out of two) but the decoder has
access to all of them. This is analogous to the type of security provided by secret
sharing schemes or protocols for secure multiparty computation.

One can also consider a dual formulation of the problem in the language
of computational learning theory. Here the object is a secret concept, namely
a function f ∈ F , and the goal of the (active, randomized) learning algorithm
Sen is to come up with a training set x1, x2, . . . such that given the labeled
examples (xi, f(xi)) it can efficiently learn some representation of f . The unusual
requirement we make here is that without the “line of thought” that has led to
the choice of the training set, it should be impossible for an efficient, passive Adv
to learn f from the labeled examples. There are instances of the cryptographic
sensing problem that are better motivated or are more naturally cast in this dual
form; however, most instances considered in this work are more naturally cast
in the original “sensing” framework.

If we could choose the class F at will, we could simply make it rich enough
to directly implement an encryption of x via a standard public-key encryption
scheme, say the RSA scheme. This is akin to allowing the flashlight to shoot
a miniature robot at the object, where the robot physically senses the object
and sends back an encrypted image using the flashlight’s public encryption key.
However, our goal here is to study the possibility of coping with natural classes
F , such as ones that can potentially be realized by a simple physical measure-
ment process (in the sensing formulation) or that capture simple and/or realistic
classes of concepts (in the learning formulation).

Other than the type of “sensing” applications illustrated by the cryptographic
flashlight metaphor, it is not hard to imagine additional potential application
scenarios. For instance, consider a drug company A that must outsource expen-
sive experiments to a company B for the purpose of determining the chemical
structure of some virus. Company A would like to deter employees of B who
conduct the actual experiments from selling the results to a competing drug
company C. Here too, our goal is not to hide the fact that a virus is being

Cryptographic Sensing 585

analyzed, but rather to render the “questions and answers” that must inevitably
be obtained by B in the process of analysis useless to anyone but the company
A that designed (and paid for) the experiments. A similar goal can apply to
other measurement and learning scenarios such as conducting polls, training
deep neural nets, and many more.

1.1 Our Contribution

In this work we initiate a study of cryptographic sensing by presenting defini-
tions, some positive and negative results, and directions for further research.

Formalizing Security. We start by putting forward different notions of secu-
rity for cryptographic sensing. The weakest notion is that of one-way security,
which ensures that Adv has a negligible success of guessing x exactly, when x
is picked at random. Using standard cryptographic terminology, a non-adaptive
cryptographic sensing algorithm for F with one-way security is equivalent to an
F-computable injective trapdoor function, namely one that can be computed by
concatenating functions from F . One-way security is typically not very useful,
since it only applies to a specific object distribution and even in this case it does
not rule out revealing a big amount of partial information about the object.

A stronger and more useful notion is that of entropic security, requiring that
any two object distributions that have high min-entropy cannot be distinguished
by Adv. This intuitively means that the interaction does not help Adv distinguish
between objects that were sufficiently unpredictable to start with. Using stan-
dard cryptographic terminology, a non-adaptive cryptographic sensing algorithm
with entropic security for F can be viewed as an F-computable one-time-secure
deterministic public-key encryption scheme [13,24,46].

As in the case of non-cryptographic sensing (e.g., compressed sensing), it is
often useful to settle for lossy decoding, where Sen outputs some useful partial
information about x such as a projection of x to a subset of the coordinates
or a compressive linear sketch of x from which an approximate version (e.g., a
lower resolution image) can be recovered. Note that with lossy decoding, one-
way security may become meaningless. However, entropic security is still as
meaningful. Lossy decoding is motivated by the possibility of obtaining better
efficiency (e.g., fewer measurements) and better security (e.g., entropic security
with a lower entropy bound).

Finally, we consider a useful combination of entropic security and lossy decod-
ing we refer to as security with background noise. Here we aim to completely hide
the object x by masking it with “background noise” r, where measurements
apply jointly to (x, r). (In the case of physical measurements, r can be taken
from parts of the object that are considered irrelevant, or from nearby objects.)
This is analogous to the role of randomness in semantically secure probabilistic
encryption [27]. We distinguish between different types of security with back-
ground noise, depending on whether r is assumed to be random and whether it
is independent of x.

586 Y. Ishai et al.

Constructions and Negative Results. At a first glance, obtaining cryp-
tographic sensing algorithms for natural classes F may seem hopeless. Indeed,
such classes are expected to be either hard to learn (even without any security
requirements) or alternatively admit simple learning algorithms in which case
there is no hope to embed any cryptographic hardness, let alone the intricate
structure of public-key cryptography.

However, a second thought reveals that this view may be too pessimistic.
First, there is a rich line of work on low complexity cryptography (see Sect. 1.2),
showing that sophisticated cryptographic primitives can be implemented in low
complexity classes under well studied intractability assumptions. Second, an
even richer line of work shows how to construct code-based [2,39] or lattice-
based [1,25,44] public-key encryption schemes in which encryption can be imple-
mented by computing a linear function of the message and secret randomness
over some finite ring Zq. In our language, these cryptosystems imply crypto-
graphic sensing algorithms with Zq-linear measurements that achieve seman-
tic security using random background noise. In fact, lattice-based determinis-
tic public-key encryption schemes imply a similar result with entropic secu-
rity [15,19,42] and without the need for background noise.

Let us pause to explain how linear functions, that are trivially “learnable” by
using Gaussian elimination, can be a source for cryptographic hardness. The key
feature that makes this possible is that the object x is restricted to be in {0, 1}n

(or, more generally, a vector of a small norm) whereas the linear combinations are
taken over the larger domain Z

n
q . This means that even though Adv can obtain

an explicit description of affine space of objects in Z
n
q that are consistent with

the labeled examples, it has no obvious way of making sense of this information.
Indeed, the affine space is of exponential size, which makes it possible to hide
inside it a low-norm object x that has sufficient entropy.

The simplicity of linear functions makes lattice-based cryptography an attrac-
tive venue for cryptographic sensing algorithms. However, even when restricting
attention to linear measurements, there are several reasons why these off-the-
shelf solutions from the literature are not completely satisfying.

First, they all inherently require modular linear measurements, modulo some
finite integer q ≥ 2. While the class of such measurements is very natural
from a theory perspective, we are not aware of any realistic way of obtaining
a direct physical implementation of such measurements. Note that it is crucial
that no additional information except the output of the measurement is leaked.
In contrast, linear combinations with small integer coefficients (or alternatively
bounded-precision reals) can conceivably be realized without significant addi-
tional leakage. As a toy example, consider an implementation of a “flashlight”
that shoots small balls or a spray of water at a metal board with holes. The
amount of noise made by the impact (alternatively the amount of substance that
bounces back) reveals a linear combination over the integers of the characteristic
vector of the board (0 for hole, 1 for no hole) and the density vector of objects
shot at it. One can easily imagine more sophisticated and scalable physical mea-
surement processes of this type. Other disadvantages of off-the-shelf solutions is

Cryptographic Sensing 587

that their entropically secure variants have a poor quality of entropic security
and require a large number of measurements.

We start by addressing the latter disadvantages. We show a simple cryp-
tographic sensing algorithm that achieves a good quality of entropic security
(i.e., with weak entropy requirements) and only uses a small number of linear
measurements over Zq. The price we pay is that we settle for lossy decoding,
revealing a sublinear number of linear combinations of the object x. In the con-
text of natural objects (such as images), such compressive linear mappings are
often almost as good as full recovery (see, e.g., [29] for a survey). Our algorithm
is simple and intuitive, and builds on the same technique that underlies lattice-
based encryption schemes such as Regev’s cryptosystem [44]. The high level idea
is to hide the “useful” linear combinations in a low-dimensional linear space by
adding noise. Using a combination of the Learning With Errors assumption and
the Leftover Hash Lemma, it is ensured that the linear space spanned by the
measurements together with the measurement outcomes looks completely ran-
dom to a computationally bounded Adv, assuming that the object has sufficient
entropy.

Then, we use a simple generic transformation from cryptographic sensing
algorithms that use linear measurements over Zq to ones that use linear mea-
surements over the integers. This transformation relies on background noise,
effectively implementing mod-q reduction by adding secret random multiples of
q that are harvested from the background noise. This transformation has two dis-
advantages: first, if the coefficients of the linear combinations are polynomially
bounded, Adv gets an inverse polynomial distinguishing advantage (compared
to the negligible advantage in the Zq solutions). Second, the resulting algorithm
relies on background noise and does not achieve entropic security. While we
show that both disadvantages are in some sense inherent, there is still a lot of
room for improving both the qualitative security guarantee and the quantitative
parameters.

We conclude by presenting positive and negative results for other classes F ,
beyond linear measurements. These results build heavily on previous results in
the literature on computational learning theory or low-complexity cryptography.
See Sect. 5 for details.

Can Public-Key Encryption Really Be Implemented by Nature? As
discussed above, cryptographic sensing for naturally occurring functions essen-
tially requires public-key encryption (PKE) to be implemented by nature. This
may seem inconceivable in light of the complexity and relative scarcity of known
PKE candidates. However, as our results suggest, this view may be overly pes-
simistic for several reasons.

First, it ignores the extra degree of freedom one has by encoding the out-
put of a standard PKE scheme. Indeed, even complex functions can be encoded
by randomized functions (such as NC0 functions [9]) for which every individual
output is a very simple function of the input. The space of possible construc-
tions of such randomized encoding schemes for functions is far from being well
understood or even systematically explored.

588 Y. Ishai et al.

A second degree of freedom that our constructions exploit is the ability of
the sensing algorithm to pick an arbitrary, possibly contrived, distribution over
the class of measurement functions. We heavily exploit this in our sensing algo-
rithm that uses linear measurement functions with small integer coefficients. (As
argued above, this class of measurements admits simple physical realizations.)
In the dual learning formulation, this amounts to using a contrived training set
or input distribution. The combination of a “contrived” input distribution with
a “natural” function class might be just as powerful as the usual combination
of “contrived” function class with a “natural” input distribution, which is com-
monly used in cryptography. For instance, for all we know, even DNF formulas
can compute weak pseudo-random functions or public-key encryption schemes
for contrived input distributions.

Finally, as we demonstrate in Sect. 5, relaxing the basic model to a distributed
setting, which allows two or more separate interactions, breaks the PKE impli-
cation and opens the space to a much larger class of cryptographic sensing and
learning schemes.

1.2 Related Work

A central theme of this work is that of using simple forms of cryptography, that
one can actually implement via physical measurements. The study of simple
forms of cryptography is not new and has already lead to rich and often surprising
results. This study of low-complexity cryptography includes works on local one-
way functions and other cryptographic primitives [9,26] that led to the notion of
randomized encoding (RE), works on low-degree polynomials [8,30], linear-time
functions [31], as well as similar results for arithmetic functions [6,32].

By necessity, we will generally focus on less traditional notions of crypto-
graphic security and correctness. For instance, we will largely eschew the tradi-
tional notion of probabilistic encryption with semantic security [27] in favor of
entropic security [13,24,46] notions that have arisen primarily in the context of
deterministic encryption. Moreover, we will consider relaxations of correctness,
as well, inspired by compressed sensing (see, e.g., [29,33]) where not the entire
message is recovered.

Finally, the interaction between cryptography and learning has rich history.
Valiant [48] already pointed out that if F contains a cryptographic pseudo-
random function (PRF) then this makes the class F hard to learn, even given
membership queries. Other cryptographic primitives like PKE, were used to base
some more advanced hardness results in learning theory, e.g., [4,35,36] (beyond
hardness results for so-called “proper” learning [43]). See [23] for a more recent
work in this direction. Concretely, the work of [4] may seem as an obstacle for
cryptographic-sensing of sufficiently rich classes F (such as CNF formulae) that
allow embedding of signature verification. For such classes, they prove that if F
can be leaned from random examples and membership queries (MQs) then F can
also be leaned from random examples and without membership queries, which
seems to indicate that whatever the sensing algorithm can learn the adversary

Cryptographic Sensing 589

will be able to learn as well. This however is not the case as, in the construc-
tion of [4], for learning f ∈ F wrt distribution D and without MQs, the learner
invokes a learning algorithm with MQs that learns a different (but related) func-
tion f ′ ∈ F wrt a related distribution D′. This is not possible in the physical
setting of cryptographic sensing where f,D are chosen by nature and the sensing
algorithm and the adversary both have access to them.

In the reverse direction, hard learning problems were proposed as a source for
cryptographic assumptions [16] where the LPN and LWE assumptions (proposed
by [16,44] respectively) serve, due to their convenient structure and simplicity,
as some of the most useful assumptions for cryptographic constructions. There
is currently a large body of work on adversarial machine learning (e.g, [22,38]
and references therein); these works are mainly concerned with the correctness
of the learning process in the presence of adversaries that harm the samples
(e.g., by changing examples and/or their labels). In a very different direction,
[34] initiated the study of private learning, whose goal is to protect the privacy
of individuals whose sensitive inputs are used for learning.

1.3 Future Directions

Our work leaves many directions for future research. Which natural classes admit
cryptographic sensing algorithms? We note that not much attention has been
spent on finding explicit “hard distributions” for classes that are learnable with
membership queries, but for which PAC learning algorithms are unknown. This
includes even very simple classes such as DNF formulas. Hard input distributions
for these classes can serve as a starting point for designing a cryptographic
sensing algorithm. Another direction that we haven’t explored at all is potential
applications in the context of practical machine learning algorithms.

On the physical side: which simple functions of an object can be measured
(say, using radar technologies or particle physics) without significant additional
leakage? We described specific toy experiments for realizing linear measurements
with small non-negative integer coefficients. Is there a direct way to measure
mod-q linear combinations using quantum measurements or classical wave inter-
ference? Is there a good algorithmic way to cope with the type of additional
leakage that can be expected from physical measurements?

To conclude, while the feasibility of implementing a cryptographic flashlight
“in the wild” is left open, we do not see any fundamental barriers to making this
idea applicable for real-world sensing and learning problems. Our results leave
much room for further quantitative and qualitative improvements that can help
make this happen. Alternatively, the question of cryptographic sensing can help
motivate a rich line of theoretical questions that explore new kinds of interaction
between cryptography and computational learning theory.

2 Preliminaries

In this section we recall some standard definitions and facts that will be useful
for formalizing our security notions and analyzing the constructions.

590 Y. Ishai et al.

Definition 1 (Statistical distance). The statistical distance between distri-
butions X and Y , denoted SD(X,Y), is defined as the maximum, over all func-
tions A, of the distinguishing advantage |Pr[A(X) = 1] − Pr[A(Y) = 1]|.
Definition 2 (Min-Entropy). We say that a random variable X over a set S
has min-entropy k, and denote H∞(X) = k, if maxs∈S Pr[X = s] = 2−k.

We will use the following standard Leftover Hash Lemma (LHL).

Lemma 3 (Leftover Hash Lemma [28]). Let H = {h} be a family of pairwise-
independent hash functions h : D → R. Let X be a distribution over D with
H∞(X) ≥ k, where k ≥ log |R| + 2 log(1/ε). Then, the distribution (h, h(x))
with h ∈R H and x selected according to X is ε-close to (h, r), with h ∈R H
and r ∈R R.

2.1 The LWE Assumption

We rely on well studied decisional variants of the Learning with Errors (LWE)
assumption [44]. This assumption says that a random noisy codeword in a pub-
licly known random linear code is pseudo-random. More precisely, the distribu-
tion (M,Ms + e), for a random matrix M ∈R Z

n×m
q , secret vector s ∈R Z

m
q

and appropriately chosen noise distribution e ∈ Z
n
q is computationally indistin-

guishable from the distribution (M,u), where u is uniformly distributed over Zn
q

independently of M . The noise distribution for LWE is χn for some distribution
χ over Zq, which is typically a discrete Gaussian. For simplicity, it is conve-
nient to replace the Gaussian distribution with a uniform distribution over an
interval [0, b], where b = qΩ(1). When q is super-polynomial in λ, security with
such an “interval noise” reduces to security with Gaussian noise of standard
deviation ≈b. While no such reduction is known in the regime of polynomially
large q (which is more relevant to our work), this alternative form of the LWE
assumption resists known attacks.

Definition 4 (Learning With Errors). Let λ be a security parameter. For
m = m(λ), n = n(λ), q = q(λ), b = b(λ), t = t(λ), and ε = ε(λ), we say that
the decisional learning with errors problem (with interval noise) LWEm,n,q,b is
(t, ε)-hard if for all sufficiently large λ, every circuit of size t = t(λ) has at most
an ε = ε(λ) advantage in distinguishing between the distributions (M,Ms + e)
and (M,u), where M

R← Z
n×m
q , s

R← Z
m
q , e is uniformly distributed in [0, b]n,

and u
R← Z

n
q . We say that LWE holds with parameters m,n, q, b, if LWEm,n,q,b is

(t = p(λ), ε = 1/p(λ))-hard for every polynomial p(λ).

Our typical choice of parameters is m = λ, n ≤ poly(m), q ≈ n2, and b ≈ √
m;

however, smaller values of q and b can be used for better efficiency. See [40] and
references therein for choices of LWE parameters that resist known attacks,
including ones that are provably secure under worst-case hardness assumptions
for integer lattices. We note that one could alternatively settle for sampling
the secret s from the the same distribution as the noise instead of the uniform
distribution [7]. This optimization can improve the concrete efficiency of our
LWE-based constructions.

Cryptographic Sensing 591

3 Defining Cryptographic Sensing

In this section we formalize our notion of cryptographic sensing. We start with
the default “sensing” formulation and then describe how to modify it to get the
dual “learning” formulation.

Function Classes. A function class F is defined by a polynomial-time algorithm
that given a description f̂ of a finite function f and an input x for f outputs f(x).
(We will often abuse notation and identify functions and other objects with their
representations.) We assume that f̂ includes a description of the input domain
Xf and that F outputs ⊥ when the input (f̂ , x) is not of the expected form,
namely when f̂ is not a valid function description or when x
∈ Xf . We let X (F)
denote the set of (descriptions of) valid input domains for F and FX denote
the set of function descriptions f̂ with input domain X . The set FX defines
the allowable measurement functions that can apply to a hidden object x ∈ X .
The function class F also assigns a cost measure to every function description
f̂ . For instance, if F is the class of DNF formulas then a natural cost of f̂ is
the number of clauses and if F is the class of linear functions with non-negative
integer coefficients then a natural cost is the sum of all coefficients.

Cryptographic Sensing: Syntax. A cryptographic sensing algorithm for F is a
PPT algorithm Sen with oracle access to F that, given a security parameter 1λ

and description of an input domain X ∈ X (F), proceeds as follows. It starts by
randomly generating a secret decoding key sk. (If concrete efficiency is not a
concern, one can let sk include all random coins of Sen.) It then interacts with
F , feeding it with measurement functions f̂i ∈ FX , and receiving the outcomes
ai = fi(x) on some fixed object x ∈ X unknown to Sen. We will mostly consider
non-adaptive sensing algorithms Sen in which all measurements f̂i are chosen
simultaneously before querying F . In this case, we will sometimes consider the
concatenation of all fi as a single function f taken from the multi-output exten-
sion of F . Once it is done querying, Sen uses sk and the interaction transcript
I = ((f̂1, a1), . . . , (f̂m, am)) to produce a guess for x.

Correctness. The default correctness requirement, which will later be relaxed, is
that for every efficient non-uniform adversary that on input 1λ picks an input
domain X ∈ X (F) and an object x ∈ X , the interaction of Sen(1λ,X) with FX
on object x results in Sen outputting the correct value of x except with neg(λ)
probability.

One-Way Security. The minimal security requirement we consider is one-
wayness. Since it is not always natural to consider a uniform distribution over
objects (let alone over functions in the learning formulation), we allow an arbi-
trary efficiently samplable distribution. Concretely, we say that Sen is one-way
secure with respect to F if there is a PPT object sampling algorithm S such that
every efficient non-uniform adversary Adv succeeds in the following game with

592 Y. Ishai et al.

neg(λ) probability. First, S(1λ) outputs a challenge input domain X ∈ X (F)
and an object x ∈ X . Then, Sen(1λ,X) interacts with FX on object x, result-
ing in an interaction transcript I = ((f̂1, a1), . . . , (f̂m, am)). Finally, Adv(X , I)
outputs a guess for x. We say that Adv succeeds if its guess is correct.

Using standard cryptographic terminology, a non-adaptive cryptographic
sensing algorithm with one-way security for F is equivalent (up to the choice of
input distribution) to an F-computable injective trapdoor function, namely one
that can be computed by concatenating functions from F . One-way security is
typically not very useful, since it only applies to a specific object distribution
and even in this case it does not rule out revealing a big amount of partial infor-
mation about the object. Below we define several stronger notions, analogously
to different notions of security for (one-time) encryption in the cryptographic
literature.

Entropic Security. Entropic security is in a sense the best possible notion of secu-
rity for deterministic encryption. It requires that any two object distributions
that have high min-entropy cannot be distinguished by Adv. This intuitively
means that the interaction does not help Adv distinguish between objects that
were sufficiently unpredictable to start with. Formally, let k : N × X (F) → R

be an entropy bound function, specifying a lower bound on object entropy as
a function of the security parameter λ and object domain X . For ε = ε(λ) we
say that Sen is (k, ε)-entropically secure if every efficient non-uniform adversary
Adv succeeds in the following game with at most 1/2 + ε(λ) probability for all
sufficiently large λ. First, Adv(1λ) outputs an input domain X ∈ X (F) and a
pair of circuits describing input distributions X0,X1 over X with H∞(Xσ) ≥ k
for σ = 0, 1. Then, a challenger picks a random bit σ ∈ {0, 1} and lets Sen(1λ,X)
interact with FX on an object x sampled from Xσ. This results in an interaction
transcript I = ((f̂1, a1), . . . , (f̂m, am)). Finally, Adv(I) outputs a guess for σ. We
say that Adv succeeds if its guess is correct. When ε is omitted we assume it is
negligible; however, some of our results inherently require ε to be non-negligible.

To gain more flexibility, it can be convenient to give an entropy bound k as
an additional input for Sen and modify the above definition accordingly (allow-
ing Sen to declare failure in case k is too low; for instance, when k = O(log(λ))
a brute-force search attack is possible). Using standard cryptographic terminol-
ogy, a non-adaptive cryptographic sensing algorithm with entropic security for
F can be viewed as an F-computable one-time-secure deterministic public-key
encryption scheme [13,24,46].

Lossy Decoding. A useful relaxation of the above correctness requirement settles
for lossy decoding, where Sen outputs some useful partial information about x
such as a projection of x to a subset of the coordinates or a compressive linear
sketch of x from which an approximate version (e.g., a lower resolution image)
can be recovered. We formalize this by introducing a target function class G with
the same input domains as F (i.e., X (G) = X (F)) and adding to the inputs of

Cryptographic Sensing 593

Sen a description ĝ of a target function g : X → Z. The correctness requirement
is changed in a natural way, requiring that Sen(1λ,X , ĝ) correctly output g(x).
In the definition of entropic security, the entropy bound k is allowed to also
depend on g (where typically k needs to grow with the output size of g). Note
that with lossy decoding, one-way security may become meaningless. However,
entropic security is still as meaningful.

Allowing Background Noise. A useful special case of lossy decoding is a pro-
jection to a fixed set of coordinates, where the other coordinates are viewed
as background noise whose entropy can be exploited to protect the target out-
put. In this case we will view the measurements of Sen as applying to (x, r),
where x is the target object and r is the background noise, and require Sen
to only output x. One can consider three notions of security with background
noise. The strongest, referred to as security with correlated background noise
does not assume independence between x and r and only requires entropic secu-
rity when the joint entropy is at least k. The second, referred to as security with
independent background noise, requires that x remain completely hidden if the
background noise is independent and has high min-entropy. This is formalized
as in the definition of entropic security, except that the distributions X0 and X1

are of the form (x0, R) and (x1, R) for x0, x1 ∈ X and an adversarially chosen
R such that H∞(R) ≥ k. Finally, the third and weakest notion, referred to as
security with random background noise, is similar to the above except that the
noise is picked from some specified noise distribution (uniform by default).

The weakest variant of security with background noise corresponds to the
usual notion of semantically secure probabilistic encryption [27]. The strongest is
equivalent to (one-time) indistinguishability under a chosen distribution attack,
as defined in [14].

A Dual Learning Formulation. In the above, we assumed that Sen tries to recover
a secret object x ∈ X using a sequence of measurement functions fi. In the set-
ting of computational learning theory [48], one considers the dual goal of learning
a secret concept f̂ ∈ F by evaluating it on a sequence of inputs xi. The above
definitions can be adapted in a natural way to this dual formulation. However,
some changes should be made. First, the role of the object domain X , which is
given as input to Sen, is replaced by a sub-class of concepts in F from which the
target concept is picked. For instance, if F is the class of DNF formulas, this sub-
class can include all formulas with a fixed number of inputs n, or alternatively
formulas with n inputs and � clauses. Second, since F may define many equiv-
alent representations f̂ for the same concept f , we define the entropic security
requirements semantically, namely with respect to the functions rather than their
representations. Finally, our correctness requirements can accommodate relaxed
notions of correctness from the machine learning literature. For instance, we can
allow approximate correctness as in the PAC model (except that we need to
additionally allow membership queries), and we can consider improper learning,
namely allow Sen to output a general circuit representation of the target concept
or its approximation.

594 Y. Ishai et al.

The Distributed Setting. Finally, we will consider a distributed relaxation of
the above notions, where Sen may be involved in d ≥ 2 separate interactions,
producing transcripts I1, . . . , Id. The output can be decoded by Sen given all
transcripts, but only a bounded number t of these transcripts is available to Adv.
In the context of the drug company example from the Introduction, this corre-
sponds to distributing the experiments among d companies B1, . . . , Bd, where
security of A is only guaranteed as long as no more than t companies Bi reveal
their information to C.

4 Cryptographic Sensing with Linear Measurements

In this section we describe simple cryptographic sensing algorithms that use
different types of linear measurement functions: linear functions over Zq and
linear functions over the integers.

4.1 Linear Measurements over Zq

Code-based public-key encryption schemes presented by McEliece [39] and by
Alekhnovich [2] imply cryptographic sensing algorithms with linear measure-
ments over Z2 that require uniformly random background noise and a large
number of measurements. These constructions can in fact be generalized to apply
over any finite field. Lattice-based encryption schemes such as Ajtai-Dwork [1],
Regev [44] and GPV [25] imply similar algorithms with linear measurements over
Zq, where q grows with the object length n. These lattice-based constructions
have the additional benefit of provable security under well-studied worst-case
hardness assumptions; however they still require a random background noise
and a large number of measurements.

Targeting the stronger security notion of entropic security, one could obtain
lattice-based cryptographic sensing algorithms with Zq-linear measurements by
using known lattice-based constructions of deterministic encryption schemes [19],
which in turn are based on constructions of lossy injective trapdoor functions
[15,42]. However, these constructions require a large number of measurements,
and only tolerate a constant entropy rate.

In the following we present an LWE-based lossy cryptographic sensing algo-
rithm that uses Zq-linear measurements and achieves entropic security, where
both the entropy bound and the number of measurements are comparable to
the length of the lossy output g(x), independently of the length of the measured
object x.

We first assume for simplicity that the object is x ∈ Xn = {0, 1}n and the
target function class G is the class of mod-2 linear mappings with output length
t < n. This is already useful for obtaining many natural approximations of x [33].
We then generalize the algorithm to the case where x is a vector of bounded-
size integers and G includes compressive linear mappings with bounded integer
coefficients. This generalization allows for a wider range of useful approximations,
via compressed sensing and other linear sketching techniques (cf. [29]).

Cryptographic Sensing 595

The algorithm uses the standard approach of lattice-based cryptosystems,
in particular Regev’s cryptosystem [44]. The high level idea is as follows. If the
object x has min-entropy k, then (by Lemma 3) revealing up to ≈k/ log q publicly
known random Zq-linear combinations of the entries of x gives essentially no
information about x. However, if we could choose special linear combinations,
say ones in which each coefficient is either close to 0 or to q/2 (where q � n), then
we could learn parities of subsets of the bits of x. Assuming LWE, we can hide
such special linear combinations in the span of a small number of random-looking
linear combinations. We formalize this idea below. Note that below we assume
LWE for uniform noise. However, this is strictly for simplicity of exposition; all
our results also hold assuming LWE with discrete Gaussian noise.

Decoding a Single Parity. We start by considering the case t = 1, namely the
target function g computes 〈y, x〉 mod 2 for y ∈ {0, 1}n, and then generalize
to t > 1. The class of measurement functions F includes all linear functions
mod q. That is, each measurement fi is represented by � ∈ Z

n
q and returns

〈�, x〉 mod q. We will also have a dimension parameter m and noise parameter b
where the choice of n,m, q, b (all as functions of a security parameter λ) satisfies
the LWE assumption with interval noise. Furthermore, we require that q be at
most polynomial in n and that q > 4nb. See Sect. 2.1 for possible choices of
parameters.

Algorithm. Sen(1λ, 1n, y ∈ {0, 1}n):

1. Pick A ∈R Z
m×n
q and set z = sT A + e + �q/2� · y for “LWE secret” s ∈R Z

m
q

(which serves as the secret key sk) and “noise” vector e ∈R [0, b]n, as in the
LWE assumption. (Note that since sT A + e is pseudorandom given A, then
so is z.)

2. Make the m+1 measurements corresponding to the m rows of A, as well as z.
Get in response m+1 values that are viewed as v1 = Ax ∈ Z

m
q and v2 = z ·x

(where all arithmetic is over Zq).
3. Use the secret key s to compute w = v2 − sT v1 = z · x − sT Ax = (sT A + e +

�q/2� · y) · x − sT Ax = e · x + �q/2� · y · x from which g(x) = 〈y, x〉 mod 2 is
decoded: 0 if w is closer to 0 than to �q/2�, and 1 otherwise.

The correctness of Sen follows from its description and from the choice of
parameters: we have 0 ≤ e ·x ≤ nb, and the parity of y ·x determines whether we
add �q/2� an even number of times, implying that w ≈ 0 mod q or an odd num-
ber of times, implying that w ≈ �q/2� mod q. Hence, 〈y, x〉 mod 2 is correctly
decoded with probability 1.

Let us argue that Sen is entropically secure for entropy bound k ≈ m log q.
Note that the view of the adversary Adv consists of the queries of Algorithm
Sen, as well as the answers, namely A, z, v1, v2. Our goal is to argue that if the
entropy condition is met, this view is indistinguishable from a random tuple in
Z

m×n
q × Z

n
q × Z

m
q × Zq. The proof will be based on the LWE assumption and

the leftover hash lemma (see Lemma 3). Note that if we take the collection of
matrices A ∈ Z

m×n
q and consider the functions hA(x) = Ax (from Z

n
q to Z

m
q),

596 Y. Ishai et al.

then the family H = {hA} is indeed known to be pairwise-independent hash
family.

Security Analysis: Let X be a distribution of objects with H∞(X) = k, for k ≥
(m+1) log q+2 log(1/ε). Let I = (A, z, v1, v2) be the distribution of interactions,
as generated by Sen, when interacting with an object x drawn from X. Let I ′ =
(A, z, v1, v2) be the same distribution, except that now z is selected by z ∈R Z

n
q .

By the LWE assumption, I ≈c I ′. Let B be the (m + 1) × n matrix obtained by
placing A on top of z and let v be the (m+1)-vector obtained by concatenating
v2 to v1. Observe that v = Bx. By the leftover hash lemma (with log |R| =
(m + 1) log q), since X has sufficient min-entropy then the pair (B, v = Bx), for
a random B, is ε-close to a random pair (B, v) (of the corresponding lengths).
This means that I ′ is indistinguishable from a distribution I ′′ = (A, z, v1, v2)
consisting of randomly selected elements from Zq of the corresponding length.
This analysis yields the following theorem.

Theorem 5. Suppose n,m, q, b are chosen such that LWEm,n,q,b holds, q > 4nb,
and k ≥ m log q + λ. Then Sen is a k-entropically secure cryptographic sensing
algorithm for decoding a single parity of x ∈ {0, 1}n using m+1 linear measure-
ments over Zq.

Extensions. We now extend the previous algorithm in a few simple ways. First,
we observe that, for any “small” c, we can modify Sen to learn 〈y, x〉 mod c
(rather than only for c = 2, as above). This is simply done by computing z =
sT A + e + �q/c� · y. Again, each coordinate j where xjyj = 1 will contribute
≈�q/c� to the value v2 − sT v1. As long as q is sufficiently large (say, q > 4cnb)
the noise does not prevent the algorithm from recovering 〈y, x〉 mod c. In fact,
in this case we can let y be any vector in [0, c−1]n and the algorithm still works,
as is. Moreover, it also works when x is not a binary vector but is rather an
integer-valued vector from [0, d]n, provided that q > 4cdnb.

Next, we consider the case where the sensing algorithm wishes to learn
not only a single linear combination 〈y, x〉 mod 2, but rather a few of those;
namely, for y1, . . . , yt, where each yj is in {0, 1}n, the algorithm needs to
learn all of 〈y1, x〉 mod 2, . . . , 〈yt, x〉 mod 2 (this can also naturally be com-
bined with the previous extensions, to allow learning linear combinations mod c
of x ∈ [0, d]n). The first approach that comes to mind is to independently
pick queries (A1, z1), . . . , (At, zt), as in the basic algorithm Sen. While this in
principle works, it rapidly “consumes” the entropy of x (as Adv gets to see
m + 1 linear combinations per each yj). Instead, we will pick a single matrix
A ∈R Z

m×n
q and t vectors z1, . . . , zt, as above (namely, for each j ∈ [t], we set

zj = sjA + ej + �q/2� · yj , for “secret” sj ∈R [b]m). The correctness remains
unchanged. As for security, as long as X has entropy k ≥ (m+t) log q+2 log(1/ε),
then a similar argument holds. Namely, A, z1, . . . , zt is still pseudorandom, by
repeated application of the LWE assumption, and then the leftover hash lemma
is applied where our hash function has output of length m + t.

Cryptographic Sensing 597

Applying the above extensions to Sen, we get a general algorithm Sen′ for
decoding compressive linear mappings of x over the integers using Zq-linear
measurements.

Theorem 6. Suppose n,m, q, b, t, c are chosen such that LWEm,n,q,b holds, q >
4c3nb, and k ≥ (m+t) log q+λ. Then Sen′ is a k-entropically secure cryptographic
sensing algorithm for decoding Gx, where x ∈ [0, c]n and G is a t × n integer
matrix with entries in [0, c], using m + t linear measurements over Zq.

Note that unlike solutions based on deterministic encryption, Theorem 6
cannot be used to obtain full decoding of x even when x is uniformly random.
Indeed, this would require choosing t so that the entropy requirement becomes
impossible to meet. However, for the case of lossy decoding Theorem 6 gives
near-optimal complexity.

4.2 Linear Measurements over the Integers

The LWE-based solution inherently makes use of linear measurements over Zq.
From a physical realization perspective, it is much more desirable to use linear
measurements over the integers (or reals), since it is not clear how to design a
simple physical measurement process that reveals only a mod-q linear combi-
nation. However, applying the previous construction directly over the integers
would render it insecure, since modular reduction is crucial for ruling out efficient
real-valued approximation and decoding techniques [20].

We start by proving some inherent limitations on the type of security that
can be achieved using linear measurements over the integers, and then present
a positive result.

Can’t Make ε Negligible. Our first negative result says that even if x is a sin-
gle bit and we settle for semantic security with random background noise, we
cannot obtain a negligible distinguishing advantage with polynomial-size linear
measurement coefficients. This negative result is based on the following lemma,
which says that for a random variable Z over integers in a small range, the
statistical distance between Z and Z + 1 is noticeable.

Lemma 7. Let Z be distributed over [0, c − 1]. Then SD(Z,Z + 1) ≥ 1/c.

Proof: Let Zi = Z + i. Since Z and Z + c have disjoint supports, we have
SD(Z0, Zc) = SD(Z,Z + c) = 1. By the triangle inequality, there must exist
0 ≤ j < c such SD(Zj , Zj+1) ≥ 1/c. The lemma follows by observing that
SD(Z,Z + 1) = SD(Zj , Zj+1). ��

It follows from the above lemma that for any vector of linear measurement
coefficients � ∈ N

m+1 with �1 > 0 and �i ∈ [0, c−1], and for a random background
noise r ∈R {0, 1}n we have SD(〈�, (0, r)〉, 〈�, (1, r)〉) ≥ 1/(cm). Moreover, since
the distributions have polynomial-size support, a statistical distinguisher implies

598 Y. Ishai et al.

(non-uniform) efficient distinguisher. This rules out security with negligible dis-
tinguishing advantage ε = neg(λ), polynomial background noise m = poly(λ),
and poly(λ)-bounded coefficients.

We note that this negative result does not apply to our minimal notion of
one-way security. Indeed, one-way security can be achieved with polynomial-size
coefficients by dividing x into λ disjoint blocks and applying the positive result
presented below for each block. This exploits the fact that one-way security can
be amplified via independent repetition.

Can’t Get Entropic 1/Poly-Security. Next, we show that our positive result
for entropic security with mod-q linear measurements (cf. Theorem 6) cannot be
achieved over the integers, even if one settles for 1/poly distinguishing advantage,
and even if there is no bound on the size of the integers. The intuition is that
when there is no background noise to mask the object x, there is a noticeable
difference between a “bright” object and a “dark” object. Concretely, consider
the case of entropy bound k = n/3, and let X0 be a distribution over {0, 1}n

in which a random set of n/3 bits are picked at random and the rest are set
to 0 (a bright object), and X1 is a similar except that the other bits are set
to 1 (a dark object). Then, for any nonzero � ∈ N

n, a distinguisher that tests
whether its input is bigger than

∑n
i=1 �i/2 distinguishes between 〈�,X0〉 and

〈�,X1〉 with constant advantage. We leave open the question of obtaining security
up to leakage of brightness, namely obtaining an entropic secure solution (say,
with poly-bounded integer coefficients and constant fractional entropy bound)
in which the view of Adv can be simulated given

∑
xi with simulation error that

vanishes with n.

A Positive Result. Our positive result complements the first negative result
above by showing that semantic security with random background noise is indeed
achievable with ε ≥ 1/poly(λ) by only using polynomial-size non-negative integer
coefficients. More generally, we give a simple method for compiling any solution
that uses linear measurements over Zq into one that uses linear measurements
over the integers, at the price of relying on random background noise and settling
for an inverse polynomial error. More precisely, the cost of the linear measure-
ments (namely, the magnitude of the coefficients) grows polynomially with n/ε.

The high level idea is to perform the Zq measurements over the integers,
and effectively achieve modular reduction by adding (over the integers) a large
random multiple of q. (The previous negative result suggests that this is in
some sense inherent.) The randomness used by this reduction is taken from the
background noise. Concretely, given a bound μ = 2c on the coefficients, we add
to each original measurement a weighted sum of the form

∑c
i=1(2

iq) · ri where
each measurement uses a disjoint set of c background points. Note that this
effectively means that we add a random multiple β · q for β ∈R [0, μ − 1].

We turn to analyze the correctness and security of the above transformation.
Decoding in the integer case can proceed as in the mod-q case, reducing the
integer measurement values modulo q. This is not affected by adding multiples
of q, hence correctness is maintained. The security analysis relies on the following

Cryptographic Sensing 599

standard lemma (cf. [12]), showing that if we add βq to a value from a bounded
range [0, B] and β is uniform in [0, μ − 1] (for μ sufficiently large, depending on
B and q), then little is revealed beyond mod q.

Lemma 8. Let α1, α2 ∈ [0, B] be two integers such that α1 ≡ α2 mod q. Consider
the two distributions Y1, Y2 where Yi is obtained by αi + βq, for β ∈R [0, μ − 1].
Then, SD(Y1, Y2) ≤ B

qμ .

Note that when allowing a random background noise, the entropic security
with lossy decoding of Theorem 6 implies semantic security with full decoding by
applying the algorithm of Theorem 6 to the concatenation (x, r) and decoding
only the x portion. Applying the above transformation, we get the following
integer analogue.

Theorem 9. Suppose LWEm,n,q,b holds for m = λ, n = md (for some constant
d > 2), b =

√
q and q = Θ(c3n2) (for some positive integer c = c(λ)). Then

there is a semantically ε-secure cryptographic sensing algorithm with random
background noise for decoding Gx, where x ∈ [0, c]n and G is a t × n integer
matrix with entries in [0, c], using m + t linear measurements with non-negative
integer coefficients, where the cost of each measurement is poly(n, c, 1/ε).

Studying the extent to which the random background noise assumption can
be relaxed, as well as a more refined study of the achievable tradeoffs between
the parameters, are left for future work.

5 Beyond Linear Measurements

In this section, we briefly discuss other classes of measurements, beyond linear
functions. Here we will typically use the learning formulation of cryptographic
sensing (see Introduction and Sect. 3). We give examples for positive and negative
results that follow quite easily from the literature, as well as some directions for
further research.

5.1 Negative Results for Simple Classes via Occam’s Razor

Our first observation in this section is that classes of functions F that are “learn-
able” in a strong sense (to be made precise below) cannot be used for crypto-
graphic sensing. The intuition being that the adversary Adv who observes the
interaction transcript I can simply apply the learning algorithm to the examples
it sees throughout the observed interaction and learn the concept by itself. To
make this a bit more formal, we first recall the notion of OCCAM learning.

An OCCAM Learning algorithm for a class of functions F , using a class of
hypotheses H and constants a ≥ 0 and 0 ≤ b < 1, is an algorithm A that,
given any set (sample) S of m examples in {0, 1}n, labeled by any f ∈ F ,
outputs an hypothesis h ∈ H such that: (1) h is consistent with S (i.e., it agrees
with the hidden f on the labels of all examples); and (2) h is “succinct”, i.e.

600 Y. Ishai et al.

size(h) is bounded by1 (n·size(f))a ·mb. Algorithm A is efficient if it runs in time
polynomial in n,m and size(f).

Occam’s Razor is a well-known philosophical principle. Its connection to
machine learning was made by [17], who showed that it is essentially equivalent
to Valiant’s notion of PAC-learnability [48]. Concretely, they showed that an
OCCAM learner A can be turned into a PAC learner A′ (essentially showing that
if A′ feeds A with enough random examples, as a function of the parameters a, b
of A, the hypotheses h that A outputs is good enough) thus providing a natural
approach for designing PAC-learning algorithms. The converse direction, namely
that PAC learnability implies OCCAM learnability also holds [47].2

We now conclude that, for classes F that admit OCCAM learnability, the
adversary Adv can apply the corresponding OCCAM algorithm A to get a
hypothesis h that is consistent with f on all examples. If there is a sensing
algorithm Sen that is able to identify the concept f based on these examples,
then so can Adv. This rules out even our weakest notion of one-way security.

Such efficient OCCAM (alternatively PAC) learning algorithms are known
for classes such as disjunctions, conjunctions and k-DNFs for constant k [48],
decision lists [45], and more. Thus, all these classes are not candidates for cryp-
tographic sensing. For a richer class such as (poly-size) DNFs, the question of
its efficient learnability is wide open. Designing (even a one-way secure) crypto-
graphic sensing algorithm for such a class would therefore imply that it cannot
be PAC-learned efficiently without membership queries. While proving hardness
under standard intractability assumptions may be a difficult challenge, coming
up with explicit plausible candidates for hard distributions is a problem that
apparently did not receive much attention.

On the optimistic side, PAC-learning algorithms are known only for limited
classes of functions (hence, the above negative result is limited as well). For other
classes, sensing may or may not be possible. Note that, intuitively, cryptographic
sensing is closer in spirit to the stronger setting of PAC with membership queries
(MQ). In such a model, one can learn more expressive classes such as Decision
Trees [21] and DFAs [3].

There are several non-trivial sub-exponential algorithms for DNF. The best
such algorithm is by Klivans and Servedio [37] and has complexity of roughly
2O(n1/3 log n log s) for learning s-term DNF with n variables. Transforming this
algorithm to an OCCAM learning algorithm, as above, gives a limit on the
security of cryptographic sensing algorithms for DNF that one may hope to
achieve. We also remark that known results on PAC-learnability of DNF under
uniform distribution (this is known to be possible in quasi-polynomial time [49])
do not imply a negative result for cryptographic sensing.

1 The requirement that b < 1 is what rules out the trivial solution where h is just the
list of labels for the m points in S and forces actual “learning”.

2 In the case of proper PAC-learning (i.e., when H = F), [18] present a condition
(called “closure under exception lists”) on F under which PAC still implies OCCAM
learning.

Cryptographic Sensing 601

5.2 Local Measurements

We now go back temporarily to the sensing formulation, focusing on a simple
class of measurements that corresponds to work on low-complexity cryptography.
Consider d-local measurement functions, namely the class F of “finite” functions
f that depend on at most d bits of x. We note that, despite the simplicity of
such functions, we are not aware of any natural physical realization that does
not involve additional leakage. Still, it is natural to study the power of this class.

Entropic security cannot be realized in NC0, as it is easy to construct, for any
d-local function f , a pair of high-entropy distributions X0,X1 where for every
x ∈ X0 we have f(x) = 0 and for every x ∈ X1 we have f(x) = 1 (the entropy
can be as large as, say, n − d). The same impossibility holds for security with
independent background noise (as defined in Sect. 3). However, in the setting of
random background noise, where noise is a uniformly random bit-string, we can
get positive results for d = 4. Indeed, under standard cryptographic assumptions,
there is 4-local PKE [9], which implies a cryptographic sensing algorithm with
random background noise. The above is still not satisfactory because it does
not respect physical locality. Under a less standard but still plausible security
assumption, namely the security of a variant of the McEliece cryptosystem, it is
possible to get an analogous result with constant physical locality [11].

The amount of background noise in the above solutions is very large, |x| ·
poly(λ). If we do not insist on physical locality, we can trade background noise
for locality by using polynomial-stretch local PRGs [5,10,26,31]. This can reduce
the amount of background noise to |x|ε · poly(λ), for any constant ε, while still
maintaining constant locality d.

5.3 Distributed Solution for Learning Juntas

Finally, we demonstrate the potential usefulness of the distributed variant of
cryptographic sensing by showing a positive result for the class of juntas. Learn-
ing juntas on k = O(log n) inputs from random examples is conjectured to be
a hard learning problem (this conjecture is attributed to Avrim Blum). How-
ever, we argue that such f can be learned in the distributed setting (see Sect. 3)
via two sets of labeled examples: S1 that contains poly(n) random examples
(the exact polynomial depends on k), and S2 that contains a random Hamming-
neighbor for each example in S1, namely each example in S2 is obtained by
flipping a random bit in the corresponding example in S1. Note that each of
the two interactions I1, I2 separately is a collection of labeled random examples
from which learning f , as mentioned, is conjectured to be hard. On the other
hand, putting together the two interactions allow Sen to identify each of the k
sensitive variables xi, with high probability (by selecting, with probability ≥2−k,
an assignment to S1 that is sensitive at xi and selecting to S2 its i-th neighbor).
Then the function itself can recovered in polynomial time from the answers to
questions from, say, S1 that cover all 2k assignments to the k sensitive vari-
ables. Note that here quasi-polynomial security is the best that one can hope
for, since the original problem can be solved in, roughly, nk+O(1) time (via a

602 Y. Ishai et al.

naive algorithm that checks all subsets of k variables) or even slightly better via
a sophisticated algorithm of [41] that runs in time nck+O(1), for some c < 1.

Acknowledgements. We thank Brent Waters for helpful discussions.
Research supported by NSF-BSF grant 2015782. Y. Ishai and E. Kushilevitz were

additionally supported by ISF grant 1709/14 and a grant from the Ministry of Sci-
ence and Technology, Israel and Department of Science and Technology, Government
of India. Y. Ishai was additionally supported by ERC Project NTSC (742754). R.
Ostrovsky was additionally supported by NSF grant 1619348, DARPA SafeWare sub-
contract to Galois Inc., DARPA SPAWAR contract N66001-15-C-4065, JP Morgan
Faculty Research Award, OKAWA Foundation Research Award, IBM Faculty Research
Award, Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata
Research Award, and Lockheed-Martin Corporation Research Award. A. Sahai was
additionally supported by a DARPA/ARL SAFEWARE award, NSF Frontier Award
1413955, and NSF grant 1619348, a Xerox Faculty Research Award, a Google Faculty
Research Award, an equipment grant from Intel, and an Okawa Foundation Research
Grant. This material is based upon work supported by the Defense Advanced Research
Projects Agency through the ARL under Contract W911NF-15-C-0205. The views
expressed are those of the authors and do not reflect the official policy or position of
the Department of Defense, the National Science Foundation or the U.S. Government.

References

1. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on
the Theory of Computing, El Paso, Texas, USA, 4–6 May 1997 (1997)

2. Alekhnovich, M.: More on average case vs approximation complexity. In: Proceed-
ings of the 44th Symposium on Foundations of Computer Science (FOCS 2003),
Cambridge, MA, USA, 11–14 October 2003 (2003)

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

4. Angluin, D., Kharitonov, M.: When won’t membership queries help? (Extended
abstract). In: STOC (1991)

5. Applebaum, B.: Exponentially-hard gap-CSP and local PRG via local hardcore
functions. In: FOCS (2017)

6. Applebaum, B., Avron, J., Brzuska, C.: Arithmetic cryptography. J. ACM 64(2),
10:1–10:74 (2017)

7. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

8. Applebaum, B., Haramaty, N., Ishai, Y., Kushilevitz, E., Vaikuntanathan, V.: Low-
complexity cryptographic hash functions. In: ITCS (2017)

9. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: FOCS (2004)
10. Applebaum, B., Ishai, Y., Kushilevitz, E.: On pseudorandom generators with

linear stretch in NC0. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.)
APPROX/RANDOM -2006. LNCS, vol. 4110, pp. 260–271. Springer, Heidelberg
(2006). https://doi.org/10.1007/11830924 25

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/11830924_25

Cryptographic Sensing 603

11. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography by cellular automata or
how fast can complexity emerge in nature? In: ICS (2010)

12. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, 22–25 October 2011 (2011)

13. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. IACR Cryptology ePrint Archive 2006/186 (2006)

14. Bellare, M., et al.: Hedged public-key encryption: how to protect against bad ran-
domness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 14

15. Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor func-
tions and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 228–245. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 15

16. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-
2 24

17. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Inf.
Process. Lett. 24(6), 377–380 (1987)

18. Board, R.A., Pitt, L.: On the necessity of Occam algorithms. In: STOC (1990)
19. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic

encryption, and efficient constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 19

20. Bootle, J., Delaplace, C., Espitau, T., Fouque, P., Tibouchi, M.: LWE without
modular reduction and improved side-channel attacks against BLISS. IACR Cryp-
tology ePrint Archive 2018/22 (2018, to appear in Asiacrypt 2018)

21. Bshouty, N.H.: Exact learning via the monotone theory (extended abstract). In:
FOCS (1993)

22. Bshouty, N.H., Eiron, N., Kushilevitz, E.: PAC learning with nasty noise. In:
Watanabe, O., Yokomori, T. (eds.) ALT 1999. LNCS (LNAI), vol. 1720, pp. 206–
218. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46769-6 17

23. Cohen, A., Goldwasser, S., Vaikuntanathan, V.: Aggregate pseudorandom func-
tions and connections to learning. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015.
LNCS, vol. 9015, pp. 61–89. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46497-7 3

24. Dodis, Y., Smith, A.: Entropic security and the encryption of high entropy mes-
sages. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 556–577. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 30

25. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008
(2008)

26. Goldreich, O.: Candidate one-way functions based on expander graphs. In: Goldre-
ich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the Interplay
between Randomness and Computation. LNCS, vol. 6650, pp. 76–87. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22670-0 10

27. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

https://doi.org/10.1007/978-3-642-10366-7_14
https://doi.org/10.1007/978-3-642-29011-4_15
https://doi.org/10.1007/978-3-642-29011-4_15
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1007/3-540-46769-6_17
https://doi.org/10.1007/978-3-662-46497-7_3
https://doi.org/10.1007/978-3-662-46497-7_3
https://doi.org/10.1007/978-3-540-30576-7_30
https://doi.org/10.1007/978-3-642-22670-0_10

604 Y. Ishai et al.

28. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, STOC 1989 (1989)

29. Indyk, P.: Sketching via hashing: from heavy hitters to compressed sensing to
sparse Fourier transform. In: Proceedings of the 32nd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2013, New York,
NY, USA, 22–27 June 2013 (2013)

30. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: FOCS (2000)

31. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: STOC (2008)

32. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

33. Kannan, S., Mossel, E., Sanyal, S., Yaroslavtsev, G.: Linear sketching over f 2.
In: 33rd Computational Complexity Conference, CCC 2018, San Diego, CA, USA,
22–24 June 2018 (2018)

34. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.D.:
What can we learn privately? In: FOCS (2008)

35. Kearns, M.J., Valiant, L.G.: Cryptographic limitations on learning Boolean formu-
lae and finite automata. In: STOC (1989)

36. Kharitonov, M.: Cryptographic hardness of distribution-specific learning. In:
STOC (1993)

37. Klivans, A.R., Servedio, R.A.: Learning DNF in time 2õ(n1/3). In: STOC (2001)
38. Mahloujifar, S., Diochnos, D.I., Mahmoody, M.: Learning under p-tampering

attacks. In: ALT (2018)
39. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep

Space Network Progress Report 44, 114–116 (1978)
40. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.

In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 2

41. Mossel, E., O’Donnell, R., Servedio, R.A.: Learning juntas. In: STOC (2003)
42. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Pro-

ceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria,
British Columbia, Canada, 17–20 May 2008 (2008)

43. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J.
ACM 35(4), 965–984 (1988)

44. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC (2005)

45. Rivest, R.L.: Learning decision lists. Mach. Learn. 2(3), 229–246 (1987)
46. Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. In:

Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 133–148. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 9

47. Schapire, R.E.: The strength of weak learnability (extended abstract). In: FOCS
(1989)

48. Valiant, L.G.: A theory of the learnable. In: STOC (1984)
49. Verbeurgt, K.A.: Learning DNF under the uniform distribution in quasi-polynomial

time. In: COLT (1990)

https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/3-540-46035-7_9

Public-Key Cryptography
in the Fine-Grained Setting

Rio LaVigne(B), Andrea Lincoln(B), and Virginia Vassilevska Williams

MIT CSAIL and EECS, Cambridge, USA
{rio,andreali,virgi}@mit.edu

Abstract. Cryptography is largely based on unproven assumptions,
which, while believable, might fail. Notably if P = NP , or if we live
in Pessiland, then all current cryptographic assumptions will be broken.
A compelling question is if any interesting cryptography might exist in
Pessiland.

A natural approach to tackle this question is to base cryptography
on an assumption from fine-grained complexity. Ball, Rosen, Sabin, and
Vasudevan [BRSV’17] attempted this, starting from popular hardness
assumptions, such as the Orthogonal Vectors (OV) Conjecture. They
obtained problems that are hard on average, assuming that OV and
other problems are hard in the worst case. They obtained proofs of work,
and hoped to use their average-case hard problems to build a fine-grained
one-way function. Unfortunately, they proved that constructing one using
their approach would violate a popular hardness hypothesis. This moti-
vates the search for other fine-grained average-case hard problems.

The main goal of this paper is to identify sufficient properties for
a fine-grained average-case assumption that imply cryptographic prim-
itives such as fine-grained public key cryptography (PKC). Our main
contribution is a novel construction of a cryptographic key exchange,
together with the definition of a small number of relatively weak struc-
tural properties, such that if a computational problem satisfies them, our
key exchange has provable fine-grained security guarantees, based on the
hardness of this problem. We then show that a natural and plausible
average-case assumption for the key problem Zero-k-Clique from fine-
grained complexity satisfies our properties. We also develop fine-grained
one-way functions and hardcore bits even under these weaker assump-
tions.

R. LaVigne—This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. 1122374. Any opinion,
findings, and conclusions or recommendations expressed in this material are those of the
authors(s) and do not necessarily reflect the views of the National Science Foundation.
Research also supported in part by NSF Grants CNS-1350619 and CNS-1414119, and
by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army
Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236.
A. Lincoln—This work supported in part by NSF Grants CCF-1417238, CCF-1528078
and CCF-1514339, and BSF Grant BSF:2012338.
V. Williams—Partially supported by an NSF Career Award, a Sloan Fellowship, NSF
Grants CCF-1417238, CCF-1528078 and CCF-1514339, and BSF Grant BSF:2012338.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 605–635, 2019.
https://doi.org/10.1007/978-3-030-26954-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_20

606 R. LaVigne et al.

Where previous works had to assume random oracles or the existence
of strong one-way functions to get a key-exchange computable in O(n)
time secure against O(n2) adversaries (see [Merkle’78] and [BGI’08]),
our assumptions seem much weaker. Our key exchange has a similar gap
between the computation of the honest party and the adversary as prior
work, while being non-interactive, implying fine-grained PKC.

1 Introduction

Modern cryptography has developed a variety of important cryptographic prim-
itives, from One-Way Functions (OWFs) to Public-Key Cryptography to Obfus-
cation. Except for a few more limited information theoretic results [20,50,51],
cryptography has so far required making a computational assumption, P �= NP
being a baseline requirement. Barring unprecedented progress in computational
complexity, such hardness hypotheses seem necessary in order to obtain most
useful primitives. To alleviate this reliance on unproven assumptions, it is good
to build cryptography from a variety of extremely different, believable assump-
tions: if a technique disproves one hypothesis, the unrelated ones might still hold.
Due to this, there are many different cryptographic assumptions: on factoring,
discrete logarithm, shortest vector in lattices and many more.

Unfortunately, almost all hardness assumptions used so far have the same
quite stringent requirements: not only that NP is not in BPP, but that we
must be able to efficiently sample polynomially-hard instances whose solution
we know. Impagliazzo [31,47] defined five worlds, which capture the state of
cryptography, depending on which assumptions happen to fail. The three worlds
worst for cryptography are Algorithmica (NP in BPP), Heuristica (NP is not
in BPP but NP problems are easy on average) and Pessiland (there are NP
problems that are hard on average but solved hard instances are hard to sample,
and OWFs do not exist). This brings us to our main question.

Can we have a meaningful notion of cryptography even if we live in Pessiland
(or Algorithmica or Heuristica)?

This question motivates a weaker notion of cryptography: cryptography that
is secure against nk-time bounded adversaries, for a constant k. Let us see why
such cryptography might exist even if P = NP. In complexity, for most interesting
computational models, we have time hierarchy theorems that say that there are
problems solvable in O(n2) time (say) that cannot be solved in O(n2−ε) time for
any ε > 0 [28,30,53]. In fact, such theorems exist also for the average case time
complexity of problems [39]. Thus, even if P = NP, there are problems that are
hard on average for specific runtimes, i.e. fine-grained hard on average. Can we
use such hard problems to build useful cryptographic primitives?

Unfortunately, the problems from the time hierarchy theorems are difficult
to work with, a common problem in the search for unconditional results. Thus,
let us relax our requirements and consider hardness assumptions, but this time
on the exact running time of our problems of interest. One simple approach is

Public-Key Cryptography in the Fine-Grained Setting 607

to consider all known constructions of Public Key Cryptography (PKC) to date
and see what they imply if the hardness of the underlying problem is relaxed to
be nk−o(1) for a fixed k (as it would be in Pessiland). Some of the known schemes
are extremely efficient. For instance, the RSA and Diffie-Hellman cryptosystems
immediately imply weak PKC if one changes their assumptions to be about poly-
nomial hardness [23,49]. However, these cryptosystems have other weaknesses
– for instance, they are completely broken in a postquantum world as Shor’s
algorithm breaks their assumptions in essentially quadratic time [52]. Thus, it
makes sense to look at the cryptosystems based on other assumptions. Unfor-
tunately, largely because cryptography has mostly focused on the gap between
polynomial and superpolynomial time, most reductions building PKC have a
significant (though polynomial) overhead; many require, for example, multiple
rounds of Gaussian elimination. As a simple example, the Goldreich-Levin con-
struction for hard-core bits uses nω (where ω ∈ [2, 2.373) is the exponent of
square matrix multiplication [26,55]) time and n calls to the hard-core-bit dis-
tinguisher [27]. The polynomial overhead of such reductions means that if the
relevant problem is only n2−o(1) hard, instead of super-polynomially hard, the
reduction will not work anymore and won’t produce a meaningful cryptographic
primitive. Moreover, reductions with fixed polynomial overheads are no longer
composable in the same way when we consider weaker, polynomial gap cryptog-
raphy. Thus, new, more careful cryptographic reductions are needed.

Ball et al. [6,7] began to address this issue through the lens of the recently
blossoming field of fine-grained complexity. Fine-grained complexity is built upon
“fine-grained” hypotheses on the (worst-case) hardness of a small number of
key problems. Each of these key problems K, has a simple algorithm using
a combination of textbook techniques, running in time T (n) on instances of
size n, in, say, the RAM model of computation. However, despite decades of
research, no Õ(T (n)1−ε) algorithm is known for any ε > 0 (note that the tilde
∼ suppresses sub-polynomial factors). The fine-grained hypothesis for K is then
that K requires T (n)1−o(1) time in the RAM model of computation. Some of the
main hypotheses in fine-grained complexity (see [54]) set K to be CNF-SAT (with
T (n) = 2n, where n is the number of variables), or the k-Sum problem (with
T (n) = n�k/2�), or the All-Pairs Shortest Paths problem (with T (n) = n3 where
n is the number of vertices), or one of several versions of the k-Clique problem in
weighted graphs. Fine-grained complexity uses fine-grained reductions between
problems in a very tight way (see [54]): if problem A has requires running time
a(n)1−o(1), and one obtains an (a(n), b(n))-fine-grained reduction from A to B,
then problem B needs runtime b(n)1−o(1). Using such reductions, one can obtain
strong lower bounds for many problems, conditioned on one of the few key
hypotheses.

The main question that Ball et al. set out to answer is: Can one use fine-
grained reductions from the hard problems from fine-grained complexity to build
useful cryptographic primitives? Their work produced worst-case to average-case
fine-grained reductions from key problems to new algebraic average case prob-
lems. From these new problems, Ball et al. were able to construct fine-grained

608 R. LaVigne et al.

proofs of work, but they were not able to obtain stronger cryptographic prim-
itives such as fine-grained one-way-functions or public key encryption. In fact,
they gave a barrier for their approach: extending their approach would falsify the
Nondeterministic Strong Exponential Time Hypothesis (NSETH) of Carmosino
et al. [18]. Because of this barrier, one would either need to develop brand new
techniques, or use a different hardness assumption.

What kind of hardness assumptions can be used to obtain public-key
cryptography (PKC) even in Pessiland?

A great type of theorem to address this would be: for every problem P that
requires nk−o(1) time on average, one can construct a public-key exchange (say),
for which Alice and Bob can exchange a lg(n) bit key in time O(nak), whereas
Eve must take n(a+g)k−o(1) time to learn Alice and Bob’s key, where g is large,
and a is small. As a byproduct of such a theorem, one can obtain not just OWFs,
but even PKC in Pessiland under fine-grained assumptions via the results of Ball
et al. Of course, due to the limitations given by Ball et al. such an ideal theorem
would have to refute NSETH, and hence would be at the very least difficult to
prove. Thus, let us relax our goal, and ask

What properties are sufficient for a fine-grained average-case assumption so
that it implies fine-grained PKC?

If we could at least resolve this question, then we could focus our search for
worst-case to average-case reductions in a useful way.

1.1 Our Contributions

Our main result is a fine-grained key-exchange that can be formed from any
problem that meets three structural conditions in the word-RAM model of com-
putation. This addresses the question of what properties are sufficient to produce
fine-grained Public Key Encryption schemes (PKEs).

For our key exchange, we describe a set of properties, and any problem that
has those properties implies a polynomial gap PKE. An informal statement of
our main theorem is as follows.

Theorem [Fine-Grained Key-Exchange (informal)]. Let P be a computational
problem for which a random instance can be generated in O(ng) time for some g,
and that requires nk−o(1) time to be solved on average for some fixed k > g. Addi-
tionally, let P have three key structural properties of interest: (1) “plantable”:
we can generate a random-looking instance, choosing either to have or not to
have a solution in the instance, and if there is a solution, we know what/where it
is; (2) “average-case list-hard”: given a list of n random instances of the problem,
returning which one of the instances has a solution requires essentially solving all
instances; (3) “splittable”: when given an instance with a solution, we can split
it in O(ng) time into two slightly smaller instances that both have solutions.

Then a public key-exchange can be built such that Alice and Bob exchange
a lg(n) bit key in time n2k−g, where as Eve must take Ω̃(n3k−2g) time to learn
Alice and Bob’s key.

Public-Key Cryptography in the Fine-Grained Setting 609

Notice that as long as there is a gap between the time to generate a random
instance and the time to solve an instance on average, there is a gap between
N = n2k−g and n3k−2g = N3/2−1/(4(k/g)−2) and the latter goes to N3/2, as k/g
grows. The key exchange requires no interaction, and we get a fine-grained public
key cryptosystem. While our key exchange construction provides a relatively
small gap between the adversary and the honest parties (O(N1.5) vs O(N)), the
techniques required to prove security of this scheme are novel and the result is
generic as long as the three assumptions are satisfied. In fact, we will show an
alternate method to achieve a gap approaching O(N2) in the full version of this
paper.

Our main result above is stated formally and in more generality in Theorem5.
We will explain the formal meaning of our structural properties plantable, average-
case list-hard, and splittable later.

We also investigate what plausible average-case assumptions one might be
able to make about the key problems from fine-grained complexity so that the
three properties from our theorem would be satisfied. We consider the Zero-k-
Clique problem as it is one of the hardest worst-case problems in fine-grained
complexity. For instance, it is known that if Zero-3-Clique is in O(n3−ε) time for
some ε > 0, then both the 3-Sum and the APSP hypotheses are violated [54,57].
It is important to note that while fine-grained problems like Zero-k-Clique and
k-Sum are suspected to take a certain amount of time in the worst case, when
making these assumptions for any constant k does not seem to imply P �= NP
since all of these problems are still solvable in polynomial time.1

An instance of Zero-k-Clique is a complete k-partite graph G, where each
edge is given a weight in the range [0, R − 1] for some integer R. The problem
asks whether there is a k-clique in G whose edge weights sum to 0, modulo R.
A standard fine-grained assumption (see e.g. [54]) is that in the worst case, for
large enough R, say R ≥ 10n4k, Zero-k-Clique requires nk−o(1) time to solve.
Zero-k-Clique has no non-trivial average-case algorithms for natural distribu-
tions (uniform for a range of parameters, similar to k-Sum and Subset Sum).
Thus, Zero-k-Clique is a natural candidate for an average-case fine-grained hard
problem.

Our other contribution addresses an open question from Ball et al.: can a fine-
grained one-way function be constructed from worst case assumptions? While
we do not fully achieve this, we generate new plausible average-case assumptions
from fine-grained problems that imply fine-grained one-way functions.

1.2 Previous Works

There has been much prior work leading up to our results. First, there are a few
results using assumptions from fine-grained complexity and applying them to
cryptography. Second, there has been work with the kind of assumptions that
we will be using.

1 Assuming the hardness of these problems for more general k will imply P �= NP ,
but that is not the focus of our work.

610 R. LaVigne et al.

Fine-Grained Cryptography. Ball et al. [6,7] produce fine-grained wost-case
to average-case reductions. Ball et al. leave an open problem of producing a one-
way-function from a worst case assumption. They prove that from some fine-
grained assumptions building a one-way-function would falsify NSETH [6,18].
We avoid their barrier in this paper by producing a construction of both fine-
grained OWFs and fine-grained PKE from an average-case assumption.

Fine-Grained Key Exchanges. Fine-grained cryptography is a relatively unex-
plored area, even though it had its start in the 1970’s with Merkle puzzles: the
gap between honestly participating in the protocol versus breaking the security
guarantee was only quadratic [43]. Merkle originally did not describe a plausi-
ble hardness assumption under which the security of the key exchange can be
based. 30 years later, Biham, Goren, and Ishai showed how to implement Merkle
puzzles by making an assumption of the existence of either a random oracle or
an exponential gap one way function [16]. That is, Merkle puzzles were built
under the assumption that a one-way function exists which takes time 2n(1/2+δ)

to invert for some δ > 0. So while prior work indeed succeeded in building a fine-
grained key-exchange, it needed a very strong variant of OWFs to exist. It is
thus very interesting to obtain fine-grained public key encryption schemes based
on a fine-grained assumption (that might even work in Pessiland and below).

Another Notion of Fine-Grained Cryptography. In 2016, work by Degwekar,
Vaikuntanathan, and Vasudevan [22] discussed fine-grained complexity with
respect to both honest parties and adversaries restricted to certain circuit classes.
They obtained constructions for some cryptographic primitives (including PKE)
when restricting an adversary to a certain circuit class. From the assumption
NC1 �= ⊕L/poly they show Alice and Bob can be in AC0[2] while being secure
against NC1 adversaries. While [22] obtains some unconditional constructions,
their security relies on the circuit complexity of the adversary, and does not
apply to arbitrary time-bounded adversaries as is usually the case in cryptogra-
phy. That is, this restricts the types of algorithms an adversary is allowed to use
beyond just how much runtime these algorithms can have. It would be interest-
ing to get similar results in the low-polynomial time regime, without restricting
an adversary to a certain circuit class. Our results achieve this, though not
unconditionally.

Tight Security Reductions and Fine-Grained Crypto. Another area the world
of fine-grained cryptography collides with is that of tight security reductions
in cryptography. Bellare et.al. coined the term “concrete” security reductions
in [12,14]. Concrete security reductions are parametrized by time (t), queries (q),
size (s), and success probability (ε). This line of work tracks how a reduction
from a problem to a construction of some cryptographic primitive effects the
four parameters of interest. This started a rich field of study connecting theory
to practical cryptographic primitives (such as PRFs, different instantiations of
symmetric encryption, and even IBE for example [10,11,15,36]). In fine-grained
reductions we also need to track exactly how our adversary’s advantage changes

Public-Key Cryptography in the Fine-Grained Setting 611

throughout our reductions, however, we also track the running time of the honest
parties. So, unlike in the concrete security literature, when the hard problems are
polynomially hard (perhaps because P = NP), we can track the gap in running
times between the honest and dishonest parties. This allows us to build one way
functions and public key cryptosystems when the hard problems we are given
are only polynomially hard (Fig. 1).

Fig. 1. A table of previous works’ results in this area. There have been several results
characterizing different aspects of fine-grained cryptography. *It was [16] who showed
that Merkle’s construction could be realized with a random oracle. However, Merkle
presented the construction.

Similar Assumptions. This paper uses hypotheses on the running times of
problems that, while solvable in polynomial time, are variants of natural NP-
hard problems, in which the size of the solution is a fixed constant. For instance,
k-Sum is the variant of Subset Sum, where we are given n numbers and we need
to find exactly k elements that sum to a given target, and Zero-k-Clique is the
variant of Zero-Clique, in which we are given a graph and we need to find exactly
k nodes that form a clique whose edge weights sum to zero.

With respect to Subset Sum, Impagliazzo and Naor showed how to directly
obtain OWFs and PRGs assuming that Subset Sum is hard on average [32]. The
OWF is f(a, s) = (a,a · s), where a is the list of elements (chosen uniformly at
random from the range R) and s ∈ {0, 1}n represents the set of elements we add
together. In addition to Subset Sum, OWFs have also been constructed from
planted Clique, SAT, and Learning-Parity with Noise [34,41]. The constructions

612 R. LaVigne et al.

from the book of Lindell and the chapter written by Barak [41] come from a
definition of a “plantable” NP-hard problem that is assumed to be hard on
average.

Although our OWFs are equivalent to scaled-down, polynomial-time solvable
characterizations of these problems, we also formalize the property that allows us
to get these fine-grained OWFs (plantability). We combine these NP construc-
tions and formalizations to lay the groundwork for fine-grained cryptography.

In the public-key setting, there has been relatively recent work taking NP-
hard problems and directly constructing public-key cryptosystems [4]. They take
a problem that is NP-hard in its worst case and come up with an average-case
assumption that works well for their constructions. Our approach is similar, and
we also provide evidence for why our assumptions are correct.

In recent work, Subset Sum was also shown to directly imply public-key cryp-
tography [42]. The construction takes ideas from Regev’s LWE construction [48],
turning a vector of subset sum elements into a matrix by writing each element
out base q in a column. The subset is still represented by a 0–1 matrix, and error
is handled by the lack of carrying digits. It is not clear how to directly translate
this construction into the fine-grained world. First, directly converting from Sub-
set Sum to k-Sum just significantly weakens the security without added benefit.
More importantly, the security reduction has significant polynomial overhead,
and would not apply in a very pessimistic Pessiland where random planted Sub-
set Sum instances can be solved in quadratic time, say.

While it would be interesting to reanalyze the time-complexity of this con-
struction (and others) in a fine-grained way, this is not the focus of our work.
Our goal is to obtain novel cryptographic approaches exploiting the fine-grained
nature of the problems, going beyond just recasting normal cryptography in the
fine-grained world, and obtaining somewhat generic constructions.

1.3 Technical Overview

Here we will go into a bit more technical detail in describing our results. First,
we need to describe our hardness assumptions. Then, we will show how to use
them for our fine-grained key exchange, and finally, we will talk briefly about
fine-grained OWFs and hardcore bits.

Our Hardness Assumption. We generate a series of properties where if a problem
has these properties then a fine-grained public key-exchange can be built.

One property we require is that the problem is hard on average, in a fine-
grained sense. Intuitively, a problem is average case indistinguishably hard if
given an instance that is drawn with probability 1/2 from instances with no
solutions and with probability 1/2 from instances with one solution, it is com-
putationally hard on average to distinguish whether the instance has 0 or 1
solutions. The rest of the properties are structural; we need a problem that is
plantable, average-case list-hard, and splittable. Informally,

Public-Key Cryptography in the Fine-Grained Setting 613

– The plantable property roughly says that one can efficiently choose to gen-
erate either an instance without a solution or one with a solution, knowing
where the solution is;

– The average case list-hard property says that if one is given a list of instances
where all but one of them are drawn uniformly over instances with no solu-
tions, and a random one of them is actually drawn uniformly from instances
with one solution, then it is computationally hard to find the instance with
a solution;

– Finally, the splittable property says that one can generate from one average
case instance, two new average case instances that have the same number of
solutions as the original one.

These are natural properties for problems and hypotheses to have. We will
demonstrate in the full version Zero-k-Clique has all of these properties. We
need our problem to have all three of these qualities for the key exchange. For
our one-way function constructions we only need the problem to be plantable.

The structural properties are quite generic, and in principle, there could be
many problems that satisfy them. We exhibit one: the Zero-k-Clique problem.

Because no known algorithmic techniques seem to solve Zero-k-Clique even
when the weights are selected independently uniformly at random from [0, cnk]
for a constant c, folklore intuition dictates that the problem might be hard on
average for this distribution: here, the expected number of k-Cliques is Θ(1), and
solving the decision problem correctly on a large enough fraction of the random
instances seems difficult. This intuition was formally proposed by Pettie [46] for
the very related k-Sum problem which we also consider.

We show that the Zero-k-Clique problem, together with the assumption that
it is fine-grained hard to solve on average, satisfies all of our structural properties,
and thus, using our main theorem, one can obtain a fine-grained key exchange
based on Zero-k-Clique.

Key Exchange Assumption. We assume that when given a complete k-partite
graph with kn nodes and random weights [0, R − 1], R = Ω(nk), any adversary
running in time nk−Ω(1) time cannot distinguish an instance with a zero-k-
clique solution from one without with more than 2/3 chance of success. In more
detail, consider a distribution where with probability 1/2 one generates a ran-
dom instance of size n with no solutions, and with probability 1/2 one generates
a random instance of size n with exactly one solution. (We later tie in this dis-
tribution to our original uniform distribution.) Then, consider an algorithm that
can determine with probability 2/3 (over the distribution of instances) whether
the problem has a solution or not. We make the conjecture that such a 2/3-
probability distinguishing algorithm for Zero-k-Clique, which can also exhibit
the unique zero clique whenever a solution exists, requires time nk−o(1).

Public Key Exchange. So, what does the existence of a problem with our three
properties, plantable, average-case list-hard, and splittable, imply?

614 R. LaVigne et al.

The intuitive statement of our main theorem is that, if a problem has the
three properties, and is nk hard to solve on average and can be generated
in ng time (for Zero-k-Clique g = 2), then a key exchange exists that takes
O(N) time for Alice and Bob to execute, and requires an eavesdropper Eve
Ω̃(N (3k−2g)/(2k−g)) time to break. When k > g Eve takes super linear time in
terms of N . When k = 3 and g = 2, an important case for the Zero-k-Clique prob-
lem, Eve requires Ω̃(N5/4) time.

For the rest of this overview we will describe our construction with the prob-
lem Zero-k-Clique.

To describe how we get our key exchange, it is first helpful to consider Merkle
Puzzles [8,16,43]. The idea is simple: let f be a one way permutation over n bits
(so a range of 2n values) requires 2n(1

2+ε) time to invert for some constant ε > 0.
Then, Alice and Bob could exchange a key by each computing f(v) on 10 · 2n/2

random element v ∈ [2n] and sending those values f(v) to each other. With .9
probability, Alice and Bob would agree on at least one pre-image, v. It would
take an eavesdropper Eve Ω(2n(1

2+ε)) time before she would be able to find the
v agreed upon by Alice and Bob. So, while Alice and Bob must take O(2n/2)
time, Eve must take O(2n(1

2+ε)) time to break it.
Our construction will take on a similar form: Alice and Bob will send sev-

eral problems to each other, and some of them will have planted solutions. By
matching up where they both put solutions, they get a key exchange.

Concretely, Alice and Bob will exchange m instances of the Zero-k-
Clique problem and in

√
m of them (chosen at random), plant solutions. The

other m−√
m will not have solutions (except with some small probability). These

m problems will be indexed, and we expect Alice and Bob to have both planted a
solution in the same index. Alice can check her

√
m indices against Bob’s, while

Bob checks his, and by the end, with constant probability, they will agree on a
single index as a key. In the end, Alice and Bob require O(mng +

√
mnk) time to

exchange this index. Eve must take time Ω̃(nkm). When m = n2k−2g, Alice and
Bob take O(n2k−g) time and Eve takes Ω̃(n3k−2g). We therefore get some gap
between the running time of Alice and Bob as compared to Eve for any value
of k ≥ g. Furthermore, for all δ > 0 there exists some large enough k such that
the difference in running time is at least O(T (n)) time for Alice and Bob and
Ω̃(T (n)1.5−δ) time for Eve. Theorem 5 is the formal theorem statement.

To show hardness for this construction we combine techniques from both fine-
grained complexity and cryptography (see Fig. 2). We take a single instance and
use a self-reduction to produce a list of � instances where one has a solution whp
if the original instance has a solution. In our reductions � will be polynomial in
the input size. Then, we take this list and produce two lists that have a solution
in the same location with high probability if the original instance has a solution.
Finally, we plant

√
� solutions into the list, to simulate Alice and Bob’s random

solution planting.

One Way Functions. First, and informally, a fine-grained OWF is a function
on n bits that requires Õ(T (n)1−δ) time to evaluate for some constant δ > 0,
and if any adversary attempts to invert f in time Õ(T (n)1−δ′

) for any constant

Public-Key Cryptography in the Fine-Grained Setting 615

Fig. 2. A depiction of our reduction showing hardness for our fine-grained key
exchange.

δ′ > 0, she only succeeds with probability at most ε(n), where ε is considered
“insignificant.”

Ball et al. [6] defined fine-grained OWFs, keeping track of the time required to
invert and the probability of inversion in two separate parameters. We streamline
this definition by fixing the probability an adversary inverts to an insignificant
function of input size, which we define in Sect. 2.

For this overview, we will focus on the intuition of using specific problems
k-Sum-R (k-Sum modulo R) or Zero-k-Clique-R (Zero-k-Clique modulo R) to
get fine-grained OWFs, though in the full version, we construct fine-grained
OWFs from a general class of problems. Let N be the size of the input to these
problems. Note that if R is too small (e.g. constant), then these problems are
solvable quickly and the assumptions we are using are false. So, we will assume
R = Ω(nk).

OWF Assumptions. Much like for our key exchange, our assumptions are about
the difficulty of distinguishing an instance of k-Sum or Zero-k-Clique with prob-
ability more than 2/3 in time faster than nk/2 or nk respectively. Formally,
randomly generating a k-Sum-R instance is creating a k lists of size n with val-
ues randomly chosen from [0, R−1]. Recall that a random Zero-k-Clique instance
is a complete k-partite graph where weights are randomly chosen from [0, R−1].
Our ‘weak’ k-Sum-R and Zero-k-Clique-R assumptions state that for any algo-
rithm running in O(n) time, it cannot distinguish between a randomly generated
instance with a planted solution and one without with probability greater than
2/3.

Note that these assumptions are much weaker than the previously described
key-exchange assumption, where we allowed the adversary O(nk−Ω(1)) time
instead of sub-linear.

Theorem 1 (Fine-Grained OWFs (informal)). If for some constant δ > 0
and range R = Ω(nk) either k-Sum-R requires Ω(N1+δ) time to solve with

616 R. LaVigne et al.

probability >2/3 or Zero-k-Clique-R requires Ω(N (1+δ)) time to solve with prob-
ability >2/3 then a fine-grained OWF exists.

The formal theorem is proved in the full version.
Intuitively our construction of a fine-grained OWF runs a planting procedure

on a random instance in time O(N). By our assumptions finding this solution
takes time Ω(N1+δ) for some constant δ > 0, and thus inverting this OWF takes
Ω(N1+δ).

We also get a notion of hardcore bits from this. Unlike in traditional crypto,
we can’t immediately use Goldreich-Levin’s hardcore bit construction [27]. Given
a function on N bits, the construction requires at least Ω(N) calls to the adver-
sary who claims to invert the hardcore bit. When one is seeking super-polynomial
gaps between computation and inversion of a function, factors of N can be
ignored. However, in the fine-grained setting, factors of N can completely elim-
inate the gap between computation and inversion, and so having a notion of
fine-grained hardcore bits is interesting.

We show that for our concrete constructions of fine-grained OWFs, there is
a subset of the input of size O(lg(N)) (or any sub-polynomial function) which
itself requires Ω(N1+δ) time to invert. From this subset of bits we can use
Goldreich-Levin’s hardcore bit construction, only losing a factor of No(1) which
is acceptable in the fine-grained setting.

Theorem 2 (Hardcore Bits (informal)). If for some constant δ > 0 and
range R = Ω(nk) either k-Sum-R requires Ω(N1+δ) time to solve with probability
>2/3 or Zero-k-Clique-R requires Ω(N1+δ) time to solve with probability >2/3
then a fine-grained OWF exists with a hardcore bit that can not be guessed with
probability greater than 1

2 + 1/q(n) for any q(n) = no(1).

The formal theorem is also proved in the full version.
Intuitively, solutions for k-Sum-R and Zero-k-Clique-R can be described in

O(log(n)) bits—we just list the locations of the solution. Given a solution for
the problem, we can just change one of the weights and use the solution location
to produce a correct preimage. So, now using Goldreich-Levin, we only need to
make O(log(n)) queries during the security reduction.

1.4 Organization of Paper

In Sect. 2 we define our notions of fine-grained crypto primitives, including fine-
grained OWFs, fine-grained hardcore bits, and fine-grained key exchanges. In
Sect. 3, we describe a few classes of general assumptions (plantable, splittable,
and average-case list hard), and then describe the concrete fine-grained assump-
tions we use (k-Sum and Zero-k-Clique). Next, in Sect. 4 we show that the con-
crete assumptions we made imply certain subsets of the general assumptions.
In Sect. 5, we show that using an assumption that is plantable, splittable, and
average-case list hard, we can construct a fine-grained key exchange.

Public-Key Cryptography in the Fine-Grained Setting 617

2 Preliminaries: Model of Computation and Definitions

The running times of all algorithms are analyzed in the word-RAM model of
computation, where simple operations such as +,−, ·, bit-shifting, and memory
access all require a single time-step.

Just as in normal exponential-gap cryptography we have a notion of proba-
bilistic polynomial-time (PPT) adversaries, we can similarly define an adversary
that runs in time less than expected for our fine-grained polynomial-time solv-
able problems. This notion is something we call probabilistic fine-grained time
(or PFT). Using this notion makes it easier to define things like OWFs and
doesn’t require carrying around time parameters through every reduction.

Definition 1. An algorithm A is a T (n) probabilistic fine-grained time,
PFTT (n), algorithm if there exists a constant δ > 0 such that A runs in time
O(T (n)1−δ).

Note that in this definition, assuming T (n) = Ω(n), any sub-polynomial factors
can be absorbed into δ.

Additionally, we will want a notion of negligibility that cryptography has.
Recall that a function negl(n) is negligible if for all polynomials Q(n) and suf-
ficiently large n, negl(n) < 1/Q(n). We will have a similar notion here, but we
will use the words significant and insignificant corresponding to non-negligible
and negligible respectively.

Definition 2. A function sig(n) is significant if

sig(n) =
1

no(1)
.

A function insig(n) is insignificant if for all significant functions sig(n) and suf-
ficiently large n,

insig(n) < sig(n).

Note that for every polynomial f , 1/f(n) is insignificant. Also notice that if
a probability is significant for an event to occur after some process, then we only
need to run that process a sub-polynomial number of times before the event
will happen almost certainly. This means our run-time doesn’t increase even
in a fine-grained sense; i.e. we can boost the probability of success of a ran-
domized algorithm running in Õ(T (n)) from 1/ log(n) to O(1) just by repeating
it O(log(n)) times, and still run in Õ(T (n)) time (note that ‘̃ ’ suppresses all
sub-polynomial factors in this work).

2.1 Fine-Grained Symmetric Crypto Primitives

Ball et al. defined fine-grained one-way functions (OWFs) in their work from
2017 [6]. They parameterize their OWFs with two functions: an inversion-time
function T (n) (how long it takes to invert the function on n bits), and an

618 R. LaVigne et al.

probability-of-inversion function ε; given T (n)1−δ′
time, the probability any

adversary can invert is ε(T (n)1−δ′
). The computation time is implicitly defined

to be anything noticeably less than the time to invert: there exists a δ > 0 and
algorithm running in time T (n)1−δ such that the algorithm can evaluate f .

Definition 3 ((δ, ε)-one-way functions [6]). A function f : {0, 1}∗ → {0, 1}∗

is (δ, ε) -one-way if, for some δ > 0, it can be evaluated on n bits in O(T (n)1−δ)
time, but for any δ′ > 0 and for any adversary A running in O(T (n)1−δ′

) time
and all sufficiently large n,

Pr
x←{0,1}n

[A(f(x)) ∈ f−1(f(x))
] ≤ ε(n, δ).

Using our notation of PFTT (n), we will similarly define OWFs, but with one
fewer parameter. We will only be caring about T (n), the time to invert, and
assume that the probability an adversary running in time less than T (n) inverts
with less time is insignificant. We will show in the full version that we can compile
fine-grained one-way functions with probability of inversion ε ≤ 1 − 1

no(1) into
ones with insignificant probability of inversion. So, it makes sense to drop this
parameter in most cases.

Definition 4. A function f : {0, 1}∗ → {0, 1}∗ is T (n) fine-grained one-way
(is an T (n)-FGOWF) if there exists a constant δ > 0 such that it takes time
T (n)1−δ to evaluate f on any input, and there exists a function ε(n) ∈ insig(n),
and for all PFTT (n) adversaries A,

Pr
x←{0,1}n

[A(f(x)) ∈ f−1(f(x))
] ≤ ε(n).

With traditional notions of cryptography there was always an exponential or
at least super-polynomial gap between the amount of time required to evaluate
and invert one-way functions. In the fine-grained setting we have a polynomial
gap to consider.

Definition 5. The (relative) gap of an T (n) fine-grained one-way function f is
the constant δ > 0 such that it takes T (n)1−δ to compute f but for all PFTT (n)

adversaries A,

Pr
x←{0,1}n

[A(f(x)) ∈ f−1(f(x))
] ≤ insig(n).

2.2 Fine-Grained Asymmetric Crypto Primitives

In this paper, we will propose a fine-grained key exchange. First, we will show
how to do it in an interactive manner, and then remove the interaction. Removing
this interaction means that it implies fine-grained public key encryption! Here
we will define both of these notions: a fine-grained non-interactive key exchange,
and a fine-grained, CPA-secure public-key cryptosystem.

First, consider the definition of a key exchange, with interaction. This def-
inition is modified from [16] to match our notation. We will be referring to a
transcript generated by Alice and Bob and the randomness they used to generate
it as a “random transcript”.

Public-Key Cryptography in the Fine-Grained Setting 619

Definition 6 (Fine-Grained Key Exchange). A (T (n), α, γ)-FG-Key
Exchange is a protocol, Π, between two parties A and B such that the following
properties hold

– Correctness. At the end of the protocol, A and B output the same bit (bA =
bB) except with probability γ;

Pr
Π,A,B

[bA = bB] ≥ 1 − γ

This probability is taken over the randomness of the protocol, A, and B.
– Efficiency. There exists a constant δ > 0 such that the protocol for both parties

takes time Õ(T (n)1−δ).
– Security. Over the randomness of Π, A, and B, we have that for all PFTT (n)

eavesdroppers E has advantage α of guessing the shared key after seeing a
random transcript. Where a transcript of the protocol Π is denoted Π(A,B).

Pr
A,B

[E(Π(A,B)) = bB] ≤ 1
2

+ α

A Strong (T (n))-FG-KeyExchange is a (T (n), α, γ)-FG-KeyExchange where α and
γ are insignificant. The key exchange is considered weak if it is not strong.

This particular security guarantee protects against chosen plaintext attacks.
But first, we need to define what we mean by a fine-grained public key cryp-
tosystem.

Definition 7. An T(n)-fine-grained public-key cryptosystem has the following
three algorithms.

KeyGen(1λ) Outputs a public-secret key pair (pk, sk).
Enc(pk,m) Outputs an encryption of m, c.
Dec(sk, c) Outputs a decryption of c, m.

These algorithms must have the following properties:

– They are efficient. There exists a constant δ > 0 such that all three algorithms
run in time O

(
T (n)1−δ

)
.

– They are correct. For all messages m,

Pr
KeyGen,Enc,Dec

[Dec(sk,Enc(pk,m)) = m|(pk, sk) ← KeyGen(1λ)] ≥ 1 − insig(n).

The cryptosystem is CPA-secure if any PFTT (n) adversary A has an insignif-
icant advantage in winning the following game:

1. Setup. A challenger C runs KeyGen(1n) to get a pair of keys, (pk, sk), and
sends pk to A.

2. Challenge. A gives two messages m0 and m1 to the challenger. The challenger
chooses a random bit b

$← {0, 1} and returns c ← Enc(pk,mb) to A.
3. Guess. A outputs a guess b′ and wins if b′ = b.

620 R. LaVigne et al.

3 Average Case Assumptions

Below we will describe four general properties so that any assumed-to-be-hard
problem that satisfies them can be used in our later constructions of one-way
functions and cryptographic key exchanges. We will also propose two concrete
problems with believable fine-grained hardness assumptions on it, and we will
prove that these problems satisfy some, if not all, of our general properties.

Let us consider a search or decision problem P . Any instance of P could
potentially have multiple witnesses/solutions. We will restrict our attention only
to those instances with no solutions or with exactly one solution. We define the
natural uniform distributions over these instances below.

Definition 8 (General Distributions). Fix a size n and a search problem
P . Define D0(P, n) as the uniform distribution over the set S0, the set of all
P -instances of size n that have no solutions/witnesses. Similarly, let D1(P, n)
denote the uniform distribution over the set S1, the set of all P -instances of size
n that have exactly one unique solution/witness. When P and n are clear from
the context, we simply use D0 and D1.

3.1 General Useful Properties

We now turn our attention to defining the four properties that a fine-grained
hard problem needs to have, in order for our constructions to work with it.

To be maximally general, we present definitions often with more than
one parameter. The four properties are: average case indistinguishably hard,
plantable, average case list-hard and splittable.

We state the formal definitions. In these definitions you will see constants for
probabilities. Notably 2/3 and 1/100. These are arbitrary in that the properties
we need are simply that 1/2 < 2/3 and 2/3 is much less than 1 − 1/100. We
later boost these probabilities and thus only care that there are constant gaps.

Definition 9 (Average Case Indistinguishably Hard). For a decision or
search problem P and instance size n, let D be the distribution drawing with
probability 1/2 from D0(P, n) and 1/2 from D1(P, n).

Let val(I) = 0 if I is from the support of D0 and let val(I) = 1 if I is from
the support of D1.

P is Average Case Indistinguishably Hard in time T (n) (T (n)-ACIH) if
T (n) = Ω(n) and for any PFTT (n) algorithm A

Pr
I∼D

[A(I) = val(I)] ≤ 2/3.

We also define a similar notion for search problems. Intuitively, it is hard
to find a ‘witness’ for a problem with a solution, but we need to define what a
witness is and how to verify a witness in the fine-grained world.

Public-Key Cryptography in the Fine-Grained Setting 621

Definition 10 (Average Case Search Hard). For a search problem P and
instance size n, let D1 = D1(P, n).

Let wit(I) denote an arbitrary witness of an instance I with at least one
solution.

P is Average Case Search Hard in time T (n) if T (n) = Ω(n) and

– there exists a PFTT (n) algorithm V (a fine-grained verifier) such that
V (I, wit(I)) = 1 if I has a solution and wit(I) is a witness for it and 0
otherwise

– and for any PFTT (n) algorithm A

Pr
I∼D1

[A(I) = wit(I)] ≤ 1/100.

Note that ACIH implies ACSH, but not the other way around. In fact,
given difficulties in dealing with problems in the average case, getting search-to-
decision reductions seems very difficult.

Our next definition describes a fine-grained version of a problem (or relation)
being ‘plantable’ [41]. The definition of a plantable problem from Lindell’s book
states that a plantable NP-hard problem is hard if there exists a PPT sampling
algorithm G. G produces both a problem instance and a corresponding witness
(x, y), and over the randomness of G, any other PPT algorithm has a negligible
chance of finding a witness for x.

There are a couple of differences between our definition and the plantable
definition from Lindell’s book the [41]. First, we will of course have to put a fine-
grained spin on it: our problem is solvable in time T (n) and so we will need to be
secure against PFTT (n) adversaries. Second, we will be focusing on a decision-
version of our problems, as indicated by Definition 9. Intuitively, our sampler
(Generate) will also take in a bit b to determine whether or not it produces an
instance of the problem that has a solution or does not.

Definition 11 (Plantable ((G(n), ε)-Plantable)). A T (n)-ACIH or T (n)-
ACSH problem P is plantable in time G(n) with error ε if there exists a ran-
domized algorithm Generate that runs in time G(n) such that on input n and
b ∈ {0, 1}, Generate(n, b) produces an instance of P of size n drawn from a
distribution of total variation distance at most ε from Db(P, n).

If it is a T (n) − ACSH problem, then Generate(n, 1) also needs to output a
witness wit(I), in addition to an instance I.

We now introduce the List-Hard property. Intuitively, this property states
that when given a list of length �(n) of instances of P , it is almost as hard to
determine if there exists one instance with a solution as it is to solve an instance
of size �(n) · n.

Definition 12 (Average Case List-hard ((T (n), �(n), δLH)-ACLH)). A
T (n)- ACIH or T (n)-ACSH problem P is Average Case List Hard in time T (n)
with list length �(n) if �(n) = nΩ(1), and for every PFT	(n)·T (n) algorithm A,

622 R. LaVigne et al.

given a list of �(n) instances, I = I1, I2, . . . , I	(n), each of size n distributed as
follows: i

$← [�(n)] and Ii ∼ D1(P, n) and for all j �= i, Ij ∼ D0(P, n);

Pr
I

[A(I) = i] ≤ δLH .

It’s worth noting that this definition is nontrivial only if �(n) = nΩ(1). Oth-
erwise �(n)T (n) = Õ(T (n)), since �(n) would be sub-polynomial.

We now introduce the splittable property. Intuitively a splittable problem
has a process in the average case to go from one instance I into a pair of average
looking problems with the same number of solutions. We use the splittable prop-
erty to enforce that a solution is shared between Alice and Bob, which becomes
the basis of Alice and Bob’s shared key (see Fig. 2).

Definition 13 ((Generalized) Splittable). A T (n)-ACIH problem P is gen-
eralized splittable with error ε, to the problem P ′ if there exists a PFTT (n) algo-
rithm Split and a constant m such that

– when given a P -instance I ∼ D0(P, n), Split(I) produces a list of length m of
pairs of instances {(I11 , I12), . . . , (Im

1 , Im
2)} where ∀i ∈ [1,m] Ii

1, I
i
2 are drawn

from a distribution with total variation distance at most ε from D0(P ′, n) ×
D0(P ′, n).

– when given an instance of a problem I ∼ D1(P, n), Split(I) produces a list of
length m of pairs of instances {(I11 , I12), . . . , (Im

1 , Im
2)} where ∃i ∈ [1,m] such

that Ii
1, I

i
2 are drawn from a distribution with total variation distance at most

ε from D1(P ′, n) × D1(P ′, n).

3.2 Concrete Hypothesis

Problem Descriptions. Two key problems within fine-grained complexity are the
k-Sum problem and the Zero-k-Clique problem.

Given k lists of n numbers L1, . . . , Lk, the k-Sum problem asks, are there
a1 ∈ L1, . . . , ak ∈ Lk so that

∑k
j=1 aj = 0. The fastest known algorithms for k-

Sum run in n�k/2�−o(1) time, and this running time is conjectured to be optimal,
in the worst case (see e.g. [2,44,54]).

The Zero-k-Clique problem is, given a graph G on n vertices and integer edge
weights, determine whether G contains k vertices that form a k-clique so that
the sum of all the weights of the clique edges is 0. The fastest known algorithms
for this problem run in nk−o(1) time, and this is conjectured to be optimal in
the worst case (see e.g. [1,5,17,40]). As we will discuss later, Zero-k-Clique and
k-Sum are related. In particular, it is known [56] that if 3-Sum requires n2−o(1)

time, then Zero-3-Clique requires n3−o(1) time. Zero-3-Clique is potentially even
harder than 3-Sum, as other problems such as All-Pairs Shortest Paths are known
to be reducible to it, but not to 3-Sum.

A folklore conjecture states that when the 3-Sum instance is formed by draw-
ing n integers uniformly at random from {−n3, . . . , n3} no PFTn2 algorithm can

Public-Key Cryptography in the Fine-Grained Setting 623

solve 3-Sum on a constant fraction of the instances. This, and more related
conjectures were explicitly formulated by Pettie [46].

We propose a new hypothesis capturing the folklore intuition, while drawing
some motivation from other average case hypotheses such as Planted Clique.
For convenience, we consider the k-Sum and Zero-k-Clique problems modulo a
number; this variant is at least as hard to solve as the original problems over the
integers: we can reduce these original problems to their modular versions where
the modulus is only k (for k-Sum) or

(
k
2

)
(for Zero-k-Clique) times as large as

the original range of the numbers.
We will discuss and motivate our hypotheses further in Sect. 4.

Definition 14. An instance of the k-Sum problem over range R, k-Sum-R,
consists of kn numbers in k lists L1, . . . , Lk. The numbers are chosen from
the range [0, R − 1]. A solution of a k-Sum-R instance is a set of k numbers
a1 ∈ L1, . . . , ak ∈ Lk such that their sum is zero mod R,

∑k
i=1 ai ≡ 0 mod R.

We will also define the uniform distributions over k-Sum instances that have
a certain number of solutions. We define two natural distributions over k-Sum-R
instances.

Definition 15. Define Dksum
uniform[R,n] be the distribution of instances obtained

by picking each integer in the instance uniformly at random from the range
[0, R − 1].

Define Dksum
0 [R,n] = D0(k-Sum-R,n) to be the uniform distribution over

k-Sum-R instances with no solutions. Similarly, let Dksum
1 [R,n] = D1(k-Sum-

R,n) to be the uniform distribution over k-Sum-R instances with 1 solution.
The distribution Dksum[R, i, n] is the uniform distribution over k-

Sum instances with n values chosen modulo R and where there are exactly i
distinct solutions.

Let Dksum
0 [R,n] = Dksum[R, 0, n], and Dksum

1 [R,n] = Dksum[R, 1, n].

We now proceed to define the version of Zero-k-Clique that we will be using.
In addition to working modulo an integer, we restrict our attention to k-partite
graphs. In the worst case, the Zero-k-Clique on a general graph reduces to Zero-
k-Clique on a complete k-partite graph2[3].

Definition 16. An instance of Zero-k-Clique-R consists of a k-partite graph
with kn nodes and partitions P1, . . . , Pk. The k-partite graph is complete: there
is an edge between a node v ∈ Pi and a node u ∈ Pj if and only if i �= j. Thus,
every instance has

(
k
2

)
n2 edges. The weights of the edges come from the range

[0, R − 1].
A solution in a Zero-k-Clique-R instance is a set of k nodes v1 ∈ P1, . . . , vk ∈

Pk such that the sum of all the weights on the
(
k
2

)
edges in the k-clique formed

by v1, . . . , vk is congruent to zero mod R:
∑

i∈[1,k]

∑
j∈[1,k] and j
=i w(vi, vj) ≡ 0

mod R. A solution is also called a zero k-clique.
2 This reduction is done using color-coding [3], an example of this lemma exists in the

paper “Tight Hardness for Shortest Cycles and Paths in Sparse Graphs” [40].

624 R. LaVigne et al.

We now define natural distributions over Zero-k-Clique-R instances.

Definition 17. Define Dzkc
uniform[R,n] to be the distribution of instances

obtained by picking each integer edge weight in the instance uniformly at random
from the range [0, R − 1].

Define Dzkc
0 [R,n] = D0(Zero-k-Clique-R,n) to be the uniform distribution

over Zero-k-Clique-R instances with no solutions. Similarly, let Dzkc
1 [R,n] =

D1(Zero-k-Clique-R,n) to be the uniform distribution over Zero-k-Clique-R
instances with 1 solution.

The distribution is Dzkc[R, i, n] the uniform distribution over zero k-clique
instances on kn nodes with weights chosen modulo R and where there are
exactly i distinct zero k-cliques in the graph. Let Dzkc

0 [R,n] = Dzkc[R, 0, k] and
Dzkc

1 [R,n] = Dzkc[R, 1, k].

Weak and Strong Hypotheses. The strongest hypothesis that one can make is
that the average case version of a problem takes essentially the same time to
solve as the worst case variant is hypothesized to take. The weakest but still
useful hypothesis that one could make is that the average case version of a prob-
lem requires super-linear time. We formulate both such hypotheses and derive
meaningful consequences from them.

We state the weak versions in terms of decision problems and the strong
version in terms of search problems. Our fine-grained one-way functions and
fine-grained key exchanges can both be built using the search variants. We make
these choices for clarity of presentation later on.

Definition 18 (Weak k-Sum-R Hypothesis). There exists some large
enough constant c such that for all constants c′ > c, distinguishing Dksum

0 [c′R,n]
and Dksum

1 [c′R,n] is n1+δ-ACIH for some δ > 0.

Definition 19 (Weak Zero-k-Clique-R Hypothesis). There exists some
large enough constant c such that for all constants c′ > c, distinguishing
Dzkc

0 [c′R,n] and Dzkc
1 [c′R,n] is n2+δ-ACIH for some δ > 0.

Notice that the Zero-k-Clique-R problem is of size O(n2).

Definition 20 (Strong Zero-k-Clique-R Hypothesis for range nck). For
all c > 1, given an instance I drawn from the distribution Dzkc

1 [nck, n] where
the witness (solution) is the single zero k-clique is formed by nodes {v1, . . . , vk},
finding {v1, . . . , vk} is nk-ACSH.

Some may find the assumption with range nk to be the most believable
assumption. This is where the probability of a Zero-k-Clique existing at all is a
constant.

Definition 21 (Random Edge Zero-k-Clique Hypothesis). Let sol(I) be
a function over instances of Zero-k-Clique problems where sol(I) = 0 if there
are no zero k-cliques and sol(I) = 1 if there is exactly one of zero k-clique. Let
wit(I) be a zero k-clique in I, if one exists. Given an instance I drawn from

Public-Key Cryptography in the Fine-Grained Setting 625

the distribution Dzkc
uniform[nk, n] there is some large enough n such that for any

PFTnk algorithm A

Pr
I∼D

[A(I) = wit(I)|sol(I) = 1] ≤ 1/200.

Theorem 3. Strong Zero-k-Clique-R Hypothesis for range R = nck is implied
by the Random Edge Random Edge Zero-k-Clique Hypothesis if c > 1 is a con-
stant.

The proof of this Theorem is in the full version.3

4 Our Assumptions - Background and Justification

In this section, we justify making average-case hardness assumptions for k-SUM
and Zero k-Clique—and why we do not for other fine-grained problems. We start
with some background on these problems, and then justify why our hypotheses
are believable.

4.1 Background for Fine-Grained Problems

Among the most popular hypotheses in fine-grained complexity is the one con-
cerning the 3-Sum problem defined as follows: given three lists A,B and C of
n numbers each from {−nt, . . . , nt} for large enough t, determine whether there
are a ∈ A, b ∈ B, c ∈ C with a+b+c = 0. There are multiple equivalent variants
of the problem (see e.g. [25]).

The fastest 3-Sum algorithms run in n2(log log n)O(1)/ log2 n time (Baran,
Demaine and Patrascu for integer inputs [9], and more recently Chan’18 for real
inputs [19]). Since the 1990s, 3-Sum has been an important problem in compu-
tational geometry. Gajentaan and Overmars [25] formulated the hypothesis that
3-Sum requires quadratic time (nowadays this means n2−o(1) time on a word-
RAM with O(log n) bit words), and showed via reductions that many geometry
problems also require quadratic time under this hypothesis. In recent years, many
more consequences of this hypothesis have been derived, for a variety of non-
geometric problems, such as sequence local alignment [1], triangle enumeration
[37,44], and others.

As shown by Vassilevska Williams and Williams [56], 3-Sum can be reduced
to a graph problem, 0-Weight Triangle, so that if 3-Sum requires n2−o(1) time
on inputs of size n, then 0-Weight Triangle requires N3−o(1) time in N -node
graphs. In fact, Zero-Weight Triangle is potentially harder than 3-Sum, as one
can also reduce to it the All-Pairs Shortest Paths (APSP) problem, which is
widely believed to require essentially cubic time in the number of vertices. There
is no known relationship (via reductions) between APSP and 3-Sum.

The Zero-Weight Triangle problem is as follows: given an n-node graph with
edge weights in the range {−nc, . . . , nc} for large enough c, denoted by the
3 Thank you to Russell Impagliazzo for discussions related to the sizes of ranges R.

626 R. LaVigne et al.

function w(·, ·), are there three nodes p, q, r so that w(p, q) + w(q, r) + w(r, p) =
0? Zero-Weight Triangle is just Zero-3-Clique where the numbers are from a
polynomial range. An equivalent formulation assumes that the input graph is
tripartite and complete (between partitions).

Both 3-Sum and Zero-Weight Triangle have generalizations for k ≥ 3: k-
Sum and Zero-Weight k-Clique, defined in the natural way. We give their defi-
nitions in Definitions 14 and 16 respectively.

4.2 Justifying the Hardness of Some Average-Case Fine-Grained
Problems

The k-Sum problem is conjectured to require n�k/2�−o(1) time (for large enough
weights), and the Zero-Weight k-Clique problem is conjectured to require nk−o(1)

time (for large enough weights), matching the best known algorithms for both
problems (see [54]). Both of these conjectures have been used in fine-grained
complexity to derive conditional lower bounds for other problems (e.g. [1,5,17,
40]).

It is tempting to conjecture average-case hardness for the key hard prob-
lems within fine-grained complexity: Orthogonal Vectors (OV), APSP, 3-Sum.
However, it is known that APSP is not hard on average, for many natural distri-
butions (see e.g. [21,45]), and OV is likely not (quadratically) hard on average
(see e.g. [35]).

On the other hand, it is a folklore belief that 3-Sum is actually hard on
average. In particular, if one samples n integers uniformly at random from
{−cn3, . . . , cn3} for constant c, the expected number of 3-Sums in the instance
is Θ(1), and there is no known truly subquadratic time algorithm that can solve
3-Sum reliably on such instances. The conjecture that this is a hard distribution
for 3-Sum was formulated for instance by Pettie [46].

The same folklore belief extends to k-Sum. Here a hard distribution seems
to be to generate k lists uniformly from a large enough range {−cnk, . . . , cnk},
so that the expected number of solutions is constant.

Due to the tight relationship between 3-Sum and Zero-Weight Triangle, one
might also conjecture that uniformly generated instances of the latter problem
are hard to solve on average. In fact, if one goes through the reductions from
the worst-case 3-Sum problem to the worst-case Zero-Weight Triangle, via the
3-Sum Convolution problem [44,57] starting from an instance of 3-Sum with
numbers taken uniformly at random from a range, then one obtains a list of
Zero-Weight Triangle instances that are essentially average-case. This is eas-
ier to see in the simpler but less efficient reduction in [57] which from a 3-
Sum instance creates n1/3 instances of (complete tripartite) Zero-Weight Trian-
gle on O(n2/3) nodes each and whose edge weights are exactly the numbers from
the 3-Sum instance. Thus, at least for k = 3, average-case hardness for 3-Sum is
strong evidence for the average-case hardness for Zero-Weight Triangle.

In the full version we give a reduction between uniform instances of uniform
Zero-Weight k-Clique with range Θ(nk) and instances of planted Zero-Weight

Public-Key Cryptography in the Fine-Grained Setting 627

k-Clique with large range. Working with instances of planted Zero-Weight k-
Clique with large range is easier for our hardness constructions, so we use those
in most of this paper.

Justifying the Hardness of Distinguishing. Now, our main assumptions
consider distinguishing between the distributions D0 and D1 for 3-Sum and Zero-
Weight Triangle. Here we take inspiration from the Planted Clique assumption
from Complexity [29,33,38]. In Planted Clique, one first generates an Erdös-
Renyi graph that is expected to not contain large cliques, and then with proba-
bility 1/2, one plants a clique in a random location. Then the assertion is that
no polynomial time algorithm can distinguish whether a clique was planted or
not.

We consider the same sort of process for Zero-k-Clique. Imagine that we
first generate a uniformly random instance that is expected to have no zero k-
Cliques, by taking the edge weights uniformly at random from a large enough
range, and then we plant a zero k-Clique with probability 1/2 in a random
location. Similarly to the Planted Clique assumption, but now in a fine-grained
way, we can assume that distinguishing between the planted and the not-planted
case is computationally difficult.

Our actual hypothesis is that when one picks an instance that has no zero
k-Cliques at random with probability 1/2 and picks one that has a zero k-Clique
with probability 1/2, then distinguishing these two cases is hard. As we show
later, this hypothesis is essentially equivalent to the planted version (up to some
slight difference between the underlying distributions).

Similarly to Planted Clique, no known approach for Zero-k-Clique seems to
work in this average-case scenario, faster than essentially nk, so it is natural to
hypothesize that the problem is hard. We leave it as a tantalizing open problem
to determine whether the problem is actually hard, either by reducing a popular
worst-case hypothesis to it, or by providing a new algorithmic technique.

5 Fine-Grained Key Exchange

Now we will explain a construction for a key exchange using general distributions.
We will then specify the properties we need for problems to generate a secure
key exchange. We will finally generate a key exchange using the strong Zero-k-
Clique hypothesis. Sketches for most of proofs of these theorems are provided
here, while full proofs can be found in the full version.

Before doing this, we will define a class of problems as being Key Exchange
Ready (KER).

Definition 22 (Key Exchange Ready (KER)). A problem P is �(n)-
KER with generate time G(n), solve time S(n) and lower bound solving time
T (n) if

– there is an algorithm which runs in Θ̃(S(n))) time that determines if an
instance of P of size n has a solution or not,

– the problem is (�(n), δLH)-ACLH where δLH ≤ 1
34 ,

628 R. LaVigne et al.

– is Generalized Splittable with error ≤1/(128�(n)) to the problem P ′ and,
– P ′ is plantable in time G(n) with error ≤1/(128�(n)).
– �(n)T (n) ∈ ω̃

(
�(n)G(n) +

√
�(n)S(n)

)
, and

– there exists an n′ such that for all n ≥ n′, �(n) ≥ 214.

5.1 Description of a Weak Fine-Grained Interactive Key Exchange

The high level description of the key exchange is as follows. Alice and Bob
each produce �(n) − √

�(n) instances using Generate(n, 0) and
√

�(n) generate
instances with Generate(n, 1). Alice then shuffles the list of �(n) instances so that
those with solutions are randomly distributed. Bob does the same thing (with
his own private randomness). Call the set of indices that Alice chooses to plant
solutions SA and the set Bob picks SB. The likely size of SA ∩SB is 1. The index
SA ∩ SB is the basis for the key.

Alice determines the index SA ∩ SB by brute forcing all problems at indices
SA that Bob published. Bob can brute force all problems at indices SB that
Alice published and learn the set SA ∩ SB .

If after brute forcing for instances either Alice or Bob find a number of
solutions not equal to 1 then they communicate this and repeat the procedure
(using interaction). They only need to repeat a constant number of times.

More formally our key exchange does the following:

Construction 4 (Weak Fine-Grained Interactive Key Exchange). A
fine-grained key exchange for exchanging a single bit key.

– Setup(1n): output mpk = (n, �(n)) and �(n) > 214.
– KeyGen(mpk): Alice and Bob both get parameters (n, �).

• Alice generates a random SA ⊂ [�], |SA| =
√

�. She generates a list of
instances IA = (I1A, . . . , I	

A) where for all i ∈ SA, Ii = Generate(n, 1) and
for all i �∈ SA, Ii

A = Generate(n, 0) (using Alice’s private randomness).
Alice publishes IA and a random vector v $← {0, 1}log 	.

• Bob computes IB = (I1B , . . . , I	
B) similarly: generating a random SB ⊂ [�]

of size
√

� and for every instance Ij ∈ IB, if j ∈ SB, Ij = Generate(n, 1)
and if j �∈ SB, Ij = Generate(n, 0). Bob publishes IB.

– Compute shared key: Alice receives IB and Bob receives IA.
• Alice computes what she believes is SA ∩ SB: for every i ∈ SA, she brute

force checks if Ii
B has a solution or not. For each i that does, she records

in list LA.
• Bob computes what he thinks to be SB ∩ SA: for every j ∈ SB, he checks

if Ij
A has a solution. For each that does, he records it in LB.

– Check: Alice takes her private list LA: if |LA| �= 1, Alice publishes that the
exchange failed. Bob does the same thing with his list LB: if |LB | �= 1, Bob
publishes that the exchange failed. If either Alice or Bob gave or received a
failure, they both know, and go back to the KeyGen step.
If no failure occurred, then |LA| = |LB | = 1. Alice interprets the index i ∈ LA

as a vector and computes i · v as her key. Bob uses the index in j ∈ LB and
also computes j ·v. With high probability, i = j and so the keys are the same.

Public-Key Cryptography in the Fine-Grained Setting 629

5.2 Correctness and Soundness of the Key Exchange

We want to show that with high probability, once the key exchange succeeds,
both Alice and Bob get the same shared index. The full proofs for Lemmas 1, 2,
and 3 can be found in the full version of this paper.

Lemma 1. After running Construction 4, Alice and Bob agree on a key k with
probability at least 1 − 1

10,000	e .

Sketch of Proof. We notice that the only way Alice and Bob fail to exchange
a key is if they both generate a solution accidentally in each other’s sets (that
is Alice generates exactly one accidental solution in SB and Bob in SA), and
SA ∩ SB = ∅. All other ‘failures’ are detectable in this interactive case and
simply require Alice and Bob to run the protocol again. So, we just bound the
probability this happens, and since εplant ≤ 1

100
√

	
, we get the bound 1− 1

10,000	e .
��

We next show that the key-exchange results in gaps in running time and
success probability between Alice and Bob and Eve. Then, we will show that
this scheme can be boosted in a fine-grained way to get larger probability gaps
(a higher chance that Bob and Alice exchange a key and lower chance Eve gets
it) while preserving the running time gaps.

First, we need to show that the time Alice and Bob take to compute a shared
key is less (in a fine-grained sense) than the time it takes Eve, given the public
transcript, to figure out the shared key. This includes the number of times we
expect Alice and Bob to need to repeat the process before getting a usable key.

Time for Alice and Bob.

Lemma 2. If a problem P is �(n)-KER with plant time G(n), solve time S(n)
and lower bound T (n) when �(n) > 100, then Alice and Bob take expected time
O(�G(n) +

√
�S(n)) to run the key exchange.

Time for Eve.

Lemma 3. If a problem P is �(n)-KER with plant time G(n), solve time S(n)
and lower bound T (n) when �(n) ≥ 214, then an eavesdropper Eve, when given
the transcript IT , requires Ω̃(�(n)T (n)) time to solve for the shared key with
probability 1

2 + sig(n).

Sketch of Proof. This is proved in two steps. First, if Eve can determine the
shared key in time PFT	(n)T (n) with advantage δEve, then she can also figure
out the index in PFT	(n)T (n) time with probability δEve/4. Second, if Eve can
compute the index with advantage δEve/4, we can use Eve to solve the list-
version of P in PFT	(n)T (n) with probability δEve/16, which is a contradiction
to the list-hardness of our problem. This first part follows from a fine-grained
Goldreich-Levin hardcore-bit theorem, proved in the full version.

The second part, proving that once Eve has the index, then she can solve
an instance of P , uses the fact that P is list-hard, generalized splittable, and

630 R. LaVigne et al.

plantable. Intuitively, since P is already list hard, we will start with a list of
average problem instances (I1, . . . , I), and our goal will be to have Eve tell
us which instance (index) has a solution. We apply the splittable property to
this list to get lists of pairs of problems. For one of these lists of pairs, there
will exist an index where both instances have solutions. These lists of pairs will
almost look like the transcript between Alice and Bob during the key exchange:
if I had a solution then there should be one index such that both instances
in a pair have a solution. Now, we just need to plant

√
� − 1 solutions in the

left instances and
√

� − 1 on the right, and this will be indistinguishable from
a transcript between Alice and Bob. If Eve can find the index of the pair with
solutions, we can quickly check that she is right (because the instances inside
the list are relatively small), and simply return that index. ��

Now, we can put all of these together to get a weak fine-grained key exchange.
We will then boost it to be a strong fine-grained key exchange (see the Definition
6 for weak versus strong in this setting).

Theorem 5. If a problem P is �(n)-KER with plant time G(n), solve time
S(n) and lower bound T (n) when �(n) ≥ 214, then Construction 4 is a
((�(n)T (n), α, γ)-FG-KeyExchange, with γ ≤ 1

10,000	(n)e and α ≤ 1
4 .

Proof. This is a simple combination of the correctness of the protocol, and the
fact that an eavesdropper must take more time than the honest parties. We
have that the Pr[bA = bB] ≥ 1 − 1

10,000	e , implying γ ≤ 1
10,000	e from Lemma

1. We have that Alice and Bob take time O(�(n)G(n) +
√

�(n)S(n)) and Eve
must take time Ω̃(�(n)T (n)) to get an advantage larger than 1

4 by Lemmas 2

and 3. Because P is KER, �(n)T (n) ∈ ω̃
(
�(n)G(n) +

√
�(n)S(n)

)
, implying

there exists δ > 0 so that �(n)G(n)+
√

�(n)S(n) ∈ Õ(�(n)T (n)1−δ). So, we have
correctness, efficiency and security. ��

Next, we are going to amplify the security of this key exchange using parallel
repetition, drawing off of strategies from [24] and [13].

Theorem 6. If a weak (�(n)T (n), α, γ)-FG-KeyExchange exists where γ = O
(

1
nc

)

for some constant c > 0, but α = O(1), then a Strong (�(n)T (n))-FG-KeyExchange
also exists.

The proof of Theorem 6 is in the full version of this paper.

Remark 1. It is not obvious how to amplify correctness and security
of a fine-grained key exchange at the same time. If we have a weak
(�(n)T (n), α, γ)-FG-KeyExchange, where α = insig(n) but γ = O(1), then we
can use a standard repetition error-correcting code to amplify γ. That is, we can
run the key exchange log2(n) times to get log2(n) keys (most of which will agree
between Alice and Bob), and to send a message with these keys, send that mes-
sage log2(n) times. With all but negligible probability, the decrypted message
will agree with the sent message a majority of the time. Since with very high

Public-Key Cryptography in the Fine-Grained Setting 631

probability the adversary cannot recover any of the keys in PFT	(n)T (n) time,
this repetition scheme is still secure.

As discussed in Theorem 6, we can also amplify a key exchange that has con-
stant correctness and polynomial soundness to one with 1 − insig(n) correctness
and polynomial soundness. However, it is unclear how to amplify both at the
same time in a fine-grained manner.

Corollary 1. If a problem P is �(n)-KER, then a Strong (�(n)T (n))-FG-
KeyExchange exists.

The proof of Corollary 1 is included in the full version of this paper.
Finally, using the fact that Alice and Bob do not use each other’s messages to

produce their own in Construction 4, we prove that we can remove all interaction
through repetition to get a T (n)-fine-grained public key cryptosystem. The key
insight is that if there are no false positives Then LA and LB are the same, they
will either both fail or both succeed. The proof Theorem 7 below is included in
the full version of the paper.

Theorem 7. If a problem P is �(n)-KER, then a �(n) ·T (n)-fine-grained public
key cryptosystem exists.

Note that this encryption scheme can be used to send any sub-polynomial
number of bits, just by running it in sequence sub-polynomially many times. We
also want to note that the adversary’s advantage cannot be any less than 1

poly(n)

since, due to the fine-grained nature of the scheme, the adversary can always
solve the hard problem via guessing.

Corollary 2. Given the strong Zero-k-Clique-R Hypothesis over range R = nk,
there exists a (�(n)T (n), 1/4, insig(n))-FG-KeyExchange, where Alice and Bob can
exchange a sub-polynomial-sized key in time Õ

(
n2k−2

)
when �(n) = n2k−4.

There also exists a �(n)T (n)-fine-grained public-key cryptosystem, where we
can encrypt a sub-polynomial sized message in time Õ

(
n2k−2

)
.

The Zero-3-Clique hypothesis (the Zero Triangle hypothesis) is the most
believable version of the Zero-k-Clique hypothesis. Note that even with the
strong Zero-3-Clique hypothesis we get a key exchange with a gap in the running
times of Alice and Bob vs Eve. In this case, the gap is t = 5/4 = 1.2.

References

1. Abboud, A., Williams, V.V., Weimann, O.: Consequences of faster alignment of
sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8572, pp. 39–51. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43948-7 4

2. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for
dynamic problems. In: 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, 18–21 October 2014, pp. 434–443
(2014)

https://doi.org/10.1007/978-3-662-43948-7_4
https://doi.org/10.1007/978-3-662-43948-7_4

632 R. LaVigne et al.

3. Alon, N., Yuster, R., Zwick, U.: Color coding. Encyclopedia of Algorithms, pp. 335–
338. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-2864-4 76

4. Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from different
assumptions. In: Proceedings of the Forty-Second ACM Symposium on Theory of
Computing, STOC 2010, pp. 171–180. ACM, New York (2010)

5. Backurs, A., Tzamos, C.: Improving viterbi is hard: better runtimes imply faster
clique algorithms. CoRR, abs/1607.04229 (2016)

6. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Average-case fine-grained hard-
ness. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp. 483–496
(2017)

7. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of work from worst-case
assumptions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 789–819. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 26

8. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal—an O(n2)-query
attack on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03356-8 22

9. Baran, I., Demaine, E.D., Patrascu, M.: Subquadratic algorithms for 3SUM. Algo-
rithmica 50(4), 584–596 (2008)

10. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the
cascade construction and its concrete security. In: 37th Annual Symposium on
Foundations of Computer Science, FOCS 1996, Burlington, Vermont, USA, 14–16
October 1996, pp. 514–523 (1996)

11. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th Annual Symposium on Foundations of Computer
Science, FOCS 1997, Miami Beach, Florida, USA, 19–22 October 1997, pp. 394–403
(1997)

12. Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: new methods for message
authentication using finite pseudorandom functions. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-44750-4 2

13. Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in
computationally sound protocols? In: Proceedings of the 38th Annual Symposium
on Foundations of Computer Science, FOCS 1997, p. 374. IEEE Computer Society,
Washington, DC (1997)

14. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-48658-5 32

15. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof
and improved concrete security for waters’ IBE scheme. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 24

16. Biham, E., Goren, Y.J., Ishai, Y.: Basing weak public-key cryptography on strong
one-way functions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 55–72.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 4

17. Bringmann, K., Gawrychowski, P., Mozes, S., Weimann, O.: Tree edit distance
cannot be computed in strongly subcubic time (unless APSP can). In: Proceed-
ings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, 7–10 January 2018, pp. 1190–1206 (2018)

https://doi.org/10.1007/978-1-4939-2864-4_76
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-642-03356-8_22
https://doi.org/10.1007/978-3-642-03356-8_22
https://doi.org/10.1007/3-540-44750-4_2
https://doi.org/10.1007/3-540-44750-4_2
https://doi.org/10.1007/3-540-48658-5_32
https://doi.org/10.1007/978-3-642-01001-9_24
https://doi.org/10.1007/978-3-642-01001-9_24
https://doi.org/10.1007/978-3-540-78524-8_4

Public-Key Cryptography in the Fine-Grained Setting 633

18. Carmosino, M.L., Gao, J., Impagliazzo, R., Mihajlin, I., Paturi, R., Schneider, S.:
Nondeterministic extensions of the strong exponential time hypothesis and con-
sequences for non-reducibility. In: Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, Cambridge, MA, USA, 14–16 Jan-
uary 2016, pp. 261–270 (2016)

19. Chan, T.M.: More logarithmic-factor speedups for 3SUM, (median, +)-convolution,
and some geometric 3SUM-hard problems. In: Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, 7–10 January 2018, pp. 881–897 (2018)

20. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

21. Cooper, C., Frieze, A.M., Mehlhorn, K., Priebe, V.: Average-case complexity of
shortest-paths problems in the vertex-potential model. Random Struct. Algorithms
16(1), 33–46 (2000)

22. Degwekar, A., Vaikuntanathan, V., Vasudevan, P.N.: Fine-grained cryptography.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 533–562.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 19

23. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (2006)

24. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryp-
tion errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 21

25. Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational
geometry. Comput. Geom. 45(4), 140–152 (2012)

26. Gall, F.L.: Powers of tensors and fast matrix multiplication. In: International Sym-
posium on Symbolic and Algebraic Computation, ISSAC 2014, Kobe, Japan, 23–25
July 2014, pp. 296–303 (2014)

27. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Pro-
ceedings of the Twenty-First Annual ACM Symposium on Theory of Computing,
STOC 1989, pp. 25–32. ACM, New York (1989)

28. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms.
Trans. Am. Math. Soc. 117, 285–306 (1965)

29. Hazan, E., Krauthgamer, R.: How hard is it to approximate the best nash equilib-
rium? SIAM J. Comput. 40(1), 79–91 (2011)

30. Hennie, F.C., Stearns, R.E.: Two-tape simulation of multitape turing machines. J.
ACM 13(4), 533–546 (1966)

31. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
the Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Min-
nesota, USA, 19–22 June 1995, pp. 134–147 (1995)

32. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as
subset sum, vol. 9, no. 02 (2002)

33. Jerrum, M.: Large cliques elude the metropolis process. Random Struct. Algo-
rithms 3(4), 347–360 (1992)

34. Juels, A., Peinado, M.: Hiding cliques for cryptographic security. Des. Codes Crypt.
20(3), 269–280 (2000)

35. Kane, D.M., Williams, R.R.: The orthogonal vectors conjecture for branching pro-
grams and formulas. CoRR, abs/1709.05294 (2017)

https://doi.org/10.1007/978-3-662-53015-3_19
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-540-24676-3_21

634 R. LaVigne et al.

36. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Proceedings of the 10th ACM Conference on Computer and
Communications Security, CCS 2003, Washington, DC, USA, 27–30 October 2003,
pp. 155–164 (2003)

37. Kopelowitz, T., Pettie, S., Porat, E.: Higher lower bounds from the 3SUM conjec-
ture. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, 10–12 January 2016, pp.
1272–1287 (2016)

38. Kucera, L.: Expected complexity of graph partitioning problems. Discrete Appl.
Math. 57(2–3), 193–212 (1995)

39. Levin, L.A.: On storage capacity of algorithms. Soviet Math. Dokl. 14(5), 1464–
1466 (1973)

40. Lincoln, A., Williams, V.V., Williams, R.R.: Tight hardness for shortest cycles and
paths in sparse graphs. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, 7–10
January 2018, pp. 1236–1252 (2018)

41. Lindell, Y.: Tutorials on the Foundations of Cryptography: Dedicated to Oded
Goldreich, 1st edn. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57048-8

42. Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives
provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 382–400. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 23

43. Merkle, R.C.: Secure communications over insecure channels. Commun. ACM
21(4), 294–299 (1978)

44. Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: Pro-
ceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 5–8 June 2010, pp. 603–610 (2010)

45. Peres, Y., Sotnikov, D., Sudakov, B., Zwick, U.: All-pairs shortest paths in O(n2)
time with high probability. J. ACM 60(4), 26:1–26:25 (2013)

46. Pettie, S.: Higher lower bounds from the 3SUM conjecture. In: Fine-Grained Com-
plexity and Algorithm Design Workshop at the Simons Institute (2015)

47. Razborov, A.A., Rudich, S.: Natural proofs. In: Proceedings of the Twenty-Sixth
Annual ACM Symposium on Theory of Computing, Montréal, Québec, Canada,
23–25 May 1994, pp. 204–213 (1994)

48. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, STOC 2005, pp. 84–93. ACM, New York (2005)

49. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

50. Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 133–148. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 9

51. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
52. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-

ing. In: Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, SFCS 1994, pp. 124–134. IEEE Computer Society, Washington, DC (1994)

53. Tseitin, G.S.: Seminar on math, logic (1956)
54. Williams, V.V.: On some fine-grained questions in algorithms and complexity. In:

Proceedings of the International Congress of Mathematicians (2018, to appear)

https://doi.org/10.1007/978-3-319-57048-8
https://doi.org/10.1007/978-3-319-57048-8
https://doi.org/10.1007/978-3-642-11799-2_23
https://doi.org/10.1007/978-3-642-11799-2_23
https://doi.org/10.1007/3-540-46035-7_9

Public-Key Cryptography in the Fine-Grained Setting 635

55. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In: Pro-
ceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012,
New York, NY, USA, 19–22 May 2012, pp. 887–898 (2012)

56. Williams, V.V., Williams, R.: Subcubic equivalences between path, matrix and
triangle problems. In: 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, Las Vegas, Nevada, USA, 23–26 October 2010, pp. 645–654
(2010)

57. Williams, V.V., Williams, R.: Finding, minimizing, and counting weighted sub-
graphs. SIAM J. Comput. 42(3), 831–854 (2013)

Zero Knowledge II

Exploring Constructions of Compact
NIZKs from Various Assumptions

Shuichi Katsumata1,2(B), Ryo Nishimaki3, Shota Yamada1,
and Takashi Yamakawa3

1 AIST, Tokyo, Japan
{shuichi.katsumata,yamada-shota}@aist.go.jp

2 The University of Tokyo, Tokyo, Japan
3 NTT Secure Platform Laboratories, Tokyo, Japan

{ryo.nishimaki.zk,takashi.yamakawa.ga}@hco.ntt.co.jp

Abstract. A non-interactive zero-knowledge (NIZK) protocol allows a
prover to non-interactively convince a verifier of the truth of the state-
ment without leaking any other information. In this study, we explore
shorter NIZK proofs for all NP languages. Our primary interest is
NIZK proofs from falsifiable pairing/pairing-free group-based assump-
tions. Thus far, NIZKs in the common reference string model (CRS-
NIZKs) for NP based on falsifiable pairing-based assumptions all require
a proof size at least as large as O(|C|κ), where C is a circuit computing
the NP relation and κ is the security parameter. This holds true even for
the weaker designated-verifier NIZKs (DV-NIZKs). Notably, construct-
ing a (CRS, DV)-NIZK with proof size achieving an additive-overhead
O(|C|)+poly(κ), rather than a multiplicative-overhead |C|·poly(κ), based
on any falsifiable pairing-based assumptions is an open problem.

In this work, we present various techniques for constructing NIZKs
with compact proofs, i.e., proofs smaller than O(|C|)+poly(κ), and make
progress regarding the above situation. Our result is summarized below.

– We construct CRS-NIZK for all NP with proof size |C| + poly(κ)
from a (non-static) falsifiable Diffie-Hellman (DH) type assumption
over pairing groups. This is the first CRS-NIZK to achieve a com-
pact proof without relying on either lattice-based assumptions or
non-falsifiable assumptions. Moreover, a variant of our CRS-NIZK
satisfies universal composability (UC) in the erasure-free adaptive
setting. Although it is limited to NP relations in NC1, the proof
size is |w| · poly(κ) where w is the witness, and in particular, it
matches the state-of-the-art UC-NIZK proposed by Cohen, shelat,
and Wichs (CRYPTO’19) based on lattices.

– We construct (multi-theorem) DV-NIZKs for NP with proof size
|C| + poly(κ) from the computational DH assumption over pairing-
free groups. This is the first DV-NIZK that achieves a compact proof
from a standard DH type assumption. Moreover, if we further assume
the NP relation to be computable in NC1 and assume hardness of a
(non-static) falsifiable DH type assumption over pairing-free groups,
the proof size can be made as small as |w| + poly(κ).

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 639–669, 2019.
https://doi.org/10.1007/978-3-030-26954-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_21

640 S. Katsumata et al.

Another related but independent issue is that all (CRS, DV)-NIZKs
require the running time of the prover to be at least |C|·poly(κ). Consider-
ing that there exists NIZKs with efficient verifiers whose running time is
strictly smaller than |C|, it is an interesting problem whether we can con-
struct prover-efficient NIZKs. To this end, we construct prover-efficient
CRS-NIZKs for NP with compact proof through a generic construction
using laconic functional evaluation schemes (Quach, Wee, and Wichs
(FOCS’18)). This is the first NIZK in any model where the running time
of the prover is strictly smaller than the time it takes to compute the
circuit C computing the NP relation.

Finally, perhaps of an independent interest, we formalize the notion
of homomorphic equivocal commitments, which we use as building blocks
to obtain the first result, and show how to construct them from pairing-
based assumptions.

1 Introduction

1.1 Background

Zero-knowledge (ZK) protocols, introduced by Goldwasser, Micali, and Rackoff
[37], allow a prover to convince a verifier of the truth of a statement without
leaking any knowledge other than the fact that the statement is indeed true. A
practically useful and theoretically alluring feature for a ZK protocol to have is
non-interactiveness, where a prover simply outputs a single message (called a
proof) and convinces the verifier of the truth of the statement. Unfortunately,
it is known that non-interactive ZK (NIZK) for non-trivial languages do not
exist in the plain model where there is no trusted setup [36]. However, Blum,
Feldman, and Micali [10] showed how to construct a NIZK in a setting where the
prover and verifier have access to a shared common reference string (as known
as CRS-NIZK). Since then, NIZKs have been used as a ubiquitous building
block for cryptography ranging from the early chosen-ciphertext secure public
key encryption schemes [27,59,66], advanced signature schemes [5,19,65], and
multi-party computation [35].
Compact NIZK. One of the important research topics for NIZK is making the
proof size as small as possible. So far, CRS-NIZK for all of NP in the standard
model is known to exist from (doubly-enhanced) trapdoor permutation [6,28,34],
pairing [30,40,41,43,44,53], indistinguishability obfuscation (iO) [8,9,15,67], or
correlation intractable hash function [12,13,46]. Among these, CRS-NIZKs that
have proof size independent of the size of the circuit C computing the NP rela-
tion are limited to those based on either a knowledge assumption [30,41,53] or
iO [67]. There also exist generic conversions from standard CRS-NIZKs to CRS-
NIZKs with proof size independent of |C|. However, they rely on fully homo-
morphic encryption (FHE) [31,32] or homomorphic trapdoor functions (HTDF)
[20] whose existence is only implied from lattice-based assumptions. Put dif-
ferently, the classical CRS-NIZKs based on trapdoor permutations or (falsifi-
able [33,58]) pairing-based assumptions all require a large proof size that is

Exploring Constructions of Compact NIZKs from Various Assumptions 641

polynomially related to the circuit size |C|. Notably, even the most well-known
Groth-Ostrovsky-Sahai NIZK (GOS-NIZK) [43] based on the decisional linear
or subgroup decision assumptions over pairing groups requires the proof size to
be as large as O(|C|κ), where κ is the security parameter. In fact, the CRS-
NIZK with the shortest proof that does not rely on any of the above strong tools
is the NIZK of Groth [40] based on the security of Naccache-Stern public key
encryption scheme [57] which achieves proof size |C| · polylog(κ). Therefore, it
remains an interesting open problem to construct CRS-NIZKs with proof size
smaller than the current state-of-the-art while avoiding to rely on strong tools
such as knowledge assumptions, iO, FHE, and HTDF. Specifically, in this paper,
one of the primary interest is to obtain a CRS-NIZK with proof size achiev-
ing an additive-overhead O(|C|)+poly(κ), rather than a multiplicative-overhead
|C| · poly(κ) (or |C| · polylog(κ)), based on any falsifiable pairing-based assump-
tions. Hereafter, we call such NIZKs with proof size O(|C|) + poly(κ) as NIZKs
with compact proofs for simplicity.
Designated Verifier NIZKs and Compact Proofs. A relaxation of CRS-
NIZKs called the designated verifier NIZKs (DV-NIZKs) [24,61] retain most of
the useful properties of CRS-NIZKs and in some applications can be used as a
substitute for CRS-NIZKs. The main difference between CRS and DV-NIZKs
is that the latter limits the proof to only be verifiable by a designated party in
possession of a verification key; the proof can still be generated by anybody as in
CRS-NIZKs. Due to this extra secret information possessed by the verifier, DV-
NIZKs suffer from the so-called verifier rejection attack. Specifically, a prover
may learn partial information of the secret verification key and break soundness
if the verifier uses the same verification key for verifying multiple statements.
In this paper, our primary interest is multi-theorem DV-NIZKs (also known as
reusable or unbounded-soundness DV-NIZKs) where the verification key can be
reused for multiple statements without compromising soundness. Surprisingly,
most DV-NIZKs [17,18,24,55,61,69] (that are not a simple downgrade of CRS-
NIZKs) are known to either suffer from the verifier rejection attack or to be
limited to specific NP languages. It was not until recently that the first multi-
theorem DV-NIZK for all NP languages was (concurrently and independently)
shown by Couteau and Hofheinz [21], Katsumata et al. [47], and Quach et al. [63].
They proposed a tweak to the classical Feige-Lapidot-Shamir (FLS) NIZK pro-
tocol [28] and showed for the first time how to construct DV-NIZKs from the
computational Diffie-Hellman (CDH) assumption over pairing-free groups; an
assumption which is not yet known to imply CRS-NIZKs. However, one drawback
of their DV-NIZK is that the CRS size and proof size are huge, i.e., poly(κ, |C|).
This is due to the fact that the FLS NIZK, which they base their construction
on, is highly specific to the NP-complete Hamiltonicity problem. It is unclear if
we can make their scheme compact since all other (CRS-)NIZKs following the
footsteps of FLS NIZK such as [40,48,50] suffer from the same problem of having
large CRS and proof size. Therefore, it is unclear whether such a weak assump-
tion as CDH over pairing-free groups can be used to construct a DV-NIZK with

642 S. Katsumata et al.

compact proofs. In fact, constructing DV-NIZKs with compact proof from any
pairing/pairing-free group assumptions remains open.

Prover-Efficient NIZKs. Continuing the line of NIZKs with compact proofs, it
is very natural and appealing to consider NIZKs that enjoy efficient provers, i.e.,
the running time of the prover is small. We say the prover is efficient if its running
time is strictly smaller than the time it takes to compute C(x,w) for statement x
and witness w, where recall C was the circuit computing the NP relation. As an
example, we can imagine a case where a user (acting as a prover) is given some
sort of credential w as a witness by a trusted authority and is required to prove in
zero-knowledge the fact that it possesses a valid credential to make some action.
More concretely, in group signatures [5] a trusted authority will provide users
with a credential which allows them to sign anonymously on behalf of the group.
In such a case, it would be appealing if the user could generate a proof without
requiring to invest computational time-dependent of |C|, since if zero-knowledge
was not required, the prover could have simply output the credential w in the
clear and completely outsourced the computation of C(x,w) to the verifier. Since
the authority is providing a valid credential w to the user, in principle, the user
should never need to compute C(x,w) to check whether w is valid.

As far as our knowledge goes, all NIZKs, regardless of CRS or DV, have a
prover with running time at least |C| · poly(κ) which is much larger than the
time it takes to simply compute the circuit C. We emphasize that solutions to
the counterpart notion of efficient verifiers are well known and studied. Specifi-
cally, NIZKs with compact proofs with the additional property of having efficient
verifiers are known as ZK-succinct non-interactive arguments (ZK-SNARGs) or
ZK-succinct non-interactive arguments of knowledge (ZK-SNARKs).1 They have
been the subject of extensive research, e.g., [7,25,30,40,42,53,54,60], where con-
structions are known to exist either in the random oracle model or based on
non-falsifiable assumptions. We also note that it would be impossible to con-
struct a NIZK where both the prover and the verifier are efficient since the
circuit C representing the NP relation must be computed by at least one of
the parties to check the validity of the witness w. Therefore, it is an interesting
question of whether there exists an opposite flavor of the current NIZKs where
we have an efficient prover instead of an efficient verifier.

1.2 Our Contribution

In this paper, we provide new constructions of CRS-NIZK and DV-NIZK with
compact proofs. The former is instantiated on a pairing group and the latter
on a paring-free group. The tools and techniques which we use for our CRS-
NIZK can be slightly modified to construct universally composable NIZK (UC-
NIZK) [43] with compact proofs over pairing groups. Finally, we provide a generic
construction of a CRS-NIZK with an efficient prover using as a building block
1 We note that in ZK-SNARG/SNARK, it is conventional to require an efficient verifier

to have running time that is only poly-logarithmic dependent of |C|, rather than
being just strictly smaller than |C|.

Exploring Constructions of Compact NIZKs from Various Assumptions 643

the recently proposed laconic functional evaluation (LFE) scheme of Quach, Wee,
and Wichs [64]. We summarize our results below and refer to Tables 1, 2, and
3 for a comparison between prior works. We note that we only include multi-
theorem NIZKs supporting all of NP based on falsifiable assumptions in the
table.

1. We construct CRS-NIZKs for NP with compact proof from a (non-static)
assumption over pairing groups, namely, the (n,m)-computational Diffie-
Hellman exponent and ratio (CDHER) assumption introduced by [47]. This
is the first CRS-NIZK to achieve a compact proof without relying on either
lattice-based assumptions, knowledge assumptions, or indistinguishability
obfuscation. The proof size has an additive-overhead |C|+poly(κ), rather than
a multiplicative-overhead |C| · poly(κ), where C is the circuit that computes
the NP relation (See Table 1). Moreover, if we assume the NP relation to
be computable in NC1, we can make the proof size as small as |w| + poly(κ),
where w is the witness. This matches the proof size of the CRS-NIZK of
Gentry et al. [32] based on fully-homomorphic encryption.

2. We construct UC-NIZKs for NP relations in NC1 with compact proof from
the (n,m)-CDHER assumption. Although it is limited to NP relations in
NC1, it matches the smallest proof size among all the UC-NIZKs secure
against adaptive corruptions in the erasure-free setting (See Table 2). The
proof size is small as |w| · poly(κ), and in particular, matches the recent UC-
NIZK of Cohen, shelat, and Wichs [20] based on lattice-assumptions. Here,
note that for NC1 circuits, the dependence on the depth d they have can be
ignored, since asymptotically d is smaller than κ.

3. We construct (multi-theorem) DV-NIZKs for NP with compact proof from
the CDH assumption over pairing-free groups. This is the first DV-NIZK
that achieves a compact proof from a weak and static Diffie-Hellman type
assumption such as CDH. Specifically, similarly to the above CRS-NIZK, the
proof size of our DV-NIZK is |C| + poly(κ), whereas all previous DV-NIZKs
had proof size poly(|C|, κ) (See Table 3). Moreover, if we further assume
the NP relation to be computable in NC1 and assume the hardness of
the parameterized �-computational Diffie-Hellman inversion (CDHI) assump-
tion over pairing-free groups [16,56], we can make the proof size as small as
|w| + poly(κ).

4. Finally, we construct prover-efficient CRS-NIZKs for NP through a generic
construction using LFE schemes [64]. This is the first NIZK in any model
(e.g., CRS, DV) where the running time of the prover is strictly smaller than
the time it takes to compute the circuit C computing the NP relation. Using
any non-prover-efficient CRS-NIZK, we generically construct a CRS-NIZK
where the running time of the prover (and the proof size) is poly(κ, |x|, |w|, d),
independent of the circuit size |C|, by instantiating the LFE scheme by the
sub-exponential security of the learning with errors (LWE) assumption with
sub-exponential modulus-to-noise ratio, where x is the statement and d is the
depth of C. Moreover, if we use as building block a CRS-NIZK whose prover
running time is smaller than |C| · poly(κ) (e.g., [43]), the running time and

644 S. Katsumata et al.

proof size can be made as small as Õ(|x|+ |w|) ·poly(κ, d) by instantiating the
LFE scheme by the adaptive LWE assumption with sub-exponential modulus-
to-noise ratio introduced in [64].

Along the way of obtaining our first and second results, we formalize a new
tool called homomorphic equivocal commitments (HEC)2, which may be of inde-
pendent interest. An HEC is a commitment with two additional properties called
equivocality and homomorphism. The equivocality enables one to generate a com-
mitment that can be opened to any message by using a master secret key. The
homomorphism for a circuit family C = {C : X → Z} informally requires that
one can commit to a message x ∈ X , where its commitment com can be fur-
ther publicly modified to a commitment comC on the message C(x) ∈ Z for
any circuit C ∈ C. Here, a decommitment for comC can be computed by the
knowledge of the message x, decommitment of com, and the circuit C. To the
knowledgeable readers, we note that HEC is a strictly weaker primitive com-
pared to homomorphic trapdoor functions [39]. Previously, an HEC supporting
the family of all polynomial-sized circuits were only (implicitly) known from
lattice-based assumptions [39]. Apart from their construction, known (implicit)
constructions of HEC only support linear functions [62] or group operations on
a pairing group [2]. In this paper, we provide the first instantiation of HEC
supporting NC1 based on any pairing-based assumptions, namely, the (n,m)-
CDHER assumption introduced in [47]. The construction is inspired by the recent
construction of compact homomorphic signatures of Katsumata et al. [47]. The
proposed HEC enjoys a particular form of compactness which is especially useful
for generically converting CRS-NIZKs with non-compact proofs to CRS-NIZKs
with compact proofs. Concretely, for any polynomially-sized circuit C, the eval-
uated commitment comC and its decommitment of our HEC are of size poly(κ)
independent of |C|, and one can verify the validity of the decommitment in time
poly(κ) independent of |C|. Somewhat surprisingly, we also construct another
instantiation of HEC supporting NC1 based on the CDH assumption over pair-
ing groups. Although this HEC does not enjoy compactness, and hence cannot
be used for our compact CRS-NIZK conversion, we believe it to be an interesting
primitive on its own since we achieve homomorphic computations in NC1 from
such a weak assumption as CDH.

1.3 Technical Overview

Our results can be broken up into three parts. The first two results concerning
CRS and UC-NIZKs with short proof are obtained through a generic conver-
sion from NIZKs with non-compact proofs to NIZKs with compact proofs using
homomorphic equivocal commitments (HEC); a primitive which we formalize
and provide instantiations in this work. The third result concerning DV-NIZKs

2 This primitive was already informally mentioned in [39] and we do not take credit
for proposing the concept of HEC. We note that Abe et al. [2] also introduced a
similar primitive with the name homomorphic trapdoor commitments.

Exploring Constructions of Compact NIZKs from Various Assumptions 645

Table 1. Comparison of CRS-NIZKs for NP.

Reference CRS size Proof size Assumption (Misc.)

FLS [28] poly(κ, |C|) poly(κ, |C|) Trapdoor
permutation†

Groth [40] |C| · ktpm · polylog(κ)
+poly(κ)

|C| ·ktpm ·polylog(κ)
+poly(κ)

Trapdoor
permutation†

Groth [40] |C|·polylog(κ)+poly(κ) |C| · polylog(κ) +
poly(κ)

Naccache-Stern PKE

GOS [43] poly(κ) O(|C|κ) DLIN/SD

CHK, Abusalah [3,14] poly(κ, |C|) poly(κ, |C|) CDH
(pairing group)

GGIPSS [32] poly(κ) |w| + poly(κ) FHE and CRS-NIZK
circular security

Sect. 3 poly(κ, |C|) |C| + poly(κ) (n, m)-CDHER

Sect. 3 poly(κ, |C|, 2d) |w| + poly(κ) (n, m)-CDHER
(limited to NC1

relation)

Sect. 5 poly(κ, |x|, |w|, d) poly(κ, |x|, |w|, d) LFE and CRS-NIZK
(prover-efficient,
implied by sub-exp.
LWE)

Sect. 5 (|x| + |w|) · poly(κ, d) Õ(|x| + |w|) ·
poly(κ, d)

LFE and CRS-NIZK‡
(prover-efficient,
implied by adaptive
LWE)

In column “CRS size” and “Proof size”, κ is the security parameter, |x|, |w| is the statement and
witness size, |C| and d are the size and depth of the circuit computing the NP relation, and ktpm

is the length of the domain of the trapdoor permutation. In column “Assumption”, DLIN stands
for the decisional linear assumption, SD stands for the subgroup decision assumption, (n, m)-

CDHER stands for the (parameterized) computational DH exponent and ratio assumption,

LFE stands for laconic functional evaluation, and sub-exp. LWE stands for sub-exponentially

secure learning with errors (LWE).
†If the domain of the permutation is not {0, 1}n, we further assume they are doubly enhanced
[34].
‡We additionally require a mild assumption that the prover run time is linear in the size of the
circuit computing the NP relation.

with short proof size based on pairing-free groups, that is, CDH and �-CDHI,
are obtained by extending the recent result of Katsumata et al. [47] which con-
structs the first NIZKs in the preprocessing model (PP-NIZKs) with short proof
size from pairing-free groups. As explained later, PP-NIZK is a strictly weaker
primitive compared to DV-NIZK. Finally, the fourth result concerning prover-
efficient NIZK is obtained by a generic construction based on the recently devel-
oped laconic function evaluation scheme of Quach et al. [64]. In the following,
we explain these approaches in more detail.

Generic Construction of Compact (CRS, UC)-NIZK from HEC. Here,
we explain our construction of compact CRS-NIZK. Our starting point is the

646 S. Katsumata et al.

Table 2. Comparison of UC-NIZKs for NP.

Reference Security (erasure-free) CRS size Proof size Assumption
(Misc.)

GOS [43] Adaptive (�) poly(κ) O(|C|κ) DLIN/SD

GGIPSS [32] Adaptive (✗) poly(κ) |w| + poly(κ) FHE and UC-
NIZK
(circular

security)

CsW [20] Adaptive (�) poly(κ, d) |w| · poly(κ, d) HTDF and
UC-NIZK

Sect. 3 Adaptive (�) poly(κ, |C|, 2d) |w| · poly(κ) (n, m)-CDHER
(limited to NC1

relation)

In column “CRS size” and “Proof size”, κ is the security parameter, |w| is the witness
size, |C| and d are the size and depth of circuit computing the NP relation. In col-
umn “Assumption”, DLIN stands for the decisional linear assumption, SD stands for the
subgroup decision assumption, HTDF stands for homomorphic trapdoor functions, and
(n, m)-CDHER stands for the (parameterized) computational DH exponent and ratio
assumption.

Table 3. Comparison of DV-NIZKs for NP.

Reference CRS size Proof size Verification key size Assumption
(Misc.)

CH, KNYY,
QRW
[21,47,63]

poly(κ, |C|) poly(κ, |C|) poly(κ, |C|) CDH
(pairing-free
group)

Sect. 4 poly(κ) |C| + poly(κ) poly(κ) CDH
(pairing-free
group)

Sect. 4 2d · poly(κ) |w| + poly(κ) poly(κ) �-CDHI
(pairing-free
group,
limited to NC1

relation)

In the columns concerning sizes, κ is the security parameter, |w| is the witness-
size, |C| and d are the size and depth of the circuit computing the NP relation.
In column “Assumption”, �-CDHI stands for the �-computational Diffie-Hellman
inversion assumption.

recent result by Katsumata et al. [47], who constructed a designated prover NIZK
(DP-NIZK) with compact proof, where DP-NIZK is an analogue of DV-NIZK
where the prover requires secret information to generate proofs and anybody
can publicly verify the proofs. Since the construction of Katsumata et al. is an
instantiation of the generic conversion from homomorphic signature to DP-NIZK
proposed by Kim and Wu [51], we first briefly review Kim and Wu’s conversion.
Recall that in homomorphic signature, a signature σ on a message m ∈ {0, 1}�

generated by a secret key sk, can be homomorphically evaluated to a signature

Exploring Constructions of Compact NIZKs from Various Assumptions 647

σ on C(m) for a circuit C : {0, 1}� → {0, 1}. Anybody can verify the validity of
the signature by using a public verification key vk and the circuit C. As for the
security requirements, we need that given a verification key vk and a signature σ
on m, it is computationally hard to forge a signature σ∗ on z such that z �= C(m)
(unforgeability) and an honestly evaluated signature σ on z does not reveal infor-
mation about m beyond the fact that it was derived from a signature on m such
that C(m) = z (context-hiding). Furthermore, as an efficiency requirement, we
need that the size of σ is independent of the size of the circuit C. In Kim and
Wu’s construction of DP-NIZK, the prover is given a signature σ on a secret key
k of a secret key encryption (SKE) scheme as the secret proving key. When the
designated prover proves that x is in some language L that is specified by a rela-
tion R, it generates an encryption ct of the witness w such that (x,w) ∈ R and
homomorphically evaluates the signature σ with respect to a circuit that com-
putes fx,ct, where fx,ct is a function that takes as input k′ and outputs whether
(x,SKE.Dec(k′, ct)) ∈ R. The proof for DP-NIZK is then set as ct and the homo-
morphically evaluated signature σ. The verifier prepares the function fx,ct from
ct and x, and simply checks σ is a correct signature on 1 with respect to the evalu-
ated function fx,ct. The soundness of the protocol follows from the unforgeability
of the homomorphic signature since fx,ct(k′) = 0 for any k′ when x is not in the
language induced by the relation R. Furthermore, the zero-knowledge property
of the protocol follows from the security of SKE and the context-hiding property
of the homomorphic signature. Katsumata et al. [47] gave a new homomorphic
signature scheme with short evaluated signature σ that supports the function
class of NC1 circuits based on a newly introduced (non-static) pairing-based
assumption called the (n,m)-computational Diffie-Hellman exponent and ratio
(CDHER) assumption. Plugging this homomorphic signature into the Kim-Wu
conversion, they obtained the first compact DP-NIZK for all NP based on any
pairing-based assumptions.3

The aim of our work is to modify the Kim-Wu conversion and remove the
necessity of the prover keeping secret information to generate a proof so that
we can convert the compact DP-NIZK of Katsumata et al. into a compact CRS-
NIZK. The main reason why their construction cannot be used as a CRS-NIZK
is because the prover cannot generate the signature σ on the fly without knowing
the signing key sk of the homomorphic signature. To this end, our first idea is
to let the prover choose vk, sk, and k on its own. This would allow the prover
to generate a proof as in the designated prover setting since it can generate the
signature σ on k on its own by using the signing key sk. The proof for the CRS-
NIZK will then consist of the verification key vk and a proof of the DP-NIZK.
Unfortunately, there are multiple of problems with this naive approach. The first
problem is that the size of the verification key vk used in Katsumata et al. [47] is
polynomially dependent on the size of the circuit that computes the relation to be

3 Note that any NP relation can be converted to an NP relation in NC1 by expanding
the witness size as large as the circuit computing the original NP relation. Notably,
a homomorphic signature scheme supporting the function class of NC1 circuits is
sufficient for constructing DP-NIZK for all of NP.

648 S. Katsumata et al.

proven, and thus, this ruins the compactness property of the original DP-NIZK
proof. The second problem is that we can no longer invoke the unforgeability of
the homomorphic signature to prove soundness since unforgeability holds against
adversaries who only has access to a verification key vk and a signature σ. Indeed,
in the specific case of Katsumata et al.’s homomorphic signature scheme, an
adversary will be able to completely break the soundness of the resulting scheme
if it is further given the signing key sk. Therefore, to resolve these problems,
we make use of the special structure that the homomorphic signature scheme of
Katsumata et al. has and abstract it to a primitive which we call homomorphic
equivocal commitments (HEC).

Our key observation is that in the Katsumata et al.’s homomorphic signature
scheme, the reverse direction of the signing procedure is possible without the
knowledge of the secret signing key sk if we are allowed to program part of the
verification key vk. Namely, the verification key vk can be divided into two parts
vk0 and vk1 where the size of vk1 is compact (i.e., independent of the size of the
circuit), and for a fixed vk0 and k, one can sample a signature σ and efficiently
compute the remaining part of the verification key vk1 without knowledge of
the secret signing key sk so that σ is a valid signature on k with respect to the
entire verification key vk = (vk0, vk1). We then modify our above idea using this
reverse direction of computation. Namely, we put the non-compact part of the
verification key vk0 in the common reference string. The prover first choose k, σ
on its own and then computes the remaining compact part of the verification key
vk1 from them so that σ is a valid signature on k with respect to the verification
key vk. Notably, the prover no longer requires knowledge of the secret signing
key sk, and thus, the prover can generate a proof publicly. The resulting proof
is the same as in the case for the above naive construction except that we now
only append vk1 to the underlying DP-NIZK proof, rather than vk0 and vk1. The
first problem of having a large proof size we encountered in our above attempt
is now resolved since we moved the non-compact part of the verification key vk0
to the common reference string and the proof now only contains the compact
vk1 and the compact proof of the underlying DP-NIZK. At first glance, the
second problem of losing soundness seems to be resolved as well, as the prover
is choosing the signature σ without knowledge of the underlying secret signing
key sk. However, we encounter a new problem. Namely, once again, we cannot
directly use the unforgeability of the homomorphic signature to prove soundness,
since this time the part of the verification key vk1 that the adversary appends to
the underlying DP-NIZK proof may be maliciously chosen in a way that deviates
from the security setting of the homomorphic signature. However, luckily, the
proof for unforgeability provided by Katsumata et al. can be adapted without
much change to the setting where vk1 follows an arbitrary distribution since
their proof does not depend on the specific distribution which vk1 is chosen
from. In this work, to capture this special security requirement as well as the
syntactic structure that we require for the homomorphic signature, we introduce
a new primitive that we call homomorphic equivocal commitment (HEC) and
instantiate it by mimicking the homomorphic signature scheme of Katsumata
et al. [47]. Roughly speaking, in our formulation, we regard vk1 as a commitment
of a message k with respect to a randomness σ.

Exploring Constructions of Compact NIZKs from Various Assumptions 649

While the above explanation conveys our main idea, we need some more
modification to obtain our final construction. In the above construction, an hon-
est prover outputs a “commitment” vk1 of a secret key k. However, a malicious
prover may choose the commitment that does not correspond to any secret key.
In this case, we can no longer argue soundness. To avoid the problem, we rely
on a non-compact NIZK to prove the well-formedness of the commitment. Since
the size of the circuit for checking the well-formedness is independent of the size
of the circuit for computing the relation to be proven, this does not harm the
compactness of the proof. We finally remark that the construction we explained
so far is still slightly different from the one we give in Sect. 3.2. There, we change
the scheme so that the prover provides the proof of knowledge of σ instead of
sending σ as part of the proof in the clear. While our scheme is secure without
this change, this makes it easier to extend our construction to the UC-secure
setting.

The proof size of the resulting CRS-NIZK is |C|+poly(κ) since our HEC only
supports NC1 and thus we have to expand the witness to the concatenation of
all values corresponding to each wire of the circuit verifying the relation to make
the verification of the relation be done in NC1. On the other hand, if the relation
can be verified in NC1 from the beginning, then the expansion is not needed
and the proof size is as small as |w| + poly(κ).

Interestingly, our CRS-NIZK can also be seen as a variant of the UC-NIZK
recently proposed by Cohen, shelat, and Wichs [20]. The differences from their
scheme are (1) an HTDF is replaced with an HEC, (2) a witness is encrypted
by SKE of which key is committed by a HEC instead of the witness itself, and
(3) one-time signatures are omitted. If we are to construct a UC-NIZK in the
adaptive non-erasure setting as is done in [20], the modifications (2) and (3) are
no longer applicable, but (1) is still applicable. Based on this observation, we
obtain a UC-NIZK for NC1 in the adaptive non-erasure setting with a similar
proof size to that of [20] based on a HEC instead of a HTDF. A caveat of
our construction is that the scheme only supports NP languages verifiable in
NC1 whereas their scheme supports all of NP (verifiable by a polynomial-size
circuit). On the other hand, our abstraction as HEC instead of HTDF enables
us to instantiate the scheme based on a pairing assumption instead of lattices. In
particular, it seems difficult to construct HTDF based on a pairing assumption.

Compact DV-NIZKs Based on Pairing-Free Groups. Here, we explain
our constructions of compact DV-NIZKs. Actually, we give a generic compiler to
convert any non-compact DV-NIZK to a compact one additionally assuming the
existence of PKE and NC1-decryptable SKE with additive ciphertext overhead.
In this overview, we discuss a specific instantiation based on the CDH assumption
in pairing-free groups.

The starting point of our constructions is the recent construction of compact
NIZKs in the preprocessing model (PP-NIZKs) by Katsumata et al. [47] based
on inner-product functional encryptions (IPFE) [1].4 PP-NIZK is a relaxation
4 Actually, their construction is based on a variant of IPFE called IPFE on exponent

(expIPFE). We note that their construction works with standard IPFE. They used

650 S. Katsumata et al.

of (CRS, DV, DP)-NIZK where both the prover and the verifier are given prov-
ing and verification keys, respectively, which should be hidden from each other.
Katsumata et al. first constructed a context-hiding homomorphic MAC for arith-
metic circuits by adding the context-hiding property to the non-context-hiding
homomorphic MAC of Catalano and Fiore [16] by using an IPFE. They then
plugged the context-hiding homomorphic MAC into the generic conversion by
Kim and Wu [51] to obtain PP-NIZKs.5 Recall that in the PP-NIZK construc-
tion of Kim and Wu, a prover key consists of an SKE key k and a signature σ on
k, and a verification key consists of a verification key vk of a homomorphic MAC
scheme. The reason why their scheme is PP-NIZK and not DV-NIZK is that a
prover has to obtain a signature σ on k which should be generated by a trusted
third party who has the corresponding signing key sk.6 Similarly to the case of
our CRS-NIZK explained in the previous section, we observe the following fact.
If one can choose σ and vk in the reverse order, that is, if one can first choose
the signature σ, and then define vk so that σ is a valid signature on k, then
we could modify the scheme to be a DV-NIZK by letting the prover choose k
and σ on its own. Below, we observe that the homomorphic MAC of Katsumata
et al. [47] indeed has this property. To explain this, we first recall the structure
of their homomorphic MAC.

In their homomorphic MAC scheme, a verification key vk (which is also a
signing key) consists of s

$← Z
∗
p, r $← Z

�
p and a decryption key of an IPFE

corresponding to the vector (s, . . . , sD) ∈ Z
D
p where p is a sufficiently large

prime, � is the message length, and D is the degree of the arithmetic circuits
supported by the homomorphic MAC scheme.7 A signature on k is defined to
be σ := (r − k) · s−1 mod p. From the form of σ, we can see that for any fixed
k and s, one can set σ and r in the reverse order, that is, one can first pick σ
and then set r := k + σ · s mod p.

Going back to the construction of NIZK, this structure enables us to get
close to DV-NIZK. Namely, a prover can now choose k and σ by itself, and it
no longer needs any proving key generated by a trusted third party. However,
there is an important problem still remaining on how the verifier gets to know
r = k + σ · s mod p, which is required for verification. Recall that r was part
of the private verification key of the PP-NIZK of Kim and Wu. If s is given to
a prover, then we cannot rely on unforgeability of the homomorphic MAC to
prove soundness, and if the prover sends k and σ in the clear, then we cannot
rely on the security of SKE to prove zero-knowledge. Therefore the prover has
to transmit r = k + σ · s mod p to the verifier without knowing s nor revealing

the notion of expIPFE instead of IPFE for making it possible to instantiate the
scheme based on the DDH-based scheme by Agrawal, Libert, and Stehlé [4].

5 Kim and Wu [51] showed that if one uses their generic conversion on homomorphic
MACs instead of homomorphic signatures, it would result in PP-NIZKs instead of
DP-NIZKs.

6 In a homomorphic MAC, we can let sk := vk since both are kept private.
7 We remark that we cannot include the master secret key of IPFE in vk since the

context-hiding property should hold even against the verifier who sees vk.

Exploring Constructions of Compact NIZKs from Various Assumptions 651

k and σ to the verifier. We observe that this task can be done by using IPFE.
Namely, we give a secret key corresponding to the vector (1, s) of IPFE to the
verifier as a part of his verification key, and a prover encrypts vectors (ki, σi) for
each i ∈ [�] where ki and σi are the i-th entry of k and σ, respectively, and sends
the ciphertexts as a part of the proof. Then a verifier can obtain r = k + σ · s
mod p by simply decrypting the IPFE ciphertexts with his decryption key.

Though the above idea seems to work at first glance, there is a problem that
was also addressed in [47]. Namely, since a standard security notion of IPFE
does not consider a malicious encryptor, an adversary may generate a malformed
ciphertext whose decryption result is perfectly under his control, which breaks
soundness. To prevent such an attack, Katsumata et al. [47] required a property
called an extractability for an IPFE, which means that one can extract a corre-
sponding message from any possibly malformed ciphertext if it does not decrypt
to ⊥. They then showed that the DDH-based IPFE scheme of Agrawal, Libert,
and Stehlé [4] can be used as an extractable IPFE. However, unfortunately, we
will not be able to simply plug in the extractable IPFE of Agrawal et al. into
our DV-NIZK. This is because the IPFE of Agrawal et al. embeds the message
into the exponent of a group element, and forces one to compute the discrete
logarithm to decrypt. Therefore, unless we can be sure that the exponent will
be small, the IPFE of Agrawal et al. is difficult to use. Here, the reason why the
PP-NIZK of Katsumata et al. [47] did not face any issue with this somewhat
awkward decryption algorithm was because the verification algorithm only con-
sisted of checking whether the decryption result is equal to a certain value, which
could be tested in the exponent, using the verification key (s, r). However, in our
case, the verifier must first decrypt r using the IPFE secret key corresponding
to the vector (1, s) to recover r, and only then it can run the internal verification
algorithm of [47] using the pair (s, r). Notably, the verifier would have to solve
the discrete logarithm for a random value in Zp to recover the piece r of the veri-
fication key used in the PP-NIZK of Katsumata et al. However, obviously, there
is no way to compute this efficiently. Therefore, in this work, we must take a dif-
ferent approach. Concretely, instead of relying on the extractability of IPFE, we
require a prover to provide a proof that he has honestly generated ciphertexts by
using another (non-compact) DV-NIZK. Here, since the validity check of IPFE
ciphertexts can be done with computational complexity independent of the size
of the language the prover really wants to prove, we can use a non-compact DV-
NIZK for this part while keeping the whole proof size compact. In summary, we
can convert the PP-NIZK of [47] to a DV-NIZK by adding � IPFE ciphertexts
along with their validity proof whose sizes are poly(κ). Since the proof size of
the PP-NIZK of [47] is |C| + poly(κ), the proof size of the resulting DV-NIZK
is also |C| + poly(κ). Moreover, we note that single-key secure IPFE suffices for
the above construction of DV-NIZK. Since single-key secure functional encryp-
tion for all polynomial-sized functions exist under the existence of PKE [38]
and DV-NIZK for all of NP exists under the CDH assumption on a pairing-free
group [21,47,63], we can instantiate the above DV-NIZK based on the CDH

652 S. Katsumata et al.

assumption on a pairing-free group.8 Finally, we note that by using the idea of
the compact homomorphic MAC based on the �-CDHI assumption by Catalano
and Fiore [16], we can further reduce the proof size to be |w| + poly(κ) in the
case when the language to be proven is computable in NC1.

Generic Construction of Prover-Efficient NIZK from LFE. To achieve
prover-efficient NIZKs, we use laconic function evaluation (LFE) recently intro-
duced by Quach, Wee, and Wichs [64]. LFE schemes are defined for a class of
circuits C. We can generate a short digest of circuit C ∈ C from a CRS and the
circuit C. Anybody can then generate a ciphertext ct of a message m from the
CRS, the digest, and m. Finally, anybody can decrypt the ciphertext to C(m)
using the ciphertext ct and the circuit C. Here, the security of LFE imposes that
the ciphertext ct leaks no additional information other than the value C(m). The
attractive feature of LFE is that the size of the CRS, digest, ciphertext ct, and
the running time of the encryption algorithm are all strictly smaller than the
size of the circuits in C.

Our design idea is to impose the computation of the circuit C computing the
NP-relation on the verifier by using LFE. Specifically, we put a digest of C (and
a CRS of LFE) in the CRS of our NIZK. The prover then computes an LFE
ciphertext of message (x,w) where x is a statement and w is its witness using the
digest of C. A verifier can check the validity of the statement by decrypting the
ciphertext with C. By the security of LFE, the verifier obtains nothing beyond
C(x,w), hence, zero-knowledge of our NIZK follows naturally. Furthermore, by
the efficiency property of LFE, the running time of the prover is smaller than
the size of C. However, this basic idea is not yet sufficient. This is because a
cheating prover may not honestly compute an LFE ciphertext of the message
(x,w) and may possibly break soundness of our NIZK. To overcome this issue, a
prover must generate not only an LFE ciphertext of (x,w) but also a NIZK proof
to prove that the prover honestly generated the LFE ciphertext of (x,w) with
the CRS of LFE and the digest of C. We point out that this additional NIZK
proof does not harm prover efficiency since the additional statement which the
prover must prove is independent of the size of the circuit C owing to the feature
of LFE. In particular, we can check the validity of the ciphertext by computing
the encryption circuit of LFE whose size is independent of the size of C.

Using any non-prover-efficient NIZK for NP as building block and instanti-
ating the LFE scheme by the sub-exponential security of LWE assumption with
sub-exponential modulus-to-noise ratio, we obtain a prover-efficient CRS-NIZK
for NP whose prover running time is poly(κ, |x|, |w|, d), where d is the depth
of the circuit C computing the NP relation. In particular, the prover running
time is independent of |C|. In fact, we can further reduce the prover running
time to be as small as Õ(|x|+ |w|) ·poly(κ, d) where the dependence of the state-
ment x and witness w size is only quasi-linear if we further use the following

8 One may wonder why we only need CDH though [47] assumed DDH. Recall that the
DDH in their construction comes from the necessity of an extractable expIPFE. We
show that this can be replaced with any IPFE and DV-NIZK both of which exist
under the CDH assumption based on the same idea as explained above.

Exploring Constructions of Compact NIZKs from Various Assumptions 653

two assumptions (1) the prover running time of the underlying NIZK is linear
in the size of the circuit that computes the NP relation, that is, |C| · poly(κ) (2)
a natural variant of the above LWE assumption introduced by Quach et al. [64],
called the adaptive LWE assumption. Note that the assumption we make on the
underlying NIZK is not that strong, and in particular, we can use the NIZK of
Groth, Ostrovsky, and Sahai [43].

1.4 Related Works

Other than CRS and DV-NIZKs, which have been the main interest of this paper,
there are other variants of NIZKs. One is PP-NIZK and the other is DP-NIZK
as we briefly mentioned in Sect. 1.3. Similarly to DV-NIZKs, due to the extra
secret information shared by the prover and/or verifier, the soundness (resp. zero-
knowledge) property of (PP, DP)-NIZKs may be compromised after verifying
(resp. proving) multiple statements. In fact most of the PP or DP-NIZKs [22,
23,26,45,49,52] are known only to be secure for bounded statements. The first
multi-theorem PP and DP-NIZKs (that are not a trivial downgrade of CRS-
NIZKs) where given by Kim and Wu [51] who proposed a generic construction of
them via homomorphic MACs and homomorphic signatures, respectively. Since
homomorphic signatures were implied by lattice-based assumptions [39], this
implied the first DP-NIZKs based on lattices. Subsequently, Katsumata et al. [47]
constructed a homomorphic signature based on the CDHER assumption and a
homomorphic MAC based on the DDH assumption over pairing-free groups,
and thus constructed DP and PP-NIZKs relative to those assumptions. One
attractive feature of the NIZKs of Kim and Wu [51] and Katsumata et al. [47] is
that the proof size are compact: the DP-NIZK of [51] has proof size |w|+poly(κ, d)
and the (PP, DP)-NIZK of [47] have proof size |C|+poly(κ), where d is the depth
of the circuit C computing the NP relation.

2 Homomorphic Equivocal Commitment

2.1 Definition

We introduce a new primitive which we call homomorphic equivocal commitment
(HEC), which can be seen as a relaxed variant of HTDF defined by Gorbunov
et al. [39]. A HEC scheme with message space X , randomness space R, and
a randomness distribution DR over R for a circuit class C =

{
C : X → Z

}

consists of PPT algorithms (HEC.Setup,HEC.Commit,HEC.Open,HEC.Evalin,
HEC.Evalout,HEC.Verify).

HEC.Setup(1κ): The setup algorithm takes as input the security parameter 1κ

and outputs a public parameter pp, an evaluation key ek, and a master secret
key msk.

HEC.Commit(pp,x;R): The commit algorithm takes as input a public parameter
pp and a message x ∈ X along with a randomness R ∈ R, and outputs a
commitment com. When we omit R to denote HEC.Commit(pp,x), we mean
that R is chosen according to the distribution DR.

654 S. Katsumata et al.

HEC.Open(msk, (x, R),x′): The open algorithm takes as input a master secret
key msk, a message x ∈ X , a randomness R ∈ R, and a fake message x′ ∈ X ,
and outputs a fake randomness R′ ∈ R.

HEC.Evalin(ek, C,x, R): The inner evaluation algorithm takes as input an evalu-
ation key ek, a circuit C ∈ C, a message x ∈ X , and a randomness R ∈ R,
and outputs a proof π.

HEC.Evalout(ek, C, com): The outer evaluation algorithm is a deterministic algo-
rithm that takes as input an evaluation key ek, a circuit C ∈ C, and a com-
mitment com, and outputs an evaluated commitment comeval.

HEC.Verify(pp, comeval, z, π): The verification algorithm takes as input a public
parameter pp, an evaluated commitment comeval, a message z ∈ Z, and a
proof π, and outputs � if the proof is valid and ⊥ otherwise.

Evaluation Correctness. For all κ ∈ Z, (pp, ek,msk) $← HEC.Setup(1κ), x ∈
X , R ∈ R, com := HEC.Commit(pp,x;R), C ∈ C, π

$← HEC.Evalin(msk, C,x, R),
and comeval := HEC.Evalout(ek, C, com), we have

Pr[HEC.Verify(pp, comeval, C(x), π) = �] = 1.

Distributional Equivalence of Open. We have

{(pp, ek,msk,x, R, com)} stat≈ {(pp, ek,msk,x, R′, com′)}

where (pp, ek,msk) $← HEC.Setup(1κ), (x,x) ∈ X 2 are arbitrary random vari-
ables that may depend on (pp, ek,msk), R

$← DR, com := HEC.Commit(pp,x;R),
R

$← DR, com′ := HEC.Commit(pp,x;R), and R′ $← HEC.Open(msk, (x, R),x).

Computational Binding for Evaluated Commitment. For all PPT adver-
sary A,

Pr

⎡
⎢⎢⎢⎣
HEC.Verify(pp, comeval, z∗, π∗) = �

z∗ �= C(x)

∣∣∣∣∣∣∣∣∣

(pp, ek,msk)
$← HEC.Setup(1κ),

(x, R, C, z∗, π∗) $← A(pp, ek),

com := HEC.Commit(pp,x;R)

comeval := HEC.Evalout(ek, C, com)

⎤
⎥⎥⎥⎦ ≤ negl(κ).

Efficient Committing. There exists a polynomial poly such that for all

(pp, ek,msk) $← HEC.Setup(1κ), x ∈ X , R ∈ R, the running time of com :=
HEC.Commit(pp,x;R) is bounded by |x| · poly(κ).

Efficient Verification (optional). There exists a polynomial poly such

that for all (pp, ek,msk) $← HEC.Setup(1κ), x ∈ X , R ∈ R, com :=
HEC.Commit(pp,x;R), C ∈ C, π

$← HEC.Evalin(ek, C,x, R), comeval :=
HEC.Evalout(ek, C, com), and z ∈ Z, we have |π| ≤ poly(κ) and |comeval| ≤
poly(κ) and the running time of HEC.Verify(pp, comeval, z, π) is at most poly(κ).
We remark that poly does not depend on C.

Exploring Constructions of Compact NIZKs from Various Assumptions 655

Context-Hiding (optional). There exists a PPT simulator HEC.ProofSim

such that for all κ ∈ N, (pp, ek,msk) $← HEC.Setup(1κ), x ∈ X , C ∈ C, R ∈ R,
and com := HEC.Commit(pp,x;R), we have

{π
$← HEC.Evalin(ek, C,x, R))} stat≈ {π′ $← HEC.ProofSim(msk, com, C, C(x)))}

where the probability is only over the randomness used by the algorithms
HEC.Evalin and HEC.ProofSim.

Remark 2.1. We can generically convert any HEC scheme to a context-hiding
one by using any statistical CRS-NIZK scheme. Namely, instead of directly using
π as an output of the inner evaluation algorithm, it outputs a NIZK proof for
the statement that there exists π that passes the verification.

Remark 2.2. The following properties immediately follow from the distributional
equivalence of open.

Equivocality. We have

Pr[HEC.Commit(pp,x;R) �= HEC.Commit(pp,x;R)] = negl(κ)

where (pp, ek,msk) $← HEC.Setup(1κ), (x,x) ∈ X 2 are arbitrary ran-
dom variables that may depend on (pp, ek,msk), R

$← DR, and R
$←

HEC.Open(msk, (x, R),x).

Hiding. We have

{pp, ek, com
$← HEC.Commit(pp,x)} stat≈ {pp, ek, com′ $← HEC.Commit(pp,x′)},

where (pp, ek,msk) $← HEC.Setup(1κ) and (x,x′) ∈ X 2 are arbitrary random vari-
ables that may depend on (pp, ek,msk). We say that a scheme is computationally
hiding if the above two distributions are computationally indistinguishable.

Remark 2.3. If we require neither efficient verification nor context-hiding, then
there is a trivial construction of HEC based on any equivocal commitment.
Namely, we can just set comeval := C‖com and π := (x, R). The verification
algorithm can verify them by checking if com is a commitment of x with ran-
domness R and z = C(x) holds. On the other hand, if we require either of
efficient verification or context hiding, then there does not seem to be such a
trivial solution.9 This is reminiscent of the similar situation for fully homomor-
phic encryption where a scheme without compactness nor function privacy is
trivial to construct but a scheme with either of them is non-trivial [31].

9 As remarked in Remark 2.1, we can convert the trivial construction to a context-
hiding one additionally assuming a statistical CRS-NIZK for all of NP. Though
this is less interesting than schemes with efficient verification, we do not consider it
a “trivial solution” since the existence of a statistical CRS-NIZK is an additional
assumption to an equivocal commitment.

656 S. Katsumata et al.

2.2 Constructions of HEC

Here, we show that we can construct an HEC scheme based on a non-static falsi-
fiable pairing assumption called the (n,m)-computational Diffie-Hellman expo-
nent ratio (CDHER) assumption [47].

(n,m)-Computational Diffie-Hellman Exponent and Ratio Assumption.
Let BGGen be a PPT algorithm that on input 1κ returns a description G =
(G,GT , p, g, e(·, ·)) of symmetric pairing groups where G and GT are cyclic groups
of prime order p, g is the generator of G, and e : G × G → GT is an efficiently
computable (non-degenerate) bilinear map.

Definition 2.1 ((n,m)-Computational Diffie-Hellman Exponent and
Ratio Assumption) [47]. Let BGGen be a group generator and n := n(κ) =
poly(κ), m := m(κ) = poly(κ). We say that the (n,m)-decisional Diffie-Hellman
exponent and ratio (CDHER) assumption holds with respect to BGGen, if for all
PPT adversaries A, we have

Pr
[
A(G, Ψ) → e(g, g)sam+1

]
= negl(κ)

where G = (G,GT , p, g, e(·, ·)) $← BGGen(1λ), s, a, b1, . . . , bn, c1, . . . cn
$← Z

∗
p,

and

Φ :=

⎛
⎜⎜⎜⎜⎜⎜⎝

{
gaj

}
j∈[m]

, {gci }i∈[n] ,
{

gaj/bi

}
i∈[n],j∈[2m]

j �=m+1

,
{

gam+1c
i′ /bici

}
i,i′∈[n],i�=i′ ,

{gaci}i∈[n] ,
{

gaj/bici

}
i∈[n],j∈[2m+1]

,
{

gajc
i′ /bi

}
i,i′∈[n],j∈[m]

,

gs,
{

gsbi

}
i∈[n]

,
{

gsam+1bi/b
i′ c

i′
}

i,i′∈[n],i�=i′ ,
{

gsajbi/b
i′

}
i,i′∈[n],j∈[m]

i�=i′

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Katsumata et al. showed that the CDHER assumption holds on the generic
group model introduced by Shoup [68].

Construction of HEC Based on CDHER Assumption. We show the fol-
lowing theorem.

Theorem 2.1. If the (n,m)-CDHER assumption holds on a pairing group for
all n = poly(κ) and m = poly(κ), then there exists an HEC scheme that sup-
ports NC1 that satisfies evaluation correctness, distributional equivalence of
open, computational binding for evaluated commitments, efficient committing,
efficient verification, and context-hiding.

The construction is obtained by a tweak to the homomorphic signature scheme
by Katsumata et al. [47] as explained in Sect. 1.3. The full description of the
construction and its security proof can be found in the full version.

In the full version, we also show that we can construct a context-hiding HEC
scheme without efficient verification based on the weaker CDH assumption on a
pairing group. Though this is not useful for constructing compact NIZKs as is
done in Sect. 3, this can be used for constructing (non-compact) context-hiding
homomorphic signature scheme as shown in the full version.

Exploring Constructions of Compact NIZKs from Various Assumptions 657

3 Compact CRS-NIZK from HEC

Here, we give a construction of a compact CRS-NIZK scheme based on any non-
compact CRS-NIZK scheme and HEC with efficient verification. If we instantiate
the construction with the HEC given in Sect. 2.2, then the proof size of the
resulting CRS-NIZK scheme is |C|+poly(κ). Moreover, if the relation supported
by the scheme is verifiable in NC1, then the proof size is |w| + poly(κ).

3.1 Extractable CRS-NIZK

First, we define extractability for CRS-NIZK, which is needed for our construc-
tion of compact CRS-NIZK scheme. We note that the extractability defined
here is a mild property, and we can convert any CRS-NIZK scheme to the one
with extractability if we additionally assume the existence of PKE as shown in
Lemma 3.1.

An extractable CRS-NIZK is a CRS-NIZK with an additional deterministic
algorithm Extract which takes as input a randomness rSetup used in Setup and a
proof π, and outputs a witness w that satisfies the following.

Extractability. For all PPT adversary A, we have

Pr

⎡

⎢
⎣

Verify(crs, x, π) = �
(x,w) /∈ R

∣
∣
∣
∣
∣
∣
∣

crs
$← Setup(1κ)

(x, π) $← A(crs)
w

$← Extract(rSetup, π)

⎤

⎥
⎦ ≤ negl(κ).

where rSetup is the randomness used in Setup to generate crs.
The following lemma is easy to prove. The proof can be found in the full

version.

Lemma 3.1. If there exist CRS-NIZK for all of NP and a CPA-secure PKE
scheme, then there exists CRS-NIZK for all of NP with extractability.

3.2 Construction of Compact CRS-NIZK

Before describing the construction, we prepare some building blocks and nota-
tions.

– Let L be an NP language defined by a relation R ⊆ {0, 1}∗ × {0, 1}∗. Let
n(κ) and m(κ) be any fixed polynomials. Let C be a circuit that computes
the relation R on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n × {0, 1}m, we
have C(x,w) = 1 if and only if (x,w) ∈ R.

– Let ΠSKE = (SKE.KeyGen,SKE.Enc,SKE.Dec) be a symmetric key encryption
(SKE) scheme with ciphertext space CT and key space {0, 1}�.

In the following, for x ∈ {0, 1}n and ct ∈ CT , we define the function

fx,ct(K) := C(x,SKE.Dec(K, ct)).

658 S. Katsumata et al.

– Let ΠHEC = (HEC.Setup,HEC.Commit,HEC.Open,HEC.Evalin,HEC.Evalout,
HEC.Verify) be a HEC scheme with the message space that contains {0, 1}�

and randomness space R on which a distribution DR is defined. We need the
HEC scheme to support a function class containing {fx,ct}x∈{0,1}n,ct∈CT .

– Let ΠCRSNIZK = (Setup,Prove,Verify) be an extractable CRS-NIZK for the
language corresponding to the relation R̃ defined below:
((pp, com, comeval), (K,R, πHEC)) ∈ R̃ if and only if the followings are satisfied:
1. K ∈ {0, 1}�,
2. HEC.Commit(pp,K;R) = com,
3. HEC.Verify(pp, comeval, 1, πHEC) = �.

We note that extractable CRS-NIZK for all of NP exists assuming (non-
extractable) CRS-NIZK for all of NP and CPA secure PKE as shown in
Lemma 3.1.

The CRS-NIZK Π ′
CRSNIZK = (Setup′,Prove′,Verify′) for L is described as follows.

Setup′(1κ): This algorithm generates crs
$← Setup(1κ) and (pp, ek,msk), $←

HEC.Setup(1κ). It outputs a common reference string crs′ = (crs, pp, ek).
Prove′(crs′, x, w): This algorithm aborts if R(x,w) = 0. Otherwise it parses

(crs, pp, ek) ← crs′, picks K
$← SKE.KeyGen(1κ) and R

$← DR, com-
putes ct

$← SKE.Enc(K,w), generates com := HEC.Commit(pp,K;R),
πHEC

$← HEC.Evalin(ek, fx,ct,K,R), comeval := HEC.Evalout(ek, fx,ct, com),
and πNIZK

$← Prove(crs, (pp, com, comeval), (K,R, πHEC)), and outputs a proof
π′ := (ct, com, πNIZK).

Verify′(crs′, x, π′): This algorithm parses (crs, pp, ek) ← crs′ and (ct, com,
πNIZK) ← π′, computes comeval := HEC.Evalout(ek, fx,ct, com), and outputs
� if Verify(crs, (pp, com, comeval), πNIZK) = �, and outputs ⊥ otherwise.

Correctness. Suppose that (ct, com, πNIZK) is an honestly generated proof on
(x,w)∈ R. Then we have ct

$← SKE.Enc(K,w) and com = HEC.Commit(pp,K;R)
with some K and R. By the correctness of ΠSKE, we have fx,ct(K) = 1,
and by the correctness of ΠHEC, we have HEC.Verify(pp, comeval, 1, πHEC) =
� where we generate comeval := HEC.Evalout(ek, fx,ct, com) and πHEC

$←
HEC.Evalin(ek, fx,ct,K,R). Since we have ((pp, com, comeval), (K,R, πHEC)) ∈ R̃,
if we generate πNIZK

$← Prove(crs, (pp, com, comeval), (K,R, πHEC)), then we have
Verify(crs, (pp, com, comeval), πNIZK) = � by the correctness of ΠCRSNIZK.

Security. The security of NIZK′ is stated as follows. The proofs can be found in
the full version.

Theorem 3.1 (Soundness). If ΠCRSNIZK satisfies extractability and HEC sat-
isfies computational binding for evaluated commitment, then Π ′

CRSNIZK satisfies
computational soundness.

Exploring Constructions of Compact NIZKs from Various Assumptions 659

Theorem 3.2 (Zero-knowledge). If ΠCRSNIZK satisfies zero-knowledge, HEC
is computationally hiding,10 and SKE is CPA secure, then Π ′

CRSNIZK satisfies
zero-knowledge.

3.3 Instantiations

Here, we discuss that by appropriately instantiating ΠCRSNIZK, we can achieve
compact proof size. In particular, we consider instantiating the HEC scheme
with our construction in Sect. 2.2. Since our HEC scheme only supports NC1

circuits, we have to ensure that fx,ct is computable in NC1. For ensuring this,
we use the fact that any efficiently verifiable relation can be verified in NC1 at
the cost of making the witness size as large as the size of a circuit that verifies
the relation (e.g., [29]). This is done by considering all values corresponding
to all gates when computing the circuit on input (x,w) to be the new witness.
In addition, we use an SKE scheme whose decryption circuit is in NC1 with
additive ciphertext overhead (i.e., the ciphertext length is the message length
plus poly(κ)) and the key size � = κ, which exists under the CDH assumption [47].
Then fx,ct is computable in NC1 for every x and ct. In this case, we have that
|ct| ≤ |C| + poly(κ). In order to bound the length of the proof π′, we also bound
|com| and |πNIZK|. By the efficient committing property of HEC, |com| and the
size of the circuit computing HEC.Commit is bounded by |K| · poly(κ) ≤ poly(κ).
Furthermore, by the efficient verification property of HEC, the size of the circuit
computing HEC.Verify is bounded by poly(κ). Therefore, the size of the circuit
computing R̃ is bounded by poly(κ), which implies that |πNIZK| is bounded by
poly(κ) as well (even if ΠCRSNIZK is non-compact). To sum up, we have that the
proof size of ΠCRSNIZK is |C| + poly(κ). Moreover, if we only consider a relation
computable in NC1 in the first place, then we need not expand the witness, and
the proof size can be further reduced to be |w|+poly(κ). Finally, we remark that
(non-compact) CRS-NIZK for all of NP exists under the CDH assumption on
a pairing group [3,14], which in particular holds under the CDHER assumption.
In summary, we obtain the following corollary.

Corollary 3.1. If the CDHER assumption holds on a pairing group, then there
exists CRS-NIZK for all of NP with proof size |C| + poly(κ). Moreover, if the
corresponding relation is computable in NC1, then the proof size is |w|+poly(κ).

Variant with Sublinear Proof Size. Katsumata et al. [47] showed that their
DP-NIZK achieves sublinear proof size i.e., |w| + |C|/ log κ + poly(κ) if C is
a leveled circuit [11] whose gates are divided into L levels, and all incoming
wires to a gate of level i + 1 come from gates of level i. Exactly the same idea
can be applied to our CRS-NIZK to achieve sublinear proof size. More detailed
explanation can be found in the full version. Namely, we obtain the following
corollary:

10 Recall that the computational hiding (or even statistical hiding) follows from the
distributional equivalence of open.

660 S. Katsumata et al.

Corollary 3.2. If the CDHER assumption holds on a pairing group, then there
exists CRS-NIZK for all NP languages whose corresponding relation is com-
putable by a leveled circuit with proof size |w| + |C|/ log κ + poly(κ).

Variant with UC-Security. We can modify the above scheme to satisfy the UC
security in the non-erasure adaptive setting. Namely, we can show the following
theorem. The proof can be found in the full version.

Theorem 3.3. If the DLIN assumption and the CDHER assumption hold in a
bilinear group, then for any relation R that is computable in NC1, there exists
a UC-secure NIZK scheme for R tolerating an adaptive, malicious adversary.

4 Compact DV-NIZK

4.1 Preliminaries

Lemma 4.1 (Implicit in [47]). Let C be a boolean circuit that computes a rela-
tion R on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n × {0, 1}m, we have
C(x,w) = 1 if and only if (x,w) ∈ R, and p be an integer larger than |C|.
Then there exists a deterministic algorithm ExpC,x and an arithmetic circuit C̃
on Zp with degree at most 3 such that we have

– |ExpC,x(w)| = |C(x, ·)| for all w ∈ {0, 1}m.
– If C(x,w) = 1, then we have C̃(x,ExpC,x(w)) = 1 mod p.
– For any x ∈ {0, 1}n, if there does not exist w ∈ {0, 1}m such that C(x,w) = 1,

then there does not exist w′ ∈ {0, 1}|C(x,·)| such that C̃(x,w′) = 1 mod p

Lemma 4.2 ([47]). There exists a deterministic polynomial-time algorithm
Coefficient that satisfies the following: for any p ∈ N, arithmetic circuit f
over Zp of degree D, x = (x1, . . . , x�) ∈ Z

�
p and σ = (σ1, . . . , σ�) ∈ Z

�
p,

Coefficient(1D, p, f,x,σ) outputs (c1, . . . , cD) ∈ Z
D
p such that

f(σ1Z + x1, . . . , σ�Z + x�) = f(x1, . . . , x�) +
D∑

j=1

cjZ
j mod p. (1)

where Z is an indeterminate.

4.2 Construction

Here, we give a generic construction of compact DV-NIZK. Namely, we construct
DV-NIZK with the proof size |C| + poly(κ) from any (non-compact) DV-NIZK,
SKE scheme whose decryption circuit is in NC1 with additive ciphertext over-
head, and PKE scheme. First, we prepare notations and the building blocks.

– Let L be an NP language defined by a relation R ⊆ {0, 1}∗ × {0, 1}∗. Let
n(κ) and m(κ) be any fixed polynomials. Let C be a circuit that computes
the relation R on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n × {0, 1}m, we
have C(x,w) = 1 if and only if (x,w) ∈ R. Let ExpC,x and C̃ be as defined
in Lemma 4.1.

Exploring Constructions of Compact NIZKs from Various Assumptions 661

– Let ΠIPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) be an adaptively
single-key secure IPFE scheme with a prime modulus p > |C|. Such an IPFE
scheme can be constructed from any PKE scheme [38].

– Let ΠSKE = (SKE.KeyGen,SKE.Enc,SKE.Dec) be a CPA-secure symmetric
key encryption scheme over a ciphertext space CT and a key space {0, 1}�

with additive ciphertext overhead (i.e., the ciphertext size is the message size
plus poly(κ)) whose decryption algorithm is computed in NC1. Especially,
the decryption circuit can be expressed by an arithmetic circuit over Zp of
degree poly(κ). We note that such an SKE scheme exists under the CDH
assumption [47].

– For x ∈ {0, 1}n and ct ∈ CT , we define the function fx,ct(K) :=
C̃(x,SKE.Dec(K, ct)). Let D be the maximal degree of fx,ct (as a multivari-
ate polynomial). Since C̃’s degree is at most 3 and SKE.Dec(·, ct)’s degree is
poly(κ), we have D = poly(κ) (which especially does not depend on |C|).

– Let ΠDVNIZK = (Setup,Prove,Verify) be DV-NIZK for the language corre-
sponding to the relation R̃ defined below:

(
(ppIPFE, {ctiIPFE}i∈[�], pp

′
IPFE, ct

′
IPFE),

({(Ki, σi, Ri)}i∈[�], (c1, . . . , cD, R′)
)) ∈ R̃

if and only if the following conditions are satisfied:
1. For all i ∈ [�], Ki ∈ {0, 1},
2. For all i ∈ [�], IPFE.Enc(ppIPFE, (Ki, σi);Ri) = ctiIPFE,
3. IPFE.Enc(pp′

IPFE, (c1, . . . , cD);R′) = ct′IPFE.

The DV-NIZK Π ′
DVNIZK = (Setup′,Prove′,Verify′) for L is described as follows.

Setup′(1κ): This algorithm picks s
$← Z

∗
p and generates (crs, kV) $←

Setup(1κ), (ppIPFE,mskIPFE)
$← IPFE.Setup(1κ, 12), (pp′

IPFE,msk′
IPFE)

$←
IPFE.Setup(1κ, 1D), skIPFE

$← IPFE.KeyGen(mskIPFE, (1, s)), and sk′
IPFE

$←
IPFE.KeyGen(msk′

IPFE, (s, . . . , s
D)). It outputs a common reference string

crs′ := (crs, ppIPFE, pp′
IPFE) and a verifier key k′

V := (kV, s, skIPFE, sk
′
IPFE).

Prove′(crs′, x, w): This algorithm aborts if (x,w) /∈ R. Otherwise it parses
(crs, ppIPFE, pp′

IPFE) ← crs′, picks K
$← SKE.KeyGen(1κ) and σi

$←
Zp for i ∈ [�], and generates ctSKE

$← SKE.Enc(K,ExpC,x(w)) and
(c1, . . . , cD) ← Coefficient(1D, p, fx,ctSKE ,K = (K1, . . . ,K�), (σ1, . . . , σ�)).
Then it generates ctiIPFE := IPFE.Enc(ppIPFE, (Ki, σi);Ri) for i ∈
[�] (where Ri is the randomness used by the encryption algo-
rithm), ct′IPFE := IPFE.Enc(pp′

IPFE, (c1, . . . , cD);R′) (where R′ is the
randomness used by the encryption algorithm), and π

$← Prove
(crs, (ppIPFE, {ctiIPFE}i∈[�], pp′

IPFE, ct
′
IPFE), ({(Ki, σi, Ri)}i∈[�], (c1, . . . , cD, R′)))

and outputs a proof π′ := (π, ctSKE, {ctiIPFE}i∈[�], ct
′
IPFE).

Verify′(crs′, k′
V, x, π′): This algorithm parses (crs, ppIPFE, pp′

IPFE) ← crs′,
(kV, s, skIPFE, sk

′
IPFE) ← k′

V, and (π, ctSKE, {ctiIPFE}i∈[�], ct
′
IPFE) ← π′, com-

putes ri
$← IPFE.Dec(ppIPFE, ct

i
IPFE, skIPFE) for i ∈ [�] and t

$← IPFE.Dec

662 S. Katsumata et al.

(pp′
IPFE, ct

′
IPFE, sk

′
IPFE), and outputs � if we have Verify(crs, (ppIPFE, {ctiIPFE}i∈[�],

pp′
IPFE, ct

′
IPFE), π) = � and

fx,ctSKE(r1, . . . , r�) = 1 + t mod p,

and outputs ⊥ otherwise.

Correctness. Suppose that (π, ctSKE, {ctiIPFE}i∈[�], ct
′
IPFE) is an honestly

generated proof on (x,w) ∈ R. Then it is clear that we have
Verify(crs, (ppIPFE, {ctiIPFE}i∈[�], pp′

IPFE, ct
′
IPFE), π) = � by the way of generat-

ing the proof and the correctness of ΠDVNIZK. By the way of generating
({ctiIPFE}i∈[�], ct

′
IPFE) and correctness of ΠIPFE, we have ri = Ki + σis mod p

for i ∈ [�] and t =
∑

j∈[D] cjs
j where ri and t are generated as in the ver-

ification. Since we have fx,ctSKE(K1 + σ1Z, . . . ,K� + σ�Z) = 1 +
∑

j∈[D] cjZ
j

for an indeterminate Z by the correctness of ΠSKE and Lemma 4.2, we have
fx,ctSKE(r1, . . . , r�) = 1 + t by substituting s for Z.

Proof Size. First, we remark that the relation R̃ can be verified by a cir-
cuit whose size is a fixed polynomial in (κ, �, log p,D) that does not depend on
|C|. Moreover, we have |ExpC,x(w)| = |C(x, ·)| ≤ |C| for all w ∈ {0, 1}m by
Lemma 4.1. Then we have |π| = poly(κ, �, log p,D), |ctSKE| = |C(x, ·)| + poly(κ),
|ctiIPFE| = poly(κ, log p), and |ct′IPFE| = poly(κ, log p,D). By setting � = κ and
p = 2O(κ) and remarking that D = poly(κ), we have |π′| = |C(x, ·)| + poly(κ) ≤
|C| + poly(κ).

Security. The security of our scheme Π ′
DVNIZK is stated as follows. The proofs

are similar to the security proof for PP-NIZK by Katsumata et al. [47], and thus
given in the full version.

Theorem 4.1 (Soundness). If ΠDVNIZK satisfies statistical (resp. computa-
tional) soundness and p = κω(1), then Π ′

DVNIZK satisfies statistical (resp. compu-
tational) soundness.

Theorem 4.2 (Zero-knowledge). If SKE is CPA secure, ΠIPFE is adaptively
single-key secure, and ΠDVNIZK satisfies zero-knowledge, then Π ′

DVNIZK satisfies
zero-knowledge.

Instantiation. The above construction can be instantiated based on the CDH
assumption on a pairing-free group since

– An adaptively single-key secure IPFE scheme exists under any PKE scheme
[38], and there exists a PKE scheme based on the CDH assumption.

– An SKE scheme whose decryption circuit is in NC1 with additive ciphertext
overhead exists under the CDH assumption [47].

– DV-NIZK for all of NP exists under the CDH assumption [21,47,63]

Therefore we obtain the following corollary.

Exploring Constructions of Compact NIZKs from Various Assumptions 663

Corollary 4.1. If the CDH assumption holds on a pairing-free group, then there
exists DV-NIZK for all of NP with proof size |C| + poly(κ).

Variant with Sublinear Proof Size. Similarly to the case of CRS-NIZK as
discussed in Sect. 3.3, we can make the proof size of the above DV-NIZK sublinear
in |C| if C is a leveled circuit. More detailed explanation can be found in the
full version. Namely, we obtain the following corollary:

Corollary 4.2. If the CDH assumption holds on a pairing-free group, then there
exists DV-NIZK for all NP languages whose corresponding relation is com-
putable by a leveled circuit with proof size |w| + |C|/ log κ + poly(κ).

Variant with Shorter Proof Size for NC1 Relations. We can further reduce
the proof size to |w| + poly(κ) if the relation to prove is computable in NC1

and we additionally assume �-computational Diffie-Hellman inversion (CDHI)
assumption [16,56].

Theorem 4.3. If the �-CDHI assumption holds for all � = poly(κ), then there
exists DV-NIZK for all relations for all NP languages whose corresponding rela-
tion is computable in NC1 with proof size |w| + poly(κ).

The construction and security proofs can be found in the full version.

5 CRS-NIZK with Efficient Prover from Laconic
Function Evaluation

In this section, we present a NIZK proof system where a prover is efficient, that is,
the running time of a prover is smaller than the size of circuit that computes the
relation. We use laconic function evaluation to achieve our NIZK proof system.

Before describing the construction, we prepare some building blocks and
notations.

– Let L be an NP language defined by a relation R ⊆ {0, 1}∗ × {0, 1}∗. Let
n(κ) and m(κ) be any fixed polynomials. Let C be a circuit that computes
the relation R on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n × {0, 1}m, we
have C(x,w) = 1 if and only if (x,w) ∈ R

– Let LFE = (LFE.crsGen, LFE.Compress, LFE.Enc, LFE.Dec) be a LFE scheme
whose function class C is the class of all circuits with params = (1k, 1d) con-
sisting of the input size k and the depth d of the circuits and contains {C}
that computes the relation R for NP-complete language.

– Let ΠCRSNIZK = (Setup,Prove,Verify) be a CRS-NIZK for the language corre-
sponding to the relation R̃ defined below:

((x, lfe.crs, digestC , lfe.ct), (w, r)) ∈ R̃ ⇐⇒ LFE.Enc(lfe.crs, digestC , (x, w); r) = lfe.ct.

The CRS-NIZK Π ′
CRSNIZK = (Setup′,Prove′,Verify′) for L is described as follows.

664 S. Katsumata et al.

Setup′(1κ): This algorithm generates crs
$← Setup(1κ) and lfe.crs

$←
LFE.crsGen(1κ, params). It generates digestC := LFE.Compress(lfe.crs, C). It
outputs a common reference string crs′ = (crs, lfe.crs, digestC).

Prove′(crs′, x, w): This algorithm aborts if R(x,w) = 0. Otherwise it parses (crs,
lfe.crs, digestC) ← crs′, generates lfe.ct := LFE.Enc(lfe.crs, digestC , (x,w);
r) where r is the randomness for LFE.Enc and πNIZK

$← Prove(crs, (x, lfe.crs,
digestC , lfe.ct), (w, r)). It outputs a proof π′ := (lfe.ct, πNIZK).

Verify′(crs′, x, π′): This algorithm parses (crs, lfe.crs, digestC) ← crs′, (lfe.ct,
πNIZK) ← π′, and computes t := Verify(crs, (x, lfe.crs, digestC , lfe.ct), πNIZK). If
t = ⊥ or 0 $← LFE.Dec(lfe.crs, C, lfe.ct), then outputs ⊥. Otherwise, outputs
�.

Completeness. By the completeness of ΠCRSNIZK, the proof πNIZK in an hon-
estly generated proof π′ passes the verification of ΠCRSNIZK. That is, it holds
that Verify(crs, (x, lfe.crs, digestC , lfe.ct), πNIZK) = �. By the correctness of LFE,
it holds that 1 = C(x,w) $← LFE.Dec(lfe.crs, C, lfe.ct) with probability 1. Thus,
the completeness follows.

Prover Efficiency. First, we remark that the relation R̃ can be verified by a
circuit whose size is |LFE.Enc| since the relation is about the validity of LFE
ciphertexts. The running time of Prove′ is the sum of those of LFE.Enc and
Prove. We defer concrete efficiency analysis until Sect. 5.1 since the running time
depends on instantiations of LFE.Enc and Prove.

Security. The security of the scheme is stated as follows. See the full version for
the proofs.

Theorem 5.1 (Soundness). Π ′
CRSNIZK is computationally/statistically sound

if ΠCRSNIZK is computationally/statistically sound, respectively.

Theorem 5.2 (Zero-Knowledge). Π ′
CRSNIZK is computational zero-knowledge

if ΠCRSNIZK is zero-knowledge and LFE is adaptively secure.

5.1 Instantiations

We can consider two cases since there are two instantiations of adaptively secure
LFE.

1. (Under sub-exponential security of the LWE assumption with sub-exponential
modulus-to-noise ratio): By the result of [64], it holds that |lfe.crs| =
poly(κ, |x|, |w|, d), |digestC | = poly(κ), |lfe.ct| = poly(κ, |x|, |w|, d), and the
running time of LFE.Enc is poly(κ, |x|, |w|, d) where d is the depth of C since
the input length of C is |x| + |w|. In this case, we use a NIZK whose prover
running time is poly(C̃, κ) where C̃ is a circuit that computes the relation
R̃, which holds for any NIZK. In this case, C̃ just runs LFE.Enc, so it takes
|LFE.Enc|+poly(|LFE.Enc|, κ) time to generate πNIZK. Thus, the running time
of the prover is poly(κ, |x|, |w|, d).

Exploring Constructions of Compact NIZKs from Various Assumptions 665

2. (Under the adaptive LWE assumption with sub-exponential modulus-to-noise
ratio): By the result of [64], it holds that |lfe.crs| = (|x| + |w|) · poly(κ, d),
|digestC | = poly(κ), |lfe.ct| = Õ(|x| + |w|) · poly(κ, d), and the running time of
LFE.Enc is Õ(|x| + |w|) · poly(κ, d) where d is the depth of C since the input
length of C is |x|+|w|. In this case, we use a NIZK whose prover running time
is |C̃|·poly(κ). An example of such a NIZK is the NIZK by Groth et al. [43]. By
using the efficiency of Groth et al. NIZK, it takes |LFE.Enc|+|LFE.Enc|·poly(κ)
time to generate πNIZK. Thus, the running time of the prover is Õ(|x| + |w|) ·
poly(κ, d) · poly(κ) = Õ(|x| + |w|) · poly(κ, d).

Therefore, we obtain the following two corollaries.

Corollary 5.1. If a CRS-NIZK scheme for all of NP exists and the sub-
exponentially secure LWE assumption with sub-exponential modulus-to-noise
ratio holds, then there exists a CRS-NIZK scheme for all of NP whose prover
running time is poly(κ, |x|, |w|, d).

Corollary 5.2. If the DLIN assumption in a bilinear group and the adaptive
LWE assumption with sub-exponential modulus-to-noise ratio hold, then there
exists a CRS-NIZK scheme for all of NP whose prover running time is Õ(|x| +
|w|)poly(κ, d).

Acknowledgement. We thank anonymous reviewers of Crypto 2019 for their helpful
comments. The first and the third authors were supported by JST CREST Grant
Number JPMJCR19F6. The third author was supported by JSPS KAKENHI Grant
Number 16K16068.

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. J. Cryptol. 29(2), 363–
421 (2016)

3. Abusalah, H.: Generic instantiations of the hidden bits model for non-interactive
zero-knowledge proofs for NP. Master’s thesis, RWTH-Aachen University (2013)

4. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 12

5. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

6. Bellare, M., Yung, M.: Certifying permutations: noninteractive zero-knowledge
based on any trapdoor permutation. J. Cryptol. 9(3), 149–166 (1996)

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/3-540-39200-9_38

666 S. Katsumata et al.

7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In: ITCS
2012, pp. 326–349 (2012)

8. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015.
LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 16

9. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 474–502.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 20

10. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-
tions (extended abstract). In: 20th ACM STOC, pp. 103–112 (1988)

11. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure com-
putation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

12. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: STOC 2019 (2019, to
appear)

13. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 91–122. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9 4

14. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
J. Cryptol. 20(3), 265–294 (2007)

15. Canetti, R., Lichtenberg, A.: Certifying trapdoor permutations, revisited. In:
Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 476–506.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 18

16. Catalano, D., Fiore, D.: Practical homomorphic message authenticators for arith-
metic circuits. J. Cryptol. 31(1), 23–59 (2018)

17. Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-
knowledge proofs of knowledge. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018, Part III. LNCS, vol. 10822, pp. 193–221. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 7

18. Chaidos, P., Groth, J.: Making sigma-protocols non-interactive without random
oracles. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 650–670. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 29

19. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

20. Cohen, R., Shelat, A., Wichs, D.: Adaptively secure MPC with sublinear communi-
cation complexity. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, LNCS,
vol. 11693, pp. 30–60. Springer, Cham (2019)

21. Couteau, G., Hofheinz, D.: Designated-verifier pseudorandom generators, and their
applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11477, pp. 562–592. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 20

22. Cramer, R., Damg̊ard, I.: Secret-key zero-knowlegde and non-interactive verifi-
able exponentiation. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 223–237.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 13

https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1007/978-3-030-03807-6_18
https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-662-46447-2_29
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-030-17656-3_20
https://doi.org/10.1007/978-3-030-17656-3_20
https://doi.org/10.1007/978-3-540-24638-1_13

Exploring Constructions of Compact NIZKs from Various Assumptions 667

23. Damg̊ard, I.: Non-interactive circuit based proofs and non-interactive perfect zero-
knowledge with preprocessing. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 341–355. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
47555-9 28

24. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 3

25. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-45611-8 28

26. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge with pre-
processing. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 269–282.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2 21

27. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput.
30(2), 391–437 (2000)

28. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

29. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

30. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

31. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

32. Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using fully
homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs.
J. Cryptol. 28(4), 820–843 (2015)

33. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: 43rd ACM STOC, pp. 99–108, June 2011

34. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge, New York (2004)

35. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: 19th ACM STOC, pp.
218–229 (1987)

36. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems.
J. Cryptol. 7(1), 1–32 (1994)

37. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

38. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

39. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: STOC 2015, pp. 469–477 (2015)

40. Groth, J.: Short non-interactive zero-knowledge proofs. In: Abe, M. (ed.) ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 341–358. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17373-8 20

https://doi.org/10.1007/3-540-47555-9_28
https://doi.org/10.1007/3-540-47555-9_28
https://doi.org/10.1007/11681878_3
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/0-387-34799-2_21
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-642-17373-8_20
https://doi.org/10.1007/978-3-642-17373-8_20

668 S. Katsumata et al.

41. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

42. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

43. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012)

44. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

45. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

46. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II.
LNCS, vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 8

47. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Designated veri-
fier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In: Ishai,
Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 622–651. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 22

48. Kilian, J.: On the complexity of bounded-interaction and noninteractive zero-
knowledge proofs. In: 35th FOCS, pp. 466–477 (1994)

49. Kilian, J., Micali, S., Ostrovsky, R.: Minimum resource zero-knowledge proofs
(extended abstract). In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
545–546. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 47

50. Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof system for
NP with general assumptions. J. Cryptol. 11(1), 1–27 (1998)

51. Kim, S., Wu, D.J.: Multi-theorem preprocessing NIZKs from lattices. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 733–765. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 25

52. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 26

53. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

54. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42033-7 3

55. Lipmaa, H.: Optimally sound sigma protocols under DCRA. In: Kiayias, A. (ed.)
FC 2017. LNCS, vol. 10322, pp. 182–203. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70972-7 10

56. Mitsunari, S., Saka, R., Kasahara, M.: A new traitor tracing. IEICE Trans. E85–
A(2), 481–484 (2002)

57. Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues.
In: ACM CCS 1998, pp. 59–66 (1998)

58. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-030-17656-3_22
https://doi.org/10.1007/0-387-34805-0_47
https://doi.org/10.1007/978-3-319-96881-0_25
https://doi.org/10.1007/3-540-38424-3_26
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-42033-7_3
https://doi.org/10.1007/978-3-319-70972-7_10
https://doi.org/10.1007/978-3-319-70972-7_10
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6

Exploring Constructions of Compact NIZKs from Various Assumptions 669

59. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437 (1990)

60. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. Commun. ACM 59(2), 103–112 (2016)

61. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryp-
tion scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 16

62. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

63. Quach, W., Rothblum, R.D., Wichs, D.: Reusable designated-verifier NIZKs for
all NP from CDH. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11477, pp. 593–621. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17656-3 21

64. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In:
59th FOCS, pp. 859–870 (2018)

65. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

66. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553 (1999)

67. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: 46th ACM STOC, pp. 475–484 (2014)

68. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

69. Ventre, C., Visconti, I.: Co-sound zero-knowledge with public keys. In: Preneel, B.
(ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 287–304. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02384-2 18

https://doi.org/10.1007/11818175_16
https://doi.org/10.1007/11818175_16
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-030-17656-3_21
https://doi.org/10.1007/978-3-030-17656-3_21
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-642-02384-2_18

New Constructions of Reusable
Designated-Verifier NIZKs

Alex Lombardi1(B), Willy Quach2(B), Ron D. Rothblum3, Daniel Wichs2,
and David J. Wu4

1 MIT, Cambridge, MA, USA
alexjl@mit.edu

2 Northeastern University, Boston, MA, USA
quach.w@husky.neu.edu, wichs@ccs.neu.edu

3 Technion, Haifa, Israel
rothblum@cs.technion.ac.il

4 University of Virginia, Charlottesville, VA, USA
dwu4@virginia.edu

Abstract. Non-interactive zero-knowledge arguments (NIZKs) for NP
are an important cryptographic primitive, but we currently only have
instantiations under a few specific assumptions. Notably, we are miss-
ing constructions from the learning with errors (LWE) assumption, the
Diffie-Hellman (CDH/DDH) assumption, and the learning parity with
noise (LPN) assumption.

In this paper, we study a relaxation of NIZKs to the designated-verifier
setting (DV-NIZK), where a trusted setup generates a common refer-
ence string together with a secret key for the verifier. We want reusable
schemes, which allow the verifier to reuse the secret key to verify many
different proofs, and soundness should hold even if the malicious prover
learns whether various proofs are accepted or rejected. Such reusable
DV-NIZKs were recently constructed under the CDH assumption, but it
was open whether they can also be constructed under LWE or LPN.

We also consider an extension of reusable DV-NIZKs to the malicious
designated-verifier setting (MDV-NIZK). In this setting, the only trusted
setup consists of a common random string. However, there is also an
additional untrusted setup in which the verifier chooses a public/secret
key needed to generate/verify proofs, respectively. We require that zero-
knowledge holds even if the public key is chosen maliciously by the ver-
ifier. Such reusable MDV-NIZKs were recently constructed under the

A. Lombardi—Research supported in part by an NDSEG fellowship. Research sup-
ported in part by NSF Grants CNS-1350619 and CNS-1414119, and by the Defense
Advanced Research Projects Agency (DARPA) and the U.S. Army Research Office
under contracts W911NF-15-C-0226 and W911NF-15-C-0236.
R. D. Rothblum—Supported in part by the Israeli Science Foundation (Grant No.
1262/18) and the Technion Hiroshi Fujiwara cyber security research center and the
Israel cyber directorate.
D. Wichs—Research supported by NSF grants CNS-1314722, CNS-1413964, CNS-
1750795 and the Alfred P. Sloan Research Fellowship.
D. J. Wu—Part of this work was done while visiting the Technion.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 670–700, 2019.
https://doi.org/10.1007/978-3-030-26954-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_22

New Constructions of Reusable Designated-Verifier NIZKs 671

“one-more CDH” assumption, but constructions under CDH/LWE/LPN
remained open.

In this work, we give new constructions of (reusable) DV-NIZKs and
MDV-NIZKs using generic primitives that can be instantiated under
CDH, LWE, or LPN.

1 Introduction

Zero-knowledge proofs [28] allow a prover to convince a verifier that a state-
ment is true without revealing anything beyond this fact. While standard zero-
knowledge proof systems are interactive, Blum, Feldman, and Micali [4] intro-
duced the concept of a non-interactive zero-knowledge (NIZK) proof, which con-
sists of a single message sent by the prover to the verifier. Although such NIZKs
cannot exist in the plain model, they are realizable in the common reference
string (CRS) model, where a trusted third party generates and publishes a com-
mon reference string chosen either uniformly random or from some specified
distribution. We currently have NIZKs for general NP languages under several
specific assumptions, such as: (doubly-enhanced) trapdoor permutations, which
can be instantiated from factoring [4,23,26,50,51], the Diffie-Hellman assump-
tion over bilinear groups [11,32], optimal hardness of the learning with errors
(LWE) assumption1 [10], and circular-secure fully homomorphic encryption [12].
We also have such NIZKs in the random-oracle model [24]. However, we are lack-
ing constructions from several standard assumptions, most notably the compu-
tational or decisional Diffie-Hellman assumptions (CDH, DDH), the plain learn-
ing with errors (LWE) assumption, and the learning parity with noise (LPN)
assumption.

Designated-Verifier NIZK. We consider a relaxation of NIZKs to the desig-
nated verifier model (DV-NIZK). In this model, a trusted third party generates
a CRS together with a secret key, which is given to the verifier and is used
to verify proofs. Throughout this work, we focus on the problem of achieving
reusable (i.e., multi-theorem) security. This means that soundness should hold
even if the scheme is used multiple times and a malicious prover can test whether
the verifier accepts or rejects various proofs.

While reusable DV-NIZKs appear to be a non-trivial relaxation of standard
NIZKs,2 we did not (until recently) have any constructions of such DV-NIZKs
under assumptions not known to imply standard NIZKs. Very recently, the works
of [14,35,46] constructed such DV-NIZKs under the CDH assumption. However,
it was left as an open problem whether such DV-NIZKs can be constructed under
LWE or LPN.

We note that the work [37] constructed an orthogonal notion of reusable
“designated-prover” NIZKs (DP-NIZK) under LWE, where the trusted third

1 This means that no polynomial-time attacker can break LWE with any probability
better than random guessing.

2 The public verifiability of traditional NIZKs immediately implies reusable soundness.

672 A. Lombardi et al.

party generates a CRS together with a secret key that is given to the prover and
needed to generate proofs. In addition, the work [8] constructed “preprocessing
NIZKs” (PP-NIZK), in which the trusted third party generates both a secret
proving key and a secret verification key, under variants of the LPN assumption
over large fields.

Malicious-Designated-Verifier NIZK. We also consider a strengthening of
DV-NIZKs to the malicious-designated-verifier model (MDV-NIZKs) introduced
by [46]. In this model, a trusted party only generates a common uniformly random
string. The verifier can then choose a public/secret key pair, which is used to gen-
erate/verify proofs, respectively. Soundness is required to hold when the verifier
generates these keys honestly, while zero-knowledge is required to hold even when
the verifier may generate the public key maliciously. MDV-NIZKs can equivalently
be thought of as 2-round zero-knowledge protocols in the common random string
model, in which the verifier’s first-round message is reusable; namely, the public
key chosen by the verifier can be thought of as a first-round message.

Very recently, the work of [46] showed how to construct such MDV-NIZKs
under the “one-more CDH assumption.” This is an interactive assumption that
has received much less scrutiny than standard CDH/DDH.

1.1 Our Results

In this work, we propose a framework for constructing reusable DV-NIZKs from
generic assumptions. One instantiation of this framework yields reusable DV-
NIZKs generically from any public-key encryption together with a secret-key
encryption scheme satisfying a weak form of key-dependent message (KDM)
security Both components can be instantiated under any of the CDH/LWE/LPN
assumptions, so we obtain constructions of DV-NIZKs under these assumptions.
In particular, we obtain the following theorem:

Theorem 1.1 (informal). Assuming the existence of public-key encryption
and secret-key encryption that is KDM-secure with respect to projections (see
Definition 2.12), there exist reusable designated-verifier NIZK arguments for NP.
In particular, there exist reusable DV-NIZKs under either the CDH assumption,
the LWE assumption, or the LPN assumption with noise rate O(1√

n
).

We then show how to construct reusable malicious DV-NIZKs from any
(receiver-extractable) 2-round oblivious transfer (OT) in the common random
string model and the same form of KDM-secure SKE. This yields instantiations
of MDV-NIZKs under the CDH/LWE/LPN assumptions using the OT construc-
tions of [21,45], as summarized by the following theorem.

Theorem 1.2 (informal). Assuming the existence of “receiver-extractable 2-
message OT” and secret-key encryption that is KDM-secure with respect to pro-
jections, there exist reusable malicious designated-verifier NIZK arguments for
NP. In particular, there exist reusable MDV-NIZKs under the CDH assumption,
the LWE assumption, or the LPN assumption with noise rate n−(1

2+ε) for any
ε > 0.

New Constructions of Reusable Designated-Verifier NIZKs 673

More generally, we give a compiler converting any Σ-protocol (or even more
generally, any “zero-knowledge PCP” [34,36]) into a DV-NIZK using a form of
single-key attribute-based encryption (ABE) satisfying a certain “function-hiding
(under decryption queries)” property. Collusion-resistant ABE is only known
from specific algebraic assumptions over bilinear maps [31,49] or lattices [6,30],
but single-key ABE can be constructed from any public-key encryption scheme
[29,48]. While we are unable to construct our variant of ABE (i.e., one that satis-
fies our function-hiding property) from an arbitrary public-key encryption (PKE)
scheme, we show how to construct it by additionally relying on KDM-secure
SKE, using a technique recently developed in [38,39]. However, in addition to
this construction, we outline an alternate approach for building single-key ABE
with our function-hiding property (using the standard lattice-based ABE [6]) in
the full version of this paper [40]. As a result, we believe that our new notion
may be helpful in order to construct DV-NIZKs from other assumptions in the
future. Note that if one could construct DV-NIZKs from any semantically-secure
PKE scheme, it would show that semantically-secure PKE generically implies
CCA-secure PKE (via the Naor-Yung paradigm [42]), which would resolve a
major long-standing open problem. More modestly, one could hope to construct
DV-NIZKs generically from any CCA-2 secure encryption. Our techniques may
offer some hope towards realizing these exciting possibilities.

Our techniques depart significantly from the prior constructions of DV-NIZKs
and MDV-NIZKs in [14,35,46]. In particular, those works relied on the hidden-
bits model from [23] and used a variant of the Cramer-Shoup hash-proof system
under CDH [16,17] to instantiate the hidden bits for a designated verifier. Unfor-
tunately, we do not have good hash-proof systems under LWE/LPN and so it
does not appear that these techniques can be used when starting from “noisy
assumptions” (among other concerns). As we describe below, we take a vastly
different approach and do not rely on the hidden bits model. One disadvantage
of our results is that, while [14,35,46] achieve statistically sound (M)DV-NIZK
proofs, we only get argument systems with computational soundness3.

Application to Reusable Non-interactive Secure Computation. We note
that MDV-NIZKs can be used to obtain new solutions to the problem of reusable
non-interactive secure computation (rNISC) [13]. In this setting, there is a public
function f and a receiver (Rachel) publishes a “query” using her secret input x.
Later a sender (Sam) can send a “response” using his secret input y and ensure
that Rachel only learns f(x, y). We further want Rachel’s query to be reusable
so that Sam can send many different responses with various values yi and have
Rachel learn f(x, yi) without compromising security. The main difficulty is that a
malicious Sam can send malformed responses and, by observing whether Rachel
aborts or not, can potentially learn information about her input x. Previously, we
had instantiations of rNISC (in the CRS model) using 2-round (malicious) obliv-
ious transfer (OT) and NIZKs, or more recently, via a black-box use of oblivious
linear-function evaluation (OLE) [13]. However, we had no constructions under
3 Our construction is also computational zero-knowledge. None of the recent construc-

tions of DV-NIZKs satisfy statistical zero knowledge.

674 A. Lombardi et al.

many standard assumptions, including any of CDH/DDH, LPN or LWE. It turns
out that we can easily use MDV-NIZKs instead of standard NIZKs (along with
2-round malicious OT) to solve this problem. In particular, Rachel sends OT
queries corresponding to her input x as well as the public-key of an MDV-NIZK.
Sam then creates a garbled circuit for f(·, y) with his input y hard-coded, and
sends the labels via the OT responses; in addition he encrypts y (under a pub-
lic key in the CRS) and proves that he computed the garbled circuit and the
OT responses correctly and consistently with the encrypted y. We can simulate
Sam’s view (including Rachel’s output) by checking the MDV-NIZK to decide if
Rachel aborts or not; if the MDV-NIZK verifies then we can extract y from the
encryption and be sure that Rachel correctly outputs f(x, y). Using our instan-
tiations of MDV-NIZKs along with known constructions of 2-round OT from
[21,45], we get instantiations of rNISC under CDH, LPN or LWE.

1.2 Our Techniques

Our approach starts with the construction of non-reusable DV-NIZKs from any
public-key encryption, due to Pass, shelat, and Vaikuntanathan [43]. The [43]
construction relies on a Σ-protocol [15] with 1-bit challenges for an NP-complete
language, such as Blum’s protocol for graph Hamiltonicity [3]. Recall that a Σ-
protocol is a 3-round protocol, where the prover sends a value a, the challenger
chooses a bit b ∈ {0, 1}, and the prover replies with a response z; the verifier
checks the validity of the transcript (a, b, z) at the end. The protocol should
have special soundness (if there are two accepting transcripts (a, 0, z0), (a, 1, z1)
with the same a then the statement must be true) and special honest-verifier
zero-knowledge (given b ahead of time, we can simulate the transcript (a, b, z)
without knowing a witness). The scheme also relies on a public-key encryption
scheme PKE. The non-reusable DV-NIZK of [43] is defined by invoking λ (secu-
rity parameter) independent copies of the following base scheme in parallel:

– Setup: The common reference string consists of PKE public keys, (pk0, pk1).
The verifier’s secret verification key (b, skb) consists of a random bit b along
with the secret key skb for the corresponding public key pkb.

– Proof generation: On input a statement x and a witness w, the prover P
first computes the first message a of the Σ-protocol. Then, the prover com-
putes responses (z0, z1) for both possible challenge bits b ∈ {0, 1}, respec-
tively, and outputs (a, ct0 = Encrypt(pk0, z0), ct1 = Encrypt(pk1, z1)).

– Proof verification: Given a proof (a, ct0, ct1), and verification key (b, skb),
the verifier computes z = Decrypt(skb, ctb) and accepts if and only if (a, b, z)
is a valid transcript.

Zero-knowledge of the DV-NIZK holds because the simulator knows the bits
b of the verifier in each invocation and can therefore simulate the Σ-protocol
transcripts (a, b, zb) without knowing a witness. It can create the ciphertext ctb
by encrypting zb and can put an arbitrary dummy value in the “other” ciphertext
ct1−b; this is indistinguishable by the security of the encryption.

New Constructions of Reusable Designated-Verifier NIZKs 675

Non-reusable soundness of the DV-NIZK follows from the special soundness
of the Σ-protocol. If the statement is false then, for each a, there is only one
challenge bit b that has a valid response z, and therefore the prover would have to
correctly guess the bit b in each of the λ invocations of the above base protocol.
This can only happen with negligible probability.

Unfortunately, as noted in [43], the soundness of this scheme is completely
broken if the prover is allowed to query a verification oracle to test whether
arbitrary proofs accept or reject—by creating a proof of a true statement and
putting an incorrect value in (say) the ciphertext ct0 of the ith copy of the
protocol, the adversary learns the verifier’s bit b in the ith copy after learning
whether the proof accepts or rejects. The adversary can eventually recover all of
the verifier’s bits b this way and, once it does so, it is easy to construct a valid
proof of a false statement by using the Σ-protocol simulator to generate valid
transcripts (a, b, zb).

To overcome this problem, we replace the use of public-key encryption with
a form of attribute-based encryption, so that every instance x yields a different
sequence of challenge bits b associated to it.

Function-Hiding ABE. The main tool that we use in this work is a vari-
ant of single-key ABE satisfying a certain function-hiding property. Recall that
an ABE scheme (Setup,KeyGen,Encrypt,Decrypt) allows for the encryption of a
message m under public parameters pp with respect to an attribute x resulting
in a ciphertext ct. The ciphertext ct can be decrypted using a secret key skf

associated with a function f and the message m is recovered if f(x) = 1. On
the other hand, if f(x) = 0, then semantic security holds and nothing about the
message is revealed even given skf . In this work, we focus on schemes satisfy-
ing semantic security in the presence of a single secret key skf ; ABE schemes
satisfying single-key security can be constructed from any public-key encryption
scheme [29,48].

The function-hiding property we consider in this work requires that for any
function f , oracle access to the decryption oracle Decrypt(skf , ·) does not reveal
anything about the function f beyond whether skf was qualified to decrypt the
ciphertexts in question. More formally, we consider schemes where the attribute
x is given in the clear as part of the ciphertext ct, and require that an oracle call
of the form Decrypt(skf , ct) can be simulated using the master secret key msk
along with the value f(x), but without any additional knowledge of f .

At first glance, this property seems closely related to the standard notion
of CCA-security, in which access to a decryption oracle does not compromise
semantic security. However, these two notions appear to be incomparable. In
particular, function-hiding can hold even if access to the decryption oracle com-
pletely breaks semantic security while CCA-2 security can hold even if access to
the decryption oracle completely reveals the function f . Nonetheless, we observe
that some of the techniques previously developed for obtaining CCA-security are
also useful for obtaining our form of function-hiding.

Given this notion, our main contributions can be broken down into two
steps: (1) showing that function-hiding ABE yields DV-NIZKs, and (2) giving

676 A. Lombardi et al.

constructions of function-hiding ABE. With respect to (1), we note that assum-
ing the existence of public-key encryption, our notion of function-hiding ABE is
actually equivalent to DV-NIZKs for NP; we show the converse to (1) in the full
version of this paper [40].

The Compiler. Here, we describe a simplified version of our DV-NIZK protocol
using three main ingredients:

– A Σ-protocol [15] with 1-bit challenges for an NP-complete language L, such
as Blum’s protocol for graph Hamiltonicity [3]. (In Sect. 4, we describe our
compiler more generally in the language of zero-knowledge PCPs, which can
be instantiated via Σ-protocols as a special case).

– An ABE scheme ABE = (Setup,KeyGen,Encrypt,Decrypt) satisfying single-
key security and function-hiding as described above. (In Sect. 4, we describe
our compiler more generally using a new primitive called attribute-based
secure function evaluation (AB-SFE), for which ABE is a special case).

– A pseudorandom function PRF that can be evaluated by ABE. In this simpli-
fied scheme, it suffices for PRF to output a single bit. (In Sect. 4, we describe
our compiler by reusing the same PRF and ABE parameters across invo-
cations, while here we apply parallel repetition of completely independent
schemes).

Our DV-NIZK protocol is defined by invoking λ (security parameter) indepen-
dent copies of the following base scheme in parallel.

– Setup: The common reference string consists of the public parameters pp for
ABE. The verifier’s secret verification key (k, skf) consists of a PRF key k
along with an ABE secret key skf for evaluating the function

f(x, b) = 1 ⇐⇒ PRF(k, x) = b.

– Proof generation: On input a statement x and a witness w, the prover P
computes the first message a in the Σ-protocol. Then, the prover computes
responses (z0, z1) for both possible challenge bits b ∈ {0, 1}, respectively, and
computes an ABE encryption of zb with respect to attribute (x, b). This yields
ciphertexts (ct0, ct1); the prover sends (a, ct0, ct1) to the verifier.

– Proof verification: The verifier first computes y = PRF(k, x). Then, the
verifier decrypts cty using its secret verification key skf to obtain the prover’s
response zy. Finally, the verifier checks that the proof (a, y, zy) is valid and
accepts if this is the case.

We claim that the DV-NIZK is reusably sound. Consider any fixed statement4

x �∈ L and an adversary that makes arbitrary verification queries and eventually
produces an accepting proof for x. First, without loss of generality, we claim
4 This suffices for non-adaptive soundness. Adaptive soundness (in which the cheating

prover is allowed to adaptively select a false statement x �∈ L after seeing the common
reference string) can be achieved either by complexity leveraging [5] (see Remark 2.4)
or by relying on a trapdoor Σ-protocol [12] (see Remark 4.4).

New Constructions of Reusable Designated-Verifier NIZKs 677

that we can consider an adversary that never makes a verification query on x
itself; if an adversary had a non-negligible probability of making such a query
and getting an accepting response then it would be able to win the game without
making the query! Second, we claim that the challenges y = PRF(k, x) for each
invocation, which are used when verifying the adversary’s final proof for x, are
pseudorandom from the prover’s perspective. This holds even if the prover is
given oracle access to the verifier on all statements x′ �= x since, by the function-
hiding of ABE, these queries can be simulated given only the values PRF(k, x′)
without revealing any additional info about k. But, by the special soundness of
the Σ-protocol, the only way that the adversary can produce an accepting proof
would be to guess all of the values y used in each of the λ invocations, which
only happens with negligible probability.

Moreover, we claim that the DV-NIZK is zero-knowledge. In an honestly-
generated proof π = (a, ct0, ct1), on instance x, the verifier can compute the
response zy for y = PRF(k, x), but the response z1−y is computationally hidden
by semantic security of ABE. This means that π can be simulated given only
(k, (a, zy)), which is in turn simulatable given only x by the special honest-
verifier zero-knowledge of the Σ-protocol.

We provide the formal description of our compiler in Sect. 4.

Constructing Function-Hiding ABE. We now describe two ways5 to con-
struct a (single-key) ABE scheme that satisfies our function-hiding property.
Combined with our compiler above, this suffices to construct DV-NIZKs (i.e.,
the results from Theorem 1.1). In the body of the paper, we will focus on
the second candidate based on KDM-secure SKE for two main reasons: (1) it
enables instantiations from CDH/LWE/LPN (and correspondingly, DV-NIZKs
from these assumptions); and (2) it readily generalizes to notions beyond ABE,
which as we discuss in greater detail below, enables constructions of MDV-NIZKs
from CDH/LWE/LPN.

– Lattice-based ABE: First, we observe that a simple variant of the lattice-
based ABE construction from [6] satisfies our notion of function-hiding.
Namely, we can modify the construction [6] so that the decryption algorithm
(with either the master secret key or a function key) can fully recover the
encryption randomness used to construct a particular ciphertext, and in doing
so, verify that a ciphertext is well-formed (i.e., could be output by the hon-
est encryption algorithm). If the scheme supports this randomness recovery
property, function-privacy essentially follows from (perfect) correctness of the
underlying scheme. This high-level idea of leveraging randomness recovery is
a common theme in our constructions. We provide additional details in the
full version of this paper [40].

– PKE and KDM-secure SKE: Following the approach of [38,39], we show
that any single-key ABE scheme can be used to construct an ABE scheme
satisfying function-hiding with respect to decryption queries. The amplifica-
tion procedure additionally requires the existence of a secret-key encryption

5 We refer to a previous version of this work [41] for an additional approach based on
lossy trapdoor functions.

678 A. Lombardi et al.

scheme SKE that is KDM-secure for a simple class of functions. As shown
in [2,7,9,19,20], such secret-key encryption schemes can be constructed from
the CDH/LWE/LPN assumptions, and hence, give instantiations of function-
hiding ABE from CDH/LWE/LPN.
In fact, the exact construction of CCA-secure ABE in [39] (and the modifi-
cation introduced in [38]) can also be shown to satisfy function-hiding. How-
ever, as noted above, CCA-security does not generically imply our notion of
function-hiding or vice versa. In this work, we describe a simplified variant
of the [38] compiler that suffices to construct function-hiding ABE and then
analyze its security.
We now provide a description of (our simplification of) the [38,39] con-
struction. Take any (single-key) ABE scheme ABE, a secret-key encryption
scheme SKE, a public-key encryption scheme PKE, an equivocable commit-
ment scheme Com, and consider the following modified ABE scheme:

• Public parameters: ABE public parameters pp, PKE public key pk,
and commitment common reference string crs.

• Key generation: This is unmodified from ABE: an ABE master secret
key is used to generate keys skf associated to functions f .

• Encryption algorithm: On input the public parameters (pp, pk, crs), an
attribute x and a message m:
1. Sample a SKE secret key s ← {0, 1}λ.
2. Sample random strings ρi (for i ∈ [λ]) and Ri,b (for i ∈ [λ], b ∈ {0, 1}).
3. Output commitments comi = Com(crs, si; ρi) to the bits of the secret

key s, a “joint encryption matrix” M = {cti,b}i∈[λ],b∈{0,1} consisting
of λ ABE ciphertexts and λ PKE ciphertexts using the strings Ri,b as
encryption randomness. Lastly, also output a symmetric encryption
ct0 ← SKE.Encrypt(s,m‖{Ri,si

}i∈[λ]) of the message m concatenated
with a subset of {Ri,b} corresponding to the bits of s (using fresh
encryption randomness).

We now elaborate on the ciphertexts cti,b:
* For every index i ∈ [λ], cti,0 is an ABE ciphertext computed using

(pp, x) and randomness Ri,0, while cti,1 is a PKE ciphertext computed
using pk and randomness Ri,1.

* As for the underlying messages: for every index i ∈ [λ], cti,si
is an

encryption of ρi, while cti,1−si
is an encryption of ⊥ (a dummy mes-

sage).
Following [38,39], we provide some high-level intuition for this encryption
algorithm. For a fixed pair (i, b), call a ciphertext cti,b “good” with respect
to commitment comi if there exists commitment randomness ρi such that
comi = Com(crs, b; ρi) and cti,b is a well-formed encryption of ρi. Then, given
a qualified secret key skf , an honestly-generated matrix M = {cti,b} encodes
the SKE-secret key s: we have si = b if and only if cti,b is “good,” so si can be
identified by decrypting cti,0 (using skf) and checking whether the underlying
message is ⊥.6

6 In the actual decryption procedure, a more sophisticated mechanism is employed to
identify s in order to handle malformed ciphertexts.

New Constructions of Reusable Designated-Verifier NIZKs 679

Moreover, the binding property of the commitment scheme Com guarantees
that for every (i, comi, cti,0, cti,1), there is at most one bit b such that cti,b
is “good”; in other words, even malformed ciphertexts encode at most one
secret key s. This introduces enough redundancy in the scheme so that CCA-
like security properties can be guaranteed without the decryption procedure
fully recovering the encryption randomness. In particular, the randomness
{Ri,1−si

} can be left unrecoverable (even given a qualified key skf), which is
what allows for a proof of semantic security.
We leave a detailed discussion of the decryption algorithm to Sect. 5, but
decryption roughly proceeds by recovering some of the overall encryption
randomness (using skf)—namely, (s, ρ, {Ri,si

}i∈[λ])—and then checking that
each ciphertext of the form cti,si

is “good” (which can be done without using
skf). To argue semantic security, we proceed in three steps:

• Switch the commitment crs to an “equivocal mode” so that com =
(comi)i∈[λ] can be explained as a commitment to any string (with an
appropriate choice of randomness).

• Show that (in equivocal mode) M = {cti,b} can be simulated (using ρ
and {Ri,b}) without knowing s.

• At this point, ct0 is guaranteed to hide m by invoking KDM-security of
SKE.

To argue function-hiding, we show that the ciphertext ct can be decrypted
in two equivalent ways: (1) by using the “honest” decryption algorithm with
the ABE secret key skf ; and (2) using the PKE secret key associated with pk
(and outputting a message only when f(x) = 1). Semantic security of the
scheme is guaranteed to hold in the presence of skf (the secret key of the
honest decryptor), but an adversary with oracle access to one of these two
decryption functions cannot distinguish them. Since the second procedure
hides f(x′) for any attribute x′ not queried by the adversary, function-hiding
follows.
Combined with the instantiations of KDM-secure SKE from various assump-
tions [2,7,9,19,20] and the fact that single-key ABE follows from PKE [29,48],
this approach gives a single-key function-hiding ABE scheme from any of the
CDH/LWE/LPN assumptions. For our LPN instantiation, we require noise
rate 1/

√
n to instantiate the public-key encryption scheme [1]. We describe

this construction and its analysis in Sect. 5.

Obtaining Malicious Security. So far, we have shown how to construct DV-
NIZKs from function-hiding single-key ABE and provided several instantiations
of the latter object from concrete assumptions. However, the DV-NIZKs obtained
in this fashion necessarily requires that the verifier’s secret key be generated by
a trusted party; indeed, if the verifier is malicious and allowed to set up this
DV-NIZK, it can simply sample an ABE key-pair (pp,msk) and remember the
entire master secret key. This clearly breaks zero-knowledge.

To construct a malicious DV-NIZK scheme, we intuitively have to replace
the trusted setup of an ABE scheme with a form of reusable non-interactive
two-party computation that implements a similar functionality. Specifically, we

680 A. Lombardi et al.

introduce a more general primitive called attribute-based secure function eval-
uation (AB-SFE, see Definition 3.1). At a high-level, an AB-SFE scheme is a
two-party protocol between a sender and a receiver and parameterized by a
public function F : X × Y → {0, 1}. The sender holds a public attribute x ∈ X
and a secret message m while the receiver holds a secret input y ∈ Y. At the
end of the protocol, the receiver should learn m only if F (x, y) = 1 (otherwise,
the receiver should learn nothing). The protocol should be non-interactive in the
following sense: at the beginning of the protocol, the receiver publishes a public
key pky based on its secret input y; thereafter, the sender with its attribute-
message pair (x,m) can send a single message to the receiver that allows the
receiver to learn m whenever F (x, y) = 1. The receiver’s initial message pky

should both hide y and be reusable for arbitrarily many protocol executions.
We say AB-SFE schemes satisfying this property are “key-hiding”. In addition,
we are interested in security even against malicious receivers that choose pky

maliciously. We note that a single-key ABE scheme can be used to construct a
secure AB-SFE scheme satisfying a much weaker security notion where a trusted
party generates the receiver’s message pky.

Similarly to our use of ABE in the generic compiler above, an AB-SFE scheme
can be used to compile a Σ-protocol (or more generally, zero-knowledge PCPs)
to obtain a reusable DV-NIZK; moreover, this compiled DV-NIZK is secure even
against malicious verifiers and is therefore an MDV-NIZK. Specifically, in our
construction, we replace the ABE scheme with an AB-SFE scheme with respect
to the function F where F ((x, b), k) = 1 if and only if PRF(k, x) = b. If we use a
maliciously-secure AB-SFE scheme, we only rely on a trusted setup to generate
a uniformly random common reference string. We then allow the verifier to (1)
sample a PRF key k and (2) compute the receiver message pkk for the AB-SFE
protocol (with private input k) itself. Malicious security of the AB-SFE protocol
exactly allows us to prove malicious zero-knowledge of the compiled protocol.
As in the case of ABE, soundness of the compiled protocol relies on a form of
AB-SFE security where the receiver’s input y is hidden from the sender even
given access to an appropriately-defined decryption oracle.

We obtain AB-SFE schemes that can be plugged into our compiler in two
steps:

– Constructing weak key-hiding AB-SFE. First, we combine a form of
malicious-secure 2-message OT [21,45] with garbled circuits to obtain an
AB-SFE scheme that satisfies weak key-hiding. Namely, the receiver’s input y
is hidden to an adversary that does not have access to the decryption oracle.
We describe this construction in Sect. 5.2.

– Amplifying weak key-hiding to strong key-hiding. Then, we apply the
[38,39] transformation to the weak key-hiding AB-SFE scheme from above to
obtain an AB-SFE scheme that satisfies strong key-hiding where the receiver’s
input y is hidden even in the presence of the decryption oracle. This allows for
new instantiations of MDV-NIZK from any of the CDH/LWE/LPN assump-
tions (Theorem 1.2). Our LPN-based instantiation requires noise rate n−(1

2+ε)

New Constructions of Reusable Designated-Verifier NIZKs 681

for some ε > 0 in order to implement the [21] OT protocol. We describe this
construction in Sect. 5.3.

We provide a formal definition of AB-SFE in Sect. 3, and the full construction
and analysis in Sect. 5.

1.3 Recent Related Work

In this section, we describe several recent works that are directly related to
this work. Several of these works [21,38] have yielded new instantiations of our
general framework for constructing designated-verifier NIZKs (relative to a pre-
liminary version of this work [41]).

NIZKs from LWE. In a concurrent and independent work, Peikert and
Shiehian [44] construct NIZKs from the plain LWE assumption, which in par-
ticular yields reusable (M)DV-NIZKs from LWE. While the [44] NIZK has the
major advantage of being publicly verifiable, we note that our usage of LWE
only relies on plain Regev (public-key) encryption [47] rather than more com-
plex lattice-based primitives.

KDM-Secure SKE and Hinting PRGs. In a concurrent work, Kitagawa,
Matsuda and Tanaka [38] modify the “signaling technique” of [39] with the goal
of constructing CCA-secure encryption (similarly to [39]). The [38] modification
of [39] can be plugged into our construction of (M)DV-NIZKs to obtain our
LPN-based instantiation of DV-NIZKs.

2-Message OT from CDH/LPN. In another concurrent work, Döttling,
Garg, Hajiabadi, Masny, and Wichs [21] construct 2-round OT from the
CDH/LPN assumptions. Their construction can be directly combined with our
generic transformations to obtain the CDH/LPN-based instantiations of MDV-
NIZKs in this paper.

2 Preliminaries

We write λ to denote a security parameter. We say that a function f is negligible
in λ, denoted negl(λ), if f(λ) = o(1/λc) for all c ∈ N. We say an event happens
with negligible probability if the probability of the event happening is negligible,
and that it happens with overwhelming probability if its complement occurs with
negligible probability. We say that an algorithm is efficient if it runs in proba-
bilistic polynomial-time (PPT) in the length of its inputs. We write poly(λ) to
denote a function bounded by a (fixed) polynomial in λ. We say that two fam-
ilies of distributions D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N are computationally
indistinguishable if no PPT adversary can distinguish samples from D1 and D2

except with negligible probability, and we denote this by writing D1
c≈ D2. We

write D1
s≈ D2 to denote that D1 and D2 are statistically indistinguishable (i.e.,

the statistical distance between D1 and D2 is bounded by a negligible function).

682 A. Lombardi et al.

For an integer n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}.
For a finite set S, we write x

r← S to denote that x is sampled uniformly at
random from S. For a distribution D, we write x ← D to denote that x is sam-
pled from D. For two finite sets X and Y, we write Funs[X ,Y] to denote the set
of functions from X to Y. In the full version of this paper [40], we also review
the definitions of core cryptographic primitives such as pseudorandom functions,
public-key encryption, (receiver-extractable) 2-message oblivious transfer, gar-
bling schemes, and non-interactive equivocable commitments.

2.1 Designated-Verifier NIZKs

We now introduce the notion of a designated-verifier non-interactive zero-
knowledge (DV-NIZK) argument. We use a refined notion where there are sepa-
rate setup and key-generation algorithms. The setup algorithm outputs a com-
mon reference string (possibly a common random string) for the scheme. The
CRS can be reused by different verifiers, who would generate their own pub-
lic and private keys. In the traditional notion of designated-verifier NIZKs, the
setup and key-generations algorithms are combined, and the public key pk is
simply included as part of the CRS.

Definition 2.1 (Designated-Verifier NIZK Argument). Let L be an
NP language associated with an NP relation R. A designated-verifier non-
interactive zero-knowledge (DV-NIZK) argument for L consists of a tuple of three
efficient algorithms dvNIZK = (dvNIZK.Setup, dvNIZK.KeyGen, dvNIZK.Prove,
dvNIZK.Verify) with the following properties:

– dvNIZK.Setup(1λ) → crs: On input the security parameter λ, the setup algo-
rithm outputs a common reference string crs. If dvNIZK.Setup outputs a uni-
formly random string, then we say that the DV-NIZK scheme is in the com-
mon random string model.

– dvNIZK.KeyGen(crs) → (pk, sk): On input a common reference string crs, the
key-generation algorithm outputs a public key pk and a secret verification key
sk.

– dvNIZK.Prove(crs, pk, x, w) → π: On input the common reference string crs,
a public key pk, a statement x, and a witness w, the prove algorithm outputs
a proof π.

– dvNIZK.Verify(crs, sk, x, π) → {0, 1}: On input the common reference string
crs, a secret key sk, a statement x, and a proof π, the verification algorithm
outputs a bit b ∈ {0, 1}.

Moreover, dvNIZK should satisfy the following properties:

– Completeness: For all (x,w) ∈ R, and taking crs ← dvNIZK.Setup(1λ) and
(pk, sk) ← dvNIZK.KeyGen(crs), we have that

Pr
[
π ← dvNIZK.Prove(crs, pk, x, w) : dvNIZK.Verify(crs, sk, x, π) = 1

]
= 1.

– Soundness: We consider two variants of soundness:

New Constructions of Reusable Designated-Verifier NIZKs 683

• Non-adaptive soundness: For all x /∈ L, all PPT adversaries A,

Pr
[
π ← AdvNIZK.Verify(crs,sk,·,·)(1λ, crs, pk, x) :

dvNIZK.Verify(crs, sk, x, π) = 1
]

= negl(λ),

where crs ← dvNIZK.Setup(1λ) and (pk, sk) ← dvNIZK.KeyGen(crs).
• Adaptive soundness: For all PPT adversaries A,

Pr
[
(x, π) ← AdvNIZK.Verify(crs,sk,·,·)(1λ, crs) :

x /∈ L ∧ dvNIZK.Verify(crs, sk, x, π) = 1
]

= negl(λ),

for (crs, pk, sk) ← dvNIZK.Setup(1λ) and (pk, sk) ← dvNIZK.KeyGen(crs).
– Zero-knowledge: For all PPT adversaries A, there exists a PPT simulator

S = (S1,S2) such that
∣
∣
∣Pr[AO0(crs,pk,·,·)(crs, pk, sk) = 1] − Pr[AO1(stS ,·,·)(crs, pk, sk) = 1]

∣
∣
∣ = negl(λ),

where crs ← dvNIZK.Setup(1λ), (pk, sk) ← dvNIZK.KeyGen(crs), and (stS , crs,
pk, sk) ← S1(1λ), the oracle O0(crs, pk, x, w) outputs dvNIZK.Prove(crs, pk,
x, w) if R(x,w) = 1 and ⊥ otherwise, and the oracle O1(stS , x, w) outputs
S2(stS , x) if R(x,w) = 1 and ⊥ otherwise.

Definition 2.2 (Malicious Designated-Verifier NIZKs [46]). Let dvNIZK
be a DV-NIZK for a language L (with associated NP relation R). For an adver-
sary A, and a simulator S = (S1,S2), we define two experiments ExptRealA(λ)
and ExptSimA,S(λ) as follows:

– Setup: In ExptRealA(λ), the challenger samples crs ← dvNIZK.Setup(1λ)
and in ExptSimA,S(λ), the challenger samples (stS , crs) ← S1(1λ). In
ExptRealA(λ), the challenger gives crs to A, while in ExptSimA,S(λ), the chal-
lenger gives crs to A. Then, A outputs a public key pk.

– Verification queries: Algorithm A is then given access to a verifica-
tion oracle. In both experiments, if R(x,w) �= 1, then the challenger
replies with ⊥. Otherwise, in ExptRealA(λ), the challenger replies with π ←
dvNIZK.Prove(crs, pk, x, w), and in ExptSimA,S(λ), the challenger replies with
π ← S2(stS , pk, x).

– Output: At the end of the experiment, the adversary outputs a bit b′ ∈ {0, 1},
which is the output of the experiment.

We say that dvNIZK provides zero-knowledge against malicious verifiers if
for all PPT adversaries A, there exists an efficient simulator S such that
ExptRealA(λ)

c≈ ExptSimA,S(λ). If dvNIZK satisfies this property (in addi-
tion to completeness and soundness), then we say that dvNIZK is a malicious-
designated-verifier NIZK (MDV-NIZK).

684 A. Lombardi et al.

Remark 2.3 (Reusability of the CRS with Many Public Keys). The zero-
knowledge property of Definition 2.2 only provides (multi-theorem) zero-
knowledge with respect to a single maliciously-generated public key pk. Using
the “OR trick” transformation from [23], any MDV-NIZK can be generically
compiled into one where a single CRS can be reused with an arbitrary polyno-
mial number of (potentially maliciously-generated) public keys, while preserving
zero-knowledge. Note that the original transformation compiled any NIZK in
the CRS model with single-theorem zero-knowledge into a multi-theorem ver-
sion; we note that it also directly applies to the (malicious) designated-verifier
setting (essentially because proofs can still be generated publicly). Additionally,
if the original MDV-NIZK is in the common random string model, then the
resulting protocol is also in the common random string model.

Remark 2.4 (Adaptive Soundness via Complexity Leveraging). Using the stan-
dard technique of complexity leveraging [5], a DV-NIZK satisfying non-adaptive
soundness also satisfies adaptive soundness at the expense of a super-polynomial
loss in the security reduction.

2.2 Zero-Knowledge PCPs

Definition 2.5 (Zero-Knowledge PCP [34,36]). Let R : {0, 1}n × {0, 1}h →
{0, 1} be an NP relation and L ⊆ {0, 1}n be the associated language. A non-
adaptive, �-query zero-knowledge PCP (with alphabet Σ) for L is a tuple of
algorithms zkPCP = (zkPCP.Prove, zkPCP.Query, zkPCP.Verify) with the follow-
ing properties:

– zkPCP.Prove(x,w) → π: On input a statement x ∈ {0, 1}n and a witness
w ∈ {0, 1}h, the prove algorithm outputs a proof π ∈ Σm.

– zkPCP.Query(x) → (stx, q1, . . . , q�): On input a statement x ∈ {0, 1}n, the
query-generation algorithm outputs a verification state stx and � query indices
q1, . . . , q� ∈ [m].

– zkPCP.Verify(stx, s1, . . . , s�) → {0, 1}: On input the verification state st and a
set of responses s1, . . . , s� ∈ Σ, the verify algorithm outputs a bit b ∈ {0, 1}.

Moreover, zkPCP should satisfy the following properties:

– Efficiency: The running time of zkPCP.Prove, zkPCP.Query, and
zkPCP.Verify should be bounded by poly(n). In particular, this means that
m = poly(n).

– Completeness: For all x ∈ {0, 1}n and w ∈ {0, 1}h where R(x,w) = 1,

Pr[zkPCP.Verify(stx, πq1 , . . . , πq�
) = 1] = 1,

where π ← zkPCP.Prove(x,w) and (stx, q1, . . . , q�) ← zkPCP.Query(x).
– Soundness: For all x /∈ L, all proof strings π ∈ Σm,

Pr[zkPCP.Verify(stx, πq1 , . . . , πq�
) = 1] = negl(n),

where (stx, q1, . . . , q�) ← zkPCP.Query(x).

New Constructions of Reusable Designated-Verifier NIZKs 685

– Zero-knowledge: For all PPT adversaries A = (A1,A2), there exists an
efficient simulator S such that

∣
∣
∣Pr[b = 1 | R(x,w) = 1] − Pr[b̃ = 1 | R(x,w) = 1]

∣
∣
∣ = negl(n),

where (stA, x, w, q1, . . . , q�) ← A1(1n), π ← zkPCP.Prove(x,w), (π̃1, . . . , π̃�)
← S(x, q1, . . . , q�), b ← A2(stA, πq1 , . . . , πq�

), and b̃ ← A2(stA, π̃1, . . . , π̃�),

Semi-malicious Zero-Knowledge. The zero-knowledge requirement in Defi-
nition 2.5 requires that there exists a PPT simulator for an adversary that reads
any set of � bits of the PCP, including subsets that would never be output by
zkPCP.Query. In our constructions, we can rely on the relaxed notion of semi-
malicious zero-knowledge which only requires simulation for subsets of bits that
are output by an invocation of zkPCP.Query (for some setting of the random-
ness). Specifically, we define the following:

Definition 2.6 (Semi-Malicious Zero-Knowledge). A zero-knowledge PCP
zkPCP for a language L with associated NP relation R satisfies semi-malicious
zero-knowledge if for all PPT adversaries A = (A1,A2), there exists a PPT
simulator S such that

∣
∣
∣ Pr[A2(stA, πq1 , . . . , πq�

) = 1 | R(x,w) = 1]−

Pr[A2(stA, π̃1, . . . , π̃�) = 1 | R(x,w) = 1]
∣
∣
∣ = negl(n),

for (stA, x, w, r) ← A1(1n), (q1, . . . , q�) ← zkPCP.Query(x; r), π ←
zkPCP.Prove(x,w), and (π̃1, . . . , π̃�) ← S(x, q1, . . . , q�).

Instantiating Zero-Knowledge PCPs. As noted by Ishai et al. [34], the
original zero-knowledge protocol by Goldreich et al. [27] makes implicit use of
an honest-verifier zero-knowledge PCP for graph 3-coloring. To briefly recall, the
prover takes a 3-coloring of the graph, randomly permutes the colors, and writes
down the colors for each vertex as the PCP. To check the PCP, the (honest)
verifier samples a random edge in the graph and reads the colors for the two
nodes associated with the edge. It is straightforward to see that if zkPCP.Query
always outputs a pair of nodes corresponding to some edge in the graph, then this
PCP satisfies semi-malicious zero-knowledge. To achieve negligible soundness, we
rely on parallel amplification (e.g., by concatenating many independent copies
of the PCP) and note that semi-malicious zero-knowledge is indeed preserved
under parallel repetition. We state this instantiation below:

Theorem 2.7 (Semi-Malicious Zero-Knowledge PCP [27]). Let L ⊆ {0,
1}n be an NP language. Then, there exists an �-query zero-knowledge PCP for
L with alphabet Σ = {0, 1, 2} and � = poly(n).

686 A. Lombardi et al.

We note that there are many other ways to instantiate the zero-knowledge PCP
with the desired properties. For instance, Blum’s protocol for graph Hamiltonic-
ity [3] also implicitly uses a (semi-malicious) zero-knowledge PCP. We can also
construct zero-knowledge PCPs (with fully malicious zero knowledge) using mul-
tiparty computation (MPC) protocols by using the MPC-in-the-head technique
of Ishai et al. [33]. More broadly, Σ-protocols with a polynomial-size challenge
space can generally be viewed as implicitly implementing a (semi-malicious)
zero-knowledge PCP.

2.3 Attribute-Based Encryption

Definition 2.8 (Attribute-Based Encryption). An attribute-based encryp-
tion (ABE) scheme over a message space M, an attribute space X , and a func-
tion family F = {f : X → {0, 1}} is a tuple of algorithms ABE = (ABE.Setup,
ABE.KeyGen,ABE.Encrypt,ABE.Decrypt) with the following properties:

– ABE.Setup(1λ) → (pp,msk): On input the security parameter λ, the setup
algorithm outputs the public parameters pp and the master secret key msk.

– ABE.KeyGen(pp,msk, f) → skf : On input the public parameters pp, the mas-
ter secret key msk and a function f ∈ F , the key-generation algorithm outputs
a decryption key skf .

– ABE.Encrypt(pp, x,m) → ctx,m: On input the public parameters pp, an
attribute x ∈ X , and a message m ∈ M, the encryption algorithm outputs a
ciphertext ctx,m.

– ABE.Decrypt(pp, sk, ct) → (x,m): On input the public parameters pp, a secret
key sk (which could be the master secret key), and a ciphertext ct, the decryp-
tion algorithm either outputs an attribute-message pair (x,m) ∈ X × M or a
special symbol ⊥.

Definition 2.9 (Correctness). An ABE scheme ABE is (perfectly) correct if
for all messages m ∈ M, all attributes x ∈ X , and all predicates f ∈ F , and
setting (pp,msk) ← ABE.Setup(1λ),

– Pr
[
ABE.Decrypt

(
pp,msk,ABE.Encrypt(pp, x,m)

)
= (x,m)

]
= 1.

– If f(x) = 1, then

ABE.Decrypt
(
pp,ABE.KeyGen(pp,msk, f),ABE.Encrypt(pp, x,m)

)
= (x,m)

with probability 1.

Definition 2.10 (Security). Let ABE be an ABE scheme over an attribute
space X , message space M, and function family F . For a security parameter
λ and an adversary A, we define the ABE security experiment ExptABEA (λ, b) as
follows. The challenger begins by sampling (pp,msk) ← ABE.Setup(1λ) and gives
pp to the adversary A. Then A is given access to the following oracles:

– Key-generation oracle: On input a function f ∈ F , the challenger responds
with a key skf ← ABE.KeyGen(pp,msk, f).

New Constructions of Reusable Designated-Verifier NIZKs 687

– Challenge oracle: On input an attribute x ∈ X and a pair of messages
m0,m1 ∈ M, the challenger responds with a ciphertext ct ← ABE.Encrypt(pp,
x,mb).

At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}, which is also the
output of the experiment. An adversary A is admissible for the attribute-based
encryption security game if it makes one challenge query (x,m0,m1), and for
all key-generation queries f the adversary makes, f(x) = 0. We say that ABE is
secure if for all efficient and admissible adversaries A,

∣
∣
∣Pr[ExptABEA (λ, 0) = 1] − Pr[ExptABEA (λ, 1) = 1]

∣
∣
∣ = negl(λ).

Moreover, we say that ABE is single-key secure if the above property holds for
all efficient and admissible adversaries A that make at most one key-generation
query.

Function Hiding. Our generic constructions of designated-verifier NIZKs from
ABE (and generalizations thereof) relies on an additional (weak) notion of func-
tion hiding. While the traditional notion of function hiding asks that the secret
decryption key hides the function, our construction relies on a weaker notion
where we require that oracle access to the decryption function does not reveal
information about the underlying function (other than what can be directly
inferred by the input-output behavior of the function). We give the formal defi-
nition below:

Definition 2.11 (Weak Function Hiding). Let ABE be an ABE scheme,
and let t = t(λ) be a bound on the length of ciphertext in ABE. We say
that ABE satisfies weak function hiding if there exists an efficient simula-
tor S such that for all functions f ∈ F , (pp,msk) ← ABE.Setup(1λ), and
skf ← ABE.KeyGen(pp,msk, f)

∣
∣
∣Pr[AO1(pp,skf ,·)(1λ, pp) = 1] − Pr[AO2(pp,msk,·)(1λ, pp) = 1]

∣
∣
∣ = negl(λ),

where the oracles O1,O2 are defined as follows:

– Real decryption oracle: On input pp, skf , ct ∈ {0, 1}t, the real decryption
oracle O1(pp, skf , ct) outputs ABE.Decrypt(pp, skf , ct).

– Ideal decryption oracle: On input pp, msk, and a string ct ∈ {0, 1}t, the
ideal decryption oracle O2(pp,msk, ct) outputs Sf(·)(pp,msk, ct). Moreover,
we restrict the simulator S to make at most one oracle query to f per invo-
cation.

2.4 KDM-Secure Secret-Key Encyryption

Definition 2.12 (One-Time KDM-Secure SKE). A secret-key encryption
(SKE) scheme SKE = (SKE.Encrypt,SKE.Decrypt) is said to be one-time KDM

688 A. Lombardi et al.

secure for a function class F (with many-bit outputs) if for every function f ∈ F ,
the following two distributions are computationally indistinguishable:

{s
r← {0, 1}λ : SKE.Encrypt(s, f(s))} c≈ {s r← {0, 1}λ : SKE.Encrypt(s, 0|f(s)|)}

Remark 2.13 (KDM-Secure SKE Constructions for Projection Functions). We
say a function f : {0, 1}λ → {0, 1}m is a projection function if each bit of f(s)
depends on at most one bit of s. As in [38], we consider the class F = Fproj

of projection functions. Secret-key encryption schemes that are KDM-secure for
the class of projection functions can be constructed from the CDH [7,9], LWE
(with polynomial modulus) [2,9], and constant-noise LPN [2] assumptions.

3 Attribute-Based Secure Function Evaluation

In this section, we formally introduce our notion of an attribute-based secure
function evaluation scheme (AB-SFE), which can be viewed as a generalization
of a single-key ABE scheme. We then define two main security requirements on
AB-SFE schemes: message-hiding and key-hiding. For each notion, we introduce
a “weak” variant and a “strong” variant of the notion.

Definition 3.1 (Attribute-Based Secure Function Evaluation). An
attribute-based secure function evaluation (AB-SFE) scheme for a function
F : X ×Y → {0, 1} with message space M consists of a tuple of PPT algorithms
ABSFE = (ABSFE.Setup,ABSFE.KeyGen,ABSFE.Encrypt,ABSFE.Decrypt) with
the following properties:

– ABSFE.Setup(1λ) → crs: On input the security parameter λ, the setup algo-
rithm outputs a common reference string crs. We say that the AB-SFE scheme
is in the common random string model if Setup simply outputs a uniformly
random string.

– ABSFE.KeyGen(crs, y) → (pk, sk): On input the common reference string crs
and a value y ∈ Y, the key-generation algorithm outputs a public key pk and
a secret key sk.

– ABSFE.Encrypt(crs, pk, x,m) → ct: On input the common reference string
crs, a public key pk, a value x ∈ X , and a message m ∈ M, the encryption
algorithm outputs a ciphertext ct.

– ABSFE.Decrypt(crs, sk, x, ct) → m: On input the common reference string crs,
a secret key sk, an attribute x ∈ X , and a ciphertext ct, the decryption algo-
rithm outputs a message m ∈ M ∪ {⊥}.

Definition 3.2 (Correctness). An AB-SFE scheme ABSFE is (perfectly) cor-
rect if for all messages m ∈ M, all x ∈ X , y ∈ Y where F (x, y) = 1,

Pr
[
ABSFE.Decrypt

(
crs, sk, x,ABSFE.Encrypt(crs, pk, x,m)

)
= m

]
= 1,

where crs ← ABSFE.Setup(1λ) and (pk, sk) ← ABSFE.KeyGen(crs, y).

New Constructions of Reusable Designated-Verifier NIZKs 689

Message-Hiding. The first security requirement on an AB-SFE scheme is
message-hiding. The basic notion (or “weak” notion) is essentially semantic secu-
rity: namely, a ciphertext with attribute x ∈ X encrypted under a public key for
y ∈ Y where F (x, y) = 0 should hide the underlying message. Next, we define
a “strong” notion of message-hiding, which says semantic security holds even in
the setting where the public-key is maliciously chosen. In this case, we require
that there exists an efficient algorithm that can extract an attribute y from any
(possibly malformed) public key pk, and ciphertexts encrypted to any attribute
x where F (x, y) = 0 still hide the underlying message.

Definition 3.3 (Weak Message-Hiding). Let ABSFE be an AB-SFE scheme.
For a bit b ∈ {0, 1}, we define the following game between an adversary A and
a challenger:

– Setup: The adversary A begins by sending an input y ∈ Y to the challenger.
The challenger samples crs ← ABSFE.Setup(1λ), (pk, sk) ← ABSFE.KeyGen
(crs, y) and gives crs, pk, sk to A.

– Challenge query: The adversary A then makes a challenge query
(x,m0,m1) to the challenger where x ∈ X , m0,m1 ∈ M, and F (x, y) = 0.
The challenger replies with ct ← ABSFE.Encrypt(crs, pk, x,mb) and gives ct
to A.

– Output: The adversary A outputs a bit b′ ∈ {0, 1}.
We say that ABSFE provides weak message-hiding if for all PPT adversaries A,

|Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| = negl(λ).

Definition 3.4 (Strong Message-Hiding). An AB-SFE scheme ABSFE pro-
vides strong message-hiding if there exists a PPT “extractable-setup” algorithm
(crs, td) ← ABSFE.SetupExt(1λ) and a PPT extractor y ← ABSFE.Ext(td, pk)
with the following properties:

– CRS indistinguishability: The CRS distributions output by ABSFE.Setup
and ABSFE.SetupExt are computationally indistinguishable:

{crs ← ABSFE.Setup(1λ) : crs} c≈ {(crs, td) ← ABSFE.SetupExt(1λ) : crs}.

– Ciphertext indistinguishability in extraction mode: For a bit b ∈
{0, 1}, we define the following game between an adversary A and a challenger:

• Setup: The challenger samples (crs, td) ← ABSFE.SetupExt(1λ) and gives
crs to A.

• Public key selection: The adversary chooses a public key pk. The chal-
lenger computes y ← ABSFE.Ext(td, pk) and gives y ∈ Y to A.

• Challenge query: The adversary A makes a challenge query (x,m0,m1)
where x ∈ X , m0,m1 ∈ M, and F (x, y) = 0. The challenger computes
ct ← ABSFE.Encrypt(crs, pk, x,mb) and gives ct to A.

• Output: The adversary A outputs a bit b′ ∈ {0, 1}.

690 A. Lombardi et al.

We require that for all PPT adversaries A,
∣
∣ Pr[b′ = 1|b = 0] − Pr[b′ = 1|b =

1]
∣
∣ = negl(λ).

Remark 3.5 (Multiple Challenge Queries). By a standard hybrid argument,
any AB-SFE scheme that satisfies weak message-hiding (resp., strong message-
hiding) against an adversary that makes a single challenge query (x,m0,m1)
is also secure against an adversary that makes polynomially-many challenge
queries. Note that in the strong message-hiding setting, the challenger encrypts
each challenge message with respect to the same public key chosen by the adver-
sary (and correspondingly, the same value of y is used to check admissibility
of each of the adversary’s challenge queries). It is essential for the hybrid argu-
ment to use the same public key together with the same extracted attribute y,
which is known to the adversary (otherwise, the reduction algorithm is unable
to simulate the other ciphertexts in the hybrid argument, and correspondingly,
single-challenge security does not necessarily imply multiple-challenge security).

Key-Hiding. The second security requirement on an AB-SFE scheme is key-
hiding. Similar to the case of message-hiding security, we consider a “weak”
notion and a “strong” notion. The weak notion requires that a public key pk asso-
ciated with an attribute y hides y, while the strong notion requires that y remains
hidden even if the adversary has access to a decryption oracle (with the associ-
ated secret key sk). Strong key-hiding is reminiscent of the weak function-hiding
property we defined for ABE (Definition 2.11), and indeed, we show in Sect. 5.1
that ABE schemes satisfying weak function-hiding imply AB-SFE schemes that
satisfy strong key-hiding.

Definition 3.6 (Weak Key-Hiding). An AB-SFE scheme ABSFE satisfies
weak key-hiding if there exists a PPT simulator S such that for all y ∈ Y and
all PPT adversaries A,

∣
∣Pr[A(1λ, crs, pk) = 1] − Pr[A(1λ, crs, pk) = 1]

∣
∣ = negl(λ),

where crs ← ABSFE.Setup(1λ), (pk, sk) ← ABSFE.KeyGen(crs, y), and
(crs, pk) ← S(1λ).

Definition 3.7 (Strong Key-Hiding). An AB-SFE scheme ABSFE satisfies
strong key-hiding if there exists a PPT simulator S = (S1,S2) such that for all
y ∈ Y and all PPT adversaries A we have:

∣
∣
∣Pr[AO1(crs,sk,·,·)(1λ, crs, pk) = 1] − Pr[AO2(st,·,·)(1λ, crs, pk) = 1]

∣
∣
∣ = negl(λ),

where crs ← ABSFE.Setup(1λ), (pk, sk) ← ABSFE.KeyGen(crs, y), (stS , crs, pk) ←
S1(1λ) and the oracles O1,O2 are defined as follows:

– Real decryption oracle O1: On input a string crs, a secret key sk, a value
x ∈ X , and a ciphertext ct, output ABSFE.Decrypt(crs, sk, x, ct).

– Ideal decryption oracle O2: On input a state stS , x ∈ X and a ciphertext
ct, output S2(stS , x, ct, F (x, y)).

New Constructions of Reusable Designated-Verifier NIZKs 691

4 Designated-Verifier NIZKs from AB-SFE

In this section, we show how to construct a DV-NIZK from any AB-SFE scheme
that provides weak message-hiding and strong key-hiding. In the full version
of this paper [40], we show that a converse of this statement also holds: given
any public-key encryption scheme and a DV-NIZK, we can obtain an AB-SFE
scheme that provides weak message-hiding and strong key-hiding. This means
that assuming public-key encryption exists, our notion of AB-SFE is equivalent to
DV-NIZK. Next, we strengthen our construction and show that if the underlying
AB-SFE scheme satisfies strong message-hiding (and strong key-hiding), then we
obtain a DV-NIZK with security against malicious verifiers. We give our main
construction below:

Construction 4.1 (Designated-Verifier NIZKs from AB-SFE). Let λ be
a security parameter. Let L ⊆ {0, 1}n be an NP language associated with an NP
relation R ⊆ {0, 1}n×{0, 1}h, where n = n(λ), h = h(λ). Our construction relies
on the following building blocks:

– Let zkPCP = (zkPCP.Prove, zkPCP.Query, zkPCP.Verify) be an efficient �-
query, non-adaptive, zero-knowledge PCP (with alphabet Σ) for L (Defini-
tion 2.5). Let m = m(λ) be the length of the PCP and ρ = ρ(λ) be a bound
on the number of random bits needed for zkPCP.Query.

– Let PRF : K × {0, 1}n → {0, 1}ρ be a pseudorandom function.
– Let F : ({0, 1}n × [m]) × K → {0, 1} be the function

F ((x, i), k):=

{
1 ∃j ∈ [�] where i = qj

0 otherwise,
(4.1)

where (stx, q1, . . . , q�) ← zkPCP.Query(x;PRF(k, x)).
– Let ABSFE=(ABSFE.Setup,ABSFE.KeyGen,ABSFE.Encrypt,ABSFE.Decrypt)

be an AB-SFE scheme (Definition 3.1) for F with message space M = Σ and
attribute spaces X = {0, 1}n × [m] and Y = K.

We construct a designated-verifier NIZK dvNIZK = (dvNIZK.Setup,
dvNIZK.KeyGen, dvNIZK.Prove, dvNIZK.Verify) for L as follows:

– dvNIZK.Setup(1λ): Output crs ← ABSFE.Setup(1λ).
– dvNIZK.KeyGen(crs): Sample k

r← K, and (pk′, sk′) ← ABSFE.KeyGen(crs, k).
Output the public key pk = pk′, and the secret verification key sk = (k, sk′).

– dvNIZK.Prove(crs, pk, x, w): Construct a PCP π(PCP) ← zkPCP.Prove(x,w).
Then, for each i ∈ [m], compute ciphertexts cti ← ABSFE.Encrypt(crs, pk,
(x, i), π(PCP)

i), and finally, output the proof π = (ct1, . . . , ctm).
– dvNIZK.Verify(crs, sk, x, π): On input the verification key sk = (k, sk′), a state-

ment x ∈ {0, 1}n and a proof π = (ct1, . . . , ctm), compute (stx, q1, . . . , q�) ←
zkPCP.Query(x;PRF(k, x)). For each j ∈ [�], compute sj ← ABSFE.Decrypt
(crs, sk, (x, qj), ctqj

), and finally, output zkPCP.Verify(stx, s1, . . . , s�).

692 A. Lombardi et al.

Security Analysis. We now state the completeness, soundness, and zero-
knowledge theorems for Construction 4.1, but defer the proofs to the full version
of this paper [40].

Theorem 4.2 (Completeness). If zkPCP is complete and ABSFE is correct,
then dvNIZK from Construction 4.1 is complete.

Theorem 4.3 (Soundness). If PRF is a secure PRF, ABSFE satisfies strong
key-hiding, and zkPCP is sound, then dvNIZK from Construction 4.1 satisfies
non-adaptive computational soundness.

Remark 4.4 (Adaptive Soundness without Complexity Leveraging). Theorem 4.3
shows that Construction 4.1 gives a non-adaptively sound DV-NIZK. As noted in
Remark 2.4, we can always use complexity leveraging to obtain adaptive sound-
ness. Here, we note that we can avoid complexity leveraging and sub-exponential
hardness assumptions if we instead apply our general compiler to zero-knowledge
PCPs based on “trapdoor Σ-protocols” [12]. We refer the reader to the full ver-
sion of this paper [40] (Remark 4.4 and Appendix A) for more details.

Theorem 4.5 (Zero-Knowledge). If ABSFE satisfies weak message-hiding
(resp., strong message-hiding) and zkPCP satisfies semi-malicious zero-
knowledge, then the designated-verifier NIZK dvNIZK from Construction 4.1 sat-
isfies computational zero-knowledge (resp., computational zero-knowledge against
malicious verifiers).

Remark 4.6 (DV-NIZKs in the Common Random String Model). If the public
parameters of ABSFE (i.e., the output of ABSFE.Setup) in Construction 4.1 are
uniformly random strings, then the resulting DV-NIZK is also in the common
random string model. More generally, because we are working with computa-
tional notions of soundness and zero-knowledge, this is true even if the public
parameters are only pseudorandom. In this case, computational soundness and
zero-knowledge would still follow by a standard hybrid argument, but complete-
ness may be downgraded from perfect to statistical.

5 Constructing AB-SFE Schemes

In this section, we describe several approaches to construct AB-SFE schemes
satisfying different flavors of message-hiding and key-hiding. First, in Sect. 5.1,
we show how to build weak message-hiding AB-SFE from any single-key ABE
scheme. In Sect. 5.2, we show how to construct AB-SFE schemes with strong
message-hiding (and weak key-hiding) from receiver-extractable OT. Then, in
Sect. 5.3, we show how to generically boost an AB-SFE scheme satisfying weak
key-hiding into one that satisfies strong key-hiding (Definition 3.7) via a KDM-
secure secret-key encryption scheme (while preserving weak/strong message-
hiding). Combining the constructions in Sects. 5.2 and 5.3, we obtain AB-SFE
schemes that provide both strong message-hiding and strong key-hiding (which
suffice to realize our strongest notion of MDV-NIZK via Construction 4.1).
Finally, in Sect. 5.4, we describe how to instantiate the different building blocks
from the CDH, DDH, or LWE assumptions.

New Constructions of Reusable Designated-Verifier NIZKs 693

5.1 Weak Message-Hiding AB-SFE from Single-Key ABE

As noted in Sect. 1.2, an AB-SFE scheme can be viewed as a generalization of
a single-key ABE scheme. In the full version of this paper [40], we describe two
simple constructions of AB-SFE schemes from single-key ABE schemes (which
are in turn implied by public-key encryption [29,48]). Both of these schemes
provide weak message-hiding.

5.2 Strong Message-Hiding AB-SFE from Receiver-Extractable OT

Towards our goal of obtaining a malicious-designated-verifier NIZK, we show in
this section how to construct an AB-SFE scheme that provides strong message-
hiding from any receiver-extractable 2-message OT scheme. The resulting scheme
satisfies weak key-hiding, and we show how to amplify key-hiding security in
Sect. 5.3.

Construction 5.1 (Strong Message-Hiding AB-SFE from OT). Take a
function F : X ×Y → {0, 1} and a message space M. Our construction relies on
the following ingredients:

– For an attribute x ∈ X and a message m ∈ M, let Cx,m : Y → M ∪ {⊥}
be a circuit that on input y′ outputs m if F (x, y′) = 1 and ⊥ otherwise. Let
� = poly(λ) be a bound on the bit-length of elements in Y.

– Let Yao = (Yao.Garble,Yao.Eval) be a garbling scheme that supports the circuit
class C = {x ∈ X ,m ∈ M : Cx,m}.

– Let OT = (OT.Setup,OT1,OT2,OT.Receive) be a 2-message batch OT scheme
that is receiver-extractable with k-bit messages with batch size � (see the full
version of this paper [40] for the formal definitions), where k = poly(λ) is a
bound on the length of the labels output by Yao. Let {0, 1}τ be the randomness
space for the first OT message.

We construct an AB-SFE scheme as follows:

– ABSFE.Setup(1λ): Output crs ← OT.Setup(1λ).
– ABSFE.KeyGen(crs, y): Sample sk = r

r← {0, 1}τ , and set pk ← OT1(crs, y; r).
Output (pk, sk).

– ABSFE.Encrypt(crs, pk, x,m): Compute (C̃x,m, lab) ← Yao.Garble(1λ, Cx,m),
where lab = {labi,b}i∈[�],b∈{0,1} and labi,b ∈ {0, 1}t for all i ∈ [�] and b ∈
{0, 1}. Output the ciphertext ct = (C̃x,m,OT2(crs, pk, lab)).

– ABSFE.Decrypt(crs, sk, x, ct): On input the common reference string crs, a
secret key sk = r, an attribute x ∈ X , and a ciphertext ct = (C̃, ct′),
the decryption algorithm computes

−→
lab ← OT.Receive(crs, r, ct′) and outputs

Yao.Eval(C̃,
−→
lab).

We state the properties of Construction 5.1 in the following theorem, but defer
the proof to the full version of this paper [40].

694 A. Lombardi et al.

Theorem 5.2 (Strong Message-Hiding AB-SFE from OT). If Yao is a
secure garbling scheme and OT is a receiver-extractable 2-message batch OT
scheme on k-bit messages, then the AB-SFE scheme ABSFE from Construc-
tion 5.1 satisfies strong message-hiding and weak key-hiding.

5.3 Amplifying Weak Key-Hiding AB-SFE to Strong Key-Hiding
AB-SFE

In the full version of this paper [40], we show how to generically upgrade weak
key-hiding to strong key-hiding via KDM-secure secret-key encryption (Defini-
tion 2.12) and an equivocable non-interactive commitment scheme [18]. Before
presenting our main construction, we first define a useful property on PKE and
AB-SFE schemes that we will use in our construction.

Definition 5.3 (Recovery from Randomness [39]). A public-key encryption
scheme PKE = (PKE.KeyGen,PKE.Encrypt,PKE.Decrypt) with message space M
satisfies the recover from randomness property if there exists an efficient algo-
rithm PKE.Recover with the following property:

– PKE.Recover(pk, ct, r) → m/⊥: On input a public key pk, a ciphertext ct, and
a string r, output a message m ∈ M or ⊥.

Then, for all messages m ∈ M, if (pk, sk) ← PKE.KeyGen(1λ), ct ← PKE.Encrypt
(pk,m; r), then Recover(pk, ct, r) = m. Alternatively, if there is no pair (m, r)
where ct = PKE.Encrypt(pk,m; r), then Recover(pk, ct, r) = ⊥. We extend this
definition to the AB-SFE setting accordingly: in this case, ABSFE.Recover(crs, pk,
ct, r) either outputs (x,m) if ct = ABSFE.Encrypt(crs, pk, x,m; r) and ⊥ if there
does not exist any (x,m) such that ct = ABSFE.Encrypt(crs, pk, x,m; r).

Remark 5.4 (Recovery from Randomness [39]). It is straightforward to upgrade
any PKE (resp., AB-SFE) scheme to have the recovery from randomness prop-
erty. As noted in [39], we simply modify the encryption algorithm to use part of
the encryption randomness to construct a symmetric encryption of the underly-
ing message (resp., underlying attribute-message pair).

Construction 5.5 (Weak Key-Hiding to Strong Key-Hiding). Let
ABSFE be an AB-SFE scheme for F : X × Y → {0, 1} with message space
M that satisfies weak key-hiding and the recovery from randomness property
(Definition 5.3, Remark 5.4). To construct an AB-SFE scheme satisfying strong
key-hiding, we additionally rely on the following building blocks:

– Let PKE be a public-key encryption scheme with message space {0, 1}λ and
which supports the recovery from randomness property (Remark 5.4).

– Let � = �(λ) be a bound on the number of bits of randomness PKE.Encrypt
and ABSFE.Encrypt use.

– Let SKE denote a secret-key encryption scheme with message-space M ×
{0, 1}�λ that is one-time KDM-secure for the class of projection functions
(Definition 2.12, Remark 2.13).

New Constructions of Reusable Designated-Verifier NIZKs 695

– Let Com be a non-interactive equivocable commitment scheme with message
space {0, 1}.

We construct an augmented AB-SFE scheme Aug as follows:

– Aug.Setup(1λ): Sample ABSFE.crs ← ABSFE.Setup(1λ), (PKE.pk,PKE.sk) ←
PKE.Gen(1λ), and for each i ∈ [λ], Com.crsi ← Com.Setup(1λ). It outputs the
common reference string crs = (ABSFE.crs,PKE.pk, {Com.crsi}i∈[λ]).

– Aug.KeyGen(crs, y): On input crs = (ABSFE.crs,PKE.pk, {Com.crsi}i∈[λ]),
sample a key-pair (ABSFE.pk,ABSFE.sk) ← ABSFE.KeyGen(ABSFE.crs, y)
and output the public key pk = ABSFE.pk and the secret key sk =
(y,ABSFE.pk,ABSFE.sk).

– Aug.Encrypt(crs, pk, x,m): Parse crs = (ABSFE.crs,PKE.pk, {Com.crsi}i∈[λ])
and pk = ABSFE.pk, and proceed as follows:

• Sample a secret key s
r← {0, 1}λ for SKE.

• For every i ∈ [λ], sample ρi
r← {0, 1}λ and compute ci ← Com.Commit(

Com.crsi, si; ρi).
• For every i ∈ [λ], define Mi,si

= ρi and Mi,1−si
= ⊥. Then, sample

Ri,0, Ri,1
r← {0, 1}� and construct the ciphertexts

cti,0 ← ABSFE.Encrypt(ABSFE.crs,ABSFE.pk, x,Mi,0;Ri,0)
cti,1 ← PKE.Encrypt(PKE.pk,Mi,1;Ri,1).

• Let ct0 ← SKE.Encrypt(s, (m, (Ri,si
)i∈[λ])).

• Output ct =
(
ct0, (ci, cti,0, cti,1)i∈[λ]

)
.

– Aug.Decrypt(crs, sk, x, ct): On input crs = (ABSFE.crs,PKE.pk,
{
Com.

crsi
}

i∈[λ]
), a secret key sk = (y,ABSFE.pk,ABSFE.sk), and a ciphertext ct =

(
ct0, (ci, cti,0, cti,1)i∈[λ]

)
, proceed as follows:

1. If F (x, y) = 0, output ⊥.
2. For every i ∈ [λ], compute ρ′

i ← ABSFE.Decrypt(ABSFE.crs,ABSFE.sk, x,
cti,0). If ρ′

i �= ⊥ and Com.Commit(Com.crsi, 0; ρ′
i) = ci, set s′

i = 0; other-
wise, set s′

i = 1.
3. Compute (m′, (r′

i)i∈[λ]) ← SKE.Decrypt(s′, ct0).
4. For every i ∈ [λ], perform the following checks:

• If s′
i = 0, then check if Recover(ABSFE.crs,ABSFE.pk, cti,0, r

′
i) =

(x, ρ̃i) for some ρ̃i, and output ⊥ if the check fails.
• If s′

i = 1, then compute ρ̃i ← PKE.Recover(PKE.pk, cti,1, r
′
i) and out-

put ⊥ if the recovery procedure fails.
• Finally, check if ci = Com.Commit(Com.crsi, s

′
i; ρ̃i). Output ⊥ if this

check fails.
5. If all checks pass, output m′.

5.4 Instantiations

In this section, we describe how to instantiate each of the building blocks
needed to obtain an AB-SFE scheme satisfying strong key-hiding and strong

696 A. Lombardi et al.

(respectively, weak) message-hiding from either the CDH assumption, the LWE
assumption, or the LPN assumption with noise rate n−(1

2+ε) (respectively, the
CDH assumption, the LWE assumption, or the LPN assumption with noise rate
O(1/

√
n)). All of our LWE-based instantiations can use a polynomial modulus-

to-noise ratio.
The resulting weak message-hiding AB-SFE instantiations correspond-

ingly yield DV-NIZKs. Moreover, the resulting strong message-hiding AB-SFE
schemes have uniformly random public parameters, thus yielding designated-
verifier NIZKs with security against malicious verifiers in the common random
string model. We instantiate each building block as follows (with more details
in the full version of this paper [40]):

– There exists a receiver-extractable 2-message batch OT scheme in the com-
mon random string model under the CDH/LWE/LPN assumptions (with the
parameters specified above). There exists a garbling scheme from one-way
functions. Thus, by Theorem 5.2, we obtain an AB-SFE scheme with strong
message-hiding and weak key-hiding under the CDH/LWE/LPN assumptions
in the common random string model.

– There exist public-key encryption schemes with pseudorandom (or uniformly
random) public keys from the CDH assumption [25], the LWE assump-
tion [47], or the LPN assumption [1] with the parameters specified above.
Because we only use the associated secret key in the proof of security, we
can replace the public key PKE.pk from Construction 5.5 with a uniformly
random string, while maintaining security (by a standard hybrid argument)
and perfect correctness.

– From Sect. 5.1, there exists an AB-SFE scheme with weak message-hiding and
weak key-hiding under any assumption implying PKE.

– By Remark 2.13, there exists a KDM-secure secret-key encryption scheme for
projection functions under the CDH assumption, the LWE assumption, or
the LPN assumption with constant noise rate.

– There exists a non-interactive equivocable commitment scheme from one-way
functions in the common random string model.

Remark 5.6 (Almost-All-Keys Perfect Decryption Correctness). Some of the
PKE/OT schemes above (such as the PKE scheme of [1]) do not actually satisfy
perfect decryption correctness. However, the transformation of [22] shows that
these encryption schemes can be modified to satisfy the following “almost-all-
keys perfect correctness” property: with probability 1 − negl(λ) over the ran-
domness of PKE.KeyGen(·), decryption is perfectly correct with probability 1
over the choice of encryption randomness. Encryption schemes satisfying this
notion of almost-all-keys perfect correctness suffice for all of the constructions
in this paper.

Instantiations. Combining the above primitives in Construction 5.5, we now
obtain the following corollaries. In all cases, we only rely on polynomial hardness
of the underlying assumption.

New Constructions of Reusable Designated-Verifier NIZKs 697

Corollary 5.7 (Weak Message-Hiding, Strong Key-Hiding AB-SFE
from LPN). Assuming polynomial hardness of the LPN assumption with noise
rate O(1√

n
), there exists an AB-SFE scheme with that satisfies strong key-hiding

and weak message-hiding.

Corollary 5.8 (Strong Message-Hiding, Strong Key-Hiding AB-SFE
from CDH/LWE/LPN). Assuming polynomial hardness of either CDH,
LWE, or LPN with noise rate n−(1

2+ε) for any ε > 0, there exists an AB-SFE
scheme with uniformly random public parameters that satisfies strong key-hiding
and strong message-hiding security.

Combining Theorem 2.5 now with Construction 4.1 (and Remarks 4.4 and 4.6),
we obtain the following instantiations of designated-verifier NIZKs:

Corollary 5.9 (Designated-Verifier NIZKs from LPN). Assuming poly-
nomial hardness of the LPN assumption with noise rate O(1√

n
), there exists a

designated-verifier NIZK argument for NP that is adaptively sound and provides
computational zero-knowledge in the common reference string model.

Corollary 5.10 (Malicious-Designated-Verifier NIZKs from CDH/
LWE/LPN). Assuming polynomial hardness of either CDH, LWE, or LPN with
noise rate n−(1

2+ε) for any ε > 0, there exists a designated-verifier NIZK argu-
ment for NP that is adaptively sound and provides computational zero-knowledge
against malicious verifiers in the common random string model.

Acknowledgments. We thank Yuval Ishai and Brent Waters for many helpful dis-
cussions and comments on this work.

References

1. Alekhnovich, M.: More on average case vs approximation complexity. In: FOCS,
pp. 298–307 (2003)

2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

3. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians, vol. 1, p. 2 (1986)

4. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: STOC, pp. 103–112 (1988)

5. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

6. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30

698 A. Lombardi et al.

7. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 7

8. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: ACM
CCS, pp. 896–912 (2018)

9. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 20

10. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D.: Fiat-Shamir from simpler assumptions. IACR Cryptology ePrint Archive
2018:1004 (2018)

11. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
IACR Cryptology ePrint Archive 2003:83 (2003)

12. Canetti, R., Lombardi, A., Wichs, D.: Fiat-Shamir: from practice to theory, part ii
(NIZK and correlation intractability from circular-secure FHE). IACR Cryptology
ePrint Archive 2018:1248 (2018)

13. Chase, M., et al.: Reusable non-interactive secure computation. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 462–488. Springer,
Cham (2019)

14. Couteau, G., Hofheinz, D.: Designated-verifier pseudorandom generators, and their
applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11477, pp. 562–592. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 20

15. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

16. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

17. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

18. Crescenzo, G.D., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable com-
mitment. In: STOC, pp. 141–150 (1998)

19. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–
569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

20. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-
based and key-dependent message secure encryption schemes. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 3–31. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5 1

21. Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round oblivious
transfer from CDH or LPN. IACR Cryptology ePrint Archive 2019 (2019)

22. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryp-
tion errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 21

https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-030-17656-3_20
https://doi.org/10.1007/978-3-030-17656-3_20
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-76578-5_1
https://doi.org/10.1007/978-3-540-24676-3_21
https://doi.org/10.1007/978-3-540-24676-3_21

New Constructions of Reusable Designated-Verifier NIZKs 699

23. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

24. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

25. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

26. Goldreich, O.: Basing non-interactive zero-knowledge on (enhanced) trapdoor per-
mutations: the state of the art. In: Goldreich, O. (ed.) Studies in Complexity and
Cryptography. Miscellanea on the Interplay between Randomness and Computa-
tion. LNCS, vol. 6650, pp. 406–421. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22670-0 28

27. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their valid-
ity and a methodology of cryptographic protocol design (extended abstract). In:
FOCS, pp. 174–187 (1986)

28. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

29. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

30. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC, pp. 545–554 (2013)

31. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS, pp. 89–98 (2006)

32. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

33. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC, pp. 21–30 (2007)

34. Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 151–168. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28914-9 9

35. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Designated veri-
fier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In: Ishai,
Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 622–651.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 22

36. Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with zero
knowledge. In: STOC, pp. 496–505 (1997)

37. Kim, S., Wu, D.J.: Multi-theorem preprocessing NIZKs from lattices. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 733–765. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 25

38. Kitagawa, F., Matsuda, T., Tanaka, K.: CCA security and trapdoor functions via
key-dependent-message security. IACR Cryptology ePrint Archive 2019:291 (2019)

39. Koppula, V., Waters, B.: Realizing chosen ciphertext security generically in
attribute-based encryption and predicate encryption. IACR Cryptology ePrint
Archive 2018:847 (2018)

40. Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New construc-
tions of reusable designated-verifier NIZKs. IACR Cryptology ePrint Archive
2019:242 (2019)

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-642-22670-0_28
https://doi.org/10.1007/978-3-642-22670-0_28
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/978-3-642-28914-9_9
https://doi.org/10.1007/978-3-030-17656-3_22
https://doi.org/10.1007/978-3-319-96881-0_25

700 A. Lombardi et al.

41. Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New construc-
tions of reusable designated-verifier NIZKs. IACR Cryptology ePrint Archive, 2019
(2019). Preliminary Version

42. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC, pp. 427–437 (1990)

43. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryp-
tion scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 16

44. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019)

45. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

46. Quach, W., Rothblum, R.D., Wichs, D.: Reusable designated-verifier NIZKs for all
NP from CDH. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11477, pp. 593–621. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17656-3 21

47. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93 (2005)

48. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: ACM CCS, pp. 463–472 (2010)

49. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

50. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

51. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof sys-
tems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52–72. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 5

https://doi.org/10.1007/11818175_16
https://doi.org/10.1007/11818175_16
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-030-17656-3_21
https://doi.org/10.1007/978-3-030-17656-3_21
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-48184-2_5

Scalable Zero Knowledge with No
Trusted Setup

Eli Ben-Sasson1,2(B), Iddo Bentov3, Yinon Horesh1, and Michael Riabzev1,2

1 Technion, Haifa, Israel
2 StarkWare Industries Ltd., Netanya, Israel

eli@starkware.co
3 Cornell Tech, New York, NY, USA

Abstract. One of the approaches to constructing zero knowledge (ZK)
arguments relies on “PCP techniques” that date back to influential works
from the early 1990’s [Babai et al., Arora et al. 1991-2]. These techniques
require only minimal cryptographic assumptions, namely, the existence
of a family of collision-resistant hash functions [Kilian, STOC 1992], and
achieve two remarkable properties: (i) all messages generated by the ver-
ifier are public random coins, and (ii) total verification time is merely
poly-logarithmic in the time needed to näıvely execute the computation
being verified [Babai et al., STOC 1991].

Those early constructions were never realized in code, mostly because
proving time was too large. To address this, the model of interactive
oracle proofs (IOPs), which generalizes the PCP model, was recently
suggested. Proving time for ZK-IOPs was reduced to quasi-linear, even
for problems that require nondeterministic exponential time to decide
[Ben-Sasson et al., TCC 2016, ICALP 2017].

Despite these recent advances it was still not clear whether ZK-IOP
systems can lead to concretely efficient succinct argument systems. Our
main claim is that this is indeed the case. We present a new construction
of an IOP of knowledge (which we call a zk-STIK) that improves, asymp-
totically, on the state of art: for log-space computations of length T it is
the first to O(T log T) arithmetic prover complexity and O(log T) veri-
fier arithmetic complexity. Prior IOPs had additional poly log T factors
in both prover and verifier. Additionally, we report a C++ realization
of this system (which we call libSTARK). Compared to prevailing ZK
realizations, it has the fastest proving and (total) verification time for
sufficiently large sequential computations.

1 Introduction

By the early 1990s, a combination of works [5–7,39,44,54] showed the existence
of proof systems that satisfy the following conditions, simultaneously:

1. universality: such systems can be constructed for any language L ∈ NEXP;
2. zero knowledge (ZK): the proof for the membership of x ∈ L reveals no

meaningful information about the nondeterministic witness w provided to
show x ∈ L;

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 701–732, 2019.
https://doi.org/10.1007/978-3-030-26954-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_23

702 E. Ben-Sasson et al.

3. argument of knowledge (ARK): the witness w can be “extracted” from
a prover that succeeds in showing x ∈ L;

4. scalable (succinct) verification: for instances of size n, verifying member-
ship in L requires time at most poly(logT(n), n), where T(n) is the running
time of the nondeterministic machine1 deciding membership in L on instances
of size n;

5. public coins: all messages and queries sent by the verifier are public random
coins (“Arthur-Merlin” protocols); we choose to refer to such protocols as
transparent and this allows us to compress terminology (one word instead of
two) while emphasizing the benefits of such systems.

6. “simple” cryptographic assumptions: the soundness of these construc-
tions assumes only the existence of a family of collision resistant hash
functions2.

The early theoretical constructions that achieved the six properties above
were based on the celebrated PCP Theorem [2,3,5,6] and ZK variants of PCPs
(ZK-PCPs) [39,52,55]. But these theoretical constructions were never realized3

in code, mostly due to prover (in)efficiency problems. Recent advances in the
study of quasilinear PCPs [17,25,27,38,62] and ZK Interactive Oracle Proofs
(IOPs) [13,15,22,67] have shown the existence of ZK-IOP systems that achieve
all six properties along with the following property, simultaneously:

7. scalable (quasilinear) proving: the running time of the prover is
Õ(T (n)) := T (n) · logO(1) T (n).

Nevertheless, the constructions that achieve all seven properties were inef-
ficient in terms of both prover and verifier running times. Indeed, a proof-
of-concept IOP-based system without ZK but with the remaining six proper-
ties, called SCI [9], was reported recently but was relatively inefficient, and the
cost of adding ZK to it would further deteriorate its performance. The recent
Aurora system [21] describes a ZK-IOP (along with an accompanying imple-
mentation) that is designed for arithmetic circuits and provides succinct proofs
(poly-logarithmic in the size of the arithmetic circuit). However, verifier running
time scales linearly with the input size, meaning the system is not (doubly) scal-
able according to our definition of the term. Therefore, a valid question to ask is
whether IOPs are a viable approach to obtaining ZK systems for any concretely
realizable computational setting? The main point of this paper is to provide a
positive answer to this question.

Contributions. We make four:

1 The machine could either be a Turing machine or a RAM machine.
2 In the “random oracle” model where all parties have access to the same random

function, these systems can be made non-interactive [22,60].
3 Henceforth, a proof system realization refers to an implementation in code, along

with reported measurements, of it.

Scalable Zero Knowledge with No Trusted Setup 703

1. The first strictly scalable ZK-IOP for log-space computations, in arithmetic
complexity (see Definition 3 and Theorem 1). In words, this is the first ZK-IOP
for computations requiring T (n) time and O(log T (n)) space (on instances of
size n) in which the arithmetic complexity of the prover is O(T (n) · log T (n))
and that of the verifier is O(log T (n)). All prior ZK-IOP constructions had
poly-log factors in the verifier and/or prover with an exponent (in the poly-
log) that is strictly greater than 1.

2. A scalable ZK-IOP for general sequential computations (with no restrictions
on memory access) in NEXP, which is more efficient in terms of asymp-
totic prover and verifier complexity than the prior state of the art (The-
orem 2). It is the first scalable ZK-IOP system with strictly quasi-linear
(O(T (n) log T (n))) proof length (measured in field elements) and strictly log-
arithmic (O(log T (n))) query complexity.

3. A code realization (in C++) of an argument system that implements this
pair of IOP systems. The code base, called libSTARK, is published under the
permissive MIT license [10]. Furthermore, the ZK-STARK prover is ≥10×
faster than prior ZKprovers for general sequential computations (see Sect. 3).
This reduction is significant because prover complexity is the main bottleneck
encountered when scaling ZKproof systems to deal with large computations.
Compared to SCI [9], the prior state-of-the-art scalable IOP system, our ZK-
STARK reduces proving time by 7×–40× and communication complexity by
3×–20×; the improved verifier complexity (but not prover complexity) relies
on a new set of algebraic conjectures—different than those relied upon by SCI
(and other ZK constructions). These conjectures, which are of independent
interest, are discussed in Sect. 4.3.

4. For the benefit of future and alternative constructions, we formally define
the notions of a scalable and transparent IOP of knowledge (STIK) and a
scalable and transparent argument of knowledge (STARK), which is a system
that achieves, simultaneously, all seven properties listed earlier.

1.1 The Virtues of Transparent Scalability

No prior ZK system realized in code has achieved both transparency and full
(or double) scalability for general programs, meaning the simultaneous combi-
nation of quasilinear proving time and polylogarithmic (succinct) verification
time. We briefly discuss the importance of the combined effect of scalability and
transparency in ZK systems.

Transparency. Non-transparent protocols require an elaborate setup phase that
is hard to perform securely [20]. This phase constitutes a single point of failure
that might be exploited by powerful parties to compromise the system (especially
when that system carries significant value, as is the case with Zcash [64]). The
complexity of performing the setup leads to another security threat: to minimize
the number of times the setup is invoked, projects using non-transparent systems
will batch together many system improvements within a single roll-out, adding to

704 E. Ben-Sasson et al.

operational security risks; this is already the case with Zcash’s recent “Sapling”
upgrade.

A different benefit of transparency relates to decentralized open source code.
It is far easier to build transparent systems in this manner, because they do not
require an extra setup procedure, one that requires additional trust assumptions
and governance structures (who will be trusted to perform and manage the
setup phase?). For the reasons above, leading crypto-currencies that care about
financial privacy (including Ethereum, Monero and Zcash) agree that a move to
transparent ZK ARKs is inevitable.

Scalability. An aspect of proof systems (with or without ZK) that was first noted
by [5,6] is their potential for truly scaling computation in a sound and trustless
manner. As articulated by Babai et al.: “a single reliable PC can monitor the
operation of a herd of supercomputers working with possibly extremely powerful
but unreliable software and untested hardware” [5].

A STARK (even without ZKcapabilities) can deliver on this promise in an
extreme way, facilitating exponential savings in verification time and space (like
compressing Bitcoin’s blockchain to a logarithmic size proof that would attest to
the validity of its latest UTXO set); notably, a transparent proof system achieves
this exponential compression without any auxiliary key management issues and
their associated trust assumptions and governance problems.

Organization of the Paper. In Sect. 2 we define the notions STIK and STARK
and state the theorems backing our construction (proofs appear in the full online
version [12]). Section 3 compares our work to other ZKsolutions, theoretically
and practically. Section 4 explains the main novel components in our IOP and
STARK constructions, showing how the asymptotic efficiency of Theorems 1 and
2 is translated to concrete efficiency of the realized system. In AppendixA we
provide a self-contained overview of the ZK-STARK protocol from start to end,
along with an example “toy problem” to assist readers unfamiliar with ZK-IOP
constructions. Full details appear in the online version [12].

2 Theory—Definitions and Main Results

This section describes our theoretical contributions. After recalling the interac-
tive oracle proof model, we define a particularly efficient class of IOP protocols
called scalable and transparent IOPs of knowledge (STIK), present our main
theorems for this model (proofs omitted due to space limitations) and define the
notion of a STARK.

2.1 Interactive Oracle Proofs (IOP)

The IOP4 model suggested in [22,67] is a generalization of the IP [44], PCP [2],
and interactive PCP (IPCP) [53] models. It is an information theoretic model
4 Reingold et al. [67] use the name “Probabilistically Checkable Interactive Proofs”

(PCIP).

Scalable Zero Knowledge with No Trusted Setup 705

in which soundness can be proven unconditionally, as in the PCP, IP and MIP
models. But, like those earlier models, the IOP model is unrealistic. To realize it,
additional cryptographic assumptions are needed, and those are discussed later.

Remark 1 (The computational integrity language). Our statements and con-
structions apply to large classes of languages (like NP and NEXP). But we advise
the reader to focus on the specific computational integrity (CI) language L (also
called the universal language and the bounded-halting language), comprised of
quadruples (C, x, y,T) such that the computation specified by a program C, on
public input x and auxiliary (private) witness w, reaches output y within T
cycles. In fact, to achieve scalable verification it is necessary to use succinctly
represented instances, such as sequential programs that are short and require
execution time that is greater than the program description.

Informally, during an IOP protocol for a nondeterministic language L the
prover and verifier receive public input x and then interact over a number of
rounds; the prover’s goal is to establish in zero knowledge that it knows a non-
deterministic witness w for the fact that x belongs to L. During each round the
verifier sends a message (in the case of transparent IOPs, like ours, all mes-
sages are public random coins), and the prover replies with an oracle, a long
message which the verifier may query at random locations and need not read in
entirety (jumping ahead, these oracles will be implemented in our ZK-STARK
using Merkle-tree commitments). The verifier may query these oracles at any
time during the interaction but for transparent systems (like ours) all queries
can be postponed to the very last stage, after all prover-side oracles have been
sent. Once the interaction has terminated and the verifier has made the required
queries, it posts a decision—whether to accept x as a member of L or to reject
it. Completeness means that an honest prover knowing w will succeed in mak-
ing the verifier accept with probability 1, soundness means that for x �∈ L the
prover has only negligible probability ε of convincing the verifier to accept, and
knowledge soundness means that a prover succeeding with probability � ε in
convincing the verifier to accept x has provided oracles that, if opened, will be
found to encode a witness w that shows x ∈ L directly. We now present the
formal definitions.

A nondeterministic machine (see footnote 1) M that decides a language
L ∈ NTIME(T (n)) in time T (n) (n denotes instance size) induces a binary
relation RM consisting of all pairs (x,w) where x ∈ L and w is a sequence
of nondeterministic choices of M(x) that lead to an accepting state. In this case
we say R = RM is induced by L and implicitly assume M is fixed and known.
We recall the IOP definition from [22].

Definition 1 (Interactive Oracle Proof (IOP)). Let R be a binary relation
induced by a nondeterministic language L and let ε ∈ [0, 1] denote soundness
error. An Interactive Oracle Proof (IOP) system S for R with soundness ε is a
pair of interactive randomized algorithms S = (P,V) that satisfy the properties
below; P is the prover and V is the verifier.

706 E. Ben-Sasson et al.

– operation: The input of the verifier is x, and the input of the prover is (x,w)
for some string w. The number of interactive rounds, denoted r(x), is called
the round complexity of the system. During a single round the prover sends
a message (which may depend on w and prior messages) to which the verifier
is given oracle access, and the verifier responds with a message to the prover.
We denote by 〈P(x,w) ↔ V(x)〉 the output of V after interacting with P; this
output is either accept or reject.

– completeness If (x,w) ∈ R then

Pr [〈P(x,w) ↔ V(x)〉 = accept] = 1

– soundness If x �∈ L then for any P∗,

Pr [〈P∗ ↔ V(x)〉 = accept] ≤ ε

The proof length, denoted �(x), is the sum of lengths of all messages sent by
the prover. The query complexity of the protocol, denoted q(x), is the number
of entries read by V from the various prover messages. Given witness w such
that (x,w) ∈ R, prover complexity, denoted tp(x,w), is the complexity required
to generate all prover messages, and verifier complexity, similarly defined, is
denoted tv(x).

2.2 ZK-STIK

Next, we introduce the definition of a scalable and transparent IOP of knowl-
edge (STIK). Most of the work described in later sections is related to con-
structing a new, concretely efficient, ZK-STIK; soundness is proved information-
theoretically, with no cryptographic assumptions.

Definition 2 (Scalable Transparent IOP of Knowledge (STIK)). Let R
be a binary relation induced by a nondeterministic language L ∈ NTIME(T (n))
for T (n) ≥ n and let S = (P,V) be an IOP for L with soundness error ε(n) < 1.
We say S is

– transparent if all verifier messages and queries are public random coins.
– (doubly) scalable if for every instance x of length n, both of the following

hold:
1. scalable verifier: tv(n) = poly(n, log T (n), log 1/ε(n))
2. scalable prover: tp(n) = T (n) · poly(n, log T (n), log 1/ε(n))

– a proof of knowledge if there exists a knowledge error function ε′(n) ∈ [0, 1]
and a randomized extractor E that, given oracle access to any prover P∗ that
causes the verifier to accept x with probability p(n) > ε′(n), outputs in expected
time poly

(
T (n)

p(n)−ε′(n)

)
a witness w such that (x,w) ∈ R.

Scalable Zero Knowledge with No Trusted Setup 707

– witness indistinguishable (privacy preserving) if there exists a random-
ized simulator Sim that samples (perfectly) the distribution on transcripts of
interactions between V and P, and runs in time poly(T (n)).

A (doubly) scalable and transparent IOP of knowledge will be denoted by STIK. A
witness indistinguishable STIK is denoted by wi-STIK, and when T (n) = poly(n)
it will be called a zero knowledge STIK, denoted ZK-STIK.

Remark 2 (Zero knowledge vs. witness indistinguishability). In this work we
construct (ZK) simulators that run in time that is polynomial in the prover’s
running time. For languages in NP, prover and verifier running times are both
polynomial in the input size, so our simulator gives perfect zero knowledge.
However, for languages in super-polynomial time, as stated in Theorem2, our
simulator only shows that the system is witness indistinguishable. The question
of presenting a succinct simulator is left as an interesting open question; cf.
[14] where a similar ZK simulator of NEXP is presented for a different IOP
construction.

Remark 3 (History). PCP systems are, by definition, transparent (1-round) IOP
systems. The first such system with a scalable verifier was given in the works5 of
Babai et al. [5,6] and the first doubly scalable PCP, i.e., the first STIK construc-
tion, appears in the works6 of Ben-Sasson et al. [17,25]. The first ZK-STIK for
NP appears in the work of Ben-Sasson et al. [16], later extended to a ZK-STIK
for NEXP [13].

For languages with logarithmic space our construction in Theorem1 has
prover and verifier complexity that are asymptotically better than previous con-
structions, and lead to a strictly scalable construction in arithmetic complexity,
as defined next.

Definition 3 (Strictly scalable IOPs). Using the notation of Definition 2,
we say that S is a strictly scalable transparent IOP of Knowledge (strict STIK)
if for every instance x of length n, both of the following hold:

1. strictly scalable verifier: tv(n) = O(log T (n)) + poly(n, log 1/ε(n))
2. strictly scalable prover: tp(n) = O(T (n) log T (n)) + poly(n, log 1/ε(n))

When the complexity of prover and verifier is measured as the number of arith-
metic operations over a finite field of size O(T (n)), we say that S is a strict
arithmetic STIK.

5 The first work [6] shows this for NEXP and the second [5] scales it down to NP.
6 The first work [25] presents a PCP with scalable verification and quasi-linear proof
length, the second work [17] bounds the prover running time and also proves the
proof of knowledge property.

708 E. Ben-Sasson et al.

2.3 Main Theorems

We now state the two main theorems regarding IOP systems that underlie our
construction. IOP constructions use finite fields, so prover and verifier complexity
are most naturally stated using arithmetic complexity over the ambient field, the
size of which is derived from the size of the instance x; we use tvF and tpF to
denote arithmetic complexity, assuming the field F is understood from context.
In contrast to other ZKapproaches, the size of the field does not need to grow
with the security parameter. In particular, our libSTARK implementation [10]
uses the finite field of size 264, and could use even smaller fields, yet achieves
soundness error 2−128
 1/|F|. This unlinking of the security parameter from
the ambient field size is one reason (out of several) our libSTARK prover is fast.

Let NTimeSpace(T (n), S(n)) denote the class of nondeterministic languages
that are decidable in simultaneous time T (n) and space S(n). Our first theorem
applies to space bounded sequential computations.

Theorem 1 (ZK-STIK for space bounded computations). Let L be a lan-
guage in NTimeSpace(T (n), S(n)), T (n) ≥ n and let R be induced by L. Then R
has a transparent witness indistinguishable IOP of knowledge with the following
parameters, stated for soundness error err = 2−λ (that may depend on n)

– perfect completeness and soundness error at most err(n) for instances of size n
– knowledge error bound err′(n) = O(err(n))
– round complexity r(n) = log T (n)

2 + O(1)
– query complexity q(n) = 36(λ + 2) · (log T (n) + S(n)

log T (n) + O(1))
– alphabet size: each query answer belongs to a binary field F, |F| = 2n for

n = λ + log T (n) + O(1)
– verifier arithmetic complexity tvF(n) = Õ(n) + O(λ · (S(n)

log T (n) + log T (n)))
– prover arithmetic complexity tpF(n) = O(S(n) · T (n))
– proof length O(S(n) · T (n)/ log T (n)), measured in field elements.

In particular, for S(n) = poly log T (n), this IOP is doubly scalable, i.e.,
the system is a wi-STIK (see Remark 2). Moreover, for S(n) = O(log T (n))
the IOP is a strict arithmetic STIK (see Definition 3), meaning the prover
arithmetic complexity is O(T (n) log T (n)) and verifier arithmetic complexity is
O(log T (n))+poly(n). Finally, when T (n) = poly(n), the system has perfect ZK,
i.e., it is a ZK-STIK.

For computations with super-poly-logarithmic space the theorem above is
not scalable, neither for prover nor for verifier. The following theorem is doubly
scalable for any nondeterministic language, i.e., it can be said to be a universal
wi-STIK (see Remark 1). Comparing Theorem 2 to the previous Theorem 1, the
following result is more general, as it makes no assumptions regarding space. For
computations requiring space S(n) = o(log2 T (n)) Theorem 1 has lower asymp-
totic prover complexity, but for S(n) = ω(log2 T (n)) the more general Theorem 2
has more efficient prover complexity.

Scalable Zero Knowledge with No Trusted Setup 709

Theorem 2 (wi-STIK for NEXP). Let L be a language in NTIME(T (n)),
T (n) ≥ n and R be induced by L. Then R has a doubly scalable, transparent,
and witness indistinguishable (see Remark 2) IOP of knowledge (wi-STIK) with
the following parameters, stated for soundness error err = 2−λ (that may depend
on n)

– perfect completeness and soundness error err(n) for instances of size n
– knowledge extraction bound err′(n) = O(err(n))
– round complexity r(n) = log T (n)

2 + O(1)
– query complexity O(λ · log T (n))
– alphabet size: each query answer belongs to a binary field F, |F| = 2n for

n = λ + log T (n) + log log T (n) + O(1)
– verifier arithmetic complexity tvF(n) = Õ(n) + O(λ · log T (n)),
– prover arithmetic complexity tpF(n) = O(T (n) log2 T (n)),
– proof length O(T (n) log T (n)), measured in field elements.

For T (n) = poly(n) the system has perfect ZK, i.e., it is a ZK-STIK.

We point out that this is the first construction of a scalable ZK-IOP system
with strictly quasi-linear (O(T (n) log T (n))) proof length and strictly logarithmic
(O(log T (n))) query complexity. Prior IOP systems, even without ZK, required
query complexity logc T (n) for exponent c > 1 for any quasi-linear length proofs
[9,13,17].

2.4 STARK as a Realization of STIK

Definition 2 refers to the IOP model, in which results can be proved with no cryp-
tographic assumptions. A number of fundamental transformations have been sug-
gested in the past to realize PCP systems using various cryptographic assump-
tions, and these transformations were adapted to the IOP model [22]. In all such
realizations the prover must be computationally bounded, and such systems are
commonly called argument systems, and, consequently, the realization of a STIK
results in a Scalable Transparent ARgument of Knowledge (STARK).

The two main transformations of proof systems into realizable argument
systems are:

– Interactive STARK (iSTARK) As shown by Kilian [54] for the PCP model, a
family of collision-resistant hash functions can be used to convert a STIK into
an interactive argument of knowledge system; if the STIK has perfect ZK,
then the argument system has computational ZK. Any realization of a STIK
using this technique will be called an interactive STARK (iSTARK); when one
wants to emphasize that the STIK is zero knowledge, the term ZK-iSTARK
will be used.

710 E. Ben-Sasson et al.

– Non-interactive STARK (nSTARK) As shown by Micali [61] and Valiant [77]
for the PCP model, and by Ben-Sasson et al. [22] for the IOP model, any STIK
can be compiled into a non-interactive argument of knowledge in the random
oracle model (called a non-interactive random-oracle proof (NIROP) there);
if the STIK had perfect zero knowledge then the resulting construction has
computational zero knowledge. Any realization of a STIK using this tech-
nique will be called an non-interactive STARK (nSTARK); when one wants
to emphasize that the STIK is zero knowledge, the term ZK-nSTARK will be
used.

While non-interactive STARKs have the advantage of being comprised of a
single message from the prover, they also rely on stronger assumptions. Thus,
we leave the choice of which particular realization mode to use for a (ZK)-
STIK—(ZK)-iSTARK vs. (ZK)-nSTARK—to be made by system designers based
on particular use cases, and refer to both realization modes of a STIK as a
STARK; to emphasize the ZKaspect of the STIK we may refer to the realization
as a ZK-STARK.

3 Evaluation and Comparison

In this section we compare our ZK-STARK to other implemented systems. We
start in Sect. 3.1 by comparing our approach to other implemented ZKapproaches
from a purely asymptotic and theoretical point of view, and show that the com-
bination of full scalability, transparency and lean cryptographic assumptions for
universal computations is unique to our system. We continue in Sect. 3.2, where
we measure implemented systems for similar circuit size and topology as that
which our system deals with. In Sect. 3.3 we compare our system to the previ-
ous state-of-the-art IOP system, called SCI [9], and show our system is faster
while also adding ZK, which SCI did not obtain (see Remark 4 for a discussion
of performance compared to the recent Aurora system [21]).

3.1 Comparison to Prior Works—Theory

The literature on ZKrealizations is vast, and rapidly expanding, so we limit the
discussion to approaches that are ZK and universal, i.e., apply to any language
in NP (thus, we sadly omit reference to many verifiable computation approaches
that do not achieve ZK, like the recent [81]). For the purposes of this discussion,
we consider four properties: asymptotic (i) prover scalability (quasilinear run-
ning time), (ii) asymptotic verifier scalability (poly-logarithmic verification time,
including setup/parameter generation time), (iii) transparency (public random-
ness), and (iv) cryptographic assumptions.

Figure 1 summarizes our discussion, and we provide details next. Later, when
we evaluate the performance of our system against other methods (Sect. 3) we
will use the classification below.

Scalable Zero Knowledge with No Trusted Setup 711

Fig. 1. Theoretical comparison of universal (NP complete) realized ZKsystems. KoE
stands for “knowledge of exponent” assumptions, DL for “hardness of discrete log”,
CRH for “collision resistant hash” and FS for Fiat-Shamir heuristic.

A. Homomorphic Public-Key Cryptography (hPKC): This approach,
initiated by Ishai et al. [50] (for the “designated verifier” case) and Groth [45]
(for the “publicly verifiable” case), uses an efficient information-theoretic model
called a “linear PCP” that is then “compiled” into a cryptographic system using
hPKC. An extremely efficient instantiation, based on Quadratic Span Programs,
was introduced by Gennaro et al. [41] (see [29,40,47–49,58] for related work and
further improvements). It serves, e.g., as the proof system behind Zerocash and
Zcash™. The first implementation of a QSP based system is called Pinocchio [63],
with subsequent implementations including libSNARK [19,68] which is used in
the Zerocash and Zcash™ implementations; additional implementations appear
in [24,37,70–73,79,82].

The theoretical differences between hPKC and ZK-STARK are the lack
of transparency and the reliance on number-theoretic knowledge of exponent
assumptions (which are vulnerable to attacks by quantum computers). Ver-
ification time in hPKC is scalable only for computations that are repeated
many times, because the hPKC “setup phase” requires time ≥ T, where T
denotes running time of the nondeterministic computation (see Footnote 1) being
verified.

B. Discrete Logarithm Problem (DLP): An approach initiated by
Groth [46] (cf. [69]) and implemented in [30], relies on the hardness of the DLP
to construct a system that is transparent. Shor’s quantum factoring algorithm
solves the DLP efficiently, rendering this approach quantum-susceptible. Addi-
tionally, verifier complexity in the DLP approach requires time ≥ TC hence it
is non-scalable (according to our definition of the term), although communi-
cation complexity in the DLP approach is logarithmic. We refer to the initial

712 E. Ben-Sasson et al.

implementation of this system as BCCGP [30], and a recent improved version is
called BulletProofs [31].

C. Interactive Proofs (IP) Based: IP protocols can be performed with zero
knowledge [8] but only recently have IP protocols been efficiently “scaled down”
to small depth (non-sequential) computations via so-called “proofs for muggles”
of Goldwasser et al. [43,67]. This led to a line of realizations in code, early works
lacked ZK [35,36,76,78], but the state-of-the-art ones, like [82] and Hyrax [80],
do have it.

Like ZK-STARK, most of these IP-based proofs (but for [82]) are transparent
and have a scalable prover, but their verifier is not scalable, as its running time
grows linearly with computation time for “standard” (i.e., sequential) computa-
tions. In terms of cryptographic assumptions, some are plausibly post-quantum
secure while others rely on number theoretic assumptions that are susceptible
to quantum attacks.

D. Secure Multi-Party Computation (MPC): This approach, suggested
by Ishai et al. [51] and implemented first in the ZKBoo [42] system, and more
recently, in Ligero [1], “compiles” secure MPC protocols into ZK-PCP systems,
by requiring the prover to commit to the transcript of a secure MPC protocol,
and then reveal the view of one of the parties.

Like ZK-STARK, the MPC-based proofs are transparent and have scalable
(quasilinear) proving time. However, MPC based systems have a non-scalable
verifier, one that runs in time ≥ T. Additionally, their communication complex-
ity is non-scalable, it is

√
T in the state of the art system [1]; nevertheless, for

concrete circuits and amortized computations verification time and communica-
tion complexity are extremely efficient.

E. Incrementally Verifiable Computation (IVC): This approach, sug-
gested by Valiant [77] (cf. [28,34]) reduces prover space consumption by relying
on knowledge extraction assumptions; this approach can be applied on top of
other proof systems with succinct (sub-linear) verifiers, including ZK-STARK,
but thus far has been realized only for a single hPKC system [23].

Compared with ZK-STARK, systems built this way inherit most proper-
ties from the underlying proof system. In particular, the hPKC-based IVC is
non-transparent and quantum-susceptible; however the verifier is scalable even
for a computation executed only once, because the setup phase runs in poly-
logarithmic time.

F. Aurora: The Aurora system is a recently posted ZK-IOP by Ben-Sasson et
al., that is optimized for arithmetic circuits [21]. For a circuit with N gates,
prover running time is scalable—O(N log N) arithmetic operations over the
ambient field—and proof length scales succinctly, poly-logarithmically in N .
However, verification time scales linearly in N . Aurora shares many similarities
with our ZK-STARK: both are IOP-based, plausibly post-quantum secure and
require only symmetric cryptographic assumptions (for the interactive setting;
the non-interactive one relies on the Fiat-Shamir heuristic). Furthermore, both
use the FRI protocol for asserting proximity to RS codes. The main difference

Scalable Zero Knowledge with No Trusted Setup 713

between Aurora and our system regards verifier time: Aurora’s verifier scales
linearly with the computation size whereas our system has poly-logarithmic ver-
ification time.

Summary

ZK-IOPs have a combination of beneficial attributes not achieved by any other
code-realized approach; these are full scalability (prover- and verifier-side) and
transparency. Additionally, the cryptographic assumptions needed by the ZK-
IOP approach are rather minimal, although obtained by other approaches—
MPC and IP. As we shall see later, the theoretical attributes are complemented
by practical benefits, like the fastest proving time for ZK proofs of sequential
computations.

3.2 Comparison to Prior Works—Concrete Performance

In this section we compare measurements of different ZKsystems on the same
hardware, a server with 32 AMD cores at clock speed of 3.2 GHz, and 512 GB
of DDR3 RAM. Each pair of cores shares memory; this roughly corresponds to
a machine with 16 cores and hyper-threading.

Comparison Method. All prior realized ZKsystems we are aware of use arith-
metic circuits over prime fields, and their complexity is mostly affected by arith-
metic circuit (i) depth and (ii) size—the number of addition and multiplication
gates; typically multiplication complexity dominates addition complexity. (See
Remark 4 for a discussion of our system compared to the recent Aurora sys-
tem [21].) Since these systems are affected mostly by the circuit topology—size
and depth—the exact nature of the computation (beyond these parameters) does
not significantly affect their complexity measures.

To generate circuits for other systems, we started with a program written in
TinyRAM assembly [18]—the exhaustive subset-sum program reported for SCI
in [9]. This computation does not access RAM memory, which is a requirement
when comparing to other ZKsystems that deal with circuits, not RAM machines
(in the next section we shall also discuss RAM computations, when comparing
ZK-STARK to SCI). This program was compiled into a ZK-STARK system, and
also into a set of quadratic arithmetic program (QAP) constraints by libSNARK.
This offers a rather direct comparison between the following three systems—
SCI (an IOP system with no ZK), libSNARK (an hPKC system, with ZK) and
our ZK-STARK. All three apply to the same computation, running on the same
machine, and use multi-threading (see Remark 5 for a more thorough discussion
of the comparison method).

We extracted depth and multiplication complexity numbers from the lib-
SNARK compiler and requested the authors of the following systems to measure
them on our server for arbitrary circuits with similar depth and multiplication
complexity. Figure 1 shows the resulting proving time, verifying time and commu-
nication complexity. Since several of the systems operate only in single-threaded

714 E. Ben-Sasson et al.

Fig. 2. A comparison of different realized proof systems as a function of the number
of machine cycles (top axis) and multiplication gates (bottom axis); each cycle of the
TinyRAM program corresponds to ≈2000 ≈211 multiplication gates. The estimated
level of security of each system is denoted on the legend above (e.g., “STARK 80b”
means estimated soundness error of ≤ 2−80). All systems were tested on the same server
(specs below) and executed a computation of size and structure corresponding to the
“exhaustive subset-sum” program from [9, Section 3]; our ZK-STARK was also executed
on the same program on a weaker laptop (quad core i7-8550U CPU @ 1.80 GHz clock
with 32 GB of DDR4 RAM), see right top plot. Notice that even on this weaker machine
the ZK-STARK prover is faster, and reaches larger circuit size, than all other systems.

proving mode (all systems use single-thread for verification), we have a separate
comparison of single-threaded ZK-STARK vs. the other single-treaded systems.
Recall the classification of ZKapproaches from Sect. 3.1. The systems that have
performed the above testing procedure on our machine are:

– hPKC-based: libSNARK with 80 bits (80b) of security (commit dc78fd,
September 7, 2017);

– DLP-based: The system of BCCGP with logarithmic communication complex-
ity [30], and the BulletProofs system of [31]; both systems are single-threaded
and have 128b security.

Scalable Zero Knowledge with No Trusted Setup 715

– MPC-based: Ligero strong with 60b security, single-threaded [1] (this system
has sublinear communication complexity, compared with linear complexity of
ZKBoo, hence we include only it in our measurements).

Regarding ZK-STARK, we evaluated it in single- and multi-theard mode, for
80 and 120 bits of security, using Blake2s (with 128-bits of security) as our CRH
for constructing the Merkle tree commitments to oracles. To address concerns
about the ability to execute ZK-STARK on weaker machines, we also plot the
measured proving time on a Lenovo T440 laptop with 32 GB of DDR4 RAM and
a quad-core Intel i7-8550U CPU 1.80 GHz clock speed.

Let us discuss prover time, verifier time, and communication complexity,
addressing the systems above. We hope to add measurements for IP based sys-
tems like Hyrax in the future [80].

Prover Complexity. All systems surveyed here have prover complexity that scales
either linearly or nearly-linearly in computation size. However, as shown in Fig. 2,
our ZK-STARK prover is the fastest among the single-threaded systems (though
not by a large margin) and is at least 10× faster than the second fastest prover
(that of libSNARK) when multi-threading is allowed; all systems were tested
up to maximal proving time of 12 h. Notice that even when executed not on
a large server but on a weaker laptop with 32 GB of RAM, our ZK-STARK
prover is noticeably faster, and reaches larger circuit size, than all other sys-
tems (which were measured only on the stronger and bigger server). This shows
that ZK-STARK proving efficiency is not an artifact of using a strong machine,
but rather follows from the efficiency of the underlying protocol (the interested
reader is welcome to test libSTARK on her laptop, using the runSubsetsumTests.sh
procedure there [10].)

The speedup of multi-threaded over single-threaded execution of libSTARK
on the server is plotted in Fig. 3. For very small instances multi-threading gives
moderate improvements, possibly due to short running time and cost of opening
many threads, and for very large instances it drops somewhat, perhaps because
memory swapping contributes more significantly to running time.

Verifier Complexity. The total verifier running time (including setup/parameter
generation and post-processing) of all prior works grows at least like

√
T, and,

often, like T; in contrast, our ZK-STARK scales like a + logT (see Theorems 1
and 2). Consequently, for medium- and large-scale sequential computations our
ZK-STARK total verification time is better than all prior solutions, as shown by
Fig. 2. The efficiency of ZK-IOP systems tailored specifically for small depth,
parallel computations (the setting which Hyrax is tailored to) is left to future
work.

hPKC-based systems like Pinocchio and libSNARK, and IVC+hPKC systems
like that of [23] are different in this respect. They have a setup that is performed
only once per circuit. For Pinocchio and libSNARK pre-processing time grows
linearly with circuit size. E.g., the libSNARK system requires ≈16 s for a com-
putation with 220 gates. In Fig. 1 we plot both post-processing verification time

716 E. Ben-Sasson et al.

Fig. 3. The ratio of multi-threaded to single-threaded proving time of ZK-STARK for
the exhaustive subset-sum computation, as a function of the number of cycles. Recall
that the server used for testing has 32 AMD cores, which correspond to 16 cores with
hyperthreading.

(and CC) using open blue triangles and total time/CC (including setup) using
filled blue triangles. For the IVC+hPKC system, pre-processing time is constant
and does not depend on circuit size; this constant (≈10 s) is quite large compared
to our verifier time, but on the other hand is needed only once, so amortized
over many computations it approaches 0.

Communication Complexity (CC). The use of a pre-processing phase in the
hPKC and IVC+hPKC systems leads to extremely small post-processing CC;
the BCCGP and BulletProofs systems also enjoy extremely short CC and, because
pre-processing is transparent, can be effectively replaced with a short seed to a
pseudo-random generator. Concretely, for all computations measured in practice,
post-processing CC of Pinocchio, libSNARK and the IVC+hPKC system are less
than 300 bytes, that of BCCGP is less than 7 KB, and BulletProofs is roughly
3× smaller, less than 2.5 KB [30,31] (see also Fig. 2). However, pre-processing
key length scales linearly with circuit size for hPKC; the IVC+hPKC system
is different in this respect, it has succinct pre-processing length even for large
computation size, but once again, this length is concretely large—more than
40 MB for our computation. For Ligero, communication complexity scales like
70

√
multn field elements [1, Section 5.3].

Discussion

Among all ZKsystems compared above, our ZK-STARK has the fastest prover
in single- and multi-thread modes; in particular, it is ≈10× faster than the sec-
ond fastest measured system—libSNARK. Other systems perform better (shorter
communication, faster verification) on small circuits (ZKBoo, Ligero), small-
depth circuits (Hyrax), and on computations repeated many times with the same

Scalable Zero Knowledge with No Trusted Setup 717

fixed circuit (BulletProofs, Pinocchio, libSNARK). However, for general large scale
sequential computations our ZK-STARK has verification time and communica-
tion complexity that outperforms all other transparent systems published thus
far for this range of parameters. In other words, our particular ZK-STARK real-
ization shows that the asymptotic benefits of full scalability and transparency
are manifested already for concrete computations, and suggest that ZK-IOP sys-
tems are of interest not merely as a theoretical construct but also as a viable
approach to building future ZK-systems.

Remark 4 (Runtime comparison to Aurora). For computations that are spec-
ified simply as arithmetic circuits, Aurora out-performs our ZK-STARK (and
Ligero) (see [21, Figures 10–12]). However, for sequential computations specified
by succinct programs, verification time in our ZK-STARK out-performs that of
Aurora. Concretely, Aurora verification time for a circuit with a million gates
requires ∼1 s (see Fig. 12 there) and scales linearly with N , whereas our ZK-
STARK verifier scales quite slowly and requires less than 0.1 s even for a circuit
with 34 billion gates (see Fig. 2).

Summarizing, we view Aurora and our ZK-STARK as complementary: both
are IOP-based, transparent, plausibly post-quantum secure and have concretely
efficient provers. Arora is better when dealing with computations specified as
generic arithmetic circuits but does not offer full scalability, while our ZK-STARK
is better when dealing with sequential programs because its verification time
scales poly-logarithmically with computation time.

Remark 5 (On validity of the comparison method). The reader might ask
whether the method outlined above—compiling the particular exhaustive subset-
sum program into (i) arithmetic circuits over prime fields and (ii) AIRs over binary
fields, is fair and valid. Wouldn’t it better to “hand optimize” the circuit/AIR for
a particular computation, and perhaps do it over the same ambient field?

The choice of program—the exhaustive subset-sum—was dictated by the
constraint of including a comparison to SCI, the prior IOP state of the art; this
limited us to choosing one of the programs provided there. Hand-optimizing
AIRs and arithmetic circuits for the same computation for all the various proof
systems surveyed here is beyond the scope of this work, as these systems are
provided by different teams and some of the code-bases (SCI, for instance) are
not updateable.

The compilation process that converts a program (in our case, written in
TinyRAM assembly) to an arithmetic circuit, and to an AIR, leads to a con-
struction that is less efficient than a “hand-written” circuit/AIR of the very same
computation. It is hard to estimate which approach (AIR vs. circuits) suffers
more from compilation inefficiency but the fundamental complexity measures
for circuits and STARKs—number of gates per cycle (for arithmetic circuit),
and “total degree” per cycle (= state width × constraint degree/code rate)—are
roughly similar for this particular choice of program and compilation: roughly
2,000 multiplication gates per cycle (for arithmetic circuits), and total degree
roughly 9,000 per cycle (because our program leads to 94 state width, the con-
straint degree is 12 and the code rate is 1/8).

718 E. Ben-Sasson et al.

3.3 SCI vs. ZK-STARK

Fig. 4. SCI vs. ZK-STARK comparison of prover time and communication complexity.
Both systems measured at 80 bits of security on the same machine.

To compare SCI and ZK-STARK we use the exact same pair of TinyRAM pro-
grams used by SCI and reported in [9], namely:

– exh: the exhaustive-search subset-sum program which does not require RAM
access (no use of LOAD/STORE TinyRAM opcodes); this corresponds to
Theorem 1

– srt: the sorted subset-sum program which does require RAM access (with
LOAD/STORE opcodes), corresponding to Theorem 2

Both systems were executed with an 80-bit security level and measured on the
machine specified at the beginning of Sect. 3.2. Figure 4 shows that ZK-STARK
prover time is 7×–40× faster than that of SCI and has communication complexity
that is 3×–20× smaller than that of SCI. Notably, ZK-STARK has ZK, which
SCI does not (the cost of adding ZKincreases computational complexity across
the board).

As pointed out earlier (Sect. 4), this improvement is due to the better arith-
metization which uses many RS codewords (one per register), tighter soundness
analysis, the use of the more efficient FRI protocol and the efficient additive
FFTs of [57].

The improvement of ZK-STARK over SCI is more noticeable for the pro-
gram that does not use RAM. The reason for this is verifying correct RAM
requires certain tools that incur large blow-ups in communication complexity
and prover time. These blowups are due to the need to verify that an arbi-
trary RAM access pattern was executed correctly. This is solved in both SCI and
ZK-STARK using switching networks to “route” accesses to memory, following
the method of [17]. We refer the reader to Appendices C.3 and G in the online
version of this paper [12] for full details.

Scalable Zero Knowledge with No Trusted Setup 719

4 Novel Ingredients in the Construction

Our new ZK-STARK builds significantly on recent ZK-IOP research [11,13,15,
22], and its main advantage is improved efficiency, leading to it being the first
strictly scalable IOP for space bounded computation (Theorem 1). Our main
improvements are four, listed below. We briefly recount the prior state of the art
as background and then explain how ZK-STARK improves on it.

Background—SCI and FRI. The SCI system [9] is an IOP without zero knowledge.
It uses an arithmetization process that reduces a witness of membership in a
language to a pair of univariate polynomial, and reduces the transition function
of the computation to a single low-degree multivariate polynomial. Then, it
employs an IOP version of the quasilinear PCP of Proximity (PCPP) of [27] to
solve the low-degree testing problem. This PCPP, and the IOP emerging from it,
require quasi-linear proving time and poly-logarithmic verification time, but both
algorithms are not strictly quasi-linear (cf. Definition 3). Due to the reliance on
bivariate polynomials in that IOP, when converting it to an argument system via
Merkle trees, different queries to the proof oracles led to different authentication
paths, resulting in increased communication complexity.

Another component that is used in ZK-STARK (and in Aurora [21]) is the
recent strictly quasi-linear IOP of proximity (IOPP) for univariate polynomials
called FRI and discussed further below [11].

Improvements. In addition to the qualitative improvement over SCI of adding
ZK, our system is asymptotically and concretely more efficient in terms of verifier
complexity and communication complexity than SCI, and has a prover that is
more efficient, for sequential computations, than all other existing systems. The
main novel components in ZK-STARK that facilitate this are:

1. ZK-STARK uses the FRI protocol of [11], which is vastly more efficient, both
asymptotically and concretely, than the Ben-Sasson–Sudan PCPP used by
SCI. Asymptotically, FRI has prover arithmetic complexity that is strictly
linear in blocklength (prior IOPPs required quasi-linear proving time) and
strictly logarithmic verifier arithmetic complexity (prior verifiers required
poly-logarithmic complexity, with an exponent greater than 1).

2. The FRI oracle structure is used by our ZK-STARK to significantly reduce
Merkle-tree authentication path complexity; this aspect is explained in
Sect. 4.1;

3. Our ZK-STARK uses an arithmetization with one RS codeword per register,
as opposed to one RS codeword for all registers; we then use a round of inter-
action to solve the RPT problem only once over all different RS codewords;
see Sect. 4.2.

4. in similar fashion to the step above, our new algebraic linking IOP (ALI)
protocol “compresses” all of the constraints that enforce the computational
integrity of the transition function, into a single random combination of them
all. This dramatically reduces the memory and computational complexity of
the prover. The specification of the ALI protocol and its analysis appear in
the full version of the paper [12, Sections B.5, D].

720 E. Ben-Sasson et al.

Below we elaborate on the second and last items of the list above.

4.1 Reduced Authentication Path Complexity

The largest contributor to communication complexity, and to verifier time and
space complexity in our ZK-STARK (and prior related works [9,17,27,33]) is the
cost of checking authentication paths. We now discuss the way our ZK-STARK
reduces this cost. Let λ denote the number of output bits of the cryptographic
hash function used to construct a Merkle tree in our system; let APtotal denote
the total number of authentication path nodes in all subtrees of Merkle trees
whose leaves are query answers, and let qtotal denote the total number of queries,
made to all proof oracles. The total communication complexity (CC) of the proof
system is

CC = qtotal · log |F| + APtotal · λ (1)

Compared to prior works, most notably SCI, our ZK-STARK reduces the
second summand in two separate ways:

1. The ZK-STARK verifier queries rows of the (low degree extension of the)
execution trace, each row comprises a field elements that represent the state
at some point in the computation (or its low degree extension). To reduce
communication complexity, the ZK-STARK prover places each such row in a
single sub-tree of the Merkle tree, and therefore only one authentication path
is required per row (as opposed to a many paths in prior solutions).

2. The verifier of the FRI protocol queries functions on cosets of a fixed subspace;
i.e., the entries of each oracle accessed by the verifier can be partitioned, so
that a single authentication path covers all entries required by the verifier
in a single test. Accordingly, the ZK-STARK prover places each member of
the partition in a single sub-tree of the Merkle tree, thereby reducing the
number of authentication paths to one-per-coset (as opposed to one per field
element).

4.2 Algebraic Linking Interactive Oracle Proof (ALI)

The main bottleneck for prover time and space complexity is the cost of perform-
ing polynomial interpolation and its inverse operation—multi-point polynomial
evaluation. The complexity measure that dominates this bottleneck is the max-
imal degree of a polynomial which the prover must interpolate and/or evaluate;
for a computation involving a T × a execution trace specified by s constraints
of degree at most d, we denote this degree by dmax = dmax(T, a, s, d). Prior
state-of-the-art [9,17,27,33] gave

dmax
old (T, a, s, d) = T · a · d + T · s. (2)

which leads to concretely large values. Our ZK-STARK reduces dmax to

dmax
ZK−STARK(T, a, s, d) = T · d (3)

Scalable Zero Knowledge with No Trusted Setup 721

The improved efficiency of our ZK-STARK is due to two reasons, explained
next. The first one completely removes the second summand of (2) and the
second one removes a from its first summand.

Algebraic linking IOP (ALI). The second summand of (2) arises because our
prover needs to apply a “local map” induced by the AIR constraint system. Prior
state-of-the-art systems, like [9], used a local map that checks each constraint
of the AIR separately, leading to this second summand. Instead, our ZK-STARK
uses a single round of interaction to reduce all s constraints to a single constraint
that is a random linear combination of all AIR constraints, thereby completely
removing the second summand of (2). See [12, Sections B.5, D] for a specification
of the protocol.

Register-Based Encoding. Prior systems, like [9], encoded the full execution trace
by a single Reed-Solomon codeword, leading to degree T · a; this degree is then
multiplied by d to account for application of the AIR constraints to this codeword,
resulting in the first summand of (2). Our ZK-STARK uses a separate Reed-
Solomon codeword for each register7, leading to a many codewords, each of lower
degree T. At first glance this tradeoff may seem wasteful, because we now have
to solve an RPT problem for each of these a codewords. However, the interaction
and use of randomness allowed by the IOP model once again come to our aid: it
suffices to solve a single RPT problem, applied to a random linear combination
of all a codewords. The use of a single codeword per register also helps with
reducing communication complexity, as explained in Sect. 4.1.

4.3 Algebraic Security Assumptions

In our measurements (Sect. 3.2) we rely on two conjectures. Informally, the first,
which appears in the full version [12, Conjecture B.17] due to space limitations,
says that any efficient attacker will be presenting proof oracles f (0), g(0) that
are maximally far from the respective RS codes, and the second, stated below,
says that δ-far words are rejected by the FRI protocol with probability ≈ δ.
Both conjectures match our current understanding of the best possible attacks
against the ZK-STIK system; it is reasonable to use such an approach when
running comparisons to other implemented systems, because all other systems
use a similar “security-based” approach when setting parameters (group size
in an elliptic curve, field size in a discrete-log based approach, bit-length in
a cryptographic hash function, etc.). To be fair, these other assumptions have
received more scrutiny than ours but by stating this conjecture we hope it, too,
will be further inspected by the research community.

Conjecture 1 (FRI soundness—informal). For any rate parameter ρ and con-
stant δ, if f : S → F is δ-far from RS[F, S, ρ], then the FRI protocol rejects f

with probability at least δ − O(1)
|F| .

7 For simplicity, the current description discusses the case of space bounded compu-
tations; the case of computations with large space also uses multiple codewords but
the reduction is more complicated, and discussed in the online version of the paper.

722 E. Ben-Sasson et al.

For a code of rate ρ = 2−R, the conjecture implies that to reach a security
level of λ bits (or error probability < 2−λ), the QUERY phase of the FRI protocol
should be invoked λ/R times. See [11,26] for a discussion of the conjecture.

Without Conjecture 1 and [12, Conjecture B.17], the number of FRI-verifier
tests would increase at most three-fold, to 3 ·λ/R (to achieve λ bits of security).
This would entail a ×3 increase in communication complexity and verifier run-
ning time (both scale linearly with the number of FRI-verifier tests), however,
there would be no other change to the system parameters, such as field size,
the schedule of reductions, etc. Regarding prover time—the main bottleneck in
proof systems—the impact would be negligible (< 1% for all reasonable sized
computations) because producing query answers requires only poly-logarithmic
running time (whereas producing the proof requires quasi-linear running time
and vastly dominates overall proving time).

We stress that in terms of security, our ZK-STARK is qualitatively better
than most prior ZKapproaches (but for Ligero and Aurora that are similar in
this respect). Consider the effect of refuting, in the strongest possible way, either
of the Knowledge of Exponent (KoE) or Discrete Log Problem (DLP) hardness
assumptions discussed in Sect. 3.1, say, by an efficient algorithm that breaks them
(or by a large scale quantum computer). In such a case, the systems relying on
KoE/DLP would be rendered completely broken and useless. In stark contrast
(pun intended), if Conjecture 1 and [12, Conjecture B.17] were to be refuted in
the strongest possible way, the effect on ZK-STARK would only be to increase
communication complexity and verifier complexity by a factor of ≤ ×3. This
is thanks to proven, information-theoretic bounds that show that for any δ ≤
1 − 3

√
ρ = 1 − 2−R/3 the conjecture above is in fact a theorem (see [26] for more

details)8.

Acknowledgements. We thank Arie Tal, Yechiel Kimchi and Gala Yadgar for help
optimizing code performance. We thank the Andrea Cerulli, Venkitasubramaniam
Muthuramakrishnan, Madars Virza, and the other authors of [1,30] for assistance in
obtaining the data reported in Fig. 2. We thank Alessandro Chiesa, Yuval Ishai and
the anonymous referees for commenting on earlier drafts of this paper.

A Standalone Construction

In this section we give an overview of the process leading to the main theorems
specified above (Sect. 2.3). For didactic reasons we accompany our description
with a simple and concrete “toy” computation as an example, marked in boxed
texts, and gloss over some of the (numerous) technicalities (a few examples are
discussed in the last part in this section); nevertheless, the same steps apply to
more complex computations. Further details and formal definitions appear in
the full version of this paper [12].

8 Our ZK-STARK still requires a collision resistant hash function, and in the interactive
setting even the Fiat-Shamir heuristic, and, obviously, we make no information-
theoretic claims on those.

Scalable Zero Knowledge with No Trusted Setup 723

Many ZKsystems (including ours) use arithmetization, a technique intro-
duced to prove circuit lower bounds [66,75] and adapted later to interactive
proof systems [4,59]. Arithmetization is the reduction of computational prob-
lems to algebraic problems, that involve “low degree” polynomials over a finite
field F; in this context, “low degree” means degree is significantly smaller than
field size.

The start point for arithmetization in all proof systems is a computational
integrity statement which the prover wishes to prove, like the following instance
of the CI language (see Remark 1):

“I know private input y, such that executing C forT steps on public input x

and private input y leads to result z.”
(∗)

For our ZK-STIK and for related prior systems [9,25,27], the end point of arith-
metization is a pair of Reed-Solomon (RS) proximity testing (RPT) problems9,
and the scalability of our ZK-STIK relies on a new solution to it—the FRI proto-
col discussed below [11]. For S ⊂ F and rate parameter ρ ∈ (0, 1), the RS code
with evaluation domain S and rate ρ is the space of evaluations of low-degree
functions over S,

RS[F, S, ρ] = {f : S → F | deg(f) < ρ|S|} .

The RPT problem for RS[F, S, ρ] is one of deciding, with a small number of
queries, whether a function f : S → F is a member of RS[F, S, ρ] or far from all
members of the code in relative Hamming distance.
Toy problem For concreteness, consider the following special case of (*), which com-
putes the T entry in a “multiplicative modular Fibonacci sequence”:

“I know initial values y0, y1 ∈ F, such that z ∈ F
∗ is the Tth element in the

sequence defined inductively by yi = yi−2 · yi−1 for i > 1 (i.e., z = yT)”
(**)

We call this a multiplicative modular Fibonacci sequence because, fixing g to be a
generator of F∗, and setting yi = gji one sees that the correct output z is z = gFT where
FT is the Tth element in the Fibonacci sequence that starts with j0, j1, and is computed
modulo |F∗| = |F|− 1. We choose this simple computation as our toy problem because
it is non-trivial to compute over all fields (the standard modular Fibonacci sequence is
trivial over binary fields).

Our process has 4 parts (see Fig. 5). When reading the description below, the
main thing to notice is that from start to end, verification costs are logarithmic
in T (and polynomial in the description of the computation C). To see this it is
useful to think informally of T � |C|, like T = 2|C|. In each of the reductions,
the verifier receives only an instance (denoted x) as its input, whereas the prover
additionally receives a witness (denoted w) for membership of x in the relevant
language.
9 The other solutions described in Sect. 3.1 like those based on Homomorphic public-

key cryptography (hPKC) have different end points.

724 E. Ben-Sasson et al.

Fig. 5. The reduction from an AIR instance to a pair of RPT problems, solved using
the FRI protocol, explained later in this section. Briefly, the Algebraic Intermediate
Representation (AIR) is converted via the Algebraic Placement and Routing (APR)
reduction to an APR instance. This is reduced via the Algebraic Linking IOPP (ALI)
protocol to a pair of RPT problems, which are solved using two applications of the
FRI protocol.

Part I. The starting point is a natural algebraic intermediate representation10

(AIR) of x and w, denoted xAIR,wAIR. The verifier receives xAIR and the prover
also receives wAIR. Informally, xAIR corresponds to the statement (*) and wAIR

corresponds to an execution trace witnessing correctness of (*), i.e., wAIR is a
T× a array in which the ith row describes the state of the computation at time
i and the jth column tracks the contents of the jth register over time (this
column will later give rise to fj). Each entry of this array is an element in the
field F. The transition relation of the computation is specified by a set of multi-
variate polynomials over variables X1, . . . , Xa, Y1, . . . , Ya that correspond to the
current state registers (X variables) and next state registers (Y variables). These
constraints enforce the validity of the transition from one state to the next.
In our toy problem (**), we shall use an execution trace of dimensions T × 2, where
an honest prover is expected to fill the ith row with entries yi−1, yi. Using X0, X1
and Y0, Y1 to denote the registers in two consecutive sets, our toy transition relation is
captured by the pair of polynomial constraints

C0(Y0, X1) := Y0 − X1; C1(X0, X1, Y1) := Y1 − X0 · X1.

Satisfying a constraint means assigning values to its variables as to make it vanish
(evaluate to 0). The first constraint above ensures we move the latest element in the
sequence to the first register and the second constraint ensures we compute the next ele-
ment correctly. AIR contains these two constraints, along with the boundary constraint
that “forces” the [T, 2]-entry of AIR to equal z (the public input of the statement (**)).

Notice that |xAIR| can be much smaller than |wAIR|; this is crucial for (full)
scalability because tv must be bounded by a polynomial in |xAIR| and logT.
Another point to bear in mind is that constructing an AIR for simple compu-
tations is straightforward (as shown in our toy example); additional examples
appear in Vitalik Buterin’s blog posts I and III on STARKs [32], in the examples
in libSTARK [10], and in previous works like [9, Appendix B] and [65].

10 AIRs are called algebraic constraint satisfaction problems (ACSPs) in prior works
like [9,27]; we prefer the mono-syllable term AIRs which also relates to the notion
of an intermediate representation used in other areas of computer science.

Scalable Zero Knowledge with No Trusted Setup 725

Part II. We reduce the AIR representation into a different one, in which states of
the execution trace are “placed” on nodes of an affine graph, so that consecutive
states are connected by an edge in that graph. Informally, an affine graph is
a “circuit” that has “algebraic” topology. The process of “placing” machine
states on nodes of a circuit is roughly analogous to the process of placement
and routing which is commonly used in computer and circuit design, although
our design space is constrained by algebra rather than by physical reality. We
refer to this particular transformation as the algebraic placement and routing
(APR) reduction, and the resulting representation is an APR instance/witness
pair (xAPR,wAPR). The affine graph will necessarily be quite large, larger than
|wAPR| ≥ T, but the verifier requires only a succinct representation of this graph,
via a constant size set of (edge) generators. This succinct representation is crucial
for obtaining verifier scalability and avoiding the “computation unrolling” costs
incurred by other ZKapproaches. We first explain how a prover computes this
transformation, and then address the verifier’s transformation.

The (honest) prover interprets the jth column of the algebraic execution trace
as a partial function f̂j from a domain that is a subset of F and which maps
into the field F. Thus, the prover now interpolates this function f̂j to obtain
a polynomial Pj(X), and then evaluates this polynomial on a different domain
S ⊂ F of size |S| = β · T, to obtain a function fj . The final step of this stage
on the prover-side is providing the verifier with oracle access to the sequence
f = (f1, . . . , fa) where fi : S → F, noticing this sequence is an encoding of
columns (registers) of the execution trace via RS codewords. (in the ZK-STARK,
this oracle access will be realized via Merkle-tree commitments to f).

The verifier, on receiving xAIR, computes the size β · T and picks the same
domain S ⊂ F as the prover (notice S does not depend on wAIR). Then, the
verifier computes the succinct set of affine transformations that correspond to
edges in the affine graph, and obtains an APR instance, denoted xAPR.
In the toy problem (**) the APR reduction involves picking a multiplicative subgroup
G of F∗ of size |G| = T (for simplicity we assume such G exists; in libSTARK we
use additive subgroups instead of multiplicative ones and pad the execution trace to
size |G|). Let g denote a generator of G. The affine graph in this case has vertex set G
and directed edges (h, g · h). Using this, we now view the execution trace as a pair of
mappings f̂0, f̂1 : G → F, one mapping per register/column of the execution trace. The
prover interpolates each function to obtain a pair of polynomials P0(X), P1(X) and
evaluates them over a set S that is a union of cosets of G, creating the first proof oracle
f = (f0, f1) (when constructing the ZK-STARK, this means the prover computes the
Merkle root of f and sends it to the verifier).

The reduction in this step is deterministic on the verifier side, i.e., involves
no verifier-side randomness and no interaction; as such, it also has perfect com-
pleteness and perfect soundness. On the prover side, randomness is used to create
a zero knowledge version of the execution trace, by allowing the prover to use
polynomials of degree slightly greater than T, as to allow for Shamir-style secret
sharing techniques to hide individual entries of the execution trace.

726 E. Ben-Sasson et al.

Part III. The APR representation is used to produce, via a 1-round IOP, a pair
of instances of the Reed-Solomon proximity testing (RPT) problem. In our case,
the two codes resulting from the reduction are over the same field F but may
have different evaluation domains and different code rates. To maintain verifier
scalability, we point out that specifying the code parameters—S and ρ, will be
done in a succinct manner, one that requires space log |T|; thus, this part of our
construction also supports verifier-side scalability.

The witness in this case is a pair of purported codewords (f (0), g(0)). The first
function f (0) is simply a random linear combination of f to which the prover
committed in the previous step. The second function g(0) is obtained after the
various constraints that enforce execution trace validity are randomly “linked”
into a single (random) constraint. We thus refer to this step as the algebraic
linking IOP (ALI) protocol.
For the toy problem (**) the ALI protocol works thus. After receiving oracle access to
f (or its Merkle commitment), the verifier samples r0, r1, r

′
0, r

′
1 ∈ F and sends them to

the prover. The prover is expected to compute f (0) = r0 ·f0+ r1 ·f1. To construct g(0),
the prover first constructs the single random constraint

C(X0, X1, Y0, Y1) := r′
0 · C0(Y0, X1) + r′

1 · C1(X0, X1, Y1)

where C0, C1 are as defined in step 1. Then, the prover recalls the interpolating polyno-
mials P0, P1 from step 2 and computes

Q(X) := C(P0(X), P1(X), P0(g · X), P1(g · X)).

Let ZeroG(X) :=
∏

ξ∈G(X − ξ). The prover computes g(0) : S → F as the evaluation

ofQ(X)/ZeroG(X) on S. Notice that g(0) is well-defined becauseG∩S = ∅. Recalling
the verifier has oracle access to f , notice that each entry of f (0) can be computed
by querying a single row of the execution trace f (one query from f0 and one from
f1; similarly, each entry of g(0) can be computed by reading two consecutive rows (4
entries) of f . Thus, even though the next step will assume oracle access to f (0), g(0),
the protocol does not require the prover to send another set of oracles during this step,
the oracles can be “locally computed” from f .
Finally, notice that if the prover is honest, then it holds that f (0) is a codeword of the
RS code of rate |G|/|S| over evaluation domain S. Similarly, since Q(X) vanishes
on all ξ ∈ G, we deduce that Q(X)/ZeroG(X) is a polynomial of degree at most
deg(C) · |S| − deg(ZeroG) = |S|, so g(0) is also a codeword of RS[F, S, |G|/|S|].

Part IV. In the last step of our reduction, for each of the two functions (ora-
cles) f (0), g(0), the prover and verifier interact according to the fast RS IOP of
proximity (FRI) protocol from [11] (cf. [12, Appendix B.6]). That protocol has
a scalable verifier and query complexity that is logarithmic in the size of the
evaluation domain of the code, further establishing verifier scalability. And thus,
from start to end, verifier side complexity remains scalable—logarithmic in T
(and polynomial in |C|).

Scalable Zero Knowledge with No Trusted Setup 727

In this last step our toy problem (**) behaves no differently than the general case. We
apply the FRI protocol to each of f (0), g(0) described in the prior step, and compute the
entries of each function by making oracle access to f .

Regarding prover scalability, inspection reveals that the main bottleneck in
the process is the low-degree extension part, in which each function f̂j that
encodes a register gets interpolated and then evaluated on a domain of size
β · T. For this part we use so-called additive FFTs; in particular, libSTARK
uses the recent innovative algorithm of [56] that performs this computation with
O(βT log(βT)) arithmetic operations. All other steps of the prover’s computation
are merely linear in |T|; in particular, the FRI computation is such.

In closing we briefly mention some of the subtle issues that were glossed
over in our toy example and are discussed at length in our formal proofs, and
implemented in the code:

1. The toy construction is not zero knowledge, because each entry of f does
reveal some information about y0, y1. To achieve zero knowledge we slacken
the degree constraint on f0, f1, allowing the prover to sample a random poly-
nomial that agrees with f̂0, f̂1 on G, and thus hide information regarding
y0, y1 for query-limited verifiers (in a manner resembling Shamir secret shar-
ing [74]).

2. We did not enforce the boundary condition stating that the last entry is z.
To enforce this, the verifier interpolates a polynomial corresponding to all
boundary constraints (in our toy example there is only one such constraint)
and “incorporates it” in the proof oracle f .

3. Verifier scalability requires that ZeroG be computed efficiently. This is indeed
the case (because G is a subgroup of F), and holds also for additive subgroups
(as implemented by libSTARK [10]).

4. The toy computation does not make use of random memory access (RAM);
maintaining scalability for programs that make significant use of RAM com-
plicates the construction, requiring more elaborate affine graphs that embed
DeBruijn switching networks; these issues are addressed by Theorem 2 and
its proof.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: Proceedings of the 24th ACM Con-
ference on Computer and Communications Security (2017)

2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998). Prelimi-
nary version in FOCS 1992

3. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.
J. ACM 45(1), 70–122 (1998). Preliminary version in FOCS 1992

4. Babai, L., Fortnow, L.: Arithmetization: a new method in structural com-
plexity theory. Comput. Complex. 1(1), 41–66 (1991). https://doi.org/10.1007/
BF01200057. ISSN 1420–8954

https://doi.org/10.1007/BF01200057
https://doi.org/10.1007/BF01200057

728 E. Ben-Sasson et al.

5. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, STOC 1991, pp. 21–32 (1991)

6. Babai, L., Fortnow, L., Lund, C.: Nondeterministic exponential time has two-prover
interactive protocols. In: Proceedings of the 31st Annual Symposium on Founda-
tions of Computer Science, FOCS 1990, pp. 16–25 (1990)

7. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4 28

8. Ben-Or, M., et al.: Everything provable is provable in zero-knowledge. In: Gold-
wasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York
(1990). https://doi.org/10.1007/0-387-34799-2 4

9. Ben-Sasson, E., et al.: Computational integrity with a public random string from
quasi-linear PCPs. In: IACR Cryptology ePrint Archive 2016, p. 646 (2016).
http://eprint.iacr.org/2016/646

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: libSTARK: a library for zero
knowledge (ZK) scalable transparent argument of knowledge (STARK). https://
github.com/elibensasson/libSTARK

11. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interactive
oracle proofs of proximity. In: 45th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2018, Prague, Czech Republic, 9–13 July 2018,
pp. 14:1–14:17 (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.14

12. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

13. Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner, N.:
On probabilistic checking in perfect zero knowledge. In: Electron. Colloq. Comput.
Complex. (ECCC) 23, 156 (2016). http://eccc.hpi-web.de/report/2016/156

14. Ben-Sasson, E., Chiesa, A., Forbes, M.A., Gabizon, A., Riabzev, M., Spooner, N.:
Zero knowledge protocols from succinct constraint detection. In: Kalai, Y., Reyzin,
L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 172–206. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70503-3 6

15. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Short interac-
tive oracle proofs with constant query complexity, via composition and sumcheck.
Electron. Colloq. Comput. Complex. (ECCC) 23, 46 (2016)

16. Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasi-linear size zero knowl-
edge from linear-algebraic PCPs. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016.
LNCS, vol. 9563, pp. 33–64. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49099-0 2

17. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of
probabilistically-checkable proofs. In: Proceedings of the 45th ACM Symposium
on the Theory of Computing, STOC 2013, pp. 585–594 (2013)

18. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: TinyRAM archi-
tecture specification v2. 00 (2013). http://scipr-lab.org/tinyram

19. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/0-387-34799-2_4
http://eprint.iacr.org/2016/646
https://github.com/elibensasson/libSTARK
https://github.com/elibensasson/libSTARK
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://eprint.iacr.org/2018/046
http://eccc.hpi-web.de/report/2016/156
https://doi.org/10.1007/978-3-319-70503-3_6
https://doi.org/10.1007/978-3-662-49099-0_2
https://doi.org/10.1007/978-3-662-49099-0_2
http://scipr-lab.org/tinyram
https://doi.org/10.1007/978-3-642-40084-1_6

Scalable Zero Knowledge with No Trusted Setup 729

20. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of
public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015, pp. 287–304
(2015). https://doi.org/10.1109/SP.2015.25

21. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. Cryptology ePrint Archive,
Report 2018/828 (2018). https://eprint.iacr.org/2018/828. To appear in Eurocrypt
2019

22. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 31–60. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-53644-5 2. ISBN 978-3-662-53644-
5

23. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 16. Extended version at http://eprint.iacr.org/2014/595

24. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: Proceedings of the 23rd USENIX
Security Symposium, Security 2014, pp. 781-796 (2014). Extended version at
http://eprint.iacr.org/2013/879

25. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Short PCPs
verifiable in polylogarithmic time. In: Proceedings of the 20th Annual IEEE Con-
ference on Computational Complexity, CCC 2005, pp. 120–134 (2005)

26. Ben-Sasson, E., Kopparty, S., Saraf, S.: Worst-case to average case reductions for
the distance to a code. In: 33rd Computational Complexity Conference, CCC 2018,
San Diego, CA, USA, 22–24 June 2018, pp. 24:1–24:23 (2018). https://doi.org/10.
4230/LIPIcs.CCC.2018.24

27. Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. SIAM J.
Comput. 38(2), 551–607 (2008). Preliminary version appeared in STOC 2005

28. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKs and proof-carrying data. In: Proceedings of the 45th ACM
Symposium on the Theory of Computing, STOC 2013, pp. 111–120 (2013)

29. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

30. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

31. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
efficient range proofs for confidential transactions. Cryptology ePrint Archive,
Report 2017/1066 (2017). https://eprint.iacr.org/2017/1066

32. Buterin, V.: (2017). https://vitalik.ca/
33. Chiesa, A., Zhu, Z.A.: Shorter arithmetization of nondeterministic computations.

Theor. Comput. Sci. 600, 107–131 (2015)
34. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature

cards. In: Proceedings of the 1st Symposium on Innovations in Computer Science,
ICS 2010, pp. 310–331 (2010)

https://doi.org/10.1109/SP.2015.25
https://eprint.iacr.org/2018/828
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
http://eprint.iacr.org/2014/595
http://eprint.iacr.org/2013/879
https://doi.org/10.4230/LIPIcs.CCC.2018.24
https://doi.org/10.4230/LIPIcs.CCC.2018.24
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-662-49896-5_12
https://eprint.iacr.org/2017/1066
https://vitalik.ca/

730 E. Ben-Sasson et al.

35. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: Proceedings of the 4th Symposium on Innovations
in Theoretical Computer Science. ITCS 2012, pp. 90–112 (2012)

36. Cormode, G., Thaler, J., Yi, K.: Verifying computations with streaming interactive
proofs. Proc. VLDB Endow. 5(1), 25–36 (2011)

37. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 28. ISBN 978-3-662-45611-8

38. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)
39. Dwork, C., Feige, U., Kilian, J., Naor, M., Safra, M.: Low communication 2-

prover zero-knowledge proofs for NP. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 215–227. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
48071-4 15

40. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 25. http://dl.acm.org/citation.cfm?id=1881412.1881445.
ISBN 3-642-14622-8, 978-3-642-14622-0

41. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

42. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for boolean
circuits. In: 25th USENIX Security Symposium (USENIX Security 16), pp. 1069–
1083. USENIX Association, Austin (2016). https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/giacomelli. ISBN 978-1-931971-
32-4

43. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interac-
tive proofs for Muggles. In: Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, STOC 2008, pp. 113–122 (2008)

44. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interac-
tive proof systems. SIAM J. Comput. 18(1), 186–208 (1989). Preliminary version
appeared in STOC 1985

45. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

46. Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic com-
mitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
431–448. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 23

47. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

48. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from
simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part II. LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63715-0 20

49. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/3-540-48071-4_15
https://doi.org/10.1007/3-540-48071-4_15
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
http://dl.acm.org/citation.cfm?id=1881412.1881445
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/giacomelli
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/giacomelli
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-540-78967-3_24

Scalable Zero Knowledge with No Trusted Setup 731

50. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs.
In: Proceedings of the Twenty-Second Annual IEEE Conference on Computational
Complexity, CCC 2007, pp. 278–291 (2007)

51. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the Thirty-Ninth Annual ACM Sym-
posium on Theory of Computing, pp. 21–30. ACM (2007)

52. Ishai, Y., Mahmoody, M., Sahai, A., Xiao, D.: On Zero-Knowledge PCPs: Lim-
itations, Simplifications, and Applications (2015). http://www.cs.virginia.edu/
∼mohammad/files/papers/ZKPCPs-Full.pdf

53. Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS,
vol. 5126, pp. 536–547. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70583-3 44

54. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, STOC 1992, pp.
723–732 (1992)

55. Kilian, J., Petrank, E., Tardos, G.: Probabilistically checkable proofs with zero
knowledge. In: Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, STOC 1997, pp. 496–505 (1997)

56. Lin, S.-J., Al-Naffouri, T.Y., Han, Y.S., Chung, W.-H.: Novel polynomial basiswith
fast fourier transform and its application to Reed-Solomon erasure codes. IEEE
Trans. Inf. Theory 62(11), 6284–6299 (2016)

57. Lin, S.-J., Chung, W.-H., Han, Y.S.: Novel polynomial basis and its application
to Reed-Solomon erasure codes. In: Proceedings of the 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science, FOCS 2014, pp. 316–325. IEEE
Computer Society, Washington, DC (2014). https://doi.org/10.1109/FOCS.2014.
41. ISBN 978-1-4799-6517-5

58. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

59. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

60. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000). Preliminary version appeared in FOCS 1994

61. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000). https://doi.org/10.1137/S0097539795284959

62. Mie, T.: Polylogarithmic two-round argument systems. J. Math. Cryptol. 2(4),
343–363 (2008)

63. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: Proceedings of the 34th IEEE Symposium on Security and
Privacy, Oakland 2013, pp. 238–252 (2013)

64. Peck, M.: A blockchain currency that beat s bitcoin on privacy [News]. IEEE
Spectr. 53(12), 11–13 (2016). https://doi.org/10.1109/MSPEC.2016.7761864.
ISSN 0018-9235

65. Pergament, E.: Algebraic RAM. MA thesis. Technion—Israel Institute of Technol-
ogy (2017)

66. Razborov, A.A.: Lower bounds on the size of bounded depth circuits over a com-
plete basis with logical addition. Math. Notes Acad. Sci. USSR 41(4), 333–338
(1987)

http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1109/FOCS.2014.41
https://doi.org/10.1109/FOCS.2014.41
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1109/MSPEC.2016.7761864

732 E. Ben-Sasson et al.

67. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21
June 2016, pp. 49–62 (2016). https://doi.org/10.1145/2897518.2897652

68. SCIPR Lab. libsnark: a C++ library for zkSNARK proofs. https://github.com/
scipr-lab/libsnark

69. Seo, J.H.: Round-efficient sub-linear zero-knowledge arguments for linear algebra.
In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS,
vol. 6571, pp. 387–402. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19379-8 24

70. Setty, S., Blumberg, A.J., Walfish, M.: Toward practical and unconditional verifi-
cation of remote computations. In: Proceedings of the 13th USENIX Conference
on Hot Topics in Operating Systems, HotOS 2011, p. 29 (2011)

71. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the
conflict between generality and plausibility in verified computation. In: Proceedings
of the 8th EuoroSys Conference, EuroSys 2013, pp. 71–84 (2013)

72. Setty, S., McPherson, M., Blumberg, A.J., Walfish, M.: Making argument systems
for outsourced computation practical (sometimes). In: Proceedings of the 2012
Network and Distributed System Security Symposium, NDSS 2012 (2012)

73. Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking
proof-based verified computation a few steps closer to practicality. In: Proceedings
of the 21st USENIX Security Symposium, Security 2012, pp. 253–268 (2012)

74. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)
75. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit

complexity. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing, pp. 77–82. ACM (1987)

76. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 5

77. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp.
1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 1.
http://dl.acm.org/citation.cfm?id=1802614.1802616. ISBN 3-540-78523-X, 978-3-
540-78523-1

78. Vu, V., Setty, S., Blumberg, A.J., Walfish, M.: A hybrid architecture for interactive
verifiable computation. In: Proceedings of the 34th IEEE Symposium on Security
and Privacy, Oakland 2013, pp. 223–237 (2013)

79. Wahby, R.S., Setty, S.T.V., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM
and control flow in verifiable outsourced computation. In: 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015, San Diego, California,
USA, 8–11 February 2014 (2015)

80. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. Cryptology ePrint Archive, Report 2017/1132
(2017). https://eprint.iacr.org/2017/1132

81. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vRAM:
faster verifiable RAM with program-independent preprocessing. In: 2018 IEEE
Symposium on Security and Privacy (SP), pp. 203–220 (2018). https://doi.org/10.
1109/SP.2018.00013

82. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-
knowledge version of vSQL. Cryptology ePrint Archive, Report 2017/1146 (2017).
https://eprint.iacr.org/2017/1146

https://doi.org/10.1145/2897518.2897652
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://doi.org/10.1007/978-3-642-19379-8_24
https://doi.org/10.1007/978-3-642-19379-8_24
https://doi.org/10.1007/978-3-642-40084-1_5
https://doi.org/10.1007/978-3-540-78524-8_1
http://dl.acm.org/citation.cfm?id=1802614.1802616
https://eprint.iacr.org/2017/1132
https://doi.org/10.1109/SP.2018.00013
https://doi.org/10.1109/SP.2018.00013
https://eprint.iacr.org/2017/1146

Libra: Succinct Zero-Knowledge Proofs
with Optimal Prover Computation

Tiacheng Xie1(B), Jiaheng Zhang1(B), Yupeng Zhang1,2,
Charalampos Papamanthou3, and Dawn Song1

1 University of California, Berkeley, USA
{tianc.x,jiaheng zhang,dawnsong}@berkeley.edu

2 Texas A&M University, College Station, USA
zhangyp@tamu.edu

3 University of Maryland, College Park, USA
cpap@umd.edu

Abstract. We present Libra, the first zero-knowledge proof system that
has both optimal prover time and succinct proof size/verification time.
In particular, if C is the size of the circuit being proved (i) the prover
time is O(C) irrespective of the circuit type; (ii) the proof size and ver-
ification time are both O(d log C) for d-depth log-space uniform circuits
(such as RAM programs). In addition Libra features an one-time trusted
setup that depends only on the size of the input to the circuit and not
on the circuit logic. Underlying Libra is a new linear-time algorithm for
the prover of the interactive proof protocol by Goldwasser, Kalai and
Rothblum (also known as GKR protocol), as well as an efficient app-
roach to turn the GKR protocol to zero-knowledge using small masking
polynomials. Not only does Libra have excellent asymptotics, but it is
also efficient in practice. For example, our implementation shows that
it takes 200 s to generate a proof for constructing a SHA2-based Merkle
tree root on 256 leaves, outperforming all existing zero-knowledge proof
systems. Proof size and verification time of Libra are also competitive.

1 Introduction

Zero-knowledge proofs (ZKP) are cryptographic protocols between two parties, a
prover and a verifier, in which the prover can convince the verifier about the valid-
ity of a statement without leaking any extra information beyond the fact that the
statement is true. Since they were first introduced by Goldwasser et al. [31], ZKP
protocols have evolved from pure theoretical constructs to practical implementa-
tions, achieving proof sizes of just hundreds of bytes and verification times of sev-
eral milliseconds, regardless of the size of the statement being proved. Due to this
successful transition to practice, ZKP protocols have found numerous applications
not only in the traditional computation delegation setting but most importantly
in providing privacy of transactions in deployed cryptocurrencies (e.g., Zcash [9])
as well as in other blockchain research projects (e.g., Hawk [37]).

Despite such progress in practical implementations, ZKP protocols are still
notoriously hard to scale for large statements, due to a particularly high over-
head on generating the proof. For most systems, this is primarily because the
c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 733–764, 2019.
https://doi.org/10.1007/978-3-030-26954-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_24

734 T. Xie et al.

prover has to perform a large number of cryptographic operations, such as expo-
nentiation in an elliptic curve group. And to make things worse the asymptotic
complexity of computing the proof is typically more than linear, e.g., O(C log C)
or even O(C log2 C), where C is the size of the statement.

Unfortunately, as of today we are yet to construct a ZKP system whose prover
time is optimal, i.e., linear in the size of the statement C (this is irrespective
of whether the ZKP system has per-statement trusted setup, one-time trusted
setup or no trusted setup at all). The only notable exception is the recent work
by Bünz et al. [16] that however suffers from linear verification time—for a
detailed comparison see Table 1. Therefore designing ZKP systems that enjoy
linear prover time as well as succinct1 proof size and verification time is an open
problem, whose resolution can have significant practical implications.

Our Contributions. In this paper we propose Libra, the first ZKP protocol
with linear prover time and succinct proof size and verification time in the size of
the arithmetic circuit representing the statement C, when the circuit is log-space
uniform. Libra is based on the doubly efficient interactive proof protocol proposed
by Goldwasser et al. in [30] (referred as GKR protocol in this paper), and the
verifiable polynomial delegation scheme proposed by Zhang et al. in [50]. As such
it comes with one-time trusted setup (and not per-statement trusted setup) that
depends only on the size of the input (witness) to the statement that is being
proved. Not only does Libra have excellent asymptotic performance but also its
prover outperforms in practice all other ZKP systems while verification time and
proof size are also very competitive—see Table 1. Our concrete contributions are:

– GKR with linear prover time. Libra features a new linear-time algorithm
to generate a GKR proof. Our new algorithm does not require any pattern
in the circuit and our result subsumes all existing improvements on the GKR
prover assuming special circuit structures, such as regular circuits in [43],
data-parallel circuits in [43,46], circuits with different sub-copies in [51]. See
related work for more details.

– Adding zero-knowledge. We propose an approach to turn Libra into zero-
knowledge efficiently. In particular, we show a way to mask the responses of
our linear-time prover with small random polynomials such that the zero-
knowledge variant of the protocol introduces minimal overhead on the verifi-
cation time compared to the original (unmasked) construction.

– Implementation and evaluation. We implement Libra. Our implementa-
tion takes an arithmetic circuit with various types of gates (fan-in 2 and
degree ≤ 2, such as +,−,×, AND, XOR, etc.) and compiles it into a ZKP
protocol. We conduct thorough comparisons to all existing ZKP systems (see
Sect. 1.1). We plan to release our system as an open-source implementation.

1.1 Comparing to Other ZKP Systems

Table 1 shows a detailed comparison between Libra and existing ZKP systems.
First of all, Libra is the best among all existing systems in terms of practical
1 In ZKP literature, “succinct” is poly-logarithmic in the size of the statement C.

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 735

Table 1. Comparison of Libra to existing ZKP systems, where (G, P, V, |π|) denote the
trusted setup algorithm, the prover algorithm, the verification algorithm and the proof
size respectively. Also, C is the size of the log-space uniform circuit with depth d, and
n is the size of its input. The numbers are for a circuit computing the root of a Merkle
tree with 256 leaves (511 instances of SHA256).

libSNARK [13] Ligero [6] Bulletproofs [16] Hyrax [48] libSTARK [8] Aurora [11] Libra

G O(C) per-

statement

trusted setup

no trusted setup O(n) one-time

trusted setup

P O(C log C) O(C log C) O(C) O(C log C) O(C log2 C) O(C log C) O(C)

V O(1) O(C) O(C) O(
√

n + d log C) O(log2 C) O(C) O(d log C)

|π| O(1) O(
√

C) O(log C) O(
√

n + d log C) O(log2 C) O(log2 C) O(d log C)

G 1027 s NA 210 s

P 360 s 400 s 13,000 s 1,041 s 2,022 s 3199 s 201 s

V 0.002 s 4 s 900 s 9.9 s 0.044 s 15.2 s 0.71 s

|π| 0.13KB 1,500KB 5.5KB 185KB 395KB 174.3KB 51KB

prover time. In terms of asymptotics, Libra is the only system with linear prover
time and succinct verification and proof size for log-space uniform circuits. The
only other system with linear prover time is Bulletproofs [16] whose verification
time is linear, even for log-space uniform circuits. In the practical front, Bullet-
proofs prover time and verification time are high, due to the large number of
cryptographic operations required for every gate of the circuit.

The proof and verification of Libra are also competitive to other systems. In
asymptotic terms, our proof size is only larger than libSNARK [13] and Bullet-
proofs [16], and our verification is slower than libSNARK [13] and libSTARK [8].
Compared to Hyrax [48], which is also based on similar techniques with our
work, Libra improves the performance in all aspects (yet Hyrax does not have
any trusted setup). One can refer to Sect. 5 for a detailed description of our
experimental setting as well as a more detailed comparison.

Finally, among all systems, libSNARK [13] requires a trusted setup for every
statement, and Libra requires an one-time trusted setup that depends on the
input size.

Log-Space Uniform Circuits. Though the prover time in Libra is optimal
for all circuits, the verification time is succinct only when the circuit is struc-
tured (log-space uniform with logarithmic depth). This is the best that can be
achieved for all ZKP protocols without per-circuit setup, as the verifier must
read the entire circuit, which takes linear time in the worst case. We always
refer to log-space uniform circuits when we say our scheme is succinct in this
paper, to differentiate from schemes with linear verification time on all circuits
(irrespective of whether the circuits are log-space uniform or not). Schemes such
as libSTARK [8], zkVSQL [49] and Hyrax [48] also have such property.

In practice, with the help of auxiliary input and circuit squashing, most com-
putations can be expressed as log-space uniform circuits with low depth, such as
matrix multiplication, image scaling and Merkle hash tree in Sect. 5. Asymptot-
ically, as shown in [8,13,51], all random memory access (RAM) programs can be

736 T. Xie et al.

validated by circuits that are log-space uniform with log-depth in the running
time of the programs (but linear in the size of the programs) by RAM-to-circuit
reduction, which justifies the expressiveness of such circuits.

1.2 Our Techniques

Our main technical contributions are a GKR protocol with linear prover time
and an efficient approach to turn the GKR protocol into zero-knowledge. We
summarize the key ideas behind these two contributions. The detailed protocols
are presented in Sects. 3 and 4 respectively.

GKR with Linear Prover. Goldwasser et al. [30] showed an approach to
model the evaluation of a layered circuit as a sequence of summations on poly-
nomials defined by values in consecutive layers of the circuit. Using the famous
sumcheck protocol (see Sect. 2.3), they developed a protocol (the GKR protocol)
allowing the verifier to validate the circuit evaluation in logarithmic time with a
logarithmic size proof. However, the polynomials in the protocol are multivariate
with 2s variables, where S is the number of gates in one layer of the circuit and
s = log S. Naively running the sumcheck protocol on these polynomials incurs
S2 prover time, as there are at least 22s = S2 monomials in a 2s-variate poly-
nomial. Later, Cormode et al. [23] observed that these polynomials are sparse,
containing only S nonzero monomials and improved the prover time to S log S.

In our new approach, we divide the protocol into two separate sumchecks. In
each sumcheck, the polynomial only contains s variables, and can be expressed as
the product of two multilinear polynomials. Utilizing the sparsity of the circuit,
we develop new algorithms to scan through each gate of the circuit and compute
the closed-form of all these multilinear polynomials explicitly, which takes O(S)
time. With this new way of representation, the prover can deploy a dynamic
programming technique to generate the proofs in each sumcheck in O(S) time,
resulting in a total prover time of O(S).

Efficient Zero-Knowledge GKR. The original GKR protocol is not zero-
knowledge, since the messages in the proof can be viewed as weighed sums of
the values in the circuit and leak information. In [48,49], the authors proposed to
turn the GKR protocol into zero-knowledge by hiding the messages in homomor-
phic commitments, which incurs a big overhead in the verification time. In [22],
Chiesa et al. proposed an alternative approach by masking the protocol with
random polynomials. However, the masking polynomials are as big as the origi-
nal ones and the prover time becomes exponential, making the approach mainly
of theoretical interest.

In our scheme, we first show that in order to make the sumcheck protocol
zero-knowledge, the prover can mask it with a “small” polynomial. In particular,
the masking polynomial only contains logarithmically many random coefficients.
The intuition is that though the original polynomial has O(2�) or more terms
(� is the number of variables in the polynomial), the prover only sends O(�)
messages in the sumcheck protocol. Therefore, it suffices to mask the original
polynomial with a random one with O(�) coefficients to achieve zero-knowledge.

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 737

In particular, we set the masking polynomial as the sum of � univariate random
polynomials with the same variable-degree. In Sect. 4.1, we show that the entropy
of this mask exactly counters the leakage of the sumcheck, proving that it is
sufficient and optimal.

Besides the sumcheck, the GKR protocol additionally leaks two evaluations
of the polynomial defined by values in each layer of the circuit. To make these
evaluations zero-knowledge, we mask the polynomial by a special low-degree
random polynomial. In particular, we show that after the mask, the verifier
in total learns 4 messages related to the evaluations of the masking polynomial
and we can prove zero-knowledge by making these messages linearly independent.
Therefore, the masking polynomial is of constant size: it consists of 2 variables
with variable degree 2.

1.3 Related Work

In recent years there has been significant progress in efficient ZKP protocols and
systems. In this section, we discuss related work in this area, with the focus on
those with sublinear proofs.

QAP-Based. Following earlier work of Ishai [34], Groth [33] and Lipmaa [38],
Gennaro et al. [28] introduced quadratic arithmetic programs (QAPs), which
forms the basis of most recent implementations [10,14,19,24,27,42,47] includ-
ing libSNARK [13]. The proof size in these systems is constant, and the verifica-
tion time depends only on the input size. Both these properties are particularly
appealing and have led to real-world deployments, e.g., ZCash [9]. One of the
main bottlenecks, however, of QAP-based systems is the high overhead in the
prover running time and memory consumption, making it hard to scale to large
statements. In addition, a separate trusted setup for every statement is required.

IOPs. Based on “(MPC)-in-the-head” introduced in [21,29,35], Ames et al. [6]
proposed a ZKP scheme called Ligero. It only uses symmetric key operations
and the prover time is fast in practice. However, it generates proofs of size
O(

√
C), which is several megabytes in practice for moderate-size circuits. In

addition, the verification time is quasi-linear to the size of the circuit. It is cat-
egorized as interactive PCP, which is a special case of interactive oracle proofs
(IOPs). IOP generalizes the probabilistically checkable proofs (PCPs) where ear-
lier works of Kilian [36] and Micali [41] are built on. In the IOP model, Ben-
Sasson et al. built libstark [8], a zero-knowledge transparent argument of knowl-
edge (zkSTARK).libstark does not rely on trusted setup and executes in the RAM
model of computation. Their verification time is only linear to the description of
the RAM program, and succinct (logarithmic) in the time required for program
execution. Recently, Ben-Sasson et al. [11] proposed Aurora, a new ZKP system
in the IOP model with the proof size of O(log2 C).

Discrete Log. Before Bulletproof [16], earlier discrete-log based ZKP schemes
include the work of Groth [32], Bayer and Groth [7] and Bootle et al. [17].

738 T. Xie et al.

Hash-Based. Bootle et al. [18] proposed a ZKP scheme with linear prover
time and verification time. The verification only requires O(C) field additions.
However, the proof size is O(

√
C) and the constants are large.

Interactive Proofs. The line of work that relates to our paper the most is
based on interactive proofs [31]. In the seminal work of [30], Goldwasser et
al. proposed an efficient interactive proof for layered arithmetic circuits. Later,
Cormode et al. [23] improved the prover complexity of the interactive proof in [30]
to O(C log C) using multilinear extensions instead of low degree extensions. Sev-
eral follow-up works further reduce the prover time assuming special structures of
the circuit. For regular circuits where the wiring pattern can be described in con-
stant space and time, Thaler [43] introduced a protocol with O(C) prover time; for
data parallel circuits with many copies of small circuits with size C ′, a O(C log C ′)
protocol is presented in the same work, later improved to O(C + C ′ log C) by
Wahby et al. in [46]; for circuits with many non-connected but different copies,
Zhang et al. showed a protocol with O(C log C ′) prover time.

In [50], Zhang et al. extended the GKR protocol to an argument system using
a protocol for verifiable polynomial delegation. Zhang et al. [51] and Wahby et
al. [48] make the argument system zero-knowledge by putting all the messages in
the proof into homomorphic commitments, as proposed by Cramer and Damgard
in [25]. This approach introduces a high overhead on the verification time com-
pared to the plain argument system without zero-knowledge, as each addition
becomes a multiplication and each multiplication becomes an exponentiation
in the homomorphic commitments. The multiplicative overhead is around two
orders of magnitude in practice. Additionally, the scheme of [48], Hyrax, removes
the trusted setup of the argument system by introducing a new polynomial del-
egation, increasing the proof size and verification time to O(

√
n).

2 Preliminaries

2.1 Notation

In this paper, we use λ to denote the security parameter, and negl(λ) to denote
the negligible function in λ. “PPT” stands for probabilistic polynomial time. We
use f(), h() for polynomials, x, y, z for vectors of variables and g, u, v for vectors
of values. xi denotes the i-th variable in x. We use bold letters such as A to
represent arrays. For a multivariate polynomial f , its “variable-degree” is the
maximum degree of f in any of its variables.

Assumptions. Our scheme uses bilinear pairing and relies on the q-Strong Bilin-
ear Diffie-Hellman (q-SBDH) assumption and an extended version of the Power
Knowledge of Exponent (PKE) assumption [49,50]. We present bilinear pairing
and the assumptions formally in the full version of the paper.

2.2 Interactive Proofs and Zero-Knowledge Arguments

Interactive Proofs. An interactive proof allows a prover P to convince a verifier
V the validity of some statement. The interactive proof runs in several rounds,

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 739

allowing V to ask questions in each round based on P’s answers of previous
rounds. We phrase this in terms of P trying to convince V that f(x) = 1. The
proof system is interesting only when the running time of V is less than the time
of directly computing the function f . We give the formal definition of interactive
proofs in the full version.

Zero-Knowledge Arguments. An argument system for an NP relationship
R is a protocol between a computationally-bounded prover P and a verifier V.
At the end of the protocol, V is convinced by P that there exists a witness w
such that (x;w) ∈ R for some input x. We focus on arguments of knowledge
which have the stronger property that if the prover convinces the verifier of
the statement validity, then the prover must know w. We use G to represent
the generation phase of the public key pk and the verification key vk. Formally,
consider the definition below, where we assume R is known to P and V.

Definition 1. Let R be an NP relation. A tuple of algorithm (G,P,V) is a zero-
knowledge argument of knowledge for R if the following holds.

– Correctness. For every (pk, vk) output by G(1λ) and (x,w) ∈ R,

〈P(pk, w),V(vk)〉(x) = accept

– Soundness. For any PPT prover P, there exists a PPT extractor ε such that
for every (pk, vk) output by G(1λ) and any x, it holds that

Pr[〈P(pk),V(vk)〉(x) = accept ∧ (x,w) /∈ R|w ← ε(pk, x)] ≤ negl(λ)

– Zero knowledge. There exists a PPT simulator S such that for any PPT
adversary A, auxiliary input z ∈ {0, 1}poly(λ), (x;w) ∈ R, it holds that
Pr

[〈P(pk, w),A〉 = accept : (pk, vk) ← G(1λ); (x,w) ← A(z, pk, vk)
]

=
Pr

[〈S(trap, z, pk),A〉 = accept : (pk, vk, trap) ← S(1λ); (x,w) ← A(z, pk, vk)
]

We say that (G,P,V) is a succinct argument system if the running time of V
and the total communication between P and V (proof size) are poly(λ, |x|, log |w|).

2.3 GKR Protocol

In [30], Goldwasser et al. proposed an efficient interactive proof protocol for
layered arithmetic circuits, which we use as a building block for our new zero-
knowledge argument and is referred as the GKR protocol. We present the
detailed protocol here.

Sumcheck Protocol. The sumcheck problem is a fundamental problem that
has various applications. The problem is to sum a polynomial f : F� → F on the
binary hypercube

∑
b1,b2,...,b�∈{0,1} f(b1, b2, ..., b�). Directly computing the sum

requires exponential time in �, as there are 2� combinations of b1, . . . , b�. Lund

740 T. Xie et al.

et al. [39] proposed a sumcheck protocol that allows a verifier V to delegate the
computation to a computationally unbounded prover P, who can convince V
that H is the correct sum. We provide a description of the sumcheck protocol
in Protocol 1. The proof size of the sumcheck protocol is O(d�), where d is the
variable-degree of f , as in each round, P sends a univariate polynomial of one
variable in f , which can be uniquely defined by d+1 points. The verifier time of
the protocol is O(d�). The prover time depends on the degree and the sparsity of
f , and we will give the complexity later in our scheme. The sumcheck protocol
is complete and sound with ε = d�

|F| .

Protocol 1 (Sumcheck) The protocol proceeds in � rounds.

– In the first round, P sends a univariate polynomial

f1(x1)
def
=

∑
b2,...,b�∈{0,1}

f(x1, b2, . . . , b�),

V checks H = f1(0) + f1(1). Then V sends a random challenge r1 ∈ F to P.
– In the i-th round, where 2 ≤ i ≤ l − 1, P sends a univariate polynomial

fi(xi)
def
=

∑
bi+1,...,b�∈{0,1}

f(r1, . . . , ri−1, xi, bi+1, . . . , b�),

V checks fi−1(ri−1) = fi(0) + fi(1), and sends a random challenge ri ∈ F to P.
– In the �-th round, P sends a univariate polynomial

f�(x�)
def
= f(r1, r2, . . . , rl−1, x�),

V checks f�−1(r�−1) = f�(0) + f�(1). The verifier generates a random challenge
r� ∈ F. Given oracle access to an evaluation f(r1, r2, . . . , r�) of f , V will accept
if and only if f�(r�) = f(r1, r2, . . . , r�). The instantiation of the oracle access
depends on the application of the sumcheck protocol.

Definition 2 (Multi-linear Extension). Let V : {0, 1}� → F be a function.
The multilinear extension of V is the unique polynomial Ṽ : Fl → F such that
Ṽ (x1, x2, ..., xl) = V (x1, x2, ..., xl) for all x1, x2, . . . , xl ∈ {0, 1}l.

Ṽ can be expressed as:

Ṽ (x1, x2, ..., xl) =
∑

b∈{0,1}�

∏l

i=1
[((1 − xi)(1 − bi) + xibi) · V (b)]

where bi is i-th bit of b.

Multilinear Extensions of Arrays. Inspired by the close form equation of the
multilinear extension given above, we can view an array A = (a0, a1, . . . , an−1)
as a function A : {0, 1}log n → F such that ∀i ∈ [0, n − 1], A(i) = ai. Therefore,
in this paper, we abuse the use of multilinear extension on an array as the
multilinear extension Ã of A.

High Level Ideas of GKR. Let C be a layered arithmetic circuit with depth
d over a finite field F. Each gate in the i-th layer takes inputs from two gates in

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 741

the (i+1)-th layer; layer 0 is the output layer and layer d is the input layer. The
protocol proceeds layer by layer. Upon receiving the claimed output from P, in
the first round, V and P run the sumcheck protocol to reduce the claim about
the output to a claim about the values in the layer above. In the i-th round,
both parties reduce a claim about layer i − 1 to a claim about layer i through
the sumcheck protocol. Finally, the protocol terminates with a claim about the
input layer d, which can be checked directly by V, or is given as an oracle access.
If the check passes, V accepts the claimed output.

Notation. Before describing the GKR protocol, we introduce some additional
notations. We denote the number of gates in the i-th layer as Si and let si =
�log Si�. (For simplicity, we assume Si is a power of 2, and we can pad the
layer with dummy gates otherwise.) We then define a function Vi : {0, 1}si → F

that takes a binary string b ∈ {0, 1}si and returns the output of gate b in layer
i, where b is called the gate label. With this definition, V0 corresponds to the
output of the circuit, and Vd corresponds to the input layer. Finally, we define
two additional functions addi,multi : {0, 1}si−1+2si → {0, 1}, referred as wiring
predicates in the literature. addi (multi) takes one gate label z ∈ {0, 1}si−1 in
layer i − 1 and two gate labels x, y ∈ {0, 1}si in layer i, and outputs 1 if and
only if gate z is an addition (multiplication) gate that takes the output of gate
x, y as input. With these definitions, Vi can be written as follows:

Vi(z) =
∑

x,y∈{0,1}si+1
(addi+1(z, x, y)(Vi+1(x) + Vi+1(y))

+multi+1(z, x, y)(Vi+1(x)Vi+1(y)))
(1)

for any z ∈ {0, 1}si .
In the equation above, Vi is expressed as a summation, so V can use the

sumcheck protocol to check that it is computed correctly. As the sumcheck pro-
tocol operates on polynomials defined on F, we rewrite the equation with their
multilinear extensions:

Ṽi(g) =
∑

x,y∈{0,1}si+1
fi(x, y)

=
∑

x,y∈{0,1}si+1
(˜addi+1(g, x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(g, x, y)(Ṽi+1(x)Ṽi+1(y))), (2)

where g ∈ F
si is a random vector.

Protocol. With Eq. 2, the GKR protocol proceeds as follows. The prover P first
sends the claimed output of the circuit to V. From the claimed output, V defines
polynomial Ṽ0 and computes Ṽ0(g) for a random g ∈ F

s0 . V and P then invoke a
sumcheck protocol on Eq. 2 with i = 0. As described in Sect. 2.3, at the end of the
sumcheck, V needs an oracle access to fi(u, v), where u, v are randomly selected
in F

si+1 . To compute fi(u, v), V computes ˜addi+1(u, v) and ˜multi+1(u, v) locally
(they only depend on the wiring pattern of the circuit, but not on the values),

742 T. Xie et al.

asks P to send Ṽ1(u) and Ṽ1(v) and computes fi(u, v) to complete the sumcheck
protocol. In this way, V and P reduces a claim about the output to two claims
about values in layer 1.

Combining Two Claims: Condensing to One Claim. In [30], Goldwasser et
al. presented a protocol to reduce two claims Ṽi(u) and Ṽi(v) to one as following.
V defines a line γ : F → F

si such that γ(0) = u, γ(1) = v. V sends γ(x) to P.
Then P sends V a degree si univariate polynomial h(x) = Ṽi(γ(x)). V checks
that h(0) = Ṽi(u), h(1) = Ṽi(v). Then V randomly chooses r ∈ F and computes
a new claim h(r) = Ṽi(γ(r)) = Ṽi(w) on w = γ(r) ∈ F

si . V sends r, w to P. In
this way, the two claims are reduced to one claim Ṽi(w). Combining this protocol
with the sumcheck protocol on Eq. 2, V and P can reduce a claim on layer i to
one claim on layer i + 1, and eventually to a claim on the input.

Combining Two Claims: Random Linear Combination. In [22], Chiesa et
al. proposed an alternative approach using random linear combinations. Upon
receiving the two claims Ṽi(u) and Ṽi(v), V selects αi, βi ∈ F randomly and
computes αiṼi(u) + βiṼi(v). Based on Eq. 2, this can be written as

αiṼi(u) + βiṼi(v)

=αi

∑

x,y∈{0,1}si+1

(˜addi+1(u, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(u, x, y)(Ṽi+1(x)Ṽi+1(y)))

+βi

∑

x,y∈{0,1}si+1

(˜addi+1(v, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(v, x, y)(Ṽi+1(x)Ṽi+1(y)))

=
∑

x,y∈{0,1}si+1

((αi
˜addi+1(u, x, y) + βi

˜addi+1(v, x, y))(Ṽi+1(x) + Ṽi+1(y))

+ (αi
˜multi+1(u, x, y) + βi

˜multi+1(v, x, y))(Ṽi+1(x)Ṽi+1(y))) (3)

V and P then execute the sumcheck protocol on Eq. 3 instead of Eq. 2. At the
end of the sumcheck protocol, V still receives two claims about Ṽi+1, computes
their random linear combination and proceeds to an layer above recursively. In
our new ZKP scheme, we will mainly use the second approach.

Theorem 1. [23,30,43,45]. Let C : F
n → F

k be a depth-d layered arithmetic
circuit. The GKR protocol is an interactive proof for the function computed by
C with soundness O(d log |C|/|F|). It uses O(d log |C|) rounds of interaction and
running time of the prover P is O(|C| log |C|). Let the optimal computation time
for all ˜addi and ˜multi be T , the running time of V is O(n + k + d log |C| + T).
For log-space uniform circuits it is T = polylog |C|.

2.4 Zero-Knowledge Verifiable Polynomial Delegation Scheme

Let F be a finite field, F be a family of �-variate polynomial over F, and d be
a variable-degree parameter. A zero-knowledge verifiable polynomial delegation
scheme (zkVPD) for f ∈ F and t ∈ F

� consists of the following algorithms:

– (pp, vp) ← KeyGen(1λ, �, d),

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 743

Algorithm 1. F ← FunctionEvaluations(f,A, r1, . . . , r�)
Input: Multilinear f on � variables, initial bookkeeping table A, random r1, . . . , r�;
Output: All function evaluations f(r1, . . . , ri−1, t, bi+1, . . . , b�);

1: for i = 1, . . . , � do
2: for b ∈ {0, 1}�−i do // b is both a number and its binary representation.
3: for t = 0, 1, 2 do
4: Let f(r1, . . . , ri−1, t, b) = A[b] · (1 − t) + A[b + 2�−i] · t

5: A[b] = A[b] · (1 − ri) + A[b + 2�−i] · ri

6: Let F contain all function evaluations f(.) computed at Step 4
7: return F

– com ← Commit(f, rf , pp),
– {accept, reject} ← CheckComm(com, vp),
– (y, π) ← Open(f, t, rf , pp),
– {accept, reject} ← Verify(com, t, y, π, vp).

A zkVPD scheme satisfies correctness, soundness and zero knowledge. We give
the formal definitions in the full version.

3 GKR Protocol with Linear Prover Time

In this section we present a new algorithm for the prover of the GKR protocol [30]
that runs in linear time for arbitrary layered circuits. Before that, we present
some necessary building blocks.

3.1 Linear-Time Sumcheck for a Multilinear Function [43]

In [43], Thaler proposed a linear-time algorithm for the prover of the sumcheck
protocol on a multilinear function f on � variables (the algorithm runs in O(2�)
time). We review this algorithm here. Recall that in the i-th round of the sum-
check protocol the prover sends the verifier the univariate polynomial on xi

∑

bi+1,...,b�,∈{0,1} f(r1, . . . , ri−1, xi, bi+1, . . . , b�),

where r1, . . . , ri−1 are random values chosen by the verifier in previous rounds.
Since f is multilinear, it suffices for the prover to send two evaluations of the
polynomial at points t = 0 and t = 1, namely the evaluations

∑

bi+1,...,b�,∈{0,1} f(r1, . . . , ri−1, 0, bi+1, . . . , b�) (4)

and ∑

bi+1,...,b�,∈{0,1} f(r1, . . . , ri−1, 1, bi+1, . . . , b�). (5)

To compute the above sums the prover maintains a bookkeeping table
A for f . This table, at round i, has 2�−i+1 entries storing the values

744 T. Xie et al.

Algorithm 2. {a1, . . . , a�} ← SumCheck(f,A, r1, . . . , r�)
Input: Multilinear f on � variables, initial bookkeeping table A, random r1, . . . , r�;
Output: � sumcheck messages for

∑
x∈{0,1}� f(x). Each message ai consists of 3 ele-

ments (ai0, ai1, ai2);

1: F ← FunctionEvaluations(f,A, r1, . . . , r�)
2: for i = 1, . . . , � do
3: for t ∈ {0, 1, 2} do
4: ait =

∑
b∈{0,1}�−i f(r1, . . . , ri−1, t, b) // All evaluations needed are in F .

5: return {a1, . . . , a�};

f(r1, . . . , ri−1, bi, bi+1, . . . , b�) for all bi, . . . , b� ∈ {0, 1} and is initialized with
evaluations of f on the hypercube. For every entry of A, the prover subse-
quently computes, as in Step 4 of Algorithm 1 FunctionEvaluations2 two values
f(r1, . . . , ri−1, 0, bi+1, . . . , b�) and f(r1, . . . , ri−1, 1, bi+1, . . . , b�). Once these func-
tion evaluations are in place, the prover can easily sum over them and compute
the required sumcheck messages as required by Relations 4 and 5. This is done
in Algorithm 2.

Complexity Analysis. Both Algorithms 1 and 2 run in O(2�) time: The first
iteration takes O(2�), the second O(2�−1) and so on. Therefore the bound holds.

3.2 Linear-Time Sumcheck for Products of Multilinear Functions
[43]

The linear-time sumcheck in the previous section can be generalized to a product
of two multilinear functions. Let now f and g be two multilinear functions on �
variables each, we describe a linear-time algorithm to compute the messages of
the prover for the sumcheck on the product f · g, as proposed in [43]. Note that
we cannot use Algorithm 2 here since f · g is not multilinear. However, similarly
with the single-function case, the prover must now send, at round i, the following
evaluations at points t = 0, t = 1 and t = 2
∑

bi+1,...,b�,∈{0,1} f(r1, . . . , ri−1, t, bi+1, . . . , b�) · g(r1, . . . , ri−1, t, bi+1, . . . , b�)

The above can be easily computed by computing evaluations for functions f
and g separately using Algorithm 1 and the combining the results using our new
Algorithm 3 SumCheckProduct. We now have the following lemma:

Lemma 1. Algorithm SumCheckProduct runs in time O(2�)

2 To be compatible with other protocols later, we use three values t = 0, 1, 2 in our
evaluations instead of just two.

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 745

3.3 Linear-Time Sumcheck for GKR Functions

Let us now consider the sumcheck problem on a particular class of functions that
are relevant for the GKR protocol (that is why we call them GKR functions).
In particular we want to compute the sumcheck

∑

x,y∈{0,1}�
f1(g, x, y)f2(x)f3(y), (6)

for a fixed point g ∈ F
�, where f2(x), f3(x) : F� → F are multilinear extensions of

arrays Af2 ,Af3 of size 2�, and function f1 : F3� → F is the multilinear extension
of a sparse array with O(2�) (out of 23� possible) nonzero elements. It is not
hard to see that the sumcheck polynomials in GKR given by Eqs. 2 and 3 satisfy
these properties.

Algorithm 3. {a1, . . . , a�} ← SumCheckProduct(f,Af , g,Ag, r1, . . . , r�)
Input: Multilinear f and g, initial bookkeeping tables Af and Ag, random r1, . . . , r�;
Output: � sumcheck messages for

∑
x∈{0,1}� f(x)g(x). Each message ai consists of 3

elements (ai0, ai1, ai2);

1: F ← FunctionEvaluations(f,Af , r1, . . . , r�)
2: G ← FunctionEvaluations(g,Ag, r1, . . . , r�)
3: for i = 1, . . . , � do
4: for t ∈ {0, 1, 2} do
5: ait =

∑
b∈{0,1}�−i f(r1, . . . , ri−1, t, b) · g(r1, . . . , ri−1, t, b) // All

evaluations needed are in F and G.
6: return {a1, . . . , a�};

We note here that applying Algorithm1 FunctionEvaluations for this particu-
lar class of polynomials would lead to quadratic prover time. This is because f1
has 22� variables to sum on yielding O(22�) complexity. However, one could take
advantage of the sparsity of f1: the prover can store only the O(2�) non-zero val-
ues of the bookkeeping table A. This is exactly the approach used in many prior
work [23,46,51]. However, with this approach, the number of nonzero values that
must be considered in Step 2 is always at most 2�, since it is not guaranteed that
this number will reduce to half (i.e., to 2�−i) after every update in Step 5 because
it is sparse. Therefore, the overall complexity becomes O(� · 2�).

In this section we effectively reduce this bound to O(2�). Our protocol divides
the sumcheck into two phases: the first � rounds bounding the variables of x to a
random point u, and the last � rounds bounding the variables of y to a random
point v. The central idea lies in rewriting Eq. 6 as follows
∑

x,y∈{0,1}�
f1(g, x, y)f2(x)f3(y) =

∑

x∈{0,1}�
f2(x)

∑

y∈{0,1}�
f1(g, x, y)f3(y)

=
∑

x∈{0,1}�
f2(x)hg(x),

where hg(x) =
∑

y∈{0,1}� f1(g, x, y)f3(y).

746 T. Xie et al.

Algorithm 4. Ahg
← Initialize PhaseOne(f1, f3,Af3 , g)

Input: Multilinear f1 and f3, initial bookkeeping tables Af3 , random g = g1, . . . , g�;
Output: Bookkeeping table Ahg ;

1: procedure G ← Precompute(g) // G is an array of size 2�.
2: Set G[0] = 1
3: for i = 0, . . . , � − 1 do
4: for b ∈ {0, 1}i do
5: G[b, 0] = G[b] · (1 − gi+1)
6: G[b, 1] = G[b] · gi+1

7: ∀x ∈ {0, 1}�, set Ahg [x] = 0
8: for every (z, x, y) such that f1(z, x, y) is non-zero do
9: Ahg [x] = Ahg [x] + G[z] · f1(z, x, y) · Af3 [y]

10: return Ahg ;

Phase One. With the formula above, in the first � rounds, the prover and the
verifier are running exactly a sumcheck on a product of two multilinear functions
f2 ·hg, since functions f2 and hg can be viewed as functions only in x—y can be
considered constant (it is always summed on the hypercube). To compute the
sumcheck messages for the first � rounds, given their bookkeeping tables, we can
call

SumCheckProduct(hg(x),Ahg
, f2(x),Af2 , u1, . . . , u�)

in Algorithm 3. By Lemma 1 this will take O(2�) time. We now show how to
initialize the bookkeeping tables in linear time.

Initializing the Bookkeeping Tables:
Initializing the bookkeeping table for f2 in O(2�) time is trivial, since f2 is a
multilinear extension of an array and therefore the evaluations on the hyper-
cube are known. Initializing the bookkeeping table for hg in O(2�) time is more
challenging but we can leverage the sparsity of f1. Consider the following lemma.

Lemma 2. Let Nx be the set of (z, y) ∈ {0, 1}2� such that f1(z, x, y) is non-
zero. Then for all x ∈ {0, 1}�, it is hg(x) =

∑
(z,y)∈Nx

I(g, z) · f1(z, x, y) · f3(y),

where I(g, z) =
∏�

i=1((1 − gi)(1 − zi) + gizi)).

Proof. As f1 is a multilinear extension, as shown in [43], we have f1(g, x, y) =∑
z∈{0,1}� I(g, z)f1(z, x, y), where I is the multilinear extension of the identity

polynomial, i.e., I(w, z) = 1 iff w = z for all w, z ∈ {0, 1}�. Therefore, we have

hg(x) =
∑

y∈{0,1}�
f1(g, x, y)f3(y) =

∑

z,y∈{0,1}�
I(g, z)f1(z, x, y)f3(y)

=
∑

(z,y)∈Nx

I(g, z) · f1(z, x, y) · f3(y)

Moreover, I(w, z) =
∏�

i=1((1−wi)(1−zi)+wizi)) is the unique polynomial that
evaluates to 1 iff w = z for all w, z ∈ {0, 1}�. As the multilinear extension is
unique, we have I(g, z) =

∏�
i=1((1 − gi)(1 − zi) + gizi)). �

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 747

Algorithm 5. Af1 ← Initialize PhaseTwo(f1, g, u)
Input: Multilinear f1, random g = g1, . . . , g� and u = u1, . . . , u�;
Output: Bookkeeping table Af1 ;

1: G ← Precompute(g)
2: U ← Precompute(u)
3: ∀y ∈ {0, 1}�, set Af1 [y] = 0
4: for every (z, x, y) such that f1(z, x, y) is non-zero do
5: Af1 [y] = Af1 [y] + G[z] · U[x] · f1(z, x, y)

6: return Af1 ;

Lemma 3. The bookkeeping table Ahg
can be initialized in time O(2�).

Proof. As f1 is sparse,
∑

x∈{0,1}� |Nx| = O(2�). From Lemma 2, given the eval-
uations of I(g, z) for all z ∈ {0, 1}�, the prover can iterate all (z, y) ∈ Nx for all
x to compute Ahg

. The full algorithm is presented in Algorithm4.
Procedure Precompute(g) is to evaluate G[z] = I(g, z) =

∏�
i=1((1 − gi)(1 −

zi) + gizi)) for z ∈ {0, 1}�. By the closed-form of I(g, z), the procedure iterates
each bit of z, and multiples 1 − gi for zi = 0 and multiples gi for zi = 1. In this
way, the size of G doubles in each iteration, and the total complexity is O(2�).

Step 8–9 computes hg(x) using Lemma 2. When f1 is represented as a map
of (z, x, y), f1(z, x, y) for non-zero values, the complexity of these steps is O(2�).
In the GKR protocol, this is exactly the representation of a gate, where z, x, y
are labels of the gate, its left input and its right input, and f1(z, x, y) = 1. �

With the bookkeeping tables, the prover runs SumCheckProduct(hg(x),Ahg
,

f2(x),Af2 , u1, . . . , u�) in Algorithm 3 and the complexity for phase one is O(2�).

Phase Two. At this point, all variables in x have been bounded to random
numbers u. In the second phase, the equation to sum on becomes

∑

y∈{0,1}�
f1(g, u, y)f2(u)f3(y)

Note here that f2(u) is merely a single value which we already computed in phase
one. Both f1(g, u, y) and f3(y) are polynomials on y with � variables. Similar to
phase one, to compute the messages for the last � rounds we can call

SumCheckProduct(f1(g, u, y),Af1 , f3(y) · f2(u),Af3 · f2(u), , v1, . . . , v�).

Note here that Af1 is the bookkeeping table for f1(g, u, y), not the original sparse
function f1(g, x, y).

Initializing the Bookkeeping Table for f1:
It now remains to initialize the bookkeeping table for f1(g, u, y) efficiently. Sim-
ilar to phase one, we have the following lemma:

Lemma 4. Let Ny be the set of (z, x) ∈ {0, 1}2� such that f1(z, x, y) is non-zero.
Then for all y ∈ {0, 1}�, it is f1(g, u, y) =

∑
(z,x)∈Ny

I(g, z) · I(u, x) · f1(z, x, y).

748 T. Xie et al.

Proof. This immediately follows from the fact that f1 is a multilinear extension.
We have f1(g, u, y) =

∑
z,y∈{0,1}� I(g, z) · I(u, x) · f1(z, x, y), where the closed

from of I is given in Lemma 2. �
Lemma 5. The bookkeeping table Af1 can be initialized in time O(2�).

Proof. Similar to Algorithm 4, he prover again iterates all non-zero indices of f1
to compute it using Lemma 4. The full algorithm is presented in Algorithm5. �

3.4 Putting Everything Together

The sumcheck protocol in GKR given by Eq. 2 can be decomposed into several
instances that have the form of Eq. 6 presented in the previous section. The term

∑

x,y∈{0,1}si+1
˜multi+1(g, x, y)(Ṽi+1(x)Ṽi+1(y))

is exactly the same as Eq. 6. The term
∑

x,y∈{0,1}si+1
˜addi+1(g, x, y)(Ṽi+1(x) +

Ṽi+1(y)) can be viewed as:
∑

x,y∈{0,1}si+1
˜addi+1(g, x, y)Ṽi+1(x) +

∑

x,y∈{0,1}si+1
˜addi+1(g, x, y)Ṽi+1(y)

The first sum can be computed using the same protocol in Sect. 3.3 without
f3(y), and the second sum can be computed without f2(x). The complexity for
both cases remains linear. Due to linearity of the sumcheck protocol, the prover
can execute these 3 instances simultaneously in every round, and sum up the
individual messages and send them to the verifier.

Combining Two Claims. After the sumcheck in the GKR protocol is com-
pleted, as described in Sect. 2.3, the prover and the verifier need to combine the
two claims about Ṽi+1 received at the end of the sumcheck protocol to one to
avoid the exponential blow-up. There are two ways to combine the two claims
and we show how to do each of them in linear time.

The second approach using random linear combinations is rather straight
forward. After the output layers, P and V execute sumcheck protocol on Eq. 3
instead of Eq. 2, which still satisfies the properties of Eq. 6. One could view it as
6 instances of Eq. 6 and the prover time is still linear. Moreover, there is a better
way to further improve the efficiency. Taking

∑
x,y∈{0,1}si+1 (αi

˜multi+1(u, x, y)+
βi

˜multi+1(v, x, y))Ṽi+1(x)Ṽi+1(y) as an example, in Algorithm 4, the prover runs
Precompute twice on u and v to generate two arrays (G1 and G2), and sets
G[b] = αiG1[b] + βiG2[b] for all b. The rest of the algorithms remains the same.
This only incurs a small overhead in practice in our implementation, compared
to the original algorithm on Eq. 6.

Though with the approach above we already have a linear prover GKR pro-
tocol, the technique to condense two points to one proposed in the original GKR
protocol [30] may still be interesting in some scenarios (e.g., in our implemen-
tation, we use this approach in the last layer and only make one query to the
multi-linear extension of the input, which is more efficient practice). We present
an algorithm to reduce the prover time of this approach to linear in the full
version of the paper.

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 749

4 Zero Knowledge Argument Protocols

In this section, we present the construction of our new zero-knowledge argu-
ment system. In [50], Zhang et al. proposed to combine the GKR protocol with
a verifiable polynomial delegation protocol, resulting in an argument system.
Later, in [48,49], the construction was extended to zero-knowledge, by send-
ing all the messages in the GKR protocol in homomorphic commitments and
performing all the checks by zero-knowledge equality and product testing. This
incurs a high overhead for the verifier compared to the plain version without zero-
knowledge, as each multiplication becomes an exponentiation and each equality
check becomes a Σ-protocol, which is around 100× slower in practice.

In this paper, we follow the same blueprint of combining GKR and VPD
to obtain an argument system, but instead show how to extend it to be zero-
knowledge efficiently. In particular, the prover masks the GKR protocol with
special random polynomials so that the verifier runs a “randomized” GKR that
leaks no extra information and her overhead is small. A similar approach was
used by Chiesa et al. in [22]. In the following, we present the zero-knowledge
version of each building block, followed by the whole zero-knowledge argument.

4.1 Zero Knowledge Sumcheck

As a core step of the GKR protocol, P and V execute a sumcheck protocol on
Eq. 2, during which P sends V evaluations of the polynomial at several random
points chosen by V. These evaluations leak information about the values in the
circuit, as they can be viewed as weighted sums of these values.

To make the sumcheck protocol zero-knowledge, we take the approach pro-
posed by Chiesa et al. in [22], which is masking the polynomial in the sumcheck
protocol by a random polynomial. In this approach, to prove

H =
∑

x1,x2,...,x�∈{0,1} f(x1, x2, . . . , x�),

the prover generates a random polynomial g with the same variables and individ-
ual degrees of f . She commits to the polynomial g, and sends the verifier a claim
G =

∑
x1,x2,...,x�∈{0,1} g(x1, x2, . . . , x�). The verifier picks a random number ρ,

and execute a sumcheck protocol with the prover on

H + ρG =
∑

x1,x2,...,x�∈{0,1}(f(x1, x2, . . . , x�) + ρg(x1, x2, . . . , x�)).

At the last round of this sumcheck, the prover opens the commitment of g at
g(r1, . . . , r�), and the verifier computes f(r1, . . . , rl) by subtracting ρg(r1, . . . , r�)
from the last message, and compares it with the oracle access of f . It is shown
that as long as the commitment and opening of g are zero-knowledge, the pro-
tocol is zero-knowledge. Intuitively, this is because all the coefficients of f are
masked by those of g. The soundness still holds because of the random linear
combination of f and g.

750 T. Xie et al.

Unfortunately, the masking polynomial g is as big as f , and opening it to a
random point later is expensive. In [22], the prover sends a PCP oracle of g, and
executes a zero-knowledge sumcheck to open it to a random point, which incurs
an exponential complexity for the prover. Even replacing it with the zkVPD
protocol in [49], the prover time is slow in practice.

In this paper, we show that it suffices to mask f with a small polynomial
to achieve zero-knowledge. In particular, we set g(x1, . . . , x�) = a0 + g1(x1) +
g2(x2) + . . . + g�(x�), where gi(xi) = ai,1xi + ai,2x

2
i + . . . + ai,dx

d
i is a random

univariate polynomial of degree d (d is the variable degree of f). Note here that
the size of g is only O(d�), while the size of f is exponential in �.

The intuition of our improvement is that the prover sends O(d�) messages
in total to the verifier during the sumcheck protocol, thus a polynomial g with
O(d�) random coefficients is sufficient to mask all the messages and achieve
zero-knowledge. We present the full protocol in Construction 1.

The completeness of the protocol holds obviously. The soundness follows the
soundness of the sumcheck protocol and the random linear combination in step
2 and 3, as proven in [22]. We give a proof of zero knowledge in the full version.

Theorem 2 (Zero knowledge). For every verifier V∗ and every �-variate
polynomial f : F� → F with variable degree d, there exists a simulator S such
that given access to H =

∑
x1,x2,...,x�∈{0,1} f(x1, x2, . . . , x�), S is able to simulate

the partial view of V∗ in step 1–4 of Construction 1.

Construction 1. We assume the existence of a zkVPD protocol defined in Sect. 2.4.
For simplicity, we omit the randomness rf and public parameters pp, vp without any
ambiguity. To prove the claim H =

∑
x1,x2,...,x�∈{0,1}

f(x1, x2, . . . , x�):

1. P selects a polynomial g(x1, . . . , x�) = a0 + g1(x1) + g2(x2) + . . . + gl(x�), where
gi(xi) = ai,1xi +ai,2x

2
i + . . .+ai,dxd

i and all ai,js are uniformly random. P sends
H =

∑
x1,x2,...,x�∈{0,1}

f(x1, x2, . . . , x�), G =
∑

x1,x2,...,x�∈{0,1}
g(x1, x2, . . . , x�) and

comg = Commit(g) to V.
2. V uniformly selects ρ ∈ F

∗, computes H + ρG and sends ρ to P.
3. P and V run the sumcheck protocol on

H + ρG =
∑

x1,x2,...,x�∈{0,1}
(f(x1, x2, . . . , x�) + ρg(x1, x2, . . . , x�))

4. At the last round of the sumcheck protocol, V obtains a claim h�(r�) =
f(r1, r2, . . . , r�) + ρg(r1, r2, . . . , r�). P and V opens the commitment of g at
r = (r1, . . . , r�) by (g(r), π) ← Open(g, r),Verify(comg, g(r), r, π). If Verify out-
puts reject, V aborts.

5. V computes h�(r�) − ρg(r1, . . . , r�) and compares it with the oracle access of
f(r1, . . . , r�).

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 751

4.2 Zero Knowledge GKR

To achieve zero-knowledge, we replace the sumcheck protocol in GKR with the
zero-knowledge version described in the previous section. However, the protocol
still leaks additional information. In particular, at the end of the zero-knowledge
sumcheck, V queries the oracle to evaluate the polynomial on a random point.
When executed on Eq. 2, this reveals two evaluations of the polynomial Ṽi defined
by the values in the i-th layer of the circuit: Ṽi(u) and Ṽi(v).

To prevent this leakage, Chiesa et al. [22] proposed to replace the multi-linear
extension Ṽi with a low degree extension, such that learning Ṽi(u) and Ṽi(v) does
not leak any information about Vi. Define a low degree extension of Vi as

V̇i(z)
def
= Ṽi(z) + Zi(z)

∑

w∈{0,1}λ
Ri(z, w), (7)

where Z(z) =
∏si

i=1 zi(1 − zi), i.e., Z(z) = 0 for all z ∈ {0, 1}si . Ri(z, w) is a
random low-degree polynomial and λ is the security parameter. With this low
degree extension, Eq. 2 becomes

V̇i(g) =
∑

x,y∈{0,1}si+1
˜multi+1(g, x, y)(V̇i+1(x)V̇i+1(y))

+ ˜addi+1(g, x, y)(V̇i+1(x) + V̇i+1(y)) + Zi(g)
∑

w∈{0,1}λ
Ri(g, w) (8)

=
∑

x,y∈{0,1}si+1 ,w∈{0,1}λ
(I(0, w) · ˜multi+1(g, x, y)(V̇i+1(x)V̇i+1(y))

+ ˜addi+1(g, x, y)(V̇i+1(x) + V̇i+1(y)) + I((x, y),0)Zi(g)Ri(g, w)) (9)

where I(a, b) is an identity polynomial I(a, b) = 0 iff a = b. The first equation
holds because V̇i agrees with Ṽi on the Boolean hyper-cube {0, 1}si , as Zi(z) = 0
for binary inputs. The second equation holds because the mask in V̇i is in the
form of a “sum” and can be moved into the sumcheck equation.

When executing the zero-knowledge sumcheck protocol on Eq. 8, at the end
of the protocol, V receives V̇i+1(u) and V̇i+1(v) for random points u, v ∈ F

si+1

chosen by V. They no longer leak information about Vi+1, as they are masked by
Zi+1(z)

∑
w∈{0,1}λ Ri+1(z, w) for z = u and z = v. V computes ˜multi+1(g, u, v)

and ˜addi+1(g, u, v) as before, computes Zi(g), I(0, c), I((u, v),0) where c ∈ F
λ is

a random point chosen by V for variable w, opens Ri(g, w) at c with P through a
polynomial commitment, and checks that together with V̇i+1(u), V̇i+1(v) received
from P they are consistent with the last message of the sumcheck.V then uses
V̇i+1(u), V̇i+1(v) to proceed to the next round.

Unfortunately, similar to the zero-knowledge sumcheck, the masking polyno-
mial Ri is very large in [22]. Opening Ri at a random point takes exponential
time for P either using a PCP oracle as in [22] or potentially using a zkVPD, as
R has si + 2si+1 + λ variables.

In this section, we show that we can set Ri to be a small polynomial to
achieve zero-knowledge. In particular, Ri has only two variables with variable
degree 2. This is because in the (i − 1)-th round, V receives two evaluations of
Vi, V̇i(u) and V̇i(v), which are masked by

∑
w Ri(u,w) and

∑
w Ri(v, w); in the

752 T. Xie et al.

i-th sumcheck, V opens Ri at Ri(u, c) and Ri(v, c). It suffices to make these
four evaluations linearly independent, assuming the commitment and opening
of Ri are using a zkVPD. Therefore, we set the low-degree term in Eq. 7 as
Zi(z)

∑
w∈{0,1} Ri(z1, w), i.e. Ri only takes two variables, the first variable z1 of

z and an extra variable w ∈ {0, 1} instead of {0, 1}λ, with variable degree 2.
The full protocol is presented in Construction 2. Here we use superscriptions

(e.g., u(i)) to denote random numbers or vectors for the i-th layer of the circuit.

Construction 2. 1. On a layered arithmetic circuit C with d layers and
input in, the prover P sends the output of the circuit out to the verifier
V.

2. P randomly selects polynomials R1(z1, w), . . . , Rd(z1, w) : F2 → F with
variable degree 2. P commits to these polynomials by sending comi ←
Commit(Ri) to V for i ∈ [1, d].

3. V defines V̇0(z) = Ṽ0(z), where Ṽ0(z) is the multilinear extension of
out. V̇0(z) can be viewed as a special case with R0(z1, w) being the 0
polynomial. V evaluates it at a random point V̇0(g(0)) and sends g(0) to
P.

4. P and V execute the zero knowledge sumcheck protocol presented in
Construction 1 on

V̇0(g(0)) =
∑

x,y∈{0,1}s1

˜mult1(g(0), x, y)(V̇1(x)V̇1(y))

+ ˜add1(g(0), x, y)(V̇1(x) + V̇1(y))

If u
(1)
1 = v

(1)
1 , P aborts. At the end of the protocol, V receives V̇1(u(1))

and V̇1(v(1)). V computes ˜mult1(g(0), u(1), v(1)), ˜add1(g(0), u(1), v(1)) and
checks that

˜mult1(g
(0)

, u
(1)

, v
(1)

)V̇1(u
(1)

)V̇1(v
(1)

) + ˜add1(g
(0)

, u
(1)

, v
(1)

)(V̇1(u
(1)

) + V̇1(v
(1)

))

equals to the last message of the sumcheck (evaluation oracle).
1. For layer i = 1, . . . , d − 1:

(a) V randomly selects α(i), β(i) ∈ F and sends them to P.
(b) Let Multi+1(x, y) = α(i) ˜multi+1(u(i), x, y) + β(i) ˜multi+1(v(i), x, y)

and
Addi+1(x, y) = α(i) ˜addi+1(u(i), x, y) + β(i) ˜addi+1(v(i), x, y). P and
V run the zero knowledge sumcheck on the equation
α(i)V̇i(u(i)) + β(i)V̇i(v(i)) =

∑

x,y∈{0,1}si+1

w∈{0,1}

(I(0, w) · Multi+1(x, y)(V̇i+1(x)V̇i+1(y))

+ Addi+1(x, y)(V̇i+1(x) + V̇i+1(y))

+ I((x, y),0)(α(i)Zi(u(i))Ri(u
(i)
1 , w) + β(i)Zi(v(i))Ri(v

(i)
1 , w)))

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 753

If u
(i+1)
1 = v

(i+1)
1 , P aborts.

(c) At the end of the zero-knowledge sumcheck protocol, P sends V
V̇i+1(u(i+1)) and V̇i+1(v(i+1)).

(d) V computes

ai+1 = α
(i) ˜multi+1(u

(i)
, u

(i+1)
, v

(i+1)
) + β

(i) ˜multi+1(v
(i)

, u
(i+1)

, v
(i+1)

)

and

bi+1 = α
(i) ˜addi+1(u

(i)
, u

(i+1)
, v

(i+1)
) + β

(i) ˜addi+1(v
(i)

, u
(i+1)

, v
(i+1)

)

locally. V computes Zi(u(i)), Zi(v(i)), I(0, c(i)), I((u(i+1), v(i+1)),0)
locally.

(e) P and V open Ri at two points Ri(u
(i)
1 , c(i)) and Ri(v

(i)
1 , c(i)) using

Open and Verify.
(f) V computes the following as the evaluation oracle and uses it to

complete the last step of the zero-knowledge sumcheck.

I(0, c
(i)

)(ai+1(V̇i+1(u
(i+1)

)V̇i+1(v
(i+1)

))+

bi+1(V̇i+1(u
(i+1)

) + V̇i+1(v
(i+1)

)))+

I((u
(i+1)

, v
(i+1)

), 0)(α
(i)

Zi(u
(i)

)Ri(u
(i)
1 , c

(i)
) + β

(i)
Zi(v

(i)
)Ri(v

(i)
1 , c

(i)
))

If all checks in the zero knowledge sumcheck and Verify passes, V
uses V̇i+1(u(i+1)) and V̇i+1(v(i+1)) to proceed to the (i + 1)-th layer.
Otherwise, V outputs reject and aborts.

6. At the input layer d, V has two claims V̇d(u(d)) and V̇d(v(d)). V opens
Rd at 4 points Rd(u

(d)
1 , 0), Rd(u

(d)
1 , 1), Rd(v

(d)
1 , 0), Rd(v

(d)
1 , 1) and checks

that V̇d(u(d)) = Ṽd(u(d)) + Zd(u(d))
∑

w∈{0,1}
Rd(u

(d)
1 , w) and V̇d(v(d)) =

Ṽd(v(d)) + Zd(v(d))
∑

w∈{0,1}
Rd(v

(d)
1 , w), given oracle access to two evalu-

ates of Ṽd at u(d) and v(d). If the check passes, output accept; otherwise,
output reject.

Theorem 3. Construction 2 is an interactive proof protocol, for a function f
defined by a layered arithmetic circuit C such that f(in, out) = 1 iff C(in) = out.
In addition, for every verifier V∗ and every layered circuit C, there exists a
simulator S such that given oracle access to out, S is able to simulate the partial
view of V∗ in step 1–5 of Construction 2.

The completeness follows from the construction explained above and the com-
pleteness of the zero knowledge sumcheck. The soundness follows the soundness
of the GKR protocol with low degree extensions, as proven in [30] and [22]. We
defer the proof of zero knowledge to the full version.

754 T. Xie et al.

4.3 Zero Knowledge VPD

In this section, we present the instantiations of the zkVPD protocol, as described
in Sect. 2.4. For every intermediate layer i, we use the same zkVPD protocol as
proposed by Zhang et al. in [49] to commit and open the masking polynomials
gi(x), Ri(z1, w). In fact, as we show in the previous sections, these polynomials
are very small (gi is the sum of univariate polynomials and Ri has 2 variables with
variable degree 2), the zkVPD protocols become very simple. The complexity of
KeyGen,Commit,Open,Verify and proof size are all O(si) for gi and are all O(1)
for Ri. We omit the full protocols due to space limit.

For the zkVPD used for the input layer, we design a customized protocol
based on the zkVPD protocol in [49]. Recall that at the end of the GKR protocol,
P sends two evaluations of V̇d(z) = Ṽd(z)+Zd(z)

∑
w∈{0,1} Rd(z1, w) at z = u(d)

and z = v(d). In our zero knowledge proof protocol, which will be presented in
Sect. 4.4, P commits to V̇d(z) using the zkVPD at the beginning, and opens it
to the two points selected by V.

The protocol in [49] works for any polynomial with � variables and any
variable degree, and is particularly efficient for multilinear polynomials. We
modify the protocol for our zero-knowledge proof scheme and preserve the
efficiency. Note that though V̇d(z) is a low degree extension of the input,
it can be decomposed to the sum of Ṽd(z), a multilinear polynomial, and
Zd(z)

∑
w∈{0,1} Rd(z1, w). Moreover, Zd(u(d)) and Zd(v(d)) can be computed

directly by V. Therefore, in our construction, P commits to Ṽd(z) and∑
w∈{0,1} Rd(z1, w) separately, and later opens the sum together given Zd(u(d))

and Zd(v(d)), which is naturally supported because of the homomorphic prop-
erty of the commitment. Another optimization is that unlike other layers of
the circuit, Rd(z1, w) itself is not opened at two points (V does not receive
Rd(u(d), c(d)) and Rd(v(d), c(d)) in Construction 2). Therefore, it suffices to set
V̇d(z) = Ṽd(z) + Zd(z)Rd(z1), where Rd is a univariate linear polynomial. We
will give the full protocol in the full version.

4.4 Putting Everything Together

In this section, we present our zero knowledge argument scheme. At a high
level, similar to [48–50], V can use the GKR protocol to verify the cor-
rect evaluation of a circuit C on input x and a witness w, given an ora-
cle access to the evaluation of a polynomial defined by x,w on a random
point. We instantiate the oracle using the zkVPD protocol. Formally, we
present the construction in Construction 3, which combines our zero knowl-
edge GKR and zkVPD protocols. Similar to the protocols in [48,49], Step
6 and 7 are to check that P indeed uses x as the input to the circuit.

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 755

Construction 3. Let λ be the security parameter, F be a prime field, n be an
upper bound on input size, and S be an upper bound on circuit size. We use
VPD1,VPD2,VPD3 to denote the zkVPD protocols for input layer, masking polyno-
mials gi and Ri described in Construction 2.

– G(1λ, n, S): run (pp1, vp1) ← VPD1.KeyGen(1
λ, log n), (pp2, vp2) ←

VPD2.KeyGen(1
λ, log S), (pp3, vp3) ← VPD3.KeyGen(1

λ). Output pk =
(pp1, pp2, pp3) and vk = (vp1, vp2, vp3).

– 〈P(pk, w), V(vk)〉(x): Let C be a layered arithmetic circuit over F with d layers,
input x and witness w such that |x|+ |w| ≤ n, |C| ≤ S and C(x; w) = 1. Without
loss of generality, assume |w|/|x| = 2m − 1 for some m ∈ N.
1. P selects a random bivariate polynomial Rd with variable degree 2 and com-

mits to the input of C by sending comd ← VPD1.Commit(V̇d, rV , rR, pp1) to
V, where Ṽd is the multilinear extension of array (x; w) and V̇d = Ṽd + Rd

2. V runs VPD1.CheckComm(comd, vp1). If it outputs reject, V aborts and out-
puts reject.

3. P and V execute Step 1–5 of the zero knowledge GKR protocol in Construc-
tion 2, with the zkVPDs instantiated with VPD2 and VPD3. If Construction
2 rejects, V outputs reject and aborts. Otherwise, by the end of this step, V
receives two claims of V̇d at u(d) and v(d).

4. P runs (y1, π1) ← VPD1.Open(V̇ , rV , rR, u(d), pp1), (y2, π2) ←
VPD1.Open(V̇ , rV , rR, v(d), pp1) and sends y1, π1, y2, π2 to V.

5. V runs Verify(comd, u(d), y1, π1, vp1) and Verify(comd, v(d), y2, π2, vp1) and
output reject if either check fails. Otherwise, V checks V̇d(u(d)) = y1 and
V̇d(v(d)) = y2, and rejects if either fails.

6. V computes the multilinear extension of input x at a random point rx ∈
F
log |x| and sends rx to P.

7. P pads rx to r′
x ∈ F

log |x| × 0log |w| with log |w| 0s and sends V (yx, πx) ←
VPD1.Open(Ṽd, rV , rR, r′

x, pp1). V checks Verify(comd, r′
x, yx, πx, vp1) and yx

equals the evaluation of the multilinear extension on x. V outputs reject if
the checks fail. Otherwise, V outputs accept.

Theorem 4. For an input size n and a finite field F, Construction 3 is a zero
knowledge argument for the relation

R = {(C, x;w) : C ∈ CF ∧ |x| + |w| ≤ n ∧ C(x;w) = 1},

as defined in Definition 1, under the q-SBDH and the extended PKE assump-
tions. Moreover, for every (C, x;w) ∈ R, the running time of P is O(|C|) field
operations and O(n) multiplications in the base group of the bilinear map. The
running time of V is O(|x| + d · log |C|) if C is log-space uniform with d layers.
P and V interact O(d log |C|) rounds and the total communication (proof size)
is O(d log |C|). In case d is polylog(|C|), the protocol is a succinct argument.

Proof Sketch. The correctness and the soundness follow from those of the two
building blocks, zero knowledge GKR and zkVPD.

To prove zero knowledge, consider a simulator S that calls the simulator
SGKR of zero knowledge GKR given in Sect. 4.2 as a subroutine, which simulates

756 T. Xie et al.

the partial view up to the input layer. At the input layer, the major challenge is
that S committed to (a randomly chosen) V̇ ∗

d at the beginning of the protocol,
before knowing the points u(d), v(d) to evaluate on. If S opens the commitment
honestly, with high probability the evaluations are not consistent with the last
message of the GKR (sumcheck in layer d−1) and a malicious V∗ can distinguish
the ideal world from the real world. In our proof, we resolve this issue by using
the simulator SV PD of our zkVPD protocol. Given the trapdoor trap used in
KeyGen, SV PD is able to open the commitment to any value in zero knowledge,
and in particular it opens to those messages that are consistent with the GKR
protocol in our scheme, which completes the construction of S.

The complexity of our zero knowledge argument scheme follows from our
new GKR protocol with linear prover time, and the complexity of the zkVPD
protocol for the input layer analyzed in Sect. 4.3. The masking polynomials gi, Ri

and their commitments and openings introduce no asymptotic overhead and are
efficient in practice.

Removing Interactions. Our construction can be made non-interactive in the
random oracle model using Fiat—Shamir heuristic [26]. Though GKR protocol
is not constant round, recent results [12,20] show that applying Fiat-Shamir
only incurs a polynomial soundness loss in the number of rounds in GKR. In
our implementation, the GKR protocol is on a 254-bit prime field matching the
bilinear group used in the zkVPD. The non-interactive version of our system
provides a security level of 100+ bits.

5 Implementation and Evaluation

Software. We fully implement Libra, our new zero knowledge proof system in
C++. There are around 3000 lines of code for the zkGKR protocol, 1000 lines
for the zkVPD protocol and 700 lines for circuit generators. Our system provides
an interface to take a generic layered arithmetic circuit and turn it into a zero
knowledge proof. We implement a new class for large integers named u512, and
use it together with the GMP [2] library for large numbers and field arithmetic.
We use the ate-pairing [1] library on a 254-bit elliptic curve for the bilinear map
used in zkVPD. We plan to open-source our system.

Hardware. We run all of the experiments on Amazon EC2 c5.9xlarge instances
with 70 GB of RAM and Intel Xeon platinum 8124 m CPU with 3 GHz virtual
core. Our current implementation is not parallelized and we only use a single
CPU core in the experiments. We report the average running time of 10 execu-
tions.

In the implementation, we developed a concrete optimization to support var-
ious types of gates with no extra overhead, instead of only addition and multi-
plication. It may be of independent interest and is presented in the full version.

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 757

Table 2. Prover time of our linear GKR and previous GKR variants.

Matrix
multiplication

Matrix size 4 × 4 16 × 16 64 × 64 256 × 256

[43] 0.0003 s 0.006 s 0.390 s 29.0 s

Ours 0.0004 s 0.014 s 0.788 s 50.0 s

Image scaling #pixels 112 × 112 176 × 176 560 × 560 1072 × 1072

[46] 0.445 s 0.779 s 7.54 s 29.2 s

Ours 0.337 s 1.25 s 19.8 s 79.2 s

Image scaling
with different
parameters

#pixels 112 × 112 176 × 176 560 × 560 1072 × 1072

[50] 5.45 s 21.8 s 348 s 1441 s

Ours 0.329 s 1.22 s 19.3 s 77.2 s

Random circuit #gates per layer 28 212 216 220

[23] 0.008 s 0.179 s 3.79 s 83.1 s

Ours 0.002 s 0.039 s 0.635 s 10.8 s

5.1 Improvements on GKR Protocols

In this section, we compare the performance of our new GKR protocol with linear
prover time with all variants of GKR in the literature on different circuits.

Methodology and Benchmarks. For fair comparisons, we re-implement all of
these variants in C++ with the same libraries. The variants include: (1) O(C) for
regular circuits, proposed in [43], where the two inputs of a gate can be described
by two mapping functions with constant size in constant time. See [43] for the
formal definition of regular circuits. (2) O(C+C ′ log C ′) for data-parallel circuits
with a small copy of size C ′, proposed in [46]. (3) O(C log C ′) for circuits with
non-connected different copies of size C ′, proposed in [51]. (4) O(C log C) for
arbitrary circuits, proposed in [23].

We compare our GKR protocol to these variants on the benchmarks below:

– Matrix multiplication: P proves to V that it knows two matrices whose
product equals a public matrix. The representation of this function with an
arithmetic circuit is highly regular3. We evaluate on different dimensions from
4 × 4 to 256 × 256 and the elements in the matrices are 32-bit integers.

– Image scaling: It computes a low-resolution image by scaling from a high-
resolution image. We use the classic Lanczos re-sampling [44] method. It
computes each pixel of the output as the convolution of the input with a
sliding window and a kernel function defined as: k(x) = sinc(x)/sinc(ax), if−
a < x < a; k(x) = 0, otherwise, where a is the scaling parameter and sinc(x) =
sin(x)/x. This function is data parallel, where each sub-circuit computes the
same function to generate one pixel of the output image. We evaluate by

3 We use the circuit representation of matrix multiplication with O(n3) gates for fair
comparisons, not the special protocol proposed in [43].

758 T. Xie et al.

fixing the window size as 16 × 16 and increase the image size from 112 × 112
to 1072 × 1072. The pixels are 8-bit integers for greyscale images.

– Image scaling of different parameters: It is the same computation as
above with different scaling parameters in the kernel function for different
pixels. The circuit of this function consists of different sub-copies. We evaluate
it with the same image sizes as above.

– Random circuit: It is randomly generated layered circuit. We randomly
sample the type of each gate, input value and the wiring patterns. We fix the
depth as 3 and increase the number of gates per layer from 28 to 220.

To be consistent with the next section, all the protocols are executed on a 254-bit
prime field. This does not affect the comparison at all, as all the protocols are in
the same field. In Table 2, we report the prover time of the protocols. The proof
size and the verification time of all the variants are similar.

Results. As shown in Table 2, the performance of our GKR protocol is com-
parable to those special protocols for structured circuits, and much better than
the state-of-the-art on generic circuits. For example, for matrix multiplication,
our protocol is slower by 1.3–2.4×, because the protocol in [43] writes the wiring
of matrix multiplication explicitly and does not need to compute ˜add and ˜mult.
For image scaling, our protocol is slower by 2.5–4×. This gap would become even
smaller when the size of each sub-copy is larger. Here we use a small 16 × 16
block, while the number of copies is 49–4489.

For image scaling with different parameters and generic random circuits, our
protocol has a speedup of 4–8×, and the speedup will increase with the scale of
the circuits, as indicated by the complexity.

Besides the speedup on complicated circuits, a significant advantage of our
new GKR protocol is on the prover interface of the system. In prior work such
as [46,51], as the protocols are particularly efficient for structured circuits, the
circuits must be represented as small copies and the numbers of each copy. Even
worse, the structure is explored per layer of the circuit, making the numbers of
each copy potentially different in different layers. (E.g., 6 gates may be considered
3 copies with 2 gates and 2 copies with 3 gates in two different layers for efficiency
purposes.) This constraint makes the interface of these systems hard to use and
generalize. Our result gives a unified solution for arbitrary circuits, and it is the
main reason that our prover can take the description of any layered arithmetic
circuit potentially generated by other tools like Verilog.

5.2 Comparing to Other ZKP Schemes

In this section, we show the performance of Libra as a whole and compare it with
several state-of-the-art zero knowledge proof systems.

Methodology. We compare with the following systems: libSNARK [13], Ligero
[6], libSTARK [8], Hyrax [48], Bulletproofs [16] and Aurora [11]. See Sect. 1 for
more explanations of these systems and their asymptotic.

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 759

Fig. 1. Comparisons of prover time, proof size and verification time between Libra and
existing zero knowledge proof systems.

– libSNARK: We use jsnark [4] to write the circuits (rank one constraint system
(R1CS)), which compiles them to ZKP using the libSNARK backend [5].

– Ligero: As the system is not open-source, we use the same number reported
in [6] on computing hashes.

– libSTARK: After communications with the authors of [8], we obtain numbers
for proving the same number of hashes in the 3rd benchmark below from
the authors. The experiments are executed on a server with 512GB of DDR3
RAM (1.6GHz) and 16 cores (2 threads per core) at speed of 3.2GHz.

– Hyrax: We use the open-source implementation of the system at [3].
– Bulletproofs: We use the system re-implemented by [48] at [3].
– Aurora: As a recently accepted paper, the system is not available and we

extrapolate its performance using the numbers reported in the paper [11] for
circuits with 210 − 220 R1CS constrains.

Benchmarks. We evaluate the systems on three benchmarks: matrix multi-
plication, image scaling and Merkle Tree [40], which are used in [48]. Matrix

760 T. Xie et al.

multiplication and image scaling are the same as explained in Sect. 5.1. In the
third benchmark, P proves to V that it knows the value of the leaves of a Merkle
tree [40] that computes to a public root value [15]. We use SHA-256 for the
hash function. We implement it with a flat circuit where each sub-computation
is one instance of the hash function. The consistency of the input and output of
corresponding hashes are then checked by the circuit. There are 2M −1 SHA256
invocations for a Merkle tree with M leaves. We increase the number of leaves
from 16 to 256. We use the SHA-256 implemented by jsnark [4] in R1CS format
to run libSNARK and estimate Aurora, and we use the SHA-256 arithmetic cir-
cuit implemented by Hyrax to run Hyrax, Bulletproofs and Libra. We only show
the performance of Ligero and libSTARK on the third benchmark.

We report the prover time, proof size and verification time in Fig. 1.

Prover Time. As shown in Fig. 1(a), (b) and (c), the prover in Libra is the
fastest among all systems in all three benchmarks we tested. Ligero is one of the
best existing ZKP systems on prover time as it is purely based on symmetric
key operations. Comparing to Ligero, the prover time of Libra is 1.15× faster on
a Merkle tree with 2 leaves and 2× faster with 256 leaves. Comparing to other
systems, Libra improves the prover time by 3.4–8.9× vs. Hyrax, 7.1–16.1× vs.
Aurora, 10.1–12.4× vs. libSTARK and 65–166× vs. Bulletproof.

Libra is also faster than libSNARK on general circuits by 5–10×, as shown in
Fig. 1(a) and (b). The performance of Libra is comparable to libSNARK on Merkle
trees in Fig. 1(c). This is because (1) most values in the circuit of SHA256 are
binary, which is friendly to the prover of libSNARK as the time of exponentiation
is proportional to the bit-length of the values; (2) The R1CS of SHA256 is highly
optimized by jsnark [4] and real world products like Zcash [9]. There are only
26,000 constrains in one hash. In the arithmetic circuit used by Libra, there are
60,000 gates with 38,000 of them being multiplication gates. Even so, Libra is
still as fast as libSNARK on a Merkle tree with 2 leaves and 2× faster with
256 leaves. We plan to further optimize the implementation of SHA256 as an
arithmetic circuit in the future.

The gap between Libra and other systems will become bigger as the size of
the circuit grows, as the prover time in these systems (other than Bulletproof)
scales quasi-linearly with the circuit size. The evaluations justify that the prover
time in Libra is both optimal asymptotically, and efficient in practice.

Verification Time. Figure 1(d), (e) and (f) show the verification time. Our
verifier is much slower than libSNARK and libSTARK, which runs in 1.8 ms and
28–44 ms respectively in all the benchmarks.

Other than these two systems, the verification time of Libra is faster, as it
grows sub-linearly with the circuit size. In particular, our verification time ranges
from 0.08–1.15 s in the benchmarks we consider. In Fig. 1(f), the verification time
of Libra is 8× slower than Aurora when M = 2, and 15× faster when M = 256.
Libra is 2.5× slower than Ligero with M = 2 and 4× faster with M = 256.
Comparing to Hyrax and Bulletproof, our verification is 1.2–9× and 27–900×
faster respectively. Again, the gap increases with the scale of the circuits as our
verification is succinct.

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 761

Proof Size. We report the proof size in Fig. 1(g), (h) and (i). Our proof size is
much bigger than libSNARK, which is 128 bytes for all circuits, and Bulletproof,
which ranges in 2–5.5 KBs. The proof size in Libra is in the range of 30–60 KBs,
except for the matrix multiplications where it reduces to 5–9 KBs. This is better
than Aurora, Hyrax and libSTARK, which also have poly-logarithmic proof size
to the circuit. Finally, the proof size in Ligero is O(

√
C) and grows to several

MBs.

Setup Time. Among all the systems, only Libra and libSNARK require trusted
setup. Thanks to the optimization described in the beginning of this section, it
only takes 202 s to generate the public parameters in our largest instance with
n = 224. Libra only needs to perform this setup once and it can be used for all
benchmarks and all circuits with no more inputs. libSNARK requires a per-circuit
setup. For example, it takes 1027 s for the Merkle tree with 256 leaves, and takes
210 s for 64 × 64 matrix multiplications.

Acknowledgments. This material is in part based upon work supported by DARPA
under Grant No. N66001-15-C-4066 and Center for Long-Term Cybersecurity (CLTC).
Any opinions, findings, and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of DARPA or
CLTC. Charalampos Papamanthou’s work was supported by NSF grants #1652259
and #1514261 and by a NIST grant.

References

1. Ate-pairing. https://github.com/herumi/ate-pairing
2. The GNU multiple precision arithmetic library. https://gmplib.org/
3. Hyrax reference implementation. https://github.com/hyraxZK/hyraxZK
4. jsnark. https://github.com/akosba/jsnark
5. libsnark. https://github.com/scipr-lab/libsnark
6. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-

linear arguments without a trusted setup. In: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (2017)

7. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 17

8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint (2018)

9. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: Proceedings of the Symposium on Security and Privacy SP (2014)

10. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

11. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. Cryptology ePrint (2018)

https://github.com/herumi/ate-pairing
https://gmplib.org/
https://github.com/hyraxZK/hyraxZK
https://github.com/akosba/jsnark
https://github.com/scipr-lab/libsnark
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-40084-1_6

762 T. Xie et al.

12. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

13. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: Proceedings of the USENIX Secu-
rity Symposium (2014)

14. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 16

15. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness
of memories. Algorithmica 12(2–3), 225–244 (1994)

16. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bullet-
proofs: short proofs for confidential transactions and more. In: Proceedings of the
Symposium on Security and Privacy (SP), pp. 319–338 (2018)

17. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

18. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 12

19. Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Walfish, M.: Ver-
ifying computations with state. In: ACM SIGOPS 24th Symposium on Operating
Systems Principles, SOSP (2013)

20. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D.: Fiat-Shamir from simpler assumptions. IACR Cryptology ePrint Archive
2018:1004 (2018)

21. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-
key primitives. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1825–1842. ACM (2017)

22. Chiesa, A., Forbes, M.A., Spooner, N.: A zero knowledge sumcheck and its appli-
cations. CoRR abs/1704.02086 (2017). http://arxiv.org/abs/1704.02086

23. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS 2012 (2012)

24. Costello, C., et al.: Geppetto: Versatile verifiable computation. In: S&P (2015)
25. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic, or:

can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 424–441. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055745

26. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

27. Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash
first, argue later: adaptive verifiable computations on outsourced data. In: ACM
SIGSAC Conference on Computer and Communications Security (2016)

https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-319-70700-6_12
http://arxiv.org/abs/1704.02086
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/3-540-47721-7_12

Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 763

28. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

29. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for boolean
circuits. In: USENIX Security Symposium, pp. 1069–1083 (2016)

30. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for Muggles. J. ACM 62(4), 27:1–27:64 (2015)

31. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

32. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 12

33. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

34. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs.
In: 22nd Annual IEEE Conference on Computational Complexity (CCC 2007)
(2007)

35. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the Annual ACM Symposium on The-
ory of Computing, pp. 21–30. ACM (2007)

36. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: Proceedings of the ACM Symposium on Theory of Computing (1992)

37. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: Proceedings of
Symposium on Security and Privacy (SP) (2016)

38. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

39. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

40. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

41. Micali, S.: Computationally sound proofs. SIAM J. Comput. (2000)
42. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-

able computation. In: S&P 2013, pp. 238–252 (2013)
43. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,

Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 5

44. Turkowski, K.: Filters for common resampling tasks. In: Graphics Gems, pp. 147–
165. Academic Press Professional, Inc. (1990)

45. Vu, V., Setty, S., Blumberg, A.J., Walfish, M.: A hybrid architecture for interactive
verifiable computation. In: Proceedings of the 2013 IEEE Symposium on Security
and Privacy, SP 2013 (2013)

46. Wahby, R.S., et al.: Full accounting for verifiable outsourcing. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security.
ACM (2017)

47. Wahby, R.S., Setty, S.T., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and
control flow in verifiable outsourced computation. In: NDSS (2015)

https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-3-642-40084-1_5

764 T. Xie et al.

48. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and
Privacy (SP), pp. 926–943. IEEE (2018)

49. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-
knowledge version of vSQL. Cryptology ePrint (2017)

50. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: ver-
ifying arbitrary SQL queries over dynamic outsourced databases. In: 2017 IEEE
Symposium on Security and Privacy (SP), pp. 863–880. IEEE (2017)

51. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vRAM:
faster verifiable RAM with program-independent preprocessing. In: Proceeding of
IEEE Symposium on Security and Privacy (S&P) (2018)

Key Exchange and Broadcast
Encryption

Highly Efficient Key Exchange
Protocols with Optimal Tightness

Katriel Cohn-Gordon1, Cas Cremers2(B), Kristian Gjøsteen3,
H̊akon Jacobsen4, and Tibor Jager5(B)

1 Oxford, UK
me@katriel.co.uk

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
cremers@cispa.saarland

3 NTNU - Norwegian University of Science and Technology, Trondheim, Norway
kristian.gjosteen@ntnu.no

4 McMaster University, Hamilton, Canada
jacobseh@mcmaster.ca

5 Paderborn University, Paderborn, Germany
tibor.jager@upb.de

Abstract. In this paper we give nearly-tight reductions for modern
implicitly authenticated Diffie-Hellman protocols in the style of the Sig-
nal and Noise protocols, which are extremely simple and efficient. Unlike
previous approaches, the combination of nearly-tight proofs and efficient
protocols enables the first real-world instantiations for which the param-
eters can be chosen in a theoretically sound manner.

Our reductions have only a linear loss in the number of users, imply-
ing that our protocols are more efficient than the state of the art when
instantiated with theoretically sound parameters. We also prove that
our security proofs are optimal: a linear loss in the number of users is
unavoidable for our protocols for a large and natural class of reductions.

1 Introduction

Key exchange protocols serve as a building block for almost all secure communi-
cation today. However, deploying a key exchange protocol requires implementors
to carefully choose concrete values for several parameters, such as group and key
sizes, which we here abstract into a single security parameter n. But how should
n be selected? An answer is to select it based on formal reductionist arguments
in the style of concrete security [7]. These arguments relate the security parame-
ter n of a protocol to the security parameter f(n) of an assumed-hard problem,
such that breaking the protocol with parameter n would lead to an attack on

Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme, grant agreement 802823, and the
Deutsche Forschungsgemeinschaft (DFG), project number 265919409.

K. Cohn-Gordon—Independent Scholar.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 767–797, 2019.
https://doi.org/10.1007/978-3-030-26954-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_25

768 K. Cohn-Gordon et al.

the hard problem with parameter f(n). We say a protocol is deployed in a the-
oretically sound way if n is chosen such that the underlying problem is “hard
enough” with parameter f(n).

Unfortunately, for most deployed protocols the parameters are actually not
chosen in a theoretically sound way. This means that the formal security argu-
ments are in reality vacuous since f(n) is too small for the underlying problem
to be hard. For example, existing security proofs for TLS [11,22,27] have a secu-
rity loss which is quadratic in the total number of sessions, but the parameters
chosen in practice does not account for this. If one aims for “128-bit security”,
and assumes 230 users and up to 230 sessions per user (very plausible for TLS),
then a theoretically sound choice of parameters would have to provide at least
“248-bit security”. In the particular case of the algebraic groups used for Diffie-
Hellman (DH) in TLS, this would require a group of order |G| ≈ 2496 instead
of the common 128-bit-secure choice of |G| ≈ 2256. But larger parameters typi-
cally leads to worse performance so this is not done in practice. Thus, for TLS
as actually used, the proofs do not provide any meaningful security guarantees
since they relate the hardness of breaking TLS to a DH instance which is too
easy to solve.

It would be desirable if protocols could be instantiated in a theoretically
sound way without sacrificing efficiency. This has led to the study of so-called
tight security, in which one aims to construct proofs such that the gap between
n and f(n) is as small as possible. While there have been several recent advances
in this field [3,19], typically they trade tighter proofs for the use of more complex
primitives and constructions—which themselves require more or larger keys. This
leads to the perhaps counter-intuitive observation that the resulting protocols
have a tighter security proof, but are substantially less efficient in practice. For
example, the recent protocol of Gjøsteen and Jager [19] has a constant security
loss, meaning that an attack on their protocol leads to an attack on decisional DH
with essentially the same parameter. However, it is a signed DH protocol, and
thus must be instantiated with a tightly-secure signature scheme. The solution
used by Gjøsteen and Jager [19] requires a total of 17 exponentiations which
can negate the efficiency savings from using a smaller group. In some sense they
overshoot their target: they achieve tightness without reaching the actual goal
of efficient theoretically sound deployment in practice.

In this work we will instead aim between the two extremes of real-world
protocols on the one end having very non-tight proofs, and the more theoretical
protocols on the other having fully tight proofs, focusing instead on the actual
end-goal of achieving efficient theoretically sound deployments in practice. Our
constructions fall into the class of implicitly authenticated DH protocols, which
often are more efficient than signed DH variants, and can additionally offer
various forms of deniability. Implicitly authenticated key exchange protocols
have been studied extensively in the literature, and in the past few years have
also started to see deployments in the real world. Perhaps the most well-known
example is the Signal protocol [38], which encrypts messages for WhatsApp’s
1.5 billion users. Another example is the Noise protocol framework [36], whose

Highly Efficient Key Exchange Protocols with Optimal Tightness 769

so-called IK pattern powers the new Linux kernel VPN Wireguard [16]. Similar
protocols in the literature include KEA+ [30] and UM [24].

We will give a security proof for a simple instance of this class, very close
to Signal’s basic design. In and of itself this isn’t particularly noteworthy. What
is noteworthy, however, is the tightness of the proof. Unlike any other proof for
a protocol as simple and efficient as ours, our proof only incurs a security loss
which is linear in the number of users μ and constant in the number of sessions
per user �. This is in stark contrast to most other key exchange proofs that are
typically quadratic in at least one of these parameters, and most of the time
quadratic even in their product μ�.

Our Contributions. Our contributions revolve around three protocols which all
aim for high practical efficiency when instantiated with theoretically sound
parameters. The first protocol, which we call Π, is a simple and clean implicitly
authenticated DH protocol very close to Signal, Noise-KK, KEA+ and UM, and
provides weak forward secrecy. In protocol Π users exchange a single group ele-
ment and perform four group exponentiations to establish a session key. Protocol
Π—specified precisely in Sect. 4—aims for maximal efficiency under the strong
DH assumption.

The other two protocols, which can be seen as variants of protocol Π, are
designed to avoid the strong DH assumption of Π. The first protocol, which we
call ΠTwin, adapts the “twinning” technique of Cash et al. [13] to protocol Π,
and needs four more exponentiations. The second, which we call ΠCom, addi-
tionally adapts the “commitment” technique of Gjøsteen and Jager [19], and
only needs two more exponentiations than protocol Π. On the other hand, it
requires one more round of communication. Both ΠTwin and ΠCom are slightly
more costly than protocol Π, but in return require only the standard CDH and
DDH assumptions.

Common to all our protocols is that they are simple and conventional, with
no heavyweight cryptographic machinery. They exchange ephemeral keys and
derive a session key from the combination of static-ephemeral, ephemeral-static
and ephemeral-ephemeral DH values via a hash function H. In our proofs H will
be a random oracle.

Our first core contribution is thus to give new reductions for all these pro-
tocols with a linear loss L = O(μ) in the random oracle model. This is better
than almost all known AKE protocols. As we will see, even though the loss is
not constant, our protocols are so efficient that they perform better than both
fully-tight protocols as well as the most efficient non-tight AKEs1. In contrast to
previous works, our proofs enable theoretically sound deployment of conventional
protocols while maintaining high efficiency.

Our second core contribution is to show that the O(μ) tightness loss is essen-
tially optimal for the protocols considered in this paper, at least for “simple”
reductions. A “simple” reduction runs a single copy of the adversary only once.
To the best of our knowledge, all known security reductions for AKE protocols
1 When instantiated with theoretically sound parameters under reasonable assump-

tions on μ and � in modern deployment settings.

770 K. Cohn-Gordon et al.

are either of this type or use the forking lemma (which of necessity leads to
a non-tight proof). Hence, to give a tighter security proof, one would have to
develop a completely new approach to prove security.

The lower-bound proof will be based on the meta-reduction techniques
described by Bader et al. [4]. However, these techniques are only able to han-
dle tight reductions from non-interactive assumptions, while our first protocol
is based on the interactive strong DH assumption. Therefore we develop a new
variant of the approach, which makes it possible to also handle the strong DH
assumption.

Finally, we prove that our protocols can be enhanced to also provide explicit
entity authentication by adding key-confirmation messages, while still providing
tight security guarantees. To do so, we generalise a theorem of Yang [41] in two
ways: we apply it to n-message protocols for n > 2, and we give a tight reduction
to the multi-user versions of the underlying primitives.

To summarise:

1. We give three protocols with linear-loss security reductions, making them
faster than both fully-tight protocols and the most efficient non-tight ones
when instantiated in a theoretically sound manner for reasonable numbers of
users and sessions.

2. We prove optimality of linear loss for our protocols under “simple” reductions.
3. We tightly extend our protocols with key confirmation messages to provide

explicit entity authentication.

Related Work. We briefly touch upon some other protocols with non-quadratic
security loss. KEA+ [30] achieves L = O(μ�) under the Gap-DH assumption, and
where the reduction for pairing-friendly curves takes O(t log t) time. However,
for non-pairing-friendly curves the reduction takes O(t2) time. Moreover, KEA+
also does not achieve weak forward secrecy in a modern model: only one side’s
long term key can be corrupted.

The first AKE protocols with L independent of μ and � were described by
Bader et al. [3] at TCC 2015. They describe two protocols, one with constant
security loss L = O(1) and another with loss L = O(κ) linear in the secu-
rity parameter. Both protocols make use of rather heavy cryptographic building
blocks, such as tree-based signature schemes, Groth-Sahai proofs [20], and cryp-
tographic pairings, and are therefore not very efficient.

As already mentioned, Gjøsteen and Jager [19] recently described a more
practical protocol, which essentially is a three-message variant of “signed Diffie-
Hellman”. Even though their protocol uses a rather complex signature scheme
to achieve tightness (a single key exchange requires 17 exponentiations and the
exchange of in total 16 group elements/exponents), when instantiated with the-
oretically sound parameters it turns out to be more efficient than even plain
signed DH with ECDSA, at least for large-scale deployments. Unlike [3], the
security analysis in [19] is in the random oracle model [8] since the paper aims
at maximal practical efficiency.

Highly Efficient Key Exchange Protocols with Optimal Tightness 771

2 Background

In this section we recap some background and standard definitions. Let G be a
cyclic group of prime order p with generator g.

Diffie-Hellman Problems. The computational and decisional Diffie-Hellman
problems are natural problems related to breaking the Diffie-Hellman protocol.

Definition 1. Consider the following experiment involving an adversary A. The
experiment samples x, y

$← Zp and starts A(gx, gy). The advantage of A in
solving the computational Diffie-Hellman problem is defined as

AdvCDH
G,g (A) := Pr [A(gx, gy) = gxy]

Definition 2. Consider the following experiment involving an adversary A. The
experiment samples x, y, z

$← Zp and tosses a coin b̂
$← {0, 1}. If b̂ = 1 then it

sets Z := gxy, while if b̂ = 0 then it sets Z = gz. We define the advantage of A
in solving the decisional Diffie-Hellman problem as

AdvDDH
G,g (A) := |Pr

[
A(gx, gy, Z) = b̂

]
− 1/2|

Let DDH(gx, gy, gz) be an oracle that returns 1 if and only if xy = z. The
gap Diffie-Hellman problem asks to solve the computational Diffie-Hellman prob-
lem, given access to the oracle DDH(·, ·, ·). The strong Diffie-Hellman problem is
related to the gap Diffie-Hellman problem, except that the adversary now gets a
less capable oracle where the first input is fixed, i.e., stDHx(·, ·) = DDH(gx, ·, ·).

Definition 3. Consider the following experiment involving an adversary A. The
experiment samples x, y

$← Zp and starts AstDHx(·,·)(gx, gy). The advantage of
A in solving the strong Diffie-Hellman problem is defined as

AdvstDH
G,g (A) := Pr

[
AstDHx(·,·)(gx, gy) = gxy

]
.

One may wonder to which extent the number of oracle queries to the strong
DH oracle affects the concrete security of this assumption. That is, how does the
security of strong DH degrade with the number of queries to the stDH oracle?
We are not aware of any concrete attacks that exploit the oracle to solve the
CDH problem more efficiently than other algorithms for CDH. In particular, in
many elliptic curves with practical bilinear pairings it is reasonable to assume
hardness of CDH, even though the bilinear pairing is a much stronger tool than
a strong DH oracle.

A crucial technique in any tight proof using Diffie-Hellman problems is reran-
domisation [6], where a single Diffie-Hellman problem instance can be turned into
many, in such a way that an answer to any one of them can be turned into an
answer to the original instance. We will use this technique in our proofs.

The Strong Twin Diffie-Hellman Problem. The strong twin Diffie-Hellman prob-
lem was introduced by Cash, Kiltz, and Shoup [13] at EUROCRYPT 2008. It

772 K. Cohn-Gordon et al.

is closely related to the standard computational Diffie-Hellman (CDH) problem,
except that it “twins” certain group elements, in order to enable an efficient
“trapdoor-DDH” test that makes it possible to simulate a strong-CDH oracle.
This makes it possible to show that the twin-DH problem is equivalent to the
standard CDH problem. Let twinDHx0,x1(Y,Z0, Z1) be an oracle which returns
1 if and only if DDH(gx0 , Y, Z0) = 1 and DDH(gx1 , Y, Z1) = 1.

Definition 4. Consider the following experiment involving an adversary A. The
experiment samples x0, x1, y

$← Zp and starts AtwinDHx0,x1 (·,·,·)(gx0 , gx1 , gy). The
advantage of A in solving the strong twin Diffie-Hellman problem is defined as

Adv2-CDH
G,g (A) := Pr

[
AtwinDHx0,x1 (·,·,·)(gx0 , gx1 , gy) = (gx0y, gx1y)

]

The following theorem was proven by Cash, Kiltz, and Shoup [[13], Theorem 3].

Theorem 1. Let A be a strong twin DH adversary that makes at most Q queries
to oracle O and runs in time tA. Then one can construct a DH adversary B that
runs in time tA ≈ tB such that

Adv2-CDH
G,g (A) ≤ AdvCDH

G,g (B) + Q/p.

3 AKE Security Model

In this section we define our game-based key exchange security model. It is
based on the real-or-random (“RoR”) security definition of Abdalla, Fouque,
and Pointcheval [2], and incorporates the extension of Abdalla, Benhamouda,
and MacKenzie [1] to capture forward secrecy. The central feature of the RoR-
model is that the adversary can make many Test-queries, and that all queries
are answered with a “real” or “random” key based on the same random bit b̂.

We prefer to work in a RoR-model because it automatically lends itself to
tight composition with protocols that use the session keys of the key exchange
protocol. For security models where there is only a single Test-query, or where
each Test-query is answered based on an individual random bit [3,19], such a
composition is not automatically tight.

Although we mainly consider key exchange protocols with implicit authen-
tication in this paper, we show in Sect. 8 how they can easily be upgraded to
also have explicit authentication by adding key-confirmation messages to the
protocol. The advantage of working in the RoR-model is that it allows us to do
this transformation tightly.

Execution Environment. We consider μ parties 1, . . . , μ. Each party i is repre-
sented by a set of � oracles, {π1

i , . . . , π�
i}, where each oracle corresponds to a

session, i.e., a single execution of a protocol role, and where � ∈ N is the max-
imum number of protocol sessions per party. Each oracle is equipped with a
randomness tape containing random bits, but is otherwise deterministic. Each
oracle πs

i has access to the long-term key pair (ski, pki) of party i and to the
public keys of all other parties, and maintains a list of internal state variables
that are described in the following:

Highly Efficient Key Exchange Protocols with Optimal Tightness 773

– Pids
i (“peer id”) stores the identity of the intended communication partner.

– Ψs
i ∈ {∅, accept, reject} indicates whether oracle πs

i has successfully com-
pleted the protocol execution and “accepted” the resulting key.

– ks
i stores the session key computed by πs

i .
– sentsi contains the list of messages sent by πs

i in chronological order.
– recvs

i contains the list of messages received by πs
i in chronological order.

– roles
i ∈ {∅, init, resp} indicates πs

i ’s role during the protocol execution.

For each oracle πs
i these variables are all initialized to the empty string ∅. The

computed session key is assigned to the variable ks
i if and only if πs

i reaches the
accept state, that is, we have ks

i �= ∅ ⇐⇒ Ψs
i = accept.

Partnering. To define when two oracles are supposed to derive the same session
key we use a variant of matching conversations. In addition to agreement on their
message transcripts, they should also agree upon each other’s identities and have
compatible roles (one being the initiator the other the responder). We remark
that our protocol messages consist only of group elements and deterministic
functions of them. This means that they are not vulnerable to the “no-match”
attacks of Li and Schäge [32].

Definition 5 (Origin-oracle). An oracle πt
j is an origin-oracle for an oracle

πs
i if Ψ t

j �= ∅, Ψs
i = accept, and the messages sent by πt

j equal the messages
received by πs

i , i.e., if senttj = recvs
i .

Definition 6 (Partner oracles). We say that two oracles πs
i and πt

j are part-
ners if (1) each is an origin-oracle for the other; (2) each one’s identity is the
other one’s peer identity, i.e., Pids

i = j and Pidt
j = i; and (3) they do not have

the same role, i.e., roles
i �= rolet

j.

Attacker Model. The adversary A interacts with the oracles through queries. It is
assumed to have full control over the communication network, modeled by a Send
query which allows it to send arbitrary messages to any oracle. The adversary
is also granted a number of additional queries that model the fact that various
secrets might get lost or leaked. The queries are described in detail below.

– Send(i, s, j,m): This query allows A to send any message m of its choice to
oracle πs

i on behalf of party Pj . The oracle will respond according to the
protocol specification and depending on its internal state. For starting a role
there are additional actions:
[Initiator] If (Pids

i , Ψ
s
i) = (∅, ∅) and m = ∅, then this means that A requests

πs
i to start the initiator role with peer Pj . In this case, πs

i will set Pids
i := j

and roles
i := init.

[Responder] If (Pids
i , Ψ

s
i) = (∅, ∅) and m �= ∅, then this means that A requests

πs
i to start the responder role with peer Pj with first message m. In this case,

πs
i will set Pids

i := j and roles
i := resp.

– RevLTK(i): For i ≤ μ, this query allows the adversary to learn the long-term
private key ski of user i. After the query i is said to be corrupted, and all
oracles π1

i , . . . , π�
i now respond with ⊥ to all queries.

774 K. Cohn-Gordon et al.

– RegisterLTK(i, pki): For i > μ, this query allows the adversary to register a
new party i with public key pki. We do not require that the adversary knows
the corresponding private key. After the query the pair (i, pki) is distributed to
all other parties. Parties registered by RegisterLTK are corrupted by definition.

– RevSessKey(i, s): This query allows the adversary to learn the session key
derived by an oracle. That is, query RevSessKey(i, s) returns the contents
of ks

i . Recall that we have ks
i �= ∅ if and only if Ψs

i = accept. After this query
πs

i is said to be revealed.

Note that unlike, e.g., [10,12], we do not allow the adversary to learn the
sessions’ ephemeral randomness.

Security Experiment. To define the security of a key exchange protocol we want to
evaluate the attacker’s knowledge of the session keys. Formally, we have an AKE
security game, played between an adversary A and a challenger C, where the
adversary can issue the queries defined above. Additionally, it is given access to
a special Test query, which, depending on a secret bit b̂ chosen by the challenger,
either returns real or random keys. The goal of the adversary is to guess b̂.

– Test(i, s): If Ψs
i �= accept, return ⊥. Else, return kb̂, where k0 = ki

s and
k1

$← K is a random key. If a Test query is repeated in the case b = 1, the
same random key is returned. After the query, oracle πs

i is said to be tested.

The adversary can issue many Test queries, to different oracles, but all are
answered using the same bit b̂.

The AKE security game, denoted GΠ(μ, �), is parameterized by the protocol
Π and two numbers μ (the number of honest parties) and � (the maximum
number of protocol executions per party), and is run as follows.

1. C begins by drawing a random bit b̂
$← {0, 1}, then generates μ long-term

key pairs
{
(ski, pki)

∣∣ i ∈ [1, . . . , μ]
}
, and initializes the collection of oracles{

πs
i

∣∣ i ∈ [1, . . . , μ], s ∈ [1, . . . , �]
}
.

2. C now runs A, providing all the public keys pk1, . . . , pkμ as input. During its
execution, A may adaptively issue Send, RevLTK, RevSessKey, RegisterLTK
and Test queries any number of times and in arbitrary order. The only require-
ment is that all tested oracles remain fresh throughout the game (see Defini-
tion 7 below). Otherwise, the game aborts and outputs a random bit.

3. The game ends when A terminates with output b′, representing its guess of b̂.
If not all test oracles are fresh, the security game outputs a random bit. If all
test oracles are fresh and b′ = b̂, it outputs 1. Otherwise, it outputs 0.

Definition 7 (Freshness). An oracle πs
i is fresh, written fresh(i, s), if:

(i) RevSessKey(i, s) has not been issued,
(ii) no query Test(j, t) or RevSessKey(j, t) has been issued, where πt

j is a partner
of πs

i , and
(iii) Pids

i was:
(a) not corrupted before πs

i accepted if πs
i has an origin-oracle, and

Highly Efficient Key Exchange Protocols with Optimal Tightness 775

(b) not corrupted at all if πs
i has no origin-oracle.

Definition 8 (Winning Events). We define the following three winning
events on game GΠ(μ, �).

(i) Event breakSound occurs if there exist two partner oracles πs
i and πt

j with
ks

i �= kt
j. In other words, there are two partner oracles which compute dif-

ferent session keys.
(ii) Event breakUnique occurs if for some oracle πs

i there exist distinct oracles πt
j

and πt′
j′ such that πs

i is a partner oracle to both πt
j and πt′

j′ . In other words,
there exists an oracle with more than one partner oracle.

(iii) Let guessKE be the output of game GΠ(μ, �). We define breakKE to be the
event guessKE = 1.

Definition 9 (AKE Security). An attacker A breaks the security of protocol
Π, if at least one of breakSound, breakUnique, or breakKE occurs in GΠ(μ, �). The
advantage of the adversary A against AKE security of Π is

AdvAKE
Π (A) = max {Pr [breakSound] ,Pr [breakUnique] , |Pr [breakKE] − 1/2|} .

We say that A (εA, t, μ, �)-breaks Π if its running time is t and AdvAKE
Π (A) ≥ εA.

The running time of A includes the running time of the security experiment (see
[19, Remark 1]).

Security Properties. The core aspects of the security properties in our model are
captured by the breakKE event, combined with the adversary’s capabilities and
the restrictions imposed on them through the freshness predicate.

The freshness clauses (i) and (ii) imply that we only exclude the reveal of
session keys for tested oracles as well as their partners. This encodes both (a) key
independence if the revealed key is different from the session key: knowing some
keys must not enable computing other keys, as well as (b) implicitly ensuring
agreement on the involved parties, since sessions that compute the same session
key but disagree on the parties would not be partnered, and reveal the Test
session’s key.

Our freshness clause (iii) encodes weak forward secrecy : the adversary can
learn the peer’s long-term key after the tested oracle accepted, but only if it has
been passive in the run of the oracle [26]. Another property captured by our
model is resistance to key-compromise impersonation attacks. Recall that KCI
attacks are those where the adversary uses a party A’s own private long-term
key to impersonate other users towards A. This is (implicitly) encoded by the
absence of any adversary restrictions on learning the private long-term key of
a test-oracle itself. Additionally, the breakUnique event captures the resistance
to replay attacks. The breakSound event ensures that two parties that execute
the protocol together in the absence of an attacker (or at least a passive one),
compute the same session key.

Some recent protocols also offer post-compromise security, in which the com-
munication partner πt

j may be corrupted before πs
i has accepted. However, in

this work we consider only stateless protocols, which cannot achieve this goal
[14].

776 K. Cohn-Gordon et al.

4 Protocol Π

Protocol Π, defined in Fig. 1, uses a mix of static-ephemeral and ephemeral-
ephemeral Diffie-Hellman key exchanges to get a protocol that is extremely
efficient in terms of communications as well as computational effort required.
Specifically, the two protocol participants exchange ephemeral Diffie-Hellman
shares gr and gs for random r, s, and then compute a session key from three
Diffie-Hellman shared secrets (static-ephemeral, ephemeral-static, ephemeral-
ephemeral) as well as identities and a transcript. Note that this is very close
to the Noise-KK pattern [36].

Fig. 1. Protocol Π. The session key is derived from the combination of the parties’
static-ephemeral, ephemeral-static, and ephemeral-ephemeral DH values.

Theorem 2. Consider the protocol Π defined in Fig. 1 where H is modeled as
a random oracle. Let A be an adversary against the AKE security of Π. Then
there exist adversaries B1, B2 and B3 against strong Diffie-Hellman such that

AdvAKE
Π (A) ≤ μ · AdvstDH

G,g (B1) + AdvstDH
G,g (B2) + μ · AdvstDH

G,g (B3) +
μ�2

p
.

The strong Diffie-Hellman adversaries all run in essentially the same time as A,
and make at most as many queries to their strong DH-oracle as A makes to its
hash oracle H.

The proof of the theorem is structured as a sequence of games running varia-
tions on the security experiment, with the first game identical to the experiment.
We bound the difference in the probability of the event that the experiment out-
puts 1 in each game. As a side effect, along the way we also get a bound on

Highly Efficient Key Exchange Protocols with Optimal Tightness 777

breakUnique. Then we argue that the probability that the experiment outputs 1
is 1/2 in the final game, which gives us a bound on breakKE. Since the scheme
has perfect correctness, the theorem follows.

To achieve this result in the final game, we shall have our oracles choose
session keys at random, without reference to secret keys or messages. Obviously,
we have to ensure consistency with what the adversary can learn. This means
that we have to make sure that partnered oracles both choose the same key
(Game 2); that keys the adversary should be able to compute on his own are
the same as chosen by the oracle (Game 2), and that corruptions of long-term
keys that enable the adversary to compute session keys on his own return results
consistent with previous RevSessKey-queries (Game 3 and 5).

The general technique we use is to have our oracles refrain from computing
the input to the key derivation hash oracle, but instead check to see if the
adversary somehow computes it. The idea is that computing the hash input is
hard to simulate in the strong Diffie-Hellman game, but checking if someone else
has computed the hash input is easy using the strong DH oracle provided.

We call an oracle honest (at some point) if the user it belongs to has not yet
been corrupted (at that point). There are five types of oracles that we will have
to deal with in separate ways, and the first four are essentially fresh oracles:

– (I) initiator oracles whose response message comes from a responder oracle,
which has the same ctxt (i.e., they agree on the message transcript and
participant identities and public keys) and which is honest when the response
is received;

– (II) other initiator oracles whose intended peer is honest until the oracle
accepts;

– (III) responder oracles whose initial message comes from an initiator, which
has the same ctxt up to the responder message (thus agreeing on the first
message and participant identities and public keys) and which is honest when
the response is received;

– (IV) other responder oracles whose intended peer is honest until the oracle
accepts; and

– (V) oracles whose intended peer is corrupted.

Note that at the time an initiator oracle starts, we cannot know if it will be of
type I or II. However, we will know what type it is when it is time to compute the
oracle’s session key. We also remark that types I and III correspond to case (iii)a
in the definition of freshness. Types II and IV correspond to case (iii)b.

In the following, let Sj denote the event that the experiment in Game j
outputs 1.

Game 0. Our starting point Game 0 is the security experiment defining AKE
security. We have that

Pr [breakKE] = Pr[S0]. (1)

We begin with an administrative step to avoid pathologies where honest
players choose the same random nonces.

778 K. Cohn-Gordon et al.

Game 1. In this game, we abort if two initiator oracles or two responder oracles
ever arrive at the same ctxt. The probability of this happening can be upper-
bounded by the probability of two oracles for the same peer choosing the same
random exponents, and we get that

|Pr[S1] − Pr[S0]| ≤ μ�2

p
. (2)

We also note that the event in this game that corresponds to breakUnique

cannot happen in this game. It follows that

Pr[breakUnique] ≤ μ�2

p
. (3)

4.1 Preparing Oracles

Our goal in this game is to change every oracle so that it no longer computes the
input to the key derivation hash H, but instead checks if the adversary computes
this input and adapts accordingly. This is essential for later games, since it allows
us to replace every use of the secret key with queries to a strong DH oracle.

Game 2. In this game, we modify how our oracles determine their session keys.
Note that at the point in time where an initiator oracle determines its session
key, we know its type exactly.

A type III, IV or V responder oracle with ctxt = î‖ĵ‖pk i‖pk j‖U‖V , secret
key b and random exponent s does the following to determine its session key k:
First, it checks to see if any oracle queries î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖W2‖W3 have
been made satisfying

W1 = pks
i W2 = U b W3 = Us . (4)

If any such query is found k is set to the corresponding hash value. Otherwise,
the session key is chosen at random. And if such a hash query happens later, the
hash value is set to the chosen session key.

A type I initiator oracle will simply use the key from the corresponding
responder oracle.

A type II or V initiator oracle with ctxt = î‖ĵ‖pk i‖pk j‖U‖V , secret key a
and random exponent r does the following to determine its session key k: First,
it checks to see if any oracle queries î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖W2‖W3 have been
made satisfying

W1 = V a W2 = pkr
j W3 = V r . (5)

If any such query is found, k is set to the corresponding hash value. Otherwise,
the session key is chosen at random. And if such a hash query happens later, the
hash value is set to the chosen session key.

The only potential change in this game is at which point in time the key
derivation hash oracle value is first defined, which is unobservable. It follows
that

Pr[S2] = Pr[S1]. (6)

Highly Efficient Key Exchange Protocols with Optimal Tightness 779

4.2 Type IV Responder Oracles

Game 3. In this game type IV oracles choose their session key at random, but do
not modify the hash oracle unless the intended peer is corrupted. If the adversary
corrupts the intended peer i of a type IV oracle running as user j with secret
key b, random exponent s and chosen key k, then from that point in time, any
query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖pks
i ‖U b‖Us

to the key derivation hash oracle H will result in the hash value k.
Unless one of these queries happen before user i is corrupted, the only change

is at which point in time the key derivation hash oracle value is first defined,
which is unobservable. Let F be the event that a query as above happens before
the corresponding long-term key is corrupted. Then

|Pr[S3] − Pr[S2]| ≤ Pr[F].

Let Fi be the same event as F , but with the intended peer being user i. We
then have that Pr[F] =

∑
i Pr[Fi].

Next, consider the event Ei which is that for some type IV oracle as above,
any query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖W2‖W3 W1 = pks
i = V a (7)

to the key derivation hash oracle H happens before user i is corrupted. Then
Pr[Fi] ≤ Pr[Ei].

We shall now bound the probability of the event Ei by constructing an adver-
sary against strong Diffie-Hellman. This adversary will embed its DH challenge in
some user i’s public key and type IV oracle responses for oracles whose intended
peer is user i, and recover the solution to its DH challenge from the hash query
in event Ei.

Strong Diffie-Hellman Adversary B1. The algorithm B1 takes as input a DH
challenge (X,Y) = (gx, gy) and outputs a group element Z. It has access to a
strong Diffie-Hellman oracle stDHx(·, ·).

Reduction B1 runs Game 2 with the following changes: it chooses i uniformly
at random and sets user i’s public key to pk i = X (and thus implicitly sets i’s
private key to the unknown value x). For type IV oracles whose intended peer is
user i, B1 sets V = Y · gρ0 , with ρ0 random. If the adversary corrupts user i, the
reduction B1 aborts. (For other users, the reduction simply returns the secret
key, as in Game 2.)

We need to recognise hash queries of the form (4) and (5) that involve user i,
as well as queries of the form (7). For (4), where user i acts in the responder role,
we know the oracle’s random exponent s, so we only need to recognise if W2 is U
raised to user i’s secret key, which can be done by checking if stDHx(U,W2) = 1.

For (5), where user i is the initiator, we know the oracle’s random exponent
r, so we only need to recognise if W1 is V raised to user i’s secret key, which can
be done by checking if stDHx(V,W1) = 1.

780 K. Cohn-Gordon et al.

Finally, for (7), we need to recognise if a group element W1 is V raised to
user i’s secret key, which can be done by checking if stDHx(V,W1) = 1. When
we recognise a query of the form (7), since we know that V = Y · gρ0 , we output

Z = W1X
−ρ0 = V xX−ρ0 = Y xgρ0xg−xρ0 = Y x.

In other words, our adversary B1 succeeds whenever Ei would happen in
Game 2. Furthermore, Ei in Game 2 can only happen before user i is corrupted,
so whenever Ei would happen in Game 2, B1 would not have aborted.

We get that

AdvstDH
G,g (B1) ≥ 1

μ

∑
i

Pr[Ei] ≥ 1
μ

∑
i

Pr[Fi] =
1
μ

Pr[F],

from which it follows that

|Pr[S3] − Pr[S2]| ≤ Pr[F] ≤ μ · AdvstDH
G,g (B1). (8)

4.3 Type III Responder Oracles

Game 4. In this game type III responder oracles choose their session key at
random, and do not modify the key derivation hash oracle.

Consider a type III responder oracle for user j with secret key b, random
exponent s and intended peer i, who has secret key a. Unless the adversary ever
makes a hash query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖W2‖W3 W3 = Us , (9)

this change is unobservable. Call this event F . We thus have

|Pr[S4] − Pr[S3]| ≤ Pr[F]. (10)

We shall bound the probability of F by constructing an adversary against
strong Diffie-Hellman. This adversary will embed its challenge in type I or II
initiator oracles’ message, as well as in type III responder oracles’ message. It
will recover the solution to its DH challenge from the hash query in event F .

Strong Diffie-Hellman Adversary B2. The algorithm B2 takes as input a DH
challenge (X,Y) = (gx, gy) and outputs a group element Z. It has access to a
strong DH-oracle stDHx(·, ·).

Our reduction B2 runs Game 3 with the following changes: for type I and II
initiator oracles (we cannot distinguish these at this point in time), it computes
U = X · gρ0 , with ρ0 random. For type III responder oracles, it computes V =
Y · gρ1 , with ρ1 random. Note that in this game, the reduction knows all static
secret keys, so user corruption is handled exactly as in Game 3.

We need to recognise hash queries of the form (5) for type II initiator ora-
cles, as well as queries of the form (9) for type III oracles. Although we do
not know the oracle’s random exponents, we do know their secret keys. This

Highly Efficient Key Exchange Protocols with Optimal Tightness 781

means that we only need to recognise if W3 is V raised to logg U = x + ρ0. Of
course, if W3 = V x+ρ0 , then W3V

−ρ0 = V x, which we can detect by checking if
stDHx(V,W3V

−ρ0) = 1. If this is the case for a query of the form (9), then we
output

Z = W3 · V −ρ0 · X−ρ1 = V x · X−ρ1 = gyx+ρ1xg−xρ1 = Y x

as the solution to the DH challenge. In other words, B2 succeeds whenever F
would happen in Game 3, hence

|Pr[S4] − Pr[S3]| ≤ Pr[F] ≤ AdvstDH
G,g (B2). (11)

Note that we do not stop the simulation in the case we detect a hash query
of the form (5) for a type II initiator oracle, because in this case the responder
message V does not contain the embedded DH challenge.

4.4 Type II Initiator Oracles

Game 5. In this game type II initiator oracles choose their session key at ran-
dom, but do not modify the hash oracle unless the intended peer is corrupted.
If the adversary corrupts the intended peer j of a type II oracle running as user
i with secret key a, random exponent r and chosen key k, then from that point
in time, any query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖V a‖pkr
j‖V r

to the key derivation hash oracle H will result in the hash value k.
Unless one of these queries happen before the user j is corrupted, the only

change is at which point in time the key derivation hash oracle value is first
defined, which is unobservable. Let F be the event that a query as above happens
before the corresponding long-term key is corrupted. Then

|Pr[S5] − Pr[S4]| ≤ Pr[F].

Let Fj be the same event as F , but with the intended peer being user j. We
then have that Pr[F] =

∑
j Pr[Fj].

Next, consider the event Ej which is that for some type II oracle as above,
any query of the form

î‖ĵ‖pk i‖pk j‖U‖V ‖W1‖W2‖W3 W2 = pkr
j = U b (12)

to the key derivation hash oracle H happens before user j is corrupted. Then
Pr[Fj] ≤ Pr[Ej].

We shall now bound the probability of the event Ej by constructing an adver-
sary against strong Diffie-Hellman. This adversary will embed its DH challenge
in some user j’s public key and type II oracle messages for oracles whose intended
peer is user j, and recover the solution to its DH challenge from the hash query
in event Ej .

782 K. Cohn-Gordon et al.

Strong Diffie-Hellman Adversary B3. The algorithm B3 takes as input a DH
challenge (X,Y) = (gx, gy) and outputs a group element Z. It has access to a
strong DH-oracle stDHx(·, ·).

Our reduction B3 runs Game 4 with the following changes: It chooses j uni-
formly at random and sets user j’s public key to pk j = X (and thus implicitly
sets j’s private key to the unknown value b = x). For type I and II initiator
oracles whose intended peer is user j, B3 sets U = Y · gρ0 , with ρ0 random.
If the adversary corrupts user j, the reduction B3 aborts. (For other users, the
reduction simply returns the secret key, as in Game 4.)

We need to recognise hash queries of the form (4) and (5) that involve user
j, as well as queries of the form (12). For (4), where user j is the responder, we
know the oracle’s random exponent s, so we only need to recognise if W2 is U
raised to user j’s secret key, which can be done by checking if stDHx(U,W2) = 1.
For (5), where user j is the initiator, we know the oracle’s random exponent r,
so we only need to recognise if W1 is V raised to user j’s secret key, which can
be done by checking if stDHx(V,W1) = 1. Finally, for (12), we need to recognise
if a group element W2 is U raised to user j’s secret key, which can be done by
checking if stDHx(U,W2) = 1.

When we recognise a query of the form (12), meaning that W2 = Ux where
know that U = Y · gρ0 , then we output

Z = W2X
−ρ0 = UxX−ρ0 = Y xgρ0xg−xρ0 = Y x.

In other words, our adversary B3 succeeds whenever Ej would happen in Game 4.
Furthermore, Ej in Game 4 can only happen before user j is corrupted, so when-
ever Ej would happen in Game 4, B3 would not have aborted. We get that

AdvstDH
G,g (B3) ≥ 1

μ

∑
j

Pr[Ej] ≥ 1
μ

∑
j

Pr[Fj] =
1
μ

Pr[F],

from which it follows that

|Pr[S5] − Pr[S4]| ≤ Pr[F] ≤ μ · AdvstDH
G,g (B3). (13)

4.5 Summary

Note that in Game 5, every session key is chosen at random independent of every
key and sent message.

For type V oracles, the key derivation oracle is immediately programmed so
that the session key is available to the adversary. But type V oracles are never
fresh and therefore never subject to a Test query.

For type II and IV oracles, the key derivation hash oracle is programmed
to make the session key available to the adversary only after the intended peer
is corrupted. But if the intended peer is corrupted, a type II or IV oracle will
become non-fresh, hence no Test query can be made to it.

Highly Efficient Key Exchange Protocols with Optimal Tightness 783

For type I and III oracles, the key derivation hash oracle will never make the
session key available to the adversary.

This means that for any oracle subject to a Test query, the session key is and
will remain independent of every key and sent message. Which means that the
adversary cannot distinguish the session key from a random key. It follows that

Pr[S5] =
1
2
. (14)

Furthermore, (3) from Game 1 gives us Pr[breakUnique] ≤ μ�2/p. Because of
perfect correctness Pr[breakSound] = 0. It is now easy to see that Theorem 2
follows from the construction of B1, B2 and B3 as well as Eqs. (1), (2), (6), (8),
(11), (13) and (14).

5 Avoiding the Strong Diffie-Hellman Assumption

The proof of Π relies on the strong Diffie-Hellman assumption, which is an
interactive assumption. A natural goal is to look for a protocol whose proof
relies on standard non-interactive assumptions. In this section we present two
protocols that solve this problem. Both can be seen as different modifications of
Π.

5.1 Protocol ΠTwin

The first protocol, which we call ΠTwin, applies the twinning technique of [13] to
the different DH values in Π. This requires some additional exponentiations over
protocol Π, as well as the need to transmit one extra group element. The details
are given in Fig. 2: instead of sending a single Diffie-Hellman share, the protocol
initiator samples and sends two ephemeral shares, and both shares are used in
the key derivation. This duplication allows us to reduce to twin Diffie-Hellman.

Theorem 3. Consider the protocol ΠTwin defined in Fig. 2 where H is modeled
as a random oracle. Let A be an adversary against the AKE security of ΠTwin.
Then there exists adversaries B1, B2 and B3 against twin Diffie-Hellman such
that

AdvAKE
ΠTwin

(A) ≤ μ · Adv2-CDH
G,g (B1) + Adv2-CDH

G,g (B2) + μ · Adv2-CDH
G,g (B3) +

μ�2

p
.

The adversaries all run in essentially the same time as A and make at most as
many queries to their twin DH oracle as A makes to its hash oracle H.

784 K. Cohn-Gordon et al.

Fig. 2. Protocol ΠTwin. It is obtained from protocol Π by applying the twinning trick
of [13] to the DH values

The proof is given in the full version. Note that by Theorem 1, we can tightly
replace the twin Diffie-Hellman terms in the theorem statement by ordinary
computational Diffie-Hellman terms.

5.2 Protocol ΠCom

The second protocol, which we call ΠCom, again uses the twinning technique
of [13], but this time only applied to the static DH values in Π. This provides
tight implicit authentication. However, instead of also twinning the ephemeral
DH values we use a variant of the commitment trick of [19]. This reduces the
number of exponentiations compared to ΠTwin, but adds another round of com-
munication. Also, we need to rely on the Decision Diffie-Hellman assumption
instead of computational Diffie-Hellman. The details are given in Fig. 3. The
proof of the following theorem is given in the full version.

Theorem 4. Consider the protocol ΠCom defined in Fig. 3 where H and G are
modeled as random oracles. Let A be an adversary against the AKE security of
ΠCom. Then there exists adversaries B1 and B3 against computational Diffie-
Hellman and an adversary B2 against Decision Diffie-Hellman such that

AdvAKE
ΠTwin

(A) ≤ μ · AdvCDH
G,g (B1) + AdvDDH

G,g (B2) + μ · AdvCDH
G,g (B3) +

μ�2(1 + 2t)
p

.

The adversaries all run in essentially the same time t as A and make at most
as many queries to their twin DH oracle as A makes to its hash oracle H.

Highly Efficient Key Exchange Protocols with Optimal Tightness 785

Fig. 3. Protocol ΠCom. It is obtained from protocol Π by applying the twinning trick
of [13] to the static DH values and the commitment trick of [19] to the ephemeral DH
values.

6 Efficiency Analysis

In this section we argue that our protocols are more efficient than other com-
parable2 protocols in the literature when instantiated with theoretically sound
parameter choices. There are two reasons for this. First, the most efficient key
protocols do not have tight proofs. Hence, for theoretically sound deployment
they must use larger parameters to compensate for the proof’s security loss,
which directly translates into more expensive operations. The result is that
although some protocols require fewer operations than ours (typically group
exponentiations), the increase in computational cost per operation dominates
whatever advantage they might have over our protocols in terms of number of
operations.

Second, the few known key exchange protocols which do have tight proofs,
require a large number of operations or heavy cryptographic machinery. Thus,
even though they can use small parameters, such as the P-256 elliptic curve, here
the sheer number of operations dominates their advantage over our protocols.

To illustrate the first point in more detail, here are some examples of very effi-
cient key exchange protocols having non-tight security proofs: UM [33], KEA+
[30], HMQV [26], CMQV [39], T S1/2/3 [24], Kudla-Paterson [28], and NAXOS
[29]. Typically, these proofs have a tightness loss between L = O(μ�) and
L = O(μ2�2) as illustrated for a few of the protocols in Table 1.

2 Comparing protocols is complex, and we return to this at the end of this section.

786 K. Cohn-Gordon et al.

Table 1. The number of group exponentiations in our protocols compared to other
protocols in the literature. All protocols are one-round except ΠCom, which has two
rounds of communication. All security proofs are in the random oracle model. The
security loss is in terms of the number of users (μ), the number of protocol instances
per user (�), and reduction’s running time (t).

Protocol #Exponentiations Assumption Security loss O(·)
HMQV [26] 2.5 CDH μ2�2

NAXOS [29] 3 Gap-DH μ2�2

UM [33] 3 Gap-DH μ2�2

Kudla-Paterson [28] 3 Gap-DH μ2�

KEA+ [30] 3 Gap-DH μ�†

Π (Fig. 1) 4 Strong-DH μ

ΠTwin (Fig. 2) 8/7 CDH μ

ΠCom (Fig. 3) 6 DDH μ

GJ [19] 17 DDH 1
† Only when using pairing-friendly curves; otherwise L = O(μ�t).

Suppose we now want to compare the efficiency of the protocols Π, ΠTwin,
ΠCom and HMQV, aiming for around 110-bits of security. Following Gjøsteen
and Jager [19], let us imagine two different scenarios: a small-to-medium-scale
setting with μ = 216 users and � = 216 sessions per user, and a large-scale setting
with μ = 232 users and � = 232 sessions per user. To instantiate the protocols in
a theoretically sound manner we need to select a group large enough so that the
underlying DH-assumptions are still hard even when accounting for the security
loss. For simplicity, we only consider selecting among elliptic curve groups based
on the NIST curves P-256, P-384, and P-521, and assume that the CDH, DDH,
and Gap-DH problems are equally hard in each group.

HMQV. Supposing HMQV has a tightness loss of L ≈ μ2�2, this translates
into a loss of 264 in the small-to-medium-scale setting, and a loss of 2128 in
the large-scale setting. To compensate we have to increase the group size by
a factor of L2 ≈ 2128 and L2 ≈ 2256, respectively. With a target of 110-bit
security, this means that we have to instantiate HMQV with curve P-384 and
P-521, respectively.

Π,ΠTwin,ΠCom. Our protocols’ security proofs have a tightness loss of L ≈ μ,
which translates into 216 in the small-to-medium-scale setting and 232 in
the large-scale setting. In the first setting P-256 is still sufficient for 110-bit
security, but in the later setting P-384 must be used instead.

We can now compare these instantiations by multiplying the number of expo-
nentiations required with the cost of an exponentiation in the relevant group.
For the latter values we use the OpenSSL benchmark numbers from Gjøsteen
and Jager [19] (reproduced in Table 2). Calculating the numbers we get:

Highly Efficient Key Exchange Protocols with Optimal Tightness 787

HMQV Π ΠTwin ΠCom

S-M 2.5 × 5.6 = 14 4 × 2.1 = 8.4 8 × 2.1 = 16.8 6 × 2.1 = 12.6

L 2.5 × 16.1 = 40.3 4 × 5.6 = 22.4 8 × 5.6 = 44.8 6 × 5.6 = 33.6

Table 2. OpenSSL benchmark results for NIST curves [19, Table 1].

Curve Exp./Sec. Time/Exp.

NIST P-256 476.9 2.1 ms

NIST P-384 179.7 5.6 ms

NIST P-521 62.0 16.1 ms

Observe that Π is more efficient than HMQV in both the small-to-medium-
scale setting as well as in the large-scale setting despite needing more exponen-
tiations. This is because it can soundly use smaller curves than HMQV due to
the relative tightness of its reduction. Protocol ΠTwin is about as efficient as
HMQV in both settings, while ΠCom lies somewhere in between Π and ΠTwin,
but since it requires one extra round of communication a direct comparison is
more difficult. Of course, the main reason to prefer ΠTwin and ΠCom over Π is
the reliance on the weaker CDH and DDH assumptions rather than strong DH.
A complicating factor in comparing with HMQV is the difference in security
properties and security models (see the end of this section).

To illustrate the second point mentioned above—that our protocols are also
more efficient than protocols with fully tight proofs—we also compute the num-
bers for the recent protocol of Gjøsteen and Jager (GJ) which is currently the
most efficient key exchange protocol with a fully tight proof. Since GJ can use
P-256 independent of the number of users and sessions its cost is 17×2.1 = 35.7
in both the small-to-medium scale setting as well as the large-scale setting. Nev-
ertheless, we observe that the large number of exponentiations in GJ dominates
its tightness advantage in realistic settings.

Thus, absent a fully tight proof, our protocols hit a proverbial “sweet spot”
between security loss and computational complexity: they can be instantiated
soundly on relatively small curves using only a few exponentiations.

Communication Complexity. For completeness we also briefly mention commu-
nication complexity. Since in most implicitly-authenticated DH-based protocols
each user only sends one or two group elements, there is in practice little differ-
ence between Π, ΠTwin, and ΠCom, and protocols like HMQV when it comes to
communication cost. Especially if elliptic curve groups are used.

This is in contrast to the fully tight signature-based GJ protocol, which
in total needs to exchange two group elements for the Diffie-Hellman key
exchange, two signatures (each consisting of a random 256-bit exponent, two
group elements, and four 256-bit exponents), and one hash value. Altogether,
this gives a total of ≈ 545 bytes communicated when instantiated for a security
level of, say, 128 bits [19, Sect. 5]. In comparison, Π, ΠTwin, and ΠCom would

788 K. Cohn-Gordon et al.

only need to exchange around 160 to 224 bytes for the same security level. This
assumes curve P-384 and includes the addition of two 256-bit key-confirmation
messages to provide explicit entity authentication in order to make the compar-
ison with the GJ protocol fair.

On the (Im)possibility of Fairly Comparing Protocols. Our protocols are the first
implicitly authenticated key exchange protocols that were designed to provide
efficient deployment in a theoretically sound manner. This implies that we must
compare their efficiency with other protocols with slightly different goals. In
Table 1 we included protocols with closely related goals and similar structure,
but not aiming for exactly the same target.

One example of such a different goal is that NAXOS was designed to be
proven in the eCK model, which also allows the reveal of the randomness of
the tested session, similar to HMQV. Our protocols, like TLS 1.3, currently do
not offer this property. We conjecture that the NAXOS transformation could be
directly applied to our protocols to obtain eCK-secure protocols without adding
exponentiations, but it is currently unclear if this could be done with a tight
proof, and hence we leave this to future work.

7 Optimality of Our Security Proofs

In this section we will show that the tightness loss of L = O(μ) in Theorems 2,
3 and 4 is essentially optimal—at least for “simple” reductions. Basically, a
“simple” reduction runs a single copy of the adversary only once. To the best of
our knowledge, all known security reductions for AKE protocols are either of this
type or use the forking lemma. For example, the original reduction for HMQV
uses the forking lemma and thus is very non-tight, but does not fall under our
lower bound. In contrast, the HMQV reduction by Barthe et al. [5] is simple and
thus our lower bound applies. Hence, in order to give a tighter security proof,
one would have to develop a completely new approach to prove security for such
protocols.

Tightness bounds for different cryptographic primitives were given in [4,15,
17,18,21,23,25,31,35,37,40], for instance. Bader et al. [4] describe a generic
framework that makes it possible to derive tightness lower bounds for many dif-
ferent primitives. However, these techniques are only able to consider tight reduc-
tions from non-interactive assumptions, while our first protocol is based on the
interactive strong Diffie-Hellman assumption. Morgan and Pass [34] showed how
to additionally capture bounded-round interactive assumptions, but the strong
Diffie-Hellman assumption does not bound the number of possible oracle queries,
so we cannot use their approach directly.

Therefore we develop a new variant of the approach of Bader et al. [4], which
makes it possible to capture interactive assumptions with an unbounded number
of oracle queries, such as strong Diffie-Hellman assumption. For clarity and sim-
plicity, we formulate this specifically for the class of assumptions and protocols
that we consider, but we discuss possible extensions below.

Highly Efficient Key Exchange Protocols with Optimal Tightness 789

Considered Class of Protocols. In the following we consider protocols where pub-
lic keys are group elements of the form pk = gx and the corresponding secret key
is sk = x. We denote the class of all protocols with this property with ΠDH. Note
that this class contains, in particular, NAXOS [29], KEA+ [30], and HMQV [26].

Remark 1. One can generalize our results to unique and verifiable secret keys,
which essentially requires that for each value pk there exists only one unique
matching secret key sk , and that there exists an efficiently computable relation R
such that R(pk , sk) = 1 if and only if (pk , sk) is a valid key pair. Following Bader
et al. [4], one can generalize this further to so-called efficiently re-randomizable
keys. We are not aware of concrete examples of protocols that would require this
generality, and thus omit it here. All protocols considered in the present paper
and the vast majority of high-efficiency protocols in the literature have keys of
the form (pk , sk) = (gx, x), so we leave such extensions for future work.

Why Does GJ18 Not Contradict Our Lower Bound? As mentioned in Remark 1,
our bound applies to protocols with unique and verifiable secret keys. In con-
trast, the protocol of Gjøsteen and Jager [19] constructs a tightly-secure digital
signature scheme based on OR-proofs, where secret keys are not unique. As
explained in [19, Section 1.1], these non-unique secret keys seem inherently nec-
essary to achieve fully-tight security.

Simple Reductions from (Strong) Diffie-Hellman. Intuitively, a simple reduction
R = RO from (strong) CDH takes as input a CDH instance (gx, gy) and may
query an oracle O that, on input Y,Z, returns 1 if and only if Y x = Z (cf.
Definition 3). More formally:

Definition 10. A simple reduction R interacts with an adversary A as follows.

1. R receives as input a CDH instance (gx, gy).
2. It generates μ public keys and starts A(pk1, . . . , pkμ). R provides A with

access to all queries provided in the security model described in Sect. 3.
3. R outputs a value h.

We say that R is a (tR, εR, εA)-reduction, if it runs in time at most tR and for
any adversary A with εA = AdvAKE

Π (A) holds that

Pr [h = gxy] ≥ εR.

We say that R = RO is a reduction from the strong CDH problem if it makes
at least one query to its oracle O, and a reduction from the CDH problem if not.

Remark 2. The formalization in this section very specifically considers the com-
putational problems CDH and sCDH, as concrete examples of reasonable hard-
ness assumptions that a typical security proof for the protocols considered in this
work may be based on. We will later discuss how our results can be extended to
other interactive and non-interactive problems.

790 K. Cohn-Gordon et al.

Theorem 5. Let Π be an AKE protocol such that Π ∈ ΠDH. Let |K| denote the
size of the key space of Π. For any simple (tR, εR, 1− 1/|K|)-reduction RO from
(strong) CDH to breaking Π in the sense of Definition 9 there exists an algorithm
MO, the meta-reduction, that solves the (strong) CDH problem in time tM and
with success probability εM such that tM ≈ μ · tR and

εM ≥ εR − 1
μ

.

Remark 3. Note that the lower bound εM ≥ εR − 1/μ implies that the suc-
cess probability εR cannot significantly exceed 1/μ, as otherwise there exists
an efficient algorithm M for a computationally hard problem. Note also that
this implies that the reduction cannot be tight, as it “loses” a factor of at least
1/μ, even if the running time of R is not significantly larger than that of the
adversary.

In the sequel we write [μ \ i] as a shorthand for [1 . . . i − 1, i + 1 . . . μ].

Proof. We describe a meta-reduction M that uses R as a subroutine to solve
the (strong) CDH problem. Following Hofheinz et al. [21] and Bader et al. [4],
we will first describe a hypothetical inefficient adversary A. Then we explain
how this adversary is efficiently simulated by M. Finally, we bound the success
probability of M, which yields the claim.

Hypothetical Adversary. The hypothetical adversary A proceeds as follows.

1. Given μ public keys pk1 = gx1 , . . . , pkμ = gxµ , A samples a uniformly random
index j∗ $← [μ]. Then it queries RevLTK(i) for all i ∈ [μ \ j∗] to obtain all
secret keys except for sk j∗ .

2. Next, A computes sk j∗ = xj∗ from pk j∗ = gxj∗ , e.g., by exhaustive search.3

3. Then A picks an arbitrary oracle, say π1
s for s = (j∗ + 1) mod μ, and executes

the protocol with π1
s , impersonating user j∗. That is, A proceeds exactly as

in the protocol specification, but on behalf of user j∗. Note that A it is able
to compute all messages and the resulting session key on behalf of user j∗,
because it “knows” sk j∗ .

4. Finally, A asks Test(s, 1). Note that this is a valid Test-query, as A has never
asked any RevSessKey-query or RevLTK(j∗) to the peer j∗ of oracle π1

s . If the
experiment returns the “real” key, then A outputs “1”. Otherwise it outputs
“0”.

Note that A wins the security experiment with optimal success probability 1 −
1/|K|, where |K| is the size of the key space. The loss of 1/|K| is due to the fact
that the random key chosen by the Test-query may be equal to the actual session
key.

Description of the Meta-reduction. Meta-reduction M interacts with reduction
R by simulating the hypothetical adversary A as follows.
3 Note that we are considering an inefficient adversary here. As usual for meta-

reductions, we will later describe how A can be simulated efficiently.

Highly Efficient Key Exchange Protocols with Optimal Tightness 791

1. M receives as input a CDH instance (gx, gy). It starts R on input (gx, gy).
2. Whenever R issues a query to oracle O, M forwards it to its own oracle. Note

that both oracles are equivalent, because M has simply forwarded the CDH
instance.

3. When R outputs public keys pk1 = gx1 , . . . , pkμ = gxµ to A, M makes a
snapshot of the current state stR of R.

4. For j ∈ [1 . . . μ], M now proceeds as follows.
(a) It lets A query RevLTK(i) for all i ∈ [μ \ j], in order to obtain all secret

keys except for sk j . Note that the reduction may or may not respond to
all RevLTK(i) queries. For instance, R may abort for certain queries.

(b) Then it resets R to state stR.
5. Now M proceeds to simulate the hypothetical adversary. That is:

(a) It picks a uniformly random index j∗ $← [1 . . . μ] and queries RevLTK(i)
for all i ∈ [μ \ j∗].

(b) Then it executes the protocol with π1
s , impersonating user j∗. Note that

this works only if M was able to obtain sk j∗ in Step (4).
(c) Finally, M lets A ask Test(s, 1). If the experiment returns the “real” key,

then A outputs “1”. Otherwise it outputs “0”.
6. If R outputs some value h throughout the experiment, then M outputs the

same value.

Note that M provides a perfect simulation of the hypothetical adversary, pro-
vided that it “learns” sk j∗ in the loop in Step (4).

Analysis of the Meta-reduction. M essentially runs reduction R at most μ times.
Apart from that, it performs only minor additional operations, such that we have
tM ≈ μ · tR.

In order to analyse the success probability of M, let us say that bad occurs, if
j∗ is the only index for which R did not abort in Step (4) of the meta-reduction.
Note that in this case M learns all secret keys, except for sk j∗ , in which is the
only case where the simulation of A in Step (5.b) fails. Since we may assume
without loss of generality that the reduction R works for at least one index
j ∈ [μ] and we chose j∗ $← [μ] uniformly random, we have

Pr [bad] ≤ 1
μ

.

Let win(R,A) denote the event that R outputs h = gxy when interacting
with A, and win(R,M) the corresponding event with M. Since M simulates A
perfectly unless bad occurs, we have

|Pr [win(R,A)] − Pr [win(R,M)]| ≤ Pr [bad] .

Furthermore, note that by definition we have εR = Pr [win(R,A)] and εM =
Pr [win(R,M)]. Hence we get |εR − εM| ≤ 1/μ, which in turn yields the lower
bound εM ≥ εR − 1/μ.

792 K. Cohn-Gordon et al.

Generalizations. The tightness lower bound proven above makes several very
specific assumptions about the considered protocols, hardness assumptions, and
security models. The main purpose of this is to keep the formalization and proof
focused on the type of protocols that we are considering in this paper. However,
a natural question is to which extent the results also apply to more general
protocols, models, and assumptions, and whether and how the tightness bound
can be evaded by tweaking the considered setting.

First of all, we consider only protocols where long-term secrets are of the
form (pk , sk) = (gx, x). As already briefly discussed above, one can generalize
this to other protocols, as long as the simulation of the hypothetical adversary
by the meta-reduction is able to recover properly distributed secret keys. In
particular, one can generalize to arbitrary efficiently re-randomizable long-term
keys, as defined by Bader et al. [4]. Note that current AKE protocols with tight
security proofs [3,19] do not have efficiently rerandomizable keys, and therefore
do not contradict our result.

In order to obtain a tighter security proof one may try to make different
complexity assumptions. These can be either non-interactive (i.e., the reduction
does not have access to an oracle O, such as e.g. DDH), or stronger interactive
assumptions. Let us first consider non-interactive assumptions. A very general
class of such assumptions was defined abstractly in Bader et al. [4], and it is
easy to verify that our proof works exactly the same way with such an abstract
non-interactive assumption instead of CDH.

Some stronger assumptions may yield tight security proofs, but not all of
them do. Consider for instance the gap Diffie-Hellman assumption, which is
identical to strong Diffie-Hellman, except that the first input to the provided
DDH-oracle is not fixed, but can be arbitrary. It is easy to verify that our proof
also works for this assumption, in exactly the same way. More generally, our
proof works immediately for any assumption for which the “winning condition”
of the reduction is independent of the sequence of oracle queries issued by the
reduction. An example of an interactive assumptions where this does not hold is
the trivial interactive assumption that the protocol is secure (which, of course,
immediately yields a tight security proof).

Finally, we note that our impossibility result holds also for many weaker or
stronger AKE security models. We only require that the model allows for active
attacks and provides a RevLTK query. Thus, the result immediately applies also
to weaker models that, e.g., do not provide a RevSessKey-query or only a single
Test-query, and trivially also for stronger models, such as eCK-style ephemeral
key reveals [10,12]. It remains an interesting open question whether stronger
impossibility results (e.g., with quadratic lower bound) can be proven for such
eCK-style definitions.

8 Adding Explicit Entity Authentication

In this section we describe how explicit entity authentication (EA) [9] can be
added to our protocols by doing an additional key-confirmation step. Recall that

Highly Efficient Key Exchange Protocols with Optimal Tightness 793

Fig. 4. Generic compiler from an AKE protocol Π with implicit authentication to a
protocol Π+ with explicit entity authentication.

EA is the aliveness property that fresh oracles are guaranteed to have a partner
once they accept. Our construction is a generic compiler which transforms an
arbitrary AKE protocol Π, secure according to Definition 9, into one that also
provides EA. The details of the compiler are given in Fig. 4.

Specifically, protocol Π+ begins by running protocol Π to obtain a session
key kΠ. This key, which we henceforth call the intermediate key for protocol Π+,
is then used to derive two additional keys: ka and km. The first key becomes the
final session key of protocol Π+, while km is used to compute a key-confirmation
message, i.e., a MAC, for each party. The EA property of Π+ reduces to the
AKE security of the initial protocol Π, the multi-user PRF security of the func-
tion used to derive ka and km, as well as the multi-user strong UF-CMA (mu-
SUF-CMA) security of the MAC scheme (see the full version for the formal
definitions).

Theorem 6. Let Π be an AKE protocol, let Π+ be the protocol derived from Π
as defined in Fig. 4, and let A be an adversary against the EA security of protocol
Π+. Then there exists adversaries B1, B2, D, and F , such that

AdvEA
Π+(A) ≤ AdvAKE

Π (B1) + 2 · AdvAKE
Π (B2) + Advmu-PRF

PRF,μ� (D) + Advmu-SUF-CMA
MAC,μ� (F),

where μ� is the number of sessions created by A. The adversaries B1, B2, D, and
F all run in essentially the same time as A.

Our result is basically a restatement of the theorem proved by Yang [41], but
with two minor differences: (1) our result is stated for arbitrary protocols and
not only two-message protocols, and (2) since we use the AKE-RoR model the
proof is tighter and slightly simpler.

794 K. Cohn-Gordon et al.

9 Conclusion

We showed that it is possible to achieve highly efficient AKE protocols that
can be instantiated with theoretically sound parameters. Specifically, we gave
protocol constructions that have only a linear tightness loss in the number of
users, while using only a handful of exponentiations. Our constructions are at
least as efficient as the best known AKE protocols in this setting. Perhaps sur-
prisingly, our constructions only use standard building blocks as used by widely
deployed protocols and are very similar to protocols like Noise-KK, and offer
similar security guarantees.

While our proofs have a linear loss we have showed that this is actually
unavoidable: any reduction from a protocol in our class to a wide class of hardness
assumptions must lose a factor of at least μ. Thus, our reductions are optimal in
this regard. Additionally, we proved that adding a key confirmation step tightly
provides explicit authentication.

Taken together, these results demonstrate for the first time that AKE proto-
cols can be instantiated in a theoretically sound way in real-world deployments
without sacrificing performance.

References

1. Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE password-
authenticated key exchange protocol. In: 2015 IEEE Symposium on Security and
Privacy, pp. 571–587. IEEE Computer Society Press, May 2015

2. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 65–84. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30580-4 6

3. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 26

4. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 10

5. Barthe, G., Crespo, J.M., Lakhnech, Y., Schmidt, B.: Mind the gap: modular
machine-checked proofs of one-round key exchange protocols. In: Oswald, E., Fis-
chlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 689–718. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46803-6 23

6. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

7. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press,
October 1997

https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-46803-6_23
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18

Highly Efficient Key Exchange Protocols with Optimal Tightness 795

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993

9. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

10. Bergsma, F., Jager, T., Schwenk, J.: One-round key exchange with strong security:
an efficient and generic construction in the standard model. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 477–494. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 21

11. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y., Zanella-
Béguelin, S.: Proving the TLS handshake secure (as it is). In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 235–255. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44381-1 14

12. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

13. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 8

14. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In:
IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon, Por-
tugal, 27 June–1 July 2016, pp. 164–178. IEEE Computer Society (2016). https://
doi.org/10.1109/CSF.2016.19

15. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 18

16. Donenfeld, J.A.: WireGuard: next generation Kernel network tunnel. In: NDSS
2017. The Internet Society, February/March 2017

17. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
512–531. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 27

18. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 93–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5 6

19. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authen-
ticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS,
vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96881-0 4

20. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

21. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduc-
tion. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 66–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
30057-8 5

https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-662-44381-1_14
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-30057-8_5

796 K. Cohn-Gordon et al.

22. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 17

23. Jager, T., Stam, M., Stanley-Oakes, R., Warinschi, B.: Multi-key authenticated
encryption with corruptions: reductions are lossy. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10677, pp. 409–441. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70500-2 14

24. Jeong, I.R., Katz, J., Lee, D.H.: One-round protocols for two-party authenticated
key exchange. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 220–232. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24852-1 16

25. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
537–553. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 32

26. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

27. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 429–448. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 24

28. Kudla, C., Paterson, K.G.: Modular security proofs for key agreement protocols.
In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 549–565. Springer,
Heidelberg (2005). https://doi.org/10.1007/11593447 30

29. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

30. Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange
protocol. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 378–394. Springer, Heidelberg (2006). https://doi.org/10.
1007/11745853 25

31. Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 4

32. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining
trivial attacks for security protocols is not trivial. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1343–1360. ACM Press, October/
November 2017

33. Menezes, A., Ustaoglu, B.: Security arguments for the UM key agreement protocol
in the NIST SP 800-56A standard. In: Abe, M., Gligor, V. (eds.) ASIACCS 2008,
pp. 261–270. ACM Press, March 2008

34. Morgan, A., Pass, R.: On the security loss of unique signatures. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 507–536. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03807-6 19

35. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to
discrete log. In: Roy, B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20.
Springer, Heidelberg (2005)

https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-319-70500-2_14
https://doi.org/10.1007/978-3-319-70500-2_14
https://doi.org/10.1007/978-3-540-24852-1_16
https://doi.org/10.1007/978-3-540-24852-1_16
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/11593447_30
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/11745853_25
https://doi.org/10.1007/11745853_25
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-030-03807-6_19

Highly Efficient Key Exchange Protocols with Optimal Tightness 797

36. Perrin, T.: Noise protocol framework (2018). http://noiseprotocol.org
37. Seurin, Y.: On the exact security of Schnorr-type signatures in the random oracle

model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 554–571. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29011-4 33

38. Signal Messenger: Technical information (2018). https://signal.org/docs
39. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from

(H)MQV and NAXOS. Des. Codes Crypt. 46(3), 329–342 (2008)
40. Wang, Y., Matsuda, T., Hanaoka, G., Tanaka, K.: Memory lower bounds of reduc-

tions revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 61–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 3

41. Yang, Z.: Modelling simultaneous mutual authentication for authenticated key
exchange. In: Danger, J.-L., Debbabi, M., Marion, J.-Y., Garcia-Alfaro, J., Zin-
cir Heywood, N. (eds.) FPS -2013. LNCS, vol. 8352, pp. 46–62. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-05302-8 4

http://noiseprotocol.org
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-642-29011-4_33
https://signal.org/docs
https://doi.org/10.1007/978-3-319-78381-9_3
https://doi.org/10.1007/978-3-319-78381-9_3
https://doi.org/10.1007/978-3-319-05302-8_4

Strong Asymmetric PAKE
Based on Trapdoor CKEM

Tatiana Bradley(B), Stanislaw Jarecki(B), and Jiayu Xu(B)

University of California, Irvine, USA
{tebradle,sjarecki,jiayux}@uci.edu

Abstract. Password-Authenticated Key Exchange (PAKE) protocols
allow two parties that share a password to establish a shared key in a
way that is immune to offline attacks. Asymmetric PAKE (aPAKE) [20]
adapts this notion to the common client-server setting, where the server
stores a one-way hash of the password instead of the password itself, and
server compromise allows the adversary to recover the password only via
the (inevitable) offline dictionary attack. Most aPAKE protocols, how-
ever, allow an attacker to pre-compute a dictionary of hashed passwords,
thus instantly learning the password on server compromise. Recently,
Jarecki, Krawczyk, and Xu formalized a Universally Composable strong
aPAKE (saPAKE) [23], which requires the password hash to be salted
so that the dictionary attack can only start after the server compromise
leaks the salt and the salted hash. The UC saPAKE protocol shown
in [23], called OPAQUE, uses 3 protocol flows, 3–4 exponentiations per
party, and relies on the One-More Diffie-Hellman assumption in ROM.

We propose an alternative UC saPAKE construction based on a novel
use of the encryption+SPHF paradigm for UC PAKE design [19,26].
Compared to OPAQUE, our protocol uses only 2 flows, has comparable
costs, avoids hashing onto a group, and relies on different assumptions,
namely Decisional Diffie-Hellman (DDH), Strong Diffie-Hellman (SDH),
and an assumption that the Boneh-Boyen function fs(x) = g1/(s+x) [9] is
a Salted Tight One-Way Function (STOWF). We formalize a UC model
for STOWF and analyze the Boneh-Boyen function as UC STOWF in
the generic group model and ROM.

Our saPAKE protocol employs a new form of Conditional Key Encap-
sulation Mechanism (CKEM), a generalization of SPHF, which we call
an implicit-statement CKEM. This strengthening of SPHF allows for a
UC (sa)PAKE design where only the client commits to its password, and
only the server performs an SPHF, compared to the standard UC PAKE
design paradigm where the encrypt+SPHF subroutine is used symmet-
rically by both parties.

1 Introduction

Passwords are the most common form of authentication on the Internet, and
the almost-universal password authentication method is password-over-TLS. In
this method, the user (client) sends their encrypted password over TLS to a
c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 798–825, 2019.
https://doi.org/10.1007/978-3-030-26954-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_26&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_26

Strong Asymmetric PAKE Based on Trapdoor CKEM 799

server, who then decrypts the password and verifies it against a locally stored
password file. The password file does not contain the correct password pw in
cleartext, but rather a random salt s and a salted password hash Fs(pw), which
is a randomized one-way function of the password. Function F must be a (salted)
tight one-way function [7] in the sense that an attacker who compromises the
server and learns its password file (s, Fs(pw)), can find pw only by running an
exhaustive offline dictionary attack, at cost which is linear in the number of
tested password guesses.

However, there are at least two major disadvantages of password-over-TLS:
(1) the cleartext password is handled by the server during login, which could
leak the password without an offline dictionary attack if the server is compro-
mised; and (2) a Public Key Infrastructure (PKI) is needed to authenticate the
server to the client, and the client loses all security if the TLS channel uses a
compromised public key, e.g., due to a phishing attack (see also multiple other
PKI attacks listed in [23]). Both problems of password-over-TLS are well known
and have been partly addressed by the literature on Password Authentication
Key Exchange (PAKE). Only one existing PAKE proposal, however, maintains
password-over-TLS’s advantage of forcing a full offline dictionary attack after
server compromise, while mitigating its disadvantages of potential cleartext pass-
word leakage and reliance on PKI. We propose another, and to motivate our
contribution we first discuss past work on PAKE.

Cryptographic PAKE and aPAKE Protocols. Standard PAKE, intro-
duced by Bellovin and Merritt in [4], formalized in a game-based indistinguisha-
bility approach by Bellare et al. [3], and in the Universally Composable (UC)
framework by Canetti et al. [14], considers secure key exchange between two par-
ties who share the same password. Because passwords have low entropy, PAKE
protocols cannot prevent the active attacker from performing an online imper-
sonation attack by guessing the password, but they do guarantee security against
offline attacks, i.e., active attacks must be the only way to verify a guessed pass-
word. Crucially, PAKE requires only passwords as inputs, and does not rely
on authentic distribution of public keys via PKI, thus solving problem (2) of
the password-over-TLS method. However, the shared-password PAKE model of
[3,14] makes problem (1) even worse: to participate in the protocol, the server
needs to store, not just briefly handle, the cleartext password.

To solve problem (1) and (2) together, Bellovin and Merritt [5] introduced
the notion of asymmetric PAKE (aPAKE), a.k.a. augmented or verifier-based,
which allows the server party to execute the protocol on a one-way function of
the password instead of the password itself. This notion was formalized in the
simulation-based approach by Boyko et al. [11], and in the UC framework by
Gentry et al. [20]. There are several aPAKE’s proposed in the literature, both in
the simulation-based model [7,11,28,29] and in the UC model [20,21,25]. Several
aPAKE protocols have also been proposed with only ad-hoc security arguments
– see [23] for their discussion.

800 T. Bradley et al.

In all the above aPAKE protocols, however, passwords are hashed via
some deterministic one-way function, making password files vulnerable to pre-
computation attacks: An attacker who pre-computes a list of hashes for all pass-
words in an assumed dictionary can instantly find a user’s password on server
compromise. This attack is allowed by aPAKE models because, despite guaran-
teeing that the offline attack takes work linear in the dictionary size, they do
not require that this work be done before server compromise [11,20].

All aPAKE protocols using a deterministic one-way function allow for the
password hash to be randomized if the random salt assigned to a given user
account is “public” i.e., if it is revealed in the authentication protocol. This
makes the pre-computation attack harder, because the adversary must engage
in the online protocol to gather the (public) salt values assigned to user accounts,
and pre-compute separate (pw , Fs(pw)) tables for each user-specific salt value s.
Yet the core of the problem remains: the adversary can pre-compute hash values
for a dictionary of the most probable passwords, thus learning the real password
immediately on server compromise.

Strong aPAKE. To prevent pre-computation attacks, Jarecki, Krawczyk, and
Xu have recently proposed a UC strong aPAKE (saPAKE) notion [23], which
enforces that the offline dictionary attack takes O(|D|) work after server compro-
mise. Strong aPAKE thus bridges the security gap between password-over-TLS
and PAKE, with no cleartext passwords on the server, no reliance on PKI, and
no instant password retrieval on server compromise.

In the same paper [23] presented an efficient UC saPAKE protocol, called
OPAQUE: It relies on standard prime-order groups, the client C and server S
make respectively only 4 and 3 (multi-)exponentiations, and the protocol has
3 message flows.1 The security of OPAQUE relies on ROM and an interactive
hardness assumption of One-More Diffie-Hellman (OMDH), which states that an
adversary who is allowed n queries to the Diffie-Hellman oracle (·)k can compute
the (·)k function on at most n out of n + 1 random challenge group elements.

Our saPAKE Contribution. We propose a new UC saPAKE construction
family based on a novel application of the encryption+SPHF paradigm. Our
saPAKE construction requires ROM, as OPAQUE [23] does2, it has only 2
message flows, and it has comparable computational costs to OPAQUE, with
1 variable-base multi-exponentiation and (at most) 11 fixed-base exponentia-
tions for the client and 2 variable-base multi-exponentiations and 2 fixed-base
exponentiations for the server. Unlike OPAQUE, it does not require hashing
1 The conference paper [23] reported it as 2 message flows but the full version [24]

explain why 3 flows seem necessary.
2 ROM appears to be a minimal model necessary to achieve UC aPAKE [20], and

thus UC saPAKE. To satisfy the UC (s)aPAKE notion, we need some idealized
computation model (e.g., RO or a generic group) that allows us to “count” the
number of times F (x) is called in the adversary’s local computation, and also to
extract the effective inputs x on which the adversary computes F values.

Strong Asymmetric PAKE Based on Trapdoor CKEM 801

onto a curve, which simplifes its implementation over some curves. Our proto-
col is also based on different hardness assumptions, namely DDH and Strong
DH, and any assumptions necessary for the (hashed) Boneh-Boyen function
Fs(x) = g1/(s+H(x)) [9] to realize what we call a Salted Tight One-Way (STOWF)
function. The protocol family we show can also be used with different STOWF
function candidates, possibly leading to further efficiency improvements and
weaker security assumptions for saPAKE’s.

Our Approach: Using Implicit-Statement and CCA-Secure CKEM.
Our approach is inspired by the encryption+SPHF paradigm in UC PAKE
design, which began with the work of [19,26]. In this paradigm, both the client
C and the server S commit to their passwords, respectively pwC and pwS, using
an encryption scheme Enc whose public key pk is in the CRS. Party C uses
the ciphertext cS sent by S to derive a secret key kC via a Smooth Projective
Hash Function (SPHF) on input statement xC = (pwC, cS, pk), where the SPHF
operates on language L of statements (pw , c, pk) such that c = Encpk (pw).
Recall that an SPHF allows the hashing party C to compute a projection key
hpC such that S can derive the secret key kC given only the projection key hpC
and a witness for xC ∈ L. The witness is the randomness r that S used to
encrypt cS = Encpk (pwS; r), and r is a valid witness for the client’s statement
(pwC, cS, pk) ∈ L only if cS also encrypts pwC, i.e., if pwC = pwS. The protocol
is symmetrical, i.e. server S follows the same process with C’s ciphertext to form
kS, and the final key is a combination of the two keys, e.g. kC ⊕ kS.

It is not immediately clear how to apply this paradigm to the setting of
saPAKE, because S cannot use the same SPHF as C, as it does not hold pw , but
only the password file (s, z) for z = Fs(pw). Benhamouda and Pointcheval [7]
showed how to solve this problem in the context of a game-based aPAKE (but
not strong aPAKE) by using SPHF’s for two different languages, one to verify
the client’s encryption of pw using a (randomized but with public salt) one-way
function F (pw) held by the server, and another to verify the server’s encryption
of z = F (pw). (Jutla and Roy [25] also applied this approach in the context of
a UC aPAKE.) In saPAKE, however, the client cannot compute z = Fs(pw), as
the random salt s must be private on the server, so it is not clear how to adopt
this approach to the saPAKE setting.

Instead, we condense the encryption+SPHF paradigm so that a single SPHF
authenticates both the client and the server. To do this, we start from a gen-
eralized SPHF protocol called a Conditional Key Encapsulation Mechanism
(CKEM), introduced by Benhamouda, Couteau, Pointcheval, and Wee [6] as
an Implicit Zero-Knowledge protocol, and we strengthen its security properties
so that the CKEM public message m, which corresponds to the SPHF projection
key, can be used as a one-time secret authenticator: If S uses our CKEM to verify
that C’s ciphertext cC encrypts pre-image pw of S’s password file z = Fs(pw),
then S’s CKEM message commits to its statement xS = (pk , cC, Fs(pw)), and
hence it can also act as S’s authentication to C. This commitment cannot be
publicly verifiable, since xS reveals Fs(pw), but the statement-committing and

802 T. Bradley et al.

statement-privacy properties of our CKEM require that the commitment is ver-
ifiable only by a party (in our case, the client C) that holds a witness for xS ∈ L.
Furthermore, for the message m to work as an authenticator for S in the UC
model we need to make the sender’s statement extractable by the ideal-world
simulator. Moreover, standard CKEMs assume that both parties have the full
language statements as inputs, but in our case the server’s statement involves
a password file (s, z) which cannot be made public. For that reason we develop
a CKEM variant we call an Implicit Statement CKEM, where the sender effec-
tively encrypts the statement it assumes in the CKEM message, and the receiver
decrypts it and verifies that it agrees with its witness.

Perhaps surprisingly, we can meet all these requirements by adding just one
(multi-)exponentiation for the receiver to the cost of the standard SPHF for the
same language L, with the slight caveat that SPHF-to-strong-CKEM compiler
assumes ROM. However, recall that realizing the UC (s)aPAKE functionality
already seems to require an idealized model like ROM, hence it is natural to use
ROM to reduce the cost of all the tools used in an saPAKE protocol.

Another cost-reducing feature of our saPAKE construction is that the encryp-
tion scheme used by C to commit to a password does not need to be non-
malleable, but only indistinguishable. This weaker requirement lets us use ElGa-
mal encryption, which has half the cost of Cramer-Shoup encryption, and the
SPHF for the language L of “encryptions of password file pre-image” is also
correspondingly cheaper. This cost-saving is enabled by CCA-like security of
our implicit-statement CKEM, i.e., the CKEM for statement x = (pk , c, z) is
secure even to the adversary who has access to a trapdoor-receiver oracle (which
corresponds to a decryption oracle in CCA encryption) as long as the “trapdoor-
decrypted” CKEM messages are different from the challenge CKEM message.3

Indeed, the techniques we use to compile our (non-malleable) CKEM from (mal-
leable) SPHF resemble the Fujisaki-Okamoto transform [17] from indistinguish-
able encryption to CCA-secure encryption.

On the Use of Idealized Models. Our saPAKE scheme makes use of both
the (non-programmable) Random Oracle Model (ROM) and the (programmable)
Generic Group Model (GGM). However, GGM is isolated so that it is used only
in the offline parts of the protocol, i.e., we use it to show that the adversary
may only make offline queries after it steals a password file, and cannot perform
any meaningful pre-computation. By contrast, we use ROM in both the offline
and online parts of the protocol. As we have mentioned, it appears that some
programmable idealized computational model like the Random Oracle Model,
the Ideal Cipher Model, or the Generic Group Model, is necessary in any UC
(s)aPAKE, because of the strong constraints which the UC (s)aPAKE model
imposes on the local computation of the real-world adversary. Essentially, the
simulator must provide the adversary with a password file before it knows the

3 These CCA-like properties were achieved already by the CKEM of [6] in the standard
model, i.e. without ROM. Here we show the same properties for implicit-statement
(and statement-private) CKEM’s, and we assume ROM to minimize the costs.

Strong Asymmetric PAKE Based on Trapdoor CKEM 803

actual password, then detect offline password guesses, and, if a guess is correct,
program the ideal model so that the password file turns out to correspond to the
correct password. That said, it may be possible to construct a UC (s)aPAKE
which uses ROM/IC/GGM only in the offline part. A similar argument was
used by VPAKE [7] in the context of a game-base aPAKE, to justify using both
GGM and ROM only in the security analysis of the offline dictionary attacks
on the password file. We analyze the security of our saPAKE protocol candidate
assuming GGM only in the offline part, and ROM in both the offline and the
online parts, where the latter choice is made to optimize the concrete efficiency
of the resulting protocol.

Summary of Contributions. In summary, our contributions are as follows:

– We construct the first two round protocol that realizes the UC saPAKE func-
tionality of [23]. Our protocol is based on two primitives which we intro-
duce: implicit-statement trapdoor CKEM and salted tight one-way functions
(STOWF).

– We introduce and realize a strong notion of an implicit-statement condi-
tional key encapsulation mechanism (CKEM). Implicit-statement CKEM dif-
fers from standard CKEM in that the sender’s statement is private to anyone
who does not a witness for it, and the receiver runs the protocol using only a
witness, and might not the same statement which the sender uses.

– We formalize the notion of a salted tight one way function (STOWF) as
a UC functionality FSTOWF, and we show that the (hashed) Boneh-Boyen
function Fs(x) = g1/(s+H(x)) realizes FSTOWF in the programmable generic
group model and ROM.

In Table 1 we summarize a comparison between our saPAKE protocol with
several previous work on asymmetric PAKE’s, in terms of efficiency, security
model, and security assumptions. We stress that there are other aPAKE protocol
proposals which were shown with only ad-hoc security arguments, and we refer
to [23] for references.

Paper Roadmap. In Sect. 2 we define the strong (simulation-sound and
statement-private) notion of implicit-statement CKEM described above, and
show a generic construction of such CKEM from an SPHF for the same lan-
guage in ROM. In Sect. 3 we propose the UC model for Salted Tight One-Way
Functions (STOWF), and we show that the (hashed) Boneh-Boyen function
Fs(x) = g1/(s+H(x)) realizes this UC functionality in GGM and ROM. In Sect.
4 we show an saPAKE protocol based on these STOWF and CKEM tools, and
we show that it realizes the UC saPAKE functionality of [23] in ROM assuming
that function f is a UC STOWF. Finally, in Sect. 5 we show a highly efficient
instantiation of this UC saPAKE using the Boneh-Boyen function as the STOWF
and the generic CKEM construction of Sect. 2 applied to the specific language
implied by this STOWF instantiation.

804 T. Bradley et al.

Table 1. We compare several asymmetric PAKE protocol proposals regarding security
claims, number of rounds, security assumptions, and client and server efficiency, where v
and f are resp. variable-base (multi-)exponentiations and fixed-based exponentiations.
All protocols rely on ROM, except [7,25] only in the offline part. GB and SIM indicate
resp. game-based and simulatability-based aPAKE security notions. (1) GGM used
only in the offline part; (2) OPAQUE costs reflect “multiplicative blinding” OPRF
optimization reported in [24]; (3) [25] also uses a significant number of exponentiations;
(4) GMR and HJKLSX are compilers from UC PAKE to UC aPAKE, here instantiated
with the two-round UC PAKE of [12] secure under DDH in ROM, with resp. 1v+4f
and 1v+2f costs for client and server; In the Ideal Cipher (IC) the UC PAKE of [12]
reduces these costs by resp. 3f and 1f for client and server; (5) The 1-flow version of
aPAKE of [7] uses a few more mostly fixed-base exponentiations.

Security Client Server Rounds Assumptions

This work UC saPAKE 1v+11f 2v+2f 2 DDH, 2-SDH, GGM(1)

OPAQUE(2) [24] UC saPAKE 2v+2f 2v+1f 3 OMDH

Jutla-Roy [25] UC aPAKE O(1) pairings(3) 1 SXDH, MDDH

HJKLSX(4) [21] UC aPAKE 2v+4f 1v+4f 3 DDH

GMR(4) [20] UC aPAKE 1v+5f 2v+2f 3 DDH

VPAKE [7] GB aPAKE 3v+8f 3v+4f 2 or 1(5) DDH, GGM(1)

PAK-X [11] SIM aPAKE 3v+1f 2v+1f 3 DDH

2 Conditional Key Encapsulation Mechanisms

Notation. Throughout the paper, κ denotes the security parameter; “←”
denotes either a deterministic or a randomized assignment; and “←R” denotes
uniform sampling from a given set.

Basic CKEM. A Conditional Key Encapsulation Mechanism (CKEM)
scheme [1,6,8,16,27] implements a transfer of a random key between two par-
ties, the sender and the receiver, under the condition that a given statement,
known by both parties, belongs to some language. A CKEM can be implemented
with a Smooth Projective Hash Function (SPHF), but it generalizes SPHF to
interactive and only computationally secure protocols.

Let L be an NP language, a subset of implicit universe U , and let R[L] be
an efficiently verifiable relation associated with L. A CKEM for language L is
a triple (PG,Snd,Rec) where PG is a parameter generation algorithm that on
input a security parameter κ outputs public parameters π, while Snd and Rec
are interactive algorithms executed resp. by Sender and Receiver, where Snd runs
on input parameters π, label � identifying the protocol instance, and statement
x , and Rec runs on inputs π, �, x and a witness w , and both algorithms locally
output a key ck . (To reduce visual clutter we will denote inputs π, � as indices,
e.g. Sndπ,�(x) will denote Snd(π, �, x), etc.) CKEM correctness requires that if
the sender and the receiver hold the same statement in L, and the receiver holds

Strong Asymmetric PAKE Based on Trapdoor CKEM 805

a witness for it, then they output the same key, i.e. for all κ, �, all π ← PG(1κ)
and all (x ,w) ∈ R[L], if (ckS, ckR) ← [Sndπ,�(x),Recπ,�(x ,w)] then ckS = ckR.
The basic security property of CKEM is soundness, which states that if x /∈ L
then an efficient adversary interacting with Sndπ,�(x) cannot distinguish Snd’s
output key from a random string. In other words, if the sender generates its key
on a false statement then this key is pseudorandom to the receiver.

Trapdoor CKEM. Benhamouda et al. [6] defined a trapdoor CKEM, called an
Implicit Zero-Knowledge therein, which allows a simulator holding a global trap-
door to compute the sender’s key even on false statements. This simulatability
property makes CKEM a stronger protocol building block because it allows the
simulator to perform any subsequent actions an honest party would do using a
key received via a CKEM on a statement proving honest behavior. (Recall that
the simulator typically does not have a witness for such statement because it
needs to simulate an honest party without knowing its private data.) A trap-
door CKEM scheme includes two additional algorithms, the trapdoor parameter
generation procedure TPG, which outputs parameters π together with a simu-
lation trapdoor td , and a trapdoor receiver algorithm TRec which satisfies the
zero-knowledge property [6], which states that for any (x ,w) ∈ R[L], an interac-
tion with TRecπ,�(x , td) (including its local output) is indistinguishable from an
interaction with Recπ,�(x ,w). Moreover, in parallel to zero-knowledge proofs, a
trapdoor CKEM should satisfy simulation-soundness [6], which states that for
any x �∈ L an adversary interacting with Sndπ,�(x) cannot distinguish Snd’s out-
put key from a random string, even given access to oracle TRecπ,�′(x ′, td) for
any (�′, x ′) �= (�, x).

Implicit-Statement CKEM. We introduce a new CKEM variant we call an
implicit-statement CKEM, in which the receiver might not know the statement
used by the sender, and has only a witness as its input. This makes a difference
for languages where the same value can be a witness for many statements. Note
that in the context of saPAKE application a language of pre-images of a salted
hash function in an example of such language because password pw is a witness
to correctness of password file (s, fs(pw)) for every salt value s (see Sect. 3).
Recall also that an saPAKE server must hide the salt value, to prevent pre-
computation in a dictionary attack that can be staged after server compromise,
so the statement assumed by the saPAKE server cannot be sent to the client in
the clear. An implicit-statement CKEM allows the sender to embed its statement
into the CKEM message so that the receiver reconstructs it together with the
sender’s key only if this statement is matched by the receiver’s witness.

Since our implicit-statement CKEM construction is non-interactive we state
all definitions below in this context, but they can be easily adapted to the inter-
active setting. Thus we define CKEM scheme as a tuple of non-interactive algo-
rithms (PG,TPG,Snd,Rec,TRec) where PG,TPG are as above, Sndπ,� on input
x outputs key ck and a message m, and Recπ,� and TRecπ,�, output (ck , x)
on inputs resp. (w ,m) and (td ,m). The implicit-statement CKEM correctness

806 T. Bradley et al.

requires that for all κ, � and (x ,w) ∈ R[L] if π ← PG(1κ), (ck ,m) ← Sndπ,�(x),
and (ck ′, x ′) ← Recπ,�(w ,m) then (ck ′, x ′) = (ck , x). We require two additional
syntactic properties of CKEM: statement verification for the receiver, which
states that for all w ,m, � if π ← PG(1κ) and (ck , x) ← Recπ,�(w ,m) then
(a) if x �= ⊥ then (x ,w) ∈ R[L] and (b) if x = ⊥ then ck is a fresh uni-
form random string, and statement recovery for the trapdoor receiver, which
states that for all � and x ∈ U , if (π, td) ← PG(1κ), (ck ,m) ← Sndπ,�(x), and
(ck ′, x ′) ← TRecπ,�(td ,m), then Pr[x ′ �= x] ≤ negl(κ).

An implicit-statement CKEM scheme must satisfy the parameter indistin-
guishability, zero-knowledge, and simulation soundness properties [6], which we
adjust to implicit-statement CKEM’s as follows:
(I) parameter indistinguishability: Distributions {π}π←PG(1κ) and {π}(π,td)←TPG(1κ)

are computationally indistinguishable.
(II) zero-knowledge: The zero-knowledge defined in [6] required that the real-
world receiver output Recπ,�(x ,w ,m) is indistinguishable from the simulator
output TRecπ,�(x , td ,m). By contrast, in implicit-statement CKEM, Rec runs
only on w , so it is not obvious what the corresponding ideal-world interaction
should be, because w might correspond to many statements. However, since we
require that Rec outputs statement x extracted from m along with key ck , and
that Rec outputs x �= ⊥ only if (x ,w) ∈ R[L], the ZK property for implicit-
statement CKEM will compare Rec’s output with TRec’s output modified by a
wrapper that overwrites TRec’s output (ck , x) with ($,⊥) if w is not a witness
for x .4 Formally, implicit-statement CKEM is zero-knowledge if for every efficient
algorithm A = (A1,A2) we have:

{A2(st , ck , x)}(ck ,x)←Recπ,�(w ,m) ≈ {A2(st , ck , x)}(ck ,x)←Wrapw (TRecπ,�(td,m))

where (π, td) ← TPG(1κ) and (st , �,w ,m) ← A1(π, td) in both distributions, and
Wrapw is an algorithm which outputs (ck , x) on input (ck , x) if (x ,w) ∈ R[L]
and otherwise outputs (ck ′,⊥) for ck ′ ←R {0, 1}κ.
(III) simulation soundness: If x /∈ L then (ck ,m) ← Sndπ,�(x) is indistinguish-
able from ($,m) even if the adversary interacts with a trapdoor receiver on any
(�′,m ′) �= (�,m). Formally, for every efficient algorithm A = (A1,A2):

{ATRecBlock(�,m)(π,·,td,·)
2 (st , ck ,m)} ≈ {ATRecBlock(�,m)(π,·,td,·)

2 (st , ck ′,m)}

where (π, td) ← TPG(1κ), (st , �, x) ← ATRec(π,·,td,·)
1 (π) s.t. x /∈ L,

(ck ,m) ← Sndπ,�(x), ck ′ ←R {0, 1}κ, and oracle TRecBlock(�,m)(π, ·, td , ·) returns
TRecπ,�′(td ,m ′) on any query (�′,m ′) �= (�,m).

Statement Privacy. As said above, an implicit-statement CKEM can sup-
port applications in which the statement assumed by the sender is hidden from
everyone except the receiver who holds the matching witness. This is captured

4 To see that this wrapper is necessary, observe that TRec should output (·, x) on
input m output by Snd(x), whereas Rec(w) outputs (·, ⊥) if (x ,w) /∈ R[L].

Strong Asymmetric PAKE Based on Trapdoor CKEM 807

by the statement privacy property of CKEM, that for any statements x0, x1,
both not in language L, an adversary cannot tell whether the sender’s message
is produced on x0 or x1. Formally, we call CKEM statement private if for every
efficient algorithm A = (A1,A2):

{ATRecBlock(�,m0)(π,·,td,·)
2 (st , ck0,m0)} ≈ {ATRecBlock(�,m1)(π,·,td,·)

2 (st , ck1,m1)}

for (π, td) ← TPG(1κ), and (st , �, x0, x1) ← ATRec(π,·,td,·)
1 (π) s.t. x0, x1 /∈ L,

(ck b,mb) ← Snd(π, �, xb) for b ∈ {0, 1}, and oracle TRecBlock(�,m)(π, ·, td , ·) acts
as in the definition of simulation soundness above.

Note on Statement Privacy: It may be surprising that we define statement pri-
vacy only for incorrect statements, x0, x1 /∈ L. Indeed, there are many ways to
express the intuitive notion of statement privacy. We chose to state it only for
statements x0, x1 /∈ L but to allow the adversary to see both the sender’s message
m and the sender’s local output ck , for (ck ,m) ← Sndπ,�(xb) for b = 0, 1. We
could have instead allowed any adversarially chosen statements, including those
in L, but let the adversary see only the message m, and not the sender’s local
output ck . We cannot allow both because if the adversary chooses (xb,wb) ∈ R[L]
and then learns (ck ,m) ← Sndπ,�(xb), it can then run the receiver algorithm on
(wb,m) to test if it returns the same value ck . Our choice to restrict statements
works better in the context of the higher-level saPAKE protocol of Sect. 4: Even
though statement x used by the real-world sender party might be true (which
is the case if the two parties have matching passwords), in the protocol simu-
lation the statement is guaranteed to be false (the saPAKE simulator does not
know any party’s password when the protocol starts), and therefore the above
statement privacy property suffices.

CKEM Security and Privacy Combined. The notion of simulation sound-
ness and statement privacy can be combined into a single notion we call simulata-
bility. Let Sndsimπ,� be the following simulator algorithm: Sndsimπ,� picks an arbitrary
false statement x ′ �∈ L, computes (ck ,m) ← Sndπ,�(x ′), picks ck ′ ←R {0, 1}κ,
and outputs (ck ′,m). We say that an implicit-statement CKEM is simulatable
if for any efficient algorithm A = (A1,A2):

{ATRecBlock(�,m)(π,·,td,·)
2 (st , ck0,m0)} ≈ {ATRecBlock(�,m′)(π,·,td,·)

2 (st , ck ′,m1)}

for (π, td) ← TPG(1κ), and (st , �, x) ← ATRec(π,·,td,·)
1 (π) s.t. x /∈ L, (ck0,m0) ←

Sndπ,�(x) and (ck ′,m1) ← Sndsimπ,�.

Lemma 1. An Implicit-statement CKEM is simulatable if and only if it is sim-
ulation sound and statement private.

Proof Sketch: Simulatability implies simulation soundness because A1 can out-
put x0 = x1. Simulatability also implies statement privacy, because if (ck0,m0) ≈
($,m1), i.e., a distribution where the ck1 part of (ck1,m1) is overwritten

808 T. Bradley et al.

by a random string, and by simulation soundness ($,m1) ≈ (ck1,m1), then
(ck0,m0) ≈ (ck1,m1). For the opposite direction, since statement privacy implies
(ck0,m0) ≈ (ck1,m1), and simulation soundness implies (ck1,m1) ≈ ($,m1),
together they imply that (ck0,m0) ≈ ($,m1).

Relation to CCA Security and Privacy. We note that simulation soundness
and statement privacy for CKEM are analogous to CCA-security and CCA-
anonymity for public key KEM. If we view a statement as an encryption public
key, and its witness as a private key, then the Snd procedure is analogous to
public key KEM encryption and the Rec procedure is analogous to decryption.
Moreover, the TRec procedure can be used by the simulator to implement access
to the decryption oracle in the CCA security experiment: Recall that in the
CCA security notion of KEM the adversary receives a challenge KEM ciphertext
and must distinguish from random the KEM key encrypted in this ciphertext,
given access to a decryption oracle which blocks the challenge ciphertext. The
simulation soundness game follows the same structure, with the TRecBlock oracle
acting as the decryption oracle and the KEM message m playing the role of the
ciphertext. The CCA anonymity KEM game is similar to the CCA security game,
but with (key,ciphertext) challenge being generated on two randomly generated
public keys. If the public keys are implemented as language statement, and if
the language is a hard promise problem, i.e., if a random correct statement
(=public key) cannot be distinguished from a random incorrect statement, then
statement privacy implies CCA anonymity. Our notion of CKEM can be thus
thought of as a generalization of CCA secure and anonymous PKE to CCA secure
and anonymous witness encryption [18]. Indeed, the construction of simulation-
sound CKEM from an SPHF in Sect. 2.1 below can be seen as a generalization
of the Fujisaki-Okamoto transform [17] from IND PKE to CCA PKE.

2.1 Implicit-Statement CKEM Construction in ROM from SPHF’s

We construct a non-interactive implicit-statement CKEM which is zero-
knowledge, simulation sound, and statement private, for any language L which
has a statement private Smooth Projective Hash Function (SPHF) [15]. Our con-
struction, which is secure in the Random Oracle Model (ROM), is efficient: Its
costs are as in the underlying SPHF plus, for the receiver, the cost of verifying
that a projection key and a hash were computed correctly given the hash key.
This verification can be done with a single multi-exponentiation using known
batch signature verification techniques. We first describe the SPHF notion, and
then show how to create a CKEM assuming an SPHF with the desired proper-
ties. We exemplify this generic construction in Sect. 5.1 for the case of language
L used in our saPAKE construction.

Statement Private SPHF. We say that an algorithm tuple (Hash,PHash)
is an SPHF for language L ⊆ U (for U an implicit universe) if Hash on input

Strong Asymmetric PAKE Based on Trapdoor CKEM 809

a statement x outputs a projection key hp and a hash value v,5 and PHash
on input a witness w and hp outputs another hash value v′. Procedure Hash
must be randomized and we will refer to its randomness as a hash key hk.
Note that we assume that procedure PHash does not take a statement x as
input, which is important for languages where one witness can correspond to
many statements. Correctness requires that for all (x ,w) ∈ R[L], if (v, hp) ←
Hash(x) then v ← PHash(w , hp). We will consider SPHF schemes that satisfy
the statistical smoothness and statement privacy properties, defined as follows:

(I) Smoothness: For all x �∈ L

{v, hp}(v,hp)←Hash(x)

(s)≈ {v′, hp}(v,hp)←Hash(x),v′←R{0,1}κ

(II) Statement Privacy: For all x0, x1 ∈ U close:

{hp}(v,hp)←Hash(x0)

(s)≈ {hp}(v,hp)←Hash(x1)

CKEM Construction. Let SPHF = (Hash,PHash) be a statement private
SPHF for L, let H0 : {0, 1}∗ → ({0, 1}κ)2 and H1 : {0, 1}∗ → {0, 1}κ be hash
functions, and let (E,D) be an indistinguishable symmetric encryption with κ-bit
keys. Consider CKEM = (PG,TPG,Snd,Rec,TRec) defined as follows:

– PG(1κ) and TPG(1κ) output descriptions of H0 and H1 as π. The trapdoor td
output by TPG is access to the adversary’s queries to random oracles H0,H1.

– Sndπ,�(x):
1. Generate (v, hp) ← SPHF.Hash(x ;hk) for random hk;
2. Compute (ek , ck) ← H0(v), e ← Eek (hk, x), and τ ← H1(v, hp, e, �);
3. Output (ck ,m) for m = (hp, e, τ).

– Recπ,�(w ,m) for m = (hp, e, τ):
1. Compute v ← SPHF.PHash(w , hp);
2. Compute (ek , ck) ← H0(v), (hk, x) ← Dek (e), and τ ′ ← H1(v, hp, e, �);
3. Output (ck , x) if τ ′ = τ , (v, hp)= SPHF.Hash(x ;hk), and (x ,w)∈ R[L];

Otherwise output (ck ,⊥) for ck ←R {0, 1}κ.
– TRecπ,�(td ,m) for m = (hp, e, τ):

1. Among adversary’s H1 queries find ṽ s.t. τ = H1(ṽ, hp, e, �);
If none or more than one ṽ found, output (ck ,⊥) for ck ←R {0, 1}κ;

2. If unique ṽ found, set (ek , ck) ← H0(ṽ) and (hk, x) ← Dek (e);
3. Output (ck , x) if (ṽ, hp) = SPHF.Hash(x ;hk);

Otherwise output (ck ,⊥) for ck ←R {0, 1}κ.

Theorem 1. If SPHF is a smooth and statement private SPHF for L and E is
an indistinguishable encryption, then the above is a zero-knowledge, simulation
sound, and statement private implicit-statement CKEM for L in ROM.

5 Standard SPHF syntax uses two separate algorithms, KG → (hp, hk) and
Hash(x , hk) → v, which we combine for notational convenience in our context.

810 T. Bradley et al.

Due to limited space, we defer the full proof of Theorem 1 to the full version,
and give a short sketch of the main arguments below.

Proof of Theorem 1 (Sketch). Correctness, statement verification, and parame-
ter indistinguishability can be easily verified by inspection of the protocol. In
particular, correctness follows directly from correctness of the SPHF and cor-
rectness of the encryption scheme E. Property (a) of statement verification holds
because Rec checks if (x ,w) ∈ L, and property (b) holds because Rec picks a
random ck when x = ⊥. Finally, parameter indistinguishability holds trivially
because PG and TPG generate public parameters in an identical way.

Statement recovery holds because a sender message commits to values
(hp, e, τ) via the random oracle, and TRec, given access to the RO table, can
then deterministically compute the statement x . In particular, the sender sets
τ = H1(v, hp, e, �), where v is the SPHF value, so TRec will find v in the RO
table except with the negligible probability of a collision in H1. If v is found, then
TRec will get the same statement x from Dek (e) by correctness of the symmetric
encryption, as the key ek is deterministically computed by H0(v).

Zero-knowledge follows from the correctness of the underlying SPHF scheme.
Recall that zero-knowledge requires, essentially, that no efficient adversary can
distinguish between the outputs of Rec and TRec for valid (statement,witness)
pairs. We give an intuitive argument as to why this is the case. In our construc-
tion, as long as Rec and TRec find the same SPHF hash key v that was used to
generate the message m, they will end up with the same statement x , which will
lead to identical outputs (if the message is invalid, i.e., not computed by Snd,
this also will be detected). A challenge is then in showing that Rec and TRec do
indeed find the same SPHF hash value v. Intuitively, this is the case because the
adversary commits to message elements hp and e along with hash value v via
the random oracle hash H1. Because of this commitment, TRec will find the hash
value v in the random oracle table, and can check its validity through the call to
SPHF.Hash. By SPHF correctness, if (w , x) ∈ R[L], and hp is valid, then Rec’s
call to SPHF.PHash(w , hp) will produce the same hash value v. Rec checks both
that A indeed committed to the hash value by checking if τ = H1(v, hp, e, �), and
checks the validity of the hash value through the call to SPHF.Hash. Rec also
checks directly if (x ,w) ∈ R[L], which is not performed by TRec (since TRec
has no witness w), but it is performed in the ZK experiment by the wrapper
Wrapw over the (ck , x) output of TRec. The full proof captures the above in a
sequence of game changes showing that adversary’s interactions with the Rec
and the (wrapped) TRec procedures are indistinguishable.

By Lemma 1, simulation soundness and statement privacy follow from the
simulatability property that captures them both. Simulatability of our CKEM
construction follows from the smoothness and statement privacy of the under-
lying SPHF scheme, and the indistinguishability of the symmetric encryp-
tion scheme. Simulatability requires that no efficient adversary can distinguish
between the real output (key, message) from Snd on input x0, and a pair (random
key, message) where the message is from Snd on input x1, even in the presence
of a trapdoor receiver oracle. Because the CKEM key is computed as the hash

Strong Asymmetric PAKE Based on Trapdoor CKEM 811

of the SPHF hash value v, we know that the CKEM key will appear random as
long as the hash value is not known. SPHF smoothness gives us that hash values
v computed from SPHF.Hash(x ;hk) on x /∈ L appear random and independent
of projection keys hp as long as key hk used in this hash remains secret. How-
ever, an encryption of the randomness hk used to generate v is provided to the
adversary, and the encryption key is in turn created from H0(v). This is a circu-
lar encryption, but in the random oracle model we avoid this circularity by first
assuming that the adversary does not query either H1 on v, which means that
the encryption key appears random, which in turn means, by indistinguishability
of E, that the ciphertext e does not reveal anything about hk. Further, if the
adversary also does not query H1 on v, then the tag τ appears random as well.
At this point, we can safely invoke the SPHF smoothness property to say that v
appears random and independent of hp, and the probability of querying either
random oracle on v is then negligible. Finally, we use SPHF statement privacy,
which gives us that projection keys hp0, hp1 are indistinguishable if created via
Hash on two different statements not in the language L, to show that we may
always create the projection key with x1 without being detected. ��

3 Security of a Password File Against Dictionary Attacks

In a strong asymmetric PAKE protocol, the salted function F used to hash a
password must be a one-way function. However, not all one-way functions will
work: To use the Encryption+SPHF approach to UC PAKE construction F
needs to have an arithmetic structure that admits an efficient SPHF for the
authentication protocol. Unfortunately, an arithmetic structure makes it harder
to characterize F ’s resistance to brute-force attacks, i.e., to lower-bound the
computational complexity of finding pw given (s, Fs(pw)) where s is a random
salt and pw is sampled from a polynomial-size “password dictionary” set D.

To quantify post-compromise resistance of a password file to brute-force
attacks, Benhamouda and Pointcheval introduced the notion of tight one-
wayness [7], which we will adapt to the case where the one-way function is salted,
i.e., randomized, as is necessary in an saPAKE, and we propose to model the
resulting Strong Tight One-Way Function (STOWF) notion with a UC function-
ality. We explain why some STOWF candidates do not work for our purposes,
we propose a new STOWF candidate, an SPHF-friendly function that uses the
Boneh-Boyen signature [9] with the hashed password as a key and the salt as a
signed message, and we show that this function realizes the FSTOWF functional-
ity in the programmable Generic Group Model (GGM) and the Random Oracle
Model.

While it seems unavoidable to use GGM to analyze the fine-grained hardness
of an algebraic salted one-way function Fs, we do not rely on GGM in the
security analysis of the saPAKE protocol that uses (s, Fs(pw)) as the password
file. Abstracting the one-wayness property as a UC functionality FSTOWF helps
keep this argument modular, and in Sect. 4 we show an saPAKE protocol that
realizes the ideal saPAKE functionality given any realization of FSTOWF which
satisfies some additional properties which we explain below.

812 T. Bradley et al.

Modeling the Password File with Salted Tight One-Way Function.
Since we assume that passwords come from a polynomial-sized dictionary, the
adversary can learn the correct password by computing F (pw) for all passwords
pw in the dictionary. More precisely, if the argument pw is known to come from
some domain subset D then given z = f(pw) an algorithm that evaluates F on
any fraction ε of D will find pw with probability ε. This sets an upper bound
on the hardness for the problem of inverting F on a subdomain, and we call F
a tight one-way function (TOWF) [7] if this is also the lower bound, i.e., if for
any polynomial-size subset D of the domain of F any algorithm which runs in
time ε · |D| has at most ε probability of inverting F (x) for x ←R D. For example,
this holds if function F is a random oracle. On the other hand, any additional
structure in the one-way function might make it not tight. For example, if F
is additively homomorphic, e.g. F (x) = gx where g generates a multiplicative
group, and D is an integer interval, then the Baby-Step Giant-Step algorithm
finds x given F (x) in time O(

√|D|) with probability 1.
The goal of a strong asymmetric PAKE is to further constrain the adversary

so that an ε-advantage attacker must perform ε · |D| computation after server
compromise. This means that the password file must be created by a random-
ized, a.k.a. salted, one-way function. Let {Fs}s∈R be a family of functions that
share the same domain and range and are indexed by values s we call salt.
Informally, we call {Fs} a family of salted tight one-way functions (STOWF)
if for any domain subset D ⊆ X it holds that any efficient algorithm A that
has ε probability of computing F−1

s (z) given (s, z) = (s, Fs(x)) for s ←R R and
x ←R D, must perform at least ε · |D| computation after receiving (s, z) as an
input. In other words, no efficient pre-computation can help the adversary to
avoid the post-compromise cost Ω(|D|) to recover pw given the compromised
server password file (s, Fs(pw)) if (s, pw) ←R R × D.

Formally, STOWF is defined by a pair of efficient algorithms (PG,Eval) where
(1) PG(1κ) outputs a description of a function family F , with domain X, salt
domain R, and range Y , such that Fs : X → Y for every s ∈ R, and (2)
algorithm Eval evaluates Fs(x) given (s, x) ∈ R × X and the description of F .

Examples of Salted Tight One-Way Functions. In the Password-over-TLS
authentication used on the web today the server-held password file is (s, z) for
z = Fs(pw) = H(s, pw), and to authenticate the client sends password pw ′

over the server-to-client PKI-authenticated TLS session and the server accepts
if H(s, pw ′) = z . This method enforces the STOWF lower bound if H is a random
oracle: If |s| = Ω(κ) then regardless of any (efficient) pre-computation the adver-
sary can recover the client’s password only by computing H(s, x) for x ∈ D after
server compromise. However, a plain random oracle has no arithmetic structure,
so it is not clear how to use it as a STOWF in an saPAKE protocol.

The recently proposed PKI-free saPAKE scheme OPAQUE [23] gives a dif-
ferent example of a tight STOWF. The syntax differs slightly, as the password
file is (s, Fs,r(pw)) where r is an additional randomness needed to evaluate F ,
but the crux of the scheme is that s is implemented as a key k of an Obliv-

Strong Asymmetric PAKE Based on Trapdoor CKEM 813

ious PRF (OPRF) function F ∗, and Fs,r(pw) includes public keys pkC and
pkS for the client and the server, the private key skS for the server, and a
ciphertext c ← Erw (skC) which encrypts the client private key skC under key
rw = F ∗

k (pw) (see [23] for details). To authenticate, the client computes rw
via an OPRF instance with the server on resp. inputs pw and k, decrypts skC

from c, and the two parties run a standard AKE using resp. keys skC and skS.
The STOWF bound is enforced because from a server compromise the attacker
learns (k, c) and needs to compute skC = Drw (c) for rw = F ∗

k (pw). The strong
UC OPRF properties [22], realizable efficiently in ROM, imply that F ∗ is pseu-
dorandom even if one holds key k, hence the only strategy for finding pw (and
skC) given (k, c) is to evaluate F ∗

k on guesses pw ′ and verify if sk ′
C = Drw ′(c) for

rw ′ = F ∗
k (pw ′) corresponds to pkC.

A natural SPHF-friendly STOWF candidate is Fs(pw) = sH(pw) where
s ←R G, where G is a cyclic group in which the discrete logarithm problem
is hard, and H is an RO hash onto Zp . Using this function, we could create
an authentication protocol based on an efficient SPHF scheme for the language
that server-held value z = sH(pw) and client’s extractable password commitment
c = (gr, yrgH(pw

′)) for g, y ∈ G are of the correct form, and indeed [7] construct
their aPAKE based on this STOWF candidate along these lines. This function
realizes the UC STOWF functionality we define below in GGM, and the proof is
a straightforward adaptation of the proof that it satisfies a game-based TOWF
property given in [7]. However, this function is malleable in the following sense:
Given (s, z) for z = Fs(pw), it is easy to create (s ′, z ′) for z ′ = Fs′(pw) and
s ′ �= s, by computing s ′ = sr and z ′ = z r for any r. This creates a problem
for UC security of saPAKE: An adversary who learns (s, z) via server compro-
mise can impersonate the server using a randomized file (s ′, z ′) without learning
pw via an offline attack, but the UC simulator cannot detect that such imper-
sonation attacks because if (s, z) is an STOWF challenge and an adversary
does not stage an offline attack then the simulator does not know the trapdoor
H(pw) = DL(s, z) needed to recognize (s, z , s ′, z ′) as DDH tuples. One can prove
UC security of a protocol based on this STOWF function but the proof would
use GGM in the online part, whereas we hope to use GGM only to analyze the
tightness of F against offline computation, and not involve it in the analysis of
the online protocol.6

Boneh-Boyen Function: SPHF-Friendly and Unforgeable STOWF.
Fortunately, we can avoid GGM in the security proof of saPAKE based on
UC secure STOWF by using the hashed Boneh-Boyen (BB) function Fs(x) =
g1/(s+H(x)) [9] as the STOWF candidate, where s ←R Zp and H hashes onto
Zp . We also define another STOWF candidate we call unhashed BB function,
fs(x) = g1/(s+x), which can be used to define F as Fs(x) = fs(H(x)). The rea-
son for introducing the unhashed BB function f is that the saPAKE security
proof will rely on the STOWF candidate f satisfying some additional properties
6 Similar approach was taken by [7] who contain both GGM and ROM to the offline

part of analysis, while we contain GGM to the offline part but use ROM throughout.

814 T. Bradley et al.

we define below, but it will implement the password file as (s, fs(H(pw)). If f
is instantiated as the unhashed BB then the saPAKE protocol effectively uses
the hashed BB function for its password file. This will in particular imply that
we can rely on the offline-hardness of STOWF F while also benefitting of the
algebraic properties of f .

UC Model for Salted Tight One-Way Function. We propose a UC func-
tionality FSTOWF, shown in Fig. 1, to model the offline security of the password
file in an ideal saPAKE scheme, i.e., the potential leakage of the password file
via server compromise and the offline dictionary attack possible after this leak-
age. If a function realizes this UC functionality then for every efficient real-world
adversary A there exists an efficient ideal-world adversary (simulator) SIM, such
that A’s offline computation can be simulated by SIM on access to FSTOWF,
which essentially implements an ideal black-box point function, namely a func-
tion which outputs 1 for x = pw and 0 for all x �= pw .

Fig. 1. UC functionality FSTOWF for Tight One-Way Function (STOWF)

Modification of the UC Framework. The standard UC framework applied
to functionality FSTOWF does not express all required properties of the STOWF
function, because it does not impose a tight relation between the time complex-
ity of A and SIM. For example, the unhashed Boneh-Boyen function F realizes
FSTOWF in (programmable) GGM, but if A makes T generic group model opera-
tions then SIM must be allowed to make O(T 2) queries to FSTOWF, which means
that A can test |D| passwords using only O(

√|D|) group operations, as is indeed
possible if D is an integer interval. Using a hashed Boneh-Boyen function heals
this problem by effectively changing D into a random subset of Zp , but we need
to make an adjustment to the UC model so that it imposes a tight relation
between the work of the real-world adversary A and the simulator SIM.

As pointed out in [20], in order for the UC (s)aPAKE model to enforce that
the real-world adversary performs some minimal local computation to offline test
each password, we need to change the UC framework slightly, so that both the
local computation of the real-world adversary and the OfflineTestPwd messages of
the simulator are accounted for by the environment. For example, when the real-
world adversary performs some local computation which corresponds to an offline

Strong Asymmetric PAKE Based on Trapdoor CKEM 815

password verification, e.g. a random oracle query or a generic group model query,
this idealized computational element would send a special “flag” signal to the
environment. In the ideal world, the same flag would be sent to the environment
whenever FSTOWF receives an OfflineTestPwd query from the simulator. (In the
context of FSTOWF such flag will be sent on every OfflineEval message from the
ideal-world adversary.) If the environment’s view of the ideal-world and the real-
world executions are indistinguishable in such regime this would prevent the
simulator from sending OfflineTestPwd messages to the functionality without an
offline attack taking place in the real world.7

The necessity of such modification to the UC framework was also observed
by [23] in the context of saPAKE, because otherwise FaPAKE and FsaPAKE

would be equivalent. The only difference between aPAKE and saPAKE is that
OfflineTestPwd queries are allowed in saPAKE only after the adversary compro-
mises the server. However, if the timing of the local computation of the real-world
adversary and the simulator’s OfflineTestPwd queries is not observed by the envi-
ronment, then the simulator may accumulate all the offline password tests made
by the real-world adversary before server compromise, and then send all the
OfflineTestPwd queries these password tests represented right after server com-
promise, effectively bypassing the intended enforcement of no pre-computation
of offline dictionary queries in the real-world.

Additional STOWF Properties. For the saPAKE application we need to
extend the STOWF notion with a secondary “leakage function” F̂ , because in the
saPAKE protocol of Sect. 4 the client will commit not to the (hashed) password
itself but to another algebraic function of it, which enables both straight-line
extraction of the committed password and an efficient SPHF that the committed
password is the pre-image of the STOWF function value stored by the server.
Formally, we extend the STOWF syntax to a triple of algorithms (PG,Eval, Leak),
where PG and Eval are as before except PG also outputs a description of a
leakage function F̂ with domain X and range Ŷ such that F̂ : X → Ŷ , and (2)
algorithm Leak evaluates F̂ (x) given x ∈ X and the description of F̂ . When it is
unambiguous, we will use the shorthand (PG, F, F̂) to refer to a specific STOWF
scheme.

We define the following three properties of an STOWF candidate. Since we
will claim them only about the unhashed BB function f we will use notation
(PG, f, f̂) to specify the properties below:
(I) One-time unforgeability. An efficient adversary who gets the server’s password
file (s, fs(x)) for random x ←R X and s ←R R, must be unable to generate an
alternate file (s ′, z ′) for z ′ = fs′(x) and s ′ �= s, except with negligible probability.
(II) Leakage-function hiding. An efficient adversary who gets the server’s pass-
word file (s, fs(x)) for random x ←R X and s ←R R, must be unable to output
f̂(x), except with negligible probability.
(III) Collision resistance. For all s ∈ R, if x1 �= x2 then fs(x1) �= fs(x2).
7 In [20] the environment sends permissions to the real-or-ideal adversary rather than

receiving signals about the computation performed, but the effect seems the same.

816 T. Bradley et al.

Security of Boneh-Boyen Function as STOWF. We consider both the
unhashed and hashed Boneh-Boyen functions. The parameter generator PG(1κ)
for both functions fixes a prime-order cyclic group (G, p) two random group
elements g, g′ ←R G, and the randomness domain is R = Zp . The unhashed BB
function pair (f, f̂) is defined on domain X = Zp as fs(x) = g1/(s+x) and f̂(x) =
(g′)x, while the hashed BB function pair (F, F̂) is defined as Fs(x) = fs(H(x))
and F̂ (x) = f̂(H(x)) where H : {0, 1}∗ → Zp .

We make the following claims about the unhashed and hashed Boneh-Boyen
functions. Recall that the q-DDH assumption [10] says that given (g, gx, ..., gxq

)
for x ←R Zp no efficient algorithm can find (c, g1/(x+c)) for any c ∈ Zp .

Theorem 2. The unhashed Boneh-Boyen function f satisfies the properties of
one-time unforgeability, leakage-function hiding, and collision resistance under
the q-SDH assumption for q = 2.

Proof (Sketch). Boneh-Boyen [10] show that a signature/MAC scheme Sx(m) =
g1/(x+m for key x ←R Zp is unforgeable against chosen-message attack with
q queries under the q-SDH assumption. Our one-time unforgeability notion is
strictly weaker than this, because the adversary sees a signature z = Sx(m)
on only one randomly chosen message m = s. By a simple modification of
Lemma 9 of [10] adapted to the setting where the challenger does not generate
the public verification key, the BB function is one-time unforgeable under the
q-SDH assumption for q = 1. Similarly, the leakage-function hiding property
reduces to the 2-SDH assumption by a simple modification of the same reduction
from one-time unforgeability of f to q-SDH. Finally, collision resistance holds for
f because g is an element of group G of prime order p and division modulo p is
a one-to-one function. (Formally, the domain of fs must be restricted to exclude
message value x = −s mod p.) ��
Theorem 3. The unhashed Boneh-Boyen STOWF function realizes UC func-
tionality FSTOWF in the (programmable) Generic Group Model (GGM) for G,
assuming that the i-th generic group operation made by the real-world adversary
triggers i “offline password test computation” flags to the environment, which
allows the simulator to issue a batch of i OfflineTestPwd queries to FSTOWF.

Proof (Sketch). The proof of the above theorem, included in [13], is a straightfor-
ward generalization of the O(T 2) bound on the number of discrete logarithm can-
didates which can be tested in GGM in T steps. Such lower-bound holds because
the i-th generic group operation can test at most i new discrete logarithm candi-
dates, limiting the total number of values tested in T steps to

∑T
i=1(i) = O(T 2).

Moreover, in the programmable GGM the simulator can embed the result of
OfflineTestPwd queries in the result of the generic group operation: The “correct
guess” response implies that the new group element should collide with a spe-
cific previously computed element, while for the “wrong guess” the new group
element representation is a fresh random string. ��

Strong Asymmetric PAKE Based on Trapdoor CKEM 817

Theorem 4. The hashed Boneh-Boyen STOWF function realizes UC function-
ality FSTOWF in the (programmable) Generic Group Model (GGM) for G and
(non-programmable) ROM, assuming that each generic group operation made by
the real-world adversary triggers O(1) “offline password test computation” flags
to the environment, which allows the simulator to issue a batch of (amortized)
O(1) OfflineTestPwd queries to FSTOWF.

Proof (Sketch). The proof is a modification of the proof of Theorem 3 utilizing a
theorem shown by Schnorr [30], which shows that for a polynomial-sized subset
D of random points in Zp , which we define as H outputs on values hashed by
the real-world adversary, the generic group model algorithm must make Ω(|D|)
operations to test if a discrete logarithm challenge is solved by the candidates
in set D.8 ��

4 Strong aPAKE from Implicit-Statement CKEM

We show the saPAKE protocol we propose in Fig. 2. The construction relies
on several building blocks: (1) hash function H : {0, 1}∗ → Zp modeled as
a random oracle; (2) zero-knowledge, simulation sound, and statement pri-
vate implicit-statement CKEM scheme (PG,Snd,Rec) for language L described
below; (3) one-time unforgeable, leakage-function hiding, and collision-resistant
UC STOWF scheme (PG, f, f̂); and (4) CPA-secure public key encryption
scheme (KG,Enc,Dec) on message space Ŷ , the range of the leakage function
f̂ . The common reference string (CRS) consists of a public key pk ← KG(1κ),
CKEM parameters π ← CKEM.PG(1κ), and functions (f, f̂) generated by
STOWF generator PG(1κ).

The high-level idea of this construction is as follows. The server S’s password
file contains a random salt and salted hash (s, z) for z = fs(hwS), where hwS =
H(pwS). To authenticate, client C encrypts its hashed password hwC = H(pwC)
under the public key pk from the CRS, and sends the resulting ciphertext c to
S. Server S uses the CKEM scheme to form a key kS and message m conditioned
on the statement xS = (s, z , c) that c encrypts the same value hw as was used to
form z = fs(hw). Client C uses hwC and the randomness in c as its witness in the
CKEM receiver procedure, which computes the key kC. (The receiver algorithm
also outputs the value xC implicit in m, but this value is not used by the client.)
The properties of CKEM guarantee that if xC does not match C’s witness then
the client’s key kC will be random independent of the server’s view, so S fails
to authenticate to C. Likewise, if C doesn’t have a witness for S’s statement
xS for which S created this CKEM message, then the server’s key kS will be
independent of the client’s view, so C fails to authenticate to S.

8 A variant of the theorem of Schnorr was also shown by Benhamouda-Pointecheval
[7], but customized to n-bit passwords for n < |p|/4.

818 T. Bradley et al.

CKEM Language. The CKEM used in the saPAKE protocol saPAKE of Fig. 2
is defined as follows:

Lpk = {(s, z , c) | ∃ (h, r) s.t. z = fs(h) and c = Encpk (f̂(h); r)} (1)

Since key pk is part of a CRS, we will leave it as implicit and refer to Lpk as
simply L. Note that if function f̂ is hard to invert then Encpk (f̂(m)) is not
a standard encryption scheme, as there is no efficient decryption procedure.
However, since it is used to encrypt a hashed password, i.e. m = H(pw), it
still implements a commitment with straight-line extractor in ROM, which the
simulator uses to extract the client’s password in the proof of Theorem 5 below.

Fig. 2. Strong aPAKE scheme saPAKE based on an implicit-statement CKEM

4.1 Security Analysis

We now show that saPAKE is a secure realization of functionality FsaPAKE, orig-
inally proposed by [23]. The formal security claim about protocol saPAKE is as
follows:

Theorem 5. The saPAKE protocol shown in Fig. 2 securely realizes function-
ality FsaPAKE in ROM, provided that function f securely realizes functionality
FSTOWF and is (one-time) unforgeable, leakage-function hiding and collision-
resistant, PKE is a CPA-secure public-key encryption, and CKEM is a zero-
knowledge, simulatable CKEM for language L.

Strong Asymmetric PAKE Based on Trapdoor CKEM 819

Fig. 3. Simulator alg. SIM for saPAKE interacting with A, F and SIMSTOWF

Due to space limits, we include here only the simulator for the protocol and
the quick overview of the proof ideas, deferring the full proof of the theorem to
the full version of this paper [13]. To prove Theorem 5, we construct a simula-
tor SIM, shown in Fig. 3, s.t. that for any efficient environment Z and adversary
A, the environment’s view of the real-world execution, where adversary A inter-
acts with the honest parties that execute protocol saPAKE, is indistinguishable
from its view of the ideal-world execution, where simulator SIM (which uses A as

820 T. Bradley et al.

an oracle) interacts with the ideal-world honest parties via the ideal functionality
FsaPAKE. Without loss of generality, we assume that A is a “dummy” adversary
who merely passes all messages between Z and SIM. In the description of the sim-
ulator in Fig. 3 we shorten FsaPAKE as F . Note that because by assumption func-
tion f securely realizes functionality FSTOWF, there exists a simulator SIMSTOWF

such that no efficient environment can distinguish between interacting with the
real STOWF protocol and with SIMSTOWF and FSTOWF. The saPAKE protocol
simulator SIM shown in Fig. 3 uses this SIMSTOWF as a black box. It also uses the
CKEM sender simulator algorithm Sndsim defined for Lemma 1 in Sect. 2.

Proof Overview. The proof uses a sequence of games, starting from the real
world and ending at the ideal world. The first step is to let the game abort if
there is a collision in H, or H outputs 0. Then consider the case that A merely
passes all messages between C and S: if C and S use the same password then
they output the same key, otherwise C outputs an independent random key. The
resultant game is indistinguishable to the previous one due to CKEM correctness
and statement verification. Then according to the zero-knowledge property of
CKEM, we modify the client-side code so that it computes kC with the trapdoor
receiver TRec and trapdoor td instead of the standard receiver Rec and witness
w , and then performs a check that the client’s statement is in the language. Now
the witness w = (hwC, r) and the secret key sk are not used in the game, so we
change client’s ciphertext to a “dummy” one c ← Encpk (ŷ) for ŷ ←R Ŷ . After
that, in the case that (1) the ciphertext sent to S, c′, is new and invalid, or (2)
c′ = c, we let S output a random key kS and send a “dummy” message m on
a fixed false statement x ′; this move can be made due to CKEM simulatability.
Then we let C detect server impersonation and extract password guess, i.e.,
(1) if S is compromised, and (s̃, z̃ , c̃) = (s, z , c), or (2) if there is a pw s.t.
z̃ = fs̃(H(pw)), kC is decided according to whether pwC = pwS. Then we remove
the query H(pwC) from the client-side code, and postpone the H(pwS) query
until server compromise. Finally, when A compromises S, invoke SIMSTOWF to
simulate A’s view in offline password tests.

5 Efficient Instantiation of Strong aPAKE

The efficiency of the generic saPAKE construction in Fig. 2 depends on the
choices of the salted tight one-way function (STOWF), the encryption scheme,
and a CKEM. A particularly efficient instantiation of this framework, protocol
saPAKE-BB shown in Fig. 4, results from implementing the STOWF scheme
(PG, f, f̂) as the unhashed Boneh-Boyen function fs(x) = g1/(s+x) for s ←R Zp

and f̂(x) = (g′)x for g, g′ ←R G (see Sect. 3). Since in the generic protocol in
Fig. 2 function f is evaluated on hashed password hw ← H(pw), the server’s
password file (s, z) in protocol saPAKE-BB is effectively computed using the
hashed Boneh-Boyen function, i.e. z = fs(H(pw)) = g1/(s+H(pw)). PKE Enc is
instantiated as ElGamal, i.e. Encpk (m; r) = (c, d) = (gr, yr ·m) where pk = y for
y ←R G, and CKEM is implemented using the SPHF-based CKEM construction
of Sect. 2.1 instantiated for a language defined in Eq. (2) below.

Strong Asymmetric PAKE Based on Trapdoor CKEM 821

Fig. 4. saPAKE-BB: Instantiation of protocol saPAKE with Boneh-Boyen STOWF,
ElGamal PKE, and SPHF-based CKEM

In the following two subsections we explain how the generic CKEM scheme of
Sect. 2.1 is instantiated for a language implied by the above Enc and fs choices,
and then we discuss the implications of these choices to the efficiency of protocol
saPAKE-BB.

5.1 Efficient CKEM for Commitment to STOWF Preimage

Since the CKEM construction of Sect. 2.1 is based on SPHF, it is efficient for
language Lpk of “encryptions of a leakage function applied to the pre-image of a
tight one-way function,” defined in Eq. (1), if PKE Enc and STOWF (f, f̂) are
instantiated so that Lpk has an efficient SPHF. Recall that there are efficient
SPHF’s for “linear function” languages, i.e., languages whose relation can be
expressed as

R[L] = {(x ,w) s.t. x = (C,M) and C = w · M}

822 T. Bradley et al.

where C,M are resp. vector and matrix of elements of G, w is a vector of
integers, and product w · M denotes an exponentiation, e.g. if w = [α1, . . . , αn]
and M = [g1, . . . , gn]T then w · M =

∏n
i=1 gαi

i . If C and M are resp. 1 × m and
n × m matrices in G then the following algorithms form an SPHF for L:

Hash(x ;hk) for x = (C,M) and hk ←R (Zp)m outputs (v, hp) = (C ·hk,M ·hk).
PHash(w , hp) outputs v = w · hp.

Correctness follows because if C = w ·M then w ·hp = w ·(M ·hk) = (w ·M)·hk =
C · hk, smoothness because (C,M) �∈ L if and only if C is not in the row span
of M , in which case v = C · hk is independent of hp = M · hk, and statement
privacy holds if for every (C,M) in universe U matrix M has full row rank.

CKEM for ElGamal Encryption and Boneh-Boyen Function. If fs ,
f̂ , and Enc are defined as fs(h) = g1/(s+h), f̂(h) = (g′)h, and Ency(m; r) =
(gr, yrm) then language Lpk in Eq. (1) is an example of a linear function language
which admits an SPHF defined above. Note that if z = g1/(s+h) then zh = gz−s ,
and therefore in this instantiation language Lpk becomes:

Lpk = {(s, z , c, d) | ∃ w = (h, r) s.t. (gz−s , c, d) = w ·
[
z 1 g′

1 g y

]
(2)

Note on Shared Group Setting. Note that the Boneh-Boyen function parame-
ters are π = (G, p, g, g′) and the ElGamal public key is pk = (G, p, g, y). The
two schemes share group setting (G, p), but note that prime-order groups are
typically standardized and re-used across many cryptosystems. All group ele-
ments g, g′, y in the CRS are chosen at random, because the unforgeability of
the Boneh-Boyen function assumes that base g is a random group element and
the leakage-function hiding property of STOWF assumes that base g′ is another
random group element. Note that while typically ElGamal encryption is defined
for a fixed group generator g, under the DDH assumption on G it can also be
instantiated with a random generator g.

Efficient CKEM for Lpk . The generic CKEM construction of Sect. 2.1 instanti-
ated with the linear-language SPHF for Lpk results in the following CKEM pro-
cedures (Snd,Rec) for π = (G, p, g, g′, y), hash functions H0 : {0, 1}∗ → ({0, 1}κ)2

and H1 : {0, 1}∗ → {0, 1}κ, and IND-SKE encryption scheme (E,D):

Sndπ(�, x) for x = (s, z , c, d):
1. Set (v, hp1, hp2) ← ((gz−s)αcβdγ , zα(g′)γ , gβyγ) for (α, β, γ) ←R Z

3
p ;

2. Set hp ← (hp1, hp2) and hk ← (α, β, γ);
3. Compute (ek , ck) ← H0(v), e ← Eek (hk, x), and τ ← H1(v, hp, e, �);
4. Output (ck ,m) for m = (hp, e, τ).

Recπ(�,w ,m) for w = (h, r) and m = (hp, e, τ):
1. Compute v ← hph

1 · hpr
2 where hp = (hp1, hp2);

2. Set (ek , ck) ← H0(v), (hk, x) ← Dek (e);
3. Parse (α, β, γ) ← hk and (s, z , c, d) ← x , and set τ ′ ← H1(v, hp, e, �);

Strong Asymmetric PAKE Based on Trapdoor CKEM 823

4. Output (ck , x) if τ ′ = τ , (v, hp1, hp2) = ((gz−s)αcβdγ , zα(g′)γ , gβyγ)
and (gz−s , c, d) = (zh, gr, (g′)hyr); Otherwise output (ck ,⊥) for ck ←R

{0, 1}κ.

Note that Step 4 of Rec, which validates that (v, hp) = Hashpk (x ;hk) and
(x ,w) ∈ R[L], involves a verification of six multiexponentiation equations, rather
than their recomputation. Batch verification techniques, e.g. [2], allow this to be
done with a single multi-exponentiation. However, using fixed-base exponenti-
ations instead is likely to be more efficient, because when this CKEM is used
in the context of the saPAKE-BB protocol shown in Fig. 4 the client who runs
CKEM Rec algorithm already knows that elements (c, d) are formed correctly,
and it will know the representation of (c, d) in bases (g, g′, y). Likewise after
verifying that z = g(1/(s+h)) for h = hwC, base z can be replaced by base g in
the verification equations for (v, hp1, hp2), hence all these values can be verified
by the client using at most 8 fixed-base exponentiations. (We note that these
costs can be reduced further if some of the base elements g, g′, y are combined,
i.e. if g′ is equated with either g or y, but we leave the verification of security of
such variants to future work.)

5.2 Communication and Computation Costs of Protocol saPAKE-BB

Protocol saPAKE-BB uses only 2 message flows whose total bandwidth is 7 group
elements and 2κ additional bits: c, d in flow1 and hp1, hp2 in flow2, as well as
z , c, d encrypted in e and κ bits each in salt s and hash τ . It is easy to see,
however, that (c, d) do not need to be included in the server’s ciphertext e, and
that they can intead be added to the inputs of hash τ . This optimized protocol
would thus take 5 group elements plus 2κ bits, which e.g., on EC-224 comes to
about 1120 + 320 = 1440 bits.

The client’s verification in the last step that (v, hp1, hp2) = Hashpk (x ;hk)
and that statement (s, z , c′, d′) extracted from the CKEM message m corre-
sponds to the client’s witness (hwC, r), can be implemented with a single multi-
exponentiation, but as explained in the previous subsection, it can also be imple-
mented with seven fixed-base exponentiation. The total computational cost will
therefore be dominated by 1 variable-base multi-exps and 11 fixed-base exps for
the client, and 2 variable base multi-exps and 2 fixed-base exps for the server.

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 8

2. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponen-
tiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054130

https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/BFb0054130

824 T. Bradley et al.

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

4. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: IEEE Symposium on Security and Privacy –
S&P 1992, pp. 72–84. IEEE (1992)

5. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a password-based
protocol secure against dictionary attacks and password file compromise. In: ACM
Conference on Computer and Communications Security – CCS 1993, pp. 244–250.
ACM (1993)

6. Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-knowledge
arguments and applications to the malicious setting. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 107–129. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 6

7. Benhamouda, F., Pointcheval, D.: Verifier-based password-authenticated key
exchange: new models and constructions. IACR Cryptology ePrint Archive 2013,
833 (2013)

8. Blake, I.F., Kolesnikov, V.: Strong conditional oblivious transfer and computing
on intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 36

9. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

10. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008). https://doi.org/
10.1007/s00145-007-9005-7

11. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 12

12. Bradley, T., Camenisch, J., Jarecki, S., Lehmann, A., Neven, G., Xu, J.: Password-
authenticated public-key encryption. In: Deng, R.H., Gauthier-Umaña, V., Ochoa,
M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 442–462. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21568-2 22

13. Bradley, T., Jarecki, S., Xu, J.: Strong asymmetric PAKE based on trapdoor
CKEM. IACR Cryptology ePrint Archive (2019). https://eprint.iacr.org/2019/

14. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 24

15. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

16. Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious trans-
fer and timed-release encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 74–89. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 6

https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/978-3-662-48000-7_6
https://doi.org/10.1007/978-3-540-30539-2_36
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/978-3-030-21568-2_22
https://eprint.iacr.org/2019/
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-48910-X_6
https://doi.org/10.1007/3-540-48910-X_6

Strong Asymmetric PAKE Based on Trapdoor CKEM 825

17. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

18. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: ACM Conference on Computer and Communications Security – CCS 2013, pp.
467–476. ACM (2013)

19. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 33

20. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 9

21. Hwang, J.Y., Jarecki, S., Kwon, T., Lee, J., Shin, J.S., Xu, J.: Round-reduced mod-
ular construction of asymmetric password-authenticated key exchange. In: Cata-
lano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 485–504. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 26

22. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: how to protect your bitcoin wallet online).
In: IEEE European Symposium on Security and Privacy - EuroS&P 2016, pp.
276–291. IEEE (2016)

23. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 15

24. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: An asymmetric PAKE protocol
secure against pre-computation attacks. IACR Cryptology ePrint Archive 2018,
163 (2018)

25. Jutla, C.S., Roy, A.: Smooth NIZK arguments. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018. LNCS, vol. 11239, pp. 235–262. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03807-6 9

26. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44987-6 29

27. Laur, S., Lipmaa, H.: A new protocol for conditional disclosure of secrets and its
applications. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 207–
225. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5 14

28. MacKenzie, P.: More efficient password-authenticated key exchange. In: Naccache,
D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 361–377. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45353-9 27

29. MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated key exchange
based on RSA. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
599–613. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 46

30. Schnorr, C.P.: Small generic hardcore subsets for the discrete logarithm: short
secret DL-keys. Inf. Process. Lett. 79(2), 93–98 (2001)

https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-39200-9_33
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/978-3-319-98113-0_26
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-030-03807-6_9
https://doi.org/10.1007/978-3-030-03807-6_9
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/978-3-540-72738-5_14
https://doi.org/10.1007/3-540-45353-9_27
https://doi.org/10.1007/3-540-44448-3_46

Broadcast and Trace with Nε Ciphertext
Size from Standard Assumptions

Rishab Goyal1(B), Willy Quach2(B), Brent Waters1,3, and Daniel Wichs2

1 University of Texas at Austin, Austin, USA
goyal@utexas.edu, bwaters@cs.utexas.edu

2 Northeastern University, Boston, USA
quach.w@husky.neu.edu, wichs@ccs.neu.edu

3 NTT Research, Tokyo, Japan

Abstract. We construct a broadcast and trace scheme (also known as
trace and revoke or broadcast, trace and revoke) with N users, where
the ciphertext size can be made as low as O(Nε), for any arbitrarily
small constant ε > 0. This improves on the prior best construction of
broadcast and trace under standard assumptions by Boneh and Waters
(CCS ‘06), which had ciphertext size O(N1/2). While that construction
relied on bilinear maps, ours uses a combination of the learning with
errors (LWE) assumption and bilinear maps.

Recall that, in both broadcast encryption and traitor-tracing schemes,
there is a collection of N users, each of which gets a different secret key
ski. In broadcast encryption, it is possible to create ciphertexts targeted
to a subset S ⊆ [N] of the users such that only those users can decrypt it
correctly. In a traitor tracing scheme, if a subset of users gets together and
creates a decoder box D that is capable of decrypting ciphertexts, then
it is possible to trace at least one of the users responsible for creating
D. A broadcast and trace scheme intertwines the two properties, in a
way that results in more than just their union. In particular, it ensures
that if a decoder D is able to decrypt ciphertexts targeted toward a
set S of users, then it should be possible to trace one of the users in
the set S responsible for creating D, even if other users outside of S
also participated. As of recently, we have essentially optimal broadcast
encryption (Boneh, Gentry, Waters CRYPTO ’05) under bilinear maps
and traitor tracing (Goyal, Koppula, Waters STOC ’18) under LWE,
where the ciphertext size is at most poly-logarithmic in N . The main
contribution of our paper is to carefully combine LWE and bilinear-map
based components, and get them to interact with each other, to achieve
broadcast and trace.

R. Goyal—Supported by IBM PhD Fellowship.
B. Waters—Supported by NSF CNS-1908611, CNS-1414082, DARPA SafeWare and
Packard Foundation Fellowship.
D. Wichs—Research supported by NSF grants CNS-1314722, CNS-1413964, CNS-
1750795 and the Alfred P. Sloan Research Fellowship.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11694, pp. 826–855, 2019.
https://doi.org/10.1007/978-3-030-26954-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26954-8_27&domain=pdf
https://doi.org/10.1007/978-3-030-26954-8_27

Broadcast and Trace with Nε Ciphertext Size from Standard Assumptions 827

1 Introduction

Broadcast Encryption. In broadcast encryption, as introduced by Fiat and Naor
[FN94], a broadcaster can encrypt a message m to an arbitrary subset S ⊆
[N] of indexed users, which results in a ciphertext ct. The i-th user is given
a secret key ski and can decrypt the ciphertext ct iff i ∈ S. When designing
broadcast encryption systems, a primary goal is to achieve short ciphertexts,
ideally independent of the number of users N . (In order to decrypt, one must
also know the description of S, but we count this separately from the ciphertext
size.) Almost all of the earliest proposed solutions were not collusion resistant
[FN94,Sti97,SVT98,GSW00,HS02,DF02,GST04], but in 2005 Boneh, Gentry
and Waters [BGW05] gave a collusion-resistant system from bilinear maps with
ciphertext size that is independent of N ; in particular, ciphertexts consist of just
three group elements.1

Traitor Tracing. A closely related primitive called traitor tracing was intro-
duced by Chor, Fiat and Naor [CFN94]. Here, a broadcaster encrypts messages
to the entire set of N users, where the i-th user is given a secret key ski that
always decrypts the broadcaster’s ciphertexts. If some subset T ⊆ [N] of users
(“traitors”) gets together and pools their secret keys to produce a decoder algo-
rithm D that can decrypt the broadcaster’s ciphertexts, then there is a tracing
procedure that can identify at least one of the users in the set T .2 While earlier
tracing systems [CFN94,SW98,CFNP00,SSW01,PST06] were not collusion resis-
tant, Boneh, Sahai and Waters [BSW06] showed how to leverage bilinear maps
to provide collusion resistant systems with N

1
2 sized ciphertexts. Very recently,

Goyal, Koppula and Waters [GKW18] constructed a traitor tracing scheme with
essentially optimal ciphertext size, which only scales poly-logarithmically in the
number of users N , under the Learning with Errors (LWE) assumption.

Broadcast and Trace. The concepts of broadcast encryption and traitor tracing
are naturally intertwined to form a broadcast and trace system [NP00,NNL01]
(also known as a “trace and revoke” or “broadcast,trace and revoke” system).
Here we want the ability to broadcast to an arbitrary set of users and the ability
to trace any rogue decoding algorithm or box. However, the combination of
broadcast and tracing security is more than just the sum of the parts – the two
requirements interact with each other in a non-trivial way. In particular, the
tracing property now also incorporates the broadcast set S as follows. If some
subset T of users get together and construct a decoder algorithm D that can
decrypt ciphertexts targeted to a certain set S, then there is a tracing procedure
that can identify at least one of the users in T∩S that contributed to constructing
D, even if some other users outside of S also participated. At that point one

1 In a collusion-resistant system, there is no a-priori bound on the number of secret
keys the adversary can see. Our discussion and comparisons will be in the collusion
resistant setting.

2 For both broadcast and traitor tracing, we require that the encryption procedure is
public key. In traitor tracing, while some prior works also require that the tracing
procedure is public key, here we consider secret-key tracing.

828 R. Goyal et al.

might take certain punitive actions against such a user and most likely remove
them from the broadcast set S used in future encryptions.

The requirement that the tracing procedure identifies a user in the set T ∩ S
rather than just any user in T is important here. For example, consider a sce-
nario where a broadcast encryption scheme is used to encrypt messages to vari-
ous subgroups within a company, and one of the board members colludes with an
intern to publish a decoder that decrypts ciphertexts targeted to the set S of all
board members. In this case, we want to trace the responsible board member and
not just the intern. Alternately, even in setting involving a flat hierarchy where
with no distinctions between different types of users (e.g., broadcasting cable TV),
this requirement is important. Assume some user i publishes an illegal decoder D
online, and then gets identified and revoked from the broadcast set S, causing D
to stop working. But then a new traitor j colludes with i to publish a new decoder
D′ that is able to decrypt newly created ciphertexts for the new broadcast set S.
In this case, we need to identify the new traitor j (and not just the old traitor i
who is already known) so that we can also revoke j them from the broadcast set,
and eventually revoke all misbehaving users through this process.

The requirement that the tracing procedure identifies a user in T ∩S and not
just T is also what makes the problem of achieving broadcast and trace more
technically challenging than just tackling the problems of broadcast encryption
and traitor tracing separately. Otherwise, one could trivially construct a broad-
cast and trace cryptosystem with a basic combination of a broadcast encryption
and a traitor tracing, by secret sharing the message across the two systems.

Historically, progress on broadcast and trace has followed progress on the
two problems separately. For example, soon after the construction of the first
broadcast with optimally succinct ciphertexts [BGW05] and the first traitor trac-
ing scheme with N

1
2 sized ciphertexts [BSW06], the work of Boneh and Waters

[BW06] built upon these works to give a broadcast and trace system with N
1
2

sized ciphertexts by carefully combining techniques from the two bilinear map-
based schemes. We also have essentially optimal constructions of broadcast and
trace using (positional) witness encryption [GVW19], but we don’t currently have
any construction that beats the N

1
2 barrier under any standard assumptions. Very

recently, we finally reached the point where we have essentially optimal ciphertext
size in both broadcast and traitor tracing separately, and therefore the time is
ripe to revisit the problem of constructing an optimal broadcast and trace system
under standard assumptions. However, the optimal broadcast scheme [BGW05] is
based on bilinear maps and the optimal traitor tracing scheme [GKW18] is based
on LWE.3 Can we still come up with a way to combine these different techniques
to get an optimal broadcast and trace scheme? In particular, can we meaningfully
combine bilinear-map and LWE based components and get them to interact with
each other to get something beyond just the sum of the parts?

Our Results. In this work, we show how to combine bilinear-map and LWE based
techniques to construct broadcast and trace.

3 There are actually no known collusion resistant broadcast encryption schemes from
LWE other than the trivial one with N -sized ciphertexts.

Broadcast and Trace with Nε Ciphertext Size from Standard Assumptions 829

Theorem 1.1 (informal). Under the Decisional Bilinear Diffie-Hellman Expo-
nent (DBDHE) assumption and the Learning with Errors (LWE) assumptions,
for any constant ε > 0, there exists a broadcast and trace scheme with cipher-
text size ˜O(Nε)poly(λ), where N is the number of users and λ is the security
parameter.

As a tool in our construction, we rely on a black-box use of attribute-based
encryption (ABE) with succinct ciphertexts, whose size is essentially indepen-
dent of the attribute size (the attribute is assumed to be known by the decryption
procedure but is not counted in the ciphertext size). This can be seen as a gener-
alization of broadcast encryption, which is a special case of succinct ABE where
the attribute is S and keys ski are associated with policies that allow decryption
iff i ∈ S. Currently, we can instantiate such succinct ABE schemes for NC1

circuits using bilinear maps [HLR10,ALDP11,AHL+12,YAHK14]. However we
note that: (1) while the best current construction of succinct ABE relies on
the DBDHE assumption, it is very conceivable that this could be improved to
milder bilinear assumptions in future work, and (2) while current constructions
only work for NC1 circuits, if we had a succinct ABE for even the slightly larger
class of TC1 circuits, we could leverage it to get essentially optimal broadcast
and trace with only a poly-logarithmic dependence on N . Therefore, we state
the following more general result of our work, which shows that future advances
in succinct ABE will also lead to advances in broadcast and trace:

Theorem 1.2 (informal). Assuming the existence of ABE with succinct
ciphertexts for NC1 and the LWE assumption, for any constant ε > 0, there
exists a broadcast and trace scheme with ciphertext size ˜O(Nε)poly(λ). Assuming
the existence of ABE with succinct ciphertexts for TC1 and the LWE assump-
tion, there exists a broadcast and trace scheme with ciphertext size poly(log N,λ).

Overall, picking a smaller constant ε yields shorter ciphertexts, at the cost
of making both the secret keys bigger and the decryption time longer, with the
exact tradeoff depending on the parameters of the underlying ABE.

Our main technique is to use a bilinear-based succinct ABE scheme for NC1

and use it to evaluate an LWE-based scheme, which we carefully engineer to be
in NC1. This allows us to meaningfully combine the cryptographic properties
of both schemes and achieve more than just their union. We provide a detailed
technical overview below.

1.1 Technical Overview

We now give a technical overview of our result. We start by giving a high-level
description of the state of the art construction of traitor tracing based on the
works of [BSW06,GKW18,CVW+18a]. Then we discuss our approach to incor-
porate broadcast and get a broadcast and trace system. Concretely, we describe
a 3-step construction of traitor tracing and then show how to augment each of
the steps to also accommodate broadcast. Finally, we discuss the complications
that arise in realizing the augmented steps and our solutions.

830 R. Goyal et al.

Traitor Tracing in Three Steps. The following is a high-level description of
a 3-step approach to construct traitor-tracing based on the works of [BSW06,
GKW18,CVW+18a].

Step 1: Traitor Tracing from PLBE. The first step is to construct traitor tracing
from a conceptually simpler primitive called private linear broadcast encryption
(PLBE) [BSW06]. A PLBE scheme is initialized with a master public key pk, a
master secret key msk, and N user secret keys sk1, . . . , skN . There is a “public
encryption” procedure which encrypts a message m under pk and guarantees
that every user secret key ski will decrypt it correctly. There is also a “secret
encryption” procedure which encrypts a message m under msk with respect to
some index ind ∈ [N +1] and guarantees that a user secret key ski will decrypt m
correctly iff i ≥ ind. Moreover, one cannot distinguish a public encryption from a
secret encryption or a secret encryption with one index ind versus another index
ind′ unless one has a secret key ski that correctly decrypts in one case but not
the other. Lastly, a secret encryption with the index ind = N + 1 should hide
the message m even given all the secret keys. An important subtlety, discovered
by [GKW18], is that these indistinguishability properties must hold even if the
adversary is given a single arbitrary query to the secret encryption oracle, in
addition to getting the challenge ciphertext.

A PLBE scheme can directly be used as a traitor tracing scheme, where
the “secret encryption” procedure is used to implement the tracing algorithm.
Assume some subset of users get together and create a decoder D that can
correctly decrypt ciphertexts produced by the public encryption procedure. Then
D should also correctly decrypt ciphertexts produced by the secret encryption
procedure with index ind = 1 (since these are indistinguishable even given all
the user secret keys). On the other hand the decoder cannot correctly decrypt
ciphertexts produced by the secret encryption procedure with index ind = N +1
(since these are undecryptable even given all the user secret keys). Therefore
there must be at least one index ind∗ where the decoder’s probability of successful
decryption drops significantly between being given secret encryptions with index
ind∗ and ind∗ + 1. But this can only be the case if the decoder was created
with knowledge of skind∗ (since otherwise the two cases are indistinguishable).
Therefore, this allows the tracing algorithm to finger user ind∗ as a traitor.4

Step 2: PLBE from ABE and mixed FE. The work of [GKW18] showed how
to construct PLBE from two simpler primitives. The first primitive is a (key-
policy) attribute-based encryption (ABE) [SW05] for circuits, which is already

4 The above argument implicitly assumes that, if an adversary can create a decoder D
that can distinguish between certain types of ciphertexts, then the adversary himself
can also distinguish. As observed by [GKW18], this is more subtle than it appears
and not true in general. The issue arises from a discrepancy between the decoder’s
advantage, which is calculated only over the choice of the encryption randomness after
the keys have been fixed, and the advantage of the adversary, which is calculated also
over the choice of the keys and randomness simultaneously. To make this step work,
[GKW18] showed that one needs to start with a stronger form of PLBE security, where
the adversary also gets one query to the secret encryption oracle.

Broadcast and Trace with Nε Ciphertext Size from Standard Assumptions 831

known from LWE [GVW13]. The second primitive is a restricted form of func-
tional encryption for the comparison function, called mixed functional encryption
(Mixed FE).

In Mixed FE, private keys ski are associated with values i and the adversary
can collect an unrestricted number of such keys. There is a “secret encryption”
algorithm which requires the master secret key and is used to encrypt an index
ind. If a user with a secret key for input i decrypts a ciphertext encrypting an
index ind, the output is 1 if i ≥ ind and 0 otherwise. Security says that, given
an encryption of ind and many secret keys {ski}i∈T , the adversary does not
learn anything about ind beyond the decryptions. Security must hold even if the
attacker is also allowed to make 1 query to the secret encryption oracle, in addi-
tion to getting the challenge ciphertext. So far, the above can be thought of as a
secret-key FE scheme for the comparison functions with security for unbounded
number of keys and two ciphertexts, which can actually be constructed based
only on one-way functions via garbled circuits [GVW12,KMUW18]. The addi-
tional property that makes mixed FE different, is that it also requires a public
encryption algorithm, which only uses a public key and generates ciphertexts
ct that always decrypt to 1 under all private keys. Such an algorithm is a bit
unusual in that there is no further choice in the index. The security of the system
requires that an attacker who makes a single query to the “secret encryption”
oracle cannot distinguish a public encryption versus a secret encryption or a
secret encryption with one index ind versus another index ind′ unless he has
a secret key ski that decrypts to 0 in one case and 1 in the other. The name
“Mixed FE” is derived from the fact that the scheme has both a public and
secret encryption procedure.

The semantics of mixed FE scheme are already very close a PLBE; in both
cases there is a “public encryption” and “secret encryption” algorithm and one
should not be able to distinguish different types of ciphertexts without having a
secret key that decrypts differently in one case versus the other. The one impor-
tant difference is that, in PLBE, the ciphertext also incorporates a message m,
while in mixed FE there is no message. The work of [GKW18] showed how to use
ABE on top of a mixed FE to incorporate a message into the ciphertext and get
PLBE. Essentially, the PLBE scheme uses a mixed FE ciphertext as an attribute
and then encrypts the message m under this attribute via an ABE scheme. In
more detail, to implement public PLBE encryption (resp. secret PLBE encryp-
tion for index ind), first create public mixed-FE ciphertext (resp. secret mixed-
FE ciphertext for the index ind) denoted ctmfe and then use the ABE scheme to
encrypt the message m under the attribute ctmfe. To create a PLBE secret key
ski for index i, first create a mixed-FE secret key skmfe,i for the index i and then
set ski to be an ABE secret key for the function fskmfe,i

which takes as input
ctmfe and decrypts it with skmfe,i. This incorporates the message m into the
PLBE scheme, while having the mixed FE dictate whether or not the message
is decryptable and preserving the mixed FE security properties.

Step 3: Constructing mixed FE. The work of [GKW18] gave a self-contained
albeit somewhat complex construction of mixed FE from the LWE assumption.

832 R. Goyal et al.

Later, the work of [CVW+18a] gave two simple and modular constructions of
mixed FE from previously studied primitives: one from lockable (AKA, compute-
and-compare) obfuscation [WZ17,GKW17] and one from (key-homomorphic)
private constrained PRFs (PCPRFs) [CC17,BTVW17,CVW18b]. Since either
of these can be instantiated under LWE, so can the final mixed FE and traitor-
tracing schemes.

We recall the PCPRF-based construction of mixed FE from [CVW+18a],
which we will later rely on for our results. A PCPRF consists of a pseudorandom
function (PRF) family FK(·) with a key K. The constrained property states that
given K, there is a way to generate a constrained key KP for some program P
such that FK(x) = FKP

(x) if P (x) = 0. In addition, the constraints are private
in that, one cannot distinguish between seeing the constrained key KP , along
the evaluations of yi = FK(xi) on various inputs xi for which P (xi) = 1, versus
being given a “dummy key” that does not depend on P along with uniformly
random values yi.

Given a PCPRF for the comparison functions Pind(i) = 1 iff i ≥ ind, one can
construct a simple mixed FE scheme as follows. The master secret key is a PRF
key K and the secret key for an input i is the value y = FK(i). An encryption is
a PRF key K∗ and the decryption algorithm outputs 1 iff y �= FK∗(x). A public
encryption consists of a “dummy key” K∗. A secret encryption of some index
ind consists of the constrained key K∗ = KPind

. It’s relatively easy to see that the
above gives a mixed FE scheme that is secure with q = 0 queries to the secret
encryption oracle. In particular, the only way to distinguish different types of
PRF keys is to have an evaluation on some i for which one is constrained and
the other is not.

To get a mixed FE scheme with security for q = 1 queries to the secret
encryption oracle, which is needed for traitor tracing, we rely on a PCPRF
with an additional key homomorphic property saying that FK(x) + FK′(x) =
FK+K′(x). The construction is only slightly more complex. Now the master
secret key consists of 2λ PRF keys {Kj,b}j∈λ,b∈{0,1} and the secret key for an
input i consists of the values {yj,b = FKj,b

(i)}j∈λ,b∈{0,1}. An encryption is a
PRF key K∗ and some “tag” value z ∈ {0, 1}λ and the decryption algorithm
outputs 1 iff

∑λ
j=1 yj,zj

�= FK∗(i). A public encryption consists of a random
z and a “dummy key” K∗. A secret encryption for some index ind consists
of a random z along with the constrained key K ′

Pind
where K ′ =

∑λ
j=1 Kj,zj

.
The above gives a mixed FE scheme which is secure with q = 1 queries to the
secret encryption oracle. With overwhelming probability, the z value used in the
challenge ciphertext differs from the one used by the oracle in answering the
encryption query in some position j, and therefore we can rely on the security
of the PRF FKj,zj

in essentially the same way as was done in the q = 0 query
case.

Adding Broadcast to Traitor Tracing. We now discuss how to “upgrade”
the above ideas to construct a broadcast and trace scheme.

Broadcast and Trace with Nε Ciphertext Size from Standard Assumptions 833

Perhaps the first approach one would try is to combine broadcast and traitor-
tracing directly; e.g., secret-share the message and encrypt one share via a broad-
cast scheme and the other share via a traitor-tracing scheme. Indeed, we can use
the broadcast scheme to restrict the set S of users that can recover the first
share and therefore the encrypted message. Also, any decoder D that decrypts
the full ciphertext correctly must also necessarily decrypt the second share, and
therefore we can use the traitor-tracing scheme to trace at least one user i ∈ [N]
that participated in constructing D. However, even if the decoder D can decrypt
ciphertexts targeted toward some restricted set S of users, the traitor tracing
procedure might find a user i /∈ S, which is not good enough for a broadcast
and trace scheme, as explained earlier. To fix this, we need to incorporate the
broadcast set S into the tracing procedure itself. We revisit the 3-step approach
outlined above and show how to upgrade it to get a broadcast and trace scheme.

Updated Step 1: Broadcast and Trace from AugBE. We previously saw how
traitor-tracing can be constructed from “private linear broadcast encryption”
(PLBE). The work of [BW06] showed that broadcast and trace can analogously
be constructed from an augmented version of PLBE, called “augmented broad-
cast encryption” (AugBE), which can be thought of as combining PLBE and
broadcast encryption. In particular, an AugBE scheme has a master public key
pk, a master secret key msk, and N user secret keys sk1, . . . , skN . There is a
“public encryption” procedure using pk, which encrypts a message m to a target
set S, and guarantees that a secret key ski will decrypt correctly iff i ∈ S. There
is also a “secret encryption” procedure using msk, which encrypts a message m
to a target set S with respect to some index ind ∈ [N + 1], and guarantees that
a secret key ski will decrypt correctly iff i ∈ S ∧ i ≥ ind. Moreover, one cannot
distinguish a public encryption from a secret encryption or a secret encryption
with one index ind versus another index ind′ (all with the same set S) unless
one has a secret key ski that correctly decrypts in one case but not the other.
A secret encryption with the index ind = N + 1 should hide the message even
given all the secret keys. As before, these indistinguishability properties must
hold even if the adversary is given a single query to the secret encryption oracle.
We want the ciphertext size to be small, much smaller than N . As in broadcast
encryption, the decryption algorithm is also given the set S separately, but we
do not count it as part of the ciphertext size.

The notion of AugBE already incorporates the broadcast encryption require-
ments directly in the definition. To see that it also allows us to trace a traitor
in the set S, one can adapt the previous argument that PLBE implies tracing.
The tracing algorithm tests the decoder’s success probability on secret encryp-
tions with the fixed broadcast set S and all possible values of ind ∈ [N + 1]. As
before, the decoder must be successful when ind = 1 (since it is successful with
public encryptions and the two are indistinguishable) but cannot be successful
when ind = N +1 (since such encryptions hide the message by definition) and so
there must be some value ind∗ such that success probability drops significantly
between ind∗ and ind∗ + 1. But this means that the decoder can distinguish
between these two types of ciphertexts and, in order for that to happen, the

834 R. Goyal et al.

decoder must have been created using knowledge of skind∗ with ind∗ ∈ S. Thus
the tracing algorithm can finger the user ind∗ ∈ S as a traitor.

Updated Step 2: AugBE from Succinct ABE and BMFE. Recall that the work of
[GKW18] constructed of PLBE from ABE and mixed FE. As our first contribu-
tion, we given an analogous result showing how to construct AugBE (the aug-
mented form of PLBE) from two simpler primitives: a (succinct) ABE scheme
and an augmented variant of mixed FE that we call “broadcast mixed FE”
(BMFE). At a high level, we incorporate the set S into the ABE to ensure that
only users i ∈ S can decrypt correctly. But we also incorporate the set S into
the mixed FE to ensure that the keys of users i /∈ S cannot help to distinguish
between ciphertexts with different values of the index ind. We now go into more
detail on how this is done.

A BMFE scheme can be thought of as an augmented form of mixed FE that
includes the set S. In particular, a BMFE has master public key pk, a master
secret key msk and allows us to create user secret keys ski for values i ∈ [N].
There is a “public encryption” procedure using pk, which takes as input a set
S ⊆ [N] and outputs a ciphertext ct that decrypts to 1 under all secret keys ski.
There is also a “secret encryption” procedure using msk, which takes as input a
set S and an index ind and outputs a ciphertext ct that decrypts to 1 under ski if
i /∈ S ∨ i ≥ ind and decrypts to 0 otherwise. The security of the system requires
that an attacker with q = 1 queries to the “secret encryption” oracle cannot
distinguish a public encryption versus a secret encryption or a secret encryption
with one index ind versus another index ind′ (all with the same set S) unless he
has a secret key ski that decrypts to 0 in one case and 1 in the other.

Note that the decryptability conditions of AugBE (i ∈ S ∧ i ≥ ind) and of
BMFE (i /∈ S ∨ i ≥ ind) differ from each other. However, these decryptability
conditions match up to ensure that the only way to distinguish between cipher-
texts with some index ind versus ones with index ind′ > ind is to have a key ski

for some i ∈ S ∩ [ind, ind′).
We can construct AugBE by combining together ABE with BMFE. In partic-

ular, the ABE scheme allows us to simultaneously add a message m to the BMFE
and also to ensure that only the users in S can decrypt correctly. In more detail,
the AugBE encryption consists of creating a BMFE ciphertext ctbmfe with some
set S and index ind and then using the ABE to encrypt the message m under
attribute a = (S, ctbmfe). The AugBE secret key ski is an ABE secret key for a
function fi,skbmfe,i

which has the BMFE secret key skbmfe,i inside it and checks
that i ∈ S and that ctbmfe decrypts to 1 under skbmfe,i. It is easy to see that
the above construction ensures that the set S and the index ind correctly deter-
mine whether an AugBE ciphertext is decryptable while preserving the BMFE
indistinguishability properties.

Up until now we have completely ignored efficiency and, in particular, the
requirement that ciphertexts are small. To ensure this we need the following:

– Firstly, we need a succinct ABE where the ciphertext size is essentially inde-
pendent of the attribute size, since the attribute includes the set S (the
decryption algorithm gets the attribute, but we don’t count it as part of the

Broadcast and Trace with Nε Ciphertext Size from Standard Assumptions 835

ciphertext). Succinct ABE can be thought of as generalizing broadcast encryp-
tion, where the latter is a special case of succinct ABE in which attributes
are sets S, and keys are associated with policies of the form fi(S) = 1 iff
i ∈ S. Unfortunately, the current ABE systems from the LWE assumption
[GVW13,BGG+14] do not satisfy this form of succinctness, and we do not
know how to achieve even broadcast encryption from LWE. On the pos-
itive side, we do have constructions of succinct ABE from bilinear maps
[HLR10,ALDP11,AHL+12,YAHK14]; however, these constructions can only
support policies for circuits in NC1, unlike the LWE-based ones that can
support circuits of arbitrary depth. Recall that, in our case, the ABE policy
checks that i ∈ S and that a BMFE ciphertext decrypts to 1. The first part
is in NC1 and therefore we need to ensure that the BMFE decryption is in
NC1.

– Secondly, we need a succinct BMFE scheme, where decryption is in NC1 and
the ciphertext size is much smaller than N (the decryption procedure gets S
but we do not count it in the ciphertext size). We next show how to construct
this primitive under LWE.

Note that we are using a bilinear-based succinct ABE to evaluate the decryp-
tion of an LWE-based BMFE scheme, which will be in NC1. This allows us to
meaningfully combine the security properties of a bilinear-based scheme and an
LWE-based scheme to achieve more than just the union of their capabilities.

Updated Step 3: Constructing BMFE in NC1. Our goal now is to construct a suc-
cinct BMFE with decryption in NC1. Recall that BMFE is an augmented form
of mixed FE for which we have constructions from LWE [GKW18,CVW+18a].
We face two challenges:

– We need to incorporate the set S into mixed FE to get BMFE.
– We need to ensure that BMFE decryption is in NC1.

Let’s start by showing how to augment mixed FE to get BMFE. Recall that
we previously outlined the [CVW+18a] construction of mixed FE from (key-
homomorphic) private constrained PRFs (PCPRFs) for comparison constraints:
Pind(i) = 1 iff i ≥ ind. We now outline how to upgrade this construction to get
a BMFE scheme. For simplicity, we describe how to get BMFE with security
against q = 0 queries to the secret encryption oracle; to get security for q = 1
queries, as is needed for broadcast and trace, we then employ the same trick as
in the mixed FE case. The master secret key of the BMFE scheme now con-
sists of N PCPRF keys {Kj}j∈N . The secret key of user i consists of the values
{yi,j = FKj

(i)}j �=i for i, j ∈ [N]. To create a “secret encryption” to a set S with
respect to an index ind, the encryptor computes a key K+ =

∑

j �∈S Kj and then
constrains it on the program Pind to get K∗ = K+

Pind
. To create a “public encryp-

tion” to a set S, the encryptor chooses a dummy constrained key K∗. The decryp-
tion procedure takes a ciphertext K∗ and outputs 1 iff FK∗(i) �= ∑

j �∈S yi,j . We
rely on the fact that, the only way to distinguish different types of BMFE cipher-
texts (i.e., PRF keys), is to have a complete set of values {FKj

(i)}j �∈S for some

836 R. Goyal et al.

i which is constrained in one case but not the other, which requires having the
BMFE key of some user i such that i ∈ S (as no secret key contain the value
FKi

(i)), and where i is constrained in one case but not the other.
In our BMFE scheme, the decryption procedure is in NC1 if the underlying

PCPRF evaluation FK∗(i) with a constrained key K∗ is in NC1. If we go under
the hood, and look at the PCPRF construction of [CVW18b], the constrained
keys consist of log N tuples of square matrices {Dj,0,Dj,1}j∈[log N] of dimension
poly(λ), and the evaluation on some input i = (b1, . . . , blog N) computes a subset-
product

∏log N
j=1 Dj,bj

followed by rounding. While the product of a constant
number of matrices and the rounding are in NC1, multiplying log N matrices is
only known to be in TC1, which is not good enough for us.

We solve this problem by “pre-processing” the key which makes it longer
but allows us to evaluate in NC1. In particular, we first group the log N matrix
tuples into c groups of (log N)/c tuples each. Next, we pre-compute all possible
2(log N)/c = N1/c subset-products within each group. This increases the key
size from 2 log N original matrices to c · N1/c pre-processed matrices, but now
the evaluation only needs to multiply together c of the pre-processed matrices;
as long as c is a constant (which can be arbitrarily large), this can be done
in NC1. In other words, for any constant ε > 0 there is a PCPRF with key
size O(Nε) (ignoring factors poly(λ) independent of ε) and evaluation in NC1.
This translates into a BMFE with ciphertext size O(Nε) and decryption in NC1.
Combining with succinct ABE for NC1, this in turn leads to an a AugBE scheme
and eventually a Broadcast and Trace scheme with ciphertext size O(Nε). Note
that if we instead had a succinct ABE for TC1 then we could avoid the pre-
processing step and that would lead to the ciphertext size only poly log N .

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial-time. We denote the set of
all positive integers upto n as [n] := {1, 2, . . . , n}. Throughout this paper, unless
specified, all polynomials we consider are positive polynomials. For any finite set
S, x ← S denotes a uniformly random element x from the set S. Similarly, for
any distribution D, x ← D denotes an element x drawn from distribution D. The
distribution Dn is used to represent a distribution over vectors of n components,
where each component is drawn independently from the distribution D.

2.1 Broadcast and Trace Systems

Here we recall the framework of broadcast and trace systems5 and describe its
security properties. In this work, we study broadcast and trace systems with
secret key tracing. A broadcast and trace scheme BT, for message spaces M =
{Mλ}λ∈N

, consists of four polytime algorithms (Setup,Enc,Dec,Trace) with the
following syntax:

5 Prior works [NP00,NNL01,BW06] referred to such systems as Trace and Revoke.

Broadcast and Trace with Nε Ciphertext Size from Standard Assumptions 837

Setup(1λ, 1N) → (pk, tk, {sk1, sk2, . . . , skN}). The setup algorithm takes as input
a security parameter λ and number of users N . It outputs a public key pk,
tracing key tk, and secret keys for N users {sk1, sk2, . . . , skN} respectively.

Enc(pk, S,m) → ct. The encryption algorithm takes as input public key pk, a
set S ⊆ [N] of users, a message m and outputs a ciphertext ct.

Dec(ski, S, ct) → m or ⊥. The decryption algorithm takes as input a user secret
key, a set of users S ⊆ [N], a ciphertext ct, and outputs either a message m
or special reject symbol ⊥.

TraceD(tk, SD,m0,m1, 11/ε) → S∗. The tracing algorithm takes as input a trac-
ing key tk, a set of users SD, two messages m0, m1 and parameter ε < 1.
The algorithm has a black-box access to the decoder D and outputs a set of
indices S∗ ⊆ [N].
Intuitively, the goal of the tracing algorithm is that when the decoder D can
distinguish between encryptions of messages m0 and m1 encrypted to the set
SD with probability more than ε, the tracing algorithm should output a set
S∗ which is a subset of traitors (i.e., keys used to build decoder D). Here we
consider the notion of secret key tracing, that is the algorithm takes as input
a private tracing key to carry out the tracing procedure.

Correctness. A broadcast and trace system is said to be correct if there exists a
negligible function negl(·) such that for every λ ∈ N, any number of users N ∈ N,
every subset of users S ⊆ [N], every message m ∈ Mλ, every user i ∈ S, the
following holds

Pr
[

Dec(ski, S, ct) = m : (pk, tk, {ski}i∈[N]) ← Setup(1λ, 1N);
ct ← Enc(pk, S,m)

]

≥ 1 − negl(λ).

where the probability is taken over the random coins used during setup and
encryption.

Security. Intuitively, the system is said to be secure if it is IND-CPA secure as
well as if no poly-time adversary can produce a decoder that can fool the tracing
algorithm. We formally define both of these properties below.

Definition 2.1 (Selective IND-CPA security). We say that a broadcast and
trace scheme is selective IND-CPA secure if for every stateful PPT adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N, the following
holds

Pr

⎡

⎢

⎢

⎣

A(ct) = b :

(1N , S∗) ← A(1λ);
(pk, tk, {ski}i∈[N]) ← Setup(1λ, 1N);
(m0,m1) ← A(pk, {ski}i∈[N]\S∗);
b ← {0, 1}; ct ← Enc(pk, S∗,mb)

⎤

⎥

⎥

⎦

≤ 1
2

+ negl(λ).

Next, we describe the secure tracing definition and experiment. Intuitively,
it states that if an adversary A outputs a decoding box D such that D can
distinguish between encryptions of messages m0 and m1 encrypted to the set
SD ⊆ [N] with some non-negligible probability ε, then the tracing algorithm

838 R. Goyal et al.

Trace, given oracle access to D, outputs (with all but negligible probability)
a non-empty set of user indices such that all of them were corrupted by A.
Formally, it is described below (Fig. 1).

Definition 2.2 (Selective Secure Tracing). Let BT = (Setup,Enc,Dec,
Trace) be a broadcast and trace scheme. For any non-negligible function ε(·)
and stateful PPT adversary A, consider the experiment Expt-BTA,ε(λ) defined
as follows.

Fig. 1. Experiment Expt-BT

Based on the above experiment, we now define the following (probabilistic)
events and the corresponding probabilities (which are a functions of λ, parame-
terized by A, ε):

– Good-Decoder : Pr[D(ct) = b : b ← {0, 1}, ct ← Enc(pk, SD,mb)] ≥ 1/2 + ε(λ)
Pr -G-DA,ε(λ) = Pr[Good-Decoder]

– Cor-Tr : |S∗| > 0, S∗ ⊆ S ∩ SD

Pr -Cor-TrA,ε(λ) = Pr[Cor-Tr]
– Fal-Tr : S∗ �⊆ S ∩ SD

Pr -Fal-TrA,ε(λ) = Pr[Fal-Tr]

A broadcast and trace scheme BT is said to satisfy selective secure tracing prop-
erty if for every PPT adversary A, polynomial q(·) and non-negligible function
ε(·), there exists negligible functions negl1(·), negl2(·) such that for all λ ∈ N

satisfying ε(λ) > 1/q(λ), the following holds

Pr -Fal-TrA,ε(λ) ≤ negl1(λ), Pr -Cor-TrA,ε(λ) ≥ Pr -G-DA,ε(λ) − negl2(λ).

2.2 Augmented Broadcast Encryption

In this section, we define Augmented Broadcast Encryption (AugBE) and its
security properties. The notion of AugBE was introduced by Boneh and Waters
[BW06] as a building block towards realizing broadcast and trace systems. The
original definition was described such that it could be used to build broadcast

Broadcast and Trace with Nε Ciphertext Size from Standard Assumptions 839

and trace scheme with public traceability. Here we relax the original definition
since we only target secret key traceability. Specifically, the index encryption
algorithm will now be a secret key algorithm, instead of being a public key
algorithm. Below we describe the syntax.

Setup(1λ, 1N) → (pk,msk, {sk1, . . . , skN}). The setup algorithm takes as input
security parameter λ and number of users N . It outputs a public key pk, a
master secret key msk and user secret keys {sk1, . . . , skN}, where ski is the
secret key for user i.

Enc(pk, S,m) → ct. The encryption algorithm takes as input public key pk, a
set of users S ⊆ [N], and a message m. It outputs a ciphertext ct.

Enc-index(msk, S,m, ind) → ct. The index encryption algorithm takes as input
master secret key msk, a set of users S ⊆ [N], a message m, and an index
ind ∈ [N + 1]. It outputs a ciphertext ct.

Dec(ski, S, ct) → m or ⊥. The decryption algorithm takes as input a secret key
for ith user ski, a set of users S ⊆ [N], a ciphertext ct, and outputs a message
m or ⊥.

Correctness. An AugBE system is said to be correct if there exists a negligible
function negl1(·), negl2(·) such that for every λ ∈ N, any number of users N ∈ N,
every subset of users S ⊆ [N], any index ind ∈ [N + 1], every message m ∈ Mλ,
every user i ∈ S, the following holds

Pr
[

Dec(ski, S, ct) = m : (pk,msk, {ski}i∈[N]) ← Setup(1λ, 1N);
ct ← Enc(pk, S,m)

]

≥ 1 − negl1(λ),

i ≥ ind ⇒ Pr
[

Dec(ski, S, ct) = m :

(pk,msk, {ski}i∈[N]) ← Setup(1λ, 1N);
ct ← Enc-index(msk, S,m, ind)

]

≥ 1 − negl2(λ).

where the probabilities are taken over the random coins used during setup and
encryption.

Security. Below we describe the security properties required from an AugBE
scheme. The definitions are modelled after the bounded-ciphertext-query PLBE
definitions [GKW18].

Definition 2.3 (q-query Selective Normal Hiding Security). Let q(·) be
any fixed polynomial. An AugBE scheme is said to satisfy q-query selective nor-
mal hiding security if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for every λ ∈ N, the following holds:

840 R. Goyal et al.

Pr
[

AEnc-index(msk,·,·,1)(ctb) = b :

(1N , S∗) ← A(1λ);
(

pk,msk, {ski}i∈[N]

) ← Setup(1λ, 1N)
m ← AEnc-index(msk,·,·,1) (

pk, {ski}i∈[N]

)

b ← {0, 1}; ct0 ← Enc(pk, S∗,m)
ct1 ← Enc-index(msk, S∗,m, 1)

⎤

⎥

⎥

⎥

⎥

⎦

≤ 1
2

+ negl(λ)

where A can make at most q(λ) queries to Enc-index(msk, ·, ·, 1) oracle. Note that
here A is only allowed to query for ciphertexts corresponding to index 1.

Definition 2.4 (q-query Selective Index Hiding Security). Let q(·) be any
fixed polynomial. An AugBE scheme is said to satisfy q-query selective index
hiding security if for every (admissible) stateful PPT adversary A, there exists
a negligible function negl(·) such that for every λ ∈ N, the following holds:

Pr
[

AO(·),Enc-index(msk,·,·,·)(ct) = b :

(1N , ind ∈ [N], S∗) ← A(1λ)
(

pk,msk, {ski}i∈[N]

) ← Setup(1λ, 1N)
m ← AO(·),Enc-index(msk,·,·,·) (pk)

b ← {0, 1}; ct ← Enc-index(msk, S∗,m, ind + b)

⎤

⎥

⎥

⎦

≤ 1
2

+ negl(λ)

where A can make at most q(λ) queries to Enc-index(msk, ·, ·, ·) oracle. Here
O(·) is an oracle that has keys {ski}i∈[N] hardwired, takes as input an index
i ∈ [N] and outputs ski. Let the set of keys queried by the adversary be S. The
adversary is admissible if and only if the challenge index ind it chooses satisfies
ind /∈ (S∗ ∩ S).

Definition 2.5 (q-bounded Selective Message Hiding Security). Let q(·)
be any fixed polynomial. An AugBE scheme is said to satisfy q-query selective
message hiding security if for every stateful PPT adversary A, there exists a
negligible function negl(·) such that for every λ ∈ N, the following holds:

Pr
[

AEnc-index(msk,·,·,·)(ct) = b :

(1N , S∗) ← A(1λ);
(

pk,msk, {ski}i∈[N]

) ← Setup(1λ, 1N)
(m0,m1) ← AEnc-index(msk,·,·,·) (

pk, {ski}i∈[N]

)

b ← {0, 1}; ct ← Enc-index(msk, S∗,mb, N + 1)

⎤

⎦ ≤ 1
2

+ negl(λ)

where A can make at most q(λ) queries to Enc-index(msk, ·, ·, ·) oracle.

We refer for the full version of the paper for a construction of a broadcast
and trace system from an AugBE scheme. The formal theorem is provided later.

Broadcast and Trace with Nε Ciphertext Size from Standard Assumptions 841

2.3 Key-Policy Attribute Based Encryption with Short Ciphertexts

In this work we require a key-policy attribute based encryption (KP-ABE)
scheme with short ciphertexts for obtaining our final result. Here we recall the
definition of KP-ABE with short ciphertexts, and state the prior results with
explicit succinctness guarantees.

A KP-ABE scheme ABE, for set of attribute spaces X = {Xκ}κ, predicate
classes C = {Cκ}κ and message spaces M = {Mκ}κ, consists of four polytime
algorithms (Setup,Enc,KeyGen,Dec) with the following syntax:

Setup(1λ, 1κ) → (pp,msk). The setup algorithm takes as input the security
parameter λ and a functionality index κ, and outputs the public parame-
ters pp and master secret key msk.

Enc(pp, x,m) → ct. The encryption algorithm takes as input public parameters
pp, an attribute x ∈ Xκ and a message m ∈ Mκ. It outputs a ciphertext ct.

KeyGen(msk, C) → skC . The key generation algorithm takes as input master
secret key msk and a predicate C ∈ Cκ. It outputs a secret key skC .

Dec(skC , ct, x) → m or ⊥. The decryption algorithm takes as input a secret key
skC , a ciphertext ct and an attribute x. It outputs either a message m ∈ Mκ

or a special symbol ⊥.

We point out that in our syntax the decryption algorithm takes the attribute
x as explicit input. This is done so to simplify stating the succinctness require-
ment. Below we describe the correctness and security requirements, and later
state the results achieving the requisite notion.

Correctness. A key-policy attribute based encryption scheme is said to be correct
if there exists negligible functions negl(·) such that for all λ, κ ∈ N, for all x ∈ Xκ,
C ∈ Cκ, m ∈ Mκ, such that C(x) = 1 the following holds

Pr

⎡

⎣Dec(skC , ct, x) = m :
(pp,msk) ← Setup(1λ, 1κ);
skC ← KeyGen(msk, C);

ct ← Enc(pp, x,m)

⎤

⎦ ≥ 1 − negl(λ)

where negl(·) is a negligible function, and the probabilities are taken over the
random coins used during setup, key generation, and encryption procedures.

Security. The standard notion of security for a KP-ABE scheme is that of IND-
CPA security. It is formally defined as follows.

Definition 2.6. A key-policy attribute based encryption scheme ABE =
(Setup,Enc,KeyGen,Dec) is said to be selectively secure if for every stateful PPT
adversary A, there exists a negligible function negl(·), such that for every λ ∈ N

the following holds:
∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎣

AKeyGen(msk,·)(ct) = b :

(1κ, x) ← A(1λ);
(pp,msk) ← Setup(1λ, 1κ)

(m0,m1) ← AKeyGen(msk,·)(pp)
b ← {0, 1}; ct ← Enc(pp, x,mb)

⎤

⎥

⎥

⎦

− 1
2

∣

∣

∣

∣

∣

∣

∣

∣

≤ negl(λ)

842 R. Goyal et al.

where every predicate query C, made by adversary A to the KeyGen(msk, ·) ora-
cle, must satisfy the condition that C(x) = 0.

Below we state the result proved in [AHL+12] about a KP-ABE scheme with
short ciphertexts from assumptions over bilinear maps. Concretely, they relied
on the n-DBDHE assumption studied in [BGW05,BBG05]. Below we state the
formal theorem.

Theorem 2.7 ([AHL+12, Theorem 4, Paraphrased]). Assuming κ-DBDHE
assumption holds, there exists a selectively-secure (Definition 2.6) KP-ABE
scheme for non-monotonic access structures with length κ attributes (/number of
parties). Additionally, the size of public parameters, secret keys, ciphertexts grow
with λ and κ as follows—|pp| = O(κ · λ), |skC | = O(κ · λ · |C|), and |ct| = O(λ).

We point out that the size of the ciphertext does not depend on the length of
the attributes, that is the KP-ABE scheme has short ciphertexts.

2.4 Key-Homomorphic Private Constrained PRFs

In this section, we recall the notion of almost-key-homomorphic private con-
strained PRFs (PCPRFs) from [CVW+18a]. As in [CVW+18a], we also work
with PCPRFs that satisfy simulation-based security given one constrained key
and many input queries. The existence of a simulator will be useful for the
purpose of this paper. Below we describe the syntax and definition of PCPRFs.

A constrained PRF consists of five PPT algorithms (PPGen,SKGen,
Constrain,Eval,Constrain.Eval) along with a domain family {Dλ}λ∈N, a range
family {Rλ}λ∈N, and a constraint family C = {Cλ = {C : Dλ → {0, 1}}}λ∈N

.

PPGen(1λ) → PP. The public parameter generation algorithm takes the security
parameter λ and generates the public parameters PP.

SKGen(1λ,PP) → SK. The secret key generation algorithm takes the security
parameter λ, and the public parameters PP, and generates a secret key SK.

Eval(SK, x) → y. The evaluation algorithm takes SK, an input x ∈ Dλ, and
deterministically outputs y ∈ Rλ. We will also use the alternative notation
y = FSK(x).

Constrain(1λ,PP,SK, C) → CKC . The constraining algorithm takes SK, a con-
straint C ∈ Cλ, outputs the constrained key CKC .

Constrain.Eval(CKC , x) → y. The constrained evaluation algorithm takes a con-
strained key CKC , an input x, outputs y = FCKC

(x).

Definition 2.8 (Key-homomorphic private constrained PRF). A con-
strained PRF (PPGen,SKGen,Constrain,Eval,Constrain.Eval) is a family of
almost-key-homomorphic private constrained PRF for C if it satisfies the fol-
lowing properties:

Functionality preservation for C(x) = 0. For any constraint C ∈ Cλ, any
input x ∈ Dλ s.t. C(x) = 0,

Pr[Eval(SK, x) = Constrain.Eval(CKC , x)] ≥ 1 − negl(λ),

Broadcast and Trace with Nε Ciphertext Size from Standard Assumptions 843

where the probability is taken over the randomness used in algorithms PPGen,
SKGen and Constrain.

Pseudorandomness and constraint-hiding. There exists a polynomial time
algorithm Sim such that for every stateful PPT adversary A, there exists a
negligible function negl(·) such that for all λ ∈ N, the following holds:

Pr

⎡

⎣AEval(SK,·)(PP,CKC) = 1 :
C ← A(1λ);PP ← PPGen(1λ)

SK ← SKGen(1λ,PP)
CKC ← Constrain(1λ,PP,SK, C)

⎤

⎦

−Pr
[

AO(·)(PP,CKC) = 1 :
C ← A(1λ);

(PP,CKC) ← Sim(1λ, 1|C|)

]

≤ 1
2

+ negl(λ).

where the oracle O(·) is defined as follows. On each query x made by the
adversary, if C(x) = 0 then it responds with y = Constrain.Eval(CKC , x),
otherwise it responds with y ← Rλ.

Distribution requirement on the secret keys. The space of keys Kλ is
a group for all λ ∈ N. Let + denote the group operation over Kλ. We
additionally require that for PP ← PPGen(1λ), for SK1,SK2,SK

′ sampled
from SKGen(1λ,PP) with uniform and independent randomness, SK1 + SK2,
SK1 + (−SK2), and SK′ are identically distributed.

Almost-key-homomorphism. Let B ∈ N, and suppose Rλ is endowed with
a norm ‖ · ‖ and a group operation + (by abuse of notation; whether we are
considering addition over Rλ or over Kλ will be clear from the context) for all
λ ∈ N . A constrained PRF (PPGen, SKGen, Constrain, Eval, Constrain.Eval)
with domain Dλ and range Rλ is called B-almost-key-homomorphic if for
PP ← PPGen(1λ), SK1,SK2 ← SKGen(1λ,PP), and any input x ∈ Dλ:

‖Eval(SK1, x) + Eval(SK2, x) − Eval(SK1 + SK2, x)‖ ≤ B.

To instantiate the definition above, we will use PCPRFs from LWE [CC17,
CVW18b], which happen to satisfy 1-almost-key homomorphism. We defer a
more detailed exposition of the parameters and the efficiency of those PCPRFs
to Sect. 6.1.

3 Broadcast Mixed FE for Comparison

The notion of mixed functional encryption was introduced in [GKW18] towards
building efficient collusion-resistant Traitor Tracing systems. In this work, we
adapt the notion of Mixed FE to additionally provide broadcast capability. We
call this new primitive to Broadcast Mixed FE. This new notion is a central
component of our approach to building Broadcast and Trace schemes. Let us first
recall the notion of Mixed FE scheme for comparisons. In such a scheme, both the
secrets keys as well as ciphertexts are associated with a message string (say all
natural numbers for instance) with the comparison predicate being implemented.
In a Mixed FE system, there are two modes of encryption—secret-key and public-
key. In the public-key (or normal) encryption mode, the algorithm takes as input

844 R. Goyal et al.

only the public parameters and outputs a encryption of ‘one’ (i.e., inherently it
encrypts a “canonical” always-accepting function ‘≥1’). Whereas in the secret-
key mode, it takes as input the master secret key and a string x, and encrypts x.
Now the functional secret keys are associated with a unique string as well. The
decryption algorithm in a Mixed FE system works similar to that in standard
FE, that is decrypting an encryption of message x using secret key for string i
outputs 1 iff ‘i ≥ x’ (i.e., decryption evaluates the comparison function).

Here we extend this to provide a broadcast functionality as well. This means
that now in both the public-key and secret-key modes, the encryption algorithms
also take as input a set S ⊆ [N]. And, now the decryption functionality is altered
as follows—decrypting an encryption of message x for set S using secret key for
string i outputs 1 iff ‘i /∈ S ∨ i ≥ x’. In other words, the decryption algorithm
evaluates the comparison function only if i ∈ S, so that users outside of the
broadcast set S cannot infer any information about x from their secret key.
Next, we formally describe it.

A broadcast mixed functional encryption scheme BMFE consists of four poly-
time algorithms (Setup,Enc,SK-Enc,Dec) with the following syntax:

Setup(1λ, 1N) → (pp,msk, {sk1, . . . , skN}). The setup algorithm takes as input
the security parameter λ and number of users N , and outputs the public
parameters pp, the master secret key msk and N user keys {ski}i∈[N].

Enc(pp, S) → ct. The normal encryption algorithm takes as input public param-
eters pp and a set S ⊆ [N], and outputs a ciphertext ct.

SK-Enc(msk, S, j) → ct. The secret key encryption algorithm takes as input
master secret key msk, set S ⊆ [N], and an index j ∈ [N + 1]. It outputs a
ciphertext ct.

Dec(ski, S, ct) → {0, 1}. The decryption algorithm takes as input a secret key
ski, set S ⊆ [N] and a ciphertext ct, and it outputs a single bit.

Correctness. A broadcast mixed functional encryption scheme is said to be cor-
rect if there exists negligible functions negl1(·), negl2(·), negl3(·) such that for all
λ,N ∈ N, for every set S ⊆ [N], and for all user indices i ∈ [N] and j ∈ [N + 1],
the following holds

Pr
[

Dec(ski, S, ct) = 1 : (pp,msk, {ski}i∈[N]) ← Setup(1λ, 1N);
ct ← Enc(pp, S)

]

≥ 1 − negl1(λ),

(i ∈ S ∧ i < j) ⇒ Pr
[

Dec(ski, S, ct) = 0 :

(pp,msk, {ski}i∈[N]) ← Setup(1λ, 1N);
ct ← SK-Enc(msk, S, j)

]

≥ 1 − negl2(λ).

where the probabilities are taken over the random coins used during setup and
encryption.

Broadcast and Trace with Nε Ciphertext Size from Standard Assumptions 845

Security. The security notions are derived from the mixed FE security notions
of function indistinguishability and accept indistinguishability as follows. Infor-
mally, the idea is that no PPT adversary should be able to distinguish between
a normal ciphertext and a secret-key ciphertext encrypting index 1. Addition-
ally, it should be hard to distinguish between two secret-key ciphertexts unless
the adversary can trivially distinguish between using the keys given to it. As in
prior works, we are only interested in broadcast mixed FE schemes that guar-
antee security against adversaries which make a bounded number of secret key
encryption queries. Below we formally define it.

Definition 3.1 (q-query Selective Index Indistinguishability). Let q(·) be
any fixed polynomial. A broadcast mixed functional encryption scheme BMFE =
(Setup,Enc,SK-Enc,Dec) is said to satisfy q-query selective index indistinguisha-
bility security if for every stateful PPT adversary A, there exists a negligible
function negl(·), such that for every λ ∈ N the following holds:

Pr
[

ASK-Enc(msk,·,·)(pp, ct,Keys) = b :

(1N , ind ∈ [N], S∗) ← A(1λ)
(

pp,msk, {ski}i∈[N]

) ← Setup(1λ, 1N)
b ← {0, 1}; ct ← SK-Enc(msk, S∗, ind + b)

⎤

⎦ ≤ 1
2

+ negl(λ)

where A can make at most q(λ) queries to SK-Enc(msk, ·, ·) oracle. And, Keys
is the following set of secret keys—Keys = {ski}i∈[N]\{ind} if ind ∈ S∗, otherwise
Keys = {ski}i∈[N].

Definition 3.2 (q-query Selective Mode Indistinguishability). Let q(·) be
any fixed polynomial. A broadcast mixed functional encryption scheme BMFE =
(Setup,Enc,SK-Enc,Dec) is said to satisfy q-query selective mode indistinguisha-
bility security if for every stateful PPT adversary A, there exists a negligible
function negl(·), such that for every λ ∈ N the following holds:

Pr
[

ASK-Enc(msk,·,1)(pp, ctb, {ski}i∈[N]) = b :

(1N , S∗) ← A(1λ);
(

pp,msk, {ski}i∈[N]

) ← Setup(1λ, 1N)
b ← {0, 1}; ct0 ← Enc(pp, S∗)

ct1 ← SK-Enc(msk, S∗, 1)

⎤

⎥

⎥

⎦

≤ 1
2

+ negl(λ)

where A can make at most q(λ) queries to SK-Enc(msk, ·, 1) oracle.

4 Building Augmented BE from Broadcast Mixed FE
and Key-Policy ABE with Short Ciphertexts

In this section we provide our construction for augmented BE from broadcast
mixed FE and KP-ABE with short ciphertexts.

846 R. Goyal et al.

Let ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) be a key-
policy attribute based encryption scheme for set of attribute spaces
{Xκ}κ, predicate classes {Cκ}κ and message spaces {Mκ}κ, and BMFE =
(BMFE.Setup,BMFE.Enc,BMFE.SK-Enc,BMFE.Dec) be a broadcast mixed func-
tional encryption scheme for comparison with ciphertexts of length � = �(λ,N).
Also, let κ = κ(λ,N) be the lexicographically smallest functionality index such
that every string of length � can be uniquely represented in attribute class Xκ

(i.e., {0, 1}� ⊆ Xκ). We will suppose that for all i ∈ [N] and bmfe.sk generated
by BMFE.Setup, Cκ contains the circuit Ci,bmfe.sk defined as:

Ci,bmfe.sk(bmfe.ct, S) := (i ∈ S) ∧ (BMFE.Dec(bmfe.sk, S, bmfe.ct) = 1),

which composes a BMFE decryption with testing membership in S ⊆ [N].
Below we describe our construction.

Setup(1λ, 1N) →
(

pk,msk, {ski}i∈[N]

)

. The setup algorithm runs ABE.Setup

and BMFE.Setup to generate ABE and broadcast mixed FE public param-
eters and master secret key as (abe.pp, abe.msk) ← ABE.Setup(1λ, 1κ) and
(bmfe.pp, bmfe.msk, {bmfe.ski}i∈[N]) ← BMFE.Setup(1λ, 1N).
Now let Ci,bmfe.ski

: {0, 1}� × [N] → {0, 1} denote the following circuit:

Ci,bmfe.ski
(bmfe.ct, S) := (i ∈ S) ∧ (BMFE.Dec(bmfe.ski, S, bmfe.ct) = 1).

That is, it corresponds to BMFE decryption circuit with key bmfe.ski hard-
wired along with a set membership check for index i. Next, it computes N
ABE secret keys abe.ski as

∀ i ∈ [N], abe.ski ← ABE.KeyGen(abe.msk, Ci,bmfe.ski
)

Finally, it sets pk = (abe.pp, bmfe.pp), msk = (abe.msk, bmfe.msk) and ski =
abe.ski for i ∈ [N].

Enc(pk, S,m) → ct. Let pp = (abe.pp, bmfe.pp). The encryption algorithm first
computes ctattr ← BMFE.Enc(bmfe.pp, S). Next, it encrypts message m as
ct ← ABE.Enc(abe.pp, attr = (ctattr, S),m), and outputs ciphertext (ct, ctattr).

Enc-index(msk, S,m, ind) → ct. Let msk = (abe.msk, bmfe.msk). The index-
encryption algorithm first computes ctattr ← BMFE.SK-Enc(bmfe.msk, S, ind).
Next, it encrypts message m as ct ← ABE.Enc(abe.pp, attr = (ctattr, S),m),
and outputs ciphertext (ct, ctattr).

Dec(sk, S, (ct, ctattr)) → m or ⊥ . The decryption algorithm runs ABE.Dec on ct
using key sk as y = ABE.Dec(sk, ct, (ctattr, S)), and sets y as the output of
decryption.

We now state the correctness and security of the above construction. Their
proofs are included in the full version of the paper.

Theorem 4.1. Suppose ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec)
is a correct attribute based encryption for set of attribute spaces {Xκ}κ,
predicate classes {Cκ}κ and message spaces {Mκ}κ, and BMFE =

Broadcast and Trace with Nε Ciphertext Size from Standard Assumptions 847

(BMFE.Setup,BMFE.Enc,BMFE.SK-Enc,BMFE.Dec) is a correct broadcast mixed
functional encryption scheme for comparison, then the above construction satis-
fies correctness.

Theorem 4.2. If ABE = (ABE.Setup,ABE.Enc,ABE.KeyGen,ABE.Dec) is a
selectively-secure attribute based encryption for set of attribute spaces {Xκ}κ,
predicate classes {Cκ}κ and message spaces {Mκ}κ satisfying Definition 2.6,
and BMFE = (BMFE.Setup,BMFE.Enc,BMFE.SK-Enc,BMFE.Dec) is a broadcast
mixed functional encryption scheme satisfying 1-query selective mode indistin-
guishability (Definition 3.2) and 1-query selective index indistinguishability (Def-
inition 3.1) properties, then the above construction is a secure augmented broad-
cast encryption scheme, for messages spaces {Mκ}κ, satisfying 1-query selective
normal, index and message hiding security properties as per Definitions 2.3 to
2.5. Additionally, the size of ciphertexts in the AugBE system is � + ˜�, where
� = �(λ,N) and ˜� = ˜�(λ, κ) are the sizes of broadcast mixed FE and ABE cipher-
texts, respectively.

5 Building Broadcast Mixed FE for Comparison from
PCPRFs

In this section we present our construction of a broadcast mixed FE for compari-
son with 1-query security based on almost-key-homomorphic private constrained
PRFs.

In the following, if we let N ∈ N (which is the number of users), we will
consider N +1 tuples of PCPRF keys indexed by {0, . . . , N}. This can be viewed
as adding a dummy user “0” who is never authorized to decrypt, so that no sums
are empty (and in particular our scheme makes sense even if the set S ⊆ [N]
is [N]). As a result, in this whole section, whenever we consider a sum, unless
specified otherwise, the set of indices live in {0, . . . , N}; for instance, for S ⊆ [N],
j /∈ S will stand for j ∈ {0, . . . , N} \ S.

Let PCPRF = (PPGen,SKGen,Constrain,Eval,Constrain.Eval) along with a
family of constraints C be a PCPRF (Definition 2.8) satisfying B-almost-key
homomorphism. For all j ∈ Dλ, let Cj : i �→ [i ≥ j] be a circuit that outputs 1
if i ≥ j and 0 otherwise. We will suppose that for all j ∈ Dλ, Cj ∈ Cλ, that is
Cj are valid constraints for the PCPRF. Let |Cλ| = poly(λ) be a common size
for such circuits.

We define our broadcast mixed FE scheme as follows:

Setup(1λ, 1N) → (pp,msk, {sk1, . . . , skN}): The setup algorithm first samples
PP ← PPGen(1λ,Fλ). It then generates for all 0 ≤ i ≤ N , t ∈ [λ] and
b ∈ {0, 1}: SKi,t,b ← SKGen(1λ,PP).
It then sets pp = PP, msk = {SKi,t,b}0≤i≤N,t∈[λ],b∈{0,1}, and for all i ∈ [N]:
ski = {i, Eval(SKj,t,b, i)}j �=i,t∈[λ],b∈{0,1}.

Enc(pp, S) → ct. The normal encryption algorithm first picks a random tag
z ← {0, 1}λ. It then runs the PCPRF simulator: CK ← Sim(1λ, 1|Cλ|), and
sets ct = (z,CK).

848 R. Goyal et al.

SK-Enc(msk, S, j) → ct. The secret key encryption algorithm first samples z ←
{0, 1}λ. It computes:

SKS,z =
∑

i/∈S,t∈[λ]

SKi,t,zt
,

(where the sum denotes the group operation over PCPRF keys). Note that
this sum is never empty (as i /∈ S stands here for i ∈ {0, . . . , N} \ S, so
that it always contains the secret keys SK0,t,b for all t ∈ [λ], b ∈ {0, 1}). The
algorithm computes the constrained key

CKS,z,j ← Constrain(1λ,PP,SKS,z, Cj),

where Cj is defined above. It finally sets ct = (z,CKS,z,j).
Dec(ski, S, ct) → {0, 1}. The decryption algorithm parses ct as (z,CK). If i /∈ S

where i is the secret key index, the decryption algorithm outputs 1.
Otherwise, it computes Constrain.Eval(CK, i), and outputs:
{

0 if ‖Constrain.Eval(CK, i) − ∑

j /∈S,t∈[λ] Eval(SKj,t,zt
, i)‖ ≤ (N + 1) · λ · B

1 otherwise.

We now state the correctness and security of the above construction. The
proofs are included in the full version of the paper.

Theorem 5.1. Suppose PCPRF = (PPGen,SKGen,Constrain,Eval,Constrain.
Eval) along with a constraint family C and range Rλ is a PCPRF (Definition 2.8)
satisfying B-almost-key homomorphism for a norm ‖ · ‖. Suppose furthermore
that Prx←Rλ

[‖x‖ ≤ (N + 1)λB] ≤ negl(λ), that is, random elements in the
range of the PCPRF have large norm. Then the above construction satisfies
correctness.

Theorem 5.2. If PCPRF = (PPGen,SKGen,Constrain,Eval,Constrain.Eval)
along with a constraint family C is a PCPRF (Definition 2.8) satisfying B-
almost-key homomorphism, then the above construction is a secure BMFE for
comparison satisfying 1-query selective index indistinguishability and 1-query
selective mode indistinguishability, as per Definitions 3.1 and 3.2.

6 Efficiency

In this section we analyze the efficiency of our different constructions, in order
to evaluate the efficiency of our broadcast and trace scheme.

6.1 Efficient PCPRF for Comparison Constraints

We first focus on the PCPRF used in Sect. 5. Looking ahead, it will be crucial
that the resulting BMFE has short ciphertext and efficient decryption. More

Broadcast and Trace with Nε Ciphertext Size from Standard Assumptions 849

precisely, we will require to have the BMFE to have decryption in NC1 while
having as short ciphertexts as possible.

Looking at our construction in Sect. 5, we first need to analyze the complexity
of evaluating a PCPRF constrained evaluation for comparison constraints (which
is performed during BMFE decryption, and therefore required be in NC1), as
well as the size of the constrained keys (which are the BMFE ciphertexts). We do
so by analyzing and tailoring the PCPRFs from the literature ([CC17,CVW18b])
for our needs.

Almost-Key-Homomorphic PCPRFs from LWE. For our constructions, we will
focus on constructions of PCPRFs from LWE supporting (polynomial length)
branching program constraints [CC17,CVW18b], where the range is Rλ = Z

m×m
p

where p is the output modulus of the PRF, and m = poly(n) where n is the lattice
dimension in the underlying learning with errors assumption. They additionally
satisfy 1-almost-key-homomorphism with the infinity norm ‖ · ‖∞ [CVW+18a].
For more details on the parameters, we refer the reader tà the relevant sections
of [CC17,CVW18b].

Again, we will be most interested in both the size of the constrained keys
and the complexity of computing a constrained evaluation. In the constructions
of [CC17,CVW18b], if we consider branching programs of constant width and
length h ∈ N, then constrained keys consist of a set of 2h matrices in Z

m×m
q and

a single matrix in Z
n×m
q , where m = poly(n) and n and q are respectively the

lattice dimension and modulus of the underlying learning with errors assumption.
In other words, the constrained keys are of the form:

CK = (A, {Di,b}i∈[h],b∈{0,1}),

where A ∈ Z
n×m
q and Di,b ∈ Z

m×m
q for all i ∈ [h], b ∈ {0, 1}, and where

m = poly(n), and q is exponential in h (for correctness). Constrained evaluation
is performed by multiplying elements in the constrained key, namely the matrix
A, and a subset of h matrices determined by the input to the evaluation. For an
input x ∈ {0, 1}�, we have:6

Constrain.Eval(CK, x) =

⎢

⎢

⎢

⎣A ·
∏

i∈[h]

Di,x(i mod �)

⎤

⎥

⎥

⎥

p

,

where, for q > p ≥ 2, �·�p : Zq �→ Zp rounds element in Zq to Zp, that is, �x�p =
�x · p/q� where �·� denotes the usual rounding to the nearest integer; and �·�p

extends over matrices by applying the rounding pointwise. In particular, for m =
poly(n) and q ≤ 2poly(n), such a computation can be implemented by a circuit of
depth O(log h · log n) (by computing the h matrix products using a binary tree).
Actually, as both matrix multiplication and rounding (which is computable using
6 Later, we will need the index-to-input map ι of the branching program to be inde-

pendent of the program; we consider here ι : i �→ (i mod �) for simplicity. This is
without loss of generality up to a blow-up in the branching program length by a
factor �.

850 R. Goyal et al.

integer multiplication, division and rounding) can be performed in TC0 in this
regime (e.g. [RT92]), constrained evaluation can be performed in TC1.

Theorem 6.1 (PCPRFs from LWE [CC17,CVW18b]). Assuming the hard-
ness of LWE (with appropriate parameters), there exists PCPRFs satisfying 1-
almost-key-homomorphism supporting branching program constraints. Addition-
ally for any class of branching program constraints of width O(1) and length
h ≤ poly(n), the constrained keys have size O(h · poly(n) · log q), and constrained
evaluation can be computed in TC1, where n and q are respectively the lattice
dimension and modulus of the underlying LWE assumption.

Pre-processing the Constrained Evaluation. As noted earlier, we will crucially
need to be able to compute constrained evaluations in NC1. We note here that
in the constructions of [CC17,CVW18b] of PCPRFs for branching program con-
straints (with index-to-input map independent of the program), we can improve
the complexity of computing a constrained evaluation by pre-process the con-
strained keys. Recall that constrained keys contains matrices {Db

i}i∈[h],b∈{0,1},
where h ∈ N is the length of the branching program. Let 0 < ε < 1 be a fixed
constant, such that 1/ε ∈ N, and that εh ∈ N (this is without loss of gen-
erality up to padding the branching program with a constant number ≤ 1/ε
of dummy levels). To pre-process the constrained keys, we pre-compute all the
products of blocks of εh matrices.7 In other words, for all y ∈ {0, 1}εh and all
j ∈ {0, . . . , 1/ε − 1}, the pre-processing phase computes:

Mj,y =
εh
∏

i=1

Djεh+i , yi mod �
.

For x ∈ {0, 1}�, j ∈ {0, . . . , 1/ε − 1}, let y(j) = (xjεh+1 mod �, . . . , x(j+1)εh mod �)
be the j-th block of εh consecutive coordinates of x, ranging from jεh+1 mod �
to (j +1)εh mod �. Then, given those 2εh ·1/ε matrices {Mj,y}0≤j<1/ε, y∈{0,1}εh ,
and the original matrix A, one can compute for all x ∈ {0, 1}�:

Constrain.Eval(CK, x) = �A ·
1/ε−1
∏

j=0

Mj,y(j)�p.

In other words, given the pre-processed constrained key, constrained evaluation
can be performed by multiplying the appropriate (1/ε) pre-computed block prod-
ucts together with A (and rounding). In particular, this only requires a constant
number of matrix multiplications (as opposed to h originally). This is at the cost
of using a pre-processed constrained key consisting of 2εh × 1/ε matrices (which
can seen as pre-processed constrained keys).

Efficient Construction for Comparison Constraints. We note now that the BMFE
of Sect. 5 does not need to support general constraints, but only comparison
7 We rely here on the fact that the index-to-input ι is independent of the branching

program.

Broadcast and Trace with Nε Ciphertext Size from Standard Assumptions 851

functions. Recall that for a parameter N ∈ N and for ind ∈ [N], the function
Pind, on input i ∈ [N], outputs 1 if i ≥ ind and 0 otherwise.

However, naively invoking Barrington theorem [Bar86] to obtain a generic
branching program computing Pind, only yields a branching program of
length log2(N), which makes the pre-processing described above output super-
polynomially many matrices. Instead, we directly build a branching program for
comparison constraints, with constant width and length O(log N), which will be
good enough for our purposes.

Lemma 6.2. Let N ∈ N be an integer. Then for all ind ∈ [N], there exists a
(non-permutation) branching program of width 3 and length log N +2 computing
Pind (defined as Pind(i) = 1 if i ≥ ind and 0 otherwise), with index-to-input map
ι is independent of ind.

We exhibit such a branching program in the full version of the paper. Note
that this particular branching program is not a permutation branching program,
which excludes the PCPRF of [CC17]. Fortunately [CVW18b] does support gen-
eral (non-permutation) branching program constraints. Now, for 0 < ε < 1 being
a fixed constant, pre-processing the constrained keys results in Nε matrices of
size poly(n) log q (where n and q are respectively the lattice dimension and the
modulus of the underlying LWE assumption), while now multiplying 1/ε matri-
ces can be performed using a circuit of depth O(log(1/ε) log(n)). The following
Lemma follows by the fact that rounding can be computed in TC0 ([RT92]).

Lemma 6.3. Let N ∈ N be an integer and 0 < ε < 1 be a constant. Assum-
ing the hardness of LWE (with appropriate parameters), there exists a PCPRF
for comparison constraints (as defined above) satisfying 1-almost-key homomor-
phism. Furthermore, for Cλ = {Pind}ind∈[N] (defined above), that is if the con-
straints compare integers in [N], then the constrained keys have size Nε ·poly(n)
(where n is the lattice dimension in the underlying LWE assumption) and con-
strained evaluation is in NC1.

6.2 Wrapping-Up

Efficiency and Parameters of the BMFE. We are here most interested in the
size of a BMFE ciphertext and its decryption complexity. First, adding polyno-
mially many poly(n)-bit numbers, and comparing poly(n)-bit numbers can be
done in TC0, and therefore in NC1. Therefore, combined with Lemma 6.3, we
obtain that BMFE decryption from Sect. 5 can be evaluated in NC1, as sum-
ming PCPRF evaluations, taking their infinity norm and comparing them to the
threshold are in NC1as well.

Alternatively, we can directly use the PCPRFs of [CVW18b] (without pre-
processing the constrained keys). Combined our branching program for compar-
ison (Lemma 6.2), this gives a BMFE with ciphertext size log N · poly(λ) with
decryption in TC1.

852 R. Goyal et al.

Lemma 6.4. Suppose N = poly(λ), and let ε be a constant such that 0 <
ε < 1. Assuming the hardness of LWE with (sufficiently large) quasi-polynomial
modulus-to-noise ratio, there exists:

• a BMFE for comparison with ciphertext size Nε · poly(λ) and decryption in
NC1;

• a BMFE for comparison with ciphertext size log(N) · poly(λ) and decryption
in TC1.

For the parameters of the LWE assumption, we can take those of [CVW18b,
Remark 7.2] for branching programs of width w = 3 and length h = log N + 2,
with the additional requirement that p ≥ C · Nλ for some fixed constant C > 1
(e.g. C = 1.1), which we use to argue correctness of the BMFE. In particular, for
N = poly(λ), this corresponds to assuming the hardness of LWE with a quasi-
polynomial modulus to noise ratio. Looking ahead, this will be parameters of
the LWE assumption of our final broadcast and trace scheme.

Efficiency of the Broadcast and Trace. The final broadcast and trace system
directly inherits the ciphertext size from the augmented BE. Using the construc-
tion from Sect. 4, the resulting augmented BE scheme inherits its ciphertext size
from its underlying ABE, assuming the ABE support the class of predicates
Ci,bmfe.ski

(bmfe.ct, S) := (i ∈ S) ∧ (BMFE.Dec(bmfe.ski, S, bmfe.ct) = 1) defined
by the BMFE decryption procedure.

In conclusion, assuming the ABE has succinct ciphertexts of size indepen-
dent of their attribute, then our broadcast and trace system has ciphertext size
dominated by the size of the BMFE ciphertexts. Overall, Combining Lemma6.4,
and Theorem 2.7, we get the desired result:

Theorem 6.5. Let N = poly(λ), and let ε be a constant such that 0 < ε <
1. Assuming the hardness of LWE with (sufficiently large) quasi-polynomial
modulus-to-noise ratio, and:

• assuming that the N -DBDHE assumption holds, there exists a broadcast and
trace scheme with ciphertext size Nε · poly(λ).

• assuming the existence of an ABE for TC1 predicates with ciphertext size
polylogarithmic in its attribute length, there exists a broadcast and trace
scheme with ciphertext size poly(log N,λ).

References

[AHL+12] Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., De Panafieu,
E., Ràfols, C.: Attribute-based encryption schemes with constant-size
ciphertexts. Theor. Comput. Sci. 422, 15–38 (2012)

[ALDP11] Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy
attribute-based encryption with constant-size ciphertexts. In: Catalano,
D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol.
6571, pp. 90–108. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19379-8 6

https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/978-3-642-19379-8_6

Broadcast and Trace with Nε Ciphertext Size from Standard Assumptions 853

[Bar86] Barrington, D.A.: Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. In: Proceedings of the Eigh-
teenth Annual ACM Symposium on Theory of Computing, STOC 1986
(1986)

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption
with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). https://doi.
org/10.1007/11426639 26

[BGG+14] Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit
ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 30

[BGW05] Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryp-
tion with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://
doi.org/10.1007/11535218 16

[BSW06] Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing
with short ciphertexts and private keys. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 34

[BTVW17] Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private con-
strained PRFs (and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part I. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70500-2 10

[BW06] Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and
revoke system. In: Proceedings of the 13th ACM Conference on Com-
puter and Communications Security, CCS 2006, Alexandria, VA, USA,
30 October–3 November 2006, pp. 211–220 (2006)

[CC17] Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from
LWE. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 446–476. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 16

[CFN94] Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48658-5 25

[CFNP00] Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Trans.
Inf. Theory 46(3), 893–910 (2000)

[CVW+18a] Chen, Y., Vaikuntanathan, V., Waters, B., Wee, H., Wichs, D.: Traitor-
tracing from LWE made simple and attribute-based. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 341–369.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 13

[CVW18b] Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation
branching programs: proofs, attacks, and candidates. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 577–
607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-
0 20

[DF02] Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless
receivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp.
61–80. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5 5

https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11761679_34
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/978-3-030-03810-6_13
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-540-44993-5_5
https://doi.org/10.1007/978-3-540-44993-5_5

854 R. Goyal et al.

[FN94] Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 40

[GKW17] Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017,
pp. 612–621 (2017)

[GKW18] Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing
from learning with errors. In: STOC (2018)

[GST04] Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation
in groups of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 511–527. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-28628-8 31

[GSW00] Garay, J.A., Staddon, J., Wool, A.: Long-lived broadcast encryption. In:
Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 333–352. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 21

[GVW12] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption
with bounded collusions via multi-party computation. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 11

[GVW13] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption
for circuits. In: STOC (2013)

[GVW19] Goyal, R., Vusirikala, S., Waters, B.: Collusion resistant broadcast and
trace from positional witness encryption. In: Lin, D., Sako, K. (eds.) PKC
2019. LNCS, vol. 11443, pp. 3–33. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17259-6 1

[HLR10] Herranz, J., Laguillaumie, F., Ràfols, C.: Constant size ciphertexts in
threshold attribute-based encryption. In: Nguyen, P.Q., Pointcheval, D.
(eds.) PKC 2010. LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13013-7 2

[HS02] Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45708-9 4

[KMUW18] Kowalczyk, L., Malkin, T., Ullman, J., Wichs, D.: Hardness of non-
interactive differential privacy from one-way functions. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 437–466.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 15

[NNL01] Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for
stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 41–62. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44647-8 3

[NP00] Frankel, Y. (ed.): FC 2000. LNCS, vol. 1962. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45472-1

[PST06] Phan, D.H., Safavi-Naini, R., Tonien, D.: Generic construction of hybrid
public key traitor tracing with full-public-traceability. In: Bugliesi, M.,
Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS,
vol. 4052, pp. 264–275. Springer, Heidelberg (2006). https://doi.org/10.
1007/11787006 23

[RT92] Reif, J., Tate, S.: On threshold circuits and polynomial computation.
SIAM J. Comput. 21(5), 896–908 (1992)

https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/978-3-540-28628-8_31
https://doi.org/10.1007/978-3-540-28628-8_31
https://doi.org/10.1007/3-540-44598-6_21
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-030-17259-6_1
https://doi.org/10.1007/978-3-030-17259-6_1
https://doi.org/10.1007/978-3-642-13013-7_2
https://doi.org/10.1007/3-540-45708-9_4
https://doi.org/10.1007/978-3-319-96884-1_15
https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1007/3-540-45472-1
https://doi.org/10.1007/11787006_23
https://doi.org/10.1007/11787006_23

Broadcast and Trace with Nε Ciphertext Size from Standard Assumptions 855

[SSW01] Staddon, J., Stinson, D.R., Wei, R.: Combinatorial properties of frame-
proof and traceability codes. IEEE Trans. Inf. Theory 47(3), 1042–1049
(2001)

[Sti97] Stinson, D.R.: On some methods for unconditionally secure key distri-
bution and broadcast encryption. In: Kranakis, E., Van Oorschot, P.
(eds.) Selected Areas in Cryptography, pp. 3–31. Springer, Boston (1997).
https://doi.org/10.1007/978-1-4615-5489-9 2

[SVT98] Stinson, D.R., Trung, T.V.: Some new results on key distribution patterns
and broadcast encryption. Des. Codes Crypt. 14(3), 261–279 (1998)

[SW98] Stinson, D.R., Wei, R.: Combinatorial properties and constructions of
traceability schemes and frameproof codes. SIAM J. Discrete Math.
11(1), 41–53 (1998)

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11426639 27

[WZ17] Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs
under LWE. In: 58th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2017, pp. 600–611 (2017)

[YAHK14] Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: A framework
and compact constructions for non-monotonic attribute-based encryp-
tion. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 275–292.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-
0 16

https://doi.org/10.1007/978-1-4615-5489-9_2
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-54631-0_16
https://doi.org/10.1007/978-3-642-54631-0_16

Author Index

Aggarwal, Divesh II-510
Agrawal, Rohit II-831
Agrawal, Shweta II-765
Alamati, Navid I-650
Ambainis, Andris II-269
Ananth, Prabhanjan III-284
Ateniese, Giuseppe II-701
Au, Man Ho I-147

Ball, Marshall I-413
Balle, Borja II-638
Bartusek, James II-801
Bell, James II-638
Bellare, Mihir I-235
Ben-Sasson, Eli III-701
Bentov, Iddo III-701
Bitansky, Nir III-128
Blocki, Jeremiah II-573
Bogdanov, Andrej II-387
Boneh, Dan I-561, III-67
Bootle, Jonathan I-176
Boyle, Elette III-67, III-489
Bradley, Tatiana III-798
Bronchain, Olivier I-713
Bünz, Benedikt I-561

Cao, Zhenfu II-117
Castagnos, Guilhem III-191
Catalano, Dario III-191
Chandran, Nishanth III-432
Chase, Melissa III-462
Chen, Binyi I-467, II-543
Chen, Yi-Hsiu II-831
Chen, Yilei I-467
Chen, Yu Long I-266
Cheon, Jung Hee III-253
Cho, Wonhee III-253
Chongchitmate, Wutichai III-432
Cohen, Ran II-30
Cohn-Gordon, Katriel III-767
Coretti, Sandro I-205
Corrigan-Gibbs, Henry III-67
Couteau, Geoffroy III-489

Cremers, Cas III-767
Czajkowski, Jan II-296

Damgård, Ivan I-355, II-61, II-510
Dobraunig, Christoph II-117
Dodis, Yevgeniy I-205, III-462
Don, Jelle II-356
Döttling, Nico III-3
Ducas, Léo I-322

Esgin, Muhammed F. I-115

Faonio, Antonio II-448
Fehr, Serge II-356
Fisch, Ben I-561
Francati, Danilo II-701
Freitag, Cody III-98

Ganesh, Chaya I-355
Garg, Sanjam III-3
Gascón, Adrià II-638
Ghosh, Satrajit II-3
Gilboa, Niv III-67, III-489
Gjøsteen, Kristian III-767
Gohr, Aron II-150
Gong, Junqing II-732
Goudarzi, Dahmun I-683
Goyal, Rishab III-367, III-826
Goyal, Vipul II-85, II-608
Grubbs, Paul III-222
Gu, Dawu II-417
Guo, Siyao I-413
Guo, Yue I-499
Gupta, Divya I-435

Hamburg, Mike II-269
Hamlin, Ariel I-589
Han, Shuai II-417
Harsha, Ben II-573
Hendrickx, Julien M. I-713
Hhan, Minki III-253
Holmgren, Justin I-589
Horel, Thibaut II-831

Horesh, Yinon III-701
Hostáková, Kristina I-467
Hu, Lei I-297, II-180
Hülsing, Andreas II-296

Inoue, Akiko I-3
Ishai, Yuval II-387, III-3, III-67, III-462,

III-489, III-583
Isobe, Takanori II-117
Iwata, Tetsu I-3

Jacobsen, Håkon III-767
Jager, Tibor III-767
Jain, Aayush II-608, III-284
Jaques, Samuel I-32
Jarecki, Stanislaw III-798

Kalai, Yael Tauman III-552
Kang, Siteng II-573
Karthikeyan, Harish I-205
Katsumata, Shuichi III-639
Khurana, Dakshita III-552
Kim, Jiseung III-253
Kim, Sam III-335, III-367
Kitagawa, Fuyuki III-33, III-521
Kohl, Lisa III-489
Komargodski, Ilan III-98
Koppula, Venkata II-671
Kraschewski, Daniel III-462
Kushilevitz, Eyal III-583

Laguillaumie, Fabien III-191
Lai, Russell W. F. I-530
Lambooij, Eran I-266
Larsen, Kasper Green II-61
LaVigne, Rio III-605
Lee, Changmin III-253
Lee, Seunghoon II-573
Len, Julia III-222
Leurent, Gaëtan II-210
Li, Chaoyun II-180
Lin, Huijia III-284
Lincoln, Andrea III-605
Liu, Dongxi I-115
Liu, Fukang II-117
Liu, Joseph K. I-115
Liu, Qipeng II-326
Liu, Shengli II-417
Liu, Tianren III-462

Liu, Yanyi II-85
Lombardi, Alex III-670
Lyu, Lin II-417
Lyubashevsky, Vadim I-176

Ma, Fermi II-801
Maitra, Monosij II-765
Majenz, Christian II-356
Maji, Hemanta K. I-435
Malavolta, Giulio I-530, I-620, III-3
Manohar, Nathan III-367
Martinelli, Ange I-683
Massart, Clément I-713
Matsuda, Takahiro III-33
Matt, Christian III-284
Mendel, Florian II-117
Mennink, Bart I-266
Miers, Ian III-222
Minematsu, Kazuhiko I-3
Montgomery, Hart I-650
Moran, Tal I-381
Mour, Tamer III-3
Mukherjee, Pratyay I-467

Ng, Ruth I-235
Nielsen, Jesper Buus II-61, II-510
Nishimaki, Ryo III-521, III-639
Nissim, Kobbi II-638
Nuñez, David II-701

Obremski, Maciej II-510
Olshevsky, Alex I-713
Orlandi, Claudio I-355
Orlov, Ilan I-381
Ostrovsky, Rafail III-3, III-432, III-462,

III-583

Pan, Yanbin I-297
Paneth, Omer III-128
Papamanthou, Charalampos III-733
Park, Sunoo III-159
Pass, Rafael I-499, III-98
Passelègue, Alain I-683
Patranabis, Sikhar I-650
Patton, Christopher I-738
Peikert, Chris I-89
Pinkas, Benny III-401
Plançon, Maxime I-322
Poettering, Bertram I-3

858 Author Index

Prest, Thomas I-683
Purwanto, Erick II-510

Quach, Willy III-670, III-826

Riabzev, Michael III-701
Ribeiro, João II-510
Ristenpart, Thomas III-222
Rosulek, Mike III-401
Rothblum, Ron D. III-670

Sahai, Amit II-608, III-284, III-583
Sarkar, Santanu I-297
Sasaki, Yu II-180
Savasta, Federico III-191
Schaffner, Christian II-296, II-356
Schanck, John M. I-32
Scholl, Peter III-489
Sealfon, Adam III-159
Seiler, Gregor I-176
Shelat, Abhi II-30
Shi, Danping II-180
Shi, Elaine I-499
Shiehian, Sina I-89
Shrimpton, Thomas I-738
Sibleyras, Ferdinand II-210
Simkin, Mark II-3, II-510
Song, Dawn III-733
Song, Yifan II-85
Srinivasan, Akshayaram II-387, II-480
Standaert, François-Xavier I-713
Steinfeld, Ron I-115
Sun, Siwei II-180

Tackmann, Björn I-235
Tanaka, Keisuke III-33, III-521
Tessaro, Stefano I-205, II-543
Thyagarajan, Sri Aravinda Krishnan I-620
Trieu, Ni III-401
Tsabary, Rotem I-62

Tucker, Ida III-191
Tyagi, Nirvan III-222

Unruh, Dominique II-269

Vadhan, Salil II-831
Vaikuntanathan, Vinod III-462
Vassilevska Williams, Virginia III-605
Vasudevan, Prashant Nalini II-480
Venturi, Daniele II-448, II-701
Visconti, Ivan III-432

Wang, Gaoli II-117
Wang, Huaxiong I-297
Wang, Mingyuan I-435
Waters, Brent II-671, II-732, III-367, III-826
Wee, Hoeteck II-732
Weiss, Mor I-589
Wesolowski, Benjamin I-322
Whyte, William I-147
Wichs, Daniel I-413, I-589, II-30, III-670,

III-826
Wu, David J. III-335, III-367, III-670

Xie, Tiacheng III-733
Xing, Lu II-573
Xu, Jiayu III-798
Xu, Jun I-297
Xu, Qiuliang I-147

Yamada, Shota II-765, III-639
Yamakawa, Takashi III-521, III-639
Yanai, Avishay III-401
Yang, Rupeng I-147
Yu, Zuoxia I-147

Zhandry, Mark II-239, II-326, II-801
Zhang, Jiaheng III-733
Zhang, Yupeng III-733
Zhang, Zhenfei I-147
Zhou, Samson II-573

Author Index 859

	Preface
	CRYPTO 2019 The 39th International Cryptology Conference
	Contents -- Part III
	Trapdoor Functions
	Trapdoor Hash Functions and Their Applications
	1 Introduction
	1.1 Our Setting and Questions of Interest
	1.2 Our Results
	1.3 Concurrent Work
	1.4 Paper Organization

	2 Trapdoor Hash Functions
	2.1 Defining Trapdoor Hash
	2.2 Trapdoor Hash from DDH
	2.3 Trapdoor Hash from QR and LWE

	3 Rate-1 Oblivious Transfer and More
	3.1 Rate-1 Oblivious Transfer from Trapdoor Hash
	3.2 Applications of Rate-1 OT
	3.3 Rate-Optimal Protocols for Other OT-like Functionalities

	4 Private Laconic Oblivious Transfer
	4.1 Basic Construction from Trapdoor Hash
	4.2 Shrinking the Keys Using Pairings
	4.3 Balanced Protocols Through Resuable Private Laconic OT

	References

	CCA Security and Trapdoor Functions via Key-Dependent-Message Security
	1 Introduction
	1.1 Background
	1.2 Our Results
	1.3 Concurrent and Subsequent Works
	1.4 Paper Organization

	2 Technical Overview
	2.1 Achieving IND-CCA Security via Randomness-Recovering
	2.2 Partial Randomness-Recovering Using the Signaling Technique
	2.3 Outline of the Proof: Necessity of KDM Secure SKE
	2.4 Extension to TDF
	2.5 Optimizations and Simplifications

	3 Preliminaries
	3.1 Key Encapsulation Mechanism
	3.2 Secret-Key Encryption
	3.3 Trapdoor Function

	4 Chosen Ciphertext Security via KDM Security
	4.1 Our Construction
	4.2 Proof of Correctness (Proof of Theorem1)
	4.3 Proof of IND-CCA Security (Proof of Theorem2)

	5 Impossibility of Shielding Black-Box Constructions
	6 TDF via KDM Security
	References

	Zero Knowledge I
	Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs
	1 Introduction
	2 A Taxonomy of Information-Theoretic Proof Systems
	2.1 Comparison with Other Proof Systems

	3 Definitions
	4 Constructions: Fully Linear PCPs
	5 Constructions: Fully Linear Interactive Oracle Proofs
	6 Conclusions
	References

	Non-Uniformly Sound Certificates with Applications to Concurrent Zero-Knowledge
	1 Introduction
	1.1 Related Work

	2 Technical Overview
	2.1 Non-uniformly Sound Certificates
	2.2 Concurrent Zero-Knowledge

	3 Preliminaries
	3.1 Interactive Protocols
	3.2 List-Recoverable Codes
	3.3 Concurrent Zero-Knowledge

	4 Non-uniformly Sound Certificates
	5 The Construction
	5.1 Construction
	5.2 Proof of Theorem 4

	6 Concurrent Zero-Knowledge Protocol
	References

	On Round Optimal Statistical Zero Knowledge Arguments
	1 Introduction
	1.1 Results
	1.2 Technical Overview
	1.3 More Related Work

	2 Preliminaries
	2.1 Statistical Zero-Knowledge Arguments
	2.2 Weakly Binding Commitments and Multi-collision Resistant Hash Functions
	2.3 Weak Memory Delegation
	2.4 Function Hiding Secure Function Evaluation
	2.5 Shamir Secret Sharing

	3 Weakly-Binding Commitments with Subset Opening
	3.1 Definition
	3.2 Construction
	3.3 Analysis

	4 Offline-Online Statistically WI Arguments of Knowledge
	4.1 Definition
	4.2 A Protocol for Hamiltonicity
	4.3 Analysis

	5 A Three Message Statistical Zero Knowledge Argument
	References

	Signatures and Messaging
	It Wasn't Me!
	1 Introduction
	1.1 Definitional Contributions
	1.2 Overview of Our Constructions
	1.3 Other Related Work

	2 Anonymity and Unforgeability of Ring Signatures
	2.1 Anonymity
	2.2 Unforgeability

	3 New Definitions: (Un)repudiability and (Un)claimability
	3.1 Repudiable Ring Signatures
	3.2 Unrepudiable Ring Signatures
	3.3 Claimable Ring Signatures
	3.4 Unclaimable Ring Signatures
	3.5 Repudiable-and-Claimable Ring Signatures

	4 Repudiable Construction
	4.1 Construction

	5 Claimable Transformation
	5.1 The Transformation

	6 Unclaimable Construction
	6.1 Lattice Trapdoor Sampling
	6.2 The Basic Construction of BK10
	6.3 Unclaimability for the Full Ring Signature Scheme of BK10

	References

	Two-Party ECDSA from Hash Proof Systems and Efficient Instantiations
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	3 Two-Party ECDSA from Hash Proof Systems
	3.1 Background on Hash Proof Systems
	3.2 Required Properties
	3.3 Resulting Encryption Scheme
	3.4 Zero-Knowledge Proofs
	3.5 Two-Party ECDSA Signing Protocol with Simulation-Based Security

	4 Instantiation in Class Groups of an Imaginary Quadratic Field
	4.1 A Hard Subgroup Membership Assumption
	4.2 A Smooth Homomorphic Hash Proof System from HSM
	4.3 A Zero-Knowledge Proof for RCLDL
	4.4 Two-Party Distributed ECDSA Protocol from HSM

	5 Implementation and Efficiency Comparisons
	5.1 Lindell's Protocol with Paillier's Encryption Scheme
	5.2 Our Protocol with HSM-CL Encryption Scheme
	5.3 Comparison

	6 Conclusion
	References

	Asymmetric Message Franking: Content Moderation for Metadata-Private End-to-End Encryption
	1 Introduction
	2 Deniability in Messaging
	3 Syntax and Security Notions
	3.1 AMF Algorithms and Security Notions: Accountability
	3.2 AMF Algorithms and Security Notions: Deniability

	4 Construction
	4.1 Intuition: AMF from Designated Verifiers
	4.2 AMF from Signatures of Knowledge

	5 Security Analysis
	5.1 Accountability
	5.2 Deniability
	5.3 Measuring Concrete Security

	6 Implementation and Evaluation
	7 Discussion
	8 Related Work
	9 Conclusion
	References

	Obfuscation
	Statistical Zeroizing Attack: Cryptanalysis of Candidates of BP Obfuscation over GGH15 Multilinear Map
	1 Introduction
	1.1 Our Result

	2 Preliminaries
	2.1 Matrix Branching Program
	2.2 Indistinguishability Obfuscation
	2.3 Lattice Trapdoor Background

	3 Statistical Zeroizing Attack
	3.1 Distinguishing Distributions Using Sample Variance

	4 Cryptanalysis of CVW Obfuscation
	4.1 Construction of CVW Obfuscation
	4.2 Cryptanalysis of CVW Obfuscation

	5 Cryptanalysis of BGMZ Obfuscation
	5.1 Construction of BGMZ Obfuscation
	5.2 Cryptanalysis of BGMZ Obfuscation

	A Simple GGH15 Obfuscation
	B Modified CVW Obfuscation
	B.1 Transformation of Branching Programs
	B.2 Modification of CVW Obfuscation

	C Assumptions of Lattice Preimage Sampling
	References

	Indistinguishability Obfuscation Without Multilinear Maps: New Paradigms via Low Degree Weak Pseudorandomness and Security Amplification
	1 Introduction
	1.1 History
	1.2 Comparison of Techniques
	1.3 Open Questions

	2 New PRG Assumptions
	2.1 Perturbation Resilient Generator
	2.2 Pseudo-Flawed Smudging Generators
	2.3 Framework for Algorithms of 3RG and PFG
	2.4 Our Instantiation of Polynomials for RG and PFG
	2.5 Pseudorandomness Assumption in Ananth-Jain-Sahai
	2.6 Known Cryptanalysis

	3 Technical Overview of Ananth-Jain-Sahai 18
	3.1 Reader's Guide

	4 Technical Overview of Lin-Matt 18
	4.1 Noisy Linear Functional Encryption
	4.2 Weak and Leaky Constant-Degree FE
	4.3 New Bootstrapping to FE for NC1

	References

	Watermarking
	Watermarking PRFs from Lattices: Stronger Security via Extractable PRFs
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Contributions
	1.3 Additional Related Work

	2 Technical Overview
	2.1 Robust Extractability
	2.2 Puncturing and Pseudorandomness Given the Trapdoor

	3 Preliminaries
	4 Extractable PRF
	4.1 Puncturable Extractable PRFs
	4.2 Constructing Extractable PRFs
	4.3 Concrete Parameter Instantiations

	5 Watermarking from Puncturable Extractable PRFs
	5.1 Watermarking PRFs
	5.2 Mark-Embedding Watermarking
	5.3 Watermarking Instantiations from Lattices

	References

	Watermarking Public-Key Cryptographic Primitives
	1 Introduction
	1.1 Our Contributions
	1.2 Additional Related Work

	2 Preliminaries
	3 Watermarking Digital Signatures
	3.1 Building Block: Constrained Signatures
	3.2 Watermarking Signatures from Constrained Signatures
	3.3 Instantiations and Extensions

	4 Watermarking Public-Key Predicate Encryption
	4.1 Building Blocks: Functional Encryption and Traitor Tracing
	4.2 Watermarking Predicate Encryption from Hierarchical FE
	4.3 Instantiations and Extensions

	References

	Secure Computation
	SpOT-Light: Lightweight Private Set Intersection from Sparse OT Extension
	1 Introduction
	1.1 What Should We Value in a PSI Protocol?
	1.2 Our Contributions
	1.3 Related Work and Comparison

	2 Technical Preliminaries
	2.1 Notation
	2.2 Oblivious Transfer
	2.3 (Hamming) Correlation Robustness
	2.4 Private Set Intersection
	2.5 The IKNP OT Extension: A Reminder

	3 Our Main Protocol
	3.1 A Conceptual Overview: PSI from a Multi-point OPRF
	3.2 Protocol Details, Correctness, Performance
	3.3 Properties of Polynomials
	3.4 Semi-honest Security
	3.5 Optimizations: Reducing Alice's Communication
	3.6 Security Against Malicious Sender

	4 The Fast Protocol Variant
	4.1 Previous Hashing Techniques
	4.2 Our High-Level Approach
	4.3 Protocol Details

	5 Optimizations for High-Degree Polynomials
	5.1 Background: Interpolation and Multi-point Evaluation
	5.2 Polynomial Slicing and Streaming

	6 Implementation and Performance Comparison
	6.1 Theoretical Analysis of Communication
	6.2 Experimental Comparison
	6.3 Experimental Results

	References

	Universally Composable Secure Computation with Corrupted Tokens
	1 Introduction
	1.1 Our Results
	1.2 High-Level Overview of Our Constructions

	2 Preliminaries
	2.1 Building Blocks
	2.2 UC Security in the Correlated Randomness (CR) Model

	3 Simultaneous Resettable ZK from OWFs
	3.1 ZKAoK in the Correlated Randomness Model from OWFs
	3.2 Simultaneous Resettable ZK in the CR Model from OWFs

	4 MPC in the Correlated Randomness Model
	4.1 Beaver's OT Extension
	4.2 Unbounded Number of OTs
	4.3 MPC in the OT-Hybrid Model

	5 Corrupted Token Model
	5.1 Katz's Stateless Tamper-Proof Token Functionality Ftoken
	5.2 Corruptible Tamper-Proof Token Functionality Ftokencorruptible

	6 A Compiler to the Corrupted Token Model
	6.1 Protocol for Corruptible Tokens
	6.2 Realizing a Tamper-Proof Token with Corruptible Tokens
	6.3 Proof of Security

	7 RAM Obfuscation and Tokens with Bounded Memory
	7.1 High Level Description of the Protocol

	8 Tokens with Small Memory
	References

	Reusable Non-Interactive Secure Computation
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Overview of the Techniques
	2.1 Impossibility of rNISC/OT
	2.2 Construction of Information-Theoretic rNISC/OLE
	2.3 Paillier-Based 2-Message OLE Protocol

	3 Preliminaries
	3.1 Sender-Receiver Functions and Reusable Two-Party Computation
	3.2 Reusable Oblivious Linear Function Evaluation

	4 A Reusable OLE Construction Based on Paillier
	4.1 Indistinguishability of CRS
	4.2 Statistical Security Against Malicious Receiver
	4.3 Statistical Security Against Malicious Sender in Dual Mode

	References

	Efficient Pseudorandom Correlation Generators: Silent OT Extension and More
	1 Introduction
	1.1 Our Contributions
	1.2 Paper Organization

	2 Technical Overview of Constructions
	2.1 Background
	2.2 Overall Methodology
	2.3 Silent OT Extension
	2.4 One-Time Truth Tables
	2.5 PCGs for Constant-Degree Polynomials from LPN
	2.6 PCGs from Ring-LWE and BGN-based HSS
	2.7 Multi-party PCGs

	3 Preliminaries
	3.1 Function Secret Sharing
	3.2 Learning Parity with Noise

	4 Pseudorandom Correlation Generators
	4.1 Defining Pseudorandom Correlation Generators
	4.2 Impossibility of a Simulation-Based Definition
	4.3 Applying PCGs in Protocols with Correlated Randomness

	5 Silent Oblivious Transfer Extension from LPN
	5.1 Subfield Vector-OLE
	5.2 PCG for Random Oblivious Transfer
	5.3 From a PCG to Silent OT Extension

	References

	Various Topics
	Adaptively Secure and Succinct Functional Encryption: Improving Security and Efficiency, Simultaneously
	1 Introduction
	1.1 Background
	1.2 Our Contributions

	2 Technical Overview
	2.1 Laconic OT from Succinct PKFE
	2.2 Adaptive Garbling from Selective-Database Updatable Laconic OT
	2.3 From Single-bit to Multi-bit Succinct FE by Leveraging Collusion-Resistance
	2.4 Adaptively Indistinguishable Garbling with Near-Optimal Online Complexity

	3 Preliminaries
	3.1 Known Results on Functional Encryption

	4 Selective-Database Laconic OT from PKFE
	4.1 Definition of Selective-Database Laconic OT
	4.2 Selective-Database Laconic OT with Compression Factor 2 from IO
	4.3 Replacing IO with Sublinearly Succinct PKFE
	4.4 From Non-updatable to Updatable

	5 Adaptive Garbling from Selective-Database Laconic OT
	5.1 Description of Our Adaptive Garbling Scheme
	5.2 Secret-Key FE from Our Adaptive Garbling

	6 Adaptively Secure, Collusion-Resistant, and Succinct FE
	6.1 From Single-Bit to Multi-bit Succinct FE by Leveraging Collusion-Resistance
	6.2 Fully-Equipped PKFE

	7 Adaptively Indistinguishable Garbling with Near-Optimal Online Complexity
	References

	Non-interactive Non-malleability from Quantum Supremacy
	1 Introduction
	1.1 Our Results
	1.2 Applications and Directions for Future Work
	1.3 Prior Work

	2 Overview of Our Techniques
	2.1 Non-malleable Commitments w.r.t. Commitment for loglogn Tags
	2.2 Non-interactive Tag Amplification

	3 Definitions
	3.1 Non-malleable Commitments w.r.t. Replacement
	3.2 Non-malleable Commitments w.r.t. Commitment

	4 Non-malleable Commitments for Small Tags
	5 Non-malleability Amplification
	6 Putting Things Together: Non-malleable Commitments for All Tags
	References

	Cryptographic Sensing
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Future Directions

	2 Preliminaries
	2.1 The LWE Assumption

	3 Defining Cryptographic Sensing
	4 Cryptographic Sensing with Linear Measurements
	4.1 Linear Measurements over Zq
	4.2 Linear Measurements over the Integers

	5 Beyond Linear Measurements
	5.1 Negative Results for Simple Classes via Occam's Razor
	5.2 Local Measurements
	5.3 Distributed Solution for Learning Juntas

	References

	Public-Key Cryptography in the Fine-Grained Setting
	1 Introduction
	1.1 Our Contributions
	1.2 Previous Works
	1.3 Technical Overview
	1.4 Organization of Paper

	2 Preliminaries: Model of Computation and Definitions
	2.1 Fine-Grained Symmetric Crypto Primitives
	2.2 Fine-Grained Asymmetric Crypto Primitives

	3 Average Case Assumptions
	3.1 General Useful Properties
	3.2 Concrete Hypothesis

	4 Our Assumptions - Background and Justification
	4.1 Background for Fine-Grained Problems
	4.2 Justifying the Hardness of Some Average-Case Fine-Grained Problems

	5 Fine-Grained Key Exchange
	5.1 Description of a Weak Fine-Grained Interactive Key Exchange
	5.2 Correctness and Soundness of the Key Exchange

	References

	Zero Knowledge II
	Exploring Constructions of Compact NIZKs from Various Assumptions
	1 Introduction
	1.1 Background
	1.2 Our Contribution
	1.3 Technical Overview
	1.4 Related Works

	2 Homomorphic Equivocal Commitment
	2.1 Definition
	2.2 Constructions of HEC

	3 Compact CRS-NIZK from HEC
	3.1 Extractable CRS-NIZK
	3.2 Construction of Compact CRS-NIZK
	3.3 Instantiations

	4 Compact DV-NIZK
	4.1 Preliminaries
	4.2 Construction

	5 CRS-NIZK with Efficient Prover from Laconic Function Evaluation
	5.1 Instantiations

	References

	New Constructions of Reusable Designated-Verifier NIZKs
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Recent Related Work

	2 Preliminaries
	2.1 Designated-Verifier NIZKs
	2.2 Zero-Knowledge PCPs
	2.3 Attribute-Based Encryption
	2.4 KDM-Secure Secret-Key Encyryption

	3 Attribute-Based Secure Function Evaluation
	4 Designated-Verifier NIZKs from AB-SFE
	5 Constructing AB-SFE Schemes
	5.1 Weak Message-Hiding AB-SFE from Single-Key ABE
	5.2 Strong Message-Hiding AB-SFE from Receiver-Extractable OT
	5.3 Amplifying Weak Key-Hiding AB-SFE to Strong Key-Hiding AB-SFE
	5.4 Instantiations

	References

	Scalable Zero Knowledge with No Trusted Setup
	1 Introduction
	1.1 The Virtues of Transparent Scalability

	2 Theory—Definitions and Main Results
	2.1 Interactive Oracle Proofs (IOP)
	2.2 ZK-STIK
	2.3 Main Theorems
	2.4 STARK as a Realization of STIK

	3 Evaluation and Comparison
	3.1 Comparison to Prior Works—Theory
	3.2 Comparison to Prior Works—Concrete Performance
	3.3 SCI vs. ZK-STARK

	4 Novel Ingredients in the Construction
	4.1 Reduced Authentication Path Complexity
	4.2 Algebraic Linking Interactive Oracle Proof (ALI)
	4.3 Algebraic Security Assumptions

	A Standalone Construction
	References

	Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation
	1 Introduction
	1.1 Comparing to Other ZKP Systems
	1.2 Our Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Interactive Proofs and Zero-Knowledge Arguments
	2.3 GKR Protocol
	2.4 Zero-Knowledge Verifiable Polynomial Delegation Scheme

	3 GKR Protocol with Linear Prover Time
	3.1 Linear-Time Sumcheck for a Multilinear Function JTspsThesis
	3.2 Linear-Time Sumcheck for Products of Multilinear Functions JTspsThesis
	3.3 Linear-Time Sumcheck for GKR Functions
	3.4 Putting Everything Together

	4 Zero Knowledge Argument Protocols
	4.1 Zero Knowledge Sumcheck
	4.2 Zero Knowledge GKR
	4.3 Zero Knowledge VPD
	4.4 Putting Everything Together

	5 Implementation and Evaluation
	5.1 Improvements on GKR Protocols
	5.2 Comparing to Other ZKP Schemes

	References

	Key Exchange and Broadcast Encryption
	Highly Efficient Key Exchange Protocols with Optimal Tightness
	1 Introduction
	2 Background
	3 AKE Security Model
	4 Protocol
	4.1 Preparing Oracles
	4.2 Type IV Responder Oracles
	4.3 Type III Responder Oracles
	4.4 Type II Initiator Oracles
	4.5 Summary

	5 Avoiding the Strong Diffie-Hellman Assumption
	5.1 Protocol Twin
	5.2 Protocol Pi-Com

	6 Efficiency Analysis
	7 Optimality of Our Security Proofs
	8 Adding Explicit Entity Authentication
	9 Conclusion
	References

	Strong Asymmetric PAKE Based on Trapdoor CKEM
	1 Introduction
	2 Conditional Key Encapsulation Mechanisms
	2.1 Implicit-Statement CKEM Construction in ROM from SPHF's

	3 Security of a Password File Against Dictionary Attacks
	4 Strong aPAKE from Implicit-Statement CKEM
	4.1 Security Analysis

	5 Efficient Instantiation of Strong aPAKE
	5.1 Efficient CKEM for Commitment to STOWF Preimage
	5.2 Communication and Computation Costs of Protocol saPAKE-BB

	References

	Broadcast and Trace with N Ciphertext Size from Standard Assumptions
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	2.1 Broadcast and Trace Systems
	2.2 Augmented Broadcast Encryption
	2.3 Key-Policy Attribute Based Encryption with Short Ciphertexts
	2.4 Key-Homomorphic Private Constrained PRFs

	3 Broadcast Mixed FE for Comparison
	4 Building Augmented BE from Broadcast Mixed FE and Key-Policy ABE with Short Ciphertexts
	5 Building Broadcast Mixed FE for Comparison from PCPRFs
	6 Efficiency
	6.1 Efficient PCPRF for Comparison Constraints
	6.2 Wrapping-Up

	References

	Author Index

